

 The Robert C. Martin Clean Code Collection

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Note from the Publisher
The Robert C. Martin Clean Code Collection consists of two bestselling eBooks:
• Clean Code: A Handbook of Agile Software Craftmanship
• The Clean Coder: A Code of Conduct for Professional Programmers
In this collection, Robert C. Martin, also known as “Uncle Bob,” provides a pragmatic method for writing better code from the start. He reveals the disciplines, techniques, tools, and practices that separate software craftsmen from mere “9-to-5” programmers. Within this collection are the tools and methods you need to become a true software professional.
—The editorial and production teams at Prentice Hall

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:
 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com
For sales outside the United States please contact:
 International Sales
 international@pearson.com
Visit us on the Web: www.informit.com/ph
Copyright © 2012 Pearson Education, Inc.
All rights reserved. Printed in the United States of America.This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.
ISBN-13: 978-0-13-291122-1
ISBN-10: 0-13-291122-1

Table of Contents
Clean Code
Chapter 1: Clean Code
There Will Be Code
Bad Code
The Total Cost of Owning a Mess
The Grand Redesign in the Sky

Attitude

The Primal Conundrum

The Art of Clean Code?

What Is Clean Code?

Schools of Thought
We Are Authors
The Boy Scout Rule
Prequel and Principles
Conclusion
Bibliography
Chapter 2: Meaningful Names
Introduction
Use Intention-Revealing Names
Avoid Disinformation
Make Meaningful Distinctions
Use Pronounceable Names
Use Searchable Names
Avoid Encodings
Hungarian Notation

Member Prefixes

Interfaces and Implementations

Avoid Mental Mapping
Class Names
Method Names
Don’t Be Cute
Pick One Word per Concept
Don’t Pun
Use Solution Domain Names
Use Problem Domain Names
Add Meaningful Context
Don’t Add Gratuitous Context
Final Words
Chapter 3: Functions
Small!
Blocks and Indenting

Do One Thing
Sections within Functions

One Level of Abstraction per Function
Reading Code from Top to Bottom: The Stepdown Rule

Switch Statements
Use Descriptive Names
Function Arguments
Common Monadic Forms

Flag Arguments

Dyadic Functions

Triads

Argument Objects

Argument Lists

Verbs and Keywords

Have No Side Effects
Output Arguments

Command Query Separation
Prefer Exceptions to Returning Error Codes
Extract Try/Catch Blocks

Error Handling Is One Thing

The Error.java Dependency Magnet

Don’t Repeat Yourself
Structured Programming
How Do You Write Functions Like This?
Conclusion
SetupTeardownIncluder
Bibliography
Chapter 4: Comments
Comments Do Not Make Up for Bad Code
Explain Yourself in Code
Good Comments
Legal Comments

Informative Comments

Explanation of Intent

Clarification

Warning of Consequences

TODO Comments

Amplification

Javadocs in Public APIs

Bad Comments
Mumbling

Redundant Comments

Misleading Comments

Mandated Comments

Journal Comments

Noise Comments

Scary Noise

Don’t Use a Comment When You Can Use a Function or a Variable

Position Markers

Closing Brace Comments

Attributions and Bylines

Commented-Out Code

HTML Comments

Nonlocal Information

Too Much Information

Inobvious Connection

Function Headers

Javadocs in Nonpublic Code

Example

Bibliography
Chapter 5: Formatting
The Purpose of Formatting
Vertical Formatting
The Newspaper Metaphor

Vertical Openness Between Concepts

Vertical Density

Vertical Distance

Vertical Ordering

Horizontal Formatting
Horizontal Openness and Density

Horizontal Alignment

Indentation

Dummy Scopes

Team Rules
Uncle Bob’s Formatting Rules
Chapter 6: Objects and Data Structures
Data Abstraction
Data/Object Anti-Symmetry
The Law of Demeter
Train Wrecks

Hybrids

Hiding Structure

Data Transfer Objects
Active Record

Conclusion
Bibliography
Chapter 7: Error Handling
Use Exceptions Rather Than Return Codes
Write Your Try-Catch-Finally Statement First
Use Unchecked Exceptions
Provide Context with Exceptions
Define Exception Classes in Terms of a Caller’s Needs
Define the Normal Flow
Don’t Return Null
Don’t Pass Null
Conclusion
Bibliography
Chapter 8: Boundaries
Using Third-Party Code
Exploring and Learning Boundaries
Learning log4j
Learning Tests Are Better Than Free
Using Code That Does Not Yet Exist
Clean Boundaries
Bibliography
Chapter 9: Unit Tests
The Three Laws of TDD
Keeping Tests Clean
Tests Enable the -ilities

Clean Tests
Domain-Specific Testing Language

A Dual Standard

One Assert per Test
Single Concept per Test

F.I.R.S.T.
Conclusion
Bibliography
Chapter 10: Classes
Class Organization
Encapsulation

Classes Should Be Small!
The Single Responsibility Principle

Cohesion

Maintaining Cohesion Results in Many Small Classes

Organizing for Change
Isolating from Change

Bibliography
Chapter 11: Systems
How Would You Build a City?
Separate Constructing a System from Using It
Separation of Main

Factories

Dependency Injection

Scaling Up
Cross-Cutting Concerns

Java Proxies
Pure Java AOP Frameworks
AspectJ Aspects
Test Drive the System Architecture
Optimize Decision Making
Use Standards Wisely, When They Add Demonstrable Value
Systems Need Domain-Specific Languages
Conclusion
Bibliography
Chapter 12: Emergence
Getting Clean via Emergent Design
Simple Design Rule 1: Runs All the Tests
Simple Design Rules 2–4: Refactoring
No Duplication
Expressive
Minimal Classes and Methods
Conclusion
Bibliography
Chapter 13: Concurrency
Why Concurrency?
Myths and Misconceptions

Challenges
Concurrency Defense Principles
Single Responsibility Principle

Corollary: Limit the Scope of Data

Corollary: Use Copies of Data

Corollary: Threads Should Be as Independent as Possible

Know Your Library
Thread-Safe Collections

Know Your Execution Models
Producer-Consumer

Readers-Writers

Dining Philosophers

Beware Dependencies Between Synchronized Methods
Keep Synchronized Sections Small
Writing Correct Shut-Down Code Is Hard
Testing Threaded Code
Treat Spurious Failures as Candidate Threading Issues

Get Your Nonthreaded Code Working First

Make Your Threaded Code Pluggable

Make Your Threaded Code Tunable

Run with More Threads Than Processors

Run on Different Platforms

Instrument Your Code to Try and Force Failures

Hand-Coded

Automated

Conclusion
Bibliography
Chapter 14: Successive Refinement
Args Implementation
How Did I Do This?

Args: The Rough Draft
So I Stopped

On Incrementalism

String Arguments
Conclusion
Chapter 15: JUnit Internals
The JUnit Framework
Conclusion
Chapter 16: Refactoring SerialDate
First, Make It Work
Then Make It Right
Conclusion
Bibliography
Chapter 17: Smells and Heuristics
Comments
C1: Inappropriate Information

C2: Obsolete Comment

C3: Redundant Comment

C4: Poorly Written Comment

C5: Commented-Out Code

Environment
E1: Build Requires More Than One Step

E2: Tests Require More Than One Step

Functions
F1: Too Many Arguments

F2: Output Arguments

F3: Flag Arguments

F4: Dead Function

General
G1: Multiple Languages in One Source File

G2: Obvious Behavior Is Unimplemented

G3: Incorrect Behavior at the Boundaries

G4: Overridden Safeties

G5: Duplication

G6: Code at Wrong Level of Abstraction

G7: Base Classes Depending on Their Derivatives

G8: Too Much Information

G9: Dead Code

G10: Vertical Separation

G11: Inconsistency

G12: Clutter

G13: Artificial Coupling

G14: Feature Envy

G15: Selector Arguments

G16: Obscured Intent

G17: Misplaced Responsibility

G18: Inappropriate Static

G19: Use Explanatory Variables

G20: Function Names Should Say What They Do

G21: Understand the Algorithm

G22: Make Logical Dependencies Physical

G23: Prefer Polymorphism to If/Else or Switch/Case

G24: Follow Standard Conventions

G25: Replace Magic Numbers with Named Constants

G26: Be Precise

G27: Structure over Convention

G28: Encapsulate Conditionals

G29: Avoid Negative Conditionals

G30: Functions Should Do One Thing

G31: Hidden Temporal Couplings

G32: Don’t Be Arbitrary

G33: Encapsulate Boundary Conditions

G34: Functions Should Descend Only One Level of Abstraction

G35: Keep Configurable Data at High Levels

G36: Avoid Transitive Navigation

Java
J1: Avoid Long Import Lists by Using Wildcards

J2: Don’t Inherit Constants

J3: Constants versus Enums

Names
N1: Choose Descriptive Names

N2: Choose Names at the Appropriate Level of Abstraction

N3: Use Standard Nomenclature Where Possible

N4: Unambiguous Names

N5: Use Long Names for Long Scopes

N6: Avoid Encodings

N7: Names Should Describe Side-Effects.

Tests
T1: Insufficient Tests

T2: Use a Coverage Tool!

T3: Don’t Skip Trivial Tests

T4: An Ignored Test Is a Question about an Ambiguity

T5: Test Boundary Conditions

T6: Exhaustively Test Near Bugs

T7: Patterns of Failure Are Revealing

T8: Test Coverage Patterns Can Be Revealing

T9: Tests Should Be Fast

Conclusion
Bibliography
Appendix A: Concurrency II
Client/Server Example
The Server

Adding Threading

Server Observations

Conclusion

Possible Paths of Execution
Number of Paths

Digging Deeper

Conclusion

Knowing Your Library
Executor Framework

Nonblocking Solutions

Nonthread-Safe Classes

Dependencies Between Methods Can Break Concurrent Code
Tolerate the Failure

Client-Based Locking

Server-Based Locking

Increasing Throughput
Single-Thread Calculation of Throughput

Multithread Calculation of Throughput

Deadlock
Mutual Exclusion

Lock & Wait

No Preemption

Circular Wait

Breaking Mutual Exclusion

Breaking Lock & Wait

Breaking Preemption

Breaking Circular Wait

Testing Multithreaded Code
Tool Support for Testing Thread-Based Code
Conclusion
Tutorial: Full Code Examples
Client/Server Nonthreaded

Client/Server Using Threads

Appendix B: org.jfree.date.SerialDate
Appendix C: Cross References of Heuristics
Epilogue
Index
Footnotes
The Clean Coder
Pre-Requisite Introduction
Chapter 1. Professionalism
Be Careful What You Ask For
Taking Responsibility
First, Do No Harm
Work Ethic
Bibliography
Chapter 2. Saying No
Adversarial Roles
High Stakes
Being a “Team Player”
The Cost of Saying Yes
Code Impossible
Chapter 3. Saying Yes
A Language of Commitment
Learning How to Say “Yes”
Conclusion
Chapter 4. Coding
Preparedness
The Flow Zone
Writer’s Block
Debugging
Pacing Yourself
Being Late
Help
Bibliography
Chapter 5. Test Driven Development
The Jury Is In
The Three Laws of TDD
What TDD Is Not
Bibliography
Chapter 6. Practicing
Some Background on Practicing
The Coding Dojo
Broadening Your Experience
Conclusion
Bibliography
Chapter 7. Acceptance Testing
Communicating Requirements
Acceptance Tests
Conclusion
Chapter 8. Testing Strategies
QA Should Find Nothing
The Test Automation Pyramid
Conclusion
Bibliography
Chapter 9. Time Management
Meetings
Focus-Manna
Time Boxing and Tomatoes
Avoidance
Blind Alleys
Marshes, Bogs, Swamps, and Other Messes
Conclusion
Chapter 10. Estimation
What Is an Estimate?
PERT
Estimating Tasks
The Law of Large Numbers
Conclusion
Bibliography
Chapter 11. Pressure
Avoiding Pressure
Handling Pressure
Conclusion
Chapter 12. Collaboration
Programmers versus People
Cerebellums
Conclusion
Chapter 13. Teams and Projects
Does It Blend?
Conclusion
Bibliography
Chapter 14. Mentoring, Apprenticeship, and Craftsmanship
Degrees of Failure
Mentoring
Apprenticeship
Craftsmanship
Conclusion
Appendix A. Tooling
Tools
Source Code Control
IDE/Editor
Issue Tracking
Continuous Build
Unit Testing Tools
Component Testing Tools
Integration Testing Tools
UML/MDA
Conclusion
Index
Footnotes

Clean Code
A Handbook of Agile Software Craftsmanship
The Object Mentors:

Robert C. Martin
Michael C. Feathers Timothy R. Ottinger
Jeffrey J. Langr Brett L. Schuchert
James W. Grenning Kevin Dean Wampler
Object Mentor Inc.
Writing clean code is what you must do in order to call yourself a professional. There is no reasonable excuse for doing anything less than your best.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:
U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph
Library of Congress Cataloging-in-Publication Data
Martin, Robert C.
 Clean code : a handbook of agile software craftsmanship / Robert C. Martin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-235088-2 (pbk. : alk. paper)
 1. Agile software development. 2. Computer software—Reliability. I. Title.
 QA76.76.D47M3652 2008
 005.1—dc22
2008024750
Copyright © 2009 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:
Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-235088-4
ISBN-10: 0-13-235088-2
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
Ninth printing April, 2011

For Ann Marie: The ever enduring love of my life.

Foreword
One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-pack of the delicacy this morning and found that it bore this old Danish saw:
Ærlighed i små ting er ikke nogen lille ting.
“Honesty in small things is not a small thing.” It was a good omen consistent with what I already wanted to say here. Small things matter. This is a book about humble concerns whose value is nonetheless far from small.
God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls contemporary arguments about the role of architecture in software development, and particularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms of building that underlie great architecture. On the other hand, he also personally selected every doorknob for every house he designed. Why? Because small things matter.
In our ongoing “debate” on TDD, Bob and I have discovered that we agree that software architecture has an important place in development, though we likely have different visions of exactly what that means. Such quibbles are relatively unimportant, however, because we can accept for granted that responsible professionals give some time to thinking and planning at the outset of a project. The late-1990s notions of design driven only by the tests and the code are long gone. Yet attentiveness to detail is an even more critical foundation of professionalism than is any grand vision. First, it is through practice in the small that professionals gain proficiency and trust for practice in the large. Second, the smallest bit of sloppy construction, of the door that does not close tightly or the slightly crooked tile on the floor, or even the messy desk, completely dispels the charm of the larger whole. That is what clean code is about.
Still, architecture is just one metaphor for software development, and in particular for that part of software that delivers the initial product in the same sense that an architect delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly bringing product to market. We want the factory running at top speed to produce software. These are human factories: thinking, feeling coders who are working from a product backlog or user story to create product. The manufacturing metaphor looms ever strong in such thinking. The production aspects of Japanese auto manufacturing, of an assembly-line world, inspire much of Scrum.
Yet even in the auto industry, the bulk of the work lies not in manufacturing but in maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called “maintenance”: the act of repair. Rather than embracing the typical Western focus on producing good software, we should be thinking more like home repairmen in the building industry, or auto mechanics in the automotive field. What does Japanese management have to say about that?
In about 1951, a quality approach called Total Productive Maintenance (TPM) came on the Japanese scene. Its focus is on maintenance rather than on production. One of the major pillars of TPM is the set of so-called 5S principles. 5S is a set of disciplines—and here I use the term “discipline” instructively. These 5S principles are in fact at the foundations of Lean—another buzzword on the Western scene, and an increasingly prominent buzzword in software circles. These principles are not an option. As Uncle Bob relates in his front matter, good software practice requires such discipline: focus, presence of mind, and thinking. It is not always just about doing, about pushing the factory equipment to produce at the optimal velocity. The 5S philosophy comprises these concepts:
• Seiri, or organization (think “sort” in English). Knowing where things are—using approaches such as suitable naming—is crucial. You think naming identifiers isn’t important? Read on in the following chapters.
• Seiton, or tidiness (think “systematize” in English). There is an old American saying: A place for everything, and everything in its place. A piece of code should be where you expect to find it—and, if not, you should re-factor to get it there.
• Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging wires, grease, scraps, and waste. What do the authors here say about littering your code with comments and commented-out code lines that capture history or wishes for the future? Get rid of them.
• Seiketsu, or standardization: The group agrees about how to keep the workplace clean. Do you think this book says anything about having a consistent coding style and set of practices within the group? Where do those standards come from? Read on.
• Shutsuke, or discipline (self-discipline). This means having the discipline to follow the practices and to frequently reflect on one’s work and be willing to change.
If you take up the challenge—yes, the challenge—of reading and applying this book, you’ll come to understand and appreciate the last point. Here, we are finally driving to the roots of responsible professionalism in a profession that should be concerned with the life cycle of a product. As we maintain automobiles and other machines under TPM, breakdown maintenance—waiting for bugs to surface—is the exception. Instead, we go up a level: inspect the machines every day and fix wearing parts before they break, or do the equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code, refactor mercilessly. You can improve yet one level further, as the TPM movement innovated over 50 years ago: build machines that are more maintainable in the first place. Making your code readable is as important as making it executable. The ultimate practice, introduced in TPM circles around 1960, is to focus on introducing entire new machines or replacing old ones. As Fred Brooks admonishes us, we should probably re-do major software chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps we should update Brooks’ time constant to an order of weeks, days or hours instead of years. That’s where detail lies.
There is great power in detail, yet there is something humble and profound about this approach to life, as we might stereotypically expect from any approach that claims Japanese roots. But this is not only an Eastern outlook on life; English and American folk wisdom are full of such admonishments. The Seiton quote from above flowed from the pen of an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.” How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful in little is faithful in much. How about being eager to re-factor at the responsible time, strengthening one’s position for subsequent “big” decisions, rather than putting it off? A stitch in time saves nine. The early bird catches the worm. Don’t put off until tomorrow what you can do today. (Such was the original sense of the phrase “the last responsible moment” in Lean until it fell into the hands of software consultants.) How about calibrating the place of small, individual efforts in a grand whole? Mighty oaks from little acorns grow. Or how about integrating simple preventive work into everyday life? An ounce of prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code honors the deep roots of wisdom beneath our broader culture, or our culture as it once was, or should be, and can be with attentiveness to detail.
Even in the grand architectural literature we find saws that hark back to these supposed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive to every variable name. You should name a variable using the same care with which you name a first-born child.
As every homeowner knows, such care and ongoing refinement never come to an end. The architect Christopher Alexander—father of patterns and pattern languages—views every act of design itself as a small, local act of repair. And he views the craftsmanship of fine structure to be the sole purview of the architect; the larger forms can be left to patterns and their application by the inhabitants. Design is ever ongoing not only as we add a new room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrading the kitchen sink. Most arts echo analogous sentiments. In our search for others who ascribe God’s home as being in the details, we find ourselves in the good company of the 19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a poem is never done and bears continual rework, and to stop working on it is abandonment. Such preoccupation with detail is common to all endeavors of excellence. So maybe there is little new here, but in reading this book you will be challenged to take up good disciplines that you long ago surrendered to apathy or a desire for spontaneity and just “responding to change.”
Unfortunately, we usually don’t view such concerns as key cornerstones of the art of programming. We abandon our code early, not because it is done, but because our value system focuses more on outward appearance than on the substance of what we deliver. This inattentiveness costs us in the end: A bad penny always shows up. Research, neither in industry nor in academia, humbles itself to the lowly station of keeping code clean. Back in my days working in the Bell Labs Software Production Research organization (Production, indeed!) we had some back-of-the-envelope findings that suggested that consistent indentation style was one of the most statistically significant indicators of low bug density. We want it to be that architecture or programming language or some other high notion should be the cause of quality; as people whose supposed professionalism owes to the mastery of tools and lofty design methods, we feel insulted by the value that those factory-floor machines, the coders, add through the simple consistent application of an indentation style. To quote my own book of 17 years ago, such style distinguishes excellence from mere competence. The Japanese worldview understands the crucial value of the everyday worker and, more so, of the systems of development that owe to the simple, everyday actions of those workers. Quality is the result of a million selfless acts of care—not just of any great method that descends from the heavens. That these acts are simple doesn’t mean that they are simplistic, and it hardly means that they are easy. They are nonetheless the fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not yet to be fully human.
Of course, I am still an advocate of thinking at broader scope, and particularly of the value of architectural approaches rooted in deep domain knowledge and software usability. The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler message whose profoundness should not be underappreciated. It fits with the current saw of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni Asproni. “The code is the design” and “Simple code” are their mantras. While we must take care to remember that the interface is the program, and that its structures have much to say about our program structure, it is crucial to continuously adopt the humble stance that the design lives in the code. And while rework in the manufacturing metaphor leads to cost, rework in design leads to value. We should view our code as the beautiful articulation of noble efforts of design—design as a process, not a static endpoint. It’s in the code that the architectural metrics of coupling and cohesion play out. If you listen to Larry Constantine describe coupling and cohesion, he speaks in terms of code—not lofty abstract concepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.
Going back to my little box of Ga-Jol, I think it’s important to note that the Danish wisdom advises us not just to pay attention to small things, but also to be honest in small things. This means being honest to the code, honest to our colleagues about the state of our code and, most of all, being honest with ourselves about our code. Did we Do our Best to “leave the campground cleaner than we found it”? Did we re-factor our code before checking in? These are not peripheral concerns but concerns that lie squarely in the center of Agile values. It is a recommended practice in Scrum that re-factoring be part of the concept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty and doing the best we can. To err is human; to forgive, divine. In Scrum, we make everything visible. We air our dirty laundry. We are honest about the state of our code because code is never perfect. We become more fully human, more worthy of the divine, and closer to that greatness in the details.
In our profession, we desperately need all the help we can get. If a clean shop floor reduces accidents, and well-organized shop tools increase productivity, then I’m all for them. As for this book, it is the best pragmatic application of Lean principles to software I have ever seen in print. I expected no less from this practical little group of thinking individuals that has been striving together for years not only to become better, but also to gift their knowledge to the industry in works such as you now find in your hands. It leaves the world a little better than I found it before Uncle Bob sent me the manuscript.
Having completed this exercise in lofty insights, I am off to clean my desk.
James O. Coplien
Mørdrup, Denmark

Introduction

Which door represents your code? Which door represents your team or your company? Why are we in that room? Is this just a normal code review or have we found a stream of horrible problems shortly after going live? Are we debugging in a panic, poring over code that we thought worked? Are customers leaving in droves and managers breathing down our necks? How can we make sure we wind up behind the right door when the going gets tough? The answer is: craftsmanship.
There are two parts to learning craftsmanship: knowledge and work. You must gain the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and you must also grind that knowledge into your fingers, eyes, and gut by working hard and practicing.
I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is relatively straightforward. Gravity, friction, angular momentum, center of mass, and so forth, can be demonstrated with less than a page full of equations. Given those formulae I could prove to you that bicycle riding is practical and give you all the knowledge you needed to make it work. And you’d still fall down the first time you climbed on that bike.
Coding is no different. We could write down all the “feel good” principles of clean code and then trust you to do the work (in other words, let you fall down when you get on the bike), but then what kind of teachers would that make us, and what kind of student would that make you?
No. That’s not the way this book is going to work.
Learning to write clean code is hard work. It requires more than just the knowledge of principles and patterns. You must sweat over it. You must practice it yourself, and watch yourself fail. You must watch others practice it and fail. You must see them stumble and retrace their steps. You must see them agonize over decisions and see the price they pay for making those decisions the wrong way.
Be prepared to work hard while reading this book. This is not a “feel good” book that you can read on an airplane and finish before you land. This book will make you work, and work hard. What kind of work will you be doing? You’ll be reading code—lots of code. And you will be challenged to think about what’s right about that code and what’s wrong with it. You’ll be asked to follow along as we take modules apart and put them back together again. This will take time and effort; but we think it will be worth it.
We have divided this book into three parts. The first several chapters describe the principles, patterns, and practices of writing clean code. There is quite a bit of code in these chapters, and they will be challenging to read. They’ll prepare you for the second section to come. If you put the book down after reading the first section, good luck to you!
The second part of the book is the harder work. It consists of several case studies of ever-increasing complexity. Each case study is an exercise in cleaning up some code—of transforming code that has some problems into code that has fewer problems. The detail in this section is intense. You will have to flip back and forth between the narrative and the code listings. You will have to analyze and understand the code we are working with and walk through our reasoning for making each change we make. Set aside some time because this should take you days.
The third part of this book is the payoff. It is a single chapter containing a list of heuristics and smells gathered while creating the case studies. As we walked through and cleaned up the code in the case studies, we documented every reason for our actions as a heuristic or smell. We tried to understand our own reactions to the code we were reading and changing, and worked hard to capture why we felt what we felt and did what we did. The result is a knowledge base that desribes the way we think when we write, read, and clean code.
This knowledge base is of limited value if you don’t do the work of carefully reading through the case studies in the second part of this book. In those case studies we have carefully annotated each change we made with forward references to the heuristics. These forward references appear in square brackets like this: [H22]. This lets you see the context in which those heuristics were applied and written! It is not the heuristics themselves that are so valuable, it is the relationship between those heuristics and the discrete decisions we made while cleaning up the code in the case studies.
To further help you with those relationships, we have placed a cross-reference at the end of the book that shows the page number for every forward reference. You can use it to look up each place where a certain heuristic was applied.
If you read the first and third sections and skip over the case studies, then you will have read yet another “feel good” book about writing good software. But if you take the time to work through the case studies, following every tiny step, every minute decision—if you put yourself in our place, and force yourself to think along the same paths that we thought, then you will gain a much richer understanding of those principles, patterns, practices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been ground into your gut, fingers, and heart. They’ll have become part of you in the same way that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible for the stunning and creative pictures at the start of each chapter and also for the portraits of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave Thomas, Michael Feathers, and myself.
Angela is responsible for the clever pictures that adorn the innards of each chapter. She has done quite a few pictures for me over the years, including many of the inside pictures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my firstborn in whom I am well pleased.
A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were relentless. They pushed me hard to make necessary improvements.
Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial countenance. Thanks also to the editorial staff at Pearson, including Raina Chrobak for keeping me honest and punctual.
Thanks to Micah Martin, and all the guys at 8th Light (www.8thlight.com) for their reviews and encouragement.
Thanks to all the Object Mentors, past, present, and future, including: Bob Koss, Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button, Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen Craig, Janice Brown, Susan Rosso, et al.
Thanks to Jim Newkirk, my friend and business partner, who taught me more than I think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to rant on about how long a function should be.
And, finally, thank you for reading these thank yous.

On the Cover
The image on the cover is M104: The Sombrero Galaxy. M104 is located in Virgo and is just under 30 million light-years from us. At it’s core is a supermassive black hole weighing in at about a billion solar masses.
Does the image remind you of the explosion of the Klingon power moon Praxis? I vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying away from that explosion. Since that scene, the equatorial ring has been a common artifact in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions of the first Star Wars movie.
What caused this ring to form around M104? Why does it have such a huge central bulge and such a bright and tiny nucleus? It looks to me as though the central black hole lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any civilizations that might have been in the path of that cosmic disruption.
Supermassive black holes swallow whole stars for lunch, converting a sizeable fraction of their mass to energy. E = MC2 is leverage enough, but when M is a stellar mass: Look out! How many stars fell headlong into that maw before the monster was satiated? Could the size of the central void be a hint?
The image of M104 on the cover is a combination of the famous visible light photograph from Hubble (right), and the recent infrared image from the Spitzer orbiting observatory (below, right). It’s the infrared image that clearly shows us the ring nature of the galaxy. In visible light we only see the front edge of the ring in silhouette. The central bulge obscures the rest of the ring.
But in the infrared, the hot particles in the ring shine through the central bulge. The two images combined give us a view we’ve not seen before and imply that long ago it was a raging inferno of activity.

Cover image: © Spitzer Space Telescope

1 Clean Code

You are reading this book for two reasons. First, you are a programmer. Second, you want to be a better programmer. Good. We need better programmers.
This is a book about good programming. It is filled with code. We are going to look at code from every different direction. We’ll look down at it from the top, up at it from the bottom, and through it from the inside out. By the time we are done, we’re going to know a lot about code. What’s more, we’ll be able to tell the difference between good code and bad code. We’ll know how to write good code. And we’ll know how to transform bad code into good code.

There Will Be Code
One might argue that a book about code is somehow behind the times—that code is no longer the issue; that we should be concerned about models and requirements instead. Indeed some have suggested that we are close to the end of code. That soon all code will be generated instead of written. That programmers simply won’t be needed because business people will generate programs from specifications.
Nonsense! We will never be rid of code, because code represents the details of the requirements. At some level those details cannot be ignored or abstracted; they have to be specified. And specifying requirements in such detail that a machine can execute them is programming. Such a specification is code.
I expect that the level of abstraction of our languages will continue to increase. I also expect that the number of domain-specific languages will continue to grow. This will be a good thing. But it will not eliminate code. Indeed, all the specifications written in these higher level and domain-specific language will be code! It will still need to be rigorous, accurate, and so formal and detailed that a machine can understand and execute it.
The folks who think that code will one day disappear are like mathematicians who hope one day to discover a mathematics that does not have to be formal. They are hoping that one day we will discover a way to create machines that can do what we want rather than what we say. These machines will have to be able to understand us so well that they can translate vaguely specified needs into perfectly executing programs that precisely meet those needs.
This will never happen. Not even humans, with all their intuition and creativity, have been able to create successful systems from the vague feelings of their customers. Indeed, if the discipline of requirements specification has taught us anything, it is that well-specified requirements are as formal as code and can act as executable tests of that code!
Remember that code is really the language in which we ultimately express the requirements. We may create languages that are closer to the requirements. We may create tools that help us parse and assemble those requirements into formal structures. But we will never eliminate necessary precision—so there will always be code.

Bad Code
I was recently reading the preface to Kent Beck’s book Implementation Patterns.1 He says, “… this book is based on a rather fragile premise: that good code matters….” A fragile premise? I disagree! I think that premise is one of the most robust, supported, and overloaded of all the premises in our craft (and I think Kent knows it). We know good code matters because we’ve had to deal for so long with its lack.
I know of one company that, in the late 80s, wrote a killer app. It was very popular, and lots of professionals bought and used it. But then the release cycles began to stretch. Bugs were not repaired from one release to the next. Load times grew and crashes increased. I remember the day I shut the product down in frustration and never used it again. The company went out of business a short time after that.

Two decades later I met one of the early employees of that company and asked him what had happened. The answer confirmed my fears. They had rushed the product to market and had made a huge mess in the code. As they added more and more features, the code got worse and worse until they simply could not manage it any longer. It was the bad code that brought the company down.
Have you ever been significantly impeded by bad code? If you are a programmer of any experience then you’ve felt this impediment many times. Indeed, we have a name for it. We call it wading. We wade through bad code. We slog through a morass of tangled brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some clue, of what is going on; but all we see is more and more senseless code.
Of course you have been impeded by bad code. So then—why did you write it?
Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you didn’t have time to do a good job; that your boss would be angry with you if you took the time to clean up your code. Perhaps you were just tired of working on this program and wanted it to be over. Or maybe you looked at the backlog of other stuff that you had promised to get done and realized that you needed to slam this module together so you could move on to the next. We’ve all done it.
We’ve all looked at the mess we’ve just made and then have chosen to leave it for another day. We’ve all felt the relief of seeing our messy program work and deciding that a working mess is better than nothing. We’ve all said we’d go back and clean it up later. Of course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess
If you have been a programmer for more than two or three years, you have probably been significantly slowed down by someone else’s messy code. If you have been a programmer for longer than two or three years, you have probably been slowed down by messy code. The degree of the slowdown can be significant. Over the span of a year or two, teams that were moving very fast at the beginning of a project can find themselves moving at a snail’s pace. Every change they make to the code breaks two or three other parts of the code. No change is trivial. Every addition or modification to the system requires that the tangles, twists, and knots be “understood” so that more tangles, twists, and knots can be added. Over time the mess becomes so big and so deep and so tall, they can not clean it up. There is no way at all.
As the mess builds, the productivity of the team continues to decrease, asymptotically approaching zero. As productivity decreases, management does the only thing they can; they add more staff to the project in hopes of increasing productivity. But that new staff is not versed in the design of the system. They don’t know the difference between a change that matches the design intent and a change that thwarts the design intent. Furthermore, they, and everyone else on the team, are under horrific pressure to increase productivity. So they all make more and more messes, driving the productivity ever further toward zero. (See Figure 1-1.)

Figure 1-1 Productivity vs. time

The Grand Redesign in the Sky
Eventually the team rebels. They inform management that they cannot continue to develop in this odious code base. They demand a redesign. Management does not want to expend the resources on a whole new redesign of the project, but they cannot deny that productivity is terrible. Eventually they bend to the demands of the developers and authorize the grand redesign in the sky.
A new tiger team is selected. Everyone wants to be on this team because it’s a green-field project. They get to start over and create something truly beautiful. But only the best and brightest are chosen for the tiger team. Everyone else must continue to maintain the current system.
Now the two teams are in a race. The tiger team must build a new system that does everything that the old system does. Not only that, they have to keep up with the changes that are continuously being made to the old system. Management will not replace the old system until the new system can do everything that the old system does.
This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s done, the original members of the tiger team are long gone, and the current members are demanding that the new system be redesigned because it’s such a mess.
If you have experienced even one small part of the story I just told, then you already know that spending time keeping your code clean is not just cost effective; it’s a matter of professional survival.

Attitude
Have you ever waded through a mess so grave that it took weeks to do what should have taken hours? Have you seen what should have been a one-line change, made instead in hundreds of different modules? These symptoms are all too common.
Why does this happen to code? Why does good code rot so quickly into bad code? We have lots of explanations for it. We complain that the requirements changed in ways that thwart the original design. We bemoan the schedules that were too tight to do things right. We blather about stupid managers and intolerant customers and useless marketing types and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves. We are unprofessional.
This may be a bitter pill to swallow. How could this mess be our fault? What about the requirements? What about the schedule? What about the stupid managers and the useless marketing types? Don’t they bear some of the blame?
No. The managers and marketers look to us for the information they need to make promises and commitments; and even when they don’t look to us, we should not be shy about telling them what we think. The users look to us to validate the way the requirements will fit into the system. The project managers look to us to help work out the schedule. We are deeply complicit in the planning of the project and share a great deal of the responsibility for any failures; especially if those failures have to do with bad code!
“But wait!” you say. “If I don’t do what my manager says, I’ll be fired.” Probably not. Most managers want the truth, even when they don’t act like it. Most managers want good code, even when they are obsessing about the schedule. They may defend the schedule and requirements with passion; but that’s their job. It’s your job to defend the code with equal passion.
To drive this point home, what if you were a doctor and had a patient who demanded that you stop all the silly hand-washing in preparation for surgery because it was taking too much time?2 Clearly the patient is the boss; and yet the doctor should absolutely refuse to comply. Why? Because the doctor knows more than the patient about the risks of disease and infection. It would be unprofessional (never mind criminal) for the doctor to comply with the patient.
So too it is unprofessional for programmers to bend to the will of managers who don’t understand the risks of making messes.

The Primal Conundrum
Programmers face a conundrum of basic values. All developers with more than a few years experience know that previous messes slow them down. And yet all developers feel the pressure to make messes in order to meet deadlines. In short, they don’t take the time to go fast!
True professionals know that the second part of the conundrum is wrong. You will not make the deadline by making the mess. Indeed, the mess will slow you down instantly, and will force you to miss the deadline. The only way to make the deadline—the only way to go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?
Let’s say you believe that messy code is a significant impediment. Let’s say that you accept that the only way to go fast is to keep your code clean. Then you must ask yourself: “How do I write clean code?” It’s no good trying to write clean code if you don’t know what it means for code to be clean!
The bad news is that writing clean code is a lot like painting a picture. Most of us know when a picture is painted well or badly. But being able to recognize good art from bad does not mean that we know how to paint. So too being able to recognize clean code from dirty code does not mean that we know how to write clean code!
Writing clean code requires the disciplined use of a myriad little techniques applied through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key. Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us see whether code is good or bad, but it also shows us the strategy for applying our discipline to transform bad code into clean code.
A programmer without “code-sense” can look at a messy module and recognize the mess but will have no idea what to do about it. A programmer with “code-sense” will look at a messy module and see options and variations. The “code-sense” will help that programmer choose the best variation and guide him or her to plot a sequence of behavior preserving transformations to get from here to there.
In short, a programmer who writes clean code is an artist who can take a blank screen through a series of transformations until it is an elegantly coded system.

What Is Clean Code?
There are probably as many definitions as there are programmers. So I asked some very well-known and deeply experienced programmers what they thought.

Bjarne Stroustrup, inventor of C++ and author of The C++ Programming Language
I like my code to be elegant and efficient. The logic should be straightforward to make it hard for bugs to hide, the dependencies minimal to ease maintenance, error handling complete according to an articulated strategy, and performance close to optimal so as not to tempt people to make the code messy with unprincipled optimizations. Clean code does one thing well.

Bjarne uses the word “elegant.” That’s quite a word! The dictionary in my MacBook® provides the following definitions: pleasingly graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to read. Reading it should make you smile the way a well-crafted music box or well-designed car would.
Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming from the inventor of C++; but I think there’s more to it than the sheer desire for speed. Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep truth here. Bad code tempts the mess to grow! When others change bad code, they tend to make it worse.
Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the metaphor of broken windows.3 A building with broken windows looks like nobody cares about it. So other people stop caring. They allow more windows to become broken. Eventually they actively break them. They despoil the facade with graffiti and allow garbage to collect. One broken window starts the process toward decay.
Bjarne also mentions that error handing should be complete. This goes to the discipline of paying attention to details. Abbreviated error handling is just one way that programmers gloss over details. Memory leaks are another, race conditions still another. Inconsistent naming yet another. The upshot is that clean code exhibits close attention to detail.
Bjarne closes with the assertion that clean code does one thing well. It is no accident that there are so many principles of software design that can be boiled down to this simple admonition. Writer after writer has tried to communicate this thought. Bad code tries to do too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each function, each class, each module exposes a single-minded attitude that remains entirely undistracted, and unpolluted, by the surrounding details.
Grady Booch, author of Object Oriented Analysis and Design with Applications

Clean code is simple and direct. Clean code reads like well-written prose. Clean code never obscures the designer’s intent but rather is full of crisp abstractions and straightforward lines of control.

Grady makes some of the same points as Bjarne, but he takes a readability perspective. I especially like his view that clean code should read like well-written prose. Think back on a really good book that you’ve read. Remember how the words disappeared to be replaced by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you heard the sounds, you experienced the pathos and the humor.
Reading clean code will never be quite like reading Lord of the Rings. Still, the literary metaphor is not a bad one. Like a good novel, clean code should clearly expose the tensions in the problem to be solved. It should build those tensions to a climax and then give the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation of an obvious solution.
I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron! After all the word “crisp” is nearly a synonym for “concrete.” My MacBook’s dictionary holds the following definition of “crisp”: briskly decisive and matter-of-fact, without hesitation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words carry a powerful message. Our code should be matter-of-fact as opposed to speculative. It should contain only what is necessary. Our readers should perceive us to have been decisive.
“Big” Dave Thomas, founder of OTI, godfather of the Eclipse strategy

Clean code can be read, and enhanced by a developer other than its original author. It has unit and acceptance tests. It has meaningful names. It provides one way rather than many ways for doing one thing. It has minimal dependencies, which are explicitly defined, and provides a clear and minimal API. Code should be literate since depending on the language, not all necessary information can be expressed clearly in code alone.

Big Dave shares Grady’s desire for readability, but with an important twist. Dave asserts that clean code makes it easy for other people to enhance it. This may seem obvious, but it cannot be overemphasized. There is, after all, a difference between code that is easy to read and code that is easy to change.
Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows. But the discipline of Test Driven Development has made a profound impact upon our industry and has become one of our most fundamental disciplines. Dave is right. Code, without tests, is not clean. No matter how elegant it is, no matter how readable and accessible, if it hath not tests, it be unclean.
Dave uses the word minimal twice. Apparently he values code that is small, rather than code that is large. Indeed, this has been a common refrain throughout software literature since its inception. Smaller is better.
Dave also says that code should be literate. This is a soft reference to Knuth’s literate programming.4 The upshot is that the code should be composed in such a form as to make it readable by humans.
Michael Feathers, author of Working Effectively with Legacy Code

I could list all of the qualities that I notice in clean code, but there is one overarching quality that leads to all of them. Clean code always looks like it was written by someone who cares. There is nothing obvious that you can do to make it better. All of those things were thought about by the code’s author, and if you try to imagine improvements, you’re led back to where you are, sitting in appreciation of the code someone left for you—code left by someone who cares deeply about the craft.

One word: care. That’s really the topic of this book. Perhaps an appropriate subtitle would be How to Care for Code.
Michael hit it on the head. Clean code is code that has been taken care of. Someone has taken the time to keep it simple and orderly. They have paid appropriate attention to details. They have cared.
Ron Jeffries, author of Extreme Programming Installed and Extreme Programming Adventures in C#
Ron began his career programming in Fortran at the Strategic Air Command and has written code in almost every language and on almost every machine. It pays to consider his words carefully.

In recent years I begin, and nearly end, with Beck’s rules of simple code. In priority order, simple code:

• Runs all the tests;
• Contains no duplication;
• Expresses all the design ideas that are in the system;
• Minimizes the number of entities such as classes, methods, functions, and the like.
Of these, I focus mostly on duplication. When the same thing is done over and over, it’s a sign that there is an idea in our mind that is not well represented in the code. I try to figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the names of things several times before I settle in. With modern coding tools such as Eclipse, renaming is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes beyond names, however. I also look at whether an object or method is doing more than one thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a method, I will always use the Extract Method refactoring on it, resulting in one method that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean code, and improving dirty code with just these two things in mind can make a huge difference. There is, however, one other thing that I’m aware of doing, which is a bit harder to explain.

After years of doing this work, it seems to me that all programs are made up of very similar elements. One example is “find things in a collection.” Whether we have a database of employee records, or a hash map of keys and values, or an array of items of some kind, we often find ourselves wanting a particular item from that collection. When I find that happening, I will often wrap the particular implementation in a more abstract method or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but since now all the references to that search are covered by my little abstraction, I can change the implementation any time I want. I can go forward quickly while preserving my ability to change later.

In addition, the collection abstraction often calls my attention to what’s “really” going on, and keeps me from running down the path of implementing arbitrary collection behavior when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions. That’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No duplication, one thing, expressiveness, tiny abstractions. Everything is there.
Ward Cunningham, inventor of Wiki, inventor of Fit, coinventor of eXtreme Programming. Motive force behind Design Patterns. Smalltalk and OO thought leader. The godfather of all those who care about code.

You know you are working on clean code when each routine you read turns out to be pretty much what you expected. You can call it beautiful code when the code also makes it look like the language was made for the problem.

Statements like this are characteristic of Ward. You read it, nod your head, and then go on to the next topic. It sounds so reasonable, so obvious, that it barely registers as something profound. You might think it was pretty much what you expected. But let’s take a closer look.
“… pretty much what you expected.” When was the last time you saw a module that was pretty much what you expected? Isn’t it more likely that the modules you look at will be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing about trying to grab and hold the threads of reasoning that spew forth from the whole system and weave their way through the module you are reading? When was the last time you read through some code and nodded your head the way you might have nodded your head at Ward’s statement?
Ward expects that when you read clean code you won’t be surprised at all. Indeed, you won’t even expend much effort. You will read it, and it will be pretty much what you expected. It will be obvious, simple, and compelling. Each module will set the stage for the next. Each tells you how the next will be written. Programs that are that clean are so profoundly well written that you don’t even notice it. The designer makes it look ridiculously simple like all exceptional designs.
And what about Ward’s notion of beauty? We’ve all railed against the fact that our languages weren’t designed for our problems. But Ward’s statement puts the onus back on us. He says that beautiful code makes the language look like it was made for the problem! So it’s our responsibility to make the language look simple! Language bigots everywhere, beware! It is not the language that makes programs appear simple. It is the programmer that make the language appear simple!

Schools of Thought
What about me (Uncle Bob)? What do I think clean code is? This book will tell you, in hideous detail, what I and my compatriots think about clean code. We will tell you what we think makes a clean variable name, a clean function, a clean class, etc. We will present these opinions as absolutes, and we will not apologize for our stridence. To us, at this point in our careers, they are absolutes. They are our school of thought about clean code.

Martial artists do not all agree about the best martial art, or the best technique within a martial art. Often master martial artists will form their own schools of thought and gather students to learn from them. So we see Gracie Jiu Jistu, founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by Bruce Lee in the United States.
Students of these approaches immerse themselves in the teachings of the founder. They dedicate themselves to learn what that particular master teaches, often to the exclusion of any other master’s teaching. Later, as the students grow in their art, they may become the student of a different master so they can broaden their knowledge and practice. Some eventually go on to refine their skills, discovering new techniques and founding their own schools.
None of these different schools is absolutely right. Yet within a particular school we act as though the teachings and techniques are right. After all, there is a right way to practice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not invalidate the teachings of a different school.
Consider this book a description of the Object Mentor School of Clean Code. The techniques and teachings within are the way that we practice our art. We are willing to claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed, and you will learn to write code that is clean and professional. But don’t make the mistake of thinking that we are somehow “right” in any absolute sense. There are other schools and other masters that have just as much claim to professionalism as we. It would behoove you to learn from them as well.
Indeed, many of the recommendations in this book are controversial. You will probably not agree with all of them. You might violently disagree with some of them. That’s fine. We can’t claim final authority. On the other hand, the recommendations in this book are things that we have thought long and hard about. We have learned them through decades of experience and repeated trial and error. So whether you agree or disagree, it would be a shame if you did not see, and respect, our point of view.

We Are Authors
The @author field of a Javadoc tells us who we are. We are authors. And one thing about authors is that they have readers. Indeed, authors are responsible for communicating well with their readers. The next time you write a line of code, remember you are an author, writing for readers who will judge your effort.
You might ask: How much is code really read? Doesn’t most of the effort go into writing it?
Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs that kept track of every keystroke. You could work for an hour and then play back your whole edit session like a high-speed movie. When I did this, the results were fascinating.
The vast majority of the playback was scrolling and navigating to other modules!
Bob enters the module.
He scrolls down to the function needing change.
He pauses, considering his options.
Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.
Ooops, he’s erasing what he typed!
He types it again.
He erases it again!
He types half of something else but then erases that!
He scrolls down to another function that calls the function he’s changing to see how it is called.
He scrolls back up and types the same code he just erased.
He pauses.
He erases that code again!
He pops up another window and looks at a subclass. Is that function overridden?

…

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1. We are constantly reading old code as part of the effort to write new code.
Because this ratio is so high, we want the reading of code to be easy, even if it makes the writing harder. Of course there’s no way to write code without reading it, so making it easy to read actually makes it easier to write.
There is no escape from this logic. You cannot write code if you cannot read the surrounding code. The code you are trying to write today will be hard or easy to write depending on how hard or easy the surrounding code is to read. So if you want to go fast, if you want to get done quickly, if you want your code to be easy to write, make it easy to read.

The Boy Scout Rule
It’s not enough to write the code well. The code has to be kept clean over time. We’ve all seen code rot and degrade as time passes. So we must take an active role in preventing this degradation.
The Boy Scouts of America have a simple rule that we can apply to our profession.
Leave the campground cleaner than you found it.5
If we all checked-in our code a little cleaner than when we checked it out, the code simply could not rot. The cleanup doesn’t have to be something big. Change one variable name for the better, break up one function that’s a little too large, eliminate one small bit of duplication, clean up one composite if statement.
Can you imagine working on a project where the code simply got better as time passed? Do you believe that any other option is professional? Indeed, isn’t continuous improvement an intrinsic part of professionalism?

Prequel and Principles
In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software Development: Principles, Patterns, and Practices (PPP). The PPP book concerns itself with the principles of object-oriented design, and many of the practices used by professional developers. If you have not read PPP, then you may find that it continues the story told by this book. If you have already read it, then you’ll find many of the sentiments of that book echoed in this one at the level of code.
In this book you will find sporadic references to various principles of design. These include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and the Dependency Inversion Principle (DIP) among others. These principles are described in depth in PPP.

Conclusion
Books on art don’t promise to make you an artist. All they can do is give you some of the tools, techniques, and thought processes that other artists have used. So too this book cannot promise to make you a good programmer. It cannot promise to give you “code-sense.” All it can do is show you the thought processes of good programmers and the tricks, techniques, and tools that they use.
Just like a book on art, this book will be full of details. There will be lots of code. You’ll see good code and you’ll see bad code. You’ll see bad code transformed into good code. You’ll see lists of heuristics, disciplines, and techniques. You’ll see example after example. After that, it’s up to you.
Remember the old joke about the concert violinist who got lost on his way to a performance? He stopped an old man on the corner and asked him how to get to Carnegie Hall. The old man looked at the violinist and the violin tucked under his arm, and said: “Practice, son. Practice!”

Bibliography

[Beck07]:
Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]:
Literate Programming, Donald E. Knuth, Center for the Study of Language and Information, Leland Stanford Junior University, 1992.

2 Meaningful Names
by Tim Ottinger

Introduction
Names are everywhere in software. We name our variables, our functions, our arguments, classes, and packages. We name our source files and the directories that contain them. We name our jar files and war files and ear files. We name and name and name. Because we do so much of it, we’d better do it well. What follows are some simple rules for creating good names.

Use Intention-Revealing Names
It is easy to say that names should reveal intent. What we want to impress upon you is that we are serious about this. Choosing good names takes time but saves more than it takes. So take care with your names and change them when you find better ones. Everyone who reads your code (including you) will be happier if you do.
The name of a variable, function, or class, should answer all the big questions. It should tell you why it exists, what it does, and how it is used. If a name requires a comment, then the name does not reveal its intent.
 int d; // elapsed time in days
The name d reveals nothing. It does not evoke a sense of elapsed time, nor of days. We should choose a name that specifies what is being measured and the unit of that measurement:
 int elapsedTimeInDays;
 int daysSinceCreation;
 int daysSinceModification;
 int fileAgeInDays;
Choosing names that reveal intent can make it much easier to understand and change code. What is the purpose of this code?
 public List<int[]> getThem() {
 List<int[]> list1 = new ArrayList<int[]>();
 for (int[] x : theList)
 if (x[0] == 4)
 list1.add(x);
 return list1;
 }
Why is it hard to tell what this code is doing? There are no complex expressions. Spacing and indentation are reasonable. There are only three variables and two constants mentioned. There aren’t even any fancy classes or polymorphic methods, just a list of arrays (or so it seems).
The problem isn’t the simplicity of the code but the implicity of the code (to coin a phrase): the degree to which the context is not explicit in the code itself. The code implicitly requires that we know the answers to questions such as:
1. What kinds of things are in theList?

2. What is the significance of the zeroth subscript of an item in theList?

3. What is the significance of the value 4?

4. How would I use the list being returned?

The answers to these questions are not present in the code sample, but they could have been. Say that we’re working in a mine sweeper game. We find that the board is a list of cells called theList. Let’s rename that to gameBoard.
Each cell on the board is represented by a simple array. We further find that the zeroth subscript is the location of a status value and that a status value of 4 means “flagged.” Just by giving these concepts names we can improve the code considerably:
 public List<int[]> getFlaggedCells() {
 List<int[]> flaggedCells = new ArrayList<int[]>();
 for (int[] cell : gameBoard)
 if (cell[STATUS_VALUE] == FLAGGED)
 flaggedCells.add(cell);
 return flaggedCells;
 }
Notice that the simplicity of the code has not changed. It still has exactly the same number of operators and constants, with exactly the same number of nesting levels. But the code has become much more explicit.
We can go further and write a simple class for cells instead of using an array of ints. It can include an intention-revealing function (call it isFlagged) to hide the magic numbers. It results in a new version of the function:
 public List<Cell> getFlaggedCells() {
 List<Cell> flaggedCells = new ArrayList<Cell>();
 for (Cell cell : gameBoard)
 if (cell.isFlagged())
 flaggedCells.add(cell);
 return flaggedCells;
 }
With these simple name changes, it’s not difficult to understand what’s going on. This is the power of choosing good names.

Avoid Disinformation
Programmers must avoid leaving false clues that obscure the meaning of code. We should avoid words whose entrenched meanings vary from our intended meaning. For example, hp, aix, and sco would be poor variable names because they are the names of Unix platforms or variants. Even if you are coding a hypotenuse and hp looks like a good abbreviation, it could be disinformative.
Do not refer to a grouping of accounts as an accountList unless it’s actually a List. The word list means something specific to programmers. If the container holding the accounts is not actually a List, it may lead to false conclusions.1 So accountGroup or bunchOfAccounts or just plain accounts would be better.
Beware of using names which vary in small ways. How long does it take to spot the subtle difference between a XYZControllerForEfficientHandlingOfStrings in one module and, somewhere a little more distant, XYZControllerForEfficientStorageOfStrings? The words have frightfully similar shapes.
Spelling similar concepts similarly is information. Using inconsistent spellings is disinformation. With modern Java environments we enjoy automatic code completion. We write a few characters of a name and press some hotkey combination (if that) and are rewarded with a list of possible completions for that name. It is very helpful if names for very similar things sort together alphabetically and if the differences are very obvious, because the developer is likely to pick an object by name without seeing your copious comments or even the list of methods supplied by that class.
A truly awful example of disinformative names would be the use of lower-case L or uppercase O as variable names, especially in combination. The problem, of course, is that they look almost entirely like the constants one and zero, respectively.
 int a = l;
 if (O == l)
 a = O1;
 else
 l = 01;
The reader may think this a contrivance, but we have examined code where such things were abundant. In one case the author of the code suggested using a different font so that the differences were more obvious, a solution that would have to be passed down to all future developers as oral tradition or in a written document. The problem is conquered with finality and without creating new work products by a simple renaming.

Make Meaningful Distinctions

Programmers create problems for themselves when they write code solely to satisfy a compiler or interpreter. For example, because you can’t use the same name to refer to two different things in the same scope, you might be tempted to change one name in an arbitrary way. Sometimes this is done by misspelling one, leading to the surprising situation where correcting spelling errors leads to an inability to compile.2
It is not sufficient to add number series or noise words, even though the compiler is satisfied. If names must be different, then they should also mean something different.
Number-series naming (a1, a2, .. aN) is the opposite of intentional naming. Such names are not disinformative—they are noninformative; they provide no clue to the author’s intention. Consider:
 public static void copyChars(char a1[], char a2[]) {
 for (int i = 0; i < a1.length; i++) {
 a2[i] = a1[i];
 }
 }
This function reads much better when source and destination are used for the argument names.
Noise words are another meaningless distinction. Imagine that you have a Product class. If you have another called ProductInfo or ProductData, you have made the names different without making them mean anything different. Info and Data are indistinct noise words like a, an, and the.
Note that there is nothing wrong with using prefix conventions like a and the so long as they make a meaningful distinction. For example you might use a for all local variables and the for all function arguments.3 The problem comes in when you decide to call a variable theZork because you already have another variable named zork.
Noise words are redundant. The word variable should never appear in a variable name. The word table should never appear in a table name. How is NameString better than Name? Would a Name ever be a floating point number? If so, it breaks an earlier rule about disinformation. Imagine finding one class named Customer and another named CustomerObject. What should you understand as the distinction? Which one will represent the best path to a customer’s payment history?
There is an application we know of where this is illustrated. we’ve changed the names to protect the guilty, but here’s the exact form of the error:
 getActiveAccount();
 getActiveAccounts();
 getActiveAccountInfo();
How are the programmers in this project supposed to know which of these functions to call?
In the absence of specific conventions, the variable moneyAmount is indistinguishable from money, customerInfo is indistinguishable from customer, accountData is indistinguishable from account, and theMessage is indistinguishable from message. Distinguish names in such a way that the reader knows what the differences offer.

Use Pronounceable Names
Humans are good at words. A significant part of our brains is dedicated to the concept of words. And words are, by definition, pronounceable. It would be a shame not to take advantage of that huge portion of our brains that has evolved to deal with spoken language. So make your names pronounceable.
If you can’t pronounce it, you can’t discuss it without sounding like an idiot. “Well, over here on the bee cee arr three cee enn tee we have a pee ess zee kyew int, see?” This matters because programming is a social activity.
A company I know has genymdhms (generation date, year, month, day, hour, minute, and second) so they walked around saying “gen why emm dee aich emm ess”. I have an annoying habit of pronouncing everything as written, so I started saying “gen-yah-muddahims.” It later was being called this by a host of designers and analysts, and we still sounded silly. But we were in on the joke, so it was fun. Fun or not, we were tolerating poor naming. New developers had to have the variables explained to them, and then they spoke about it in silly made-up words instead of using proper English terms. Compare
 class DtaRcrd102 {
 private Date genymdhms;
 private Date modymdhms;
 private final String pszqint = ”102”;
 /* … */
 };
to
 class Customer {
 private Date generationTimestamp;
 private Date modificationTimestamp;;
 private final String recordId = ”102”;
 /* … */
 };
Intelligent conversation is now possible: “Hey, Mikey, take a look at this record! The generation timestamp is set to tomorrow’s date! How can that be?”

Use Searchable Names
Single-letter names and numeric constants have a particular problem in that they are not easy to locate across a body of text.
One might easily grep for MAX_CLASSES_PER_STUDENT, but the number 7 could be more troublesome. Searches may turn up the digit as part of file names, other constant definitions, and in various expressions where the value is used with different intent. It is even worse when a constant is a long number and someone might have transposed digits, thereby creating a bug while simultaneously evading the programmer’s search.
Likewise, the name e is a poor choice for any variable for which a programmer might need to search. It is the most common letter in the English language and likely to show up in every passage of text in every program. In this regard, longer names trump shorter names, and any searchable name trumps a constant in code.
My personal preference is that single-letter names can ONLY be used as local variables inside short methods. The length of a name should correspond to the size of its scope
[N5]. If a variable or constant might be seen or used in multiple places in a body of code, it is imperative to give it a search-friendly name. Once again compare
 for (int j=0; j<34; j++) {
 s += (t[j]*4)/5;
 }
to
 int realDaysPerIdealDay = 4;
 const int WORK_DAYS_PER_WEEK = 5;
 int sum = 0;
 for (int j=0; j < NUMBER_OF_TASKS; j++) {
 int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
 int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK);
 sum += realTaskWeeks;
 }
Note that sum, above, is not a particularly useful name but at least is searchable. The intentionally named code makes for a longer function, but consider how much easier it will be to find WORK_DAYS_PER_WEEK than to find all the places where 5 was used and filter the list down to just the instances with the intended meaning.

Avoid Encodings
We have enough encodings to deal with without adding more to our burden. Encoding type or scope information into names simply adds an extra burden of deciphering. It hardly seems reasonable to require each new employee to learn yet another encoding “language” in addition to learning the (usually considerable) body of code that they’ll be working in. It is an unnecessary mental burden when trying to solve a problem. Encoded names are seldom pronounceable and are easy to mis-type.

Hungarian Notation
In days of old, when we worked in name-length-challenged languages, we violated this rule out of necessity, and with regret. Fortran forced encodings by making the first letter a code for the type. Early versions of BASIC allowed only a letter plus one digit. Hungarian Notation (HN) took this to a whole new level.
HN was considered to be pretty important back in the Windows C API, when everything was an integer handle or a long pointer or a void pointer, or one of several implementations of “string” (with different uses and attributes). The compiler did not check types in those days, so the programmers needed a crutch to help them remember the types.
In modern languages we have much richer type systems, and the compilers remember and enforce the types. What’s more, there is a trend toward smaller classes and shorter functions so that people can usually see the point of declaration of each variable they’re using.
Java programmers don’t need type encoding. Objects are strongly typed, and editing environments have advanced such that they detect a type error long before you can run a compile! So nowadays HN and other forms of type encoding are simply impediments. They make it harder to change the name or type of a variable, function, or class. They make it harder to read the code. And they create the possibility that the encoding system will mislead the reader.
 PhoneNumber phoneString;
 // name not changed when type changed!

Member Prefixes
You also don’t need to prefix member variables with m_ anymore. Your classes and functions should be small enough that you don’t need them. And you should be using an editing environment that highlights or colorizes members to make them distinct.
 public class Part {
 private String m_dsc; // The textual description
 void setName(String name) {
 m_dsc = name;
 }
 }

 public class Part {
 String description;
 void setDescription(String description) {
 this.description = description;
 }
 }
Besides, people quickly learn to ignore the prefix (or suffix) to see the meaningful part of the name. The more we read the code, the less we see the prefixes. Eventually the prefixes become unseen clutter and a marker of older code.

Interfaces and Implementations
These are sometimes a special case for encodings. For example, say you are building an ABSTRACT FACTORY for the creation of shapes. This factory will be an interface and will be implemented by a concrete class. What should you name them? IShapeFactory and ShapeFactory? I prefer to leave interfaces unadorned. The preceding I, so common in today’s legacy wads, is a distraction at best and too much information at worst. I don’t want my users knowing that I’m handing them an interface. I just want them to know that it’s a ShapeFactory. So if I must encode either the interface or the implementation, I choose the implementation. Calling it ShapeFactoryImp, or even the hideous CShapeFactory, is preferable to encoding the interface.

Avoid Mental Mapping
Readers shouldn’t have to mentally translate your names into other names they already know. This problem generally arises from a choice to use neither problem domain terms nor solution domain terms.
This is a problem with single-letter variable names. Certainly a loop counter may be named i or j or k (though never l!) if its scope is very small and no other names can conflict with it. This is because those single-letter names for loop counters are traditional. However, in most other contexts a single-letter name is a poor choice; it’s just a place holder that the reader must mentally map to the actual concept. There can be no worse reason for using the name c than because a and b were already taken.
In general programmers are pretty smart people. Smart people sometimes like to show off their smarts by demonstrating their mental juggling abilities. After all, if you can reliably remember that r is the lower-cased version of the url with the host and scheme removed, then you must clearly be very smart.
One difference between a smart programmer and a professional programmer is that the professional understands that clarity is king. Professionals use their powers for good and write code that others can understand.

Class Names
Classes and objects should have noun or noun phrase names like Customer, WikiPage, Account, and AddressParser. Avoid words like Manager, Processor, Data, or Info in the name of a class. A class name should not be a verb.

Method Names
Methods should have verb or verb phrase names like postPayment, deletePage, or save. Accessors, mutators, and predicates should be named for their value and prefixed with get, set, and is according to the javabean standard.4
 string name = employee.getName();
 customer.setName(”mike”);
 if (paycheck.isPosted())…
When constructors are overloaded, use static factory methods with names that describe the arguments. For example,
 Complex fulcrumPoint = Complex.FromRealNumber(23.0);
is generally better than
 Complex fulcrumPoint = new Complex(23.0);
Consider enforcing their use by making the corresponding constructors private.

Don’t Be Cute
If names are too clever, they will be memorable only to people who share the author’s sense of humor, and only as long as these people remember the joke. Will they know what the function named HolyHandGrenade is supposed to do? Sure, it’s cute, but maybe in this case DeleteItems might be a better name. Choose clarity over entertainment value.

Cuteness in code often appears in the form of colloquialisms or slang. For example, don’t use the name whack() to mean kill(). Don’t tell little culture-dependent jokes like eatMyShorts() to mean abort().
Say what you mean. Mean what you say.

Pick One Word per Concept
Pick one word for one abstract concept and stick with it. For instance, it’s confusing to have fetch, retrieve, and get as equivalent methods of different classes. How do you remember which method name goes with which class? Sadly, you often have to remember which company, group, or individual wrote the library or class in order to remember which term was used. Otherwise, you spend an awful lot of time browsing through headers and previous code samples.
Modern editing environments like Eclipse and IntelliJ-provide context-sensitive clues, such as the list of methods you can call on a given object. But note that the list doesn’t usually give you the comments you wrote around your function names and parameter lists. You are lucky if it gives the parameter names from function declarations. The function names have to stand alone, and they have to be consistent in order for you to pick the correct method without any additional exploration.
Likewise, it’s confusing to have a controller and a manager and a driver in the same code base. What is the essential difference between a DeviceManager and a Protocol-Controller? Why are both not controllers or both not managers? Are they both Drivers really? The name leads you to expect two objects that have very different type as well as having different classes.
A consistent lexicon is a great boon to the programmers who must use your code.

Don’t Pun
Avoid using the same word for two purposes. Using the same term for two different ideas is essentially a pun.
If you follow the “one word per concept” rule, you could end up with many classes that have, for example, an add method. As long as the parameter lists and return values of the various add methods are semantically equivalent, all is well.
However one might decide to use the word add for “consistency” when he or she is not in fact adding in the same sense. Let’s say we have many classes where add will create a new value by adding or concatenating two existing values. Now let’s say we are writing a new class that has a method that puts its single parameter into a collection. Should we call this method add? It might seem consistent because we have so many other add methods, but in this case, the semantics are different, so we should use a name like insert or append instead. To call the new method add would be a pun.
Our goal, as authors, is to make our code as easy as possible to understand. We want our code to be a quick skim, not an intense study. We want to use the popular paperback model whereby the author is responsible for making himself clear and not the academic model where it is the scholar’s job to dig the meaning out of the paper.

Use Solution Domain Names
Remember that the people who read your code will be programmers. So go ahead and use computer science (CS) terms, algorithm names, pattern names, math terms, and so forth. It is not wise to draw every name from the problem domain because we don’t want our coworkers to have to run back and forth to the customer asking what every name means when they already know the concept by a different name.
The name AccountVisitor means a great deal to a programmer who is familiar with the VISITOR pattern. What programmer would not know what a JobQueue was? There are lots of very technical things that programmers have to do. Choosing technical names for those things is usually the most appropriate course.

Use Problem Domain Names
When there is no “programmer-eese” for what you’re doing, use the name from the problem domain. At least the programmer who maintains your code can ask a domain expert what it means.
Separating solution and problem domain concepts is part of the job of a good programmer and designer. The code that has more to do with problem domain concepts should have names drawn from the problem domain.

Add Meaningful Context
There are a few names which are meaningful in and of themselves—most are not. Instead, you need to place names in context for your reader by enclosing them in well-named classes, functions, or namespaces. When all else fails, then prefixing the name may be necessary as a last resort.
Imagine that you have variables named firstName, lastName, street, houseNumber, city, state, and zipcode. Taken together it’s pretty clear that they form an address. But what if you just saw the state variable being used alone in a method? Would you automatically infer that it was part of an address?
You can add context by using prefixes: addrFirstName, addrLastName, addrState, and so on. At least readers will understand that these variables are part of a larger structure. Of course, a better solution is to create a class named Address. Then, even the compiler knows that the variables belong to a bigger concept.
Consider the method in Listing 2-1. Do the variables need a more meaningful context? The function name provides only part of the context; the algorithm provides the rest. Once you read through the function, you see that the three variables, number, verb, and pluralModifier, are part of the “guess statistics” message. Unfortunately, the context must be inferred. When you first look at the method, the meanings of the variables are opaque.

Listing 2-1 Variables with unclear context.
 private void printGuessStatistics(char candidate, int count) { String number;
 String verb;
 String pluralModifier;
 if (count == 0) {
 number = ”no”;
 verb = ”are”;
 pluralModifier = ”s”;
 } else if (count == 1) {
 number = ”1”;
 verb = ”is”;
 pluralModifier = ””;
 } else {
 number = Integer.toString(count);
 verb = ”are”;
 pluralModifier = ”s”;
 }
 String guessMessage = String.format(
 ”There %s %s %s%s”, verb, number, candidate, pluralModifier
);
 print(guessMessage);
 }
The function is a bit too long and the variables are used throughout. To split the function into smaller pieces we need to create a GuessStatisticsMessage class and make the three variables fields of this class. This provides a clear context for the three variables. They are definitively part of the GuessStatisticsMessage. The improvement of context also allows the algorithm to be made much cleaner by breaking it into many smaller functions. (See Listing 2-2.)

Listing 2-2 Variables have a context.
 public class GuessStatisticsMessage {
 private String number;
 private String verb;
 private String pluralModifier;

 public String make(char candidate, int count) {
 createPluralDependentMessageParts(count);
 return String.format(
 "There %s %s %s%s",
 verb, number, candidate, pluralModifier);
 }

 private void createPluralDependentMessageParts(int count) {
 if (count == 0) {
 thereAreNoLetters();
 } else if (count == 1) {
 thereIsOneLetter();
 } else {
 thereAreManyLetters(count);
 }
 }

 private void thereAreManyLetters(int count) {
 number = Integer.toString(count);
 verb = "are";
 pluralModifier = "s";
 }

 private void thereIsOneLetter() {
 number = "1";
 verb = "is";
 pluralModifier = "";
 }

 private void thereAreNoLetters() {
 number = "no";
 verb = "are";
 pluralModifier = "s";
 }
 }

Don’t Add Gratuitous Context
In an imaginary application called “Gas Station Deluxe,” it is a bad idea to prefix every class with GSD. Frankly, you are working against your tools. You type G and press the completion key and are rewarded with a mile-long list of every class in the system. Is that wise? Why make it hard for the IDE to help you?
Likewise, say you invented a MailingAddress class in GSD’s accounting module, and you named it GSDAccountAddress. Later, you need a mailing address for your customer contact application. Do you use GSDAccountAddress? Does it sound like the right name? Ten of 17 characters are redundant or irrelevant.
Shorter names are generally better than longer ones, so long as they are clear. Add no more context to a name than is necessary.
The names accountAddress and customerAddress are fine names for instances of the class Address but could be poor names for classes. Address is a fine name for a class. If I need to differentiate between MAC addresses, port addresses, and Web addresses, I might consider PostalAddress, MAC, and URI. The resulting names are more precise, which is the point of all naming.

Final Words
The hardest thing about choosing good names is that it requires good descriptive skills and a shared cultural background. This is a teaching issue rather than a technical, business, or management issue. As a result many people in this field don’t learn to do it very well.
People are also afraid of renaming things for fear that some other developers will object. We do not share that fear and find that we are actually grateful when names change (for the better). Most of the time we don’t really memorize the names of classes and methods. We use the modern tools to deal with details like that so we can focus on whether the code reads like paragraphs and sentences, or at least like tables and data structure (a sentence isn’t always the best way to display data). You will probably end up surprising someone when you rename, just like you might with any other code improvement. Don’t let it stop you in your tracks.
Follow some of these rules and see whether you don’t improve the readability of your code. If you are maintaining someone else’s code, use refactoring tools to help resolve these problems. It will pay off in the short term and continue to pay in the long run.

3 Functions

In the early days of programming we composed our systems of routines and subroutines. Then, in the era of Fortran and PL/1 we composed our systems of programs, subprograms, and functions. Nowadays only the function survives from those early days. Functions are the first line of organization in any program. Writing them well is the topic of this chapter.
Consider the code in Listing 3-1. It’s hard to find a long function in FitNesse,1 but after a bit of searching I came across this one. Not only is it long, but it’s got duplicated code, lots of odd strings, and many strange and inobvious data types and APIs. See how much sense you can make of it in the next three minutes.

Listing 3-1 HtmlUtil.java (FitNesse 20070619)
 public static String testableHtml(
 PageData pageData,
 boolean includeSuiteSetup
) throws Exception {
 WikiPage wikiPage = pageData.getWikiPage();
 StringBuffer buffer = new StringBuffer();
 if (pageData.hasAttribute("Test")) {
 if (includeSuiteSetup) {
 WikiPage suiteSetup =
 PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_SETUP_NAME, wikiPage
);
 if (suiteSetup != null) {
 WikiPagePath pagePath =
 suiteSetup.getPageCrawler().getFullPath(suiteSetup);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -setup .")
 .append(pagePathName)
 .append("\n");
 }
 }
 WikiPage setup =
 PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);
 if (setup != null) {
 WikiPagePath setupPath =
 wikiPage.getPageCrawler().getFullPath(setup);
 String setupPathName = PathParser.render(setupPath);
 buffer.append("!include -setup .")
 .append(setupPathName)
 .append("\n");
 }
 }
 buffer.append(pageData.getContent());
 if (pageData.hasAttribute("Test")) {
 WikiPage teardown =
 PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
 if (teardown != null) {
 WikiPagePath tearDownPath =
 wikiPage.getPageCrawler().getFullPath(teardown);
 String tearDownPathName = PathParser.render(tearDownPath);
 buffer.append("\n")
 .append("!include -teardown .")
 .append(tearDownPathName)
 .append("\n");
 }
 if (includeSuiteSetup) {
 WikiPage suiteTeardown =
 PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_TEARDOWN_NAME,
 wikiPage
);
 if (suiteTeardown != null) {
 WikiPagePath pagePath =
 suiteTeardown.getPageCrawler().getFullPath (suiteTeardown);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -teardown .")
 .append(pagePathName)
 .append("\n");
 }
 }
 }
 pageData.setContent(buffer.toString());
 return pageData.getHtml();
 }
Do you understand the function after three minutes of study? Probably not. There’s too much going on in there at too many different levels of abstraction. There are strange strings and odd function calls mixed in with doubly nested if statements controlled by flags.
However, with just a few simple method extractions, some renaming, and a little restructuring, I was able to capture the intent of the function in the nine lines of Listing 3-2. See whether you can understand that in the next 3 minutes.

Listing 3-2 HtmlUtil.java (refactored)
 public static String renderPageWithSetupsAndTeardowns(
 PageData pageData, boolean isSuite
) throws Exception {
 boolean isTestPage = pageData.hasAttribute("Test");
 if (isTestPage) {
 WikiPage testPage = pageData.getWikiPage();
 StringBuffer newPageContent = new StringBuffer();
 includeSetupPages(testPage, newPageContent, isSuite);
 newPageContent.append(pageData.getContent());
 includeTeardownPages(testPage, newPageContent, isSuite);
 pageData.setContent(newPageContent.toString());
 }

 return pageData.getHtml();
 }
Unless you are a student of FitNesse, you probably don’t understand all the details. Still, you probably understand that this function performs the inclusion of some setup and teardown pages into a test page and then renders that page into HTML. If you are familiar with JUnit,2 you probably realize that this function belongs to some kind of Web-based testing framework. And, of course, that is correct. Divining that information from Listing 3-2 is pretty easy, but it’s pretty well obscured by Listing 3-1.
So what is it that makes a function like Listing 3-2 easy to read and understand? How can we make a function communicate its intent? What attributes can we give our functions that will allow a casual reader to intuit the kind of program they live inside?

Small!
The first rule of functions is that they should be small. The second rule of functions is that they should be smaller than that. This is not an assertion that I can justify. I can’t provide any references to research that shows that very small functions are better. What I can tell you is that for nearly four decades I have written functions of all different sizes. I’ve written several nasty 3,000-line abominations. I’ve written scads of functions in the 100 to 300 line range. And I’ve written functions that were 20 to 30 lines long. What this experience has taught me, through long trial and error, is that functions should be very small.
In the eighties we used to say that a function should be no bigger than a screen-full. Of course we said that at a time when VT100 screens were 24 lines by 80 columns, and our editors used 4 lines for administrative purposes. Nowadays with a cranked-down font and a nice big monitor, you can fit 150 characters on a line and a 100 lines or more on a screen. Lines should not be 150 characters long. Functions should not be 100 lines long. Functions should hardly ever be 20 lines long.
How short should a function be? In 1999 I went to visit Kent Beck at his home in Oregon. We sat down and did some programming together. At one point he showed me a cute little Java/Swing program that he called Sparkle. It produced a visual effect on the screen very similar to the magic wand of the fairy godmother in the movie Cinderella. As you moved the mouse, the sparkles would drip from the cursor with a satisfying scintillation, falling to the bottom of the window through a simulated gravitational field. When Kent showed me the code, I was struck by how small all the functions were. I was used to functions in Swing programs that took up miles of vertical space. Every function in this program was just two, or three, or four lines long. Each was transparently obvious. Each told a story. And each led you to the next in a compelling order. That’s how short your functions should be!3
How short should your functions be? They should usually be shorter than Listing 3-2! Indeed, Listing 3-2 should really be shortened to Listing 3-3.

Listing 3-3 HtmlUtil.java (re-refactored)
 public static String renderPageWith
 SetupsAndTeardowns(
 PageData pageData, boolean isSuite) throws Exception {
 if (isTestPage(pageData))
 includeSetupAndTeardownPages(pageData, isSuite);
 return pageData.getHtml();
 }

Blocks and Indenting
This implies that the blocks within if statements, else statements, while statements, and so on should be one line long. Probably that line should be a function call. Not only does this keep the enclosing function small, but it also adds documentary value because the function called within the block can have a nicely descriptive name.
This also implies that functions should not be large enough to hold nested structures. Therefore, the indent level of a function should not be greater than one or two. This, of course, makes the functions easier to read and understand.

Do One Thing
It should be very clear that Listing 3-1 is doing lots more than one thing. It’s creating buffers, fetching pages, searching for inherited pages, rendering paths, appending arcane strings, and generating HTML, among other things. Listing 3-1 is very busy doing lots of different things. On the other hand, Listing 3-3 is doing one simple thing. It’s including setups and teardowns into test pages.
The following advice has appeared in one form or another for 30 years or more.

FUNCTIONS SHOULD DO ONE THING. THEY SHOULD DO IT WELL. THEY SHOULD DO IT ONLY.

The problem with this statement is that it is hard to know what “one thing” is. Does Listing 3-3 do one thing? It’s easy to make the case that it’s doing three things:
1. Determining whether the page is a test page.

2. If so, including setups and teardowns.

3. Rendering the page in HTML.

So which is it? Is the function doing one thing or three things? Notice that the three steps of the function are one level of abstraction below the stated name of the function. We can describe the function by describing it as a brief TO4 paragraph:
TO RenderPageWithSetupsAndTeardowns, we check to see whether the page is a test page and if so, we include the setups and teardowns. In either case we render the page in HTML.

If a function does only those steps that are one level below the stated name of the function, then the function is doing one thing. After all, the reason we write functions is to decompose a larger concept (in other words, the name of the function) into a set of steps at the next level of abstraction.
It should be very clear that Listing 3-1 contains steps at many different levels of abstraction. So it is clearly doing more than one thing. Even Listing 3-2 has two levels of abstraction, as proved by our ability to shrink it down. But it would be very hard to meaningfully shrink Listing 3-3. We could extract the if statement into a function named includeSetupsAndTeardownsIfTestPage, but that simply restates the code without changing the level of abstraction.
So, another way to know that a function is doing more than “one thing” is if you can extract another function from it with a name that is not merely a restatement of its implementation [G34].

Sections within Functions
Look at Listing 4-7 on page 71. Notice that the generatePrimes function is divided into sections such as declarations, initializations, and sieve. This is an obvious symptom of doing more than one thing. Functions that do one thing cannot be reasonably divided into sections.

One Level of Abstraction per Function
In order to make sure our functions are doing “one thing,” we need to make sure that the statements within our function are all at the same level of abstraction. It is easy to see how Listing 3-1 violates this rule. There are concepts in there that are at a very high level of abstraction, such as getHtml(); others that are at an intermediate level of abstraction, such as: String pagePathName = PathParser.render(pagePath); and still others that are remarkably low level, such as: .append(”\n”).
Mixing levels of abstraction within a function is always confusing. Readers may not be able to tell whether a particular expression is an essential concept or a detail. Worse, like broken windows, once details are mixed with essential concepts, more and more details tend to accrete within the function.

Reading Code from Top to Bottom: The Stepdown Rule
We want the code to read like a top-down narrative.5 We want every function to be followed by those at the next level of abstraction so that we can read the program, descending one level of abstraction at a time as we read down the list of functions. I call this The Step-down Rule.
To say this differently, we want to be able to read the program as though it were a set of TO paragraphs, each of which is describing the current level of abstraction and referencing subsequent TO paragraphs at the next level down.
To include the setups and teardowns, we include setups, then we include the test page content, and then we include the teardowns.

To include the setups, we include the suite setup if this is a suite, then we include the regular setup.

To include the suite setup, we search the parent hierarchy for the “SuiteSetUp” page and add an include statement with the path of that page.

To search the parent…

It turns out to be very difficult for programmers to learn to follow this rule and write functions that stay at a single level of abstraction. But learning this trick is also very important. It is the key to keeping functions short and making sure they do “one thing.” Making the code read like a top-down set of TO paragraphs is an effective technique for keeping the abstraction level consistent.
Take a look at Listing 3-7 at the end of this chapter. It shows the whole testableHtml function refactored according to the principles described here. Notice how each function introduces the next, and each function remains at a consistent level of abstraction.

Switch Statements
It’s hard to make a small switch statement.6 Even a switch statement with only two cases is larger than I’d like a single block or function to be. It’s also hard to make a switch statement that does one thing. By their nature, switch statements always do N things. Unfortunately we can’t always avoid switch statements, but we can make sure that each switch statement is buried in a low-level class and is never repeated. We do this, of course, with polymorphism.
Consider Listing 3-4. It shows just one of the operations that might depend on the type of employee.

Listing 3-4 Payroll.java
 public Money calculatePay(Employee e)
 throws InvalidEmployeeType {
 switch (e.type) {
 case COMMISSIONED:
 return calculateCommissionedPay(e);
 case HOURLY:
 return calculateHourlyPay(e);
 case SALARIED:
 return calculateSalariedPay(e);
 default:
 throw new InvalidEmployeeType(e.type);
 }
 }
There are several problems with this function. First, it’s large, and when new employee types are added, it will grow. Second, it very clearly does more than one thing. Third, it violates the Single Responsibility Principle7 (SRP) because there is more than one reason for it to change. Fourth, it violates the Open Closed Principle8 (OCP) because it must change whenever new types are added. But possibly the worst problem with this function is that there are an unlimited number of other functions that will have the same structure. For example we could have
b. http://www.objectmentor.com/resources/articles/srp.pdf

b. http://www.objectmentor.com/resources/articles/ocp.pdf

 isPayday(Employee e, Date date),
or
 deliverPay(Employee e, Money pay),
or a host of others. All of which would have the same deleterious structure.
The solution to this problem (see Listing 3-5) is to bury the switch statement in the basement of an ABSTRACT FACTORY,9 and never let anyone see it. The factory will use the switch statement to create appropriate instances of the derivatives of Employee, and the various functions, such as calculatePay, isPayday, and deliverPay, will be dispatched polymorphically through the Employee interface.
My general rule for switch statements is that they can be tolerated if they appear only once, are used to create polymorphic objects, and are hidden behind an inheritance relationship so that the rest of the system can’t see them [G23]. Of course every circumstance is unique, and there are times when I violate one or more parts of that rule.

Listing 3-5 Employee and Factory
 public abstract class Employee {
 public abstract boolean isPayday();
 public abstract Money calculatePay();
 public abstract void deliverPay(Money pay);
 }

 public interface EmployeeFactory {
 public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType;
 }

 public class EmployeeFactoryImpl implements
 EmployeeFactory {
 public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType {
 switch (r.type) {
 case COMMISSIONED:
 return new CommissionedEmployee(r) ;
 case HOURLY:
 return new HourlyEmployee(r);
 case SALARIED:
 return new SalariedEmploye(r);
 default:
 throw new InvalidEmployeeType(r.type);
 }
 }
 }

Use Descriptive Names
In Listing 3-7 I changed the name of our example function from testableHtml to SetupTeardownIncluder.render. This is a far better name because it better describes what the function does. I also gave each of the private methods an equally descriptive name such as isTestable or includeSetupAndTeardownPages. It is hard to overestimate the value of good names. Remember Ward’s principle: “You know you are working on clean code when each routine turns out to be pretty much what you expected.” Half the battle to achieving that principle is choosing good names for small functions that do one thing. The smaller and more focused a function is, the easier it is to choose a descriptive name.
Don’t be afraid to make a name long. A long descriptive name is better than a short enigmatic name. A long descriptive name is better than a long descriptive comment. Use a naming convention that allows multiple words to be easily read in the function names, and then make use of those multiple words to give the function a name that says what it does.
Don’t be afraid to spend time choosing a name. Indeed, you should try several different names and read the code with each in place. Modern IDEs like Eclipse or IntelliJ make it trivial to change names. Use one of those IDEs and experiment with different names until you find one that is as descriptive as you can make it.
Choosing descriptive names will clarify the design of the module in your mind and help you to improve it. It is not at all uncommon that hunting for a good name results in a favorable restructuring of the code.
Be consistent in your names. Use the same phrases, nouns, and verbs in the function names you choose for your modules. Consider, for example, the names includeSetup-AndTeardownPages, includeSetupPages, includeSuiteSetupPage, and includeSetupPage. The similar phraseology in those names allows the sequence to tell a story. Indeed, if I showed you just the sequence above, you’d ask yourself: “What happened to includeTeardownPages, includeSuiteTeardownPage, and includeTeardownPage?” How’s that for being “… pretty much what you expected.”

Function Arguments
The ideal number of arguments for a function is zero (niladic). Next comes one (monadic), followed closely by two (dyadic). Three arguments (triadic) should be avoided where possible. More than three (polyadic) requires very special justification—and then shouldn’t be used anyway.

Arguments are hard. They take a lot of conceptual power. That’s why I got rid of almost all of them from the example. Consider, for instance, the StringBuffer in the example. We could have passed it around as an argument rather than making it an instance variable, but then our readers would have had to interpret it each time they saw it. When you are reading the story told by the module, includeSetupPage() is easier to understand than includeSetupPageInto(newPage-Content). The argument is at a different level of abstraction than the function name and forces you to know a detail (in other words, StringBuffer) that isn’t particularly important at that point.
Arguments are even harder from a testing point of view. Imagine the difficulty of writing all the test cases to ensure that all the various combinations of arguments work properly. If there are no arguments, this is trivial. If there’s one argument, it’s not too hard. With two arguments the problem gets a bit more challenging. With more than two arguments, testing every combination of appropriate values can be daunting.
Output arguments are harder to understand than input arguments. When we read a function, we are used to the idea of information going in to the function through arguments and out through the return value. We don’t usually expect information to be going out through the arguments. So output arguments often cause us to do a double-take.
One input argument is the next best thing to no arguments. SetupTeardown-Includer.render(pageData) is pretty easy to understand. Clearly we are going to render the data in the pageData object.

Common Monadic Forms
There are two very common reasons to pass a single argument into a function. You may be asking a question about that argument, as in boolean
fileExists(“MyFile”). Or you may be operating on that argument, transforming it into something else and returning it. For example, InputStream
fileOpen(“MyFile”) transforms a file name String into an InputStream return value. These two uses are what readers expect when they see a function. You should choose names that make the distinction clear, and always use the two forms in a consistent context. (See Command Query Separation below.)
A somewhat less common, but still very useful form for a single argument function, is an event. In this form there is an input argument but no output argument. The overall program is meant to interpret the function call as an event and use the argument to alter the state of the system, for example, void passwordAttemptFailedNtimes(int attempts). Use this form with care. It should be very clear to the reader that this is an event. Choose names and contexts carefully.
Try to avoid any monadic functions that don’t follow these forms, for example, void includeSetupPageInto(StringBuffer pageText). Using an output argument instead of a return value for a transformation is confusing. If a function is going to transform its input argument, the transformation should appear as the return value. Indeed, StringBuffer transform(StringBuffer in) is better than void transform-(StringBuffer out), even if the implementation in the first case simply returns the input argument. At least it still follows the form of a transformation.

Flag Arguments
Flag arguments are ugly. Passing a boolean into a function is a truly terrible practice. It immediately complicates the signature of the method, loudly proclaiming that this function does more than one thing. It does one thing if the flag is true and another if the flag is false!
In Listing 3-7 we had no choice because the callers were already passing that flag in, and I wanted to limit the scope of refactoring to the function and below. Still, the method call render(true) is just plain confusing to a poor reader. Mousing over the call and seeing render(boolean isSuite) helps a little, but not that much. We should have split the function into two: renderForSuite() and renderForSingleTest().

Dyadic Functions
A function with two arguments is harder to understand than a monadic function. For example, writeField(name) is easier to understand than writeField(output-Stream, name).10 Though the meaning of both is clear, the first glides past the eye, easily depositing its meaning. The second requires a short pause until we learn to ignore the first parameter. And that, of course, eventually results in problems because we should never ignore any part of code. The parts we ignore are where the bugs will hide.
There are times, of course, where two arguments are appropriate. For example, Point p = new Point(0,0); is perfectly reasonable. Cartesian points naturally take two arguments. Indeed, we’d be very surprised to see new Point(0). However, the two arguments in this case are ordered components of a single value! Whereas output-Stream and name have neither a natural cohesion, nor a natural ordering.
Even obvious dyadic functions like assertEquals(expected, actual) are problematic. How many times have you put the actual where the expected should be? The two arguments have no natural ordering. The expected,
actual ordering is a convention that requires practice to learn.
Dyads aren’t evil, and you will certainly have to write them. However, you should be aware that they come at a cost and should take advantage of what mechanims may be available to you to convert them into monads. For example, you might make the writeField method a member of outputStream so that you can say outputStream. writeField(name). Or you might make the outputStream a member variable of the current class so that you don’t have to pass it. Or you might extract a new class like FieldWriter that takes the outputStream in its constructor and has a write method.

Triads
Functions that take three arguments are significantly harder to understand than dyads. The issues of ordering, pausing, and ignoring are more than doubled. I suggest you think very carefully before creating a triad.
For example, consider the common overload of assertEquals that takes three arguments: assertEquals(message, expected, actual). How many times have you read the message and thought it was the expected? I have stumbled and paused over that particular triad many times. In fact, every time I see it, I do a double-take and then learn to ignore the message.
On the other hand, here is a triad that is not quite so insidious: assertEquals(1.0, amount, .001). Although this still requires a double-take, it’s one that’s worth taking. It’s always good to be reminded that equality of floating point values is a relative thing.

Argument Objects
When a function seems to need more than two or three arguments, it is likely that some of those arguments ought to be wrapped into a class of their own. Consider, for example, the difference between the two following declarations:
 Circle makeCircle(double x, double y, double radius);
 Circle makeCircle(Point center, double radius);
Reducing the number of arguments by creating objects out of them may seem like cheating, but it’s not. When groups of variables are passed together, the way x and y are in the example above, they are likely part of a concept that deserves a name of its own.

Argument Lists
Sometimes we want to pass a variable number of arguments into a function. Consider, for example, the String.format method:
 String.format(”%s worked %.2f hours.”, name, hours);
If the variable arguments are all treated identically, as they are in the example above, then they are equivalent to a single argument of type List. By that reasoning, String.format is actually dyadic. Indeed, the declaration of String.format as shown below is clearly dyadic.
 public String format(String format, Object… args)
So all the same rules apply. Functions that take variable arguments can be monads, dyads, or even triads. But it would be a mistake to give them more arguments than that.
 void monad(Integer… args);
 void dyad(String name, Integer… args);
 void triad(String name, int count, Integer… args);

Verbs and Keywords
Choosing good names for a function can go a long way toward explaining the intent of the function and the order and intent of the arguments. In the case of a monad, the function and argument should form a very nice verb/noun pair. For example, write(name) is very evocative. Whatever this “name” thing is, it is being “written.” An even better name might be writeField(name), which tells us that the “name” thing is a “field.”
This last is an example of the keyword form of a function name. Using this form we encode the names of the arguments into the function name. For example, assertEquals might be better written as assertExpectedEqualsActual(expected,
actual). This strongly mitigates the problem of having to remember the ordering of the arguments.

Have No Side Effects
Side effects are lies. Your function promises to do one thing, but it also does other hidden things. Sometimes it will make unexpected changes to the variables of its own class. Sometimes it will make them to the parameters passed into the function or to system globals. In either case they are devious and damaging mistruths that often result in strange temporal couplings and order dependencies.
Consider, for example, the seemingly innocuous function in Listing 3-6. This function uses a standard algorithm to match a userName to a password. It returns true if they match and false if anything goes wrong. But it also has a side effect. Can you spot it?

Listing 3-6 UserValidator.java
 public class UserValidator {
 private Cryptographer cryptographer;

 public boolean checkPassword(String userName, String password) {
 User user = UserGateway.findByName(userName);
 if (user != User.NULL) {
 String codedPhrase = user.
 getPhraseEncodedByPassword();
 String phrase = cryptographer.decrypt(codedPhrase, password);
 if ("Valid Password".equals(phrase)) {
 Session.initialize();
 return true;
 }
 }
 return false;
 }
 }
The side effect is the call to Session.initialize(), of course. The checkPassword function, by its name, says that it checks the password. The name does not imply that it initializes the session. So a caller who believes what the name of the function says runs the risk of erasing the existing session data when he or she decides to check the validity of the user.
This side effect creates a temporal coupling. That is, checkPassword can only be called at certain times (in other words, when it is safe to initialize the session). If it is called out of order, session data may be inadvertently lost. Temporal couplings are confusing, especially when hidden as a side effect. If you must have a temporal coupling, you should make it clear in the name of the function. In this case we might rename the function checkPasswordAndInitializeSession, though that certainly violates “Do one thing.”

Output Arguments
Arguments are most naturally interpreted as inputs to a function. If you have been programming for more than a few years, I’m sure you’ve done a double-take on an argument that was actually an output rather than an input. For example:
 appendFooter(s);
Does this function append s as the footer to something? Or does it append some footer to s? Is s an input or an output? It doesn’t take long to look at the function signature and see:
 public void appendFooter(StringBuffer report)
This clarifies the issue, but only at the expense of checking the declaration of the function. Anything that forces you to check the function signature is equivalent to a double-take. It’s a cognitive break and should be avoided.
In the days before object oriented programming it was sometimes necessary to have output arguments. However, much of the need for output arguments disappears in OO languages because this is intended to act as an output argument. In other words, it would be better for appendFooter to be invoked as
 report.appendFooter();
In general output arguments should be avoided. If your function must change the state of something, have it change the state of its owning object.

Command Query Separation
Functions should either do something or answer something, but not both. Either your function should change the state of an object, or it should return some information about that object. Doing both often leads to confusion. Consider, for example, the following function:
 public boolean set(String attribute, String value);
This function sets the value of a named attribute and returns true if it is successful and false if no such attribute exists. This leads to odd statements like this:
 if (set(”username”, ”unclebob”))…
Imagine this from the point of view of the reader. What does it mean? Is it asking whether the “username” attribute was previously set to “unclebob”? Or is it asking whether the “username” attribute was successfully set to “unclebob”? It’s hard to infer the meaning from the call because it’s not clear whether the word “set” is a verb or an adjective.
The author intended set to be a verb, but in the context of the if statement it feels like an adjective. So the statement reads as “If the username attribute was previously set to unclebob” and not “set the username attribute to unclebob and if that worked then.…” We could try to resolve this by renaming the set function to setAndCheckIfExists, but that doesn’t much help the readability of the if statement. The real solution is to separate the command from the query so that the ambiguity cannot occur.
 if (attributeExists(”username”)) {
 setAttribute(”username”, ”unclebob”);
 …
 }

Prefer Exceptions to Returning Error Codes
Returning error codes from command functions is a subtle violation of command query separation. It promotes commands being used as expressions in the predicates of if statements.
 if (deletePage(page) == E_OK)
This does not suffer from verb/adjective confusion but does lead to deeply nested structures. When you return an error code, you create the problem that the caller must deal with the error immediately.
 if (deletePage(page) == E_OK) {
 if (registry.deleteReference(page.name) == E_OK) {
 if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
 logger.log("page deleted");
 } else {
 logger.log("configKey not deleted");
 }
 } else {
 logger.log("deleteReference from registry failed");
 }
 } else {
 logger.log("delete failed");
 return E_ERROR;
 }
On the other hand, if you use exceptions instead of returned error codes, then the error processing code can be separated from the happy path code and can be simplified:
 try {
 deletePage(page);
 registry.deleteReference(page.name);
 configKeys.deleteKey(page.name.makeKey());
 }
 catch (Exception e) {
 logger.log(e.getMessage());
 }

Extract Try/Catch Blocks
Try/catch blocks are ugly in their own right. They confuse the structure of the code and mix error processing with normal processing. So it is better to extract the bodies of the try and catch blocks out into functions of their own.
 public void delete(Page page) {
 try {
 deletePageAndAllReferences(page);
 }
 catch (Exception e) {
 logError(e);
 }
 }

 private void deletePageAndAllReferences(Page page) throws Exception {
 deletePage(page);
 registry.deleteReference(page.name);
 configKeys.deleteKey(page.name.makeKey());
 }

 private void logError(Exception e) {
 logger.log(e.getMessage());
 }
In the above, the delete function is all about error processing. It is easy to understand and then ignore. The deletePageAndAllReferences function is all about the processes of fully deleting a page. Error handling can be ignored. This provides a nice separation that makes the code easier to understand and modify.

Error Handling Is One Thing
Functions should do one thing. Error handing is one thing. Thus, a function that handles errors should do nothing else. This implies (as in the example above) that if the keyword try exists in a function, it should be the very first word in the function and that there should be nothing after the catch/finally blocks.

The Error.java Dependency Magnet
Returning error codes usually implies that there is some class or enum in which all the error codes are defined.
 public enum Error {
 OK,
 INVALID,
 NO_SUCH,
 LOCKED,
 OUT_OF_RESOURCES,

 WAITING_FOR_EVENT;
 }
Classes like this are a dependency magnet; many other classes must import and use them. Thus, when the Error
enum changes, all those other classes need to be recompiled and redeployed.11 This puts a negative pressure on the Error class. Programmers don’t want to add new errors because then they have to rebuild and redeploy everything. So they reuse old error codes instead of adding new ones.
When you use exceptions rather than error codes, then new exceptions are derivatives of the exception class. They can be added without forcing any recompilation or redeployment.12

Don’t Repeat Yourself13
Look back at Listing 3-1 carefully and you will notice that there is an algorithm that gets repeated four times, once for each of the SetUp, SuiteSetUp, TearDown, and SuiteTearDown cases. It’s not easy to spot this duplication because the four instances are intermixed with other code and aren’t uniformly duplicated. Still, the duplication is a problem because it bloats the code and will require four-fold modification should the algorithm ever have to change. It is also a four-fold opportunity for an error of omission.

This duplication was remedied by the include method in Listing 3-7. Read through that code again and notice how the readability of the whole module is enhanced by the reduction of that duplication.
Duplication may be the root of all evil in software. Many principles and practices have been created for the purpose of controlling or eliminating it. Consider, for example, that all of Codd’s database normal forms serve to eliminate duplication in data. Consider also how object-oriented programming serves to concentrate code into base classes that would otherwise be redundant. Structured programming, Aspect Oriented Programming, Component Oriented Programming, are all, in part, strategies for eliminating duplication. It would appear that since the invention of the subroutine, innovations in software development have been an ongoing attempt to eliminate duplication from our source code.

Structured Programming
Some programmers follow Edsger Dijkstra’s rules of structured programming.14 Dijkstra said that every function, and every block within a function, should have one entry and one exit. Following these rules means that there should only be one return statement in a function, no break or continue statements in a loop, and never, ever, any goto statements.
While we are sympathetic to the goals and disciplines of structured programming, those rules serve little benefit when functions are very small. It is only in larger functions that such rules provide significant benefit.
So if you keep your functions small, then the occasional multiple return, break, or continue statement does no harm and can sometimes even be more expressive than the single-entry, single-exit rule. On the other hand, goto only makes sense in large functions, so it should be avoided.

How Do You Write Functions Like This?
Writing software is like any other kind of writing. When you write a paper or an article, you get your thoughts down first, then you massage it until it reads well. The first draft might be clumsy and disorganized, so you wordsmith it and restructure it and refine it until it reads the way you want it to read.
When I write functions, they come out long and complicated. They have lots of indenting and nested loops. They have long argument lists. The names are arbitrary, and there is duplicated code. But I also have a suite of unit tests that cover every one of those clumsy lines of code.
So then I massage and refine that code, splitting out functions, changing names, eliminating duplication. I shrink the methods and reorder them. Sometimes I break out whole classes, all the while keeping the tests passing.
In the end, I wind up with functions that follow the rules I’ve laid down in this chapter. I don’t write them that way to start. I don’t think anyone could.

Conclusion
Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns. This is not some throwback to the hideous old notion that the nouns and verbs in a requirements document are the first guess of the classes and functions of a system. Rather, this is a much older truth. The art of programming is, and has always been, the art of language design.
Master programmers think of systems as stories to be told rather than programs to be written. They use the facilities of their chosen programming language to construct a much richer and more expressive language that can be used to tell that story. Part of that domain-specific language is the hierarchy of functions that describe all the actions that take place within that system. In an artful act of recursion those actions are written to use the very domain-specific language they define to tell their own small part of the story.
This chapter has been about the mechanics of writing functions well. If you follow the rules herein, your functions will be short, well named, and nicely organized. But never forget that your real goal is to tell the story of the system, and that the functions you write need to fit cleanly together into a clear and precise language to help you with that telling.

SetupTeardownIncluder

Listing 3-7 SetupTeardownIncluder.java
 package fitnesse.html;

 import fitnesse.responders.run.SuiteResponder;
 import fitnesse.wiki.*;

 public class SetupTeardownIncluder {
 private PageData pageData;
 private boolean isSuite;
 private WikiPage testPage;
 private StringBuffer newPageContent;
 private PageCrawler pageCrawler;

 public static String render(PageData pageData) throws Exception {
 return render(pageData, false);
 }

 public static String render(PageData pageData, boolean isSuite)
 throws Exception {
 return new SetupTeardownIncluder(pageData).render(isSuite);
 }

 private SetupTeardownIncluder(PageData pageData) {
 this.pageData = pageData;
 testPage = pageData.getWikiPage();
 pageCrawler = testPage.getPageCrawler();
 newPageContent = new StringBuffer();
 }

 private String render(boolean isSuite) throws Exception {
 this.isSuite = isSuite;
 if (isTestPage())
 includeSetupAndTeardownPages();
 return pageData.getHtml();
 }

 private boolean isTestPage() throws Exception {
 return pageData.hasAttribute("Test");
 }

 private void includeSetupAndTeardownPages() throws Exception {
 includeSetupPages();
 includePageContent();
 includeTeardownPages();
 updatePageContent();
 }

 private void includeSetupPages() throws Exception {
 if (isSuite)
 includeSuiteSetupPage();
 includeSetupPage();
 }

 private void includeSuiteSetupPage() throws Exception {
 include(SuiteResponder.SUITE_SETUP_NAME, "-setup");
 }

 private void includeSetupPage() throws Exception {
 include("SetUp", "-setup");
 }

 private void includePageContent() throws Exception {
 newPageContent.append(pageData.getContent());
 }

 private void includeTeardownPages() throws Exception {
 includeTeardownPage();
 if (isSuite)
 includeSuiteTeardownPage();
 }

 private void includeTeardownPage() throws Exception {
 include("TearDown", "-teardown");
 }

 private void includeSuiteTeardownPage() throws Exception {
 include(SuiteResponder.SUITE_TEARDOWN_NAME, "-teardown");
 }

 private void updatePageContent() throws Exception {
 pageData.setContent(newPageContent.toString());
 }

 private void include(String pageName, String arg) throws Exception {
 WikiPage inheritedPage = findInheritedPage(pageName);
 if (inheritedPage != null) {
 String pagePathName = getPathNameForPage(inheritedPage);
 buildIncludeDirective(pagePathName, arg);
 }
 }

 private WikiPage findInheritedPage(String pageName) throws Exception {
 return PageCrawlerImpl.getInheritedPage(pageName, testPage);
 }

 private String getPathNameForPage(WikiPage page) throws Exception {
 WikiPagePath pagePath = pageCrawler.getFullPath(page);
 return PathParser.render(pagePath);
 }

 private void buildIncludeDirective(String pagePathName, String arg) {
 newPageContent
 .append("\n!include ")
 .append(arg)
 .append(" .")
 .append(pagePathName)
 .append("\n");
 }
 }

Bibliography

[KP78]: Kernighan and Plaugher, The Elements of Programming Style, 2d. ed., McGraw-Hill, 1978.

[PPP02]: Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.

[GOF]:
Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

[PRAG]:
The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley, 2000.

[SP72]:
Structured Programming, O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Academic Press, London, 1972.

4 Comments

“Don’t comment bad code—rewrite it.”
—Brian W. Kernighan and P. J. Plaugher1
Nothing can be quite so helpful as a well-placed comment. Nothing can clutter up a module more than frivolous dogmatic comments. Nothing can be quite so damaging as an old crufty comment that propagates lies and misinformation.
Comments are not like Schindler’s List. They are not “pure good.” Indeed, comments are, at best, a necessary evil. If our programming languages were expressive enough, or if we had the talent to subtly wield those languages to express our intent, we would not need comments very much—perhaps not at all.
The proper use of comments is to compensate for our failure to express ourself in code. Note that I used the word failure. I meant it. Comments are always failures. We must have them because we cannot always figure out how to express ourselves without them, but their use is not a cause for celebration.
So when you find yourself in a position where you need to write a comment, think it through and see whether there isn’t some way to turn the tables and express yourself in code. Every time you express yourself in code, you should pat yourself on the back. Every time you write a comment, you should grimace and feel the failure of your ability of expression.
Why am I so down on comments? Because they lie. Not always, and not intentionally, but too often. The older a comment is, and the farther away it is from the code it describes, the more likely it is to be just plain wrong. The reason is simple. Programmers can’t realistically maintain them.
Code changes and evolves. Chunks of it move from here to there. Those chunks bifurcate and reproduce and come together again to form chimeras. Unfortunately the comments don’t always follow them—can’t always follow them. And all too often the comments get separated from the code they describe and become orphaned blurbs of ever-decreasing accuracy. For example, look what has happened to this comment and the line it was intended to describe:
 MockRequest request;
 private final String HTTP_DATE_REGEXP =
 “[SMTWF][a-z]{2}\\,\\s[0-9]{2}\\s[JFMASOND][a-z]{2}\\s”+
 “[0-9]{4}\\s[0-9]{2}\\:[0-9]{2}\\:[0-9]{2}\\sGMT”;
 private Response response;
 private FitNesseContext context;
 private FileResponder responder;
 private Locale saveLocale;
 // Example: ”Tue, 02 Apr 2003 22:18:49 GMT”
Other instance variables that were probably added later were interposed between the HTTP_DATE_REGEXP constant and it’s explanatory comment.
It is possible to make the point that programmers should be disciplined enough to keep the comments in a high state of repair, relevance, and accuracy. I agree, they should. But I would rather that energy go toward making the code so clear and expressive that it does not need the comments in the first place.
Inaccurate comments are far worse than no comments at all. They delude and mislead. They set expectations that will never be fulfilled. They lay down old rules that need not, or should not, be followed any longer.
Truth can only be found in one place: the code. Only the code can truly tell you what it does. It is the only source of truly accurate information. Therefore, though comments are sometimes necessary, we will expend significant energy to minimize them.

Comments Do Not Make Up for Bad Code
One of the more common motivations for writing comments is bad code. We write a module and we know it is confusing and disorganized. We know it’s a mess. So we say to ourselves, “Ooh, I’d better comment that!” No! You’d better clean it!
Clear and expressive code with few comments is far superior to cluttered and complex code with lots of comments. Rather than spend your time writing the comments that explain the mess you’ve made, spend it cleaning that mess.

Explain Yourself in Code
There are certainly times when code makes a poor vehicle for explanation. Unfortunately, many programmers have taken this to mean that code is seldom, if ever, a good means for explanation. This is patently false. Which would you rather see? This:
 // Check to see if the employee is eligible for full benefits
 if ((employee.flags & HOURLY_FLAG) &&
 (employee.age > 65))
Or this?
 if (employee.isEligibleForFullBenefits())
It takes only a few seconds of thought to explain most of your intent in code. In many cases it’s simply a matter of creating a function that says the same thing as the comment you want to write.

Good Comments
Some comments are necessary or beneficial. We’ll look at a few that I consider worthy of the bits they consume. Keep in mind, however, that the only truly good comment is the comment you found a way not to write.

Legal Comments
Sometimes our corporate coding standards force us to write certain comments for legal reasons. For example, copyright and authorship statements are necessary and reasonable things to put into a comment at the start of each source file.
Here, for example, is the standard comment header that we put at the beginning of every source file in FitNesse. I am happy to say that our IDE hides this comment from acting as clutter by automatically collapsing it.
 // Copyright (C) 2003,2004,2005 by Object Mentor, Inc. All rights reserved.
 // Released under the terms of the GNU General Public License version 2 or later.
Comments like this should not be contracts or legal tomes. Where possible, refer to a standard license or other external document rather than putting all the terms and conditions into the comment.

Informative Comments
It is sometimes useful to provide basic information with a comment. For example, consider this comment that explains the return value of an abstract method:
 // Returns an instance of the Responder being tested.
 protected abstract Responder responderInstance();
A comment like this can sometimes be useful, but it is better to use the name of the function to convey the information where possible. For example, in this case the comment could be made redundant by renaming the function: responderBeingTested.
Here’s a case that’s a bit better:
 // format matched kk:mm:ss EEE, MMM dd, yyyy
 Pattern timeMatcher = Pattern.compile(
 “\\d*:\\d*:\\d* \\w*, \\w* \\d*, \\d*”);
In this case the comment lets us know that the regular expression is intended to match a time and date that were formatted with the SimpleDateFormat.format function using the specified format string. Still, it might have been better, and clearer, if this code had been moved to a special class that converted the formats of dates and times. Then the comment would likely have been superfluous.

Explanation of Intent
Sometimes a comment goes beyond just useful information about the implementation and provides the intent behind a decision. In the following case we see an interesting decision documented by a comment. When comparing two objects, the author decided that he wanted to sort objects of his class higher than objects of any other.
 public int compareTo(Object o)
 {
 if(o instanceof WikiPagePath)
 {
 WikiPagePath p = (WikiPagePath) o;
 String compressedName = StringUtil.join(names, “”);
 String compressedArgumentName = StringUtil.join(p.names, “”);
 return compressedName.compareTo(compressedArgumentName);
 }
 return 1; // we are greater because we are the right type.
 }
Here’s an even better example. You might not agree with the programmer’s solution to the problem, but at least you know what he was trying to do.
 public void testConcurrentAddWidgets() throws Exception {
 WidgetBuilder widgetBuilder =
 new WidgetBuilder(new Class[]{BoldWidget.class});
 String text = ”’’’bold text’’’”;
 ParentWidget parent =
 new BoldWidget(new MockWidgetRoot(), ”’’’bold text’’’”);
 AtomicBoolean failFlag = new AtomicBoolean();
 failFlag.set(false);

 //This is our best attempt to get a race condition
 //by creating large number of threads.
 for (int i = 0; i < 25000; i++) {
 WidgetBuilderThread widgetBuilderThread =
 new WidgetBuilderThread(widgetBuilder, text, parent, failFlag);
 Thread thread = new Thread(widgetBuilderThread);
 thread.start();
 }
 assertEquals(false, failFlag.get());
 }

Clarification
Sometimes it is just helpful to translate the meaning of some obscure argument or return value into something that’s readable. In general it is better to find a way to make that argument or return value clear in its own right; but when its part of the standard library, or in code that you cannot alter, then a helpful clarifying comment can be useful.
 public void testCompareTo() throws Exception
 {
 WikiPagePath a = PathParser.parse("PageA");
 WikiPagePath ab = PathParser.parse("PageA.PageB");
 WikiPagePath b = PathParser.parse("PageB");
 WikiPagePath aa = PathParser.parse("PageA.PageA");
 WikiPagePath bb = PathParser.parse("PageB.PageB");
 WikiPagePath ba = PathParser.parse("PageB.PageA");

 assertTrue(a.compareTo(a) == 0); // a == a
 assertTrue(a.compareTo(b) != 0); // a != b
 assertTrue(ab.compareTo(ab) == 0); // ab == ab
 assertTrue(a.compareTo(b) == -1); // a < b
 assertTrue(aa.compareTo(ab) == -1); // aa < ab
 assertTrue(ba.compareTo(bb) == -1); // ba < bb
 assertTrue(b.compareTo(a) == 1); // b > a
 assertTrue(ab.compareTo(aa) == 1); // ab > aa
 assertTrue(bb.compareTo(ba) == 1); // bb > ba
 }
There is a substantial risk, of course, that a clarifying comment is incorrect. Go through the previous example and see how difficult it is to verify that they are correct. This explains both why the clarification is necessary and why it’s risky. So before writing comments like this, take care that there is no better way, and then take even more care that they are accurate.

Warning of Consequences
Sometimes it is useful to warn other programmers about certain consequences. For example, here is a comment that explains why a particular test case is turned off:

 // Don't run unless you
 // have some time to kill.
 public void _testWithReallyBigFile()
 {
 writeLinesToFile(10000000);

 response.setBody(testFile);
 response.readyToSend(this);
 String responseString = output.toString();
 assertSubString("Content-Length: 1000000000", responseString);
 assertTrue(bytesSent > 1000000000);
 }
Nowadays, of course, we’d turn off the test case by using the @Ignore attribute with an appropriate explanatory string. @Ignore(”Takes too long to run”). But back in the days before JUnit 4, putting an underscore in front of the method name was a common convention. The comment, while flippant, makes the point pretty well.
Here’s another, more poignant example:
 public static
 SimpleDateFormat makeStandardHttpDateFormat()
 {
 //SimpleDateFormat is not thread safe,
 //so we need to create each instance independently.
 SimpleDateFormat df = new SimpleDateFormat(”EEE, dd MMM yyyy HH:mm:ss z”);
 df.setTimeZone(TimeZone.getTimeZone(”GMT”));
 return df;
 }
You might complain that there are better ways to solve this problem. I might agree with you. But the comment, as given here, is perfectly reasonable. It will prevent some overly eager programmer from using a static initializer in the name of efficiency.

TODO Comments
It is sometimes reasonable to leave “To do” notes in the form of //TODO comments. In the following case, the TODO comment explains why the function has a degenerate implementation and what that function’s future should be.
 //TODO-MdM these are not needed
 // We expect this to go away when we do the checkout model
 protected VersionInfo makeVersion() throws Exception
 {
 return null;
 }
TODOs are jobs that the programmer thinks should be done, but for some reason can’t do at the moment. It might be a reminder to delete a deprecated feature or a plea for someone else to look at a problem. It might be a request for someone else to think of a better name or a reminder to make a change that is dependent on a planned event. Whatever else a TODO might be, it is not an excuse to leave bad code in the system.
Nowadays, most good IDEs provide special gestures and features to locate all the TODO comments, so it’s not likely that they will get lost. Still, you don’t want your code to be littered with TODOs. So scan through them regularly and eliminate the ones you can.

Amplification
A comment may be used to amplify the importance of something that may otherwise seem inconsequential.
 String listItemContent = match.group(3).trim();
 // the trim is real important. It removes the starting
 // spaces that could cause the item to be recognized
 // as another list.
 new ListItemWidget(this, listItemContent, this.level + 1);
 return buildList(text.substring(match.end()));

Javadocs in Public APIs
There is nothing quite so helpful and satisfying as a well-described public API. The java-docs for the standard Java library are a case in point. It would be difficult, at best, to write Java programs without them.
If you are writing a public API, then you should certainly write good javadocs for it. But keep in mind the rest of the advice in this chapter. Javadocs can be just as misleading, nonlocal, and dishonest as any other kind of comment.

Bad Comments
Most comments fall into this category. Usually they are crutches or excuses for poor code or justifications for insufficient decisions, amounting to little more than the programmer talking to himself.

Mumbling
Plopping in a comment just because you feel you should or because the process requires it, is a hack. If you decide to write a comment, then spend the time necessary to make sure it is the best comment you can write.
Here, for example, is a case I found in FitNesse, where a comment might indeed have been useful. But the author was in a hurry or just not paying much attention. His mumbling left behind an enigma:
 public void loadProperties()
 {
 try
 {
 String propertiesPath = propertiesLocation +
 ”/” + PROPERTIES_FILE;
 FileInputStream propertiesStream = new
 FileInputStream(propertiesPath);
 loadedProperties.load(propertiesStream);
 }
 catch(IOException e)
 {
 // No properties files means all defaults are loaded
 }
 }
What does that comment in the catch block mean? Clearly it meant something to the author, but the meaning does not come through all that well. Apparently, if we get an IOException, it means that there was no properties file; and in that case all the defaults are loaded. But who loads all the defaults? Were they loaded before the call to loadProperties.load? Or did loadProperties.load catch the exception, load the defaults, and then pass the exception on for us to ignore? Or did loadProperties.load load all the defaults before attempting to load the file? Was the author trying to comfort himself about the fact that he was leaving the catch block empty? Or—and this is the scary possibility—was the author trying to tell himself to come back here later and write the code that would load the defaults?
Our only recourse is to examine the code in other parts of the system to find out what’s going on. Any comment that forces you to look in another module for the meaning of that comment has failed to communicate to you and is not worth the bits it consumes.

Redundant Comments
Listing 4-1 shows a simple function with a header comment that is completely redundant. The comment probably takes longer to read than the code itself.

Listing 4-1 waitForClose
 // Utility method that returns when this.closed
 is true. Throws an exception
 // if the timeout is reached.
 public synchronized void waitForClose(final long timeoutMillis)
 throws Exception
 {
 if(!closed)
 {
 wait(timeoutMillis);
 if(!closed)
 throw new Exception("MockResponseSender could not be closed");
 }
 }
What purpose does this comment serve? It’s certainly not more informative than the code. It does not justify the code, or provide intent or rationale. It is not easier to read than the code. Indeed, it is less precise than the code and entices the reader to accept that lack of precision in lieu of true understanding. It is rather like a gladhanding used-car salesman assuring you that you don’t need to look under the hood.
Now consider the legion of useless and redundant javadocs in Listing 4-2 taken from Tomcat. These comments serve only to clutter and obscure the code. They serve no documentary purpose at all. To make matters worse, I only showed you the first few. There are many more in this module.

Listing 4-2 ContainerBase.java (Tomcat)
 public abstract class ContainerBase
 implements Container, Lifecycle, Pipeline,
 MBeanRegistration, Serializable {

 /**
 * The processor delay for this component.
 */
 protected int backgroundProcessorDelay = -1;

 /**
 * The lifecycle event support for this component.
 */
 protected LifecycleSupport lifecycle =
 new LifecycleSupport(this);

 /**
 * The container event listeners for this Container.
 */
 protected ArrayList listeners = new ArrayList();

 /**
 * The Loader implementation with which this Container is
 * associated.
 */
 protected Loader loader = null;

 /**
 * The Logger implementation with which this Container is
 * associated.
 */
 protected Log logger = null;

 /**
 * Associated logger name.
 */
 protected String logName = null;

 /**
 * The Manager implementation with which this Container is
 * associated.
 */
 protected Manager manager = null;

 /**
 * The cluster with which this Container is associated.
 */
 protected Cluster cluster = null;

 /**
 * The human-readable name of this Container.
 */
 protected String name = null;

 /**
 * The parent Container to which this Container is a child.
 */
 protected Container parent = null;

 /**
 * The parent class loader to be configured when we install a
 * Loader.
 */
 protected ClassLoader parentClassLoader = null;

 /**
 * The Pipeline object with which this Container is
 * associated.
 */
 protected Pipeline pipeline = new StandardPipeline(this);

 /**
 * The Realm with which this Container is associated.
 */
 protected Realm realm = null;

 /**
 * The resources DirContext object with which this Container
 * is associated.
 */
 protected DirContext resources = null;

Misleading Comments
Sometimes, with all the best intentions, a programmer makes a statement in his comments that isn’t precise enough to be accurate. Consider for another moment the badly redundant but also subtly misleading comment we saw in Listing 4-1.
Did you discover how the comment was misleading? The method does not return when
this.closed becomes true. It returns if
this.closed is true; otherwise, it waits for a blind time-out and then throws an exception if
this.closed is still not true.
This subtle bit of misinformation, couched in a comment that is harder to read than the body of the code, could cause another programmer to blithely call this function in the expectation that it will return as soon as this.closed becomes true. That poor programmer would then find himself in a debugging session trying to figure out why his code executed so slowly.

Mandated Comments
It is just plain silly to have a rule that says that every function must have a javadoc, or every variable must have a comment. Comments like this just clutter up the code, propagate lies, and lend to general confusion and disorganization.
For example, required javadocs for every function lead to abominations such as Listing 4-3. This clutter adds nothing and serves only to obfuscate the code and create the potential for lies and misdirection.

Listing 4-3
 /**
 *
 * @param title The title of the CD
 * @param author The author of the CD
 * @param tracks The number of tracks on the CD
 * @param durationInMinutes The duration of the CD in minutes
 */
 public void addCD(String title, String author,
 int tracks, int durationInMinutes) {
 CD cd = new CD();
 cd.title = title;
 cd.author = author;
 cd.tracks = tracks;
 cd.duration = duration;
 cdList.add(cd);
 }

Journal Comments
Sometimes people add a comment to the start of a module every time they edit it. These comments accumulate as a kind of journal, or log, of every change that has ever been made. I have seen some modules with dozens of pages of these run-on journal entries.
 * Changes (from 11-Oct-2001)
 * --------------------------
 * 11-Oct-2001 : Re-organised the class and moved it to new package
 * com.jrefinery.date (DG);
 * 05-Nov-2001 : Added a getDescription() method, and eliminated NotableDate
 * class (DG);
 * 12-Nov-2001 : IBD requires setDescription() method, now that NotableDate
 * class is gone (DG); Changed getPreviousDayOfWeek(),
 * getFollowingDayOfWeek() and getNearestDayOfWeek() to correct
 * bugs (DG);
 * 05-Dec-2001 : Fixed bug in SpreadsheetDate class (DG);
 * 29-May-2002 : Moved the month constants into a separate interface
 * (MonthConstants) (DG);
 * 27-Aug-2002 : Fixed bug in addMonths() method, thanks to N???levka Petr (DG);
 * 03-Oct-2002 : Fixed errors reported by Checkstyle (DG);
 * 13-Mar-2003 : Implemented Serializable (DG);
 * 29-May-2003 : Fixed bug in addMonths method (DG);
 * 04-Sep-2003 : Implemented Comparable. Updated the isInRange javadocs (DG);
 * 05-Jan-2005 : Fixed bug in addYears() method (1096282) (DG);
Long ago there was a good reason to create and maintain these log entries at the start of every module. We didn’t have source code control systems that did it for us. Nowadays, however, these long journals are just more clutter to obfuscate the module. They should be completely removed.

Noise Comments
Sometimes you see comments that are nothing but noise. They restate the obvious and provide no new information.
 /**
 * Default constructor.
 */
 protected AnnualDateRule() {
 }
No, really? Or how about this:
 /** The day of the month. */
 private int dayOfMonth;
And then there’s this paragon of redundancy:
 /**
 * Returns the day of the month.
 *
 * @return the day of the month.
 */
 public int getDayOfMonth() {
 return dayOfMonth;
 }
These comments are so noisy that we learn to ignore them. As we read through code, our eyes simply skip over them. Eventually the comments begin to lie as the code around them changes.
The first comment in Listing 4-4 seems appropriate.2 It explains why the catch block is being ignored. But the second comment is pure noise. Apparently the programmer was just so frustrated with writing try/catch blocks in this function that he needed to vent.

Listing 4-4 startSending
 private void startSending()
 {
 try
 {
 doSending();
 }
 catch(SocketException e)
 {
 // normal. someone stopped the request.
 }
 catch(Exception e)
 {
 try
 {
 response.add(ErrorResponder.makeExceptionString(e));
 response.closeAll();
 }
 catch(Exception e1)
 {
 //Give me a break!
 }
 }
 }
Rather than venting in a worthless and noisy comment, the programmer should have recognized that his frustration could be resolved by improving the structure of his code. He should have redirected his energy to extracting that last try/catch block into a separate function, as shown in Listing 4-5.

