Python for Data Analysis
Wes McKinney
Published by O’Reilly Media
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo
Preface
The scientific Python ecosystem of open source libraries has grown substantially over the last 10 years. By late 2011, I had long felt that the lack of centralized learning resources for data analysis and statistical applications was a stumbling block for new Python programmers engaged in such work. Key projects for data analysis (especially NumPy, IPython, matplotlib, and pandas) had also matured enough that a book written about them would likely not go out-of-date very quickly. Thus, I mustered the nerve to embark on this writing project. This is the book that I wish existed when I started using Python for data analysis in 2007. I hope you find it useful and are able to apply these tools productively in your work.
Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by context.
TIP
This icon signifies a tip, suggestion, or general note.
CAUTION
This icon indicates a warning or caution.
Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Python for Data Analysis by William Wesley McKinney (O’Reilly). Copyright 2012 William McKinney, 978-1-449-31979-3.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.
Safari® Books Online
NOTE
Safari Books Online (www.safaribooksonline.com) is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.
Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.
How to Contact Us
Please address comments and questions concerning this book to the publisher:
O’Reilly Media, Inc. |
1005 Gravenstein Highway North |
Sebastopol, CA 95472 |
800-998-9938 (in the United States or Canada) |
707-829-0515 (international or local) |
707-829-0104 (fax) |
We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/python_for_data_analysis.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
Chapter 1. Preliminaries
What Is This Book About?
This book is concerned with the nuts and bolts of manipulating, processing, cleaning, and crunching data in Python. It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you’ll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.
When I say “data”, what am I referring to exactly? The primary focus is on structured data, a deliberately vague term that encompasses many different common forms of data, such as
Multidimensional arrays (matrices)
Tabular or spreadsheet-like data in which each column may be a different type (string, numeric, date, or otherwise). This includes most kinds of data commonly stored in relational databases or tab- or comma-delimited text files
Multiple tables of data interrelated by key columns (what would be primary or foreign keys for a SQL user)
Evenly or unevenly spaced time series
This is by no means a complete list. Even though it may not always be obvious, a large percentage of data sets can be transformed into a structured form that is more suitable for analysis and modeling. If not, it may be possible to extract features from a data set into a structured form. As an example, a collection of news articles could be processed into a word frequency table which could then be used to perform sentiment analysis.
Most users of spreadsheet programs like Microsoft Excel, perhaps the most widely used data analysis tool in the world, will not be strangers to these kinds of data.
Why Python for Data Analysis?
For many people (myself among them), the Python language is easy to fall in love with. Since its first appearance in 1991, Python has become one of the most popular dynamic, programming languages, along with Perl, Ruby, and others. Python and Ruby have become especially popular in recent years for building websites using their numerous web frameworks, like Rails (Ruby) and Django (Python). Such languages are often called scripting languages as they can be used to write quick-and-dirty small programs, or scripts. I don’t like the term “scripting language” as it carries a connotation that they cannot be used for building mission-critical software. Among interpreted languages Python is distinguished by its large and active scientific computing community. Adoption of Python for scientific computing in both industry applications and academic research has increased significantly since the early 2000s.
For data analysis and interactive, exploratory computing and data visualization, Python will inevitably draw comparisons with the many other domain-specific open source and commercial programming languages and tools in wide use, such as R, MATLAB, SAS, Stata, and others. In recent years, Python’s improved library support (primarily pandas) has made it a strong alternative for data manipulation tasks. Combined with Python’s strength in general purpose programming, it is an excellent choice as a single language for building data-centric applications.
Python as Glue
Part of Python’s success as a scientific computing platform is the ease of integrating C, C++, and FORTRAN code. Most modern computing environments share a similar set of legacy FORTRAN and C libraries for doing linear algebra, optimization, integration, fast fourier transforms, and other such algorithms. The same story has held true for many companies and national labs that have used Python to glue together 30 years’ worth of legacy software.
Most programs consist of small portions of code where most of the time is spent, with large amounts of “glue code” that doesn’t run often. In many cases, the execution time of the glue code is insignificant; effort is most fruitfully invested in optimizing the computational bottlenecks, sometimes by moving the code to a lower-level language like C.
In the last few years, the Cython project (http://cython.org) has become one of the preferred ways of both creating fast compiled extensions for Python and also interfacing with C and C++ code.
Solving the “Two-Language” Problem
In many organizations, it is common to research, prototype, and test new ideas using a more domain-specific computing language like MATLAB or R then later port those ideas to be part of a larger production system written in, say, Java, C#, or C++. What people are increasingly finding is that Python is a suitable language not only for doing research and prototyping but also building the production systems, too. I believe that more and more companies will go down this path as there are often significant organizational benefits to having both scientists and technologists using the same set of programmatic tools.
