

 Lisp Hackers

 Interviews with 100x More Productive Programmers

 Vsevolod Dyomkin

 This book is for sale at http://leanpub.com/lisphackers

 This version was published on 2013-06-21

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

[image: Creative Commons by-nc-sa]

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

Table of Contents

 	A Short Intro

	A Few Quotes

	Zach Beane (USA)

	Edi Weitz (Germany)

	Slava Akhmechet (USA)

	Pascal Costanza (Germany - Belgium)

	Peter Seibel (USA)

	Marijn Haverbeke (Netherlands - Germany)

	François-René (Faré) Rideau (France - USA)

	Daniel Barlow (UK)

	Christophe Rhodes (UK)

	Luke Gorrie (Australia - Sweeden - Switzerland)

	Juan José García Ripoll (Spain)

	John Fremlin (USA)

	Vladimir Sedach (Russia - Canada - USA)

	Marc Battyani (France - USA)

	Afterword

A Short Intro

The idea of this series came to my mind after
European Common Lisp Meeting 2011 where
I had had a chance to meet in person some of those mythical 100x more
productive programmers. And the points I wanted to make were:

	these guys do exist, and it’s really interesting to know how they
work and think

 	it makes sense to show who are the real people using this obscure
and mythical language Common Lisp, why do they use it and what they
do with it

This book is a collection of short interviews with 14 prominent
individuals from different parts of the world, from Australia to
Canada, and of different occupations, from low-level programmers to
physicists and musicians, asking them a more-or-less similar set of
questions on the following topics:

	their general attitude to programming

 	attitude towards and experience with Lisp

 	stories of real-world Lisp projects

Overall, this should give an insight into why people use Lisp, as well
as help the readers gain some new experience and improve as programmers.

How were these individuals chosen? I looked for people who possess at
least 2 of the following 3 essential qualities:

	a renown Lisp open-source contribution

 	prominence in the community

 	experience working for successful Lisp companies

 	… and a good perspective on other languages was considered as a
pleasant bonus

Definitely, not all of the hackers I’d like to interview are here.
For various reasons. There are lots more interesting Lisp people with
fascinating experiences worth sharing, and, hopefully, this will happen
in the future in one form or the other. Yet, here are these 14 unique
lispers with their stories, world views and insights. Enjoy!

P.S. As a bonus you’ll find some interesting bits of history of SBCL
and Slime, the two most important open-source Common Lisp tools,
told by their main developers.

A Few Quotes

 I’ve been using CL exclusively for the last six or
 seven years. As I was working freelance, this was kind of easy —
 I either had projects where the customer didn’t care about the
 programming language that I used as long as I got the job done, or I
 was hired specifically for my CL skills.

 – Edi Weitz

 I love hanging out with Lisp hackers: I find that we’re an unusually
 diverse community. How often do you attend a small conference where
 attendees are building nuclear defense systems, running intensive
 care wards, designing aeroplane engines, analysing Lute tablature,
 developing cancer drugs, writing FIFA’s legal contracts, and
 designing their own microchips?

 – Luke Gorrie

 When what I have to do is solve problems that no language has
 built-in libraries for, then I want to be working in a language
 where I can focus on the problem itself, rather than the detail of
 that language — and for me, Lisp permits that kind of separation of
 concerns, given its easy support for DSL and embedded language
 generation, protocols, and the ability to run partial programs.

 – Christophe Rhodes

 In one of our research topics we had to solve huge instances of
 3-SAT problems using a very basic algorithm. The fact that Common
 Lisp comes with bignums reduced the development time to one
 afternoon and the program we produced was faster than the C++
 prototypes we had.

 – Juan José García Ripoll

 In the end, Lisp won me over because it turns out that it is the
 mother of all languages. You can bend it and turn it into whatever
 language you want, from the most flexible and reflective interpreted
 scripting language to the most efficient and static compiled
 production system.

 – Pascal Costanza

 For typical projects I feel like I’m building more tools into my
 REPL workbench. I don’t write scripts that I call from the command
 line, I write functions that I call from the REPL, and use the slime
 and Emacs environment to create and interact with data, whether it’s
 data from a file, from a computation, from the web, a database, etc.

 – Zach Beane

 It’s also very easy to turn Common Lisp REPL code into unit tests,
 which I tend to do a lot. That is something that’s very hard to do
 with object-oriented code, which is why idiotic things like
 dependency injection and Test-Driven Development have to be
 invented.

 – Vladimir Sedach

 There’s a clear difference between the Lisp workflow where you
 change the state of your image interactively to get the code into
 working shape very quickly (and then later try to remember what it
 was you did) and the more scripted approach of test-driven
 development in Ruby where you put everything (code, test setup,
 assertions) in files that you reload from disk on each run.

 – Daniel Barlow

 When I’m trying to understand someone else’s code I tend to find the
 best way is to refactor or even rewrite it. I start by just
 formatting it to be the way I like. Then I start changing names that
 seem unclear or poorly chosen. And then I start mucking with the
 structure.

 – Peter Seibel

 The greatest thing about Common Lisp is that the standardization
 process drew from years and years of experience and organic
 growth. This makes the language feel singularly solid and
 practical. Most languages feel immature compared to CL.

 – Marijn Haverbeke

 We don’t use Lisp, but much of our software is built on ideas
 borrowed from Lisp. We don’t use it because we needed low level
 control — most of the code is written in C++, even with some bits of
 assembly. But we’ve borrowed an enormous number of ideas from
 Lisp. In fact, if we weren’t Lispers, we would have built a very
 different (and I think significantly more inferior) product.

 – Slava Akhmechet

 On the upside, we certainly have been able to write quite advanced
 software that we might not have otherwise managed. A million lines
 of Lisp code, including its fair share of macros and DSLs, would be
 so many more million lines of code without the syntactic abstraction
 made possible by Lisp. However hard and expensive it was with Lisp,
 I can only imagine how many times worse it would have been with
 anything else.

 – Faré Rideau

 I think we would all be better off if we hadn’t balkanised the
 different systems that we program for — and Lisp is one of the few
 programming languages with the flexibility to serve in all these
 roles.

 – John Fremlin

 The language itself is somewhat good enough and anyway Common Lisp
 makes it really easy to change most of itself to add the new and
 cool stuff or ideas of the day.

 – Marc Battyani

Zach Beane (USA)

Zach Beane is the uniting link of the whole community. The creator of
Quicklisp and a number of useful
open-source libraries, like Vecto
and ZS3, he is also always active on
#lisp irc channel answering questions, as well as keeping
a blog, where he shares interesting
Lisp news, and supporting Planet Lisp blog
aggregator. And that’s not all…

His twitter is @xach

Tell us something interesting about yourself.

 I live in Maine and enjoy hacking Common Lisp projects for fun and profit.

What’s your job? Tell us about your company.

 I work at a small telephone and Internet company.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I currently use Lisp to analyze some large data files we get from
 vendors and partners and produce reports. I’ve recently used Lisp to
 produce KML files for Google Earth visualization of some internal
 data. I use stuff like cl-ppcre,
 drakma,
 postmodern,
 cl-mssql,
 cxml, and more to gather data
 from various systems when preparing reports. The growing library
 ecosystem has made it really easy to get stuff done.

 Lisp is accepted because I can produce useful stuff pretty quickly
 with it. It’s a small company with a small team so there isn’t a
 bureaucracy to fight to use something non-standard. Does the tool
 work? Is the result useful? Then there’s no problem.

 In some cases, where it isn’t a good fit for the final product, I
 use Lisp to prototype ideas before writing a final thing in some
 other language, e.g. C or Perl. But I even use CL to generate data
 and code in other languages, so it’s still in the mix, still a part
 of my workflow.

What brought you to Lisp? What holds you?

 Paul Graham’s “Beating the Averages”
 describes a really exciting way to use an uncommon tool to great
 advantage. That got me interested in how I could do the same
 thing. I started off with some stuff in Scheme because I thought CL
 was old and crufty and gross, but when I started using SBCL I found
 it was a great, practical tool, and I never stopped using CL after
 that.

 I continue to use CL because it has a great mix of features (object
 system, first-class functions, fast compiled code, multiple
 implementations, a fantastic standard, etc, etc) and it works well
 in my favorite working environment, Emacs on Linux. I feel like I
 know it well and I can see quickly how to use it to explore and
 solve new problems.

What’s the most exciting use of Lisp you had?

 Making graphics with Lisp for
 wigflip.com. It’s always fun to have an idea
 about some kind of visual toy and then tinker with it until it’s
 right.

 It’s also fun to do something fast. A few years ago I got a project
 to fill out some PDF forms automatically. The project started with a
 few days scheduled to research third-party solutions, but in those
 few days I had a working prototype that used
 CL-PDF and
 CLSQL.

What you dislike the most about Lisp?

 There are a lot of negative perceptions about Common Lisp that are
 reinforced by current and former Common Lisp users. I can accept
 that CL is not for everyone, but some of the criticism is just years
 (sometimes decades) of moaning and nitpicking about decisions made
 in the distant past that are not really up for review right now. I
 wish the people who are vocally, chronically dissatisfied with CL
 would go off and do their own thing and stop bothering people that
 are happy with Common Lisp.

 There are some remarkable trolls that like to pick on CL, but
 they’re not usually taken seriously by anyone, but “insiders” who
 complain about CL are perceived to be giving some sort of genuine
 insight. It’s very annoying.

Among software projects you’ve participated in what’s your favorite?

 Quicklisp has been very rewarding. There’s a lot of positive
 feedback from people who feel it really helped them use CL more
 easily. More generally, the whole CL ecosystem has been a lot of
 fun. I enjoy trying new libraries, sending feedback and bug reports,
 helping people get started, and all that stuff. Common Lisp has a
 lot of smart, helpful, friendly people who share a lot of knowledge,
 and I feel lucky to get to learn from them and to try to share what
 I know, too.

Describe your workflow, give some productivity tips to fellow programmers.

 For typical projects I feel like I’m building more tools into my
 REPL workbench. I don’t write scripts that I call from the command
 line, I write functions that I call from the REPL, and use the slime
 and Emacs environment to create and interact with data, whether it’s
 data from a file, from a computation, from the web, a database, etc.

 I find it really helps to have small, focused functions that are
 easy to follow and that do one thing and do it well. The fine
 granularity of testing, tracing, intermediate values, etc. can help
 wire together a very useful set of behaviors from a small core of
 simple functions.

 Some productivity ideas…

 Knock the rough edges off your working environment. Write code to
 automate stuff. Make it easy to repetitively do complicated but
 boring stuff. For example, I used to be afraid of the hassle of
 making new releases of my projects, but recently wrote a CL program
 that does everything for me, from PGP-signing the tarballs to
 uploading them along with the documentation to my website. Now I
 don’t care if I make ten project releases in a day, it’s just a few
 function calls.

 Customize your environment to make it comfortable. Make it easy to
 look up info in the hyperspec or in other documentation
 sources. Make it easy to create new projects. I use
 quickproject a lot for
 that, but I also have some Emacs templates that put some boilerplate
 into my files automatically. Make a program do your work for you.

How did quicklisp change your life? What are current plans for its development?

 I can get up and running in a new environment very quickly
 now. Before Quicklisp, I could usually build up a set of libraries
 that were comfortable and useful, but it could be a hassle to move
 them from computer to computer, or to make sure they were
 up-to-date. Now I just use Quicklisp and don’t worry about it.

 As Quicklisp maintainer, it’s really helped me see where some people
 are coming from when they want to try Common Lisp. It’s a totally
 different mindset than what I’m used to. I think there’s room for
 some documentation or tutorial on the system-oriented,
 REPL-workbench style of Common Lisp development that I like to use.

 I want to write more documentation for Quicklisp, particularly how
 users can publish their own software for it or customize it via its
 internal protocols.

 I also want to gather and share documentation for all
 Quicklisp-loadable projects, so there can be a single place to learn
 what a given project does, and get access to all its documentation.

 I’d also like to make it easy for people to share feedback about
 their experiences with a project, so you could decide if it’s likely
 to fit your needs. Something like the feedback you see for products
 on Amazon, but for Lisp libraries.

If you had all the time in the world for a Lisp project, what would it be?

 As a fantasy project, I’d love to make a system for interesting
 visualization of complex data, something where it’s easy to splat
 something quick and dirty on the screen/page, but which can grow in
 capability as the need arises. Or maybe just some tool for making
 audiovisual toys, with cool pictures and noises coming out.

Anything else I forgot to ask?

 Common Lisp is a great system that rewards in-depth study.

 [image: xach]xach

2012-03-10

Edi Weitz (Germany)

Edi Weitz doesn’t need to be introduced in the Lisp community.
His vast contributions to open source Lisp, made during the last decade,
collectively known as Ediware, include the indispensable regex library
CL-PPCRE, written on a bet in Hamburg café,
and a whole stack of web-related libraries with the most widely
used Lisp application server
Hunchentoot and HTTP client
Drakma. Together with
Arthur Lemmens he co-organizes
European Common Lisp Meeting.

Tell us something interesting about yourself.

 Well, I’ll leave it to someone else to tell you what’s interesting
 about me. I’ll rather tell you what I find interesting in addition
 to Common Lisp: I collect photo books and I’m doing a bit of
 photography myself. I
 like to listen to the music of Frank Zappa and to Jazz. I read a
 lot. I’m interested in mathematics, especially in
 set theory.

What’s your job? Tell us about your company.

 I’m a professor for mathematics and computer science at the
 University of Applied Sciences in
 Hamburg. I started this job in September 2011.

 Before that, I was a freelance hacker for about 13 years.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 In my new job, I’ve been using CL in my math lectures a couple of
 times and will continue to do so.

 In my old job, I’ve been using CL exclusively for the last six or
 seven years. As I was working freelance, this was kind of easy —
 I either had projects where the customer didn’t care about the
 programming language that I used as long as I got the job done, or I
 was hired specifically for my CL skills.

What brought you to Lisp? What holds you?

 I came to Lisp via Emacs Lisp in 1999 or so. What got me hooked was
 the wonderful book
 “Writing GNU Emacs Extensions”
 by Bob Glickstein. It opened my mind for the beauty of the Lisp
 language family — something I had missed the first time I had
 encountered Lisp (in university, a few years earlier). The two CL
 books by Paul Graham and Norvig’s
 PAIP then paved the way for Common
 Lisp.

 What holds me is that I haven’t found a better programming language
 so far — and I don’t expect to find one very soon.

What’s the most exciting use of Lisp you had?

 I don’t know if “exciting” is the right word, but it makes me happy
 that so many people use
 “The Regex Coach” and like it. I
 stopped keeping track, but there must have been at least half a
 million downloads since 2003.

 I’m also kind of proud that some of my open source libraries are
 used by various commercial and research projects around the world.

 But probably the most awe-inspiring encounters I had with Lisp were
 the few occasions when I played around with Genera or watched
 someone else using it. I think this OS really was a work of art.

What you dislike the most about Lisp?

 There’s nothing I really dislike about Common Lisp. There are a few
 warts here and there, but so far I’ve found nothing that was serious
 enough to prevent me from being productive.

Among software projects you’ve participated in what’s your favorite?

 Working on the Windows port of Piano — an
 extremely impressive application which has been around for almost 20
 years and has been used by almost every aircraft manufacturer in the
 world. Dimitri Simos, Piano’s main author, has been the most
 enjoyable client I’ve worked with so far.

Describe your workflow, give some productivity tips to fellow programmers.

 I usually just start up the LispWorks IDE and hack away. The best
 productivity tip I can give is to stick with one implementation and
 IDE and to invest a lot of time to really learn how to use it —
 including all the implementation-specific goodies like debuggers,
 inspectors, steppers, browsers, and so on.