Listing 4-5 startSending (refactored)
 private void startSending()
 {
 try
 {
 doSending();
 }
 catch(SocketException e)
 {
 // normal. someone stopped the request.
 }
 catch(Exception e)
 {
 addExceptionAndCloseResponse(e);
 }
 }

 private void addExceptionAndCloseResponse(Exception e)
 {
 try
 {
 response.add(ErrorResponder.makeExceptionString(e));
 response.closeAll();
 }
 catch(Exception e1)
 {
 }
 }
Replace the temptation to create noise with the determination to clean your code. You’ll find it makes you a better and happier programmer.

Scary Noise
Javadocs can also be noisy. What purpose do the following Javadocs (from a well-known open-source library) serve? Answer: nothing. They are just redundant noisy comments written out of some misplaced desire to provide documentation.
 /** The name. */
 private String name;

 /** The version. */
 private String version;

 /** The licenceName. */
 private String licenceName;

 /** The version. */
 private String info;
Read these comments again more carefully. Do you see the cut-paste error? If authors aren’t paying attention when comments are written (or pasted), why should readers be expected to profit from them?

Don’t Use a Comment When You Can Use a Function or a Variable
Consider the following stretch of code:
 // does the module from the global list <mod> depend on the
 // subsystem we are part of?
 if (smodule.getDependSubsystems().contains(subSysMod.getSubSystem()))
This could be rephrased without the comment as
 ArrayList moduleDependees = smodule.getDependSubsystems();
 String ourSubSystem = subSysMod.getSubSystem();
 if (moduleDependees.contains(ourSubSystem))
The author of the original code may have written the comment first (unlikely) and then written the code to fulfill the comment. However, the author should then have refactored the code, as I did, so that the comment could be removed.

Position Markers
Sometimes programmers like to mark a particular position in a source file. For example, I recently found this in a program I was looking through:
 // Actions //////////////////////////////////
There are rare times when it makes sense to gather certain functions together beneath a banner like this. But in general they are clutter that should be eliminated—especially the noisy train of slashes at the end.
Think of it this way. A banner is startling and obvious if you don’t see banners very often. So use them very sparingly, and only when the benefit is significant. If you overuse banners, they’ll fall into the background noise and be ignored.

Closing Brace Comments
Sometimes programmers will put special comments on closing braces, as in Listing 4-6. Although this might make sense for long functions with deeply nested structures, it serves only to clutter the kind of small and encapsulated functions that we prefer. So if you find yourself wanting to mark your closing braces, try to shorten your functions instead.

Listing 4-6 wc.java
 public class wc {
 public static void main(String[] args) {
 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 String line;
 int lineCount = 0;
 int charCount = 0;
 int wordCount = 0;
 try {
 while ((line = in.readLine()) != null) {
 lineCount++;
 charCount += line.length();
 String words[] = line.split("\\W");
 wordCount += words.length;
 } //while
 System.out.println("wordCount = " + wordCount);
 System.out.println("lineCount = " + lineCount);
 System.out.println("charCount = " + charCount);
 } // try
 catch (IOException e) {
 System.err.println("Error:" + e.getMessage());
 } //catch
 } //main
 }

Attributions and Bylines
 /* Added by Rick */
Source code control systems are very good at remembering who added what, when. There is no need to pollute the code with little bylines. You might think that such comments would be useful in order to help others know who to talk to about the code. But the reality is that they tend to stay around for years and years, getting less and less accurate and relevant.
Again, the source code control system is a better place for this kind of information.

Commented-Out Code
Few practices are as odious as commenting-out code. Don’t do this!
 InputStreamResponse response = new InputStreamResponse();
 response.setBody(formatter.getResultStream(), formatter.getByteCount());
 // InputStream resultsStream = formatter.getResultStream();
 // StreamReader reader = new StreamReader(resultsStream);
 // response.setContent(reader.read(formatter.getByteCount()));
Others who see that commented-out code won’t have the courage to delete it. They’ll think it is there for a reason and is too important to delete. So commented-out code gathers like dregs at the bottom of a bad bottle of wine.
Consider this from apache commons:
 this.bytePos = writeBytes(pngIdBytes, 0);
 //hdrPos = bytePos;
 writeHeader();
 writeResolution();
 //dataPos = bytePos;
 if (writeImageData()) {
 writeEnd();
 this.pngBytes = resizeByteArray(this.pngBytes, this.maxPos);
 }

 else {
 this.pngBytes = null;
 }
 return this.pngBytes;
Why are those two lines of code commented? Are they important? Were they left as reminders for some imminent change? Or are they just cruft that someone commented-out years ago and has simply not bothered to clean up.
There was a time, back in the sixties, when commenting-out code might have been useful. But we’ve had good source code control systems for a very long time now. Those systems will remember the code for us. We don’t have to comment it out any more. Just delete the code. We won’t lose it. Promise.

HTML Comments
HTML in source code comments is an abomination, as you can tell by reading the code below. It makes the comments hard to read in the one place where they should be easy to read—the editor/IDE. If comments are going to be extracted by some tool (like Javadoc) to appear in a Web page, then it should be the responsibility of that tool, and not the programmer, to adorn the comments with appropriate HTML.
 /**
 * Task to run fit tests.
 * This task runs fitnesse tests and publishes the results.
 * <p/>
 * <pre>
 * Usage:
 * <taskdef name="execute-fitnesse-tests"
 * classname="fitnesse.ant.ExecuteFitnesseTestsTask"
 * classpathref="classpath" />
 * OR
 * <taskdef classpathref="classpath"
 * resource="tasks.properties" />
 * <p/>
 * <execute-fitnesse-tests
 * suitepage="FitNesse.SuiteAcceptanceTests"
 * fitnesseport="8082"
 * resultsdir="${results.dir}"
 * resultshtmlpage="fit-results.html"
 * classpathref="classpath" />
 * </pre>
 */

Nonlocal Information
If you must write a comment, then make sure it describes the code it appears near. Don’t offer systemwide information in the context of a local comment. Consider, for example, the javadoc comment below. Aside from the fact that it is horribly redundant, it also offers information about the default port. And yet the function has absolutely no control over what that default is. The comment is not describing the function, but some other, far distant part of the system. Of course there is no guarantee that this comment will be changed when the code containing the default is changed.
 /**
 * Port on which fitnesse would run. Defaults to 8082.
 *
 * @param fitnessePort
 */
 public void setFitnessePort(int fitnessePort)
 {
 this.fitnessePort = fitnessePort;
 }

Too Much Information
Don’t put interesting historical discussions or irrelevant descriptions of details into your comments. The comment below was extracted from a module designed to test that a function could encode and decode base64. Other than the RFC number, someone reading this code has no need for the arcane information contained in the comment.
 /*
 RFC 2045 - Multipurpose Internet Mail Extensions (MIME)
 Part One: Format of Internet Message Bodies
 section 6.8. Base64 Content-Transfer-Encoding
 The encoding process represents 24-bit groups of input bits as output
 strings of 4 encoded characters. Proceeding from left to right, a
 24-bit input group is formed by concatenating 3 8-bit input groups.
 These 24 bits are then treated as 4 concatenated 6-bit groups, each
 of which is translated into a single digit in the base64 alphabet.
 When encoding a bit stream via the base64 encoding, the bit stream
 must be presumed to be ordered with the most-significant-bit first.
 That is, the first bit in the stream will be the high-order bit in
 the first 8-bit byte, and the eighth bit will be the low-order bit in
 the first 8-bit byte, and so on.
 */

Inobvious Connection
The connection between a comment and the code it describes should be obvious. If you are going to the trouble to write a comment, then at least you’d like the reader to be able to look at the comment and the code and understand what the comment is talking about.
Consider, for example, this comment drawn from apache commons:
 /*
 * start with an array that is big enough to hold all the pixels
 * (plus filter bytes), and an extra 200 bytes for header info
 */
 this.pngBytes = new byte[((this.width + 1) * this.height * 3) + 200];
What is a filter byte? Does it relate to the +1? Or to the *3? Both? Is a pixel a byte? Why 200? The purpose of a comment is to explain code that does not explain itself. It is a pity when a comment needs its own explanation.

Function Headers
Short functions don’t need much description. A well-chosen name for a small function that does one thing is usually better than a comment header.

Javadocs in Nonpublic Code
As useful as javadocs are for public APIs, they are anathema to code that is not intended for public consumption. Generating javadoc pages for the classes and functions inside a system is not generally useful, and the extra formality of the javadoc comments amounts to little more than cruft and distraction.

Example
I wrote the module in Listing 4-7 for the first XP Immersion. It was intended to be an example of bad coding and commenting style. Kent Beck then refactored this code into a much more pleasant form in front of several dozen enthusiastic students. Later I adapted the example for my book Agile Software Development, Principles, Patterns, and Practices and the first of my Craftsman articles published in Software Development magazine.
What I find fascinating about this module is that there was a time when many of us would have considered it “well documented.” Now we see it as a small mess. See how many different comment problems you can find.

Listing 4-7 GeneratePrimes.java
 /**
 * This class Generates prime numbers up to a user specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * <p>
 * Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
 * d. c. 194, Alexandria. The first man to calculate the
 * circumference of the Earth. Also known for working on
 * calendars with leap years and ran the library at Alexandria.
 * <p>
 * The algorithm is quite simple. Given an array of integers
 * starting at 2. Cross out all multiples of 2. Find the next
 * uncrossed integer, and cross out all of its multiples.
 * Repeat untilyou have passed the square root of the maximum
 * value.
 *
 * @author Alphonse
 * @version 13 Feb 2002 atp
 */
 import java.util.*;

 public class GeneratePrimes
 {
 /**
 * @param maxValue is the generation limit.
 */
 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue >= 2) // the only valid case
 {
 // declarations
 int s = maxValue + 1; // size of array
 boolean[] f = new boolean[s];
 int i;
 // initialize array to true.
 for (i = 0; i < s; i++)
 f[i] = true;

 // get rid of known non-primes
 f[0] = f[1] = false;

 // sieve
 int j;
 for (i = 2; i < Math.sqrt(s) + 1; i++)
 {
 if (f[i]) // if i is uncrossed, cross its multiples.
 {
 for (j = 2 * i; j < s; j += i)
 f[j] = false; // multiple is not prime
 }
 }

 // how many primes are there?
 int count = 0;
 for (i = 0; i < s; i++)
 {
 if (f[i])
 count++; // bump count.
 }

 int[] primes = new int[count];

 // move the primes into the result
 for (i = 0, j = 0; i < s; i++)
 {
 if (f[i]) // if prime
 primes[j++] = i;
 }

 return primes; // return the primes
 }
 else // maxValue < 2
 return new int[0]; // return null array if bad input.
 }
 }
In Listing 4-8 you can see a refactored version of the same module. Note that the use of comments is significantly restrained. There are just two comments in the whole module. Both comments are explanatory in nature.

Listing 4-8 PrimeGenerator.java (refactored)
 /**
 * This class Generates prime numbers up to a user specified
 * maximum. The algorithm used is the Sieve of Eratosthenes.
 * Given an array of integers starting at 2:
 * Find the first uncrossed integer, and cross out all its
 * multiples. Repeat until there are no more multiples
 * in the array.
 */

 public class PrimeGenerator
 {
 private static boolean[] crossedOut;
 private static int[] result;

 public static int[] generatePrimes(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 uncrossIntegersUpTo(maxValue);
 crossOutMultiples();
 putUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void uncrossIntegersUpTo(int maxValue)
 {
 crossedOut = new boolean[maxValue + 1];
 for (int i = 2; i < crossedOut.length; i++)
 crossedOut[i] = false;
 }

 private static void crossOutMultiples()
 {
 int limit = determineIterationLimit();
 for (int i = 2; i <= limit; i++)
 if (notCrossed(i))
 crossOutMultiplesOf(i);
 }

 private static int determineIterationLimit()
 {
 // Every multiple in the array has a prime factor that
 // is less than or equal to the root of the array size,
 // so we don’t have to cross out multiples of numbers
 // larger than that root.
 double iterationLimit = Math.sqrt(crossedOut.length);
 return (int) iterationLimit;
 }

 private static void crossOutMultiplesOf(int i)
 {
 for (int multiple = 2*i;
 multiple < crossedOut.length;
 multiple += i)
 crossedOut[multiple] = true;
 }

 private static boolean notCrossed(int i)
 {
 return crossedOut[i] == false;
 }

 private static void putUncrossedIntegersIntoResult()
 {
 result = new int[numberOfUncrossedIntegers()];
 for (int j = 0, i = 2; i < crossedOut.length; i++)
 if (notCrossed(i))
 result[j++] = i;
 }

 private static int numberOfUncrossedIntegers()
 {
 int count = 0;
 for (int i = 2; i < crossedOut.length; i++)
 if (notCrossed(i))
 count++;

 return count;
 }
 }
It is easy to argue that the first comment is redundant because it reads very much like the generatePrimes function itself. Still, I think the comment serves to ease the reader into the algorithm, so I’m inclined to leave it.
The second argument is almost certainly necessary. It explains the rationale behind the use of the square root as the loop limit. I could find no simple variable name, nor any different coding structure that made this point clear. On the other hand, the use of the square root might be a conceit. Am I really saving that much time by limiting the iteration to the square root? Could the calculation of the square root take more time than I’m saving?
It’s worth thinking about. Using the square root as the iteration limit satisfies the old C and assembly language hacker in me, but I’m not convinced it’s worth the time and effort that everyone else will expend to understand it.

Bibliography

[KP78]: Kernighan and Plaugher, The Elements of Programming Style, 2d. ed., McGraw-Hill, 1978.

5 Formatting

When people look under the hood, we want them to be impressed with the neatness, consistency, and attention to detail that they perceive. We want them to be struck by the orderliness. We want their eyebrows to rise as they scroll through the modules. We want them to perceive that professionals have been at work. If instead they see a scrambled mass of code that looks like it was written by a bevy of drunken sailors, then they are likely to conclude that the same inattention to detail pervades every other aspect of the project.
You should take care that your code is nicely formatted. You should choose a set of simple rules that govern the format of your code, and then you should consistently apply those rules. If you are working on a team, then the team should agree to a single set of formatting rules and all members should comply. It helps to have an automated tool that can apply those formatting rules for you.

The Purpose of Formatting
First of all, let’s be clear. Code formatting is important. It is too important to ignore and it is too important to treat religiously. Code formatting is about communication, and communication is the professional developer’s first order of business.
Perhaps you thought that “getting it working” was the first order of business for a professional developer. I hope by now, however, that this book has disabused you of that idea. The functionality that you create today has a good chance of changing in the next release, but the readability of your code will have a profound effect on all the changes that will ever be made. The coding style and readability set precedents that continue to affect maintainability and extensibility long after the original code has been changed beyond recognition. Your style and discipline survives, even though your code does not.
So what are the formatting issues that help us to communicate best?

Vertical Formatting
Let’s start with vertical size. How big should a source file be? In Java, file size is closely related to class size. We’ll talk about class size when we talk about classes. For the moment let’s just consider file size.
How big are most Java source files? It turns out that there is a huge range of sizes and some remarkable differences in style. Figure 5-1 shows some of those differences.
Seven different projects are depicted. Junit, FitNesse, testNG, Time and Money, JDepend, Ant, and Tomcat. The lines through the boxes show the minimum and maximum file lengths in each project. The box shows approximately one-third (one standard deviation1) of the files. The middle of the box is the mean. So the average file size in the FitNesse project is about 65 lines, and about one-third of the files are between 40 and 100+ lines. The largest file in FitNesse is about 400 lines and the smallest is 6 lines. Note that this is a log scale, so the small difference in vertical position implies a very large difference in absolute size.

Figure 5-1 File length distributions LOG scale (box height = sigma)

Junit, FitNesse, and Time and Money are composed of relatively small files. None are over 500 lines and most of those files are less than 200 lines. Tomcat and Ant, on the other hand, have some files that are several thousand lines long and close to half are over 200 lines.
What does that mean to us? It appears to be possible to build significant systems (FitNesse is close to 50,000 lines) out of files that are typically 200 lines long, with an upper limit of 500. Although this should not be a hard and fast rule, it should be considered very desirable. Small files are usually easier to understand than large files are.

The Newspaper Metaphor
Think of a well-written newspaper article. You read it vertically. At the top you expect a headline that will tell you what the story is about and allows you to decide whether it is something you want to read. The first paragraph gives you a synopsis of the whole story, hiding all the details while giving you the broad-brush concepts. As you continue downward, the details increase until you have all the dates, names, quotes, claims, and other minutia.
We would like a source file to be like a newspaper article. The name should be simple but explanatory. The name, by itself, should be sufficient to tell us whether we are in the right module or not. The topmost parts of the source file should provide the high-level concepts and algorithms. Detail should increase as we move downward, until at the end we find the lowest level functions and details in the source file.
A newspaper is composed of many articles; most are very small. Some are a bit larger. Very few contain as much text as a page can hold. This makes the newspaper usable. If the newspaper were just one long story containing a disorganized agglomeration of facts, dates, and names, then we simply would not read it.

Vertical Openness Between Concepts
Nearly all code is read left to right and top to bottom. Each line represents an expression or a clause, and each group of lines represents a complete thought. Those thoughts should be separated from each other with blank lines.
Consider, for example, Listing 5-1. There are blank lines that separate the package declaration, the import(s), and each of the functions. This extremely simple rule has a profound effect on the visual layout of the code. Each blank line is a visual cue that identifies a new and separate concept. As you scan down the listing, your eye is drawn to the first line that follows a blank line.

Listing 5-1
BoldWidget.java
 package fitnesse.wikitext.widgets;

 import java.util.regex.*;

 public class BoldWidget extends ParentWidget {
 public static final String REGEXP = “’’’.+?’’’”;
 private static final Pattern pattern = Pattern.compile(“’’’(.+?)’’’”,
 Pattern.MULTILINE + Pattern.DOTALL
);

 public BoldWidget(ParentWidget parent, String text) throws Exception {
 super(parent);
 Matcher match = pattern.matcher(text);
 match.find();
 addChildWidgets(match.group(1));
 }

 public String render() throws Exception {
 StringBuffer html = new StringBuffer(“”);
 html.append(childHtml()).append(“”);
 return html.toString();
 }

 }
Taking those blank lines out, as in Listing 5-2, has a remarkably obscuring effect on the readability of the code.

Listing 5-2
BoldWidget.java
 package fitnesse.wikitext.widgets;
 import java.util.regex.*;
 public class BoldWidget extends ParentWidget {
 public static final String REGEXP = “’’’.+?’’’”;
 private static final Pattern pattern = Pattern.compile(“’’’(.+?)’’’”,
 Pattern.MULTILINE + Pattern.DOTALL);
 public BoldWidget(ParentWidget parent, String text) throws Exception {
 super(parent);
 Matcher match = pattern.matcher(text);
 match.find();
 addChildWidgets(match.group(1));}
 public String render() throws Exception {
 StringBuffer html = new StringBuffer(“”);
 html.append(childHtml()).append(“”);
 return html.toString();
 }
 }
This effect is even more pronounced when you unfocus your eyes. In the first example the different groupings of lines pop out at you, whereas the second example looks like a muddle. The difference between these two listings is a bit of vertical openness.

Vertical Density
If openness separates concepts, then vertical density implies close association. So lines of code that are tightly related should appear vertically dense. Notice how the useless comments in Listing 5-3 break the close association of the two instance variables.

Listing 5-3
 public class ReporterConfig {

 /**
 * The class name of the reporter listener
 */
 private String m_className;

 /**
 * The properties of the reporter listener
 */
 private List<Property> m_properties = new ArrayList<Property>();

 public void addProperty(Property property) {
 m_properties.add(property);
 }
Listing 5-4 is much easier to read. It fits in an “eye-full,” or at least it does for me. I can look at it and see that this is a class with two variables and a method, without having to move my head or eyes much. The previous listing forces me to use much more eye and head motion to achieve the same level of comprehension.

Listing 5-4
 public class ReporterConfig {
 private String m_className;
 private List<Property> m_properties = new ArrayList<Property>();

 public void addProperty(Property property) {
 m_properties.add(property);
 }

Vertical Distance
Have you ever chased your tail through a class, hopping from one function to the next, scrolling up and down the source file, trying to divine how the functions relate and operate, only to get lost in a rat’s nest of confusion? Have you ever hunted up the chain of inheritance for the definition of a variable or function? This is frustrating because you are trying to understand what the system does, but you are spending your time and mental energy on trying to locate and remember where the pieces are.
Concepts that are closely related should be kept vertically close to each other [G10]. Clearly this rule doesn’t work for concepts that belong in separate files. But then closely related concepts should not be separated into different files unless you have a very good reason. Indeed, this is one of the reasons that protected variables should be avoided.
For those concepts that are so closely related that they belong in the same source file, their vertical separation should be a measure of how important each is to the understandability of the other. We want to avoid forcing our readers to hop around through our source files and classes.
Variable Declarations. Variables should be declared as close to their usage as possible. Because our functions are very short, local variables should appear a the top of each function, as in this longish function from Junit4.3.1.
 private static void readPreferences() {
 InputStream is= null;
 try {
 is= new FileInputStream(getPreferencesFile());
 setPreferences(new Properties(getPreferences()));
 getPreferences().load(is);
 } catch (IOException e) {
 try {
 if (is != null)
 is.close();
 } catch (IOException e1) {
 }
 }
 }
Control variables for loops should usually be declared within the loop statement, as in this cute little function from the same source.
 public int countTestCases() {
 int count= 0;
 for (Test each : tests)
 count += each.countTestCases();
 return count;
 }
In rare cases a variable might be declared at the top of a block or just before a loop in a long-ish function. You can see such a variable in this snippet from the midst of a very long function in TestNG.
 …
 for (XmlTest test : m_suite.getTests()) {
 TestRunner tr = m_runnerFactory.newTestRunner(this, test);
 tr.addListener(m_textReporter);
 m_testRunners.add(tr);

 invoker = tr.getInvoker();

 for (ITestNGMethod m : tr.getBeforeSuiteMethods()) {
 beforeSuiteMethods.put(m.getMethod(), m);
 }

 for (ITestNGMethod m : tr.getAfterSuiteMethods()) {
 afterSuiteMethods.put(m.getMethod(), m);
 }
 }
 …

Instance variables, on the other hand, should be declared at the top of the class. This should not increase the vertical distance of these variables, because in a well-designed class, they are used by many, if not all, of the methods of the class.
There have been many debates over where instance variables should go. In C++ we commonly practiced the so-called scissors rule, which put all the instance variables at the bottom. The common convention in Java, however, is to put them all at the top of the class. I see no reason to follow any other convention. The important thing is for the instance variables to be declared in one well-known place. Everybody should know where to go to see the declarations.
Consider, for example, the strange case of the TestSuite class in JUnit 4.3.1. I have greatly attenuated this class to make the point. If you look about halfway down the listing, you will see two instance variables declared there. It would be hard to hide them in a better place. Someone reading this code would have to stumble across the declarations by accident (as I did).
 public class TestSuite implements Test {
 static public Test createTest(Class<? extends TestCase> theClass,
 String name) {
 …
 }

 public static Constructor<? extends TestCase>
 getTestConstructor(Class<? extends TestCase> theClass)
 throws NoSuchMethodException {
 …
 }

 public static Test warning(final String message) {
 …
 }

 private static String exceptionToString(Throwable t) {
 …
 }

 private String fName;

 private Vector<Test> fTests= new Vector<Test>(10);

 public TestSuite() {
 }

 public TestSuite(final Class<? extends TestCase> theClass) {
 …
 }

 public TestSuite(Class<? extends TestCase> theClass, String name) {
 …
 }
 … … … … …
 }
Dependent Functions. If one function calls another, they should be vertically close, and the caller should be above the callee, if at all possible. This gives the program a natural flow. If the convention is followed reliably, readers will be able to trust that function definitions will follow shortly after their use. Consider, for example, the snippet from FitNesse in Listing 5-5. Notice how the topmost function calls those below it and how they in turn call those below them. This makes it easy to find the called functions and greatly enhances the readability of the whole module.

Listing 5-5
WikiPageResponder.java
 public class WikiPageResponder implements SecureResponder {
 protected WikiPage page;
 protected PageData pageData;
 protected String pageTitle;
 protected Request request;
 protected PageCrawler crawler;

 public Response makeResponse(FitNesseContext context, Request request)
 throws Exception {
 String pageName = getPageNameOrDefault(request, “FrontPage”);
 loadPage(pageName, context);
 if (page == null)
 return notFoundResponse(context, request);
 else
 return makePageResponse(context);
 }

 private String getPageNameOrDefault(Request request, String defaultPageName)
 {
 String pageName = request.getResource();
 if (StringUtil.isBlank(pageName))
 pageName = defaultPageName;

 return pageName;
 }

 protected void loadPage(String resource, FitNesseContext context)
 throws Exception {
 WikiPagePath path = PathParser.parse(resource);
 crawler = context.root.getPageCrawler();
 crawler.setDeadEndStrategy(new VirtualEnabledPageCrawler());
 page = crawler.getPage(context.root, path);
 if (page != null)
 pageData = page.getData();
 }

 private Response notFoundResponse(FitNesseContext context, Request request)
 throws Exception {
 return new NotFoundResponder().makeResponse(context, request);
 }

 private SimpleResponse makePageResponse(FitNesseContext context)
 throws Exception {
 pageTitle = PathParser.render(crawler.getFullPath(page));
 String html = makeHtml(context);

 SimpleResponse response = new SimpleResponse();
 response.setMaxAge(0);
 response.setContent(html);
 return response;
 }
 …
As an aside, this snippet provides a nice example of keeping constants at the appropriate level [G35]. The “FrontPage” constant could have been buried in the getPageNameOrDefault function, but that would have hidden a well-known and expected constant in an inappropriately low-level function. It was better to pass that constant down from the place where it makes sense to know it to the place that actually uses it.
Conceptual Affinity. Certain bits of code want to be near other bits. They have a certain conceptual affinity. The stronger that affinity, the less vertical distance there should be between them.
As we have seen, this affinity might be based on a direct dependence, such as one function calling another, or a function using a variable. But there are other possible causes of affinity. Affinity might be caused because a group of functions perform a similar operation. Consider this snippet of code from Junit 4.3.1:

 public class Assert {
 static public void assertTrue(String message, boolean condition) {
 if (!condition)
 fail(message);
 }

 static public void assertTrue(boolean condition) {
 assertTrue(null, condition);
 }

 static public void assertFalse(String message, boolean condition) {
 assertTrue(message, !condition);
 }

 static public void assertFalse(boolean condition) {
 assertFalse(null, condition);
 }
 …
These functions have a strong conceptual affinity because they share a common naming scheme and perform variations of the same basic task. The fact that they call each other is secondary. Even if they didn’t, they would still want to be close together.

Vertical Ordering
In general we want function call dependencies to point in the downward direction. That is, a function that is called should be below a function that does the calling.2 This creates a nice flow down the source code module from high level to low level.
As in newspaper articles, we expect the most important concepts to come first, and we expect them to be expressed with the least amount of polluting detail. We expect the low-level details to come last. This allows us to skim source files, getting the gist from the first few functions, without having to immerse ourselves in the details. Listing 5-5 is organized this way. Perhaps even better examples are Listing 15-5 on page 263, and Listing 3-7 on page 50.

Horizontal Formatting
How wide should a line be? To answer that, let’s look at how wide lines are in typical programs. Again, we examine the seven different projects. Figure 5-2 shows the distribution of line lengths of all seven projects. The regularity is impressive, especially right around 45 characters. Indeed, every size from 20 to 60 represents about 1 percent of the total number of lines. That’s 40 percent! Perhaps another 30 percent are less than 10 characters wide. Remember this is a log scale, so the linear appearance of the drop-off above 80 characters is really very significant. Programmers clearly prefer short lines.

Figure 5-2 Java line width distribution

This suggests that we should strive to keep our lines short. The old Hollerith limit of 80 is a bit arbitrary, and I’m not opposed to lines edging out to 100 or even 120. But beyond that is probably just careless.
I used to follow the rule that you should never have to scroll to the right. But monitors are too wide for that nowadays, and younger programmers can shrink the font so small that they can get 200 characters across the screen. Don’t do that. I personally set my limit at 120.

Horizontal Openness and Density
We use horizontal white space to associate things that are strongly related and disassociate things that are more weakly related. Consider the following function:
 private void measureLine(String line) {
 lineCount++;
 int lineSize = line.length();
 totalChars += lineSize;
 lineWidthHistogram.addLine(lineSize, lineCount);
 recordWidestLine(lineSize);
 }
I surrounded the assignment operators with white space to accentuate them. Assignment statements have two distinct and major elements: the left side and the right side. The spaces make that separation obvious.
On the other hand, I didn’t put spaces between the function names and the opening parenthesis. This is because the function and its arguments are closely related. Separating them makes them appear disjoined instead of conjoined. I separate arguments within the function call parenthesis to accentuate the comma and show that the arguments are separate.
Another use for white space is to accentuate the precedence of operators.
 public class Quadratic {
 public static double root1(double a, double b, double c) {
 double determinant = determinant(a, b, c);
 return (-b + Math.sqrt(determinant)) / (2*a);
 }

 public static double root2(int a, int b, int c) {
 double determinant = determinant(a, b, c);
 return (-b - Math.sqrt(determinant)) / (2*a);
 }

 private static double determinant(double a, double b, double c) {
 return b*b - 4*a*c;
 }
 }
Notice how nicely the equations read. The factors have no white space between them because they are high precedence. The terms are separated by white space because addition and subtraction are lower precedence.
Unfortunately, most tools for reformatting code are blind to the precedence of operators and impose the same spacing throughout. So subtle spacings like those shown above tend to get lost after you reformat the code.

Horizontal Alignment
When I was an assembly language programmer,3 I used horizontal alignment to accentuate certain structures. When I started coding in C, C++, and eventually Java, I continued to try to line up all the variable names in a set of declarations, or all the rvalues in a set of assignment statements. My code might have looked like this:
 public class FitNesseExpediter implements ResponseSender
 {
 private Socket socket;
 private InputStream input;
 private OutputStream output;
 private Request request;
 private Response response;
 private FitNesseContext context;
 protected long requestParsingTimeLimit;
 private long requestProgress;
 private long requestParsingDeadline;
 private boolean hasError;

 public FitNesseExpediter(Socket s,
 FitNesseContext context) throws Exception
 {
 this.context = context;
 socket = s;
 input = s.getInputStream();
 output = s.getOutputStream();
 requestParsingTimeLimit = 10000;
 }
I have found, however, that this kind of alignment is not useful. The alignment seems to emphasize the wrong things and leads my eye away from the true intent. For example, in the list of declarations above you are tempted to read down the list of variable names without looking at their types. Likewise, in the list of assignment statements you are tempted to look down the list of rvalues without ever seeing the assignment operator. To make matters worse, automatic reformatting tools usually eliminate this kind of alignment.
So, in the end, I don’t do this kind of thing anymore. Nowadays I prefer unaligned declarations and assignments, as shown below, because they point out an important deficiency. If I have long lists that need to be aligned, the problem is the length of the lists, not the lack of alignment. The length of the list of declarations in FitNesseExpediter below suggests that this class should be split up.
 public class FitNesseExpediter implements ResponseSender
 {
 private Socket socket;
 private InputStream input;
 private OutputStream output;
 private Request request;

 private Response response;
 private FitNesseContext context;
 protected long requestParsingTimeLimit;
 private long requestProgress;
 private long requestParsingDeadline;
 private boolean hasError;

 public FitNesseExpediter(Socket s, FitNesseContext context) throws Exception
 {
 this.context = context;
 socket = s;
 input = s.getInputStream();
 output = s.getOutputStream();
 requestParsingTimeLimit = 10000;
 }

Indentation
A source file is a hierarchy rather like an outline. There is information that pertains to the file as a whole, to the individual classes within the file, to the methods within the classes, to the blocks within the methods, and recursively to the blocks within the blocks. Each level of this hierarchy is a scope into which names can be declared and in which declarations and executable statements are interpreted.
To make this hierarchy of scopes visible, we indent the lines of source code in proportion to their position in the hiearchy. Statements at the level of the file, such as most class declarations, are not indented at all. Methods within a class are indented one level to the right of the class. Implementations of those methods are implemented one level to the right of the method declaration. Block implementations are implemented one level to the right of their containing block, and so on.
Programmers rely heavily on this indentation scheme. They visually line up lines on the left to see what scope they appear in. This allows them to quickly hop over scopes, such as implementations of if or while statements, that are not relevant to their current situation. They scan the left for new method declarations, new variables, and even new classes. Without indentation, programs would be virtually unreadable by humans.
Consider the following programs that are syntactically and semantically identical:
 public class FitNesseServer implements SocketServer { private FitNesseContext
 context; public FitNesseServer(FitNesseContext context) { this.context =
 context; } public void serve(Socket s) { serve(s, 10000); } public void
 serve(Socket s, long requestTimeout) { try { FitNesseExpediter sender = new
 FitNesseExpediter(s, context);
 sender.setRequestParsingTimeLimit(requestTimeout); sender.start(); }
 catch(Exception e) { e.printStackTrace(); } } }

 public class FitNesseServer implements SocketServer {
 private FitNesseContext context;

 public FitNesseServer(FitNesseContext context) {
 this.context = context;
 }

 public void serve(Socket s) {
 serve(s, 10000);
 }

 public void serve(Socket s, long requestTimeout) {
 try {
 FitNesseExpediter sender = new FitNesseExpediter(s, context);
 sender.setRequestParsingTimeLimit(requestTimeout);
 sender.start();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}
Your eye can rapidly discern the structure of the indented file. You can almost instantly spot the variables, constructors, accessors, and methods. It takes just a few seconds to realize that this is some kind of simple front end to a socket, with a time-out. The unindented version, however, is virtually impenetrable without intense study.
Breaking Indentation. It is sometimes tempting to break the indentation rule for short if statements, short while loops, or short functions. Whenever I have succumbed to this temptation, I have almost always gone back and put the indentation back in. So I avoid collapsing scopes down to one line like this:
 public class CommentWidget extends TextWidget
 {
 public static final String REGEXP = “^#[^\r\n]*(?:(?:\r\n)|\n|\r)?”;

 public CommentWidget(ParentWidget parent, String text){super(parent, text);}
 public String render() throws Exception {return “”; }
 }
I prefer to expand and indent the scopes instead, like this:
 public class CommentWidget extends TextWidget {
 public static final String REGEXP = “^#[^\r\n]*(?:(?:\r\n)|\n|\r)?”

 public CommentWidget(ParentWidget parent, String text) {
 super(parent, text);
 }

 public String render() throws Exception {
 return “”;
 }
 }

Dummy Scopes
Sometimes the body of a while or for statement is a dummy, as shown below. I don’t like these kinds of structures and try to avoid them. When I can’t avoid them, I make sure that the dummy body is properly indented and surrounded by braces. I can’t tell you how many times I’ve been fooled by a semicolon silently sitting at the end of a while loop on the same line. Unless you make that semicolon visible by indenting it on it’s own line, it’s just too hard to see.
 while (dis.read(buf, 0, readBufferSize) != -1) ;

Team Rules
The title of this section is a play on words. Every programmer has his own favorite formatting rules, but if he works in a team, then the team rules.
A team of developers should agree upon a single formatting style, and then every member of that team should use that style. We want the software to have a consistent style. We don’t want it to appear to have been written by a bunch of disagreeing individuals.

When I started the FitNesse project back in 2002, I sat down with the team to work out a coding style. This took about 10 minutes. We decided where we’d put our braces, what our indent size would be, how we would name classes, variables, and methods, and so forth. Then we encoded those rules into the code formatter of our IDE and have stuck with them ever since. These were not the rules that I prefer; they were rules decided by the team. As a member of that team I followed them when writing code in the FitNesse project.
Remember, a good software system is composed of a set of documents that read nicely. They need to have a consistent and smooth style. The reader needs to be able to trust that the formatting gestures he or she has seen in one source file will mean the same thing in others. The last thing we want to do is add more complexity to the source code by writing it in a jumble of different individual styles.

Uncle Bob’s Formatting Rules
The rules I use personally are very simple and are illustrated by the code in Listing 5-6. Consider this an example of how code makes the best coding standard document.

Listing 5-6
CodeAnalyzer.java
 public int getWidestLineNumber() {
 return widestLineNumber;
 }

 public LineWidthHistogram getLineWidthHistogram() {
 return lineWidthHistogram;
 }

 public double getMeanLineWidth() {
 return (double)totalChars/lineCount;
 }

 public int getMedianLineWidth() {
 Integer[] sortedWidths = getSortedWidths();
 int cumulativeLineCount = 0;
 for (int width : sortedWidths) {
 cumulativeLineCount += lineCountForWidth(width);
 if (cumulativeLineCount > lineCount/2)
 return width;
 }
 throw new Error(“Cannot get here”);
 }

 private int lineCountForWidth(int width) {
 return lineWidthHistogram.getLinesforWidth(width).size();
 }

 private Integer[] getSortedWidths() {
 Set<Integer> widths = lineWidthHistogram.getWidths();
 Integer[] sortedWidths = (widths.toArray(new Integer[0]));
 Arrays.sort(sortedWidths);
 return sortedWidths;
 }
 }

6 Objects and Data Structures

There is a reason that we keep our variables private. We don’t want anyone else to depend on them. We want to keep the freedom to change their type or implementation on a whim or an impulse. Why, then, do so many programmers automatically add getters and setters to their objects, exposing their private variables as if they were public?

Data Abstraction
Consider the difference between Listing 6-1 and Listing 6-2. Both represent the data of a point on the Cartesian plane. And yet one exposes its implementation and the other completely hides it.

Listing 6-1
Concrete Point
 public class Point {
 public double x;
 public double y;
 }

Listing 6-2
Abstract Point
 public interface Point {
 double getX();
 double getY();
 void setCartesian(double x, double y);
 double getR();
 double getTheta();
 void setPolar(double r, double theta);
 }
The beautiful thing about Listing 6-2 is that there is no way you can tell whether the implementation is in rectangular or polar coordinates. It might be neither! And yet the interface still unmistakably represents a data structure.
But it represents more than just a data structure. The methods enforce an access policy. You can read the individual coordinates independently, but you must set the coordinates together as an atomic operation.
Listing 6-1, on the other hand, is very clearly implemented in rectangular coordinates, and it forces us to manipulate those coordinates independently. This exposes implementation. Indeed, it would expose implementation even if the variables were private and we were using single variable getters and setters.
Hiding implementation is not just a matter of putting a layer of functions between the variables. Hiding implementation is about abstractions! A class does not simply push its variables out through getters and setters. Rather it exposes abstract interfaces that allow its users to manipulate the essence of the data, without having to know its implementation.
Consider Listing 6-3 and Listing 6-4. The first uses concrete terms to communicate the fuel level of a vehicle, whereas the second does so with the abstraction of percentage. In the concrete case you can be pretty sure that these are just accessors of variables. In the abstract case you have no clue at all about the form of the data.

Listing 6-3
Concrete Vehicle
 public interface Vehicle {
 double getFuelTankCapacityInGallons();
 double getGallonsOfGasoline();
 }

Listing 6-4
Abstract Vehicle
 public interface Vehicle {
 double getPercentFuelRemaining();
 }
In both of the above cases the second option is preferable. We do not want to expose the details of our data. Rather we want to express our data in abstract terms. This is not merely accomplished by using interfaces and/or getters and setters. Serious thought needs to be put into the best way to represent the data that an object contains. The worst option is to blithely add getters and setters.

Data/Object Anti-Symmetry
These two examples show the difference between objects and data structures. Objects hide their data behind abstractions and expose functions that operate on that data. Data structure expose their data and have no meaningful functions. Go back and read that again. Notice the complimentary nature of the two definitions. They are virtual opposites. This difference may seem trivial, but it has far-reaching implications.
Consider, for example, the procedural shape example in Listing 6-5. The Geometry class operates on the three shape classes. The shape classes are simple data structures without any behavior. All the behavior is in the Geometry class.

Listing 6-5
Procedural Shape
 public class Square {
 public Point topLeft;
 public double side;
 }

 public class Rectangle {
 public Point topLeft;
 public double height;
 public double width;
 }

 public class Circle {
 public Point center;
 public double radius;
 }

 public class Geometry {
 public final double PI = 3.141592653589793;

 public double area(Object shape) throws NoSuchShapeException
 {
 if (shape instanceof Square) {
 Square s = (Square)shape;
 return s.side * s.side;
 }

 else if (shape instanceof Rectangle) {
 Rectangle r = (Rectangle)shape;
 return r.height * r.width;
 }
 else if (shape instanceof Circle) {
 Circle c = (Circle)shape;
 return PI * c.radius * c.radius;
 }
 throw new NoSuchShapeException();
 }
 }
Object-oriented programmers might wrinkle their noses at this and complain that it is procedural—and they’d be right. But the sneer may not be warranted. Consider what would happen if a perimeter() function were added to Geometry. The shape classes would be unaffected! Any other classes that depended upon the shapes would also be unaffected! On the other hand, if I add a new shape, I must change all the functions in Geometry to deal with it. Again, read that over. Notice that the two conditions are diametrically opposed.
Now consider the object-oriented solution in Listing 6-6. Here the area() method is polymorphic. No Geometry class is necessary. So if I add a new shape, none of the existing functions are affected, but if I add a new function all of the shapes must be changed!1

Listing 6-6
Polymorphic Shapes
 public class Square implements Shape {
 private Point topLeft;
 private double side;

 public double area() {
 return side*side;
 }
 }

 public class Rectangle implements Shape {
 private Point topLeft;
 private double height;
 private double width;

 public double area() {
 return height * width;
 }
 }

 public class Circle implements Shape {
 private Point center;
 private double radius;
 public final double PI = 3.141592653589793;

 public double area() {
 return PI * radius * radius;
 }
 }
Again, we see the complimentary nature of these two definitions; they are virtual opposites! This exposes the fundamental dichotomy between objects and data structures:
Procedural code (code using data structures) makes it easy to add new functions without changing the existing data structures. OO code, on the other hand, makes it easy to add new classes without changing existing functions.

The complement is also true:
Procedural code makes it hard to add new data structures because all the functions must change. OO code makes it hard to add new functions because all the classes must change.

So, the things that are hard for OO are easy for procedures, and the things that are hard for procedures are easy for OO!
In any complex system there are going to be times when we want to add new data types rather than new functions. For these cases objects and OO are most appropriate. On the other hand, there will also be times when we’ll want to add new functions as opposed to data types. In that case procedural code and data structures will be more appropriate.
Mature programmers know that the idea that everything is an object is a myth. Sometimes you really do want simple data structures with procedures operating on them.

The Law of Demeter
There is a well-known heuristic called the Law of Demeter2 that says a module should not know about the innards of the objects it manipulates. As we saw in the last section, objects hide their data and expose operations. This means that an object should not expose its internal structure through accessors because to do so is to expose, rather than to hide, its internal structure.
More precisely, the Law of Demeter says that a method f of a class C should only call the methods of these:
• C

• An object created by f

• An object passed as an argument to f

• An object held in an instance variable of C

The method should not invoke methods on objects that are returned by any of the allowed functions. In other words, talk to friends, not to strangers.
The following code3 appears to violate the Law of Demeter (among other things) because it calls the getScratchDir() function on the return value of getOptions() and then calls getAbsolutePath() on the return value of getScratchDir().
 final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

Train Wrecks
This kind of code is often called a train wreck because it look like a bunch of coupled train cars. Chains of calls like this are generally considered to be sloppy style and should be avoided [G36]. It is usually best to split them up as follows:
 Options opts = ctxt.getOptions();
 File scratchDir = opts.getScratchDir();
 final String outputDir = scratchDir.getAbsolutePath();
Are these two snippets of code violations of the Law of Demeter? Certainly the containing module knows that the ctxt object contains options, which contain a scratch directory, which has an absolute path. That’s a lot of knowledge for one function to know. The calling function knows how to navigate through a lot of different objects.

Whether this is a violation of Demeter depends on whether or not ctxt, Options, and ScratchDir are objects or data structures. If they are objects, then their internal structure should be hidden rather than exposed, and so knowledge of their innards is a clear violation of the Law of Demeter. On the other hand, if ctxt, Options, and ScratchDir are just data structures with no behavior, then they naturally expose their internal structure, and so Demeter does not apply.
The use of accessor functions confuses the issue. If the code had been written as follows, then we probably wouldn’t be asking about Demeter violations.
 final String outputDir = ctxt.options.scratchDir.absolutePath;
This issue would be a lot less confusing if data structures simply had public variables and no functions, whereas objects had private variables and public functions. However, there are frameworks and standards (e.g., “beans”) that demand that even simple data structures have accessors and mutators.

Hybrids
This confusion sometimes leads to unfortunate hybrid structures that are half object and half data structure. They have functions that do significant things, and they also have either public variables or public accessors and mutators that, for all intents and purposes, make the private variables public, tempting other external functions to use those variables the way a procedural program would use a data structure.4
Such hybrids make it hard to add new functions but also make it hard to add new data structures. They are the worst of both worlds. Avoid creating them. They are indicative of a muddled design whose authors are unsure of—or worse, ignorant of—whether they need protection from functions or types.

Hiding Structure
What if ctxt, options, and scratchDir are objects with real behavior? Then, because objects are supposed to hide their internal structure, we should not be able to navigate through them. How then would we get the absolute path of the scratch directory?
 ctxt.getAbsolutePathOfScratchDirectoryOption();
or
 ctx.getScratchDirectoryOption().getAbsolutePath()
The first option could lead to an explosion of methods in the ctxt object. The second presumes that getScratchDirectoryOption() returns a data structure, not an object. Neither option feels good.
If ctxt is an object, we should be telling it to do something; we should not be asking it about its internals. So why did we want the absolute path of the scratch directory? What were we going to do with it? Consider this code from (many lines farther down in) the same module:
 String outFile = outputDir + “/” + className.replace('.', '/') + “.class”;
 FileOutputStream fout = new FileOutputStream(outFile);
 BufferedOutputStream bos = new BufferedOutputStream(fout);

The admixture of different levels of detail [G34][G6] is a bit troubling. Dots, slashes, file extensions, and File objects should not be so carelessly mixed together, and mixed with the enclosing code. Ignoring that, however, we see that the intent of getting the absolute path of the scratch directory was to create a scratch file of a given name.
So, what if we told the ctxt object to do this?
 BufferedOutputStream bos = ctxt.createScratchFileStream(classFileName);
That seems like a reasonable thing for an object to do! This allows ctxt to hide its internals and prevents the current function from having to violate the Law of Demeter by navigating through objects it shouldn’t know about.

Data Transfer Objects
The quintessential form of a data structure is a class with public variables and no functions. This is sometimes called a data transfer object, or DTO. DTOs are very useful structures, especially when communicating with databases or parsing messages from sockets, and so on. They often become the first in a series of translation stages that convert raw data in a database into objects in the application code.
Somewhat more common is the “bean” form shown in Listing 6-7. Beans have private variables manipulated by getters and setters. The quasi-encapsulation of beans seems to make some OO purists feel better but usually provides no other benefit.

Listing 6-7
address.java
 public class Address {
 private String street;
 private String streetExtra;
 private String city;
 private String state;
 private String zip;

 public Address(String street, String streetExtra,
 String city, String state, String zip) {
 this.street = street;
 this.streetExtra = streetExtra;
 this.city = city;
 this.state = state;
 this.zip = zip;
 }

 public String getStreet() {
 return street;
 }

 public String getStreetExtra() {
 return streetExtra;
 }

 public String getCity() {
 return city;
 }

 public String getState() {
 return state;
 }

 public String getZip() {
 return zip;
 }
 }

Active Record
Active Records are special forms of DTOs. They are data structures with public (or bean-accessed) variables; but they typically have navigational methods like save and find. Typically these Active Records are direct translations from database tables, or other data sources.
Unfortunately we often find that developers try to treat these data structures as though they were objects by putting business rule methods in them. This is awkward because it creates a hybrid between a data structure and an object.
The solution, of course, is to treat the Active Record as a data structure and to create separate objects that contain the business rules and that hide their internal data (which are probably just instances of the Active Record).

Conclusion
Objects expose behavior and hide data. This makes it easy to add new kinds of objects without changing existing behaviors. It also makes it hard to add new behaviors to existing objects. Data structures expose data and have no significant behavior. This makes it easy to add new behaviors to existing data structures but makes it hard to add new data structures to existing functions.
In any given system we will sometimes want the flexibility to add new data types, and so we prefer objects for that part of the system. Other times we will want the flexibility to add new behaviors, and so in that part of the system we prefer data types and procedures. Good software developers understand these issues without prejudice and choose the approach that is best for the job at hand.

Bibliography

[Refactoring]:
Refactoring: Improving the Design of Existing Code, Martin Fowler et al., Addison-Wesley, 1999.

7 Error Handling
by Michael Feathers

It might seem odd to have a section about error handling in a book about clean code. Error handling is just one of those things that we all have to do when we program. Input can be abnormal and devices can fail. In short, things can go wrong, and when they do, we as programmers are responsible for making sure that our code does what it needs to do.
The connection to clean code, however, should be clear. Many code bases are completely dominated by error handling. When I say dominated, I don’t mean that error handling is all that they do. I mean that it is nearly impossible to see what the code does because of all of the scattered error handling. Error handling is important, but if it obscures logic, it’s wrong.
In this chapter I’ll outline a number of techniques and considerations that you can use to write code that is both clean and robust—code that handles errors with grace and style.

Use Exceptions Rather Than Return Codes
Back in the distant past there were many languages that didn’t have exceptions. In those languages the techniques for handling and reporting errors were limited. You either set an error flag or returned an error code that the caller could check. The code in Listing 7-1 illustrates these approaches.

Listing 7-1 DeviceController.java
 public class DeviceController {
 …
 public void sendShutDown() {
 DeviceHandle handle = getHandle(DEV1);
 // Check the state of the device
 if (handle != DeviceHandle.INVALID) {
 // Save the device status to the record field
 retrieveDeviceRecord(handle);
 // If not suspended, shut down
 if (record.getStatus() != DEVICE_SUSPENDED) {
 pauseDevice(handle);
 clearDeviceWorkQueue(handle);
 closeDevice(handle);
 } else {
 logger.log("Device suspended. Unable to shut down");
 }
 } else {
 logger.log("Invalid handle for: " + DEV1.toString());
 }
 }
 …
 }
The problem with these approaches is that they clutter the caller. The caller must check for errors immediately after the call. Unfortunately, it’s easy to forget. For this reason it is better to throw an exception when you encounter an error. The calling code is cleaner. Its logic is not obscured by error handling.
Listing 7-2 shows the code after we’ve chosen to throw exceptions in methods that can detect errors.

Listing 7-2 DeviceController.java (with exceptions)
 public class DeviceController {
 …

 public void sendShutDown() {
 try {
 tryToShutDown();
 } catch (DeviceShutDownError e) {
 logger.log(e);
 }
 }

 private void tryToShutDown() throws DeviceShutDownError {
 DeviceHandle handle = getHandle(DEV1);
 DeviceRecord record = retrieveDeviceRecord(handle);

 pauseDevice(handle);
 clearDeviceWorkQueue(handle);
 closeDevice(handle);
 }

 private DeviceHandle getHandle(DeviceID id) {
 …
 throw new DeviceShutDownError(“Invalid handle for: ” + id.toString());
 …
 }

 …
 }
Notice how much cleaner it is. This isn’t just a matter of aesthetics. The code is better because two concerns that were tangled, the algorithm for device shutdown and error handling, are now separated. You can look at each of those concerns and understand them independently.

Write Your Try-Catch-Finally Statement First
One of the most interesting things about exceptions is that they define a scope within your program. When you execute code in the try portion of a try-catch-finally statement, you are stating that execution can abort at any point and then resume at the catch.
In a way, try blocks are like transactions. Your catch has to leave your program in a consistent state, no matter what happens in the try. For this reason it is good practice to start with a try-catch-finally statement when you are writing code that could throw exceptions. This helps you define what the user of that code should expect, no matter what goes wrong with the code that is executed in the try.
Let’s look at an example. We need to write some code that accesses a file and reads some serialized objects.
We start with a unit test that shows that we’ll get an exception when the file doesn’t exist:
 @Test(expected = StorageException.class)
 public void retrieveSectionShouldThrowOnInvalidFileName() {
 sectionStore.retrieveSection(“invalid - file”);
 }
The test drives us to create this stub:
 public List<RecordedGrip> retrieveSection(String sectionName) {
 // dummy return until we have a real implementation
 return new ArrayList<RecordedGrip>();
 }
Our test fails because it doesn’t throw an exception. Next, we change our implementation so that it attempts to access an invalid file. This operation throws an exception:
 public List<RecordedGrip> retrieveSection(String sectionName) {
 try {
 FileInputStream stream = new FileInputStream(sectionName)
 } catch (Exception e) {
 throw new StorageException(“retrieval error”, e);
 }
 return new ArrayList<RecordedGrip>();
 }
Our test passes now because we’ve caught the exception. At this point, we can refactor. We can narrow the type of the exception we catch to match the type that is actually thrown from the FileInputStream constructor: FileNotFoundException:
 public List<RecordedGrip> retrieveSection(String sectionName) {
 try {
 FileInputStream stream = new FileInputStream(sectionName);
 stream.close();
 } catch (FileNotFoundException e) {
 throw new StorageException(“retrieval error”, e);
 }
 return new ArrayList<RecordedGrip>();
 }
Now that we’ve defined the scope with a try-catch structure, we can use TDD to build up the rest of the logic that we need. That logic will be added between the creation of the FileInputStream and the close, and can pretend that nothing goes wrong.
Try to write tests that force exceptions, and then add behavior to your handler to satisfy your tests. This will cause you to build the transaction scope of the try block first and will help you maintain the transaction nature of that scope.

Use Unchecked Exceptions
The debate is over. For years Java programmers have debated over the benefits and liabilities of checked exceptions. When checked exceptions were introduced in the first version of Java, they seemed like a great idea. The signature of every method would list all of the exceptions that it could pass to its caller. Moreover, these exceptions were part of the type of the method. Your code literally wouldn’t compile if the signature didn’t match what your code could do.
At the time, we thought that checked exceptions were a great idea; and yes, they can yield some benefit. However, it is clear now that they aren’t necessary for the production of robust software. C# doesn’t have checked exceptions, and despite valiant attempts, C++ doesn’t either. Neither do Python or Ruby. Yet it is possible to write robust software in all of these languages. Because that is the case, we have to decide—really—whether checked exceptions are worth their price.
What price? The price of checked exceptions is an Open/Closed Principle1 violation. If you throw a checked exception from a method in your code and the catch is three levels above, you must declare that exception in the signature of each method between you and the catch. This means that a change at a low level of the software can force signature changes on many higher levels. The changed modules must be rebuilt and redeployed, even though nothing they care about changed.
Consider the calling hierarchy of a large system. Functions at the top call functions below them, which call more functions below them, ad infinitum. Now let’s say one of the lowest level functions is modified in such a way that it must throw an exception. If that exception is checked, then the function signature must add a throws clause. But this means that every function that calls our modified function must also be modified either to catch the new exception or to append the appropriate throws clause to its signature. Ad infinitum. The net result is a cascade of changes that work their way from the lowest levels of the software to the highest! Encapsulation is broken because all functions in the path of a throw must know about details of that low-level exception. Given that the purpose of exceptions is to allow you to handle errors at a distance, it is a shame that checked exceptions break encapsulation in this way.
Checked exceptions can sometimes be useful if you are writing a critical library: You must catch them. But in general application development the dependency costs outweigh the benefits.

Provide Context with Exceptions
Each exception that you throw should provide enough context to determine the source and location of an error. In Java, you can get a stack trace from any exception; however, a stack trace can’t tell you the intent of the operation that failed.
Create informative error messages and pass them along with your exceptions. Mention the operation that failed and the type of failure. If you are logging in your application, pass along enough information to be able to log the error in your catch.

Define Exception Classes in Terms of a Caller’s Needs
There are many ways to classify errors. We can classify them by their source: Did they come from one component or another? Or their type: Are they device failures, network failures, or programming errors? However, when we define exception classes in an application, our most important concern should be how they are caught.
Let’s look at an example of poor exception classification. Here is a try-catch-finally statement for a third-party library call. It covers all of the exceptions that the calls can throw:
 ACMEPort port = new ACMEPort(12);

 try {
 port.open();
 } catch (DeviceResponseException e) {
 reportPortError(e);
 logger.log(“Device response exception”, e);
 } catch (ATM1212UnlockedException e) {
 reportPortError(e);
 logger.log(“Unlock exception”, e);
 } catch (GMXError e) {
 reportPortError(e);
 logger.log(“Device response exception”);
 } finally {
 …
 }
That statement contains a lot of duplication, and we shouldn’t be surprised. In most exception handling situations, the work that we do is relatively standard regardless of the actual cause. We have to record an error and make sure that we can proceed.
In this case, because we know that the work that we are doing is roughly the same regardless of the exception, we can simplify our code considerably by wrapping the API that we are calling and making sure that it returns a common exception type:
 LocalPort port = new LocalPort(12);
 try {
 port.open();
 } catch (PortDeviceFailure e) {
 reportError(e);
 logger.log(e.getMessage(), e);
 } finally {
 …
 }
Our LocalPort class is just a simple wrapper that catches and translates exceptions thrown by the ACMEPort class:
 public class LocalPort {
 private ACMEPort innerPort;

 public LocalPort(int portNumber) {
 innerPort = new ACMEPort(portNumber);
 }

 public void open() {
 try {
 innerPort.open();
 } catch (DeviceResponseException e) {
 throw new PortDeviceFailure(e);
 } catch (ATM1212UnlockedException e) {
 throw new PortDeviceFailure(e);
 } catch (GMXError e) {
 throw new PortDeviceFailure(e);
 }
 }
 …
 }
Wrappers like the one we defined for ACMEPort can be very useful. In fact, wrapping third-party APIs is a best practice. When you wrap a third-party API, you minimize your dependencies upon it: You can choose to move to a different library in the future without much penalty. Wrapping also makes it easier to mock out third-party calls when you are testing your own code.
One final advantage of wrapping is that you aren’t tied to a particular vendor’s API design choices. You can define an API that you feel comfortable with. In the preceding example, we defined a single exception type for port device failure and found that we could write much cleaner code.
Often a single exception class is fine for a particular area of code. The information sent with the exception can distinguish the errors. Use different classes only if there are times when you want to catch one exception and allow the other one to pass through.

Define the Normal Flow
If you follow the advice in the preceding sections, you’ll end up with a good amount of separation between your business logic and your error handling. The bulk of your code will start to look like a clean unadorned algorithm. However, the process of doing this pushes error detection to the edges of your program. You wrap external APIs so that you can throw your own exceptions, and you define a handler above your code so that you can deal with any aborted computation. Most of the time this is a great approach, but there are some times when you may not want to abort.

Let’s take a look at an example. Here is some awkward code that sums expenses in a billing application:
 try {
 MealExpenses expenses = expenseReportDAO.getMeals(employee.getID());
 m_total += expenses.getTotal();
 } catch(MealExpensesNotFound e) {
 m_total += getMealPerDiem();
 }
In this business, if meals are expensed, they become part of the total. If they aren’t, the employee gets a meal per diem amount for that day. The exception clutters the logic. Wouldn’t it be better if we didn’t have to deal with the special case? If we didn’t, our code would look much simpler. It would look like this:
 MealExpenses expenses = expenseReportDAO.getMeals(employee.getID());
 m_total += expenses.getTotal();
Can we make the code that simple? It turns out that we can. We can change the ExpenseReportDAO so that it always returns a MealExpense object. If there are no meal expenses, it returns a MealExpense object that returns the per diem as its total:
 public class PerDiemMealExpenses implements MealExpenses {
 public int getTotal() {
 // return the per diem default
 }
 }
This is called the SPECIAL CASE PATTERN [Fowler]. You create a class or configure an object so that it handles a special case for you. When you do, the client code doesn’t have to deal with exceptional behavior. That behavior is encapsulated in the special case object.

Don’t Return Null
I think that any discussion about error handling should include mention of the things we do that invite errors. The first on the list is returning null. I can’t begin to count the number of applications I’ve seen in which nearly every other line was a check for null. Here is some example code:
 public void registerItem(Item item) {
 if (item != null) {
 ItemRegistry registry = peristentStore.getItemRegistry();
 if (registry != null) {
 Item existing = registry.getItem(item.getID());
 if (existing.getBillingPeriod().hasRetailOwner()) {
 existing.register(item);
 }
 }
 }
 }
If you work in a code base with code like this, it might not look all that bad to you, but it is bad! When we return null, we are essentially creating work for ourselves and foisting problems upon our callers. All it takes is one missing null check to send an application spinning out of control.
Did you notice the fact that there wasn’t a null check in the second line of that nested if statement? What would have happened at runtime if persistentStore were null? We would have had a NullPointerException at runtime, and either someone is catching NullPointerException at the top level or they are not. Either way it’s bad. What exactly should you do in response to a NullPointerException thrown from the depths of your application?
It’s easy to say that the problem with the code above is that it is missing a null check, but in actuality, the problem is that it has too many. If you are tempted to return null from a method, consider throwing an exception or returning a SPECIAL CASE object instead. If you are calling a null-returning method from a third-party API, consider wrapping that method with a method that either throws an exception or returns a special case object.
In many cases, special case objects are an easy remedy. Imagine that you have code like this:
 List<Employee> employees = getEmployees();
 if (employees != null) {
 for(Employee e : employees) {
 totalPay += e.getPay();
 }
 }
Right now, getEmployees can return null, but does it have to? If we change getEmployee so that it returns an empty list, we can clean up the code:
 List<Employee> employees = getEmployees();
 for(Employee e : employees) {
 totalPay += e.getPay();
 }
Fortunately, Java has Collections.emptyList(), and it returns a predefined immutable list that we can use for this purpose:
 public List<Employee> getEmployees() {
 if(.. there are no employees ..)
 return Collections.emptyList();
 }
If you code this way, you will minimize the chance of NullPointerExceptions and your code will be cleaner.

Don’t Pass Null
Returning null from methods is bad, but passing null into methods is worse. Unless you are working with an API which expects you to pass null, you should avoid passing null in your code whenever possible.
Let’s look at an example to see why. Here is a simple method which calculates a metric for two points:
 public class MetricsCalculator
 {
 public double xProjection(Point p1, Point p2) {
 return (p2.x – p1.x) * 1.5;
 }
 …
 }
What happens when someone passes null as an argument?
 calculator.xProjection(null, new Point(12, 13));
We’ll get a NullPointerException, of course.
How can we fix it? We could create a new exception type and throw it:
 public class MetricsCalculator
 {
 public double xProjection(Point p1, Point p2) {
 if (p1 == null || p2 == null) {
 throw InvalidArgumentException(
 “Invalid argument for MetricsCalculator.xProjection”);
 }
 return (p2.x – p1.x) * 1.5;
 }
 }
Is this better? It might be a little better than a null pointer exception, but remember, we have to define a handler for InvalidArgumentException. What should the handler do? Is there any good course of action?
There is another alternative. We could use a set of assertions:
 public class MetricsCalculator
 {
 public double xProjection(Point p1, Point p2) {
 assert p1 != null : “p1 should not be null”;
 assert p2 != null : “p2 should not be null”;
 return (p2.x – p1.x) * 1.5;
 }
 }
It’s good documentation, but it doesn’t solve the problem. If someone passes null, we’ll still have a runtime error.
In most programming languages there is no good way to deal with a null that is passed by a caller accidentally. Because this is the case, the rational approach is to forbid passing null by default. When you do, you can code with the knowledge that a null in an argument list is an indication of a problem, and end up with far fewer careless mistakes.

Conclusion
Clean code is readable, but it must also be robust. These are not conflicting goals. We can write robust clean code if we see error handling as a separate concern, something that is viewable independently of our main logic. To the degree that we are able to do that, we can reason about it independently, and we can make great strides in the maintainability of our code.

Bibliography

[Martin]: Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin, Prentice Hall, 2002.

8 Boundaries
by James Grenning

We seldom control all the software in our systems. Sometimes we buy third-party packages or use open source. Other times we depend on teams in our own company to produce components or subsystems for us. Somehow we must cleanly integrate this foreign code with our own. In this chapter we look at practices and techniques to keep the boundaries of our software clean.

Using Third-Party Code
There is a natural tension between the provider of an interface and the user of an interface. Providers of third-party packages and frameworks strive for broad applicability so they can work in many environments and appeal to a wide audience. Users, on the other hand, want an interface that is focused on their particular needs. This tension can cause problems at the boundaries of our systems.
Let’s look at java.util.Map as an example. As you can see by examining Figure 8-1, Maps have a very broad interface with plenty of capabilities. Certainly this power and flexibility is useful, but it can also be a liability. For instance, our application might build up a Map and pass it around. Our intention might be that none of the recipients of our Map delete anything in the map. But right there at the top of the list is the clear() method. Any user of the Map has the power to clear it. Or maybe our design convention is that only particular types of objects can be stored in the Map, but Maps do not reliably constrain the types of objects placed within them. Any determined user can add items of any type to any Map.

Figure 8-1 The methods of Map

If our application needs a Map of Sensors, you might find the sensors set up like this:
 Map sensors = new HashMap();
Then, when some other part of the code needs to access the sensor, you see this code:
 Sensor s = (Sensor)sensors.get(sensorId);
We don’t just see it once, but over and over again throughout the code. The client of this code carries the responsibility of getting an Object from the Map and casting it to the right type. This works, but it’s not clean code. Also, this code does not tell its story as well as it could. The readability of this code can be greatly improved by using generics, as shown below:
 Map<Sensor> sensors = new HashMap<Sensor>();
 …
 Sensor s = sensors.get(sensorId);
However, this doesn’t solve the problem that Map<Sensor> provides more capability than we need or want.
Passing an instance of Map<Sensor> liberally around the system means that there will be a lot of places to fix if the interface to Map ever changes. You might think such a change to be unlikely, but remember that it changed when generics support was added in Java 5. Indeed, we’ve seen systems that are inhibited from using generics because of the sheer magnitude of changes needed to make up for the liberal use of Maps.
A cleaner way to use Map might look like the following. No user of Sensors would care one bit if generics were used or not. That choice has become (and always should be) an implementation detail.
 public class Sensors {
 private Map sensors = new HashMap();

 public Sensor getById(String id) {
 return (Sensor) sensors.get(id);
 }

 //snip
 }
The interface at the boundary (Map) is hidden. It is able to evolve with very little impact on the rest of the application. The use of generics is no longer a big issue because the casting and type management is handled inside the Sensors class.
This interface is also tailored and constrained to meet the needs of the application. It results in code that is easier to understand and harder to misuse. The Sensors class can enforce design and business rules.
We are not suggesting that every use of Map be encapsulated in this form. Rather, we are advising you not to pass Maps (or any other interface at a boundary) around your system. If you use a boundary interface like Map, keep it inside the class, or close family of classes, where it is used. Avoid returning it from, or accepting it as an argument to, public APIs.

Exploring and Learning Boundaries
Third-party code helps us get more functionality delivered in less time. Where do we start when we want to utilize some third-party package? It’s not our job to test the third-party code, but it may be in our best interest to write tests for the third-party code we use.
Suppose it is not clear how to use our third-party library. We might spend a day or two (or more) reading the documentation and deciding how we are going to use it. Then we might write our code to use the third-party code and see whether it does what we think. We would not be surprised to find ourselves bogged down in long debugging sessions trying to figure out whether the bugs we are experiencing are in our code or theirs.
Learning the third-party code is hard. Integrating the third-party code is hard too. Doing both at the same time is doubly hard. What if we took a different approach? Instead of experimenting and trying out the new stuff in our production code, we could write some tests to explore our understanding of the third-party code. Jim Newkirk calls such tests learning tests.1
In learning tests we call the third-party API, as we expect to use it in our application. We’re essentially doing controlled experiments that check our understanding of that API. The tests focus on what we want out of the API.

Learning log4j
Let’s say we want to use the apache log4j package rather than our own custom-built logger. We download it and open the introductory documentation page. Without too much reading we write our first test case, expecting it to write “hello” to the console.
 @Test
 public void testLogCreate() {
 Logger logger = Logger.getLogger(“MyLogger”);
 logger.info(“hello”);
 }
When we run it, the logger produces an error that tells us we need something called an Appender. After a little more reading we find that there is a ConsoleAppender. So we create a ConsoleAppender and see whether we have unlocked the secrets of logging to the console.
 @Test
 public void testLogAddAppender() {
 Logger logger = Logger.getLogger(“MyLogger”);
 ConsoleAppender appender = new ConsoleAppender();
 logger.addAppender(appender);
 logger.info(“hello”);
 }
This time we find that the Appender has no output stream. Odd—it seems logical that it’d have one. After a little help from Google, we try the following:
 @Test
 public void testLogAddAppender() {
 Logger logger = Logger.getLogger(“MyLogger”);
 logger.removeAllAppenders();
 logger.addAppender(new ConsoleAppender(
 new PatternLayout(“%p %t %m%n”),
 ConsoleAppender.SYSTEM_OUT));
 logger.info(“hello”);
 }
That worked; a log message that includes “hello” came out on the console! It seems odd that we have to tell the ConsoleAppender that it writes to the console.
Interestingly enough, when we remove the ConsoleAppender.SystemOut argument, we see that “hello” is still printed. But when we take out the PatternLayout, it once again complains about the lack of an output stream. This is very strange behavior.
Looking a little more carefully at the documentation, we see that the default ConsoleAppender constructor is “unconfigured,” which does not seem too obvious or useful. This feels like a bug, or at least an inconsistency, in log4j.
A bit more googling, reading, and testing, and we eventually wind up with Listing 8-1. We’ve discovered a great deal about the way that log4j works, and we’ve encoded that knowledge into a set of simple unit tests.

Listing 8-1 LogTest.java
 public class LogTest {
 private Logger logger;

 @Before
 public void initialize() {
 logger = Logger.getLogger(“logger”);
 logger.removeAllAppenders();
 Logger.getRootLogger().removeAllAppenders();
 }
 @Test
 public void basicLogger() {
 BasicConfigurator.configure();
 logger.info(“basicLogger”);
 }
 @Test
 public void addAppenderWithStream() {
 logger.addAppender(new ConsoleAppender(
 new PatternLayout(“%p %t %m%n”),
 ConsoleAppender.SYSTEM_OUT));
 logger.info(“addAppenderWithStream”);
 }
 @Test
 public void addAppenderWithoutStream() {
 logger.addAppender(new ConsoleAppender(
 new PatternLayout(“%p %t %m%n”)));
 logger.info(“addAppenderWithoutStream”);
 }
 }
Now we know how to get a simple console logger initialized, and we can encapsulate that knowledge into our own logger class so that the rest of our application is isolated from the log4j boundary interface.

Learning Tests Are Better Than Free
The learning tests end up costing nothing. We had to learn the API anyway, and writing those tests was an easy and isolated way to get that knowledge. The learning tests were precise experiments that helped increase our understanding.
Not only are learning tests free, they have a positive return on investment. When there are new releases of the third-party package, we run the learning tests to see whether there are behavioral differences.
Learning tests verify that the third-party packages we are using work the way we expect them to. Once integrated, there are no guarantees that the third-party code will stay compatible with our needs. The original authors will have pressures to change their code to meet new needs of their own. They will fix bugs and add new capabilities. With each release comes new risk. If the third-party package changes in some way incompatible with our tests, we will find out right away.
Whether you need the learning provided by the learning tests or not, a clean boundary should be supported by a set of outbound tests that exercise the interface the same way the production code does. Without these boundary tests to ease the migration, we might be tempted to stay with the old version longer than we should.

Using Code That Does Not Yet Exist
There is another kind of boundary, one that separates the known from the unknown. There are often places in the code where our knowledge seems to drop off the edge. Sometimes what is on the other side of the boundary is unknowable (at least right now). Sometimes we choose to look no farther than the boundary.
A number of years back I was part of a team developing software for a radio communications system. There was a subsystem, the “Transmitter,” that we knew little about, and the people responsible for the subsystem had not gotten to the point of defining their interface. We did not want to be blocked, so we started our work far away from the unknown part of the code.
We had a pretty good idea of where our world ended and the new world began. As we worked, we sometimes bumped up against this boundary. Though mists and clouds of ignorance obscured our view beyond the boundary, our work made us aware of what we wanted the boundary interface to be. We wanted to tell the transmitter something like this:
Key the transmitter on the provided frequency and emit an analog representation of the data coming from this stream.

We had no idea how that would be done because the API had not been designed yet. So we decided to work out the details later.
To keep from being blocked, we defined our own interface. We called it something catchy, like Transmitter. We gave it a method called transmit that took a frequency and a data stream. This was the interface we wished we had.
One good thing about writing the interface we wish we had is that it’s under our control. This helps keep client code more readable and focused on what it is trying to accomplish.
In Figure 8-2, you can see that we insulated the CommunicationsController classes from the transmitter API (which was out of our control and undefined). By using our own application specific interface, we kept our CommunicationsController code clean and expressive. Once the transmitter API was defined, we wrote the TransmitterAdapter to bridge the gap. The ADAPTER2 encapsulated the interaction with the API and provides a single place to change when the API evolves.

Figure 8-2 Predicting the transmitter

This design also gives us a very convenient seam3 in the code for testing. Using a suitable FakeTransmitter, we can test the CommunicationsController classes. We can also create boundary tests once we have the TransmitterAPI that make sure we are using the API correctly.

Clean Boundaries
Interesting things happen at boundaries. Change is one of those things. Good software designs accommodate change without huge investments and rework. When we use code that is out of our control, special care must be taken to protect our investment and make sure future change is not too costly.
Code at the boundaries needs clear separation and tests that define expectations. We should avoid letting too much of our code know about the third-party particulars. It’s better to depend on something you control than on something you don’t control, lest it end up controlling you.
We manage third-party boundaries by having very few places in the code that refer to them. We may wrap them as we did with Map, or we may use an ADAPTER to convert from our perfect interface to the provided interface. Either way our code speaks to us better, promotes internally consistent usage across the boundary, and has fewer maintenance points when the third-party code changes.

Bibliography

[BeckTDD]: Test Driven Development, Kent Beck, Addison-Wesley, 2003.

[GOF]: Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

[WELC]: Working Effectively with Legacy Code, Addison-Wesley, 2004.

9 Unit Tests

Our profession has come a long way in the last ten years. In 1997 no one had heard of Test Driven Development. For the vast majority of us, unit tests were short bits of throw-away code that we wrote to make sure our programs “worked.” We would painstakingly write our classes and methods, and then we would concoct some ad hoc code to test them. Typically this would involve some kind of simple driver program that would allow us to manually interact with the program we had written.
I remember writing a C++ program for an embedded real-time system back in the mid-90s. The program was a simple timer with the following signature:
 void Timer::ScheduleCommand(Command* theCommand, int milliseconds)
The idea was simple; the execute method of the Command would be executed in a new thread after the specified number of milliseconds. The problem was, how to test it.
I cobbled together a simple driver program that listened to the keyboard. Every time a character was typed, it would schedule a command that would type the same character five seconds later. Then I tapped out a rhythmic melody on the keyboard and waited for that melody to replay on the screen five seconds later.
“I … want-a-girl … just … like-the-girl-who-marr … ied … dear … old … dad.”
I actually sang that melody while typing the “.” key, and then I sang it again as the dots appeared on the screen.
That was my test! Once I saw it work and demonstrated it to my colleagues, I threw the test code away.
As I said, our profession has come a long way. Nowadays I would write a test that made sure that every nook and cranny of that code worked as I expected it to. I would isolate my code from the operating system rather than just calling the standard timing functions. I would mock out those timing functions so that I had absolute control over the time. I would schedule commands that set boolean flags, and then I would step the time forward, watching those flags and ensuring that they went from false to true just as I changed the time to the right value.
Once I got a suite of tests to pass, I would make sure that those tests were convenient to run for anyone else who needed to work with the code. I would ensure that the tests and the code were checked in together into the same source package.
Yes, we’ve come a long way; but we have farther to go. The Agile and TDD movements have encouraged many programmers to write automated unit tests, and more are joining their ranks every day. But in the mad rush to add testing to our discipline, many programmers have missed some of the more subtle, and important, points of writing good tests.

The Three Laws of TDD
By now everyone knows that TDD asks us to write unit tests first, before we write production code. But that rule is just the tip of the iceberg. Consider the following three laws:1
http://doi.ieeecomputersociety.org/10.1109/MS.2007.85

First Law You may not write production code until you have written a failing unit test.
Second Law You may not write more of a unit test than is sufficient to fail, and not compiling is failing.
Third Law You may not write more production code than is sufficient to pass the currently failing test.
These three laws lock you into a cycle that is perhaps thirty seconds long. The tests and the production code are written together, with the tests just a few seconds ahead of the production code.
If we work this way, we will write dozens of tests every day, hundreds of tests every month, and thousands of tests every year. If we work this way, those tests will cover virtually all of our production code. The sheer bulk of those tests, which can rival the size of the production code itself, can present a daunting management problem.

Keeping Tests Clean
Some years back I was asked to coach a team who had explicitly decided that their test code should not be maintained to the same standards of quality as their production code. They gave each other license to break the rules in their unit tests. “Quick and dirty” was the watchword. Their variables did not have to be well named, their test functions did not need to be short and descriptive. Their test code did not need to be well designed and thoughtfully partitioned. So long as the test code worked, and so long as it covered the production code, it was good enough.
Some of you reading this might sympathize with that decision. Perhaps, long in the past, you wrote tests of the kind that I wrote for that Timer class. It’s a huge step from writing that kind of throw-away test, to writing a suite of automated unit tests. So, like the team I was coaching, you might decide that having dirty tests is better than having no tests.
What this team did not realize was that having dirty tests is equivalent to, if not worse than, having no tests. The problem is that tests must change as the production code evolves. The dirtier the tests, the harder they are to change. The more tangled the test code, the more likely it is that you will spend more time cramming new tests into the suite than it takes to write the new production code. As you modify the production code, old tests start to fail, and the mess in the test code makes it hard to get those tests to pass again. So the tests become viewed as an ever-increasing liability.
From release to release the cost of maintaining my team’s test suite rose. Eventually it became the single biggest complaint among the developers. When managers asked why their estimates were getting so large, the developers blamed the tests. In the end they were forced to discard the test suite entirely.
But, without a test suite they lost the ability to make sure that changes to their code base worked as expected. Without a test suite they could not ensure that changes to one part of their system did not break other parts of their system. So their defect rate began to rise. As the number of unintended defects rose, they started to fear making changes. They stopped cleaning their production code because they feared the changes would do more harm than good. Their production code began to rot. In the end they were left with no tests, tangled and bug-riddled production code, frustrated customers, and the feeling that their testing effort had failed them.
In a way they were right. Their testing effort had failed them. But it was their decision to allow the tests to be messy that was the seed of that failure. Had they kept their tests clean, their testing effort would not have failed. I can say this with some certainty because I have participated in, and coached, many teams who have been successful with clean unit tests.
The moral of the story is simple: Test code is just as important as production code. It is not a second-class citizen. It requires thought, design, and care. It must be kept as clean as production code.

Tests Enable the -ilities
If you don’t keep your tests clean, you will lose them. And without them, you lose the very thing that keeps your production code flexible. Yes, you read that correctly. It is unit tests that keep our code flexible, maintainable, and reusable. The reason is simple. If you have tests, you do not fear making changes to the code! Without tests every change is a possible bug. No matter how flexible your architecture is, no matter how nicely partitioned your design, without tests you will be reluctant to make changes because of the fear that you will introduce undetected bugs.
But with tests that fear virtually disappears. The higher your test coverage, the less your fear. You can make changes with near impunity to code that has a less than stellar architecture and a tangled and opaque design. Indeed, you can improve that architecture and design without fear!
So having an automated suite of unit tests that cover the production code is the key to keeping your design and architecture as clean as possible. Tests enable all the -ilities, because tests enable change.
So if your tests are dirty, then your ability to change your code is hampered, and you begin to lose the ability to improve the structure of that code. The dirtier your tests, the dirtier your code becomes. Eventually you lose the tests, and your code rots.

Clean Tests
What makes a clean test? Three things. Readability, readability, and readability. Readability is perhaps even more important in unit tests than it is in production code. What makes tests readable? The same thing that makes all code readable: clarity, simplicity, and density of expression. In a test you want to say a lot with as few expressions as possible.
Consider the code from FitNesse in Listing 9-1. These three tests are difficult to understand and can certainly be improved. First, there is a terrible amount of duplicate code [G5] in the repeated calls to addPage and assertSubString. More importantly, this code is just loaded with details that interfere with the expressiveness of the test.

Listing 9-1 SerializedPageResponderTest.java
 public void testGetPageHieratchyAsXml() throws Exception
 {

 crawler.addPage(root, PathParser.parse(“PageOne”));
 crawler.addPage(root, PathParser.parse(“PageOne.ChildOne”));
 crawler.addPage(root, PathParser.parse(“PageTwo”));

 request.setResource(“root”);
 request.addInput(“type”, “pages”);
 Responder responder = new SerializedPageResponder();
 SimpleResponse response =
 (SimpleResponse) responder.makeResponse(
 new FitNesseContext(root), request);
 String xml = response.getContent();

 assertEquals(“text/xml”, response.getContentType());
 assertSubString(“<name>PageOne</name>”, xml);
 assertSubString(“<name>PageTwo</name>”, xml);
 assertSubString(“<name>ChildOne</name>”, xml);
 }
 public void testGetPageHieratchyAsXmlDoesntContainSymbolicLinks()
 throws Exception {

 WikiPage pageOne = crawler.addPage(root, PathParser.parse(“PageOne”));
 crawler.addPage(root, PathParser.parse(“PageOne.ChildOne”));
 crawler.addPage(root, PathParser.parse(“PageTwo”));

 PageData data = pageOne.getData();
 WikiPageProperties properties = data.getProperties();
 WikiPageProperty symLinks = properties.set(SymbolicPage.PROPERTY_NAME);
 symLinks.set(“SymPage”, ”PageTwo”);
 pageOne.commit(data);

 request.setResource(“root”);
 request.addInput(“type”, ”pages”);
 Responder responder = new SerializedPageResponder();
 SimpleResponse response =
 (SimpleResponse) responder.makeResponse(
 new FitNesseContext(root), request);
 String xml = response.getContent();

 assertEquals(“text/xml”, response.getContentType());
 assertSubString(“<name>PageOne</name>”, xml);
 assertSubString(“<name>PageTwo</name>”, xml);
 assertSubString(“<name>ChildOne</name>”, xml);
 assertNotSubString(“SymPage”, xml);
 }

 public void testGetDataAsHtml() throws Exception
 {
 crawler.addPage(root, PathParser.parse(“TestPageOne”), ”test page”);

 request.setResource(“TestPageOne”);
 request.addInput(“type”, ”data”);
 Responder responder = new SerializedPageResponder();
 SimpleResponse response =
 (SimpleResponse) responder.makeResponse(
 new FitNesseContext(root), request);
 String xml = response.getContent();

 assertEquals(“text/xml”, response.getContentType());
 assertSubString(“test page”, xml);
 assertSubString(“<Test”, xml);
 }
For example, look at the PathParser calls. They transform strings into PagePath instances used by the crawlers. This transformation is completely irrelevant to the test at hand and serves only to obfuscate the intent. The details surrounding the creation of the responder and the gathering and casting of the response are also just noise. Then there’s the ham-handed way that the request URL is built from a resource and an argument. (I helped write this code, so I feel free to roundly criticize it.)
In the end, this code was not designed to be read. The poor reader is inundated with a swarm of details that must be understood before the tests make any real sense.
Now consider the improved tests in Listing 9-2. These tests do the exact same thing, but they have been refactored into a much cleaner and more explanatory form.

Listing 9-2 SerializedPageResponderTest.java (refactored)
 public void testGetPageHierarchyAsXml() throws Exception {
 makePages(“PageOne”, “PageOne.ChildOne”, “PageTwo”);

 submitRequest(“root”, “type:pages”);

 assertResponseIsXML();
 assertResponseContains(
 “<name>PageOne</name>”, “<name>PageTwo</name>”, “<name>ChildOne</name>”
);
 }

 public void testSymbolicLinksAreNotInXmlPageHierarchy() throws Exception {
 WikiPage page = makePage(“PageOne”);
 makePages(“PageOne.ChildOne”, “PageTwo”);

 addLinkTo(page, “PageTwo”, “SymPage”);

 submitRequest(“root”, “type:pages”);

 assertResponseIsXML();
 assertResponseContains(
 “<name>PageOne</name>”, “<name>PageTwo</name>”,
 “<name>ChildOne</name>”
);
 assertResponseDoesNotContain(“SymPage”);
 }

 public void testGetDataAsXml() throws Exception {
 makePageWithContent(“TestPageOne”, “test page”);

 submitRequest(“TestPageOne”, “type:data”);

 assertResponseIsXML();
 assertResponseContains(“test page”, “<Test”);
 }
The BUILD-OPERATE-CHECK2 pattern is made obvious by the structure of these tests. Each of the tests is clearly split into three parts. The first part builds up the test data, the second part operates on that test data, and the third part checks that the operation yielded the expected results.
Notice that the vast majority of annoying detail has been eliminated. The tests get right to the point and use only the data types and functions that they truly need. Anyone who reads these tests should be able to work out what they do very quickly, without being misled or overwhelmed by details.

Domain-Specific Testing Language
The tests in Listing 9-2 demonstrate the technique of building a domain-specific language for your tests. Rather than using the APIs that programmers use to manipulate the system, we build up a set of functions and utilities that make use of those APIs and that make the tests more convenient to write and easier to read. These functions and utilities become a specialized API used by the tests. They are a testing language that programmers use to help themselves to write their tests and to help those who must read those tests later on.
This testing API is not designed up front; rather it evolves from the continued refactoring of test code that has gotten too tainted by obfuscating detail. Just as you saw me refactor Listing 9-1 into Listing 9-2, so too will disciplined developers refactor their test code into more succinct and expressive forms.

A Dual Standard
In one sense the team I mentioned at the beginning of this chapter had things right. The code within the testing API does have a different set of engineering standards than production code. It must still be simple, succinct, and expressive, but it need not be as efficient as production code. After all, it runs in a test environment, not a production environment, and those two environment have very different needs.
Consider the test in Listing 9-3. I wrote this test as part of an environment control system I was prototyping. Without going into the details you can tell that this test checks that the low temperature alarm, the heater, and the blower are all turned on when the temperature is “way too cold.”

Listing 9-3 EnvironmentControllerTest.java
 @Test
 public void turnOnLoTempAlarmAtThreashold() throws Exception {
 hw.setTemp(WAY_TOO_COLD);
 controller.tic();
 assertTrue(hw.heaterState());
 assertTrue(hw.blowerState());
 assertFalse(hw.coolerState());
 assertFalse(hw.hiTempAlarm());
 assertTrue(hw.loTempAlarm());
 }
There are, of course, lots of details here. For example, what is that tic function all about? In fact, I’d rather you not worry about that while reading this test. I’d rather you just worry about whether you agree that the end state of the system is consistent with the temperature being “way too cold.”
Notice, as you read the test, that your eye needs to bounce back and forth between the name of the state being checked, and the sense of the state being checked. You see heaterState, and then your eyes glissade left to assertTrue. You see coolerState and your eyes must track left to assertFalse. This is tedious and unreliable. It makes the test hard to read.
I improved the reading of this test greatly by transforming it into Listing 9-4.

Listing 9-4 EnvironmentControllerTest.java (refactored)
 @Test
 public void turnOnLoTempAlarmAtThreshold() throws Exception {
 wayTooCold();
 assertEquals(“HBchL”, hw.getState());
 }
Of course I hid the detail of the tic function by creating a wayTooCold function. But the thing to note is the strange string in the assertEquals. Upper case means “on,” lower case means “off,” and the letters are always in the following order: {heater, blower, cooler, hi-temp-alarm, lo-temp-alarm}.
Even though this is close to a violation of the rule about mental mapping,3 it seems appropriate in this case. Notice, once you know the meaning, your eyes glide across that string and you can quickly interpret the results. Reading the test becomes almost a pleasure. Just take a look at Listing 9-5 and see how easy it is to understand these tests.

Listing 9-5 EnvironmentControllerTest.java (bigger selection)
 @Test
 public void turnOnCoolerAndBlowerIfTooHot() throws Exception {
 tooHot();
 assertEquals(“hBChl”, hw.getState());
 }

 @Test
 public void turnOnHeaterAndBlowerIfTooCold() throws Exception {
 tooCold();
 assertEquals(“HBchl”, hw.getState());
 }

 @Test
 public void turnOnHiTempAlarmAtThreshold() throws Exception {
 wayTooHot();
 assertEquals(“hBCHl”, hw.getState());
 }
 @Test
 public void turnOnLoTempAlarmAtThreshold() throws Exception {
 wayTooCold();
 assertEquals(“HBchL”, hw.getState());
 }
The getState function is shown in Listing 9-6. Notice that this is not very efficient code. To make it efficient, I probably should have used a StringBuffer.

Listing 9-6 MockControlHardware.java
 public String getState() {
 String state = ””;
 state += heater ? “H” : “h”;
 state += blower ? “B” : “b”;
 state += cooler ? “C” : “c”;
 state += hiTempAlarm ? “H” : “h”;
 state += loTempAlarm ? “L” : “l”;
 return state;
 }
StringBuffers are a bit ugly. Even in production code I will avoid them if the cost is small; and you could argue that the cost of the code in Listing 9-6 is very small. However, this application is clearly an embedded real-time system, and it is likely that computer and memory resources are very constrained. The test environment, however, is not likely to be constrained at all.
That is the nature of the dual standard. There are things that you might never do in a production environment that are perfectly fine in a test environment. Usually they involve issues of memory or CPU efficiency. But they never involve issues of cleanliness.

One Assert per Test
There is a school of thought4 that says that every test function in a JUnit test should have one and only one assert statement. This rule may seem draconian, but the advantage can be seen in Listing 9-5. Those tests come to a single conclusion that is quick and easy to understand.
But what about Listing 9-2? It seems unreasonable that we could somehow easily merge the assertion that the output is XML and that it contains certain substrings. However, we can break the test into two separate tests, each with its own particular assertion, as shown in Listing 9-7.

Listing 9-7 SerializedPageResponderTest.java (Single Assert)
 public void testGetPageHierarchyAsXml() throws Exception {
 givenPages(“PageOne”, “PageOne.ChildOne”, “PageTwo”);

 whenRequestIsIssued(“root”, “type:pages”);

 thenResponseShouldBeXML();
 }
 public void testGetPageHierarchyHasRightTags() throws Exception {
 givenPages(“PageOne”, “PageOne.ChildOne”, “PageTwo”);

 whenRequestIsIssued(“root”, “type:pages”);

 thenResponseShouldContain(
 “<name>PageOne</name>”, “<name>PageTwo</name>”, “<name>ChildOne</name>”
);
 }
Notice that I have changed the names of the functions to use the common given-when-then5 convention. This makes the tests even easier to read. Unfortunately, splitting the tests as shown results in a lot of duplicate code.
We can eliminate the duplication by using the TEMPLATE METHOD6 pattern and putting the given/when parts in the base class, and the then parts in different derivatives. Or we could create a completely separate test class and put the given and when parts in the @Before function, and the when parts in each @Test function. But this seems like too much mechanism for such a minor issue. In the end, I prefer the multiple asserts in Listing 9-2.
I think the single assert rule is a good guideline.7 I usually try to create a domain-specific testing language that supports it, as in Listing 9-5. But I am not afraid to put more than one assert in a test. I think the best thing we can say is that the number of asserts in a test ought to be minimized.

Single Concept per Test
Perhaps a better rule is that we want to test a single concept in each test function. We don’t want long test functions that go testing one miscellaneous thing after another. Listing 9-8 is an example of such a test. This test should be split up into three independent tests because it tests three independent things. Merging them all together into the same function forces the reader to figure out why each section is there and what is being tested by that section.

Listing 9-8
 /**
 * Miscellaneous tests for the addMonths() method.
 */
 public void testAddMonths() {
 SerialDate d1 = SerialDate.createInstance(31, 5, 2004);

 SerialDate d2 = SerialDate.addMonths(1, d1);
 assertEquals(30, d2.getDayOfMonth());
 assertEquals(6, d2.getMonth());
 assertEquals(2004, d2.getYYYY());

 SerialDate d3 = SerialDate.addMonths(2, d1);
 assertEquals(31, d3.getDayOfMonth());
 assertEquals(7, d3.getMonth());
 assertEquals(2004, d3.getYYYY());

 SerialDate d4 = SerialDate.addMonths(1, SerialDate.addMonths(1, d1));
 assertEquals(30, d4.getDayOfMonth());
 assertEquals(7, d4.getMonth());
 assertEquals(2004, d4.getYYYY());

 }
The three test functions probably ought to be like this:
• Given the last day of a month with 31 days (like May):
1.
When you add one month, such that the last day of that month is the 30th (like June), then the date should be the 30th of that month, not the 31st.

2.
When you add two months to that date, such that the final month has 31 days, then the date should be the 31st.

• Given the last day of a month with 30 days in it (like June):
1.
When you add one month such that the last day of that month has 31 days, then the date should be the 30th, not the 31st.

Stated like this, you can see that there is a general rule hiding amidst the miscellaneous tests. When you increment the month, the date can be no greater than the last day of the month. This implies that incrementing the month on February 28th should yield March 28th. That test is missing and would be a useful test to write.
So it’s not the multiple asserts in each section of Listing 9-8 that causes the problem. Rather it is the fact that there is more than one concept being tested. So probably the best rule is that you should minimize the number of asserts per concept and test just one concept per test function.

F.I.R.S.T.8
Clean tests follow five other rules that form the above acronym:
Fast Tests should be fast. They should run quickly. When tests run slow, you won’t want to run them frequently. If you don’t run them frequently, you won’t find problems early enough to fix them easily. You won’t feel as free to clean up the code. Eventually the code will begin to rot.
Independent Tests should not depend on each other. One test should not set up the conditions for the next test. You should be able to run each test independently and run the tests in any order you like. When tests depend on each other, then the first one to fail causes a cascade of downstream failures, making diagnosis difficult and hiding downstream defects.
Repeatable Tests should be repeatable in any environment. You should be able to run the tests in the production environment, in the QA environment, and on your laptop while riding home on the train without a network. If your tests aren’t repeatable in any environment, then you’ll always have an excuse for why they fail. You’ll also find yourself unable to run the tests when the environment isn’t available.
Self-Validating The tests should have a boolean output. Either they pass or fail. You should not have to read through a log file to tell whether the tests pass. You should not have to manually compare two different text files to see whether the tests pass. If the tests aren’t self-validating, then failure can become subjective and running the tests can require a long manual evaluation.
Timely The tests need to be written in a timely fashion. Unit tests should be written just before the production code that makes them pass. If you write tests after the production code, then you may find the production code to be hard to test. You may decide that some production code is too hard to test. You may not design the production code to be testable.

Conclusion
We have barely scratched the surface of this topic. Indeed, I think an entire book could be written about clean tests. Tests are as important to the health of a project as the production code is. Perhaps they are even more important, because tests preserve and enhance the flexibility, maintainability, and reusability of the production code. So keep your tests constantly clean. Work to make them expressive and succinct. Invent testing APIs that act as domain-specific language that helps you write the tests.
If you let the tests rot, then your code will rot too. Keep your tests clean.

Bibliography

[RSpec]:
RSpec: Behavior Driven Development for Ruby Programmers, Aslak Hellesøy, David Chelimsky, Pragmatic Bookshelf, 2008.

[GOF]:
Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

10 Classes
with Jeff Langr

So far in this book we have focused on how to write lines and blocks of code well. We have delved into proper composition of functions and how they interrelate. But for all the attention to the expressiveness of code statements and the functions they comprise, we still don’t have clean code until we’ve paid attention to higher levels of code organization. Let’s talk about clean classes.

Class Organization
Following the standard Java convention, a class should begin with a list of variables. Public static constants, if any, should come first. Then private static variables, followed by private instance variables. There is seldom a good reason to have a public variable.
Public functions should follow the list of variables. We like to put the private utilities called by a public function right after the public function itself. This follows the stepdown rule and helps the program read like a newspaper article.

Encapsulation
We like to keep our variables and utility functions private, but we’re not fanatic about it. Sometimes we need to make a variable or utility function protected so that it can be accessed by a test. For us, tests rule. If a test in the same package needs to call a function or access a variable, we’ll make it protected or package scope. However, we’ll first look for a way to maintain privacy. Loosening encapsulation is always a last resort.

Classes Should Be Small!
The first rule of classes is that they should be small. The second rule of classes is that they should be smaller than that. No, we’re not going to repeat the exact same text from the Functions chapter. But as with functions, smaller is the primary rule when it comes to designing classes. As with functions, our immediate question is always “How small?”
With functions we measured size by counting physical lines. With classes we use a different measure. We count responsibilities.1
Listing 10-1 outlines a class, SuperDashboard, that exposes about 70 public methods. Most developers would agree that it’s a bit too super in size. Some developers might refer to SuperDashboard as a “God class.”

Listing 10-1 Too Many Responsibilities
 public class SuperDashboard extends JFrame implements MetaDataUser
 public String getCustomizerLanguagePath()
 public void setSystemConfigPath(String systemConfigPath)
 public String getSystemConfigDocument()
 public void setSystemConfigDocument(String systemConfigDocument)
 public boolean getGuruState()
 public boolean getNoviceState()
 public boolean getOpenSourceState()
 public void showObject(MetaObject object)
 public void showProgress(String s)
 public boolean isMetadataDirty()
 public void setIsMetadataDirty(boolean isMetadataDirty)
 public Component getLastFocusedComponent()
 public void setLastFocused(Component lastFocused)
 public void setMouseSelectState(boolean isMouseSelected)
 public boolean isMouseSelected()
 public LanguageManager getLanguageManager()
 public Project getProject()
 public Project getFirstProject()
 public Project getLastProject()
 public String getNewProjectName()
 public void setComponentSizes(Dimension dim)
 public String getCurrentDir()
 public void setCurrentDir(String newDir)
 public void updateStatus(int dotPos, int markPos)
 public Class[] getDataBaseClasses()
 public MetadataFeeder getMetadataFeeder()
 public void addProject(Project project)
 public boolean setCurrentProject(Project project)
 public boolean removeProject(Project project)
 public MetaProjectHeader getProgramMetadata()
 public void resetDashboard()
 public Project loadProject(String fileName, String projectName)
 public void setCanSaveMetadata(boolean canSave)
 public MetaObject getSelectedObject()
 public void deselectObjects()
 public void setProject(Project project)
 public void editorAction(String actionName, ActionEvent event)
 public void setMode(int mode)
 public FileManager getFileManager()
 public void setFileManager(FileManager fileManager)
 public ConfigManager getConfigManager()
 public void setConfigManager(ConfigManager configManager)
 public ClassLoader getClassLoader()
 public void setClassLoader(ClassLoader classLoader)
 public Properties getProps()
 public String getUserHome()
 public String getBaseDir()
 public int getMajorVersionNumber()
 public int getMinorVersionNumber()
 public int getBuildNumber()
 public MetaObject pasting(
 MetaObject target, MetaObject pasted, MetaProject project)
 public void processMenuItems(MetaObject metaObject)
 public void processMenuSeparators(MetaObject metaObject)
 public void processTabPages(MetaObject metaObject)
 public void processPlacement(MetaObject object)
 public void processCreateLayout(MetaObject object)
 public void updateDisplayLayer(MetaObject object, int layerIndex)
 public void propertyEditedRepaint(MetaObject object)
 public void processDeleteObject(MetaObject object)
 public boolean getAttachedToDesigner()
 public void processProjectChangedState(boolean hasProjectChanged)
 public void processObjectNameChanged(MetaObject object)
 public void runProject()
 public void setAçowDragging(boolean allowDragging)
 public boolean allowDragging()
 public boolean isCustomizing()
 public void setTitle(String title)
 public IdeMenuBar getIdeMenuBar()
 public void showHelper(MetaObject metaObject, String propertyName)
 // … many non-public methods follow …
 }
But what if SuperDashboard contained only the methods shown in Listing 10-2?

Listing 10-2 Small Enough?
 public class SuperDashboard extends JFrame implements MetaDataUser
 public Component getLastFocusedComponent()
 public void setLastFocused(Component lastFocused)
 public int getMajorVersionNumber()
 public int getMinorVersionNumber()
 public int getBuildNumber()
 }
Five methods isn’t too much, is it? In this case it is because despite its small number of methods, SuperDashboard has too many responsibilities.
The name of a class should describe what responsibilities it fulfills. In fact, naming is probably the first way of helping determine class size. If we cannot derive a concise name for a class, then it’s likely too large. The more ambiguous the class name, the more likely it has too many responsibilities. For example, class names including weasel words like Processor or Manager or Super often hint at unfortunate aggregation of responsibilities.
We should also be able to write a brief description of the class in about 25 words, without using the words “if,” “and,” “or,” or “but.” How would we describe the SuperDashboard? “The SuperDashboard provides access to the component that last held the focus, and it also allows us to track the version and build numbers.” The first “and” is a hint that SuperDashboard has too many responsibilities.

The Single Responsibility Principle
The Single Responsibility Principle (SRP)2 states that a class or module should have one, and only one, reason to change. This principle gives us both a definition of responsibility, and a guidelines for class size. Classes should have one responsibility—one reason to change.
The seemingly small SuperDashboard class in Listing 10-2 has two reasons to change. First, it tracks version information that would seemingly need to be updated every time the software gets shipped. Second, it manages Java Swing components (it is a derivative of JFrame, the Swing representation of a top-level GUI window). No doubt we’ll want to update the version number if we change any of the Swing code, but the converse isn’t necessarily true: We might change the version information based on changes to other code in the system.
Trying to identify responsibilities (reasons to change) often helps us recognize and create better abstractions in our code. We can easily extract all three SuperDashboard methods that deal with version information into a separate class named Version. (See Listing 10-3.) The Version class is a construct that has a high potential for reuse in other applications!

Listing 10-3 A single-responsibility class
 public class Version {
 public int getMajorVersionNumber()
 public int getMinorVersionNumber()
 public int getBuildNumber()
 }
SRP is one of the more important concept in OO design. It’s also one of the simpler concepts to understand and adhere to. Yet oddly, SRP is often the most abused class design principle. We regularly encounter classes that do far too many things. Why?
Getting software to work and making software clean are two very different activities. Most of us have limited room in our heads, so we focus on getting our code to work more than organization and cleanliness. This is wholly appropriate. Maintaining a separation of concerns is just as important in our programming activities as it is in our programs.
The problem is that too many of us think that we are done once the program works. We fail to switch to the other concern of organization and cleanliness. We move on to the next problem rather than going back and breaking the overstuffed classes into decoupled units with single responsibilities.
At the same time, many developers fear that a large number of small, single-purpose classes makes it more difficult to understand the bigger picture. They are concerned that they must navigate from class to class in order to figure out how a larger piece of work gets accomplished.
However, a system with many small classes has no more moving parts than a system with a few large classes. There is just as much to learn in the system with a few large classes. So the question is: Do you want your tools organized into toolboxes with many small drawers each containing well-defined and well-labeled components? Or do you want a few drawers that you just toss everything into?
Every sizable system will contain a large amount of logic and complexity. The primary goal in managing such complexity is to organize it so that a developer knows where to look to find things and need only understand the directly affected complexity at any given time. In contrast, a system with larger, multipurpose classes always hampers us by insisting we wade through lots of things we don’t need to know right now.
To restate the former points for emphasis: We want our systems to be composed of many small classes, not a few large ones. Each small class encapsulates a single responsibility, has a single reason to change, and collaborates with a few others to achieve the desired system behaviors.

Cohesion
Classes should have a small number of instance variables. Each of the methods of a class should manipulate one or more of those variables. In general the more variables a method manipulates the more cohesive that method is to its class. A class in which each variable is used by each method is maximally cohesive.
In general it is neither advisable nor possible to create such maximally cohesive classes; on the other hand, we would like cohesion to be high. When cohesion is high, it means that the methods and variables of the class are co-dependent and hang together as a logical whole.
Consider the implementation of a Stack in Listing 10-4. This is a very cohesive class. Of the three methods only size() fails to use both the variables.

Listing 10-4 Stack.java A cohesive class.
 public class Stack {
 private int topOfStack = 0;
 List<Integer> elements = new LinkedList<Integer>();

 public int size() {
 return topOfStack;
 }

 public void push(int element) {
 topOfStack++;
 elements.add(element);
 }

 public int pop() throws PoppedWhenEmpty {
 if (topOfStack == 0)
 throw new PoppedWhenEmpty();
 int element = elements.get(--topOfStack);
 elements.remove(topOfStack);
 return element;
 }
 }
The strategy of keeping functions small and keeping parameter lists short can sometimes lead to a proliferation of instance variables that are used by a subset of methods. When this happens, it almost always means that there is at least one other class trying to get out of the larger class. You should try to separate the variables and methods into two or more classes such that the new classes are more cohesive.

Maintaining Cohesion Results in Many Small Classes
Just the act of breaking large functions into smaller functions causes a proliferation of classes. Consider a large function with many variables declared within it. Let’s say you want to extract one small part of that function into a separate function. However, the code you want to extract uses four of the variables declared in the function. Must you pass all four of those variables into the new function as arguments?
Not at all! If we promoted those four variables to instance variables of the class, then we could extract the code without passing any variables at all. It would be easy to break the function up into small pieces.
Unfortunately, this also means that our classes lose cohesion because they accumulate more and more instance variables that exist solely to allow a few functions to share them. But wait! If there are a few functions that want to share certain variables, doesn’t that make them a class in their own right? Of course it does. When classes lose cohesion, split them!
So breaking a large function into many smaller functions often gives us the opportunity to split several smaller classes out as well. This gives our program a much better organization and a more transparent structure.
As a demonstration of what I mean, let’s use a time-honored example taken from Knuth’s wonderful book Literate Programming.3Listing 10-5 shows a translation into Java of Knuth’s PrintPrimes program. To be fair to Knuth, this is not the program as he wrote it but rather as it was output by his WEB tool. I’m using it because it makes a great starting place for breaking up a big function into many smaller functions and classes.

Listing 10-5 PrintPrimes.java
 package literatePrimes;

 public class PrintPrimes {
 public static void main(String[] args) {
 final int M = 1000;
 final int RR = 50;
 final int CC = 4;
 final int WW = 10;
 final int ORDMAX = 30;
 int P[] = new int[M + 1];
 int PAGENUMBER;
 int PAGEOFFSET;
 int ROWOFFSET;
 int C;

 int J;
 int K;
 boolean JPRIME;
 int ORD;
 int SQUARE;
 int N;
 int MULT[] = new int[ORDMAX + 1];

 J = 1;
 K = 1;
 P[1] = 2;
 ORD = 2;
 SQUARE = 9;

 while (K < M) {
 do {
 J = J + 2;
 if (J == SQUARE) {
 ORD = ORD + 1;
 SQUARE = P[ORD] * P[ORD];
 MULT[ORD - 1] = J;
 }
 N = 2;
 JPRIME = true;
 while (N < ORD && JPRIME) {
 while (MULT[N] < J)
 MULT[N] = MULT[N] + P[N] + P[N];
 if (MULT[N] == J)
 JPRIME = false;
 N = N + 1;
 }
 } while (!JPRIME);
 K = K + 1;
 P[K] = J;
 }
 {
 PAGENUMBER = 1;
 PAGEOFFSET = 1;
 while (PAGEOFFSET <= M) {
 System.out.println(”The First ” + M +
 ” Prime Numbers --- Page ” + PAGENUMBER);
 System.out.println(””);
 for (ROWOFFSET = PAGEOFFSET; ROWOFFSET < PAGEOFFSET + RR; ROWOFFSET++){
 for (C = 0; C < CC;C++)
 if (ROWOFFSET + C * RR <= M)
 System.out.format(”%10d”, P[ROWOFFSET + C * RR]);
 System.out.println(””);
 }
 System.out.println(”\f”);
 PAGENUMBER = PAGENUMBER + 1;
 PAGEOFFSET = PAGEOFFSET + RR * CC;
 }
 }
 }
 }
This program, written as a single function, is a mess. It has a deeply indented structure, a plethora of odd variables, and a tightly coupled structure. At the very least, the one big function should be split up into a few smaller functions.
Listing 10-6 through Listing 10-8 show the result of splitting the code in Listing 10-5 into smaller classes and functions, and choosing meaningful names for those classes, functions, and variables.

Listing 10-6 PrimePrinter.java (refactored)
 package literatePrimes;

 public class PrimePrinter {
 public static void main(String[] args) {
 final int NUMBER_OF_PRIMES = 1000;
 int[] primes = PrimeGenerator.generate(NUMBER_OF_PRIMES);

 final int ROWS_PER_PAGE = 50;
 final int COLUMNS_PER_PAGE = 4;
 RowColumnPagePrinter tablePrinter =
 new RowColumnPagePrinter(ROWS_PER_PAGE,
 COLUMNS_PER_PAGE,
 ”The First ” + NUMBER_OF_PRIMES +
 ” Prime Numbers”);
 tablePrinter.print(primes);
 }

 }

Listing 10-7 RowColumnPagePrinter.java
 package literatePrimes;

 import java.io.PrintStream;

 public class RowColumnPagePrinter {
 private int rowsPerPage;
 private int columnsPerPage;
 private int numbersPerPage;
 private String pageHeader;
 private PrintStream printStream;

 public RowColumnPagePrinter(int rowsPerPage,
 int columnsPerPage,
 String pageHeader) {
 this.rowsPerPage = rowsPerPage;
 this.columnsPerPage = columnsPerPage;
 this.pageHeader = pageHeader;
 numbersPerPage = rowsPerPage * columnsPerPage;
 printStream = System.out;
 }

 public void print(int data[]) {
 int pageNumber = 1;
 for (int firstIndexOnPage = 0;
 firstIndexOnPage < data.length;
 firstIndexOnPage += numbersPerPage) {
 int lastIndexOnPage =
 Math.min(firstIndexOnPage + numbersPerPage - 1,
 data.length - 1);
 printPageHeader(pageHeader, pageNumber);
 printPage(firstIndexOnPage, lastIndexOnPage, data);
 printStream.println(”\f”);
 pageNumber++;
 }
 }

 private void printPage(int firstIndexOnPage,
 int lastIndexOnPage,
 int[] data) {
 int firstIndexOfLastRowOnPage =
 firstIndexOnPage + rowsPerPage - 1;
 for (int firstIndexInRow = firstIndexOnPage;
 firstIndexInRow <= firstIndexOfLastRowOnPage;
 firstIndexInRow++) {
 printRow(firstIndexInRow, lastIndexOnPage, data);
 printStream.println(””);
 }
 }

 private void printRow(int firstIndexInRow,
 int lastIndexOnPage,
 int[] data) {
 for (int column = 0; column < columnsPerPage; column++) {
 int index = firstIndexInRow + column * rowsPerPage;
 if (index <= lastIndexOnPage)
 printStream.format(”%10d”, data[index]);
 }
 }

 private void printPageHeader(String pageHeader,
 int pageNumber) {
 printStream.println(pageHeader + ” --- Page ” + pageNumber);
 printStream.println(””);
 }

 public void setOutput(PrintStream printStream) {
 this.printStream = printStream;
 }
 }

Listing 10-8 PrimeGenerator.java
 package literatePrimes;

 import java.util.ArrayList;

 public class PrimeGenerator {
 private static int[] primes;
 private static ArrayList<Integer> multiplesOfPrimeFactors;

 protected static int[] generate(int n) {
 primes = new int[n];
 multiplesOfPrimeFactors = new ArrayList<Integer>();
 set2AsFirstPrime();
 checkOddNumbersForSubsequentPrimes();
 return primes;
 }

 private static void set2AsFirstPrime() {
 primes[0] = 2;
 multiplesOfPrimeFactors.add(2);
 }

 private static void checkOddNumbersForSubsequentPrimes() {
 int primeIndex = 1;
 for (int candidate = 3;
 primeIndex < primes.length;
 candidate += 2) {
 if (isPrime(candidate))
 primes[primeIndex++] = candidate;
 }
 }

 private static boolean isPrime(int candidate) {
 if (isLeastRelevantMultipleOfNextLargerPrimeFactor(candidate)) {
 multiplesOfPrimeFactors.add(candidate);
 return false;
 }
 return isNotMultipleOfAnyPreviousPrimeFactor(candidate);
 }

 private static boolean
 isLeastRelevantMultipleOfNextLargerPrimeFactor(int candidate) {
 int nextLargerPrimeFactor = primes[multiplesOfPrimeFactors.size()];
 int leastRelevantMultiple = nextLargerPrimeFactor * nextLargerPrimeFactor;
 return candidate == leastRelevantMultiple;
 }

 private static boolean
 isNotMultipleOfAnyPreviousPrimeFactor(int candidate) {
 for (int n = 1; n < multiplesOfPrimeFactors.size(); n++) {
 if (isMultipleOfNthPrimeFactor(candidate, n))
 return false;
 }
 return true;
 }

 private static boolean
 isMultipleOfNthPrimeFactor(int candidate, int n) {
 return
 candidate == smallestOddNthMultipleNotLessThanCandidate(candidate, n);
 }

 private static int
 smallestOddNthMultipleNotLessThanCandidate(int candidate, int n) {
 int multiple = multiplesOfPrimeFactors.get(n);
 while (multiple < candidate)
 multiple += 2 * primes[n];
 multiplesOfPrimeFactors.set(n, multiple);
 return multiple;
 }
 }
The first thing you might notice is that the program got a lot longer. It went from a little over one page to nearly three pages in length. There are several reasons for this growth. First, the refactored program uses longer, more descriptive variable names. Second, the refactored program uses function and class declarations as a way to add commentary to the code. Third, we used whitespace and formatting techniques to keep the program readable.
Notice how the program has been split into three main responsibilities. The main program is contained in the PrimePrinter class all by itself. Its responsibility is to handle the execution environment. It will change if the method of invocation changes. For example, if this program were converted to a SOAP service, this is the class that would be affected.
The RowColumnPagePrinter knows all about how to format a list of numbers into pages with a certain number of rows and columns. If the formatting of the output needed changing, then this is the class that would be affected.
The PrimeGenerator class knows how to generate a list prime numbers. Notice that it is not meant to be instantiated as an object. The class is just a useful scope in which its variables can be declared and kept hidden. This class will change if the algorithm for computing prime numbers changes.
This was not a rewrite! We did not start over from scratch and write the program over again. Indeed, if you look closely at the two different programs, you’ll see that they use the same algorithm and mechanics to get their work done.
The change was made by writing a test suite that verified the precise behavior of the first program. Then a myriad of tiny little changes were made, one at a time. After each change the program was executed to ensure that the behavior had not changed. One tiny step after another, the first program was cleaned up and transformed into the second.

Organizing for Change
For most systems, change is continual. Every change subjects us to the risk that the remainder of the system no longer works as intended. In a clean system we organize our classes so as to reduce the risk of change.
The Sql class in Listing 10-9 is used to generate properly formed SQL strings given appropriate metadata. It’s a work in progress and, as such, doesn’t yet support SQL functionality like update statements. When the time comes for the Sql class to support an update statement, we’ll have to “open up” this class to make modifications. The problem with opening a class is that it introduces risk. Any modifications to the class have the potential of breaking other code in the class. It must be fully retested.

Listing 10-9 A class that must be opened for change
 public class Sql { public Sql(String table, Column[] columns)
 public String create()
 public String insert(Object[] fields)
 public String selectAll()
 public String findByKey(String keyColumn, String keyValue)
 public String select(Column column, String pattern)
 public String select(Criteria criteria)
 public String preparedInsert()
 private String columnList(Column[] columns)
 private String valuesList(Object[] fields, final Column[] columns)
 private String selectWithCriteria(String criteria)
 private String placeholderList(Column[] columns)
 }
The Sql class must change when we add a new type of statement. It also must change when we alter the details of a single statement type—for example, if we need to modify the select functionality to support subselects. These two reasons to change mean that the Sql class violates the SRP.
We can spot this SRP violation from a simple organizational standpoint. The method outline of Sql shows that there are private methods, such as selectWithCriteria, that appear to relate only to select statements.
Private method behavior that applies only to a small subset of a class can be a useful heuristic for spotting potential areas for improvement. However, the primary spur for taking action should be system change itself. If the Sql class is deemed logically complete, then we need not worry about separating the responsibilities. If we won’t need update functionality for the foreseeable future, then we should leave Sql alone. But as soon as we find ourselves opening up a class, we should consider fixing our design.
What if we considered a solution like that in Listing 10-10? Each public interface method defined in the previous Sql from Listing 10-9 is refactored out to its own derivative of the Sql class. Note that the private methods, such as valuesList, move directly where they are needed. The common private behavior is isolated to a pair of utility classes, Where and ColumnList.

Listing 10-10 A set of closed classes
 abstract public class Sql {
 public Sql(String table, Column[] columns)
 abstract public String generate();
 }

 public class CreateSql extends Sql {
 public CreateSql(String table, Column[] columns)
 @Override public String generate()
 }

 public class SelectSql extends Sql {
 public SelectSql(String table, Column[] columns)
 @Override public String generate()
 }

 public class InsertSql extends Sql {
 public InsertSql(String table, Column[] columns, Object[] fields)
 @Override public String generate()
 private String valuesList(Object[] fields, final Column[] columns)
 }

 public class SelectWithCriteriaSql extends Sql {
 public SelectWithCriteriaSql(
 String table, Column[] columns, Criteria criteria)
 @Override public String generate()
 }

 public class SelectWithMatchSql extends Sql {
 public SelectWithMatchSql(
 String table, Column[] columns, Column column, String pattern)
 @Override public String generate()
 }

 public class FindByKeySql extends Sql
 public FindByKeySql(
 String table, Column[] columns, String keyColumn, String keyValue)
 @Override public String generate()
 }

 public class PreparedInsertSql extends Sql {
 public PreparedInsertSql(String table, Column[] columns)
 @Override public String generate() {
 private String placeholderList(Column[] columns)
 }

 public class Where {
 public Where(String criteria)
 public String generate()
 }

 public class ColumnList {
 public ColumnList(Column[] columns)
 public String generate()
 }
The code in each class becomes excruciatingly simple. Our required comprehension time to understand any class decreases to almost nothing. The risk that one function could break another becomes vanishingly small. From a test standpoint, it becomes an easier task to prove all bits of logic in this solution, as the classes are all isolated from one another.
Equally important, when it’s time to add the update statements, none of the existing classes need change! We code the logic to build update statements in a new subclass of Sql named UpdateSql. No other code in the system will break because of this change.
Our restructured Sql logic represents the best of all worlds. It supports the SRP. It also supports another key OO class design principle known as the Open-Closed Principle, or OCP:4 Classes should be open for extension but closed for modification. Our restructured Sql class is open to allow new functionality via subclassing, but we can make this change while keeping every other class closed. We simply drop our UpdateSql class in place.
We want to structure our systems so that we muck with as little as possible when we update them with new or changed features. In an ideal system, we incorporate new features by extending the system, not by making modifications to existing code.

Isolating from Change
Needs will change, therefore code will change. We learned in OO 101 that there are concrete classes, which contain implementation details (code), and abstract classes, which represent concepts only. A client class depending upon concrete details is at risk when those details change. We can introduce interfaces and abstract classes to help isolate the impact of those details.
Dependencies upon concrete details create challenges for testing our system. If we’re building a Portfolio class and it depends upon an external TokyoStockExchange API to derive the portfolio’s value, our test cases are impacted by the volatility of such a lookup. It’s hard to write a test when we get a different answer every five minutes!
Instead of designing Portfolio so that it directly depends upon TokyoStockExchange, we create an interface, StockExchange, that declares a single method:
 public interface StockExchange {
 Money currentPrice(String symbol);
 }
We design TokyoStockExchange to implement this interface. We also make sure that the constructor of Portfolio takes a StockExchange reference as an argument:
 public Portfolio {
 private StockExchange exchange;
 public Portfolio(StockExchange exchange) {
 this.exchange = exchange;
 }
 // …
 }
Now our test can create a testable implementation of the StockExchange interface that emulates the TokyoStockExchange. This test implementation will fix the current value for any symbol we use in testing. If our test demonstrates purchasing five shares of Microsoft for our portfolio, we code the test implementation to always return $100 per share of Microsoft. Our test implementation of the StockExchange interface reduces to a simple table lookup. We can then write a test that expects $500 for our overall portfolio value.
 public class PortfolioTest {
 private FixedStockExchangeStub exchange;
 private Portfolio portfolio;

 @Before
 protected void setUp() throws Exception {
 exchange = new FixedStockExchangeStub();
 exchange.fix(”MSFT”, 100);
 portfolio = new Portfolio(exchange);
 }

 @Test
 public void GivenFiveMSFTTotalShouldBe500() throws Exception {
 portfolio.add(5, ”MSFT”);
 Assert.assertEquals(500, portfolio.value());
 }
 }
If a system is decoupled enough to be tested in this way, it will also be more flexible and promote more reuse. The lack of coupling means that the elements of our system are better isolated from each other and from change. This isolation makes it easier to understand each element of the system.
By minimizing coupling in this way, our classes adhere to another class design principle known as the Dependency Inversion Principle (DIP).5 In essence, the DIP says that our classes should depend upon abstractions, not on concrete details.
Instead of being dependent upon the implementation details of the TokyoStock-Exchange class, our Portfolio class is now dependent upon the StockExchange interface. The StockExchange interface represents the abstract concept of asking for the current price of a symbol. This abstraction isolates all of the specific details of obtaining such a price, including from where that price is obtained.

Bibliography

[RDD]: Object Design: Roles, Responsibilities, and Collaborations, Rebecca Wirfs-Brock et al., Addison-Wesley, 2002.

[PPP]: Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin, Prentice Hall, 2002.

[Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study of language and Information, Leland Stanford Junior University, 1992.

11 Systems
by Dr. Kevin Dean Wampler

“Complexity kills. It sucks the life out of developers, it makes products difficult to plan, build, and test.”

—Ray Ozzie, CTO, Microsoft Corporation

How Would You Build a City?
Could you manage all the details yourself? Probably not. Even managing an existing city is too much for one person. Yet, cities work (most of the time). They work because cities have teams of people who manage particular parts of the city, the water systems, power systems, traffic, law enforcement, building codes, and so forth. Some of those people are responsible for the big picture, while others focus on the details.
Cities also work because they have evolved appropriate levels of abstraction and modularity that make it possible for individuals and the “components” they manage to work effectively, even without understanding the big picture.
Although software teams are often organized like that too, the systems they work on often don’t have the same separation of concerns and levels of abstraction. Clean code helps us achieve this at the lower levels of abstraction. In this chapter let us consider how to stay clean at higher levels of abstraction, the system level.

Separate Constructing a System from Using It
First, consider that construction is a very different process from use. As I write this, there is a new hotel under construction that I see out my window in Chicago. Today it is a bare concrete box with a construction crane and elevator bolted to the outside. The busy people there all wear hard hats and work clothes. In a year or so the hotel will be finished. The crane and elevator will be gone. The building will be clean, encased in glass window walls and attractive paint. The people working and staying there will look a lot different too.
Software systems should separate the startup process, when the application objects are constructed and the dependencies are “wired” together, from the runtime logic that takes over after startup.