Why Not Python?
While Python is an excellent environment for building computationally-intensive scientific applications and building most kinds of general purpose systems, there are a number of uses for which Python may be less suitable.
As Python is an interpreted programming language, in general most Python code will run substantially slower than code written in a compiled language like Java or C++. As programmer time is typically more valuable than CPU time, many are happy to make this tradeoff. However, in an application with very low latency requirements (for example, a high frequency trading system), the time spent programming in a lower-level, lower-productivity language like C++ to achieve the maximum possible performance might be time well spent.
Python is not an ideal language for highly concurrent, multithreaded applications, particularly applications with many CPU-bound threads. The reason for this is that it has what is known as the global interpreter lock (GIL), a mechanism which prevents the interpreter from executing more than one Python bytecode instruction at a time. The technical reasons for why the GIL exists are beyond the scope of this book, but as of this writing it does not seem likely that the GIL will disappear anytime soon. While it is true that in many big data processing applications, a cluster of computers may be required to process a data set in a reasonable amount of time, there are still situations where a single-process, multithreaded system is desirable.
This is not to say that Python cannot execute truly multithreaded, parallel code; that code just cannot be executed in a single Python process. As an example, the Cython project features easy integration with OpenMP, a C framework for parallel computing, in order to to parallelize loops and thus significantly speed up numerical algorithms.
Essential Python Libraries
For those who are less familiar with the scientific Python ecosystem and the libraries used throughout the book, I present the following overview of each library.
NumPy
NumPy, short for Numerical Python, is the foundational package for scientific computing in Python. The majority of this book will be based on NumPy and libraries built on top of NumPy. It provides, among other things:
A fast and efficient multidimensional array object ndarray
Functions for performing element-wise computations with arrays or mathematical operations between arrays
Tools for reading and writing array-based data sets to disk
Linear algebra operations, Fourier transform, and random number generation
Tools for integrating connecting C, C++, and Fortran code to Python
Beyond the fast array-processing capabilities that NumPy adds to Python, one of its primary purposes with regards to data analysis is as the primary container for data to be passed between algorithms. For numerical data, NumPy arrays are a much more efficient way of storing and manipulating data than the other built-in Python data structures. Also, libraries written in a lower-level language, such as C or Fortran, can operate on the data stored in a NumPy array without copying any data.
pandas
pandas provides rich data structures and functions designed to make working with structured data fast, easy, and expressive. It is, as you will see, one of the critical ingredients enabling Python to be a powerful and productive data analysis environment. The primary object in pandas that will be used in this book is the DataFrame, a two-dimensional tabular, column-oriented data structure with both row and column labels:
>>> frame
total_bill tip sex smoker day time size
1 16.99 1.01 Female No Sun Dinner 2
2 10.34 1.66 Male No Sun Dinner 3
3 21.01 3.5 Male No Sun Dinner 3
4 23.68 3.31 Male No Sun Dinner 2
5 24.59 3.61 Female No Sun Dinner 4
6 25.29 4.71 Male No Sun Dinner 4
7 8.77 2 Male No Sun Dinner 2
8 26.88 3.12 Male No Sun Dinner 4
9 15.04 1.96 Male No Sun Dinner 2
10 14.78 3.23 Male No Sun Dinner 2
pandas combines the high performance array-computing features of NumPy with the flexible data manipulation capabilities of spreadsheets and relational databases (such as SQL). It provides sophisticated indexing functionality to make it easy to reshape, slice and dice, perform aggregations, and select subsets of data. pandas is the primary tool that we will use in this book.
For financial users, pandas features rich, high-performance time series functionality and tools well-suited for working with financial data. In fact, I initially designed pandas as an ideal tool for financial data analysis applications.
For users of the R language for statistical computing, the DataFrame name will be familiar, as the object was named after the similar R data.frame object. They are not the same, however; the functionality provided by data.frame in R is essentially a strict subset of that provided by the pandas DataFrame. While this is a book about Python, I will occasionally draw comparisons with R as it is one of the most widely-used open source data analysis environments and will be familiar to many readers.
The pandas name itself is derived from panel data, an econometrics term for multidimensional structured data sets, and Python data analysis itself.
matplotlib
matplotlib is the most popular Python library for producing plots and other 2D data visualizations. It was originally created by John D. Hunter (JDH) and is now maintained by a large team of developers. It is well-suited for creating plots suitable for publication. It integrates well with IPython (see below), thus providing a comfortable interactive environment for plotting and exploring data. The plots are also interactive; you can zoom in on a section of the plot and pan around the plot using the toolbar in the plot window.