Ediware became hugely popular (by Lisp standards), and with this popularity came a lot of work and responsibility. You seem to have mostly handed over supporting it to Hans Hübner. What’s up next for you in the land of programming and Lisp in particular?

 I’m planning to give a lecture about the use of AI techniques in
 games in the next year and I might use some Lisp there. I might also
 — as a sideline — resume my CL consulting work sooner or later. I
 don’t expect to publish new open source code in the near future,
 though.

If you had all the time in the world for a Lisp project, what would it be?

 When I was still working as a hacker, I always dreamt of finding
 someone to pay me for working on an open-source CLOS object store —
 written in pure Common Lisp, OS-independent, portable, not relying
 on third-party software, fast, reliable, thread-safe,
 well-documented, etc.

 [image: edi]edi

2012-03-14

Slava Akhmechet (USA)

Slava Akhmechet published several enlightening essays at his website
defmacro.org, of which one I often recommend to
people, interested in learning about Lisp:
The Nature of Lisp. He
also created a continuation-based Lisp web-framework —
Weblocks, backed by a
delimited continuations library
cl-cont. Other then that he
is a co-founder of a startup company RethinkDB, of which he tells a
bit in the interview.

Tell us something interesting about yourself.

 For a long time I thought that human achievement is all about
 science and technology. In the past few years I realized how misled
 I was. Hamlet is as important an achievement as discovering
 penicillin. I wish I’d figured out earlier that science, for all its
 usefulness, is very limiting if one adopts it as an article of
 faith.

What’s your job? Tell us about your company.

 I’m a founder at RethinkDB. We spent
 three years building a distributed database system that we’re about
 to open source and release in the next two weeks. The system allows
 people to easily create clusters of machines, partition data in a
 click of a button, and run advanced, massively parallelized,
 distributed queries using a very comfortable query language we’ve
 designed. The product is really delightful to use — we were just
 playing with it today to analyze census data for the upcoming
 presidential election in the U.S. and using it to play with the data
 is a real joy. I’m very proud of what we’ve done here — I hope it
 will make lots of people’s jobs easier and let them do things they
 couldn’t have done before.

 My job here is to do the most important thing at any given
 time. Sometimes it means fixing bugs, sometimes it means demoing the
 product to customers, and sometimes it means driving to buy supplies
 so our developers can get their jobs done.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 We don’t use Lisp, but much of our software is built on ideas
 borrowed from Lisp. We don’t use it because we needed low level
 control — most of the code is written in C++, even with some bits of
 assembly. But we’ve borrowed an enormous number of ideas from
 Lisp. In fact, if we weren’t Lispers, we would have built a very
 different (and I think significantly more inferior) product.

What brought you to Lisp? What holds you?

 A guy named bishop_pass on gamedev.net forums about fifteen years
 ago. He was a really good advocate and I respected his opinions
 because of other subjects, so I decided to check Lisp out. I enjoyed
 it immensely, and spent years hacking in it. Today the only Lisp I
 still use is Emacs Lisp. I honestly don’t know if I’ll program in
 Lisp again (other than for fun, of course), but the ideas behind it
 will be with me forever.

What’s the most exciting use of Lisp you had?

 I built cl-cont — a macro that converts Lisp code to continuation
 passing style. I honestly think I learned more about programming
 from that experience than from anything else I’ve done before or
 after.

What you dislike the most about Lisp?

 Probably the arrogance of the community that surrounds it. Knowing
 Lisp certainly doesn’t make one a better person, nor even
 necessarily a better programmer.

Among the software projects you’ve participated in what’s your favorite?

 Definitely RethinkDB. We took a really complex subject (real-time
 distributed systems) and made them extremely accessible and
 super-easy to use. I love the product both because we made the user
 experience a joy, and because of the really advanced technology that
 goes inside to make that happen (from low-level assembly hacks, all
 the way up to abstract mathematics).

If you had all the time in the world for a Lisp project, what would it be?

 I’d want to build my own Lisp dialect. I know, I know, it’s been
 done to death, there is no need to do it, and it only hurts the
 community, but in the presence of infinite time, it’s just too much
 fun not to do.

Describe your workflow, give some productivity tips to fellow programmers.

 The most important thing I learned on productivity is this Alan Kay
 quote:

 Perspective is worth 80 IQ points.

 You could be the most productive person in the world, but it won’t
 make the slightest bit of difference if you’re pointing your talents
 in a direction that isn’t useful to other people. If you’re
 talented, your gift is precious and your time is limited. Learn how
 to direct your talents, it will be the most important thing you do.

You’re currently a co-founder of a startup company RethinkDB, which went through YCombinator. As an insider of the startup ecosystem, in your opinion, what are the areas for Lisp use in startups nowadays with the biggest potential upside and why?

 This isn’t a popular stance in the Lisp community, but I think that
 today Lisp is mostly valuable as an education tool, as a means of
 thinking, and as an engine of ideas. It’s very important for
 that. But as far as practical use goes, there are better options today.

 [image: Slava]Slava

2012-10-25

Pascal Costanza (Germany - Belgium)

Pascal Costanza is a researcher, and an active Common Lisp programmer and community enthusiast:

	he’s the maintainer of
Closer to MOP library,
that provides a common facade to the MOP implementation in different
Lisps, and is the basis of some of his more advanced libraries like:
ContextL and
Filtered Functions;

 	the originator of
Common Lisp Document Repository (CDR)
project, that collects proposals for improving the language (a la
JCP for Java or PEP for Python);

 	and the author of a
Highly Opinionated Guide to Lisp,
which can serve as introductory text for those who come to Lisp from other
languages. (It was quite a useful text for me, when I started
studying Lisp.)

In the interview Pascal shares a lot if insight into his main topic of interest — programming language design — grounded in his experience with Lisp, Java, C++ and other languages.

His twitter is @infoxpascal

Tell us something interesting about yourself.

 I share a birthday with Sylvester Stallone and George W. Bush.
 I have been a DJ for goth and industrial music in the Bonn/Cologne
 area in Germany in the past. I once played a gay Roman emperor in
 comedic theatre play. I played a few live shows with a band called
 “Donner über Bonn” (“Thunder over Bonn”). My first rock concert I
 ever attended was Propaganda in Cologne in 1985. The first
 programming language I really liked was Oberon. I often try to hide
 pop culture references in my scientific work, and I wonder if
 anybody ever notices. My first 7” single was “Major Tom” by Peter
 Schilling, my first 12” single was “IOU” by Freeez, my first vinyl
 album was “Die Mensch-Maschine” by Kraftwerk, and my first CD album
 was “Slave to the Rhythm” by Grace Jones. I don’t remember what my
 first CD single was.

What’s your job? Tell us about your company.

 I currently work for Intel, a company whose primary focus is on
 producing CPUs, but that also does business in a lot of other
 hardware and software areas. (Unfortunately, Intel’s legal
 department requires me to mention that the views expressed in this
 interview are my own, and not those of my employer.)

 I work in a project that focuses on exascale computing, that is,
 high-performance computers with millions of cores that will be on
 the market by the end of the decade, if everything goes well. I am
 particularly involved in developing a scheduler for parallel
 programs that can survive hardware failures, which due to the
 enormous scale of such machines cannot be solved by hardware alone
 anymore, but also need to be dealt with at the software level. The
 scheduler is based on
 Charlotte Herzeel’s
 PhD thesis, and you can find more information about it in
 a paper about her work
 and at http://www.exascience.com/cobra/.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 At Intel, I do all software prototyping in Lisp. The scheduler I
 mentioned above is completely developed and tested in Lisp, before
 we port it to C++, so that other people in the same project and
 outside can use it as well. It didn’t require a major effort to
 convince anybody to do this in Lisp. It is actually quite common in
 the high-performance computing world that solutions are first
 prototyped in a more dynamic and flexible language, before they are
 ported to what is considered a “production” language. Other
 languages that are used in our project are, for example, MATLAB,
 Python and Lua. (Convincing people to use Lisp beyond prototyping
 would probably be much harder, though.)

 The implementation we use for prototyping is LispWorks, which is
 really excellent. It provides a really complete, well-designed and
 efficient API for parallel programming, which turns LispWorks into
 one of the best systems for parallel programming of any language,
 not just in the Lisp world. The only other system that is more
 complete that I am aware of is Intel’s Threading Building Blocks for
 C++.

What brought you to Lisp? What holds you?

 I have participated in one of the first Feyerabend workshops,
 organized by Richard Gabriel, one of
 the main drivers behind the original Common Lisp effort. I have also
 read his book
 Patterns of Software
 around that time. Later we had a small discussion in the patterns
 discussion mailing list. He tried to promote Lisp as a language that
 has the “quality without a name”, and I made some cursory remarks
 about Lisp’s unnecessarily complicated syntax, just like anybody
 else who doesn’t get it yet.

 To me, the most important comment he made in that discussion was:

 True, only the creatively intelligent can prosper in the Lisp
 world.

 The arrogance I perceived in that comment annoyed me so much
 that it made me want to learn Lisp seriously, just to prove him
 wrong and show him that Lisp is not as great as he thought it is. As
 they say, the rest is history.

 I actually dabbled a little bit in Lisp much earlier, trying out a
 dialect called XLisp on an Atari XL computer at the end of the
 80’s. Unfortunately, it took too long to start up XLisp, and there
 was not enough RAM left to do anything interesting beyond toy
 examples, plus I was probably not smart enough yet to really get
 it. I was just generally curious about programming languages. For
 example, I also remember trying out some Prolog dialect on my Atari
 XL.

 In the end, Lisp won me over because it turns out that it is the
 mother of all languages. You can bend it and turn it into whatever
 language you want, from the most flexible and reflective interpreted
 scripting language to the most efficient and static compiled
 production system. For example, the scheduler mentioned above easily
 gets in the range of equivalent C/C++-based schedulers (like Cilk+,
 TBB, or OpenMP, for example), typically only a factor of 1.5 away
 for typical benchmarks, sometimes even better. On the other hand,
 ContextL uses the reflective features of the CLOS Metaobject
 Protocol to bend the generic function dispatch in really extreme
 ways. I am not aware of any other programming language that covers
 such a broad spectrum of potential uses.

What’s the most exciting use of Lisp you had?

 When I decided to make a serious attempt at learning Common Lisp,
 I was looking for a project that would be large enough to prove to
 myself that it is actually possible to use it for serious projects,
 but that would also be manageable in a reasonable amount of time.
 At that time, I was intimately familiar with the Java Virtual Machine
 architecture, because I had developed compilers for Java language
 extensions as part of my Diploma and PhD theses. So I decided to
 implement a Java Virtual Machine in Common Lisp - under normal
 circumstances, I wouldn’t have dared to do this, because this is
 quite a complex undertaking, but I had read in several places that
 Lisp would be suitable for projects that you would normally not dare
 to do otherwise, so I thought I would give it a try. Over the course
 of 8 weeks, with something like 2 hours per day, or so (because I
 was still doing other stuff during the day), I was able to get a
 first prototype that would execute a simple "Hello, World!"
 program. On top of that, it was a portable (!) just-in-time
 compiler: It loaded the bytecode from a classfile, translated it
 into s-expressions that resemble the bytecodes, and then just called
 Common Lisp’s compile function to compile those s-expressions,
 relying on macro and function definitions for realizing these
 “bytecodes as s-expressions.” I was really impressed that this was
 all so easy to do.

 The real moment of revelation was this: to make sure to reuse as
 many of the built-in Common Lisp features as possible, I actually
 translated Java classes into CLOS classes, and Java methods into
 CLOS methods. Java’s super calls posed a problem, because it was not
 straightforward to handle super calls with plain call-next-method
 calls. Then I discovered user-defined method combinations, which
 seemed like the right way to solve this issue, but I was still stuck
 for a while. Until I discovered that moving a backquote and a
 corresponding unquote around actually finally fixed everything. That
 was a true Eureka moment: In every other programming language that I
 am aware of, all the problems I encountered until that stage would
 have required a dozen redesigns, and several attempts to start the
 implementation completely from scratch, until I would have found the
 right way to get everything in the right places. But Common Lisp is
 so flexible that at every stage in your development, you can tweak
 and twist things left and right, but in the end you still get a
 convincing, clean, and efficient design. As far as I can tell, this
 is not possible in any other language (not even Scheme).

What you dislike the most about Lisp?

 There is not much to dislike about Lisp itself. There are some
 technical details here and there, some minor inconsistencies, but
 nothing that cannot be fixed in easy and straightforward ways. From
 a purely conceptual point of view, Common Lisp is one, if not the
 most complete and best integrated programming language that covers a
 lot of ground. Some rough edges are just to be expected, because
 nothing is ever perfect.

 What concerns me a lot more is that there is too much unwarranted
 arrogance in the Lisp community. I don’t know exactly where this
 comes from, but some Lispers seem to believe, just because they
 understand some Lisp concepts, that they are much smarter than
 anybody else in the universe. What they are forgetting is that
 computer science as a discipline is very, very young. In one or two
 hundred years from now, Lisp concepts will be common knowledge, just
 like elementary algebra. There is no reason to be arrogant just
 because you know that the earth is round, even if most other people
 still believe that it is flat.

Describe your workflow, give some productivity tips to fellow programmers.

 I strongly believe that the one thing that made me most productive
 as a programmer is my interest in doing some form of art. I used to
 spend a lot of time making my own music, both by myself with
 synthesizers and computers, as well as in bands. I also was an actor
 in an amateur theater group. Art gives you a sense of making parts
 (notes, chords, melodies, rhythms, or acts, characters, plot lines)
 relate to each other and form a coherent whole. It also makes you
 aware that there is an inner view on a piece of music or a play, as
 seen by the artist, but also an outer view, as seen or heard by an
 audience, and if you want to make good art, you need to be able to
 build a bridge between those two parts.

 Programming is exactly the same: you need to make parts (functions,
 data structures, algorithms) relate to each other, and you need to
 bridge the inner view (as seen by the designer and implementer) and
 the outer view (as seen by the user of a library or the end user of
 the final software).

 The important aspect here is that you need to be able to change
 perspectives a lot, and shift between the local, detailed view, the
 global, architectural view, and the many different levels of a
 layered design. This is especially important when it comes to
 designs that incorporate meta-programming techniques and reflective
 approaches, but also already for simpler designs.

 Like in art, the concrete workflow and the concrete tools that work
 best vary a lot for different people. It’s also a good idea to just
 play around with ideas, expecting that most of them will turn out
 useless and need to be thrown away. Artists do this all the
 time. Artificial, seemingly nonsensical rules and restrictions can
 be especially enlightening (use only effect-free functions; use only
 functions that receive exactly one argument, not more, not less;
 make every function pass around an additional environment; use only
 classes with exactly two slots; etc., etc.), and then try to build
 larger programs strictly following such rules - this will make your
 mind a lot more flexible and train you to see new potential
 solutions that you wouldn’t see otherwise.

 (I actually believe that this is what makes fans of static typing so
 excited: Static type systems always impose some artificial
 restrictions on your programs, and enforce them to the extent that
 programs that violate these rules are rejected. If you then program
 in such a statically typed programming language, you will indeed
 have some interesting insights and see new solutions that you would
 otherwise miss. However, the category error that fans of static
 typing often seem to make is that they ascribe the results to the
 static type system, and therefore usually get stuck with one
 particular set or kinds of rules.)

 Apart from that, I believe that LispWorks is a really good
 development environment.

Among software projects you’ve participated in what’s your favorite?

 I don’t know how to answer that. At any point in time, I’m always
 most excited by the one I’m currently working on. So far, I am quite
 proud of ContextL the ClassFilters project for Java, because they
 are or were both used in one way or the other in “real”
 applications. Closer to MOP is a favorite project of mine, because
 it makes me feel like I can give something back to the Lisp
 community from which I otherwise benefit so much. But this doesn’t
 mean I dislike anything else I have done in the past.