The startup process is a concern that any application must address. It is the first concern that we will examine in this chapter. The separation of concerns is one of the oldest and most important design techniques in our craft.
Unfortunately, most applications don’t separate this concern. The code for the startup process is ad hoc and it is mixed in with the runtime logic. Here is a typical example:
 public Service getService() {
 if (service == null)
 service = new MyServiceImpl(…); // Good enough default for most cases?
 return service;
 }
This is the LAZY INITIALIZATION/EVALUATION idiom, and it has several merits. We don’t incur the overhead of construction unless we actually use the object, and our startup times can be faster as a result. We also ensure that null is never returned.
However, we now have a hard-coded dependency on MyServiceImpl and everything its constructor requires (which I have elided). We can’t compile without resolving these dependencies, even if we never actually use an object of this type at runtime!
Testing can be a problem. If MyServiceImpl is a heavyweight object, we will need to make sure that an appropriate TEST DOUBLE1 or MOCK OBJECT gets assigned to the service field before this method is called during unit testing. Because we have construction logic mixed in with normal runtime processing, we should test all execution paths (for example, the null test and its block). Having both of these responsibilities means that the method is doing more than one thing, so we are breaking the Single Responsibility Principle in a small way.
Perhaps worst of all, we do not know whether MyServiceImpl is the right object in all cases. I implied as much in the comment. Why does the class with this method have to know the global context? Can we ever really know the right object to use here? Is it even possible for one type to be right for all possible contexts?
One occurrence of LAZY-INITIALIZATION isn’t a serious problem, of course. However, there are normally many instances of little setup idioms like this in applications. Hence, the global setup strategy (if there is one) is scattered across the application, with little modularity and often significant duplication.
If we are diligent about building well-formed and robust systems, we should never let little, convenient idioms lead to modularity breakdown. The startup process of object construction and wiring is no exception. We should modularize this process separately from the normal runtime logic and we should make sure that we have a global, consistent strategy for resolving our major dependencies.

Separation of Main
One way to separate construction from use is simply to move all aspects of construction to main, or modules called by main, and to design the rest of the system assuming that all objects have been constructed and wired up appropriately. (See Figure 11-1.)
The flow of control is easy to follow. The main function builds the objects necessary for the system, then passes them to the application, which simply uses them. Notice the direction of the dependency arrows crossing the barrier between main and the application. They all go one direction, pointing away from main. This means that the application has no knowledge of main or of the construction process. It simply expects that everything has been built properly.

Factories
Sometimes, of course, we need to make the application responsible for when an object gets created. For example, in an order processing system the application must create the

Figure 11-1 Separating construction in main()

LineItem instances to add to an Order. In this case we can use the ABSTRACT FACTORY2 pattern to give the application control of when to build the LineItems, but keep the details of that construction separate from the application code. (See Figure 11-2.)

Figure 11-2 Separation construction with factory

Again notice that all the dependencies point from main toward the OrderProcessing application. This means that the application is decoupled from the details of how to build a LineItem. That capability is held in the LineItemFactoryImplementation, which is on the main side of the line. And yet the application is in complete control of when the LineItem instances get built and can even provide application-specific constructor arguments.

Dependency Injection
A powerful mechanism for separating construction from use is Dependency Injection (DI), the application of Inversion of Control (IoC) to dependency management.3 Inversion of Control moves secondary responsibilities from an object to other objects that are dedicated to the purpose, thereby supporting the Single Responsibility Principle. In the context of dependency management, an object should not take responsibility for instantiating dependencies itself. Instead, it should pass this responsibility to another “authoritative” mechanism, thereby inverting the control. Because setup is a global concern, this authoritative mechanism will usually be either the “main” routine or a special-purpose container.
JNDI lookups are a “partial” implementation of DI, where an object asks a directory server to provide a “service” matching a particular name.
 MyService myService = (MyService)(jndiContext.lookup(“NameOfMyService”));
The invoking object doesn’t control what kind of object is actually returned (as long it implements the appropriate interface, of course), but the invoking object still actively resolves the dependency.
True Dependency Injection goes one step further. The class takes no direct steps to resolve its dependencies; it is completely passive. Instead, it provides setter methods or constructor arguments (or both) that are used to inject the dependencies. During the construction process, the DI container instantiates the required objects (usually on demand) and uses the constructor arguments or setter methods provided to wire together the dependencies. Which dependent objects are actually used is specified through a configuration file or programmatically in a special-purpose construction module.
The Spring Framework provides the best known DI container for Java.4 You define which objects to wire together in an XML configuration file, then you ask for particular objects by name in Java code. We will look at an example shortly.
But what about the virtues of LAZY-INITIALIZATION? This idiom is still sometimes useful with DI. First, most DI containers won’t construct an object until needed. Second, many of these containers provide mechanisms for invoking factories or for constructing proxies, which could be used for LAZY-EVALUATION and similar optimizations.5

Scaling Up
Cities grow from towns, which grow from settlements. At first the roads are narrow and practically nonexistent, then they are paved, then widened over time. Small buildings and empty plots are filled with larger buildings, some of which will eventually be replaced with skyscrapers.
At first there are no services like power, water, sewage, and the Internet (gasp!). These services are also added as the population and building densities increase.
This growth is not without pain. How many times have you driven, bumper to bumper through a road “improvement” project and asked yourself, “Why didn’t they build it wide enough the first time!?”
But it couldn’t have happened any other way. Who can justify the expense of a six-lane highway through the middle of a small town that anticipates growth? Who would want such a road through their town?
It is a myth that we can get systems “right the first time.” Instead, we should implement only today’s stories, then refactor and expand the system to implement new stories tomorrow. This is the essence of iterative and incremental agility. Test-driven development, refactoring, and the clean code they produce make this work at the code level.
But what about at the system level? Doesn’t the system architecture require preplanning? Certainly, it can’t grow incrementally from simple to complex, can it?
Software systems are unique compared to physical systems. Their architectures can grow incrementally,
ifwe maintain the proper separation of concerns.

The ephemeral nature of software systems makes this possible, as we will see. Let us first consider a counterexample of an architecture that doesn’t separate concerns adequately.
The original EJB1 and EJB2 architectures did not separate concerns appropriately and thereby imposed unnecessary barriers to organic growth. Consider an Entity Bean for a persistent Bank class. An entity bean is an in-memory representation of relational data, in other words, a table row.
First, you had to define a local (in process) or remote (separate JVM) interface, which clients would use. Listing 11-1 shows a possible local interface:

Listing 11-1 An EJB2 local interface for a Bank EJB
 package com.example.banking;
 import java.util.Collections;
 import javax.ejb.*;

 public interface BankLocal extends java.ejb.EJBLocalObject {
 String getStreetAddr1() throws EJBException;
 String getStreetAddr2() throws EJBException;
 String getCity() throws EJBException;
 String getState() throws EJBException;
 String getZipCode() throws EJBException;
 void setStreetAddr1(String street1) throws EJBException;
 void setStreetAddr2(String street2) throws EJBException;
 void setCity(String city) throws EJBException;
 void setState(String state) throws EJBException;
 void setZipCode(String zip) throws EJBException;
 Collection getAccounts() throws EJBException;
 void setAccounts(Collection accounts) throws EJBException;
 void addAccount(AccountDTO accountDTO) throws EJBException;
 }
I have shown several attributes for the Bank’s address and a collection of accounts that the bank owns, each of which would have its data handled by a separate Account EJB. Listing 11-2 shows the corresponding implementation class for the Bank bean.

Listing 11-2 The corresponding EJB2 Entity Bean Implementation
 package com.example.banking;
 import java.util.Collections;
 import javax.ejb.*;

 public abstract class Bank implements javax.ejb.EntityBean {
 // Business logic…
 public abstract String getStreetAddr1();
 public abstract String getStreetAddr2();
 public abstract String getCity();
 public abstract String getState();
 public abstract String getZipCode();
 public abstract void setStreetAddr1(String street1);
 public abstract void setStreetAddr2(String street2);
 public abstract void setCity(String city);
 public abstract void setState(String state);
 public abstract void setZipCode(String zip);
 public abstract Collection getAccounts();
 public abstract void setAccounts(Collection accounts);
 public void addAccount(AccountDTO accountDTO) {
 InitialContext context = new InitialContext();
 AccountHomeLocal accountHome = context.lookup(”AccountHomeLocal”);
 AccountLocal account = accountHome.create(accountDTO);
 Collection accounts = getAccounts();
 accounts.add(account);
 }
 // EJB container logic
 public abstract void setId(Integer id);
 public abstract Integer getId();
 public Integer ejbCreate(Integer id) { … }
 public void ejbPostCreate(Integer id) { … }
 // The rest had to be implemented but were usually empty:
 public void setEntityContext(EntityContext ctx) {}
 public void unsetEntityContext() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbRemove() {}
 }
I haven’t shown the corresponding LocalHome interface, essentially a factory used to create objects, nor any of the possible Bank finder (query) methods you might add.
Finally, you had to write one or more XML deployment descriptors that specify the object-relational mapping details to a persistence store, the desired transactional behavior, security constraints, and so on.
The business logic is tightly coupled to the EJB2 application “container.” You must subclass container types and you must provide many lifecycle methods that are required by the container.
Because of this coupling to the heavyweight container, isolated unit testing is difficult. It is necessary to mock out the container, which is hard, or waste a lot of time deploying EJBs and tests to a real server. Reuse outside of the EJB2 architecture is effectively impossible, due to the tight coupling.
Finally, even object-oriented programming is undermined. One bean cannot inherit from another bean. Notice the logic for adding a new account. It is common in EJB2 beans to define “data transfer objects” (DTOs) that are essentially “structs” with no behavior. This usually leads to redundant types holding essentially the same data, and it requires boilerplate code to copy data from one object to another.

Cross-Cutting Concerns
The EJB2 architecture comes close to true separation of concerns in some areas. For example, the desired transactional, security, and some of the persistence behaviors are declared in the deployment descriptors, independently of the source code.
Note that concerns like persistence tend to cut across the natural object boundaries of a domain. You want to persist all your objects using generally the same strategy, for example, using a particular DBMS6 versus flat files, following certain naming conventions for tables and columns, using consistent transactional semantics, and so on.
In principle, you can reason about your persistence strategy in a modular, encapsulated way. Yet, in practice, you have to spread essentially the same code that implements the persistence strategy across many objects. We use the term cross-cutting concerns for concerns like these. Again, the persistence framework might be modular and our domain logic, in isolation, might be modular. The problem is the fine-grained intersection of these domains.
In fact, the way the EJB architecture handled persistence, security, and transactions, “anticipated” aspect-oriented programming (AOP),7 which is a general-purpose approach to restoring modularity for cross-cutting concerns.
In AOP, modular constructs called aspects specify which points in the system should have their behavior modified in some consistent way to support a particular concern. This specification is done using a succinct declarative or programmatic mechanism.
Using persistence as an example, you would declare which objects and attributes (or patterns thereof) should be persisted and then delegate the persistence tasks to your persistence framework. The behavior modifications are made noninvasively8 to the target code by the AOP framework. Let us look at three aspects or aspect-like mechanisms in Java.

Java Proxies
Java proxies are suitable for simple situations, such as wrapping method calls in individual objects or classes. However, the dynamic proxies provided in the JDK only work with interfaces. To proxy classes, you have to use a byte-code manipulation library, such as CGLIB, ASM, or Javassist.9
Listing 11-3 shows the skeleton for a JDK proxy to provide persistence support for our Bank application, covering only the methods for getting and setting the list of accounts.

Listing 11-3 JDK Proxy Example
 // Bank.java (suppressing package names…)
 import java.utils.*;

 // The abstraction of a bank.
 public interface Bank {
 Collection<Account> getAccounts();
 void setAccounts(Collection<Account> accounts);
 }
 // BankImpl.java
 import java.utils.*;

 // The “Plain Old Java Object” (POJO) implementing the abstraction.
 public class BankImpl implements Bank {
 private List<Account> accounts;

 public Collection<Account> getAccounts() {
 return accounts;
 }
 public void setAccounts(Collection<Account> accounts) {
 this.accounts = new ArrayList<Account>();
 for (Account account: accounts) {
 this.accounts.add(account);
 }
 }
 }
 // BankProxyHandler.java
 import java.lang.reflect.*;
 import java.util.*;
 // “InvocationHandler” required by the proxy API.
 public class BankProxyHandler implements InvocationHandler {
 private Bank bank;

 public BankHandler (Bank bank) {
 this.bank = bank;
 }
 // Method defined in InvocationHandler
 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 String methodName = method.getName();
 if (methodName.equals(”getAccounts”)) {
 bank.setAccounts(getAccountsFromDatabase());
 return bank.getAccounts();
 } else if (methodName.equals(”setAccounts”)) {
 bank.setAccounts((Collection<Account>) args[0]);
 setAccountsToDatabase(bank.getAccounts());
 return null;
 } else {
 …
 }
 }
 // Lots of details here:
 protected Collection<Account> getAccountsFromDatabase() { … }
 protected void setAccountsToDatabase(Collection<Account> accounts) { … }
 }

 // Somewhere else…

 Bank bank = (Bank) Proxy.newProxyInstance(
 Bank.class.getClassLoader(),
 new Class[] { Bank.class },
 new BankProxyHandler(new BankImpl()));
We defined an interface Bank, which will be wrapped by the proxy, and a Plain-Old Java Object (POJO), BankImpl, that implements the business logic. (We will revisit POJOs shortly.)
The Proxy API requires an InvocationHandler object that it calls to implement any Bank method calls made to the proxy. Our BankProxyHandler uses the Java reflection API to map the generic method invocations to the corresponding methods in BankImpl, and so on.
There is a lot of code here and it is relatively complicated, even for this simple case.10 Using one of the byte-manipulation libraries is similarly challenging. This code “volume”
and complexity are two of the drawbacks of proxies. They make it hard to create clean code! Also, proxies don’t provide a mechanism for specifying system-wide execution “points” of interest, which is needed for a true AOP solution.11

Pure Java AOP Frameworks
Fortunately, most of the proxy boilerplate can be handled automatically by tools. Proxies are used internally in several Java frameworks, for example, Spring AOP and JBoss AOP, to implement aspects in pure Java.12 In Spring, you write your business logic as Plain-Old Java Objects. POJOs are purely focused on their domain. They have no dependencies on enterprise frameworks (or any other domains). Hence, they are conceptually simpler and easier to test drive. The relative simplicity makes it easier to ensure that you are implementing the corresponding user stories correctly and to maintain and evolve the code for future stories.
You incorporate the required application infrastructure, including cross-cutting concerns like persistence, transactions, security, caching, failover, and so on, using declarative configuration files or APIs. In many cases, you are actually specifying Spring or JBoss library aspects, where the framework handles the mechanics of using Java proxies or byte-code libraries transparently to the user. These declarations drive the dependency injection (DI) container, which instantiates the major objects and wires them together on demand.
Listing 11-4 shows a typical fragment of a Spring V2.5 configuration file, app.xml13:

Listing 11-4 Spring 2.X configuration file
 <beans>
 …
 <bean id=”appDataSource”
 class=”org.apache.commons.dbcp.BasicDataSource”
 destroy-method=”close”
 p:driverClassName=”com.mysql.jdbc.Driver”
 p:url=”jdbc:mysql://localhost:3306/mydb”
 p:username=”me”/>

 <bean id=”bankDataAccessObject”
 class=”com.example.banking.persistence.BankDataAccessObject”
 p:dataSource-ref=”appDataSource”/>

 <bean id=”bank”
 class=”com.example.banking.model.Bank”
 p:dataAccessObject-ref=”bankDataAccessObject”/>
 …
</beans>
Each “bean” is like one part of a nested “Russian doll,” with a domain object for a Bank proxied (wrapped) by a data accessor object (DAO), which is itself proxied by a JDBC driver data source. (See Figure 11-3.)

Figure 11-3 The “Russian doll” of decorators

The client believes it is invoking getAccounts() on a Bank object, but it is actually talking to the outermost of a set of nested DECORATOR14 objects that extend the basic behavior of the Bank POJO. We could add other decorators for transactions, caching, and so forth.
In the application, a few lines are needed to ask the DI container for the top-level objects in the system, as specified in the XML file.
 XmlBeanFactory bf =
 new XmlBeanFactory(new ClassPathResource(”app.xml”, getClass()));
 Bank bank = (Bank) bf.getBean(”bank”);

Because so few lines of Spring-specific Java code are required, the application is almost completely decoupled from Spring, eliminating all the tight-coupling problems of systems like EJB2.
Although XML can be verbose and hard to read,15 the “policy” specified in these configuration files is simpler than the complicated proxy and aspect logic that is hidden from view and created automatically. This type of architecture is so compelling that frameworks like Spring led to a complete overhaul of the EJB standard for version 3. EJB3
largely follows the Spring model of declaratively supporting cross-cutting concerns using XML configuration files and/or Java 5 annotations.
Listing 11-5 shows our Bank object rewritten in EJB316.

Listing 11-5 An EBJ3 Bank EJB

 package com.example.banking.model;
 import javax.persistence.*;
 import java.util.ArrayList;
 import java.util.Collection;

 @Entity
 @Table(name = “BANKS”)
 public class Bank implements java.io.Serializable {
 @Id @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;

 @Embeddable // An object “inlined” in Bank’s DB row
 public class Address {
 protected String streetAddr1;
 protected String streetAddr2;
 protected String city;
 protected String state;
 protected String zipCode;
 }
 @Embedded
 private Address address;

 @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER,
 mappedBy=”bank”)
 private Collection<Account> accounts = new ArrayList<Account>();

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public void addAccount(Account account) {
 account.setBank(this);
 accounts.add(account);
 }
 public Collection<Account> getAccounts() {
 return accounts;
 }
 public void setAccounts(Collection<Account> accounts) {
 this.accounts = accounts;
 }
}
This code is much cleaner than the original EJB2 code. Some of the entity details are still here, contained in the annotations. However, because none of that information is outside of the annotations, the code is clean, clear, and hence easy to test drive, maintain, and so on.
Some or all of the persistence information in the annotations can be moved to XML deployment descriptors, if desired, leaving a truly pure POJO. If the persistence mapping details won’t change frequently, many teams may choose to keep the annotations, but with far fewer harmful drawbacks compared to the EJB2 invasiveness.

AspectJ Aspects
Finally, the most full-featured tool for separating concerns through aspects is the AspectJ language,17 an extension of Java that provides “first-class” support for aspects as modularity constructs. The pure Java approaches provided by Spring AOP and JBoss AOP are sufficient for 80–90 percent of the cases where aspects are most useful. However, AspectJ provides a very rich and powerful tool set for separating concerns. The drawback of AspectJ is the need to adopt several new tools and to learn new language constructs and usage idioms.
The adoption issues have been partially mitigated by a recently introduced “annotation form” of AspectJ, where Java 5 annotations are used to define aspects using pure Java code. Also, the Spring Framework has a number of features that make incorporation of annotation-based aspects much easier for a team with limited AspectJ experience.
A full discussion of AspectJ is beyond the scope of this book. See [AspectJ], [Colyer], and [Spring] for more information.

Test Drive the System Architecture
The power of separating concerns through aspect-like approaches can’t be overstated. If you can write your application’s domain logic using POJOs, decoupled from any architecture concerns at the code level, then it is possible to truly test drive your architecture. You can evolve it from simple to sophisticated, as needed, by adopting new technologies on demand. It is not necessary to do a Big Design Up Front18 (BDUF). In fact, BDUF is even harmful because it inhibits adapting to change, due to the psychological resistance to discarding prior effort and because of the way architecture choices influence subsequent thinking about the design.
Building architects have to do BDUF because it is not feasible to make radical architectural changes to a large physical structure once construction is well underway.19 Although software has its own physics,20 it is economically feasible to make radical change, if the structure of the software separates its concerns effectively.
This means we can start a software project with a “naively simple” but nicely decoupled architecture, delivering working user stories quickly, then adding more infrastructure as we scale up. Some of the world’s largest Web sites have achieved very high availability and performance, using sophisticated data caching, security, virtualization, and so forth, all done efficiently and flexibly because the minimally coupled designs are appropriately simple at each level of abstraction and scope.
Of course, this does not mean that we go into a project “rudderless.” We have some expectations of the general scope, goals, and schedule for the project, as well as the general structure of the resulting system. However, we must maintain the ability to change course in response to evolving circumstances.
The early EJB architecture is but one of many well-known APIs that are over-engineered and that compromise separation of concerns. Even well-designed APIs can be overkill when they aren’t really needed. A good API should largely disappear from view most of the time, so the team expends the majority of its creative efforts focused on the user stories being implemented. If not, then the architectural constraints will inhibit the efficient delivery of optimal value to the customer.
To recap this long discussion,
An optimal system architecture consists of modularized domains of concern, each of which is implemented with Plain Old Java (or other) Objects. The different domains are integrated together with minimally invasive Aspects or Aspect-like tools. This architecture can be test-driven, just like the code.

Optimize Decision Making
Modularity and separation of concerns make decentralized management and decision making possible. In a sufficiently large system, whether it is a city or a software project, no one person can make all the decisions.
We all know it is best to give responsibilities to the most qualified persons. We often forget that it is also best to postpone decisions until the last possible moment. This isn’t lazy or irresponsible; it lets us make informed choices with the best possible information. A premature decision is a decision made with suboptimal knowledge. We will have that much less customer feedback, mental reflection on the project, and experience with our implementation choices if we decide too soon.
The agility provided by a POJO system with modularized concerns allows us to make optimal, just-in-time decisions, based on the most recent knowledge. The complexity of these decisions is also reduced.

Use Standards Wisely, When They Add Demonstrable Value
Building construction is a marvel to watch because of the pace at which new buildings are built (even in the dead of winter) and because of the extraordinary designs that are possible with today’s technology. Construction is a mature industry with highly optimized parts, methods, and standards that have evolved under pressure for centuries.
Many teams used the EJB2 architecture because it was a standard, even when lighter-weight and more straightforward designs would have been sufficient. I have seen teams become obsessed with various strongly hyped standards and lose focus on implementing value for their customers.
Standards make it easier to reuse ideas and components, recruit people with relevant experience, encapsulate good ideas, and wire components together. However, the process of creating standards can sometimes take too long for industry to wait, and some standards lose touch with the real needs of the adopters they are intended to serve.

Systems Need Domain-Specific Languages
Building construction, like most domains, has developed a rich language with a vocabulary, idioms, and patterns21 that convey essential information clearly and concisely. In software, there has been renewed interest recently in creating Domain-Specific Languages (DSLs),22 which are separate, small scripting languages or APIs in standard languages that permit code to be written so that it reads like a structured form of prose that a domain expert might write.
A good DSL minimizes the “communication gap” between a domain concept and the code that implements it, just as agile practices optimize the communications within a team and with the project’s stakeholders. If you are implementing domain logic in the same language that a domain expert uses, there is less risk that you will incorrectly translate the domain into the implementation.
DSLs, when used effectively, raise the abstraction level above code idioms and design patterns. They allow the developer to reveal the intent of the code at the appropriate level of abstraction.
Domain-Specific Languages allow all levels of abstraction and all domains in the application to be expressed as POJOs, from high-level policy to low-level details.

Conclusion
Systems must be clean too. An invasive architecture overwhelms the domain logic and impacts agility. When the domain logic is obscured, quality suffers because bugs find it easier to hide and stories become harder to implement. If agility is compromised, productivity suffers and the benefits of TDD are lost.
At all levels of abstraction, the intent should be clear. This will only happen if you write POJOs and you use aspect-like mechanisms to incorporate other implementation concerns noninvasively.
Whether you are designing systems or individual modules, never forget to use the simplest thing that can possibly work.

Bibliography

[Alexander]: Christopher Alexander, A Timeless Way of Building, Oxford University Press, New York, 1979.

[AOSD]: Aspect-Oriented Software Development port, http://aosd.net

[ASM]: ASM Home Page, http://asm.objectweb.org/

[AspectJ]:
http://eclipse.org/aspectj

[CGLIB]: Code Generation Library, http://cglib.sourceforge.net/

[Colyer]: Adrian Colyer, Andy Clement, George Hurley, Mathew Webster, Eclipse AspectJ, Person Education, Inc., Upper Saddle River, NJ, 2005.

[DSL]: Domain-specific programming language, http://en.wikipedia.org/wiki/Domain-specific_programming_language

[Fowler]: Inversion of Control Containers and the Dependency Injection pattern, http://martinfowler.com/articles/injection.html

[Goetz]: Brian Goetz, Java Theory and Practice: Decorating with Dynamic Proxies, http://www.ibm.com/developerworks/java/library/j-jtp08305.html

[Javassist]: Javassist Home Page, http://www.csg.is.titech.ac.jp/~chiba/javassist/

[JBoss]: JBoss Home Page, http://jboss.org

[JMock]: JMock—A Lightweight Mock Object Library for Java, http://jmock.org

[Kolence]: Kenneth W. Kolence, Software physics and computer performance measurements, Proceedings of the ACM annual conference—Volume 2, Boston, Massachusetts, pp. 1024–1040, 1972.

[Spring]:
The Spring Framework, http://www.springframework.org

[Mezzaros07]:
XUnit Patterns, Gerard Mezzaros, Addison-Wesley, 2007.

[GOF]:
Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

12 Emergence
by Jeff Langr

Getting Clean via Emergent Design
What if there were four simple rules that you could follow that would help you create good designs as you worked? What if by following these rules you gained insights into the structure and design of your code, making it easier to apply principles such as SRP and DIP? What if these four rules facilitated the emergence of good designs?
Many of us feel that Kent Beck’s four rules of Simple Design1 are of significant help in creating well-designed software.
According to Kent, a design is “simple” if it follows these rules:
• Runs all the tests
• Contains no duplication
• Expresses the intent of the programmer
• Minimizes the number of classes and methods
The rules are given in order of importance.

Simple Design Rule 1: Runs All the Tests
First and foremost, a design must produce a system that acts as intended. A system might have a perfect design on paper, but if there is no simple way to verify that the system actually works as intended, then all the paper effort is questionable.
A system that is comprehensively tested and passes all of its tests all of the time is a testable system. That’s an obvious statement, but an important one. Systems that aren’t testable aren’t verifiable. Arguably, a system that cannot be verified should never be deployed.
Fortunately, making our systems testable pushes us toward a design where our classes are small and single purpose. It’s just easier to test classes that conform to the SRP. The more tests we write, the more we’ll continue to push toward things that are simpler to test. So making sure our system is fully testable helps us create better designs.
Tight coupling makes it difficult to write tests. So, similarly, the more tests we write, the more we use principles like DIP and tools like dependency injection, interfaces, and abstraction to minimize coupling. Our designs improve even more.
Remarkably, following a simple and obvious rule that says we need to have tests and run them continuously impacts our system’s adherence to the primary OO goals of low coupling and high cohesion. Writing tests leads to better designs.

Simple Design Rules 2–4: Refactoring
Once we have tests, we are empowered to keep our code and classes clean. We do this by incrementally refactoring the code. For each few lines of code we add, we pause and reflect on the new design. Did we just degrade it? If so, we clean it up and run our tests to demonstrate that we haven’t broken anything. The fact that we have these tests eliminates the fear that cleaning up the code will break it!
During this refactoring step, we can apply anything from the entire body of knowledge about good software design. We can increase cohesion, decrease coupling, separate concerns, modularize system concerns, shrink our functions and classes, choose better names, and so on. This is also where we apply the final three rules of simple design: Eliminate duplication, ensure expressiveness, and minimize the number of classes and methods.

No Duplication
Duplication is the primary enemy of a well-designed system. It represents additional work, additional risk, and additional unnecessary complexity. Duplication manifests itself in many forms. Lines of code that look exactly alike are, of course, duplication. Lines of code that are similar can often be massaged to look even more alike so that they can be more easily refactored. And duplication can exist in other forms such as duplication of implementation. For example, we might have two methods in a collection class:
 int size() {}
 boolean isEmpty() {}
We could have separate implementations for each method. The isEmpty method could track a boolean, while size could track a counter. Or, we can eliminate this duplication by tying isEmpty to the definition of size:
 boolean isEmpty() {
 return 0 == size();
 }
Creating a clean system requires the will to eliminate duplication, even in just a few lines of code. For example, consider the following code:
 public void scaleToOneDimension(
 float desiredDimension, float imageDimension) {
 if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
 return;
 float scalingFactor = desiredDimension / imageDimension;
 scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);

 RenderedOp newImage = ImageUtilities.getScaledImage(
 image, scalingFactor, scalingFactor);
 image.dispose();
 System.gc();
 image = newImage;
 }
 public synchronized void rotate(int degrees) {
 RenderedOp newImage = ImageUtilities.getRotatedImage(
 image, degrees);
 image.dispose();
 System.gc();
 image = newImage;
 }
To keep this system clean, we should eliminate the small amount of duplication between the scaleToOneDimension and rotate methods:

 public void scaleToOneDimension(
 float desiredDimension, float imageDimension) {
 if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
 return;
 float scalingFactor = desiredDimension / imageDimension;
 scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);
 replaceImage(ImageUtilities.getScaledImage(
 image, scalingFactor, scalingFactor));
 }
 public synchronized void rotate(int degrees) {
 replaceImage(ImageUtilities.getRotatedImage(image, degrees));
 }
 privatex void replaceImage(RenderedOp newImage) {
 image.dispose();
 System.gc();
 image = newImage;
 }
As we extract commonality at this very tiny level, we start to recognize violations of SRP. So we might move a newly extracted method to another class. That elevates its visibility. Someone else on the team may recognize the opportunity to further abstract the new method and reuse it in a different context. This “reuse in the small” can cause system complexity to shrink dramatically. Understanding how to achieve reuse in the small is essential to achieving reuse in the large.
The TEMPLATE METHOD2 pattern is a common technique for removing higher-level duplication. For example:
 public class VacationPolicy {
 public void accrueUSDivisionVacation() {
 // code to calculate vacation based on hours worked to date
 // …
 // code to ensure vacation meets US minimums
 // …
 // code to apply vaction to payroll record
 // …
 }

 public void accrueEUDivisionVacation() {
 // code to calculate vacation based on hours worked to date
 // …
 // code to ensure vacation meets EU minimums
 // …
 // code to apply vaction to payroll record
 // …
 }
 }
The code across accrueUSDivisionVacation and accrueEuropeanDivisionVacation is largely the same, with the exception of calculating legal minimums. That bit of the algorithm changes based on the employee type.
We can eliminate the obvious duplication by applying the TEMPLATE METHOD pattern.
 abstract public class VacationPolicy {
 public void accrueVacation() {
 calculateBaseVacationHours();

 alterForLegalMinimums();
 applyToPayroll();
 }

 private void calculateBaseVacationHours() { /* … */ };
 abstract protected void alterForLegalMinimums();
 private void applyToPayroll() { /* … */ };
 }
 public class USVacationPolicy extends VacationPolicy {
 @Override protected void alterForLegalMinimums() {
 // US specific logic
 }
 }

 public class EUVacationPolicy extends VacationPolicy {
 @Override protected void alterForLegalMinimums() {
 // EU specific logic
 }
 }
The subclasses fill in the “hole” in the accrueVacation algorithm, supplying the only bits of information that are not duplicated.

Expressive
Most of us have had the experience of working on convoluted code. Many of us have produced some convoluted code ourselves. It’s easy to write code that we understand, because at the time we write it we’re deep in an understanding of the problem we’re trying to solve. Other maintainers of the code aren’t going to have so deep an understanding.
The majority of the cost of a software project is in long-term maintenance. In order to minimize the potential for defects as we introduce change, it’s critical for us to be able to understand what a system does. As systems become more complex, they take more and more time for a developer to understand, and there is an ever greater opportunity for a misunderstanding. Therefore, code should clearly express the intent of its author. The clearer the author can make the code, the less time others will have to spend understanding it. This will reduce defects and shrink the cost of maintenance.
You can express yourself by choosing good names. We want to be able to hear a class or function name and not be surprised when we discover its responsibilities.
You can also express yourself by keeping your functions and classes small. Small classes and functions are usually easy to name, easy to write, and easy to understand.
You can also express yourself by using standard nomenclature. Design patterns, for example, are largely about communication and expressiveness. By using the standard pattern names, such as COMMAND or VISITOR, in the names of the classes that implement those patterns, you can succinctly describe your design to other developers.
Well-written unit tests are also expressive. A primary goal of tests is to act as documentation by example. Someone reading our tests should be able to get a quick understanding of what a class is all about.
But the most important way to be expressive is to try. All too often we get our code working and then move on to the next problem without giving sufficient thought to making that code easy for the next person to read. Remember, the most likely next person to read the code will be you.
So take a little pride in your workmanship. Spend a little time with each of your functions and classes. Choose better names, split large functions into smaller functions, and generally just take care of what you’ve created. Care is a precious resource.

Minimal Classes and Methods
Even concepts as fundamental as elimination of duplication, code expressiveness, and the SRP can be taken too far. In an effort to make our classes and methods small, we might create too many tiny classes and methods. So this rule suggests that we also keep our function and class counts low.
High class and method counts are sometimes the result of pointless dogmatism. Consider, for example, a coding standard that insists on creating an interface for each and every class. Or consider developers who insist that fields and behavior must always be separated into data classes and behavior classes. Such dogma should be resisted and a more pragmatic approach adopted.
Our goal is to keep our overall system small while we are also keeping our functions and classes small. Remember, however, that this rule is the lowest priority of the four rules of Simple Design. So, although it’s important to keep class and function count low, it’s more important to have tests, eliminate duplication, and express yourself.

Conclusion
Is there a set of simple practices that can replace experience? Clearly not. On the other hand, the practices described in this chapter and in this book are a crystallized form of the many decades of experience enjoyed by the authors. Following the practice of simple design can and does encourage and enable developers to adhere to good principles and patterns that otherwise take years to learn.

Bibliography

[XPE]:
Extreme Programming Explained: Embrace Change, Kent Beck, Addison-Wesley, 1999.

[GOF]:
Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

13 Concurrency
by Brett L. Schuchert

“Objects are abstractions of processing. Threads are abstractions of schedule.”

—James O. Coplien1
Writing clean concurrent programs is hard—very hard. It is much easier to write code that executes in a single thread. It is also easy to write multithreaded code that looks fine on the surface but is broken at a deeper level. Such code works fine until the system is placed under stress.
In this chapter we discuss the need for concurrent programming, and the difficulties it presents. We then present several recommendations for dealing with those difficulties, and writing clean concurrent code. Finally, we conclude with issues related to testing concurrent code.
Clean Concurrency is a complex topic, worthy of a book by itself. Our strategy in this book is to present an overview here and provide a more detailed tutorial in “Concurrency II” on page 317. If you are just curious about concurrency, then this chapter will suffice for you now. If you have a need to understand concurrency at a deeper level, then you should read through the tutorial as well.

Why Concurrency?
Concurrency is a decoupling strategy. It helps us decouple what gets done from when it gets done. In single-threaded applications what and when are so strongly coupled that the state of the entire application can often be determined by looking at the stack backtrace. A programmer who debugs such a system can set a breakpoint, or a sequence of breakpoints, and know the state of the system by which breakpoints are hit.
Decoupling what from when can dramatically improve both the throughput and structures of an application. From a structural point of view the application looks like many little collaborating computers rather than one big main loop. This can make the system easier to understand and offers some powerful ways to separate concerns.
Consider, for example, the standard “Servlet” model of Web applications. These systems run under the umbrella of a Web or EJB container that partially manages concurrency for you. The servlets are executed asynchronously whenever Web requests come in. The servlet programmer does not have to manage all the incoming requests. In principle, each servlet execution lives in its own little world and is decoupled from all the other servlet executions.
Of course if it were that easy, this chapter wouldn’t be necessary. In fact, the decoupling provided by Web containers is far less than perfect. Servlet programmers have to be very aware, and very careful, to make sure their concurrent programs are correct. Still, the structural benefits of the servlet model are significant.
But structure is not the only motive for adopting concurrency. Some systems have response time and throughput constraints that require hand-coded concurrent solutions. For example, consider a single-threaded information aggregator that acquires information from many different Web sites and merges that information into a daily summary. Because this system is single threaded, it hits each Web site in turn, always finishing one before starting the next. The daily run needs to execute in less than 24 hours. However, as more and more Web sites are added, the time grows until it takes more than 24 hours to gather all the data. The single-thread involves a lot of waiting at Web sockets for I/O to complete. We could improve the performance by using a multithreaded algorithm that hits more than one Web site at a time.
Or consider a system that handles one user at a time and requires only one second of time per user. This system is fairly responsive for a few users, but as the number of users increases, the system’s response time increases. No user wants to get in line behind 150 others! We could improve the response time of this system by handling many users concurrently.
Or consider a system that interprets large data sets but can only give a complete solution after processing all of them. Perhaps each data set could be processed on a different computer, so that many data sets are being processed in parallel.

Myths and Misconceptions
And so there are compelling reasons to adopt concurrency. However, as we said before, concurrency is hard. If you aren’t very careful, you can create some very nasty situations. Consider these common myths and misconceptions:
• Concurrency always improves performance.
Concurrency can sometimes improve performance, but only when there is a lot of wait time that can be shared between multiple threads or multiple processors. Neither situation is trivial.
• Design does not change when writing concurrent programs.
In fact, the design of a concurrent algorithm can be remarkably different from the design of a single-threaded system. The decoupling of what from when usually has a huge effect on the structure of the system.
• Understanding concurrency issues is not important when working with a container such as a Web or EJB container.
In fact, you’d better know just what your container is doing and how to guard against the issues of concurrent update and deadlock described later in this chapter.
Here are a few more balanced sound bites regarding writing concurrent software:

• Concurrency incurs some overhead, both in performance as well as writing additional code.
• Correct concurrency is complex, even for simple problems.
• Concurrency bugs aren’t usually repeatable, so they are often ignored as one-offs2 instead of the true defects they are.
• Concurrency often requires a fundamental change in design strategy.

Challenges
What makes concurrent programming so difficult? Consider the following trivial class:
 public class X {
 private int lastIdUsed;

 public int getNextId() {
 return ++lastIdUsed;
 }
 }
Let’s say we create an instance of X, set the lastIdUsed field to 42, and then share the instance between two threads. Now suppose that both of those threads call the method getNextId(); there are three possible outcomes:
• Thread one gets the value 43, thread two gets the value 44, lastIdUsed is 44.
• Thread one gets the value 44, thread two gets the value 43, lastIdUsed is 44.
• Thread one gets the value 43, thread two gets the value 43, lastIdUsed is 43.
The surprising third result3 occurs when the two threads step on each other. This happens because there are many possible paths that the two threads can take through that one line of Java code, and some of those paths generate incorrect results. How many different paths are there? To really answer that question, we need to understand what the Just-In-Time Compiler does with the generated byte-code, and understand what the Java memory model considers to be atomic.
A quick answer, working with just the generated byte-code, is that there are 12,870 different possible execution paths4 for those two threads executing within the getNextId method. If the type of lastIdUsed is changed from int to long, the number of possible paths increases to 2,704,156. Of course most of those paths generate valid results. The problem is that some of them don’t.

Concurrency Defense Principles
What follows is a series of principles and techniques for defending your systems from the problems of concurrent code.

Single Responsibility Principle
The SRP5 states that a given method/class/component should have a single reason to change. Concurrency design is complex enough to be a reason to change in it’s own right and therefore deserves to be separated from the rest of the code. Unfortunately, it is all too common for concurrency implementation details to be embedded directly into other production code. Here are a few things to consider:
• Concurrency-related code has its own life cycle of development, change, and tuning.
• Concurrency-related code has its own challenges, which are different from and often more difficult than nonconcurrency-related code.
• The number of ways in which miswritten concurrency-based code can fail makes it challenging enough without the added burden of surrounding application code.
Recommendation: Keep your concurrency-related code separate from other code.6

Corollary: Limit the Scope of Data
As we saw, two threads modifying the same field of a shared object can interfere with each other, causing unexpected behavior. One solution is to use the synchronized keyword to protect a critical section in the code that uses the shared object. It is important to restrict the number of such critical sections. The more places shared data can get updated, the more likely:
• You will forget to protect one or more of those places—effectively breaking all code that modifies that shared data.
• There will be duplication of effort required to make sure everything is effectively guarded (violation of DRY7).
• It will be difficult to determine the source of failures, which are already hard enough to find.
Recommendation: Take data encapsulation to heart; severely limit the access of any data that may be shared.

Corollary: Use Copies of Data
A good way to avoid shared data is to avoid sharing the data in the first place. In some situations it is possible to copy objects and treat them as read-only. In other cases it might be possible to copy objects, collect results from multiple threads in these copies and then merge the results in a single thread.
If there is an easy way to avoid sharing objects, the resulting code will be far less likely to cause problems. You might be concerned about the cost of all the extra object creation. It is worth experimenting to find out if this is in fact a problem. However, if using copies of objects allows the code to avoid synchronizing, the savings in avoiding the intrinsic lock will likely make up for the additional creation and garbage collection overhead.

Corollary: Threads Should Be as Independent as Possible
Consider writing your threaded code such that each thread exists in its own world, sharing no data with any other thread. Each thread processes one client request, with all of its required data coming from an unshared source and stored as local variables. This makes each of those threads behave as if it were the only thread in the world and there were no synchronization requirements.
For example, classes that subclass from HttpServlet receive all of their information as parameters passed in to the doGet and doPost methods. This makes each Servlet act as if it has its own machine. So long as the code in the Servlet uses only local variables, there is no chance that the Servlet will cause synchronization problems. Of course, most applications using Servlets eventually run into shared resources such as database connections.
Recommendation: Attempt to partition data into independent subsets than can be operated on by independent threads, possibly in different processors.

Know Your Library
Java 5 offers many improvements for concurrent development over previous versions. There are several things to consider when writing threaded code in Java 5:
• Use the provided thread-safe collections.
• Use the executor framework for executing unrelated tasks.
• Use nonblocking solutions when possible.
• Several library classes are not thread safe.

Thread-Safe Collections
When Java was young, Doug Lea wrote the seminal book8Concurrent Programming in Java. Along with the book he developed several thread-safe collections, which later became part of the JDK in the java.util.concurrent package. The collections in that package are safe for multithreaded situations and they perform well. In fact, the ConcurrentHashMap implementation performs better than HashMap in nearly all situations. It also allows for simultaneous concurrent reads and writes, and it has methods supporting common composite operations that are otherwise not thread safe. If Java 5 is the deployment environment, start with ConcurrentHashMap.
There are several other kinds of classes added to support advanced concurrency design. Here are a few examples:

Recommendation: Review the classes available to you. In the case of Java, become familiar with java.util.concurrent, java.util.concurrent.atomic, java.util.concurrent.locks.

Know Your Execution Models
There are several different ways to partition behavior in a concurrent application. To discuss them we need to understand some basic definitions.

Given these definitions, we can now discuss the various execution models used in concurrent programming.

Producer-Consumer9
One or more producer threads create some work and place it in a buffer or queue. One or more consumer threads acquire that work from the queue and complete it. The queue between the producers and consumers is a bound resource. This means producers must wait for free space in the queue before writing and consumers must wait until there is something in the queue to consume. Coordination between the producers and consumers via the queue involves producers and consumers signaling each other. The producers write to the queue and signal that the queue is no longer empty. Consumers read from the queue and signal that the queue is no longer full. Both potentially wait to be notified when they can continue.

Readers-Writers10
When you have a shared resource that primarily serves as a source of information for readers, but which is occasionally updated by writers, throughput is an issue. Emphasizing throughput can cause starvation and the accumulation of stale information. Allowing updates can impact throughput. Coordinating readers so they do not read something a writer is updating and vice versa is a tough balancing act. Writers tend to block many readers for a long period of time, thus causing throughput issues.
The challenge is to balance the needs of both readers and writers to satisfy correct operation, provide reasonable throughput and avoiding starvation. A simple strategy makes writers wait until there are no readers before allowing the writer to perform an update. If there are continuous readers, however, the writers will be starved. On the other hand, if there are frequent writers and they are given priority, throughput will suffer. Finding that balance and avoiding concurrent update issues is what the problem addresses.

Dining Philosophers11
Imagine a number of philosophers sitting around a circular table. A fork is placed to the left of each philosopher. There is a big bowl of spaghetti in the center of the table. The philosophers spend their time thinking unless they get hungry. Once hungry, they pick up the forks on either side of them and eat. A philosopher cannot eat unless he is holding two forks. If the philosopher to his right or left is already using one of the forks he needs, he must wait until that philosopher finishes eating and puts the forks back down. Once a philosopher eats, he puts both his forks back down on the table and waits until he is hungry again.
Replace philosophers with threads and forks with resources and this problem is similar to many enterprise applications in which processes compete for resources. Unless carefully designed, systems that compete in this way can experience deadlock, livelock, throughput, and efficiency degradation.
Most concurrent problems you will likely encounter will be some variation of these three problems. Study these algorithms and write solutions using them on your own so that when you come across concurrent problems, you’ll be more prepared to solve the problem.
Recommendation: Learn these basic algorithms and understand their solutions.

Beware Dependencies Between Synchronized Methods
Dependencies between synchronized methods cause subtle bugs in concurrent code. The Java language has the notion of synchronized, which protects an individual method. However, if there is more than one synchronized method on the same shared class, then your system may be written incorrectly.12
Recommendation: Avoid using more than one method on a shared object.
There will be times when you must use more than one method on a shared object. When this is the case, there are three ways to make the code correct:
• Client-Based Locking—Have the client lock the server before calling the first method and make sure the lock’s extent includes code calling the last method.
• Server-Based Locking—Within the server create a method that locks the server, calls all the methods, and then unlocks. Have the client call the new method.
• Adapted Server—create an intermediary that performs the locking. This is an example of server-based locking, where the original server cannot be changed.

Keep Synchronized Sections Small
The synchronized keyword introduces a lock. All sections of code guarded by the same lock are guaranteed to have only one thread executing through them at any given time. Locks are expensive because they create delays and add overhead. So we don’t want to litter our code with synchronized statements. On the other hand, critical sections13 must be guarded. So we want to design our code with as few critical sections as possible.
Some naive programmers try to achieve this by making their critical sections very large. However, extending synchronization beyond the minimal critical section increases contention and degrades performance.14
Recommendation: Keep your synchronized sections as small as possible.

Writing Correct Shut-Down Code Is Hard
Writing a system that is meant to stay live and run forever is different from writing something that works for awhile and then shuts down gracefully.
Graceful shutdown can be hard to get correct. Common problems involve deadlock,15 with threads waiting for a signal to continue that never comes.
For example, imagine a system with a parent thread that spawns several child threads and then waits for them all to finish before it releases its resources and shuts down. What if one of the spawned threads is deadlocked? The parent will wait forever, and the system will never shut down.
Or consider a similar system that has been instructed to shut down. The parent tells all the spawned children to abandon their tasks and finish. But what if two of the children were operating as a producer/consumer pair. Suppose the producer receives the signal from the parent and quickly shuts down. The consumer might have been expecting a message from the producer and be blocked in a state where it cannot receive the shutdown signal. It could get stuck waiting for the producer and never finish, preventing the parent from finishing as well.
Situations like this are not at all uncommon. So if you must write concurrent code that involves shutting down gracefully, expect to spend much of your time getting the shutdown to happen correctly.
Recommendation: Think about shut-down early and get it working early. It’s going to take longer than you expect. Review existing algorithms because this is probably harder than you think.

Testing Threaded Code
Proving that code is correct is impractical. Testing does not guarantee correctness. However, good testing can minimize risk. This is all true in a single-threaded solution. As soon as there are two or more threads using the same code and working with shared data, things get substantially more complex.
Recommendation: Write tests that have the potential to expose problems and then run them frequently, with different programatic configurations and system configurations and load. If tests ever fail, track down the failure. Don’t ignore a failure just because the tests pass on a subsequent run.
That is a whole lot to take into consideration. Here are a few more fine-grained recommendations:
• Treat spurious failures as candidate threading issues.
• Get your nonthreaded code working first.
• Make your threaded code pluggable.
• Make your threaded code tunable.
• Run with more threads than processors.
• Run on different platforms.
• Instrument your code to try and force failures.

Treat Spurious Failures as Candidate Threading Issues
Threaded code causes things to fail that “simply cannot fail.” Most developers do not have an intuitive feel for how threading interacts with other code (authors included). Bugs in threaded code might exhibit their symptoms once in a thousand, or a million, executions. Attempts to repeat the systems can be frustratingly. This often leads developers to write off the failure as a cosmic ray, a hardware glitch, or some other kind of “one-off.” It is best to assume that one-offs do not exist. The longer these “one-offs” are ignored, the more code is built on top of a potentially faulty approach.
Recommendation: Do not ignore system failures as one-offs.

Get Your Nonthreaded Code Working First
This may seem obvious, but it doesn’t hurt to reinforce it. Make sure code works outside of its use in threads. Generally, this means creating POJOs that are called by your threads. The POJOs are not thread aware, and can therefore be tested outside of the threaded environment. The more of your system you can place in such POJOs, the better.
Recommendation: Do not try to chase down nonthreading bugs and threading bugs at the same time. Make sure your code works outside of threads.

Make Your Threaded Code Pluggable
Write the concurrency-supporting code such that it can be run in several configurations:
• One thread, several threads, varied as it executes
• Threaded code interacts with something that can be both real or a test double.
• Execute with test doubles that run quickly, slowly, variable.
• Configure tests so they can run for a number of iterations.
Recommendation: Make your thread-based code especially pluggable so that you can run it in various configurations.

Make Your Threaded Code Tunable
Getting the right balance of threads typically requires trial an error. Early on, find ways to time the performance of your system under different configurations. Allow the number of threads to be easily tuned. Consider allowing it to change while the system is running. Consider allowing self-tuning based on throughput and system utilization.

Run with More Threads Than Processors
Things happen when the system switches between tasks. To encourage task swapping, run with more threads than processors or cores. The more frequently your tasks swap, the more likely you’ll encounter code that is missing a critical section or causes deadlock.

Run on Different Platforms
In the middle of 2007 we developed a course on concurrent programming. The course development ensued primarily under OS X. The class was presented using Windows XP running under a VM. Tests written to demonstrate failure conditions did not fail as frequently in an XP environment as they did running on OS X.
In all cases the code under test was known to be incorrect. This just reinforced the fact that different operating systems have different threading policies, each of which impacts the code’s execution. Multithreaded code behaves differently in different environments.16 You should run your tests in every potential deployment environment.
Recommendation: Run your threaded code on all target platforms early and often.

Instrument Your Code to Try and Force Failures
It is normal for flaws in concurrent code to hide. Simple tests often don’t expose them. Indeed, they often hide during normal processing. They might show up once every few hours, or days, or weeks!
The reason that threading bugs can be infrequent, sporadic, and hard to repeat, is that only a very few pathways out of the many thousands of possible pathways through a vulnerable section actually fail. So the probability that a failing pathway is taken can be star-tlingly low. This makes detection and debugging very difficult.
How might you increase your chances of catching such rare occurrences? You can instrument your code and force it to run in different orderings by adding calls to methods like Object.wait(), Object.sleep(), Object.yield() and Object.priority().
Each of these methods can affect the order of execution, thereby increasing the odds of detecting a flaw. It’s better when broken code fails as early and as often as possible.
There are two options for code instrumentation:
• Hand-coded
• Automated

Hand-Coded
You can insert calls to wait(), sleep(), yield(), and priority() in your code by hand. It might be just the thing to do when you’re testing a particularly thorny piece of code.
Here is an example of doing just that:
 public synchronized String nextUrlOrNull() {
 if(hasNext()) {
 String url = urlGenerator.next();
 Thread.yield(); // inserted for testing.
 updateHasNext();
 return url;
 }
 return null;
 }
The inserted call to yield() will change the execution pathways taken by the code and possibly cause the code to fail where it did not fail before. If the code does break, it was not because you added a call to yield().17 Rather, your code was broken and this simply made the failure evident.
There are many problems with this approach:
• You have to manually find appropriate places to do this.
• How do you know where to put the call and what kind of call to use?
• Leaving such code in a production environment unnecessarily slows the code down.
• It’s a shotgun approach. You may or may not find flaws. Indeed, the odds aren’t with you.
What we need is a way to do this during testing but not in production. We also need to easily mix up configurations between different runs, which results in increased chances of finding errors in the aggregate.
Clearly, if we divide our system up into POJOs that know nothing of threading and classes that control the threading, it will be easier to find appropriate places to instrument the code. Moreover, we could create many different test jigs that invoke the POJOs under different regimes of calls to sleep, yield, and so on.

Automated
You could use tools like an Aspect-Oriented Framework, CGLIB, or ASM to programmatically instrument your code. For example, you could use a class with a single method:
 public class ThreadJigglePoint {
 public static void jiggle() {
 }
 }
You can add calls to this in various places within your code:
 public synchronized String nextUrlOrNull() {
 if(hasNext()) {
 ThreadJiglePoint.jiggle();
 String url = urlGenerator.next();
 ThreadJiglePoint.jiggle();
 updateHasNext();
 ThreadJiglePoint.jiggle();
 return url;
 }
 return null;
 }

Now you use a simple aspect that randomly selects among doing nothing, sleeping, or yielding.
Or imagine that the ThreadJigglePoint class has two implementations. The first implements jiggle to do nothing and is used in production. The second generates a random number to choose between sleeping, yielding, or just falling through. If you run your tests a thousand times with random jiggling, you may root out some flaws. If the tests pass, at least you can say you’ve done due diligence. Though a bit simplistic, this could be a reasonable option in lieu of a more sophisticated tool.
There is a tool called ConTest,18 developed by IBM that does something similar, but it does so with quite a bit more sophistication.
The point is to jiggle the code so that threads run in different orderings at different times. The combination of well-written tests and jiggling can dramatically increase the chance finding errors.
Recommendation: Use jiggling strategies to ferret out errors.

Conclusion
Concurrent code is difficult to get right. Code that is simple to follow can become nightmarish when multiple threads and shared data get into the mix. If you are faced with writing concurrent code, you need to write clean code with rigor or else face subtle and infrequent failures.
First and foremost, follow the Single Responsibility Principle. Break your system into POJOs that separate thread-aware code from thread-ignorant code. Make sure when you are testing your thread-aware code, you are only testing it and nothing else. This suggests that your thread-aware code should be small and focused.
Know the possible sources of concurrency issues: multiple threads operating on shared data, or using a common resource pool. Boundary cases, such as shutting down cleanly or finishing the iteration of a loop, can be especially thorny.
Learn your library and know the fundamental algorithms. Understand how some of the features offered by the library support solving problems similar to the fundamental algorithms.
Learn how to find regions of code that must be locked and lock them. Do not lock regions of code that do not need to be locked. Avoid calling one locked section from another. This requires a deep understanding of whether something is or is not shared. Keep the amount of shared objects and the scope of the sharing as narrow as possible. Change designs of the objects with shared data to accommodate clients rather than forcing clients to manage shared state.
Issues will crop up. The ones that do not crop up early are often written off as a onetime occurrence. These so-called one-offs typically only happen under load or at seemingly random times. Therefore, you need to be able to run your thread-related code in many configurations on many platforms repeatedly and continuously. Testability, which comes naturally from following the Three Laws of TDD, implies some level of plug-ability, which offers the support necessary to run code in a wider range of configurations.
You will greatly improve your chances of finding erroneous code if you take the time to instrument your code. You can either do so by hand or using some kind of automated technology. Invest in this early. You want to be running your thread-based code as long as possible before you put it into production.
If you take a clean approach, your chances of getting it right increase drastically.

Bibliography

[Lea99]:
Concurrent Programming in Java: Design Principles and Patterns, 2d. ed., Doug Lea, Prentice Hall, 1999.

[PPP]:
Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin, Prentice Hall, 2002.

[PRAG]:
The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley, 2000.

14 Successive Refinement
Case Study of a Command-Line Argument Parser

This chapter is a case study in successive refinement. You will see a module that started well but did not scale. Then you will see how the module was refactored and cleaned.
Most of us have had to parse command-line arguments from time to time. If we don’t have a convenient utility, then we simply walk the array of strings that is passed into the main function. There are several good utilities available from various sources, but none of them do exactly what I want. So, of course, I decided to write my own. I call it: Args.
Args is very simple to use. You simply construct the Args class with the input arguments and a format string, and then query the Args instance for the values of the arguments. Consider the following simple example:

Listing 14-1 Simple use of Args
 public static void main(String[] args) {
 try {
 Args arg = new Args(“l,p#,d*”, args);
 boolean logging = arg.getBoolean(’l’);
 int port = arg.getInt(’p’);
 String directory = arg.getString(’d’);
 executeApplication(logging, port, directory);
 } catch (ArgsException e) {
 System.out.printf(“Argument error: %s\n”, e.errorMessage());
 }
 }
You can see how simple this is. We just create an instance of the Args class with two parameters. The first parameter is the format, or schema, string: “l,p#,d*.” It defines three command-line arguments. The first, -l, is a boolean argument. The second, -p, is an integer argument. The third, -d, is a string argument. The second parameter to the Args constructor is simply the array of command-line argument passed into main.
If the constructor returns without throwing an ArgsException, then the incoming command-line was parsed, and the Args instance is ready to be queried. Methods like getBoolean, getInteger, and getString allow us to access the values of the arguments by their names.
If there is a problem, either in the format string or in the command-line arguments themselves, an ArgsException will be thrown. A convenient description of what went wrong can be retrieved from the errorMessage method of the exception.

Args Implementation
Listing 14-2 is the implementation of the Args class. Please read it very carefully. I worked hard on the style and structure and hope it is worth emulating.

Listing 14-2 Args.java
 package com.objectmentor.utilities.args;

 import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;
 import java.util.*;

 public class Args {
 private Map<Character, ArgumentMarshaler> marshalers;
 private Set<Character> argsFound;
 private ListIterator<String> currentArgument;

 public Args(String schema, String[] args) throws ArgsException {
 marshalers = new HashMap<Character, ArgumentMarshaler>();
 argsFound = new HashSet<Character>();

 parseSchema(schema);
 parseArgumentStrings(Arrays.asList(args));
 }

 private void parseSchema(String schema) throws ArgsException {
 for (String element : schema.split(“,”))
 if (element.length() > 0)
 parseSchemaElement(element.trim());
 }
 private void parseSchemaElement(String element) throws ArgsException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (elementTail.length() == 0)
 marshalers.put(elementId, new BooleanArgumentMarshaler());
 else if (elementTail.equals(“*”))
 marshalers.put(elementId, new StringArgumentMarshaler());
 else if (elementTail.equals(“#”))
 marshalers.put(elementId, new IntegerArgumentMarshaler());
 else if (elementTail.equals(“##”))
 marshalers.put(elementId, new DoubleArgumentMarshaler());
 else if (elementTail.equals(“[*]”))
 marshalers.put(elementId, new StringArrayArgumentMarshaler());
 else
 throw new ArgsException(INVALID_ARGUMENT_FORMAT, elementId, elementTail);
 }
 private void validateSchemaElementId(char elementId) throws ArgsException {
 if (!Character.isLetter(elementId))
 throw new ArgsException(INVALID_ARGUMENT_NAME, elementId, null);
 }
 private void parseArgumentStrings(List<String> argsList) throws ArgsException
 {
 for (currentArgument = argsList.listIterator(); currentArgument.hasNext();)
 {
 String argString = currentArgument.next();
 if (argString.startsWith(“-”)) {
 parseArgumentCharacters(argString.substring(1));
 } else {
 currentArgument.previous();
 break;
 }
 }
 }
 private void parseArgumentCharacters(String argChars) throws ArgsException {
 for (int i = 0; i < argChars.length(); i++)
 parseArgumentCharacter(argChars.charAt(i));
 }

 private void parseArgumentCharacter(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null) {
 throw new ArgsException(UNEXPECTED_ARGUMENT, argChar, null);
 } else {
 argsFound.add(argChar);
 try {
 m.set(currentArgument);
 } catch (ArgsException e) {
 e.setErrorArgumentId(argChar);
 throw e;
 }
 }
 }
 public boolean has(char arg) {
 return argsFound.contains(arg);
 }

 public int nextArgument() {
 return currentArgument.nextIndex();
 }
 public boolean getBoolean(char arg) {
 return BooleanArgumentMarshaler.getValue(marshalers.get(arg));
 }

 public String getString(char arg) {
 return StringArgumentMarshaler.getValue(marshalers.get(arg));
 }

 public int getInt(char arg) {
 return IntegerArgumentMarshaler.getValue(marshalers.get(arg));
 }
 public double getDouble(char arg) {
 return DoubleArgumentMarshaler.getValue(marshalers.get(arg));
 }
 public String[] getStringArray(char arg) {
 return StringArrayArgumentMarshaler.getValue(marshalers.get(arg));
 }
 }
Notice that you can read this code from the top to the bottom without a lot of jumping around or looking ahead. The one thing you may have had to look ahead for is the definition of ArgumentMarshaler, which I left out intentionally. Having read this code carefully, you should understand what the ArgumentMarshaler interface is and what its derivatives do. I’ll show a few of them to you now (Listing 14-3 through Listing 14-6).

Listing 14-3 ArgumentMarshaler.java
 public interface ArgumentMarshaler {
 void set(Iterator<String> currentArgument) throws ArgsException;
 }

Listing 14-4 BooleanArgumentMarshaler.java
public class BooleanArgumentMarshaler implements ArgumentMarshaler {
 private boolean booleanValue = false;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 booleanValue = true;
 }

 public static boolean getValue(ArgumentMarshaler am) {
 if (am != null && am instanceof BooleanArgumentMarshaler)
 return ((BooleanArgumentMarshaler) am).booleanValue;
 else
 return false;
 }
}

Listing 14-5 StringArgumentMarshaler.java
import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class StringArgumentMarshaler implements ArgumentMarshaler {
 private String stringValue =

 public void set(Iterator<String> currentArgument) throws ArgsException {
 try {
 stringValue = currentArgument.next();
 } catch (NoSuchElementException e) {
 throw new ArgsException(MISSING_STRING);
 }
 }

 public static String getValue(ArgumentMarshaler am) {
 if (am != null && am instanceof StringArgumentMarshaler)
 return ((StringArgumentMarshaler) am).stringValue;
 else
 return ””;
 }
}
The other ArgumentMarshaler derivatives simply replicate this pattern for doubles and String arrays and would serve to clutter this chapter. I’ll leave them to you as an exercise.
One other bit of information might be troubling you: the definition of the error code constants. They are in the ArgsException class (Listing 14-7).

Listing 14-6 IntegerArgumentMarshaler.java
 import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

 public class IntegerArgumentMarshaler implements ArgumentMarshaler {
 private int intValue = 0;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 intValue = Integer.parseInt(parameter);
 } catch (NoSuchElementException e) {
 throw new ArgsException(MISSING_INTEGER);
 } catch (NumberFormatException e) {
 throw new ArgsException(INVALID_INTEGER, parameter);
 }
 }

 public static int getValue(ArgumentMarshaler am) {
 if (am != null && am instanceof IntegerArgumentMarshaler)
 return ((IntegerArgumentMarshaler) am).intValue;
 else
 return 0;
 }
 }

Listing 14-7 ArgsException.java
import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class ArgsException extends Exception {
 private char errorArgumentId = ’\0’;
 private String errorParameter = null;
 private ErrorCode errorCode = OK;

 public ArgsException() {}

 public ArgsException(String message) {super(message);}

 public ArgsException(ErrorCode errorCode) {
 this.errorCode = errorCode;
 }

 public ArgsException(ErrorCode errorCode, String errorParameter) {
 this.errorCode = errorCode;
 this.errorParameter = errorParameter;
 }

 public ArgsException(ErrorCode errorCode,
 char errorArgumentId, String errorParameter) {
 this.errorCode = errorCode;
 this.errorParameter = errorParameter;
 this.errorArgumentId = errorArgumentId;
 }

 public char getErrorArgumentId() {
 return errorArgumentId;
 }

 public void setErrorArgumentId(char errorArgumentId) {
 this.errorArgumentId = errorArgumentId;
 }

 public String getErrorParameter() {
 return errorParameter;
 }

 public void setErrorParameter(String errorParameter) {
 this.errorParameter = errorParameter;
 }

 public ErrorCode getErrorCode() {
 return errorCode;
 }

 public void setErrorCode(ErrorCode errorCode) {
 this.errorCode = errorCode;
 }

 public String errorMessage() {
 switch (errorCode) {
 case OK:
 return “TILT: Should not get here.”;
 case UNEXPECTED_ARGUMENT:
 return String.format(“Argument -%c unexpected.”, errorArgumentId);
 case MISSING_STRING:
 return String.format(“Could not find string parameter for -%c.”,
 errorArgumentId);
 case INVALID_INTEGER:
 return String.format(“Argument -%c expects an integer but was ’%s’.”,
 errorArgumentId, errorParameter);
 case MISSING_INTEGER:
 return String.format(“Could not find integer parameter for -%c.”,
 errorArgumentId);
 case INVALID_DOUBLE:
 return String.format(“Argument -%c expects a double but was ’%s’.”,
 errorArgumentId, errorParameter);
 case MISSING_DOUBLE:
 return String.format(“Could not find double parameter for -%c.”,
 errorArgumentId);
 case INVALID_ARGUMENT_NAME:
 return String.format(“’%c” is not a valid argument name.”,
 errorArgumentId);
 case INVALID_ARGUMENT_FORMAT:
 return String.format(“’%s” is not a valid argument format.”,
 errorParameter);
 }
 return ””;
 }

 public enum ErrorCode {
 OK, INVALID_ARGUMENT_FORMAT, UNEXPECTED_ARGUMENT, INVALID_ARGUMENT_NAME,
 MISSING_STRING,
 MISSING_INTEGER, INVALID_INTEGER,
 MISSING_DOUBLE, INVALID_DOUBLE}
}
It’s remarkable how much code is required to flesh out the details of this simple concept. One of the reasons for this is that we are using a particularly wordy language. Java, being a statically typed language, requires a lot of words in order to satisfy the type system. In a language like Ruby, Python, or Smalltalk, this program is much smaller.1
Please read the code over one more time. Pay special attention to the way things are named, the size of the functions, and the formatting of the code. If you are an experienced programmer, you may have some quibbles here and there with various parts of the style or structure. Overall, however, I hope you conclude that this program is nicely written and has a clean structure.
For example, it should be obvious how you would add a new argument type, such as a date argument or a complex number argument, and that such an addition would require a trivial amount of effort. In short, it would simply require a new derivative of Argument-Marshaler, a new getXXX function, and a new case statement in the parseSchemaElement function. There would also probably be a new ArgsException.ErrorCode and a new error message.

How Did I Do This?
Let me set your mind at rest. I did not simply write this program from beginning to end in its current form. More importantly, I am not expecting you to be able to write clean and elegant programs in one pass. If we have learned anything over the last couple of decades, it is that programming is a craft more than it is a science. To write clean code, you must first write dirty code and then clean it.
This should not be a surprise to you. We learned this truth in grade school when our teachers tried (usually in vain) to get us to write rough drafts of our compositions. The process, they told us, was that we should write a rough draft, then a second draft, then several subsequent drafts until we had our final version. Writing clean compositions, they tried to tell us, is a matter of successive refinement.
Most freshman programmers (like most grade-schoolers) don’t follow this advice particularly well. They believe that the primary goal is to get the program working. Once it’s “working,” they move on to the next task, leaving the “working” program in whatever state they finally got it to “work.” Most seasoned programmers know that this is professional suicide.

Args: The Rough Draft
Listing 14-8 shows an earlier version of the Args class. It “works.” And it’s messy.

Listing 14-8 Args.java (first draft)
import java.text.ParseException;
import java.util.*;

public class Args {
 private String schema;
 private String[] args;
 private boolean valid = true;
 private Set<Character> unexpectedArguments = new TreeSet<Character>();
 private Map<Character, Boolean> booleanArgs =
 new HashMap
 <Character, Boolean>();
 private Map<Character, String> stringArgs = new HashMap
 <Character, String>();
 private Map<Character, Integer> intArgs = new HashMap<Character, Integer>();
 private Set<Character> argsFound = new HashSet<Character>();
 private int currentArgument;
 private char errorArgumentId = ’\0’;
 private String errorParameter = “TILT”;
 private ErrorCode errorCode = ErrorCode.OK;

 private enum ErrorCode {
 OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT}

 public Args(String schema, String[] args) throws ParseException {
 this.schema = schema;
 this.args = args;
 valid = parse();
 }

 private boolean parse() throws ParseException {
 if (schema.length() == 0 && args.length == 0)
 return true;
 parseSchema();
 try {
 parseArguments();
 } catch (ArgsException e) {
 }
 return valid;
 }

 private boolean parseSchema() throws ParseException {
 for (String element : schema.split(“,”)) {
 if (element.length() > 0) {
 String trimmedElement = element.trim();
 parseSchemaElement(trimmedElement);
 }
 }
 return true;
 }

 private void parseSchemaElement(String element) throws ParseException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (isBooleanSchemaElement(elementTail))
 parseBooleanSchemaElement(elementId);
 else if (isStringSchemaElement(elementTail))
 parseStringSchemaElement(elementId);
 else if (isIntegerSchemaElement(elementTail)) {
 parseIntegerSchemaElement(elementId);
 } else {
 throw new ParseException(
 String.format(“Argument: %c has invalid format: %s.”,
 elementId, elementTail), 0);
 }
 }

 private void validateSchemaElementId(char elementId) throws ParseException {
 if (!Character.isLetter(elementId)) {
 throw new ParseException(
 “Bad character:” + elementId + “in Args format: ” + schema, 0);
 }
 }

 private void parseBooleanSchemaElement(char elementId) {
 booleanArgs.put(elementId, false);
 }

 private void parseIntegerSchemaElement(char elementId) {
 intArgs.put(elementId, 0);
 }

 private void parseStringSchemaElement(char elementId) {
 stringArgs.put(elementId, ””);
 }

 private boolean isStringSchemaElement(String elementTail) {
 return elementTail.equals(”*”);
 }

 private boolean isBooleanSchemaElement(String elementTail) {
 return elementTail.length() == 0;
 }

 private boolean isIntegerSchemaElement(String elementTail) {
 return elementTail.equals(”#”);
}

 private boolean parseArguments() throws ArgsException {
 for (currentArgument = 0; currentArgument < args.length; currentArgument++)
 {
 String arg = args[currentArgument];
 parseArgument(arg);
 }
 return true;
 }

 private void parseArgument(String arg) throws ArgsException {
 if (arg.startsWith(”-”))
 parseElements(arg);
 }

 private void parseElements(String arg) throws ArgsException {
 for (int i = 1; i < arg.length(); i++)
 parseElement(arg.charAt(i));
 }

 private void parseElement(char argChar) throws ArgsException {
 if (setArgument(argChar))
 argsFound.add(argChar);
 else {
 unexpectedArguments.add(argChar);
 errorCode = ErrorCode.UNEXPECTED_ARGUMENT;
 valid = false;
 }
 }

 private boolean setArgument(char argChar) throws ArgsException {
 if (isBooleanArg(argChar))
 setBooleanArg(argChar, true);
 else if (isStringArg(argChar))
 setStringArg(argChar);
 else if (isIntArg(argChar))
 setIntArg(argChar);
 else
 return false;

 return true;
 }

 private boolean isIntArg(char argChar) {return intArgs.containsKey(argChar);}

 private void setIntArg(char argChar) throws ArgsException {
 currentArgument++;
 String parameter = null;
 try {
 parameter = args[currentArgument];
 intArgs.put(argChar, new Integer(parameter));
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorCode = ErrorCode.MISSING_INTEGER;

 throw new ArgsException();
 } catch (NumberFormatException e) {
 valid = false;
 errorArgumentId = argChar;
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw new ArgsException();
 }
 }

 private void setStringArg(char argChar) throws ArgsException {
 currentArgument++;
 try {
 stringArgs.put(argChar, args[currentArgument]);
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }

 private boolean isStringArg(char argChar) {
 return stringArgs.containsKey(argChar);
 }

 private void setBooleanArg(char argChar, boolean value) {
 booleanArgs.put(argChar, value);
 }

 private boolean isBooleanArg(char argChar) {
 return booleanArgs.containsKey(argChar);
 }

 public int cardinality() {
 return argsFound.size();
 }

 public String usage() {
 if (schema.length() > 0)
 return “-[” + schema + “]”;
 else
 return ””;
 }

 public String errorMessage() throws Exception {
 switch (errorCode) {
 case OK:
 throw new Exception(“TILT: Should not get here.”);
 case UNEXPECTED_ARGUMENT:
 return unexpectedArgumentMessage();
 case MISSING_STRING:
 return String.format(“Could not find string parameter for -%c.”,
 errorArgumentId);

 case INVALID_INTEGER:
 return String.format(“Argument -%c expects an integer but was ’%s’.”,
 errorArgumentId, errorParameter);
 case MISSING_INTEGER:
 return String.format(“Could not find integer parameter for -%c.”,
 errorArgumentId);
 }
 return ””;
 }

 private String unexpectedArgumentMessage() {
 StringBuffer message = new StringBuffer(“Argument(s) -”);
 for (char c : unexpectedArguments) {
 message.append(c);
 }
 message.append(“ unexpected.”);

 return message.toString();
 }

 private boolean falseIfNull(Boolean b) {
 return b != null && b;
 }

 private int zeroIfNull(Integer i) {
 return i == null ? 0 : i;
 }

 private String blankIfNull(String s) {
 return s == null ? ”” : s;
 }

 public String getString(char arg) {
 return blankIfNull(stringArgs.get(arg));
 }

 public int getInt(char arg) {
 return zeroIfNull(intArgs.get(arg));
 }

 public boolean getBoolean(char arg) {
 return falseIfNull(booleanArgs.get(arg));
 }

 public boolean has(char arg) {
 return argsFound.contains(arg);
 }

 public boolean isValid() {
 return valid;
 }

 private class ArgsException extends Exception {
 }
}
I hope your initial reaction to this mass of code is “I’m certainly glad he didn’t leave it like that!” If you feel like this, then remember that’s how other people are going to feel about code that you leave in rough-draft form.
Actually “rough draft” is probably the kindest thing you can say about this code. It’s clearly a work in progress. The sheer number of instance variables is daunting. The odd strings like “TILT,” the HashSets and TreeSets, and the try-catch-catch blocks all add up to a festering pile.
I had not wanted to write a festering pile. Indeed, I was trying to keep things reasonably well organized. You can probably tell that from my choice of function and variable names and the fact that there is a crude structure to the program. But, clearly, I had let the problem get away from me.
The mess built gradually. Earlier versions had not been nearly so nasty. For example, Listing 14-9 shows an earlier version in which only Boolean arguments were working.

Listing 14-9 Args.java (Boolean only)
package com.objectmentor.utilities.getopts;

import java.util.*;

public class Args {
 private String schema;
 private String[] args;
 private boolean valid;
 private Set<Character> unexpectedArguments = new TreeSet<Character>();
 private Map<Character, Boolean> booleanArgs =
 new HashMap<Character, Boolean>();
 private int numberOfArguments = 0;

 public Args(String schema, String[] args) {
 this.schema = schema;
 this.args = args;
 valid = parse();
 }

 public boolean isValid() {
 return valid;
 }

 private boolean parse() {
 if (schema.length() == 0 && args.length == 0)
 return true;
 parseSchema();
 parseArguments();
 return unexpectedArguments.size() == 0;
 }

 private boolean parseSchema() {
 for (String element : schema.split(”,”)) {
 parseSchemaElement(element);
 }
 return true;
 }

 private void parseSchemaElement(String element) {
 if (element.length() == 1) {
 parseBooleanSchemaElement(element);
 }
 }

 private void parseBooleanSchemaElement(String element) {
 char c = element.charAt(0);
 if (Character.isLetter(c)) {
 booleanArgs.put(c, false);
 }
 }

 private boolean parseArguments() {
 for (String arg : args)
 parseArgument(arg);
 return true;
 }

 private void parseArgument(String arg) {
 if (arg.startsWith(”-”))
 parseElements(arg);
 }

 private void parseElements(String arg) {
 for (int i = 1; i < arg.length(); i++)
 parseElement(arg.charAt(i));
 }

 private void parseElement(char argChar) {
 if (isBoolean(argChar)) {
 numberOfArguments++;
 setBooleanArg(argChar, true);
 } else
 unexpectedArguments.add(argChar);
 }

 private void setBooleanArg(char argChar, boolean value) {
 booleanArgs.put(argChar, value);
 }

 private boolean isBoolean(char argChar) {
 return booleanArgs.containsKey(argChar);
 }

 public int cardinality() {
 return numberOfArguments;
 }

 public String usage() {
 if (schema.length() > 0)
 return ”-[“+schema+”]”; else
 return ””;
 }

 public String errorMessage() {
 if (unexpectedArguments.size() > 0) {
 return unexpectedArgumentMessage();
 } else
 return ””;
 }

 private String unexpectedArgumentMessage() {
 StringBuffer message = new StringBuffer(“Argument(s) -”);
 for (char c : unexpectedArguments) {
 message.append(c);
 }
 message.append(“ unexpected.”);

 return message.toString();
 }
 public boolean getBoolean(char arg) {
 return booleanArgs.get(arg);
 }
}
Although you can find plenty to complain about in this code, it’s really not that bad. It’s compact and simple and easy to understand. However, within this code it is easy to see the seeds of the later festering pile. It’s quite clear how this grew into the latter mess.
Notice that the latter mess has only two more argument types than this: String and integer. The addition of just two more argument types had a massively negative impact on the code. It converted it from something that would have been reasonably maintainable into something that I would expect to become riddled with bugs and warts.
I added the two argument types incrementally. First, I added the String argument, which yielded this:

Listing 14-10 Args.java (Boolean and String)
 package com.objectmentor.utilities.getopts;

 import java.text.ParseException;
 import java.util.*;

 public class Args {
 private String schema;
 private String[] args;
 private boolean valid = true;
 private Set<Character> unexpectedArguments = new TreeSet<Character>();
 private Map<Character, Boolean> booleanArgs =
 new HashMap<Character, Boolean>();
 private Map<Character, String> stringArgs =
 new HashMap<Character, String>();
 private Set<Character> argsFound = new HashSet<Character>();
 private int currentArgument;
 private char errorArgument = '\0';

 enum ErrorCode {
 OK, MISSING_STRING}

 private ErrorCode errorCode = ErrorCode.OK;

 public Args(String schema, String[] args) throws ParseException {
 this.schema = schema;
 this.args = args;
 valid = parse();
 }

 private boolean parse() throws ParseException {
 if (schema.length() == 0 && args.length == 0)
 return true;
 parseSchema();
 parseArguments();
 return valid;
 }

 private boolean parseSchema() throws ParseException {
 for (String element : schema.split(“,”)) {
 if (element.length() > 0) {
 String trimmedElement = element.trim();
 parseSchemaElement(trimmedElement);
 }
 }
 return true;
 }

 private void parseSchemaElement(String element) throws ParseException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (isBooleanSchemaElement(elementTail))
 parseBooleanSchemaElement(elementId);
 else if (isStringSchemaElement(elementTail))
 parseStringSchemaElement(elementId);
 }

 private void validateSchemaElementId(char elementId) throws ParseException {
 if (!Character.isLetter(elementId)) {
 throw new ParseException(
 “Bad character:” + elementId + “in Args format: ” + schema, 0);
 }
 }

 private void parseStringSchemaElement(char elementId) {
 stringArgs.put(elementId, “ ”);
 }

 private boolean isStringSchemaElement(String elementTail) {
 return elementTail.equals(“*”);
 }

 private boolean isBooleanSchemaElement(String elementTail) {
 return elementTail.length() == 0;
 }

 private void parseBooleanSchemaElement(char elementId) {
 booleanArgs.put(elementId, false);
 }

 private boolean parseArguments() {
 for (currentArgument = 0; currentArgument < args.length; currentArgument++)
 {
 String arg = args[currentArgument];
 parseArgument(arg);
 }
 return true;
 }

 private void parseArgument(String arg) {
 if (arg.startsWith(“-”))
 parseElements(arg);
 }

 private void parseElements(String arg) {
 for (int i = 1; i < arg.length(); i++)
 parseElement(arg.charAt(i));
 }

 private void parseElement(char argChar) {
 if (setArgument(argChar))
 argsFound.add(argChar);
 else {
 unexpectedArguments.add(argChar);
 valid = false;
 }
 }

 private boolean setArgument(char argChar) {
 boolean set = true;
 if (isBoolean(argChar))
 setBooleanArg(argChar, true);
 else if (isString(argChar))
 setStringArg(argChar, “ ”);
 else
 set = false;

 return set;
 }

 private void setStringArg(char argChar, String s) {
 currentArgument++;
 try {
 stringArgs.put(argChar, args[currentArgument]);
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgument = argChar;
 errorCode = ErrorCode.MISSING_STRING;
 }
 }

 private boolean isString(char argChar) {
 return stringArgs.containsKey(argChar);
 }

 private void setBooleanArg(char argChar, boolean value) {
 booleanArgs.put(argChar, value);
 }

 private boolean isBoolean(char argChar) {
 return booleanArgs.containsKey(argChar);
 }

 public int cardinality() {
 return argsFound.size();
 }

 public String usage() {
 if (schema.length() > 0)
 return “-[“ + schema + ”]”;
 else
 return “ ”;
 }

 public String errorMessage() throws Exception {
 if (unexpectedArguments.size() > 0) {
 return unexpectedArgumentMessage();
 } else
 switch (errorCode) {
 case MISSING_STRING:
 return String.format(“Could not find string parameter for -%c.”, errorArgument);
 case OK:
 throw new Exception(“TILT: Should not get here.”);
 }
 return “ ”;
 }

 private String unexpectedArgumentMessage() {
 StringBuffer message = new StringBuffer(“Argument(s) -”);
 for (char c : unexpectedArguments) {
 message.append(c);
 }
 message.append(“ unexpected.”);

 return message.toString();
 }

 public boolean getBoolean(char arg) {
 return falseIfNull(booleanArgs.get(arg));
 }

 private boolean falseIfNull(Boolean b) {
 return b == null ? false : b;
 }

 public String getString(char arg) {
 return blankIfNull(stringArgs.get(arg));
 }

 private String blankIfNull(String s) {
 return s == null ? “ ” : s;
 }

 public boolean has(char arg) {
 return argsFound.contains(arg);
 }

 public boolean isValid() {
 return valid;
 }
 }
You can see that this is starting to get out of hand. It’s still not horrible, but the mess is certainly starting to grow. It’s a pile, but it’s not festering quite yet. It took the addition of the integer argument type to get this pile really fermenting and festering.

So I Stopped
I had at least two more argument types to add, and I could tell that they would make things much worse. If I bulldozed my way forward, I could probably get them to work, but I’d leave behind a mess that was too large to fix. If the structure of this code was ever going to be maintainable, now was the time to fix it.
So I stopped adding features and started refactoring. Having just added the String and integer arguments, I knew that each argument type required new code in three major places. First, each argument type required some way to parse its schema element in order to select the HashMap for that type. Next, each argument type needed to be parsed in the command-line strings and converted to its true type. Finally, each argument type needed a getXXX method so that it could be returned to the caller as its true type.
Many different types, all with similar methods—that sounds like a class to me. And so the ArgumentMarshaler concept was born.

On Incrementalism
One of the best ways to ruin a program is to make massive changes to its structure in the name of improvement. Some programs never recover from such “improvements.” The problem is that it’s very hard to get the program working the same way it worked before the “improvement.”

Args: The Rough Draft
To avoid this, I use the discipline of Test-Driven Development (TDD). One of the central doctrines of this approach is to keep the system running at all times. In other words, using TDD, I am not allowed to make a change to the system that breaks that system. Every change I make must keep the system working as it worked before.
To achieve this, I need a suite of automated tests that I can run on a whim and that verifies that the behavior of the system is unchanged. For the Args class I had created a suite of unit and acceptance tests while I was building the festering pile. The unit tests were written in Java and administered by JUnit. The acceptance tests were written as wiki pages in FitNesse. I could run these tests any time I wanted, and if they passed, I was confident that the system was working as I specified.
So I proceeded to make a large number of very tiny changes. Each change moved the structure of the system toward the ArgumentMarshaler concept. And yet each change kept the system working. The first change I made was to add the skeleton of the ArgumentMarshaller to the end of the festering pile (Listing 14-11).

Listing 14-11 ArgumentMarshaller appended to Args.java
 private class ArgumentMarshaler }
 private boolean booleanValue = false;

 public void setBoolean(boolean value) {
 booleanValue = value;
 }

 public boolean getBoolean() {return booleanValue;}
 }

 private class BooleanArgumentMarshaler extends ArgumentMarshaler {
 }

 private class StringArgumentMarshaler extends ArgumentMarshaler {
 }

 private class IntegerArgumentMarshaler extends ArgumentMarshaler {
 }
 }
Clearly, this wasn’t going to break anything. So then I made the simplest modification I could, one that would break as little as possible. I changed the HashMap for the Boolean arguments to take an ArgumentMarshaler.
 private Map<Character, ArgumentMarshaler> booleanArgs =
 new HashMap<Character, ArgumentMarshaler>();
This broke a few statements, which I quickly fixed.
 …
 private void parseBooleanSchemaElement(char elementId) {
 booleanArgs.put(elementId, new BooleanArgumentMarshaler());
 }
 ..
 private void setBooleanArg(char argChar, boolean value) {
 booleanArgs.get(argChar).setBoolean(value);
 }
 …
 public boolean getBoolean(char arg) {
 return falseIfNull(booleanArgs.get(arg).getBoolean());
 }
Notice how these changes are in exactly the areas that I mentioned before: the parse, set, and get for the argument type. Unfortunately, small as this change was, some of the tests started failing. If you look carefully at getBoolean, you’ll see that if you call it with 'y,' but there is no y argument, then booleanArgs.get('y') will return null, and the function will throw a NullPointerException. The falseIfNull function had been used to protect against this, but the change I made caused that function to become irrelevant.
Incrementalism demanded that I get this working quickly before making any other changes. Indeed, the fix was not too difficult. I just had to move the check for null. It was no longer the boolean being null that I needed to check; it was the ArgumentMarshaller.
First, I removed the falseIfNull call in the getBoolean function. It was useless now, so I also eliminated the function itself. The tests still failed in the same way, so I was confident that I hadn’t introduced any new errors.
 public boolean getBoolean(char arg) {
 return booleanArgs.get(arg).getBoolean();
 }
Next, I split the function into two lines and put the ArgumentMarshaller into its own variable named argumentMarshaller. I didn’t care for the long variable name; it was badly redundant and cluttered up the function. So I shortened it to am [N5].
 public boolean getBoolean(char arg) {
 Args.ArgumentMarshaler am = booleanArgs.get(arg);
 return am.getBoolean();
 }
And then I put in the null detection logic.
 public boolean getBoolean(char arg) {
 Args.ArgumentMarshaler am = booleanArgs.get(arg);
 return am != null && am.getBoolean();
 }

String Arguments
Addin_g String arguments was very similar to adding boolean arguments. I had to change the HashMap and get the parse, set, and get functions working. There shouldn’t be any surprises in what follows except, perhaps, that I seem to be putting all the marshalling implementation in the ArgumentMarshaller base class instead of distributing it to the derivatives.
 private Map<Character, ArgumentMarshaler> stringArgs =
 new HashMap<Character, ArgumentMarshaler>();
 …
 private void parseStringSchemaElement(char elementId) {
 stringArgs.put(elementId, new StringArgumentMarshaler());
 }
 …
 private void setStringArg(char argChar) throws ArgsException {
 currentArgument++;
 try {
 stringArgs.get(argChar).setString(args[currentArgument]);
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }
 …
 public String getString(char arg) {
 Args.ArgumentMarshaler am = stringArgs.get(arg);
 return am == null ? “ ” : am.getString();
 }
 …
 private class ArgumentMarshaler {
 private boolean booleanValue = false;
 private String stringValue;

 public void setBoolean(boolean value) {
 booleanValue = value;
 }

 public boolean getBoolean() {
 return booleanValue;
 }

 public void setString(String s) {
 stringValue = s;
 }
 public String getString() {
 return stringValue == null ? “ ” : stringValue;
 }
 }
Again, these changes were made one at a time and in such a way that the tests kept running, if not passing. When a test broke, I made sure to get it passing again before continuing with the next change.
By now you should be able to see my intent. Once I get all the current marshalling behavior into the ArgumentMarshaler base class, I’m going to start pushing that behavior down into the derivatives. This will allow me to keep everything running while I gradually change the shape of this program.
The obvious next step was to move the int argument functionality into the ArgumentMarshaler. Again, there weren’t any surprises.
 private Map<Character, ArgumentMarshaler> intArgs =
 new HashMap<Character, ArgumentMarshaler>();
 …
 private void parseIntegerSchemaElement(char elementId) {
 intArgs.put(elementId, new IntegerArgumentMarshaler());
 }
 …

 private void setIntArg(char argChar) throws ArgsException {
 currentArgument++;
 String parameter = null;
 try {
 parameter = args[currentArgument];
 intArgs.get(argChar).setInteger(Integer.parseInt(parameter));
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (NumberFormatException e) {
 valid = false;
 errorArgumentId = argChar;
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw new ArgsException();
 }
 }
…
 public int getInt(char arg) {
 Args.ArgumentMarshaler am =intArgs.get(arg);
 return am == null ? 0 : am.getInteger();
 }
 …
 private class ArgumentMarshaler {
 private boolean booleanValue = false;
 private String stringValue;
 private int integerValue;
 public void setBoolean(boolean value) {
 booleanValue = value;
 }

 public boolean getBoolean() {
 return booleanValue;
 }

 public void setString(String s) {
 stringValue = s;
 }

 public String getString() {
 return stringValue == null ? “ ”: stringValue;
 }
 public void setInteger(int i) {
 integerValue = i;
 }
 public int getInteger() {
 return integerValue;
 }
 }
With all the marshalling moved to the ArgumentMarshaler, I started pushing functionality into the derivatives. The first step was to move the setBoolean function into the BooleanArgumentMarshaller and make sure it got called correctly. So I created an abstract set method.
 private abstract class ArgumentMarshaler {
 protected boolean booleanValue = false;
 private String stringValue;
 private int integerValue;

 public void setBoolean(boolean value) {
 booleanValue = value;
 }
 public boolean getBoolean() {
 return booleanValue;
 }

 public void setString(String s) {
 stringValue = s;
 }

 public String getString() {
 return stringValue == null ? “ ” : stringValue;
 }

 public void setInteger(int i) {
 integerValue = i;
 }

 public int getInteger() {
 return integerValue;
 }

 public abstract void set(String s);
 }
Then I implemented the set method in BooleanArgumentMarshaller.
 private class BooleanArgumentMarshaler extends ArgumentMarshaler {
 public void set(String s) {
 booleanValue = true;
 }
 }
And finally I replaced the call to setBoolean with a call to set.
 private void setBooleanArg(char argChar, boolean value) {
 booleanArgs.get(argChar) .set(“true”);
 }
The tests all still passed. Because this change caused set to be deployed to the Boolean-ArgumentMarshaler, I removed the setBoolean method from the ArgumentMarshaler base class.
Notice that the abstract set function takes a String argument, but the implementation in the BooleanArgumentMarshaller does not use it. I put that argument in there because I knew that the StringArgumentMarshaller and IntegerArgumentMarshaller
would use it.
Next, I wanted to deploy the get method into BooleanArgumentMarshaler. Deploying get functions is always ugly because the return type has to be Object, and in this case needs to be cast to a Boolean.
 public boolean getBoolean(char arg) {
 Args.ArgumentMarshaler am = booleanArgs.get(arg);
 return am != null && (Boolean)am.get();
 }
Just to get this to compile, I added the get function to the ArgumentMarshaler.
 private abstract class ArgumentMarshaler {
 …

 public Object get() {
 return null;
 }
 }
This compiled and obviously failed the tests. Getting the tests working again was simply a matter of making get abstract and implementing it in BooleanAgumentMarshaler.
 private abstract class ArgumentMarshaler {
 protected boolean booleanValue = false;
 …

 public abstract Object get();
 }

 private class BooleanArgumentMarshaler extends ArgumentMarshaler {
 public void set(String s) {
 booleanValue = true;
 }

 public Object get() {
 return booleanValue;
 }
 }
Once again the tests passed. So both get and set deploy to the BooleanArgumentMarshaler! This allowed me to remove the old getBoolean function from ArgumentMarshaler, move the protected booleanValue variable down to BooleanArgumentMarshaler, and make it private.
I did the same pattern of changes for Strings. I deployed both set and get, deleted the unused functions, and moved the variables.
 private void setStringArg(char argChar) throws ArgsException {
 currentArgument++;
 try {
 stringArgs.get(argChar).set(args[currentArgument]);
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }
 …
 public String getString(char arg) {
 Args.ArgumentMarshaler am = stringArgs.get(arg);
 return am == null ? “ ” : (String) am.get();
 }
 …
 private abstract class ArgumentMarshaler {
 private int integerValue;

 public void setInteger(int i) {
 integerValue = i;
 }

 public int getInteger() {
 return integerValue;
 }

 public abstract void set(String s);

 public abstract Object get();
 }

 private class BooleanArgumentMarshaler extends ArgumentMarshaler {
 private boolean booleanValue = false;

 public void set(String s) {
 booleanValue = true;
 }

 public Object get() {
 return booleanValue;
 }
 }

 private class StringArgumentMarshaler extends ArgumentMarshaler {
 private String stringValue = “ ”;

 public void set(String s) {
 stringValue = s;
 }

 public Object get() {
 return stringValue;
 }
 }

 private class IntegerArgumentMarshaler extends ArgumentMarshaler {

 public void set(String s) {
 }

 public Object get() {
 return null;
 }
 }
 }
 Finally, I repeated the process for integers. This was just a little more complicated because integers needed to be parsed, and the parse operation can throw an exception. But the result is better because the whole concept of NumberFormatException got buried in the IntegerArgumentMarshaler.
 private boolean isIntArg(char argChar) {return intArgs.containsKey(argChar);}

 private void setIntArg(char argChar) throws ArgsException {
 currentArgument++;
 String parameter = null;
 try {
 parameter = args[currentArgument];
 intArgs.get(argChar).set(parameter);
 } catch (ArrayIndexOutOfBoundsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw e;
 }
 }
 …
 private void setBooleanArg(char argChar) {
 try {
 booleanArgs.get(argChar).set(“true”);
 } catch (ArgsException e) {
 }
 }
 …
 public int getInt(char arg) {
 Args.ArgumentMarshaler am = intArgs.get(arg);
 return am == null ? 0 : (Integer) am.get();
 }
 …
 private abstract class ArgumentMarshaler {
 public abstract void set(String s) throws ArgsException;
 public abstract Object get();
 }
 …
 private class IntegerArgumentMarshaler extends ArgumentMarshaler {
 private int intValue = 0;

 public void set(String s) throws ArgsException {
 try {
 intValue = Integer.parseInt(s);
 } catch (NumberFormatException e) {
 throw new ArgsException();
 }
 }

 public Object get() {
 return intValue;
 }
 }
Of course, the tests continued to pass. Next, I got rid of the three different maps up at the top of the algorithm. This made the whole system much more generic. However, I couldn’t get rid of them just by deleting them because that would break the system. Instead, I added a new Map for the ArgumentMarshaler and then one by one changed the methods to use it instead of the three original maps.
 public class Args {
 …
 private Map<Character, ArgumentMarshaler> booleanArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> stringArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> intArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> marshalers =
 new HashMap<Character, ArgumentMarshaler>();
 …
 private void parseBooleanSchemaElement(char elementId) {
 ArgumentMarshaler m = new BooleanArgumentMarshaler();
 booleanArgs.put(elementId, m);
 marshalers.put(elementId, m);
 }

 private void parseIntegerSchemaElement(char elementId) {
 ArgumentMarshaler m = new IntegerArgumentMarshaler();
 intArgs.put(elementId, m);
 marshalers.put(elementId, m);
 }

 private void parseStringSchemaElement(char elementId) {
 ArgumentMarshaler m = new StringArgumentMarshaler();
 stringArgs.put(elementId, m);
 marshalers.put(elementId, m);
 }
Of course the tests all still passed. Next, I changed isBooleanArg from this:
 private boolean isBooleanArg(char argChar) {
 return booleanArgs.containsKey(argChar);
 }
to this:
 private boolean isBooleanArg(char argChar) {
 ArgumentMarshaler m = marshalers.get(argChar);
 return m instanceof BooleanArgumentMarshaler;
 }
The tests still passed. So I made the same change to isIntArg and isStringArg.
 private boolean isIntArg(char argChar) {
 ArgumentMarshaler m = marshalers.get(argChar);
 return m instanceof IntegerArgumentMarshaler;
 }

 private boolean isStringArg(char argChar) {
 ArgumentMarshaler m = marshalers.get(argChar);
 return m instanceof StringArgumentMarshaler;
 }
The tests still passed. So I eliminated all the duplicate calls to marshalers.get as follows:
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (isBooleanArg(m))
 setBooleanArg(argChar);
 else if (isStringArg(m))
 setStringArg(argChar);
 else if (isIntArg(m))
 setIntArg(argChar);
 else
 return false;

 return true;
 }

 private boolean isIntArg(ArgumentMarshaler m) {
 return m instanceof IntegerArgumentMarshaler;
 }

 private boolean isStringArg(ArgumentMarshaler m) {
 return m instanceof StringArgumentMarshaler;
 }

 private boolean isBooleanArg(ArgumentMarshaler m) {
 return m instanceof BooleanArgumentMarshaler;
 }
This left no good reason for the three isxxxArg methods. So I inlined them:
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m instanceof BooleanArgumentMarshaler)
 setBooleanArg(argChar);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(argChar);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(argChar);
 else
 return false;

 return true;
 }
Next, I started using the marshalers map in the set functions, breaking the use of the other three maps. I started with the booleans.
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m instanceof BooleanArgumentMarshaler)
 setBooleanArg(m);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(argChar);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(argChar);
 else
 return false;
 return true;
 }
 …
 private void setBooleanArg(ArgumentMarshaler m) {
 try {
 m.set(“true”); // was: booleanArgs.get(argChar).set(“true”);
 } catch (ArgsException e) {
 }
 }
The tests still passed, so I did the same with Strings and Integers. This allowed me to integrate some of the ugly exception management code into the setArgument function.
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 try {
 if (m instanceof BooleanArgumentMarshaler)
 setBooleanArg(m);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(m);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(m);
 else
 return false;
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 return true;
 }

 private void setIntArg(ArgumentMarshaler m) throws ArgsException {
 currentArgument++;
 String parameter = null;
 try {
 parameter = args[currentArgument];
 m.set(parameter);
 } catch (ArrayIndexOutOfBoundsException e) {
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (ArgsException e) {
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw e;
 }
 }

 private void setStringArg(ArgumentMarshaler m) throws ArgsException {
 currentArgument++;
 try {
 m.set(args[currentArgument]);
 } catch (ArrayIndexOutOfBoundsException e) {
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }
I was close to being able to remove the three old maps. First, I needed to change the getBoolean function from this:
 public boolean getBoolean(char arg) {
 Args.ArgumentMarshaler am = booleanArgs.get(arg);
 return am != null && (Boolean) am.get();
 }
to this:
 public boolean getBoolean(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 boolean b = false;
 try {
 b = am != null && (Boolean) am.get();
 } catch (ClassCastException e) {

 b = false;
 }
 return b;
 }
This last change might have been a surprise. Why did I suddenly decide to deal with the ClassCastException? The reason is that I have a set of unit tests and a separate set of acceptance tests written in FitNesse. It turns out that the FitNesse tests made sure that if you called getBoolean on a nonboolean argument, you got a false. The unit tests did not. Up to this point I had only been running the unit tests.2
This last change allowed me to pull out another use of the boolean map:
 private void parseBooleanSchemaElement(char elementId) {
 ArgumentMarshaler m = new BooleanArgumentMarshaler();
 booleanArgs.put(elementId, m);
 marshalers.put(elementId, m);
 }
And now we can delete the boolean map.
 public class Args {
 …
 private Map<Character, ArgumentMarshaler> booleanArgs
 = new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> stringArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> intArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> marshalers =
 new HashMap<Character, ArgumentMarshaler>();
 …
Next, I migrated the String and Integer arguments in the same manner and did a little cleanup with the booleans.
 private void parseBooleanSchemaElement(char elementId) {
 marshalers.put(elementId, new BooleanArgumentMarshaler());
 }
 private void parseIntegerSchemaElement(char elementId) {
 marshalers.put(elementId, new IntegerArgumentMarshaler());
 }

 private void parseStringSchemaElement(char elementId) {
 marshalers.put(elementId, new StringArgumentMarshaler());
 }
 …
 public String getString(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? “ ” : (String) am.get();
 } catch (ClassCastException e) {
 return “ ”;
 }
 }

 public int getInt(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? 0 : (Integer) am.get();
 } catch (Exception e) {
 return 0;
 }
 }
…
public class Args {
…
 private Map<Character, ArgumentMarshaler> stringArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> intArgs =
 new HashMap<Character, ArgumentMarshaler>();
 private Map<Character, ArgumentMarshaler> marshalers =
 new HashMap<Character, ArgumentMarshaler>();
 …
Next, I inlined the three parse methods because they didn’t do much anymore:
 private void parseSchemaElement(String element) throws ParseException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (isBooleanSchemaElement(elementTail))
 marshalers.put(elementId, new BooleanArgumentMarshaler());
 else if (isStringSchemaElement(elementTail))
 marshalers.put(elementId, new StringArgumentMarshaler());
 else if (isIntegerSchemaElement(elementTail)) {
 marshalers.put(elementId, new IntegerArgumentMarshaler());
 } else {
 throw new ParseException(String.format(
 “Argument: %c has invalid format: %s.”, elementId, elementTail), 0);
 }
 }
Okay, so now let’s look at the whole picture again. Listing 14-12 shows the current form of the Args class.

Listing 14-12 Args.java (After first refactoring)
 package com.objectmentor.utilities.getopts;

 import java.text.ParseException;
 import java.util.*;

 public class Args {
 private String schema;
 private String[] args;
 private boolean valid = true;
 private Set<Character> unexpectedArguments = new TreeSet<Character>();
 private Map<Character, ArgumentMarshaler> marshalers =
 new HashMap<Character, ArgumentMarshaler>();
 private Set<Character> argsFound = new HashSet<Character>();
 private int currentArgument;
 private char errorArgumentId = '\0';
 private String errorParameter = “TILT”;
 private ErrorCode errorCode = ErrorCode.OK;

 private enum ErrorCode {
 OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER,
 UNEXPECTED_ARGUMENT}

 public Args(String schema, String[] args) throws ParseException {
 this.schema = schema;
 this.args = args;
 valid = parse();
 }

 private boolean parse() throws ParseException {
 if (schema.length() == 0 && args.length == 0)
 return true;
 parseSchema();
 try {
 parseArguments();
 } catch (ArgsException e) {
 }
 return valid;
 }

 private boolean parseSchema() throws ParseException {
 for (String element : schema.split(“,”)) {
 if (element.length() > 0) {
 String trimmedElement = element.trim();
 parseSchemaElement(trimmedElement);
 }
 }
 return true;
 }

 private void parseSchemaElement(String element) throws ParseException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (isBooleanSchemaElement(elementTail))
 marshalers.put(elementId, new BooleanArgumentMarshaler());
 else if (isStringSchemaElement(elementTail))
 marshalers.put(elementId, new StringArgumentMarshaler());
 else if (isIntegerSchemaElement(elementTail)) {
 marshalers.put(elementId, new IntegerArgumentMarshaler());
 } else {
 throw new ParseException(String.format(
 “Argument: %c has invalid format: %s.”, elementId, elementTail), 0);
 }
 }

 private void validateSchemaElementId(char elementId) throws ParseException {
 if (!Character.isLetter(elementId)) {
 throw new ParseException(
 “Bad character:” + elementId + “in Args format: ” + schema, 0);
 }
 }

 private boolean isStringSchemaElement(String elementTail) {
 return elementTail.equals(“*”);
 }

 private boolean isBooleanSchemaElement(String elementTail) {
 return elementTail.length() == 0;
 }

 private boolean isIntegerSchemaElement(String elementTail) {
 return elementTail.equals(“-”);
 }

 private boolean parseArguments() throws ArgsException {
 for (currentArgument=0; currentArgument<args.length; currentArgument++) {
 String arg = args[currentArgument];
 parseArgument(arg);
 }
 return true;
 }

 private void parseArgument(String arg) throws ArgsException {
 if (arg.startsWith(“-”))
 parseElements(arg);
 }

 private void parseElements(String arg) throws ArgsException {
 for (int i = 1; i < arg.length(); i++)
 parseElement(arg.charAt(i));
 }

 private void parseElement(char argChar) throws ArgsException {
 if (setArgument(argChar))
 argsFound.add(argChar);
 else {
 unexpectedArguments.add(argChar);
 errorCode = ErrorCode.UNEXPECTED_ARGUMENT;
 valid = false;
 }
 }

 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 try {
 if (m instanceof BooleanArgumentMarshaler)
 setBooleanArg(m);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(m);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(m);
 else
 return false;
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 return true;
 }

 private void setIntArg(ArgumentMarshaler m) throws ArgsException {
 currentArgument++;
 String parameter = null;
 try {
 parameter = args[currentArgument];
 m.set(parameter);
 } catch (ArrayIndexOutOfBoundsException e) {
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (ArgsException e) {
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw e;
 }
 }

 private void setStringArg(ArgumentMarshaler m) throws ArgsException {
 currentArgument++;
 try {
 m.set(args[currentArgument]);
 } catch (ArrayIndexOutOfBoundsException e) {
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }

 private void setBooleanArg(ArgumentMarshaler m) {
 try {
 m.set(“true”);
 } catch (ArgsException e) {
 }
 }

 public int cardinality() {
 return argsFound.size();
 }

 public String usage() {
 if (schema.length() > 0)
 return “-[“ + schema + ”]”;
 else
 return “ ”;
 }

 public String errorMessage() throws Exception {
 switch (errorCode) {
 case OK:
 throw new Exception(“TILT: Should not get here.”);
 case UNEXPECTED_ARGUMENT:
 return unexpectedArgumentMessage();
 case MISSING_STRING:
 return String.format(“Could not find string parameter for -%c.”,
 errorArgumentId);
 case INVALID_INTEGER:
 return String.format(“Argument -%c expects an integer but was '%s'.”,
 errorArgumentId, errorParameter);
 case MISSING_INTEGER:
 return String.format(“Could not find integer parameter for -%c.”,
 errorArgumentId);
 }
 return “ ”;
 }

 private String unexpectedArgumentMessage() {
 StringBuffer message = new StringBuffer(“Argument(s) -”);
 for (char c : unexpectedArguments) {
 message.append(c);
 }
 message.append(“ unexpected.”);

 return message.toString();
 }

 public boolean getBoolean(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 boolean b = false;
 try {
 b = am != null && (Boolean) am.get();
 } catch (ClassCastException e) {
 b = false;
 }
 return b;
 }

 public String getString(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? “ ” : (String) am.get();
 } catch (ClassCastException e) {
 return “ ”;
 }
 }

 public int getInt(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? 0 : (Integer) am.get();
 } catch (Exception e) {
 return 0;
 }
 }

 public boolean has(char arg) {
 return argsFound.contains(arg);
 }

 public boolean isValid() {
 return valid;
 }

 private class ArgsException extends Exception {
 }

 private abstract class ArgumentMarshaler {
 public abstract void set(String s) throws ArgsException;
 public abstract Object get();
 }

 private class BooleanArgumentMarshaler extends ArgumentMarshaler {
 private boolean booleanValue = false;

 public void set(String s) {
 booleanValue = true;
 }
 public Object get() {
 return booleanValue;
 }
 }

 private class StringArgumentMarshaler extends ArgumentMarshaler {
 private String stringValue = “ ”;

 public void set(String s) {
 stringValue = s;
 }

 public Object get() {
 return stringValue;
 }
 }

 private class IntegerArgumentMarshaler extends ArgumentMarshaler {
 private int intValue = 0;

 public void set(String s) throws ArgsException {
 try {
 intValue = Integer.parseInt(s);
 } catch (NumberFormatException e) {
 throw new ArgsException();
 }
 }

 public Object get() {
 return intValue;
 }
 }
 }
After all that work, this is a bit disappointing. The structure is a bit better, but we still have all those variables up at the top; there’s still a horrible type-case in setArgument; and all those set functions are really ugly. Not to mention all the error processing. We still have a lot of work ahead of us.
I’d really like to get rid of that type-case up in setArgument [G23]. What I’d like in setArgument is a single call to ArgumentMarshaler.set. This means I need to push setIntArg, setStringArg, and setBooleanArg down into the appropriate ArgumentMarshaler derivatives. But there is a problem.
If you look closely at setIntArg, you’ll notice that it uses two instance variables: args and currentArg. To move setIntArg down into BooleanArgumentMarshaler, I’ll have to pass both args and currentArgs as function arguments. That’s dirty [F1]. I’d rather pass one argument instead of two. Fortunately, there is a simple solution. We can convert the args array into a list and pass an Iterator down to the set functions. The following took me ten steps, passing all the tests after each. But I’ll just show you the result. You should be able to figure out what most of the tiny little steps were.
public class Args {
 private String schema;
 private String[] args;
 private boolean valid = true;
 private Set<Character> unexpectedArguments = new TreeSet<Character>();
 private Map<Character, ArgumentMarshaler> marshalers =
 new HashMap<Character, ArgumentMarshaler>();
 private Set<Character> argsFound = new HashSet<Character>();
 private Iterator<String> currentArgument;
 private char errorArgumentId = ’\0’;
 private String errorParameter = “TILT”;
 private ErrorCode errorCode = ErrorCode.OK;
 private List<String> argsList;

 private enum ErrorCode {
 OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER,
 UNEXPECTED_ARGUMENT}

 public Args(String schema, String[] args) throws ParseException {
 this.schema = schema;
 argsList = Arrays.asList(args);
 valid = parse();
 }
 private boolean parse() throws ParseException {
 if (schema.length() == 0 && argsList.size() == 0)
 return true;
 parseSchema();
 try {
 parseArguments();
 } catch (ArgsException e) {
 }
 return valid;
 }

 private boolean parseArguments() throws ArgsException {
 for (currentArgument = argsList.iterator(); currentArgument.hasNext();) {
 String arg = currentArgument.next();
 parseArgument(arg);
 }

 return true;
 }

 private void setIntArg(ArgumentMarshaler m) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 m.set(parameter);
 } catch (NoSuchElementException e) {
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (ArgsException e) {
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw e;
 }
 }

 private void setStringArg(ArgumentMarshaler m) throws ArgsException {
 try {
 m.set(currentArgument.next());
 } catch (NoSuchElementException e) {
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }
These were simple changes that kept all the tests passing. Now we can start moving the set functions down into the appropriate derivatives. First, I need to make the following change in setArgument:
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null)
 return false;
 try {
 if (m instanceof BooleanArgumentMarshaler)
 setBooleanArg(m);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(m);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(m);
 else
 return false;
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 return true;
 }
This change is important because we want to completely eliminate the if-else chain. Therefore, we needed to get the error condition out of it.
Now we can start to move the set functions. The setBooleanArg function is trivial, so we’ll prepare that one first. Our goal is to change the setBooleanArg function to simply forward to the BooleanArgumentMarshaler.
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null)
 return false;
 try {
 if (m instanceof BooleanArgumentMarshaler)
 setBooleanArg(m, currentArgument);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(m);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(m);
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 return true;
 }

 private void setBooleanArg(ArgumentMarshaler m,
 Iterator<String> currentArgument)
 throws ArgsException {
 try {
 m.set(”true”);
 catch (ArgsException e) {
 }
 }
Didn’t we just put that exception processing in? Putting things in so you can take them out again is pretty common in refactoring. The smallness of the steps and the need to keep the tests running means that you move things around a lot. Refactoring is a lot like solving a Rubik’s cube. There are lots of little steps required to achieve a large goal. Each step enables the next.
Why did we pass that iterator when setBooleanArg certainly doesn’t need it? Because setIntArg and setStringArg will! And because I want to deploy all three of these functions through an abstract method in ArgumentMarshaller, I need to pass it to setBooleanArg.
So now setBooleanArg is useless. If there were a set function in ArgumentMarshaler, we could call it directly. So it’s time to make that function! The first step is to add the new abstract method to ArgumentMarshaler.
 private abstract class ArgumentMarshaler {
 public abstract void set(Iterator<String> currentArgument)
 throws ArgsException;
 public abstract void set(String s) throws ArgsException;
 public abstract Object get();
 }

Of course this breaks all the derivatives. So let’s implement the new method in each.
 private class BooleanArgumentMarshaler extends ArgumentMarshaler {
 private boolean booleanValue = false;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 booleanValue = true;
 }

 public void set(String s) {
 booleanValue = true;
 }

 public Object get() {
 return booleanValue;
 }
 }
 private class StringArgumentMarshaler extends ArgumentMarshaler {
 private String stringValue = ””;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 }
 public void set(String s) {
 stringValue = s;
 }
 public Object get() {
 return stringValue;
 }
 }

 private class IntegerArgumentMarshaler extends ArgumentMarshaler {
 private int intValue = 0;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 }
 public void set(String s) throws ArgsException {
 try {
 intValue = Integer.parseInt(s);
 } catch (NumberFormatException e) {
 throw new ArgsException();
 }
 } public Object get() {
 return intValue;
 }
 }
And now we can eliminate setBooleanArg!
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null)
 return false;
 try {
 if (m instanceof BooleanArgumentMarshaler)
 m.set(currentArgument);
 else if (m instanceof StringArgumentMarshaler)
 setStringArg(m);
 else if (m instanceof IntegerArgumentMarshaler)
 setIntArg(m);

 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 return true;
 }
The tests all pass, and the set function is deploying to BooleanArgumentMarshaler! Now we can do the same for Strings and Integers.
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null)
 return false;
 try {
 if (m instanceof BooleanArgumentMarshaler)
 m.set(currentArgument);
 else if (m instanceof StringArgumentMarshaler)
 m.set(currentArgument);
 else if (m instanceof IntegerArgumentMarshaler)
 m.set(currentArgument);
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 return true;
 }

 private class StringArgumentMarshaler extends ArgumentMarshaler {
 private String stringValue = ””;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 try {
 stringValue = currentArgument.next();
 } catch (NoSuchElementException e) {
 errorCode = ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }

 public void set(String s) {
 }

 public Object get() {
 return stringValue;
 }
 }

 private class IntegerArgumentMarshaler extends ArgumentMarshaler {
 private int intValue = 0;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 set(parameter);
 } catch (NoSuchElementException e) {
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (ArgsException e) {
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw e;
 }
 }

 public void set(String s) throws ArgsException {
 try {
 intValue = Integer.parseInt(s);
 } catch (NumberFormatException e) {
 throw new ArgsException();
 }
 }

 public Object get() {
 return intValue;
 }
 }
And so the coup de grace: The type-case can be removed! Touche!
 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null)
 return false;
 try {
 m.set(currentArgument);
 return true;
 } catch (ArgsException e) {
 valid = false;
 errorArgumentId = argChar;
 throw e;
 }
 }
Now we can get rid of some crufty functions in IntegerArgumentMarshaler and clean it up a bit.
 private class IntegerArgumentMarshaler extends ArgumentMarshaler {
 private int intValue = 0

 public void set(Iterator<String> currentArgument) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 intValue = Integer.parseInt(parameter);
 } catch (NoSuchElementException e) {
 errorCode = ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (NumberFormatException e) {
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_INTEGER;
 throw new ArgsException();
 }
 }

 public Object get() {
 return intValue;
 }
 }
We can also turn ArgumentMarshaler into an interface.
 private interface ArgumentMarshaler {
 void set(Iterator<String> currentArgument) throws ArgsException;
 Object get();
 }
So now let’s see how easy it is to add a new argument type to our structure. It should require very few changes, and those changes should be isolated. First, we begin by adding a new test case to check that the double argument works correctly.
 public void testSimpleDoublePresent() throws Exception {
 Args args = new Args(”x##”, new String[] {”-x”,”42.3”});
 assertTrue(args.isValid());
 assertEquals(1, args.cardinality());
 assertTrue(args.has(’x’));
 assertEquals(42.3, args.getDouble(’x’), .001);
 }
Now we clean up the schema parsing code and add the ## detection for the double argument type.
 private void parseSchemaElement(String element) throws ParseException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (elementTail.length() == 0)
 marshalers.put(elementId, new BooleanArgumentMarshaler());
 else if (elementTail.equals(”*”))
 marshalers.put(elementId, new StringArgumentMarshaler());
 else if (elementTail.equals(”#”))
 marshalers.put(elementId, new IntegerArgumentMarshaler());
 else if (elementTail.equals(”##”))
 marshalers.put(elementId, new DoubleArgumentMarshaler());
 else
 throw new ParseException(String.format(
 ”Argument: %c has invalid format: %s.”, elementId, elementTail), 0);
 }
Next, we write the DoubleArgumentMarshaler class.
 private class DoubleArgumentMarshaler implements ArgumentMarshaler {
 private double doubleValue = 0;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 doubleValue = Double.parseDouble(parameter);
 } catch (NoSuchElementException e) {
 errorCode = ErrorCode.MISSING_DOUBLE;
 throw new ArgsException();
 } catch (NumberFormatException e) {
 errorParameter = parameter;
 errorCode = ErrorCode.INVALID_DOUBLE;
 throw new ArgsException();
 }
 }

 public Object get() {
 return doubleValue;
 }
 }
This forces us to add a new ErrorCode.
 private enum ErrorCode {
 OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT,
 MISSING_DOUBLE, INVALID_DOUBLE}
And we need a getDouble function.
 public double getDouble(char arg) {
 Args.ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? 0 : (Double) am.get();
 } catch (Exception e) {
 return 0.0;
 }
 }
And all the tests pass! That was pretty painless. So now let’s make sure all the error processing works correctly. The next test case checks that an error is declared if an unparseable string is fed to a ## argument.
 public void testInvalidDouble() throws Exception {
 Args args = new Args(”x##”, new String[] {”-x”,”Forty two”});
 assertFalse(args.isValid());
 assertEquals(0, args.cardinality());
 assertFalse(args.has(’x’));
 assertEquals(0, args.getInt(’x’));
 assertEquals(”Argument -x expects a double but was ‘Forty two’.”,
 args.errorMessage());
 }

 public String errorMessage() throws Exception {
 switch (errorCode) {
 case OK:
 throw new Exception(”TILT: Should not get here.”);
 case UNEXPECTED_ARGUMENT:
 return unexpectedArgumentMessage();
 case MISSING_STRING:
 return String.format(”Could not find string parameter for -%c.”,
 errorArgumentId);
 case INVALID_INTEGER:
 return String.format(”Argument -%c expects an integer but was ‘%s’.”,
 errorArgumentId, errorParameter);
 case MISSING_INTEGER:
 return String.format(”Could not find integer parameter for -%c.”,
 errorArgumentId);
 case INVALID_DOUBLE:
 return String.format(”Argument -%c expects a double but was ‘%s’.”,
 errorArgumentId, errorParameter);
 case MISSING_DOUBLE:
 return String.format(”Could not find double parameter for -%c.”,
 errorArgumentId);
 }
 return””;
 }
And the tests pass. The next test makes sure we detect a missing double argument properly.
 public void testMissingDouble() throws Exception {
 Args args = new Args(”x##”, new String[]{”-x”});
 assertFalse(args.isValid());
 assertEquals(0, args.cardinality());
 assertFalse(args.has(’x’));
 assertEquals(0.0, args.getDouble(’x’), 0.01);
 assertEquals(”Could not find double parameter for -x.”,
 args.errorMessage());
 }
This passes as expected. We wrote it simply for completeness.
The exception code is pretty ugly and doesn’t really belong in the Args class. We are also throwing out ParseException, which doesn’t really belong to us. So let’s merge all the exceptions into a single ArgsException class and move it into its own module.
 public class ArgsException extends Exception {
 private char errorArgumentId = ’\0’;
 private String errorParameter = ”TILT”;
 private ErrorCode errorCode = ErrorCode.OK;

 public ArgsException() {}

 public ArgsException(String message) {super(message);}

 public enum ErrorCode {
 OK, MISSING_STRING, MISSING_INTEGER,
 INVALID_INTEGER, UNEXPECTED_ARGUMENT,
 MISSING_DOUBLE, INVALID_DOUBLE}
 }

 public class Args {
 …
 private char errorArgumentId = ’\0’;
 private String errorParameter = ”TILT”;
 private ArgsException.ErrorCode errorCode = ArgsException.ErrorCode.OK;
 private List<String> argsList;

 public Args(String schema, String[] args) throws ArgsException {
 this.schema = schema;
 argsList = Arrays.asList(args);
 valid = parse();
 }

 private boolean parse() throws ArgsException {
 if (schema.length() == 0 && argsList.size() == 0)
 return true;
 parseSchema();
 try {
 parseArguments();
 } catch (ArgsException e) {
 }
 return valid;
 }
 private boolean parseSchema() throws ArgsException {
 …
 }

 private void parseSchemaElement(String element) throws ArgsException {
 …
 else
 throw new ArgsException(
 String.format(”Argument: %c has invalid format: %s.”,
 elementId,elementTail));
 }
 private void validateSchemaElementId(char elementId) throws ArgsException {
 if (!Character.isLetter(elementId)) {
 throw new ArgsException(
 ”Bad character:” + elementId + ”in Args format: ” + schema);
 }
 }

 …

 private void parseElement(char argChar) throws ArgsException {
 if (setArgument(argChar))
 argsFound.add(argChar);
 else {
 unexpectedArguments.add(argChar);
 errorCode = ArgsException.ErrorCode.UNEXPECTED_ARGUMENT;
 valid = false;
 }
 }

 …
 private class StringArgumentMarshaler implements ArgumentMarshaler {
 private String stringValue = ””;
 public void set(Iterator<String> currentArgument) throws ArgsException {
 try {
 stringValue = currentArgument.next();
 } catch (NoSuchElementException e) {
 errorCode = ArgsException.ErrorCode.MISSING_STRING;
 throw new ArgsException();
 }
 }
 public Object get() {
 return stringValue;
 }
 }

 private class IntegerArgumentMarshaler implements ArgumentMarshaler {
 private int intValue = 0;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 intValue = Integer.parseInt(parameter);
 } catch (NoSuchElementException e) {
 errorCode = ArgsException.ErrorCode.MISSING_INTEGER;
 throw new ArgsException();
 } catch (NumberFormatException e) {
 errorParameter = parameter;
 errorCode = ArgsException.ErrorCode.INVALID_INTEGER;
 throw new ArgsException();
 }
 }

 public Object get() {
 return intValue;
 }
 }

 private class DoubleArgumentMarshaler implements ArgumentMarshaler {
 private double doubleValue = 0;

 public void set(Iterator<String> currentArgument) throws ArgsException {
 String parameter = null;
 try {
 parameter = currentArgument.next();
 doubleValue = Double.parseDouble(parameter);
 } catch (NoSuchElementException e) {
 errorCode = ArgsException.ErrorCode.MISSING_DOUBLE;
 throw new ArgsException();
 } catch (NumberFormatException e) {
 errorParameter = parameter;
 errorCode = ArgsException.ErrorCode.INVALID_DOUBLE;
 throw new ArgsException();
 }
 }
 public Object get() {
 return doubleValue;
 }
 }
 }
This is nice. Now the only exception thrown by Args is ArgsException. Moving ArgsException into its own module means that we can move a lot of the miscellaneous error support code into that module and out of the Args module. It provides a natural and obvious place to put all that code and will really help us clean up the Args module going forward.
So now we have completely separated the exception and error code from the Args module. (See Listing 14-13 through Listing 14-16.) This was achieved through a series of about 30 tiny steps, keeping the tests passing between each step.