IPython
IPython is the component in the standard scientific Python toolset that ties everything together. It provides a robust and productive environment for interactive and exploratory computing. It is an enhanced Python shell designed to accelerate the writing, testing, and debugging of Python code. It is particularly useful for interactively working with data and visualizing data with matplotlib. IPython is usually involved with the majority of my Python work, including running, debugging, and testing code.
Aside from the standard terminal-based IPython shell, the project also provides
A Mathematica-like HTML notebook for connecting to IPython through a web browser (more on this later).
A Qt framework-based GUI console with inline plotting, multiline editing, and syntax highlighting
An infrastructure for interactive parallel and distributed computing
I will devote a chapter to IPython and how to get the most out of its features. I strongly recommend using it while working through this book.
SciPy
SciPy is a collection of packages addressing a number of different standard problem domains in scientific computing. Here is a sampling of the packages included:
scipy.integrate: numerical integration routines and differential equation solvers
scipy.linalg: linear algebra routines and matrix decompositions extending beyond those provided in numpy.linalg.
scipy.optimize: function optimizers (minimizers) and root finding algorithms
scipy.signal: signal processing tools
scipy.sparse: sparse matrices and sparse linear system solvers
scipy.special: wrapper around SPECFUN, a Fortran library implementing many common mathematical functions, such as the gamma function
scipy.stats: standard continuous and discrete probability distributions (density functions, samplers, continuous distribution functions), various statistical tests, and more descriptive statistics
scipy.weave: tool for using inline C++ code to accelerate array computations
Together NumPy and SciPy form a reasonably complete computational replacement for much of MATLAB along with some of its add-on toolboxes.
Installation and Setup
Since everyone uses Python for different applications, there is no single solution for setting up Python and required add-on packages. Many readers will not have a complete scientific Python environment suitable for following along with this book, so here I will give detailed instructions to get set up on each operating system. I recommend using one of the following base Python distributions:
Enthought Python Distribution: a scientific-oriented Python distribution from Enthought (http://www.enthought.com). This includes EPDFree, a free base scientific distribution (with NumPy, SciPy, matplotlib, Chaco, and IPython) and EPD Full, a comprehensive suite of more than 100 scientific packages across many domains. EPD Full is free for academic use but has an annual subscription for non-academic users.
Python(x,y) (http://pythonxy.googlecode.com): A free scientific-oriented Python distribution for Windows.
I will be using EPDFree for the installation guides, though you are welcome to take another approach depending on your needs. At the time of this writing, EPD includes Python 2.7, though this might change at some point in the future. After installing, you will have the following packages installed and importable:
Scientific Python base: NumPy, SciPy, matplotlib, and IPython. These are all included in EPDFree.
IPython Notebook dependencies: tornado and pyzmq. These are included in EPDFree.
pandas (version 0.8.2 or higher).
At some point while reading you may wish to install one or more of the following packages: statsmodels, PyTables, PyQt (or equivalently, PySide), xlrd, lxml, basemap, pymongo, and requests. These are used in various examples. Installing these optional libraries is not necessary, and I would would suggest waiting until you need them. For example, installing PyQt or PyTables from source on OS X or Linux can be rather arduous. For now, it’s most important to get up and running with the bare minimum: EPDFree and pandas.
For information on each Python package and links to binary installers or other help, see the Python Package Index (PyPI, http://pypi.python.org). This is also an excellent resource for finding new Python packages.
NOTE
To avoid confusion and to keep things simple, I am avoiding discussion of more complex environment management tools like pip and virtualenv. There are many excellent guides available for these tools on the Internet.
CAUTION
Some users may be interested in alternate Python implementations, such as IronPython, Jython, or PyPy. To make use of the tools presented in this book, it is (currently) necessary to use the standard C-based Python interpreter, known as CPython.
Windows
To get started on Windows, download the EPDFree installer from http://www.enthought.com, which should be an MSI installer named like epd_free-7.3-1-win-x86.msi. Run the installer and accept the default installation location C:\Python27. If you had previously installed Python in this location, you may want to delete it manually first (or using Add/Remove Programs).
Next, you need to verify that Python has been successfully added to the system path and that there are no conflicts with any prior-installed Python versions. First, open a command prompt by going to the Start Menu and starting the Command Prompt application, also known as cmd.exe. Try starting the Python interpreter by typing python. You should see a message that matches the version of EPDFree you installed:
C:\Users\Wes>python
Python 2.7.3 |EPD_free 7.3-1 (32-bit)| (default, Apr 12 2012, 14:30:37) on win32
Type "credits", "demo" or "enthought" for more information.