One of your papers, “Reflection for the Masses”, researches the ideas behind 3-Lisp, “a procedurally reflective dialect of LISP which uses an infinite tower of interpreters”. Can you summarize them here?

 That paper was actually mostly the work of Charlotte Herzeel, and I
 was only her sounding board for detailing the ideas in that
 paper. Reflection is one of the essential concepts that was born out
 of Lisp. Every program is about something, for example a financial
 application is about bank accounts, money and interest rates, and a
 shopping application is about shopping items, shopping carts and
 payment methods. A program can also be about programs, which turns
 it into a meta-program. Lisp macros are meta-programs, because they
 transform pieces of code in the form of s-expressions into other
 pieces of code. C++ templates are also meta-programs in the same
 sense. Some meta-programs are about “themselves,” and thus become
 reflective programs.

 3-Lisp is “procedurally reflective” in two senses: On the one hand,
 it allows you to inspect and change the body of procedures
 (functions). Common Lisp, for example, also gives you that, in the
 form of function-lambda-expression and compile/eval, among
 others. On the other hand, 3-Lisp also allows you to inspect and
 alter the control flow. Scheme, for example, gives you that in the
 form of call/cc, but in 3-Lisp this is actually part of the eval
 interface. 3-Lisp goes further than Common Lisp and Scheme combined,
 in that it provides not only first-class access to function bodies
 and continuations, but also to lexical environments, always both
 with facilities to inspect and modify them, and provides a clean and
 integrated interface to all of these features. Unfortunately,
 because 3-Lisp goes that far, it cannot be fully compiled but always
 needs to be able to resort to interpretation, if necessary.

 The reason for the requirement to always have an interpreter around
 is because the eval interface in 3-Lisp is so flexible that you can
 run programs inside an eval invocation that in turn can inspect and
 change (!) the environment in which eval runs, and can then invoke
 further evals in those changed environments, to arbitrary levels of
 recursive invocations of eval. These recursive invocations of eval
 build what is called a reflective tower, where every level in the
 tower is conceptually an interpreter being executed by an
 interpreter one level up in the tower of interpreters. The amazing
 thing about 3-Lisp is that an implementation of 3-Lisp can actually
 collapse the tower into one level of interpretation, and arrange
 that one interpreter in such a way that several different levels
 of interpretations are only simulated, so the tower is actually just
 an “illusion” created by the 3-Lisp implementation.

 This may all sound quite esoteric, but is actually practically
 relevant, because there is strong evidence that all meta-programming
 approaches eventually need such towers, and some ad-hoc way to
 collapse the towers. For example, you can find the tower in Racket’s
 and R6RS’s macro systems, where they are explicitly mentioned; in
 Common Lisp’s macros, where eval-when is used to control which part
 of the tower sees which definitions; in the CLOS Metaobject
 Protocol, where the generic function dispatch can be influenced by
 other generic functions, which can in turn be modified by some
 meta-classes at a higher level; in the template metaprogramming
 system of C++, where “concepts” were devised for C++11 (and
 rejected) to introduce a type system for the template interpreter;
 and so on, and so on. If you understand the concept of a reflective
 tower better, you can also better understand what is behind these
 other meta-programming approaches, and how some of their sometimes
 confusing semantic difficulties can be resolved.

If you had all the time in the world for a Lisp project, what would it be?

 I have some ideas how to design reflection differently for a Lisp
 dialect, which I believe has not been tried before. If I had all the
 time in the world, I would try to do that. I also have many other
 ideas, so I’m not sure if I would be able to stick to a single one.

Anything else I forgot to ask?

 I think one of the most underrated and most underused Lisp dialects
 is ISLISP. I think people should take a
 much closer look at it, and should consider to use it more
 often. Especially, it would be an excellent basis for a good
 teaching language.

 [image: Pascal]Pascal

2012-04-16

Peter Seibel (USA)

Peter Seibel has helped more people (including me) discover and become
user of Lisp as probably no one else in the last decade with his
Practical Common Lisp. Dan
Weinreb, one of the founders of
Symbolics and later Chief Architect at ITA Software, a succesfull Lisp
startup sold to Google for around $1B in 2011, wrote, that their
method of building the Lisp team was by hiring good developers and
giving them PCL for two weeks after which they could successfully
integrate under the mentorship or their senior Lisp people.

A few years after PCL Peter went on to write another fantastic
programming book Coders at Work —
here’s my
summary
of it with the social network of Coders :)

Aside from being a writer he was and remains a polyglot programmer,
interested in various aspects of our trade, about which he
blogs occasionally. His code,
presented in PCL, laid the foundation for a wide-spread
CL-FAD library, which deals with filenames
and directories (as the name implies), and more recently he created a
Lisp documentation browser
Manifest. Before Lisp
Peter had worked a lot on Weblogic Java application server.

His twitter is @peterseibel

Tell us something interesting about yourself.

 I’m a second generation Lisp programmer. My dad discovered Lisp when
 he was working at Merck in the 80s and ended up doing a big project
 to simulate a chemical plant in Lisp, taking over from some folks
 who had already been trying for quite a while using Fortran, and
 saving the day. Later he went to Bolt Beranek and Newman where he
 did more Lisp. So I grew up hearing about how great Lisp was and
 even getting to play around with some graphics programs on a
 Symbolics Lisp Machine.

 I was also a childhood shareholder in Symbolics—I had a little money
 from some savings account that we had to close when we moved so my
 parents decided I should try investing. I bought Symbolics because
 my parents just had. Never saw that money again. As a result, for
 most of my life I thought my parents were these naive, clueless
 investors. Later I discovered that around that time they had also
 invested in Microsoft which, needless to say, they did okay with.

 Oh, and something I learned recently: not only was Donald Knuth one
 of the subjects in my book Coders at Work, but he has read the whole
 thing himself and liked it. That makes me happy.

What’s your job? Tell us about your organization.

 A few months ago I started working half-time at Etsy. Etsy is a
 giant online marketplace for people selling handmade and vintage
 items and also craft supplies. I’m in the data group where we try to
 find clever ways to use data to improve the web site and the rest of
 the business.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I always have a SLIME session going in Emacs for quick computations
 and sometimes I prototype things in Lisp or write code to experiment
 with different ideas. However, these days I’m as likely to do those
 things in Python because I can show my co-workers a sketch written
 in Python and expect them to understand it and I’m not sure I could
 do that with Lisp. But it makes me sad how slow CPython is compared
 to a native-compiling CL like SBCL. Usually that doesn’t matter but
 it is annoying sometimes mostly because Python has no real
 excuse. The rest of my work is in some unholy mishmash of Scala,
 Ruby, Javascript, and PHP.

What brought you to Lisp? What holds you?

 As I mentioned, I grew up hearing from my dad about this great
 language. I actually spent a lot of my early career trying to
 understand why Lisp wasn’t used more and exploring other languages
 pretty deeply to see how they were like and unlike Lisp. I played
 around with Lisp off and on until finally in 2003 I quit the startup
 I had been at for three years, which wasn’t going anywhere, with a
 plan to take a year off and really learn Common Lisp. Instead I
 ended up taking two years off and writing Practical Common Lisp.

 At this point I use it for things when it makes sense to do so
 because I know it pretty well and most of my other language chops
 are kind of rusty. Though I’m sure my CL chops are rusty too,
 compared to when I had just finished PCL.

Did you ever develop a theory why Lisp isn’t used more?

 Not one that is useful in the sense of helping it to be used more
 today. Mostly it seems to me to be the result of a series of
 historical accidents. You could argue that Lisp was too powerful too
 early and then got disrupted, in the Innovator’s Dilemma sense, by
 various Worse is Better languages, running on systems that
 eventually became dominant for perhaps unrelated reasons.

 Every Lisper should read
 The UNIX-HATERS Handbook
 to better understand the relation between the Lisp and Unix
 cultures—Lisp is the older culture and back when the UNIX-HATERS
 Handbook was written, Unix machines were flaky and underpowered and
 held in the same contempt by Lisp geeks as Windows NT machines would
 be held by Unix geeks a few decades later. But for a variety of
 reasons people kept working on Unix and it got better.

 And then it was in a better position than the Lisp culture to
 influence the way personal computing developed once micro computers
 arrived—while it would be a while before PCs were powerful enough to
 run a Unix-like OS, early on C was around to be adopted by PC
 programmers (including at Microsoft) once micros got powerful enough
 to not have to program everything in assembly. And from there,
 making things more Unix-like seemed like a good goal. Of course it
 would have been entirely possible to write a Lisp for even the
 earliest PCs that probably would have been as performant as the
 earliest Lisps running on IBM 704s and PDP-1s. My dad, back from his
 Lisp course at Symbolics, wrote a Lisp in BASIC on our original IBM
 PC. But by that point Lispers’ idea of Lisp was what ran on powerful
 Lisp machines, not something that could have run on a PDP-1.

 The AI boom and bust played its role as well because after the bust
 Lisp’s reputation was so tainted by its failure to deliver on the
 over-promises of the Lisp/AI companies that even many AI researchers
 disassociated themselves from it. And throughout the 90s various
 languages adopted some of Lisp’s dynamic features, so folks who
 gravitated to that style of programming had somewhere else to go and
 then when the web sprang into prominence, those languages were well
 positioned to become the glue of the Internet.

 That all said, I’m heartened that Lisp continues to not only be used
 but to attract new programmers. I don’t know if there will ever be a
 big Lisp revival that brings Lisp back into the mainstream. But even
 if there were, I’m pretty sure that there would be plenty of
 old-school Lispers who’d still be dissatisfied with how the revival
 turned out.

What’s the most exciting use of Lisp you had?

 I’m pretty proud of the tool chain I’ve built over the years while
 writing my two books and editing the magazine I tried to start, Code
 Quarterly. When I first started working on Practical Common Lisp I
 had some Perl scripts that I used to convert an ad-hoc light-weight
 text markup language into HTML. But after a little while of that I
 realized both that Jamie Zawinski was right
 about regexps and that of course I should be using Lisp if I was
 writing a book called Practical Common Lisp.

 So I implemented a proper parser for a mostly-plain-text language
 that I uncreatively call Markup and backends that could generate
 HTML and PDF using
 cl-typesetting.
 When I was done writing and Apress wanted me to turn in Word files,
 I wrote an RTF backend so I could generate RTF files with all the
 Apress styles applied correctly. An Apress project manager later
 exclaimed over how “clean” the Word files I had turned had been.
 For editing Code Quarterly I continued to use Markup and wrote a prose
 diff tool that is pretty smart about when chunks of text get moved
 and edited a little bit.

What you dislike the most about Lisp?

 I don’t know if “dislike” is the right term because the alternative
 has its own drawbacks. But I do sometimes miss the security of
 refactoring with more static checks. For instance, when I programmed
 in Java, there was nothing better than the feeling of knowing a
 method was private and therefore I didn’t have to look anywhere but
 in the one file where the method lived to see everywhere it could
 possibly be used. And in Common Lisp the possibilities for action at
 a distance are even worse than in some other dynamic languages
 because of the loose relation between symbols and the things they
 name. In practice that’s not actually a huge problem and some
 implementations provide package locks and so on, but it always makes
 me feel a bit uneasy to know that if I :use a package and then
 DEFUN a function with the name of an inherited symbol I’ve changed
 some code I really didn’t mean to.

 From time to time I imagine a language that lets you write
 constraints on your code in the language yourself—kind of like
 macros but instead of extending the syntax your compiler
 understands, they would allow you to extend the set of things you
 could say about your code that the compiler would then
 understand. So you could say things like, “this function can only be
 called from other functions in this file” but also anything else
 about the static structure of your code. I’m not sure exactly what
 the API for saying those things would look like but I can imagine it
 being pretty useful, especially in larger projects with lots of
 programmers: you could establish certain rules about the overall
 structure of the system and have the compiler enforce them for
 you. But then if you want to do a big refactoring you could comment
 out various rules and move code around just like in a fully dynamic
 language. That’s just a crazy idea; anyone who’s crazy in the same
 way should feel free to take it and run with it and see if they get
 anywhere.

Among software projects you’ve participated in what’s your favorite?

 Probably my favorite software I ever wrote was a genetic algorithm
 I wrote in the two weeks before I started at Weblogic in 1998,
 in order to build up my Java chops. It played Go and eventually got to
 the point where it could beat a random player on a 5x5 board pretty
 much 100% of the time. One of these days I need to rewrite that
 system in Common Lisp and see if I can work up to a full-size board
 and tougher opponents than random. (During evolution the critters
 played against each other to get a Red Queen effect—I just played
 them against a random player to see how they were doing.)

Describe your workflow, give some productivity tips to fellow programmers

 I’m not sure I’m so productive I should be giving anybody tips. When
 I’m writing new code I tend to work bottom up, building little bits
 that I can be confident in and then combining. This is obviously
 easy to do in a pretty informal way in Common Lisp. In other
 languages unit tests can be useful if you’re writing a bigger system
 though I’m often working on things for myself that are small enough
 I can get away with testing less formally. (I’m hopeful that
 something like Light Table will allow the easy of informal testing
 with the assurances of more strict testing—I’d love to have a
 development environment that keeps track of what tests go with what
 production code and shows them together and runs the appropriate
 tests automatically when I change the code.)

 When I’m trying to understand someone else’s code I tend to find the
 best way is to refactor or even rewrite it. I start by just
 formatting it to be the way I like. Then I start changing names that
 seem unclear or poorly chosen. And then I start mucking with the
 structure. There’s nothing I like better than discovering a big
 chunk of dead code I can delete and not have to worry about
 understanding. Usually when I’m done with that I not only have a
 piece of code that I think is much better but I also can understand
 the original. That actually happened recently when I took Edi
 Weitz’s Hunchentoot web server and
 started stripping it down to create
 Toot (a basic web server) and
 Whistle (a more user
 friendly server built on top of Toot). In that case I also discarded
 the need for backward compatibility which allowed me to throw out
 lots of code. In that case I wasn’t going for a “better” piece of
 code so much as one that met my specific needs better.

If you had all the time in the world for a Lisp project, what would it be?

 I should really get back to hacking on Toot and Whistle. I tried to
 structure things so that all the Hunchentoot functionality could be
 put back in a layer built on top of Toot—perhaps I should do that
 just to test whether my theory was right. On the other hand, I went
 down this path because the whole Hunchentoot API was too hard for me
 to understand. So maybe I should be getting Toot and Whistle stable
 and well-documented enough that someone else can take on the task of
 providing a Hunchentoot compatibility layer.

 I’d also like to play around with my Go playing critters,
 reimplementing them in Lisp where I could take advantage of having a
 to-machine-code compiler available at run time.

PCL was the book, that opened the world of Lisp to me. I’ve also greatly enjoyed Coders at Work. So I’m looking forward for the next book you’d like to write. What would it be? :)

 My current theory is that I’m going to write a book about statistics
 for programmers. Whenever I’ve tried to learn about statistics
 (which I’ve had to do, in earnest, for my new job) I find an
 impedance mismatch between the way I think and the way statisticians
 like to explain stuff. But I think if I was writing for programmers,
 then there are ways I could explain statistics that would be very
 clear to them at least. And I think there are lots of programmers
 who’d like to understand statistics better and may have had
 difficulties similar to mine.

 [image: Peter]Peter

2012-07-01

Marijn Haverbeke (Netherlands - Germany)

Marijn Haverbeke is not only the author of several pretty useful
Common Lisp libraries (some of which he
touches in the interview), but also a succesful JavaScript hacker,
winning JS1K contest, and writing a
profound book about the language —
“Eloquent JavaScript”. Besides, he
hacks on Mozilla Rust and his own language Hob, not to mention
co-authoring a JavaScript-to-Common-Lisp transpiler, writing some
games in Scheme, and experimenting with Haskell. In the interview he
shares his perspective based in knowledge and experience with so many
different languages.