Listing 14-13 ArgsTest.java
 package com.objectmentor.utilities.args;

 import junit.framework.TestCase;

 public class ArgsTest extends TestCase {
 public void testCreateWithNoSchemaOrArguments() throws Exception {
 Args args = new Args(“”, new String[0]);
 assertEquals(0, args.cardinality());
 }

 public void testWithNoSchemaButWithOneArgument() throws Exception {
 try {
 new Args(“”, new String[]{“-x”});
 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,
 e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 }
 }

 public void testWithNoSchemaButWithMultipleArguments() throws Exception {
 try {
 new Args(“”, new String[]{“-x”, “-y”});
 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,
 e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 }

 }

 public void testNonLetterSchema() throws Exception {
 try {
 new Args(“*”, new String[]{});
 fail(“Args constructor should have thrown exception”);
 } catch (ArgsException e) {

 assertEquals(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME,
 e.getErrorCode());
 assertEquals(‘*’, e.getErrorArgumentId());
 }
 }

 public void testInvalidArgumentFormat() throws Exception {
 try {
 new Args(“f~”, new String[]{});
 fail(“Args constructor should have throws exception”);
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.INVALID_FORMAT, e.getErrorCode());
 assertEquals(‘f’, e.getErrorArgumentId());
 }
 }

 public void testSimpleBooleanPresent() throws Exception {
 Args args = new Args(“x”, new String[]{“-x”});
 assertEquals(1, args.cardinality());
 assertEquals(true, args.getBoolean(‘x’));
 }

 public void testSimpleStringPresent() throws Exception {
 Args args = new Args(“x*”, new String[]{“-x”, “param”});
 assertEquals(1, args.cardinality());
 assertTrue(args.has(‘x’));
 assertEquals(“param”, args.getString(‘x’));
 }

 public void testMissingStringArgument() throws Exception {
 try {
 new Args(“x*”, new String[]{“-x”});
 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.MISSING_STRING, e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 }
 }

 public void testSpacesInFormat() throws Exception {
 Args args = new Args(“x, y”, new String[]{“-xy”});
 assertEquals(2, args.cardinality());
 assertTrue(args.has(‘x’));
 assertTrue(args.has(‘y’));
 }

 public void testSimpleIntPresent() throws Exception {
 Args args = new Args(“x#”, new String[]{“-x”, “42”});
 assertEquals(1, args.cardinality());
 assertTrue(args.has(‘x’));
 assertEquals(42, args.getInt(‘x’));
 }

 public void testInvalidInteger() throws Exception {
 try {
 new Args(“x#”, new String[]{“-x”, “Forty two”});

 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.INVALID_INTEGER, e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 assertEquals(”Forty two”, e.getErrorParameter());
 }

 }

 public void testMissingInteger() throws Exception {
 try {
 new Args(“x#”, new String[]{“-x”});
 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.MISSING_INTEGER, e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 }
 }

 public void testSimpleDoublePresent() throws Exception {
 Args args = new Args(“x##”, new String[]{“-x”, “42.3”});
 assertEquals(1, args.cardinality());
 assertTrue(args.has(‘x’));
 assertEquals(42.3, args.getDouble(‘x’), .001);
 }

 public void testInvalidDouble() throws Exception {
 try {
 new Args(“x##”, new String[]{“-x”, “Forty two”});
 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.INVALID_DOUBLE, e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 assertEquals(“Forty two”, e.getErrorParameter());
 }
 }

 public void testMissingDouble() throws Exception {
 try {
 new Args(“x##”, new String[]{“-x”});
 fail();
 } catch (ArgsException e) {
 assertEquals(ArgsException.ErrorCode.MISSING_DOUBLE, e.getErrorCode());
 assertEquals(‘x’, e.getErrorArgumentId());
 }
 }
 }

Listing 14-14 ArgsExceptionTest.java
 public class ArgsExceptionTest extends TestCase {
 public void testUnexpectedMessage() throws Exception {
 ArgsException e =

 new ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,
 ‘x’, null);
 assertEquals(“Argument -x unexpected.”, e.errorMessage());
 }

 public void testMissingStringMessage() throws Exception {
 ArgsException e = new ArgsException(ArgsException.ErrorCode.MISSING_STRING,
 ‘x’, null);
 assertEquals(“Could not find string parameter for -x.”, e.errorMessage());
 }

 public void testInvalidIntegerMessage() throws Exception {
 ArgsException e =
 new ArgsException(ArgsException.ErrorCode.INVALID_INTEGER,
 ‘x’, “Forty two”);
 assertEquals(“Argument -x expects an integer but was ‘Forty two’.“,
 e.errorMessage());
 }

 public void testMissingIntegerMessage() throws Exception {
 ArgsException e =
 new ArgsException(ArgsException.ErrorCode.MISSING_INTEGER, ‘x’, null);
 assertEquals(“Could not find integer parameter for -x.”, e.errorMessage());
 }

 public void testInvalidDoubleMessage() throws Exception {
 ArgsException e = new ArgsException(ArgsException.ErrorCode.INVALID_DOUBLE,
 ‘x’, “Forty two”);
 assertEquals(“Argument -x expects a double but was ‘Forty two’.”,
 e.errorMessage());
 }

 public void testMissingDoubleMessage() throws Exception {
 ArgsException e = new ArgsException(ArgsException.ErrorCode.MISSING_DOUBLE,
 ‘x’, null);
 assertEquals(“Could not find double parameter for -x.”, e.errorMessage());
 }
 }

Listing 14-15 ArgsException.java
 public class ArgsException extends Exception {
 private char errorArgumentId = ‘\0’;
 private String errorParameter = “TILT”;
 private ErrorCode errorCode = ErrorCode.OK;

 public ArgsException() {}

 public ArgsException(String message) {super(message);}

 public ArgsException(ErrorCode errorCode) {
 this.errorCode = errorCode;
 }

 public ArgsException(ErrorCode errorCode, String errorParameter) {
 this.errorCode = errorCode;
 this.errorParameter = errorParameter;
 }

 public ArgsException(ErrorCode errorCode, char errorArgumentId,
 String errorParameter) {
 this.errorCode = errorCode;
 this.errorParameter = errorParameter;
 this.errorArgumentId = errorArgumentId;
 }

 public char getErrorArgumentId() {
 return errorArgumentId;
 }

 public void setErrorArgumentId(char errorArgumentId) {
 this.errorArgumentId = errorArgumentId;
 }

 public String getErrorParameter() {
 return errorParameter;
 }

 public void setErrorParameter(String errorParameter) {
 this.errorParameter = errorParameter;
 }

 public ErrorCode getErrorCode() {
 return errorCode;
 }

 public void setErrorCode(ErrorCode errorCode) {
 this.errorCode = errorCode;
 }

 public String errorMessage() throws Exception {
 switch (errorCode) {
 case OK:
 throw new Exception(“TILT: Should not get here.”);
 case UNEXPECTED_ARGUMENT:
 return String.format(“Argument -%c unexpected.”, errorArgumentId);
 case MISSING_STRING:
 return String.format(“Could not find string parameter for -%c.”,
 errorArgumentId);
 case INVALID_INTEGER:
 return String.format(“Argument -%c expects an integer but was ‘%s’.”,
 errorArgumentId, errorParameter);
 case MISSING_INTEGER:
 return String.format(“Could not find integer parameter for -%c.”,
 errorArgumentId);
 case INVALID_DOUBLE:
 return String.format(“Argument -%c expects a double but was ‘%s’.”,
 errorArgumentId, errorParameter);

 case MISSING_DOUBLE:
 return String.format(“Could not find double parameter for -%c.”,
 errorArgumentId);
 }
 return “”;
 }

 public enum ErrorCode {
 OK, INVALID_FORMAT, UNEXPECTED_ARGUMENT, INVALID_ARGUMENT_NAME,
 MISSING_STRING,
 MISSING_INTEGER, INVALID_INTEGER,
 MISSING_DOUBLE, INVALID_DOUBLE}
 }

Listing 14-16 Args.java
 public class Args {
 private String schema;
 private Map<Character, ArgumentMarshaler> marshalers =
 new HashMap<Character, ArgumentMarshaler>();
 private Set<Character> argsFound = new HashSet<Character>();
 private Iterator<String> currentArgument;
 private List<String> argsList;

 public Args(String schema, String[] args) throws ArgsException {
 this.schema = schema;
 argsList = Arrays.asList(args);
 parse();
 }

 private void parse() throws ArgsException {
 parseSchema();
 parseArguments();
 }

 private boolean parseSchema() throws ArgsException {
 for (String element : schema.split(“,”)) {
 if (element.length() > 0) {
 parseSchemaElement(element.trim());
 }
 }
 return true;
 }

 private void parseSchemaElement(String element) throws ArgsException {
 char elementId = element.charAt(0);
 String elementTail = element.substring(1);
 validateSchemaElementId(elementId);
 if (elementTail.length() == 0)
 marshalers.put(elementId, new BooleanArgumentMarshaler());
 else if (elementTail.equals(“*”))
 marshalers.put(elementId, new StringArgumentMarshaler());

 else if (elementTail.equals(“#”))
 marshalers.put(elementId, new IntegerArgumentMarshaler());
 else if (elementTail.equals(“##”))
 marshalers.put(elementId, new DoubleArgumentMarshaler());
 else
 throw new ArgsException(ArgsException.ErrorCode.INVALID_FORMAT,
 elementId, elementTail);
 }

 private void validateSchemaElementId(char elementId) throws ArgsException {
 if (!Character.isLetter(elementId)) {
 throw new ArgsException(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME,
 elementId, null);
 }
 }

 private void parseArguments() throws ArgsException {
 for (currentArgument = argsList.iterator(); currentArgument.hasNext();) {
 String arg = currentArgument.next();
 parseArgument(arg);
 }
 }

 private void parseArgument(String arg) throws ArgsException {
 if (arg.startsWith(“-”))
 parseElements(arg);
 }

 private void parseElements(String arg) throws ArgsException {
 for (int i = 1; i < arg.length(); i++)
 parseElement(arg.charAt(i));
 }

 private void parseElement(char argChar) throws ArgsException {
 if (setArgument(argChar))
 argsFound.add(argChar);
 else {
 throw new ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT,
 argChar, null);
 }
 }

 private boolean setArgument(char argChar) throws ArgsException {
 ArgumentMarshaler m = marshalers.get(argChar);
 if (m == null)
 return false;
 try {
 m.set(currentArgument);
 return true;
 } catch (ArgsException e) {
 e.setErrorArgumentId(argChar);
 throw e;
 }
 }

 public int cardinality() {
 return argsFound.size();
 }

 public String usage() {
 if (schema.length() > 0)
 return “-[” + schema + “]”;
 else
 return “”;
 }

 public boolean getBoolean(char arg) {
 ArgumentMarshaler am = marshalers.get(arg);
 boolean b = false;
 try {
 b = am != null && (Boolean) am.get();
 } catch (ClassCastException e) {
 b = false;
 }
 return b;
 }

 public String getString(char arg) {
 ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? “” : (String) am.get();
 } catch (ClassCastException e) {
 return “”;
 }
 }

 public int getInt(char arg) {
 ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? 0 : (Integer) am.get();
 } catch (Exception e) {
 return 0;
 }
 }

 public double getDouble(char arg) {
 ArgumentMarshaler am = marshalers.get(arg);
 try {
 return am == null ? 0 : (Double) am.get();
 } catch (Exception e) {
 return 0.0;
 }
 }

 public boolean has(char arg) {
 return argsFound.contains(arg);
 }
 }
The majority of the changes to the Args class were deletions. A lot of code just got moved out of Args and put into ArgsException. Nice. We also moved all the ArgumentMarshaller s into their own files. Nicer!
Much of good software design is simply about partitioning—creating appropriate places to put different kinds of code. This separation of concerns makes the code much simpler to understand and maintain.
Of special interest is the errorMessage method of ArgsException. Clearly it was a violation of the SRP to put the error message formatting into Args. Args should be about the processing of arguments, not about the format of the error messages. However, does it really make sense to put the error message formatting code into ArgsException?
Frankly, it’s a compromise. Users who don’t like the error messages supplied by ArgsException will have to write their own. But the convenience of having canned error messages already prepared for you is not insignificant.
By now it should be clear that we are within striking distance of the final solution that appeared at the start of this chapter. I’ll leave the final transformations to you as an exercise.

Conclusion
It is not enough for code to work. Code that works is often badly broken. Programmers who satisfy themselves with merely working code are behaving unprofessionally. They may fear that they don’t have time to improve the structure and design of their code, but I disagree. Nothing has a more profound and long-term degrading effect upon a development project than bad code. Bad schedules can be redone, bad requirements can be redefined. Bad team dynamics can be repaired. But bad code rots and ferments, becoming an inexorable weight that drags the team down. Time and time again I have seen teams grind to a crawl because, in their haste, they created a malignant morass of code that forever thereafter dominated their destiny.
Of course bad code can be cleaned up. But it’s very expensive. As code rots, the modules insinuate themselves into each other, creating lots of hidden and tangled dependencies. Finding and breaking old dependencies is a long and arduous task. On the other hand, keeping code clean is relatively easy. If you made a mess in a module in the morning, it is easy to clean it up in the afternoon. Better yet, if you made a mess five minutes ago, it’s very easy to clean it up right now.
So the solution is to continuously keep your code as clean and simple as it can be. Never let the rot get started.

15 JUnit Internals

JUnit is one of the most famous of all Java frameworks. As frameworks go, it is simple in conception, precise in definition, and elegant in implementation. But what does the code look like? In this chapter we’ll critique an example drawn from the JUnit framework.

The JUnit Framework
JUnit has had many authors, but it began with Kent Beck and Eric Gamma together on a plane to Atlanta. Kent wanted to learn Java, and Eric wanted to learn about Kent’s Smalltalk testing framework. “What could be more natural to a couple of geeks in cramped quarters than to pull out our laptops and start coding?”1 After three hours of high-altitude work, they had written the basics of JUnit.
The module we’ll look at is the clever bit of code that helps identify string comparison errors. This module is called ComparisonCompactor. Given two strings that differ, such as ABCDE and ABXDE, it will expose the difference by generating a string such as <…B[X]D…>.
I could explain it further, but the test cases do a better job. So take a look at Listing 15-1 and you will understand the requirements of this module in depth. While you are at it, critique the structure of the tests. Could they be simpler or more obvious?

Listing 15-1 ComparisonCompactorTest.java
 package junit.tests.framework;
 import junit.framework.ComparisonCompactor;
 import junit.framework.TestCase;

 public class ComparisonCompactorTest extends TestCase {

 public void testMessage() {
 String failure= new ComparisonCompactor(0, “b”, “c”).compact(“a”);
 assertTrue(“a expected:<[b]> but was:<[c]>”.equals(failure));
 }

 public void testStartSame() {
 String failure= new ComparisonCompactor(1, “ba”, “bc”).compact(null);
 assertEquals(“expected:<b[a]> but was:<b[c]>”, failure);
 }

 public void testEndSame() {
 String failure= new ComparisonCompactor(1, “ab”, “cb”).compact(null);
 assertEquals(“expected:<[a]b> but was:<[c]b>”, failure);
 }

 public void testSame() {
 String failure= new ComparisonCompactor(1, “ab”, “ab”).compact(null);
 assertEquals(“expected:<ab> but was:<ab>”, failure);
 }

 public void testNoContextStartAndEndSame() {
 String failure= new ComparisonCompactor(0, “abc”, “adc”).compact(null);
 assertEquals(“expected:<…[b]…> but was:<…[d]…>”, failure);
 }
 public void testStartAndEndContext() {
 String failure= new ComparisonCompactor(1, “abc”, “adc”).compact(null);
 assertEquals(“expected:<a[b]c> but was:<a[d]c>”, failure);
 }

 public void testStartAndEndContextWithEllipses() {
 String failure=
 new ComparisonCompactor(1, “abcde”, “abfde”).compact(null);
 assertEquals(“expected:<…b[c]d…> but was:<…b[f]d…>”, failure);
 }

 public void testComparisonErrorStartSameComplete() {
 String failure= new ComparisonCompactor(2, “ab”, “abc”).compact(null);
 assertEquals(“expected:<ab[]> but was:<ab[c]>”, failure);
 }

 public void testComparisonErrorEndSameComplete() {
 String failure= new ComparisonCompactor(0, “bc”, “abc”).compact(null);
 assertEquals(“expected:<[]…> but was:<[a]…>”, failure);
 }

 public void testComparisonErrorEndSameCompleteContext() {
 String failure= new ComparisonCompactor(2, “bc”, “abc”).compact(null);
 assertEquals(“expected:<[]bc> but was:<[a]bc>”, failure);
 }

 public void testComparisonErrorOverlapingMatches() {
 String failure= new ComparisonCompactor(0, “abc”, “abbc”).compact(null);
 assertEquals(“expected:<…[]…> but was:<…[b]…>”, failure);
 }

 public void testComparisonErrorOverlapingMatchesContext() {
 String failure= new ComparisonCompactor(2, “abc”, “abbc”).compact(null);
 assertEquals(“expected:<ab[]c> but was:<ab[b]c>”, failure);
 }

 public void testComparisonErrorOverlapingMatches2() {
 String failure= new ComparisonCompactor(0, “abcdde”,
“abcde”).compact(null);
 assertEquals(“expected:<…[d]…> but was:<…[]…>”, failure);
 }
 public void testComparisonErrorOverlapingMatches2Context() {
 String failure=
 new ComparisonCompactor(2, “abcdde”, “abcde”).compact(null);
 assertEquals(“expected:<…cd[d]e> but was:<…cd[]e>”, failure);
 }

 public void testComparisonErrorWithActualNull() {
 String failure= new ComparisonCompactor(0, “a”, null).compact(null);
 assertEquals(“expected:<a> but was:<null>”, failure);
 }

 public void testComparisonErrorWithActualNullContext() {
 String failure= new ComparisonCompactor(2, “a”, null).compact(null);
 assertEquals(“expected:<a> but was:<null>”, failure);
 }

 public void testComparisonErrorWithExpectedNull() {
 String failure= new ComparisonCompactor(0, null, “a”).compact(null);
 assertEquals(“expected:<null> but was:<a>”, failure);
 }

 public void testComparisonErrorWithExpectedNullContext() {
 String failure= new ComparisonCompactor(2, null, “a”).compact(null);
 assertEquals(“expected:<null> but was:<a>”, failure);
 }
 public void testBug609972() {
 String failure= new ComparisonCompactor(10, “S&P500”, “0”).compact(null);
 assertEquals(“expected:<[S&P50]0> but was:<[]0>”, failure);
 }
 }
I ran a code coverage analysis on the ComparisonCompactor using these tests. The code is 100 percent covered. Every line of code, every if statement and for loop, is executed by the tests. This gives me a high degree of confidence that the code works and a high degree of respect for the craftsmanship of the authors.
The code for ComparisonCompactor is in Listing 15-2. Take a moment to look over this code. I think you’ll find it to be nicely partitioned, reasonably expressive, and simple in structure. Once you are done, then we’ll pick the nits together.

Listing 15-2 ComparisonCompactor.java (Original)
 package junit.framework;

 public class ComparisonCompactor {

 private static final String ELLIPSIS = “…”;
 private static final String DELTA_END = “]”;
 private static final String DELTA_START = “[”;

 private int fContextLength;
 private String fExpected;
 private String fActual;
 private int fPrefix;
 private int fSuffix;

 public ComparisonCompactor(int contextLength,
 String expected,
 String actual) {
 fContextLength = contextLength;
 fExpected = expected;
 fActual = actual;
 }

 public String compact(String message) {
 if (fExpected == null || fActual == null || areStringsEqual())
 return Assert.format(message, fExpected, fActual);

 findCommonPrefix();
 findCommonSuffix();
 String expected = compactString(fExpected);
 String actual = compactString(fActual);
 return Assert.format(message, expected, actual);
 }

 private String compactString(String source) {
 String result = DELTA_START +
 source.substring(fPrefix, source.length() - fSuffix + 1) + DELTA_END;
 if (fPrefix > 0)
 result = computeCommonPrefix() + result;
 if (fSuffix > 0)
 result = result + computeCommonSuffix();
 return result;
 }
 private void findCommonPrefix() {
 fPrefix = 0;
 int end = Math.min(fExpected.length(), fActual.length());
 for (; fPrefix < end; fPrefix++) {
 if (fExpected.charAt(fPrefix) != fActual.charAt(fPrefix))
 break;
 }
 }

 private void findCommonSuffix() {
 int expectedSuffix = fExpected.length() - 1;
 int actualSuffix = fActual.length() - 1;
 for (;
 actualSuffix >= fPrefix && expectedSuffix >= fPrefix;
 actualSuffix--, expectedSuffix--) {
 if (fExpected.charAt(expectedSuffix) != fActual.charAt(actualSuffix))
 break;
 }
 fSuffix = fExpected.length() - expectedSuffix;
 }

 private String computeCommonPrefix() {
 return (fPrefix > fContextLength ? ELLIPSIS : “”) +
 fExpected.substring(Math.max(0, fPrefix - fContextLength),
 fPrefix);
 }
 private String computeCommonSuffix() {
 int end = Math.min(fExpected.length() - fSuffix + 1 + fContextLength,
 fExpected.length());
 return fExpected.substring(fExpected.length() - fSuffix + 1, end) +
 (fExpected.length() - fSuffix + 1 < fExpected.length() - fContextLength ? ELLIPSIS : “”);

 }

 private boolean areStringsEqual() {
 return fExpected.equals(fActual);
 }
 }
You might have a few complaints about this module. There are some long expressions and some strange +1s and so forth. But overall this module is pretty good. After all, it might have looked like Listing 15-3.

Listing 15-3 ComparisonCompator.java (defactored)
 package junit.framework;
 public class ComparisonCompactor {
 private int ctxt;
 private String s1;
 private String s2;
 private int pfx;
 private int sfx;
 public ComparisonCompactor(int ctxt, String s1, String s2) {
 this.ctxt = ctxt;
 this.s1 = s1;
 this.s2 = s2;
 }

 public String compact(String msg) {
 if (s1 == null || s2 == null || s1.equals(s2))
 return Assert.format(msg, s1, s2);

 pfx = 0;
 for (; pfx < Math.min(s1.length(), s2.length()); pfx++) {
 if (s1.charAt(pfx) != s2.charAt(pfx))
 break;
 }
 int sfx1 = s1.length() - 1;
 int sfx2 = s2.length() - 1;
 for (; sfx2 >= pfx && sfx1 >= pfx; sfx2--, sfx1--) {
 if (s1.charAt(sfx1) != s2.charAt(sfx2))
 break;
 }
 sfx = s1.length() - sfx1;
 String cmp1 = compactString(s1);
 String cmp2 = compactString(s2);
 return Assert.format(msg, cmp1, cmp2);
 }
 private String compactString(String s) {
 String result =
 “[“ + s.substring(pfx, s.length() - sfx + 1) + “]”;
 if (pfx > 0)
 result = (pfx > ctxt ? “…” : “”) +
 s1.substring(Math.max(0, pfx - ctxt), pfx) + result;
 if (sfx > 0) {
 int end = Math.min(s1.length() - sfx + 1 + ctxt, s1.length());
 result = result + (s1.substring(s1.length() - sfx + 1, end) +
 (s1.length() - sfx + 1 < s1.length() - ctxt ? “…” : “”));
 }
 return result;
 }
 }
Even though the authors left this module in very good shape, the Boy Scout Rule2 tells us we should leave it cleaner than we found it. So, how can we improve on the original code in Listing 15-2?
The first thing I don’t care for is the f prefix for the member variables [N6]. Today’s environments make this kind of scope encoding redundant. So let’s eliminate all the f’s.
 private int contextLength;
 private String expected;
 private String actual;
 private int prefix;
 private int suffix;

Next, we have an unencapsulated conditional at the beginning of the compact function [G28].
 public String compact(String message) {
 if (expected == null || actual == null || areStringsEqual())
 return Assert.format(message, expected, actual);
 findCommonPrefix();
 findCommonSuffix();
 String expected = compactString(this.expected);
 String actual = compactString(this.actual);
 return Assert.format(message, expected, actual);
 }
This conditional should be encapsulated to make our intent clear. So let’s extract a method that explains it.
 public String compact(String message) {
 if (shouldNotCompact())
 return Assert.format(message, expected, actual);
 findCommonPrefix();
 findCommonSuffix();
 String expected = compactString(this.expected);
 String actual = compactString(this.actual);
 return Assert.format(message, expected, actual);
 }
private boolean shouldNotCompact() {
 return expected == null || actual == null || areStringsEqual();
 }
I don’t much care for the this.expected and this.actual notation in the compact function. This happened when we changed the name of fExpected to expected. Why are there variables in this function that have the same names as the member variables? Don’t they represent something else [N4]? We should make the names unambiguous.
 String compactExpected = compactString(expected); String compactActual = compactString(actual);
Negatives are slightly harder to understand than positives [G29]. So let’s turn that if statement on its head and invert the sense of the conditional.
 public String compact(String message) {
 if (canBeCompacted()) {
 findCommonPrefix();
 findCommonSuffix();
 String compactExpected = compactString(expected);
 String compactActual = compactString(actual);
 return Assert.format(message, compactExpected, compactActual);
 } else {
 return Assert.format(message, expected, actual);
 }
 }
 private boolean canBeCompacted() {
 return expected != null && actual != null && ! areStringsEqual();
 }

The name of the function is strange [N7]. Although it does compact the strings, it actually might not compact the strings if canBeCompacted returns false. So naming this function compact hides the side effect of the error check. Notice also that the function returns a formatted message, not just the compacted strings. So the name of the function should really be formatCompactedComparison. That makes it read a lot better when taken with the function argument:
 public String formatCompactedComparison(String message) {
The body of the if statement is where the true compacting of the expected and actual strings is done. We should extract that as a method named compactExpectedAndActual. However, we want the formatCompactedComparison function to do all the formatting. The compact… function should do nothing but compacting [G30]. So let’s split it up as follows:
 …
 private String compactExpected;
 private String compactActual;

 …
 public String formatCompactedComparison(String message) {
 if (canBeCompacted()) {
 compactExpectedAndActual();
 return Assert.format(message, compactExpected, compactActual);
 } else {

 return Assert.format(message, expected, actual);
 }
 }
 private void compactExpectedAndActual() {
 findCommonPrefix();
 findCommonSuffix();
 compactExpected = compactString(expected);
 compactActual = compactString(actual);
 }
Notice that this required us to promote compactExpected and compactActual to member variables. I don’t like the way that the last two lines of the new function return variables, but the first two don’t. They aren’t using consistent conventions [G11]. So we should change findCommonPrefix and findCommonSuffix to return the prefix and suffix values.
 private void compactExpectedAndActual() {
 prefixIndex =findCommonPrefix();
 suffixIndex =findCommonSuffix();
 compactExpected = compactString(expected);
 compactActual = compactString(actual);
 }
 private int findCommonPrefix() {
 int prefixIndex = 0;
 int end = Math.min(expected.length(), actual.length());
 for (; prefixIndex < end; prefixIndex++) {
 if (expected.charAt(prefixIndex) != actual.charAt(prefixIndex))
 break;
 }
 return prefixIndex;
 }
 private int findCommonSuffix() {
 int expectedSuffix = expected.length() - 1;
 int actualSuffix = actual.length() - 1;
 for (; actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
 actualSuffix--, expectedSuffix--) {
 if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
 break;
 }
 return expected.length() - expectedSuffix;
 }
We should also change the names of the member variables to be a little more accurate [N1]; after all, they are both indices.
Careful inspection of findCommonSuffix exposes a hidden temporal coupling [G31]; it depends on the fact that prefixIndex is calculated by findCommonPrefix. If these two functions were called out of order, there would be a difficult debugging session ahead. So, to expose this temporal coupling, let’s have findCommonSuffix take the prefixIndex as an argument.
 private void compactExpectedAndActual() {
 prefixIndex = findCommonPrefix();
 suffixIndex = findCommonSuffix(prefixIndex);
 compactExpected = compactString(expected);
 compactActual = compactString(actual);
 }
 private int findCommonSuffix(int prefixIndex) {
 int expectedSuffix = expected.length() - 1;
 int actualSuffix = actual.length() - 1;
 for (; actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
 actualSuffix--, expectedSuffix--) {
 if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
 break;
 }
 return expected.length() - expectedSuffix;
 }

I’m not really happy with this. The passing of the prefixIndex argument is a bit arbitrary [G32]. It works to establish the ordering but does nothing to explain the need for that ordering. Another programmer might undo what we have done because there’s no indication that the parameter is really needed. So let’s take a different tack.
 private void compactExpectedAndActual() {
 findCommonPrefixAndSuffix();
 compactExpected = compactString(expected);
 compactActual = compactString(actual);
 }
 private void
findCommonPrefixAndSuffix() {
 findCommonPrefix();
 int expectedSuffix = expected.length() - 1;
 int actualSuffix = actual.length() - 1;
 for (;
 actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
 actualSuffix--, expectedSuffix--
) {

 if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
 break;
 }
 suffixIndex = expected.length() - expectedSuffix;
 }
 private void findCommonPrefix() {
 prefixIndex = 0;
 int end = Math.min(expected.length(), actual.length());
 for (; prefixIndex < end; prefixIndex++)
 if (expected.charAt(prefixIndex) != actual.charAt(prefixIndex))
 break;
 }

We put findCommonPrefix and findCommonSuffix back the way they were, changing the name of findCommonSuffix to findCommonPrefixAnd Suffix and having it call findCommon-Prefix before doing anything else. That establishes the temporal nature of the two functions in a much more dramatic way than the previous solution. It also points out how ugly findCommonPrefixAndSuffix is. Let’s clean it up now.
 private void findCommonPrefixAndSuffix() {
 findCommonPrefix();
 int suffixLength = 1;
 for (; !suffixOverlapsPrefix(suffixLength); suffixLength++) {
 if (charFromEnd(expected, suffixLength) !=
 charFromEnd(actual, suffixLength))
 break;
 }
 suffixIndex = suffixLength;
 }
 private char charFromEnd(String s, int i) {
 return s.charAt(s.length()-i);}
 private boolean suffixOverlapsPrefix(int suffixLength) {
 return actual.length() - suffixLength < prefixLength ||
 expected.length() - suffixLength < prefixLength;
 }

This is much better. It exposes that the suffixIndex is really the length of the suffix and is not well named. The same is true of the prefixIndex, though in that case “index” and “length” are synonymous. Even so, it is more consistent to use “length.” The problem is that the suffixIndex variable is not zero based; it is 1 based and so is not a true length. This is also the reason that there are all those +1s in computeCommonSuffix [G33]. So let’s fix that. The result is in Listing 15-4.

Listing 15-4 ComparisonCompactor.java (interim)
 public class ComparisonCompactor {
 …
 private int suffixLength;
 …
 private void findCommonPrefixAndSuffix() {
 findCommonPrefix();
 suffixLength = 0;
 for (; !suffixOverlapsPrefix(suffixLength); suffixLength++) {
 if (charFromEnd(expected, suffixLength) !=
 charFromEnd(actual, suffixLength))
 break;
 }
 }
 private char charFromEnd(String s, int i) {
 return s.charAt(s.length() - i - 1);
 }
 private boolean suffixOverlapsPrefix(int suffixLength) {
 return actual.length() - suffixLength <= prefixLength ||
 expected.length() - suffixLength <= prefixLength;
 }
…
 private String compactString(String source) {
 String result =
 DELTA_START +
 source.substring(prefixLength, source.length() - suffixLength) +
 DELTA_END;
 if (prefixLength > 0)
 result = computeCommonPrefix() + result;

 if (suffixLength > 0)
 result = result + computeCommonSuffix();
 return result;
 }
 …
 private String computeCommonSuffix() {
 int end = Math.min(expected.length() - suffixLength +
 contextLength, expected.length()
);
 return
 expected.substring(expected.length() - suffixLength, end) +
 (expected.length() - suffixLength <
 expected.length() - contextLength ?
 ELLIPSIS : “”);
 }
We replaced the +1s in computeCommonSuffix with a -1 in charFromEnd, where it makes perfect sense, and two <= operators in suffixOverlapsPrefix, where they also make perfect sense. This allowed us to change the name of suffixIndex to suffixLength, greatly enhancing the readability of the code.
There is a problem however. As I was eliminating the +1s, I noticed the following line in compactString:
 if (suffixLength > 0)
Take a look at it in Listing 15-4. By rights, because suffixLength is now one less than it used to be, I should change the > operator to a >= operator. But that makes no sense. It makes sense now! This means that it didn’t use to make sense and was probably a bug. Well, not quite a bug. Upon further analysis we see that the if statement now prevents a zero length suffix from being appended. Before we made the change, the if statement was nonfunctional because suffixIndex could never be less than one!
This calls into question both
if statements in compactString! It looks as though they could both be eliminated. So let’s comment them out and run the tests. They passed! So let’s restructure compactString to eliminate the extraneous if statements and make the function much simpler [G9].
 private String compactString(String source) {
 return
 computeCommonPrefix() +
 DELTA_START +
 source.substring(prefixLength, source.length() - suffixLength) +
 DELTA_END +
 computeCommonSuffix();
 }

This is much better! Now we see that the compactString function is simply composing the fragments together. We can probably make this even clearer. Indeed, there are lots of little cleanups we could do. But rather than drag you through the rest of the changes, I’ll just show you the result in Listing 15-5.

Listing 15-5 ComparisonCompactor.java (final)
 package junit.framework;
 public class ComparisonCompactor {

 private static final String ELLIPSIS = “…”;
 private static final String DELTA_END = “]”;
 private static final String DELTA_START = “[”;
 private int contextLength;
 private String expected;
 private String actual;
 private int prefixLength;
 private int suffixLength;

 public ComparisonCompactor(
 int contextLength, String expected, String actual
) {
 this.contextLength = contextLength;
 this.expected = expected;
 this.actual = actual;
 }

 public String formatCompactedComparison(String message) {
 String compactExpected = expected;
 String compactActual = actual;
 if (shouldBeCompacted()) {
 findCommonPrefixAndSuffix();
 compactExpected = compact(expected);
 compactActual = compact(actual);
 }
 return Assert.format(message, compactExpected, compactActual);
 }

 private boolean shouldBeCompacted() {
 return !shouldNotBeCompacted();
 }

 private boolean shouldNotBeCompacted() {
 return expected == null ||
 actual == null ||
 expected.equals(actual);
 }

 private void findCommonPrefixAndSuffix() {
 findCommonPrefix();
 suffixLength = 0;
 for (; !suffixOverlapsPrefix(); suffixLength++) {
 if (charFromEnd(expected, suffixLength) !=
 charFromEnd(actual, suffixLength)
)

 break;
 }
 }
 private char charFromEnd(String s, int i) {
 return s.charAt(s.length() - i - 1);
 }
 private boolean suffixOverlapsPrefix() {
 return actual.length() - suffixLength <= prefixLength ||
 expected.length() - suffixLength <= prefixLength;
 }

 private void findCommonPrefix() {
 prefixLength = 0;
 int end = Math.min(expected.length(), actual.length());
 for (; prefixLength < end; prefixLength++)
 if (expected.charAt(prefixLength) != actual.charAt(prefixLength))
 break;
 }

 private String compact(String s) {
 return new StringBuilder()
 .append(startingEllipsis())
 .append(startingContext())
 .append(DELTA_START)
 .append(delta(s))
 .append(DELTA_END)
 .append(endingContext())
 .append(endingEllipsis())
 .toString();
 }
 private String startingEllipsis() {
 return prefixLength > contextLength ? ELLIPSIS : “”;
 }
 private String startingContext() {
 int contextStart = Math.max(0, prefixLength - contextLength);
 int contextEnd = prefixLength;
 return expected.substring(contextStart, contextEnd);
 }
 private String delta(String s) {
 int deltaStart = prefixLength;
 int deltaEnd = s.length() - suffixLength;
 return s.substring(deltaStart, deltaEnd);
 }
 private String endingContext() {
 int contextStart = expected.length() - suffixLength;
 int contextEnd =
 Math.min(contextStart + contextLength, expected.length());
 return expected.substring(contextStart, contextEnd);
 }
 private String endingEllipsis() {
 return (suffixLength > contextLength ? ELLIPSIS : “”);
 }
 }
This is actually quite pretty. The module is separated into a group of analysis functions and another group of synthesis functions. They are topologically sorted so that the definition of each function appears just after it is used. All the analysis functions appear first, and all the synthesis functions appear last.
If you look carefully, you will notice that I reversed several of the decisions I made earlier in this chapter. For example, I inlined some extracted methods back into formatCompactedComparison, and I changed the sense of the shouldNotBeCompacted expression. This is typical. Often one refactoring leads to another that leads to the undoing of the first. Refactoring is an iterative process full of trial and error, inevitably converging on something that we feel is worthy of a professional.

Conclusion
And so we have satisfied the Boy Scout Rule. We have left this module a bit cleaner than we found it. Not that it wasn’t clean already. The authors had done an excellent job with it. But no module is immune from improvement, and each of us has the responsibility to leave the code a little better than we found it.

16 Refactoring SerialDate

If you go to http://www.jfree.org/jcommon/index.php, you will find the JCommon library. Deep within that library there is a package named org.jfree.date. Within that package there is a class named SerialDate. We are going to explore that class.
The author of SerialDate is David Gilbert. David is clearly an experienced and competent programmer. As we shall see, he shows a significant degree of professionalism and discipline within his code. For all intents and purposes, this is “good code.” And I am going to rip it to pieces.
This is not an activity of malice. Nor do I think that I am so much better than David that I somehow have a right to pass judgment on his code. Indeed, if you were to find some of my code, I’m sure you could find plenty of things to complain about.
No, this is not an activity of nastiness or arrogance. What I am about to do is nothing more and nothing less than a professional review. It is something that we should all be comfortable doing. And it is something we should welcome when it is done for us. It is only through critiques like these that we will learn. Doctors do it. Pilots do it. Lawyers do it. And we programmers need to learn how to do it too.
One more thing about David Gilbert: David is more than just a good programmer. David had the courage and good will to offer his code to the community at large for free. He placed it out in the open for all to see and invited public usage and public scrutiny. This was well done!
SerialDate (Listing B-1, page 349) is a class that represents a date in Java. Why have a class that represents a date, when Java already has java.util.Date and java.util.Calendar, and others? The author wrote this class in response to a pain that I have often felt myself. The comment in his opening Javadoc (line 67) explains it well. We could quibble about his intention, but I have certainly had to deal with this issue, and I welcome a class that is about dates instead of times.

First, Make It Work
There are some unit tests in a class named SerialDateTests (Listing B-2, page 366). The tests all pass. Unfortunately a quick inspection of the tests shows that they don’t test everything [T1]. For example, doing a “Find Usages” search on the method MonthCodeToQuarter (line 334) indicates that it is not used [F4]. Therefore, the unit tests don’t test it.
So I fired up Clover to see what the unit tests covered and what they didn’t. Clover reported that the unit tests executed only 91 of the 185 executable statements in SerialDate (~50 percent) [T2]. The coverage map looks like a patchwork quilt, with big gobs of unexecuted code littered all through the class.
It was my goal to completely understand and also refactor this class. I couldn’t do that without much greater test coverage. So I wrote my own suite of completely independent unit tests (Listing B-4, page 374).
As you look through these tests, you will note that many of them are commented out. These tests didn’t pass. They represent behavior that I think SerialDate should have. So as I refactor SerialDate, I’ll be working to make these tests pass too.
Even with some of the tests commented out, Clover reports that the new unit tests are executing 170 (92 percent) out of the 185 executable statements. This is pretty good, and I think we’ll be able to get this number higher.
The first few commented-out tests (lines 23-63) were a bit of conceit on my part. The program was not designed to pass these tests, but the behavior seemed obvious [G2] to me. I’m not sure why the testWeekdayCodeToString method was written in the first place, but because it is there, it seems obvious that it should not be case sensitive. Writing these tests was trivial [T3]. Making them pass was even easier; I just changed lines 259 and 263 to use equalsIgnoreCase.
I left the tests at line 32 and line 45 commented out because it’s not clear to me that the “tues” and “thurs” abbreviations ought to be supported.
The tests on line 153 and line 154 don’t pass. Clearly, they should [G2]. We can easily fix this, and the tests on line 163 through line 213, by making the following changes to the stringToMonthCode function.
 457 if ((result < 1) || (result > 12)) {
 result = -1;
 458 for (int i = 0; i < monthNames.length; i++) {
 459 if (s.equalsIgnoreCase(shortMonthNames[i])) {
 460 result = i + 1;
 461 break;
 462 }
 463 if (s.equalsIgnoreCase(monthNames[i])) {
 464 result = i + 1;
 465 break;
 466 }
 467 }
 468 }
The commented test on line 318 exposes a bug in the getFollowingDayOfWeek method (line 672). December 25th, 2004, was a Saturday. The following Saturday was January 1st, 2005. However, when we run the test, we see that getFollowingDayOfWeek returns December 25th as the Saturday that follows December 25th. Clearly, this is wrong [G3],[T1]. We see the problem in line 685. It is a typical boundary condition error [T5]. It should read as follows:
 685 if (baseDOW >= targetWeekday) {
It is interesting to note that this function was the target of an earlier repair. The change history (line 43) shows that “bugs” were fixed in getPreviousDayOfWeek, getFollowingDayOfWeek, and getNearestDayOfWeek [T6].
The testGetNearestDayOfWeek unit test (line 329), which tests the getNearestDayOfWeek method (line 705), did not start out as long and exhaustive as it currently is. I added a lot of test cases to it because my initial test cases did not all pass [T6]. You can see the pattern of failure by looking at which test cases are commented out. That pattern is revealing [T7]. It shows that the algorithm fails if the nearest day is in the future. Clearly there is some kind of boundary condition error [T5].
The pattern of test coverage reported by Clover is also interesting [T8]. Line 719 never gets executed! This means that the if statement in line 718 is always false. Sure enough, a look at the code shows that this must be true. The adjust variable is always negative and so cannot be greater or equal to 4. So this algorithm is just wrong.
The right algorithm is shown below:
 int delta = targetDOW - base.getDayOfWeek();
 int positiveDelta = delta + 7;
 int adjust = positiveDelta % 7;
 if (adjust > 3)
 adjust -= 7;

 return SerialDate.addDays(adjust, base);
Finally, the tests at line 417 and line 429 can be made to pass simply by throwing an IllegalArgumentException instead of returning an error string from weekInMonthToString and relativeToString.
With these changes all the unit tests pass, and I believe SerialDate now works. So now it’s time to make it “right.”

Then Make It Right
We are going to walk from the top to the bottom of SerialDate, improving it as we go along. Although you won’t see this in the discussion, I will be running all of the JCommon unit tests, including my improved unit test for SerialDate, after every change I make. So rest assured that every change you see here works for all of JCommon.
Starting at line 1, we see a ream of comments with license information, copyrights, authors, and change history. I acknowledge that there are certain legalities that need to be addressed, and so the copyrights and licenses must stay. On the other hand, the change history is a leftover from the 1960s. We have source code control tools that do this for us now. This history should be deleted [C1].
The import list starting at line 61 could be shortened by using java.text.* and java.util.*. [J1]
I wince at the HTML formatting in the Javadoc (line 67). Having a source file with more than one language in it troubles me. This comment has four languages in it: Java, English, Javadoc, and html [G1]. With that many languages in use, it’s hard to keep things straight. For example, the nice positioning of line 71 and line 72 are lost when the Javadoc is generated, and yet who wants to see and in the source code? A better strategy might be to just surround the whole comment with <pre> so that the formatting that is apparent in the source code is preserved within the Javadoc.1
Line 86 is the class declaration. Why is this class named SerialDate? What is the significance of the world “serial”? Is it because the class is derived from Serializable? That doesn’t seem likely.
I won’t keep you guessing. I know why (or at least I think I know why) the word “serial” was used. The clue is in the constants SERIAL_LOWER_BOUND and SERIAL_UPPER_BOUND on line 98 and line 101. An even better clue is in the comment that begins on line 830. This class is named SerialDate because it is implemented using a “serial number,” which happens to be the number of days since December 30th, 1899.
I have two problems with this. First, the term “serial number” is not really correct. This may be a quibble, but the representation is more of a relative offset than a serial number. The term “serial number” has more to do with product identification markers than dates. So I don’t find this name particularly descriptive [N1]. A more descriptive term might be “ordinal.”
The second problem is more significant. The name SerialDate implies an implementation. This class is an abstract class. There is no need to imply anything at all about the implementation. Indeed, there is good reason to hide the implementation! So I find this name to be at the wrong level of abstraction [N2]. In my opinion, the name of this class should simply be Date.
Unfortunately, there are already too many classes in the Java library named Date, so this is probably not the best name to choose. Because this class is all about days, instead of time, I considered naming it Day, but this name is also heavily used in other places. In the end, I chose DayDate as the best compromise.
From now on in this discussion I will use the term DayDate. I leave it to you to remember that the listings you are looking at still use SerialDate.
I understand why DayDate inherits from Comparable and Serializable. But why does it inherit from MonthConstants? The class MonthConstants (Listing B-3, page 372) is just a bunch of static final constants that define the months. Inheriting from classes with constants is an old trick that Java programmers used so that they could avoid using expressions like MonthConstants.January, but it’s a bad idea [J2]. MonthConstants should really be an enum.
 public abstract class DayDate implements Comparable,
 Serializable {
 public static enum Month {
 JANUARY(1),
 FEBRUARY(2),
 MARCH(3),
 APRIL(4),
 MAY(5),
 JUNE(6),
 JULY(7),
 AUGUST(8),
 SEPTEMBER(9),
 OCTOBER(10),
 NOVEMBER(11),
 DECEMBER(12);

 Month(int index) {
 this.index = index;
 }

 public static Month make(int monthIndex) {
 for (Month m : Month.values()) {
 if (m.index == monthIndex)
 return m;
 }
 throw new IllegalArgumentException(“Invalid month index ” + monthIndex);
 }
 public final int index;
 }
Changing MonthConstants to this enum forces quite a few changes to the DayDate class and all it’s users. It took me an hour to make all the changes. However, any function that used to take an int for a month, now takes a Month enumerator. This means we can get rid of the isValidMonthCode method (line 326), and all the month code error checking such as that in monthCodeToQuarter (line 356) [G5].
Next, we have line 91, serialVersionUID. This variable is used to control the serializer. If we change it, then any DayDate written with an older version of the software won’t be readable anymore and will result in an InvalidClassException. If you don’t declare the serialVersionUID variable, then the compiler automatically generates one for you, and it will be different every time you make a change to the module. I know that all the documents recommend manual control of this variable, but it seems to me that automatic control of serialization is a lot safer [G4]. After all, I’d much rather debug an InvalidClassException than the odd behavior that would ensue if I forgot to change the serialVersionUID. So I’m going to delete the variable—at least for the time being.2
I find the comment on line 93 redundant. Redundant comments are just places to collect lies and misinformation [C2]. So I’m going to get rid of it and its ilk.
The comments at line 97 and line 100 talk about serial numbers, which I discussed earlier [C1]. The variables they describe are the earliest and latest possible dates that DayDate can describe. This can be made a bit clearer [N1].
 public static final int EARLIEST_DATE_ORDINAL = 2; // 1/1/1900
 public static final int LATEST_DATE_ORDINAL = 2958465; // 12/31/9999
It’s not clear to me why EARLIEST_DATE_ORDINAL is 2 instead of 0. There is a hint in the comment on line 829 that suggests that this has something to do with the way dates are represented in Microsoft Excel. There is a much deeper insight provided in a derivative of DayDate called SpreadsheetDate (Listing B-5, page 382). The comment on line 71 describes the issue nicely.
The problem I have with this is that the issue seems to be related to the implementation of SpreadsheetDate and has nothing to do with DayDate. I conclude from this that EARLIEST_DATE_ORDINAL and LATEST_DATE_ORDINAL do not really belong in DayDate and should be moved to SpreadsheetDate [G6].
Indeed, a search of the code shows that these variables are used only within SpreadsheetDate. Nothing in DayDate, nor in any other class in the JCommon framework, uses them. Therefore, I’ll move them down into SpreadsheetDate.
The next variables, MINIMUM_YEAR_SUPPORTED, and MAXIMUM_YEAR_SUPPORTED (line 104 and line 107), provide something of a dilemma. It seems clear that if DayDate is an abstract class that provides no foreshadowing of implementation, then it should not inform us about a minimum or maximum year. Again, I am tempted to move these variables down into SpreadsheetDate [G6]. However, a quick search of the users of these variables shows that one other class uses them: RelativeDayOfWeekRule (Listing B-6, page 390). We see that usage at line 177 and line 178 in the getDate function, where they are used to check that the argument to getDate is a valid year. The dilemma is that a user of an abstract class needs information about its implementation.
What we need to do is provide this information without polluting DayDate itself. Usually, we would get implementation information from an instance of a derivative. However, the getDate function is not passed an instance of a DayDate. It does, however, return such an instance, which means that somewhere it must be creating it. Line 187 through line 205 provide the hint. The DayDate instance is being created by one of the three functions, getPreviousDayOfWeek, getNearestDayOfWeek, or getFollowingDayOfWeek. Looking back at the DayDate listing, we see that these functions (lines 638–724) all return a date created by addDays (line 571), which calls createInstance (line 808), which creates a SpreadsheetDate! [G7].
It’s generally a bad idea for base classes to know about their derivatives. To fix this, we should use the ABSTRACT FACTORY3 pattern and create a DayDateFactory. This factory will create the instances of DayDate that we need and can also answer questions about the implementation, such as the maximum and minimum dates.
 public abstract class DayDateFactory {
 private static DayDateFactory factory = new SpreadsheetDateFactory();
 public static void setInstance(DayDateFactory factory) {
 DayDateFactory.factory = factory;
 }

 protected abstract DayDate _makeDate(int ordinal);
 protected abstract DayDate _makeDate(int day, DayDate.Month month, int year);
 protected abstract DayDate _makeDate(int day, int month, int year);
 protected abstract DayDate _makeDate(java.util.Date date);
 protected abstract int _getMinimumYear();
 protected abstract int _getMaximumYear();

 public static DayDate makeDate(int ordinal) {
 return factory._makeDate(ordinal);
 }
 public static DayDate makeDate(int day, DayDate.Month month, int year) {
 return factory._makeDate(day, month, year);
 }

 public static DayDate makeDate(int day, int month, int year) {
 return factory._makeDate(day, month, year);
 }

 public static DayDate makeDate(java.util.Date date) {
 return factory._makeDate(date);
 }

 public static int getMinimumYear() {
 return factory._getMinimumYear();
 }

 public static int getMaximumYear() {
 return factory._getMaximumYear();
 }
 }
This factory class replaces the createInstance methods with makeDate methods, which improves the names quite a bit [N1]. It defaults to a SpreadsheetDateFactory but can be changed at any time to use a different factory. The static methods that delegate to abstract methods use a combination of the SINGLETON,4 DECORATOR,5 and ABSTRACT FACTORY patterns that I have found to be useful.
The SpreadsheetDateFactory looks like this.
 public class SpreadsheetDateFactory extends DayDateFactory {
 public DayDate _makeDate(int ordinal) {
 return new SpreadsheetDate(ordinal);
 }

 public DayDate _makeDate(int day, DayDate.Month month, int year) {
 return new SpreadsheetDate(day, month, year);
 }

 public DayDate _makeDate(int day, int month, int year) {
 return new SpreadsheetDate(day, month, year);
 }

 public DayDate _makeDate(Date date) {
 final GregorianCalendar calendar = new GregorianCalendar();
 calendar.setTime(date);
 return new SpreadsheetDate(
 calendar.get(Calendar.DATE),
 DayDate.Month.make(calendar.get(Calendar.MONTH) + 1),
 calendar.get(Calendar.YEAR));
 }

 protected int _getMinimumYear() {
 return SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;
 }

 protected int _getMaximumYear() {
 return SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;
 }
 }
As you can see, I have already moved the MINIMUM_YEAR_SUPPORTED and MAXIMUM_YEAR_SUPPORTED variables into SpreadsheetDate, where they belong [G6].
The next issue in DayDate are the day constants beginning at line 109. These should really be another enum [J3]. We’ve seen this pattern before, so I won’t repeat it here. You’ll see it in the final listings.
Next, we see a series of tables starting with LAST_DAY_OF_MONTH at line 140. My first issue with these tables is that the comments that describe them are redundant [C3]. Their names are sufficient. So I’m going to delete the comments.
There seems to be no good reason that this table isn’t private [G8], because there is a static function lastDayOfMonth that provides the same data.
The next table, AGGREGATE_DAYS_TO_END_OF_MONTH, is a bit more mysterious because it is not used anywhere in the JCommon framework [G9]. So I deleted it.
The same goes for LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.
The next table, AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH, is used only in Spread-sheetDate (line 434 and line 473). This begs the question of whether it should be moved to SpreadsheetDate. The argument for not moving it is that the table is not specific to any particular implementation [G6]. On the other hand, no implementation other than SpreadsheetDate actually exists, and so the table should be moved close to where it is used [G10].
What settles the argument for me is that to be consistent [G11], we should make the table private and expose it through a function like julianDateOfLastDayOfMonth. Nobody seems to need a function like that. Moreover, the table can be moved back to DayDate easily if any new implementation of DayDate needs it. So I moved it.
The same goes for the table, LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.
Next, we see three sets of constants that can be turned into enums (lines 162–205). The first of the three selects a week within a month. I changed it into an enum named WeekInMonth.
 public enum WeekInMonth {
 FIRST(1), SECOND(2), THIRD(3), FOURTH(4), LAST(0);
 public final int index;

 WeekInMonth(int index) {
 this.index = index;
 }
 }
The second set of constants (lines 177–187) is a bit more obscure. The INCLUDE_NONE, INCLUDE_FIRST, INCLUDE_SECOND, and INCLUDE_BOTH constants are used to describe whether the defining end-point dates of a range should be included in that range. Mathematically, this is described using the terms “open interval,” “half-open interval,” and “closed interval.” I think it is clearer using the mathematical nomenclature [N3], so I changed it to an enum named DateInterval with CLOSED, CLOSED_LEFT, CLOSED_RIGHT, and OPEN enumerators.
The third set of constants (lines 18–205) describe whether a search for a particular day of the week should result in the last, next, or nearest instance. Deciding what to call this is difficult at best. In the end, I settled for WeekdayRange with LAST, NEXT, and NEAREST enumerators.
You might not agree with the names I’ve chosen. They make sense to me, but they may not make sense to you. The point is that they are now in a form that makes them easy to change [J3]. They aren’t passed as integers anymore; they are passed as symbols. I can use the “change name” function of my IDE to change the names, or the types, without worrying that I missed some -1 or 2 somewhere in the code or that some int argument declaration is left poorly described.
The description field at line 208 does not seem to be used by anyone. I deleted it along with its accessor and mutator [G9].
I also deleted the degenerate default constructor at line 213 [G12]. The compiler will generate it for us.
We can skip over the isValidWeekdayCode method (lines 216–238) because we deleted it when we created the Day enumeration.
This brings us to the stringToWeekdayCode method (lines 242–270). Javadocs that don’t add much to the method signature are just clutter [C3],[G12]. The only value this Javadoc adds is the description of the -1 return value. However, because we changed to the Day enumeration, the comment is actually wrong [C2]. The method now throws an IllegalArgumentException. So I deleted the Javadoc.
I also deleted all the final keywords in arguments and variable declarations. As far as I could tell, they added no real value but did add to the clutter [G12]. Eliminating final flies in the face of some conventional wisdom. For example, Robert Simmons6 strongly recommends us to “… spread final all over your code.” Clearly I disagree. I think that there are a few good uses for final, such as the occasional final constant, but otherwise the keyword adds little value and creates a lot of clutter. Perhaps I feel this way because the kinds of errors that final might catch are already caught by the unit tests I write.
I didn’t care for the duplicate if statements [G5] inside the for loop (line 259 and line 263), so I connected them into a single if statement using the || operator. I also used the Day enumeration to direct the for loop and made a few other cosmetic changes.
It occurred to me that this method does not really belong in DayDate. It’s really the parse function of Day. So I moved it into the Day enumeration. However, that made the Day
enumeration pretty large. Because the concept of Day does not depend on DayDate, I moved the Day enumeration outside of the DayDate class into its own source file [G13].
I also moved the next function, weekdayCodeToString (lines 272–286) into the Day enumeration and called it toString.
 public enum Day {
 MONDAY(Calendar.MONDAY),
 TUESDAY(Calendar.TUESDAY),
 WEDNESDAY(Calendar.WEDNESDAY),s
 THURSDAY(Calendar.THURSDAY),
 FRIDAY(Calendar.FRIDAY),
 SATURDAY(Calendar.SATURDAY),
 SUNDAY(Calendar.SUNDAY);

 public final int index;
 private static DateFormatSymbols dateSymbols = new DateFormatSymbols();

 Day(int day) {
 index = day;
 }

 public static Day make(int index) throws IllegalArgumentException {
 for (Day d : Day.values())
 if (d.index == index)
 return d;
 throw new IllegalArgumentException(
 String.format(“Illegal day index: %d.”, index));
 }

 public static Day parse(String s) throws IllegalArgumentException {
 String[] shortWeekdayNames =
 dateSymbols.getShortWeekdays();
 String[] weekDayNames =
 dateSymbols.getWeekdays();

 s = s.trim();
 for (Day day : Day.values()) {
 if (s.equalsIgnoreCase(shortWeekdayNames[day.index]) ||
 s.equalsIgnoreCase(weekDayNames[day.index])) {
 return day;
 }
 }
 throw new IllegalArgumentException(
 String.format(“%s is not a valid weekday string”, s));
 }

 public String toString() {
 return dateSymbols.getWeekdays()[index];
 }
 }
There are two getMonths functions (lines 288–316). The first calls the second. The second is never called by anyone but the first. Therefore, I collapsed the two into one and vastly simplified them [G9],[G12],[F4]. Finally, I changed the name to be a bit more self-descriptive [N1].
 public static String[] getMonthNames() {
 return dateFormatSymbols.getMonths();
 }
The isValidMonthCode function (lines 326–346) was made irrelevant by the Month enum, so I deleted it [G9].
The monthCodeToQuarter function (lines 356–375) smells of FEATURE ENVY7 [G14] and probably belongs in the Month enum as a method named quarter. So I replaced it.
 public int quarter() {
 return 1 + (index-1)/3;
 }
This made the Month enum big enough to be in its own class. So I moved it out of DayDate to be consistent with the Day enum [G11],[G13].
The next two methods are named monthCodeToString (lines 377–426). Again, we see the pattern of one method calling its twin with a flag. It is usually a bad idea to pass a flag as an argument to a function, especially when that flag simply selects the format of the output [G15]. I renamed, simplified, and restructured these functions and moved them into the Month enum [N1],[N3],[C3],[G14].
 public String toString() {
 return dateFormatSymbols.getMonths()[index - 1];
 }

 public String toShortString() {
 return dateFormatSymbols.getShortMonths()[index - 1];
 }
The next method is stringToMonthCode (lines 428–472). I renamed it, moved it into the Month enum, and simplified it [N1],[N3],[C3],[G14],[G12].
 public static Month parse(String s) {
 s = s.trim();
 for (Month m : Month.values())
 if (m.matches(s))
 return m;

 try {
 return make(Integer.parseInt(s));
 }
 catch (NumberFormatException e) {}
 throw new IllegalArgumentException(“Invalid month ” + s);
 }

 private boolean matches(String s) {
 return s.equalsIgnoreCase(toString()) ||
 s.equalsIgnoreCase(toShortString());
 }
The isLeapYear method (lines 495–517) can be made a bit more expressive [G16].
 public static boolean isLeapYear(int year) {
 boolean fourth = year % 4 == 0;
 boolean hundredth = year % 100 == 0;
 boolean fourHundredth = year % 400 == 0;
 return fourth && (!hundredth || fourHundredth);
 }
The next function, leapYearCount (lines 519–536) doesn’t really belong in DayDate. Nobody calls it except for two methods in SpreadsheetDate. So I pushed it down [G6].
The lastDayOfMonth function (lines 538–560) makes use of the LAST_DAY_OF_MONTH array. This array really belongs in the Month enum [G17], so I moved it there. I also simplified the function and made it a bit more expressive [G16].
 public static int lastDayOfMonth(Month month, int year) {
 if (month == Month.FEBRUARY && isLeapYear(year))
 return month.lastDay() + 1;
 else
 return month.lastDay();
 }
Now things start to get a bit more interesting. The next function is addDays (lines 562–576). First of all, because this function operates on the variables of DayDate, it should not be static [G18]. So I changed it to an instance method. Second, it calls the function toSerial. This function should be renamed toOrdinal [N1]. Finally, the method can be simplified.
 public DayDate addDays(int days) {
 return DayDateFactory.makeDate(toOrdinal() + days);
 }
The same goes for addMonths (lines 578–602). It should be an instance method [G18]. The algorithm is a bit complicated, so I used EXPLAINING TEMPORARY VARIABLES8 [G19] to make it more transparent. I also renamed the method getYYY to getYear [N1].
 public DayDate addMonths(int months) {
 int thisMonthAsOrdinal = 12 * getYear() + getMonth().index - 1;
 int resultMonthAsOrdinal = thisMonthAsOrdinal + months;
 int resultYear = resultMonthAsOrdinal / 12;
 Month resultMonth = Month.make(resultMonthAsOrdinal % 12 + 1);

 int lastDayOfResultMonth = lastDayOfMonth(resultMonth, resultYear);
 int resultDay = Math.min(getDayOfMonth(), lastDayOfResultMonth);
 return DayDateFactory.makeDate(resultDay, resultMonth, resultYear);
 }
The addYears function (lines 604–626) provides no surprises over the others.
 public DayDate plusYears(int years) {
 int resultYear = getYear() + years;
 int lastDayOfMonthInResultYear = lastDayOfMonth(getMonth(), resultYear);
 int resultDay = Math.min(getDayOfMonth(), lastDayOfMonthInResultYear);
 return DayDateFactory.makeDate(resultDay, getMonth(), resultYear);
 }
There is a little itch at the back of my mind that is bothering me about changing these methods from static to instance. Does the expression date.addDays(5) make it clear that the date object does not change and that a new instance of DayDate is returned? Or does it erroneously imply that we are adding five days to the date object? You might not think that is a big problem, but a bit of code that looks like the following can be very deceiving [G20].
 DayDate date = DateFactory.makeDate(5, Month.DECEMBER, 1952);
 date.addDays(7); // bump date by one week.
Someone reading this code would very likely just accept that addDays is changing the date object. So we need a name that breaks this ambiguity [N4]. So I changed the names to plusDays and plusMonths. It seems to me that the intent of the method is captured nicely by
 DayDate date = oldDate.plusDays(5);
whereas the following doesn’t read fluidly enough for a reader to simply accept that the date object is changed:
 date.plusDays(5);
The algorithms continue to get more interesting. getPreviousDayOfWeek (lines 628–660) works but is a bit complicated. After some thought about what was really going on [G21], I was able to simplify it and use EXPLAINING TEMPORARY VARIABLES [G19] to make it clearer. I also changed it from a static method to an instance method [G18], and got rid of the duplicate instance method [G5] (lines 997–1008).
 public DayDate getPreviousDayOfWeek(Day targetDayOfWeek) {
 int offsetToTarget = targetDayOfWeek.index - getDayOfWeek().index;
 if (offsetToTarget >= 0)
 offsetToTarget -= 7;
 return plusDays(offsetToTarget);
 }
The exact same analysis and result occurred for getFollowingDayOfWeek (lines 662–693).
 public DayDate getFollowingDayOfWeek(Day targetDayOfWeek) {
 int offsetToTarget = targetDayOfWeek.index - getDayOfWeek().index;
 if (offsetToTarget <= 0)

 offsetToTarget += 7;
 return plusDays(offsetToTarget);
 }
The next function is getNearestDayOfWeek (lines 695–726), which we corrected back on page 270. But the changes I made back then aren’t consistent with the current pattern in the last two functions [G11]. So I made it consistent and used some EXPLAINING TEMPORARY VARIABLES [G19] to clarify the algorithm.
 public DayDate getNearestDayOfWeek(final Day targetDay) {
 int offsetToThisWeeksTarget = targetDay.index - getDayOfWeek().index;
 int offsetToFutureTarget = (offsetToThisWeeksTarget + 7) % 7;
 int offsetToPreviousTarget = offsetToFutureTarget - 7;

 if (offsetToFutureTarget > 3)
 return plusDays(offsetToPreviousTarget);
 else
 return plusDays(offsetToFutureTarget);
 }
The getEndOfCurrentMonth method (lines 728–740) is a little strange because it is an instance method that envies [G14] its own class by taking a DayDate argument. I made it a true instance method and clarified a few names.
 public DayDate getEndOfMonth() {
 Month month = getMonth();
 int year = getYear();
 int lastDay = lastDayOfMonth(month, year);
 return DayDateFactory.makeDate(lastDay, month, year);
 }
Refactoring weekInMonthToString (lines 742–761) turned out to be very interesting indeed. Using the refactoring tools of my IDE, I first moved the method to the WeekInMonth enum that I created back on page 275. Then I renamed the method to toString. Next, I changed it from a static method to an instance method. All the tests still passed. (Can you guess where I am going?)
Next, I deleted the method entirely! Five asserts failed (lines 411–415, Listing B-4, page 374). I changed these lines to use the names of the enumerators (FIRST, SECOND, …). All the tests passed. Can you see why? Can you also see why each of these steps was necessary? The refactoring tool made sure that all previous callers of weekInMonthToString now called toString on the weekInMonth enumerator because all enumerators implement toString to simply return their names.…
Unfortunately, I was a bit too clever. As elegant as that wonderful chain of refactorings was, I finally realized that the only users of this function were the tests I had just modified, so I deleted the tests.
Fool me once, shame on you. Fool me twice, shame on me! So after determining that nobody other than the tests called relativeToString (lines 765–781), I simply deleted the function and its tests.
We have finally made it to the abstract methods of this abstract class. And the first one is as appropriate as they come: toSerial (lines 838–844). Back on page 279 I had changed the name to toOrdinal. Having looked at it in this context, I decided the name should be changed to getOrdinalDay.
The next abstract method is toDate (lines 838–844). It converts a DayDate to a java.util.Date. Why is this method abstract? If we look at its implementation in SpreadsheetDate (lines 198–207, Listing B-5, page 382), we see that it doesn’t depend on anything in the implementation of that class [G6]. So I pushed it up.
The getYYYY, getMonth, and getDayOfMonth methods are nicely abstract. However, the getDayOfWeek method is another one that should be pulled up from SpreadSheetDate because it doesn’t depend on anything that can’t be found in DayDate [G6]. Or does it?
If you look carefully (line 247, Listing B-5, page 382), you’ll see that the algorithm implicitly depends on the origin of the ordinal day (in other words, the day of the week of day 0). So even though this function has no physical dependencies that couldn’t be moved to DayDate, it does have a logical dependency.
Logical dependencies like this bother me [G22]. If something logical depends on the implementation, then something physical should too. Also, it seems to me that the algorithm itself could be generic with a much smaller portion of it dependent on the implementation [G6].
So I created an abstract method in DayDate named getDayOfWeekForOrdinalZero and implemented it in SpreadsheetDate to return Day.SATURDAY. Then I moved the getDayOfWeek method up to DayDate and changed it to call getOrdinalDay and getDayOfWeekForOrdinal-Zero.
 public Day getDayOfWeek() {
 Day startingDay = getDayOfWeekForOrdinalZero();
 int startingOffset = startingDay.index - Day.SUNDAY.index;
 return Day.make((getOrdinalDay() + startingOffset) % 7 + 1);
 }
As a side note, look carefully at the comment on line 895 through line 899. Was this repetition really necessary? As usual, I deleted this comment along with all the others.
The next method is compare (lines 902–913). Again, this method is inappropriately abstract [G6], so I pulled the implementation up into DayDate. Also, the name does not communicate enough [N1]. This method actually returns the difference in days since the argument. So I changed the name to daysSince. Also, I noted that there weren’t any tests for this method, so I wrote them.
The next six functions (lines 915–980) are all abstract methods that should be implemented in DayDate. So I pulled them all up from SpreadsheetDate.
The last function, isInRange (lines 982–995) also needs to be pulled up and refactored. The switch statement is a bit ugly [G23] and can be replaced by moving the cases into the DateInterval enum.
 public enum DateInterval {
 OPEN {
 public boolean isIn(int d, int left, int right) {
 return d > left && d < right;
 }
 },
 CLOSED_LEFT {
 public boolean isIn(int d, int left, int right) {
 return d >= left && d < right;
 }
 },
 CLOSED_RIGHT {
 public boolean isIn(int d, int left, int right) {
 return d > left && d <= right;
 }
 },
 CLOSED {
 public boolean isIn(int d, int left, int right) {
 return d >= left && d <= right;
 }
 };

 public abstract boolean isIn(int d, int left, int right);
 }
 public boolean isInRange(DayDate d1, DayDate d2, DateInterval interval) {
 int left = Math.min(d1.getOrdinalDay(), d2.getOrdinalDay());
 int right = Math.max(d1.getOrdinalDay(), d2.getOrdinalDay());
 return interval.isIn(getOrdinalDay(), left, right);
 }
That brings us to the end of DayDate. So now we’ll make one more pass over the whole class to see how well it flows.
First, the opening comment is long out of date, so I shortened and improved it [C2].
Next, I moved all the remaining enums out into their own files [G12].
Next, I moved the static variable (dateFormatSymbols) and three static methods (getMonthNames, isLeapYear, lastDayOfMonth) into a new class named DateUtil [G6].
I moved the abstract methods up to the top where they belong [G24].
I changed Month.make to Month.fromInt [N1] and did the same for all the other enums. I also created a toInt() accessor for all the enums and made the index field private.
There was some interesting duplication [G5] in plusYears and plusMonths that I was able to eliminate by extracting a new method named correctLastDayOfMonth, making the all three methods much clearer.
I got rid of the magic number 1 [G25], replacing it with Month.JANUARY.toInt() or Day.SUNDAY.toInt(), as appropriate. I spent a little time with SpreadsheetDate, cleaning up the algorithms a bit. The end result is contained in Listing B-7, page 394, through Listing B-16, page 405.
Interestingly the code coverage in DayDate has decreased to 84.9 percent! This is not because less functionality is being tested; rather it is because the class has shrunk so much that the few uncovered lines have a greater weight. DayDate now has 45 out of 53 executable statements covered by tests. The uncovered lines are so trivial that they weren’t worth testing.

Conclusion
So once again we’ve followed the Boy Scout Rule. We’ve checked the code in a bit cleaner than when we checked it out. It took a little time, but it was worth it. Test coverage was increased, some bugs were fixed, the code was clarified and shrunk. The next person to look at this code will hopefully find it easier to deal with than we did. That person will also probably be able to clean it up a bit more than we did.

Bibliography

[GOF]:
Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

[Simmons04]:
Hardcore Java, Robert Simmons, Jr., O’Reilly, 2004.

[Refactoring]:
Refactoring: Improving the Design of Existing Code, Martin Fowler et al., Addison-Wesley, 1999.

[Beck97]:
Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall, 1997.

17 Smells and Heuristics

In his wonderful book Refactoring,1 Martin Fowler identified many different “Code Smells.” The list that follows includes many of Martin’s smells and adds many more of my own. It also includes other pearls and heuristics that I use to practice my trade.
I compiled this list by walking through several different programs and refactoring them. As I made each change, I asked myself why I made that change and then wrote the reason down here. The result is a rather long list of things that smell bad to me when I read code.
This list is meant to be read from top to bottom and also to be used as a reference. There is a cross-reference for each heuristic that shows you where it is referenced in the rest of the text in “Appendix C” on page 409.

Comments

C1: Inappropriate Information
It is inappropriate for a comment to hold information better held in a different kind of system such as your source code control system, your issue tracking system, or any other record-keeping system. Change histories, for example, just clutter up source files with volumes of historical and uninteresting text. In general, meta-data such as authors, last-modified-date, SPR number, and so on should not appear in comments. Comments should be reserved for technical notes about the code and design.

C2: Obsolete Comment
A comment that has gotten old, irrelevant, and incorrect is obsolete. Comments get old quickly. It is best not to write a comment that will become obsolete. If you find an obsolete comment, it is best to update it or get rid of it as quickly as possible. Obsolete comments tend to migrate away from the code they once described. They become floating islands of irrelevance and misdirection in the code.

C3: Redundant Comment
A comment is redundant if it describes something that adequately describes itself. For example:
 i++; // increment i
Another example is a Javadoc that says nothing more than (or even less than) the function signature:
 /**
 * @param sellRequest
 * @return
 * @throws ManagedComponentException
 */
 public SellResponse beginSellItem(SellRequest sellRequest)
 throws ManagedComponentException
Comments should say things that the code cannot say for itself.

C4: Poorly Written Comment
A comment worth writing is worth writing well. If you are going to write a comment, take the time to make sure it is the best comment you can write. Choose your words carefully. Use correct grammar and punctuation. Don’t ramble. Don’t state the obvious. Be brief.

C5: Commented-Out Code
It makes me crazy to see stretches of code that are commented out. Who knows how old it is? Who knows whether or not it’s meaningful? Yet no one will delete it because everyone assumes someone else needs it or has plans for it.
That code sits there and rots, getting less and less relevant with every passing day. It calls functions that no longer exist. It uses variables whose names have changed. It follows conventions that are long obsolete. It pollutes the modules that contain it and distracts the people who try to read it. Commented-out code is an abomination.
When you see commented-out code, delete it! Don’t worry, the source code control system still remembers it. If anyone really needs it, he or she can go back and check out a previous version. Don’t suffer commented-out code to survive.

Environment

E1: Build Requires More Than One Step
Building a project should be a single trivial operation. You should not have to check many little pieces out from source code control. You should not need a sequence of arcane commands or context dependent scripts in order to build the individual elements. You should not have to search near and far for all the various little extra JARs, XML files, and other artifacts that the system requires. You should be able to check out the system with one simple command and then issue one other simple command to build it.
 svn get mySystem
 cd mySystem
 ant all

E2: Tests Require More Than One Step
You should be able to run all the unit tests with just one command. In the best case you can run all the tests by clicking on one button in your IDE. In the worst case you should be able to issue a single simple command in a shell. Being able to run all the tests is so fundamental and so important that it should be quick, easy, and obvious to do.

Functions

F1: Too Many Arguments
Functions should have a small number of arguments. No argument is best, followed by one, two, and three. More than three is very questionable and should be avoided with prejudice. (See “Function Arguments” on page 40.)

F2: Output Arguments
Output arguments are counterintuitive. Readers expect arguments to be inputs, not outputs. If your function must change the state of something, have it change the state of the object it is called on. (See “Output Arguments” on page 45.)

F3: Flag Arguments
Boolean arguments loudly declare that the function does more than one thing. They are confusing and should be eliminated. (See “Flag Arguments” on page 41.)

F4: Dead Function
Methods that are never called should be discarded. Keeping dead code around is wasteful. Don’t be afraid to delete the function. Remember, your source code control system still remembers it.

General

G1: Multiple Languages in One Source File
Today’s modern programming environments make it possible to put many different languages into a single source file. For example, a Java source file might contain snippets of XML, HTML, YAML, JavaDoc, English, JavaScript, and so on. For another example, in addition to HTML a JSP file might contain Java, a tag library syntax, English comments, Javadocs, XML, JavaScript, and so forth. This is confusing at best and carelessly sloppy at worst.
The ideal is for a source file to contain one, and only one, language. Realistically, we will probably have to use more than one. But we should take pains to minimize both the number and extent of extra languages in our source files.

G2: Obvious Behavior Is Unimplemented
Following “The Principle of Least Surprise,”2 any function or class should implement the behaviors that another programmer could reasonably expect. For example, consider a function that translates the name of a day to an enum that represents the day.
 Day day = DayDate.StringToDay(String dayName);
We would expect the string “Monday” to be translated to Day.MONDAY. We would also expect the common abbreviations to be translated, and we would expect the function to ignore case.
When an obvious behavior is not implemented, readers and users of the code can no longer depend on their intuition about function names. They lose their trust in the original author and must fall back on reading the details of the code.

G3: Incorrect Behavior at the Boundaries
It seems obvious to say that code should behave correctly. The problem is that we seldom realize just how complicated correct behavior is. Developers often write functions that they think will work, and then trust their intuition rather than going to the effort to prove that their code works in all the corner and boundary cases.
There is no replacement for due diligence. Every boundary condition, every corner case, every quirk and exception represents something that can confound an elegant and intuitive algorithm. Don’t rely on your intuition. Look for every boundary condition and write a test for it.

G4: Overridden Safeties
Chernobyl melted down because the plant manager overrode each of the safety mechanisms one by one. The safeties were making it inconvenient to run an experiment. The result was that the experiment did not get run, and the world saw it’s first major civilian nuclear catastrophe.
It is risky to override safeties. Exerting manual control over serialVersionUID may be necessary, but it is always risky. Turning off certain compiler warnings (or all warnings!) may help you get the build to succeed, but at the risk of endless debugging sessions. Turning off failing tests and telling yourself you’ll get them to pass later is as bad as pretending your credit cards are free money.

G5: Duplication
This is one of the most important rules in this book, and you should take it very seriously. Virtually every author who writes about software design mentions this rule. Dave Thomas and Andy Hunt called it the DRY3 principle (Don’t Repeat Yourself). Kent Beck made it one of the core principles of Extreme Programming and called it: “Once, and only once.” Ron Jeffries ranks this rule second, just below getting all the tests to pass.
Every time you see duplication in the code, it represents a missed opportunity for abstraction. That duplication could probably become a subroutine or perhaps another class outright. By folding the duplication into such an abstraction, you increase the vocabulary of the language of your design. Other programmers can use the abstract facilities you create. Coding becomes faster and less error prone because you have raised the abstraction level.
The most obvious form of duplication is when you have clumps of identical code that look like some programmers went wild with the mouse, pasting the same code over and over again. These should be replaced with simple methods.
A more subtle form is the switch/case or if/else chain that appears again and again in various modules, always testing for the same set of conditions. These should be replaced with polymorphism.
Still more subtle are the modules that have similar algorithms, but that don’t share similar lines of code. This is still duplication and should be addressed by using the TEMPLATE METHOD,4 or STRATEGY5 pattern.
Indeed, most of the design patterns that have appeared in the last fifteen years are simply well-known ways to eliminate duplication. So too the Codd Normal Forms are a strategy for eliminating duplication in database schemae. OO itself is a strategy for organizing modules and eliminating duplication. Not surprisingly, so is structured programming.
I think the point has been made. Find and eliminate duplication wherever you can.

G6: Code at Wrong Level of Abstraction
It is important to create abstractions that separate higher level general concepts from lower level detailed concepts. Sometimes we do this by creating abstract classes to hold the higher level concepts and derivatives to hold the lower level concepts. When we do this, we need to make sure that the separation is complete. We want all the lower level concepts to be in the derivatives and all the higher level concepts to be in the base class.
For example, constants, variables, or utility functions that pertain only to the detailed implementation should not be present in the base class. The base class should know nothing about them.
This rule also pertains to source files, components, and modules. Good software design requires that we separate concepts at different levels and place them in different containers. Sometimes these containers are base classes or derivatives and sometimes they are source files, modules, or components. Whatever the case may be, the separation needs to be complete. We don’t want lower and higher level concepts mixed together.
Consider the following code:
 public interface Stack {
 Object pop() throws EmptyException;
 void push(Object o) throws FullException;
 double percentFull();

 class EmptyException extends Exception {}
 class FullException extends Exception {}
 }
The percentFull function is at the wrong level of abstraction. Although there are many implementations of Stack where the concept of fullness is reasonable, there are other implementations that simply could not know how full they are. So the function would be better placed in a derivative interface such as BoundedStack.
Perhaps you are thinking that the implementation could just return zero if the stack were boundless. The problem with that is that no stack is truly boundless. You cannot really prevent an OutOfMemoryException by checking for
 stack.percentFull() < 50.0.
Implementing the function to return 0 would be telling a lie.
The point is that you cannot lie or fake your way out of a misplaced abstraction. Isolating abstractions is one of the hardest things that software developers do, and there is no quick fix when you get it wrong.

G7: Base Classes Depending on Their Derivatives
The most common reason for partitioning concepts into base and derivative classes is so that the higher level base class concepts can be independent of the lower level derivative class concepts. Therefore, when we see base classes mentioning the names of their derivatives, we suspect a problem. In general, base classes should know nothing about their derivatives.
There are exceptions to this rule, of course. Sometimes the number of derivatives is strictly fixed, and the base class has code that selects between the derivatives. We see this a lot in finite state machine implementations. However, in that case the derivatives and base class are strongly coupled and always deploy together in the same jar file. In the general case we want to be able to deploy derivatives and bases in different jar files.
Deploying derivatives and bases in different jar files and making sure the base jar files know nothing about the contents of the derivative jar files allow us to deploy our systems in discrete and independent components. When such components are modified, they can be redeployed without having to redeploy the base components. This means that the impact of a change is greatly lessened, and maintaining systems in the field is made much simpler.

G8: Too Much Information
Well-defined modules have very small interfaces that allow you to do a lot with a little. Poorly defined modules have wide and deep interfaces that force you to use many different gestures to get simple things done. A well-defined interface does not offer very many functions to depend upon, so coupling is low. A poorly defined interface provides lots of functions that you must call, so coupling is high.
Good software developers learn to limit what they expose at the interfaces of their classes and modules. The fewer methods a class has, the better. The fewer variables a function knows about, the better. The fewer instance variables a class has, the better.
Hide your data. Hide your utility functions. Hide your constants and your temporaries. Don’t create classes with lots of methods or lots of instance variables. Don’t create lots of protected variables and functions for your subclasses. Concentrate on keeping interfaces very tight and very small. Help keep coupling low by limiting information.

G9: Dead Code
Dead code is code that isn’t executed. You find it in the body of an if statement that checks for a condition that can’t happen. You find it in the catch block of a try that never throws. You find it in little utility methods that are never called or switch/case conditions that never occur.
The problem with dead code is that after awhile it starts to smell. The older it is, the stronger and sourer the odor becomes. This is because dead code is not completely updated when designs change. It still compiles, but it does not follow newer conventions or rules. It was written at a time when the system was different. When you find dead code, do the right thing. Give it a decent burial. Delete it from the system.

G10: Vertical Separation
Variables and function should be defined close to where they are used. Local variables should be declared just above their first usage and should have a small vertical scope. We don’t want local variables declared hundreds of lines distant from their usages.
Private functions should be defined just below their first usage. Private functions belong to the scope of the whole class, but we’d still like to limit the vertical distance between the invocations and definitions. Finding a private function should just be a matter of scanning downward from the first usage.

G11: Inconsistency
If you do something a certain way, do all similar things in the same way. This goes back to the principle of least surprise. Be careful with the conventions you choose, and once chosen, be careful to continue to follow them.
If within a particular function you use a variable named response to hold an HttpServletResponse, then use the same variable name consistently in the other functions that use HttpServletResponse objects. If you name a method processVerificationRequest, then use a similar name, such as processDeletionRequest, for the methods that process other kinds of requests.
Simple consistency like this, when reliably applied, can make code much easier to read and modify.

G12: Clutter
Of what use is a default constructor with no implementation? All it serves to do is clutter up the code with meaningless artifacts. Variables that aren’t used, functions that are never called, comments that add no information, and so forth. All these things are clutter and should be removed. Keep your source files clean, well organized, and free of clutter.

G13: Artificial Coupling
Things that don’t depend upon each other should not be artificially coupled. For example, general enums should not be contained within more specific classes because this forces the whole application to know about these more specific classes. The same goes for general purpose static functions being declared in specific classes.
In general an artificial coupling is a coupling between two modules that serves no direct purpose. It is a result of putting a variable, constant, or function in a temporarily convenient, though inappropriate, location. This is lazy and careless.
Take the time to figure out where functions, constants, and variables ought to be declared. Don’t just toss them in the most convenient place at hand and then leave them there.

G14: Feature Envy
This is one of Martin Fowler’s code smells.6 The methods of a class should be interested in the variables and functions of the class they belong to, and not the variables and functions of other classes. When a method uses accessors and mutators of some other object to manipulate the data within that object, then it envies the scope of the class of that other object. It wishes that it were inside that other class so that it could have direct access to the variables it is manipulating. For example:
 public class HourlyPayCalculator {
 public Money calculateWeeklyPay(HourlyEmployee e) {
 int tenthRate = e.getTenthRate().getPennies();
 int tenthsWorked = e.getTenthsWorked();
 int straightTime = Math.min(400, tenthsWorked);
 int overTime = Math.max(0, tenthsWorked - straightTime);
 int straightPay = straightTime * tenthRate;
 int overtimePay = (int)Math.round(overTime*tenthRate*1.5);
 return new Money(straightPay + overtimePay);
 }
 }
The calculateWeeklyPay method reaches into the HourlyEmployee object to get the data on which it operates. The calculateWeeklyPay method envies the scope of HourlyEmployee. It “wishes” that it could be inside HourlyEmployee.
All else being equal, we want to eliminate Feature Envy because it exposes the internals of one class to another. Sometimes, however, Feature Envy is a necessary evil. Consider the following:
 public class HourlyEmployeeReport {
 private HourlyEmployee employee ;

 public HourlyEmployeeReport(HourlyEmployee e) {
 this.employee = e;
 }

 String reportHours() {
 return String.format(
 “Name: %s\tHours:%d.%1d\n”,
 employee.getName(),
 employee.getTenthsWorked()/10,
 employee.getTenthsWorked()%10);
 }
 }
Clearly, the reportHours method envies the HourlyEmployee class. On the other hand, we don’t want HourlyEmployee to have to know about the format of the report. Moving that format string into the HourlyEmployee class would violate several principles of object oriented design.7 It would couple HourlyEmployee to the format of the report, exposing it to changes in that format.

G15: Selector Arguments
There is hardly anything more abominable than a dangling false argument at the end of a function call. What does it mean? What would it change if it were true? Not only is the purpose of a selector argument difficult to remember, each selector argument combines many functions into one. Selector arguments are just a lazy way to avoid splitting a large function into several smaller functions. Consider:
 public int calculateWeeklyPay(boolean overtime) {
 int tenthRate = getTenthRate();
 int tenthsWorked = getTenthsWorked();
 int straightTime = Math.min(400, tenthsWorked);
 int overTime = Math.max(0, tenthsWorked - straightTime);
 int straightPay = straightTime * tenthRate;
 double overtimeRate = overtime ? 1.5 : 1.0 * tenthRate;
 int overtimePay = (int)Math.round(overTime*overtimeRate);
 return straightPay + overtimePay;
 }
You call this function with a true if overtime is paid as time and a half, and with a false if overtime is paid as straight time. It’s bad enough that you must remember what calculateWeeklyPay(false) means whenever you happen to stumble across it. But the real shame of a function like this is that the author missed the opportunity to write the following:
 public int straightPay() {
 return getTenthsWorked() * getTenthRate();
 }

 public int overTimePay() {
 int overTimeTenths = Math.max(0, getTenthsWorked() - 400);
 int overTimePay = overTimeBonus(overTimeTenths);
 return straightPay() + overTimePay;
 }

 private int overTimeBonus(int overTimeTenths) {
 double bonus = 0.5 * getTenthRate() * overTimeTenths;
 return (int) Math.round(bonus);
 }
Of course, selectors need not be boolean. They can be enums, integers, or any other type of argument that is used to select the behavior of the function. In general it is better to have many functions than to pass some code into a function to select the behavior.

G16: Obscured Intent
We want code to be as expressive as possible. Run-on expressions, Hungarian notation, and magic numbers all obscure the author’s intent. For example, here is the overTimePay function as it might have appeared:
 public int m_otCalc() {
 return iThsWkd * iThsRte +
 (int) Math.round(0.5 * iThsRte *
 Math.max(0, iThsWkd - 400)
);
 }
Small and dense as this might appear, it’s also virtually impenetrable. It is worth taking the time to make the intent of our code visible to our readers.

G17: Misplaced Responsibility
One of the most important decisions a software developer can make is where to put code. For example, where should the PI constant go? Should it be in the Math class? Perhaps it belongs in the Trigonometry class? Or maybe in the Circle class?
The principle of least surprise comes into play here. Code should be placed where a reader would naturally expect it to be. The PI constant should go where the trig functions are declared. The OVERTIME_RATE constant should be declared in the HourlyPay-Calculator class.
Sometimes we get “clever” about where to put certain functionality. We’ll put it in a function that’s convenient for us, but not necessarily intuitive to the reader. For example, perhaps we need to print a report with the total of hours that an employee worked. We could sum up those hours in the code that prints the report, or we could try to keep a running total in the code that accepts time cards.
One way to make this decision is to look at the names of the functions. Let’s say that our report module has a function named getTotalHours. Let’s also say that the module that accepts time cards has a saveTimeCard function. Which of these two functions, by it’s name, implies that it calculates the total? The answer should be obvious.
Clearly, there are sometimes performance reasons why the total should be calculated as time cards are accepted rather than when the report is printed. That’s fine, but the names of the functions ought to reflect this. For example, there should be a computeRunning-TotalOfHours function in the timecard module.

G18: Inappropriate Static
Math.max(double a, double b) is a good static method. It does not operate on a single instance; indeed, it would be silly to have to say new Math().max(a,b) or even a.max(b). All the data that max uses comes from its two arguments, and not from any “owning” object. More to the point, there is almost no chance that we’d want Math.max to be polymorphic.
Sometimes, however, we write static functions that should not be static. For example, consider:
 HourlyPayCalculator.calculatePay(employee, overtimeRate).
Again, this seems like a reasonable static function. It doesn’t operate on any particular object and gets all it’s data from it’s arguments. However, there is a reasonable chance that we’ll want this function to be polymorphic. We may wish to implement several different algorithms for calculating hourly pay, for example, OvertimeHourlyPayCalculator and StraightTimeHourlyPayCalculator. So in this case the function should not be static. It should be a nonstatic member function of Employee.
In general you should prefer nonstatic methods to static methods. When in doubt, make the function nonstatic. If you really want a function to be static, make sure that there is no chance that you’ll want it to behave polymorphically.

G19: Use Explanatory Variables
Kent Beck wrote about this in his great book Smalltalk Best Practice Patterns8 and again more recently in his equally great book Implementation Patterns.9 One of the more powerful ways to make a program readable is to break the calculations up into intermediate values that are held in variables with meaningful names.
Consider this example from FitNesse:
 Matcher match = headerPattern.matcher(line);
 if(match.find())
 {
 String key = match.group(1);
 String value = match.group(2);
 headers.put(key.toLowerCase(), value);
 }
The simple use of explanatory variables makes it clear that the first matched group is the key, and the second matched group is the value.
It is hard to overdo this. More explanatory variables are generally better than fewer. It is remarkable how an opaque module can suddenly become transparent simply by breaking the calculations up into well-named intermediate values.

G20: Function Names Should Say What They Do
Look at this code:
 Date newDate = date.add(5);
Would you expect this to add five days to the date? Or is it weeks, or hours? Is the date instance changed or does the function just return a new Date without changing the old one? You can’t tell from the call what the function does.
If the function adds five days to the date and changes the date, then it should be called addDaysTo or increaseByDays. If, on the other hand, the function returns a new date that is five days later but does not change the date instance, it should be called daysLater or daysSince.
If you have to look at the implementation (or documentation) of the function to know what it does, then you should work to find a better name or rearrange the functionality so that it can be placed in functions with better names.

G21: Understand the Algorithm
Lots of very funny code is written because people don’t take the time to understand the algorithm. They get something to work by plugging in enough if statements and flags, without really stopping to consider what is really going on.
Programming is often an exploration. You think you know the right algorithm for something, but then you wind up fiddling with it, prodding and poking at it, until you get it to “work.” How do you know it “works”? Because it passes the test cases you can think of.
There is nothing wrong with this approach. Indeed, often it is the only way to get a function to do what you think it should. However, it is not sufficient to leave the quotation marks around the word “work.”
Before you consider yourself to be done with a function, make sure you understand how it works. It is not good enough that it passes all the tests. You must know10 that the solution is correct.
Often the best way to gain this knowledge and understanding is to refactor the function into something that is so clean and expressive that it is obvious how it works.

G22: Make Logical Dependencies Physical
If one module depends upon another, that dependency should be physical, not just logical. The dependent module should not make assumptions (in other words, logical dependencies) about the module it depends upon. Rather it should explicitly ask that module for all the information it depends upon.
For example, imagine that you are writing a function that prints a plain text report of hours worked by employees. One class named HourlyReporter gathers all the data into a convenient form and then passes it to HourlyReportFormatter to print it. (See Listing 17-1.)

Listing 17-1 HourlyReporter.java
 public class HourlyReporter {
 private HourlyReportFormatter formatter;
 private List<LineItem> page;
 private final int PAGE_SIZE = 55;

 public HourlyReporter(HourlyReportFormatter formatter) {
 this.formatter = formatter;
 page = new ArrayList<LineItem>();
 }

 public void generateReport(List<HourlyEmployee> employees) {
 for (HourlyEmployee e : employees) {
 addLineItemToPage(e);
 if (page.size() == PAGE_SIZE)
 printAndClearItemList();
 }
 if (page.size() > 0)
 printAndClearItemList();
 }

 private void printAndClearItemList() {
 formatter.format(page);
 page.clear();
 }

 private void addLineItemToPage(HourlyEmployee e) {
 LineItem item = new LineItem();
 item.name = e.getName();
 item.hours = e.getTenthsWorked() / 10;

 item.tenths = e.getTenthsWorked() % 10;
 page.add(item);
 }

 public class LineItem {
 public String name;
 public int hours;
 public int tenths;
 }
 }
This code has a logical dependency that has not been physicalized. Can you spot it? It is the constant PAGE_SIZE. Why should the HourlyReporter know the size of the page? Page size should be the responsibility of the HourlyReportFormatter.
The fact that PAGE_SIZE is declared in HourlyReporter represents a misplaced responsibility [G17] that causes HourlyReporter to assume that it knows what the page size ought to be. Such an assumption is a logical dependency. HourlyReporter depends on the fact that HourlyReportFormatter can deal with page sizes of 55. If some implementation of HourlyReportFormatter could not deal with such sizes, then there would be an error.
We can physicalize this dependency by creating a new method in HourlyReport-Formatter named getMaxPageSize(). HourlyReporter will then call that function rather than using the PAGE_SIZE constant.

G23: Prefer Polymorphism to If/Else or Switch/Case
This might seem a strange suggestion given the topic of Chapter 6. After all, in that chapter I make the point that switch statements are probably appropriate in the parts of the system where adding new functions is more likely than adding new types.
First, most people use switch statements because it’s the obvious brute force solution, not because it’s the right solution for the situation. So this heuristic is here to remind us to consider polymorphism before using a switch.
Second, the cases where functions are more volatile than types are relatively rare. So every switch statement should be suspect.
I use the following “ONE SWITCH” rule: There may be no more than one switch statement for a given type of selection. The cases in that switch statement must create polymorphic objects that take the place of other such switch statements in the rest of the system.

G24: Follow Standard Conventions
Every team should follow a coding standard based on common industry norms. This coding standard should specify things like where to declare instance variables; how to name classes, methods, and variables; where to put braces; and so on. The team should not need a document to describe these conventions because their code provides the examples.
Everyone on the team should follow these conventions. This means that each team member must be mature enough to realize that it doesn’t matter a whit where you put your braces so long as you all agree on where to put them.
If you would like to know what conventions I follow, you’ll see them in the refactored code in Listing B-7 on page 394, through Listing B-14.

G25: Replace Magic Numbers with Named Constants
This is probably one of the oldest rules in software development. I remember reading it in the late sixties in introductory COBOL, FORTRAN, and PL/1 manuals. In general it is a bad idea to have raw numbers in your code. You should hide them behind well-named constants.
For example, the number 86,400 should be hidden behind the constant SECONDS_PER_DAY. If you are printing 55 lines per page, then the constant 55 should be hidden behind the constant LINES_PER_PAGE.
Some constants are so easy to recognize that they don’t always need a named constant to hide behind so long as they are used in conjunction with very self-explanatory code. For example:
 double milesWalked = feetWalked/5280.0;
 int dailyPay = hourlyRate * 8;
 double circumference = radius * Math.PI * 2;
Do we really need the constants FEET_PER_MILE, WORK_HOURS_PER_DAY, and TWO in the above examples? Clearly, the last case is absurd. There are some formulae in which constants are simply better written as raw numbers. You might quibble about the WORK_HOURS_PER_DAY case because the laws or conventions might change. On the other hand, that formula reads so nicely with the 8 in it that I would be reluctant to add 17 extra characters to the readers’ burden. And in the FEET_PER_MILE case, the number 5280 is so very well known and so unique a constant that readers would recognize it even if it stood alone on a page with no context surrounding it.
Constants like 3.141592653589793 are also very well known and easily recognizable. However, the chance for error is too great to leave them raw. Every time someone sees 3.1415927535890793, they know that it is π, and so they fail to scrutinize it. (Did you catch the single-digit error?) We also don’t want people using 3.14, 3.14159, 3.142, and so forth. Therefore, it is a good thing that Math.PI has already been defined for us.
The term “Magic Number” does not apply only to numbers. It applies to any token that has a value that is not self-describing. For example:
 assertEquals(7777, Employee.find(“John Doe”).employeeNumber());
There are two magic numbers in this assertion. The first is obviously 7777, though what it might mean is not obvious. The second magic number is “John Doe,” and again the intent is not clear.
It turns out that “John Doe” is the name of employee #7777 in a well-known test database created by our team. Everyone in the team knows that when you connect to this database, it will have several employees already cooked into it with well-known values and attributes. It also turns out that “John Doe” represents the sole hourly employee in that test database. So this test should really read:
 assertEquals(
 HOURLY_EMPLOYEE_ID,
 Employee.find(HOURLY_EMPLOYEE_NAME).employeeNumber());

G26: Be Precise
Expecting the first match to be the only match to a query is probably naive. Using floating point numbers to represent currency is almost criminal. Avoiding locks and/or transaction management because you don’t think concurrent update is likely is lazy at best. Declaring a variable to be an ArrayList when a List will due is overly constraining. Making all variables protected by default is not constraining enough.
When you make a decision in your code, make sure you make it precisely. Know why you have made it and how you will deal with any exceptions. Don’t be lazy about the precision of your decisions. If you decide to call a function that might return null, make sure you check for null. If you query for what you think is the only record in the database, make sure your code checks to be sure there aren’t others. If you need to deal with currency, use integers11 and deal with rounding appropriately. If there is the possibility of concurrent update, make sure you implement some kind of locking mechanism.
Ambiguities and imprecision in code are either a result of disagreements or laziness. In either case they should be eliminated.

G27: Structure over Convention
Enforce design decisions with structure over convention. Naming conventions are good, but they are inferior to structures that force compliance. For example, switch/cases with nicely named enumerations are inferior to base classes with abstract methods. No one is forced to implement the switch/case statement the same way each time; but the base classes do enforce that concrete classes have all abstract methods implemented.

G28: Encapsulate Conditionals
Boolean logic is hard enough to understand without having to see it in the context of an if or while statement. Extract functions that explain the intent of the conditional.
For example:
 if (shouldBeDeleted(timer))
is preferable to
 if (timer.hasExpired() && !timer.isRecurrent())

G29: Avoid Negative Conditionals
Negatives are just a bit harder to understand than positives. So, when possible, conditionals should be expressed as positives. For example:
 if (buffer.shouldCompact())
is preferable to
 if (!buffer.shouldNotCompact())

G30: Functions Should Do One Thing
It is often tempting to create functions that have multiple sections that perform a series of operations. Functions of this kind do more than one thing, and should be converted into many smaller functions, each of which does one thing.
For example:
 public void pay() {
 for (Employee e : employees) {
 if (e.isPayday()) {
 Money pay = e.calculatePay();
 e.deliverPay(pay);
 }
 }
 }
This bit of code does three things. It loops over all the employees, checks to see whether each employee ought to be paid, and then pays the employee. This code would be better written as:
 public void pay() {
 for (Employee e : employees)
 payIfNecessary(e);
 }

 private void payIfNecessary(Employee e) {
 if (e.isPayday())
 calculateAndDeliverPay(e);
 }

 private void calculateAndDeliverPay(Employee e) {
 Money pay = e.calculatePay();
 e.deliverPay(pay);
 }
Each of these functions does one thing. (See “Do One Thing” on page 35.)

G31: Hidden Temporal Couplings
Temporal couplings are often necessary, but you should not hide the coupling. Structure the arguments of your functions such that the order in which they should be called is obvious. Consider the following:
 public class MoogDiver {
 Gradient gradient;
 List<Spline> splines;

 public void dive(String reason) {
 saturateGradient();
 reticulateSplines();
 diveForMoog(reason);
 }
 …
 }
The order of the three functions is important. You must saturate the gradient before you can reticulate the splines, and only then can you dive for the moog. Unfortunately, the code does not enforce this temporal coupling. Another programmer could call reticulate-Splines before saturateGradient was called, leading to an UnsaturatedGradientException. A better solution is:
 public class MoogDiver {
 Gradient gradient;
 List<Spline> splines;

 public void dive(String reason) {
 Gradient gradient = saturateGradient();
 List<Spline> splines = reticulateSplines(gradient);
 diveForMoog(splines, reason);
 }
 …
 }
This exposes the temporal coupling by creating a bucket brigade. Each function produces a result that the next function needs, so there is no reasonable way to call them out of order.
You might complain that this increases the complexity of the functions, and you’d be right. But that extra syntactic complexity exposes the true temporal complexity of the situation.
Note that I left the instance variables in place. I presume that they are needed by private methods in the class. Even so, I want the arguments in place to make the temporal coupling explicit.

G32: Don’t Be Arbitrary
Have a reason for the way you structure your code, and make sure that reason is communicated by the structure of the code. If a structure appears arbitrary, others will feel empowered to change it. If a structure appears consistently throughout the system, others will use it and preserve the convention. For example, I was recently merging changes to FitNesse and discovered that one of our committers had done this:
 public class AliasLinkWidget extends ParentWidget
 {
 public static class VariableExpandingWidgetRoot {
 …

 …
 }
The problem with this was that VariableExpandingWidgetRoot had no need to be inside the scope of AliasLinkWidget. Moreover, other unrelated classes made use of AliasLinkWidget.VariableExpandingWidgetRoot. These classes had no need to know about AliasLinkWidget.
Perhaps the programmer had plopped the VariableExpandingWidgetRoot into AliasWidget as a matter of convenience, or perhaps he thought it really needed to be scoped inside AliasWidget. Whatever the reason, the result wound up being arbitrary. Public classes that are not utilities of some other class should not be scoped inside another class. The convention is to make them public at the top level of their package.

G33: Encapsulate Boundary Conditions
Boundary conditions are hard to keep track of. Put the processing for them in one place. Don’t let them leak all over the code. We don’t want swarms of +1s and -1s scattered hither and yon. Consider this simple example from FIT:
 if(level + 1 < tags.length)
 {
 parts = new Parse(body, tags, level + 1, offset + endTag);
 body = null;
 }
Notice that level+1 appears twice. This is a boundary condition that should be encapsulated within a variable named something like nextLevel.
 int nextLevel = level + 1;
 if(nextLevel < tags.length)
 {
 parts = new Parse(body, tags, nextLevel, offset + endTag);
 body = null;
 }

G34: Functions Should Descend Only One Level of Abstraction
The statements within a function should all be written at the same level of abstraction, which should be one level below the operation described by the name of the function. This may be the hardest of these heuristics to interpret and follow. Though the idea is plain enough, humans are just far too good at seamlessly mixing levels of abstraction. Consider, for example, the following code taken from FitNesse:
 public String render() throws Exception
 {
 StringBuffer html = new StringBuffer(“<hr”);
 if(size > 0)
 html.append(” size=\“”).append(size + 1).append(”\“”);
 html.append(“>”);

 return html.toString();
 }
A moment’s study and you can see what’s going on. This function constructs the HTML tag that draws a horizontal rule across the page. The height of that rule is specified in the size variable.
Now look again. This method is mixing at least two levels of abstraction. The first is the notion that a horizontal rule has a size. The second is the syntax of the HR tag itself. This code comes from the HruleWidget module in FitNesse. This module detects a row of four or more dashes and converts it into the appropriate HR tag. The more dashes, the larger the size.
I refactored this bit of code as follows. Note that I changed the name of the size field to reflect its true purpose. It held the number of extra dashes.
 public String render() throws Exception
 {
 HtmlTag hr = new HtmlTag(“hr”);
 if (extraDashes > 0)
 hr.addAttribute(“size”, hrSize(extraDashes));
 return hr.html();
 }

 private String hrSize(int height)
 {
 int hrSize = height + 1;
 return String.format(“%d”, hrSize);
 }
This change separates the two levels of abstraction nicely. The render function simply constructs an HR tag, without having to know anything about the HTML syntax of that tag. The HtmlTag module takes care of all the nasty syntax issues.
Indeed, by making this change I caught a subtle error. The original code did not put the closing slash on the HR tag, as the XHTML standard would have it. (In other words, it emitted <hr> instead of <hr/>.) The HtmlTag module had been changed to conform to XHTML long ago.
Separating levels of abstraction is one of the most important functions of refactoring, and it’s one of the hardest to do well. As an example, look at the code below. This was my first attempt at separating the abstraction levels in the HruleWidget.render method.
 public String render() throws Exception
 {
 HtmlTag hr = new HtmlTag(“hr”);
 if (size > 0) {
 hr.addAttribute(“size”, “”+(size+1));
 }
 return hr.html();
 }
My goal, at this point, was to create the necessary separation and get the tests to pass. I accomplished that goal easily, but the result was a function that still had mixed levels of abstraction. In this case the mixed levels were the construction of the HR tag and the interpretation and formatting of the size variable. This points out that when you break a function along lines of abstraction, you often uncover new lines of abstraction that were obscured by the previous structure.

G35: Keep Configurable Data at High Levels
If you have a constant such as a default or configuration value that is known and expected at a high level of abstraction, do not bury it in a low-level function. Expose it as an argument to that low-level function called from the high-level function. Consider the following code from FitNesse:
 public static void main(String[] args) throws Exception
 {
 Arguments arguments = parseCommandLine(args);
 …
 }

 public class Arguments
 {
 public static final String DEFAULT_PATH = “.”;
 public static final String DEFAULT_ROOT = “FitNesseRoot”;
 public static final int DEFAULT_PORT = 80;
 public static final int DEFAULT_VERSION_DAYS = 14;
 …
 }
The command-line arguments are parsed in the very first executable line of FitNesse. The default values of those arguments are specified at the top of the Argument class. You don’t have to go looking in low levels of the system for statements like this one:
 if (arguments.port == 0) // use 80 by default
The configuration constants reside at a very high level and are easy to change. They get passed down to the rest of the application. The lower levels of the application do not own the values of these constants.

G36: Avoid Transitive Navigation
In general we don’t want a single module to know much about its collaborators. More specifically, if A collaborates with B, and B collaborates with C, we don’t want modules that use A to know about C. (For example, we don’t want a.getB().getC().doSomething();.)
This is sometimes called the Law of Demeter. The Pragmatic Programmers call it “Writing Shy Code.”12 In either case it comes down to making sure that modules know only about their immediate collaborators and do not know the navigation map of the whole system.
If many modules used some form of the statement a.getB().getC(), then it would be difficult to change the design and architecture to interpose a Q between B and C. You’d have to find every instance of a.getB().getC() and convert it to a.getB().getQ().getC(). This is how architectures become rigid. Too many modules know too much about the architecture.
Rather we want our immediate collaborators to offer all the services we need. We should not have to roam through the object graph of the system, hunting for the method we want to call. Rather we should simply be able to say:
 myCollaborator.doSomething().

Java

J1: Avoid Long Import Lists by Using Wildcards
If you use two or more classes from a package, then import the whole package with
 import package.*;
Long lists of imports are daunting to the reader. We don’t want to clutter up the tops of our modules with 80 lines of imports. Rather we want the imports to be a concise statement about which packages we collaborate with.
Specific imports are hard dependencies, whereas wildcard imports are not. If you specifically import a class, then that class must exist. But if you import a package with a wildcard, no particular classes need to exist. The import statement simply adds the package to the search path when hunting for names. So no true dependency is created by such imports, and they therefore serve to keep our modules less coupled.
There are times when the long list of specific imports can be useful. For example, if you are dealing with legacy code and you want to find out what classes you need to build mocks and stubs for, you can walk down the list of specific imports to find out the true qualified names of all those classes and then put the appropriate stubs in place. However, this use for specific imports is very rare. Furthermore, most modern IDEs will allow you to convert the wildcarded imports to a list of specific imports with a single command. So even in the legacy case it’s better to import wildcards.
Wildcard imports can sometimes cause name conflicts and ambiguities. Two classes with the same name, but in different packages, will need to be specifically imported, or at least specifically qualified when used. This can be a nuisance but is rare enough that using wildcard imports is still generally better than specific imports.

J2: Don’t Inherit Constants
I have seen this several times and it always makes me grimace. A programmer puts some constants in an interface and then gains access to those constants by inheriting that interface. Take a look at the following code:
 public class HourlyEmployee extends Employee {
 private int tenthsWorked;
 private double hourlyRate;

 public Money calculatePay() {
 int straightTime = Math.min(tenthsWorked, TENTHS_PER_WEEK);
 int overTime = tenthsWorked - straightTime;
 return new Money(
 hourlyRate * (tenthsWorked + OVERTIME_RATE * overTime)
);
 }
 …
 }
Where did the constants TENTHS_PER_WEEK and OVERTIME_RATE come from? They might have come from class Employee; so let’s take a look at that:
 public abstract class Employee implements PayrollConstants {
 public abstract boolean isPayday();
 public abstract Money calculatePay();
 public abstract void deliverPay(Money pay);
 }
Nope, not there. But then where? Look closely at class Employee. It implements PayrollConstants.
 public interface PayrollConstants {
 public static final int TENTHS_PER_WEEK = 400;
 public static final double OVERTIME_RATE = 1.5;
 }
This is a hideous practice! The constants are hidden at the top of the inheritance hierarchy. Ick! Don’t use inheritance as a way to cheat the scoping rules of the language. Use a static import instead.
 import static PayrollConstants.*;

 public class HourlyEmployee extends Employee {
 private int tenthsWorked;
 private double hourlyRate;

 public Money calculatePay() {
 int straightTime = Math.min(tenthsWorked, TENTHS_PER_WEEK);
 int overTime = tenthsWorked - straightTime;
 return new Money(
 hourlyRate * (tenthsWorked + OVERTIME_RATE * overTime)
);
 }
 …
 }

J3: Constants versus Enums
Now that enums have been added to the language (Java 5), use them! Don’t keep using the old trick of public static final ints. The meaning of ints can get lost. The meaning of enums cannot, because they belong to an enumeration that is named.
What’s more, study the syntax for enums carefully. They can have methods and fields. This makes them very powerful tools that allow much more expression and flexibility than ints. Consider this variation on the payroll code:
 public class HourlyEmployee extends Employee {
 private int tenthsWorked;
 HourlyPayGrade grade;

 public Money calculatePay() {
 int straightTime = Math.min(tenthsWorked, TENTHS_PER_WEEK);
 int overTime = tenthsWorked - straightTime;
 return new Money(
 grade.rate() * (tenthsWorked + OVERTIME_RATE * overTime)
);
 }
 …
 }
 public enum HourlyPayGrade {
 APPRENTICE {
 public double rate() {
 return 1.0;
 }
 },
 LEUTENANT_JOURNEYMAN {
 public double rate() {
 return 1.2;
 }
 },
 JOURNEYMAN {
 public double rate() {
 return 1.5;
 }
 },
 MASTER {
 public double rate() {
 return 2.0;
 }
 };

 public abstract double rate();
 }

Names

N1: Choose Descriptive Names
Don’t be too quick to choose a name. Make sure the name is descriptive. Remember that meanings tend to drift as software evolves, so frequently reevaluate the appropriateness of the names you choose.
This is not just a “feel-good” recommendation. Names in software are 90 percent of what make software readable. You need to take the time to choose them wisely and keep them relevant. Names are too important to treat carelessly.
Consider the code below. What does it do? If I show you the code with well-chosen names, it will make perfect sense to you, but like this it’s just a hodge-podge of symbols and magic numbers.
 public int x() {
 int q = 0;
 int z = 0;
 for (int kk = 0; kk < 10; kk++) {
 if (l[z] == 10)
 {
 q += 10 + (l[z + 1] + l[z + 2]);
 z += 1;
 }
 else if (l[z] + l[z + 1] == 10)
 {
 q += 10 + l[z + 2];
 z += 2;
 } else {
 q += l[z] + l[z + 1];
 z += 2;
 }
 }
 return q;
 }
Here is the code the way it should be written. This snippet is actually less complete than the one above. Yet you can infer immediately what it is trying to do, and you could very likely write the missing functions based on that inferred meaning. The magic numbers are no longer magic, and the structure of the algorithm is compellingly descriptive.
 public int score() {
 int score = 0;
 int frame = 0;
 for (int frameNumber = 0; frameNumber < 10; frameNumber++) {
 if (isStrike(frame)) {
 score += 10 + nextTwoBallsForStrike(frame);
 frame += 1;
 } else if (isSpare(frame)) {
 score += 10 + nextBallForSpare(frame);
 frame += 2;
 } else {
 score += twoBallsInFrame(frame);
 frame += 2;
 }
 }
 return score;
 }
The power of carefully chosen names is that they overload the structure of the code with description. That overloading sets the readers’ expectations about what the other functions in the module do. You can infer the implementation of isStrike() by looking at the code above. When you read the isStrike method, it will be “pretty much what you expected.”13
 private boolean isStrike(int frame) {
 return rolls[frame] == 10;
 }

N2: Choose Names at the Appropriate Level of Abstraction
Don’t pick names that communicate implementation; choose names the reflect the level of abstraction of the class or function you are working in. This is hard to do. Again, people are just too good at mixing levels of abstractions. Each time you make a pass over your code, you will likely find some variable that is named at too low a level. You should take the opportunity to change those names when you find them. Making code readable requires a dedication to continuous improvement. Consider the Modem interface below:
 public interface Modem {
 boolean dial(String phoneNumber);
 boolean disconnect();
 boolean send(char c);
 char recv();
 String getConnectedPhoneNumber();
 }
At first this looks fine. The functions all seem appropriate. Indeed, for many applications they are. But now consider an application in which some modems aren’t connected by dialling. Rather they are connected permanently by hard wiring them together (think of the cable modems that provide Internet access to most homes nowadays). Perhaps some are connected by sending a port number to a switch over a USB connection. Clearly the notion of phone numbers is at the wrong level of abstraction. A better naming strategy for this scenario might be:
 public interface Modem {
 boolean connect(String connectionLocator);
 boolean disconnect();
 boolean send(char c);
 char recv();
 String getConnectedLocator();
 }
Now the names don’t make any commitments about phone numbers. They can still be used for phone numbers, or they could be used for any other kind of connection strategy.

N3: Use Standard Nomenclature Where Possible
Names are easier to understand if they are based on existing convention or usage. For example, if you are using the DECORATOR pattern, you should use the word Decorator in the names of the decorating classes. For example, AutoHangupModemDecorator might be the name of a class that decorates a Modem with the ability to automatically hang up at the end of a session.
Patterns are just one kind of standard. In Java, for example, functions that convert objects to string representations are often named toString. It is better to follow conventions like these than to invent your own.
Teams will often invent their own standard system of names for a particular project. Eric Evans refers to this as a ubiquitous language for the project.14 Your code should use the terms from this language extensively. In short, the more you can use names that are overloaded with special meanings that are relevant to your project, the easier it will be for readers to know what your code is talking about.

N4: Unambiguous Names
Choose names that make the workings of a function or variable unambiguous. Consider this example from FitNesse:
 private String doRename() throws Exception
 {
 if(refactorReferences)
 renameReferences();
 renamePage();

 pathToRename.removeNameFromEnd();
 pathToRename.addNameToEnd(newName);
 return PathParser.render(pathToRename);
 }
The name of this function does not say what the function does except in broad and vague terms. This is emphasized by the fact that there is a function named renamePage inside the function named doRename! What do the names tell you about the difference between the two functions? Nothing.
A better name for that function is renamePageAndOptionallyAllReferences. This may seem long, and it is, but it’s only called from one place in the module, so it’s explanatory value outweighs the length.

N5: Use Long Names for Long Scopes
The length of a name should be related to the length of the scope. You can use very short variable names for tiny scopes, but for big scopes you should use longer names.
Variable names like i and j are just fine if their scope is five lines long. Consider this snippet from the old standard “Bowling Game”:
 private void rollMany(int n, int pins)
 {
 for (int i=0; i<n; i++)
 g.roll(pins);
 }
This is perfectly clear and would be obfuscated if the variable i were replaced with something annoying like rollCount. On the other hand, variables and functions with short names lose their meaning over long distances. So the longer the scope of the name, the longer and more precise the name should be.

N6: Avoid Encodings
Names should not be encoded with type or scope information. Prefixes such as m_ or f are useless in today’s environments. Also project and/or subsystem encodings such as vis_ (for visual imaging system) are distracting and redundant. Again, today’s environments provide all that information without having to mangle the names. Keep your names free of Hungarian pollution.

N7: Names Should Describe Side-Effects
Names should describe everything that a function, variable, or class is or does. Don’t hide side effects with a name. Don’t use a simple verb to describe a function that does more than just that simple action. For example, consider this code from TestNG:
 public ObjectOutputStream getOos() throws IOException {
 if (m_oos == null) {
 m_oos = new ObjectOutputStream(m_socket.getOutputStream());
 }
 return m_oos;
 }
This function does a bit more than get an “oos”; it creates the “oos” if it hasn’t been created already. Thus, a better name might be createOrReturnOos.

Tests

T1: Insufficient Tests
How many tests should be in a test suite? Unfortunately, the metric many programmers use is “That seems like enough.” A test suite should test everything that could possibly break. The tests are insufficient so long as there are conditions that have not been explored by the tests or calculations that have not been validated.

T2: Use a Coverage Tool!
Coverage tools reports gaps in your testing strategy. They make it easy to find modules, classes, and functions that are insufficiently tested. Most IDEs give you a visual indication, marking lines that are covered in green and those that are uncovered in red. This makes it quick and easy to find if or catch statements whose bodies haven’t been checked.

T3: Don’t Skip Trivial Tests
They are easy to write and their documentary value is higher than the cost to produce them.

T4: An Ignored Test Is a Question about an Ambiguity
Sometimes we are uncertain about a behavioral detail because the requirements are unclear. We can express our question about the requirements as a test that is commented out, or as a test that annotated with @Ignore. Which you choose depends upon whether the ambiguity is about something that would compile or not.

T5: Test Boundary Conditions
Take special care to test boundary conditions. We often get the middle of an algorithm right but misjudge the boundaries.

T6: Exhaustively Test Near Bugs
Bugs tend to congregate. When you find a bug in a function, it is wise to do an exhaustive test of that function. You’ll probably find that the bug was not alone.

T7: Patterns of Failure Are Revealing
Sometimes you can diagnose a problem by finding patterns in the way the test cases fail. This is another argument for making the test cases as complete as possible. Complete test cases, ordered in a reasonable way, expose patterns.
As a simple example, suppose you noticed that all tests with an input larger than five characters failed? Or what if any test that passed a negative number into the second argument of a function failed? Sometimes just seeing the pattern of red and green on the test report is enough to spark the “Aha!” that leads to the solution. Look back at page 267 to see an interesting example of this in the SerialDate example.

T8: Test Coverage Patterns Can Be Revealing
Looking at the code that is or is not executed by the passing tests gives clues to why the failing tests fail.

T9: Tests Should Be Fast
A slow test is a test that won’t get run. When things get tight, it’s the slow tests that will be dropped from the suite. So do what you must to keep your tests fast.

Conclusion
This list of heuristics and smells could hardly be said to be complete. Indeed, I’m not sure that such a list can ever be complete. But perhaps completeness should not be the goal, because what this list does do is imply a value system.
Indeed, that value system has been the goal, and the topic, of this book. Clean code is not written by following a set of rules. You don’t become a software craftsman by learning a list of heuristics. Professionalism and craftsmanship come from values that drive disciplines.

Bibliography

[Refactoring]:
Refactoring: Improving the Design of Existing Code, Martin Fowler et al., Addison-Wesley, 1999.

[PRAG]:
The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley, 2000.

[GOF]:
Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al., Addison-Wesley, 1996.

[Beck97]:
Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall, 1997.

[Beck07]:
Implementation Patterns, Kent Beck, Addison-Wesley, 2008.

[PPP]:
Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin, Prentice Hall, 2002.

[DDD]:
Domain Driven Design, Eric Evans, Addison-Wesley, 2003.

Appendix A
Concurrency II
by Brett L. Schuchert
This appendix supports and amplifies the Concurrency chapter on page 177. It is written as a series of independent topics and you can generally read them in any order. There is some duplication between sections to allow for such reading.

Client/Server Example
Imagine a simple client/server application. A server sits and waits listening on a socket for a client to connect. A client connects and sends a request.

The Server
Here is a simplified version of a server application. Full source for this example is available starting on page 343, Client/Server Nonthreaded.
 ServerSocket serverSocket = new ServerSocket(8009);

 while (keepProcessing) {
 try {
 Socket socket = serverSocket.accept();
 process(socket);
 } catch (Exception e) {
 handle(e);
 }
 }
This simple application waits for a connection, processes an incoming message, and then again waits for the next client request to come in. Here’s client code that connects to this server:
 private void connectSendReceive(int i) {
 try {
 Socket socket = new Socket(“localhost”, PORT);
 MessageUtils.sendMessage(socket, Integer.toString(i));
 MessageUtils.getMessage(socket);
 socket.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
How well does this client/server pair perform? How can we formally describe that performance? Here’s a test that asserts that the performance is “acceptable”:
 @Test(timeout = 10000)
 public void shouldRunInUnder10Seconds() throws Exception {
 Thread[] threads = createThreads();
 startAllThreadsw(threads);
 waitForAllThreadsToFinish(threads);
 }
The setup is left out to keep the example simple (see “ClientTest.java” on page 344). This test asserts that it should complete within 10,000 milliseconds.
This is a classic example of validating the throughput of a system. This system should complete a series of client requests in ten seconds. So long as the server can process each individual client request in time, the test will pass.
What happens if the test fails? Short of developing some kind of event polling loop, there is not much to do within a single thread that will make this code any faster. Will using multiple threads solve the problem? It might, but we need to know where the time is being spent. There are two possibilities:
• I/O—using a socket, connecting to a database, waiting for virtual memory swapping, and so on.
• Processor—numerical calculations, regular expression processing, garbage collection, and so on.
Systems typically have some of each, but for a given operation one tends to dominate. If the code is processor bound, more processing hardware can improve throughput, making our test pass. But there are only so many CPU cycles available, so adding threads to a processor-bound problem will not make it go faster.
On the other hand, if the process is I/O bound, then concurrency can increase efficiency. When one part of the system is waiting for I/O, another part can use that wait time to process something else, making more effective use of the available CPU.

Adding Threading
Assume for the moment that the performance test fails. How can we improve the throughput so that the performance test passes? If the process method of the server is I/O bound, then here is one way to make the server use threads (just change the processMessage):
 void process(final Socket socket) {
 if (socket == null)
 return;

 Runnable clientHandler = new Runnable() {
 public void run() {
 try {
 String message = MessageUtils.getMessage(socket);
 MessageUtils.sendMessage(socket, “Processed: ” + message);
 closeIgnoringException(socket);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

 Thread clientConnection = new Thread(clientHandler);
 clientConnection.start();
 }
Assume that this change causes the test to pass;1 the code is complete, correct?

Server Observations
The updated server completes the test successfully in just over one second. Unfortunately, this solution is a bit naive and introduces some new problems.
How many threads might our server create? The code sets no limit, so the we could feasibly hit the limit imposed by the Java Virtual Machine (JVM). For many simple systems this may suffice. But what if the system is meant to support many users on the public net? If too many users connect at the same time, the system might grind to a halt.
But set the behavioral problem aside for the moment. The solution shown has problems of cleanliness and structure. How many responsibilities does the server code have?
• Socket connection management
• Client processing
• Threading policy
• Server shutdown policy
Unfortunately, all these responsibilities live in the process function. In addition, the code crosses many different levels of abstraction. So, small as the process function is, it needs to be repartitioned.
The server has several reasons to change; therefore it violates the Single Responsibility Principle. To keep concurrent systems clean, thread management should be kept to a few, well-controlled places. What’s more, any code that manages threads should do nothing other than thread management. Why? If for no other reason than that tracking down concurrency issues is hard enough without having to unwind other nonconcurrency issues at the same time.
If we create a separate class for each of the responsibilities listed above, including the thread management responsibility, then when we change the thread management strategy, the change will impact less overall code and will not pollute the other responsibilities. This also makes it much easier to test all the other responsibilities without having to worry about threading. Here is an updated version that does just that:
 public void run() {
 while (keepProcessing) {
 try {
 ClientConnection clientConnection = connectionManager.awaitClient();
 ClientRequestProcessor requestProcessor
 = new ClientRequestProcessor(clientConnection);
 clientScheduler.schedule(requestProcessor);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 connectionManager.shutdown();
 }
This now focuses all things thread-related into one place, clientScheduler. If there are concurrency problems, there is just one place to look:
 public interface ClientScheduler {
 void schedule(ClientRequestProcessor requestProcessor);
 }
The current policy is easy to implement:
 public class ThreadPerRequestScheduler implements ClientScheduler {
 public void schedule(final ClientRequestProcessor requestProcessor) {
 Runnable runnable = new Runnable() {
 public void run() {
 requestProcessor.process();
 }
 };

 Thread thread = new Thread(runnable);
 thread.start();
 }
 }
Having isolated all the thread management into a single place, it is much easier to change the way we control threads. For example, moving to the Java 5 Executor framework involves writing a new class and plugging it in (Listing A-1).

Listing A-1 ExecutorClientScheduler.java
 import java.util.concurrent.Executor;
 import java.util.concurrent.Executors;

 public class ExecutorClientScheduler implements ClientScheduler {
 Executor executor;

 public ExecutorClientScheduler(int availableThreads) {
 executor = Executors.newFixedThreadPool(availableThreads);
 }

 public void schedule(final ClientRequestProcessor requestProcessor) {
 Runnable runnable = new Runnable() {
 public void run() {
 requestProcessor.process();
 }
 };
 executor.execute(runnable);
 }
 }

Conclusion
Introducing concurrency in this particular example demonstrates a way to improve the throughput of a system and one way of validating that throughput through a testing framework. Focusing all concurrency code into a small number of classes is an example of applying the Single Responsibility Principle. In the case of concurrent programming, this becomes especially important because of its complexity.

Possible Paths of Execution
Review the method incrementValue, a one-line Java method with no looping or branching:
 public class IdGenerator {
 int lastIdUsed;

 public int incrementValue() {
 return ++lastIdUsed;
 }
 }
Ignore integer overflow and assume that only one thread has access to a single instance of IdGenerator. In this case there is a single path of execution and a single guaranteed result:
• The value returned is equal to the value of lastIdUsed, both of which are one greater than just before calling the method.
What happens if we use two threads and leave the method unchanged? What are the possible outcomes if each thread calls incrementValue once? How many possible paths of execution are there? First, the outcomes (assume lastIdUsed starts with a value of 93):
• Thread 1 gets the value of 94, thread 2 gets the value of 95, and lastIdUsed is now 95.
• Thread 1 gets the value of 95, thread 2 gets the value of 94, and lastIdUsed is now 95.
• Thread 1 gets the value of 94, thread 2 gets the value of 94, and lastIdUsed is now 94.
The final result, while surprising, is possible. To see how these different results are possible, we need to understand the number of possible paths of execution and how the Java Virtual Machine executes them.

Number of Paths
To calculate the number of possible execution paths, we’ll start with the generated byte-code. The one line of java (return ++lastIdUsed;) becomes eight byte-code instructions. It is possible for the two threads to interleave the execution of these eight instructions the way a card dealer interleaves cards as he shuffles a deck.2 Even with only eight cards in each hand, there are a remarkable number of shuffled outcomes.
For this simple case of N instructions in a sequence, no looping or conditionals, and T threads, the total number of possible execution paths is equal to

Calculating the Possible Orderings
This comes from an email from Uncle Bob to Brett:

With N steps and T threads there are T* N total steps. Prior to each step there is a context switch that chooses between the T threads. Each path can thus be represented as a string of digits denoting the context switches. Given steps A and B and threads 1 and 2, the six possible paths are 1122, 1212, 1221, 2112, 2121, and 2211. Or, in terms of steps it is A1B1A2B2, A1A2B1B2, A1A2B2B1, A2A1B1B2, A2A1B2B1, and A2B2A1B1. For three threads the sequence is 112233, 112323, 113223, 113232, 112233, 121233, 121323, 121332, 123132, 123123, ….

One characteristic of these strings is that there must always be N instances of each T. So the string 111111 is invalid because it has six instances of 1 and zero instances of 2 and 3.

So we want the permutations of N 1’s, N 2’s, … and N T’s. This is really just the permutations of N* T things taken N* T at a time, which is (N* T)!, but with all the duplicates removed. So the trick is to count the duplicates and subtract that from (N* T)!.

Given two steps and two threads, how many duplicates are there? Each four-digit string has two 1s and two 2s. Each of those pairs could be swapped without changing the sense of the string. You could swap the 1s or the 2s both, or neither. So there are four isomorphs for each string, which means that there are three duplicates. So three out of four of the options are duplicates; alternatively one of four of the permutations are NOT duplicates. 4! * .25 = 6. So this reasoning seems to work.

How many duplicates are there? In the case where N = 2 and T = 2, I could swap the 1s, the 2s, or both. In the case where N = 2 and T = 3, I could swap the 1s, the 2s, the 3s, 1s and 2s, 1s and 3s, or 2s and 3s. Swapping is just the permutations of N. Let’s say there are P permutations of N. The number of different ways to arrange those permutations are P**T.

So the number of possible isomorphs is N!**T. And so the number of paths is (T*N)!/(N!**T). Again, in our T = 2, N = 2 case we get 6 (24/4).

For N = 2 and T = 3 we get 720/8 = 90.

For N = 3 and T = 3 we get 9!/6^3 = 1680.

For our simple case of one line of Java code, which equates to eight lines of byte-code and two threads, the total number of possible paths of execution is 12,870. If the type of lastIdUsed is a long, then every read/write becomes two operations instead of one, and the number of possible orderings becomes 2,704,156.
What happens if we make one change to this method?
 public synchronized void incrementValue() {
 ++lastIdUsed;
 }
The number of possible execution pathways becomes two for two threads and N! in the general case.

Digging Deeper
What about the surprising result that two threads could both call the method once (before we added synchronized) and get the same numeric result? How is that possible? First things first.
What is an atomic operation? We can define an atomic operation as any operation that is uninterruptable. For example, in the following code, line 5, where 0 is assigned to lastid, is atomic because according to the Java Memory model, assignment to a 32-bit value is uninterruptable.
 01: public class Example {
 02: int lastId;
 03:
 04: public void resetId() {
 05: value = 0;
 06: }
 07:
 08: public int getNextId() {
 09: ++value;
 10: }
 11:}
What happens if we change type of lastId from int to long? Is line 5 still atomic? Not according to the JVM specification. It could be atomic on a particular processor, but according to the JVM specification, assignment to any 64-bit value requires two 32-bit assignments. This means that between the first 32-bit assignment and the second 32-bit assignment, some other thread could sneak in and change one of the values.
What about the pre-increment operator, ++, on line 9? The pre-increment operator can be interrupted, so it is not atomic. To understand, let’s review the byte-code of both of these methods in detail.
Before we go any further, here are three definitions that will be important:
• Frame—Every method invocation requires a frame. The frame includes the return address, any parameters passed into the method and the local variables defined in the method. This is a standard technique used to define a call stack, which is used by modern languages to allow for basic function/method invocation and to allow for recursive invocation.
• Local variable—Any variables defined in the scope of the method. All nonstatic methods have at least one variable, this, which represents the current object, the object that received the most recent message (in the current thread), which caused the method invocation.
• Operand stack—Many of the instructions in the Java Virtual Machine take parameters. The operand stack is where those parameters are put. The stack is a standard last-in, first-out (LIFO) data structure.
Here is the byte-code generated for resetId():

These three instructions are guaranteed to be atomic because, although the thread executing them could be interrupted after any one of them, the information for the PUTFIELD instruction (the constant value 0 on the top of the stack and the reference to this one below the top, along with the field value) cannot be touched by another thread. So when the assignment occurs, we are guaranteed that the value 0 will be stored in the field value. The operation is atomic. The operands all deal with information local to the method, so there is no interference between multiple threads.
So if these three instructions are executed by ten threads, there are 4.38679733629e+24 possible orderings. However, there is only one possible outcome, so the different orderings are irrelevant. It just so happens that the same outcome is guaranteed for longs in this case as well. Why? All ten threads are assigning a constant value. Even if they interleave with each other, the end result is the same.
With the ++ operation in the getNextId method, there are going to be problems. Assume that lastId holds 42 at the beginning of this method. Here is the byte-code for this new method:

Imagine the case where the first thread completes the first three instructions, up to and including GETFIELD, and then it is interrupted. A second thread takes over and performs the entire method, incrementing lastId by one; it gets 43 back. Then the first thread picks up where it left off; 42 is still on the operand stack because that was the value of lastId when it executed GETFIELD. It adds one to get 43 again and stores the result. The value 43 is returned to the first thread as well. The result is that one of the increments is lost because the first thread stepped on the second thread after the second thread interrupted the first thread.
Making the getNexId() method synchronized fixes this problem.

Conclusion
An intimate understanding of byte-code is not necessary to understand how threads can step on each other. If you can understand this one example, it should demonstrate the possibility of multiple threads stepping on each other, which is enough knowledge.
That being said, what this trivial example demonstrates is a need to understand the memory model enough to know what is and is not safe. It is a common misconception that the ++ (pre- or post-increment) operator is atomic, and it clearly is not. This means you need to know:
• Where there are shared objects/values
• The code that can cause concurrent read/update issues
• How to guard such concurrent issues from happening

Knowing Your Library

Executor Framework
As demonstrated in the ExecutorClientScheduler.java on page 321, the Executor framework introduced in Java 5 allows for sophisticated execution using thread pools. This is a class in the java.util.concurrent package.
If you are creating threads and are not using a thread pool or are using a hand-written one, you should consider using the Executor. It will make your code cleaner, easier to follow, and smaller.
The Executor framework will pool threads, resize automatically, and recreate threads if necessary. It also supports futures, a common concurrent programming construct. The Executor framework works with classes that implement Runnable and also works with classes that implement the Callable interface. A Callable looks like a Runnable, but it can return a result, which is a common need in multithreaded solutions.
A future is handy when code needs to execute multiple, independent operations and wait for both to finish:
 public String processRequest(String message) throws Exception {
 Callable<String> makeExternalCall = new Callable<String>() {

 public String call() throws Exception {
 String result = “”;
 // make external request
 return result;
 }
 };

 Future<String> result = executorService.submit(makeExternalCall);
 String partialResult = doSomeLocalProcessing();
 return result.get() + partialResult;
 }
In this example, the method starts executing the makeExternalCall object. The method continues other processing. The final line calls result.get(), which blocks until the future completes.

Nonblocking Solutions
The Java 5 VM takes advantage of modern processor design, which supports reliable, nonblocking updates. Consider, for example, a class that uses synchronization (and therefore blocking) to provide a thread-safe update of a value:
 public class ObjectWithValue {
 private int value;
 public void synchronized incrementValue() { ++value; }
 public int getValue() { return value; }
 }
Java 5 has a series of new classes for situations like this: AtomicBoolean, AtomicInteger, and AtomicReference are three examples; there are several more. We can rewrite the above code to use a nonblocking approach as follows:
 public class ObjectWithValue {
 private AtomicInteger value = new AtomicInteger(0);

 public void incrementValue() {
 value.incrementAndGet();
 }
 public int getValue() {
 return value.get();
 }
 }
Even though this uses an object instead of a primitive and sends messages like incrementAndGet() instead of ++, the performance of this class will nearly always beat the previous version. In some cases it will only be slightly faster, but the cases where it will be slower are virtually nonexistent.
How is this possible? Modern processors have an operation typically called Compare and Swap (CAS). This operation is analogous to optimistic locking in databases, whereas the synchronized version is analogous to pessimistic locking.
The synchronized keyword always acquires a lock, even when a second thread is not trying to update the same value. Even though the performance of intrinsic locks has improved from version to version, they are still costly.
The nonblocking version starts with the assumption that multiple threads generally do not modify the same value often enough that a problem will arise. Instead, it efficiently detects whether such a situation has occurred and retries until the update happens successfully. This detection is almost always less costly than acquiring a lock, even in moderate to high contention situations.
How does the Virtual Machine accomplish this? The CAS operation is atomic. Logically, the CAS operation looks something like the following:
 int variableBeingSet;

 void simulateNonBlockingSet(int newValue) {
 int currentValue;
 do {
 currentValue = variableBeingSet
 } while(currentValue != compareAndSwap(currentValue, newValue));
 }

 int synchronized compareAndSwap(int currentValue, int newValue) {
 if(variableBeingSet == currentValue) {
 variableBeingSet = newValue;
 return currentValue;
 }
 return variableBeingSet;
 }
When a method attempts to update a shared variable, the CAS operation verifies that the variable getting set still has the last known value. If so, then the variable is changed. If not, then the variable is not set because another thread managed to get in the way. The method making the attempt (using the CAS operation) sees that the change was not made and retries.

Nonthread-Safe Classes
There are some classes that are inherently not thread safe. Here are a few examples:
• SimpleDateFormat
• Database Connections
• Containers in java.util
• Servlets
Note that some collection classes have individual methods that are thread-safe. However, any operation that involves calling more than one method is not. For example, if you do not want to replace something in a HashTable because it is already there, you might write the following code:
 if(!hashTable.containsKey(someKey)) {
 hashTable.put(someKey, new SomeValue());
 }
Each individual method is thread-safe. However, another thread might add a value in between the containsKey and put calls. There are several options to fix this problem.
• Lock the HashTable first, and make sure all other users of the HashTable do the same—client-based locking:
 synchronized(map) {
 if(!map.conainsKey(key))
 map.put(key, value);
 }
• Wrap the HashTable in its own object and use a different API—server-based locking using an ADAPTER:
 public class WrappedHashtable<K, V> {
 private Map<K, V> map = new Hashtable<K, V>();

 public synchronized void putIfAbsent(K key, V value) {
 if (map.containsKey(key))
 map.put(key, value);
 }
 }
• Use the thread-safe collections:
 ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<Integer,
 String>();
 map.putIfAbsent(key, value);
The collections in java.util.concurrent have operations like putIfAbsent() to accommodate such operations.

Dependencies Between Methods Can Break Concurrent Code
Here is a trivial example of a way to introduce dependencies between methods:
 public class IntegerIterator implements Iterator<Integer>
 private Integer nextValue = 0;

 public synchronized boolean hasNext() {
 return nextValue < 100000;
 }
 public synchronized Integer next() {
 if (nextValue == 100000)
 throw new IteratorPastEndException();
 return nextValue++;
 }
 public synchronized Integer getNextValue() {
 return nextValue;
 }
 }
Here is some code to use this IntegerIterator:
 IntegerIterator iterator = new IntegerIterator();
 while(iterator.hasNext()) {
 int nextValue = iterator.next();
 // do something with nextValue
 }
If one thread executes this code, there will be no problem. But what happens if two threads attempt to share a single instance of IngeterIterator with the intent that each thread will process the values it gets, but that each element of the list is processed only once? Most of the time, nothing bad happens; the threads happily share the list, processing the elements they are given by the iterator and stopping when the iterator is complete. However, there is a small chance that, at the end of the iteration, the two threads will interfere with each other and cause one thread to go beyond the end of the iterator and throw an exception.
Here’s the problem: Thread 1 asks the question hasNext(), which returns true. Thread 1 gets preempted and then Thread 2 asks the same question, which is still true. Thread 2 then calls next(), which returns a value as expected but has a side effect of making hasNext() return false. Thread 1 starts up again, thinking hasNext() is still true, and then calls next(). Even though the individual methods are synchronized, the client uses two methods.
This is a real problem and an example of the kinds of problems that crop up in concurrent code. In this particular situation this problem is especially subtle because the only time where this causes a fault is when it happens during the final iteration of the iterator. If the threads happen to break just right, then one of the threads could go beyond the end of the iterator. This is the kind of bug that happens long after a system has been in production, and it is hard to track down.
You have three options:
• Tolerate the failure.
• Solve the problem by changing the client: client-based locking
• Solve the problem by changing the server, which additionally changes the client: server-based locking

Tolerate the Failure
Sometimes you can set things up such that the failure causes no harm. For example, the above client could catch the exception and clean up. Frankly, this is a bit sloppy. It’s rather like cleaning up memory leaks by rebooting at midnight.

Client-Based Locking
To make IntegerIterator work correctly with multiple threads, change this client (and every other client) as follows:
 IntegerIterator iterator = new IntegerIterator();

 while (true) {
 int nextValue;
 synchronized (iterator) {
 if (!iterator.hasNext())
 break;
 nextValue = iterator.next();
 }
 doSometingWith(nextValue);
 }
Each client introduces a lock via the synchronized keyword. This duplication violates the DRY principle, but it might be necessary if the code uses non-thread-safe third-party tools.
This strategy is risky because all programmers who use the server must remember to lock it before using it and unlock it when done. Many (many!) years ago I worked on a system that employed client-based locking on a shared resource. The resource was used in hundreds of different places throughout the code. One poor programmer forgot to lock the resource in one of those places.
The system was a multi-terminal time-sharing system running accounting software for Local 705 of the trucker’s union. The computer was in a raised-floor, environment-controlled room 50 miles north of the Local 705 headquarters. At the headquarters they had dozens of data entry clerks typing union dues postings into the terminals. The terminals were connected to the computer using dedicated phone lines and 600bps half-duplex modems. (This was a very, very long time ago.)
About once per day, one of the terminals would “lock up.” There was no rhyme or reason to it. The lock up showed no preference for particular terminals or particular times. It was as though there were someone rolling dice choosing the time and terminal to lock up. Sometimes more than one terminal would lock up. Sometimes days would go by without any lock-ups.
At first the only solution was a reboot. But reboots were tough to coordinate. We had to call the headquarters and get everyone to finish what they were doing on all the terminals. Then we could shut down and restart. If someone was doing something important that took an hour or two, the locked up terminal simply had to stay locked up.
After a few weeks of debugging we found that the cause was a ring-buffer counter that had gotten out of sync with its pointer. This buffer controlled output to the terminal. The pointer value indicated that the buffer was empty, but the counter said it was full. Because it was empty, there was nothing to display; but because it was also full, nothing could be added to the buffer to be displayed on the screen.
So we knew why the terminals were locking, but we didn’t know why the ring buffer was getting out of sync. So we added a hack to work around the problem. It was possible to read the front panel switches on the computer. (This was a very, very, very long time ago.) We wrote a little trap function that detected when one of these switches was thrown and then looked for a ring buffer that was both empty and full. If one was found, it reset that buffer to empty. Voila! The locked-up terminal(s) started displaying again.
So now we didn’t have to reboot the system when a terminal locked up. The Local would simply call us and tell us we had a lock-up, and then we just walked into the computer room and flicked a switch.
Of course sometimes they worked on the weekends, and we didn’t. So we added a function to the scheduler that checked all the ring buffers once per minute and reset any that were both empty and full. This caused the displays to unclog before the Local could even get on the phone.
It was several more weeks of poring over page after page of monolithic assembly language code before we found the culprit. We had done the math and calculated that the frequency of the lock-ups was consistent with a single unprotected use of the ring buffer. So all we had to do was find that one faulty usage. Unfortunately, this was so very long ago that we didn’t have search tools or cross references or any other kind of automated help. We simply had to pore over listings.
I learned an important lesson that cold Chicago winter of 1971. Client-based locking really blows.

Server-Based Locking
The duplication can be removed by making the following changes to IntegerIterator:
 public class IntegerIteratorServerLocked {
 private Integer nextValue = 0;
 public synchronized Integer getNextOrNull() {
 if (nextValue < 100000)
 return nextValue++;
 else
 return null;
 }
 }
And the client code changes as well:
 while (true) {
 Integer nextValue = iterator.getNextOrNull();
 if (next == null)
 break;
 // do something with nextValue
 }
In this case we actually change the API of our class to be multithread aware.3 The client needs to perform a null check instead of checking hasNext().
In general you should prefer server-based locking for these reasons:
• It reduces repeated code—Client-based locking forces each client to lock the server properly. By putting the locking code into the server, clients are free to use the object and not worry about writing additional locking code.
• It allows for better performance—You can swap out a thread-safe server for a non-thread safe one in the case of single-threaded deployment, thereby avoiding all overhead.
• It reduces the possibility of error—All it takes is for one programmer to forget to lock properly.
• It enforces a single policy—The policy is in one place, the server, rather than many places, each client.
• It reduces the scope of the shared variables—The client is not aware of them or how they are locked. All of that is hidden in the server. When things break, the number of places to look is smaller.
What if you do not own the server code?
• Use an ADAPTER to change the API and add locking
 public class ThreadSafeIntegerIterator {
 private IntegerIterator iterator = new IntegerIterator();

 public synchronized Integer getNextOrNull() {
 if(iterator.hasNext())
 return iterator.next();
 return null;
 }
 }
• OR better yet, use the thread-safe collections with extended interfaces

Increasing Throughput
Let’s assume that we want to go out on the net and read the contents of a set of pages from a list of URLs. As each page is read, we will parse it to accumulate some statistics. Once all the pages are read, we will print a summary report.
The following class returns the contents of one page, given a URL.
 public class PageReader {
 //…
 public String getPageFor(String url) {
 HttpMethod method = new GetMethod(url);

 try {
 httpClient.executeMethod(method);
 String response = method.getResponseBodyAsString();
 return response;
 } catch (Exception e) {
 handle(e);
 } finally {
 method.releaseConnection();
 }
 }
 }
The next class is the iterator that provides the contents of the pages based on an iterator of URLs:
 public class PageIterator {
 private PageReader reader;
 private URLIterator urls;

 public PageIterator(PageReader reader, URLIterator urls) {
 this.urls = urls;
 this.reader = reader;
 }

 public synchronized String getNextPageOrNull() {
 if (urls.hasNext())
 getPageFor(urls.next());
 else
 return null;
 }

 public String getPageFor(String url) {
 return reader.getPageFor(url);
 }
 }
An instance of the PageIterator can be shared between many different threads, each one using it’s own instance of the PageReader to read and parse the pages it gets from the iterator.
Notice that we’ve kept the synchronized block very small. It contains just the critical section deep inside the PageIterator. It is always better to synchronize as little as possible as opposed to synchronizing as much as possible.

Single-Thread Calculation of Throughput
Now lets do some simple calculations. For the purpose of argument, assume the following:
• I/O time to retrieve a page (average): 1 second
• Processing time to parse page (average): .5 seconds
• I/O requires 0 percent of the CPU while processing requires 100 percent.
For N pages being processed by a single thread, the total execution time is 1.5 seconds * N. Figure A-1 shows a snapshot of 13 pages or about 19.5 seconds.

Figure A-1 Single thread

Multithread Calculation of Throughput
If it is possible to retrieve pages in any order and process the pages independently, then it is possible to use multiple threads to increase throughput. What happens if we use three threads? How many pages can we acquire in the same time?
As you can see in Figure A-2, the multithreaded solution allows the process-bound parsing of the pages to overlap with the I/O-bound reading of the pages. In an idealized world this means that the processor is fully utilized. Each one-second page read is overlapped with two parses. Thus, we can process two pages per second, which is three times the throughput of the single-threaded solution.

Figure A-2 Three concurrent threads

Deadlock
Imagine a Web application with two shared resource pools of some finite size:
• A pool of database connections for local work in process storage
• A pool of MQ connections to a master repository
Assume there are two operations in this application, create and update:

• Create—Acquire connection to master repository and database. Talk to service master repository and then store work in local work in process database.
• Update—Acquire connection to database and then master repository. Read from work in process database and then send to the master repository
What happens when there are more users than the pool sizes? Consider each pool has a size of ten.
• Ten users attempt to use create, so all ten database connections are acquired, and each thread is interrupted after acquiring a database connection but before acquiring a connection to the master repository.
• Ten users attempt to use update, so all ten master repository connections are acquired, and each thread is interrupted after acquiring the master repository but before acquiring a database connection.
• Now the ten “create” threads must wait to acquire a master repository connection, but the ten “update” threads must wait to acquire a database connection.
• Deadlock. The system never recovers.
This might sound like an unlikely situation, but who wants a system that freezes solid every other week? Who wants to debug a system with symptoms that are so difficult to reproduce? This is the kind of problem that happens in the field, then takes weeks to solve.
A typical “solution” is to introduce debugging statements to find out what is happening. Of course, the debug statements change the code enough so that the deadlock happens in a different situation and takes months to again occur.4
To really solve the problem of deadlock, we need to understand what causes it. There are four conditions required for deadlock to occur:
• Mutual exclusion
• Lock & wait
• No preemption
• Circular wait

Mutual Exclusion
Mutual exclusion occurs when multiple threads need to use the same resources and those resources
• Cannot be used by multiple threads at the same time.
• Are limited in number.
A common example of such a resource is a database connection, a file open for write, a record lock, or a semaphore.

Lock & Wait
Once a thread acquires a resource, it will not release the resource until it has acquired all of the other resources it requires and has completed its work.

No Preemption
One thread cannot take resources away from another thread. Once a thread holds a resource, the only way for another thread to get it is for the holding thread to release it.

Circular Wait
This is also referred to as the deadly embrace. Imagine two threads, T1 and T2, and two resources, R1 and R2. T1 has R1, T2 has R2. T1 also requires R2, and T2 also requires R1. This gives something like Figure A-3:

Figure A-3

All four of these conditions must hold for deadlock to be possible. Break any one of these conditions and deadlock is not possible.

Breaking Mutual Exclusion
One strategy for avoiding deadlock is to sidestep the mutual exclusion condition. You might be able to do this by
• Using resources that allow simultaneous use, for example, AtomicInteger.
• Increasing the number of resources such that it equals or exceeds the number of competing threads.
• Checking that all your resources are free before seizing any.
Unfortunately, most resources are limited in number and don’t allow simultaneous use. And it’s not uncommon for the identity of the second resource to be predicated on the results of operating on the first. But don’t be discouraged; there are three conditions left.

Breaking Lock & Wait
You can also eliminate deadlock if you refuse to wait. Check each resource before you seize it, and release all resources and start over if you run into one that’s busy.
This approach introduces several potential problems:
• Starvation—One thread keeps being unable to acquire the resources it needs (maybe it has a unique combination of resources that seldom all become available).
• Livelock—Several threads might get into lockstep and all acquire one resource and then release one resource, over and over again. This is especially likely with simplistic CPU scheduling algorithms (think embedded devices or simplistic hand-written thread balancing algorithms).
Both of these can cause poor throughput. The first results in low CPU utilization, whereas the second results in high and useless CPU utilization.
As inefficient as this strategy sounds, it’s better than nothing. It has the benefit that it can almost always be implemented if all else fails.

Breaking Preemption
Another strategy for avoiding deadlock is to allow threads to take resources away from other threads. This is usually done through a simple request mechanism. When a thread discovers that a resource is busy, it asks the owner to release it. If the owner is also waiting for some other resource, it releases them all and starts over.
This is similar to the previous approach but has the benefit that a thread is allowed to wait for a resource. This decreases the number of startovers. Be warned, however, that managing all those requests can be tricky.

Breaking Circular Wait
This is the most common approach to preventing deadlock. For most systems it requires no more than a simple convention agreed to by all parties.
In the example above with Thread 1 wanting both Resource 1 and Resource 2 and Thread 2 wanting both Resource 2 and then Resource 1, simply forcing both Thread 1 and Thread 2 to allocate resources in the same order makes circular wait impossible.
More generally, if all threads can agree on a global ordering of resources and if they all allocate resources in that order, then deadlock is impossible. Like all the other strategies, this can cause problems:
• The order of acquisition might not correspond to the order of use; thus a resource acquired at the start might not be used until the end. This can cause resources to be locked longer than strictly necessary.
• Sometimes you cannot impose an order on the acquisition of resources. If the ID of the second resource comes from an operation performed on the first, then ordering is not feasible.
So there are many ways to avoid deadlock. Some lead to starvation, whereas others make heavy use of the CPU and reduce responsiveness. TANSTAAFL!5
Isolating the thread-related part of your solution to allow for tuning and experimentation is a powerful way to gain the insights needed to determine the best strategies.

Testing Multithreaded Code
How can we write a test to demonstrate the following code is broken?
 01: public class ClassWithThreadingProblem {
 02: int nextId;
 03:
 04: public int takeNextId() {
 05: return nextId++;
 06: }
 07:}
Here’s a description of a test that will prove the code is broken:
• Remember the current value of nextId.
• Create two threads, both of which call takeNextId() once.
• Verify that nextId is two more than what we started with.
• Run this until we demonstrate that nextId was only incremented by one instead of two.
Listing A-2 shows such a test:

Listing A-2 ClassWithThreadingProblemTest.java
 01: package example;
 02:
 03: import static org.junit.Assert.fail;
 04:
 05: import org.junit.Test;
 06:
 07: public class ClassWithThreadingProblemTest {
 08: @Test
 09: public void twoThreadsShouldFailEventually() throws Exception {
 10: final ClassWithThreadingProblem classWithThreadingProblem
 = new ClassWithThreadingProblem();
 11:
 12: Runnable runnable = new Runnable() {
 13: public void run() {
 14: classWithThreadingProblem.takeNextId();
 15: }
 16: };
 17:
 18: for (int i = 0; i < 50000; ++i) {
 19: int startingId = classWithThreadingProblem.lastId;
 20: int expectedResult = 2 + startingId;
 21:
 22: Thread t1 = new Thread(runnable);
 23: Thread t2 = new Thread(runnable);
 24: t1.start();
 25: t2.start();
 26: t1.join();
 27: t2.join();
 28:
 29: int endingId = classWithThreadingProblem.lastId;
 30:
 31: if (endingId != expectedResult)
 32: return;
 33: }
 34:
 35: fail(“Should have exposed a threading issue but it did not.”);
 36: }
 37: }

This test certainly sets up the conditions for a concurrent update problem. However, the problem occurs so infrequently that the vast majority of times this test won’t detect it.
Indeed, to truly detect the problem we need to set the number of iterations to over one million. Even then, in ten executions with a loop count of 1,000,000, the problem occurred only once. That means we probably ought to set the iteration count to well over one hundred million to get reliable failures. How long are we prepared to wait?
Even if we tuned the test to get reliable failures on one machine, we’ll probably have to retune the test with different values to demonstrate the failure on another machine, operating system, or version of the JVM.
And this is a simple problem. If we cannot demonstrate broken code easily with this problem, how will we ever detect truly complex problems?
So what approaches can we take to demonstrate this simple failure? And, more importantly, how can we write tests that will demonstrate failures in more complex code? How will we be able to discover if our code has failures when we do not know where to look?
Here are a few ideas:
• Monte Carlo Testing. Make tests flexible, so they can be tuned. Then run the test over and over—say on a test server—randomly changing the tuning values. If the tests ever fail, the code is broken. Make sure to start writing those tests early so a continuous integration server starts running them soon. By the way, make sure you carefully log the conditions under which the test failed.
• Run the test on every one of the target deployment platforms. Repeatedly. Continuously. The longer the tests run without failure, the more likely that
– The production code is correct or

– The tests aren’t adequate to expose problems.

• Run the tests on a machine with varying loads. If you can simulate loads close to a production environment, do so.
Yet, even if you do all of these things, you still don’t stand a very good chance of finding threading problems with your code. The most insidious problems are the ones that have such a small cross section that they only occur once in a billion opportunities. Such problems are the terror of complex systems.

Tool Support for Testing Thread-Based Code
IBM has created a tool called ConTest.6 It instruments classes to make it more likely that non-thread-safe code fails.
We do not have any direct relationship with IBM or the team that developed ConTest. A colleague of ours pointed us to it. We noticed vast improvement in our ability to find threading issues after a few minutes of using it.
Here’s an outline of how to use ConTest:
• Write tests and production code, making sure there are tests specifically designed to simulate multiple users under varying loads, as mentioned above.
• Instrument test and production code with ConTest.
• Run the tests.
When we instrumented code with ConTest, our success rate went from roughly one failure in ten million iterations to roughly one failure in thirty iterations. Here are the loop values for several runs of the test after instrumentation: 13, 23, 0, 54, 16, 14, 6, 69, 107, 49, 2. So clearly the instrumented classes failed much earlier and with much greater reliability.

Conclusion
This chapter has been a very brief sojourn through the large and treacherous territory of concurrent programming. We barely scratched the surface. Our emphasis here was on disciplines to help keep concurrent code clean, but there is much more you should learn if you are going to be writing concurrent systems. We recommend you start with Doug Lea’s wonderful book Concurrent Programming in Java: Design Principles and Patterns.7
In this chapter we talked about concurrent update, and the disciplines of clean synchronization and locking that can prevent it. We talked about how threads can enhance the throughput of an I/O-bound system and showed the clean techniques for achieving such improvements. We talked about deadlock and the disciplines for preventing it in a clean way. Finally, we talked about strategies for exposing concurrent problems by instrumenting your code.

Tutorial: Full Code Examples

Client/Server Nonthreaded

Listing A-3 Server.java
 package com.objectmentor.clientserver.nonthreaded;

 import java.io.IOException;
 import java.net.ServerSocket;
 import java.net.Socket;
 import java.net.SocketException;

 import common.MessageUtils;

 public class Server implements Runnable {
 ServerSocket serverSocket;
 volatile boolean keepProcessing = true;

 public Server(int port, int millisecondsTimeout) throws IOException {
 serverSocket = new ServerSocket(port);
 serverSocket.setSoTimeout(millisecondsTimeout);
 }

 public void run() {
 System.out.printf(“Server Starting\n”);

 while (keepProcessing) {
 try {
 System.out.printf(“accepting client\n”);
 Socket socket = serverSocket.accept();
 System.out.printf(“got client\n”);
 process(socket);
 } catch (Exception e) {
 handle(e);
 }
 }
 }

 private void handle(Exception e) {
 if (!(e instanceof SocketException)) {
 e.printStackTrace();
 }
 }

 public void stopProcessing() {
 keepProcessing = false;
 closeIgnoringException(serverSocket);
 }
 void process(Socket socket) {
 if (socket == null)
 return;

 try {
 System.out.printf(“Server: getting message\n”);
 String message = MessageUtils.getMessage(socket);
 System.out.printf(“Server: got message: %s\n”, message);
 Thread.sleep(1000);
 System.out.printf(“Server: sending reply: %s\n”, message);
 MessageUtils.sendMessage(socket, “Processed: ” + message);
 System.out.printf(“Server: sent\n”);
 closeIgnoringException(socket);
 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 private void closeIgnoringException(Socket socket) {
 if (socket != null)
 try {
 socket.close();
 } catch (IOException ignore) {
 }
 }

 private void closeIgnoringException(ServerSocket serverSocket) {
 if (serverSocket != null)
 try {
 serverSocket.close();
 } catch (IOException ignore) {
 }
 }
 }

Listing A-4 ClientTest.java
 package com.objectmentor.clientserver.nonthreaded;

 import java.io.IOException;
 import java.net.ServerSocket;
 import java.net.Socket;
 import java.net.SocketException;

 import common.MessageUtils;

 public class Server implements Runnable {
 ServerSocket serverSocket;
 volatile boolean keepProcessing = true;
 public Server(int port, int millisecondsTimeout) throws IOException {
 serverSocket = new ServerSocket(port);
 serverSocket.setSoTimeout(millisecondsTimeout);
 }

 public void run() {
 System.out.printf("Server Starting\n");

 while (keepProcessing) {
 try {
 System.out.printf("accepting client\n");
 Socket socket = serverSocket.accept();
 System.out.printf("got client\n");
 process(socket);
 } catch (Exception e) {
 handle(e);
 }
 }
 }

 private void handle(Exception e) {
 if (!(e instanceof SocketException)) {
 e.printStackTrace();
 }
 }

 public void stopProcessing() {
 keepProcessing = false;
 closeIgnoringException(serverSocket);
 }

 void process(Socket socket) {
 if (socket == null)
 return;

 try {
 System.out.printf("Server: getting message\n");
 String message = MessageUtils.getMessage(socket);
 System.out.printf("Server: got message: %s\n", message);
 Thread.sleep(1000);
 System.out.printf("Server: sending reply: %s\n", message);
 MessageUtils.sendMessage(socket, "Processed: " + message);
 System.out.printf("Server: sent\n");
 closeIgnoringException(socket);
 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 private void closeIgnoringException(Socket socket) {
 if (socket != null)
 try {
 socket.close();
 } catch (IOException ignore) {
 }
 }

 private void closeIgnoringException(ServerSocket serverSocket) {
 if (serverSocket != null)
 try {
 serverSocket.close();
 } catch (IOException ignore) {
 }
 }
 }

Listing A-5 MessageUtils.java
 package common;

 import java.io.IOException;
 import java.io.InputStream;
 import java.io.ObjectInputStream;
 import java.io.ObjectOutputStream;
 import java.io.OutputStream;
 import java.net.Socket;

 public class MessageUtils {
 public static void sendMessage(Socket socket, String message)
 throws IOException {
 OutputStream stream = socket.getOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(stream);
 oos.writeUTF(message);
 oos.flush();
 }

 public static String getMessage(Socket socket) throws IOException {
 InputStream stream = socket.getInputStream();
 ObjectInputStream ois = new ObjectInputStream(stream);
 return ois.readUTF();
 }
 }

Client/Server Using Threads
Changing the server to use threads simply requires a change to the process message (new lines are emphasized to stand out):
 void process(final Socket socket) {
 if (socket == null)
 return;

 Runnable clientHandler = new Runnable() {
 public void run() {

 try {
 System.out.printf("Server: getting message\n");
 String message = MessageUtils.getMessage(socket);
 System.out.printf("Server: got message: %s\n", message);
 Thread.sleep(1000);
 System.out.printf("Server: sending reply: %s\n", message);
 MessageUtils.sendMessage(socket, "Processed: " + message);
 System.out.printf("Server: sent\n");
 closeIgnoringException(socket);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

 Thread clientConnection = new Thread(clientHandler);
 clientConnection.start();
 }

Appendix B
org.jfree.date.SerialDate

Listing B-1
SerialDate.Java

Listing B-2
SerialDateTest.java

Listing B-3
MonthConstants.java

Listing B-4
BobsSerialDateTest.java

Listing B-5
SpreadsheetDate.java

Listing B-6
RelativeDayOfWeekRule.java

Listing B-7
DayDate.java (Final)

Listing B-8
Month.java (Final)

Listing B-9
Day.java (Final)

Listing B-10
DateInterval.java (Final)

Listing B-11
WeekInMonth.java (Final)

Listing B-12
WeekdayRange.java (Final)

Listing B-13
DateUtil.java (Final)

Listing B-14
DayDateFactory.java (Final)

Listing B-15
SpreadsheetDateFactory.java (Final)

Listing B-16
SpreadsheetDate.java (Final)

Appendix C
Cross References of Heuristics
Cross references of Smells and Heuristics. All other cross references can be deleted.

Epilogue
In 2005, while attending the Agile conference in Denver, Elisabeth Hedrickson1 handed me a green wrist band similar to the kind that Lance Armstrong made so popular. This one said “Test Obsessed” on it. I gladly put it on and wore it proudly. Since learning TDD from Kent Beck in 1999, I have indeed become obsessed with test-driven development.
But then something strange happened. I found I could not take the band off. Not because it was physically stuck, but because it was morally stuck. The band made an overt statement about my professional ethics. It was a visible indication of my committment to writing the best code I could write. Taking it off seemed like a betrayal of those ethics and of that committment.
So it is on my wrist still. When I write code, I see it there in my peripheral vision. It is a constant reminder of the promise I made to myself to write clean code.

Index
detection, 237–238
++ (pre- or post-increment) operator, 325, 326
A
aborted computation, 109
abstract classes, 149, 271, 290
ABSTRACT FACTORY pattern, 38, 156, 273, 274
abstract interfaces, 94
abstract methods
adding to ArgumentMarshaler, 234–235

modifying, 282

abstract terms, 95
abstraction
classes depending on, 150

code at wrong level of, 290–291

descending one level at a time, 37

functions descending only one level of, 304–306

mixing levels of, 36–37

names at the appropriate level of, 311

separating levels of, 305

wrapping an implementation, 11

abstraction levels
raising, 290

separating, 305

accessor functions, Law of Demeter and, 98
accessors, naming, 25
Active Records, 101
adapted server, 185
affinity, 84
Agile Software Development: Principles, Patterns, Practices (PPP), 15
algorithms
correcting, 269–270

repeating, 48

understanding, 297–298

ambiguities
in code, 301

ignored tests as, 313

amplification comments, 59
analysis functions, 265
“annotation form”, of AspectJ, 166
Ant project, 76, 77
AOP (aspect-oriented programming), 160, 163
APIs. See also
public APIs
calling a null-returning method from, 110

specialized for tests, 127

wrapping third-party, 108

applications
decoupled from Spring, 164

decoupling from construction details, 156

infrastructure of, 163

keeping concurrency-related code separate, 181

arbitrary structure, 303–304
args array, converting into a list, 231–232
Args class
constructing, 194

implementation of, 194–200

rough drafts of, 201–212, 226–231

ArgsException class
listing, 198–200

merging exceptions into, 239–242

argument(s)
flag, 41

for a function, 40

in functions, 288

monadic forms of, 41

reducing, 43

argument lists, 43
argument objects, 43
argument types
adding, 200, 237

negative impact of, 208

ArgumentMarshaler class
adding the skeleton of, 213–214

birth of, 212

ArgumentMarshaler interface, 197–198
arrays, moving, 279
art, of clean code, 6–7
artificial coupling, 293
AspectJ language, 166
aspect-oriented programming (AOP), 160, 163
aspects
in AOP, 160–161

“first-class” support for, 166

assert statements, 130–131
assertEquals, 42
assertions, using a set of, 111
assignments, unaligned, 87–88
atomic operation, 323–324
attributes, 68
authors of JUnit, 252

programmers as, 13–14

authorship statements, 55
automated code instrumentation, 189–190
automated suite, of unit tests, 124
B
bad code, 3–4. See also
dirty code; messy code
degrading effect of, 250

example, 71–72

experience of cleaning, 250

not making up for, 55

bad comments, 59–74
banner, gathering functions beneath, 67
base classes, 290, 291
BDUF (Big Design Up Front), 167
beans, private variables manipulated, 100–101
Beck, Kent, 3, 34, 71, 171, 252, 289, 296
behaviors, 288–289
Big Design Up Front (BDUF), 167
blank lines, in code, 78–79
blocks, calling functions within, 35
Booch,Grady, 8–9
boolean, passing into a function, 41
boolean arguments, 194, 288
boolean map, deleting, 224
boolean output, of tests, 132
bound resources, 183, 184
boundaries
clean, 120

exploring and learning, 116

incorrect behavior at, 289

separating known from unknown, 118–119

boundary condition errors, 269
boundary conditions
encapsulating, 304

testing, 314

boundary tests, easing a migration, 118 “Bowling Game”, 312
Boy Scout Rule, 14–15, 257
following, 284

satisfying, 265

broken windows metaphor, 8
bucket brigade, 303
BUILD-OPERATE-CHECK pattern, 127
builds, 287
business logic, separating from error handling, 109
bylines, 68
byte-manipulation libraries, 161, 162–163
C
The C++ Programming Language, 7
calculations, breaking into intermediate values, 296
call stack, 324
Callable interface, 326
caller, cluttering, 104
calling hierarchy, 106
calls, avoiding chains of, 98
caring, for code, 10
Cartesian points, 42
CAS operation, as atomic, 328
change(s)
isolating from, 149–150

large number of very tiny, 213

organizing for, 147–150

tests enabling, 124

change history, deleting, 270
check exceptions, in Java, 106
circular wait, 337, 338–339
clarification, comments as, 57
clarity, 25, 26
class names, 25
classes
cohesion of, 140–141

creating for bigger concepts, 28–29

declaring instance variables, 81

enforcing design and business rules, 115

exposing internals of, 294

instrumenting into ConTest, 342

keeping small, 136, 175

minimizing the number of, 176

naming, 25, 138

nonthread-safe, 328–329

as nouns of a language, 49

organization of, 136

organizing to reduce risk of change, 147

supporting advanced concurrency design, 183

classification, of errors, 107
clean boundaries, 120
clean code
art of, 6–7

described, 7–12

writing, 6–7

clean tests, 124–127
cleanliness
acquired sense of, 6–7

tied to tests, 9

cleanup, of code, 14–15
clever names, 26
client, using two methods, 330
client code, connecting to a server, 318
client-based locking, 185, 329, 330–332
clientScheduler, 320
client/server application, concurrency in, 317–321
Client/Server nonthreaded, code for, 343–346
client-server using threads, code changes, 346–347
ClientTest.java, 318, 344–346
closing braces, comments on, 67–68
Clover, 268, 269
clutter
Javadocs as, 276

keeping free of, 293

code, 2
bad, 3–4

Beck’s rules of, 10

commented-out, 68–69, 287

dead, 292

explaining yourself in, 55

expressing yourself in, 54

formatting of, 76

implicity of, 18–19

instrumenting, 188, 342

jiggling, 190

making readable, 311

necessity of, 2

reading from top to bottom, 37

simplicity of, 18, 19

technique for shrouding, 20

third-party, 114–115

width of lines in, 85–90

at wrong level of abstraction, 290–291

code bases, dominated by error handling, 103
code changes, comments not always following, 54
code completion, automatic, 20
code coverage analysis, 254–256
code instrumentation, 188–190 “code sense”, 6, 7
code smells, listing of, 285–314
coding standard, 299
cohesion
of classes, 140–141

maintaining, 141–146

command line arguments, 193–194
commands, separating from queries, 45–46
comment header standard, 55–56
comment headers, replacing, 70
commented-out code, 68–69, 287
commenting style, example of bad, 71–72
comments
amplifying importance of something, 59

bad, 59–74

deleting, 282

as failures, 54

good, 55–59

heuristics on, 286–287

HTML, 69

inaccurate, 54

informative, 56

journal, 63–64

legal, 55–56

mandated, 63

misleading, 63

mumbling, 59–60

as a necessary evil, 53–59

noise, 64–66

not making up for bad code, 55

obsolete, 286

poorly written, 287

proper use of, 54

redundant, 60–62, 272, 275, 286–287

restating the obvious, 64

separated from code, 54

TODO, 58–59

too much information in, 70

venting in, 65

writing, 287

“communication gap”, minimizing, 168
Compare and Swap (CAS) operation, 327–328
ComparisonCompactor module, 252–265
defactored, 256–261

final, 263–265

interim, 261–263

original code, 254–256

compiler warnings, turning off, 289
complex code, demonstrating failures in, 341
complexity, managing, 139–140
computer science (CS) terms, using for names, 27
concepts
keeping close to each other, 80

naming, 19

one word per, 26

separating at different levels, 290

spelling similar similarly, 20

vertical openness between, 78–79

conceptual affinity, of code, 84
concerns
cross-cutting, 160–161

separating, 154, 166, 178, 250

concrete classes, 149
concrete details, 149
concrete terms, 94
concurrency
defense principles, 180–182

issues, 190

motives for adopting, 178–179

myths and misconceptions about, 179–180

concurrency code
compared to nonconcurrency-related code, 181

focusing, 321

concurrent algorithms, 179
concurrent applications, partition behavior, 183
concurrent code
breaking, 329–333

defending from problems of, 180

flaws hiding in, 188

concurrent programming, 180
Concurrent Programming in Java: Design Principles and Patterns, 182, 342
concurrent programs, 178
concurrent update problems, 341
ConcurrentHashMap implementation, 183
conditionals
avoiding negative, 302

encapsulating, 257–258, 301

configurable data, 306
configuration constants, 306
consequences, warning of, 58
consistency
in code, 292

of enums, 278

in names, 40

consistent conventions, 259
constants
versus enums, 308–309

hiding, 308

inheriting, 271, 307–308

keeping at the appropriate level, 83

leaving as raw numbers, 300

not inheriting, 307–308

passing as symbols, 276

turning into enums, 275–276

construction
moving all to main, 155, 156

separating with factory, 156

of a system, 154

constructor arguments, 157
constructors, overloading, 25
consumer threads, 184
ConTest tool, 190, 342
context
adding meaningful, 27–29

not adding gratuitous, 29–30

providing with exceptions, 107

continuous readers, 184
control variables, within loop statements, 80–81
convenient idioms, 155
convention(s)
following standard, 299–300

over configuration, 164

structure over, 301

using consistent, 259

convoluted code, 175
copyright statements, 55
cosmic-rays. See
one-offs
CountDownLatch class, 183
coupling. See also
decoupling; temporal coupling; tight coupling
artificial, 293

hidden temporal, 302–303

lack of, 150

coverage patterns, testing, 314
coverage tools, 313 “crisp abstraction”, 8–9
cross-cutting concerns, 160
Cunningham, Ward, 11–12
cuteness, in code, 26
D
dangling false argument, 294
data
abstraction, 93–95

copies of, 181–182

encapsulation, 181

limiting the scope of, 181

sets processed in parallel, 179

types, 97, 101

data structures. See also
structure(s)
compared to objects, 95, 97

defined, 95

interfaces representing, 94

treating Active Records as, 101

data transfer-objects (DTOs), 100–101, 160
database normal forms, 48
DateInterval enum, 282–283
DAY enumeration, 277
DayDate class, running SerialDate as, 271
DayDateFactory, 273–274
dead code, 288, 292
dead functions, 288
deadlock, 183, 335–339
deadly embrace. See
circular wait
debugging, finding deadlocks, 336
decision making, optimizing, 167–168
decisions, postponing, 168
declarations, unaligned, 87–88
DECORATOR objects, 164
DECORATOR pattern, 274
decoupled architecture, 167
decoupling, from construction details, 156
decoupling strategy, concurrency as, 178
default constructor, deleting, 276
degradation, preventing, 14
deletions, as the majority of changes, 250
density, vertical in code, 79–80
dependencies
finding and breaking, 250

injecting, 157

logical, 282

making logical physical, 298–299

between methods, 329–333

between synchronized methods, 185

Dependency Injection (DI), 157
Dependency Inversion Principle (DIP), 15, 150
dependency magnet, 47
dependent functions, formatting, 82–83
derivatives
base classes depending on, 291

base classes knowing about, 273

of the exception class, 48

moving set functions into, 232, 233–235

pushing functionality into, 217

description
of a class, 138

overloading the structure of code into, 310

descriptive names
choosing, 309–310

using, 39–40

design(s)
of concurrent algorithms, 179

minimally coupled, 167

principles of, 15

design patterns, 290
details, paying attention to, 8
DI (Dependency Injection), 157
Dijkstra, Edsger, 48
dining philosophers execution model, 184–185
DIP (Dependency Inversion Principle), 15, 150
dirty code. See also
bad code; messy code
dirty code, cleaning, 200
dirty tests, 123
disinformation, avoiding, 19–20
distance, vertical in code, 80–84
distinctions, making meaningful, 20–21
domain-specific languages (DSLs), 168–169
domain-specific testing language, 127
DoubleArgumentMarshaler class, 238
DRY principle (Don’t Repeat Yourself), 181, 289
DTOs (data transfer objects), 100–101, 160
dummy scopes, 90
duplicate if statements, 276
duplication
of code, 48

in code, 289–290

eliminating, 173–175

focusing on, 10

forms of, 173, 290

reduction of, 48

strategies for eliminating, 48

dyadic argument, 40
dyadic functions, 42
dynamic proxies, 161
E
e, as a variable name, 22
Eclipse, 26
edit sessions, playing back, 13–14
efficiency, of code, 7
EJB architecture, early as over-engineered, 167
EJB standard, complete overhaul of, 164
EJB2 beans, 160
EJB3, Bank object rewritten in, 165–166
“elegant” code, 7
emergent design, 171–176
encapsulation, 136
of boundary conditions, 304

breaking, 106–107

of conditionals, 301

encodings, avoiding, 23–24, 312–313
entity bean, 158–160
enum(s)
changing MonthConstants to, 272

using, 308–309

enumeration, moving, 277
environment, heuristics on, 287
environment control system, 128–129
envying, the scope of a class, 293
error check, hiding a side effect, 258
Error class, 47–48
error code constants, 198–200
error codes
implying a class or enum, 47–48

preferring exceptions to, 46

returning, 103–104

reusing old, 48

separating from the Args module, 242–250

error detection, pushing to the edges, 109
error flags, 103–104
error handling, 8, 47–48
error messages, 107, 250
error processing, testing, 238–239
errorMessage method, 250
errors. See also
boundary condition errors; spelling errors; string comparison errors classifying, 107
Evans, Eric, 311
events, 41
exception classification, 107
exception clauses, 107–108
exception management code, 223
exceptions
instead of return codes, 103–105

narrowing the type of, 105–106

preferring to error codes, 46

providing context with, 107

separating from Args, 242–250

throwing, 104–105, 194

unchecked, 106–107

execution, possible paths of, 321–326
execution models, 183–185
Executor framework, 326–327
ExecutorClientScheduler.java, 321
explanation, of intent, 56–57
explanatory variables, 296–297
explicitness, of code, 19
expressive code, 295
expressiveness
in code, 10–11

ensuring, 175–176

Extract Method refactoring, 11
Extreme Programming Adventures in C#, 10
Extreme Programming Installed, 10
“eye-full”, code fitting into, 79–80
F
factories, 155–156
factory classes, 273–275
failure
to express ourselves in code, 54

patterns of, 314

tolerating with no harm, 330

false argument, 294
fast tests, 132
fast-running threads, starving longer running, 183
fear, of renaming, 30
Feathers, Michael, 10
feature envy
eliminating, 293–294

smelling of, 278

file size, in Java, 76
final keywords, 276
F.I.R.S.T. acronym, 132–133
First Law, of TDD, 122
FitNesse project
coding style for, 90

file sizes, 76, 77

function in, 32–33

invoking all tests, 224

flag arguments, 41, 288
focussed code, 8
foreign code. See
third-party code
formatting
horizontal, 85–90

purpose of, 76

Uncle Bob’s rules, 90–92

vertical, 76–85

formatting style, for a team of developers, 90
Fortran, forcing encodings, 23
Fowler, Martin, 285, 293
frame, 324
function arguments, 40–45
function call dependencies, 84–85
function headers, 70
function signature, 45
functionality, placement of, 295–296
functions
breaking into smaller, 141–146

calling within a block, 35

dead, 288

defining private, 292

descending one level of abstraction, 304–306

doing one thing, 35–36, 302

dyadic, 42

eliminating extraneous if statements, 262

establishing the temporal nature of, 260

formatting dependent, 82–83

gathering beneath a banner, 67

heuristics on, 288

intention-revealing, 19

keeping small, 175

length of, 34–35

moving, 279

naming, 39, 297

number of arguments in, 288

one level of abstraction per, 36–37

in place of comments, 67

renaming for clarity, 258

rewriting for clarity, 258–259

sections within, 36

small as better, 34

structured programming with, 49

understanding, 297–298

as verbs of a language, 49

writing, 49

futures, 326
G
Gamma, Eric, 252
general heuristics, 288–307
generated byte-code, 180
generics, improving code readability, 115
get functions, 218
getBoolean function, 224
GETFIELD instruction, 325, 326
getNextId method, 326
getState function, 129
Gilbert, David, 267, 268
given-when-then convention, 130
glitches. See
one-offs
global setup strategy, 155
“God class”, 136–137
good comments, 55–59
goto statements, avoiding, 48, 49
grand redesign, 5
gratuitous context, 29–30
H
hand-coded instrumentation, 189
HashTable, 328–329
headers. See
comment headers; function headers
heuristics
cross references of, 286, 409

general, 288–307

listing of, 285–314

hidden temporal coupling, 259, 302–303
hidden things, in a function, 44
hiding
implementation, 94

structures, 99

hierarchy of scopes, 88
HN. See
Hungarian Notation
horizontal alignment, of code, 87–88
horizontal formatting, 85–90
horizontal white space, 86
HTML, in source code, 69
Hungarian Notation (HN), 23–24, 295
Hunt, Andy, 8, 289
hybrid structures, 99
I
if statements
duplicate, 276

eliminating, 262

if-else chain
appearing again and again, 290

eliminating, 233

ignored tests, 313
implementation
duplication of, 173

encoding, 24

exposing, 94

hiding, 94

wrapping an abstraction, 11

Implementation Patterns, 3, 296
implicity, of code, 18
import lists
avoiding long, 307

shortening in SerialDate, 270

imports, as hard dependencies, 307
imprecision, in code, 301
inaccurate comments, 54
inappropriate information, in comments, 286
inappropriate static methods, 296
include method, 48
inconsistency, in code, 292
inconsistent spellings, 20
incrementalism, 212–214
indent level, of a function, 35
indentation, of code, 88–89
indentation rules, 89
independent tests, 132
information
inappropriate, 286

too much, 70, 291–292

informative comments, 56
inheritance hierarchy, 308
inobvious connection, between a comment and code, 70
input arguments, 41
instance variables
in classes, 140

declaring, 81

hiding the declaration of, 81–82

passing as function arguments, 231

proliferation of, 140

instrumented classes, 342
insufficient tests, 313
integer argument(s)
defining, 194

integrating, 224–225

integer argument functionality, moving into ArgumentMarshaler, 215–216
integer argument type, adding to Args, 212
integers, pattern of changes for, 220
IntelliJ, 26
intent
explaining in code, 55

explanation of, 56–57

obscured, 295

intention-revealing function, 19
intention-revealing names, 18–19
interface(s)
defining local or remote, 158–160

encoding, 24

implementing, 149–150

representing abstract concerns, 150

turning ArgumentMarshaler into, 237

well-defined, 291–292

writing, 119

internal structures, objects hiding, 97
intersection, of domains, 160
intuition, not relying on, 289
inventor of C++, 7
Inversion of Control (IoC), 157
InvocationHandler object, 162
I/O bound, 318
isolating, from change, 149–150
isxxxArg methods, 221–222
iterative process, refactoring as, 265
J
jar files, deploying derivatives and bases in, 291
Java
aspects or aspect-like mechanisms, 161–166

heuristics on, 307–309

as a wordy language, 200

Java 5, improvements for concurrent development, 182–183
Java 5 Executor framework, 320–321
Java 5 VM, nonblocking solutions in, 327–328
Java AOP frameworks, 163–166
Java programmers, encoding not needed, 24
Java proxies, 161–163
Java source files, 76–77
javadocs
as clutter, 276

in nonpublic code, 71

preserving formatting in, 270

in public APIs, 59

requiring for every function, 63

java.util.concurrent package, collections in, 182–183
JBoss AOP, proxies in, 163
JCommon library, 267
JCommon unit tests, 270
JDepend project, 76, 77
JDK proxy, providing persistence support, 161–163
Jeffries, Ron, 10–11, 289
jiggling strategies, 190
JNDI lookups, 157
journal comments, 63–64
JUnit, 34
JUnit framework, 252–265
Junit project, 76, 77
Just-In-Time Compiler, 180
K
keyword form, of a function name, 43
L
L, lower-case in variable names, 20
language design, art of programming as, 49
languages
appearing to be simple, 12

level of abstraction, 2

multiple in one source file, 288

multiples in a comment, 270

last-in, first-out (LIFO) data structure, operand stack as, 324
Law of Demeter, 97–98, 306
LAZY INITIALIZATION/EVALUATION idiom, 154
LAZY-INITIALIZATION, 157
Lea, Doug, 182, 342
learning tests, 116, 118
LeBlanc’s law, 4
legacy code, 307
legal comments, 55–56
level of abstraction, 36–37
levels of detail, 99
lexicon, having a consistent, 26
lines of code
duplicating, 173

width of, 85

list(s)
of arguments, 43

meaning specific to programmers, 19

returning a predefined immutable, 110

literate code, 9
literate programming, 9
Literate Programming, 141
livelock, 183, 338
local comments, 69–70
local variables, 324
declaring, 292

at the top of each function, 80

lock & wait, 337, 338
locks, introducing, 185
log4j package, 116–118
logical dependencies, 282, 298–299
LOGO language, 36
long descriptive names, 39
long names, for long scopes, 312
loop counters, single-letter names for, 25
M
magic numbers
obscuring intent, 295

replacing with named constants, 300–301

main function, moving construction to, 155, 156
managers, role of, 6
mandated comments, 63
manual control, over a serial ID, 272
Map
adding for ArgumentMarshaler, 221

methods of, 114

maps, breaking the use of, 222–223
marshalling implementation, 214–215
meaningful context, 27–29
member variables
f prefix for, 257

prefixing, 24

renaming for clarity, 259

mental mapping, avoiding, 25
messy code. See also
bad code; dirty code total cost of owning, 4–12
method invocations, 324
method names, 25
methods
affecting the order of execution, 188

calling a twin with a flag, 278

changing from static to instance, 280

of classes, 140

dependencies between, 329–333

eliminating duplication between, 173–174

minimizing assert statements in, 176

naming, 25

tests exposing bugs in, 269

minimal code, 9
misleading comments, 63
misplaced responsibility, 295–296, 299
MOCK OBJECT, assigning, 155
monadic argument, 40
monadic forms, of arguments, 41
monads, converting dyads into, 42
Monte Carlo testing, 341
Month enum, 278
MonthConstants class, 271
multithread aware, 332
multithread-calculation, of throughput, 335
multithreaded code, 188, 339–342
mumbling, 59–60
mutators, naming, 25
mutual exclusion, 183, 336, 337
N
named constants, replacing magic numbers, 300–301
name-length-challenged languages, 23
names
abstractions, appropriate level of, 311

changing, 40

choosing, 175, 309–310

of classes, 270–271

clever, 26

descriptive, 39–40

of functions, 297

heuristics on, 309–313

importance of, 309–310

intention-revealing, 18–19

length of corresponding to scope, 22–23

long names for long scopes, 312

making unambiguous, 258

problem domain, 27

pronounceable, 21–22

rules for creating, 18–30

searchable, 22–23

shorter generally better than longer, 30

solution domain, 27

with subtle differences, 20

unambiguous, 312

at the wrong level of abstraction, 271

naming, classes, 138
naming conventions, as inferior to structures, 301
navigational methods, in Active Records, 101
near bugs, testing, 314
negative conditionals, avoiding, 302
negatives, 258
nested structures, 46
Newkirk, Jim, 116
newspaper metaphor, 77–78
niladic argument, 40
no preemption, 337
noise
comments, 64–66

scary, 66

words, 21

nomenclature, using standard, 311–312
nonblocking solutions, 327–328
nonconcurrency-related code, 181
noninformative names, 21
nonlocal information, 69–70
nonpublic code, javadocs in, 71
nonstatic methods, preferred to static, 296
nonthreaded code, getting working first, 187
nonthread-safe classes, 328–329
normal flow, 109
null
not passing into methods, 111–112

not returning, 109–110

passed by a caller accidentally, 111

null detection logic, for ArgumentMarshaler, 214
NullPointerException, 110, 111
number-series naming, 21
O
Object Oriented Analysis and Design with Applications, 8
object-oriented design, 15
objects
compared to data structures, 95, 97

compared to data types and procedures, 101

copying read-only, 181

defined, 95

obscured intent, 295
obsolete comments, 286
obvious behavior, 288–289
obvious code, 12
“Once and only once” principle, 289
“ONE SWITCH” rule, 299
one thing, functions doing, 35–36, 302
one-offs, 180, 187, 191
OO code, 97
OO design, 139
Open Closed Principle (OCP), 15, 38
by checked exceptions, 106

supporting, 149

operand stack, 324
operating systems, threading policies, 188
operators, precedence of, 86
optimistic locking, 327
optimizations, LAZY-EVALUATION as, 157
optimizing, decision making, 167–168
orderings, calculating the possible, 322–323
organization
for change, 147–150

of classes, 136

managing complexity, 139–140

outbound tests, exercising an interface, 118
output arguments, 41, 288
avoiding, 45

need for disappearing, 45

outputs, arguments as, 45
overhead, incurred by concurrency, 179
overloading, of code with description, 310
P
paperback model, as an academic model, 27
parameters, taken by instructions, 324
parse operation, throwing an exception, 220
partitioning, 250
paths of execution, 321–326
pathways, through critical sections, 188
pattern names, using standard, 175
patterns
of failure, 314

as one kind of standard, 311

performance
of a client/server pair, 318

concurrency improving, 179

of server-based locking, 333

permutations, calculating, 323
persistence, 160, 161
pessimistic locking, 327
phraseology, in similar names, 40
physicalizing, a dependency, 299
Plain-Old Java Objects. See
POJOs platforms, running threaded code, 188
pleasing code, 7
pluggable thread-based code, 187
POJO system, agility provided by, 168
POJOs (Plain-Old Java Objects)
creating, 187

implementing business logic, 162

separating threaded-aware code, 190

in Spring, 163

writing application domain logic, 166

polyadic argument, 40
polymorphic behavior, of functions, 296
polymorphic changes, 96–97
polymorphism, 37, 299
position markers, 67
positives
as easier to understand, 258

expressing conditionals as, 302

of decisions, 301precision

as the point of all naming, 30

predicates, naming, 25
preemption, breaking, 338
prefixes
for member variables, 24

as useless in today’s environments, 312–313

pre-increment operator, ++, 324, 325, 326
“prequel”, this book as, 15
principle of least surprise, 288–289, 295
principles, of design, 15
PrintPrimes program, translation into Java, 141
private behavior, isolating, 148–149
private functions, 292
private method behavior, 147
problem domain names, 27
procedural code, 97
procedural shape example, 95–96
procedures, compared to objects, 101
process function, repartitioning, 319–320
process method, I/O bound, 319
processes, competing for resources, 184
processor bound, code as, 318
producer consumer execution model, 184
producer threads, 184
production environment, 127–130
productivity, decreased by messy code, 4
professional programmer, 25
professional review, of code, 268
programmers
as authors, 13–14

conundrum faced by, 6

responsibility for messes, 5–6

unprofessional, 5–6

programming
defined, 2

structured, 48–49

programs, getting them to work, 201
pronounceable names, 21–22
protected variables, avoiding, 80
proxies, drawbacks of, 163
public APIs, javadocs in, 59
puns, avoiding, 26–27
PUTFIELD instruction, as atomic, 325
Q
queries, separating from commands, 45–46
R
random jiggling, tests running, 190
range, including end-point dates in, 276
readability
of clean tests, 124

of code, 76

Dave Thomas on, 9

improving using generics, 115

readability perspective, 8
readers
of code, 13–14

continuous, 184

readers-writers execution model, 184
reading
clean code, 8

code from top to bottom, 37

versus writing, 14

reboots, as a lock up solution, 331
recommendations, in this book, 13
redesign, demanded by the team, 5
redundancy, of noise words, 21
redundant comments, 60–62, 272, 275, 286–287
ReentrantLock class, 183
refactored programs, as longer, 146
refactoring
Args, 212

code incrementally, 172

as an iterative process, 265

putting things in to take out, 233

test code, 127

Refactoring (Fowler), 285
renaming, fear of, 30
repeatability, of concurrency bugs, 180
repeatable tests, 132
requirements, specifying, 2
resetId, byte-code generated for, 324–325
resources
bound, 183

processes competing for, 184

threads agreeing on a global ordering of, 338

responsibilities
counting in classes, 136

definition of, 138

identifying, 139

misplaced, 295–296, 299

splitting a program into main, 146

return codes, using exceptions instead, 103–105
reuse, 174
risk of change, reducing, 147
robust clear code, writing, 112
rough drafts, writing, 200
runnable interface, 326
run-on expressions, 295
run-on journal entries, 63–64
runtime logic, separating startup from, 154
S
safety mechanisms, overridden, 289
scaling up, 157–161
scary noise, 66
schema, of a class, 194
schools of thought, about clean code, 12–13
scissors rule, in C++, 81
scope(s)
defined by exceptions, 105

dummy, 90

envying, 293

expanding and indenting, 89

hierarchy in a source file, 88

limiting for data, 181

names related to the length of, 22–23, 312

of shared variables, 333

searchable names, 22–23
Second Law, of TDD, 122
sections, within functions, 36
selector arguments, avoiding, 294–295
self validating tests, 132
Semaphore class, 183
semicolon, making visible, 90
“serial number”, SerialDate using, 271
SerialDate class
making it right, 270–284

naming of, 270–271

refactoring, 267–284

SerialDateTests class, 268
serialization, 272
server, threads created by, 319–321
server application, 317–318, 343–344
server code, responsibilities of, 319
server-based locking, 329
as preferred, 332–333

with synchronized methods, 185

“Servlet” model, of Web applications, 178
Servlets, synchronization problems, 182
set functions, moving into appropriate derivatives, 232, 233–235
setArgument, changing, 232–233
setBoolean function, 217
setter methods, injecting dependencies, 157
setup strategy, 155
SetupTeardownIncluder.java listing, 50–52
shape classes, 95–96
shared data, limiting access, 181
shared variables
method updating, 328

reducing the scope of, 333

shotgun approach, hand-coded instrumentation as, 189
shut-down code, 186
shutdowns, graceful, 186
side effects
having none, 44

names describing, 313

Simmons, Robert, 276
simple code, 10, 12
Simple Design, rules of, 171–176
simplicity, of code, 18, 19
single assert rule, 130–131
single concepts, in each test function, 131–132
Single Responsibility Principle (SRP), 15, 138–140
applying, 321

breaking, 155

as a concurrency defense principle, 181

recognizing violations of, 174

server violating, 320

Sql class violating, 147

supporting, 157

in test classes conforming to, 172

violating, 38

single value, ordered components of, 42
single-letter names, 22, 25
single-thread calculation, of throughput, 334
SINGLETON pattern, 274
small classes, 136
Smalltalk Best Practice Patterns, 296
smart programmer, 25
software project, maintenance of, 175
software systems. See also
system(s)
compared to physical systems, 158

SOLID class design principle, 150
solution domain names, 27
source code control systems, 64, 68, 69
source files
compared to newspaper articles, 77–78

multiple languages in, 288

Sparkle program, 34
spawned threads, deadlocked, 186
special case objects, 110
SPECIAL CASE PATTERN, 109
specifications, purpose of, 2
spelling errors, correcting, 20
SpreadsheetDateFactory, 274–275
Spring AOP, proxies in, 163
Spring Framework, 157
Spring model, following EJB3, 165
Spring V2.5 configuration file, 163–164
spurious failures, 187
Sql class, changing, 147–149
square root, as the iteration limit, 74
SRP. See
Single Responsibility Principle
standard conventions, 299–300
standard nomenclature, 175, 311–312
standards, using wisely, 168
startup process, separating from runtime logic, 154
starvation, 183, 184, 338
static function, 279
static import, 308
static methods, inappropriate, 296
The Step-down Rule, 37
stories, implementing only today’s, 158
STRATEGY pattern, 290
string arguments, 194, 208–212, 214–225
string comparison errors, 252
StringBuffers, 129
Stroustrup, Bjarne, 7–8
structure(s). See also
data structures
hiding, 99

hybrid, 99

making massive changes to, 212

over convention, 301

structured programming, 48–49
SuperDashboard class, 136–137
swapping, as permutations, 323
switch statements
burying, 37, 38

considering polymorphism before, 299

reasons to tolerate, 38–39

switch/case chain, 290
synchronization problems, avoiding with Servlets, 182
synchronized block, 334
synchronized keyword, 185
adding, 323

always acquiring a lock, 328

introducing a lock via, 331

protecting a critical section in code, 181

synchronized methods, 185
synchronizing, avoiding, 182
synthesis functions, 265
system(s). See also
software systems
file sizes of significant, 77

keeping running during development, 213

needing domain-specific, 168

system architecture, test driving, 166–167
system failures, not ignoring one-offs, 187
system level, staying clean at, 154
system-wide information, in a local comment, 69–70
T
tables, moving, 275
target deployment platforms, running tests on, 341
task swapping, encouraging, 188
TDD (Test Driven Development), 213
building logic, 106

as fundamental discipline, 9

laws of, 122–123

team rules, 90
teams
coding standard for every, 299–300

slowed by messy code, 4

technical names, choosing, 27
technical notes, reserving comments for, 286
TEMPLATE METHOD pattern
addressing duplication, 290

removing higher-level duplication, 174–175

using, 130

temporal coupling. See also
coupling
exposing, 259–260

hidden, 302–303

side effect creating, 44

temporary variables, explaining, 279–281
test cases
adding to check arguments, 237

in ComparisonCompactor, 252–254

patterns of failure, 269, 314

turning off, 58

test code, 124, 127
TEST DOUBLE, assigning, 155
Test Driven Development. See
TDD
test driving, architecture, 166–167
test environment, 127–130
test functions, single concepts in, 131–132
test implementation, of an interface, 150
test suite
automated, 213

of unit tests, 124, 268

verifying precise behavior, 146

testable systems, 172
test-driven development. See
TDD
testing
arguments making harder, 40

construction logic mixed with runtime, 155

testing language, domain-specific, 127
testNG project, 76, 77
tests
clean, 124–127

cleanliness tied to, 9

commented out for SerialDate, 268–270

dirty, 123

enabling the -ilities, 124

fast, 132

fast versus slow, 314

heuristics on, 313–314

ignored, 313

independent, 132

insufficient, 313

keeping clean, 123–124

minimizing assert statements in, 130–131

not stopping trivial, 313

refactoring, 126–127

repeatable, 132

requiring more than one step, 287

running, 341

self validating, 132

simple design running all, 172

suite of automated, 213

timely, 133

writing for multithreaded code, 339–342

writing for threaded code, 186–190

writing good, 122–123

Third Law, of TDD, 122
third-party code integrating, 116
learning, 116

using, 114–115

writing tests for, 116

this variable, 324
Thomas, Dave, 8, 9, 289
thread(s)
adding to a method, 322

interfering with each other, 330

making as independent as possible, 182

stepping on each other, 180, 326

taking resources from other threads, 338

thread management strategy, 320
thread pools, 326
thread-based code, testing, 342
threaded code making pluggable, 187
making tunable, 187–188

symptoms of bugs in, 187

testing, 186–190

writing in Java 5, 182–183

threading
adding to a client/server application, 319, 346–347

problems in complex systems, 342

thread-safe collections, 182–183, 329
throughput
causing starvation, 184

improving, 319

increasing, 333–335

validating, 318

throws clause, 106
tiger team, 5
tight coupling, 172
time, taking to go fast, 6
Time and Money project, 76
file sizes, 77

timely tests, 133
timer program, testing, 121–122
“TO” keyword, 36
TO paragraphs, 37
TODO comments, 58–59
tokens, used as magic numbers, 300
Tomcat project, 76, 77
tools
ConTest tool, 190, 342

coverage, 313

handling proxy boilerplate, 163

testing thread-based code, 342

train wrecks, 98–99
transformations, as return values, 41
transitive navigation, avoiding, 306–307
triadic argument, 40
triads, 42
try blocks, 105
try/catch blocks, 46–47, 65–66
try-catch-finally statement, 105–106
tunable threaded-based code, 187–188
type encoding, 24
U
ubiquitous language, 311–312
unambiguous names, 312
unchecked exceptions, 106–107
unencapsulated conditional, encapsulating, 257
unit testing, isolated as difficult, 160
unit tests, 124, 175, 268
unprofessional programming, 5–6
uppercase C, in variable names, 20
usability, of newspapers, 78
use, of a system, 154
users, handling concurrently, 179
V
validation, of throughput, 318
variable names, single-letter, 25
variables
1 based versus zero based, 261

declaring, 80, 81, 292

explaining temporary, 279–281

explanatory, 296–297

keeping private, 93

local, 292, 324

moving to a different class, 273

in place of comments, 67

promoting to instance variables of classes, 141

with unclear context, 28

venting, in comments, 65
verbs, keywords and, 43
Version class, 139
versions, not deserializing across, 272
vertical density, in code, 79–80
vertical distance, in code, 80–84
vertical formatting, 76–85
vertical openness, between concepts, 78–79
vertical ordering, in code, 84–85
vertical separation, 292
W
wading, through bad code, 3
Web containers, decoupling provided by, 178
what, decoupling from when, 178
white space, use of horizontal, 86
wildcards, 307
Working Effectively with Legacy Code, 10
“working” programs, 201
workmanship, 176
wrappers, 108
wrapping, 108
writers, starvation of, 184
“Writing Shy Code”, 306
X
XML
deployment descriptors, 160

“policy” specified configuration files, 164

Footnotes
Chapter 1
1. [Beck07].
2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that doctors were too busy and wouldn’t have time to wash their hands between patient visits.
3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html
4. [Knuth92].
5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: “Try and leave this world a little better than you found it…”
Chapter 2
1. As we’ll see later on, even if the container is a List, it’s probably better not to encode the container type into the name.
2. Consider, for example, the truly hideous practice of creating a variable named klass just because the name class was used for something else.
3. Uncle Bob used to do this in C++ but has given up the practice because modern IDEs make it unnecessary.
4. http://java.sun.com/products/javabeans/docs/spec.html
Chapter 3
1. An open-source testing tool. www.fitnese.org
2. An open-source unit-testing tool for Java. www.junit.org
3. I asked Kent whether he still had a copy, but he was unable to find one. I searched all my old computers too, but to no avail. All that is left now is my memory of that program.
4. The LOGO language used the keyword “TO” in the same way that Ruby and Python use “def.” So every function began with the word “TO.” This had an interesting effect on the way functions were designed.
5. [KP78], p. 37.
6. And, of course, I include if/else chains in this.
7. a. http://en.wikipedia.org/wiki/Single_responsibility_principle
8. a. http://en.wikipedia.org/wiki/Open/closed_principle
9. [GOF].
10. I just finished refactoring a module that used the dyadic form. I was able to make the outputStream a field of the class and convert all the writeField calls to the monadic form. The result was much cleaner.
11. Those who felt that they could get away without recompiling and redeploying have been found—and dealt with.
12. This is an example of the Open Closed Principle (OCP) [PPP02].
13. The DRY principle. [PRAG].
14. [SP72].
Chapter 4
1. [KP78], p. 144.
2. The current trend for IDEs to check spelling in comments will be a balm for those of us who read a lot of code.
Chapter 5
1. The box shows sigma/2 above and below the mean. Yes, I know that the file length distribution is not normal, and so the standard deviation is not mathematically precise. But we’re not trying for precision here. We’re just trying to get a feel.
2. This is the exact opposite of languages like Pascal, C, and C++ that enforce functions to be defined, or at least declared, before they are used.
3. Who am I kidding? I still am an assembly language programmer. You can take the boy away from the metal, but you can’t take the metal out of the boy!
Chapter 6
1. There are ways around this that are well known to experienced object-oriented designers: VISITOR, or dual-dispatch, for example. But these techniques carry costs of their own and generally return the structure to that of a procedural program.
2. http://en.wikipedia.org/wiki/Law_of_Demeter
3. Found somewhere in the apache framework.
4. This is sometimes called Feature Envy from [Refactoring].
Chapter 7
1. [Martin].
Chapter 8
1. [BeckTDD], pp. 136–137.
2. See the Adapter pattern in [GOF].
3. See more about seams in [WELC].
Chapter 9
1. Professionalism and Test-Driven Development, Robert C. Martin, Object Mentor, IEEE Software, May/June 2007 (Vol. 24, No. 3) pp. 32–36
2. http://fitnesse.org/FitNesse.AcceptanceTestPatterns
3. “Avoid Mental Mapping” on page 25.
4. See Dave Astel’s blog entry: http://www.artima.com/weblogs/viewpost.jsp?thread=35578
5. [RSpec].
6. [GOF].
7. “Keep to the code!”
8. Object Mentor Training Materials.
Chapter 10
1. [RDD]
2. You can read much more about this principle in [PPP].
3. [Knuth92].
4. [PPP].
5. [PPP].
Chapter 11
1. [Mezzaros07].
2. [GOF].
3. See, for example, [Fowler].
4. See [Spring]. There is also a Spring.NET framework.
5. 5. Don’t forget that lazy instantiation/evaluation is just an optimization and perhaps premature!
6. Database management system.
7. See [AOSD] for general information on aspects and [AspectJ]] and [Colyer] for AspectJ-specific information.
8. Meaning no manual editing of the target source code is required.
9. See [CGLIB], [ASM], and [Javassist].
10. For more detailed examples of the Proxy API and examples of its use, see, for example, [Goetz].
11. AOP is sometimes confused with techniques used to implement it, such as method interception and “wrapping” through proxies. The real value of an AOP system is the ability to specify systemic behaviors in a concise and modular way.
12. See [Spring] and [JBoss]. “Pure Java” means without the use of AspectJ.
13. Adapted from http://www.theserverside.com/tt/articles/article.tss?l=IntrotoSpring25.
14. [GOF].
15. The example can be simplified using mechanisms that exploit convention over configuration and Java 5 annotations to reduce the amount of explicit “wiring” logic required.
16. Adapted from http://www.onjava.com/pub/a/onjava/2006/05/17/standardizing-with-ejb3-java-persistence-api.html
17. See [AspectJ] and [Colyer].
18. Not to be confused with the good practice of up-front design, BDUF is the practice of designing everything up front before implementing anything at all.
19. There is still a significant amount of iterative exploration and discussion of details, even after construction starts.
20. The term software physics was first used by [Kolence].
21. The work of [Alexander] has been particularly influential on the software community.
22. See, for example, [DSL]. [JMock] is a good example of a Java API that creates a DSL.
Chapter 12
1. [XPE].
2. [GOF].
Chapter 13
1. Private correspondence.
2. Cosmic-rays, glitches, and so on.
3. See “Digging Deeper” on page 323.
4. See “Possible Paths of Execution” on page 321.
5. [PPP]
6. See “Client/Server Example” on page 317.
7. [PRAG].
8. [Lea99].
9. http://en.wikipedia.org/wiki/Producer-consumer
10. http://en.wikipedia.org/wiki/Readers-writers_problem
11. http://en.wikipedia.org/wiki/Dining_philosophers_problem
12. See “Dependencies Between Methods Can Break Concurrent Code” on page 329.
13. A critical section is any section of code that must be protected from simultaneous use for the program to be correct.
14. See “Increasing Throughput” on page 333.
15. See “Deadlock” on page 335.
16. Did you know that the threading model in Java does not guarantee preemptive threading? Modern OS’s support preemptive threading, so you get that “for free.” Even so, it not guaranteed by the JVM.
17. This is not strictly the case. Since the JVM does not guarantee preemptive threading, a particular algorithm might always work on an OS that does not preempt threads. The reverse is also possible but for different reasons.
18. http://www.alphaworks.ibm.com/tech/contest
Chapter 14
1. I recently rewrote this module in Ruby. It was 1/7th the size and had a subtly better structure.
2. To prevent further surprises of this kind, I added a new unit test that invoked all the FitNesse tests.
Chapter 15
1. JUnit Pocket Guide, Kent Beck, O’Reilly, 2004, p. 43.
2. See “The Boy Scout Rule” on page 14.
Chapter 16
1. An even better solution would have been for Javadoc to present all comments as preformatted, so that comments appear the same in both code and document.
2. Several of the reviewers of this text have taken exception to this decision. They contend that in an open source framework it is better to assert manual control over the serial ID so that minor changes to the software don’t cause old serialized dates to be invalid. This is a fair point. However, at least the failure, inconvenient though it might be, has a clear-cut cause. On the other hand, if the author of the class forgets to update the ID, then the failure mode is undefined and might very well be silent. I think the real moral of this story is that you should not expect to deserialize across versions.
3. [GOF].
4. Ibid.
5. Ibid.
6. [Simmons04], p. 73.
7. [Refactoring].
8. [Beck97].
Chapter 17
1. [Refactoring].
2. Or “The Principle of Least Astonishment”: http://en.wikipedia.org/wiki/
 Principle_of_least_astonishment
3. [PRAG].
4. [GOF].
5. [GOF].
6. [Refactoring].
7. Specifically, the Single Responsibility Principle, the Open Closed Principle, and the Common Closure Principle. See [PPP].
8. [Beck97], p. 108.
9. [Beck07].
10. There is a difference between knowing how the code works and knowing whether the algorithm will do the job required of it. Being unsure that an algorithm is appropriate is often a fact of life. Being unsure what your code does is just laziness.
11. Or better yet, a Money class that uses integers.
12. [PRAG], p. 138.
13. See Ward Cunningham’s quote on page 11.
14. [DDD].
Appendix A
1. You can verify that for yourself by trying out the before and after code. Review the nonthreaded code starting on page 343. Review the threaded code starting on page 346.
2. This is a bit of a simplification. However, for the purpose of this discussion, we can use this simplifying model.
3. In fact, the Iterator interface is inherently not thread-safe. It was never designed to be used by multiple threads, so this should come as no surprise.
4. For example, someone adds some debugging output and the problem “disappears.” The debugging code “fixes” the problem so it remains in the system.
5. There ain’t no such thing as a free lunch.
6. http://www.haifa.ibm.com/projects/verification/contest/index.html
7. See [Lea99] p. 191.
Epilogue
1. http://www.qualitytree.com/

The Clean Coder
A Code of Conduct for Professional Programmers
Robert C. Martin

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Praise for The Clean Coder
“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his expectation for a professional programmer on management interactions, time management, pressure, on collaboration, and on the choice of tools to use. Beyond TDD and ATDD, Martin explains what every programmer who considers him- or herself a professional not only needs to know, but also needs to follow in order to make the young profession of software development grow.”

—Markus Gärtner Senior Software Developer it-agile GmbH www.it-agile.de
www.shino.de
“Some technical books inspire and teach; some delight and amuse. Rarely does a technical book do all four of these things. Robert Martin’s always have for me and The Clean Coder is no exception. Read, learn, and live the lessons in this book and you can accurately call yourself a software professional.”

—George Bullock Senior Program Manager Microsoft Corp.
“If a computer science degree had ‘required reading for after you graduate,’ this would be it. In the real world, your bad code doesn’t vanish when the semester’s over, you don’t get an A for marathon coding the night before an assignment’s due, and, worst of all, you have to deal with people. So, coding gurus are not necessarily professionals. The Clean Coder describes the journey to professionalism . . . and it does a remarkably entertaining job of it.”

—Jeff Overbey University of Illinois at Urbana-Champaign
“The Clean Coder is much more than a set of rules or guidelines. It contains hard-earned wisdom and knowledge that is normally obtained through many years of trial and error or by working as an apprentice to a master craftsman. If you call yourself a software professional, you need this book.”

—R. L. Bogetti Lead System Designer Baxter Healthcare www.RLBogetti.com

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:
 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com
For sales outside the United States please contact:
 International Sales
 international@pearson.com
Visit us on the Web: www.informit.com/ph
Library of Congress Cataloging-in-Publication Data
Martin, Robert C.
 The clean coder : a code of conduct for professional programmers / Robert Martin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-708107-3 (pbk. : alk. paper)
1. Computer programming—Moral and ethical aspects. 2. Computer
programmers—Professional ethics. I. Title.
 QA76.9.M65M367 2011
 005.1092—dc22 2011005962
Copyright © 2011 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:
 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax: (617) 671-3447
ISBN-13: 978-0-13-708107-3
ISBN-10: 0-13-708107-3
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, August 2011

Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from Teradyne. He and I shared a passion for programming and for clean code. We would spend nights, evenings, and weekends together playing with different programming styles and design techniques. We were continually scheming about business ideas. Eventually we formed Object Mentor, Inc., together. I learned many things from Jim as we plied our schemes together. But one of the most important was his attitude of work ethic; it was something I strove to emulate. Jim is a professional. I am proud to have worked with him, and to call him my friend.

Foreword
You’ve picked up this book, so I assume you are a software professional. That’s good; so am I. And since I have your attention, let me tell you why I picked up this book.
It all starts a short time ago in a place not too far away. Cue the curtain, lights and camera, Charley
Several years ago I was working at a medium-sized corporation selling highly regulated products. You know the type; we sat in a cubicle farm in a three-story building, directors and up had private offices, and getting everyone you needed into the same room for a meeting took a week or so.
We were operating in a very competitive market when the government opened up a new product.
Suddenly we had an entirely new set of potential customers; all we had to do was to get them to buy our product. That meant we had to file by a certain deadline with the federal government, pass an assessment audit by another date, and go to market on a third date.
Over and over again our management stressed to us the importance of those dates. A single slip and the government would keep us out of the market for a year, and if customers couldn’t sign up on day one, then they would all sign up with someone else and we’d be out of business.
It was the sort of environment in which some people complain, and others point out that “pressure makes diamonds.”
I was a technical project manager, promoted from development. My responsibility was to get the web site up on go-live day, so potential customers could download information and, most importantly, enrollment forms. My partner in the endeavor was the business-facing project manager, whom I’ll call Joe. Joe’s role was to work the other side, dealing with sales, marketing, and the non-technical requirements. He was also the guy fond of the “pressure makes diamonds” comment.
If you’ve done much work in corporate America, you’ve probably seen the finger-pointing, blamestorming, and work aversion that is completely natural. Our company had an interesting solution to that problem with Joe and me.
A little bit like Batman and Robin, it was our job to get things done. I met with the technical team every day in a corner; we’d rebuild the schedule every single day, figure out the critical path, then remove every possible obstacle from that critical path. If someone needed software; we’d go get it. If they would “love to” configure the firewall but “gosh, it’s time for my lunch break,” we would buy them lunch. If someone wanted to work on our configuration ticket but had other priorities, Joe and I would go talk to the supervisor.
Then the manager.
Then the director.
We got things done.
It’s a bit of an exaggeration to say that we kicked over chairs, yelled, and screamed, but we did use every single technique in our bag to get things done, invented a few new ones along the way, and we did it in an ethical way that I am proud of to this day.
I thought of myself as a member of the team, not above jumping in to write a SQL statement or doing a little pairing to get the code out the door. At the time, I thought of Joe the same way, as a member of the team, not above it.
Eventually I came to realize that Joe did not share that opinion. That was a very sad day for me.
It was Friday at 1:00 PM; the web site was set to go live very early the following Monday.
We were done. *DONE*. Every system was go; we were ready. I had the entire tech team assembled for the final scrum meeting and we were ready to flip the switch. More than “just” the technical team, we had the business folks from marketing, the product owners, with us.
We were proud. It was a good moment.
Then Joe dropped by.
He said something like, “Bad news. Legal doesn’t have the enrollment forms ready, so we can’t go live yet.”
This was no big deal; we’d been held up by one thing or another for the length of the entire project and had the Batman/Robin routine down pat. I was ready, and my reply was essentially, “All right partner, let’s do this one more time. Legal is on the third floor, right?”
Then things got weird.
Instead of agreeing with me, Joe asked, “What are you talking about Matt?”
I said, “You know. Our usual song and dance. We’re talking about four PDF files, right? That are done; legal just has to approve them? Let’s go hang out in their cubicles, give them the evil eye, and get this thing done!”
Joe did not agree with my assessment, and answered, “We’ll just go live late next week. No big deal.”
You can probably guess the rest of the exchange; it sounded something like this:
Matt: “But why? They could do this in a couple hours.”

Joe: “It might take more than that.”

Matt: “But they’ve got all weekend. Plenty of time. Let’s do this!”

Joe: “Matt, these are professionals. We can’t just stare them down and insist they sacrifice their personal lives for our little project.”

Matt: (pause) “. . . Joe . . . what do you think we’ve been doing to the engineering team for the past four months?”

Joe: “Yes, but these are professionals.”

Pause.
Breathe.
What. Did. Joe. Just. Say?
At the time, I thought the technical staff were professionals, in the best sense of the word.
Thinking back over it again, though, I’m not so sure.
Let’s look at that Batman and Robin technique a second time, from a different perspective. I thought I was exhorting the team to its best performance, but I suspect Joe was playing a game, with the implicit assumption that the technical staff was his opponent. Think about it: Why was it necessary to run around, kicking over chairs and leaning on people?
Shouldn’t we have been able to ask the staff when they would be done, get a firm answer, believe the answer we were given, and not be burned by that belief?
Certainly, for professionals, we should . . . and, at the same time, we could not. Joe didn’t trust our answers, and felt comfortable micromanaging the tech team—and at the same time, for some reason, he did trust the legal team and was not willing to micromanage them.
What’s that all about?
Somehow, the legal team had demonstrated professionalism in a way the technical team had not.
Somehow, another group had convinced Joe that they did not need a babysitter, that they were not playing games, and that they needed to be treated as peers who were respected.
No, I don’t think it had anything to do with fancy certificates hanging on walls or a few extra years of college, although those years of college might have included a fair bit of implicit social training on how to behave.
Ever since that day, those long years ago, I’ve wondered how the technical profession would have to change in order to be regarded as professionals.
Oh, I have a few ideas. I’ve blogged a bit, read a lot, managed to improve my own work life situation and help a few others. Yet I knew of no book that laid out a plan, that made the whole thing explicit.
Then one day, out of the blue, I got an offer to review an early draft of a book; the book that you are holding in your hands right now.
This book will tell step by step exactly how to present yourself and interact as a professional. Not with trite cliché, not with appeals to pieces of paper, but what you can do and how to do it.
In some cases, the examples are word for word.
Some of those examples have replies, counter-replies, clarifications, even advice for what to do if the other person tries to “just ignore you.”
Hey, look at that, here comes Joe again, stage left this time:
Oh, here we are, back at BigCo, with Joe and me, once more on the big web site conversion project.
Only this time, imagine it just a little bit differently.
Instead of shirking from commitments, the technical staff actually makes them. Instead of shirking from estimates or letting someone else do the planning (then complaining about it), the technical team actually self-organizes and makes real commitments.
Now imagine that the staff is actually working together. When the programmers are blocked by operations, they pick up the phone and the sysadmin actually gets started on the work.
When Joe comes by to light a fire to get ticket 14321 worked on, he doesn’t need to; he can see that the DBA is working diligently, not surfing the web. Likewise, the estimates he gets from staff seem downright consistent, and he doesn’t get the feeling that the project is in priority somewhere between lunch and checking email. All the tricks and attempts to manipulate the schedule are not met with, “We’ll try,” but instead, “That’s our commitment; if you want to make up your own goals, feel free.”
After a while, I suspect Joe would start to think of the technical team as, well, professionals. And he’d be right.
Those steps to transform your behavior from technician to professional? You’ll find them in the rest of the book.
Welcome to the next step in your career; I suspect you are going to like it.
—Matthew Heusser
Software Process Naturalist

Preface

At 11:39 AM EST on January 28, 1986, just 73.124 seconds after launch and at an altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts, including high school teacher Christa McAuliffe, were lost. The expression on the face of McAuliffe’s mother as she watched the demise of her daughter nine miles overhead haunts me to this day.
The Challenger broke up because hot exhaust gasses in the failing SRB leaked out from between the segments of its hull, splashing across the body of the external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting the fuel and driving the tank forward to smash into the liquid oxygen tank above it. At the same time the SRB detached from its aft strut and rotated around its forward strut. Its nose punctured the liquid oxygen tank. These aberrant force vectors caused the entire craft, moving well above mach 1.5, to rotate against the airstream. Aerodynamic forces quickly tore everything to shreds.
Between the circular segments of the SRB there were two concentric synthetic rubber O-rings. When the segments were bolted together the O-rings were compressed, forming a tight seal that the exhaust gasses should not have been able to penetrate.
But on the evening before the launch, the temperature on the launch pad got down to 17°F, 23 degrees below the O-rings’ minimum specified temperature and 33 degrees lower than any previous launch. As a result, the O-rings grew too stiff to properly block the hot gasses. Upon ignition of the SRB there was a pressure pulse as the hot gasses rapidly accumulated. The segments of the booster ballooned outward and relaxed the compression on the O-rings. The stiffness of the O-rings prevented them from keeping the seal tight, so some of the hot gasses leaked through and vaporized the O-rings across 70 degrees of arc.
The engineers at Morton Thiokol who designed the SRB had known that there were problems with the O-rings, and they had reported those problems to managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings from previous launches had been damaged in similar ways, though not enough to be catastrophic. The coldest launch had experienced the most damage. The engineers had designed a repair for the problem, but implementation of that repair had been long delayed.
The engineers suspected that the O-rings stiffened when cold. They also knew that temperatures for the Challenger launch were colder than any previous launch and well below the red-line. In short, the engineers knew that the risk was too high. The engineers acted on that knowledge. They wrote memos raising giant red flags. They strongly urged Thiokol and NASA managers not to launch. In an eleventh-hour meeting held just hours before the launch, those engineers presented their best data. They raged, and cajoled, and protested. But in the end, the managers ignored them.
When the time for launch came, some of the engineers refused to watch the broadcast because they feared an explosion on the pad. But as the Challenger climbed gracefully into the sky they began to relax. Moments before the destruction, as they watched the vehicle pass through Mach 1, one of them said that they’d “dodged a bullet.”
Despite all the protest and memos, and urgings of the engineers, the managers believed they knew better. They thought the engineers were overreacting. They didn’t trust the engineers’ data or their conclusions. They launched because they were under immense financial and political pressure. They hoped everything would be just fine.
These managers were not merely foolish, they were criminal. The lives of seven good men and women, and the hopes of a generation looking toward space travel, were dashed on that cold morning because those managers set their own fears, hopes, and intuitions above the words of their own experts. They made a decision they had no right to make. They usurped the authority of the people who actually knew: the engineers.
But what about the engineers? Certainly the engineers did what they were supposed to do. They informed their managers and fought hard for their position. They went through the appropriate channels and invoked all the right protocols. They did what they could, within the system—and still the managers overrode them. So it would seem that the engineers can walk away without blame.
But sometimes I wonder whether any of those engineers lay awake at night, haunted by that image of Christa McAuliffe’s mother, and wishing they’d called Dan Rather.
About This Book
This book is about software professionalism. It contains a lot of pragmatic advice in an attempt to answer questions, such as
• What is a software professional?

• How does a professional behave?

• How does a professional deal with conflict, tight schedules, and unreasonable managers?

• When, and how, should a professional say “no”?

• How does a professional deal with pressure?

But hiding within the pragmatic advice in this book you will find an attitude struggling to break through. It is an attitude of honesty, of honor, of self-respect, and of pride. It is a willingness to accept the dire responsibility of being a craftsman and an engineer. That responsibility includes working well and working clean. It includes communicating well and estimating faithfully. It includes managing your time and facing difficult risk-reward decisions.
But that responsibility includes one other thing—one frightening thing. As an engineer, you have a depth of knowledge about your systems and projects that no managers can possibly have. With that knowledge comes the responsibility to act.
Bibliography
[McConnell87]: Malcolm McConnell, Challenger ‘A Major Malfunction’, New York, NY: Simon & Schuster, 1987
[Wiki-Challenger]: “Space Shuttle Challenger disaster,” http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster

Acknowledgments
My career has been a series of collaborations and schemes. Though I’ve had many private dreams and aspirations, I always seemed to find someone to share them with. In that sense I feel a bit like the Sith, “Always two there are.”
The first collaboration that I could consider professional was with John Marchese at the age of 13. He and I schemed about building computers together. I was the brains and he was the brawn. I showed him where to solder a wire and he soldered it. I showed him where to mount a relay and he mounted it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built quite a few very impressive-looking objects with relays, buttons, lights, even Teletypes! Of course, none of them actually did anything, but they were very impressive and we worked very hard on them. To John: Thank you!
In my freshman year of high school I met Tim Conrad in my German class. Tim was smart. When we teamed up to build a computer, he was the brains and I was the brawn. He taught me electronics and gave me my first introduction to a PDP-8. He and I actually built a working electronic 18-bit binary calculator out of basic components. It could add, subtract, multiply, and divide. It took us a year of weekends and all of spring, summer, and Christmas breaks. We worked furiously on it. In the end, it worked very nicely. To Tim: Thank you!
Tim and I learned how to program computers. This wasn’t easy to do in 1968, but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1, among others. We devoured them. We wrote programs that we had no hope of executing because we did not have access to a computer. But we wrote them anyway for the sheer love of it.
Our high school started a computer science curriculum in our sophomore year. They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had an account on the Univac 1108 time-sharing system at the Illinois Institute of Technology. Tim and I immediately became the de facto operators of that machine. Nobody else could get near it.
The modem was connected by picking up the telephone and dialing the number. When you heard the answering modem squeal, you pushed the “orig” button on the Teletype causing the originating modem to emit its own squeal. Then you hung up the phone and the data connection was established.
The phone had a lock on the dial. Only the teachers had the key. But that didn’t matter, because we learned that you could dial a phone (any phone) by tapping out the phone number on the switch hook. I was a drummer, so I had pretty good timing and reflexes. I could dial that modem, with the lock in place, in less than 10 seconds.
We had two Teletypes in the computer lab. One was the online machine and the other was an offline machine. Both were used by students to write their programs. The students would type their programs on the Teletypes with the paper tape punch engaged. Every keystroke was punched on tape. The students wrote their programs in IITran, a remarkably powerful interpreted language. Students would leave their paper tapes in a basket near the Teletypes.
After school, Tim and I would dial up the computer (by tapping of course), load the tapes into the IITran batch system, and then hang up. At 10 characters per second, this was not a quick procedure. An hour or so later, we’d call back and get the printouts, again at 10 characters per second. The Teletype did not separate the students’ listings by ejecting pages. It just printed one after the next after the next, so we cut them apart using scissors, paper-clipped their input paper tape to their listing, and put them in the output basket.
Tim and I were the masters and gods of that process. Even the teachers left us alone when we were in that room. We were doing their job, and they knew it. They never asked us to do it. They never told us we could. They never gave us the key to the phone. We just moved in, and they moved out—and they gave us a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr. Robien: Thank you!
Then, after all the student homework was done, we would play. We wrote program after program to do any number of mad and weird things. We wrote programs that graphed circles and parabolas in ASCII on a Teletype. We wrote random walk programs and random word generators. We calculated 50 factorial to the last digit. We spent hours and hours inventing programs to write and then getting them to work.
Two years later, Tim, our compadre Richard Lloyd, and I were hired as programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the time. We had decided that college was a waste of time and that we should begin our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big Jim Carlin, and John Miller. They gave some youngsters the opportunity to learn what professional programming was all about. The experience was not all positive and not all negative. It was certainly educational. To all of them, and to Richard who catalyzed and drove much of that process: Thank you.
After quitting and melting down at the age of 20, I did a stint as a lawn mower repairman working for my brother-in-law. I was so bad at it that he had to fire me. Thanks, Wes!
A year or so later I wound up working at Outboard Marine Corporation. By this time I was married and had a baby on the way. They fired me too. Thanks, John, Ralph, and Tom!
Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss. Chuck and CK were my buds. I learned so much from all of them. Thanks, guys!
Then there was Mike Carew. At Teradyne, he and I became the dynamic duo. We wrote several systems together. If you wanted to get something done, and done fast, you got Bob and Mike to do it. We had a load of fun together. Thanks, Mike!
Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons & Dragons together, but quickly formed a collaboration. We wrote software on a Commodore 64 to support D&D users. We also started a new project at Teradyne called “The Electronic Receptionist.” We worked together for several years, and he became, and remains, a great friend. Thanks, Jerry!
I spent a year in England while working for Teradyne. There I teamed up with Mike Kergozou. He and I schemed together about all manner of things, though most of those schemes had to do with bicycles and pubs. But he was a dedicated programmer who was very focused on quality and discipline (though, perhaps he would disagree). Thanks, Mike!
Returning from England in 1987, I started scheming with Jim Newkirk. We both left Teradyne (months apart) and joined a start-up named Clear Communications. We spent several years together there toiling to make the millions that never came. But we continued our scheming. Thanks, Jim!
In the end we founded Object Mentor together. Jim is the most direct, disciplined, and focused person with whom I’ve ever had the privilege to work. He taught me so many things, I can’t enumerate them here. Instead, I have dedicated this book to him.
There are so many others I’ve schemed with, so many others I’ve collaborated with, so many others who have had an impact on my professional life: Lowell Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis, Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch, and an endless list of others. Thank you, one and all.
Of course, the greatest collaborator of my life has been my lovely wife, Ann Marie. I married her when I was 20, three days after she turned 18. For 38 years she has been my steady companion, my rudder and sail, my love and my life. I look forward to another four decades with her.
And now, my collaborators and scheming partners are my children. I work closely with my eldest daughter Angela, my lovely mother hen and intrepid assistant. She keeps me on the straight and narrow and never lets me forget a date or commitment. I scheme business plans with my son Micah, the founder of 8thlight.com. His head for business is far better than mine ever was. Our latest venture, cleancoders.com, is very exciting!
My younger son Justin has just started working with Micah at 8th Light. My younger daughter Gina is a chemical engineer working for Honeywell. With those two, the serious scheming has just begun!
No one in your life will teach you more than your children will. Thanks, kids!

About the Author

Robert C. Martin (“Uncle Bob”) has been a programmer since 1970. He is founder and president of Object Mentor, Inc., an international firm of highly experienced software developers and managers who specialize in helping companies get their projects done. Object Mentor offers process improvement consulting, object-oriented software design consulting, training, and skill development services to major corporations worldwide.
Martin has published dozens of articles in various trade journals and is a regular speaker at international conferences and trade shows.
He has authored and edited many books, including:
• Designing Object Oriented C++ Applications Using the Booch Method

• Patterns Languages of Program Design 3

• More C++ Gems

• Extreme Programming in Practice

• Agile Software Development: Principles, Patterns, and Practices

• UML for Java Programmers

• Clean Code

A leader in the industry of software development, Martin served for three years as editor-in-chief of the C++ Report, and he served as the first chairman of the Agile Alliance.
Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with his son Micah Martin of The Clean Coders LLC.

On the Cover

The stunning image on the cover, reminiscent of Sauron’s eye, is M1, the Crab Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the star at the tip of the bull’s left horn. The crab nebula is the remnant of a super-nova that blew its guts all over the sky on the rather auspicious date of July 4th, 1054 AD. At a distance of 6500 light years, that explosion appeared to Chinese observers as a new star, roughly as bright as Jupiter. Indeed, it was visible during the day! Over the next six months it slowly faded from naked-eye view.
The cover image is a composite of visible and X-ray light. The visible image was taken by the Hubble telescope and forms the outer envelope. The inner object that looks like a blue archery target was taken by the Chandra x-ray telescope.
The visible image depicts a rapidly expanding cloud of dust and gas laced with heavy elements left over from the supernova explosion. That cloud is now 11 light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the furious rate of 1500 kilometers per second. The kinetic energy of that old explosion is impressive to say the least.
At the very center of the target is a bright blue dot. That’s where the pulsar is. It was the formation of the pulsar that caused the star to blow up in the first place. Nearly a solar mass of material in the core of the doomed star imploded into a sphere of neutrons about 30 kilometers in diameter. The kinetic energy of that implosion, coupled with the incredible barrage of neutrinos created when all those neutrons formed, ripped the star open, and blew it to kingdom come.
The pulsar is spinning about 30 times per second; and it flashes as it spins. We can see it blinking in our telescopes. Those pulses of light are the reason we call it a pulsar, which is short for Pulsating Star.

Pre-Requisite Introduction
(Don’t skip this, you’re going to need it.)

I presume you just picked up this book because you are a computer programmer and are intrigued by the notion of professionalism. You should be. Professionalism is something that our profession is in dire need of.
I’m a programmer too. I’ve been a programmer for 421 years; and in that time—let me tell you—I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant programmers and I’ve worked with slugs.2 I’ve worked on high-tech cutting-edge embedded software/hardware systems, and I’ve worked on corporate payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11, C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems. I’ve worked with untrustworthy paycheck thieves, and I’ve worked with consummate professionals. It is that last classification that is the topic of this book.
In the pages of this book I will try to define what it means to be a professional programmer. I will describe the attitudes, disciplines, and actions that I consider to be essentially professional.
How do I know what these attitudes, disciplines, and actions are? Because I had to learn them the hard way. You see, when I got my first job as a programmer, professional was the last word you’d have used to describe me.
The year was 1969. I was 17. My father had badgered a local business named ASC into hiring me as a temporary part-time programmer. (Yes, my father could do things like that. I once watched him walk out in front of a speeding car with his hand out commanding it to “Stop!” The car stopped. Nobody said “no” to my Dad.) The company put me to work in the room where all the IBM computer manuals were kept. They had me put years and years of updates into the manuals. It was here that I first saw the phrase: “This page intentionally left blank.”
After a couple of days of updating manuals, my supervisor asked me to write a simple Easycoder3 program. I was thrilled to be asked. I’d never written a program for a real computer before. I had, however, inhaled the Autocoder books, and had a vague notion of how to begin.
The program was simply to read records from a tape, and replace the IDs of those records with new IDs. The new IDs started at 1 and were incremented by 1 for each new record. The records with the new IDs were to be written to a new tape.
My supervisor showed me a shelf that held many stacks of red and blue punched cards. Imagine that you bought 50 decks of playing cards, 25 red decks, and 25 blue decks. Then you stacked those decks one on top of the other. That’s what these stacks of cards looked like. They were striped red and blue, and the stripes were about 200 cards each. Each one of those stripes contained the source code for the subroutine library that the programmers typically used. Programmers would simply take the top deck off the stack, making sure that they took nothing but red or blue cards, and then put that at the end of their program deck.
I wrote my program on some coding forms. Coding forms were large rectangular sheets of paper divided into 25 lines and 80 columns. Each line represented one card. You wrote your program on the coding form using block capital letters and a #2 pencil. In the last 6 columns of each line you wrote a sequence number with that #2 pencil. Typically you incremented the sequence number by 10 so that you could insert cards later.
The coding form went to the key punchers. This company had several dozen women who took coding forms from a big in-basket, and then “typed” them into key-punch machines. These machines were a lot like typewriters, except that the characters were punched into cards instead of printed on paper.
The next day the keypunchers returned my program to me by inter-office mail. My small deck of punched cards was wrapped up by my coding forms and a rubber band. I looked over the cards for keypunch errors. There weren’t any. So then I put the subroutine library deck on the end of my program deck, and then took the deck upstairs to the computer operators.
The computers were behind locked doors in an environmentally controlled room with a raised floor (for all the cables). I knocked on the door and an operator austerely took my deck from me and put it into another in-basket inside the computer room. When they got around to it, they would run my deck.
The next day I got my deck back. It was wrapped in a listing of the results of the run and kept together with a rubber band. (We used lots of rubber bands in those days!)
I opened the listing and saw that my compile had failed. The error messages in the listing were very difficult for me to understand, so I took it to my supervisor. He looked it over, mumbled under his breath, made some quick notes on the listing, grabbed my deck and then told me to follow him.
He took me up to the keypunch room and sat at a vacant keypunch machine. One by one he corrected the cards that were in error, and added one or two other cards. He quickly explained what he was doing, but it all went by like a flash.
He took the new deck up to the computer room and knocked at the door. He said some magic words to one of the operators, and then walked into the computer room behind him. He beckoned for me to follow. The operator set up the tape drives and loaded the deck while we watched. The tapes spun, the printer chattered, and then it was over. The program had worked.
The next day my supervisor thanked me for my help, and terminated my employment. Apparently ASC didn’t feel they had the time to nurture a 17-year-old.
But my connection with ASC was hardly over. A few months later I got a full-time second-shift job at ASC operating off-line printers. These printers printed junk mail from print images that were stored on tape. My job was to load the printers with paper, load the tapes into the tape drives, fix paper jams, and otherwise just watch the machines work.
The year was 1970. College was not an option for me, nor did it hold any particular enticements. The Viet Nam war was still raging, and the campuses were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1, PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as hard as I could to get a job programming.
Twelve months later I achieved that goal. I was promoted to a full-time programmer at ASC. I, and two of my good friends, Richard and Tim, also 19, worked with a team of three other programmers writing a real-time accounting system for a teamster’s union. The machine was a Varian 620i. It was a simple mini-computer similar in architecture to a PDP-8 except that it had a 16-bit word and two registers. The language was assembler.
We wrote every line of code in that system. And I mean every line. We wrote the operating system, the interrupt heads, the IO drivers, the file system for the disks, the overlay swapper, and even the relocatable linker. Not to mention all the application code. We wrote all this in 8 months working 70 and 80 hours a week to meet a hellish deadline. My salary was $7,200 per year.
We delivered that system. And then we quit.
We quit suddenly, and with malice. You see, after all that work, and after having delivered a successful system, the company gave us a 2% raise. We felt cheated and abused. Several of us got jobs elsewhere and simply resigned.
I, however, took a different, and very unfortunate, approach. I and a buddy stormed into the boss’ office and quit together rather loudly. This was emotionally very satisfying—for a day.
The next day it hit me that I did not have a job. I was 19, unemployed, with no degree. I interviewed for a few programming positions, but those interviews did not go well. So I worked in my brother-in-law’s lawnmower repair shop for four months. Unfortunately I was a lousy lawnmower repairman. He eventually had to let me go. I fell into a nasty funk.
I stayed up till 3 AM every night eating pizza and watching old monster movies on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts where characters in the movies. I stayed in bed till 1 PM because I didn’t want to face my dreary days. I took a calculus course at a local community college and failed it. I was a wreck.
My mother took me aside and told me that my life was a mess, and that I had been an idiot for quitting without having a new job, and for quitting so emotionally, and for quitting together with my buddy. She told me that you never quit without having a new job, and you always quit calmly, coolly, and alone. She told me that I should call my old boss and beg for my old job back. She said, “You need to eat some humble pie.”
Nineteen-year-old boys are not known for their appetite for humble pie, and I was no exception. But the circumstances had taken their toll on my pride. In the end I called my boss and took a big bite of that humble pie. And it worked. He was happy to re-hire me for $6,800 per year, and I was happy to take it.
I spent another eighteen months working there, watching my Ps and Qs and trying to be as valuable an employee as I could. I was rewarded with promotions and raises, and a regular paycheck. Life was good. When I left that company, it was on good terms, and with an offer for a better job in my pocket.
You might think that I had learned my lesson; that I was now a professional. Far from it. That was just the first of many lessons I needed to learn. In the coming years I would be fired from one job for carelessly missing critical dates, and nearly fired from still another for inadvertently leaking confidential information to a customer. I would take the lead on a doomed project and ride it into the ground without calling for the help I knew I needed. I would aggressively defend my technical decisions even though they flew in the face of the customers’ needs. I would hire one wholly unqualified person, saddling my employer with a huge liability to deal with. And worst of all, I would get two other people fired because of my inability to lead.
So think of this book as a catalog of my own errors, a blotter of my own crimes, and a set of guidelines for you to avoid walking in my early shoes.

1. Professionalism

“Oh laugh, Curtin, old boy. It’s a great joke played on us by the Lord, or fate, or nature, whatever you prefer. But whoever or whatever played it certainly had a sense of humor! Ha!”

—Howard, The Treasure of the Sierra Madre
So, you want to be a professional software developer do you? You want to hold your head high and declare to the world: “I am a professional!” You want people to look at you with respect and treat you with deference. You want mothers pointing at you and telling their children to be like you. You want it all. Right?
Be Careful What You Ask For
Professionalism is a loaded term. Certainly it is a badge of honor and pride, but it is also a marker of responsibility and accountability. The two go hand in hand, of course. You can’t take pride and honor in something that you can’t be held accountable for.
It’s a lot easier to be a nonprofessional. Nonprofessionals don’t have to take responsibility for the job they do—they leave that to their employers. If a nonprofessional makes an error, the employer cleans up the mess. But when a professional makes a mistake, he cleans up the mess.
What would happen if you allowed a bug to slip through a module, and it cost your company $10,000? The nonprofessional would shrug his shoulders, say “stuff happens,” and start writing the next module. The professional would write the company a check for $10,000!1
Yeah, it feels a little different when it’s your own money, doesn’t it? But that feeling is the feeling a professional has all the time. Indeed, that feeling is the essence of professionalism. Because, you see, professionalism is all about taking responsibility.
Taking Responsibility
You read the introduction, right? If not, go back and do so now; it sets the context for everything that follows in this book.
I learned about taking responsibility by suffering through the consequences of not taking it.
In 1979 I was working for a company named Teradyne. I was the “responsible engineer” for the software that controlled a mini- and microcomputer-based system that measured the quality of telephone lines. The central mini-computer was connected via 300-baud dedicated or dial-up phone lines to dozens of satellite micro-computers that controlled the measurement hardware. The code was all written in assembler.
Our customers were the service managers of major telephone companies. Each had the responsibility for 100,000 telephone lines or more. My system helped these service area managers find and repair malfunctions and problems in the telephone lines before their customers noticed them. This reduced the customer complaint rates that the public utility commissions measured and used to regulate the rates that the telephone companies could charge. In short, these systems were incredibly important.
Every night these systems ran through a “nightly routine” in which the central mini-computer told each of the satellite micro-computers to test every telephone line under their control. Each morning the central computer would pull back the list of faulty lines, along with their failing characteristics. The service area managers would use this report to schedule repairmen to fix the faults before the customers could complain.
On one occasion I shipped a new release to several dozen customers. “Ship” is exactly the right word. I wrote the software onto tapes and shipped those tapes to the customers. The customers loaded the tapes and then rebooted the systems.
The new release fixed some minor defects and added a new feature that our customers had been demanding. We had told them we would provide that new feature by a certain date. I barely managed to overnight the tapes so that they’d arrive on the promised date.
Two days later I got a call from our field service manager, Tom. He told me that several customers had complained that the “nightly routine” had not completed, and that they had gotten no reports. My heart sank because in order to ship the software on time, I had neglected to test the routine. I had tested much of the other functionality of the system, but testing the routine took hours, and I needed to ship the software. None of the bug fixes were in the routine code, so I felt safe.
Losing a nightly report was a big deal. It meant that the repairmen had less to do and would be overbooked later. It meant that some customers might notice a fault and complain. Losing a night’s worth of data is enough to get a service area manager to call Tom and lambaste him.
I fired up our lab system, loaded the new software, and then started a routine. It took several hours but then it aborted. The routine failed. Had I run this test before I shipped, the service areas wouldn’t have lost data, and the service area managers wouldn’t be roasting Tom right now.
I phoned Tom to tell him that I could duplicate the problem. He told me that most of the other customers had called him with the same complaint. Then he asked me when I could fix it. I told him I didn’t know, but that I was working on it. In the meantime I told him that the customers should go back to the old software. He was angry at me saying that this was a double blow to the customers since they’d lost a whole night’s worth of data and couldn’t use the new feature they were promised.
The bug was hard to find, and testing took several hours. The first fix didn’t work. Nor did the second. It took me several tries, and therefore several days, to figure out what had gone wrong. The whole time, Tom was calling me every few hours asking me when I’d have this fixed. He also made sure I knew about the earfuls he was getting from the service area managers, and just how embarrassing it was for him to tell them to put the old tapes back in.
In the end, I found the defect, shipped the new tapes, and everything went back to normal. Tom, who was not my boss, cooled down and we put the whole episode behind us. My boss came to me when it was over and said, “I bet you aren’t going to do that again.” I agreed.
Upon reflection I realized that shipping without testing the routine had been irresponsible. The reason I neglected the test was so I could say I had shipped on time. It was about me saving face. I had not been concerned about the customer, nor about my employer. I had only been concerned about my own reputation. I should have taken responsibility early and told Tom that the tests weren’t complete and that I was not prepared to ship the software on time. That would have been hard, and Tom would have been upset. But no customers would have lost data, and no service managers would have called.
First, Do No Harm
So how do we take responsibility? There are some principles. Drawing from the Hippocratic oath may seem arrogant, but what better source is there? And, indeed, doesn’t it make sense that the first responsibility, and first goal, of an aspiring professional is to use his or her powers for good?
What harm can a software developer do? From a purely software point of view, he or she can do harm to both the function and structure of the software. We’ll explore how to avoid doing just that.
Do No Harm to Function
Clearly, we want our software to work. Indeed, most of us are programmers today because we got something to work once and we want that feeling again. But we aren’t the only ones who want the software to work. Our customers and employers want it to work too. Indeed, they are paying us to create software that works just the way they want it to.
We harm the function of our software when we create bugs. Therefore, in order to be professional, we must not create bugs.
“But wait!” I hear you say. “That’s not reasonable. Software is too complex to create without bugs.”
Of course you are right. Software is too complex to create without bugs. Unfortunately that doesn’t let you off the hook. The human body is too complex to understand in it’s entirety, but doctors still take an oath to do no harm. If they don’t take themselves off a hook like that, how can we?
“Are you telling us we must be perfect?” Do I hear you object?
No, I’m telling you that you must be responsible for your imperfections. The fact that bugs will certainly occur in your code does not mean you aren’t responsible for them. The fact that the task to write perfect software is virtually impossible does not mean you aren’t responsible for the imperfection.
It is the lot of a professional to be accountable for errors even though errors are virtually certain. So, my aspiring professional, the first thing you must practice is apologizing. Apologies are necessary, but insufficient. You cannot simply keep making the same errors over and over. As you mature in your profession, your error rate should rapidly decrease towards the asymptote of zero. It won’t ever get to zero, but it is your responsibility to get as close as possible to it.
QA Should Find Nothing
Therefore, when you release your software you should expect QA to find no problems. It is unprofessional in the extreme to purposely send code that you know to be faulty to QA. And what code do you know to be faulty? Any code you aren’t certain about!
Some folks use QA as the bug catchers. They send them code that they haven’t thoroughly checked. They depend on QA to find the bugs and report them back to the developers. Indeed, some companies reward QA based on the number of bugs they find. The more bugs, the greater the reward.
Never mind that this is a desperately expensive behavior that damages the company and the software. Never mind that this behavior ruins schedules and undermines the confidence of the enterprise in the development team. Never mind that this behavior is just plain lazy and irresponsible. Releasing code to QA that you don’t know works is unprofessional. It violates the “do no harm” rule.
Will QA find bugs? Probably, so get ready to apologize—and then figure out why those bugs managed to escape your notice and do something to prevent it from happening again.
Every time QA, or worse a user, finds a problem, you should be surprised, chagrined, and determined to prevent it from happening again.
You Must Know It Works
How can you know your code works? That’s easy. Test it. Test it again. Test it up. Test it down. Test it seven ways to Sunday!
Perhaps you are concerned that testing your code so much will take too much time. After all you’ve got schedules and deadlines to keep. If you spend all your time testing, you’ll never get anything else written. Good point! So, automate your tests. Write unit tests that you can execute on a moment’s notice, and run those tests as often as you can.
How much of the code should be tested with these automated unit tests? Do I really need to answer that question? All of it! All. Of. It.
Am I suggesting 100% test coverage? No, I’m not suggesting it. I’m demanding it. Every single line of code that you write should be tested. Period.
Isn’t that unrealistic? Of course not. You only write code because you expect it to get executed. If you expect it to get executed, you ought to know that it works. The only way to know this is to test it.
I am the primary contributor and committer for an open source project called FITNESSE. As of this writing there are 60ksloc in FITNESSE. 26 of those 60 are written in 2000+ unit tests. Emma reports that the coverage of those 2000 tests is ~90%.
Why isn’t my code coverage higher? Because Emma can’t see all the lines of code that are being executed! I believe the coverage is much higher than that. Is the coverage 100%? No, 100% is an asymptote.
But isn’t some code hard to test? Yes, but only because that code has been designed to be hard to test. The solution to that is to design your code to be easy to test. And the best way to do that is to write your tests first, before you write the code that passes them.
This is a discipline known as Test Driven Development (TDD), which we will say more about in a later chapter.
Automated QA
The entire QA procedure for FITNESSE is the execution of the unit and acceptance tests. If those tests pass, I ship. This means my QA procedure takes about three minutes, and I can execute it on a whim.
Now, it’s true that nobody dies if there is a bug in FITNESSE. Nobody loses millions of dollars either. On the other hand, FITNESSE has many thousands of users, and a very small bug list.
Certainly some systems are so mission-critical that a short automated test is insufficient to determine readiness for deployment. On the other hand, you as a developer need a relatively quick and reliable mechanism to know that the code you have written works and does not interfere with the rest of the system. So, at the very least, your automated tests should tell you that the system is very likely to pass QA.
Do No Harm to Structure
The true professional knows that delivering function at the expense of structure is a fool’s errand. It is the structure of your code that allows it to be flexible. If you compromise the structure, you compromise the future.
The fundamental assumption underlying all software projects is that software is easy to change. If you violate this assumption by creating inflexible structures, then you undercut the economic model that the entire industry is based on.
In short: You must be able to make changes without exorbitant costs.
Unfortunately, all too many projects become mired in a tar pit of poor structure. Tasks that used to take days begin to take weeks, and then months. Management, desperate to recapture lost momentum, hires more developers to speed things up. But these developers simply add to the morass, deepening the structural damage and raising the impediment.
Much has been written about the principles and patterns of software design that support structures that are flexible and maintainable.2 Professional software developers commit these things to memory and strive to conform their software to them. But there’s a trick to this that far too few software developers follow: If you want your software to be flexible, you have to flex it!
The only way to prove that your software is easy to change is to make easy changes to it. And when you find that the changes aren’t as easy as you thought, you refine the design so that the next change is easier.
When do you make these easy changes? All the time! Every time you look at a module you make small, lightweight changes to it to improve its structure. Every time you read through the code you adjust the structure.
This philosophy is sometimes called merciless refactoring. I call it “the Boy Scout rule”: Always check in a module cleaner than when you checked it out. Always make some random act of kindness to the code whenever you see it.
This is completely counter to the way most people think about software. They think that making a continuous series of changes to working software is dangerous. No! What is dangerous is allowing the software to remain static. If you aren’t flexing it, then when you do need to change it, you’ll find it rigid.
Why do most developers fear to make continuous changes to their code? They are afraid they’ll break it! Why are they afraid they’ll break it? Because they don’t have tests.
It all comes back to the tests. If you have an automated suite of tests that covers virtually 100% of the code, and if that suite of tests can be executed quickly on a whim, then you simply will not be afraid to change the code. How do you prove you are not afraid to change the code? You change it all the time.
Professional developers are so certain of their code and tests that they are maddeningly casual about making random, opportunistic changes. They’ll change the name of a class, on a whim. They’ll notice a long-ish method while reading through a module and repartition it as a matter of course. They’ll transform a switch statement into polymorphic deployment, or collapse an inheritance hierarchy into a chain-of-command. In short, they treat software the way a sculptor treats clay—they continuously shape and mold it.
Work Ethic
Your career is your responsibility. It is not your employer’s responsibility to make sure you are marketable. It is not your employer’s responsibility to train you, or to send you to conferences, or to buy you books. These things are your responsibility. Woe to the software developer who entrusts his career to his employer.
Some employers are willing to buy you books and send you to training classes and conferences. That’s fine, they are doing you a favor. But never fall into the trap of thinking that this is your employer’s responsibility. If your employer doesn’t do these things for you, you should find a way to do them yourself.
It is also not your employer’s responsibility to give you the time you need to learn. Some employers may provide that time. Some employers may even demand that you take the time. But again, they are doing you a favor, and you should be appropriately appreciative. Such favors are not something you should expect.
You owe your employer a certain amount of time and effort. For the sake of argument, let’s use the U.S. standard of 40 hours per week. These 40 hours should be spent on your employer’s problems, not on your problems.
You should plan on working 60 hours per week. The first 40 are for your employer. The remaining 20 are for you. During this remaining 20 hours you should be reading, practicing, learning, and otherwise enhancing your career.
I can hear you thinking: “But what about my family? What about my life? Am I supposed to sacrifice them for my employer?”
I’m not talking about all your free time here. I’m talking about 20 extra hours per week. That’s roughly three hours per day. If you use your lunch hour to read, listen to podcasts on your commute, and spend 90 minutes per day learning a new language, you’ll have it all covered.
Do the math. In a week there are 168 hours. Give your employer 40, and your career another 20. That leaves 108. Another 56 for sleep leaves 52 for everything else.
Perhaps you don’t want to make that kind of commitment. That’s fine, but you should not then think of yourself as a professional. Professionals spend time caring for their profession.
Perhaps you think that work should stay at work and that you shouldn’t bring it home. I agree! You should not be working for your employer during those 20 hours. Instead, you should be working on your career.
Sometimes these two are aligned with each other. Sometimes the work you do for your employer is greatly beneficial to your career. In that case, spending some of that 20 hours on it is reasonable. But remember, those 20 hours are for you. They are to be used to make yourself more valuable as a professional.
Perhaps you think this is a recipe for burnout. On the contrary, it is a recipe to avoid burnout. Presumably you became a software developer because you are passionate about software and your desire to be a professional is motivated by that passion. During that 20 hours you should be doing those things that reinforce that passion. Those 20 hours should be fun!
Know Your Field
Do you know what a Nassi-Schneiderman chart is? If not, why not? Do you know the difference between a Mealy and a Moore state machine? You should. Could you write a quicksort without looking it up? Do you know what the term “Transform Analysis” means? Could you perform a functional decomposition with Data Flow Diagrams? What does the term “Tramp Data” mean? Have you heard the term “Conascence”? What is a Parnas Table?
A wealth of ideas, disciplines, techniques, tools, and terminologies decorate the last fifty years of our field. How much of this do you know? If you want to be a professional, you should know a sizable chunk of it and constantly be increasing the size of that chunk.
Why should you know these things? After all, isn’t our field progressing so rapidly that all these old ideas have become irrelevant? The first part of that query seems obvious on the surface. Certainly our field is progressing and at a ferocious pace. Interestingly enough, however, that progress is in many respects peripheral. It’s true that we don’t wait 24 hours for compile turnaround any more. It’s true that we write systems that are gigabytes in size. It’s true that we work in the midst of a globe-spanning network that provides instant access to information. On the other hand, we are writing the same if and while statements that we were writing 50 years ago. Much has changed. Much has not.
The second part of the query is certainly not true. Very few ideas of the past 50 years have become irrelevant. Some have been sidelined, it’s true. The notion of doing waterfall development has certainly fallen into disfavor. But that doesn’t mean we shouldn’t know what it is, and what its good and bad points are.
Overall, however, the vast majority of the hard-won ideas of the last 50 years are as valuable today as they were then. Perhaps they are even more valuable now.
Remember Santayana’s curse: “Those who cannot remember the past are condemned to repeat it.”
Here is a minimal list of the things that every software professional should be conversant with:
• Design patterns. You ought to be able to describe all 24 patterns in the GOF book and have a working knowledge of many of the patterns in the POSA books.