His twitter is @marijnjh

Tell us something interesting about yourself.

 I once thought I wanted to be a Sociologist. Before that, I also
 once thought that I wanted to become a treasure hunter. And a
 dinosaur researcher. I ended up a programmer, largely self-taught,
 and I’m very happy with how things turned out.

What’s your job? Tell us about your company.

 I’m working free-lance. Currently, I’m doing a lot of work for
 Mozilla, hacking on their Rust
 compiler. Rust is a programming language that’s supposed to fit the
 C++ niche, without the insanity of actual C++. If the project works
 out, and it’s going swimmingly so far, Mozilla will try to apply it
 to writing a next-generation browser, without the constant danger of
 buffer overrun exploits and threading bugs that comes with C++. True
 to Mozilla’s spirit, all development on Rust is happening in the
 open, on github.

 Another things I’m busy with is my own
 CodeMirror project, a code editor written
 in JavaScript. It’s not a ‘job’, really, since it’s open-source and
 no one is paying me to maintain it, but it’s grown popular enough to
 generate a decent amount free-lancing gigs and a small income stream
 from support contracts.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 Not currently, beyond that I always have a REPL open in emacs, and
 switch to it to do quick computations and experiments. I’ve spent
 several years doing almost exclusively Lisp (mostly working on
 AllegroGraph, Franz’
 RDF database), and it has definitely been somewhat painful to find
 myself working with non-interactive, macro-less languages again,
 after being used to the luxuries of Common Lisp and Slime.

What brought you to Lisp? What holds you?

 Ten years ago, during my sociology study, I randomly chose a Lisp
 course in university. I was spending so much time in emacs that I
 figured I might as well learn more about its scripting language. The
 course worked through
 Structure and Interpretation of Computer Programs,
 using the video lectures from Abelson and Sussman. Having been
 exposed mostly to Java, C++, and Python before that, the elegance
 and depth of this material was something of a revelation to me.

 My professor for that course, Eduard Hoenkamp, was a real Lisp
 chauvinist with an MIT background, and properly indoctrinated me
 with regards to Lisp’s glorious superiority. I wrote a text
 adventure game in Scheme for the end project of the course, my first
 non-trivial Lisp endeavor. I still have the
 code. I ended up starting a
 PhD with this very professor, and though I never finished it, it did
 provide me with ample opportunity to learn Common Lisp.

What’s the most exciting use of Lisp you had?

 I think that’d be
 CL-JavaScript, a
 JavaScript-to-Common-Lisp transpiler that I wrote together with a
 friend. It actually handles the whole ECMAScript 3 language and
 produces programs that run reasonably fast—about on par with the
 2009 generation of browser JavaScript engines. This is quite
 amazing, given that it’s less than 4000 lines of code, at least an
 order of magnitude smaller than those engines. The Lisp compiler
 handles most of the optimization for us. (I should point out that
 the browser JS engines have a much higher speed of compilation,
 which is a necessity for handling web content.)

What you dislike the most about Lisp?

 I must say that the lack of static typing really gets in the way on
 larger projects. Being able to confidently change datatypes and
 function signatures, knowing that the compiler will point out most
 inconsistencies that you introduce, is something that I’ve really
 come to appreciate after working with Rust and Haskell. Test
 coverage helps, of course, but I’m not a very diligent test writer,
 and tend to feel that type signatures are easier to maintain than an
 exhaustive test suite.

Describe your workflow, give some productivity tips to fellow programmers.

 My approach to writing software is embarrassingly unstructured. I’m
 not sure I can claim to have something that merits the term
 “workflow”. One thing that is very important for me, and that, had I
 figured it out earlier, would probably have saved some past projects
 from dying, is to never have a system in a half-refactored,
 non-functional state for longer than an hour or so. A lot of
 momentum and motivation comes from having a working program in front
 of me. This sometimes means I have to split up big changes in a
 number of more indirect, trivial steps, and resist the temptation to
 start hammering out my big change in one go (which, even when seems
 straightforward in my head, will always hit some complications
 during implementation).

 Also, really learning git in depth has had a big influence on how I
 code. Once you really understand that changes (if you bother to
 commit often and with care) can be reverted and picked at will, and
 that branches are cheap and easy to create and maintain, you start
 to see a codebase differently. I often take multiple shots at making
 a tricky change — if it feels like my first approach is not working
 out, I simply commit it, back up, and start again, knowing that if
 the new approach doesn’t work out, I can simply flip back to the old
 one again. Knowing that this is theoretically possible is not
 enough—you need to have actually done it, often, to start applying
 it properly.

Among software projects you’ve participated in what’s your favorite?

 Postmodern, the PostgreSQL
 client, was my first non-trivial open-source project, and the first
 piece of actually useful software that I designed and executed on my
 own. I was extremely proud when I got it to work the way I wanted
 (modular, fast), and meticulously wrote out a long set of docs
 (copying Edi Weitz’s style). Seeing people actually use it (and even
 write good things about it!) really drove home for me the fact that
 it is worthwhile and rewarding to package up the stuff I write, and
 share it.

 The community involvement in Postmodern, though always low-volume,
 has also been awesome. Most bug reports came with a patch, or at
 least an informed view of the problem and useful diagnostic
 information. This in sharp contrast with the JavaScript community,
 where of course great contributors also occur, but one has to deal
 with a lot of noise and lazy bug reporting.

If you had all the time in the world for a Lisp project, what would it be?

 I am working on my own programming language,
 Hob, which tries to combine the
 virtues of Lisp and ML. This is a huge project, and unfortunately
 it’s moving forward only slowly. If I didn’t have financial
 constraints, I’d spend a year (or two) finishing it. Its “bootstrap
 compiler” (the compiler that will compile the first self-hosting
 compiler) is in the process of being written in Common Lisp. The
 writing that I currently have online about it is quite old and out
 of date. I just spent a week rewriting the compiler from scratch,
 moving the language to a completely regular syntax—think
 s-expressions, though Hob looks somewhat different. My work on Rust
 has convinced me that, even with all the good will in the world, you
 can’t bolt macros onto a classical language with a non-regular
 syntax without making them very painful to write (and use!). They
 have to be part of the design from the start.

You’ve been actively using Common Lisp and JavaScript. When you use JavaScript what do you miss the most from CL? What do you miss from JavaScript when you’re in Lisp land?

 The greatest thing about Common Lisp is that the standardization
 process drew from years and years of experience and organic
 growth. This makes the language feel singularly solid and
 practical. Most languages feel immature compared to CL. I suspect
 that this is not just age, but also the fact that Lisp allows users
 to extend the language to an unprecedented degree, which allows for
 much more experimentation, and thus faster growth and invention.

 The great thing about JavaScript is that it has so few concepts. It
 manages to strike a balance between being dumbed-down enough to be
 easy to grasp, which has allowed it to become as widespread as it
 currently is, and still being a more-or-less decent lambda language,
 which makes it scale up to complex programs relatively well. It is
 on its way to become a lingua franca of scripting, which Common Lisp
 will never be, because it is much more demanding of its
 programmers—they need to understand a lot more concepts.

2012-04-02

François-René (Faré) Rideau (France - USA)

François-René Rideau works at ITA Software, one of the largest
employers of lispers, which was acquired by Google a year ago. While
at ITA he stepped up to support and improve
ASDF, the system definition
facility, that is at the core of Lisp package distribution. He’s also
the co-author of the recently published Google Common Lisp Style
Guide,
which as well originated at ITA.

Faré is also an active writer: both of code and prose. He’s thoughts
and articles can be found on
Facebook,
Google+,
Livejournal, and his
site.

His twitter is @fare

Tell us something interesting about yourself.

 I like introducing myself as a cybernetician: someone interested in
 the dynamic structure of human activities in general.

 Programming languages and their semantics, operating systems and
 reflection, persistence of data and evolution of code, the relation
 between how programmers are organized and what code they produce —
 these are my topics of immediate professional interest. For what
 that means, see for instance my slides (improved) from ILC’09:
 “Better Stories, Better Languages”
 or my essay
 “From Creationism to Evolutionism in Computer Programming”.

 However I’m also interested in cybernetics as applies to
 Civilization in general, past, present and future. See for instance
 my essay
 “Identity, Immunity, Law and Aggression on the Rapacious Hardscrapple Frontier”
 or my writings about
 Individual Liberty and the basic
 principles of Economics

 Last but not least, I was recently married to my love Rebecca
 Kellogg, with whom I have since had a daughter Guinevere Lý “Véra”
 Kellogg Rideau (born last May). This gives me less free time, yet
 somehow made me more productive.

What’s your job? Tell us about your company.

 For the last 7 years or so, I have been working at ITA Software, now
 part of Google Travel. I have been working on two servers written in
 Lisp, at first briefly on QPX the
 low (air)fare search engine behind Orbitz and Google Flights then
 mostly on QRes, a reservation system now launched with Cape
 Air. These projects nowadays each count about half a million lines
 of Common Lisp code (though written in very different styles), and
 each keep growing with tens of active developers.

 I suspect that my login “fare” (at itasoftware) was a pun that
 played in favor of recruiting me at ITA; however, it wasn’t
 available after the Google acquisition, so now I’m “tunes” (at
 google), to remind myself of my TUNES project.

 At ITA, I have been working mostly on infrastructure:

 	how to use better compilers (moving from CMUCL to SBCL, CCL),

 	how to build, run and test our software,

 	how to maintain the free software libraries we use and sometimes write,

 	how to connect QRes to QPX and follow the evolution of its service,

 	how to persist objects to a robust database,

 	how to migrate data from legacy systems,

 	how to upgrade our software while it’s running, etc.

And debugging all of the above and more, touching many parts of the
 application itself along the way.

 I think of my job at ITA so far as that of a plumber: On good days,
 I design better piping systems. On bad days, I don gloves and put my
 hands down the pipes to scrub.

 Since you’re mentioning me as working at ITA and on ASDF, I suppose
 it is appropriate for me to tell that story in full.

 In building our code at ITA, we had grown weary of ASDF as we had
 accumulated plenty of overrides and workarounds to its
 unsatisfactory behavior. Don’t get me wrong: ASDF was a massive
 improvement over what existed before (i.e. mk-defsystem), making it
 possible to build and share Common Lisp software without massive
 headaches in configuring each and every library. We have to be
 grateful to Dan Barlow indeed for creating ASDF. But the Common Lisp
 ecosystem was dysfunctional in a way that prevented much needed
 further improvements to ASDF. And so I started working on a
 replacement, XCVB.

 Now, at some point in late 2009, I wrote a rant explaining why ASDF
 could not be saved:
 “Software Irresponsibility”.
 The point was that even though newer versions of ASDF were written that
 slowly addressed some issues, every implementation stuck to its own
 version with its own compatibility fixes; no vendor was interested
 in upgrading until their users would demand upgrades, and users
 wouldn’t rely on new features and bug fixes until all vendors
 upgraded, instead caring a lot about bug-compatibility, in a vicious
 circle of what I call “Software Irresponsibility”, with no one in
 charge, consensus required for any change, no possible way to reach
 consensus, and everyone discouraged.

 However, I found a small flaw in my condemnation of ASDF as
 unsalvageable: if, which was not the case then, it were possible to
 upgrade ASDF from whichever version a vendor had installed to
 whichever newer version you cared for, then ASDF could be
 saved. Users would be able to rely on new features and bug fixes
 even when vendors didn’t upgrade, and vendors would have an
 incentive to upgrade, not to stay behind, even if their users didn’t
 directly demand it. The incentive structure would be
 reversed. Shortly after I wrote this rant, the current ASDF
 maintainer stepped down. After what I wrote, I felt like the honest
 thing to do was to step forward. Thus, I started making ASDF
 self-upgradable, then massively improved it, notably making it more
 robust, portable, and easy to configure — yet fully backwards
 compatible. I published it as ASDF 2 in 2010, with the help of many
 hackers, most notably
 Robert Goldman,
 and it has quickly been adopted by all active Common Lisp vendors.

 You can read about ASDF and ASDF 2 in the article I wrote with
 Robert Goldman for ILC 2010:
 “Evolving ASDF: More Cooperation, Less Coordination”. I’m
 also preparing a talk at ILC 2012 where I’ll discuss recent
 enhancements. I have to admit I didn’t actually understand the fine
 design of ASDF until I had to explain it in that paper, thanks to
 the systematic prodding of Robert Goldman. Clearly explaining what
 you’re doing is something I heartily recommend to anyone who’s
 writing software, possibly as a required step before you declare
 your software complete; it really forces you to get the concepts
 straight, the API clean, and the tests passing. That also did it for
 me with my more recent
 lisp-interface-library,
 on which I’m presenting a paper at ILC 2012:
 “LIL: CLOS reaches higher-order, sheds identity, and has a transformative experience”.

 One double downside of ASDF 2 is that it both took a lot of
 resources I didn’t put in XCVB, and made for a much better system
 for XCVB to try to disrupt. It isn’t as easy anymore to be ten times
 better than ASDF. I still hope to complete XCVB some day and make it
 good enough to fully replace ASDF on all Common Lisp platforms; but
 the goal has been pushed back significantly.

 Now one important point that I want to explicitly stress is that the
 problem with ASDF was not a strictly technical issue (though there
 were many technical issues to fix), nor was it strictly a social
 issue; it was an issue at the interface between the social and the
 technical spheres, one of how our infrastructures and our incentives
 shape each other, and what kind of change can bring
 improvement. That’s the kind of issues that interest me. That’s why
 I call myself a cybernetician.

Do you use Lisp at work? If yes, how have you made it happen? If not, why?

 I’ve made it happen by selection. I applied at ITA Software
 precisely because I knew (thanks to the Carl de Marcken
 article published by Paul
 Graham), that the company was using Lisp to create real-world
 software. And that’s what I wanted to do: create real-world software
 with a language I could use without wanting to kill myself every
 night because it is turning me into a pattern-expanding machine
 rather than a human involved in thinking and using macros as
 appropriate.

 I object to doing things that computers can do.

 — Olin Shivers

 Yet, in my tasks as a plumber, I have still spent way too much time
 writing shell scripts or Makefiles; though these languages possess
 some reflection including eval, their glaring misdesign only lets
 you go so far and scale so much until programs become totally
 unmanageable. That’s what pushed me over the years to develop
 various bits of infrastructure to do as much of these things as
 possible in Lisp instead: cl-launch,
 command-line-arguments,
 philip-jose, xcvb, asdf,
 inferior-shell.

 Interestingly, the first and the last, cl-launch and inferior-shell,
 are kind of dual: cl-launch abstracts over the many Lisp and shell
 implementations so you can invoke Lisp code from the Unix shell; it
 is a polyglot lisp and shell program that can manipulate itself and
 combine parts of itself with user-specified Lisp code to produce an
 executable shell script or a dumped binary image; I sometimes think
 of it as an exercise in “useful quining”. Inferior-shell abstracts
 over the many Lisp and shell implementations so you can invoke Unix
 shell utilities from any Lisp implementation, remotely if needs be
 (through ssh), and with much nicer string interpolation than any
 shell can ever provide; it is a classic Lisp library notably
 available through Quicklisp. With the two of them, I have enough
 Unix integration that I don’t need to write shell scripts
 anymore. Instead, I interactively develop Lisp code at the SLIME
 REPL, and have a shell-runnable program in the end. That
 tremendously improved my quality of life in many situations
 involving system administration and server maintenance.

What brought you to Lisp? What holds you?

 My first introduction to Lisp was in high school, in using the HP
 RPL on my
 trusty old HP 28C (eventually upgraded to a HP28S, with 32KB of free
 RAM instead of 4KB!). When I became student at Ecole Normale
 Supérieure, I was taught Caml-light by
 xleroy himself, I learned to
 use Emacs, and I met
 Juliusz Chroboczek who
 introduced me to Scheme and Common Lisp, continuations and
 SICP. Finally, during my vain
 efforts to gather a team to develop an operating system based on a
 higher-level language as part of the TUNES project, I have been
 introduced to Lisp machines and plenty of other interesting
 concepts.