• Design principles. You should know the SOLID principles and have a good understanding of the component principles.

• Methods. You should understand XP, Scrum, Lean, Kanban, Waterfall, Structured Analysis, and Structured Design.

• Disciplines. You should practice TDD, Object-Oriented design, Structured Programming, Continuous Integration, and Pair Programming.

• Artifacts: You should know how to use: UML, DFDs, Structure Charts, Petri Nets, State Transition Diagrams and Tables, flow charts, and decision tables.

Continuous Learning
The frenetic rate of change in our industry means that software developers must continue to learn copious quantities just to keep up. Woe to the architects who stop coding—they will rapidly find themselves irrelevant. Woe to the programmers who stop learning new languages—they will watch as the industry passes them by. Woe to the developers who fail to learn new disciplines and techniques—their peers will excel as they decline.
Would you visit a doctor who did not keep current with medical journals? Would you hire a tax lawyer who did not keep current with the tax laws and precedents? Why should employers hire developers who don’t keep current?
Read books, articles, blogs, tweets. Go to conferences. Go to user groups. Participate in reading and study groups. Learn things that are outside your comfort zone. If you are a .NET programmer, learn Java. If you are a Java programmer, learn Ruby. If you are a C programmer, learn Lisp. If you want to really bend your brain, learn Prolog and Forth!
Practice
Professionals practice. True professionals work hard to keep their skills sharp and ready. It is not enough to simply do your daily job and call that practice. Doing your daily job is performance, not practice. Practice is when you specifically exercise your skills outside of the performance of your job for the sole purpose of refining and enhancing those skills.
What could it possibly mean for a software developer to practice? At first thought the concept seems absurd. But stop and think for a moment. Consider how musicians master their craft. It’s not by performing. It’s by practicing. And how do they practice? Among other things, they have special exercises that they perform. Scales and etudes and runs. They do these over and over to train their fingers and their mind, and to maintain mastery of their skill.
So what could software developers do to practice? There’s a whole chapter in this book dedicated to different practice techniques, so I won’t go into much detail here. One technique I use frequently is the repetition of simple exercises such as the Bowling Game or Prime Factors. I call these exercises kata. There are many such kata to choose from.
A kata usually comes in the form of a simple programming problem to solve, such as writing the function that calculates the prime factors of an integer. The point of doing the kata is not to figure out how to solve the problem; you know how to do that already. The point of the kata is to train your fingers and your brain.
I’ll do a kata or two every day, often as part of settling in to work. I might do it in Java, or in Ruby, or in Clojure, or in some other language for which I want to maintain my skills. I’ll use the kata to sharpen a particular skill, such as keeping my fingers used to hitting shortcut keys, or using certain refactorings.
Think of the kata as a 10-minute warm-up exercise in the morning and a 10-minute cool-down in the evening.
Collaboration
The second best way to learn is to collaborate with other people. Professional software developers make a special effort to program together, practice together, design and plan together. By doing so they learn a lot from each other, and they get more done faster with fewer errors.
This doesn’t mean you have to spend 100% of your time working with others. Alone time is also very important. As much as I like to pair program with others, it makes me crazy if I can’t get away by myself from time to time.
Mentoring
The best way to learn is to teach. Nothing will drive facts and values into your head faster and harder than having to communicate them to people you are responsible for. So the benefit of teaching is strongly in favor of the teacher.
By the same token, there is no better way to bring new people into an organization than to sit down with them and show them the ropes. Professionals take personal responsibility for mentoring juniors. They will not let a junior flail about unsupervised.
Know Your Domain
It is the responsibility of every software professional to understand the domain of the solutions they are programming. If you are writing an accounting system, you should know the accounting field. If you are writing a travel application, you should know the travel industry. You don’t have to be a domain expert, but there is a reasonable amount of due diligence that you ought to engage in.
When starting a project in a new domain, read a book or two on the topic. Interview your customer and users about the foundation and basics of the domain. Spend some time with the experts, and try to understand their principles and values.
It is the worst kind of unprofessional behavior to simply code from a spec without understanding why that spec makes sense to the business. Rather, you should know enough about the domain to be able to recognize and challenge specification errors.
Identify with Your Employer/Customer
Your employer’s problems are your problems. You need to understand what those problems are and work toward the best solutions. As you develop a system you need to put yourself in your employer’s shoes and make sure that the features you are developing are really going to address your employer’s needs.
It is easy for developers to identify with each other. It’s easy to fall into an us versus them attitude with your employer. Professionals avoid this at all costs.
Humility
Programming is an act of creation. When we write code we are creating something out of nothing. We are boldly imposing order upon chaos. We are confidently commanding, in precise detail, the behaviors of a machine that could otherwise do incalculable damage. And so, programming is an act of supreme arrogance.
Professionals know they are arrogant and are not falsely humble. A professional knows his job and takes pride in his work. A professional is confident in his abilities, and takes bold and calculated risks based on that confidence. A professional is not timid.
However, a professional also knows that there will be times when he will fail, his risk calculations will be wrong, his abilities will fall short; he’ll look in the mirror and see an arrogant fool smiling back at him.
So when a professional finds himself the butt of a joke, he’ll be the first to laugh. He will never ridicule others, but will accept ridicule when it is deserved and laugh it off when it’s not. He will not demean another for making a mistake, because he knows he may be the next to fail.
A professional understands his supreme arrogance, and that the fates will eventually notice and level their aim. When that aim connects, the best you can do is take Howard’s advice: Laugh.
Bibliography
[PPP2001]: Robert C. Martin, Principles, Patterns, and Practices of Agile Software Development, Upper Saddle River, NJ: Prentice Hall, 2002.

2. Saying No

“Do; or do not. There is no trying.”

—Yoda
In the early ’70s, I, and two of my nineteen-year-old friends were working on a real-time accounting system for the Teamster’s union in Chicago for a company named ASC. If names like Jimmy Hoffa come to mind, they should. You didn’t mess around with the teamsters in 1971.
Our system was supposed to go live by a certain date. A lot of money was riding on that date. Our team had been working 60-, 70-, and 80-hour weeks to try to hold to that schedule.
A week before the go-live date we finally got the system put together in its entirety. There were lots of bugs and issues to deal with, and we frantically worked through the list. There was barely time to eat and sleep, let alone think.
Frank, the manager of ASC, was a retired Air Force colonel. He was one of those loud, in-your-face kind of managers. It was his way or the highway, and he’d put you on that highway by dropping you from 10,000 feet without a parachute. We nineteen year olds were barely able to make eye contact with him.
Frank said it had to be done by the date. That was all there was to it. The date would come, and we would be done. Period. No discussion. Over and out.
My boss, Bill, was a likeable guy. He’d been working with Frank for quite a few years and understood what was possible with Frank, and what was not. He told us that we were going live on the date, no matter what.
So we went live on the date. And it was a blazing disaster.
There were a dozen 300-baud, half-duplex terminals that connected Teamster’s headquarters in Chicago to our machine thirty miles north in the suburbs. Each of those terminals locked up every 30 minutes or so. We had seen this problem before but had not simulated the traffic that the union data-entry clerks were suddenly slamming into our system.
To make matters worse, the tear sheets being printed on the ASR35 teletypes that were also connected to our system by 110-baud phone lines would freeze up in the middle of printing.
The solution to these freeze-ups was to reboot. So they’d have to get everybody whose terminal was still live to finish their work and then stop. When everyone was stopped, then they’d call us to reboot. The people who had been frozen would have to start over. And this was happening more than once per hour.
After half a day of this, the Teamster’s office manager told us to shut the system down and not bring it up again until we had it working. Meanwhile, they had lost a half day of work and were going to have to re-enter it all using the old system.
We heard Frank’s wails and roars all through the building. They went on for a long, long time. Then Bill, and our system’s analyst Jalil, came to us and asked when we could have the system stable. I said, “four weeks.”
The look on their faces was horror and then determination. “No,” they said, “it must be running by Friday.”
So I said, “Look, we just barely got this system to sort-of work last week. We need to shake down the troubles and issues. We need four weeks.”
But Bill and Jalil were adamant. “No, it’s really got to be Friday. Can you at least try?”
Then our team leader said, “OK, we’ll try.”
Friday was a good choice, The weekend load was a lot lower. We were able to find more problems and correct them before Monday came. Even so, the whole house of cards nearly came tumbling down again. The freeze-up problems kept on happening once or twice a day. There were other problems too. But gradually, after a few more weeks, we got the system to the point where the complaints died down, and normal life looked like it might actually be possible.
And then, as I told you in the introduction, we all quit. And they were left with a real crisis on their hands. They had to hire a new batch of programmers to try to deal with the huge stream of issues coming from the customer.
Who can we blame this debacle on? Clearly, Frank’s style is part of the problem. His intimidations made it difficult for him to hear the truth. Certainly Bill and Jalil should have pushed back on Frank much harder than they did. Certainly our team lead should not have caved in to the Friday demand. And certainly I should have continued to say “no” instead of getting in line behind our team lead.
Professionals speak truth to power. Professionals have the courage to say no to their managers.
How do you say no to your boss? After all, it’s your boss! Aren’t you supposed to do what your boss says?
No. Not if you are a professional.
Slaves are not allowed to say no. Laborers may be hesitant to say no. But professionals are expected to say no. Indeed, good managers crave someone who has the guts to say no. It’s the only way you can really get anything done.
Adversarial Roles
One of the reviewers of this book truly hated this chapter. He said that it almost made him put the book down. He had built teams where there were no adversarial relationships; the teams worked together in harmony and without confrontation.
I’m happy for this reviewer, but I wonder if his teams are really as confrontation free as he supposes. And if they are, I wonder if they are as efficient as they could be. My own experience has been that the hard decisions are best made through the confrontation of adversarial roles.
Managers are people with a job to do, and most managers know how to do that job pretty well. Part of that job is to pursue and defend their objectives as aggressively as they can.
By the same token, programmers are also people with a job to do, and most of them know how to get that job done pretty well. If they are professionals they will pursue and defend their objectives as aggressively as they can.
When your manager tells you that the login page has to be ready by tomorrow, he is pursuing and defending one of his objectives. He’s doing his job. If you know full well that getting the login page done by tomorrow is impossible, then you are not doing your job if you say “OK, I’ll try.” The only way to do your job, at that point, is to say “No, that’s impossible.”
But don’t you have to do what your manager says? No, your manager is counting on you to defend your objectives as aggressively as he defends his. That’s how the two of you are going to get to the best possible outcome.
The best possible outcome is the goal that you and your manager share. The trick is to find that goal, and that usually takes negotiation.
Negotiation can sometimes be pleasant.
Mike: “Paula, I need the login page done by tomorrow.”

Paula: “Oh, wow! That soon? Well, OK, I’ll try.”

Mike: “OK, that’s great. Thanks!”

That was a nice little conversation. All confrontation was avoided. Both parties left smiling. Nice.
But both parties were behaving unprofessionally. Paula knows full well that the login page is going to take her longer than a day, so she’s just lying. She might not think of it as a lie. Perhaps she thinks she actually will try, and maybe she holds out some meager hope that she’ll actually get it done. But in the end, it’s still a lie.
Mike, on the other hand, accepted the “I’ll try” as “Yes.” That’s just a dumb thing to do. He should have known that Paula was trying to avoid confrontation, so he should have pressed the issue by saying, “You seem hesitant. Are you sure you can get it done tomorrow?”
Here’s another pleasant conversation.
Mike: “Paula, I need the login page done by tomorrow.”

Paula: “Oh, sorry Mike, but it’s going to take me more time than that.”

Mike: “When do you think you can have it done?”

Paula: “How about two weeks from now?”

Mike: (scribbles something in his daytimer) “OK, thanks.”

As pleasant as that was, it was also terribly dysfunctional and utterly unprofessional. Both parties failed in their search for the best possible outcome. Instead of asking whether two weeks would be OK, Paula should have been more assertive: “It’s going to take me two weeks, Mike.”
Mike, on the other hand, just accepted the date without question, as though his own objectives didn’t matter. One wonders if he’s not going to simply report back to his boss that the customer demo will have to be postponed because of Paula. That kind of passive-aggressive behavior is morally reprehensible.
In all these cases neither party has pursued a common acceptable goal. Neither party has been looking for the best possible outcome. Let’s try this.
Mike: “Paula, I need the login page done by tomorrow.”

Paula: “No, Mike, that’s a two-week job.”

Mike: “Two weeks? The architects estimated it at three days and it’s already been five!”

Paula: “The architects were wrong, Mike. They did their estimates before product marketing got hold of the requirements. I’ve got at least ten more days of work to do on this. Didn’t you see my updated estimate on the wiki?”

Mike: (looking stern and trembling with frustration) “This isn’t acceptable Paula. Customers are coming for a demo tomorrow, and I’ve got to show them the login page working.”

Paula: “What part of the login page do you need working by tomorrow?”

Mike: “I need the login page! I need to be able to log in.”

Paula: “Mike, I can give you a mock-up of the login page that will let you log in. I’ve got that working now. It won’t actually check your username and password, and it won’t email a forgotten password to you. It won’t have the company news banner “Times-squaring” around the top of it, and the help button and hover text won’t work. It won’t store a cookie to remember you for next time, and it won’t put any permission restrictions on you. But you’ll be able to log in. Will that do?”

Mike: “I’ll be able to log in?”

Paula: “Yes, you’ll be able to log in.”

Mike: “That’s great Paula, you’re a life saver!” (walks away pumping the air and saying “Yes!”)

They reached the best possible outcome. They did this by saying no and then working out a solution that was mutually agreeable to both. They were acting like professionals. The conversation was a bit adversarial, and there were a few uncomfortable moments, but that’s to be expected when two people assertively pursue goals that aren’t in perfect alignment.
What about the Why?
Perhaps you think that Paula should have explained why the login page was going to take so much longer. My experience is that the why is a lot less important than the fact. That fact is that the login page will require two weeks. Why it will take two weeks is just a detail.
Still, knowing why might help Mike to understand, and therefore to accept, the fact. Fair enough. And in situations where Mike has the technical expertise and temperament to understand, such explanations might be useful. On the other hand, Mike might disagree with the conclusion. Mike might decide that Paula was doing it all wrong. He might tell her that she doesn’t need all that testing, or all that reviewing, or that step 12 could be omitted. Providing too much detail can be an invitation for micro-management.
High Stakes
The most important time to say no is when the stakes are highest. The higher the stakes, the more valuable no becomes.
This should be self-evident. When the cost of failure is so high that the survival of your company depends upon it, you must be absolutely determined to give your managers the best information you can. And that often means saying no.
Don (Director of Development): “So, our current estimate for completion of the Golden Goose project is twelve weeks from today, with an uncertainty of plus or minus five weeks.”

Charles (CEO): (sits glaring for fifteen seconds as his face reddens) “Do you mean to sit there and tell me that we might be seventeen weeks from delivery?”

Don: “That’s possible, yes.”

Charles: (stands up, Don stands up a second later) “Damm it Don! This was supposed to be done three weeks ago! I’ve got Galitron calling me every day wondering where their frakking system is. I am not going to tell them that they have to wait another four months? You’ve got to do better.”

Don: Chuck, I told you three months ago, after all the layoffs, that we’d need four more months. I mean, Christ Chuck, you cut my staff twenty percent! Did you tell Galitron then that we’d be late?”

Charles: “You know damned well I didn’t. We can’t afford to lose that order Don. (Charles pauses, his face goes white) Without Galitron, we’re really hosed. You know that, don’t you? And now with this delay, I’m afraid . . . What will I tell the board? (He slowly sits back down in his seat, trying not to crumble.) Don, you’ve got to do better.”

Don: “There’s nothing I can do Chuck. We’ve been through this already. Galitron won’t cut scope, and they won’t accept any interim releases. They want to do the installation once and be done with it. I simply cannot do that any faster. It’s not going to happen.”

Charles: “Damn. I don’t suppose it would matter if I told you your job was at stake.”

Don: “Firing me isn’t going to change the estimate, Charles.”

Charles: “We’re done here. Go back to your team and keep this project moving. I’ve got some very tough phone calls to make.”

Of course, Charles should have told Galitron no three months ago when he first found out about the new estimate. At least now he’s doing the right thing by calling them (and the board). But if Don hadn’t stuck to his guns, those calls might have been delayed even longer.
Being a “Team Player”
We’ve all heard how important it is to be a “team player.” Being a team player means playing your position as well as you possibly can, and helping out your teammates when they get into a jam. A team-player communicates frequently, keeps an eye out for his or her teammates, and executes his or her own responsibilities as well as possible.
A team player is not someone who says yes all the time. Consider this scenario:
Paula: “Mike, I’ve got those estimates for you. The team agrees that we’ll be ready to give a demo in about eight weeks, give or take one week.”

Mike: “Paula, we’ve already scheduled the demo for six weeks from now.”

Paula: “Without hearing from us first? Come on Mike, you can’t push that on us.”

Mike: “It’s already done.”

Paula: (sigh) “OK, look, I’ll go back to the team and find out what we can safely deliver in six weeks, but it won’t be the whole system. There’ll be some features missing, and the data load will be incomplete.”

Mike: “Paula, the customer is expecting to see a complete demo.”

Paula: “That’s not going to happen Mike.”

Mike: “Damn. OK, work up the best plan you can and let me know tomorrow.”

Paula: “That I can do.”

Mike: “Isn’t there something you can do to bring this date in? Maybe there’s a way to work smarter and get creative.”

Paula: “We’re all pretty creative, Mike. We’ve got a good handle on the problem, and the date is going to be eight or nine weeks, not six.”

Mike: “You could work overtime.”

Paula: “That just makes us go slower, Mike. Remember the mess we made last time we mandated overtime?”

Mike: “Yeah, but that doesn’t have to happen this time.”

Paula: “It’ll be just like last time, Mike. Trust me. It’s going to be eight or nine weeks, not six.”

Mike: “OK, get me your best plan, but keep thinking about how to get it done in six weeks. I know you guys’ll figure out something.”

Paula: “No, Mike, we won’t. I’ll get you a plan for six weeks, but it will be missing a lot of features and data. That’s just how it’s going to be.”

Mike: “OK, Paula, but I bet you guys can work miracles if you try.”

(Paula walks away shaking her head.)
Later, in the Director’s strategy meeting ...
Don: “OK Mike, as you know the customer is coming in for a demo in six weeks. They’re expecting to see everything working.”

Mike: “Yes, and we’ll be ready. My team is busting their butts on this and we’re going to get it done. We’ll have to work some overtime, and get pretty creative, but we’ll make it happen!”

Don: “It’s great that you and your staff are such team players.”

Who were the real team players in this scenario? Paula was playing for the team, because she represented what could, and could not, be done to the best of her ability. She aggressively defended her position, despite the wheedling and cajoling from Mike. Mike was playing on a team of one. Mike is for Mike. He’s clearly not on Paula’s team because he just committed her to something she explicitly said she couldn’t do. He’s not on Don’s team either (though he’d disagree) because he just lied through his teeth.
So why did Mike do this? He wanted Don to see him as a team player, and he has faith in his ability to wheedle and manipulate Paula into trying for the six-week deadline. Mike is not evil; he’s just too confident in his ability to get people to do what he wants.
Trying
The worst thing Paula could do in response to Mike’s manipulations is say “OK, we’ll try.” I hate to channel Yoda here, but in this instance he is correct. There is no trying.
Perhaps you don’t like that idea? Perhaps you think trying is a positive thing to do. After all, would Columbus have discovered America if he hadn’t tried?
The word try has many definitions. The definition I take issue with here is “to apply extra effort.” What extra effort could Paula apply to get the demo ready in time? If there is extra effort she could apply, then she and her team must not have been applying all their effort before. They must have been holding some effort in reserve.1
The promise to try is an admission that you’ve been holding back, that you have a reservoir of extra effort that you can apply. The promise to try is an admission that the goal is attainable through the application of this extra effort; moreover, it is a commitment to apply that extra effort to achieve the goal. Therefore, by promising to try you are committing to succeed. This puts the burden on you. If your “trying” does not lead to the desired outcome, you will have failed.
Do you have an extra reservoir of energy that you’ve been holding back? If you apply these reserves, will you be able to meet the goal? Or, by promising to try are you simply setting yourself up for failure?
By promising to try you are promising to change your plans. After all, the plans you had were insufficient. By promising to try you are saying that you have a new plan. What is that new plan? What change will you make to your behavior? What different things are you going to do because now you are “trying”?
If you don’t have a new plan, if you don’t make a change to your behavior, if you do everything exactly as you would have before you promised to “try,” then what does trying mean?
If you are not holding back some energy in reserve, if you don’t have a new plan, if you aren’t going to change your behavior, and if you are reasonably confident in your original estimate, then promising to try is fundamentally dishonest. You are lying. And you are probably doing it to save face and to avoid a confrontation.
Paula’s approach was much better. She continued to remind Mike that the team’s estimate was uncertain. She always said “eight or nine weeks.” She stressed the uncertainty and never backed off. She never suggested that there might be some extra effort, or some new plan, or some change in behavior that could reduce that uncertainty.
Three weeks later ...
Mike: “Paula, the demo is in three weeks, and the customers are demanding to see FILE UPLOAD working.”

Paula: “Mike, that’s not on the list of features we agreed to.”

Mike: “I know, but they’re demanding it.”

Paula: “OK, that means that either SINGLE SIGN-ON or BACKUP will have to be dropped from the demo.”

Mike: “Absolutely not! They’re expecting to see those features working as well!”

Paula: “So then, they are expecting to see every feature working. Is that what you are telling me? I told you that wasn’t going to happen.”

Mike: “I’m sorry Paula, but the customer just won’t budge on this. They want to see it all.”

Paula: “That’s not going to happen, Mike. It’s just not.”

Mike: “Come on Paula, can’t you guys at least try?”

Paula: “Mike, I could try to levitate. I could try to change lead in to gold. I could try to swim across the Atlantic. Do you think I’d succeed?”

Mike: “Now you’re being unreasonable. I’m not asking for the impossible.”

Paula: “Yes, Mike, you are.”

(Mike smirks, nods, and turns to walk away.)

Mike: “I’ve got faith in you Paula; I know you won’t let me down.”

Paula: (speaking to Mike’s back) “Mike, you’re dreaming. This is not going to end well.”

(Mike just waves without turning around.)

Passive Aggression
Paula’s got an interesting decision to make. She suspects that Mike is not telling Don about her estimates. She could just let Mike walk off the end of the cliff. She could make sure that copies of all the appropriate memos were on file, so that when the disaster strikes she can show what she told Mike, and when she told him. This is passive aggression. She’d just let Mike hang himself.
Or, she could try to head off the disaster by communicating directly with Don. This is risky, to be sure, but it’s also what being a team player is really all about. When a freight train is bearing down on you and you are the only one who can see it, you can either step quietly off the track and watch everyone else get run over, or you can yell “Train! Get off the track!”
Two days later ...
Paula: “Mike, have you told Don about my estimates? Has he told the customer that the demo will not have the FILE UPLOAD feature working?”

Mike: “Paula, you said you’d get that working for me.”

Paula: “No, Mike, I didn’t. I told you that it was impossible. Here’s a copy of the memo I sent you after our talk.”

Mike: “Yeah, but you were going to try anyway, right?”

Paula: “We’ve already had that discussion Mike. Remember, gold and lead?”

Mike: (sighs) “Look, Paula, you’ve just got to do it. You just have to. Please do whatever it takes, but you just have to make this happen for me.”

Paula: “Mike. You’re wrong. I don’t have to make this happen for you. What I have to do, if you don’t, is tell Don.”

Mike: “That’d be going over my head, you wouldn’t do that.”

Paula: “I don’t want to Mike, but I will if you force me.”

Mike: “Oh, Paula . . .”

Paula: “Look, Mike, the features aren’t going to get done in time for the demo. You need to get this into your head. Stop trying to convince me to work harder. Stop deluding yourself that I’m somehow going to pull a rabbit out of a hat. Face the fact that you have to tell Don, and you have to tell him today.”

Mike: (Eyes wide) “Today?”

Paula: “Yes, Mike. Today. Because tomorrow I expect to have a meeting with you and Don about which features to include in the demo. If that meeting doesn’t happen tomorrow, then I will be forced to go to Don myself. Here’s a copy of the memo that explains just that.”

Mike: “You’re just covering your ass!”

Paula: “Mike, I’m trying to cover both our asses. Can you imagine the debacle if the customer comes here expecting a full demo and we can’t deliver?”

What happens in the end to Paula and Mike? I’ll leave it to you to work out the possibilities. The point is that Paula has behaved very professionally. She has said no at all the right times, and in all the right ways. She said no when pushed to amend her estimates. She said no when manipulated, cajoled, and begged. And, most importantly, she said no to Mike’s self-delusion and inaction. Paula was playing for the team. Mike needed help, and she used every means in her power to help him.
The Cost of Saying Yes
Most of the time we want to say yes. Indeed, healthy teams strive to find a way to say yes. Manager and developers in well-run teams will negotiate with each other until they come to a mutually agreed upon plan of action.
But, as we’ve seen, sometimes the only way to get to the right yes is to be unafraid so say no.
Consider the following story that John Blanco posted on his blog.2 It is reprinted here with permission. As you read it, ask yourself when and how he should have said no.

Is Good Code Impossible?

When you hit your teenage years you decide you want to be a software developer. During your high school years, you learn how to write software using object-oriented principles. When you graduate to college, you apply all the principles you’ve learned to areas such as artificial intelligence or 3D graphics.

And when you hit the professional circuit, you begin your never-ending quest to write commercial-quality, maintainable, and “perfect” code that will stand the test of time.

Commercial quality. Huh. That’s pretty funny.

I consider myself lucky, I love design patterns. I like studying the theory of coding perfection. I have no problem starting up an hour-long discussion about why my XP partner’s choice of inheritance hierarchy is wrong—that HAS-A is better than IS-A in so many cases. But something has been bugging me lately and I am wondering something . . .

. . . Is good code impossible in modern software development?

The Typical Project Proposal

As a full-time contract developer (and part-time), I spend my days (and nights) developing mobile applications for clients. And what I’ve learned over the many years I’ve been doing this is that the demands of client work preclude me from writing the real quality apps that I’d like.

Before I begin, let me just say it’s not for a lack of trying. I love the topic of clean code. I don’t know anyone who pursues that perfect software design like I do. It’s the execution that I find more elusive, and not for the reason you think.

Here, let me tell you a story.

Towards the end of last year, a fairly well-known company put out an RFP (Request for Proposal) to have an app built for them. They’re a huge retailer, but for the sake of anonymity let’s call them Gorilla Mart. They say they need to create an iPhone presence and would like an app produced for them by Black Friday. The catch? It’s already November 1st. That leaves just under 4 weeks to create the app. Oh, and at this time Apple is still taking two weeks to approve apps. (Ah, the good old days.) So, wait, this app has to be written in . . . TWO WEEKS?!?!

Yes. We have two weeks to write this app. And, unfortunately, we’ve won the bid. (In business, client importance matters.) This is going to happen.

“But it’s OK,” Gorilla Mart Executive #1 says. “The app is simple. It just needs to show users a few products from our catalog and let them search for store locations. We already do it on our site. We’ll give you the graphics, too. You can probably—what’s the word—yeah, hardcode it!”

Gorilla Mart Executive #2 chimes in. “And we just need a couple of coupons the user can show at the cash register. The app will be a throwaway. Let’s get it out the door, and then for Phase II we’ll do something bigger and better from scratch.”

And then it’s happening. Despite years of constant reminders that every feature a client asks for will always be more complex to write than it is to explain, you go for it. You really believe that this time it really can be done in two weeks. Yes! We can do this! This time it’s different! It’s just a few graphics and a service call to get a store location. XML! No sweat. We can do this. I’m pumped! Let’s go!

It takes just a day for you and reality to once again make acquaintance.

Me: So, can you give me the info I need to call your store location web service?

The Client: What’s a web service?

Me:

And that’s exactly how it happened. Their store location service, found right where it’s supposed to be on the top-right corner of their web site, is not a web service. It’s generated by Java code. Ix-nay with the API-ay. And to boot, it’s hosted by a Gorilla Mart strategic partner.

Enter the nefarious “3rd party.”

In client terms, a “3rd party” is akin to Angelina Jolie. Despite the promise that you’ll be able to have an enlightening conversation over a nice meal and hopefully hook up afterwards ... sorry, it ain’t happenin’. You’re just gonna have to fantasize about it while you take care of business yourself.

In my case, the only thing I was able to wrestle out of Gorilla Mart was a current snapshot of their current store listings in an Excel file. I had to write the store location search code from scratch.

The double-whammy came later that day: They wanted the product and coupon data online so it could be changed weekly. There goes hardcoding! Two weeks to write an iPhone app have now become two weeks to write an iPhone app, a PHP backend, and integrate them togeth—. . . What? They want me to handle QA, too?

To make up for the extra work, the coding will have to go a little faster. Forget that abstract factory. Use a big fat for loop instead of the composite, there’s no time!

Good code has become impossible.

Two Weeks to Completion

Let me tell you, that two weeks was pretty miserable. First, two of the days were eliminated due to all-day meetings for my next project. (That amplifies how short a time frame this was going to be.) Ultimately, I really had eight days to get things done. The first week I worked 74 hours and the next week . . . God . . . I don’t even recall, it’s been eradicated from my synapses. Probably a good thing.

I spent those eight days writing code in a fury. I used all the tools available to me to get it done: copy and paste (AKA reusable code), magic numbers (avoiding the duplication of defining constants and then, gasp!, retyping them), and absolutely NO unit tests! (Who needs red bars at a time like this, it’d just demotivate me!)

It was pretty bad code and I never had time to refactor. Considering the time frame, however, it was actually pretty stellar, and it was “throwaway” code after all, right? Does any of this sound familiar? Well just wait, it gets better.

As I was putting the final touches on the app (the final touches being writing the entirety of the server code), I started to look at the codebase and wondered if maybe it was worth it. The app was done after all. I survived!

“Hey, we just hired Bob, and he’s very busy and he couldn’t make the call, but he says we should be requiring users to provide their email addresses to get the coupons. He hasn’t seen the app, but he thinks this would be a great idea! We also want a reporting system to get those emails from the server. One that’s nice and not too expensive. (Wait, that last part was Monty Python.) Speaking of coupons, they need to be able to expire after a number of days we specify. Oh, and ...”

Let’s step back. What do we know about what good code is? Good code should be extendable. Maintainable. It should lend itself to modification. It should read like prose. Well, this wasn’t good code.

Another thing. If you want to be a better developer, you must always keep this inevitably in mind: The client will always extend the deadline. They will always want more features. They will always want change—LATE. And here’s the formula for what to expect:

(# of Executives)2

+ 2 * # of New Executives

+ # of Bob’s Kids

= DAYS ADDED AT LAST MINUTE

Now, executives are decent people. I think. They provide for their family (assuming Satan has approved of their having one). They want the app to succeed (promotion time!). The problem is that they all want a direct claim to the project’s success. When all is said and done, they all want to point at some feature or design decision they can each call their very own.

So, back to the story, we added a couple more days to the project and got the email feature done. And then I collapsed from exhaustion.

The Clients Never Care as Much as You Do

The clients, despite their protestations, despite their apparent urgency, never care as much as you do about the app being on time. The afternoon that I dubbed the app completed, I sent an email with the final build to all the stakeholders, Executives (hiss!), managers, and so on. “IT IS DONE! I BRING YOU V1.0! PRAISE THY NAME.” I hit Send, lay back in my chair, and with a smug grin began to fantasize how the company would run me up onto their shoulders and lead a procession down 42nd Street while I was crowned “Greatest Developer Ev-ar.” At the very least, my face would be on all their advertising, right?

Funny, they didn’t seem to agree. In fact, I wasn’t sure what they thought. I heard nothing. Not a peep. Turns out, the folks at Gorilla Mart were eager to and had already moved on to the next thing.

You think I lie? Check this out. I pushed to the Apple store without filling in an app description. I had requested one from Gorilla Mart, and they hadn’t gotten back to me and there was no time to wait. (See previous paragraph.) I wrote them again. And again. I got some of our own management on it. Twice I heard back and twice I was told, “What did you need again?” I NEED THE APP DESCRIPTION!

One week later, Apple started testing the app. This is usually a time of joyousness, but it was instead a time for mortal dread. As expected, later in the day the app was rejected. It was about the saddest, poorest excuse to allow a rejection I can imagine: “App is missing an app description.” Functionally perfect; no app description. And for this reason Gorilla Mart didn’t have their app ready for Black Friday. I was pretty upset.

I’d sacrificed my family for a two-week super sprint, and no one at Gorilla Mart could be bothered to create an app description given a week of time. They gave it to us an hour after the rejection—apparently that was the signal to get down to business.

If I was upset before, I would become livid a week and a half after that. You see, they still hadn’t gotten us real data. The products and coupons on the server were fake. Imaginary. The coupon code was 1234567890. You know, phoney baloney. (Bologna is spelled baloney when used in that context, BTW.)

And it was that fateful morning that I checked the Portal and THE APP WAS AVAILABLE! Fake data and all! I cried out in abject horror and called up whoever I could and screamed, “I NEED THE DATA!” and the woman on the other end asked me if I needed fire or police, so I hung up on 911. But then I called Gorilla Mart and was like, “I NEED DATA!” And I’ll never forget the response:

Oh, hey there John. We have a new VP and we’ve decided not to release. Pull it off the App Store, would you?

In the end, it turned out that at least 11 people registered their email addresses in the database, which meant there were 11 people that could potentially walk into a Gorilla Mart with a fake iPhone coupon in tow. Boy, that might get ugly.

When it was all said and done, the client had said one thing correctly all along: The code was a throwaway. The only problem is, it was never released in the first place.

Result? Rush to Complete, Slow to Market

The lesson in the story is that your stakeholders, whether an external client or internal management, have figured out how to get developers to write code quickly. Effectively? No. Quickly? Yes. Here’s how it works:

• Tell the developer the app is simple. This serves to pressure the development team into a false frame of mind. It also gets the developers to start working earlier, whereby they ...

• Add features by faulting the team for not recognizing their necessity. In this case, the hardcoded content was going to require app updates to change. How could I not realize that? I did, but I’d been handed a false promise earlier, that’s why. Or a client will hire “a new guy” who’s recognized there is some obvious omission. One day a client will say they just hired Steve Jobs and can we add alchemy to the app? Then they’ll ...

• Push the deadline. Over and over. Developers work their fastest and hardest (and BTW are at their most error prone, but who cares about that, right?) with a couple days to go on a deadline. Why tell them you can push the date out further while they’re being so productive? Take advantage of it! And so it goes, a few days are added, a week is added, just when you had worked a 20-hour shift to get everything just right. It’s like a donkey and carrot, except you’re not treated as well as the donkey.

It’s a brilliant playbook. Can you blame them for thinking it works? But they don’t see the God-awful code. And so it happens, time and again, despite the results.

In a globalized economy, where corporations are held to the almighty dollar and raising the stock price involves layoffs, overworked staffs, and offshoring, this strategy I’ve shown you of cutting developer costs is making good code obsolete. As developers, we’re going to be asked/told/conned into writing twice the code in half the time if we’re not careful.

Code Impossible
In the story when John asks “Is good code impossible?”, he is really asking “Is professionalism impossible?” After all, it wasn’t just the code that suffered in his tale of dysfunction. It was his family, his employer, his customer, and the users. Everybody lost3 in this adventure. And they lost due to unprofessionalism.
So who was acting unprofessionally? John makes it clear that he thinks it was the executives at Gorilla Mart. After all, his playbook was a pretty clear indictment of their bad behavior. But was their behavior bad? I don’t think so.
The folks at Gorilla Mart wanted the option to have an iPhone app on Black Friday. They were willing to pay to have that option. They found someone willing to provide that option. So how can you fault them?
Yes, it’s true, there were some communications failures. Apparently the executives didn’t know what a web service really was, and there were all the normal issues of one part of a big corporation not knowing what another part is doing. But all that should have been expected. John even admits as much when he says: “Despite years of constant reminders that every feature a client asks for will always be more complex to write than it is to explain. . .”
So if the culprit was not Gorilla Mart, then who?
Perhaps it was John’s direct employer. John didn’t say this explicitly, but there was a hint when he said, parenthetically, “In business, client importance matters.” So did John’s employer make unreasonable promises to Gorilla Mart? Did they put pressure on John, directly or indirectly, to make those promises come true? John doesn’t say this, so we can only wonder.
Even so, where is John’s responsibility in all of this? I put the fault squarely on John. John is the one who accepted the initial two-week deadline, knowing full well that projects are usually more complex than they sound. John is the one who accepted the need to write the PHP server. John is the one who accepted the email registration, and the coupon expiration. John is the one who worked 20-hour days and 90-hour weeks. John is the one who subtracted himself from his family and his life to make this deadline.
And why did John do this? He tells us in no uncertain terms: “I hit Send, lay back in my chair, and with a smug grin began to fantasize how the company would run me up onto their shoulders and lead a procession down 42nd Street while I was crowned “Greatest Developer Ev-ar.” In short, John was trying to be a hero. He saw his chance for accolades, and he went for it. He leaned over and grabbed for the brass ring.
Professionals are often heroes, but not because they try to be. Professionals become heroes when they get a job done well, on time, and on budget. By trying to become the man of the hour, the savior of the day, John was not acting like a professional.
John should have said no to the original two-week deadline. Or if not, then he should have said no when he found there was no web service. He should have said no to the request for email registration and coupon expiration. He should have said no to anything that would require horrific overtime and sacrifice.
But most of all, John should have said no to his own internal decision that the only way to get this job done on time was to make a big mess. Notice what John said about good code and unit tests:
“To make up for the extra work, the coding will have to go a little faster. Forget that abstract factory. Use a big fat for loop instead of the composite, there’s no time!”
And again:
“I spent those eight days writing code in a fury. I used all the tools available to me to get it done: copy-and-paste (AKA reusable code), magic numbers (avoiding the duplication of defining constants and then, gasp!, retyping them), and absolutely NO unit tests! (Who needs red bars at a time like this, it’d just demotivate me!)”
Saying yes to those decisions was the real crux of the failure. John accepted that the only way to succeed was to behave unprofessionally, so he reaped the appropriate reward.
That may sound harsh. It’s not intended that way. In previous chapters I described how I’ve made the same mistake in my career, more than once. The temptation to be a hero and “solve the problem” is huge. What we all have to realize is that saying yes to dropping our professional disciplines is not the way to solve problems. Dropping those disciplines is the way you create problems.
With that, I can finally answer John’s initial question:
“Is good code impossible? Is professionalism impossible?”
Answer: I say no.

3. Saying Yes

Did you know that I invented voice mail? It’s true. Actually there were three of us who held the patent for voice mail. Ken Finder, Jerry Fitzpatrick, and I. It was in the very early 80s, and we worked for a company named Teradyne. Our CEO had commissioned us to come up with a new kind of product, and we invented “The Electronic Receptionist,” or ER for short.
You all know what ER is. ER is one of those horrible machines that answers the phone at companies and asks you all kinds of brain-dead questions that you need to answer by pressing buttons. (“For English, press 1.”)
Our ER would answer the phone for a company and ask you to dial the name of the person you wanted. It would ask you to pronounce your name, and then it would call the person in question. It would announce the call and ask whether it should be accepted. If so, it would connect the call and drop off.
You could tell ER where you were. You could give it several phone numbers to try. So if you were in someone else’s office, ER could find you. If you were at home, ER could find you. If you were in a different city, ER could find you. And, in the end, if ER could not find you, it would take a message. That’s where the voice mail came in.
Oddly enough, Teradyne could not figure out how to sell ER. The project ran out of budget and was morphed into something we knew how to sell—CDS, The Craft Dispatch System, for dispatching telephone repairmen to their next job. And Teradyne also dropped the patent without telling us. (!) The current patent holder filed three months after we did. (!!)1
Long after the morphing of ER into CDS, but long before I found out that the patent had been dropped. I waited in a tree for the CEO of the company. We had a big oak tree outside the front of the building. I climbed it and waited for his Jaguar to pull in. I met him at the door and asked for a few minutes. He obliged.
I told him we really needed to start up the ER project again. I told him I was sure it could make money. He surprised me by saying, “OK Bob, work up a plan. Show me how I can make money. If you do, and I believe it, I’ll start up ER again.”
I hadn’t expected that. I had expected him to say, “You’re right Bob. I’m going to start that project up again, and I’m going to figure out how to make money at it.” But no. He put the burden back on me. And it was a burden I was ambivalent about. After all, I was a software guy, not a money guy. I wanted to work on the ER project, not be responsible for profit and loss. But I didn’t want to show my ambivalence. So I thanked him and left his office with these words:
“Thanks Russ. I’m committed . . . I guess.”
With that, let me introduce you to Roy Osherove, who will tell you just how pathetic that statement was.
A Language of Commitment
By Roy Osherove
Say. Mean. Do.
There are three parts to making a commitment.

	You say you’ll do it.
	You mean it.
	You actually do it.

But how often do we encounter other people (not ourselves, of course!) who never go all the way with these three stages?
• You ask the IT guy why the network is so slow and he says “Yeah. We really need to get some new routers.” And you know nothing will ever happen in that category.

• You ask a team member to run some manual tests before checking in the source code, and he replies, “Sure. I hope to get to it by the end of the day.” And somehow you feel that you’ll need to ask tomorrow if any testing really took place before check-in.

• Your boss wanders into the room and mumbles, “we have to move faster.” And you know he really means YOU have to move faster. He’s not going to do anything about it.

There are very few people who, when they say something, they mean it and then actually get it done. There are some who will say things and mean them, but they never get it done. And there are far more people who promise things and don’t even mean to do them. Ever heard someone say, “Man, I really need to lose some weight,” and you knew they are not going to do anything about it? It happens all the time.
Why do we keep getting that strange feeling that, most of the time, people aren’t really committed to getting something done?
Worse, often our intuition can fail us. Sometimes we’d like to believe someone really means what they say when they really don’t. We’d like to believe a developer when they say, pressed to the corner, that they can finish that two-week task in one week instead, but we shouldn’t.
Instead of trusting our guts, we can use some language-related tricks to try and figure out if people really mean what they say. And by changing what we say, we can start taking care of steps 1 and 2 of the previous list on our own. When we say we will commit to something, and we need to mean it.
Recognizing Lack of Commitment
We should look at the language we use when we commit to doing something, as the tell-tale sign of things to come. Actually, it’s more a matter of looking for specific words in what we say. If you can’t find those little magic words, chances are we don’t mean what we say, or we may not believe it to be feasible.
Here are some examples of words and phrases to look for that are telltale signs of noncommitment:
• Need\should. “We need to get this done.” “I need to lose weight.” “Someone should make that happen.”

• Hope\wish. “I hope to get this done by tomorrow.” “I hope we can meet again some day.” “I wish I had time for that.” “I wish this computer was faster.”

• Let’s. (not followed by “I . . .”) “Let’s meet sometime.” “Let’s finish this thing.”

As you start to look for these words you’ll see that you start spotting them almost everywhere around you, and even in things you say to others.
You’ll find we tend to be very busy not taking responsibility for things.
And that’s not okay when you or someone else relies on those promises as part of the job. You’ve taken the first step, though—start recognizing lack of commitment around you, and in you.
We heard what noncommitment sounds like. How do we recognize real commitment?
What Does Commitment Sound Like?
What’s common in the phrases of the previous section is that they either assume things are out of “my” hands or they don’t take personal responsibility. In each of these cases, people behave as if they were victims of a situation instead of in control of it.
The real truth is that you, personally, ALWAYS have something that’s under your control, so there is always something you can fully commit to doing.
The secret ingredient to recognizing real commitment is to look for sentences that sound like this: I will . . . by . . . (example: I will finish this by Tuesday.)
What’s important about this sentence? You’re stating a fact about something YOU will do with a clear end time. You’re not talking about anyone else but yourself. You’re talking about an action that you will take. You won’t “possibly” take it, or “might get to it”; you will achieve it.
There is (technically) no way out of this verbal commitment. You said you’ll do it and now only a binary result is possible—you either get it done, or you don’t. If you don’t get it done, people can hold you up to your promises. You will feel bad about not doing it. You will feel awkward telling someone about not having done it (if that someone heard you promise you will).
Scary, isn’t it?
You’re taking full responsibility for something, in front of an audience of at least one person. It’s not just you standing in front of the mirror, or the computer screen. It’s you, facing another human being, and saying you’ll do it. That’s the start of commitment. Putting yourself in the situation that forces you to do something.
You’ve changed the language you use to a language of commitment, and that will help you get through the next two stages: meaning it, and following through.
Here are a number of reasons you might not mean it, or follow through, with some solutions.
It wouldn’t work because I rely on person X to get this done
You can only commit to things that you have full control of. For example, if your goal is to finish a module that also depends on another team, you can’t commit to finish the module with full integration with the other team. But you can commit to specific actions that will bring you to your target. You could:
• Sit down for an hour with Gary from the infrastructure team to understand your dependencies.

• Create an interface that abstracts your module’s dependency from the other team’s infrastructure.

• Meet at least three times this week with the build guy to make sure your changes work well in the company’s build system.

• Create your own personal build that runs your integration tests for the module.

See the difference?
If the end goal depends on someone else, you should commit to specific actions that bring you closer to the end goal.
It wouldn’t work because I don’t really know if it can be done
If it can’t be done, you can still commit to actions that will bring you closer to the target. Finding out if it can be done can be one of the actions to commit to!
Instead of committing to fix all 25 remaining bugs before the release (which may not be possible), you can commit to these specific actions that bring you closer to that goal:
• Go through all 25 bugs and try to recreate them.

• Sit down with the QA who found each bug to see a repro of that bug.

• Spend all the time you have this week trying to fix each bug.

It wouldn’t work because sometimes I just won’t make it
That happens. Something unexpected might happen, and that’s life. But you still want to live up to expectations. In that case, it’s time to change the expectations, as soon as possible.
If you can’t make your commitment, the most important thing is to raise a red flag as soon as possible to whoever you committed to.
The earlier you raise the flag to all stakeholders, the more likely there will be time for the team to stop, reassess the current actions being taken, and decide if something can be done or changed (in terms of priorities, for example). By doing this, your commitment can still be fulfilled, or you can change to a different commitment.
Some examples are:
• If you set a meeting for noon at a cafe downtown with a colleague and you get stuck in traffic, you doubt you’ll be able to follow through on your commitment to be there on time. You can call your colleague as soon as you realize you might be late, and let them know. Maybe you can find a closer place to meet, or perhaps postpone the meeting.

• If you committed to solving a bug you thought was solvable and you realize at some point the bug is much more hideous than previously thought, you can raise the flag. The team can then decide on a course of action to make that commitment (pairing, spiking on potential solutions, brainstorming) or change the priority and move you over to another simpler bug.

One important point here is: If you don’t tell anyone about the potential problem as soon as possible, you’re not giving anyone a chance to help you follow through on your commitment.
Summary
Creating a language of commitment may sound a bit scary, but it can help solve many of the communication problems programmers face today—estimations, deadlines, and face-to-face communication mishaps. You’ll be taken as a serious developer who lives up to their word, and that’s one of the best things you can hope for in our industry.
Learning How to Say “Yes”
I asked Roy to contribute that article because it struck a chord within me. I’ve been preaching about learning how to say no for some time. But it is just as important to learn how to say yes.
The Other Side of “Try”
Let’s imagine that Peter is responsible for some modifications to the rating engine. He’s privately estimated that these modifications will take him five or six days. He also thinks that writing the documentation for the modifications will take a few hours. On Monday morning his manager, Marge, asks him for status.
Marge: “Peter, will you have the rating engine mods done by Friday?”

Peter: “I think that’s doable.”

Marge: “Will that include the documentation?”

Peter: “I’ll try to get that done as well.”

Perhaps Marge can’t hear the dithering in Peter’s statements, but he’s certainly not making much of a commitment. Marge is asking questions that demand boolean answers but Peter’s boolean responses are fuzzy.
Notice the abuse of the word try. In the last chapter we used the “extra effort” definition of try. Here, Peter is using the “maybe, maybe not” definition.
Peter would be better off responding like this:
Marge: “Peter, will you have the rating engine mods done by Friday?”

Peter: “Probably, but it might be Monday.”

Marge: “Will that include the documentation?”

Peter: “The documentation will take me another few hours, so Monday is possible, but it might be as late as Tuesday.”

In this case Peter’s language is more honest. He is describing his own uncertainty to Marge. Marge may be able to deal with that uncertainty. On the other hand, she might not.
Committing with Discipline
Marge: “Peter, I need a definite yes or no. Will you have the rating engine finished and documented by Friday?”

This is a perfectly fair question for Marge to ask. She’s got a schedule to maintain, and she needs a binary answer about Friday. How should Peter respond?
Peter: “In that case, Marge, I’ll have to say no. The soonest I can be sure that I’ll be done with the mods and the docs is Tuesday.”

Marge: “You are committing to Tuesday?”

Peter: “Yes, I will have it all ready on Tuesday.”

But what if Marge really needs the modifications and documentation done by Friday?
Marge: “Peter, Tuesday gives me a real problem. Willy, our tech writer, will be available on Monday. He’s got five days to finish up the user guide. If I don’t have the rating engine docs by Monday morning, he’ll never get the manual done on time. Can you do the docs first?”

Peter: “No, the mods have to come first, because we generate the docs from the output of the test runs.”

Marge: “Well, isn’t there some way you can finish up the mods and the docs before Monday morning?”

Now Peter has a decision to make. There is a good chance he’ll be done with the rate engine modifications on Friday, and he might even be able to finish up the docs before he goes home for the weekend. He could do a few hours of work on Saturday too if things take longer than he hopes. So what should he tell Marge?
Peter: “Look Marge, there’s a good chance that I can get everything done by Monday morning if I put in a few extra hours on Saturday.”

Does that solve Marge’s problem? No, it simply changes the odds, and that’s what Peter needs to tell her.
Marge: “Can I count on Monday morning then?”

Peter: “Probably, but not definitely.”

That might not be good enough for Marge.
Marge: “Look, Peter, I really need a definite on this. Is there any way you can commit to get this done before Monday morning?”

Peter might be tempted to break discipline at this point. He might be able to get done faster if he doesn’t write his tests. He might be able to get done faster if he doesn’t refactor. He might be able to get done faster if he doesn’t run the full regression suite.
This is where the professional draws the line. First of all, Peter is just wrong about his suppositions. He won’t get done faster if he doesn’t write his tests. He won’t get done faster if he doesn’t refactor. He won’t get done faster if he omits the full regression suite. Years of experience have taught us that breaking disciplines only slows us down.
But secondly, as a professional he has a responsibility to maintain certain standards. His code needs to be tested, and needs to have tests. His code needs to be clean. And he has to be sure he hasn’t broken anything else in the system.
Peter, as a professional, has already made a commitment to maintain these standards. All other commitments he makes should be subordinate to that. So this whole line of reasoning needs to aborted.
Peter: “No, Marge, there’s really no way I can be certain about any date before Tuesday. I’m sorry if that messes up your schedule, but it’s just the reality we’re faced with.”

Marge: “Damn. I was really counting on bringing this one in sooner. You’re sure?”

Peter: “I’m sure that it might be as late as Tuesday, yes.”

Marge: “OK, I guess I’ll go talk to Willy to see if he can rearrange his schedule.”

In this case Marge accepted Peter’s answer and started hunting for other options. But what if all Marge’s options have been exhausted? What if Peter were the last hope?
Marge: “Peter, look, I know this is a huge imposition, but I really need you to find a way to get this all done by Monday morning. It’s really critical. Isn’t there something you can do?”

So now Peter starts to think about working some significant overtime, and probably most of the weekend. He needs to be very honest with himself about his stamina and reserves. It’s easy to say you’ll get a lot done on the weekends, it’s a lot harder to actually muster enough energy to do high-quality work.
Professionals know their limits. They know how much overtime they can effectively apply, and they know what the cost will be.
In this case Peter feels pretty confident that a few extra hours during the week and some time on the weekend will be sufficient.
Peter: “OK, Marge, I’ll tell you what. I’ll call home and clear some overtime with my family. If they are OK with it, then I’ll get this task done by Monday morning. I’ll even come in on Monday morning to make sure everything goes smoothly with Willy. But then I’ll go home and won’t be back until Wednesday. Deal?”

This is perfectly fair. Peter knows that he can get the modifications and documents done if he works the overtime. He also knows he’ll be useless for a couple of days after that.
Conclusion
Professionals are not required to say yes to everything that is asked of them. However, they should work hard to find creative ways to make “yes” possible. When professionals say yes, they use the language of commitment so that there is no doubt about what they’ve promised.

4. Coding

In a previous book1 I wrote a great deal about the structure and nature of Clean Code. This chapter discusses the act of coding, and the context that surrounds that act.
When I was 18 I could type reasonably well, but I had to look at the keys. I could not type blind. So one evening I spent a few long hours at an IBM 029 keypunch refusing to look at my fingers as I typed a program that I had written on several coding forms. I examined each card after I typed it and discarded those that were typed wrong.
At first I typed quite a few in error. By the end of the evening I was typing them all with near perfection. I realized, during that long night, that typing blind is all about confidence. My fingers knew where the keys were, I just had to gain the confidence that I wasn’t making a mistake. One of the things that helped with that confidence is that I could feel when I was making an error. By the end of the evening, if I made a mistake, I knew it almost instantly and simply ejected the card without looking at it.
Being able to sense your errors is really important. Not just in typing, but in everything. Having error-sense means that you very rapidly close the feedback loop and learn from your errors all the more quickly. I’ve studied, and mastered, several disciplines since that day on the 029. I’ve found that in each case that the key to mastery is confidence and error-sense.
This chapter describes my personal set of rules and principles for coding. These rules and principles are not about my code itself; they are about my behavior, mood, and attitude while writing code. They describe my own mental, moral, and emotional context for writing code. These are the roots of my confidence and error-sense.
You will likely not agree with everything I say here. After all, this is deeply personal stuff. In fact, you may violently disagree with some of my attitudes and principles. That’s OK—they are not intended to be absolute truths for anyone other than me. What they are is one man’s approach to being a professional coder.
Perhaps, by studying and contemplating my own personal coding milieu you can learn to snatch the pebble from my hand.
Preparedness
Coding is an intellectually challenging and exhausting activity. It requires a level of concentration and focus that few other disciplines require. The reason for this is that coding requires you to juggle many competing factors at once.

	First, your code must work. You must understand what problem you are solving and understand how to solve that problem. You must ensure that the code you write is a faithful representation of that solution. You must manage every detail of that solution while remaining consistent within the language, platform, current architecture, and all the warts of the current system.
	Your code must solve the problem set for you by the customer. Often the customer’s requirements do not actually solve the customer’s problems. It is up to you to see this and negotiate with the customer to ensure that the customer’s true needs are met.
	Your code must fit well into the existing system. It should not increase the rigidity, fragility, or opacity of that system. The dependencies must be well-managed. In short, your code needs to follow solid engineering principles.2
	Your code must be readable by other programmers. This is not simply a matter of writing nice comments. Rather, it requires that you craft the code in such a way that it reveals your intent. This is hard to do. Indeed, this may be the most difficult thing a programmer can master.

Juggling all these concerns is hard. It is physiologically difficult to maintain the necessary concentration and focus for long periods of time. Add to this the problems and distractions of working in a team, in an organization, and the cares and concerns of everyday life. The bottom line is that the opportunity for distraction is high.
When you cannot concentrate and focus sufficiently, the code you write will be wrong. It will have bugs. It will have the wrong structure. It will be opaque and convoluted. It will not solve the customers’ real problems. In short, it will have to be reworked or redone. Working while distracted creates waste.
If you are tired or distracted, do not code. You’ll only wind up redoing what you did. Instead, find a way to eliminate the distractions and settle your mind.
3 AM Code
The worst code I ever wrote was at 3 AM. The year was 1988, and I was working at a telecommunications start-up named Clear Communications. We were all putting in long hours in order to build “sweat equity.” We were, of course, all dreaming of being rich.
One very late evening—or rather, one very early morning, in order to solve a timing problem—I had my code send a message to itself through the event dispatch system (we called this “sending mail”). This was the wrong solution, but at 3 AM it looked pretty damned good. Indeed, after 18 hours of solid coding (not to mention the 60–70 hour weeks) it was all I could think of.
I remember feeling so good about myself for the long hours I was working. I remember feeling dedicated. I remember thinking that working at 3 AM is what serious professionals do. How wrong I was!
That code came back to bite us over and over again. It instituted a faulty design structure that everyone used but consistently had to work around. It caused all kinds of strange timing errors and odd feedback loops. We’d get into infinite mail loops as one message caused another to be sent, and then another, infinitely. We never had time to rewrite this wad (so we thought) but we always seemed to have time to add another wart or patch to work around it. The cruft grew and grew, surrounding that 3 AM code with ever more baggage and side effects. Years later it had become a team joke. Whenever I was tired or frustrated they’d say, “Look out! Bob’s about to send mail to himself!”
The moral of this story is: Don’t write code when you are tired. Dedication and professionalism are more about discipline than hours. Make sure that your sleep, health, and lifestyle are tuned so that you can put in eight good hours per day.
Worry Code
Have you ever gotten into a big fight with your spouse or friend, and then tried to code? Did you notice that there was a background process running in your mind trying to resolve, or at least review the fight? Sometimes you can feel the stress of that background process in your chest, or in the pit of your stomach. It can make you feel anxious, like when you’ve had too much coffee or diet coke. It’s distracting.
When I am worried about an argument with my wife, or a customer crisis, or a sick child, I can’t maintain focus. My concentration wavers. I find myself with my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic.
Paralyzed. A million miles away working through the problem in the background rather than actually solving the coding problem in front of me.
Sometimes I will force myself to think about the code. I might drive myself to write a line or two. I might push myself to get a test or two to pass. But I can’t keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing nothing through my open eyes, inwardly churning on the background worry.
I have learned that this is no time to code. Any code I produce will be trash. So instead of coding, I need to resolve the worry.
Of course, there are many worries that simply cannot be resolved in an hour or two. Moreover, our employers are not likely to long tolerate our inability to work as we resolve our personal issues. The trick is to learn how to shut down the background process, or at least reduce its priority so that it’s not a continuous distraction.
I do this by partitioning my time. Rather than forcing myself to code while the background worry is nagging at me, I will spend a dedicated block of time, perhaps an hour, working on the issue that is creating the worry. If my child is sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call her and talk through the issues. If I have money problems, I’ll spend time thinking about how I can deal with the financial issues. I know I’m not likely to solve the problems in this hour, but it is very likely that I can reduce the anxiety and quiet the background process.
Ideally the time spent wrestling with personal issues would be personal time. It would be a shame to spend an hour at the office this way. Professional developers allocate their personal time in order to ensure that the time spent at the office is as productive as possible. That means you should specifically set aside time at home to settle your anxieties so that you don’t bring them to the office.
On the other hand, if you find yourself at the office and the background anxieties are sapping your productivity, then it is better to spend an hour quieting them than to use brute force to write code that you’ll just have to throw away later (or worse, live with).
The Flow Zone
Much has been written about the hyper-productive state known as “flow.” Some programmers call it “the Zone.” Whatever it is called, you are probably familiar with it. It is the highly focused, tunnel-vision state of consciousness that programmers can get into while they write code. In this state they feel productive. In this state they feel infallible. And so they desire to attain that state, and often measure their self-worth by how much time they can spend there.
Here’s a little hint from someone whose been there and back: Avoid the Zone. This state of consciousness is not really hyper-productive and is certainly not infallible. It’s really just a mild meditative state in which certain rational faculties are diminished in favor of a sense of speed.
Let me be clear about this. You will write more code in the Zone. If you are practicing TDD, you will go around the red/green/refactor loop more quickly. And you will feel a mild euphoria or a sense of conquest. The problem is that you lose some of the big picture while you are in the Zone, so you will likely make decisions that you will later have to go back and reverse. Code written in the Zone may come out faster, but you’ll be going back to visit it more.
Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes. I clear my head by answering a few emails or looking at some tweets. If it’s close enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair partner.
One of the big benefits of pair programming is that it is virtually impossible for a pair to enter the Zone. The Zone is an uncommunicative state, while pairing requires intense and constant communication. Indeed, one of the complaints I often hear about pairing is that it blocks entry into the Zone. Good! The Zone is not where you want to be.
Well, that’s not quite true. There are times when the Zone is exactly where you want to be. When you are practicing. But we’ll talk about that in another chapter.
Music
At Teradyne, in the late ’70s, I had a private office. I was the system administrator of our PDP 11/60, and so I was one of the few programmers allowed to have a private terminal. That terminal was a VT100 running at 9600 baud and connected to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles from my office to the computer room.
I had a stereo system in my office. It was an old turntable, amp, and floor speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink Floyd, and Well, you get the picture.
I used to crank that stereo and then write code. I thought it helped my concentration. But I was wrong.
One day I went back into a module that I had been editing while listening to the opening sequence of The Wall. The comments in that code contained lyrics from the piece, and editorial notations about dive bombers and crying babies.
That’s when it hit me. As a reader of the code, I was learning more about the music collection of the author (me) than I was learning about the problem that the code was trying to solve.
I realized that I simply don’t code well while listening to music. The music does not help me focus. Indeed, the act of listening to music seems to consume some vital resource that my mind needs in order to write clean and well-designed code.
Maybe it doesn’t work that way for you. Maybe music helps you write code. I know lots of people who code while wearing earphones. I accept that the music may help them, but I am also suspicious that what’s really happening is that the music is helping them enter the Zone.
Interruptions
Visualize yourself as you are coding at your workstation. How do you respond when someone asks you a question? Do you snap at them? Do you glare? Does your body-language tell them to go away because you are busy? In short, are you rude?
Or, do you stop what you are doing and politely help someone who is stuck? Do you treat them as you would have them treat you if you were stuck?
The rude response often comes from the Zone. You may resent being dragged out of the Zone, or you may resent someone interfering with your attempt to enter the Zone. Either way, the rudeness often comes from your relationship to the Zone.
Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying to understand something complicated that requires concentration. There are several solutions to this.
Pairing can be very helpful as a way to deal with interruptions. Your pair partner can hold the context of the problem at hand, while you deal with a phone call, or a question from a coworker. When you return to your pair partner, he quickly helps you reconstruct the mental context you had before the interruption.
TDD is another big help. If you have a failing test, that test holds the context of where you are. You can return to it after an interruption and continue to make that failing test pass.
In the end, of course, there will be interruptions that distract you and cause you to lose time. When they happen, remember that next time you may be the one who needs to interrupt someone else. So the professional attitude is a polite willingness to be helpful.
Writer’s Block
Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen it happen to others. You sit at your workstation and nothing happens.
Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll look through books, or schedules, or documents. You’ll call meetings. You’ll start up conversations with others. You’ll do anything so that you don’t have to face that workstation and watch as the code refuses to appear.
What causes such blockages? We’ve spoken about many of the factors already. For me, another major factor is sleep. If I’m not getting enough sleep, I simply can’t code. Others are worry, fear, and depression.
Oddly enough there is a very simple solution. It works almost every time. It’s easy to do, and it can provide you with the momentum to get lots of code written.
The solution: Find a pair partner.
It’s uncanny how well this works. As soon as you sit down next to someone else, the issues that were blocking you melt away. There is a physiological change that takes place when you work with someone. I don’t know what it is, but I can definitely feel it. There’s some kind of chemical change in my brain or body that breaks me through the blockage and gets me going again.
This is not a perfect solution. Sometimes the change lasts an hour or two, only to be followed by exhaustion so severe that I have to break away from my pair partner and find some hole to recover in. Sometimes, even when sitting with someone, I can’t do more than just agree with what that person is doing. But for me the typical reaction to pairing is a recovery of my momentum.
Creative Input
There are other things I do to prevent blockage. I learned a long time ago that creative output depends on creative input.
I read a lot, and I read all kinds of material. I read material on software, politics, biology, astronomy, physics, chemistry, mathematics, and much more. However, I find that the thing that best primes the pump of creative output is science fiction.
For you, it might be something else. Perhaps a good mystery novel, or poetry, or even a romance novel. I think the real issue is that creativity breeds creativity. There’s also an element of escapism. The hours I spend away from my usual problems, while being actively stimulated by challenging and creative ideas, results in an almost irresistible pressure to create something myself.
Not all forms of creative input work for me. Watching TV does not usually help me create. Going to the movies is better, but only a bit. Listening to music does not help me create code, but does help me create presentations, talks, and videos. Of all the forms of creative input, nothing works better for me than good old space opera.
Debugging
One of the worst debugging sessions in my career happened in 1972. The terminals connected to the Teamsters’ accounting system used to freeze once or twice a day. There was no way to force this to happen. The error did not prefer any particular terminals or any particular applications. It didn’t matter what the user had been doing before the freeze. One minute the terminal was working fine, and the next minute it was hopelessly frozen.
It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting more and more upset. Every time there was a freeze-up the person at that terminal would have to stop working and wait until they could coordinate all the other users to finish their tasks. Then they’d call us and we’d reboot. It was a nightmare.
We spent the first couple of weeks just gathering data by interviewing the people who experienced the lockups. We’d ask them what they were doing at the time, and what they had done previously. We asked other users if they noticed anything on their terminals at the time of the freeze-up. These interviews were all done over the phone because the terminals were located in downtown Chicago, while we worked 30 miles north in the cornfields.
We had no logs, no counters, no debuggers. Our only access to the internals of the system were lights and toggle switches on the front panel. We could stop the computer, and then peek around in memory one word at a time. But we couldn’t do this for more than five minutes because the Teamsters’ needed their system back up.
We spent a few days writing a simple real-time inspector that could be operated from the ASR-33 teletype that served as our console. With this we could peek and poke around in memory while the system was running. We added log messages that printed on the teletype at critical moments. We created in-memory counters that counted events and remembered state history that we could inspect with the inspector. And, of course, all this had to be written from scratch in assembler and tested in the evenings when the system was not in use.
The terminals were interrupt driven. The characters being sent to the terminals were held in circular buffers. Every time a serial port finished sending a character, an interrupt would fire and the next character in the circular buffer would be readied for sending.
We eventually found that when a terminal froze it was because the three variables that managed the circular buffer were out of sync. We had no idea why this was happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory code there was a bug that mishandled one of those pointers.
This new knowledge also allowed us to un-freeze terminals manually! We could poke default values into those three variables using the inspector, and the terminals would magically start running again. Eventually we wrote a little hack that would look through all the counters to see if they were misaligned and repair them. At first we invoked that hack by hitting a special user-interrupt switch on the front panel whenever the Teamsters called to report a freeze-up. Later we simply ran the repair utility once every second.
A month or so later the freeze-up issue was dead, as far as the Teamsters were concerned. Occasionally one of their terminals would pause for a half second or so, but at a base rate of 30 characters per second, nobody seemed to notice.
But why were the counters getting misaligned? I was nineteen and determined to find out.
The supervisory code had been written by Richard, who had since gone off to college. None of the rest of us were familiar with that code because Richard had been quite possessive of it. That code was his, and we weren’t allowed to know it. But now Richard was gone, so I got out the inches-thick listing and started to go over it page by page.
The circular queues in that system were just FIFO data structures, that is, queues. Application programs pushed characters in one end of the queue until the queue was full. The interrupt heads popped the characters off the other end of the queue when the printer is ready for them. When the queue was empty, the printer would stop. Our bug caused the applications to think that the queue was full, but caused the interrupt heads to think that the queue was empty.
Interrupt heads run in a different “thread” than all other code. So counters and variables that are manipulated by both interrupt heads and other code must be protected from concurrent update. In our case that meant turning the interrupts off around any code that manipulated those three variables. By the time I sat down with that code I knew I was looking for someplace in the code that touched the variables but did not disable the interrupts first.
Nowadays, of course, we’d use the plethora of powerful tools at our disposal to find all the places where the code touched those variables. Within seconds we’d know every line of code that touched them. Within minutes we’d know which did not disable the interrupts. But this was 1972, and I didn’t have any tools like that. What I had were my eyes.
I pored over every page of that code, looking for the variables. Unfortunately, the variables were used everywhere. Nearly every page touched them in one way or another. Many of those references did not disable the interrupts because they were read-only references and therefore harmless. The problem was, in that particular assembler there was no good way to know if a reference was read-only without following the logic of the code. Any time a variable was read, it might later be updated and stored. And if that happened while the interrupts were enabled, the variables could get corrupted.
It took me days of intense study, but in the end I found it. There, in the middle of the code, was one place where one of the three variables was being updated while the interrupts were enabled.
I did the math. The vulnerability was about two microseconds long. There were a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up from this vulnerability one or two times a day. Bingo!
I fixed the problem, of course, but never had the courage to turn off the automatic hack that inspected and fixed the counters. To this day I’m not convinced there wasn’t another hole.
Debugging Time
For some reason software developers don’t think of debugging time as coding time. They think of debugging time as a call of nature, something that just has to be done. But debugging time is just as expensive to the business as coding time is, and therefore anything we can do to avoid or diminish it is good.
Nowadays I spend much less time debugging than I did ten years ago. I haven’t measured the difference, but I believe it’s about a factor of ten. I achieved this truly radical reduction in debugging time by adopting the practice of Test Driven Development (TDD), which we’ll be discussing in another chapter.
Whether you adopt TDD or some other discipline of equal efficacy,3 it is incumbent upon you as a professional to reduce your debugging time as close to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal nonetheless.
Doctors don’t like to reopen patients to fix something they did wrong. Lawyers don’t like to retry cases that they flubbed up. A doctor or lawyer who did that too often would not be considered professional. Likewise, a software developer who creates many bugs is acting unprofessionally.
Pacing Yourself
Software development is a marathon, not a sprint. You can’t win the race by trying to run as fast as you can from the outset. You win by conserving your resources and pacing yourself. A marathon runner takes care of her body both before and during the race. Professional programmers conserve their energy and creativity with the same care.
Know When to Walk Away
Can’t go home till you solve this problem? Oh yes you can, and you probably should! Creativity and intelligence are fleeting states of mind. When you are tired, they go away. If you then pound your nonfunctioning brain for hour after late-night hour trying to solve a problem, you’ll simply make yourself more tired and reduce the chance that the shower, or the car, will help you solve the problem.
When you are stuck, when you are tired, disengage for awhile. Give your creative subconscious a crack at the problem. You will get more done in less time and with less effort if you are careful to husband your resources. Pace yourself, and your team. Learn your patterns of creativity and brilliance, and take advantage of them rather than work against them.
Driving Home
One place that I have solved a number of problems is my car on the way home from work. Driving requires a lot of noncreative mental resources. You must dedicate your eyes, hands, and portions of your mind to the task; therefore, you must disengage from the problems at work. There is something about disengagement that allows your mind to hunt for solutions in a different and more creative way.
The Shower
I have solved an inordinate number of problems in the shower. Perhaps that spray of water early in the morning wakes me up and gets me to review all the solutions that my brain came up with while I was asleep.
When you are working on a problem, you sometimes get so close to it that you can’t see all the options. You miss elegant solutions because the creative part of your mind is suppressed by the intensity of your focus. Sometimes the best way to solve a problem is to go home, eat dinner, watch TV, go to bed, and then wake up the next morning and take a shower.
Being Late
You will be late. It happens to the best of us. It happens to the most dedicated of us. Sometimes we just blow our estimates and wind up late.
The trick to managing lateness is early detection and transparency. The worst case scenario occurs when you continue to tell everyone, up to the very end, that you will be on time—and then let them all down. Don’t do this. Instead, regularly measure your progress against your goal, and come up with three4 fact-based end dates: best case, nominal case, and worst case. Be as honest as you can about all three dates. Do not incorporate hope into your estimates! Present all three numbers to your team and stakeholders. Update these numbers daily.
Hope
What if these numbers show that you might miss a deadline? For example, let’s say that there’s a trade show in ten days, and we need to have our product there. But let’s also say that your three-number estimate for the feature you are working on is 8/12/20.
Do not hope that you can get it all done in ten days! Hope is the project killer. Hope destroys schedules and ruins reputations. Hope will get you into deep trouble. If the trade show is in ten days, and your nominal estimate is 12, you are not going to make it. Make sure that the team and the stakeholders understand the situation, and don’t let up until there is a fall-back plan. Don’t let anyone else have hope.
Rushing
What if your manager sits you down and asks you to try to make the deadline? What if your manager insists that you “do what it takes”? Hold to your estimates! Your original estimates are more accurate than any changes you make while your boss is confronting you. Tell your boss that you’ve already considered the options (because you have) and that the only way to improve the schedule is to reduce scope. Do not be tempted to rush.
Woe to the poor developer who buckles under pressure and agrees to try to make the deadline. That developer will start taking shortcuts and working extra hours in the vain hope of working a miracle. This is a recipe for disaster because it gives you, your team, and your stakeholders false hope. It allows everyone to avoid facing the issue and delays the necessary tough decisions.
There is no way to rush. You can’t make yourself code faster. You can’t make yourself solve problems faster. If you try, you’ll just slow yourself down and make a mess that slows everyone else down, too.
So you must answer your boss, your team, and your stakeholders by depriving them of hope.
Overtime
So your boss says, “What if you work an extra two hours a day? What if you work on Saturday? Come on, there’s just got to be a way to squeeze enough hours in to get the feature done on time.”
Overtime can work, and sometimes it is necessary. Sometimes you can make an otherwise impossible date by putting in some ten-hour days, and a Saturday or two. But this is very risky. You are not likely to get 20% more work done by working 20% more hours. What’s more, overtime will certainly fail if it goes on for more than two or three weeks.
Therefore you should not agree to work overtime unless (1) you can personally afford it, (2) it is short term, two weeks or less, and (3) your boss has a fall-back plan in case the overtime effort fails.
That last criterion is a deal breaker. If your boss cannot articulate to you what he’s going to do if the overtime effort fails, then you should not agree to work overtime.
False Delivery
Of all the unprofessional behaviors that a programmer can indulge in, perhaps the worst of all is saying you are done when you know you aren’t. Sometimes this is just an overt lie, and that’s bad enough. But the far more insidious case is when we manage to rationalize a new definition of “done.” We convince ourselves that we are done enough, and move on to the next task. We rationalize that any work that remains can be dealt with later when we have more time.
This is a contagious practice. If one programmer does it, others will see and follow suit. One of them will stretch the definition of “done” even more, and everyone else will adopt the new definition. I’ve seen this taken to horrible extremes. One of my clients actually defined “done” as “checked-in.” The code didn’t even have to compile. It’s very easy to be “done” if nothing has to work!
When a team falls into this trap, managers hear that everything is going fine. All status reports show that everyone is on time. It’s like blind men having a picnic on the railroad tracks: Nobody sees the freight train of unfinished work bearing down on them until it is too late.
Define “Done”
You avoid the problem of false delivery by creating an independent definition of “done.” The best way to do this is to have your business analysts and testers create automated acceptance tests5 that must pass before you can say that you are done. These tests should be written in a testing language such as FITNESSE, Selenium, RobotFX, Cucumber, and so on. The tests should be understandable by the stakeholders and business people, and should be run frequently.
Help
Programming is hard. The younger you are the less you believe this. After all, it’s just a bunch of if and while statements. But as you gain experience you begin to realize that the way you combine those if and while statements is critically important. You can’t just slather them together and hope for the best. Rather, you have to carefully partition the system into small understandable units that have as little to do with each other as possible—and that’s hard.
Programming is so hard, in fact, that it is beyond the capability of one person to do it well. No matter how skilled you are, you will certainly benefit from another programmer’s thoughts and ideas.
Helping Others
Because of this, it is the responsibility of programmers to be available to help each other. It is a violation of professional ethics to sequester yourself in a cubicle or office and refuse the queries of others. Your work is not so important that you cannot lend some of your time to help others. Indeed, as a professional you are honor bound to offer that help whenever it is needed.
This doesn’t mean that you don’t need some alone time. Of course you do. But you have to be fair and polite about it. For example, you can let it be known that between the hours of 10 AM and noon you should not be bothered, but from 1 PM to 3 PM your door is open.
You should be conscious of the status of your teammates. If you see someone who appears to be in trouble, you should offer your help. You will likely be quite surprised at the profound effect your help can have. It’s not that you are so much smarter than the other person, it’s just that a fresh perspective can be a profound catalyst for solving problems.
When you help someone, sit down and write code together. Plan to spend the better part of an hour or more. It may take less than that, but you don’t want to appear to be rushed. Resign yourself to the task and give it a solid effort. You will likely come away having learned more than you gave.
Being Helped
When someone offers to help you, be gracious about it. Accept the help gratefully and give yourself to that help. Do not protect your turf. Do not push the help away because you are under the gun. Give it thirty minutes or so. If by that time the person is not really helping all that much, then politely excuse yourself and terminate the session with thanks. Remember, just as you are honor bound to offer help, you are honor bound to accept help.
Learn how to ask for help. When you are stuck, or befuddled, or just can’t wrap your mind around a problem, ask someone for help. If you are sitting in a team room, you can just sit back and say, “I need some help.” Otherwise, use yammer, or twitter, or email, or the phone on your desk. Call for help. Again, this is a matter of professional ethics. It is unprofessional to remain stuck when help is easily accessible.
By this time you may be expecting me to burst into a chorus of Kumbaya while fuzzy bunnies leap onto the backs of unicorns and we all happily fly over rainbows of hope and change. No, not quite. You see, programmers tend to be arrogant, self-absorbed introverts. We didn’t get into this business because we like people. Most of us got into programming because we prefer to deeply focus on sterile minutia, juggle lots of concepts simultaneously, and in general prove to ourselves that we have brains the size of a planet, all while not having to interact with the messy complexities of other people.
Yes, this is a stereotype. Yes, it is generalization with many exceptions. But the reality is that programmers do not tend to be collaborators.6 And yet collaboration is critical to effective programming. Therefore, since for many of us collaboration is not an instinct, we require disciplines that drive us to collaborate.
Mentoring
I have a whole chapter on this topic later in the book. For now let me simply say that the training of less experienced programmers is the responsibility of those who have more experience. Training courses don’t cut it. Books don’t cut it. Nothing can bring a young software developer to high performance quicker than his own drive, and effective mentoring by his seniors. Therefore, once again, it is a matter of professional ethics for senior programmers to spend time taking younger programmers under their wing and mentoring them. By the same token, those younger programmers have a professional duty to seek out such mentoring from their seniors.
Bibliography
[Martin09]: Robert C. Martin, Clean Code, Upper Saddle River, NJ: Prentice Hall, 2009.
[Martin03]: Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.

5. Test Driven Development

It has been over ten years since Test Driven Development (TDD) made its debut in the industry. It came in as part of the Extreme Programming (XP) wave, but has since been adopted by Scrum, and virtually all of the other Agile methods. Even non-Agile teams practice TDD.
When, in 1998, I first heard of “Test First Programming” I was skeptical. Who wouldn’t be? Write your unit tests first? Who would do a goofy thing like that?
But I’d been a professional programmer for thirty years by then, and I’d seen things come and go in the industry. I knew better than to dismiss anything out of hand, especially when someone like Kent Beck says it.
So in 1999 I travelled to Medford, Oregon, to meet with Kent and learn the discipline from him. The whole experience was a shocker!
Kent and I sat down in his office and started to code some simple little problem in Java. I wanted to just write the silly thing. But Kent resisted and took me, step by step, through the process. First he wrote a small part of a unit test, barely enough to qualify as code. Then he wrote just enough code to make that test compile. Then he wrote a little more test, then more code.
The cycle time was completely outside my experience. I was used to writing code for the better part of an hour before trying to compile or run it. But Kent was literally executing his code every thirty seconds or so. I was flabbergasted!
What’s more, I recognized the cycle time! It was the kind of cycle time I’d used years before as a kid1 programming games in interpreted languages like Basic or Logo. In those languages there is no build time, so you just add a line of code and then execute. You go around the cycle very quickly. And because of that, you can be very productive in those languages.
But in real programming that kind of cycle time was absurd. In real programming you had to spend lots of time writing code, and then lots more time getting it to compile. And then even more time debugging it. I was a C++ programmer, dammit! And in C++ we had build and link times that took minutes, sometimes hours. Thirty-second cycle times were unimaginable.
Yet there was Kent, cooking away at this Java program in thirty-second cycles and without any hint that he’d be slowing down any time soon. So it dawned on me, while I sat there in Kent’s office, that using this simple discipline I could code in real languages with the cycle time of Logo! I was hooked!
The Jury Is In
Since those days I’ve learned that TDD is much more than a simple trick to shorten my cycle time. The discipline has a whole repertoire of benefits that I’ll describe in the following paragraphs.
But first I need to say this:
• The jury is in!

• The controversy is over.

• GOTO is harmful.

• And TDD works.

Yes, there have been lots of controversial blogs and articles written about TDD over the years and there still are. In the early days they were serious attempts at critique and understanding. Nowadays, however, they are just rants. The bottom line is that TDD works, and everybody needs to get over it.
I know this sounds strident and unilateral, but given the record I don’t think surgeons should have to defend hand-washing, and I don’t think programmers should have to defend TDD.
How can you consider yourself to be a professional if you do not know that all your code works? How can you know all your code works if you don’t test it every time you make a change? How can you test it every time you make a change if you don’t have automated unit tests with very high coverage? How can you get automated unit tests with very high coverage without practicing TDD?
That last sentence requires some elaboration. Just what is TDD?
The Three Laws of TDD

	You are not allowed to write any production code until you have first written a failing unit test.
	You are not allowed to write more of a unit test than is sufficient to fail—and not compiling is failing.
	You are not allowed to write more production code that is sufficient to pass the currently failing unit test.

These three laws lock you into a cycle that is, perhaps, thirty seconds long. You begin by writing a small portion of a unit test. But within a few seconds you must mention the name of some class or function you have not written yet, thereby causing the unit test to fail to compile. So you must write production code that makes the test compile. But you can’t write any more than that, so you start writing more unit test code.
Round and round the cycle you go. Adding a bit to the test code. Adding a bit to the production code. The two code streams grow simultaneously into complementary components. The tests fit the production code like an antibody fits an antigen.
The Litany of Benefits
Certainty
If you adopt TDD as a professional discipline, then you will write dozens of tests every day, hundreds of tests every week, and thousands of tests every year. And you will keep all those tests on hand and run them any time you make any changes to the code.
I am the primary author and maintainer of FITNESSE,2 a Java-based acceptance testing tool. As of this writing FITNESSE is 64,000 lines of code, of which 28,000 are contained in just over 2,200 individual unit tests. These tests cover at least 90% of the production code3 and take about 90 seconds to run.
Whenever I make a change to any part of FITNESSE, I simply run the unit tests. If they pass, I am nearly certain that the change I made didn’t break anything. How certain is “nearly certain”? Certain enough to ship!
The QA process for FITNESSE is the command: ant release. That command builds FITNESSE from scratch and then runs all the unit and acceptance tests. If those tests all pass, I ship it.
Defect Injection Rate
Now, FITNESSE is not a mission-critical application. If there’s a bug, nobody dies, and nobody loses millions of dollars. So I can afford to ship based on nothing but passing tests. On the other hand, FITNESSE has thousands of users, and despite the addition of 20,000 new lines of code last year, my bug list only has 17 bugs on it (many of which are cosmetic in nature). So I know my defect injection rate is very low.
This is not an isolated effect. There have been several reports4 and studies5 that describe significant defect reduction. From IBM, to Microsoft, from Sabre to Symantec, company after company and team after team have experienced defect reductions of 2X, 5X, and even 10X. These are numbers that no professional should ignore.
Courage
Why don’t you fix bad code when you see it? Your first reaction upon seeing a messy function is “This is a mess, it needs to be cleaned.” Your second reaction is “I’m not touching it!” Why? Because you know that if you touch it you risk breaking it; and if you break it, it becomes yours.
But what if you could be sure that your cleaning did not break anything? What if you had the kind of certainty that I just mentioned? What if you could click a button and know within 90 seconds that your changes had broken nothing, and had only done good?
This is one of the most powerful benefits of TDD. When you have a suite of tests that you trust, then you lose all fear of making changes. When you see bad code, you simply clean it on the spot. The code becomes clay that you can safely sculpt into simple and pleasing structures.
When programmers lose the fear of cleaning, they clean! And clean code is easier to understand, easier to change, and easier to extend. Defects become even less likely because the code gets simpler. And the code base steadily improves instead of the normal rotting that our industry has become used to.
What professional programmer would allow the rotting to continue?
Documentation
Have you ever used a third-party framework? Often the third party will send you a nicely formatted manual written by tech writers. The typical manual employs 27 eight-by-ten color glossy photographs with circles and arrows and a paragraph on the back of each one explaining how to configure, deploy, manipulate, and otherwise use that framework. At the back, in the appendix, there’s often an ugly little section that contains all the code examples.
Where’s the first place you go in that manual? If you are a programmer, you go to the code examples. You go to the code because you know the code will tell you the truth. The 27 eight-by-ten color glossy photographs with circles and arrows and a paragraph on the back might be pretty, but if you want to know how to use code you need to read code.
Each of the unit tests you write when you follow the three laws is an example, written in code, describing how the system should be used. If you follow the three laws, then there will be a unit test that describes how to create every object in the system, every way that those objects can be created. There will be a unit test that describes how to call every function in the system every way that those functions can meaningfully be called. For anything you need to know how to do, there will be a unit test that describes it in detail.
The unit tests are documents. They describe the lowest-level design of the system. They are unambiguous, accurate, written in a language that the audience understands, and are so formal that they execute. They are the best kind of low-level documentation that can exist. What professional would not provide such documentation?
Design
When you follow the three laws and write your tests first, you are faced with a dilemma. Often you know exactly what code you want to write, but the three laws tell you to write a unit test that fails because that code doesn’t exist! This means you have to test the code that you are about to write.
The problem with testing code is that you have to isolate that code. It is often difficult to test a function if that function calls other functions. To write that test you’ve got to figure out some way to decouple the function from all the others. In other words, the need to test first forces you to think about good design.
If you don’t write your tests first, there is no force preventing you from coupling the functions together into an untestable mass. If you write your tests later, you may be able to test the inputs and the outputs of the total mass, but it will probably be quite difficult to test the individual functions.
Therefore, following the three laws, and writing your tests first, creates a force that drives you to a better decoupled design. What professional would not employ tools that drove them toward better designs?
“But I can write my tests later,” you say. No, you can’t. Not really. Oh, you can write some tests later. You can even approach high coverage later if you are careful to measure it. But the tests you write after the fact are defense. The tests you write first are offense. After-the-fact tests are written by someone who is already vested in the code and already knows how the problem was solved. There’s just no way those tests can be anywhere near as incisive as tests written first.
The Professional Option
The upshot of all this is that TDD is the professional option. It is a discipline that enhances certainty, courage, defect reduction, documentation, and design. With all that going for it, it could be considered unprofessional not to use it.
What TDD Is Not
For all its good points, TDD is not a religion or a magic formula. Following the three laws does not guarantee any of these benefits. You can still write bad code even if you write your tests first. Indeed, you can write bad tests.
By the same token, there are times when following the three laws is simply impractical or inappropriate. These situations are rare, but they exist. No professional developer should ever follow a discipline when that discipline does more harm than good.
Bibliography
[Maximilien]: E. Michael Maximilien, Laurie Williams, “Assessing Test-Driven Development at IBM,” http://collaboration.csc.ncsu.edu/laurie/Papers/MAXIMILIEN_WILLIAMS.PDF
[George2003]: B. George, and L. Williams, “An Initial Investigation of Test-Driven Development in Industry,” http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf
[Janzen2005]: D. Janzen and H. Saiedian, “Test-driven development concepts, taxonomy, and future direction,” IEEE Computer, Volume 38, Issue 9, pp. 43–50.
[Nagappan2008]: Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh Bhat, and Laurie Williams, “Realizing quality improvement through test driven development: results and experiences of four industrial teams,” Springer Science + Business Media, LLC 2008: http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf

6. Practicing

All professionals practice their art by engaging in skill-sharpening exercises. Musicians rehearse scales. Football players run through tires. Doctors practice sutures and surgical techniques. Lawyers practice arguments. Soldiers rehearse missions. When performance matters, professionals practice. This chapter is all about the ways in which programmers can practice their art.
Some Background on Practicing
Practicing is not a new concept in software development, but we didn’t recognize it as practicing until just after the turn of the millennium. Perhaps the first formal instance of a practice program was printed on page 6 of [K&R-C].
main()
{
 printf("hello, world\n");
}

Who among us has not written that program in one form or another? We use it as a way to prove a new environment or a new language. Writing and executing that program is proof that we can write and execute any program.
When I was much younger, one of the first programs I would write on a new computer was SQINT, the squares of integers. I wrote it in assembler, BASIC, FORTRAN, COBOL, and a zillion other languages. Again, it was a way to prove that I could make the computer do what I wanted it to do.
In the early ’80s personal computers first started to show up in department stores. Whenever I passed one, like a VIC-20 or a Commodore-64, or a TRS-80, I would write a little program that printed an infinite stream of ‘\’ and ‘/’ characters on the screen. The patterns this program produced were pleasing to the eye and looked far more complex than the little program that generated them.
Although these little programs were certainly practice programs, programmers in general did not practice. Frankly, the thought never occurred to us. We were too busy writing code to think about practicing our skills. And besides, what would have been the point? During those years programming did not require quick reactions or nimble fingers. We did not use screen editors until the late ’70s. We spent much of our time waiting for compiles or debugging long, horrid stretches of code. We had not yet invented the short-cycles of TDD, so we did not require the fine-tuning that practice could bring.
Twenty-Two Zeros
But things have changed since the early days of programming. Some things have changed a lot. Other things haven’t changed much at all.
One of the first machines I ever wrote programs for was a PDP-8/I. This machine had a 1.5-microsecond cycle time. It had 4,096 12-bit words in core memory. It was the size of a refrigerator and consumed a significant amount of electrical power. It had a disk drive that could store 32K of 12-bit words, and we talked to it with a 10-character-per-second teletype. We thought this was a powerful machine, and we used it to work miracles.
I just bought a new Macbook Pro laptop. It has a 2.8GHz dual core processor, 8GB of RAM, a 512GB SSD, and a 17-inch 1920 × 1200 LED screen. I carry it in my backpack. It sits on my lap. It consumes less than 85 watts.
My laptop is eight thousand times faster, has two million times more memory, has sixteen million times more offline storage, requires 1% of the power, takes up 1% of the space, and costs one twenty-fifth of the price of the PDP-8/I. Let’s do the math:
8,000 × 2,000,000 × 16,000,000 × 100 × 100 × 25 = 6.4 × 1022

This number is large. We’re talking about 22 orders of magnitude! That’s how many angstroms there are between here and Alpha Centauri. That’s how many electrons there are in a silver dollar. That’s the mass of the Earth in units of Michael Moore. This is a big, big, number. And it’s sitting in my lap, and probably yours too!
And what am I doing with this increase in power of 22 factors of ten? I’m doing pretty much what I was doing with that PDP-8/I. I’m writing if statements, while loops, and assignments.
Oh, I’ve got better tools to write those statements with. And I have better languages to write those statements with. But the nature of the statements hasn’t changed in all that time. Code in 2010 would be recognizable to a programmer from the 1960s. The clay that we manipulate has not changed much in those four decades.
Turnaround Time
But the way we work has changed dramatically. In the ’60s I could wait a day or two to see the results of a compile. In the late ’70s a 50,000-line program might take 45 minutes to compile. Even in the ’90s, long build times were the norm.
Programmers today don’t wait for compiles.1 Programmers today have such immense power under their fingers that they can spin around the red-green-refactor loop in seconds.
For example, I work on a 64,000-line Java project named FITNESSE. A full build, including all unit and integration tests, executes in less than 4 minutes. If those tests pass, I’m ready to ship the product. So the whole QA process, from source code to deployment, requires less than 4 minutes. Compiles take almost no measurable time at all. Partial tests require seconds. So I can literally spin around the compile/test loop ten times per minute!
It’s not always wise to go that fast. Often it is better to slow down and just think.2 But there are other times when spinning around that loop as fast as possible is highly productive.
Doing anything quickly requires practice. Spinning around the code/test loop quickly requires you to make very quick decisions. Making decisions quickly means being able to recognize a vast number of situations and problems and simply know what to do to address them.
Consider two martial artists in combat. Each must recognize what the other is attempting and respond appropriately within milliseconds. In a combat situation you don’t have the luxury of freezing time, studying the positions, and deliberating on the appropriate response. In a combat situation you simply have to react. Indeed, it is your body that reacts while your mind is working on a higher-level strategy.
When you are spinning around the code/test loop several times per minute, it is your body that knows what keys to hit. A primal part of your mind recognizes the situation and reacts within milliseconds with the appropriate solution while your mind is free to focus on the higher-level problem.
In both the martial arts case and the programming case, speed depends on practice. And in both cases the practice is similar. We choose a repertoire of problem/solution pairs and execute them over and over again until we know them cold.
Consider a guitarist like Carlos Santana. The music in his head simply comes out his fingers. He does not focus on finger positions or picking technique. His mind is free to plan out higher-level melodies and harmonies while his body translates those plans into lower-level finger motions.
But to gain that kind of ease of play requires practice. Musicians practice scales and études and riffs over and over until they know them cold.
The Coding Dojo
Since 2001 I have been performing a TDD demonstration that I call The Bowling Game.3 It’s a lovely little exercise that takes about thirty minutes. It experiences conflict in the design, builds to a climax, and ends with a surprise. I wrote a whole chapter on this example in [PPP2003].
Over the years I performed this demonstration hundreds, perhaps thousands, of times. I got very good at it! I could do it in my sleep. I minimized the keystrokes, tuned the variable names, and tweaked the algorithm structure until it was just right. Although I didn’t know it at the time, this was my first kata.
In 2005 I attended the XP2005 Conference in Sheffield, England. I attended a session with the name Coding Dojo led by Laurent Bossavit and Emmanuel Gaillot. They had everyone open their laptops and code along with them as they used TDD to write Conway’s Game of Life. They called it a “Kata” and credited “Pragmatic” Dave Thomas4 with the original idea.5
Since then many programmers have adopted a martial arts metaphor for their practice sessions. The name Coding Dojo6 seems to have stuck. Sometimes a group of programmers will meet and practice together just like martial artists do. At other times, programmers will practice solo, again as martial artists do.
About a year ago I was teaching a group of developers in Omaha. At lunch they invited me to join their Coding Dojo. I watched as twenty developers opened their laptops and, keystroke by keystroke, followed along with the leader who was doing The Bowling Game Kata.
There are several kinds of activities that take place in a dojo. Here are a few:
Kata
In martial arts, a kata is a precise set of choreographed movements that simulates one side of a combat. The goal, which is asymptotically approached, is perfection. The artist strives to teach his body to make each movement perfectly and to assemble those movements into fluid enactment. Well-executed kata are beautiful to watch.
Beautiful though they are, the purpose of learning a kata is not to perform it on stage. The purpose is to train your mind and body how to react in a particular combat situation. The goal is to make the perfected movements automatic and instinctive so that they are there when you need them.
A programming kata is a precise set of choreographed keystrokes and mouse movements that simulates the solving of some programming problem. You aren’t actually solving the problem because you already know the solution. Rather, you are practicing the movements and decisions involved in solving the problem.
The asymptote of perfection is once again the goal. You repeat the exercise over and over again to train your brain and fingers how to move and react. As you practice you may discover subtle improvements and efficiencies either in your motions or in the solution itself.
Practicing a suite of katas is a good way to learn hot keys and navigation idioms. It is also a good way to learn disciplines such as TDD and CI. But most importantly, it is a good way to drive common problem/solution pairs into your subconscious, so that you simply know how to solve them when facing them in real programming.
Like any martial artist, a programmer should know several different kata and practice them regularly so that they don’t fade away from memory. Many kata are recorded at http://katas.softwarecraftsmanship.org. Others can be found at http://codekata.pragprog.com. Some of my favorites are:
• The Bowling Game:http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata

• Prime Factors:http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactorsKata

• Word Wrap:http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-path.html

For a real challenge, try learning a kata so well that you can set it to music. Doing this well is hard.7
Wasa
When I studied jujitsu, much of our time in the dojo was spent in pairs practicing our wasa. Wasa is very much like a two-man kata. The routines are precisely memorized and played back. One partner plays the role of the aggressor, and the other partner is the defender. The motions are repeated over and over again as the practitioners swap roles.
Programmers can practice in a similar fashion using a game known as ping-pong.8 The two partners choose a kata, or a simple problem. One programmer writes a unit test, and then the other must make it pass. Then they reverse roles.
If the partners choose a standard kata, then the outcome is known and the programmers are practicing and critiquing each other’s keyboarding and mousing techniques, and how well they’ve memorized the kata. On the other hand, if the partners choose a new problem to solve, then the game can get a bit more interesting. The programmer writing a test has an inordinate amount of control over how the problem will be solved. He also has a significant amount of power to set constraints. For example, if the programmers choose to implement a sort algorithm, the test writer can easily put constraints on speed and memory space that will challenge his partner. This can make the game quite competative . . . and fun.
Randori
Randori is free-form combat. In our jujitsu dojo, we would set up a variety of combat scenarios and then enact them. Sometimes one person was told to defend, while each of the rest of us would attack him in sequence. Sometimes we would set two or more attackers against a single defender (usually the sensei, who almost always won). Sometimes we’d do two on two, and so forth.
Simulated combat does not map well to programming; however, there is a game that is played at many coding dojos called randori. It is very much like two-man wasa in which the partners are solving a problem. However, it is played with many people and the rules have a twist. With the screen projected on the wall, one person writes a test and then sits down. The next person makes the test pass and then writes the next test. This can be done in sequence around the table, or people can simply line up as they feel so moved. In either case these exercises can be a lot of fun.
It is remarkable how much you can learn from these sessions. You can gain an immense insight into the way other people solve problems. These insights can only serve to broaden your own approach and improve your skill.
Broadening Your Experience
Professional programmers often suffer from a lack of diversity in the kinds of problems that they solve. Employers often enforce a single language, platform, and domain in which their programmers must work. Without a broadening influence, this can lead to a very unhealthy narrowing of your resume and your mindset. It is not uncommon for such programmers to find themselves unprepared for the changes that periodically sweep the industry.
Open Source
One way to stay ahead of the curve is to do what lawyers and doctors do: Take on some pro-bono work by contributing to an open-source project. There are lots of them out there, and there is probably no better way to increase your repertoire of skills than to actually work on something that someone else cares about.
So if you are a Java programmer, contribute to a Rails project. If you write a lot of C++ for your employer, find a Python project and contribute to it.
Practice Ethics
Professional programmers practice on their own time. It is not your employer’s job to help you keep your skills sharp for you. It is not your employer’s job to help you keep your resume tuned. Patients do not pay doctors to practice sutures. Football fans do not (usually) pay to see players run through tires. Concert-goers do not pay to hear musicians play scales. And employers of programmers don’t have to pay you for your practice time.
Since your practice time is your own time, you don’t have to use the same languages or platforms that you use with your employer. Pick any language you like and keep your polyglot skills sharp. If you work in a .NET shop, practice a little Java or Ruby at lunch, or at home.
Conclusion
In one way or another, all professionals practice. They do this because they care about doing the best job they possibly can. What’s more, they practice on their own time because they realize that it is their responsibility—and not their employer’s—to keep their skills sharp. Practicing is what you do when you aren’t getting paid. You do it so that you will be paid, and paid well.
Bibliography
[K&R-C]: Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Upper Saddle River, NJ: Prentice Hall, 1975.
[PPP2003]: Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.

7. Acceptance Testing

The role of the professional developer is a communications role as well as a development role. Remember that garbage-in/garbage-out applies to programmers too, so professional programmers are careful to make sure that their communication with other members of the team, and the business, are accurate and healthy.
Communicating Requirements
One of the most common communication issues between programmers and business is the requirements. The business people state what they believe they need, and then the programmers build what they believe the business described. At least that’s how it’s supposed to work. In reality, the communication of requirements is extremely difficult, and the process is fraught with error.
In 1979, while working at Teradyne, I had a visit from Tom, the manager of installation and field service. He asked me to show him how to use the ED-402 text editor to create a simple trouble-ticket system.
ED-402 was a proprietary editor written for the M365 computer, which was Teradyne’s PDP-8 clone. As a text editor it was very powerful. It had a built-in scripting language that we used for all kinds of simple text applications.
Tom was not a programmer. But the application he had in mind was simple, so he thought I could teach him quickly and then he could write the application himself. In my naivete I thought the same thing. After all, the scripting language was little more than a macro language for the editing commands, with very rudimentary decision and looping constructs.
So we sat down together and I asked him what he wanted his application to do. He started with the initial entry screen. I showed him how to create a text file that would hold the script statements and how to type the symbolic representation of the edit commands into that script. But when I looked into his eyes, there was nothing looking back. My explanation simply made no sense to him at all.
This was the first time I had encountered this. For me it was a simple thing to represent editor commands symbolically. For example, to represent a control-B command (the command that puts the cursor at the beginning of the current line) you simply typed ^B into the script file. But this made no sense to Tom. He couldn’t make the leap from editing a file to editing a file that edited a file.
Tom wasn’t dumb. I think he simply realized that this was going to be a lot more involved than he initially thought, and he didn’t want to invest the time and mental energy necessary to learn something so hideously convoluted as using an editor to command an editor.
So bit by bit I found myself implementing this application while he sat there and watched. Within the first twenty minutes it was clear that his emphasis had changed from learning how to do it himself to making sure that what I did was what he wanted.
It took us an entire day. He would describe a feature and I would implement it as he watched. The cycle time was five minutes or less, so there was no reason for him to get up and do anything else. He’d ask me to do X, and within five minutes I had X working.
Often he would draw what he wanted on a scrap of paper. Some of the things he wanted were hard to do in ED-402, so I’d propose something else. We’d eventually agree on something that would work, and then I’d make it work.
But then we’d try it and he’d change his mind. He’d say something like, “Yeah, that just doesn’t have the flow I’m looking for. Let’s try it a different way.”
Hour after hour we fiddled and poked and prodded that application into shape. We tried one thing, then another, and then another. It became very clear to me that he was the sculptor, and I was the tool he was wielding.
In the end, he got the application he was looking for but had no idea how to go about building the next one for himself. I, on the other hand, learned a powerful lesson about how customers actually discover what they need. I learned that their vision of the features does not often survive actual contact with the computer.
Premature Precision
Both business and programmers are tempted to fall into the trap of premature precision. Business people want to know exactly what they are going to get before they authorize a project. Developers want to know exactly what they are supposed to deliver before they estimate the project. Both sides want a precision that simply cannot be achieved, and are often willing to waste a fortune trying to attain it.
The Uncertainty Principle
The problem is that things appear different on paper than they do in a working system. When the business actually sees what they specified running in a system, they realize that it wasn’t what they wanted at all. Once they see the requirement actually running, they have a better idea of what they really want—and it’s usually not what they are seeing.
There’s a kind of observer effect, or uncertainty principle, in play. When you demonstrate a feature to the business, it gives them more information than they had before, and that new information impacts how they see the whole system.
In the end, the more precise you make your requirements, the less relevant they become as the system is implemented.
Estimation Anxiety
Developers, too, can get caught in the precision trap. They know they must estimate the system and often think that this requires precision. It doesn’t.
First, even with perfect information your estimates will have a huge variance. Second, the uncertainty principle makes hash out of early precision. The requirements will change making that precision moot.
Professional developers understand that estimates can, and should, be made based on low precision requirements, and recognize that those estimates are estimates. To reinforce this, professional developers always include error bars with their estimates so that the business understands the uncertainty. (See Chapter 10, “Estimation.”)
Late Ambiguity
The solution to premature precision is to defer precision as long as possible. Professional developers don’t flesh out a requirement until they are just about to develop it. However, that can lead to another malady: late ambiguity.
Often stakeholders disagree. When they do, they may find it easier to wordsmith their way around the disagreement rather than solve it. They will find some way of phrasing the requirement that they can all agree with, without actually resolving the dispute. I once heard Tom DeMarco say, “An ambiguity in a requirements document represents an argument amongst the stakeholders.”1
Of course, it doesn’t take an argument or a disagreement to create ambiguity. Sometimes the stakeholders simply assume that their readers know what they mean.
It may be perfectly clear to them in their context, but mean something completely different to the programmer who reads it. This kind of contextual ambiguity can also occur when customers and programmers are speaking face to face.
Sam (stakeholder): “OK, now these log files need to be backed up.”

Paula: “OK, how often?”

Sam: “Daily.”

Paula: “Right. And where do you want it saved?”

Sam: “What do you mean?”

Paula: “Do you want me to save it a particular sub-directory?”

Sam: “Yes, that’d be good.”

Paula: “What shall we call it?”

Sam: “How about ‘backup’?”

Paula: “Sure, that’d be fine. So we’ll write the log file into the backup directory every day. What time?”

Sam: “Every day.”

Paula: “No, I mean what time of day do you want it written?”

Sam: “Any time.”

Paula: “Noon?”

Sam: “No, not during trading hours. Midnight would be better.”

Paula: “OK, midnight then.”

Sam: “Great, thanks!”

Paula: “Always a pleasure.”

Later, Paula is telling her teammate Peter about the task.
Paula: “OK, we need to copy the log file into a sub-directory named backup every night at midnight.”

Peter: “OK, what file name should we use?”

Paula: “log.backup ought to do it.”

Peter: “You got it.”

In a different office, Sam is on the phone with his customer.
Sam: “Yes, yes, the log files will be saved.”

Carl: “OK, it’s vital that we never lose any logs. We need to go back through all those log files, even months or years later, whenever there’s an outage, event, or dispute.”

Sam: “Don’t worry, I just spoke to Paula. She’ll be saving the logs into a directory named backup every night at midnight.”

Carl: “OK, that sounds good.”

I presume you’ve detected the ambiguity. The customer expects all log files to be saved, and Paula simply thought they wanted to save last night’s log file. When the customer goes looking for months’ worth of log file backups, they’ll just find last night’s.
In this case both Paula and Sam dropped the ball. It is the responsibility of professional developers (and stakeholders) to make sure that all ambiguity is removed from the requirements.
This is hard, and there’s only one way I know how to do it.
Acceptance Tests
The term acceptance test is overloaded and overused. Some folks assume that these are the tests that users execute before they accept a release. Other folks think these are QA tests. In this chapter we will define acceptance tests as tests written by a collaboration of the stakeholders and the programmers in order to define when a requirement is done.
The Definition of “Done”
One of the most common ambiguities we face as software professionals is the ambiguity of “done.” When a developer says he’s done with a task, what does that mean? Is the developer done in the sense that he’s ready to deploy the feature with full confidence? Or does he mean that he’s ready for QA? Or perhaps he’s done writing it and has gotten it to run once but hasn’t really tested it yet.
I have worked with teams who had a different definition for the words “done” and “complete.” One particular team used the terms “done” and “done-done.”
Professional developers have a single definition of done: Done means done. Done means all code written, all tests pass, QA and the stakeholders have accepted. Done.
But how can you get this level of done-ness and still make quick progress from iteration to iteration? You create a set of automated tests that, when they pass, meet all of the above criteria! When the acceptance tests for your feature pass, you are done.
Professional developers drive the definition of their requirements all the way to automated acceptance tests. They work with stakeholder’s and QA to ensure that these automated tests are a complete specification of done.
Sam: “OK, now these log files need to be backed up.”

Paula: “OK, how often?”

Sam: “Daily.”

Paula: “Right. And where do you want it saved?”

Sam: “What do you mean?”

Paula: “Do you want me to save it a particular sub-directory?”

Sam: “Yes, that’d be good.”

Paula: “What shall we call it?”

Sam: “How about ‘backup’”?

Tom (tester): “Wait, backup is too common a name. What are you really storing in this directory?”

Sam: “The backups.”

Tom: “Backups of what?”

Sam: “The log files.”

Paula: “But there’s only one log file.”

Sam: “No, there are many. One for each day.”

Tom: “You mean that there is one active log file, and many log file backups?”

Sam: “Of course.”

Paula: “Oh! I thought you just wanted a temporary backup.”

Sam: “No, the customer wants to keep them all forever.”

Paula: “That’s a new one on me. OK, glad we cleared that up.”

Tom: “So the name of the sub-directory should tell us exactly what’s in it.”

Sam: “It’s got all the old inactive logs.”

Tom: “So let’s call it old_inactive_logs.”

Sam: “Great.”

Tom: “So when does this directory get created?”

Sam: “Huh?”

Paula: “We should create the directory when the system starts, but only if the directory doesn’t already exist.”

Tom: “OK, there’s our first test. I’ll need to start up the system and see if the old_inactive_logs directory is created. Then I’ll add a file to that directory. Then I’ll shut down, and start again, and make sure both the directory and the file are still there.”

Paula: “That test is going to take you a long time to run. System start-up is already 20 seconds, and growing. Besides, I really don’t want to have to build the whole system every time I run the acceptance tests.”

Tom: “What do you suggest?”

Paula: “We’ll create a SystemStarter class. The main program will load this starter with a group of StartupCommand objects, which will follow the COMMAND pattern. Then during system start-up the SystemStarter will simply tell all the StartupCommand objects to run. One of those StartupCommand derivatives will create the old_inactive_logs directory, but only if it doesn’t already exist.”

Tom: “Oh, OK, then all I need to test is that StartupCommand derivative.

I can write a simple FITNESSE test for that.”

Tom goes to the board.
“The first part will look something like this”:
given the command LogFileDirectoryStartupCommand
given that the old_inactive_logs directory does not exist

when the command is executed
then the old_inactive_logs directory should exist
and it should be empty

“The second part will look like this”:
given the command LogFileDirectoryStartupCommand
given that the old_inactive_logs directory exists
and that it contains a file named x
When the command is executed
Then the old_inactive_logs directory should still exist
and it should still contain a file named x

Paula: “Yeah, that should cover it.”

Sam: “Wow, is all that really necessary?”

Paula: “Sam, which of these two statements isn’t important enough to specify?”

Sam: “I just mean that it looks like a lot of work to think up and write all these tests.”

Tom: “It is, but it’s no more work than writing a manual test plan. And it’s much more work to repeatedly execute a manual test.”

Communication
The purpose of acceptance tests is communication, clarity, and precision. By agreeing to them, the developers, stakeholders, and testers all understand what the plan for the system behavior is. Achieving this kind of clarity is the responsibility of all parties. Professional developers make it their responsibility to work with stakeholders and testers to ensure that all parties know what is about to be built.
Automation
Acceptance tests should always be automated. There is a place for manual testing elsewhere in the software lifecycle, but these kinds of tests should never be manual. The reason is simple: cost.
Consider the image in Figure 7-1. The hands you see there belong to the QA manager of a large Internet company. The document he is holding is the table of contents for his manual test plan. He has an army of manual testers in off-shore locations that execute this plan once every six weeks. It costs him over a million dollars every time. He’s holding it out for me because he’s just come back from a meeting in which his manager has told him that they need to cut his budget by 50%. His question to me is, “Which half of these tests should I not run?”
Figure 7-1. Manual test plan

To call this a disaster would be a gross understatement. The cost of running the manual test plan is so enormous that they have decided to sacrifice it and simply live with the fact that they won’t know if half of their product works!
Professional developers do not let this kind of situation happen. The cost of automating acceptance tests is so small in comparison to the cost of executing manual test plans that it makes no economic sense to write scripts for humans to execute. Professional developers take responsibility for their part in ensuring that acceptance tests are automated.
There are many open-source and commercial tools that facilitate the automation of acceptance tests. FITNESSE, Cucumber, cuke4duke, robot framework, and Selenium, just to mention a few. All these tools allow you to specify automated tests in a form that nonprogrammers can read, understand, and even author.
Extra Work
Sam’s point about work is understandable. It does look like a lot of extra work to write acceptance tests like this. But given Figure 7-1 we can see that it’s not really extra work at all. Writing these tests is simply the work of specifying the system. Specifying at this level of detail is the only way we, as programmers, can know what “done” means. Specifying at this level of detail is the only way that the stakeholders can ensure that the system they are paying for really does what they need. And specifying at this level of detail is the only way to successfully automate the tests. So don’t look at these tests as extra work. Look at them as massive time and money savers. These tests will prevent you from implementing the wrong system and will allow you to know when you are done.
Who Writes Acceptance Tests, and When?
In an ideal world, the stakeholders and QA would collaborate to write these tests, and developers would review them for consistency. In the real world, stakeholders seldom have the time or inclination to dive into the required level of detail. So they often delegate the responsibility to business analysts, QA, or even developers. If it turns out that developers must write these tests, then take care that the developer who writes the test is not the same as the developer who implements the tested feature.
Typically business analysts write the “happy path” versions of the tests, because those tests describe the features that have business value. QA typically writes the “unhappy path” tests, the boundary conditions, exceptions, and corner cases. This is because QA’s job is to help think about what can go wrong.
Following the principle of “late precision,” acceptance tests should be written as late as possible, typically a few days before the feature is implemented. In Agile projects, the tests are written after the features have been selected for the next Iteration or Sprint.
The first few acceptance tests should be ready by the first day of the iteration. More should be completed each day until the midpoint of the iteration when all of them should be ready. If all the acceptance tests aren’t ready by the midpoint of the iteration, then some developers will have to pitch in to finish them off. If this happens frequently, then more BAs and/or QAs should be added to the team.
The Developer’s Role
Implementation work on a feature begins when the acceptance tests for that feature are ready. The developers execute the acceptance tests for the new feature and see how they fail. Then they work to connect the acceptance test to the system, and then start making the test pass by implementing the desired feature.
Paula: “Peter, would you give me a hand with this story?”

Peter: “Sure, Paula, what’s up?”

Paula: “Here’s the acceptance test. As you can see, it’s failing.”

given the command LogFileDirectoryStartupCommand
given that the old_inactive_logs directory does not exist
when the command is executed
then the old_inactive_logs directory should exist
and it should be empty

Peter: “Yeah, all red. None of the scenarios are written. Let me write the first one.”

|scenario|given the command _|cmd|
|create command|@cmd|

Paula: “Do we already have a createCommand operation?”

Peter: “Yeah, it’s in the CommandUtilitiesFixture that I wrote last week.”

Paula: “OK, so let’s run the test now.”

Peter: (runs test). “Yeah, the first line is green, let’s move on to the next.”

Don’t worry too much about Scenarios and Fixtures. Those are just some of the plumbing you have to write to connect the tests to the system being tested.
Suffice it to say that the tools all provide some way to use pattern matching to recognize and parse the statements of the test, and then to call functions that feed the data in the test into the system being tested. The amount of effort is small, and the Scenarios and Fixtures are reusable across many different tests.
The point of all this is that it is the developer’s job to connect the acceptance tests to the system, and then to make those tests pass.
Test Negotiation and Passive Aggression
Test authors are human and make mistakes. Sometimes the tests as written don’t make a lot of sense once you start implementing them. They might be too complicated. They might be awkward. They might contains silly assumptions. Or they might just be wrong. This can be very frustrating if you are the developer who has to make the test pass.
As a professional developer, it is your job to negotiate with the test author for a better test. What you should never do is take the passive-aggressive option and say to yourself, “Well, that’s what the test says, so that’s what I’m going to do.”
Remember, as a professional it is your job to help your team create the best software they can. That means that everybody needs to watch out for errors and slip-ups, and work together to correct them.
Paula: “Tom, this test isn’t quite right.”

ensure that the post operation finishes in 2 seconds.

Tom: “It looks OK to me. Our requirement is that users should not have to wait more than two seconds. What’s the problem?”

Paula: “The problem is we can only make that guarantee in a statistical sense.”

Tom: “Huh? That sounds like weasel words. The requirement is two seconds.”

Paula: “Right, and we can achieve that 99.5% of the time.”

Tom: “Paula, that’s not the requirement.”

Paula: “But it’s reality. There’s no way I can make the guarantee any other way.”

Tom: “Sam’s going to throw a fit.”

Paula: “No, actually, I’ve already spoken to him about it. He’s fine as long as the normal user experience is two seconds or less.”

Tom: “OK, so how do I write this test? I can’t just say that the post operation usually finishes in two seconds.”

Paula: “You say it statistically.”

Tom: “You mean you want me to run a thousand post operation and make sure no more than five are more than two seconds? That’s absurd.”

Paula: “No, that would take the better part of an hour to run. How about this?”

execute 15 post transactions and accumulate times.
ensure that the Z score for 2 seconds is at least 2.57

Tom: “Whoa, what’s a Z score?”

Paula: “Just a bit of statistics. Here, how about this?”

execute 15 post transactions and accumulate times.
ensure odds are 99.5% that time will be less than 2 seconds.

Tom: “Yeah, that’s readable, sort of, but can I trust the math behind the scenes?”

Paula: “I’ll make sure to show all the intermediate calculations in the test report so that you can check the math if you have any doubts.”

Tom: “OK, that works for me.”

Acceptance Tests and Unit Tests
Acceptance tests are not unit tests. Unit tests are written by programmers for programmers. They are formal design documents that describe the lowest level structure and behavior of the code. The audience is programmers, not business.
Acceptance tests are written by the business for the business (even when you, the developer, end up writing them). They are formal requirements documents that specify how the system should behave from the business’ point of view. The audience is the business and the programmers.
It can be tempting to try to eliminate “extra work” by assuming that the two kinds of tests are redundant. Although it is true that unit and acceptance tests often test the same things, they are not redundant at all.
First, although they may test the same things, they do so through different mechanisms and pathways. Unit tests dig into the guts of the system making calls to methods in particular classes. Acceptance tests invoke the system much farther out, at the API or sometimes even UI level. So the execution pathways that these tests take are very different.
But the real reason these tests aren’t redundant is that their primary function is not testing. The fact that they are tests is incidental. Unit tests and acceptance tests are documents first, and tests second. Their primary purpose is to formally document the design, structure, and behavior of the system. The fact that they automatically verify the design, structure, and behavior that they specify is wildly useful, but the specification is their true purpose.
GUIs and Other Complications
It is hard to specify GUIs up front. It can be done, but it is seldom done well. The reason is that the aesthetics are subjective and therefore volatile. People want to fiddle with GUIs. They want to massage and manipulate them. They want to try different fonts, colors, page-layouts, and workflows. GUIs are constantly in flux.
This makes it challenging to write acceptance tests for GUIs. The trick is to design the system so that you can treat the GUI as though it were an API rather than a set of buttons, sliders, grids, and menus. This may sound strange, but it’s really just good design.
There is a design principle called the Single Responsibility Principle (SRP). This principle states that you should separate those things that change for different reasons, and group together those things that change for the same reasons. GUIs are no exception.
The layout, format, and workflow of the GUI will change for aesthetic and efficiency reasons, but the underlying capability of the GUI will remain the same despite these changes. Therefore, when writing acceptance tests for a GUI you take advantage of the underlying abstractions that don’t change very frequently.
For example, there may be several buttons on a page. Rather than creating tests that click on those buttons based on their positions on the page, you may be able to click on them based on their names. Better yet, perhaps they each have a unique ID that you can use. It is much better to write a test that selects the button whose ID is ok_button than it is to select the button in column 3 of row 4 of the control grid.
Testing through the Right Interface
Better still is to write tests that invoke the features of the underlying system through a real API rather than through the GUI. This API should be the same API used by the GUI. This is nothing new. Design experts have been telling us for decades to separate our GUIs from our business rules.
Testing through the GUI is always problematic unless you are testing just the GUI. The reason is that the GUI is likely to change, making the tests very fragile. When every GUI change breaks a thousand tests, you are either going to start throwing the tests away or you are going to stop changing the GUI. Neither of those are good options. So write your business rule tests to go through an API just below the GUI.
Some acceptance tests specify the behavior of the GUI itself. These tests must go through the GUI. However, these tests do not test business rules and therefore don’t require the business rules to be connected to the GUI. Therefore, it is a good idea to decouple the GUI and the business rules and replace the business rules with stubs while testing the GUI itself.
Keep the GUI tests to a minimum. They are fragile, because the GUI is volatile. The more GUI tests you have the less likely you are to keep them.
Continuous Integration
Make sure that all your unit tests and acceptance tests are run several times per day in a continuous integration system. This system should be triggered by your source code control system. Every time someone commits a module, the CI system should kick off a build, and then run all the tests in the system. The results of that run should be emailed to everyone on the team.
Stop the Presses
It is very important to keep the CI tests running at all times. They should never fail. If they fail, then the whole team should stop what they are doing and focus on getting the broken tests to pass again. A broken build in the CI system should be viewed as an emergency, a “stop the presses” event.
I have consulted for teams that failed to take broken tests seriously. They were “too busy” to fix the broken tests so they set them aside, promising to fix them later. In one case the team actually took the broken tests out of the build because it was so inconvenient to see them fail. Later, after releasing to the customer, they realized that they had forgotten to put those tests back into the build. They learned this because an angry customer was calling them with bug reports.
Conclusion
Communication about details is hard. This is especially true for programmers and stakeholders communicating about the details of an application. It is too easy for each party to wave their hands and assume that the other party understands. All too often both parties agree that they understand and leave with completely different ideas.
The only way I know of to effectively eliminate communication errors between programmers and stakeholders is to write automated acceptance tests. These tests are so formal that they execute. They are completely unambiguous, and they cannot get out of sync with the application. They are the perfect requirements document.

8. Testing Strategies

Professional developers test their code. But testing is not simply a matter of writing a few unit tests or a few acceptance tests. Writing these tests is a good thing, but it is far from sufficient. What every professional development team needs is a good testing strategy.
In 1989, I was working at Rational on the first release of Rose. Every month or so our QA manager would call a “Bug Hunt” day. Everyone on the team, from programmers to managers to secretaries to database administrators, would sit down with Rose and try to make it fail. Prizes were awarded for various types of bugs. The person who found a crashing bug could win a dinner for two. The person who found the most bugs might win a weekend in Monterrey.
QA Should Find Nothing
I’ve said this before, and I’ll say it again. Despite the fact that your company may have a separate QA group to test the software, it should be the goal of the development group that QA find nothing wrong.
Of course, it’s not likely that this goal will be constantly achieved. After all, when you have a group of intelligent people bound and determined to find all the wrinkles and deficits in a product, they are likely going to find some. Still, every time QA finds something the development team should react in horror. They should ask themselves how it happened and take steps to prevent it in the future.
QA Is Part of the Team
The previous section might have made it seem that QA and Development are at odds with each other, that their relationship is adversarial. This is not the intent. Rather, QA and Development should be working together to ensure the quality of the system. The best role for the QA part of the team is to act as specifiers and characterizers.
QA as Specifiers
It should be QA’s role to work with business to create the automated acceptance tests that become the true specification and requirements document for the system. Iteration by iteration they gather the requirements from business and translate them into tests that describe to developers how the system should behave (See Chapter 7, “Acceptance Testing”). In general, the business writes the happy-path tests, while QA writes the corner, boundary, and unhappy-path tests.
QA as Characterizers
The other role for QA is to use the discipline of exploratory testing1 to characterize the true behavior of the running system and report that behavior back to development and business. In this role QA is not interpreting the requirements. Rather, they are identifying the actual behaviors of the system.
The Test Automation Pyramid
Professional developers employ the discipline of Test Driven Development to create unit tests. Professional development teams use acceptance tests to specify their system, and continuous integration (Chapter 7, page 110) to prevent regression. But these tests are only part of the story. As good as it is to have a suite of unit and acceptance tests, we also need higher-level tests to ensure that QA finds nothing. Figure 8-1 shows the Test Automation Pyramid,2 a graphical depiction of the kinds of tests that a professional development organization needs.
Figure 8-1. The test automation pyramid

Unit Tests
At the bottom of the pyramid are the unit tests. These tests are written by programmers, for programmers, in the programming language of the system. The intent of these tests is to specify the system at the lowest level. Developers write these tests before writing production code as a way to specify what they are about to write. They are executed as part of Continuous Integration to ensure that the intent of the programmers’ is upheld.
Unit tests provide as close to 100% coverage as is practical. Generally this number should be somewhere in the 90s. And it should be true coverage as opposed to false tests that execute code without asserting its behavior.
Component Tests
These are some of the acceptance tests mentioned in the previous chapter. Generally they are written against individual components of the system. The components of the system encapsulate the business rules, so the tests for those components are the acceptance tests for those business rules
As depicted in Figure 8-2 a component test wraps a component. It passes input data into the component and gathers output data from it. It tests that the output matches the input. Any other system components are decoupled from the test using appropriate mocking and test-doubling techniques.
Figure 8-2. Component acceptance test

Component tests are written by QA and Business with assistance from development. They are composed in a component-testing environment such as FITNESSE, JBehave, or Cucumber. (GUI components are tested with GUI testing environments such as Selenium or Watir.) The intent is that the business should be able to read and interpret these tests, if not author them.
Component tests cover roughly half the system. They are directed more towards happy-path situations and very obvious corner, boundary, and alternate-path cases. The vast majority of unhappy-path cases are covered by unit tests and are meaningless at the level of component tests.
Integration Tests
These tests only have meaning for larger systems that have many components. As shown in Figure 8-3, these tests assemble groups of components and test how well they communicate with each other. The other components of the system are decoupled as usual with appropriate mocks and test-doubles.
Figure 8-3. Integration test

Integration tests are choreography tests. They do not test business rules. Rather, they test how well the assembly of components dances together. They are plumbing tests that make sure that the components are properly connected and can clearly communicate with each other.
Integration tests are typically written by the system architects, or lead designers, of the system. The tests ensure that the architectural structure of the system is sound. It is at this level that we might see performance and throughput tests.
Integration tests are typically written in the same language and environment as component tests. They are typically not executed as part of the Continuous Integration suite, because they often have longer runtimes. Instead, these tests are run periodically (nightly, weekly, etc.) as deemed necessary by their authors.
System Tests
These are automated tests that execute against the entire integrated system. They are the ultimate integration tests. They do not test business rules directly. Rather, they test that the system has been wired together correctly and its parts interoperate according to plan. We would expect to see throughput and performance tests in this suite.
These tests are written by the system architects and technical leads. Typically they are written in the same language and environment as integration tests for the UI. They are executed relatively infrequently depending on their duration, but the more frequently the better.
System tests cover perhaps 10% of the system. This is because their intent is not to ensure correct system behavior, but correct system construction. The correct behavior of the underlying code and components have already been ascertained by the lower layers of the pyramid.
Manual Exploratory Tests
This is where humans put their hands on the keyboards and their eyes on the screens. These tests are not automated, nor are they scripted. The intent of these tests is to explore the system for unexpected behaviors while confirming expected behaviors. Toward that end we need human brains, with human creativity, working to investigate and explore the system. Creating a written test plan for this kind of testing defeats the purpose.
Some teams will have specialists do this work. Other teams will simply declare a day or two of “bug hunting” in which as many people as possible, including managers, secretaries, programmers, testers, and tech writers, “bang” on the system to see if they can make it break.
The goal is not coverage. We are not going to prove out every business rule and every execution pathway with these tests. Rather, the goal is to ensure that the system behaves well under human operation and to creatively find as many “peculiarities” as possible.
Conclusion
TDD is a powerful discipline, and Acceptance Tests are valuable ways to express and enforce requirements. But they are only part of a total testing strategy. To make good on the goal that “QA should find nothing,” development teams need to work hand in hand with QA to create a hierarchy of unit, component, integration, system, and exploratory tests. These tests should be run as frequently as possible to provide maximum feedback and to ensure that the system remains continuously clean.
Bibliography
[COHN09]: Mike Cohn, Succeeding with Agile, Boston, MA: Addison-Wesley, 2009.

9. Time Management

Eight hours is a remarkably short period of time. It’s just 480 minutes or 28,800 seconds. As a professional, you expect that you will use those few precious seconds as efficiently and effectively as possible. What strategy can you use to ensure that you don’t waste the little time you have? How can you effectively manage your time?
In 1986 I was living in Little Sandhurst, Surrey, England. I was managing a 15-person software development department for Teradyne in Bracknell. My days were hectic with phone calls, impromptu meetings, field service issues, and interruptions. So in order to get any work done I had to adopt some pretty drastic time-management disciplines.
• I awoke at 5 every morning and rode my bicycle to the office in Bracknell by 6 AM. That gave me hours of quiet time before the chaos of the day began.

• Upon arrival I would write a schedule on my board. I divided time into 15-minute increments and filled in the activity I would work on during that block of time.

• I completely filled the first 3 hours of that schedule. Starting at 9 AM I started leaving one 15-minute gap per hour; that way I could quickly push most interruptions into one of those open slots and continue working.

• I left the time after lunch unscheduled because I knew that by then all hell would have broken loose and I’d have to be in reactive mode for the rest of the day. During those rare afternoon periods that the chaos did not intrude, I simply worked on the most important thing until it did.

This scheme did not always succeed. Waking up at 5 AM was not always feasible, and sometimes the chaos broke through all my careful strategies and consumed my day. But for the most part I was able to keep my head above water.
Meetings
Meetings cost about $200 per hour per attendee. This takes into account salaries, benefits, facilities costs, and so forth. The next time you are in a meeting, calculate the cost. You may be amazed.
There are two truths about meeting.

	Meetings are necessary.
	Meetings are huge time wasters.

Often these two truths equally describe the same meeting. Some in attendance may find them invaluable; others may find them redundant or useless.
Professionals are aware of the high cost of meetings. They are also aware that their own time is precious; they have code to write and schedules to meet. Therefore, they actively resist attending meetings that don’t have an immediate and significant benefit.
Declining
You do not have to attend every meeting to which you are invited. Indeed, it is unprofessional to go to too many meetings. You need to use your time wisely. So be very careful about which meetings you attend and which you politely refuse.
The person inviting you to a meeting is not responsible for managing your time. Only you can do that. So when you receive a meeting invitation, don’t accept unless it is a meeting for which your participation is immediately and significantly necessary to the job you are doing now.
Sometimes the meeting will be about something that interests you, but is not immediately necessary. You will have to choose whether you can afford the time. Be careful—there may be more than enough of these meetings to consume your days.
Sometimes the meeting will be about something that you can contribute to but is not immediately significant to what you are currently doing. You will have to choose whether the loss to your project is worth the benefit to theirs. This may sound cynical, but your responsibility is to your projects first. Still, it is often good for one team to help another, so you may want to discuss your participation with your team and manager.
Sometimes your presence at the meeting will be requested by someone in authority, such as a very senior engineer in another project or the manager of a different project. You will have to choose whether that authority outweighs your work schedule. Again, your team and your supervisor can be of help in making that decision.
One of the most important duties of your manager is to keep you out of meetings. A good manager will be more than willing to defend your decision to decline attendance because that manager is just as concerned about your time as you are.
Leaving
Meetings don’t always go as planned. Sometimes you find yourself sitting in a meeting that you would have declined had you known more. Sometimes new topics get added, or somebody’s pet peeve dominates the discussion. Over the years I’ve developed a simple rule: When the meeting gets boring, leave.
Again, you have an obligation to manage your time well. If you find yourself stuck in a meeting that is not a good use of your time, you need to find a way to politely exit that meeting.
Clearly you should not storm out of a meeting exclaiming “This is boring!” There’s no need to be rude. You can simply ask, at an opportune moment, if your presence is still necessary. You can explain that you can’t afford a lot more time, and ask whether there is a way to expedite the discussion or shuffle the agenda.
The important thing to realize is that remaining in a meeting that has become a waste of time for you, and to which you can no longer significantly contribute, is unprofessional. You have an obligation to wisely spend your employer’s time and money, so it is not unprofessional to choose an appropriate moment to negotiate your exit.
Have an Agenda and a Goal
The reason we are willing to endure the cost of meetings is that we sometimes do need the participants together in a room to help achieve a specific goal. To use the participants’ time wisely, the meeting should have a clear agenda, with times for each topic and a stated goal.
If you are asked to go to a meeting, make sure you know what discussions are on the table, how much time is allotted for them, and what goal is to be achieved. If you can’t get a clear answer on these things, then politely decline to attend.
If you go to a meeting and you find that the agenda has been high-jacked or abandoned, you should request that the new topic be tabled and the agenda be followed. If this doesn’t happen, you should politely leave when possible.
Stand-Up Meetings
These meetings are part of the Agile cannon. Their name comes from the fact that the participants are expected to stand while the meeting is in session. Each participant takes a turn to answer three questions:

	What did I do yesterday?
	What am I going to do today?
	What’s in my way?

That’s all. Each question should require no more than twenty seconds, so each participant should require no more than one minute. Even in a group of ten people this meeting should be over well before ten minutes has elapsed.
Iteration Planning Meetings
These are the most difficult meetings in the Agile canon to do well. Done poorly, they take far too much time. It takes skill to make these meetings go well, a skill that is well worth learning.
Iteration planning meetings are meant to select the backlog items that will be executed in the next iteration. Estimates should already be done for the candidate items. Assessment of business value should already be done. In really good organizations the acceptance/component tests will already be written, or at least sketched out.
The meeting should proceed quickly with each candidate backlog item being briefly discussed and then either selected or rejected. No more than five or ten minutes should be spent on any given item. If a longer discussion is needed, it should be scheduled for another time with a subset of the team.
My rule of thumb is that the meeting should take no more than 5% of the total time in the iteration. So for a one week iteration (forty hours) the meeting should be over within two hours.
Iteration Restrospective and Demo
These meetings are conducted at the end of each iteration. Team members discuss what went right and what went wrong. Stakeholders see a demo of the newly working features. These meetings can be badly abused and can soak up a lot of time, so schedule them 45 minutes before quitting time on the last day of the iteration. Allocate no more than 20 minutes for retrospective and 25 minutes for the demo. Remember, it’s only been a week or two so there shouldn’t be all that much to talk about.
Arguments/Disagreements
Kent Beck once told me something profound: “Any argument that can’t be settled in five minutes can’t be settled by arguing.” The reason it goes on so long is that there is no clear evidence supporting either side. The argument is probably religious, as opposed to factual.
Technical disagreements tend to go off into the stratosphere. Each party has all kinds of justifications for their position but seldom any data. Without data, any argument that doesn’t forge agreement within a few minutes (somewhere between five and thirty) simply won’t ever forge agreement. The only thing to do is to go get some data.
Some folks will try to win an argument by force of character. They might yell, or get in your face, or act condescending. It doesn’t matter; force of will doesn’t settle disagreements for long. Data does.
Some folks will be passive-aggressive. They’ll agree just to end the argument, and then sabotage the result by refusing to engage in the solution. They’ll say to themselves, “This is the way they wanted it, and now they’re going to get what they wanted.” This is probably the worst kind of unprofessional behavior there is. Never, ever do this. If you agree, then you must engage.
How do you get the data you need to settle a disagreement? Sometimes you can run experiments, or do some simulation or modeling. But sometimes the best alternative is to simply flip a coin to choose one of the two paths in question.
If things work out, then that path was workable. If you get into trouble, you can back out and go down the other path. It would be wise to agree on a time as well as a set of criteria to help determine when the chosen path should be abandoned.
Beware of meetings that are really just a venue to vent a disagreement and to gather support for one side or the other. And avoid those where only one of the arguers is presenting.
If an argument must truly be settled, then ask each of the arguers to present their case to the team in five minutes or less. Then have the team vote. The whole meeting will take less than fifteen minutes.
Focus-Manna
Forgive me if this section seems to smell of New Age metaphysics, or perhaps of Dungeons & Dragons. It’s just that this is the way I think about this topic.
Programming is an intellectual exercise that requires extended periods of concentration and focus. Focus is a scarce resource, rather like manna.1 After you have expended your focus-manna, you have to recharge by doing unfocused activities for an hour or more.
I don’t know what this focus-manna is, but I have a feeling that it is a physical substance (or possibly its lack) that affects alterness and attention. Whatever it may be, you can feel when it’s there, and you can feel when it’s gone. Professional developers learn to manage their time to take advantage of their focus-manna. We write code when our focus-manna is high; and we do other, less productive things when it’s not.
Focus-manna is also a decaying resource. If you don’t use it when it’s there, you are likely to lose it. That’s one of the reasons that meetings can be so devastating. If you spend all your focus-manna in a meeting, you won’t have any left for coding.
Worry and distractions also consume focus-manna. The fight you had with your spouse last night, the dent you put in your fender this morning, or the bill you forgot to pay last week will all suck the focus-manna out of you quickly.
Sleep
I can’t stress this one strongly enough. I have the most focus-manna after a good night’s sleep. Seven hours of sleep will often give me a full eight hours’ worth of focus-manna. Professional developers manage their sleep schedule to ensure that they have topped up their focus-manna by the time they get to work in the morning.
Caffeine
There is no doubt that some of us can make more efficient use of our focus-manna by consuming moderate amounts of caffeine. But take care. Caffeine also puts a strange “jitter” on your focus. Too much of it can send your focus off in very strange directions. A really strong caffeine buzz can cause you to waste an entire day hyper-focussing on all the wrong things.
Caffeine usage and tolerance is a personal thing. My personal preference is a single strong cup of coffee in the morning and a diet coke with lunch. I sometimes double this dose, but seldom do more than that.
Recharging
Focus-manna can be partially recharged by de-focussing. A good long walk, a conversation with friends, a time of just looking out a window can all help to pump the focus-manna back up.
Some people meditate. Other people grab a power nap. Others will listen to a podcast or thumb through a magazine.
I have found that once the manna is gone, you can’t force the focus. You can still write code, but you’ll almost certainly have to rewrite it the next day, or live with a rotting mass for weeks or months. So it’s better to take thirty, or even sixty minutes to de-focus.
Muscle Focus
There is something peculiar about doing physical disciplines such as martial arts, tai-chi or yoga. Even though these activities require significant focus, it is a different kind of focus from coding. It’s not intellectual, it’s muscle. And somehow muscle focus helps to recharge mental focus. It’s more than a simple recharge though. I find that a regular regimen of muscle focus increases my capacity for mental focus.
My chosen form of physical focus is bike riding. I’ll ride for an hour or two, sometimes covering twenty or thirty miles. I ride on a trail that parallels the Des Plaines river, so I don’t have to deal with cars.
While I ride I listen to podcasts about astronomy or politics. Sometimes I just listen to my favorite music. And sometimes I just turn the headphones off and listen to nature.
Some people take the time to work with their hands. Perhaps they enjoy carpentry, or building models, or gardening. Whatever the activity, there is something about activities that focus on muscles that enhances the ability to work with your mind.
Input versus Output
Another thing I find essential for focus is to balance my output with appropriate input. Writing software is a creative exercise. I find that I am most creative when I am exposed to other people’s creativity. So I read lots of science fiction. The creativity of those authors somehow stimulates my own creative juices for software.
Time Boxing and Tomatoes
One very effective way that I’ve used to manage my time and focus is to use the well-known Pomodoro Technique,2 otherwise knows as tomatoes. The basic idea is very simple. You set a standard kitchen timer (traditionally shaped like a tomato) for 25 minutes. While that timer is running, you let nothing interfere with what you are doing. If the phone rings you answer and politely ask if you can call back within 25 minutes. If someone stops in to ask you a question you politely ask if you can get back to them within 25 minutes. Regardless of the interruption, you simply defer it until the timer dings. After all, few interruptions are so horribly urgent that they can’t wait 25 minutes!
When the tomato timer dings you stop what you are doing immediately. You deal with any interruptions that occurred during the tomato. Then you take a break of five minutes or so. Then you set the timer for another 25 minutes and start the next tomato. Every fourth tomato you take a longer break of 30 minutes or so.
There is quite a bit written about this technique, and I urge you to read it. However, the description above should provide you with the gist of the technique.
Using this technique your time is divided into tomato and non-tomato time. Tomato time is productive. It is within tomatoes that you get real work done. Time outside of tomatoes is either distractions, meetings, breaks, or other time that is not spent working on your tasks.
How many tomatoes can you get done in a day? On a good day you might get 12 or even 14 tomatoes done. On a bad day, you might only get two or three done. If you count them, and chart them, you’ll get a pretty quick feel for how much of your day you spend productive and how much you spend dealing with “stuff.”
Some people get so comfortable with the technique that they estimate their tasks in tomatoes and then measure their weekly tomato velocity. But this is just icing on the cake. The real benefit of the Pomodoro Technique is that 25-minute window of productive time that you aggressively defend against all interruptions.
Avoidance
Sometimes your heart just isn’t in your work. It may be that the thing that needs doing is scary or uncomfortable or boring. Perhaps you think it will force you into a confrontation or lead you into an inescapable rat hole. Or maybe you just plain don’t want to do it.
Priority Inversion
Whatever the reason, you find ways to avoid doing the real work. You convince yourself that something else is more urgent, and you do that instead. This is called priority inversion. You raise the priority of a task so that you can postpone the task that has the true priority. Priority inversions are a lie we tell ourselves. We can’t face what needs to be done, so we convince ourselves that another task is more important. We know it’s not, but we lie to ourselves.
Actually, we aren’t lying to ourselves. What we are really doing is preparing for the lie we’ll tell when someone asks us what we are doing and why we are doing it. We are building a defense to protect us from the judgment of others.
Clearly this is unprofessional behavior. Professionals evaluate the priority of each task, disregarding their personal fears and desires, and execute those tasks in priority order.
Blind Alleys
Blind alleys are a fact of life for all software craftsmen. Sometimes you will make a decision and wander down a technical pathway that leads to nowhere. The more vested you are in your decision, the longer you will wander in the wilderness. If you’ve staked your professional reputation, you’ll wander forever.
Prudence and experience will help you avoid certain blind alleys, but you’ll never avoid them all. So the real skill you need is to quickly realize when you are in one, and have the courage to back out. This is sometimes called The Rule of Holes: When you are in one, stop digging.
Professionals avoid getting so vested in an idea that they can’t abandon it and turn around. They keep an open mind about other ideas so that when they hit a dead end they still have other options.
Marshes, Bogs, Swamps, and Other Messes
Worse than blind alleys are messes. Messes slow you down, but don’t stop you. Messes impede your progress, but you can still make progress through sheer brute force. Messes are worse than blind alleys because you can always see the way forward, and it always looks shorter than the way back (but it isn’t).
I have seen products ruined and companies destroyed by software messes. I’ve seen the productivity of teams decrease from jitterbug to dirge in just a few months. Nothing has a more profound or long-lasting negative effect on the productivity of a software team than a mess. Nothing.
The problem is that starting a mess, like going down a blind alley, is unavoidable. Experience and prudence can help you to avoid them, but eventually you will make a decision that leads to a mess.
The progression of such a mess is insidious. You create a solution to a simple problem, being careful to keep the code simple and clean. As the problem grows in scope and complexity you extend that code base, keeping it as clean as you can. At some point you realize that you made a wrong design choice when you started, and that your code doesn’t scale well in the direction that the requirements are moving.
This is the inflection point! You can still go back and fix the design. But you can also continue to go forward. Going back looks expensive because you’ll have to rework the existing code, but going back will never be easier than it is now. If you go forward you will drive the system into a swamp from which it may never escape.
Professionals fear messes far more than they fear blind alleys. They are always on the lookout for messes that start to grow without bound, and will expend all necessary effort to escape from them as early and as quickly as possible.
Moving forward through a swamp, when you know it’s a swamp, is the worst kind of priority inversion. By moving forward you are lying to yourself, lying to your team, lying to your company, and lying to your customers. You are telling them that all will be well, when in fact you are heading to a shared doom.
Conclusion
Software professionals are diligent in the management of their time and their focus. They understand the temptations of priority inversion and fight it as a matter of honor. They keep their options open by keeping an open mind about alternate solutions. They never become so vested in a solution that they can’t abandon it. And they are always on the lookout for growing messes, and they clean them as soon as they are recognized. There is no sadder sight than a team of software developers fruitlessly slogging through an ever-deepening bog.

10. Estimation

Estimation is one of the simplest, yet most frightening activities that software professionals face. So much business value depends on it. So much of our reputations ride on it. So much of our angst and failure are caused by it. It is the primary wedge that has been driven between business people and developers. It is the source of nearly all the distrust that rules that relationship.
In 1978, I was the lead developer for a 32K embedded Z-80 program written in assembly language. The program was burned onto 32 1K × 8 EEprom chips. These 32 chips were inserted into three boards, each of which held 12 chips.
We had hundreds of devices in the field, installed in telephone central offices all over the United States. Whenever we fixed a bug or added a feature, we’d have to send field service techs to each of those units and have them replace all 32 chips!
This was a nightmare. The chips and the boards were fragile. The pins on the chips could bend and break. The constant flexing of the boards could damage solder joints. The risk of breakage and error were enormous. The cost to the company was far too high.
My boss, Ken Finder, came to me and asked me to fix this. What he wanted was a way to make a change to a chip that did not require all the other chips to change. If you’ve read my books, or heard my talks, you know I rant a lot about independent deployability. This is where I first learned that lesson.
Our problem was that the software was a single linked executable. If a new line of code was added to the program, all the addresses of the following lines of code changed. Since each chip simply held 1K of the address space, the contents of virtually all the chips would change.
The solution was pretty simple. Each chip had to be decoupled from all the others. Each had to be turned into an independent compilation unit that could be burned independently of all the others.
So I measured the sizes of all the functions in the application and wrote a simple program that fit them, like a jigsaw puzzle, into each of the chips, leaving 100 bytes of space or so for expansion. At the beginning of each chip I put a table of pointers to all the functions on that chip. At boot-up these pointers were moved into RAM. All the code in the system was changed so that functions were called only through these RAM vectors and never directly.
Yes, you got it. The chips were objects, with vtables. All functions were polymorphically deployed. And, yes, this is how I learned some of the principles of OOD, long before I knew what an object was.
The benefits were enormous. Not only could we deploy individual chips, we could also make patches in the field by moving functions into RAM and rerouting the vectors. This made field debugging and hot patching much easier.
But I digress. When Ken came to me and asked me to fix this problem he suggested something about pointers to functions. I spent a day or two formalizing the idea and then presented him with a detailed plan. He asked me how long it would take, and I responded that it would take me about a month.
It took three months.
I’ve only been drunk two times in my life, and only really drunk once. It was at the Teradyne Christmas party in 1978. I was 26 years old.
The party was held at the Teradyne office, which was mostly open lab space. Everybody got there early, and then there was a huge blizzard that prevented the band and the caterer from getting there. Fortunately there was plenty of booze.
I don’t remember much of that night. And what I do remember I wish I didn’t. But I will share one poignant moment with you.
I was sitting cross-legged on the floor with Ken (my boss, who was all of 29 years old at the time and not drunk) weeping about how long the vectorization job was taking me. The alcohol had released my pent up fears and insecurities about my estimate. I don’t think my head was in his lap, but my memory just isn’t very clear about that kind of detail.
I do remember asking him if he was mad at me, and if he thought it was taking me too long. Although the night was a blur, his response has remained clear through the following decades. He said, “Yes, I think it’s taken you a long time, but I can see that you are working hard on it, and making good progress. It’s something we really need. So, no, I’m not mad.”
What Is an Estimate?
The problem is that we view estimates in different ways. Business likes to view estimates as commitments. Developers like to view estimates as guesses. The difference is profound.
A Commitment
A commitment is something you must achieve. If you commit to getting something done by a certain date, then you simply have to get it done by that date. If that means you have to work 12 hours a day, on weekends, skipping family vacations, then so be it. You’ve made the commitment, and you have to honor it.
Professionals don’t make commitments unless they know they can achieve them. It’s really as simple as that. If you are asked to commit to something that you aren’t certain you can do, then you are honor bound to decline. If you are asked to commit to a date that you know you can achieve, but would require long hours, weekends, and skipped family vacations, then the choice is yours; but you’d better be willing to do what it takes.
Commitment is about certainty. Other people are going to accept your commitments and make plans based upon them. The cost of missing those commitments, to them, and to your reputation, is enormous. Missing a commitment is an act of dishonesty only slightly less onerous than an overt lie.
An Estimate
An estimate is a guess. No commitment is implied. No promise is made. Missing an estimate is not in any way dishonorable. The reason we make estimates is because we don’t know how long something will take.
Unfortunately, most software developers are terrible estimators. This is not because there’s some secret skill to estimating—there’s not. The reason we are often so bad at estimating is because we don’t understand the true nature of an estimate.
An estimate is not a number. An estimate is a distribution. Consider:
Mike: “What is your estimate for completing the Frazzle task?”

Peter: “Three days.”

Is Peter really going to be done in three days? It’s possible, but how likely is it? The answer to that is: We have no idea. What did Peter mean, and what has Mike learned? If Mike comes back in three days, should he be surprised if Peter is not done? Why would he be? Peter has not made a commitment. Peter has not told him how likely three days is versus four days or five days.
What would have happened if Mike had asked Peter how likely his estimate of three days was?
Mike: “How likely is it that you’ll be done in three days?

Peter: “Pretty likely.”

Mike: “Can you put a number on it?”

Peter: “Fifty or sixty percent.”

Mike: “So there’s a good chance that it’ll take you four days.”

Peter: “Yes, in fact it might even take me five or six, though I doubt it.”

Mike: “How much do you doubt it?”

Peter: “Oh, I don’t know ... I’m ninety-five percent certain I’ll be done before six days have passed.”

Mike: “You mean it might be seven days?”

Peter: “Well, only if everything goes wrong. Heck, if everything goes wrong, it could take me ten or even eleven days. But it’s not very likely that so much will go wrong.”

Now we’re starting to hone in on the truth. Peter’s estimate is a probability distribution. In his mind, Peter sees the likelihood of completion like what is shown is Figure 10-1.
Figure 10-1. Probability distribution

You can see why Peter gave the original estimate as three days. It’s the highest bar on the chart. So in Peter’s mind it is the most likely duration for the task. But Mike sees things differently. He looks at the right-hand tail of the chart and worries that Peter might really take eleven days to finish.
Should Mike be worried about this? Of course! Murphy1 will have his way with Peter, so some things are probably going to go wrong.
Implied Commitments
So now Mike has a problem. He’s uncertain about the time it will take Peter to get the task done. To minimize that uncertainty he may ask Peter for a commitment. This is something the Peter is in no position to give.
Mike: “Peter, can you give me a hard date when you’ll be done?”

Peter: “No, Mike. Like I said, it’ll probably be done in three, maybe four, days.”

Mike: “Can we say four then?”

Peter: “No, it could be five or six.”

So far, everyone is behaving fairly. Mike has asked for a commitment and Peter has carefully declined to give him one. So Mike tries a different tack:
Mike: “OK, Peter, but can you try to make it no more than six days?”

Mike’s plea sounds innocent enough, and Mike certainly has no ill intentions. But what, exactly, is Mike asking Peter to do? What does it mean to “try”?
We talked about this before, back in Chapter 2. The word try is a loaded term. If Peter agrees to “try” then he is committing to six days. There’s no other way to interpret it. Agreeing to try is agreeing to succeed.
What other interpretation could there be? What is it, precisely, that Peter is going to do in order to “try”? Is he going to work more than eight hours? That’s clearly implied. Is he going to work weekends? Yes, that’s implied too. Will he skip family vacations? Yes, that also part of the implication. All of those things are part of “trying.” If Peter doesn’t do those things, then Mike could accuse him of not trying hard enough.
Professionals draw a clear distinction between estimates and commitments. They do not commit unless they know for certain they will succeed. They are careful not to make any implied commitments. They communicate the probability distribution of their estimates as clearly as possible, so that managers can make appropriate plans.
PERT
In 1957, the Program Evaluation and Review Technique (PERT) was created to support the U.S. Navy’s Polaris submarine project. One of the elements of PERT is the way that estimates are calculated. The scheme provides a very simple, but very effective way to convert estimates into probability distributions suitable for managers.
When you estimate a task, you provide three numbers. This is called trivariate analysis:
• O: Optimistic Estimate. This number is wildly optimistic. You could only get the task done this quickly if absolutely everything went right. Indeed, in order for the math to work this number should have much less than a 1% chance of occurrence.2 In Peter’s case, this would be 1 day, as shown in Figure 10-1.

• N: Nominal Estimate. This is the estimate with the greatest chance of success. If you were to draw a bar chart, it would be the highest bar, as shown in Figure 10-1. It is 3 days.

• P: Pessimistic Estimate. Once again this is wildly pessimistic. It should include everything except hurricanes, nuclear war, stray black holes, and other catastrophes. Again, the math only works if this number has much less than a 1% chance of success. In Peter’s case this number is off the chart on the right. So 12 days.

Given these three estimates, we can describe the probability distribution as follows:
•

μ is the expected duration of the task. In Peter’s case it is (1+12+12)/6, or about 4.2 days. For most tasks this will be a somewhat pessimistic number because the right-hand tail of the distribution is longer than the left-hand tail.3

•

σ is the standard deviation4 of the probability distribution for the task. It is a measure of how uncertain the task is. When this number is large, the uncertainty is large too. For Peter this number is (12 – 1)/6, or about 1.8 days.

Given Peter’s estimate of 4.2/1.8, Mike understands that this task will likely be done within five days but might also take 6, or even 9, days to complete.
But Mike is not just managing one task. He’s managing a project of many tasks. Peter has three of those tasks that he must work on in sequence. Peter has estimated these tasks as shown in Table 10-1.
Table 10-1. Peter’s Tasks

What’s up with that “beta” task? It looks like Peter is pretty confident about it, but that something could possibly go wrong that would derail him significantly. How should Mike interpret that? How long should Mike plan for Peter to complete all three tasks?
It turns out that, with a few simple calculations, Mike can combine all of Peter’s tasks and come up with a probability distribution for the entire set of tasks. The math is pretty straightforward:
•

For any sequence of tasks the expected duration of that sequence is the simple sum of all the expected durations of the tasks in that sequence. So if Peter has three tasks to complete, and their estimates are 4.2/1.8, 3.5/2.2, and 6.5/1.3, then Peter will likely be done with all three in about 14 days: 4.2 + 3.5 + 6.5.

•

The standard deviation of the sequence is the square root of the sum of the squares of the standard deviations of the tasks. So the standard deviation for all three of Peter’s tasks is about 3.

(1.82 + 2.22 + 1.32)1/2 =
(3.24 + 2.48 + 1.69)1/2 =
9.771/2 = ~ 3.13

This tells Mike that Peter’s tasks will likely take 14 days, but could very well take 17 days (1σ) and could possibly even take 20 days (2σ). It could even take longer, but that’s pretty unlikely.
Look back at the table of estimates. Can you feel the pressure to get all three tasks done in five days? After all, the best-case estimates are 1, 1, and 3. Even the nominal estimates only add up to 10 days. How did we get all the way up to 14 days, with a possibility of 17 or 20? The answer is that the uncertainty in those tasks compounds in a way that adds realism to the plan.
If you are a programmer of more than a few years’ experience, you’ve likely seen projects that were estimated optimistically, and that took three to five times longer than hoped. The simple PERT scheme just shown is one reasonable way to help prevent setting optimistic expectations. Software professionals are very careful to set reasonable expectations despite the pressure to try to go fast.
Estimating Tasks
Mike and Peter were making a terrible mistake. Mike was asking Peter how long his tasks would take. Peter gave honest trivariate answers, but what about the opinions of his teammates? Might they have a different idea?
The most important estimation resource you have are the people around you. They can see things that you don’t. They can help you estimate your tasks more accurately than you can estimate them on your own.
Wideband Delphi
In the 1970s Barry Boehm introduced us to an estimation technique called “wideband delphi.”5 There have been many variations over the years. Some are formal, some are informal; but they all have one thing in common: consensus.
The strategy is simple. A team of people assemble, discuss a task, estimate the task, and iterate the discussion and estimation until they reach agreement.
The original approach outlined by Boehm involved several meetings and documents that involve too much ceremony and overhead for my tastes. I prefer simple low-overhead approaches such as the following.
Flying Fingers
Everybody sits around a table. Tasks are discussed one at a time. For each task there is discussion about what the task involves, what might confound or complicate it, and how it might be implemented. Then the participants put their hands below the table and raise 0 to 5 fingers based on how long they think the task will take. The moderator counts 1-2-3, and all the participants show their hands at once.
If everyone agrees, then they go on to the next task. Otherwise they continue the discussion to determine why they disagree. They repeat this until they agree.
Agreement does not need to be absolute. As long as the estimates are close, it’s good enough. So, for example, a smattering of 3s and 4s is agreement. However if everyone holds up 4 fingers except for one person who holds up 1 finger, then they have something to talk about.
The scale of the estimate is decided on at the beginning of the meeting. It might be the number of days for a task, or it might be some more interesting scale such as “fingers times three” or “fingers squared.”
The simultaneity of displaying the fingers is important. We don’t want people changing their estimates based on what they see other people do.
Planning Poker
In 2002 James Grenning wrote a delightful paper6 describing “Planning Poker.” This variation of wideband delphi has become so popular that several different companies have used the idea to make marketing giveaways in the form of planning poker card decks.7 There is even a web site named planningpoker.com that you can use to do planning poker on the Net with distributed teams.
The idea is very simple. For each member of the estimation team, deal a hand of cards with different numbers on them. The numbers 0 through 5 work fine, and make this system logically equivalent to flying fingers.
Pick a task and discuss it. At some point the moderator asks everyone to pick a card. The members of the team pull out a card that matches their estimate and hold it up with the back facing outward so that no one else can see the value of the card. Then the moderator tells everyone to show their cards.
The rest is just like flying fingers. If there is agreement, then the estimate is accepted. Otherwise the cards are returned to the hand, and the players continue to discuss the task.
Much “science” has been dedicated to choosing the correct card values for a hand. Some folks have gone so far as to use cards based on a Fibonacci series. Others have included cards for infinity and question mark. Personally, I think five cards labeled 0, 1, 3, 5, 10 are sufficient.
Affinity Estimation
A particularly unique variation of wideband delphi was shown to me several years ago by Lowell Lindstrom. I’ve had quite a bit of good luck with this approach with various customers and teams.
All the tasks are written onto cards, without any estimates showing. The estimation team stands around a table or a wall with the cards spread out randomly. The team members do not talk, they simply start sorting the cards relative to one another. Tasks that take longer are moved to the right. Smaller tasks move to the left.
Any team member can move any card at any time, even if it has already been moved by another member. Any card moved more than η times is set aside for discussion.
Eventually the silent sorting peters out and discussion can begin. Disagreements about the ordering of the cards are explored. There may be some quick design sessions or some quick hand-drawn wire frames to help gain consensus.
The next step is to draw lines between the cards that represent bucket sizes. These buckets might be in days, weeks, or points. Five buckets in a Fibonacci sequence (1, 2, 3, 5, 8) is traditional.
Trivariate Estimates
These wideband delphi techniques are good for choosing a single nominal estimate for a task. But as we stated earlier, most of the time we want three estimates so that we can create a probability distribution. The optimistic and pessimistic values for each task can be generated very quickly using any of the wideband delphi variants. For example, if you are using planning poker, you simply ask the team to hold up the cards for their pessimistic estimate and then take the highest. You do the same for the optimistic estimate and take the lowest.
The Law of Large Numbers
Estimates are fraught with error. That’s why they are called estimates. One way of managing error is to take advantage of the Law of Large Numbers.8 An implication of this law is that if you break up a large task into many smaller tasks and estimate them independently, the sum of the estimates of the small tasks will be more accurate than a single estimate of the larger task. The reason for this increase in accuracy is that the errors in the small tasks tend to integrate out.
Frankly, this is optimistic. Errors in estimates tend toward underestimation and not overestimation, so the integration is hardly perfect. That being said, breaking large tasks into small ones and estimating the small ones independently is still a good technique. Some of the errors do integrate out, and breaking the tasks up is a good way to understand those tasks better and uncover surprises.
Conclusion
Professional software developers know how to provide the business with practical estimates that the business can use for planning purposes. They do not make promises that they can’t keep, and they don’t make commitments that they aren’t sure they can meet.
When professionals make commitments, they provide hard numbers, and then they make those numbers. However, in most cases professionals do not make such committments. Rather, they provide probabilistic estimates that describe the expected completion time and the likely variance.
Professional developers work with the other members of their team to achieve consensus on the estimates that are given to management.
The techniques described in this chapter are examples of some of the different ways that professional developers create practical estimates. These are not the only such techniques and are not necessarily the best. They are simply techniques that I have found to work well for me.
Bibliography
[McConnell2006]: Steve McConnell, Software Estimation: Demystifying the Black Art, Redmond, WA: Microsoft Press, 2006.
[Boehm81]: Barry W. Boehm, Software Engineering Economics, Upper Saddle River, NJ: Prentice Hall, 1981.
[Grenning2002]: James Grenning, “Planning Poker or How to Avoid Analysis Paralysis while Release Planning,” April 2002, http://renaissancesoftware.net/papers/14-papers/44-planing-poker.html

11. Pressure

Imagine that you are having an out-of-body experience, observing yourself on an operating table while a surgeon performs open heart surgery on you. That surgeon is trying to save your life, but time is limited so he is operating under a deadline—a literal deadline.
How do you want that doctor to behave? Do you want him to appear calm and collected? Do you want him issuing clear and precise orders to his support staff? Do you want him following his training and adhering to his disciplines?
Or do you want him sweating and swearing? Do you want him slamming and throwing instruments? Do you want him blaming management for unrealistic expectations and continuously complaining about the time? Do you want him behaving like a professional, or like a typical developer?
The professional developer is calm and decisive under pressure. As the pressure grows he adheres to his training and disciplines, knowing that they are the best way to meet the deadlines and commitments that are pressing on him.
In 1988 I was working at Clear Communications. This was a start-up that never quite got started. We burned through our first round of financing and then had to go for a second, and then a third.
The initial product vision sounded good, but the product architecture could never seem to get grounded. At first the product was both software and hardware. Then it became software only. The software platform changed from PCs to Sparcstations. The customers changed from high end to low end. Eventually, even the original intent of the product drifted as the company tried to find something that would generate revenue. In the nearly four years I spent there, I don’t think the company saw a penny of income.
Needless to say, we software developers were under significant pressure. There were quite a few very long nights, and even longer weekends spent in the office at the terminal. Functions were written in C that were 3,000 lines long. There were arguments with shouting and name calling. There was intrigue and subterfuge. There were fists punched through walls, pens thrown angrily at whiteboards, caricatures of annoying colleagues embossed into walls with the tips of pencils, and there was a never ending supply of anger and stress.
Deadlines were driven by events. Features had to be made ready for trade shows or customer demos. Anything a customer asked for, regardless of how silly, we’d have ready for the next demo. Time was always too short. Work was always behind. Schedules were always overwhelming.
If you worked 80 hours in a week, you could be a hero. If you hacked some mess together for a customer demo, you could be a hero. If you did it enough, you could be promoted. If you didn’t, you could be fired. It was a start-up—it was all about the “sweat equity.” And in 1988, with nearly 20 years’ experience under my belt, I bought into it.
I was the development manager telling the programmers who worked for me that they had to work more and faster. I was one of the 80-hour guys, writing 3,000-line C functions at 2 AM while my children slept at home without their father in the house. I was the one who threw the pens and shouted. I got people fired if they didn’t shape up. It was awful. I was awful.
Then came the day when my wife forced me to take a good long look in the mirror. I didn’t like what I saw. She told me I just wasn’t very nice to be around. I had to agree. But I didn’t like it, so I stormed out of the house in anger and started walking without a destination. I walked for thirty minutes or so, seething as I strode; and then it started to rain.
And something clicked inside my head. I started to laugh. I laughed at my folly. I laughed at my stress. I laughed at the man in the mirror, the poor schmuck who’d been making life miserable for himself and others in the name of—what?
Everything changed that day. I stopped the crazy hours. I stopped the high-stress lifestyle. I stopped throwing pens and writing 3,000-line C functions. I determined that I was going to enjoy my career by doing it well, not by doing it stupidly.
I left that job as professionally as I could, and I became a consultant. Since that day I’ve never called another person “boss.”
Avoiding Pressure
The best way to stay calm under pressure is to avoid the situations that cause pressure. That avoidance may not eliminate the pressure completely, but it can go a long way towards minimizing and shortening the high-pressure periods.
Commitments
As we discovered in Chapter 10, it is important to avoid committing to deadlines that we aren’t sure we can meet. The business will always want these commitments because they want to eliminate risk. What we must do is make sure that the risk is quantified and presented to the business so that they can manage it appropriately. Accepting unrealistic commitments thwarts this goal and does a disservice to both the business and to ourselves.
Sometimes commitments are made for us. Sometimes we find that our business has made promises to the customers without consulting us. When this happens we are honor bound to help the business find a way to meet those commitments. However, we are not honor bound to accept the commitments.
The difference is important. Professionals will always help the business find a way to achieve its goals. But professionals do not necessarily accept commitments made for them by the business. In the end, if we can find no way to meet the promises made by the business, then the people who made the promises must accept the responsibility.
This is easy to say. But when your business is failing, and your paycheck is delayed because of missed commitments, it’s hard not to feel the pressure. But if you have behaved professionally, at least you can hold your head high as you hunt for a new job.
Staying Clean
The way to go fast, and to keep the deadlines at bay, is to stay clean. Professionals do not succumb to the temptation to create a mess in order to move quickly. Professionals realize that “quick and dirty” is an oxymoron. Dirty always means slow!
We can avoid pressure by keeping our systems, our code, and our design as clean as possible. This does not mean that we spend endless hours polishing code. It simply means that we don’t tolerate messes. We know that messes will slow us down, causing us to miss dates and break commitments. So we do the best work we can and keep our output as clean as we can.
Crisis Discipline
You know what you believe by observing yourself in a crisis. If in a crisis you follow your disciplines, then you truly believe in those disciplines. On the other hand, if you change your behavior in a crisis, then you don’t truly believe in your normal behavior.
If you follow the discipline of Test Driven Development in noncrisis times but abandon it during a crisis, then you don’t really trust that TDD is helpful. If you keep your code clean during normal times but make messes in a crisis, then you don’t really believe that messes slow you down. If you pair in a crisis but don’t normally pair, then you believe pairing is more efficient than non-pairing.
Choose disciplines that you feel comfortable following in a crisis. Then follow them all the time. Following these disciplines is the best way to avoid getting into a crisis.
Don’t change your behavior when the crunch comes. If your disciplines are the best way to work, then they should be followed even in the depths of a crisis.
Handling Pressure
Forestalling, mitigating, and eliminating pressure is all well and good, but sometimes the pressure comes despite all your best intentions and preventions. Sometimes the project just takes longer than anyone thought it would. Sometimes the initial design is just wrong and must be reworked. Sometimes you lose a valued team member or customer. Sometimes you make a commitment that you just can’t keep. Then what?
Don’t Panic
Manage your stress. Sleepless nights won’t help you get done any faster. Sitting and fretting won’t help either. And the worst thing you could do is to rush! Resist that temptation at all costs. Rushing will only drive you deeper into the hole.
Instead, slow down. Think the problem through. Plot a course to the best possible outcome, and then drive towards that outcome at a reasonable and steady pace.
Communicate
Let your team and your superiors know that you are in trouble. Tell them your best plans for getting out of trouble. Ask them for their input and guidance. Avoid creating surprises. Nothing makes people more angry and less rational than surprises. Surprises multiply the pressure by ten.
Rely on Your Disciplines
When the going gets tough, trust your disciplines. The reason you have disciplines is to give you guidance through times of high pressure. These are the times to pay special attention to all your disciplines. These are not the times to question or abandon them.
Instead of looking around in a panic for something, anything, that will help you get done faster, become more deliberate and dedicated to following your chosen disciplines. If you follow TDD, then write even more tests than usual. If you are a merciless refactorer, then refactor even more. If you keep your functions small, then keep them even smaller. The only way through the pressure cooker is to rely on what you already know works—your disciplines.
Get Help
Pair! When the heat is on, find an associate who is willing to pair program with you. You will get done faster, with fewer defects. Your pair partner will help you hold on to your disciplines and keep you from panicking. Your partner will spot things that you miss, will have helpful ideas, and will pick up the slack when you lose focus.
By the same token, when you see someone else who’s under pressure, offer to pair with them. Help them out of the hole they are in.
Conclusion
The trick to handling pressure is to avoid it when you can, and weather it when you can’t. You avoid it by managing commitments, following your disciplines, and keeping clean. You weather it by staying calm, communicating, following your disciplines, and getting help.

12. Collaboration

Most software is created by teams. Teams are most effective when the team members collaborate professionally. It is unprofessional to be a loner or a recluse on a team.
In 1974 I was 22. My marriage to my wonderful wife, Ann Marie, was barely six months old. The birth of my first child, Angela, was still a year away. And I worked at a division of Teradyne known as Chicago Laser Systems.
Working next to me was my high school buddy, Tim Conrad. Tim and I had worked quite a few miracles in our time. We built computers together in his basement. We built Jacob’s ladders in mine. We taught each other how to program PDP-8s and how to wire up integrated circuits and transistors into functioning calculators.
We were programmers working on a system that used lasers to trim electronic components like resistors and capacitors to extremely high accuracy. For example, we trimmed the crystal for the first digital watch, the Motorola Pulsar.
The computer we programmed was the M365, Teradyne’s PDP-8 clone. We wrote in assembly language, and our source files were kept on magnetic tape cartridges. Although we could edit on a screen, the process was quite involved, so we used printed listings for most of our code reading and preliminary editing.
We had no facility at all for searching the code base. There was no way to find out all the places where a given function was called or a given constant was used. As you might imagine, this was quite a hindrance.
So one day Tim and I decided we would write a cross-reference generator. This program would read in our source tapes and print out a listing of every symbol, along with the file and line numbers where that symbol was used.
The initial program was pretty simple to write. It simply read in the source tape, parsed the assembler syntax, created a symbol table, and added references to the entries. It worked great, but it was horribly slow. It took over an hour to process our Master Operating Program (the MOP).
The reason it was so slow was that we were holding the growing symbol table in a single memory buffer. Whenever we found a new reference we inserted it into the buffer, moving the rest of the buffer down by a few bytes to make room.
Tim and I were not experts on data structures and algorithms. We’d never heard of hash tables or binary searches. We had no clue how to make an algorithm fast. We just knew that what we were doing was too slow.
So we tried one thing after another. We tried putting the references in linked lists. We tried leaving gaps in the array and only growing the buffer when the gaps filled. We tried creating linked lists of gaps. We tried all kinds of crazy ideas.
We stood at the whiteboard in our office and drew diagrams of our data structures and performed calculations to predict performance. We’d get to the office every day with another new idea. We collaborated like fiends.
Some of the things we tried increased performance. Some slowed it down. It was maddening. This was when I first discovered how hard it is to optimize software, and how nonintuitive the process is.
In the end we got the time down under 15 minutes, which was very close to how long it took simply to read the source tape. So we were satisfied.
Programmers versus People
We didn’t become programmers because we like working with people. As a rule we find interpersonal relationships messy and unpredictable. We like the clean and predictable behavior of the machines that we program. We are happiest when we are alone in a room for hours deeply focussing on some really interesting problem.
OK, that’s a huge overgeneralization and there are loads of exceptions. There are plenty of programmers who are good at working with people and enjoy the challenge. But the group average still tends in the direction I stated. We, programmers, enjoy the mild sensory deprivation and cocoonlike immersion of focus.
Programmers versus Employers
In the seventies and eighties, while working as a programmer at Teradyne, I learned to be really good at debugging. I loved the challenge and would throw myself at problems with vigor and enthusiasm. No bug could hide long from me!
When I solved a bug it was like winning a victory, or slaying the Jabberwock! I would go to my boss, Ken Finder, Vorpal blade in hand, and passionately describe to him how interesting the bug was. One day Ken finally erupted in frustration: “Bugs aren’t interesting. Bugs just need to be fixed!”
I learned something that day. It’s good to be passionate about what we do. But it’s also good to keep your eye on the goals of the people who pay you.
The first responsibility of the professional programmer is to meet the needs of his or her employer. That means collaborating with your managers, business analysts, testers, and other team members to deeply understand the business goals. This doesn’t mean you have to become a business wonk. It does mean that you need to understand why you are writing the code you are writing, and how the business that employs you will benefit from it.
The worst thing a professional programmer can do is to blissfully bury himself in a tomb of technology while the business crashes and burns around him. Your job is to keep the business afloat!
So, professional programmers take the time to understand the business. They talk to users about the software they are using. They talk to sales and marketing people about the problems and issues they have. They talk to their managers to understand the short- and long-term goals of the team.
In short, they pay attention to the ship they are sailing on.
The only time I was fired from a programming job was in 1976. I was working for Outboard Marine Corp. at the time. I was helping to write a factory automation system that used IBM System/7s to monitor dozens of aluminum die-cast machines on the shop floor.
Technically, this was a challenging and rewarding job. The architecture of the System/7 was fascinating, and the factory automation system itself was really interesting.
We also had a good team. The team lead, John, was competent and motivated. My two programming teammates were pleasant and helpful. We had a lab dedicated to our project, and we all worked in that lab. The business partner was engaged and in the lab with us. Our manager, Ralph, was competent, focused, and in charge.
Everything should have been great. The problem was me. I was enthusiastic enough about the project, and about the technology, but at the grand old age of 24 I simply could not bring myself to care about the business or about its internal political structure.
My first mistake was on my first day. I showed up without wearing a tie. I had worn one on my interview, and I had seen that everyone else wore ties, but I failed to make the connection. So on my first day, Ralph came to me and plainly said, “We wear ties here.”
I can’t tell you how much I resented that. It bothered me at a deep level. I wore the tie everyday, and I hated it. But why? I knew what I was getting into. I knew the conventions they had adopted. Why would I be so upset? Because I was a selfish, narcissistic little twerp.
I simply could not get to work on time. And I thought it didn’t matter. After all, I was doing “a good job.” And it was true, I was doing a very good job at writing my programs. I was easily the best technical programmer on the team. I could write code faster and better than the others. I could diagnose and solve problems quicker. I knew I was valuable. So times and dates didn’t matter much to me.
The decision to fire me was made one day when I failed to show on time for a milestone. Apparently John had told us all that he wanted a demo of working features next Monday. I’m sure I knew about this, but dates and times simply weren’t important to me.
We were in active development. The system was not in production. There was no reason to leave the system running when no one was in the lab. I must have been the last one to leave that Friday, and apparently I left the system in a nonfunctioning state. The fact that Monday was important had simply not stuck in my brain.
I came in an hour late that Monday and saw everyone gathered glumly around a nonfunctioning system. John asked me, “Why isn’t the system working today, Bob?” My answer: “I don’t know.” And I sat down to debug it. I was still clueless about the Monday demo, but I could tell by everyone else’s body language that something was wrong. Then John came over and whispered in my ear, “What if Stenberg had decided to visit?” Then he walked away in disgust.
Stenberg was the VP in charge of automation. Nowadays we’d call him a CIO. The question held no meaning for me. “So what?” I thought. “The system isn’t in production, what’s the big deal?”
I got my first warning letter later that day. It told me I had to change my attitude immediately or “quick termination will be the result.” I was horrified!
I took some time to analyze my behavior and began to realize what I had been doing wrong. I talked with John and Ralph about it. I determined to turn myself and my job around.
And I did! I stopped coming in late. I started paying attention to internal politics. I began to understand why John was worried about Stenberg. I began to see the bad situation I had put him in by not having that system running on Monday.
But it was too little, too late. The die was cast. I got a second warning letter a month later for a trivial error that I made. I should have realized at that point that the letters were a formality and that the decision to terminate me had already been made. But I was determined to rescue the situation. So I worked even harder.
The termination meeting came a few weeks later.
I went home that day to my pregnant 22-year-old wife and had to tell her that I’d been fired. That’s not an experience I ever want to repeat.
Programmers versus Programmers
Programmers often have difficulty working closely with other programmers. This leads to some really terrible problems.
Owned Code
One of the worst symptoms of a dysfunctional team is when each programmer builds a wall around his code and refuses to let other programmers touch it. I have been to places where the programmers wouldn’t even let other programmers see their code. This is a recipe for disaster.
I once consulted for a company that built high-end printers. These machines have many different components such as feeders, printers, stackers, staplers, cutters, and so on. The business valued each of these devices differently. Feeders were more important than stackers, and nothing was more important than the printer.
Each programmer worked on his device. One guy would write the code for the feeder, another guy would write the code for the stapler. Each of them kept their technology to themselves and prevented anyone else from touching their code. The political clout that these programmers wielded was directly related to how much the business valued the device. The programmer who worked on the printer was unassailable.
This was a disaster for the technology. As a consultant I was able to see that there was massive duplication in the code and that the interfaces between the modules were completely skewed. But no amount of argument on my part could convince the programmers (or the business) to change their ways. After all, their salary reviews were tied to the importance of the devices they maintained.
Collective Ownership
It is far better to break down all walls of code ownership and have the team own all the code. I prefer teams in which any team member can check out any module and make any changes they think are appropriate. I want the team to own the code, not the individuals.
Professional developers do not prevent others from working in the code. They do not build walls of ownership around code. Rather, they work with each other on as much of the system as they can. They learn from each other by working with each other on other parts of the system.
Pairing
Many programmers dislike the idea of pair-programming. I find this odd since most programmers will pair in emergencies. Why? Because it is clearly the most efficient way to solve the problem. It just goes back to the old adage: Two heads are better than one. But if pairing is the most efficient way to solve a problem in an emergency, why isn’t it the most efficient way to solve a problem period?
I’m not going to quote studies at you, although there are some that could be quoted. I’m not going to tell you any anecdotes, although there are many I could tell. I’m not even going to tell you how much you should pair. All I’m going to tell you is that professionals pair. Why? Because for at least some problems it is the most efficient way to solve them. But that’s not the only reason.
Professionals also pair because it is the best way to share knowledge with each other. Professionals don’t create knowledge silos. Rather, they learn the different parts of the system and business by pairing with each other. They recognize that although all team members have a position to play, all team members should also be able play another position in a pinch.
Professionals pair because it is the best way to review code. No system should consist of code that hasn’t been reviewed by other programmers. There are many ways to conduct code reviews; most of them are horrifically inefficient. The most efficient and effective way to review code is to collaborate in writing it.
Cerebellums
I rode the train into Chicago one morning in 2000 during the height of the dot com boom. As I stepped off the train onto the platform I was assaulted by a huge billboard hanging above the exit doors. The sign was for a well-known software firm that was recruiting programmers. It read: Come rub cerebellums with the best.
I was immediately struck by the rank stupidity of a sign like that. These poor clueless advertising people were trying to appeal to a highly technical, intelligent, and knowledgeable population of programmers. These are the kind of people who don’t suffer stupidity particularly well. The advertisers were trying to evoke the image of knowledge sharing with other highly intelligent people. Unfortunately they referred to a part of the brain, the cerebellum, that deals with fine muscle control, not intelligence. So the very people they were trying to attract were sneering at such a silly error.
But something else intrigued me about that sign. It made me think of a group of people trying to rub cerebellums. Since the cerebellum is at the back of the brain, the best way to rub cerebellums is to face away from each other. I imagined a team of programmers in cubicles, sitting in corners with their backs to each other, staring at screens while wearing headphones. That’s how you rub cerebellums. That’s also not a team.
Professionals work together. You can’t work together while you are sitting in corners wearing headphones. So I want you sitting around tables facing each other. I want you to be able to smell each other’s fear. I want you to be able to overhear someone’s frustrated mutterings. I want serendipitous communication, both verbal and body language. I want you communicating as a unit.
Perhaps you believe that you work better when you work alone. That may be true, but it doesn’t mean that the team works better when you work alone. And, in fact, it’s highly unlikely that you do work better when you work alone.
There are times when working alone is the right thing to do. There are times when you simply need to think long and hard about a problem. There are times when the task is so trivial that it would be a waste to have another person working with you. But, in general, it is best to collaborate closely with others and to pair with them a large fraction of the time.
Conclusion
Perhaps we didn’t get into programming to work with people. Tough luck for us. Programming is all about working with people. We need to work with our business, and we need to work with each other.
I know, I know. Wouldn’t it be great if they just shut us into a room with six massive screens, a T3 pipe, a parallel array of superfast processors, unlimited ram and disk, and a never-ending supply of diet cola and spicy corn chips? Alas, it is not to be. If we really want to spend our days programming, we are going to have to learn to talk to—people.1

13. Teams and Projects

What if you have lots of little projects to get done? How should you allocate those projects to the programmers? What if you have one really huge project to get done?
Does It Blend?
I have consulted for a number of banks and insurance companies over the years. One thing they seem to have in common is the odd way they partition projects.
Often a project at a bank will be a relatively small job that requires one or two programmers for a few weeks. This project will often be staffed with a project manager, who is also managing other projects. It will be staffed with a business analyst, who is also providing requirements for other projects. It will be staffed with some programmers who are also working on other projects. A tester or two will be assigned, and they too will be working on other projects.
See the pattern? The project is so small that no individual can be assigned to it on a full-time basis. Everybody is working on the project at 50, or even 25, percent.
Now here’s a rule: There is no such thing as half a person.
It makes no sense to tell a programer to devote half their time to project A and the rest of their time to project B, especially when the two projects have two different project managers, different business analysts, different programmers, and different testers. How in Hell’s kitchen can you call a monstrosity like that a team? That’s not a team, that’s something that came out of a Waring blender.
The Gelled Team
It take time for a team to form. The team members start to form relationships. They learn how to collaborate with each other. They learn each other’s quirks, strengths, and weaknesses. Eventually the team begins to gel.
There is something truly magical about a gelled team. They can work miracles. They anticipate each other, cover for each other, support each other, and demand the best from each other. They make things happen.
A gelled team usually consists of about a dozen people. It could be as many as twenty or as few as three, but the best number is probably around twelve. The team should be composed of programmers, testers, and analysts. And it should have a project manager.
The ratio of programmers to testers and analysts can vary greatly, but 2:1 is a good number. So a nicely gelled team of twelve might have seven programmers, two testers, two analysts, and a project manager.
The analysts develop the requirements and write automated acceptance tests for them. The testers also write automated acceptance tests. The difference between the two is perspective. Both are writing requirements. But analysts focus on business value; testers focus on correctness. Analysts write the happy path cases; testers worry about what might go wrong, and write the failure and boundary cases.
The project manager tracks the progress of the team, and makes sure the team understands the schedules and priorities.
One of the team members may play a part-time role of coach, or master, with responsibility for defending the team’s process and disciplines. They act as the team conscience when the team is tempted to go off-process because of schedule pressure.
Fermentation
It takes time for a team like this to work out their differences, come to terms with each other, and really gel. It might take six months. It might even take a year. But once it happens, it’s magic. A gelled team will plan together, solve problems together, face issues together, and get things done.
Once this happens, it is ludicrous to break it apart just because a project comes to an end. It’s best to keep that team together and just keep feeding it projects.
Which Came First, the Team or the Project?
Banks and insurance companies tried to form teams around projects. This is a foolish approach. The teams simply cannot gel. The individuals are only on the project for a short time, and only for a percentage of their time, and therefore never learn how to deal with each other.
Professional development organizations allocate projects to existing gelled teams, they don’t form teams around projects. A gelled team can accept many projects simultaneously and will divvy up the work according to their own opinions, skills, and abilities. The gelled team will get the projects done.
But How Do You Manage That?
Teams have velocities.1 The velocity of a team is simply the amount of work it can get done in a fixed period of time. Some teams measure their velocity in points per week, where points are a unit of complexity. They break down the features of each project they are working on and estimate them in points. Then they measure how many points they get done per week.
Velocity is a statistical measure. A team might get 38 points done one week, 42 done the next, and 25 done the next. Over time this will average out.
Management can set targets for each project given to a team. For example, if the average velocity of a team is 50 and they have three projects they are working on, then management can ask the team to split their effort into 15, 15, and 20.
Aside from having a gelled team working on your projects, the advantage of this scheme is that in an emergency the business can say, “Project B is in crisis; put 100% of your effort on that project for the next three weeks.”
Reallocating priorities that quickly is virtually impossible with the teams that came out of the blender, but gelled teams that are working on two or three projects concurrently can turn on a dime.
The Project Owner Dilemma
One of the objections to the approach I’m advocating is that the project owners lose some security and power. Project owners who have a team dedicated to their project can count on the effort of that team. They know that because forming and disbanding a team is an expensive operation, the business will not take the team away for short-term reasons.
On the other hand, if projects are given to gelled teams, and if those teams take on several projects at the same time, then the business is free to change priorities on a whim. This can make the project owner insecure about the future. The resources that project owner is depending on might be suddenly removed from him.
Frankly, I prefer the latter situation. The business should not have its hands tied by the artificial difficulty of forming and disbanding teams. If the business decides that one project is higher priority than another, it should be able to reallocate resources quickly. It is the project owner’s responsibility to make the case for his project.
Conclusion
Teams are harder to build than projects. Therefore, it is better to form persistent teams that move together from one project to the next and can take on more than one project at a time. The goal in forming a team is to give that team enough time to gel, and then keep it together as an engine for getting many projects done.
Bibliography
[RCM2003]: Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices, Upper Saddle River, NJ: Prentice Hall, 2003.
[COHN2006]: Mike Cohn, Agile Estimating and Planning, Upper Saddle River, NJ: Prentice Hall, 2006.

14. Mentoring, Apprenticeship, and Craftsmanship

I have been consistently disappointed by the quality of CS graduates. It’s not that the graduates aren’t bright or talented, it’s just that they haven’t been taught what programming is really all about.
Degrees of Failure
I once interviewed a young woman who was working on her master’s degree in computer science for a major university. She was applying for a summer intern position. I asked her to write some code with me, and she said “I don’t really write code.”
Please read the previous paragraph again, and then skip over this one to the next.
I asked her what programming courses she had taken in pursuit of her master’s degree. She said that she hadn’t taken any.
Maybe you’d like to start at the beginning of the chapter just to be sure you haven’t fallen into some alternate universe or have just awakened from a bad dream.
At this point you might well be asking yourself how a student in a CS master’s program can avoid a programming course. I wondered the same thing at the time. I’m still wondering today.
Of course, that’s the most extreme of a series of disappointments I’ve had while interviewing graduates. Not all CS graduates are disappointing—far from it! However, I’ve noticed that those who aren’t have something in common: Nearly all of them taught themselves to program before they entered university and continued to teach themselves despite university.
Now don’t get me wrong. I think it is possible to get an excellent education at a university. It’s just that I also think it’s possible to wiggle yourself through the system and come out with a diploma, and not much else.
And there’s another problem. Even the best CS degree programs do not typically prepare the young graduate for what they will find in industry. This is not an indictment of the degree programs so much as it is the reality of nearly all disciplines. What you learn in school and what you find on the job are often very different things.
Mentoring
How do we learn how to program? Let me tell you my story about being mentored.
Digi-Comp I, My First Computer
In 1964 my mother gave me a little plastic computer for my twelfth birthday. It was called a Digi-Comp I.1 It had three plastic flip-flops and six plastic and-gates. You could connect the outputs of the flip-flops to the inputs of the and-gates. You could also connect the output of the and-gates to the inputs of the flip-flops. In short, this allowed you to create a three-bit finite state machine.
The kit came with a manual that gave you several programs to run. You programmed the machine by pushing little tubes (short segments of soda straws) onto little pegs protruding from the flip flops. The manual told you exactly where to put each tube, but not what the tubes did. I found this very frustrating!
I stared at the machine for hours and determined how it worked at the lowest level; but I could not, for the life of me, figure out how to make it do what I wanted it to do. The last page in the manual told me to send in a dollar and they would send back a manual telling me how to program the machine.2
I sent in my dollar and waited with the impatience of a twelve year old. The day the manual arrived I devoured it. It was a simple treatise on boolean algebra covering basic factoring of boolean equations, associative and distributive laws, and DeMorgan’s theorem. The manual showed how to express a problem in terms of a sequence of boolean equations. It also described how to reduce those equations to fit into 6 and-gates.
I conceived of my first program. I still remember the name: Mr. Patternson’s Computerized Gate. I wrote the equations, reduced them, and mapped them to the tubes and pegs of the machine. And it worked!
Writing those three words just now sent chills down my spine. The same chills that coursed down that twelve year old nearly half a century ago. I was hooked. My life would never be the same.
Do you remember the moment your first program worked? Did it change your life or set you on a course you could not turn away from?
I did not figure it all out for myself. I was mentored. Some very kind and very adept people (to whom I owe a huge debt of gratitude) took the time to write a treatise on boolean algebra that was accessible to a twelve year old. They connected the mathematical theory to the pragmatics of the little plastic computer and empowered me to make that computer do what I wanted it to do.
I just pulled down my copy of that fateful manual. I keep it in a zip-lock bag. Nevertheless, the years have taken their toll by yellowing the pages and making them brittle. Still, the power of the words shines out of them. The elegance of their description of boolean algebra consumed three sparse pages. Their step-by-step walk-through of the equations for each of the original programs is still compelling. It was a work of mastery. It was a work that changed at least one young man’s life. Yet I doubt I’ll never know the names of the authors.
The ECP-18 in High School
At the age of fifteen, as a freshman in high school, I liked hanging out in the math department. (Go figure!) One day they wheeled in a machine the size of a table saw. It was an educational computer made for high schools, called the ECP-18. Our school was getting a two-week demo.
I stood in the background as the teachers and technicians talked. This machine had a 15-bit word (what’s a word?) and a 1024-word drum memory. (I knew what drum memory was by then, but only in concept.)
When they powered it up, it made a whining sound reminiscent of a jet aircraft taking off. I guessed that was the drum spinning up. Once up to speed, it was relatively quiet.
The machine was lovely. It was essentially an office desk with a marvelous control panel protruding from the top like the bridge of a battleship. The control panel was adorned with rows of lights that were also push-buttons. Sitting at that desk was like sitting in Captain Kirk’s chair.
As I watched the technicians push those buttons, I noted that they lit up when pushed, and that you could push them again to turn them off. I also noted that there were other buttons they were pushing; buttons with names like deposit and run.
The buttons in each row were grouped into five clusters of three. My Digi-Comp was also three bits, so I could read an octal digit when expressed in binary. It was not a big leap to realize that these were just five octal digits.
As the technicians pushed the buttons I could hear them mutter to themselves. They would push 1, 5, 2, 0, 4, in the memory buffer row while saying to themselves, “store in 204.” They would push 1, 0, 2, 1, 3 and mutter, “load 213 into the accumulator.” There was a row of buttons named accumulator!
Ten minutes of that and it was pretty clear to my fifteen-year-old mind that the 15 meant store and the 10 meant load, that the accumulator was what was being stored or loaded, and that the other numbers were the numbers of one of the 1024 words on the drum. (So that’s what a word is!)
Bit by bit (no pun intended) my eager mind latched on to more and more instruction codes and concepts. By the time the technicians left, I knew the basics of how that machine worked.
That afternoon, during a study hall, I crept into the math lab and started fiddling with the computer. I had learned long ago that it is better to ask forgiveness than permission! I toggled in a little program that would multiply the accumulator by two and add one. I toggled a 5 into the accumulator, ran the program, and saw 138 in the accumulator! It had worked!
I toggled in several other simple programs like that and they all worked as planned. I was master of the universe!
Days later I realized how stupid, and lucky, I had been. I found an instruction sheet laying around in the math lab. It showed all the different instructions and op-codes, including many I had not learned by watching the technicians. I was gratified that I had interpreted those that I knew correctly and thrilled by the others. However, one of the new instructions was HLT. It just so happened that the halt instruction was a word of all zeros. And it just so happened that I had put a word of all zeros at the end of each of my programs so that I could load it into the accumulator to clear it. The concept of a halt simply had not occurred to me. I just figured the program would stop when it was done!
I remember at one point sitting in the math lab watching one of the teachers struggle to get a program working. He was trying to type two numbers in decimal on the attached teletype, and then print out the sum. Anyone who has tried to write a program like this in machine language on a mini-computer knows that it is far from trivial. You have to read in the characters, convert them to digits, then to binary, add them, convert back to decimal and encode back into characters. And, believe me, it’s a lot worse when you are entering the program in binary through the front panel!
I watched as he put a halt into his program and then ran it until it stopped. (Oh! That’s a good idea!) This primitive breakpoint allowed him to examine the contents of the registers to see what his program had done. I remember him muttering, “Wow, that was fast!” Boy, do I have news for him!
I had no idea what his algorithm was. That kind of programming was still magic to me. And he never spoke to me while I watched over his shoulder. Indeed, nobody talked to me about this computer. I think they considered me a nuisance to be ignored, fluttering around the math lab like a moth. Suffice it to say that neither the student nor the teachers had developed a high degree of social skill.
In the end he got his program working. It was amazing to watch. He’d slowly type in the two numbers because, despite his earlier protestation, that computer was not fast (think of reading consecutive words from a spinning drum in 1967). When he hit return after the second number, the computer blinked ferociously for a bit and then started to print the result. It took about one second per digit. It printed all but the last digit, blinked even more ferociously for five seconds, and then printed the final digit and halted.
Why that pause before the last digit? I never found out. But it made me realize that the approach to a problem can have a profound effect on the user. Even though the program produced the correct answer, there was still something wrong with it.
This was mentoring. Certainly it was not the kind of mentoring I could have hoped for. It would have been nice if one of those teachers had taken me under his wing and worked with me. But it didn’t matter, because I was observing them and learning at a furious pace.
Unconventional Mentoring
I told you those two stories because they describe two very different kinds of mentoring, neither of which are the kind that the word usually implies. In the first case I learned from the authors of a very well-written manual. In the second case I learned by observing people who were actively trying to ignore me. In both cases the knowledge gained was profound and foundational.
Of course, I had other kinds of mentors too. There was the kindly neighbor who worked at Teletype who brought me home a box of 30 telephone relays to play with. Let me tell you, give a lad some relays and a electric train transformer and he can conquer the world!
There was the kindly neighbor who was a ham operator who showed me how to use a multimeter (which I promptly broke). There was the office supply store owner who allowed me to come in and “play” with his very expensive programmable calculator. There was the Digital Equipment Corporation sales office that allowed me to come in and “play” with their PDP-8 and PDP-10.
Then there was big Jim Carlin, a BAL programmer who saved me from being fired from my first programming job by helping me debug a Cobol program that was way beyond my depth. He taught me how to read core dumps, and how to format my code with appropriate blank lines, rows of stars, and comments. He gave me my first push towards craftsmanship. I’m sorry I could not return the favor when the boss’s displeasure fell on him a year later.
But, frankly, that’s about it. There just weren’t that many senior programmers in the early seventies. Everywhere else I worked, I was senior. There was nobody to help me figure out what true professional programming was. There was no role model who taught me how to behave or what to value. Those things I had to learn for myself, and it was by no means easy.
Hard Knocks
As I told you before, I did, in fact, get fired from that factory automation job in 1976. Although I was technically very competent, I had not learned to pay attention to the business or the business goals. Dates and deadlines meant nothing to me. I forgot about a big Monday morning demo, left the system broken on Friday, and showed up late on Monday with everyone staring angrily at me.
My boss sent me a letter warning me that I had to make changes immediately or be fired. This was a significant wake-up call for me. I reevaluated my life and career and started to make some significant changes in my behavior—some of which you have been reading about in this book. But it was too little, too late. The momentum was all in the wrong direction and small things that wouldn’t have mattered before became significant. So, though I gave it a hardy try, they eventually escorted me out of the building.
Needless to say, it’s not fun to bring that kind of news home to a pregnant wife and a two-year old daughter. But I picked myself up and took some powerful life lessons to my next job—which I held for fifteen years and which formed the true foundation of my current career.
In the end, I survived and prospered. But there has to be a better way. It would have been far better for me if I’d had a true mentor, someone to teach me the in’s and out’s. Someone I could have observed while I helped him with small tasks, and who would review and guide my early work. Someone to act as a role model and teach me appropriate values and reflexes. A sensei. A master. A mentor.
Apprenticeship
What do doctors do? Do you think hospitals hire medical graduates and throw them into operating rooms to do heart surgery on their first day on the job? Of course not.
The medical profession has developed a discipline of intense mentoring ensconced in ritual and lubricated with tradition. The medical profession oversees the universities and makes sure the graduates have the best education. That education involves roughly equal amounts of classroom study and clinical activity in hospitals working with professionals.
Upon graduation, and before they can be licensed, the newly minted doctors are required to spend a year in supervised practice and training called internship.
This is intense on-the-job training. The intern is surrounded by role models and teachers.
Once internship has been completed each of the medical specialties requires three to five more years of further supervised practice and training known as residency. The resident gains confidence by taking on ever greater responsibilities while still being surrounded by, and supervised by, senior doctors.
Many specialties require yet another one to three years of fellowship in which the student continues specialized training and supervised practice.
And then they are eligible to take their exams and become board certified.
This description of the medical profession was somewhat idealized, and probably wildly inaccurate. But the fact remains that when the stakes are high, we do not send graduates into a room, throw meat in occasionally, and expect good things to come out. So why do we do this in software?
It’s true that there are relatively few deaths caused by software bugs. But there are significant monetary losses. Companies lose huge amounts of money due to the inadequate training of their software developers.
Somehow the software development industry has gotten the idea that programmers are programmers, and that once you graduate you can code. Indeed, it is not at all uncommon for companies to hire kids right out of school, form them into “teams,” and ask them to build the most critical systems. It’s insane!
Painters don’t do this. Plumbers don’t. Electricians don’t. Hell, I don’t even think short-order cooks behave this way! It seems to me that companies who hire CS graduates ought to invest more in their training than McDonalds invests in their servers.
Let’s not kid ourselves that this doesn’t matter. There’s a lot at stake. Our civilization runs on software. It is software that moves and manipulates the information that pervades our daily life. Software controls our automobile engines, transmissions, and brakes. It maintains our bank balances, sends us our bills, and accepts our payments. Software washes our clothes and tells us the time. It puts pictures on the TV, sends our text messages, makes our phone calls, and entertains us when we are bored. It’s everywhere.
Given that we entrust software developers with all aspects of our lives, from the minutia to the momentous, I suggest that a reasonable period of training and supervised practice is not inappropriate.
Software Apprenticeship
So how should the software profession induct young graduates into the ranks of professionalism? What steps should they follow? What challenges should they meet? What goals should they achieve? Let’s work it backwards.
Masters
These are programmers who have taken the lead on more than one significant software project. Typically they will have 10+ years of experience and will have worked on several different kinds of systems, languages, and operating systems. They know how to lead and coordinate multiple teams, are proficient designers and architects, and can code circles around everyone else without breaking a sweat. They have been offered management positions, but have either turned them down, have fled back after accepting them, or have integrated them with their primarily technical role. They maintain that technical role by reading, studying, practicing, doing, and teaching. It is to a master that the company will assign technical responsibility for a project. Think, “Scotty.”
Journeymen
These are programmers who are trained, competent, and energetic. During this period of their career they will learn to work well in a team and to become team leaders. They are knowledgeable about current technology but typically lack experience with many diverse systems. They tend to know one language, one system, one platform; but they are learning more. Experience levels vary widely among their ranks, but the average is about five years. On the far side of that average we have burgeoning masters; on the near side we have recent apprentices.
Journeymen are supervised by masters, or other more senior journeymen. Young journeymen are seldom allowed autonomy. Their work is closely supervised. Their code is scrutinized. As they gain in experience, autonomy grows. Supervision becomes less direct and more nuanced. Eventually it transitions into peer review.
Apprentices/Interns
Graduates start their careers as apprentices. Apprentices have no autonomy. They are very closely supervised by journeymen. At first they take no tasks at all, they simply provide assistance to the journeymen. This should be a time of very intense pair-programming. This is when disciplines are learned and reinforced. This is when the foundation of values is created.
Journeymen are the teachers. They make sure that the apprentices know design principles, design patterns, disciplines, and rituals. Journeymen teach TDD, refactoring, estimation, and so forth. They assign reading, exercises, and practices to the apprentices; they review their progress.
Apprenticeship ought to last a year. By that time, if the journeymen are willing to accept the apprentice into their ranks, they will make a recommendation to the masters. The masters should examine the apprentice both by interview and by reviewing their accomplishments. If the masters agree, then the apprentice becomes a journeyman.
The Reality
Again, all of this is idealized and hypothetical. However, if you change the names and squint at the words you’ll realize that it’s not all that different from the way we expect things to work now. Graduates are supervised by young team-leads, who are supervised by project-leads, and so on. The problem is that, in most cases, this supervision is not technical! In most companies there is no technical supervision at all. Programmers get raises and eventual promotions because, well, that’s just what you do with programmers.
The difference between what we do today and my idealized program of apprenticeship is the focus on technical teaching, training, supervision, and review.
The difference is the very notion that professional values and technical acumen must be taught, nurtured, nourished, coddled, and encultured. What’s missing from our current sterile approach is the responsibility of the elders to teach the young.
Craftsmanship
So now we are in a position to define this word: craftsmanship. Just what is it? To understand, let’s look at the word craftsman. This word brings to mind skill and quality. It evokes experience and competence. A craftsman is someone who works quickly, but without rushing, who provides reasonable estimates and meets commitments. A craftsman knows when to say no, but tries hard to say yes. A craftsman is a professional.
Craftsmanship is the mindset held by craftsmen. Craftsmanship is a meme that contains values, disciplines, techniques, attitudes, and answers.
But how do cratftsmen adopt this meme? How do they attain this mindset?
The craftsmanship meme is handed from one person to another. It is taught by elders to the young. It is exchanged between peers. It is observed and relearned, as elders observe the young. Craftsmanship is a contagion, a kind of mental virus. You catch it by observing others and allowing the meme to take hold.
Convincing People
You can’t convince people to be craftsmen. You can’t convince them to accept the craftsmanship meme. Arguments are ineffective. Data is inconsequential. Case studies mean nothing. The acceptance of a meme is not so much a rational decision as an emotional one. This is a very human thing.
So how do you get people to adopt the craftsmanship meme? Remember that a meme is contagious, but only if it can be observed. So you make the meme observable. You act as a role model. You become a craftsman first, and let your craftsmanship show. Then just let the meme do the rest of the work.
Conclusion
School can teach the theory of computer programming. But school does not, and cannot teach the discipline, practice, and skill of being a craftsman. Those things are acquired through years of personal tutelage and mentoring. It is time for those of us in the software industry to face the fact that guiding the next batch of software developers to maturity will fall to us, not to the universities. It’s time for us to adopt a program of apprenticeship, internship, and long-term guidance.

A. Tooling

In 1978, I was working at Teradyne on the telephone test system that I described earlier. The system was about 80KSLOC of M365 assembler. We kept the source code on tapes.
The tapes were similar to those 8-track stereo tape cartridges that were so popular back in the ’70s. The tape was an endless loop, and the tape drive could only move in one direction. The cartridges came in 10′, 25′, 50′, and 100′ lengths. The longer the tape, the longer it took to “rewind” since the tape drive had to simply move it forward until it found the “load point.” A 100′ tape took five minutes to go to load point, so we chose the lengths of our tapes judiciously.1
Logically, the tapes were subdivided into files. You could have as many files on a tape as would fit. To find a file you loaded the tape and then skipped forward one file at a time until you found the one you wanted. We kept a listing of the source code directory on the wall so that we would know how many files to skip before we got to the one we wanted.
There was a master 100′ copy of the source code tape on a shelf in the lab. It was labeled MASTER. When we wanted to edit a file we loaded the MASTER source tape into one drive and a 10′ blank into another. We’d skip through the MASTER until we got to the file we needed. Then we’d copy that file onto the scratch tape. Then we’d “rewind” both tapes and put the MASTER back on the shelf.
There was a special directory listing of the MASTER on a bulletin board in the lab. Once we had made the copies of the files we needed to edit, we’d put a colored pin on the board next to the name of that file. That’s how we checked files out!
We edited the tapes on a screen. Our text editor, ED-402, was actually very good. It was very similar to vi. We would read a “page” from tape, edit the contents, and then write that page out and read the next one. A page was typically 50 lines of code. You could not look ahead on the tape to see the pages that were coming, and you could not look back on the tape to see the pages you had edited. So we used listings.
Indeed, we would mark up our listings with all the changes we wanted to make, and then we’d edit the files according to our markups. Nobody wrote or modified code at the terminal! That was suicide.
Once the changes were made to all the files we needed to edit, we’d merge those files with the master to create a working tape. This is the tape we’d use to run our compiles and tests.
Once we were done testing and were sure our changes worked, we’d look at the board. If there were no new pins on the board we’d simply relabel our working tape as MASTER and pull our pins off the board. If there were new pins on the board we’d remove our pins and hand our working tape to the person whose pins were still on the board. They’d have to do the merge.
There were three of us, and each of us had our own color of pin, so it was easy for us to know who had which files checked out. And since we all worked in the same lab and talked to each other all the time, we held the status of the board in our heads. So usually the board was redundant, and we often didn’t use it.
Tools
Today software developers have a wide array of tools to choose from. Most aren’t worth getting involved with, but there are a few that every software developer must be conversant with. This chapter describes my current personal toolkit. I have not done a complete survey of all the other tools out there, so this should not be considered a comprehensive review. This is just what I use.
Source Code Control
When it comes to source code control, the open source tools are usually your best option. Why? Because they are written by developers, for developers. The open source tools are what developers write for themselves when they need something that works.
There are quite a few expensive, commercial, “enterprise” version control systems available. I find that these are not sold to developers so much as they are sold to managers, executives, and “tool groups.” Their list of features is impressive and compelling. Unfortunately, they often don’t have the features that developers actually need. The chief among those is speed.
An “Enterprise” Source Control System
It may be that your company has invested a small fortune in an “enterprise” source code control system. If so, my condolences. It’s probably politically inappropriate for you to go around telling everyone, “Uncle Bob says not to use it.” However, there is an easy solution.
You can check your source code into the “enterprise” system at the end of each iteration (once every two weeks or so) and use one of the open source systems in the midst of each iteration. This keeps everyone happy, doesn’t violate any corporate rules, and keeps your productivity high.
Pessimistic versus Optimistic Locking
Pessimistic locking seemed like a good idea in the ’80s. After all, the simplest way to manage concurrent update problems is to serialize them. So if I’m editing a file, you’d better not. Indeed, the system of colored pins that I used in the late ’70s was a form of pessimistic locking. If there was a pin in a file, you didn’t edit that file.
Of course, pessimistic locking has its problems. If I lock a file and then go on vacation, everybody else who wants to edit that file is stuck. Indeed, even if I keep the file locked for a day or two, I can delay others who need to make changes.
Our tools have gotten much better at merging source files that have been edited concurrently. It’s actually quite amazing when you think about it. The tools look at the two different files and at the ancestor of those two files, and then they apply multiple strategies to figure out how to integrate the concurrent changes. And they do a pretty good job.
So the era of pessimistic locking is over. We do not need to lock files when we check them out anymore. Indeed, we don’t bother to check out individual files at all. We just check out the whole system and edit any files we need to.
When we are ready to check in our changes, we perform an “update” operation. This tells us whether anybody else checked in code ahead of us, automatically merges most of the changes, finds conflicts, and helps us do the remaining merges. Then we commit the merged code.
I’ll have a lot to say about the role that automated tests and continuous integration play with regard to this process later on in this chapter. For the moment let’s just say that we never check in code that doesn’t pass all the tests. Never ever.
CVS/SVN
The old standby source control system is CVS. It was good for its day but has grown a bit long in the tooth for today’s projects. Although it is very good at dealing with individual files and directories, it’s not very good at renaming files or deleting directories. And the attic Well, the less said about that, the better.
Subversion, on the other hand, works very nicely. It allows you to check out the whole system in a single operation. You can easily update, merge, and commit. As long as you don’t get into branching, SVN systems are pretty simple to manage.
Branching
Until 2008 I avoided all but the simplest forms of branching. If a developer created a branch, that branch had to be brought back into the main line before the end of the iteration. Indeed, I was so austere about branching that it was very rarely done in the projects I was involved with.
If you are using SVN, then I still think that’s a good policy. However, there are some new tools that change the game completely. They are the distributed source control systems. git is my favorite of the distributed source control systems. Let me tell you about it.
git
I started using git in late 2008, and it has since changed everything about the way I use source code control. Understanding why this tool is such a game changer is beyond the scope of this book. But comparing Figure A-1 to Figure A-2 ought to be worth quite a few of the words that I’m not going to include here.
Figure A-1. FITNESSE under subversion

Figure A-2. FITNESSE under git

Figure A-1 shows a few weeks’ worth of development on the FITNESSE project while it was controlled by SVN. You can see the effect of my austere no-branching rule. We simply did not branch. Instead, we did very frequent updates, merges, and commits to the main line.
Figure A-2 picture shows a few weeks’ worth of development on the same project using git. As you can see, we are branching and merging all over the place. This was not because I relaxed my no-branching policy; rather, it simply became the obvious and most convenient way to work. Individual developers can make very short-lived branches and then merge them with each other on a whim.
Notice also that you can’t see a true main line. That’s because there isn’t one. When you use git there’s no such thing as a central repository, or a main line. Every developer keeps his or her own copy of the entire history of the project on their local machine. They check in and out of that local copy, and then merge it with others as needed.
It’s true that I keep a special golden repository into which I push all the releases and interim builds. But to call this repository the main line would be missing the point. It’s really just a convenient snapshot of the whole history that every developer maintains locally.
If you don’t understand this, that’s OK. git is something of a mind bender at first. You have to get used to how it works. But I’ll tell you this: git, and tools like it, are what the future of source code control looks like.
IDE/Editor
As developers, we spend most of our time reading and editing code. The tools we use for this purpose have changed greatly over the decades. Some are immensely powerful, and some are little changed since the ’70s.
vi
You’d think that the days of using vi as the primary development editor would be long over. There are tools nowadays that far outclass vi, and other simple text editors like it. But the truth is that vi has enjoyed a significant resurgence in popularity due to its simplicity, ease of use, speed, and flexibility. Vi might not be as powerful as Emacs, or eclipse, but it’s still a fast and powerful editor.
Having said that, I’m not a power vi user any more. There was a day when I was known as a vi “god,” but those days are long gone. I use vi from time to time if I need to do a quick edit of a text file. I have even used it recently to make a quick change to a Java source file in a remote environment. But the amount of true coding I have done in vi in the last 10 years is vanishingly small.
Emacs
Emacs is still one of the most powerful editors out there, and will probably remain so for decades to come. The internal lisp model guarantees that. As a general-purpose editing tool, nothing else even comes close. On the other hand, I think that Emacs cannot really compete with the specific-purpose IDEs that now dominate. Editing code is not a general-purpose editing job.
In the ’90s I was an Emacs bigot. I wouldn’t consider using anything else. The point-and-click editors of the day were laughable toys that no developer could take seriously. But in the early ’00s I was introduced to IntelliJ, my current IDE of choice, and I’ve never looked back.
Eclipse/IntelliJ
I’m an IntelliJ user. I love it. I use it to write Java, Ruby, Clojure, Scala, Javascript, and many others. This tool was written by programmers who understand what programmers need when writing code. Over the years, they have seldom disappointed me and almost always pleased me.
Eclipse is similar in power and scope to IntelliJ. The two are simply leaps and bounds above Emacs when it comes to editing Java. There are other IDEs in this category, but I won’t mention them here because I have no direct experience with them.
The features that set these IDEs above tools like Emacs are the extremely powerful ways in which they help you manipulate code. In IntelliJ, for example, you can extract a superclass from a class with a single command. You can rename variables, extract methods, and convert inheritance into composition, among many other great features.
With these tools, code editing is no longer about lines and characters as much as it is about complex manipulations. Rather than thinking about the next few characters and lines you need to type, you think about the next few transformations you need to make. In short, the programming model is remarkably different and highly productive.
Of course, this power comes at a cost. The learning curve is high, and project set-up time is not insignificant. These tools are not lightweight. They take a lot of computing resources to run.
TextMate
TextMate is powerful and lightweight. It can’t do the wonderful manipulations that IntelliJ and Eclipse can do. It doesn’t have the powerful lisp engine and library of Emacs. It doesn’t have the speed and fluidity of vi. On the other hand, the learning curve is small, and its operation is intuitive.
I use TextMate from time to time, especially for the occasional C++. I would use Emacs for a large C++ project, but I’m too rusty to bother with Emacs for the short little C++ tasks I have.
Issue Tracking
At the moment I’m using Pivotal Tracker. It’s an elegant and simple system to use. It fits nicely with the Agile/iterative approach. It allows all the stakeholders and developers to communicate quickly. I’m very pleased with it.
For very small projects, I’ve sometimes used Lighthouse. It’s very quick and easy to set up and use. But it doesn’t come close to the power of Tracker.
I’ve also simply used a wiki. Wikis are fine for internal projects. They allow you to set up any scheme you like. You aren’t forced into a certain process or a rigid structure. They are very easy to understand and use.
Sometimes the best issue-tracking system of all is a set of cards and a bulletin board. The bulletin board is divided into columns such as “To Do,” “In Progress,” and “Done.” The developers simply move the cards from one column to the next when appropriate. Indeed, this may be the most common issue-tracking system used by agile teams today.
The recommendation I make to clients is to start with a manual system like the bulletin board before you purchase a tracking tool. Once you’ve mastered the manual system, you will have the knowledge you need to select the appropriate tool. And indeed, the appropriate choice may simply be to continue using the manual system.
Bug Counts
Teams of developers certainly need a list of issues to work on. Those issues include new tasks and features as well as bugs. For any reasonably sized team (5 to 12 developers) the size of that list should be in the dozens to hundreds. Not thousands.
If you have thousands of bugs, something is wrong. If you have thousands of features and/or tasks, something is wrong. In general, the list of issues should be relatively small, and therefore manageable with a lightweight tool like a wiki, Lighthouse, or Tracker.
There are some commercial tools out there that seem to be pretty good. I’ve seen clients use them but haven’t had the opportunity to work with them directly. I am not opposed to tools like this, as long as the number of issues remains small and manageable. When issue-tracking tools are forced to track thousands of issues, then the word “tracking” loses meaning. They become “issue dumps” (and often smell like a dump too).
Continuous Build
Lately I’ve been using Jenkins as my Continuous Build engine. It’s lightweight, simple, and has almost no learning curve. You download it, run it, do some quick and simple configurations, and you are up and running. Very nice.
My philosophy about continuous build is simple: Hook it up to your source code control system. Whenever anybody checks in code, it should automatically build and then report status to the team.
The team must simply keep the build working at all times. If the build fails, it should be a “stop the presses” event and the team should meet to quickly resolve the issue. Under no circumstances should the failure be allowed to persist for a day or more.
For the FITNESSE project I have every developer run the continuous-build script before they commit. The build takes less than 5 minutes, so this is not onerous. If there are problems, the developers resolve them before the commit. So the automatic build seldom has any problems. The most common source of automatic build failures turns out to be environment-related issues since my automatic build environment is quite different from the developer’s development environments.
Unit Testing Tools
Each language has it’s own particular unit testing tool. My favorites are JUNIT for Java, RSPEC for Ruby, NUNIT for .Net, Midje for Clojure, and CPPUTEST for C and C++.
Whatever unit testing tool you choose, there are a few basic features they all should support.

	It should be quick and easy to run the tests. Whether this is done through IDE plugins or simple command line tools is irrelevant, as long as developers can run those tests on a whim. The gesture to run the tests should be trivial.
For example, I run my CPPUTEST tests by typing command-M in TextMate. I have this command set up to run my makefile which automatically runs the tests and prints a one-line report if all tests pass. JUNIT and RSPEC are both supported by INTELLIJ, so all I have to do is push a button. For NUNIT, I use the RESHARPER plugin to give me the test button.

	The tool should give you a clear visual pass/fail indication. It doesn’t matter if this is a graphical green bar or a console message that says “All Tests Pass.” The point is that you must be able to tell that all tests passed quickly and unambiguously. If you have to read a multiline report, or worse, compare the output of two files to tell whether the tests passed, then you have failed this point.
	The tool should give you a clear visual indication of progress. It doesn’t matter whether this is a graphical meter or a string of dots as long as you can tell that progress is still being made and that the tests have not stalled or aborted.
	The tool should discourage individual test cases from communicating with each other. JUNIT does this by creating a new instance of the test class for each test method, thereby preventing the tests from using instance variables to communicate with each other. Other tools will run the test methods in random order so that you can’t depend on one test preceding another. Whatever the mechanism, the tool should help you keep your tests independent from each other. Dependent tests are a deep trap that you don’t want to fall into.
	The tool should make it very easy to write tests. JUNIT does this by supplying a convenient API for making assertions. It also uses reflection and Java attributes to distinguish test functions from normal functions. This allows a good IDE to automatically identify all your tests, eliminating the hassle of wiring up suites and creating error-prone lists of tests.

Component Testing Tools
These tools are for testing components at the API level. Their role is to make sure that the behavior of a component is specified in a language that the business and QA people can understand. Indeed, the ideal case is when business analysts and QA can write that specification using the tool.
The Definition of Done
More than any other tool, component testing tools are the means by which we specify what done means. When business analysts and QA collaborate to create a specification that defines the behavior of a component, and when that specification can be executed as a suite of tests that pass or fail, then done takes on a very unambiguous meaning: “All Tests Pass.”
FitNesse
My favorite component testing tool is FITNESSE. I wrote a large part of it, and I am the primary committer. So it’s my baby.
FITNESSE is a wiki-based system that allows business analysts and QA specialists to write tests in a very simple tabular format. These tables are similar to Parnas tables both in form and intent. The tests can be quickly assembled into suites, and the suites can be run at a whim.
FITNESSE is written in Java but can test systems in any language because it communicates with an underlying test system that can be written in any language. Supported languages include Java, C#/.NET, C, C++, Python, Ruby, PHP, Delphi, and others.
There are two test systems that underlie FITNESSE: Fit and Slim. Fit was written by Ward Cunningham and was the original inspiration for FITNESSE and it’s ilk. Slim is a much simpler and more portable test system that is favored by FITNESSE users today.
Other Tools
I know of several other tools that could classify as component testing tools.
• RobotFX is a tool developed by Nokia engineers. It uses a similar tabular format to FITNESSE, but is not wiki based. The tool simply runs on flat files prepared with Excel or similar. The tool is written in Python but can test systems in any language using appropriate bridges.

• Green Pepper is a commercial tool that has a number of similarities with FITNESSE. It is based on the popular confluence wiki.

• Cucumber is a plain text tool driven by a Ruby engine, but capable of testing many different platforms. The language of Cucumber is the popular Given/When/Then style.

• JBehave is similar to Cucumber and is the logical parent of Cucumber. It is written in Java.

Integration Testing Tools
Component testing tools can also be used for many integration tests, but are less than appropriate for tests that are driven through the UI.
In general, we don’t want to drive very many tests through the UI because UIs are notoriously volatile. That volatility makes tests that go through the UI very fragile.
Having said that, there are some tests that must go through the UI—most importantly, tests of the UI. Also, a few end-to-end tests should go through the whole assembled system, including the UI.
The tools that I like best for UI testing are Selenium and Watir.
UML/MDA
In the early ’90s I was very hopeful that the CASE tool industry would cause a radical change in the way software developers worked. As I looked ahead from those heady days, I thought that by now everyone would be coding in diagrams at a higher level of abstraction and that textual code would be a thing of the past.
Boy was I wrong. Not only hasn’t this dream been fulfilled, but every attempt to move in that direction has met with abject failure. Not that there aren’t tools and systems out there that demonstrate the potential; it’s just that those tools simply don’t truly realize the dream, and hardly anybody seems to want to use them.
The dream was that software developers could leave behind the details of textual code and author systems in a higher-level language of diagrams. Indeed, so the dream goes, we might not need programmers at all. Architects could create whole systems from UML diagrams. Engines, vast and cool and unsympathetic to the plight of mere programmers, would transform those diagrams into executable code. Such was the grand dream of Model Driven Architecture (MDA).
Unfortunately, this grand dream has one tiny little flaw. MDA assumes that the problem is code. But code is not the problem. It has never been the problem. The problem is detail.
The Details
Programmers are detail managers. That’s what we do. We specify the behavior of systems in the minutest detail. We happen to use textual languages for this (code) because textual languages are remarkably convenient (consider English, for example).
What kinds of details do we manage?
Do you know the difference between the two characters \n and \r? The first, \n, is a line feed. The second, \r, is a carriage return. What’s a carriage?
In the ’60s and early ’70s one of the more common output devices for computers was a teletype. The model ASR332 was the most common.
This device consisted of a print head that could print ten characters per second. The print head was composed of a little cylinder with the characters embossed upon it. The cylinder would rotate and elevate so that the correct character was facing the paper, and then a little hammer would smack the cylinder against the paper. There was an ink ribbon between the cylinder and the paper, and the ink transferred to the paper in the shape of the character.
The print head rode on a carriage. With every character the carriage would move one space to the right, taking the print head with it. When the carriage got to the end of the 72-character line, you had to explicitly return the carriage by sending the carriage return characters (\r = 0 × 0D), otherwise the print head would continue to print characters in the 72nd column, turning it into a nasty black rectangle.
Of course, that wasn’t sufficient. Returning the carriage did not raise the paper to the next line. If you returned the carriage and did not send a line-feed character (\n = 0 × 0A), then the new line would print on top of the old line.
Therefore, for an ASR33 teletype the end-of-line sequence was “\r\n”. Actually, you had to be careful about that since the carriage might take more than 100ms to return. If you sent “\n\r” then the next character just might get printed as the carriage returned, thereby creating a smudged character in the middle of the line. To be safe, we often padded the end-of-line sequence with one or two rubout3 characters (0 × FF).
In the ’70s, as teletypes began to fade from use, operating systems like UNIX shortened the end-of-line sequence to simply ‘\n’. However, other operating systems, like DOS, continued to use the ‘\r\n’ convention.
When was the last time you had to deal with text files that use the “wrong” convention? I face this problem at least once a year. Two identical source files don’t compare, and don’t generate identical checksums, because they use different line ends. Text editors fail to word-wrap properly, or double space the text because the line ends are “wrong.” Programs that don’t expect blank lines crash because they interpret ‘\r\n’ as two lines. Some programs recognize ‘\r\n’ but don’t recognize ‘\n\r’. And so on.
That’s what I mean by detail. Try coding the horrible logic for sorting out line ends in UML!
No Hope, No Change
The hope of the MDA movement was that a great deal of detail could be eliminated by using diagrams instead of code. That hope has so far proven to be forlorn. It turns out that there just isn’t that much extra detail embedded in code that can be eliminated by pictures. What’s more, pictures contain their own accidental details. Pictures have their own grammar and syntax and rules and constraints. So, in the end, the difference in detail is a wash.
The hope of MDA was that diagrams would prove to be at a higher level of abstraction than code, just as Java is at a higher level than assembler. But again, that hope has so far proven to be misplaced. The difference in the level of abstraction is tiny at best.
And, finally, let’s say that one day someone does invent a truly useful diagrammatic language. It won’t be architects drawing those diagrams, it will be programmers. The diagrams will simply become the new code, and programmers will be needed to draw that code because, in the end, it’s all about detail, and it is programmers who manage that detail.
Conclusion
Software tools have gotten wildly more powerful and plentiful since I started programming. My current toolkit is a simple subset of that menagerie. I use git for source code control, Tracker for issue management, Jenkins for Continuous Build, IntelliJ as my IDE, XUnit for testing, and FITNESSE for component testing.
My machine is a Macbook Pro, 2.8Ghz Intel Core i7, with a 17-inch matte screen, 8GB ram, 512GB SSD, with two extra screens.

Index
A
Acceptance tests
automated, 97–99
communication and, 97
continuous integration and, 104–105
definition of, 94
developer’s role in, 100–101
extra work and, 99
GUIs and, 103–105
negotiation and, 101–102
passive aggression and, 101–102
timing of, 99–100
unit tests and, 102–103
writers of, 99–100
Adversarial roles, 20–23
Affinity estimation, 140–141
Ambiguity, in requirements, 92–94
Apologies, 6
Apprentices, 183
Apprenticeship, 180–184
Arguments, in meetings, 120–121
Arrogance, 16
Automated acceptance testing, 97–99
Automated quality assurance, 8
Avoidance, 125
B
Blind alleys, 125–126
Bossavit, Laurent, 83
Bowling Game,
83
Branching, 191
Bug counts, 197
Business goals, 154
C
Caffeine, 122
Certainty, 74
Code
control, 189–194
owned, 157
3 AM, 53–54
worry, 54–55
Coding Dojo,
83–87
Collaboration, 14, 151–160
Collective ownership, 157–158
Commitment(s), 41–46
control and, 44
discipline and, 47–50
estimation and, 132
expectations and, 45
identifying, 43–44
implied, 134–135
importance of, 132
lack of, 42–43
pressure and, 146
Communication
acceptance tests and, 97
pressure and, 148
of requirements, 89–94
Component tests
in testing strategy, 110–111
tools for, 199–200
Conflict, in meetings, 120–121
Continuous build, 197–198
Continuous integration, 104–105
Continuous learning, 13
Control, commitment and, 44
Courage, 75–76
Craftsmanship, 184
Creative input, 59–60, 123
Crisis discipline, 147
Cucumber, 200
Customer, identification with, 15
CVS, 191
Cycle time, in test-driven development, 72
D
Deadlines
false delivery and, 67
hoping and, 65
overtime and, 66
rushing and, 65–66
Debugging, 60–63
Defect injection rate, 75
Demo meetings, 120
Design, test-driven development and, 76–77
Design patterns, 12
Design principles, 12
Details, 201–203
Development. see test driven development (TDD)
Disagreements, in meetings, 120–121
Discipline
commitment and, 47–50
crisis, 147
Disengagement, 64
Documentation, 76
Domain, knowledge of, 15
“Done,” defining, 67, 94–97
“Do no harm” approach, 5–10
to function, 5–8
to structure, 8–10
Driving, 64
E
Eclipse, 195–196
Emacs, 195
Employer(s)
identification with, 15
programmers vs.,
153–156
Estimation
affinity, 140–141
anxiety, 92
commitment and, 132
definition of, 132–133
law of large numbers and, 141
nominal, 136
optimistic, 135–136
PERT and, 135–138
pessimistic, 136
probability and, 133
of tasks, 138–141
trivariate, 141
Expectations, commitment and, 45
Experience, broadening, 87
F
Failure, degrees of, 174
False delivery, 67
FitNesse, 199–200
Flexibility, 9
Flow zone, 56–58
Flying fingers, 139
Focus, 121–123
Function, in “do no harm” approach, 5–8
G
Gaillot, Emmanuel, 83
Gelled team, 162–164
Git, 191–194
Goals, 20–23, 118
Graphical user interfaces (GUIs), 103–105
Green Pepper, 200
Grenning, James, 139
GUIs, 103–105
H
Hard knocks, 179–180
Help, 67–70
giving, 68
mentoring and, 69–70
pressure and, 148–149
receiving, 68–69
“Hope,” 42
Hoping, deadlines and, 65
Humility, 16
I
IDE/editor, 194
Identification, with employer/customer, 15
Implied commitments, 134–135
Input, creative, 59–60, 123
Integration, continuous, 104–105
Integration tests
in testing strategy, 111–112
tools for, 200–201
IntelliJ, 195–196
Interns, 183
Interruptions, 57–58
Issue tracking, 196–197
Iteration planning meetings, 119
Iteration retrospective meetings, 120
J
JBehave, 200
Journeymen, 182–183
K
Kata, 84–85
Knowledge
of domain, 15
minimal, 12
work ethic and, 11–13
L
Lateness, 65–67
Law of large numbers, 141
Learning, work ethic and, 13
“Let’s,” 42
Lindstrom, Lowell, 140
Locking, 190
M
Manual exploratory tests, in testing strategy, 112–113
Masters, 182
MDA, 201–203
Meetings
agenda in, 118
arguments and disagreements in, 120–121
declining, 117
demo, 120
goals in, 118
iteration planning, 119
iteration retrospective, 120
leaving, 118
stand-up, 119
time management and, 116–121
Mentoring, 14–15, 69–70, 174–180
Merciless refactoring, 9
Messes, 126–127, 146
Methods, 12
Model Driven Architecture (MDA), 201–203
Muscle focus, 123
Music, 57
N
“Need,” 42
Negotiation, acceptance tests and, 101–102
Nominal estimate, 136
Nonprofessional, 2
O
Open source, 87
Optimistic estimate, 135–136
Optimistic locking, 190
Outcomes, best-possible, 20–23
Overtime, 66
Owned code, 157
Ownership, collective, 157–158
P
Pacing, 63–64
Pairing, 58, 148–149, 158
Panic, 147–148
Passion, 154
Passive aggression, 28–30, 101–102
People, programmers vs.,
153–158
Personal issues, 54–55
PERT (Program Evaluation and Review Technique), 135–138
Pessimistic estimate, 136
Pessimistic locking, 190
Physical activity, 123
Planning Poker, 139–140
Practice
background on, 80–83
ethics, 87
experience and, 87
turnaround time and, 82–83
work ethic and, 13–14
Precision, premature, in requirements, 91–92
Preparedness, 52–55
Pressure
avoiding, 145–147
cleanliness and, 146
commitments and, 146
communication and, 148
handling, 147–149
help and, 148–149
messes and, 146
panic and, 147–148
Priority inversion, 125
Probability, 133
Professionalism, 2
Programmers
employers vs.,
153–156
people vs.,
153–158
programmers vs.,
157
Proposal, project, 31–32
Q
Quality assurance (QA)
automated, 8
as bug catchers, 6
as characterizers, 108–109
ideal of, as finding no problems, 108–109
problems found by, 6–7
as specifiers, 108
as team member, 108
R
Randori, 86–87
Reading, as creative input, 59
Recharging, 122–123
Reputation, 5
Requirements
communication of, 89–94
estimation anxiety and, 92
late ambiguity in, 92–94
premature precision in, 91–92
uncertainty and, 91–92
Responsibility, 2–5
apologies and, 6
“do no harm” approach and, 5–10
function and, 5–8
structure and, 8–10
work ethic and, 10–16
RobotFX, 200
Roles, adversarial, 20–23
Rushing, 34–35, 65–66
S
Santana, Carlos, 83
“Should,” 42
Shower, 64
Simplicity, 34
Sleep, 122
Source code control, 189–194
Stakes, 23–24
Stand-up meetings, 119
Structure
in “do no harm” approach, 8–10
flexibility and, 9
importance of, 8
SVN, 191–194
System tests, in testing strategy, 112
T
Task estimation, 138–141
Teams and teamwork, 24–30
gelled, 162–164
management of, 164
passive aggression and, 28–30
preserving, 163
project-initiated, 163–164
project owner dilemma with, 164–165
trying and, 26–28
velocity of, 164
Test driven development (TDD)
benefits of, 74–77
certainty and, 74
courage and, 75–76
cycle time in, 72
debut of, 71–72
defect injection rate and, 75
definition of, 7–8
design and, 76–77
documentation and, 76
interruptions and, 58
three laws of, 73–74
what it is not, 77–78
Testing
acceptance
automated, 97–99

communication and, 97

continuous integration and, 104–105

definition of, 94

developer’s role in, 100–101

extra work and, 99

GUIs and, 103–105

negotiation and, 101–102

passive aggression and, 101–102

timing of, 99–100

unit tests and, 102–103

writers of, 99–100

automation pyramid, 109–113
component
in testing strategy, 110–111

tools for, 199–200

importance of, 7–8
integration
in testing strategy, 111–112

tools for, 200–201

manual exploratory, 112–113
structure and, 9
system, 112
unit
acceptance tests and, 102–103

in testing strategy, 110

tools for, 198–199

TextMate, 196
Thomas, Dave, 84
3 AM code, 53–54
Time, debugging, 63
Time management
avoidance and, 125
blind alleys and, 125–126
examples of, 116
focus and, 121–123
meetings and, 116–121
messes and, 126–127
priority inversion and, 125
recharging and, 122–123
“tomatoes” technique for, 124
Tiredness, 53–54
“Tomatoes” time management technique, 124
Tools, 189
Trivariate estimates, 141
Turnaround time, practice and, 82–83
U
UML, 201
Uncertainty, requirements and, 91–92
Unconventional mentoring, 179. see also mentoring
Unit tests
acceptance tests and, 102–103
in testing strategy, 110
tools for, 198–199
V
Vi, 194
W
Walking away, 64
Wasa, 85–86
Wideband delphi, 138–141
“Wish,” 42
Work ethic, 10–16
collaboration and, 14
continuous learning and, 13
knowledge and, 11–13
mentoring and, 14–15
practice and, 13–14
Worry code, 54–55
Writer’s block, 58–60
Y
“Yes”
cost of, 30–34
learning how to say, 46–50

Footnotes
Pre-Requisite Introduction
1 Don’t Panic.

2 A technical term of unknown origins.

3 Easycoder was the assembler for the Honeywell H200 computer, which was similar to Autocoder for the IBM 1401 computer.

Chapter 1
1 Hopefully he has a good Errors and Omissions policy!

2[PPP2001]

Chapter 2
1 Like Foghorn Leghorn: “I always keep my feathers numbered for just such an emergency.”

2http://raptureinvenice.com/?p=63

3 With the possible exception of John’s direct employer, though I’d bet they lost too.

Chapter 3
1 Not that the patent was worth any money to me. I had sold it to Teradyne for $1, as per my employment contract (and I didn’t get the dollar).

Chapter 4
1[Martin09]

2[Martin03]

3 I don’t know of any discipline that is as effective as TDD, but perhaps you do.

4 There’s much more about this in the Estimation chapter.

5 See Chapter 7, “Acceptance Testing.”

6 This is far more true of men than women. I had a wonderful conversation with @desi (Desi McAdam, founder of DevChix) about what motivates women programmers. I told her that when I got a program working, it was like slaying the great beast. She told me that for her and other women she had spoken to, the act of writing code was an act of nurturing creation.

Chapter 5
1 From my vantage point at the time a kid is anyone younger than 35. During my twenties I spent a significant amount of time writing silly little games in interpreted languages. I wrote space war games, adventure games, horse race games, snake games, gambling games, you name it.

2http://fitnesse.org

3 Ninety percent is a minimum. The number is actually larger than that. The exact amount is hard to calculate because the coverage tools can’t see code that runs in external processes or in catch blocks.

4http://www.objectmentor.com/omSolutions/agile_customers.html

5[Maximilien], [George2003], [Janzen2005], [Nagappan2008]

Chapter 6
1 The fact that some programmers do wait for builds is tragic and indicative of carelessness. In today’s world build times should be measured in seconds, not minutes, and certainly not hours.

2 This is a technique that Rich Hickey calls HDD, or Hammock-Driven Development.

3 This has become a very popular kata, and a Google search will find many instances of it. The original is here: http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata.

4 We use the “Pragmatic” prefix to disambiguate him from “Big” Dave Thomas from OTI.

5http://codekata.pragprog.com

6http://codingdojo.org/

7http://katas.softwarecraftsmanship.org/?p=71

8http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

Chapter 7
1 XP Immersion 3, May, 2000. http://c2.com/cgi/wiki?TomsTalkAtXpImmersionThree

Chapter 8
1http://www.satisfice.com/articles/what_is_et.shtml

2[COHN09] pp. 311–312

Chapter 9
1 Manna is a common commodity in fantasy and role-playing games like Dungeons & Dragons. Every player has a certain amount of manna, which is a magical substance expended whenever a player casts a magical spell. The more potent the spell, the more of that player’s manna is consumed. Manna recharges at a slow, fixed daily rate. So it’s easy to use it all up in a few spell-casting sessions.

2http://www.pomodorotechnique.com/

Chapter 10
1 Murphy’s Law holds that if anything can go wrong, it will go wrong.

2 The precise number for a normal distribution is 1:769, or 0.13%, or 3 sigma. Odds of one in a thousand are probably safe.

3 PERT presumes that this approximates a beta distribution. This makes sense since the minimum duration for a task is often much more certain than the maximum. [McConnell2006] Fig. 1-3.

4 If you don’t know what a standard deviation is, you should find a good summary of probability and statistics. The concept is not hard to understand, and it will serve you very well.

5[Boehm81]

6[Grenning2002]

7http://store.mountaingoatsoftware.com/products/planning-poker-cards

8http://en.wikipedia.org/wiki/Law_of_large_numbers

Chapter 12
1 A reference to the last word in the movie Soylent Green.

Chapter 13
1[RCM2003] pp. 20–22; [COHN2006] Look in the index for many excellent references to velocity.

Chapter 14
1 There are many web sites that offer simulators of this stimulating little computer.

2 I still have this manual. It holds a place of honor on one of my bookshelves.

Appendix A
1 These tapes could only be moved in one direction. So when there was a read error, there was no way for the tape drive to back up and read again. You had to stop what you were doing, send the tape back to the load point, and then start again. This happened two or three times per day. Write errors were also very common, and the drive had no way to detect them. So we always wrote the tapes in pairs and then checked the pairs when we were done. If one of the tapes was bad we immediately made a copy. If both were bad, which was very infrequent, we started the whole operation over. That was what life was like in the ’70s.

2http://en.wikipedia.org/wiki/ASR-33_Teletype

3 Rubout characters were very useful for editing paper tapes. By convention, rubout characters were ignored. Their code, 0×FF, meant that every hole on that row of the tape was punched. This meant that any character could be converted to a rubout by overpunching it. Therefore, if you made a mistake while typing your program you could backspace the punch and hit rubout, then continue typing.

cover.jpeg
Clean Code eBook
AHandbookoYAglleSoflware(m(!smansh o S

A Code of Conduct for rofeis

Programmers

1.1 ROBERT C. MAI!'I'IN
CLEAN CODE COLLECTION

images/00009.jpg
1 package org. jeres.date;
H
3 iaport Java.text Dateformatsysbals;

5 public enum wonth (
& oaoy(1), PESRDRY(2), WRCK(3),

7 A,), s,

8 e, awwstls), ssermmERg),

5 CCTosER(10) NOVEESR (i), DeceimER (12) |

10 private static DateForatSyabols dateFornatSyabols = new DateFormatSymbols
11 private static firal inc() LAST_DAY 08 JONTH =

170, 3L 28, 3L, 3, 31, 30, 31, 3, 30, 3L, 30, 30

1 private fat tndex;
16 Menthiine index) (
71 chis.index = index
o

20 public static onth fronlnc(iat sonthiodex) (

21 for (Month n ; Nonth.valuea)) (
2 if (a.index == monthiodex)

2 return o

F

35 thros new TllegalArgunentExceprion| tnvalid month index * + monthindex);
%)

28 public int lasthay() (
20t AT WYl

3 public int qurter() {
1 retum + (index- 1) /3
u)

3% public sering ostrisg() {
37 vecum datefomatsysbols.getiencha) (index - 117
E

40 public Sering costortseringl) (
41 return dateformatsymbols. getShorthonths() [index - 1
a)

4 public static onth parse(String s) {
& Vo xs.crinl);
4 for (donth n + wenth.values())

@it (amatchesls))
® roturn a;

@

0 wy(

51 retun froalut(Integer.parselnt (s)
2

)
5 cateh (rberrorsatEuception ¢) ()

St thros new TllegalArgumentixcepeionImvalid month * + s);
5)

57 private boolesn matches(steing 5] (
3 rewum s.equalsigrorecass(toString()) ||
H sl equlsignoreCasa tosbortstring)) ;
@)

@ public int tota() {
8 rerum index;

&)

images/00008.jpg
THRC) T

images/00011.jpg
uuuuuu

images/00010.jpg

images/00013.jpg

images/00012.jpg

images/00152.jpg
a8t
@
&
&
@
@
F
7
7
n
7
%
s
7%
n
%
i
0
a
@
&
o
i
o

e e e R s Y
)

public vold testieskdayCodeTostring|) throws Bxception [
‘assertiquals (“Sunday®, weeldayCodeToString (SINDAY) |
‘assertiquals "Honday , weskdayCodsToString(VOUDAY))
assextBquals *Tuesday" , veekdayCodeToString (TUESDRY)
‘assertEquals "Hsdnesday, veekdayCodeToSt g (VEDNESORY))
assertEquals *Trursday*, veskayCodeToString THURSDAY))
assertiquals|*Friday, veekiayCodeToString (FRIDAY))
assertaguals (*Saturday”, weekiayCodeTostring SKTURDAY))

)

public void tastIavalidhonthoodel) throws Beception {
for int
assertteua({avalidtonttose(£))
assertFalse isValiavonthCode(0));
assertFalse isvalidionthCode(13)]
l

sublic void testhontifoguirter() throws Beception (
assertEquals (1, sonthCodeToguarter (JAVGARY))
assextEquals 1, onchCodeToguarter (FEBRUARY]
assertiquals(l, monthCodeToQuarter DARCH) |
assertiquals (2, sonthCodeToQuarter (APRIL) |
assertEguals (2, monchCodeToguarter (Y]
assertBquals (2, sonthCodeTopuarter (JUNE) | ;
assertBguals (3, sonchCodeToguarter (JULY)) :
assertaquals (3, monthCodeToguarter (XSUST)
assertaquals (3, sonthCodeToguarter (SEPTEMBER))
assertaquals (4, sontiCodeToguarter (0CTOSER) |
assertBquals 4, sonthCodeTopuarter (NVEYBER)
assertiquals|é, sonthCodeToQuarter (DECRSER)) ;

wy

‘monthoodeToguarter(-1];

£ail(*Tavalid onth Code should throw exception"
) cateh (Illegalarquaentixception o (
i

)

pblic void testianthCodetostringl) throws Bxception (
assertEquals | “Jamiary", monthCodeToString (FAYCARY) | ;
assextiquals *February’, monthCodeToString (FESRIARY))
assertBquals “March', ponthCodeTostring (ARCH)
‘assertiquals *April, monthCodeTostring APRIL] ;
assextBquals | "ay", RonthCodeToString (AY));
assextiquals (*June, nonthCodeToString |
assextaquals(*July", nonthCodeToString (JULY)
assextBquals *hugust*, aonthCodeToString AUGUST)
‘assextiquals{(~Septenber, nonthCofeTostring (SEPTRMEER) | ;
assertEquals “October, ponthCodeToString(OCTOBER)) ;
assertBquals “Noveaber, sonthCodeToString (NOVEER))
assextequals | “Deceaber, BonthCodeTostring (DECEEER) |

assertBquals(*Jen*, monthCodeToString TRWARY, true)):
‘assercEquals (“Feb*, ponchCodeTostring (FESRIARY, true));
assertBquals "ar* monthCodeToString MARCE, truel |
assertBquals *Apr*, RonchCodeToScring AFRIL, true) | ;
assertBquals | "May", monthCodeToString (Y, true)
assextBquals (*Jun’ | pontiKodaTostring (JUNE, true)
assertBquals(*Jul*, monthCodeToString(JULY, true)):

images/00151.jpg

images/00154.jpg
W7o

45%

40%

35%

30%

25%

20%

15%

10%
5% —

0%

10

ET}

images/00153.jpg
A8 0 NEREHD NURNGIL SR SRLIESANG SE R e wan R
16 public static final ine FIRST_VEEK.IN MONTH
160

165 /" A useful constant for referring to the second week in a month. */
166 public static final it SECOND WESK_IIMONTH

16

168/ A useful constant for referring to the third veek in & nonth,
18 public static final int THIRD_VEEK_IN MONTH =
10

I /** A useful constant for referring to the fourth wesk in a month. ¥/
1 public static final int FOURTH_WEEK_IN_YOVTH = &;

m

T/ A useful constant for referxing to the last week in a monch. */
175 public static final int LAST_VEER_DLMONTH

76

1 e yssful range constant. ¥/

18 public static final int THCLUDENONE =
m

180/ Useful range constant.