 I use Lisp because I couldn’t bear to program without higher-order
 functions, syntactic abstraction and runtime reflection. Of all Lisp
 dialects, I use Common Lisp mainly because that’s what we use at
 work; of course a large reason why we use it at work is because it’s
 a good language for practical work. However, frankly, If I were to
 leave ITA (by Google), I’d probably stop using Common Lisp and
 instead use Racket or Maru, or maybe Factor or Slate, and try to
 bootstrap something to my taste from there.

What’s the most exciting use of Lisp you had?

 I remember being quite exhilarated when I first ran the philip-jose
 farmer: it was a server quickly thrown together by building
 green-threads on top of
 arnesi’s
 (delimited) continuation library for CL. With it, I could farm out
 computations over a hundred servers, bringing our data migration
 process from “way too slow” (weeks) to “within spec” (a few
 hours). It’s impressive how much you can do in Lisp and with how
 little code!

 While I released the code in philip-jose, it was never
 well-documented or made user-friendly, and I suspect no one ever
 used it for real. This unhappily includes ITA, for my code never
 made it to production: I was moved to another team, our customer
 went bankrupt, and the new team used simpler tools in the end, as
 our actual launch customer was 1/50 the size of our first prospect.

What you dislike the most about Lisp?

 For Lisp in general, I would say the lack of good ways to express
 restrictions on code and data. Racket has been doing great work with
 Typed Racket and Contracts; but I’m still hoping for some dialect
 with good resource management based on Linear Logic, and some
 user-extensible mechanism to define types and take advantage of
 them.

 For Common Lisp in particular, though I do miss delimited
 continuations, I would say that its main issue is its lack of
 modularity. The package system is at the same time low-level and
 inexpressive; its defsystem facilities are also lacking, ASDF 2
 notwithstanding; up until the recent success of Zach Beane’s
 Quicklisp, there wasn’t a good story to
 find and distribute software, and even now it’s still behind what
 other languages have. This is part of a vicious circle where the
 language attracts and keeps a community of developers who live
 happily in a context where sharing and reusing code is relatively
 expensive (compared to other languages). But things are getting
 better, and I have to congratulate Zach Beane once again for
 Quicklisp. I believe I’m doing my small part.

Among software projects you’ve participated in what’s your favorite?

 I unhappily do not have a great history of success in software
 projects that I have actively participated in.

 However, I have been impressed by many vastly successful projects in
 which I had but a modest participation. In the Linux kernel, the
 Caml community, the Racket community, (QPX and QRes at work might
 also qualify but only to lesser degrees), there were bright people
 unified by a common language, by which I mean not merely the
 underlying computer programming language, but a vision of things to
 come and a common approach to concepts: not just architecture but
 architectonics. Another important point in these successful projects
 was Software Responsibility (as contrasted to the previously
 discussed Software Irresponsibility): there is always someone in
 charge of accepting or rejecting patches to any part of the
 system. Patches don’t linger forever unapplied yet unrejected, so
 the software goes forward and the rewarded contributors come back
 with more and/or better patches. Finally, tests. Lots of
 them. Automatically run. All the time. Proofs can do, too, though
 they are usually more expensive (now if you are going to do testing
 at the impressive
 scale of sqlite, maybe you
 should do proofs instead (see
 CPDT). I discovered, the hard way,
 that tests (or proofs) are the essential complement to programs,
 without which your programs WILL break as you modify them.

If you had all the time in the world for a Lisp project, what would it be?

 I would resurrect TUNES based on a Linear Lisp, itself bootstrapped
 from Racket and/or Maru.

Describe your workflow, give some productivity tips to fellow programmers.

 First, think hard and build an abstract model of what you’re
 doing. Guided by this understanding of where you’re going, code
 bottom up, write tests as you do, and run them interactively at the
 SLIME REPL; make sure what you write is working and passing all
 tests at all times. Update your abstract model as it gets pummeled
 into shape by experience. Once you’ve got the code manually written
 once or twice and detect a pattern, refactor it using macros to
 automate away the drudge so the third time is a piece of cake. Don’t
 try to write the macro until you’ve written the code manually and
 fully debugged it. Never bother with low-level optimization until
 the very end; but bother about high-level optimization early enough,
 by making sure you choose proper data structures.

 Unhappily, I have to admit I am a serial under-achiever. I enjoy
 thinking about the big picture, and I like to believe I often see it
 better and further than most people; but I have the greatest trouble
 staying on track to bring about solutions: I have so many projects,
 and only one life to maybe complete a few of them! The only way I
 can actually get a few things done, is to decompose solutions into
 small enough steps such that I can keep focused on the next one and
 get it done before the focus goes away.

A year ago Google bought ITA, which was, probably, the largest Lisp company recently. What were the biggest upsides and drawbacks of using Lisp on the scale of ITA? Does Lisp have a future inside Google?

 On the upside, we certainly have been able to write quite advanced
 software that we might not have otherwise managed. A million lines
 of Lisp code, including its fair share of macros and DSLs, would be
 so many more million lines of code without the syntactic abstraction
 made possible by Lisp. However hard and expensive it was with Lisp,
 I can only imagine how many times worse it would have been with
 anything else.
At the top of the tech bubble in 2008, we had over fifty Lisp
 programmers working just on QRes, gathered at an exponential rate
 over 3 years. That’s a lot. We didn’t yet have good common standards
 (Jeremy Brown started one, later edited by
 Dan Weinreb; I
 recently took it over, expanded it, merged it into the existing
 beginning of a Google Common Lisp Style Guide and published it), and
 it was sometimes hard to follow what another hacker wrote,
 particularly if the author was a recently hired
 three-comma programmer. But
 with or without standards, our real, major, problem was with lack of
 appropriate management.

 We were too many hackers to run without management, and none of our
 main programmers were interested in becoming managers; instead
 managers were parachuted from above, and some of them were pretty
 bad: the worst amongst them immediately behaved like empire-building
 bullies. These bad managers were trying to control us with
 impossibly short, arbitrary deadlines; not only did it cause overall
 bad quality code and morale burnout, the renewing of such deadlines
 quarter after quarter was an impediment to any long-term
 architectural consideration for years. What is even worse, the
 organization as setup had a lot of inherent bad incentives and
 created a lot of conflicts, so that even passable managers would
 create damage, and otherwise good engineers were pitted against each
 other on two sides of absurd interfaces, each team developing a lot
 of scar tissue around these interfaces to isolate itself from the
 other teams. Finally, I could witness how disruptive a single bad
 apple can be when empowered by bad management rather than promptly
 fired.

 I have had a lot of losing fights with QRes management at a time
 when, hanging on a H1B visa, I was too much of a coward to
 quit. Eventually, the bad people left, one by one, leaving behind a
 dysfunctional organization; and great as the people that manned it
 may have been, none was able or willing to fix the
 organization. Then finally, Google acquired us. There’s a reason
 why, of two companies founded at about the same time, one buys the
 other and not the other way around: one grew faster because it got
 some essential things right that the other didn’t. Google, imperfect
 as it necessarily is, gets those essential things right. It cares
 about the long term. It builds things to scale. It has a sensible
 organization. It has a bottom up culture. So far, things have only
 improved within QRes. Also, launching was also good in many ways. It
 makes us and keeps us real.

 Lisp can be something of a magic tool to solve the hardest technical
 issues; unhappily it doesn’t even start to address the social
 issues. We wasted a whole lot of talent due to these social issues,
 and I believe that in an indirect way, this is related to the lack
 of modularity in Common Lisp, as it fostered a culture of loners
 unprepared to take on these social issues.

 So I’m not telling you this story just to vent my past
 frustration. There too I have a cybernetic message to pass on:
 incentives matter, and technical infrastructure as well as social
 institutions shape those incentives and are shaped by them.

 As for the future of Lisp at Google, that million line of Common
 Lisp code ain’t gonna rewrite itself into C++, Java, Python, Go, or
 even DART. I don’t think the obvious suggestions that we should
 rewrite it were ever taken seriously. It probably wouldn’t help with
 turnover either. But maybe, if it keeps growing large enough, that
 pile of code will eventually achieve sentience and rewrite itself
 indeed. Either that, or it will commit suicide upon realizing the
 horror.

Anything else I forgot to ask?

 Ponies.

 [image: Faré]Faré

2012-10-19

Daniel Barlow (UK)

Daniel Barlow was one of the most active contributors to the open
source Lisp ecosystem, when its development took off in the early
2000s. Together with Christophe Rhodes he was the first to join SBCL
hacking, after the project was started by
William Newman. He also had
created a lot of early Lisp web tools, like
Araneida HTTP application server, and
built on it the first version of cliki.net which
served the Lisp community for almost 10 years (the second version went
live earlier in 2012). Studying Cliki source was a kind of zen
experience for me, as it did so much, yet in a very simple way.

But his largest contribution is, probably,
ASDF, regarding which,
likewise Cliki, there are controversial opinions among Lisp
programmers. And Dan explains his attitude in the interview.

In the mid 2000s his involvement with open-source Lisp gradually
diminished, as he stopped working as a consultant and got a full-time
job. Yet he remains fondly remembered in the community.

Tell us something interesting about yourself.

 I don’t do interesting. Um, improvise. Hacker, skater, cyclist,
 husband, father to a seven-month-old son as demanding as he is
 adorable, computing retro-grouch who uses Linux on the desktop.

 I have a metal plate and some pins in my right forearm where I broke
 it a couple of months ago, inline skating in the Le Mans 24 hour
 relay event. I have now regained more or less complete range of
 motion in that hand and can advise anyone doing the event next year
 that the carpet in the pit boxes is unexpectedly treacherous when
 it’s been waterlogged by a sudden thunderstorm.

 Still, we came fifth in category, which makes me very happy.

What’s your job? Tell us about your company.

 I started a new job about three months ago, in fact. I’m now working
 at Simply Business in London, busily disrupting the business
 insurance market. Which is to say, writing web apps for the online
 sale of business insurance.

 It’s not quite as buzzwordy as it sounds, actually. Business
 insurance is traditionally sold by brokers, who are humans and
 therefore although really good at dealing with complex cases and
 large contracts where the personal touch is required, tend to be a
 trifle expensive for straightforward policies which could be much
 more economically sold online. The industy is ripe for disintermediation.

What brought you to Lisp?

 A combination of factors around the time I was at university:
 the UNIX-Haters Handbook,
 which I bought to sneer at and ended up agreeing with; Caml Light,
 which I used in my fourth year project; Perl - specifically my
 horror to learn that it flattens (1,2,3,(4,5,6)) to
 (1,2,3,4,5,6) - yes, I know about references, but I think it’s a
 bug not a feature that the sensible syntax is reserved for the silly
 behaviour - and meeting some people from Harlequin (as was) at a
 careers fair.

 It took me another couple of years or so to find CMUCL - in fact, I
 think it was another couple of years or so before it was ported to
 the x86 architecture, so it wouldn’t have done me much good if I had
 known about it earlier - but looking back I suppose that was where
 the rot set in.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 No, we’re primarily a Ruby shop, with a sideline in large legacy
 Java app which we’re working to replace. I think there’ve been a
 couple of uses of Clojure in hack days, but that’s as far as it
 goes.

 Why not? Well, apart from the point that I’ve only been there since
 July… It’s The Ecosystem, I suppose. Ruby as a language has
 pretty good support for OO paradigms and a whole bunch of free
 software libraries for doing web-related things: Ruby as a community
 is big on Agile and TDD and maintainable design. And it’s at least
 possible (if not exactly easy in the current bubble) to engage a
 regular recruitment agent and task him with finding competent
 programmers who know it. I’m not saying Lisp is exactly bad at any
 of that, but it’s at least questionable whether it’s as good along
 all of those axes, and it’s certainly not better enough to make the
 switch sensible.

What’s the most exciting use of Lisp you had?

 SBCL was probably one of the most fun projects I’ve ever worked on.
 Working with people who were mostly smarter than me or had
 better taste than me or both, on a project whose goal was to make it
 possible for people less smart than me to hack on a Lisp system. And
 context switching between the CL with all its high level features
 and (e.g.) Alpha assembly was a real kick - it’s a bit like I
 imagine building a Lisp machine would be, except that the goal is
 achievable and the result is generally useful.

What you dislike the most about Lisp?

 I don’t really use it enough any more to react to that with the
 required levels of venom. I should probably say ASDF, everyone else
 does :-)

 I guess if you force me to an answer, it’d have to be its disdain
 for the platform it lives on - take, for example, CL pathname case
 conversion rules. Whoever decided that Unix systems could reasonably
 be said to have a “customary case” had, in my view, not looked very
 hard at it.

As far as I can tell, you’re currently mostly doing work in Ruby. What’s the pros and cons of Ruby development compared to Lisp?

 The transpose-sexps function in Emacs does nothing useful in Ruby
 mode. rails console is a poor substitute for a proper
 toplevel. Backtraces don’t show the values of parameters and local
 variables. (Yes, pry helps a lot). And the garbage collector (in
 MRI, anyway) is sucky to the point that even 1990s Java GC could
 probably beat it in a fair fight.

 On the other hand, libraries.

 Here’s an interesting thought experiment, though: there’s a clear
 difference between the Lisp workflow where you change the state of
 your image interactively to get the code into working shape very
 quickly (and then later try to remember what it was you did) and the
 more scripted approach of test-driven development in Ruby where you
 put everything (code, test setup, assertions) in files that you
 reload from disk on each run. How would you meld the two to get
 repeatable and fast iterations? A lot of people are doing things
 like Spork (which forks your application for each test it runs,
 throwing the child state away after the test has run) but they never
 seem to me to be more than 80% solutions. My intuition is that you’d
 want to stick to a much more functional design and just make state a
 non-problem.

Among software projects you’ve participated in what’s your favorite?

 SBCL was a lot of fun, as I said earlier. ASDF is a candidate too,
 just because it must so obviously fill a need if people are still
 cursing it - as they seem to be - ten years later :-)

Describe your workflow, give some productivity tips to fellow programmers.

 It’s taken me the best part of three months to get this interview
 back, I’m the last person anyone should be asking about
 workflow or productivity. :-)

 Um. I’ve been doing a lot of TDD lately. Given that as recently as
 two years ago I was castigating it as a religion this might be seen
 as a capitulation or as a conversion, this might be perceived as a
 change of mind. What can I say? Actually, pretty much now what I
 said then: the value of TDD is in the forces it exerts on your
 design — towards modularity, functional purity, decoupling, all
 those good things — not so much in the actual test suite you end up
 with. Process not product. These days everyone thinks that’s
 obvious, but back then it was either less widely known or less
 explicitly stated or else I was just reading the wrong blogs.

 (Of course, the tendency in Lisp to write code interactively that
 can be tested ad hoc at the repl probably has a very similar effect
 on coupling and functional style. My personal experience is that TDD
 doesn’t seem to be nearly as valuable in repl-oriented languages,
 but YMMV.)

 More generally: go home, do some exercise, get some sleep. Sleep is
 way underrated.

Anything else I forgot to ask?

 Some day I will write an apology for ASDF.

 Pedants will note that the word “apology” not only means “an
 expression of remorse or regret” but also “a formal justification or
 defence”, and may infer from that and my general unwillingness to
 ever admit I was wrong that I’m not about to actually say I did a
 bad thing in writing it. Seriously, go find a copy of MK-DEFSYSTEM
 and try porting it to a Lisp implementation it doesn’t support.

 In 2002 I presented a paper at the ILC (about CLiki, not ASDF) that
 said essentially “worse is better than nothing”, and — unless the
 “worse” has the effect of stifling a potential better solution from
 coming along later — I still stand by that.