181 public static final int THCLUDE_PIRST
18

183/ Useful range constat.

188 public static final int TNCLUDESECOND = 2;
155

18 [+ Useful range constant, */

187 public static final int THCLUDE_BOH = 3;

13
e

190 ¢ Useful constant for specifying a day of the veek relative to 8 fixed
91 date.

m oy

193 public static fimal int PRECEING
19

s e
19+ Useful constant for specifying a day of the vesk relative 0 a fixed
197t dane

)

199 public static final int NEAREST = 0;

0

W

m Useful canstant for specifying a day of the week relative to & fixed
e,

w

25 public static final int FOLLONING
28

W1 /e A description for the date
28 privae Sering description
0

a0
a1

m oy

23 protacted Serialnate) (

a8]

218

PO

271+ Returms ccodestruec/code> i the supplied integer code represents 3
Hp el dact ek and <o falec/code ctbrvise,

as v

20+ aparan code the cods being checked for validity.

ar v

m Greturn <codestruec/code> if the supplied integer cods represents &
;. by siud bt o et g e

'

Default constructor.

images/00148.jpg
<
01
102
103
04
05
108
0
108
109
110
m
m
1
i)
15
1
m
118
19
m
11
m
123
12
125
126
11
128
123
130
13
m
1
1
135
3%
m
bl
ity
10
10
102
143
144
145
146
w
1]
199
150
181
152
15
156
155
156
157
158
15
150
161

O B N C. S USCIEIRE: SNy
public static final int SERIAL UPPER_0UND

/4

558455

7+ The lowsst year value sugported by this date forsat.
public static final int MINTIEM_YEAR_SUPRCRIED = 1900;

[+ The highest year value supported by this date format. +/
public static final int MAXDSN YEAR SUPPORIED = 9999;

/4 Useful constant. for Nonday. Equivalent to java.util.Calendar MOVDAY. */
public static £inal int MONDAY = Calendar JONOAY;

P
* tseful constant for Tuesday. Buivalent to java.util.Calendar. TUBSDAY.
o

public static final int TUESDAY = Calendar. TUSDAY;

i

Useful constant for Wednesday. Equivalent to
Java.uei]. Calendar WEDNESDAY.

+
public static final int WEDNESDAY = Calendar EDNESIAY;
1o
* seful constant for Thrusday. Bquivalent to java.util.Calendar. THURSDRY.
*
sublic static final int THIRSIAY = Calendar. THURSORY:

/7 seful constant. for Friday. Equivalent to java.util.Calendar FRIDAY. */
pablic static final int FRIDAY = Calendar FRIDNY;

.
+ Useful constant for Saturday. Equivalent to java.util.Calendar SKTURAY.
0l

sublic static final int SATCRIAY = Calendar. SATUROAY:

/% setul constant. for Sunday. Equivalent to java.utilCalendar SNDAY. */
public static final int SUNOAY = Calendar. SONDAY;

72+ The punber of days in each month in non leap years. */
static final inc{) LAST_DAY_OF JONTH.
10, 31, 26, 31, 30,31, 30, 31, 31, 30, 31, 30, Wk

/4 The munber of days in & (non-lesp) year up to the end of sach menth. ¢/
static tinal int[) AGGREGATE_DAYS_T0_END_OF MONTH
(0,31, 59, %0, 120, 151, 181, 202, 243, 273, 304, 34, 365);

[+ The rusber of days in a year up to the end of the preceding menth. */
static tinal inc{) AGGREGATE_DAYS_TO_END OF_PRECEDING MONTH =
10,0, 31, 9, 90, 120, 151, 181, 212, 263, 273, 304, 3%, 3650

/+* The musber of days in a leap year up to the end of each onch, */
static final inc{] LEA_YEAR XGGREGATE_DAYS,TO_END_OF WONTH =
(0,31, 60, 91, 121, 152, 182, 213, 244, 204, 305, 335, 366);

oo
* The musber of days in a leap year up to the end of the preceding nonth.
“

static tinal int(]
LEAS_YEAR_ACGREGATE_DAYS_10_EXD. OF_PRECEDING JONTH =
T, 0; 31, 60, 51, 121, 152, 12, 213, 284, 2

305, 335, 36);

images/00150.jpg

images/00149.jpg
=
¢
w
s
19
10
1
m
3
1
1
i
m
i)
o
w0
1w
1@
10
0
s
b
167

i
13
130
151
e
5
et
15
156
13
188
15
180
16
@
16
16
165
186
]
158
16
m
m
m
m
m
s
6
m
e
o
1
o
w
i
)
185
18
w0
18
183

oo soorat B M amiciersidndiripen § o Biuec L8
ertiquals (*Sep", monthCodetostring (SEPTRAER, tru
etiquals(0ct", BonthCodeToString (OCTOBER, trus))
assertiquals Yov", nentiCodeTostring NOVEVBER, true));
StsertEqile(‘Dact, nonthCodeTostring DECRNEER, tris)))

oy (
‘onthCodeTstring|-1) 1
£ail{*Tavalid month code should throw exception*);
| el (tllemlisgmenciestion o (

i
bl void testStringToNonthCodel) throws Bxception

‘assertiquals TANARY,stringTolinthCode(1))
assertEquals [FESKUNGY, scringTokanthCods (20|

‘assertiquals (T, stringTotonthCode(
assertiquals (LY strirgTotenthCode(1] |
ertEquals (AUGUST, scringToonchCods 6");
‘assertEquals (SEPTEEER, stringToliathiodel 3|
‘assertEquals (OCTOBER, sixingTo¥ontiCode (10°) |
‘assertEquals (NOURMBES, stringTooathcode(*11*] ¢
‘assertiquals (DECEHBER,stringTotantiCode (12 |

Iftod assertiquals|-1, stringtoterciCode(*0°));
11 assertiquals|-1, stringTobonchCodel 13°])

assertEquals(-1,seringTotonthCode Hello")

for (int n = 1; m <= 12; mo) (
assertiguls(n, stringTolonthCods monthCodeTostzing(n, falsel));
asserciguala(n, stringroonthCode monthCadeToScring(s, cruel]);

11 assertiquals(y, stringTotonchcode(
11 assertiquals 2, strisgtotontacode
U1 assertaquals(3, strizgTononthcode
U1 assersigalsld,stringiotonthcode
71 ssersEquals (5, strisgTotonthCoda(
71 assertiguals (6, stringTotontaCode(jun'))
U/ assartiguale(?,strisgrotionchCoda *Jul))1
U1 asserciguals |8, strizgtolonchcode("aug*))
U1 assertequals(y,strisgotenchCods(-sept) |
71 assertiquals 10, scringtotontiCods| oct |
U1 asserEquals(i), stringrotonthCode! nov']
/1 assexcaguals 12, stringtatonthcodel"dec*)

71 assersiguals (L, strisgTolonthCode(*3AN"))
U1 assertEquals (2, stringrotonchcode(“FEB"))
71 assertiquals(3,strimgTotonthCodel MAR') |
71 assercEquals 4, strimgTotonsiCode "ARR")
71 assertiguals(s,strimgmotontaCodel A" |
U1 assertEguals (6, strisgToNontiCodal -TN))

U1 assercEguale(7,stringTolonthCode("J0L) |
i i

i

i

U assertEquale 11, strimgTotonshCode ROV 1

70 assertiquals 12, scringtotonchCode (08¢ 1
m

images/00156.jpg

images/00155.jpg

images/00002.jpg
i
2
@
I
5
o
o
a
®
5
a
2
5
54
35

general purpose class library for the Jwa(ta] platfora

() Copyright 2000-2005, by Object. Refinery Liited and Contributors.

package org. jires.date;
ixport. static org. jfres.date. Youth, FEBRUARY;
import. java.utilir;

'
Represents a date using an integer, in a sinilar fashion to the
inplenentation in Microsoft Excel. The range of dates supported is
1-7a0-1900 to 31-Dec-3999.

@ .
B avace that there is a deliberate bug in Bxcel o

. t recognises the year
* 1900 a5 8 leap year when in fact it is ot a leap year. You can find more
+ inforsation on the Microsoft vebsite in article QIELIT0:

@l

* hetp://support nicrosoft. con/ support/kb/art icles/QIEL/3/10.asp

s

* Excel uses the convention that 1-Jan-1900

* convention 1-Jan-1900 = 2.

* The result is that the day mnber in this class will be different to the
+ Bxcel figure for Jamary and February 1900. . but than Bxcel adds in an extra
* day (25-%eb-1900 which does not actually exist!) and from that point forvard
* the day nunbers will match,

* Sauthor David Gilbert
*
Bublic class SoreadsheetDate extends Daybate |
Bblic static firal int EARLEST DATE ORDIWL = 2; // 1/1/1900
public static firal int LATEST_DATE ORDINAL = 2958463, // 12/31/99%9
public static {iral inc MINTHUR YEAR_SUPPORTED = 1300;
Bublic static firal int MAXTMM_YRAR_SUPPORTED = 9999;
static final int[] AGGREGATE_DAYS,TO_END_OF PRECEDING MONT =
19, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 308, 334, 36s};
static final int[] LEAP_VEAR_AGGRECATE_DAYS_TO_END_OF_PRECEDING MONTH =

10,0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366);

This class uses the

private int ordiralbay;
private iat day;

Honth month;
private int year;

public SpreadsheecDate(int day, Nonth month, int year) {
4f lyear < MINIMOM YEAR SUPPORTED || year > WAXDMUM_YEAR_SUPPCRTED]
throw new TilegalargumentException(
e yesr: sxpoent st be fn rage -+
MINIVUN_YERR_SUPRORTED + * to * + MAKTWIN_YEAR_ SUPRORTED +
§£ (day < 1 || day > DateDtil. lastDayofonth(Gonth, year))
throw new TllegalhrquaentException|Iivalid ‘day arqusent.];

images/00001.jpg

images/00004.jpg

images/00003.jpg

images/00006.jpg
Ty A

images/00005.jpg

images/00007.jpg

images/00141.jpg
Gl
nm
it}
3
3
36
m
8
318
320
21
32)

Serialdate d3 = Serialbate.addonths(2, dll;
rtiquals il, a3.getDaydfonth());

ctequals(], d3.getonth());

assertequals (2006, d3.gatYYYY()) 1

Serialbate aé = Serialbate.addonths (1, Serialbate.addonths(l,
assertequals (30, dt.gecDayofonth(]);

sertequals(], dd.getkonth()) ;
assertequals (2004, d8.gatYIVY())

)

images/00140.jpg

images/00143.jpg

images/00142.jpg
39+ 11-0ct-2001 : Re-organised the class and noved it to new package

W cea.jrefinery.date (0G);

41 * 05-Nou-2001 ; Aed a getDescription(] method, and elinimated NotableDare

a - class (1)

43+ 12-Nov-2001 : IBD requires setDescription) method, nov that NotableDate

“ . lass is gons (06); Changed getpreviousDayofieski(|,

& 7S ot} SRR 5 et
’ s ()7

47+ 05-Dec-2001 : Fixed bug in Spreadshestdate class (0G];
48 29:May-2002 ¢ Noved the nonch constants into a separate interface

® {honthConstants) (]

50 * 27-ug-2002 : Fixed bug in addonths) method, thanks to N227levka Petr ()7
51+ D03-0ct-2002 : Fixed ervors raported by Checkstyle (DG

S+ 13-Mar-2003 : Implenented Serializable (D5);

53+ 29-May-2003 : Fixed bug in addMonths sethod (36)

58 * D4-Sep-2003 : Implemented Comparable, Updated the isnfange Javadocs ()
557 0502008 ¢ Pixed g in saYasa(] aetied (LBGEED) (00);

s v

E

59 package org. jtree.cate;

@

61 isport java.io.Serializable;
62 isport. java.tex. DatePormatSymbols
§3 ioport Java,cex. simpleDaterommat;
64 ioport Java.util.Calendar;

65 ioport Java,ucil Gregoriancalendc;

I
6 1
68+ an abstract class chat defines our requirements for manipulating dates,
§ 7 vishout tylog o » parcicular Splemensacion.
@
71 Requiresent 1 ; maich at least what xcel does for dates;
72 Requirenent 2 : class is imutabls
5@
78+ ¥y not just use java.utilDate? We will, when ic makes sense. Ac times,
75 * java.util.Date can be *toot precise - it represents an instant in tise,
76 accurate o 1/1000¢h of a second (vith the date itself depending on the
77+ tine-zonel. Sametines ve just want to represent a particular day (e.g. 21
78+ Jamary 2015) without concerning ourselves about the tine of day, or the
701 tiae-iome, or emythin elss, Thit's what veve detined Serialoate or.
@
81 You can call getinstance() to get a concrete subclass of Serialbate,
8+ without worrying about the exact inplesentation.
@
8 * Gauthor David Gilbere
5
86 public abstract class SerialDats irglesents Comgarable,
o Serializable,
8 HonthConstants. {

90/ For serialization, ¢/
81 private static final long serialVersionlID = -28371604046723637L;:

0

83 /o Tate format sybols. */

5 public static fimal Datefomatsyabols

35 DATE_FORNAT_STNBOLS = new SirpleDateFornat (| getDatePormatsysbols ()
5%

57/t The serial musber for 1 Jansary 1900,

58 public static final int SERIAL LOHER EOUND
%

images/00139.jpg

images/00138.jpg
v
81
ol
251
25
25
256
1
23
2
%0
%1
b
26
2
265
26
27
28
25
m
a
m
m
m
m
2
m
m
bl
0

P
@
2
2
25
26
i
2
B
0
1
ol
29
F
28
236
w1
2
3
300
01
302
0
304
305
306
307
308
309
30

i
* The munber of lesp years £ron 1900 up-co-and-including 1999 is 2.
.

public void testieaptearcount1s()

assertiquals (Serialbate. leaplearcount (1999), 24);

)

o
* The munber of leap years fron 1300 up-to-and-including 2000 is 25.
.

oublic void testLesptearComt2000()

‘assertEquals(Serialbate. LeapYearCount (2000}, 25);

ialize an instance, restors it, aid check for egality.

public void testserialization() {

Serialoate i = Serialbate.createlnstance(1s, 4, 2000);
Serialdate & =)

oy (
Bytedcrayoutputstrann buffer = new BycehrrayoutputSiresn();
ObjectOutput out = new ObjectOutputstrean(butter]
out writadbiect (al):
out.close();

ObjectTrput in = new ObjectnputStreanl
new ByteArzayInputStrean(butfer. tobytehrray ()] 5
@ = (Serialbate) in.readObject];
in.closel]
)
catch (Bxception o {
‘Systea.ut.println(e. tostring(1);

i
assertoquls(dl, &);
)

i
A test for bug report 1096282 (now fixed).

-

ublic void test10962820) (
Seriaidate d = Serialtate.createlnstance(28, 2, 2004];
4 = Serialvate.addtearsil, d);
Serialoate expected = Serialbate.crestelnstance(28, 2, 2005);
assertTrue(d. Lson expacted))

Miscellaneous tests for the addonths() methed.
bl
public void testadamonts) (

Serialbate i = SerialDate.createlnstance(31, 5, 2004);

SerialDace & = SerialDate.addionths(l, d1);
assertBguals (30, &2.gocDayofonthil);
assertEquals (s, @.getionth()

assertEquals (2004, d2.getYYYY())

images/00029.jpg
clear() vold - Map

containsKey (Object key) boolean - Map
containsvalue (Object value) boolean - Map
entrySet () Set - Map

equals (Object o) boolean - Map

get (Object key) Object - Map

getClass() Class<? extends Object> - Object
hashCode() int - Map

isEmpty () boolean - Map

keySet() Set - Map

notify() void - Object

notifyAll() void - Object

put (Object key, Object value) Object - Map
putAll(Map t) void - Map

remove (Object key) Object - Map

size() int - Map

toString() String - Object

values () Collection - Map

wait() void - Object

wait(long timeout) void - Object
wait(long timeout, int nanos) void - Object

images/00028.jpg
Implemented fixture c!

Refactored, 50 that MethodExecutionResult keeps

Fixture Chaining with instances stored in Siim varia

Merge remote branch upstream/master'

housekeeping

fixed bug which included TearDown in SuiteSetUp ¢

housekeeping

Merge branch 'master of hitps:/github.com/Marku

Merge branch 'master of github.com:MarkusGaertr
Merge branch 'master'of http/github.com/unclel

fixed a bug which Johannes Link mentioned f

——_Merge branch 'master of http:/github.comi
Merge branch ‘master*of http//github.cor
Merge branch 'master'of hitpi/github.cor
removed error warning about duplicated
housekeeping
6795427; Line breaks pass through in un
Tracker: 5261157. Donit count fixture in

housekeeping

make methods in MethodExecutor protecte

fix order of precompiled scenario libraries

add beginTable and endTable calls to Decisior

Precompile Scenarios at and above the suite lev

optimized imports

merge

Show test and suite run times in U

Remove stalic BaseFomatter.testTime

housekeeping

Merge branch ‘master of htip:/github.convclare/ftr

‘Added Help widget 50 the *help text" that appears i

Remote_debug should now work for more languag

Merge branch 'master of hitp:/github.com/Markus(

added missing properties files

Adapted Payroll example test as shown by Gojko o

housekeeping

images/00031.jpg
" naEnyyrms et i

w9
@

i

@ Calculate the day, month and year fron the serial mmber.
4 2

U1 private void caleoaponthesc() (

m

ws 1/ get the year fron the serial date

0 final int days = this. serial - SERIAL_LONER_BOUND;
a1 1/ overestinated because we ignored leap days

2 final int overestinatedryyY = 1900 + (days / 365);
453 £inal int leaps = SerialDate. leaplearcount (overestinated¥yYY);
e £inal int noniespdays = days - leaps;

e 1/ underestinated because we oversstinated years
56 int underestinatedfIYY = 1900 + (nonleapdaye / 365);
e

el i (underestinatedryy == overestimatedryyy) {

458 this.year = underestinatedryYY;

a0)

61

il

e

a6 underestinatedtYYY = underestimatedYYYY + 1;
a5 calcSerial(l, 1, underestinatedtyry);
a6

@

a8)

a8

a caleseriallt, 1, this.year)

1

o iat1] GaysTomnadfprecedingtonth

a = ACGREGATE_DAYS_10_BND_OF_PRECEDING_JONTH;

o

s i (isteapear this.year))

% ‘@aysToEna0fPrecedinghonth

il "LEA?_YEAR_AGGREGATE_DAYS_T0_END_0F_BRECEDING HOVTH;
a 3

a9

a0 1/ get: the month froa the serial date

81 inms 1

82 int sss = 582 + daysTomndotPrecedingonth(mm] -

a8 while (sss < this.serial) {

8 mrme

a5 585 = 552 + daysTondoferecedinghonth(m] -

ase)

@ Shis.nonth = m -

a8

a9 17 vhats left is d(s1);

490 this.day = this.serial - ss2

o1 - daysTofndoterecedingionththis.month) + 1;
92

o)

el

435)

images/00030.jpg

images/00033.jpg
628

14289, 16373, 16285
16273

63 y
G4 56,
Gs . 16-291,
G6

rpreeenss 10-270, 16275
+16-279,16-285.
16-285.,

16-295.
16-288.

6276,
16-274,

6274,

6-291

16-296,
6-284, 16289, 16,

6288,

9, 17-292
17-292
17-293

17295
17-296
17-296

" 16294, 16:296, 17-299

16281,

16-283,
— - 16-283,
16-283, 16-285, 16286,
5-86, 15264, 16-276,
15264, 16-284, 16288,
16-286, 16287, 16288,

B 5 16-286.
" 16-288.

16-287.

16-284,
16-292,
16-295.
16-288,
16-292.

17-300
17-301
17-302
17-302
17-302
17-303
17-303
17-304

images/00145.jpg

images/00032.jpg
Communication
Controller

interface»
Transmitter

[T—

+ wansmilirequency, stream)

Fake
Trasmitter

Transmitter
Adapter

dutures
Teansmitter API

images/00144.jpg
a free general purpose class Library for the Java(tal platforn

(€) Copyright 2000-2005, by Object Refinery Linited and Contributors.

Sroject Info: htp://ww.ifree.org/jeomon) index. htal

This Library is free software; you can redistribute ft and/or modify it

10+ under the terns of the QW Lesser General Rublic Licanse as published by
11+ the Free Software Foundation; either version 2.1 of the License, or

12+ (at your option) any later version.

.

1¢ * This library is distributed in the hope that it will be useful, but

I5 * WITHOUT ANY VARRANIY, without even the inplied warranty of NERCHAVIABILITY
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the G Lesser General Public
17+ License for more details.

F

19 * You should have received a copy of the G Lesser General Public

20+ License along with this Library; if not, write to the Free Softuare
21+ Foundation, Inc., 51 Pranklin Street, Fifth Floor, Boston, WA 02110-1301,
2 o

F

24+ [3ava is a tradesark or registersd tradenark of Sun Microsystems, Tnc.
25+ in the United States and other countries.)

%+

7 . =

28+ wonchConstants. java

g 2

30+ () Copyright 2002, 2003, by Object Refinery Linited.

3.

32+ original Author: David Gilbert (for Object Refinery Linited);

35+ contributorle): -

N

35+ 510 WonthConstants. Java,v 1.4 2005/11/16 15:58:40 tagua B §

% -

37+ changes

® .

39+ 29-4ay-200 : Version 1 (code moved fron Serialdate class) (30);

W

a ey

a

43 paciage org. jiree. date;

“

5

46 '+ Useful constants for nonths. Note that these are YOI eguivalent to the
47+ constants defined by java.util.Calendar (vhere JAVUARY=0 and DECEYBEReLl).
PR

49 Used by the SerialDate and RegularTinereriod classes.

5 ¢

51+ Gauchor David Gilbert

52y

53 public interface onthConstants

st

55 /e Constant for Jamsary. */

5 public static final fnc SNWARY = 1;

5

S8 /o constant for February. */
59 public static final int FEBRUARY = 2;
@

61 /** Constant for March. */

images/00035.jpg
7
ot

a g
Ty

&
v

images/00147.jpg
=
&
&
&
8
kil
El
&
2
71
n
7
n
s
7%
7
%
s
I
a
I
5
5
=
%
5
Ed
B
0
91}

JRRLLY SR R T NS SN

Constan. for April,
btie static Finas Iat APRIL = 45

/7 Constant for Yay, */
public static final int WAY =

Constant for June. */
Pt static Finat fhe S0 = 1

/¢ constant for uly. */
public static final int JULX = 7;

/2 Constant for hugust. ¥/
public static final int AUGUST = 8;

/% Constant for Septesber. */
public static final int SEPTEGER

/% Constant for October. */
public static final int OCTOBER = 10;

77 constant for Novenber, */
public static final int NOVEMBER

/7 Constant for Decenber. */
public static final int DECEMBER = 12

images/00034.jpg

images/00146.jpg

images/00026.jpg

images/00025.jpg

images/00027.jpg

images/00130.jpg

images/00129.jpg
general purpose class Library for the Java(a) platfors

(c) Copyeight 000-2005, by Gbject Refinery Linited and Contribators.

Project Info: htep:/ /e, jExee.org/ comon/index.htal

This library is fres software; you can redistribute it and/or medify it
undex the terms of the GWU Lesser General Public Licese as published by
the Free Softuare Foundation; either version 2.1 of the Liceuse, of

st your option) sny later version.

This library s distributed in the hope chat it will be useful, but
WITHOU? ANY WARRANTY; without even the isplied warranty of NERCHRVTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the G Lesser General Aublic
License for nore details.

You should have received a copy of the GYU Lesser General Public
License along with this Jibrary; it not, ¥rite to the Free Softwa
Foudation, inc., 51 Franklin Street, Fifth Floor, Boston, MA 02
ush.

101,

{Java i a tradenark o registered trademark of Sun icrosystens, Inc.
in'the United States and other countries.]

SerialDaterests. java

(c] Copyright 2001-2005, by Object Refinery Linited.

Original Author: David Gilbert (for Object Refinery Linited);
Contributor(s): =

$1: SerialbateTests.java,v 1.6 2005/11/16 15:58:40 taqua 5xp §

Changes
15-%ov-2001 : Version 1 (56);
25-0un-2002 + Removed umnecessary import (D31
+ 24-0ct-200 : Fixed exrors reported by Checkstyle (26);
* 13-%ar-2003 : Added serialization test (3G);
* 05-Jan-2005 : Aded test for bug report 1096282 (36);
s
i

7 pacage o trwn.cate. ity
49 ioport java. fo.BytehrrayIngutstrean;
50 isport java.io.ByteArrayOutputstrean;
51 iaport java. o.Objectlnput;

52 imgart Java.io.Object InputStrean:

53 isport. java,io.ObjectOutput;

3 it .o Ohjesouiprsin

56 isport. junic. Eramevork. Test;
57 ioport Junit. framevork. TestCase;
58 import Junit. frapework. TestSuite;
5

§0 import org.jiree.date MonthConstants;
61 import org.jfree.date. Serialdaty

a2

images/00132.jpg
Description

77125 | Make our two threads eligible to run.
7527 | Wait for both threads to finish before we check the results.
‘ 29 Record the actual final value.
3137 | Did our ending1d differ from what we expected? 1T so, return end the test—
we’ve proven tht the code is broken. If not,try again.
E TFwe got 10 here, our est was unable (o prove the production code was bro-

ken in a “reasonable” amount of time; our code has failed. Either the code
is not broken or we didn’t run enough iterations to get the failure condition
to oceur.

images/00131.jpg
68 '+ Sone Junit tests for the (Blink Serialdate] class.
&
66 public class SerialDatsTests extends TestCase |
b
€/ Date representing Novenber 9. */
€ private Serialvate novor200L;
i
noo
n Creates a new test cas
b
7 paren name the nase.
s
76 public Serialbatelests(final String mase] (
n super nane)
B
7
0
8 Tt a tet auite for the Tt est rser,
8 et The st e
T
85 public static Test suite() (
% return new TestSuite(Serialbatefests. class)
7
8
A
50+ problem set up.
a v
52 protected void settpl) (
5 this.aovT200] = Serialate.createlnstance(s, onthConstants. NOVENSER, 2001);
%)
55
56
97+ 3 Nov 2001 plus two ponchs should be 9 Jan 2002.
F
99 public void testAMonthsToNova001() {
100 final SerialDate jan9Y2002 = Serialbate.addonths (2, this.novs200L);
100 final Serialbate answer = Serialbate.créatelnstances, 1, 2002);
102 assertEquals (ansver, 3an3Y200
03)
100
05
106 e test case for a reparted bog, s el
Ui
108 public void testAdMonthsTos0ct2003() {
109 £inal Seriaibate I = Serialbate.createlnstancels, MonthConstants.0CTOBER, 2003);
110 final Serialbate & = SerialDate, addonths (2, 411
m assertiquals (@2, Serialbate.createlnstancels, ¥onthConstants. DSCEVBER, 2003));
mo)
m
mooe
B A e cas for 0 repanted g, oou tixed.
‘o
17 public vold testhddMonthsToldan2003()
18 final Seriaibate &I = Serialbate.createlnstancel, MonthConstants. JRUARY, 2003);
113 final Serialbate &2 = SerialDate. addMonths (0, d1);
120 assertiquals (2, al);
o)
il
o
12¢ * Nonday preceding Friday 9 Noveaber 2001 should be 5 November.

images/00128.jpg
87
16
18
m
m
m
m
m
s
16
m
)
m
10
81
1
s}
18
185
186
il
158
189
190
91
12
s}
i
195
19
m
198
159
a0
201
202
201
204
25
206
0
208
208
1
a1
m

private void calcDayonthYear() {
int days = ordinalbay - EARLIESTDATE_ORDINAL
int overestinatedtear = INTVIM_YEAR_SUPRCRTED + days / 365;
int nonleapdays = days - DateUtil.leaprearCount (overestinatedvear);
int underestizatedYear = MINTMUN YEAR_SUZBORTED + nonleapiays / 365;

year = huntPorYearContaininglordinalbay, underestinatedvear);

int firstOrdinalOfYear = firstOrdinalofvear (year);

Bonth = huntForenthContaining{ordinalbay, EirstOrdinalofYesr);

Gay = ordinalbay - firstOrdinaloftear - daysBeforeThisonth(nonth. tolnt)} ;
)

private Nonth huntPorkonthContaining int andrdinal, int firstordinalofvear) (
int daysIntoThisYear = andrdinal - firstOrdinalofvear;

int aMonth = 1;
while (daysBeforeThiskorth(akonth] < daysTncoThistear]
aonthes;

return Honth. froalat (akonth - 1);
)

private int daysBeforeThiskonth{int aonth)
S (DateUtil, istenptear (year) |
return LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_YONTHakonth] - 1;
else
Teturn AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[akonth] - 1;
)

private int huntForfearContaininglint anOrdinalbay, int startinglear]
int aVear = startinglear;
while (firstOrdinalOftear (a¥ear) <= andrdinalday)
atearss

return atear - 1;

)

private int firstOrdinalofvesr (int year) {
‘eturn calcOrdinal (1, Nonth JAWARY, year|;
)

public static Daybate createlnstance(Date date) (
GregorianCalendar calendar = new GregorianCalendar();
calendar. setTinedate]
return new SpreadsheetDate calendar. get (Calendar .DATE),
Nonth. roalnt (calendar.get (Calendar MONTH) + 1),
calendar.get (Calendar. YEAR]

images/00018.jpg

images/00137.jpg
JConmon ; a free general purpose class library for the Java(ta) platforn

(€] Copyright 2000-2005, by Object Refinery Linited and Contributors.

Project Info: hetp://w.ifree. org/ common) index. hesl

This Library is free softare; you can redistribute it and/or modify it
under the tems of the GNU Lesser General Public License as published by
the Free Softuare Foundation; either version 2.1 of the License, or

(at your option) any later version.

This Library is distributed in the hoe that it will be useful, but
WITHOUT ANY WARRANTY; without even the inplied warranty of MERCHANTABILITY
ox FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, WA 02110-1301,
ush.

[Java is a trademark or registered tradenark of Sun Microsystens, Tnc
in the U

ited States and other countries.]

Serialbate. java

(€] Copyright 2001-2005, by Object Refinery Linited.

Original Author: David Gilbert (for Object Refinery Linited);
Contributor(s): =~

* You should have received a copy of the GNU Lesser General Public
* §14: Serialbate.java,v 1.7 2005/11/03 03:25:17 mungady B §

Changes (from 11-0ct-2001)

images/00020.jpg

images/00019.jpg
1 package org. jiree.date;

2
3 public enun WeekdayRange
& Ay, wmasEsr, NBXT

5)

images/00022.jpg

images/00134.jpg
.
sublic void testiondayPrecedingfridayov2001() {
Serialbate nondayBefore = SerialDate.getPreviousDayofiesk(
SerialDate. MOUDNY, this.nova¥2001
3

assertiqual (s, mondayBefore.getDayofonthl));

.

Nonday following Priday 9 Noveaber 2001 should be 12 Novenber.
+

public void testondayfolLowingPridayMNova001() (
‘SerialDate nondayhfter = SerialDate.getFol lovingDayOfifesk(
‘Serialbate. HONOAY, this.nov3¥2001
B
assertsquals (12, nondayfver. getDayofonthi]) ;
)

;
* Nonday nearest Friday 9 Novesber 2001 should be 12 Novenber.
“

public void testcndayearestFridayaNova0l()

Serialbate pondaylearest = SerialDate.getNearestDayofiesk
Serialbate. KNDAY, this.novaY2001
)

assertaquals (12, mondayliearest. getDayofonth()) ;

o
* The Yenday nearest. to 2204 Jamuary 1970 falls on the 19th.
.
public void testiondayearestz2zanisn0) (
Serialbate jan2211970 = SerialDate.createlnstance(22, ¥onthConstante. JANUARY, 1970);
SerialDate pondayllearest=SerialDate.getearestDay0fieek SerialDate, WADAY, 3an22¥1970):
assertiquals 15, sondaylearest.getDayofonthl) |
)

o
* Problen that the comversion of days to strings returns the right resuls. Actually, this
+ zesult depends on the Locale so this cest needs to be modified.

Bl
public void vestieskdayCodetostring!) {

final String test = SerialDate.veeldayCodeToString[SerialDate. SATURDAY);
assertBquals (‘Satorday”, test)

)

I
+ Test the conversion of a string to a weekday. Note that this test ¥ill fail if the
+ ofault locale doesn't use Saglish weekday nanes...devise a better test!

i
public void teststringtoKeskdayl) {

int weekday = Serialbate.stringTovieekdayCods “Hednesday")
‘assetEquals (SerialDate. VEDNESTAY, weekiay)

weekday = SerialDate.stringloieskdayCode * Hadnesday °
assertEquals (SerialDate. YEONESDAY, weekay):

weekday = SerialDate,stringToteskiaycode “Hed”
assertBquals(SerialDate.WEDNESDAY, weekday);

images/00021.jpg

images/00133.jpg
Integration test

Component

images/00024.jpg

images/00136.jpg
e
)

1

m

191+ Test the conversion of a string to a month. Yote that this test will fail if the
132+ defeult locale doesn't use English monch naes...devise a better test!
)

B pblic void tesSiringtotenticodel) {

15 int a = Serialbate.stringToNonthCodel “Jamary");

19 ‘assertBguals (HonthConstante, JUNOARY, 8]

18

159 8 = Serialbate.stringfotonthCodel Jamary.
b ‘assextBquals (VonthConstants. JAARY, 8]
01

0 & = Serialoate. stringtotonthCods("Jan')
e assertBquals (NonthConstants. JNARY,)3
FE

2

w e

3 e the comversicn of & sonth ol o 8 siog.
T

20 public void testontiCodetostringCode()

a1

a £inal String test = SerialDate.nonthCodeToString MorthConstants. DECBHBER) ;
a assetBquals(Decenber", test);

am

as

26

m

28+ 1900 is mot & lesp year.

aw v

20 ublic void testIsNotLeaptearldnD()

21 Salbate. isLeaptear (1900))

m

m

w

2 2000 s a leap year.

2

21 public veld testIsLeaplear2000() (

B esetraisaralsee. st te 0001}

28
230

w e

20+ he musber of leap years from 1900 up-to-and-including 1699 is 0.
@

2 public wid testlesptenrcountisnd() |

= ‘assextiquals Serialdace. JospYearcount (1839), 07

@)

ol

P

29 The musber of leap years from 1900 p-to-and-including 1903 s 0,
w v

1 public vold testlesplearcomtl®ni()

2w 03), 01

w)

W

ws

56 Vo s of deay yeses frm 1500 spmconandnctuding 104 £ 1,
W

e public veid restLesascaust 19040 {

B iR gl UG OIS

images/00023.jpg

images/00135.jpg

images/00015.jpg
InformiT is a brand of Pearson and the online presence
for the world's leading technology publishers. s your source
for reliable and qualified content and knowledge, providing

access 1o the top brands, authors, and contributors from
the tech community.

AAddisonWesley Cisco Press EXA/CRAM 1BM QUE' FIIENTST SAMS | Safari”

LearniT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opi
ions, advice, and tips? InformiT has the solution.

« Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

* Access FREE podcasts from experts at informit.com/podcasts

« Read the latest author articles and sample chapters at
informit.com/articles.

« Access thousands of books and videos in the Safari Books
Online digital library at safar.informit.com

* Gettips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook.
Twilter, YouTube, and more! Visit informit.com/socialconnect

NOGe

informiT.com .. oo —— =3

AAdfisnWesley CiscoPress Exwicmam BM OuE HISRTCC SAMS | Safari”

images/00014.jpg

images/00017.jpg

images/00016.jpg

images/00119.jpg
-
845
84
@
848
a3
850
£51
852
&5
85
655
65
657
55
£59
560
861
£
553
860
855
868
867
£
w6
80
1
0
il
o
65
b
m
i
63
580
el
652
£
651
65
635
&7
658
69
60
691
692
893
631
895
89
897
595
e
500
01
502
903
504
305

R Sy IR ELLIN I TN

P
+ Returns a description of the date.

+ return a description of the date.
2
public String getDescription() (
return this.description;
)

7
¢ Sets the description for the date.

* dparam description the nev description for the date.
0
public void setdescriptioni ¢inal String description) (
this.description = description;
)

e
+ Converts the date to a string.

* Gretum a string representation of the date.
0
public Sering tostring() (
retum getDayofionth() +

+ + Serialbate.sonthCodefostringlgeranth())
=+ geurrrr();

)

I
+ Revurns the year (assume a valid rasge of 1900 to 9999) .
* Greturn the year
*

public abstract int gerryYy();

e
* Returns the month (Jamary = 1, February = 2, arch = 3).

Greturn the month of the year.
0
public abstract int getkonth();

o
* Returms the dey of the month.

* Graturn the day of the nonth.
o
public abstract int getDayoRKenth();

fot
+ Returns the day of the vek.

. lnzm the day of the veek.
T ——
/

Returns the difference (in days) between this date and the specified

“other date.
Vs

images/00118.jpg

images/00121.jpg
e
07
308
09
50
it
512
b

s
a5
516
an
s
a9
2
e
2
525

a2t
s
25
2
2
2
rd
e
e
3
i
s
556
37
550

e
500

sa

sz
e
sa
sis
sis
s
348
a4
350
51
s
553
35t
555
358
357
a5
55
36
351
s
565
i

555
38
87
56
369

AR PCETN E
date.

B g Py g o Bl g o
+ aegative if it is before the ‘other

* dparan other the date being compared to

+ return the 4ifference between this and the other date.
.
public abstract int compare (Serialoace other);

* Retums true if this Serialbate represents the sase date 89 the
+ specified Serialdate.

Opacam other the date being comared to.

Bublic abstract boslean ison(serialoate other):

-
+ Returns true if this SerialDate represents an earlier date compared to
+ the specified Serialdate.

* gacan other The date being compared to.

tum <codortruec/code> if this SerialDate represents an earlier date
compared to the specified SerialDate.

o
public abstract boolean issefore(Serialbate other);

+ Gparan ocher the date bing coopared to.

+ retumm <codeptruscoode> if this SerialDate represents the sane date
as the specified Serialoat

Y

public abstract boolean isordrBefore(Serialiate other);

o

Returns true i this Serialoate represencs the same date as the
+ speciiod SerialData.

+ Gparan other the date being compared .

* return <codevtruec/code> SF this Serialdate raprasents the cane date
a5 the specified Serialoate.

Y

public abstract boolean {shtter (Serialoate other):

o
* Recurns true if this Serialbate represents the sase date as the
+ spacified Serialdat

* Gpacan other the date being compared to

Breturn <code>truec/code> f this SerialDate represents the sane date
a5 the specified SertalDate.

o
public abstract boolean {sCndrhiter Serialiate other);

images/00120.jpg
Thread 1
SO
& Y'
v

Resource 2 Resource 1
#
/e
o
b3 /&

Thread 27 <

images/00049.jpg
o o Aiinng gl s Bt B e 1R
37 " retumn (this serial == other.toserial(1);

318 1

bl

W

T T L L re———p—————
B eeitiee serisinen

W

S e oo the e heg compered o,

oo

D6+ orstum <codetrusciendes i this Sesialoace repraents an salier date
B Y e et Sriaioce.

&y

3 pubtic solasn ssbtons(cial Serisoase oher) (

B0 T s veial < other-soberial (11

B

m

oo

36 Vnesums crue i5 b Seciaioce sepresenss che sase ate s the
B3 Decities serleuse,

o

W * Gparan other the date being compared to.

nooe

35 ¥ aretum coototrecieode i chis serialbate represeats che suse date
et

wooy

32 piblic boles scsorseors(cisal Sexiaiace other) (

3 i (s serial <= othr.taberiat)}

Mo

s

Mo

307 recurne crue 1 this Saciadoace spressiss the sae date as the
b st et

i

3 ipeen cter e e beg comared o,

ot

L ortum cototrvecode i hie Srialite sipresecs the sane ate
) Pt e iy

50y

3 pablic boolen sontes(tima seriaiose aer) (

36 P ke serial > other toserial 117

.

4

=

e T —p—
Rt

oo

38 o ctber she te beig compared 1o,

i

i aturn coootruac/code 1 this Sarialbte epressat the s date a5
% et sariaioate.

W

S8 g beotes Secsonees(Fimt Seriaoacs o) (

s e T S G SR

370 1

it

moo

7V seturns ccommuruec/cote 31 this (61 srialonce) s vihin the
V4 apscities senge (ISLOSIR). o date oxder of 6 and 2 i ot
7 ierte.

b

T g o beudary dat for che rame.
EL R e it P Rorhsony i ARG

images/00048.jpg

images/00051.jpg

images/00127.jpg
Line

Description

)

Create a single instance of C1assii thThreadingProblen. NOLE, We must use
the final keyword because we use it below in an anonymous inner class.

Create an anonymous inner class that uses the single instance of
ClassiitNhreadingProbles

Run this code “enough” times to demonstrate that the code failed, but not
s0 much that the test “takes 100 long.™ This is a balancing act; we don't
want to wait too long to demonstrate failure. Picking this number is hard-
although later we'll see that we can greatly reduce this number.

) Remember the starting value, This test is trying to prove that the code in
ClassilithThreadingrosien is broken. If this test passes, it proved that the
code was broken. Ifthis test fails, the test was unable to prove that the code
is broken

20 ‘We expect the final value (0 be two more than the current value.

Create two threads, both of which use the object we created in lines 12-16,
‘This gives us the potential of two threads trying 1o use our single instance
of cla: and interfering with each other.

images/00050.jpg
RSN EORERS
3 sl leptescom 230}
B mmhi e
A

E

258 public void testiastoayOfouth() throws Exception (
e R T,
i "omomu s Tl
e e
Fri e e
Fri e o

20 sssertimalalit, lastDeyoionthlJUE, 1301)1;
i

aquals i, lastbayOfionthISULY, 1901));
assertquals (3L, lastheyOftionsh (AOGUST, 19011);
assertquals (30, lastDayoficnth SEeTEvERR, 1901}
assertiquals (3L, lastOayOfonth(OCTOSER, 1901)1;
assertiquals (30, lastDayOfionth (YOVRIEER, 1901}
assertiquals (3, lasthoyOfonth (DECBIGER, 1901));
ssertiquals (29, lastDeyOfionth (FESRUARY, 1904)

oublic void testhdays() throws Bxception (
Seriaidate nevtears = d(l, SKUARY, 1300
assertiquals(d(2, JNUARY, 1900), addDays (1, sevtears));
assertquals (dl3, FEBRIARY, 1900], aoddays (31, mewteats));
assertquals (A1, JANUARY, 1901), addDays (365, nevteacs)):
assertiquals (a3, DECRGER, 1904), saays(s * 365, nevtears));

private static Spreadshestoace d(inc day, int month, int year) (return new
pcedsieetoaie Gy, onc, year) i}

M public vold testhsMonths!) Chrows Exception (

233 asserthuals(d(l, FEBRARY, 1500), addonths(l, d(i, KARY, 1900)));
280 assertBgls(d(2d, FESRURRY, 1900], addwooths(i, d(31, JReMRY,

285 assertamels(a(zs, FESRUARY, 1900), acMontha(l, 8130, JAVIAR
236 assaxtaquals(d(29, FESROARY, 1900), addontha(1, 4129, JANIRY
287 assertouals(a(28, FESRUARY, 1900), addonths(3, d(28, JANARY, 1900)));
288 assertequlsid(27, FERRUARY, 1500), addMonths(l, d(27, TIARY, 1900)));
b

290 assertEuals(d(t0, T, 1900), addienthels, d(31, INUASY, 1900)));
291 assertBquals(a(30, JE, 1901), addonths(l, A(31, SAGARY, 19001)):
m

393 assertaquals(d(25, FESRGARY, 1900), addnche(ds, G131, JNWARY, 1900)));
250

3)

2%

297 public void testadiVesra() theows Bxception (

298 assertaguals(all, SAVARY, 1501), adffearsil, &l1, JNARY, 1900)));
299 assertiquals(d(2d, FEBRONRY, 1303), adiVearsil, d(29, FEBRUARY, 1900)]);
300 assertauals(a(2s, FEERGARY, 1905). addvearsi(l, a(28, FESRUARY, 1904))];
301 asserthalsl4(23, FESRUARY, 1900), addears(1, d(28, FESRNRY, 1303)));

0
304 public veid testGetpreviousDayofifeek() throws Evception |

305 assectEquls((2d, FEROARY, 2006), getPrevicusDayOfieek(FRIDAY, 41, MARCH, 2006))
306 asserthquals(d(Z2, FESRUARY, 2006), geterevicusbeyOfiiek (IEDNESIAY, G2, 1ARCH, 2006)));
0 4(29, FERUARY, 2000), GetPreviousDayOfeek (SRTAY, 413, WARCH, 2004))):
38 sssertaelsld(23, DECRAER, 2000), etPreviousbayOfiiek (NEDKESEAY, d(5, AARY, 2008)));
309

0wyt
31 getprevioustayotiesk(-L, (1, INTIARY, 2006));
312 fail(*invalid day of vesk code shauld throw exception'];

) ek Gllepigmeacgtion o (
Lo

images/00053.jpg
ReentrantLock | A lock that can be acquired in one method and released in another.
Semaphore ‘An implementation of the classic semaphore, a lock with a count.
Countbownlatch | A lock that waits for a number of events before releasing all

threads waiting on it This allows all threads to have a fair chance
of starting at about the same time.

images/00052.jpg
== ¢
36

S7 ublic void testGetPollovingay0fesk() throws Exception (

318 // assertBquals(d(1, JWARY, 2005),getPollovingDayofiesk (SATURIAY, (25, DECBWBER, 2004)));|
319 assertiqualsid(l, JAARY, 2005), getFollowinglayofieek (SATURDAY, (26, DECEMBER, 2004)));
30 assertigualsid(l, MARCH, 2004), getfollovingDeyoffieek(NEDNESOAY, d(28, FESRARY, 2004))):

21

m oy

33 geteollovisgbayofleski-1, d(3, JAVUARY, 2006))

324 fadl(*Invalid day of veek code should throw exception’];
35) cateh (Tllegalhrgumentixception ¢) (

)

o)

28

329 public void testGetNearestbayoieek|) throws Exception

330 assertiquals(G(l6, APRIL, 2006), GetearestDayOffeek (SADAY, 4(16, APRIL, 2006))):
31 asserthmals((16, AFRLL, 2006), getNearestDayOfieek(SIOAY, 417, APRLL, 20061));

1 asseriqulsidlle; 2006). gerearestDayOfiesk (SHDAY, d(16, APRIL, 20061))

3 assertaquals(d(ls, APRIL, 2006), getearestDayOPiesk (SIKDAY, 4113, ARRIL. 20061)):

I asseriqalaldlz; 2006). geckearestDayOfiesk SADAY, dI20, APRIL, 2006)):

335 assertiqualsid(2); ARRIL, 2006) getearestDayOffeek(SITAY, d(21; APRIL, 20061))

33 assertiquals(dl2); ARRIL, 20061, getNearestDayOfeek(SINDAY, 4(22, APRIL. 20061));

w1

3 ssertsquala(d(l7, APRIL, 2006), getNearestDayOfifesk(MNTAY, d[16, ABRIL, 2006)));

3 AgRL, 2006]));
B AFRIL, 2006)))
| NBRIL, APRIL, 20061));

assertaquals (17, ARRIL, AERIL, 2006)))1

assertEqals (d(24, APRIL, 2006), getisarestDayOfiesk(MONTAY 3eRIL, 2006)))1
assertBquals d(24, AFRIL, 2006), getNearestDsyOfiesk ONTAY APRIL, 2006)));

assertBquals (18, APRIL, 2006), gethearestDayDfesk(TUESDAY, d(16, APRIL, 2006)1:
assertEquals (4(18, APRIL, 2006), gethearestDayDf¥esk(TUESDAY, d[17, ABRIL, 2006]11:

assertEquals (4(18, AFRIL, 3006, gethearestDayOfieek(TUESDAY, 4(18, ARRIL, 2006))):
cesquals (4118, APRLL, 2006), 8119, ARTL, 2008)):

| AeiL, 2006), 4120, APRLL, 2006))):

| ABRIL, 2006), tDayOfiieek TUESOAY, 8121, APRLL, 2006))):
assetiquals (4(25, APRIL, 200€), gatheorestayOftsek(TUESEAY, di22, AFRIL, 2006]));

assestopals (4(19, APRIL, 2006), getiearestDayOfesk (WEDNESDAY, d(16, APRIL, 2006)));
assertBquals (2(19, APRIL, 2006, getiearestDayOfesk(WEDNESDRY, d(17, APRIL, 200€)1):
assectEquals (4(13, APRIL, 2006), gecNearestDayOfWeek(VELNESORY, d18, APRIL, 20061));
37 asserciquals(d(l3, APRIL, 2006), GetNearestDeyOfioek(VEDNESDAY, (13, AGRIL, 2006))1:
35 assertiquals(d(13] APRIL, 2006), getNearestDayOfeek (VEDNESCAY, 4(20, ABRIL, 2006])1;
39 assercapals (19, APRIL, 2006), getNearestDayOfiek (VENESOAY, d(21, APRIL, 200611}
360 asserciquals(dl1s; APRIL, 2006), GetearestDayofesk (VEDNESCAY, 3(23, ABRIL, 200€]));
361

362 /) assertquals(d(i3, APRIL, 2006), getiearestDayofifesk(THIRSOAY, d(16, APRIL, 2006))1;
360 /) assertBals(d(20, APRIL, 2006), getVearestDayOfifesk(THRSOAY, d(17, ABRIL, 2006))
364 /) assertgals(a(20] APRIL, 2006), getNearestDayfiook(THRSIAY, d[1f, APRIL 2006))
365/ aseertiquls(d(20, ARIL, 2006), getNearestDayOfeek|THIRSIAY, 4[13, APRIL, 2006)
36 sssercequls(d(a). ARRIL, 006), GetNeacestDayOfeek (TRURSOAY, A(20, APRIL, 2006))
367 asserciquals(d(20. ARIL, 2006), gecenrestDayOfoek(THURSOAY. di21. APRLL, 2006))
368 asserciqualsialal, APRIL, 2006), GetNearestDayOfieek(THURSDAY, d(22, APRIL, 2006))
i

30 // assertEguals(d(ld, AFRIL, 2006), getNesrestayOfiesk(FRIONY, d(16, AFRIL, 2006))1;
301 // assectquals(a(ld, AFRIL, 2006}, GetVearestDayOfiesk(FRIOAY, (17, APRIL, 2006))
3121/ assertgals(di2i, AFRIL, 2006), getNearestDayOfteek(FRIDKY, d(18, APRIL, 2006))
337/ assertquals(d(2l, APRIL, 2006), getNesrestbeyOfteek(FRICAY, (19, APRIL, 2006))):
/] assertiqualsia(2l, APRIL, 2006), getNearestDayOfieek(FRICAY, (20, APRIL, 2006))):
375 assertiquals(di2l, ARRIL, 2006), getNearestDayODieek(FRIDAY, (21, APRIL, 2006)1):
376 assertZquals(d(21, APRIL, 2006), getNearestDayOfWsek{FRIDAY, d(22, APRIL, 2006)

images/00055.jpg
£ree general purpose class library for the Java(tn) platfom

(6) Copyright 2000-2005, by Object Refinery Linited and Contributors.
Project Info: hetps//wwe.txee.org/jccamon index.henl

This Library is free software; you can redistribuce it and/ox modify it
umder the torms of the QI Lessar General Public License as publ

the Free Software Fousdation; either version 2.1 of the License
fat your option) any later version.

This Library s distributed in the hope that it will be useful, but
WITHOUT RNY WARRANTY; without sven the irplied vartanty of MERCRNTABILITY
o FITIESS FOR A PARTICULAR PURROSE, See. the GIU Lesser General Rublic
Gicense for nore decails.

You should have received a copy of the GNJ Lesser General Public
License along with this library; if tot, write to che Pree Softuare
Foundation, Tnc., 51 Franklin Street, Fifch Floor, Soston, Mo 02110-1301,

[3ava is a crademak or registered tradesark of Sun Microsystems, e
in the United States and other countries.|

java

{c) Copyright 2000-2003, by Object Retinery Linited and Contributors.

Original Author: David Gilbert (for Object Refinery Linited)
Contribucor(sls -

§16: RelaciveDayofveskRule. java,v 1.6 2005/11/16 15:58:40 tacua xp §
Changes (£xom 26-0ct-2001)

26-0ct-2001 : Changed package to con.frefinery. date.*;
03-0ct-2002 + Pixed errors reported by Checkstyle (561

44 pacage org.jtres.dater

i
i

47+ an snnual date rule that retune s date for sach yeor based on (8] &

48 * xeference rule; [b) a day of the wesk; and [c] & selection parameter

48+ |SerialDate, FECEDING, Serialbate. EAREST, SerfalDate, FOLLONING) .
5t

51+ For example, Good Fridey can be specified as *the Friday PRECEDING Baster
52+ cwnday.

5.

56+ Gauthor David Gilbert

B

56 public class RelativeDayofieskRule extends Anmaldatefule (
b

55 /it A roference to the ammal date rule on Which this rule i based.
55 private AmalDateRule subrale;

@
s

62+ The day of the veek (SerialDateWONDAY, SerialDate,TUSSIAY, and 5o cn).
8 v

6 private int dayOfeek;

images/00123.jpg

images/00054.jpg

images/00122.jpg
105

0
108
109
m
11
12
1
e
s
1
h
1
1
120
m
n
s
1
15
1
]
12
1
130
1
]
b
1t
13
1
1w
1
1
1
0
0
b
b
1
Y
1w
18
18
150
iy
5
i
5
15
156
1
15
i
i
i@
16
16
16
165
6

this.day = day
| cvcmliny celondtoa g aonk e

public SpreadsheetDate(int day, int month, int year) {
this(day, Nonth. froalnt (aonth), year):
i

public SpreadsheetDate(int serial)

i (serial < GIRLIZST_DATE_ORDINWL || serial > LATEST_DATE_ORDINAL)
throw new TllegalArgusentException

“SpreadshetDate: Serial mist be in range 2 to 2958465,

ordinalbay = serial;
| e ontitaal;

public iat gecordinalday()
‘recurn ordinalbay;
:

public int getvear() {
return year;
)

public Honth getkonth() {
‘return nonth;

)

public int getDayofionth() {
return day;
)

Protected Day getDeyOfeskPorordinalZero] [return Day., SNIURDAT;)

public boolean equals (object cbject) {
£ [object. instanceof Dyoaie))
retum false;

Daybate date = (ayDate) object;
eturn date.gecOrdinalbay() == gecordinalbay();
1

public int hastCode() {
o oy

public int comparefo(dbject other) (
return daysSincel (Daybace) other);

private int calcOrdinal(int day, onth manth, int year) (
int LeagDaysForvear = Dateltil. lesprearCount [year - 1);
int daystpToYear = (year - NININCM YEAR_SUPPORTED) * 365 + leapbaysfortear,
int daystUpTokonth = AGGREGATE_DAYS T0_END_02_PRECEDING_HOVTH (month. CoTat)1
£ (Dateutil. iaLeaptear(year) 44 nonch.colnt(} > FEBRUARY.toInc())

daystpoonthes;

int daysInonth = day - 1;
‘eturn daysUpToYear + daysUpTolonth + daysTnfonth + EARLIEST_DATE_ORDINAL;

images/00057.jpg
Bound Resources

Resources of a fixed size or number used in a concurrent environ-
ment. Examples include database connections and fixed-size read/
write buffers.

Mutual Exclusion

Only onc thread can access shared data or a shared resource at a
time.

Starvation

One thread or a group of threads is prohibited from proceeding
for an excessively long time or forever. For example, abways let-
ting fast-running threads through first could starve out longer run-
ning threads if there is no end to the fast-running threads.

Deadlock

wo or more threads waiting for cach other (o finish. Each thread
has a resource that the other thread requires and neither can finish
until it gets the other resouree.

Livelock

Threads in lockstep, each trying to do work but finding another
“in the way." Due to resonance, threads continue trying to
make progress but are unable to for an excessively long time—
or forever.

images/00056.jpg
{144
378
m
i
381
b
il
38
555
38
37
Y
389
390
391
39
3
9
395
39
]
39
3%
w0
01
w0
a0
04
405
06
07
a0
a0
a0
a
az
a
a
as
a6
w
a
a
a
et
ol
a2
a
s
a8
@
e
s
a0
o
a2
pist
a4
@
a6
a
s

/I assersquals(d(ls, ARRIL, 2006), getNearsstoeyOffesk (SATURIAY, d(16, APRLL, 2008))):
U/ assertsquals(a(15, ABRIL, 2006), getNearestDayOfieek(SKTURDRY, d(17, APRLL, 2006)1);
I/ sssertaquls(alls, ABRIL, 2006), getNearestDayofieek SKTURDAY, (18, APRIL, 2008))
U/ assertaquls(a(22, APRIL, 2006), gecNearestDeyofieek (SNTURDAY, (13, APRIL, 2006))
J/ assertiquls(a(22, APRIL, 2006), getNearestDayofieck (SKTURDAY, (20, APRIL, 2006))):
U1 assertaquls(a(2s, APRIL, 2006), getNearestDayofiesk (SATURDAY, d(21, APRIL, 2006))):
assertaguals (4(22, APRIL, 2006), getNearestDayOfifeck SKTVRLAY, 4(22, APRIL, 2006)));:

y (
‘gecearestayofieek (-1, (1, JNARY, 2008));
£ail(*Tnvalid day of week cods should throw exception’

) eatch (ILlegalhrgumentixception) (

3

)

‘ublic void testandofCurrentionth() throws Bxception (
Serialoate = Serialbate.createlnstance(2];
assextEquals (4(31, JARARY, 2006), .getEndOfCurrentionth(d(1, JAMRY, 2006)));
assertiquals|d[2, FEBAARY, 2006}, d.getEndOfCurrentlnth(a(1, FEBRUARY, 2006)));
assextBquals (d(31, MARCE, 2006), ,getEnedfCurrentionth(dll, KAECH, 20061))
assertEquals (4(30, APRIL, 2006), d.gstna0fCurrentonth(d(l, ARIL, 2006])
assectEquals (131, MAY, 2006], 4.gecEndOfCurrentonth(dl1, MY, 2006)));
assertEguals(d(30, JE, 2006], d.getEndofCurrentionth(d(l, JUNE, 2006)]);
assertiquals(d(31, JULY, 2006), d.getEbdDfCurrentionthld(l, JULY, 2006)));
assertqualsidi3i; NIUST, 2006), d.getEncdfCurrenthonth(d1, AKGUST, 2006)));
assertEquals (4(30, SEPTRUBSR, 2006), 4.oetErdOfCurrencionch(d(1, SETEMBER, 2006)));
assertBquals (31, OCTOBER, 2006), d.getEndOfCurrentionch A1, OCTOBER, 2006)));
assextaquals (4(30, BOVEMRER, 2006], G.getEndofCurrentionth(a(l, NOVEER, 2006)));
assertBguals (a(31, DICRGER, 2006), d.gecEndfCurrencionth(a(1, DECRMER, 2006)));
‘assertEquals|ai2s, SEERUARY, 2008), d.getEndOfCurrentiionthi(a(1, FERCARY, 2008)));

)

‘ublic void testiteekIntonthoString() throws Bxception [
assertBquals “First ", veekIn¥onthToString (FIRST. VEEK_TNIOVTH))
assertBquale | *Second" weeklnonthToStzrng | SECOND_VEEK_ TN MONTE)
‘assertEquals *Third" veekInonthToSt ing (THIRD WEEK_TI_MONTE) | :
assertBquals | *Fourth* weekInkonthToSt ing FOURTH_VEEK_TN MONTE .
assertBquals "Last weekinonthTostring (LAST_WERH_IN_JONTH) | ;

Iiods
I eskInonthTostring-1);
/I fail(*Invalid week code shauld throw exceptiont);
if) e (nlegalmmettucgtion o (
1
)

‘sublic void testhelativeTostring() throvs Bxception
assertBquals *Praceding", relativeTostring (FRECEDDG))
assextEquals “Nearest xelativeTostring (NEAREST))
assertEquals “Following*, relativeTostring (FOLLOWING))

st wy (
I relativemostring(-1000);
/1 fail(“Tavalid relacive code should throw exception’);
11} cateh (Tllegalhrgunentsxception o) (
no
l

‘Fublic void testCreateInstancerom0OINYYY () throws Sxception
Serialbate aate = createlnstance(1, JAWARY, 1900);
assertBquals(l,date, getDayoiNonth())

images/00124.jpg
ol
m
m
i
o
5
%
bl
%
o
380
.
i
a8
i
385
s
a7
s
38
90
31
m
39
91
5
9%
97
59
593
000
001
002
003
004
005
006
007
008
009
0
011
012
013
01
015
016
011
018
013
020
021
022
023
028
025
026
027
028
025
03
031
032
03
034)

| i
* Returas ccodestruec/code> Lt this (@Lisk SerialDate) is within the

+ apecitied range (IXCLUSIVE], The date order of &1 asd & is mot
inportast.

* Gparan &1 a boundary date for the range.
* paran @2 the other bowsdary date for the range.

curm A boslean.

public sbstract boolean isintange Serialoate a1, Serialdate d2);

e
+ Returas ccodestruec/code 4f this (dLisk Serialbate) is vithin the
* specitied range (caller specifies whether or not the end-pointe are
+ ircluded). The date order of dl amd & is not isportant.

* Gparan d1 a boundary date for the range.

* paran 62 _the other boundary date for the range.

+ Gparan nclude 4 code that controle whsther or fot the start and exd
Gates are included in the range.

+ retum & boclean.

o

Bublic abstract boolesn isinfange(Serialiate dl, Serialdate &,
int include)

oo

* Raturns th latest date that falls on the specifiod day—

+ Sreturm the lates
is szrom

date that falls on the specitied day-of-the-vesk and.
this date

Y

public Serialbate getprevicusteyofiisk final int targetdoi) {
return gecPreviusDayofiesk targetooN, this);

i

Returns the earliest date that falls on the spacified day-of-the-vesk
and ia AFTER this da

+ Gparan tazgetDOR & code for the target day-of-the-wesk,

* revun the sarliest date that falle on the specified day-of-the-vesk
. and i APTER chis date.
.
sublic Serialbate getfollowinaDeyoieek(fial int targetocH) (
zeturn getFollovizgbay0fieek targetDON, this):
i

%
+ Raturms the sasrest date that falle on the spacified day-of-the-wee

© Gacan tazgetDON & code for the target day-of-the-vaek.

* Grevurn the neszest data that falls on the specified day-of-the-vesk.
.
public SerialDate getNaarestDayOtieekifinal int targecdo] (

return gerKearestiayOiieek targeto, this);

images/00047.jpg
bl
191
192
193
1
195
136
17
198
18
0
a
22
0
i
25
26
07
2
29
20
a
m
u
a
2
25
a
28
2
2
a1
m
a
2
s
26
Fil
28
2
2
21
m
=
2
235
26
a
28
2
%0
21
6
243
0
245
246
il
u8
209
250

"
7
i
"
i
7
i
i
"
n

"
i
"
"
i
7
"
i
i
"
i
i
1

public void testIsvalidheekInionthCode() throvs Exception (
For tint w = 0; w <= 4 wee)
‘assertTrue(isValidueekInonthCode (v))

ARSI N R SEEANTISIRR o SRCY) A
‘assertEquals (3, stringTotonthCode (‘march)) ;
‘assertEquals (4, stringToonthCode “spril"]);
‘assertEquals (5, stxingTotonthCode! ‘nay" |
tEquals (6, stringTokonthCode (*Jun

assertEquals (7, stringToMonthCode!

Sesertiquale £ strinstotenthcace ausst' ||
‘assertiquals (9, stringTotonthCode *septenber
‘assertEquals (10, stringTokonthCode(“october* |
assextaquals (11, stxingTotonthCodel “novenber | ;
assertiquals (12, stringToNonthCode| " decenber*]

assertEquals(1, stringToonthCodel "JAUARY"))
‘assertEquals (2, scringToonthCode *FEBRUARY' | ;
‘essertEquels (3, stringTokonthCode(*WAR'));
‘assertEquals (4, stxingTotonthCode | *AFRIL' |
‘assertiquals|5, stxingTotonthCode "WAY']);
‘assertiquals (6, stxingTodonthCode "TINE*) |

‘assertEquals 7, stringlotonthCode *JULY") |

‘assertiquals (8, stringTonthCode "AUUST" |

‘assertEquals (9, stringTolonthCode |*SEFTEMRER))
‘assertEquals (10, stringTolonthCode(OCTORER" ¢
‘assertEquals (11, stringTokontiCode(NOVRGER'))
‘assertiquals (12, stringToKonthCode " DRCREER"))

i
assertsalse isValideskintonthcode 5))
)

public void testlsLespYear!() throws Bxception
‘assertzalse(isteaptear 1900]);
assertalceisLeaptear (1901);
sssertrasetisiasptens (1901
e isCeaptear (1903)) ;
Sasertrue ielespyent 1504))
tPrue (isteaptear (1908));
extFalse (isLespreas (1955) | ;
assertirue isteaplear (1964)
asserttruelisLeapYear 1980)
assertTruelistespYear (2000)
assertalse|isLeaplear (2001)5
asserttalse isteaptear 2100]);
1

sublic vold testlesptearcount () throws Exception (
‘assertiquals (0, leapeaxcount (1300)
assertEquals (0, lespreaxCount (1301));
assertiquals (0, lespearCount(1302)) ;
assertiquals (0, leaplearCount (1303)) ;
‘assertiquals|(1, leaptearCount (1304)}
assertequals|(l, leapYearCount (1305)) :
assertsquals(l, lesplearCount (1906)
assertiquals|(l, leaplearCount (1907));
assertiquals (2, leapfeaxCount {1308) |
assertiquals (2, leaprearCoun (1999)|;
assertEquals(25, leaplearCount (2001));
assertBquals(49, leapearCount(2101});

images/00108.jpg
i L2 a

597 final int 4 = path.nin{
E base.getDayoionth (), Serialbate. astoayofionthiam, yy)

538)

&0 return Serialbate.createlnstance(dd, m,)

61

@

€03

o e

€05+ Creates & new date by adding the specifisd misber of years o the base
06t date

@

€08+ param years the musber of years to add (can be negativel .

9+ Gparan base the base date.

o

61+ Gratum A new date.

@ v

€13 public static Serialbate addearsfinal int years, final Serialvate base) (
6

65 final int baset = base.getryvy();
6% £imal int basel = base!getkonth(
i final int baseD = base.getDayofionth() 1
1
e final int targety = base? + years;
620 final int targetD = Nath.min{
a baseD, Serialate. lastDsyoftonth (base, targety)
)
@
En return Serialbate.createlnstance(targerd, basel, targett|;
625
)
@
@ e
€29 * Revurns the latest date that falls cn the specifisd day-of-the-vaek and
G0 e e e hase e

€2t gpanm targatieskday a code for the target day-of-the-week.
€3+ Gparan base the base date.

&
&3 Gzeturn the latest date that falls on the speciied day-of-the-week and
i is BEFORE the base date.
.
638 public static Serialbate getpraviousDayofifesk(iral int targetiieskday,
&9 final Serialbate base)
60
1 1/ check arguvents
2 58 (1Serialdate, sval idteskiayCode targottieskday)) {
1 throw nev T1legalAxgusentException(
6 “Invalid day-of-the-veek code.”
& %
646)
1
P 11 tind the date..
&3 final int adjust;
650 final int baseDOH = base.getDay0fiiek
&1 it {baseDOH > targetieskiay) (
& adjust. = Math.nin(0, targetheskday - basedcH);
&5)
6t else (
65 adjust = <7 + Math.max(0, targevieskday - baseDcH];
656)

57

images/00110.jpg
Single Thread

s e T nnnnn

Getting Page.
[NERNEEEEENERENRERR RN ERNERRNRRERRREE

images/00109.jpg

images/00038.jpg

images/00040.jpg

images/00116.jpg
1 package org. jiree.date. junit;

4 opart org.
5 ioport static org.jizee.date. Serialbate.”;

15 assertFalselisvalidieskdaycode(s))
8)

n

18 public void testtringToweekdayCodal) throws Exception [
1

30 asserssqualsi-l, stringToeskiayCode| Hello'))
21 assertEquals(VONDAY, stringToteskdayCode(“Wonday" | ;
22 assertquals MONDAY, stringToeskdaycods *Won) ;

23 //todo assertEquals (DAY, stringToNeskdayCods "monday*) |
26 [/ assertBqials (MONDAT, stringToieskdayCode "NONOAT"))
251/ assertiguals(MAWAY, stringloKeskdayCods(*man'));

2

2] assertiquals|TUBSOAY, steingTolisskiayCodel Nuesday*))
28 assertiquals|TUESIAY, stringToWeekdaCode(*Tue"] |

29 /) assertiquals (TUBSORY, stringToNeskdayCods! " tuesday”
307/ assertBquals (TVESDAY,scringToNeekdayCods (*TUBSDAY"
317/ assertiquals (TUESOAY, stringlolieekdayCode"tue'

3217 assertBquals(TVESDAY, stringToleskdayOode("tuss*))
5

30 assertiquals(VEONSSONY, stringTofieskdayCode “Hednesday') ;
35 assertiquals (WEDNESDAY, stringTofeckdayCode(Hed || ;
36/ assertEquals (VEDNESIAY, stringToMeluiayCode “vednasday’
37/ assartiquals (WEONESDA, stringToNsekdayCods (*HECKESIAT" |
381/ assertoquale(VEDNESIAY, stringTokeekdayCode (wed"))

3

40 assertquals|THURSIAY, stringToNeskdayCode(*Thureday®));
41 assertquals|THRSIAY, stringToNeekdayCods (Thu)

42 // " assertequals (THURSIAY, stringTofeskdayCode “thuraday
§3 7/ assertiguale(THURSDAY, stringToeekdayCode “THURSDRY") |}
441/ assertiquals(THURSDNY, stringToleekcayCode(*thu!.
451/ assertequals(THURSDNY, stringTobeekdsyCode(*thirs*) ;
4

47 assertiquals(SRIDNY, stringloeskdayCode(‘Friday]};

48 assertaquals(FRIDAY, stringToeekdayCode("Fri|| ¢

49 /) assertaquals (FRIDNY, stringlosekdayCode " fxiday))
507/ assertiquals (FRIDNY, stringTolieskdayCode "FRIDN"))
51/ assertemuals (FRINY, stringloNeckdayCode(*£xif));

5

53 assertquals(SATURDAY, stringoNeskdayCodel(*Saturday*|);
i assertquals (SATVRINY, stringloledkdsyCode("Sat)

S5/ assertiqials (SNTURDAY, stringTolieekdayCode "saturday*) |
56 // assertBquals SATURDAY, stringTolieskdayCode *SATURDRY") |
571/ assertiquals(SATURDAY, stringloeskdayCode(*sat’]);

5

59 assercquals(SINDAY, stringToeskdaycode(*Sunday

@ assertEquals (SUNDAY, stringroeskdayCode(*Sun®

6
€2/ assertBquals|SUNDAY,stringTolieekdayCode(*SUNDAY"))

images/00039.jpg
=
350
331
8
38
38
385
388
)
s
3
390
91
£
39
9
3
39
El
398
3
w0
prig
w0
a0
04
05
a6
07
08
a0
a0
a1
az
it}
a
as
4
w
a
19
a
a1
a2
a2
a
as
a2
o
i
ey
a0
a1
et
st
a4
s
ae
Il
a3
s
W

Greturn & boolean.

o

oublic boolean isintange(final Serialbate d1, final Serialbate @) (
roturn isindange(dl, a2, SerialDate. INCLUDS_BOTH);

)

s
* Returns true if this Serialbate is within the specified range (caller

+ spacities whether or not the end-pointe are included). The order of Al
+ and &2 is oot important.

garan 61 one boundary date for the range.
* Gparan G2 a second boundary date for the raige.
* Gparan include a code that controls whether or not. the start and end
. dates are included in the range,
* Gretun <code>truec/codes if this Serialate is within the specified
5 range

sublic boolean isIntange(final Serialbate di, final Serialbate &2,

fimal fnt include) (

£imal int 81 = dl.toserial();

final int 52 = Q2. toserial ()

final int start = Yath.min(sl, §2);

final int end = Nath.maxisl, §2);

final int s = toSerial()

if {include == SerialDate. INCLUDE_BOTH) {
retum (s o= start & s <= end);

)

else if [include == SeriaiDate. INCLUDE_FIRST) {
return (5 = start ik s < ond);

)

else if (include == SerialDate. INCIUDE_SECOND) (
rotum (5 > start G 5 <= end);

)

eles
retum (s > start & 5 < end);

)

I
Caleulate the serial number frem the day, nonth and year.

IR

* 1dane1900 = 2.

* Gparan 4 the day,

* Gparan n the ponth,

*épazeny the year.

* return the serial munber froa the day, month and year,
«
private int calcserial(final int d, final int 8, final fnt y) {
final int yy = {(y - 1900) ¢ 365) + Serialbace. lespYearcouncly - 1;
int tm = SerialDate. AGGREGATE_DAYS_TO_END 07_PRECEDIG_MONTH(3]
S£ (> NonthConstants, FEERUNRY) (
it (Serialbate, istespear(y)) {
meme i
§

)
final int &4

images/00115.jpg
Thread 1

e MMM NN

Ly

iz
oo —SULILLIULILILILILY
T

s I R R

images/00042.jpg
G15
G16
G17

16-288, 17-303
8 16-289, 17-306
.16-289, 17-307, 17-312

G18 16-289, 16-290, 16-291, 17-308
G19 16-290, 16-291, 16-292, 17-309
G20 s 16:290, 17-309
G21 .16:291, 17-310

16-294, 17-322
4414239 16-295, 17313
16:206, 17312

G22
G23
G24
G25
G26
G27
G28
G29
G30
G31
63
G33
G34
G35

17316
. 17-316

15-265, 17-319
265, 15-266, 17-320
1-40, 6-106, 17-321
e 590, 17-323
6-103, 17-324
16-276, 17-325
6-278, 16-285, 17-326
6-283, 16-285, 17-327
15736416277, 16379, 16282, 16287, 16-288,
16-289, 16-290, 16-294, 16-296, 17-328

v 16-277, 17-330
6-284, 16-288, 17-331
5-263, 16-291, 17-332
1336, 14221, 15262, 17332
e 15261, 17-333

I

images/00041.jpg
main

2run(co)

co: Configured
Object

images/00117.jpg
SR8
7%
78
785
786
7
7
7
0
1
92
l
i
78
76
5
7%
79
800
801
w02
603
804
805
05
&0
£
503
810
il
)
)
o
65
6
1)
8
61
820
621
22
&3
62
625
525
&
62
&3
630
631
&2
&3
&30
&35
83
&
63
839
80
841
82
by

)

1o
+ Factory method that returns an instance of some concrete subclass of
+ (Blink serialbate} .

+ Gparan day _the day (1-31).
+ Gparan nonth_the monch (1:12)
+ Gparan yyyy the year (in the range 1900 to 3993},

* return An instance of (9link Serialbate}.
B
public static Serialbate createlnstance(final int day, final int month,
final inc yyyy) (
eturn new SpreadshestDate (day, month, yyyy):
)

I

ctory method that returns an instance of some concrete subclass of
+ {BLink serialnate.

* Gparan serial the serial mumber for the day (1 Jamuary 1900 = 2).

© Greturn a instance of Serialbate.
B
sublic static Seriallate createlnstance(final int serial)
return nev SpreadsheetDate(serial;
)

1
* Factory nethod that returns an instance of a subclass of Serialoate.

* Gparam date A Java date object.
* arssun dnstance of Sevialste.
piblic static Seriaouce crestetscanc(foal Sova.se5. e el (
it Gesgorancalender clendar = e Grsgeciacaleniae)

calendar.setTine dace
return new Spreadsheetbate(calendar. get (alendar. DATE)

1

fos
* Bevurns the serial rumber for the date, where 1 Jamary 1900 = 2 (this

corresponds, alaost, to the mumbering systes used in Microsoft Brcel for
Windows and Lotus 1-2-3).

* return the serial mumber for the date.
*

public sbstract int toserial();

.

* Returms a java.util.Date. Since java.util.ate has more precision than
+ Serialoate, we need to dafine a convention for the 'tine of day’

Braturn this as <code>java.util.batec/code>.
)

images/00044.jpg

images/00112.jpg
L
69
&0
61
66
6
66
68
658
&1
66
k2
61
e
o
il
o
s
a8
il
€
€
&0
é1
e
63
En
65
63
67
&8
585
60
&1
7
€3
€
65
6%
&7
&5
9
i
71
e
Tl
04
75
76
m
708
]
1
n
n
m
7
715
7
1
i
713

THAET SR BRI Lk

)

o
* Returns the earliest date that falls on the specified day-of-the-vesk
+ and is APTER the base date.

* Gparan targetieskday a code for the target day-of-the-week.
* Gparan base the base date.

+ broturn the earlisst date that falls on the spacified day-of-the-vesk
and is AFTER the base date.
Y
public static Serialbate getfollowingbayOtkeek final int targetheekday,
final Serialbate base) (

11 chack arguments....
5£ {1Serialoate. sval idteekdayCode targetiieskday)) {
throw new Tilegalargunentixcaption|
“Invalid day-of-the-veek code.”
»”

)

1/ tind the date.
final int adjust;
final int baseDON = base.getDay0ftesk (]
it (baseDON > cargecioskiay)

adjust = 7 + Nath.nin(0, targetheskday - baseDOH);

Math.pax(0, targetieskday - baseZON)

return SerialDate.adtDeys ladjust, basel:
)

100
* Returns the date that falls on the specitied day-of-the-vesk and is
CLOSEST to the base date.

* Gparan targethOH a code for the target day-of-the-veek.
* Gparan base. the base date

* Greturn the date that falls on the specified day-of-the-week and is
. CUOSEST to the base date.
v
public static Serialbate gevtearestDayofieek (£inal int targetoOH,
final Seriaibate base) {

11 check srgunents. ..
£ {1SerialDate. svalidieokdayCode targetdon))
thros new Tllegalhrgumentixception
*Iavalid day-of-the-vesk code.®
)

)

1/ tind the date.
final int baseDOW - base.getDay0fiesk(];
int adjust = -Yath.abs(targecoOH - baseXcH
i€ fadjust >= &) (

"alint = T - adaeti

images/00043.jpg
main

<<creates>>

run(factory) OrderProcessing

LineltemFactory
Implementation

<<nterface>>

——— LinettemFactory

< makeLineltem

<oreatess>

images/00111.jpg
1 package org. jiree.date;

H

3 public abstract class DayDateFactory (

private static DayDateFactory factory = new SpreadsheetDateFactory(;

public static void setnstance (DayDateFactory factary) (
DayDacePactory. factory = factory;

)

protected abstract DayDate _pakeDate(int ordinall;
protected abstract Daybate _nakeDate[int day, Month nonth, int year;
11 protected abstract DayDate rakeDatelint day, int month, int year);
12 protected abstract Daydate akeDate (java.util.Date dat

13 provected abstract int _getiinimmtaar();

1 protected abstract int _getaximu¥ear();

15

16 public static Daydate pakeDate(int ordinal) (

17 retum factory. sakelate(ordial);

B8)

1

20 public static Daybate makeDate(int day, Monch month, int year)
21 return factory. pakeDete(ey, month, year];

2)

2

20 public static Daybate nakeDate(int day, int month, int year)
25 return factory._sakeDatelday, month, year)

%)

7

28 public static Dayoate makeDate(java.util.Date date) (

28 return factory._makebate(date ;

1)

2

3 public static int gettinimmYear() (

3 return factory._getMinimatear();

)

35

3 public static int getkaximmtear() {

31 retum factory._gethaximmtear();

B)

39

images/00046.jpg
be-d
25
236
bl
3
3
%0
%1
262
26
261
265
26
%1
2%
2
m
a
m
m
m
bl
7
m
2
m
b
a1
wm
il
28
255
26
Fil
2
2
30
1
22
el
2%
258
26
kol
28
2
300
301
Ei7)
30
304
305
06
307
308
303
310
m
m
i
1)
35

- SR SN SRS SIEAR, AN SETHMCRINED TR Ry L
{8link Spreadsheetpace] .

* Gparan object the object to compare {<codesmallc/code> pernitted)
* return A boolean.

+
public boolean equals(final Object object) {

S£ {obfect instanceot SerialDate) {
final Seriallate s = (Seriallate] cbject;
return (5.oSerial() == this.toSerial(});

else (
retum fals
)

)

o
* Returns a hash code for this object instance.

Greturn A hash code.

.
public int hashcade) {

return toserial ()
)

p
* eturms the difference (in days) between this date and the specified
+ “other' date.

Gparan other the date being compared to.

+ Greturn The difference (in days) between this date and the specified
. “other: date.
bl
oublic int compare(final Seriaibats other) {
return this.serial - other.toserial();
)

jor
+ Tapleneats the method requized by the Corgarable interface.

* Gparan other the other object. (usually another Serialoate)

* Greturn A negative integer, zero, or a positive integer as this object
. is less than, equal to, or greater than the specified object.
0

public int compareTolfinal bject other] {

return coapare [SerialDate) other);
)

i
+ Returns true if this Serialate represents the same date as the
+ specitied Serialoate.

+ paran other the date being conpared to.

+ return <codertrues/codes if this Serialdate reprasents the sase date as
the specified Serialdate.
.

images/00114.jpg
288
71
m
m
i
7
7%
il
2
7
730
71
i
735
i
7
72
m
72
7
%0
U
w2
%
4
us
e
w
48
0
7%
71
7%
75
75
755
756
m
73
7
70
%1
762
%
%
768
%6
%1
7%
7%
m
m
m
m
m
7
7
m
7
m
7%
781

Feturn Serialbate.adDeys (adjust, basel
)

o
+ Ralls the date forvard to the last day of the month.

* Gparan base the base date.

* return a new serial date.
B
public Serialoate getgnddfCurrentionthi final Serialbate base] {
Final inc last = SerialDate. lastDay0ftonth(
base.gethonth), base. gettvYY|()
i
return Serialbate.createlnstance(last, base.getkonth), base.getryyY());

o
+ Returms a string corresponding to the wesk-1n-the-sonth code.
‘>
+ Neod to find a better approach.

* Gparan count an integer code representing the wesk-in-the-sonth.

public static String veskIntonthostring{final

switeh (count) {

case SerialDate. FIRST_WERK_IN_MOVTH : return “First’;
case SerialDate.SECOND NESK_TNYONTH : return *Second";
case SerialDate. THIRD WER_IN_FOWTH : return “Third"
case SerialDate. FOURTA_ WESK_TIMONTH : return *Fourth;
case SerialDate.LAST VEEK N MONTH ; return 'Last’;
dsfault :

retum *Serialbate. weekIntonthTostring) ¢ invalid code.

)

for
+ Roturns a string representing the supplied relative’.
c@

* Need to £ind a better approach.

Gparan relative a constant representing the ‘relative'.

* Greturm a string representing the supplied ‘relative!.
*
public static String relativeTostring(tinal int relative)

switeh (relative] (
case SecialDate. RECEDING : return “Preceding';

return *Folloving"
Gefault ; return “ERROR : Relative To Strirg’

images/00045.jpg
client

AppDataSource

‘BankDataAcessObject

Bank

S —
fe—rt

images/00113.jpg

images/00037.jpg

images/00036.jpg
A
vy

Addison
Wesley

Register the Addison-Wesley, Exam Registering your products can unlock

Cram, Prentice Hall, Que, and the following benefits
Sams products you own 1o unlock * Access 1o supplemental conten,
great benefis. including bonus chapters,

source code, or project files.
« Acoupon to be used on your
next purchase.

To begin the registration process
simply go to informit.com/register
tosign in or create an account,

You will then be prompted to enter Registration benefis vary by product.
the 10- or 13-digit ISBN that appears Benefits will be fisted on your Account
on the back cover of your product. page under Registered Products.

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
‘Addison-Wesiey Profossional, Cisco Press, Exam Cram, 1BM Press, Prentice Hall
Professional, Que, and Sams. Here you wil gain access to qualty and tusted conent and
tesources from the authors, creators, innovators, and leaders o technology. Whether you'o.
Iooking for a book on a new tochnology, a helpful article, tmely nowsltters, or accoss 1o
tho Salari Books Onlin digial ibary, InormIT has a soluton for you.

illll)l'llllrl'.l:lll!l

images/00099.jpg
WEORK;
case Serialoate. NEAREST)
zesult = Serialbate.getNearestDayDfieek this.dayofifesk,

basel
break;
caseSerialoate. FOLLONING):
ol < Sakinluce et Loyt 3. i,
200 break;
201 detaul:
0 break;
20)
204)
205 Tetumn result;
206
w)
208

209 }

images/00098.jpg
} g Rl g i o i S

a1 thron new Tllsgalargunentexception
a2 *SerialDate.nonthCodsTostring: menth outside valid range.
a3)

a1

i final Scringl] months;

e

ar ¢ (shortensd) {

a8 Bonchs = DATS_FORMAT_STMBOLS. getShortonths)5

49)

a eee (

a1 Bonths = DATE_FORMAT_SYUBOLS. gettonths()

a2)

a1

i return months{sonth - 11;

s

)

@

a8

a2 Converts a string to a nonth code,

PR

431+ This mathod will return one of the constants JAYUARY, FEERUARY, ...,
432 * DECHGER that corvesponds to the string. If the sering is mot
433+ recognised, this meched returns 1.

P

435 ¢ eparams the string to parse.

P

47+ aretum <code>-1c/codes if the string is not parseable, the month of the
o . year otherwise.

@y

40 public static int stringtotonthCode(String s/ (

w“

@ £inal stringl] shortionthianes = DATE_FORUT_STSOLS. et Shortionths | ;
W@ £inal String(] nonthanes = DATE_FORKAT_SYHBOLS. gectontha |
W

s iat resul

g &= s.crin);

W

e 11 tixst try parsing the string as an integer (1-12)..

s by

a0 result = Integer.parselncls);

51)

2 cateh (mberforsatssception o) {

53 11 suppress

a5)

e

6 {1 mox search through the month panes. .

& S {(result < 1) || (resule > 12))

8 for (int § = 0; i < nontiases. length; 1se) |

5 1 (s.oquals (shortuonthaamas(i]))

60 memlt i 0

1 break;

€)

et 1 (s.equals (sonchiames(])) {

64 reslt s i e 1

a6 break;

%)

6)

8)

6

h return result;

m

images/00069.jpg
e 1
161

162 public boolean Sshfter (DayDate other) {

16 return gecordinalbay() > other.getOrdinalday();

o)

18

166 public boolean $s0n0rAfer (Daybate other)

167 retun getOrdinalDey() >= other.getOrdinelbey(}:

w8)

16

170 public boolean islnRange(Daydate a1, DayDate d2) {

171 return isinRangeldl, G2, Datelnterval.CLOSED];

m)

m

178 public boolean isinRange(Daydate di, DayDate d2, Datelnterval interval) (
175 inc left = Math.nin(dl.getOrdinalbay(), G2.getOrdinalbay());

16 int right = Math.nax(di.getOrdinalbay(], d2.gecOrdinalbay(}:

17 return interval.isIngetOrdinallay(), left, right);

me)

19)

images/00068.jpg

images/00071.jpg
39 foport. java fo.serdalizable
40 import Javautil.

am
43 '+ 2 abstract class that represeats dmmutable dates with a precision of
4+ one day. The iplenentation will map ach date to an dnceger that
45+ epresests an orcinal mumber of days from soe fixed origin.

Tate? W wi

My mot. st use Java.uei , shen it sakes sese. ¢ tises,

48+ java.uril.Date can be *toot precise - it represencs an instat in tise,
9+ accurate to 1/1000ch of a second (with the date itssl? dependiog on the
50 v tine-zonel . Somecines ve just want to represent a particular day (e.9. 21
51+ Jamary 2015) without concerning ourselves about the tine of day, or the
52+ tine-zone, or anythisg else. That's uhat ve've defined Dylate for.

5

54+ Use Daydatefactory.sakeDate to create an instance.

s

56+ ouchor David Gilbert

57+ Gauthor Robart C. Hartin 81d a Lot of refactorisg.

ER

5

§0 public abstract class DayDate isplenents Conparale, Seriatizable {
81 public shstract int gerordinalbey();
§ public abstract it gervearl);
) public sbstract Yonch getkonthi);
G public abstract int getDayORenth();
&
£ proceced ahstracs by gecDeofNaskForndizaarol);
i
6 public dayoate plusdayslin: days)
@ e DouaTciy meBe guSsoaloy) + G
2
72 public beyoate plustonths(int sonths)
73 7 inc hisonthhsOrdimal = geconthi) .Solat(] - Noath, TANIRY.tolat ()
7ot chisonthacdtearhsdrdinal = 12 ¢ gettear() » thisNonthhiOrdinal;
75 ot resultMonthiniearhsordinal = thistontndlasrheordinal + monthe;
6 int resulttear = resulconchindtearhsdrdinal / 127
70 it resulohonthasordinal + resul HonthndTexhedrdinal ¥ 12 + onth.JHNUARY. tolnt ()5
78 Month resulthonth = Nonth, Eroalot (resulthontbAsorcinal)
79 ine resulthoy = correctlastDayOfNonth(geeDeyORonth(), resulthonth, resulttear);
8 et Dtarciery.saaDteroic, cemlierc, relstar)
a
2
8 public Sayoate plustears(in years) {
3 7 inc resulevear = gectearl) + yoars:
85 ot resulthey = correctiastDayofnthlgetDayOfiGnth(), getonch), resulttest)
5 e yarebaciony. skebtalzesithy, geteat) resivess
)
a5
8 privats int correctiastlayoficathiint day, Month sonch, int year) [
50 inc lastDeyofonth = Dateleil. ascoayDfienth nenth, year]
1 if (day > lastOay0onth)
2 day = lastoayoftonth;
5 xewumday;
W o)

images/00070.jpg
lqe OMLY VAL mMeASUgemen —

OF Code Quaciry: WTFs/mivure

W wTE)1”%

GOOCA code . BAd codle.

Reproduced with the kind permission of Thom Hobwerds,
il canew; bosals

(c) 2008 Focus Shift

images/00073.jpg
. A A s

190 a6 & lesp year vhen in fact it s 1ot a Leap year, You can find sore
information on the Hicrosoft. vebsite in arvicle QIEL3

8@

Betp://support. aicrosoft. con/support Kbl arcicles/QL81/3/10.a89
@

+ Bxcel uses the convention that 1-Jan-1900
72+ convention 1-3an-1300 = 2.

This class uses the

The result is that the day musber in this class vill be ifferent to the
Bxcel figure for January and February 1900....bu then Excel adds in an extra
ay (29-Feb-1900 vhich does ot actually exist!) end fron that poiat forvard
the day mabers will pacch,

78+ Sauthor David Gilbert
3

30 public class SpreadshestDate extends SerialDate
h

82 ror serialization, °/
81 private static final long serialVersiondd = -2039S6T0SIIASHASIL;
n

5

86t The day mumber (1-Tan-1900 = 2, 2-3an-1900 = 3, ..., 31-Dec-9899 =

i 9584651
)

8 private fnt serial;
»

S/ The day of the nenth (1 to 28, 29, 30 or 31 depending on the nent), +/
8 privie inc G

86 /v The month of the year (1 to 12).
55 privace int onth;

%

31 /e The year (1900 to 9989). */

9% private inc

39

100/ An optional description for the date
01 private String deseription;

m
0
108+ creates a new date tnstanec.
W

106+ Gparan day the day (in the zasge 1 to 20/28/30/31).

0 Gpazen month the donth (in the Tange 1 to 12).
B8t yer th yer (in che rage 199 to 551

x “

100 public SpreadsheetDate(final int day, final int monch, final int year) {
m

m 58 (iyear >= 1900) & (year <= 9399]) ¢

m Shis.year = yoar;

wm)

15 ese

16 ‘“hrow new Tllegalargmenticception

m |, T s ma o i e 1900 0 999.0

s)

1

m 1 ({month >= YonehConstants. INARY]

m s [month < NonthConstante, DCBMEER)) (

i e ponth = month;

o)

us ese

16 ‘throw new Tllegalisgumentixception|

bl |, T S e e e the s 00 2.0

129 3y

images/00105.jpg
o]
55
536
55
s
59
50
sa1
s
54
s
545
sie
s
s
543
550
551
55
551
550
555
556
557
55
55
60
s61
sz
56
56
565
585
s
56
5
1
1
s
bl
s
55
5%
1
5%
59
50
E
iz
58
58t
585
s
51
B
5
530
51
5
Exl
59
595

ke R i
)

o
+ Recurns the muaber of the last day of the month, taking into account
+ lesp years.

+ Gparen ponththe sonth.
+ Gparea yyyy the year (in the range 1900 to 3999},

+ Greturn the maber of the last day of the month,

B

public static int lastoayofionch(firal int sonth, final int yyvy) (
£inal int result = LAST_PAY_OF MONTH{monch];

i€ (onth 1= FERRUNRY) [
rotam result;

)

else it [isLesprearlyyyy)) {
return reslt + 1

)

2
retum result;

Creates o nev date by adding the specified maber of deys to the bese
+ data.

+ Gparan Gays the rumber of days to add (can be negativel.

+ Gparan base the base date.

* returm & new date.
2
public static Serialbate addbays (final iat days, final Serialbate base) (

final int serialDayNusber = base, toSerial() + days:
return SerialDate.createlnstanceserialDaythmber)

ok

* Creates a new date by adding the specified msber of months ©o the base

* date.

‘@

* £ the base date is close to the end of the nonth, the day on the result
may be adjusted slightly: 31 My + 1 bonch = 30 June.

+ Gparan months _the munber of moaths to add (can be negative)
* Gparan base the base date.

* return a new date.
“
b

ic static Serialbate sddenths (£inal int monchs,
final Seriaidate base) {

final fnt yy = (12 * base.getyYYY() + base.gethanth() + months - 1)
113
final 6t mm = (12 * base.getYYYY() + base.getMonth() + months - 1)

images/00072.jpg
OFaN+d

images/00104.jpg

images/00075.jpg
e

images/00107.jpg

images/00074.jpg
1 package org. jiree.date;
H

imgort. java.ucdl.

3
1
5 public class SpreadsheetDatefactory extends DayDateFactory |
& public Daybate _makeDate(int ordinal) {
7 retum new SpreadsheetDace(ordinal);

H

5

10 public Daybate _makeDate(int day, ¥onth month, int year) {
1 eturs e pfesdbaetiteday mounh, yeri:

1

ol

18 public Daybate _makeDatelint day, int month, int year) (

15 return e SpreadshetDute Gy, monch, your);

% 3

n

18 public Daybate makedate(Date date) {

19 final GregorianCalendar calendar = new Gregoriancalendar();
20 calendar.settine date)

21 return new Spreadsheetbate(

2 calendar get (Calendar DATE) ,
21 Wonth. frcalnt (calendar.get (Calendar MOVTH) + 1),
% calendar. get (Calendar. VEAR) | ;

5)

%

2] protected int _gethinimavear()

28 return Spreadshectate. YINTIUN_YEAR_SUPBORTED;
3

3

31 protected int _getuaximavear()

32 return SpreadshestDate MAKIMI YEAR_SUPBORTED;
E-I

u)

images/00106.jpg
1 package org. jiree.date;
2

3 iagort java.text.DateFormatsysbols;

1

5 public class Datettil {

& private static DatefornatSysbols dateFormatsymbols = new DateFormatsymbols();
7

8 public static String(] getonthames() (

9 retum dateFomacSymbols.gethonths () ;

01

1

12 public static boolean isteapYear(int year) (
13 boolean fourth = year § 4 == 0;

1 boolean hundredth = year § 100
15 boolean fourkundredth = year § 400
16 retum fourth & (!hundredth || fourkundredth);
F

19 public static int lastDayOffonth(¥onth monch, int year) (
20 if (nonth == Nonth. FEERURR &k iseaplear year |

2 return month, lastDay() + 1;
2 else

25 return month. lastDay();

A)

5

26 public static int lespYearcount(int year) (
21 int leapt = (year - 1896) / &
28 int leapl0d = (year - 1800) / 100;
28 int leapd00 = (year - 1600) / 400;
30 veturn leapé - leapl0l + leapddl;
)

images/00077.jpg

images/00101.jpg
d 4
n
w
as
a7
a
il
a7
@
a1
el
it
ol
a5
a6
w0
a8
8
0
51
prst
st
e
a5
a6
w1
a8
e
500
01
502
503
500
505
505
50
506
5093
510
511
sz
5
s
55
516
s
s
515
2
521
522
523
s
525
526
521
B
29
530
51
s
BT

R

o

* Returns true if the suplied integer cole represents a valid
* wesk-in-the-nonth, and false otherwise.
* Gparan code the code belng checked for validity.
* Sreturn <codertruec/code> if the supplied integer code Tepresents a
. valid week-in-the-sonth.
“

public static boolean isValidieskintonthCode(£inal int code) (

switch(code) {
case FIRSTWESK_DILYONTH:

-
* Determines whether or ot the specified year is a leap year.

* Gparsn yyyy the year (in the range 1900 to $393).
+ Breturn <codeptruec/codes if the specified year is a leap year.

.
public static boolean isieaprear(final int yyyy)

)
elee it ((yyyy & 400)
retum true;

)
else i [y 8 200) == 0)
retum false;

)
ese (

rotum trus;
)

1

fo

+ Rerurns the munber of leap ysars from 1900 o the specitied year
DICTOSIVE.

@

Note that 1900 s ot & leap year.

Gpazan yyyy the year (in the zange 1900 0 9999).

* Greturn the muaber of leap years fram 1900 to the specified year.
.
public static int Leaptearcount (final int yyw) {

tinal int leapd = (yyyy - 1836) / &
£inal int leapl00 = (yyyy - 1800) / 10
final int leapd00 = (yyyy - 1600) / 400;

images/00076.jpg
=

3%

7

»

E
1w
0
12
10
0
105
106
107
108
108
1
g
m
w
e
s
16
m
pitd
1
b
m
b
123
16
s
16
w
i
il
10
m
m
m
il
bitd
i
m
1
19
w0
prid
12
i
0
15
146
b}
8
s
150
151
5
15
150
155
156
157
15
15

public Dayoate getpreviossDayoiesk(Day targesbsyofiesk) (
int offsecToTarge: = targetDeyOfieek. oTnt) - GetDayOfieek() toTat)
it (oftsettotarget >= 0]
offeecTomacget -z 7;
| e st offaeemurse);

public Daybate getFollowingDayoteek(Day targecDayofiesk) (
int offsectotarget = targetDeyOfieek. ot () - GetDayOfMeek(tolnt);
i€ (offsetTotarget <= O]
offsattonarget o= 7;
| e plssploftaetnisett;

public DayDate getesrestDayOfeek (Day tazgetDayofisek] (
int offsevToThisHeeksTarget = targetDayOfiesk. ofut() - getDayofisek(] totat(];
int offsetTofutureTarget = (offsetTomhiskeskstarget + 7) 4 17
int offsettoPreviousTarget = offsetToPuturelarget - 71

i£ (oftsatToRutureTarget > 31
return plusdays (ot setTorreviousTarget)
olse
return plusdays(ofsetTorutureTarget)
1

public Daybate gecsadomienthl) {
Honth sonth = gatkonth ¢
int year = gettea|
int lastouy's Dateleil. astDayofuonthmonth, year)
return DayDateractory.saeate (lastey, Sonth, year):
i

‘public Date cobatel] {
Fina] Colender calendar = Calendar.getTnstance()
int ordinalionth = getHonthi(. CoTnt () - Nonth.JWWUARY.tolat ()
calendar.setgettoar!), ordinalionth, getDayORionthl]), 8, 0, 0}
| Fem calende it

public Sering tostring() (
return String. format '4028-45-48", getOayOMonth(), geckonth(], gettear());
)

public Day gecDayotiesk() {
Day scartinaday = gecayDtifeskFordrdinalierol):
int seartiagOffset = startingbay. tolnt() - Day.SNDAY.tolat)
int ordinalOfbeyofveek = (gevordinalday() + startingoffset) 3 7.
return Day. ércalnt ordinalOfDayofeek + Day. SIRDAY. folnc)

)

public int dayssince (Daytate date) (
return gecordinalbay(] - date.gecordinalbay)
)

public boslean 1son{beypate other) {
returm getOrdinalbay() == other.getordinalday();
)

public boolean issefore(bayDate other) (
return gerOrdinaldey() < other.gerordinaloay)
)

public boolesn {s0n0rBefore Daydate other] (
Tobirn QItORAISIIAyL) <= Gther. petCedinaliv

images/00100.jpg

images/00103.jpg
Mnemonic Description Operand
Stack After
(Ao © Load 1= onto the operand stack this
£ Copy the top of the stack. We now have two | this, this
copies of this on the operand stack.
GETFIELD lastid | Retrieve the value of the field ascid from the | this, 42
object pointed to on the top of the stack (¢his) and
store that value back on o the stack.

1 Push the integer constant 1 on the stack. this, 42,1
Tnteger add the top two values on the operand | tiis, 43
stack and store the result back on to the operand
stack.

\ Duplicate the value 43 and put it before this. | 43, this, 43

FUTFIELD value | Store the 1op value on the operand stack, 43, into | 43
the field value of the current object, represented by
the next-to-top value on the operand stack, this.
TRETORY return the top (and only) value on the stack. <empty>

images/00102.jpg
G -

sequence

images/00058.jpg
=
I
i
&
@
»
2
n
7
u
s
%
7
%
2
»
a
2
=
"
5
]
il
H
»
0
b
2
5
3
35
3%
2
»
59
200
0
10
10
0
105
106
07
108
109
il
m
m
m
114
s
16
w
18
1
)
1
m
i
b
us
16
w
i
13

/++ Spacities vhich day of the week PRECEDRG, NEMEST or FOLLOHTIG). */
private int relacive;

i
* Default constructor - builds a rule for the Norday folloving 1 Jenuary.
.

public Relativedayotiesiiulel)

this new DayknconthRule(), Serialate.NONDAY, Serialbate. FOLLOWING);

i

+ Standard constructor - builds rule based o the supplied sub-rile.

+ paran subrule the rule that dateraines the reference dace.
* Goaran dayofiesk the day-of-the-week relative to the referesce date.
* paran relative indicates *Which® day-of-the-uesk (preceding, nesrest
. or folloving).

e
public RelativeDuyofiieidule(£inal Armualbatemu)
final it dayofeek, £inal int relative) (
ie.subrule = subrul
dayCffeek = cayofiisk;
thisralative = relative;

sibrle,

+ Returas the suberule (also called the reference rule)
* zecurn The anmal date rule that determines the referance date for this
. rule,

.

public AmalbateRule getsubrule() (

zeturn this. subzule

1

o
+ Satn the mberule.

: 'wnn subrule the amual date rule that determines the reference date

for this rule)

Y

public wid setsubrule(final AmmalDatekule subrule)
chis.subrule = subrule;

)

o

* Returss. the day-of-the-week for this rule.
et the dayof-theved fox ths .

pibic iot guumothes() (
| o G aaotiess

o

4 Sets the day-of-the-veek for this nule.

b mxm Gsyofies the day-of-the-uesk. (Serialbate WAHY,
Sextallate. TUESDRY, and s0 on).
.
public void setDayofilesk(£inal it ayofesk] {
this.Gayotesk = dayoiesk;

images/00060.jpg

images/00059.jpg

images/00062.jpg

images/00061.jpg
=
“o
a1
az
s
a
s
s
“w
ag
s
50

o1

2
el
st
455
55

Bt s el s s bl
assertEguals (1900, date.get VYY) 5
assertaquals 2, date. toserial());

)

public void testCreatelnstanceFronserial () throws Exception {
‘assertaquals(d(1, JANUARY, 1900),createlnstance(z));
assercaguals(d(1, JAVARY, 1901); createlnstance(367));

public void testCreatelnstancefroniavadate() throws Exception (
‘assercaguals(d(l, JANIARY, 1900},
createnstance new Gregoriancalendar (1900,0,1)
assertaquals (d(1, JANUARY, 2006),
createlnstance (new Gregoriancalendar (2006,0,1)
)

public static void main(stringl] args) [
Junit. textui TestRummer. run(BobsSerialDateTest .class) ;

)
61)

images/00064.jpg

images/00063.jpg
More bug fixes

Docs now say that Java 1.5 is required.

Bug fix

Many usability and behaviorial improvements.

Clean up

Added PAGE_NAME and PAGE_PATH to pre-defined variables.
Added " to Ipath widget.

link to the fixture gallery

fixture gallery release 2.0 (2008-06-09) copied into the trunk wiki a
Firefox compatability for invisible collapsible sections; removed .ce
Updated documentation suite for all changes since last release.
Enhancement to handle nulls in saved and recalled symbols. Adde
Added a“Prune" Properties attribute o exclude a page and fts chil
Fixed type-o

Added check for existing child page on rename.

Added "Rename link to Symbolic Links property section; renamed
Adjusted page properties on recently added pages such that they c
Enhanced Symbolic Links to allow allrelative and absolute path fo
Cleaned up renamPageReponder a bit more.

Cleaned Up PathParser names a bit. Pop -> RemoveNameF romE
Cleaned up RenamePageResponder a bit. Fixed TestContentsHel
updated usage message

Fixed a bug wherein variables defined in a parents preformatted b
Added explicit responder "getPage" to render a page in case query
Tweaks to TOC help text.

New property: Help text; TOCWidget has rollover balloon with new
Redundant to the JUnit tests and elemental acceptance tests.
Removed the last of the [acd] tags.

Icontents -f option enhancement to show sute fittrs in TOG list;fx
TOC enhancements for properties (-p and PROPERTY_TOC and f
1) Render the tags on non-Wikiword links;

Added http:/ prefix to google.com for firewall transparency.

Isolate query action from additional query arguments. For example
Accommodate query strings like “?suite&suiteFilter=
Cleaned up AliasLinkWidget a bit.

®
°
®
°
®

images/00066.jpg
Task Optimistic Nominal n o

Alpha 1 3 12 42 18
Beta 1 15 1 35 22
Gamma 3 6.25 1 65 1.3

images/00065.jpg
PRENTICE
HALL

images/00067.jpg
+ Scommon ; free general purpose class Library for the Javalta) platforn

(6) Copyright 2000-2005, By Object Refinery Linited and Contributors.
Project Info; Beeps /. jEces.org/ jecmmen/index. htal

This library is fzee softuare; you can redistribute it and/or modify it
under che toras of the GN) Lesser Ganeral Rublic Licanse as published by
the Free Software Foundation; either version 2.1 of the Licerse, or

ot your cption) eny later version.

This libeary s distributed in the hope that it will be useful, but
WITHOUT ANY VARRANTY; without even the irplied warranty of MERCRVIASILITY
or FITNESS FOR A PARTICULAR FURPOSE. See the G Lesser General Public
License for more details,

Tou should have received a copy of the QWU Lesser Genaral Piblic
License along with this library; if not, write to the Free Softuare
Fowdation, Toc., 51 Frasklin Strest, FLfth Floor, Boston, MA 02110-1301,
sk,

[3ava is a cradenark or registered trademark of Sun Microsystens, Tnc.
in the United States and other countries.|

30+) Copyright 2000-2005, by Objct Retinery Linited and Contributors.

32+ Original Author: David Gilbert (for Object Refinery Liited);
1+ contributor(s): -

35+ $38: SpreadshestDate. Java,v 1.8 2008/11/03 09:25:39 munqady B §

Changes

11-06t-2001 : Version 1 (00);
05-Hov-2001 ¢ Added getDescription() and setDescription() nechods (DG)
Nov-2001 Changed nans fron BxcelDate, Java to SpreadshaetDate.

Pixed a bug in calculating day, nonch and year frce
nusber (D01
24-3a0-2002 : Fixed a bug in calculating the serial mabar fron the day,
i o, ks o T Sile for the st ()7

29-%ay-2002 : Added equals{Object) method (SourceFarge D SS8850] (001
532504200 | Firen ancocs xepored by Chackaryie (56

13-¥ar-2003 ¢ Toplenented Sertalizable (06):

04-Sep-2003 : Completed isinhange) sethods (36);

05-Sep-2003 : Implenented Comparable (D3]
51+ 21-0ct-2003 + Added hashCodal) method (DG):
oo
ERY

55 package org. res.date;
H

57 dmport. java.util. Calendar;
58 inport java,uei1 Date;

5

e

61 '+ Represents a date using an integer, in a sinilar fashion to the

§ * inplenentation in icrasoft Bxcal, The ange of dates supported e
€5+ 1-7an-1900 to 31-Dec-9985.

“ o>

images/00089.jpg
Mnemonic

Description

Operand
Stack After

ALOAD 0

Load the Oth variable onto the operand stack.
What i the Oth variable? It is this., the current
object. When the method was called, the
receiver of the message, an instance of Exarole,
was pushed into the local variable array of the
frame created for method invocation. This is
always the first variable put in every instance
‘method.

images/00088.jpg
£ ind
2
2
m
E
2
20
a1
bl
2
23
23
26
bl
238
28
0
1
bl
2
2
s
2
w0
2w
2
20
251
252
251
254
235
56
7
258
25
%0
261
262
6
264
25
26
%7
2%
2%
m
m
m
m
m
2
b
m
e
bl
bl
281
=
2%
bl
285

8
public static boolean isvalidieskdaycode(firal int code) {

switchicode) |
case SINDAY
case MONDAY:
case TURSDAY:
case VEDNESTAY:
case THURSDAY:
case FRICAY
case SATURDAY:
return true;
detault:
return false;

Converts the supplied string to a day of the wesk.
Gparan s » string representing the day of the week.

Greturn <codes-Le/codes if the string s ot Convertable, the day of
. the wesk otharwis

public static int stringToWeekdayCode(String 8) {
String() shortieeidayiases

DATE_FORMAT_STMBOLS. getShor thoskdays () ;
final Stringl] veakDayNanes = DATE_FORMAT_STNBOLS.

&= sexin;
for (int £ = 0; § < weekDaytames. Lengt
1 (s.oquals (shortHeekdaysasss 1))] (

return result;

1o
Returns a string representing the supplied day-of-the-week.
@

Need to £1nd a betcer approach.

Gparan veskday the day of the wesk.

+ fretumn a string representing the supplied day-of-the-veek.
.
public static String veskdayCodeTostring|£inal int weskday) {

tinal Stringl] veekdays = DATE_PORAT_STHBOLS. getiiekdeys | ;
return veskdays veekday];

images/00091.jpg
R

o

* Returns an array of menth naes.

* Greturn an array of month nases.
+
pblic static Stringl] getkonths() {

return get¥onchs(falsel;

w

28

3 o

300+ Retumms an array of month nanes.

o e

302+ Gparen shortaned a flag indicating that shortened sonth nases should
o be returned.

FT

305+ Gretum an array of month nases.

Er)

30 public static Stringl) getonths(£inal boolean shortensd) (
308

0 it (shortened) {

30 return DATE_FORUAT_SBOLS. get Shortonths
u)

m else ¢

i return DATE_FORMAT_STHBOLS. getkonths) ;
m)

315

)

i

e

319+ Revurns true if the swplied integer code represents a valid sonth.
T

3t Goanam code the code being checksd for validity.

e

33+ Gretum <codertruec/codes if the supplied integer code represents a
. valid sonth,

s v

326 public static boolean isValidWonthCode(£inal int code) {

21

32 switchlcode) {
E case AUARY:
330 case FESRUART:
i case WARCH

3 ease

3 case

3 case

3 case

36 case

W case

58 case

e case

0 case

a1 retum true;
342 dataulc:

4 retum false;
4)

345

)

47

images/00090.jpg
1 package org. jEres.date;

H
3 public emn Datetnterval {

4 oem

5 public boolean istnint 4, int left, int right) (
H return d > left 6 @ < rights

7

3,

5 closm e (
10 public boolean istnfint d, int left, int right) (
i return d >= left & d < right;

2)

o,

1 closs RaHt

15 public beolean istaint 4,

int lefe, int right) (

16 return d > left & 4 <= right;
uno)

18,

19 closm (

20 public boolean isInfint d, int left, int right] {
2 return d >= left &k d <= right;

2)

By

u

25 public abstract boolean isin(int 8, int left, int right);
2)

images/00093.jpg

images/00092.jpg

images/00095.jpg
1 package org, jires.date;

H

3 public enun Weeklnitonth {

FIRST(1), SECOND(2), THIRD(3), FOURTH4), LAST(0);
private final int index;

Weekinkonth(int index) {
this. index = index;
)

1
I public int tolne() {
12 retum index;
1)

Uy

images/00094.jpg
-1 SR g

343 Returns the quarter for the specifisd nonch,

mo

351t paren code the month code (1-12).

oo

35+ Gretur the quarter that the month belongs to.

M Sehom Savs leg. leselicgmentxcetion
B

36 public sttic iat monthouetoquster(£isa ot code) (

35 switch(code) [

359 case TANRY:

360 case PESRUARY:

361 case WARCH: roturn 1;

@ case RERIL:

363 case

36 case

365 case

36 case

il case

36 vy

38 case :

k7l case DECBMEER: return &;

m Gefault: throw new Illegalhrgunentixception|

m ; *Serialbate.nonthCodeTouarter: imvalid nonth code.]

m

w0

7

mo

3¢ Retums a string representing the supplied sonth.

@

380+ e string recurned is the long form of the month nane taken fros the

B v defaule locale.

oo

38+ Gparan month the month,

T

B erenum o seeing spreseacing the pplisd o
.

37 public static String monthCodeTostring(tinal int month] {
s

b return monthCodetostring (aonth, false
390

W)

392

ETE

34+ Ratums a string representing the suplied month.

FER

3%+ The string recurmed is the long or short form of the sonth nane taken
w £rom the default locale

39

399+ gparan month the month,

400+ Gparam shortensd it <codestruec/code> return the abbreviation of the
e month,

w e

403+ Gretum 2 string representing the supplied month.

404+ Gthrons jave.leng. 1 legelArqumentErception

Wy

406 public static String monthCodefoString(final int nonth,

a0 £inal boolean shortened) (

a0

409 1 Gk

images/00097.jpg

images/00096.jpg
the field value of the object referred to by the
object reference one away from the top of the
stack, this.

Mnemonic Description Operand
Stack After
NS Put the constant value 0 onto the operand stack. | this, 0
FUTFIELD 1a5tid | Store the 10p value on the stack (which is 0) into | <empty>

images/00078.jpg
1
3
1
13
15
15
1
13
19
140
11
10
43
1}
15
46
17
48
143
150
151
15
bri}
156
155
15
15
15
159
160
161
19
16
16
165
166
1
168
16
7
m
m
m
m
75
8
m
1
s
180
181
1
e
180
13
13
17
15
159
190
191

* Returns the ‘xelative’ attribute, that deternines ‘vhich®
* Gay-of -the-yse ve are interested in (Seriallate.PRECEDING,
+ SerialDate NEAREST or Serialate.FOLLONING) .

* Graturn The ‘relative
+

sublic int getRelative() {

return this. relative;

)

s
+ Sets the “relative! attribute (Serialbate, PRECEDING, SerialDate NEAREST,
* SerialDate FOLLOVING) .

 fparen xelacive dotemines "ehich dayeof-thevesk s selcced by this

ateribute.

o

public void setRelativefinal int relativel (
this. relative = T

'

o

* Creates a clone of this rule.

+ fraturn a clone of this rule.

+ Gthrous CloneliotSupportedEkception this should never hagpen.
*
oublic Object clone() throus ClonstiotSupportedBrception {
Einal Relativebayofieskiule duplicate
= [RelativeDayofiiekRule] super. cloe(
auplicate.subrule = (AamalDateRile] duplicate.getsubrulel .clone();
retum duplicate;

W
* Returns the date generated by this rule, for the specified year.

* Gparan year the year (1900 <s= year alts= 9999).

@return The date generated by the rule for the given year [possibly
<codeomull</coden)

D
public Serialtate getdate(final int year)

11 chack arguent....
S8 {(year < SerialDate. NINDSN_YEAR SUPRORTED)
|1 lyear > SerialDate. MAXIMUM_YEAR_SUPPORTED}} {
throw new Illegalarguencixceptionl
*RelativeDayofsekRule. getbate() : year cutside valid range.

)

1/ calculate the date....
Serialbate result = mil;
final SerialDate base = this. subrule.getDatelyear];

images/00080.jpg
auy
o
m
b
1
35
e
17
e
19
100
141
102
14
1
us
b
10
8
143
150
151
152
15
15
155
156
157

155
160
16
18
16
16
165
166
10
168
1
1
m
m
7
m
175
7
m
m
7
1
191
21
18
18
15
18
197
13
5
190
191

£ ((day >= 1) & (ay <= Serialbate. lastDayofonth(aonth, year))) |
this.day = day;

else (
‘hron new Thlegalarguentxception(*Invalid ‘day’ arguoent.}
)

11 the serial misber needs to be synchronised with the day-sonth-year.
this.serial = calcSerial (day, nonth, year):

this.description = mull;

)

s
+ Standard constructor - creates & new date Object representing the
+ specified day munber (vhich should be in the zange 2 to 2958465,

* Gparam serial the serial musber for the day (range: 2 to 2958465 .
.
public Spreadsheettate(final int serial) {

it ((serial > SIRIL LOVAR_BOUND) & (serial
this.serial = serial;
)

alse (
throw new Illegalargusentixception|
*SpreadsheetDate: Serial mist be in range 2 to 2958465.°);

SERIAL UPPER_SOUNDI) {

)

11 the day-month-year needs to be synchronised with the seriel munber...
calcDeybonthteer (]

)

o
* Returns the description that is attached to the date. It s mot

+ required that a cate have a description, but for scas applications it
+ 15 usefal.

* Greturn The description that is attached to the date.
.
pblic String getdescription(] {
return this.description;
)

I
* Sets the description for the dacs
* Gparan description the description for this date (<code>mulle/coder
$ pernitted).

i

public vold secbescription(inal String description) [
this.description = description;

)

10

* Recurms the serial musber for the date, where 1 Jamuary 1900 = 2

+ (this corresponds, alaoat, to the musbering systea used in Microsoft
Bxcel for Windows and Lotis 1-2-3).

images/00079.jpg

images/00082.jpg
Component

158} sourideooy

images/00081.jpg

images/00084.jpg
2ok
15
15
195
19
)
198
199
0
201
0
203
204
2
26
w
2
bl
2
an
12
a
a
21
26
il
21
23
2
21
m
@
2
2
2
Fil
2
2
b
21
2
2
2
25
236
bl
28
29
20
21
20
20
2
s
e
20
bl
£
50
51
el
295

SRS e R RN T SRR
B
ublic int toSerial() {
return this. sers
)

1
+ Returns a <code>fava.util. Datec/code> equivalent to this date.

+ raturn The date
“
seblic bace todate()
final Calendar calendar = Calendar getTstascel():
calendar. et (getYYYY (], gethonth() - 1, gecDayofiathll, 0, 0, 0);
return calesdar.gettizel);
)

i
+ Returns the year (assusme a valid range of 1900 to 9999) .
* raturn The year.

*

public int gerrrry() (

rsturn this.year:

)

e
* Returns the month (Jamary = 1, February = 2, arch = 3).

* Sreturn The month of the year.
.
blic int gethonth() {
return this.sonth;
)

m
+ Returns the day of the ponth.

* Greturn The day of the nonth.
o

public int getDayotienth()
rsturn this.day;

Retuns a code representing the day of the week.
>

The codes are defined in the (@link Serialdate] class as
<Code>SIDAY</code>, <cods>HONTAS/code>, <code>TUESTAT</code>,

<code> SATCRDAYc/ code>.

@return A code representing the day of the vesk.
2
public int getDayofieek() |
return (this.serial + 6) 47+ 1;
)

™
* Tests the equality of this date vith an arbitrary object.

@
¥ ol e LT bk S GHER U6 Ch hSASE S i Gaeace BE I

<CodesVEDNESOAT</code>, <code>THURSOAY<) ode>, <code>FRIDAY</code>, and

images/00083.jpg

images/00086.jpg
1
1
)
u
1
16
u
5
s
2
2
2
2
%
b
%
bl
2
b
3
i
2
3
%
3
%
)
3
33
4
a
a
b
a
i
4
@
i
3
5
51
52
5
541

package org.jiree.date;

iaport java.util Calendar;
import Java.text DateFomatsymbols;

public enum Day {

HONDAY (Calendar ODAY),
TUESDAY(Calendar TUESDAY)
WEDNESEAY (Calendar WEDNESOAY)
‘THURSOAY (Calendar THURSTAY),
FRIDAY (Calendar. FRIDAY),
‘SATURDAY (Calendar SKTURDAY) ,
‘SUNDAY (Calendar. SONDAY)

private final int index;
private static DateFornatSynbols dateSymbols = new DateFormatsynbols();

Daylint day) (
index = day;
i

public static Day froalnt(int index) throws IllegalArgumentException {
for (Day d : Day.values())]
i (d.index == index]
return d
throw new 1legalirgumentaxception|
String. fornat (*llegal day index: .
1

public static Day parse(String s) throws Tllegalirgumentixception (
Stringl] shortiieekdayanes =
dateSynbols.get ShortHeskdays()
String]] veekbayanes =
dateSyabols.getheskdays()

, index))

5= s.crinq);
for (Bay day : Day.valuss()} [
it {s.equalsTgnorecase shortWeskdayNames day. index]) ||
5. equalsiguoreCase (veskDayNanes [day. index]) | (
| Febum day;

)
throw new TllegalArgunentBxception(
String. fornat (*As is not a valid weekday string®,));

j

public String toString() (
| e dasespbols.geceendays) i)

public int tomnt() {
eturn index;
1

images/00085.jpg

images/00087.jpg