 [image: danb]danb

2012-10-08

Christophe Rhodes (UK)

Christophe Rhodes is the SBCL’s principal maintainer. He was among the
first two people to join the project, after it was solely developed
for more than a year by
William Newman. And he is,
probably, the most “stable” contributor, still remaining very active
in the community, after more than a decade. What fascinates me
personally about him, is the aura of a profoundly creative mind,
fiddling with reality in interesting and unexpected ways.

His twitter is @ascii19

Tell us something interesting about yourself.

 I’m a singer, specializing in performance (admittedly somewhat rare
 at the moment) of unaccompanied music of the European
 Renaissance. My next concert is Brumel’s “Earthquake Mass” with the
 vocal ensemble De Profundis. I did
 my doctoral research a few doors down from Stephen Hawking. And I
 was a cast member on “Una Stravaganza dei Medici”, a reconstruction
 of the Florentine festivities for the marriage of Ferdinand de
 Medici and Christine of Lorraine - which means that there’s at least
 some chance I have an Erdős-Bacon number.

What’s your job? Tell us about your company.

 Oh, well, that’s a bit complicated! :-) Most of my time at the
 moment is spent with Teclo Networks, a
 Lisp-flavoured startup which is bringing reliability and usability
 to mobile broadband. I’m on leave of absence to pursue this from
 Goldsmiths, University of London,
 where I am a lecturer in Computing, responsible for undergraduate
 teaching, postgraduate supervision and independent research.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I do. I should say that I’m no longer, if I ever was, a programmer
 by trade; most of my work at Teclo is not writing code, but when I
 do it is in C, R or Common Lisp. Working in a Lisp-flavoured startup
 (I’m not the most famous Lisp programmer in the company, and quite
 some way from being the best…) has made Lisp a natural tool to use
 when it’s appropriate; while it might be a bit of a shame that Lisp
 is not used exclusively, the balance of idealism and pragmatism is
 pretty good, and it’s fairly satisfying to know that the
 high-performance network element that we ship has Lisp code
 controlling its operation.

 I wouldn’t make an argument that C is a Lisp by any stretch, but
 I’ve popped up at a couple of events in the last year to argue that
 R has some claims to being a Lisp; it has conditions, handlers,
 restarts, generic functions, macros operating on parse trees… and
 a SWANK backend.

 Another part of what I do is write documents, both for Teclo and for
 Goldsmiths. I have in the last couple of years fallen in love with
 org-mode and in particular with “reproducible
 research”, or living documents; the ability to have executable
 sections of code for generating results, which can then themselves
 be further analysed by other bits of code — in other languages, if
 that’s appropriate — and the whole exported as a document typeset to
 what I consider to be high-quality standards. The fact that there is
 also acceptable-quality web output from the exact same process is
 gravy.

What brought you to Lisp? What holds you?

 Two seminal moments on my road to Lisp: the first was, as an
 undergraduate, getting a job in the summer of 1997 to work on
 simulating fluid dynamics in the context of galaxy formation, to
 assist in trying to understand how the spiral arm structures form.
 I’d being told “here is K&R, here is USENET, here is XEmacs,
 here is Tcl; in five weeks let’s see what you’ve come up with” —
 I distinctly remember reading comp.lang.lisp and a “Lisp is slow”
 thread, with active participants combating the troll with
 disassembly.

 The second, a few years later, was wandering into the #lisp IRC
 channel on openprojects, to find an almost-empty channel, about
 10-20 participants; one of whom was there twice (dan_b and dan`b),
 using the channel to paste bits of alpha assembly between his laptop
 and his desktop, in his efforts to get SBCL on alpha working.

 As for what keeps me, well, when what I have to do is solve problems
 that no language has built-in libraries for (scalable audio
 similarity detection, say, or musical structure inference) then I
 want to be working in a language where I can focus on the problem
 itself, rather than the detail of that language — and for me, Lisp
 permits that kind of separation of concerns, given its easy support
 for DSL and embedded language generation, protocols, and the ability
 to run partial programs.

Among software projects you’ve participated in what’s your favorite?

 I enjoyed most working on
 an editor for lute tablature,
 I think. Partly because it was a chance to learn about things
 (parsing, CLIM, user interfaces) that I hadn’t really thought about
 before. Partly because of the feeling of being able to build up
 incrementally and rapidly from a very simple prototype to deliver
 something which was actually useful; and partly because it was also
 interesting to learn about the problem domain. Gsharp (G#), the
 score editor largely designed by Robert Strandh, is an editor for
 what you might call “common practice” notation: five lines in a
 staff; dots and lines to indicate pitch (by height) and duration (by
 glyph) of notes. In my research group at Goldsmiths, though, we have
 a lutenist (a player of the lute) who had a research project on
 cataloguing and transcribing a particular repertoire of 16th-century
 lute music, which was notated in “tablature”: six lines, one per
 string of the lute; letter or number glyphs on each line to indicate
 finger position; and glyphs above the staff to indicate duration.

 The point about this was that when I first came on the scene the
 project had a truly awful workflow, because they had a batch
 renderer from the textual format to encode this music to something
 visual. This made the process of encoding painful, in particular for
 the error correction phase: it was fairly easy to find an error in
 the visual rendering, but to go from there to the text corresponding
 to it was painful. So I wrote a little CLIM app with an editor
 buffer and a display; the display was a rendering of the “Tabcode”
 in the editor buffer, and each glyph in it was associated with a
 text cursor position, so that you could click on the display and
 have the editor cursor warp to the Tabcode corresponding to the
 glyph. This was a productivity win for the project.

What’s the most exciting use of Lisp you had?

 I don’t get easily excited by technology. So for me, what was
 exciting was seeing a community of users and developers grow around
 SBCL — in particular, working with extremely focused and motivated
 individuals on improving the system, subject to all sorts of
 constraints, not least those imposed by real-world uses (including
 the
 QPX
 poster-child of ITA Software).

SBCL contributors seem to be a very active, closely-knit, and united community. How did that happen? Maybe you could share some insight into the history of the project. Also what were the factors, that determined its success?

 I think part of SBCL’s success as a community was the finding of
 like minds — which came about partly because it started off as a
 project when access to information channels was growing, but also
 partly because there were some explicit principles laid down: Bill
 Newman made it very clear that he was aiming for something
 maintainable, and also taught by example the meaning of
 maintainability. In the SBCL source distribution, there are over 100
 lines of textual detail describing his ideas about what he was
 aiming for, and although it’s nothing like an explicit charter which
 every SBCL developer (or user!) has to sign up to, it’s nevertheless
 a useful indication of a direction to drive in. Both detailed and
 motivated enough that even a graduate student with no software
 development experience could understand that there were tradeoffs
 involved, and someone had thought hard about which side of the
 tradeoffs they wanted to be. I’d also point out some of Bill’s
 advodiary entries of the time, including
 http://www.advogato.org/person/wnewman/diary/6.html and
 http://www.advogato.org/person/wnewman/diary/9.html, which perhaps
 illustrate that he was thinking about this kind of software
 maintenance all the time. (“To foil the maintenance programmer…”
 :-)

 I think this is particularly important when the bulk of the work is
 done by volunteers; it helps to keep focus (I’ve written before
 about how software is only sustainable if it can stay alive in the
 minds of its developers).

If you had all the time in the world for a Lisp project, what would it be?

 There’s lots that I’d like to do, both hacking on Lisp itself and
 things I’d like to explore, for which I’m likely to reach for Lisp
 first. I’d also like to get more fluent with emacs lisp, enough to
 be able to quickly write the user interfaces I would like to use to
 various bits of software that I use every day.

 [image: Christophe]Christophe

2012-03-26

Luke Gorrie (Australia - Sweeden - Switzerland)

Luke Gorrie is a proverbial hacker following his passion for
programming to various places in the physical world, like Sweden or
Nepal, or programming world, like Erlang, Forth, Lisp, Lua, or some
other fringe language. And enjoying the process of exploration and
meeting different people, while fiddling with computers, from OLPC to
telecom equipment, working with world-famous technologists, including
Joe Armstrong or Alan Kay, and, generally, doing whatever he likes in
the programming world.

He was one of the main authors of
SLIME in its early days. And
recently he founded a Lisp networking startup Teclo Networks, the
story of which (as of fall of 2011) he
told at ECLM 2011.

His twitter account is @lukego

Tell us something interesting about yourself.

 I enjoy exploring the world. I was born and raised in Australia
 (Brisbane), I’ve lived for many years in Sweden and become a Swedish
 citizen, and these days I’m extremely happy to be settling myself
 into Switzerland. I’ve spent a couple of years traveling
 continuously with just my backpack and unicycle and no home anywhere
 to go back to. I’ve found this interesting. You can find links to my
 exploits on my homepage.

 I like to feel a bit out of my depth and to be “the new guy” who has
 a lot of catching up to do. This is why I so much enjoy learning new
 programming languages and visiting new programming communities so
 much: the feeling of having to think really hard about how to
 formulate even the most basic programs, just like when I was a kid,
 while other people do it so naturally.

What’s your job? Tell us about your company.

 I’m currently starting a new project called
 Snabb. It’s too early to say very much about
 this yet, so I’ll talk about the past.

 I’ve had a few major jobs that have shaped my thinking. I worked in
 each one for about 3-5 years.

 The first was Bluetail AB, the first Erlang startup company. I was
 hired by Joe Armstrong because I had
 enthusiasm pouring out of my ears and nostrils. I moved immediately
 to Stockholm in the middle of winter for this job — I was 21 years
 old and I’d never left Australia or seen snow before. I learned a
 lot of things at
 Bluetail,
 besides practical matters like how to walk on ice. The programmers
 there were all way above my level and I was routinely stunned at the
 stuff they had done, like when Tobbe Törnqvist mentioned in passing
 that he’d written his own TCP/IP stack from scratch as a hobby
 project and that his dial-up internet connection uses his own
 home-brew PPP implementation. I used to roam the corridors at night
 borrowing tech books from people’s shelves, there must have been a
 thousand books in the office.

 Bluetail was
 bought by Alteon,
 who were bought by Nortel at the same time, and become a productive
 little product unit in a big networking company.

 Next was Synapse Mobile Networks. This was
 an amazing experience for me: to switch from a big company to a
 small company and take care of everything from design to development
 to deployment to support by ourselves. Really getting to know
 customers and internalizing their needs and building the right
 solutions. The product is a device management system, which is a
 realtime database in a mobile phone network keeping track of which
 phone everybody is using and making sure all their services
 work. The whole thing was written in Erlang and BerkeleyDB, even
 with a from-scratch SS7 telecom networking stack in the end. I would
 routinely fly to a really interesting country — Kazakhstan, Jordan,
 Russia, Algeria, you name it — and spend a few weeks deploying the
 system and developing customizations on-site. Synapse was the first
 company in this market and they are still the market leader
 today. The system has by now configured approximately 1 billion
 actual mobile phones by sending them coded SMSes.

 Synapse was also instructive in seeing how much a strong personality
 can shapee a company. I’m still in awe of our fearless leader Per
 Bergqvist. What a guy, as they say on Red Dwarf.

 The most recent is Teclo Networks. This is
 a company that I co-founded with friends from the SBCL community —
 mostly drinking buddies from ECLM — and friends from the telecom
 world. I served as CTO during the phase of finding the right problem
 to solve, building our series of prototypes and our real product,
 and finding our very first customers. I’m a Teclo-alumnus now, not
 actively working in the company, and: Wow, this was a really intense
 few years.

 Teclo builds network appliances that optimize TCP traffic for
 cellular internet at about 20Gbps per server. The product speeds up
 the network, improves consistency, and globally eliminates
 buffer-bloat. The company is currently moving forward with a lot of
 momentum: we have Lispers like
 Juho Snellman,
 Tobias Rittweiler, and Ties
 Stuij currently deploying systems in real live networks all over the
 world. Go Teclo :-)

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I’ve mostly done Lisp hacking for my own pleasure on the side,
 but I’ve also used it quite a bit at work.

 The first time was when I used Scheme at Bluetail. Specifically, I
 used Kawa to extend a Java application. I’m sure this raised some
 eyebrows amongst my colleagues but frankly I was having too much fun
 to really notice. Kawa is a great piece of software.

 I wrote a bunch of Common Lisp networking code while reading books
 like TCP/IP Illustrated. This was a hobby project called
 Slitch and Netkit. I used
 this slightly in my work at Nortel to replicate a DoS against the
 Linux kernel that was crashing some of our appliances.

 Teclo is very much a Lisp-hacker shop. In the first year or so we
 used Lisp for absolutely everything. We’ve written and deployed a
 prototype TCP/IP implementation written in Common Lisp (SBCL), wrote
 network analysis tools for cross-referencing and visualizing traffic
 captures (often working on traces that fill up a whole disk
 i.e. hundreds of gigabytes), and developed all of the
 operation-and-maintenance infrastructure in CL. These days Teclo
 uses C/C++ for the main traffic handling, R for statistical
 analysis, and Common Lisp for the rest — mostly operation and
 maintenance and data visualization.

Among software projects you’ve participated in what’s your favorite?

 SLIME! This was wild fun. The project started when Eric Marsden, a
 CMUCL hacker, posted to #lisp his weekend hack to annotate
 individual S-expressions in an Emacs buffer with CMUCL compiler
 messages. His source files were slim.el and skank.lisp, after
 the Fatboy Slim song he was listening to at the time. I loved the
 idea so I started toying with it, renaming the files to slime.el
 and swank.lisp to make them easy to diff. I quickly posted my
 version to the cmucl-dev mailing list where
 Helmut Eller jumped right into it
 too. We created a Sourceforge project and quickly snowballed from
 there to over 100 contributors.

 SLIME’s mission was ultimately to replace ILISP as the standard
 Emacs mode for interacting with Common Lisp. ILISP worked by sending
 S-expressions between Emacs and Lisp via standard I/O and it had the
 unfortunate habit of getting stuck a lot. ILISP was also about 15
 years old at that time (SLIME is catching up now at 8 years!) and
 really hard to work on due to the heavy use of reader conditionals
 in the source code, like #+cmucl #-lucid #+sbcl #-lispworks #+acl
 #-acl4.2 and so on.

 I really enjoyed the feeling of working on a growing and thriving
 open-source project. Seeing the steady stream of new names appearing
 on our mailing list, getting patches from dozens of people, feeling
 good about positive feedback we received, working hard on negative
 feedback right away, and so on. Twas a really productive flow.

 I think that writing development tools is also really satisfying
 because your users are your peer group: people you really look up to
 and respect and sometimes drink beer with. It’s a great feeling to
 build stuff that they like to use.

 Helmut Eller and I also had a really great working style. Very often
 I’d do some late-night hacking and check in a bunch of new
 functionality, which Helmut would then read through and think about
 and then thoughtfully rewrite in a simpler way. Then I’d see what
 he’d done, think about it, and rewrite it to be simpler again. And
 so on. This was a really pleasant and productive way of working. He
 is also an absolute magician when it comes to suddenly checking in
 what seems like a month worth of work that he did over the
 weekend. (Juho Snellman has this uncanny ability too.)

 I hacked on SLIME from the beginning and up to version 1.0. Then I
 was engulfed by an Erlang startup. Here’re some posts that I fished
 out of the mailing list archives to give a sense of the early days:

 	SLIME is born

 	Users!

 	SLIME User Survey

 	SLIME 1.0 release party :-)

What brought you to Lisp? What holds you?

 My friend Darius Bacon brought me to Lisp (Scheme) by gently and
 persistently singing the praises of Abelson & Sussman back in the
 days when I was a teenager hacking Java. This book was a revelation
 for me: particularly the Digital Circuit Simulator. So I was a
 Scheme-lover for several years, but Darius also gently and
 persistently sang the praises of Norvig’s
 Paradigms of AI Programming, which
 was another revelation to me, and made a Common Lisp convert of me.

 What holds me to Lisp is the people. I love hanging out with Lisp
 hackers: I find that we’re an unusually diverse community. How often
 do you attend a small conference where attendees are building
 nuclear defense systems, running intensive care wards, designing
 aeroplane engines, analysing Lute tablature, developing cancer
 drugs, writing FIFA’s legal contracts, and designing their own
 microchips? Surely this describes few tech events other than Arthur
 & Edi’s European Common Lisp Meeting :-).

What you dislike the most about Lisp?

 I have a few stock rants that I’m tempted to rattle off —
 fragmentation, threads, GC-phobia — but honestly I doubt they are
 applicable these days. There have been so many improvements to SBCL
 and great developments like Quicklisp and so on.

 I can say I’m personally disappointed about the missed opportunity
 for us to write Teclo’s production traffic path in SBCL. Ultimately,
 the software has just a few microseconds’ budget to process each
 packet, and can never spike latency by more than a millisecond. I
 don’t know how to deliver that kind of performance in a high-level
 language like Lisp. So we fell back to C.

 I’d also like to have embedded SBCL in the C program to take care of
 high-level work like slurping in configurations and spitting out
 statistics. But the SBCL runtime system is a bit heavyweight to make
 that practical. It gets in the way when you want to debug with
 strace, gdb, etc. So we wrote this stuff in C++ instead.

 I’d have written a lot more Lisp code in recent years if I’d found
 good solutions to those problems. But at the end of the day it is
 C’s niche to write lots of tiny state machines with extremely
 predictable performance characteristics, so I’m not especially
 shocked or disheartened. A language can’t occupy every niche at once :-)

Describe your workflow, give some productivity tips to fellow programmers

 I’m an incrementalist. I like to start from minimal running code,
 like (defun program () (print "Program 0.1")), and move forward in a
 long series of very small steps. I tend to choose designs that I
 know are too simple or too slow, because I enjoy the feeling of
 hitting their limits and knowing that I didn’t prematurely
 generalize or optimize them. Then I fix them. I’d say that I’m much
 influenced by watching the development of Extreme Programming on
 WardsWiki in the 90s.

 This isn’t a hard and fast rule though. In Teclo I once spent a
 whole month writing a complex program without even trying to compile
 it once. This was a rewrite of the main traffic engine in C after
 having written a prototype in Lisp previously. This was a really fun
 way to work actually. I produced a tremendous amount of bugs in this
 style though and I wasn’t smart enough to fix them. Christophe
 Rhodes did that part — don’t ask me how :-).

 I do have a tip for getting into “the flow”. It’s a simple one: make
 a little TODO list of some features you want to hack, and take the
 laptop into the park away from the internet for an hour or two until
 they’re done. This works every time for me.

 Oh, and I highly recommend printing out and reading your
 programs. This is the best way that I know for improving their
 quality. This is why I’m a bit picky about things like the 80-column
 rule and the layout of functions within a file. I want to be able to
 print programs out and read them on paper from top to bottom. I
 wrote a program called pbook to help with this — it’s not a very
 good implementation though, with all those regexps, so I’d love if
 someone would make a much simpler one.

You have played around with so many languages, like Erlang, Lisp, Smalltalk & LuaJit. If you would design your own, how would it look like?

 That’s really hard to imagine. I’d have to find a reason that I
 needed a new programming language, and the details would probably
 follow from the problem I needed to solve.

 I learn new languages mostly because I enjoy meeting new people and
 learning new ways of thinking. It’s very seldom from any sense of
 dissatisfaction with previous languages I’ve used. My favourite
 languages are Common Lisp, Emacs Lisp, Forth, Erlang, Smalltalk, and C.
 So the best I can say is: those are the languages that I’d like
 to have designed.

 [image: Luke]Luke

2012-07-25

Juan José García Ripoll (Spain)

Juan José García Ripoll is a physicist and the principal developer of
Embeddable Common Lisp (ECL), an
implementation that compiles to C instead of native code and provides
a shared library, so that Lisp programs can be distributed without the
Lisp runtime and be embedded in other programs. He also actively
contributes to the improvement of ASDF, the foundational system
definition facility (one of his posts on the
topic).

Juanjo is a representative of a large group of Lisp users —
researchers and scientists, who are not professional
programmers. Although Lisp is not generally considered alongside
specialized research environments, like Matlab or R, it is quite
useful in this field because of its solid mathematical foundation,
coupled with truly interactive and robust environment.

Tell us something interesting about yourself.

 I do not consider myself to be an interesting character or have
 interesting hobbies, but my job is quite interesting and
 unconventional: I work on Quantum Computation, developing new ways
 of computing using, for instance,
 superconducting circuits,
 or
 arrays of atoms. Actually
 I find that the fact that human technology has progressed to the
 point that we can
 trap and harness individual atoms
 is pretty cool.

What’s your job? Tell us about your organization.

 I am a physicist and work as a scientist for
 CSIC, the Spanish Research Council. It is the
 largest research institution in Spain and my group works on all kind
 of exotic things related to the implementation of quantum computers.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 From my description above it might seem that it would be hard to use
 Lisp for anything, but quite the contrary: 50% of our time is spent
 doing simulations and programming. Quite interestingly, the programs
 that we develop are very short-lived. We have a question, write a
 simulation, get the data, move on. This is the reason why most
 people in our field use Matlab. I reached Lisp looking for an
 interactive programming language that was more powerful than Matlab
 in the fields of expressiveness, extensibility, optimization. That
 is how I started working on ECL, with the aim of empowering it for
 numerical simulations. Along the way I got distracted and more
 interested in the fields of language development.

 Despite this I have found room for Lisp in my daily routine, from
 scripting all the way up to solving actual problems. For instance,
 in one of our research topics we had to solve huge instances of
 3-SAT problems using a very basic algorithm. The fact that Common
 Lisp comes with bignums reduced the development time to one
 afternoon and the program we produced was faster than the C++
 prototypes we had.

Among software projects you’ve participated in what’s your favorite?

 My favorite is ECL, but my second favorite was developing for an
 extinct operating system, OS/2. Back when I was at the university,
 OS/2 was still alive and I got some interesting projects finished,
 such as an X-Windows server and the port of Doom to it. It was
 pretty cool to learn multithreading and GUI development back then
 and OS/2 was pretty well thought out.

What brought you to Lisp? What holds you?

 My job brought me to it, and what keeps me is the possibility of
 learning a lot about language implementations, compilers and making
 a tool that is useful for a larger community, including other
 projects such as Sage. It is a weak link
 though, and sometimes personal interactions make me question whether
 this is useful at all.

What’s the most exciting use of Lisp you had?

 ECL. Really. After one year of development it was awesome to see ECL
 being able to build and compile itself from scratch for the first
 time. Also, every time I finish yet another feature, it feels really
 good. And finally, developing a Common Lisp implementation is a
 great excuse to learn a lot of things, from the subtleties of the
 POSIX specification, to the Unicode collation algorithms.

What you dislike the most about Lisp?

 The unspecified corners. Multithreading was not in the specification
 and implementations have evolved in somewhat random ways, with some
 common denominator and features (process-kill) which are not really
 well suited for existing operating systems and are nightmare to
 implement. I also miss a better specification of physical pathnames.

Describe your workflow, give some productivity tips to fellow programmers.

 Sorry, I am a terribly disorganized developer and ECL users suffer
 from it. No advice here, hehe.

You are a physicist by main occupation, yet you manage to almost single-handedly support ECL. Why? and How?

 Everybody needs some projects in life other than work and this one
 is a lifelong companion that I would like to see to the end. I had a
 lot of help from freelance programmers at the beginning and users
 cooperate with patches and bug reports, and a lot of patience for my
 mistakes and absences. That helps.

 That does not mean I consider the current status an optimal one. I
 consider it a personal failure the fact that ECL does not have a
 larger community and a better support base. It still persists the
 wrong impression that ECL is a lesser implementation, covering a
 niche (embeddability) and inferior to other implementations which
 are more lispy in nature. That is not the case: we have sufficiently
 proven that the underlying core, C, does not prevent any feature
 from being implemented, performance is improving and stability,
 well, this is not always optimal, but it has to be blamed to the
 small size of the developer team, which has scarce resources for
 testing the code.

 [image: Juanjo]Juanjo

2012-06-25

John Fremlin (USA)

John Fremlin has created a couple of very performant Common Lisp
programs beating on some microbenchmarks the fastest similar software
written in any other language, including C: the
teepeedee2 dynamic webserver,
that managed to break the c10k record on a single core machine, and
cl-irregsexp regex
library. Working at MSI in Japan
he also had written an object persistence DB for CL called
manardb. Besides,
he writes interesting blogs on topics of
software optimization, programming languages and technology in
general.

Tell us something interesting about yourself.

 I’ve been to more than eighty countries; I want to go everywhere!

What’s your job? Tell us about your company.

 I work at Facebook on the growth team, on data-driven improvements
 to the sign-up flows.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I used to at msi.co.jp. It is a Japanese consultancy based in Tokyo
 called originally Mathematical Systems Institute. Mr Kuroda leads
 the Lisp group there and I think it has hovered around five or six
 people over many years. He’s done a great many very interesting
 projects for a range of companies over the years: for example a
 crash-test data inspection tool for a big Japanese car company, text
 mining, graph visualisation and so on. I worked primarily on
 building up a visualisation and mapping of a very large set of
 routers for the world’s biggest telecoms, which led to the creation
 of manardb.

 I really enjoyed working for Mr Kuroda and I’m sorry I had to leave
 for personal reasons. There were always many very fascinating
 problems around â€” with great people to discuss them and find
 solutions. It was a very stimulating workplace! At Facebook, I use
 PHP, Python, C++, Java and miscellaneous things. I think we would
 all be better off if we hadn’t balkanised the different systems that
 we program for â€” and Lisp is one of the few programming languages
 with the flexibility to serve in all these roles.

What brought you to Lisp? What holds you?

 My initial programming was following Michael Abrash’s graphics books
 and building on his ideas, by doing things like runtime native code
 generation for drawing dynamically generated bitmaps
 efficiently. This is not so interesting for modern processors as
 they have good branch prediction but the idea of code generation
 stuck with me and Lisp is one of the few programing languages that
 makes this easy and efficient.

 I appreciate the intellectual coherence of Lisp, and its sensible
 approach to numeric computations. In terms of using it today, I feel
 that Common Lisp has an advantage over many other programming
 languages in that it has multiple mature independent
 implementations. Running on multiple compilers tends to greatly
 increase the quality of a program in my opinion, as the code is
 exposed to different static analysis.

What’s the most exciting use of Lisp you had?

 I helped someone use Lisp for an automated trading project.

What you dislike the most about Lisp?

 In trying to make efficient code one ends up fighting against the
 compiler and the runtime system and most of the time is spent in
 coming up with clever ways to circumvent and outwit both. This is
 not a good use of resources, and means that it usually makes more
 sense to start with C++.

Tell us about your approach(es) to optimizing Common Lisp code (and maybe code optimization in general)?

 The most important thing is to try to hold in your head an
 understanding of where the program is going to spend time. Profilers
 can be misleading and inaccurate, and it is sometimes difficult to
 get representative workloads to profile. I think their main utility
 is in confirming that there is no sloppy mistake (in Lisp,
 typically, consing accidentally) that prevents you from achieving
 the natural performance of your approach.

 Complexity analysis in terms of computation, network usage, disk
 accesses and memory accesses is a first step as obviously if you can
 improve the asymptotic usage of a bottlenecked resource, you will
 very likely do much better than trying to tweak some little
 detail. The second step is to try to characterize interactions with
 caches and, in Lisp, garbage collection, which is pretty tricky.

Among the software projects you’ve participated in what’s your favorite?

 I think the one I enjoyed most was an embedded H.264 decoder in 2005.
 This was for the VideoCore, a really wonderful CPU
 architecture that could deal with parallelizable problems incredibly
 efficiently if programmed correctly. It would have been awesome to
 use Lisp for it!

If you had all the time in the world for a Lisp project, what would it be?

 I wish there were Lisp bridges to other runtime systems (Java,
 Android, Objective C, Perl, Python, C++, R, etc.) so that the
 libraries and tools for each could be leveraged efficiently in Lisp
 and vice versa. That would mean being able to call Java code and
 handle Java objects in Lisp, for example â€” perhaps initially by
 spinning up a Java implementation in a separate process running a
 CL-SWANK style interface.

 I really don’t think this would be that difficult and it would make
 a huge difference to the convenience of building programs in Common
 Lisp!

Describe your workflow, give some productivity tips to fellow programmers.

 I use emacs and I have a bunch of elisp code that I keep meaning to publish!

 [image: John]John

2013-01-03

Vladimir Sedach (Russia - Canada - USA)

Vladimir Sedach is an active open-source Common Lisp developer and
proponent, as well as a computing philosopher to some extent. At his
carcaddar blog he writes about
decentralized social networks, forgotten bits of computer history and,
surely, Lisp. He is the maintainer or originator of a few open-source
libraries like
parenscript and
Eager-Future2, and works
on Vacietis C-to-Lisp compiler,
which he describes in more detail in the interview.

Together with Andrey Moskvitin they
were the driving force behind 2012 cliki update
effort aka cliki2.

His twitter is @vsedach

Tell us something interesting about yourself.

 In 2012 my best friend and I rode our bicycles across the USA.

What’s your job? Tell us about your company.

 Right now I work at ZestFinance in Hollywood. We’re a relatively new
 company that’s helping the underbanked receive access to credit on
 more reasonable terms than otherwise obtainable, by using machine
 learning. The only thing bad about my job is that I get so focused
 on programming at work that I don’t have any desire to hack on Free
 Software projects when I come home, so a lot of my own projects are
 currently badly neglected.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I’ve used Lisp for new commercial projects where people trust me
 with the technology choices. I’ve also come in to work on existing
 Lisp projects. I have used Lisp for one-off tasks at “non-Lisp”
 companies, but I’ve never started a Lisp project at a company that
 wasn’t using Lisp already. Most computer programmers tend to make
 technical decisions based on cliches they read about on the
 Internet, and unfortunately I don’t know the cure for being dumb.

What brought you to Lisp? What holds you?

 As a teenager I got interested in computer graphics, and came across
 this really cool 3d graphics program called Mirai from Nichimen
 Graphics. Mirai was written in Common Lisp, and I read more about
 Lisp in the
 Slashdot interview with Kent Pitman,
 and started reading SICP based on
 Kent’s recommendation. By the second chapter computer programming
 had finally made sense to me, and by the third I had decided to
 study mathematics in university.

 As an aside, Mirai is directly descended from the S-Graphics
 software from Symbolics. Not many people know this, but Symbolics
 was actually the second producer of commercially available 3d
 computer animation software (the first was Wavefront). S-Graphics
 was a complete modeling, animation, and painting system, and it was
 all written in Lisp in the mid 1980s.

 Common Lisp is still the best programming language I’ve come
 across. There is the feeling of freedom. No one is telling you what
 patterns or types to use. You can always just write code in a way
 that is most appropriate for what you’re currently doing.

What’s the most exciting use of Lisp you had?

 Working with Daniel Gackle on Skysheet. We did some very awesome
 things with Parenscript.

What you dislike the most about Lisp?

 No one has yet invented a good way to write “one-liners” in Lisp.
 I would love to replace my Unix shell with a Lisp REPL someday.

Among the software projects you’ve participated in what’s your favorite?

 Vacietis, for the sheer amount of hacks per line of code, and for
 the “I proved them wrong” factor. It was during the development of
 Vacietis that I came up with my current programming philosophy:
 “when stuck, do the stupidest thing possible”

Tell us about Vacietis: your vision for it, the project’s progress and roadmap, what’s lacking?..

 Vacietis was originally intended to be a translator for a subset of
 C code to Common Lisp. I discussed the idea for Vacietis a few times
 online before starting to code, and people generally thought it
 wouldn’t be doable.
 Scott Burson,
 who wrote the Zeta-C compiler for Lisp Machines in the 1980s, told
 me it would take at least a year of full-time of work.

 As I worked on Vacietis, I realized that adding more and more of the
 “advanced” C functionality was actually easy. First came the C
 preprocessor (which is implemented as part of the Common Lisp
 readtable that also parses the C code), then large patches of the C
 standard library, and then one day
 Brit Butler came along and sent
 me a one-page patch that actually used Vacietis as a stand-alone C
 compiler! I hadn’t even realized the project had gotten to that
 phase. The compiler comes as the vacietis.vcc ASDF system as part
 of Vacietis.

 Some big things that need to be done are struct call-by-value,
 pointer scaling, arguments to main(), some libc stuff, setjmp, and
 making VCC produce linkable Lisp “object” files (fasls) for the
 different implementations. I would also like to change the pointer
 representation to be a fixnum offset into a sparse array (right now
 pointers are represented by structures that look like <offset, array>).

 Overall, I am amazed by how much progress Vacietis has made given
 how little time I spent on it. I am now convinced that Common Lisp
 is mostly a superset of C, and have a newfound appreciation for
 gotos and PROG.

If you had all the time in the world for a Lisp project, what would it be?

 A single-address space Common Lisp operating system based on
 capabilities (Jonathan Rees wrote
 a dissertation on doing
 this in Scheme in 1995) and a virtualized package system. I really
 like Azul Systems’ hack of using the EPT/RVI virtualized page tables
 as a hardware read barrier for real-time garbage collection, and
 with a single-address space operating system I think you can do the
 same thing on hardware with a regular MMU.

 If you follow the steps of the Viewpoints Research Institute’s
 Fundamental New Computer Technologies project
 and keep the system as simple as possible, it should be a surmountable
 amount of work to realize a somewhat working system.

 Vacietis is actually the first step in the Common Lisp operating
 system project. I’d like to have a C runtime onto which I can port
 hardware drivers from OpenBSD with the minimal amount of hand
 coding. The way hardware drivers are written in OpenBSD (a set of
 patterns it borrows from NetBSD, where they originated and are
 colloquially known as “bus_dma”) is very pleasant. Theo de Raadt was
 also the first well-known Free Software operating system developer
 to take a position against binary hardware drivers, and I respect
 him tremendously for that. Linus Torvalds doesn’t care, and as a
 result it is now impossible to get drivers for any of your ARM
 devices, even though 99% of them run Linux. OpenBSD will continue to
 have great, stable Free Software device drivers that are easily
 portable for different hardware architectures and to the other
 BSD-derived operating systems. I hope OpenBSD’s model of Free
 Software hardware drivers catches on more widely.

Describe your workflow, give some productivity tips to fellow programmers.

 I tend to design software systems in advance only at the level of
 the domain. I find that programmers who try to come up with APIs or
 draw class diagrams ahead of starting to code tend to write very
 poor code.

 I rely heavily on interactive programming for doing mundane tasks,
 and since most programming time is spent dealing with mundane
 things, I spend most of my time in the REPL. Fortunately the Common
 Lisp REPL is the best programming environment I have come
 across. Things like the Rails console don’t even come close. The
 only comparable environment is the Unix shell.

 It’s also very easy to turn Common Lisp REPL code into unit tests,
 which I tend to do a lot. That is something that’s very hard to do
 with object-oriented code, which is why idiotic things like
 dependency injection and Test-Driven Development have to be
 invented.

 For difficult problems, it’s always better to step back from the
 keyboard and just think about your code. Hacking around in the
 debugger is usually a waste of time (the only exception is when
 you’re having data structure issues, but then technically you’re in
 the object inspector). I mostly tend to debug with print statements.

 The best productivity tip I’ve come across is the “Seinfeld
 technique” that I learned about from reading Hacker News. It
 involves doing something, no matter how small, on your project every
 single consecutive day, without any gaps or
 interruptions. Apparently Jerry Sienfeld uses a big calendar and
 tries to mark up large “runs” of consecutive days on it. That really
 keeps you focused.

 One thing I try to focus on in my code is giving unambiguous, unique
 (i.e., easily grep-able) names to symbols. That makes it easy to go
 back to old code and quickly figure out what is going on. Common
 words like “status,” “mapping”, etc. make terrible names unless you
 qualify them.

 [image: Vladimir]Vladimir

2013-03-05

Marc Battyani (France - USA)

Marc Battyani is one of the people who put Lisp at the foundation of
their business, and he doesn’t seem to regret that decision. And the
business itself is exploring very interesting aspects of
high-performance and reconfigurable computing. Besides, he has a
notable open-source contribution with
cl-pdf/cl-typesetting
libraries. He elaborates on all these and more in much detail in the
interview.

Tell us something interesting about yourself.

 I think maybe the most unusual things I do is that I work on very
 different application domains which are even sometimes completely at
 opposite extremes both in electronics and software. For instance
 form ultra low power smart sensors based on $1 microprocessors which
 will run continuously for 5+ years only powered by a small coin
 battery up to the world’s lowest latency supercomputers based on
 FPGA costing thousands of $ per chip. On the software side I use
 programming languages ranging from the lowest level languages like
 assembly or even below with VHDL up to really high level languages
 like Common Lisp.

 I’ve always enjoyed mixing electronics design and higher level
 computer science and all that diversity probably gives me a
 different and original view on say computing and programming in
 general.

What’s your job? Tell us about your company.

 I’m the CTO of NovaSparks a startup I founded in 2008 to make
 ultra-low latency FPGA based supercomputers for the financial
 markets. BTW These things are really incredibly fast. For instance
 on 10Gb/s Ethernet market data packets coming from exchanges like
 the NASDAQ we process the IP/UDP/multicast network stack, extract
 the messages from the packets, parse/decode/filter/normalize those
 messages, maintain the indexed order book data structures, aggregate
 the price levels per stock, generate output messages and finally
 send them to a server through PCI-express or 10Gb/s Ethernet network
 stacks. The nice thing is that we do all that fully pipelined at a
 rate of one message every 12 nanoseconds! To have an idea of how
 fast it is, in 12 ns the light will only travel 3.6 meters (11.8 ft).
 Another way to view this performance is that the system can
 process 83 Millions of financial messages per second without any
 queuing.

 As an aside it is interesting to note that the Domain Specific
 Language Compilers and various other tools written in Common Lisp
 have been key enabling factors for the creation of NovaSparks.

 I’m also the CEO and CTO of Fractal Concept which is the company
 where we were developing that technology before starting NovaSparks
 but as NovaSparks has been using more than 100% of my time for the
 last years Fractal Concept has been less active with only the
 development and maintenance of the smart sensors going on.

Do you use Lisp at work? If yes, how you’ve made it happen? If not, why?

 I’ve always used Common Lisp for most of my work and even when I
 need to use other programming languages (like VHDL for NovaSpark’s
 FPGAs or javascript for web stuff) I generally use Common Lisp at
 least for a lot of related tasks like prototyping, designing and
 testing algorithms, extracting statistics, performing simulations,
 generating test data, analysing test runs.

 The next step is very often to generate some or all the code in
 other languages by designing various domain specific languages (DSL)
 which will take care of the tedious aspects of programming in less
 powerful languages. I really like it when from a few 100s of lines
 written in a easy to use high level DSL we generate 10000 to 60000+
 lines of very low level VHDL code saving months of development.

 About that point I think I would even say that I’m mostly doing
 Language Oriented Programming by trying to abstract the domain
 specific knowledge into various domain specific languages with very
 different syntaxes like s-expressions, C like or other languages or
 even sometimes adding to the mix some GUI or data-based inputs. Then
 those DSLs would generate most if not all the application code in
 whatever language is needed be it VHDL, asm, C, javascript or Common Lisp.

What brought you to Lisp? What holds you?

 A friend of mine gave me a version of
 Le_Lisp
 a version of Lisp used in the 80’s by the French universities and
 engineering schools to teach high level programming concepts. At
 that time I was mostly programming in Z80 assembly language on a
 TRS80 and the straight jump from ASM to Lisp was quite a shock and
 an eye opener.

 Since then I’ve used Common Lisp for countless projects ranging from
 a few hours of work to multi-years ones and I still find it
 awesome. Where else can you find a language providing such powerful
 and multi-paradigms features like CLOS, generic functions, the MOP,
 macros, closures, s-expressions, lambdas, an interactive REPL (Read
 Eval Print Loop), native compilation of applications, on the fly
 native compilation of generated code, the condition system,
 interactive live programming, real time live debugging of running
 software and more!

What’s the most exciting use of Lisp you had?

 I’ve got so many of them than picking only one would be difficult so
 here are a few of them:

 	softscan: real time
 driving and data acquisition of automated non-destructive testing
 installations with real time 3D display (a first in 1995)

 	my web application framework: Automatic generation of really
 complex web applications (the whole stuff from the HTML/javascript
 front-end to the server back-end). It has been fully Ajax-based
 with dynamic modification of the displayed pages without reloading
 the page. This seems obvious nowadays but it was also a first in
 2000 and IIRC the term “Ajax” was only invented 5 years later.

 	hpcc: The awesome DSL to VHDL compiler. In many aspects VHDL is
 the complete opposite of Common Lisp. It’s a hardware description
 language used to program FPGA and it deals with the lowest
 possible programming level with data types like signals, clocks,
 and bits. Programming at that level is really tedious, time
 consuming and verbose so it’s really a relief to be able to
 generate tens of thousands of lines of highly optimized VHDL code
 from just a few hundred lines of some high level Domain Specific
 Language.

 	cl-pdf/cl-typesetting: Being able to generate the first PDF files
 from scratch in only 107 lines of Common Lisp was an Haha moment.

What you dislike the most about Lisp?

 The language itself is somewhat good enough and anyway Common Lisp
 makes it really easy to change most of itself to add the new and
 cool stuff or ideas of the day.

 In fact what I dislike about Lisp is outside the language and more
 related to the (mis)perception that people have about it. Having
 almost everytime to justify its use and sometimes even to fight to
 be able to use it is somewhat annoying and tiresome.

 Of course, Lisp is not for everybody but this is not a reason to
 have nobody using it. In fact I view Lisp as some kind of amplifier
 which will give awesome things when used by brilliant developers but
 will end up giving an incredible mess when used by people without
 any clues about what they are doing. That’s one aspect that makes
 Lisp very different from other languages which are especially
 designed to try to normalize and average what people can do with
 them.

Describe your workflow, give some productivity tips to fellow programmers.

 I obviously use emacs and all the nice stuff that work with it like
 slime,
 org-mode,
 magit and lots of other packages. I
 switched from subversion (svn) to git for all my projects and I now
 use git mostly form emacs with magit.

 In general I have several instances of Lispworks running as
 standalone apps on my laptop but connected to Slime through
 M-x slime-connect rather than being started by slime. I do a lot of
 exploratory programming and interactively play with the code while I
 write it and if I have to optimize some code I very often use
 #'disassemble.

 About my Lisp coding style I really do like generic functions, CLOS
 and the MOP. As mentioned earlier I try to generate as much of the
 code as possible by using macros in simple cases and full blown DSLs
 in more complex ones. Sometimes I do not dislike making some
 premature optimizations when I know that speed will be important for
 some project. BTW when speed matters I like to generate and compile
 code on the fly when it’s useful (and possible) and try to generate
 really optimized code. It’s always cool when you have Common Lisp
 applications running much faster than C++ ones.

 I also refactor a lot. Generally when I start on some new stuff I
 try to make a first version that works well enough but then once
 it’s done or generally after some time I have some cool ideas to
 make something much better. At that point I’m really happy that
 Common Lisp makes refactoring very easy thanks to optional and key
 args, macros and generic functions with multiple dispatch because
 all that enables me to make even very deep modifications very
 easily. I really find those Common Lisp features make software very
 resilient to code modifications.

What are the advantages of using Lisp in the HPC field? What are the drawbacks? Are you happy with your technology choice?

 The HPC field is huge and I can only talk about the small corner of
 it I know which is the ultra-low latency processing of vast amounts
 of data we do in NovaSparks. For that the various DSL compilers
 generating VHDL code have really been a key enabling
 factor. Programming FPGAs is notoriously difficult and time
 consuming and this is the major factor limiting the use of
 reconfigurable computing in the HPC field. The use of those DSL
 compilers has made it possible to use those FPGA on a more practical
 basis for processing financial data.

 BTW I’m looking for other HPC domains in which those DSL VHDL
 compilers could be used so feel free to contact me if you have some
 ideas.

If you had all the time in the world for a Lisp project, what would it be?

 Again that’s a difficult choice. Speaking about pure Lisp projects
 I’ve been willing for a long time to clean up and modernize my web
 app framework before releasing it as open-source so maybe that could
 be a good project to start.

 Otherwise as mentioned above, I’m looking for possible applications
 and opportunities of leveraging the DSL ⇒ hardware compilers and
 the FPGAs around some Big Data processing. I have a few ideas but
 nothing specific for now.

Anything else I forgot to ask?

 A conclusion? (Everybody wants a conclusion.) So here is mine:

 Common Lisp is Awesome! It is much easier nowadays to use it thanks
 to all the projects and libraries that Quicklisp makes available. If
 you do not know Common Lisp then learn it and this will make you a
 better programmer anyway even if you do not use it directly after.

 [image: Marc]Marc

2013-06-12

Afterword

I hope you’ve enjoyed reading these interviews and have gained
something of them. I surely did.

Some events occurred in the professional lives of many of the
interviewees even in the short period since the interviews were
conducted. FarÃ© had left ITA, yet he’s produced ASDF 3, a lot of
interesting things of which you can read in
his presentation. Zach
Beane is now part of
Clozure Associates where he hacks
on Lisp full-time and continues to improve Quicklisp. Marijn Haverbeke
had a hugely successful Indiegogo project
Tern
to improve JavaScript editing experience. Peter Seibel went to work
for twitter. The next ECLM took place
in Madrid.

The Lisp ecosystem continues its development little by little, yet
consistently: new interesting implementations are arriving, new
community resources are being developed, and more projects get started
or mature. And, last but not least, hopefully, a new generation of
Lisp hackers is growing…

 [image: (c) http://xkcd.com/297/](c) http://xkcd.com/297/

OEBPS/Images/image00070.gif
LISP 15 OVER HALF A
CENTURYOLD AND IT
STILL HAS THIS PERFECT
TIMELESS AIRABUTIT.

T WONDER IF THE CYCLES
WILL CONTINUE FOREVER.

NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

ELEGANT
WERPONS

FOR A MORE... CIVIUZED AGE-

OEBPS/Images/image00069.jpeg

OEBPS/Images/image00068.jpeg

OEBPS/Images/image00067.jpeg

OEBPS/Images/image00066.jpeg

OEBPS/Images/image00065.jpeg

OEBPS/Images/image00064.jpeg
it A " e
diuinuwnANINGE

OEBPS/Images/cover00071.jpeg
[WARNING]
)

This product
may Contain
trace amounts|
of Lisp

Interviews with 100x
More Productive
Programmers

conducted by

Vsevolod Dyomkin
in 2012-2013

OEBPS/Images/image00063.jpeg
L S LN L

S JL
Wl O

|

OEBPS/Images/image00062.jpeg

OEBPS/Images/image00061.jpeg

OEBPS/Images/image00060.jpeg

OEBPS/Images/image00059.jpeg

OEBPS/Images/image00058.jpeg

OEBPS/Images/image00057.jpeg
B

| Quicklip

OEBPS/Images/image00056.jpeg

OEBPS/Images/image00055.jpeg
Leanpub
0}