>>>
If you see a message for a different version of EPD or it doesn’t work at all, you will need to clean up your Windows environment variables. On Windows 7 you can start typing “environment variables” in the programs search field and select Edit environment variables for your account. On Windows XP, you will have to go to Control Panel > System > Advanced > Environment Variables. On the window that pops up, you are looking for the Path variable. It needs to contain the following two directory paths, separated by semicolons:
C:\Python27;C:\Python27\Scripts
If you installed other versions of Python, be sure to delete any other Python-related directories from both the system and user Path variables. After making a path alternation, you have to restart the command prompt for the changes to take effect.
Once you can launch Python successfully from the command prompt, you need to install pandas. The easiest way is to download the appropriate binary installer from http://pypi.python.org/pypi/pandas. For EPDFree, this should be pandas-0.9.0.win32-py2.7.exe. After you run this, let’s launch IPython and check that things are installed correctly by importing pandas and making a simple matplotlib plot:
C:\Users\Wes>ipython --pylab
Python 2.7.3 |EPD_free 7.3-1 (32-bit)|
Type "copyright", "credits" or "license" for more information.
IPython 0.12.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
Welcome to pylab, a matplotlib-based Python environment [backend: WXAgg].
For more information, type 'help(pylab)'.
In [1]: import pandas
In [2]: plot(arange(10))
If successful, there should be no error messages and a plot window will appear. You can also check that the IPython HTML notebook can be successfully run by typing:
$ ipython notebook --pylab=inline
CAUTION
If you use the IPython notebook application on Windows and normally use Internet Explorer, you will likely need to install and run Mozilla Firefox or Google Chrome instead.
EPDFree on Windows contains only 32-bit executables. If you want or need a 64-bit setup on Windows, using EPD Full is the most painless way to accomplish that. If you would rather install from scratch and not pay for an EPD subscription, Christoph Gohlke at the University of California, Irvine, publishes unofficial binary installers for all of the book’s necessary packages (http://www.lfd.uci.edu/~gohlke/pythonlibs/) for 32- and 64-bit Windows.
Apple OS X
To get started on OS X, you must first install Xcode, which includes Apple’s suite of software development tools. The necessary component for our purposes is the gcc C and C++ compiler suite. The Xcode installer can be found on the OS X install DVD that came with your computer or downloaded from Apple directly.
Once you’ve installed Xcode, launch the terminal (Terminal.app) by navigating to Applications > Utilities. Type gcc and press enter. You should hopefully see something like:
$ gcc
i686-apple-darwin10-gcc-4.2.1: no input files
Now you need to install EPDFree. Download the installer which should be a disk image named something like epd_free-7.3-1-macosx-i386.dmg. Double-click the .dmg file to mount it, then double-click the .mpkg file inside to run the installer.
When the installer runs, it automatically appends the EPDFree executable path to your .bash_profile file. This is located at /Users/your_uname/.bash_profile:
Setting PATH for EPD_free-7.3-1
PATH="/Library/Frameworks/Python.framework/Versions/Current/bin:${PATH}"
export PATH
Should you encounter any problems in the following steps, you’ll want to inspect your .bash_profile and potentially add the above directory to your path.
Now, it’s time to install pandas. Execute this command in the terminal:
$ sudo easy_install pandas
Searching for pandas
Reading http://pypi.python.org/simple/pandas/
Reading http://pandas.pydata.org
Reading http://pandas.sourceforge.net
Best match: pandas 0.9.0
Downloading http://pypi.python.org/packages/source/p/pandas/pandas-0.9.0.zip
Processing pandas-0.9.0.zip
Writing /tmp/easy_install-H5mIX6/pandas-0.9.0/setup.cfg
Running pandas-0.9.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-H5mIX6/
pandas-0.9.0/egg-dist-tmp-RhLG0z
Adding pandas 0.9.0 to easy-install.pth file
Installed /Library/Frameworks/Python.framework/Versions/7.3/lib/python2.7/
site-packages/pandas-0.9.0-py2.7-macosx-10.5-i386.egg
Processing dependencies for pandas
Finished processing dependencies for pandas
To verify everything is working, launch IPython in Pylab mode and test importing pandas then making a plot interactively:
$ ipython --pylab
22:29 ~/VirtualBox VMs/WindowsXP $ ipython
Python 2.7.3 |EPD_free 7.3-1 (32-bit)| (default, Apr 12 2012, 11:28:34)
Type "copyright", "credits" or "license" for more information.
IPython 0.12.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
Welcome to pylab, a matplotlib-based Python environment [backend: WXAgg].
For more information, type 'help(pylab)'.
In [1]: import pandas
In [2]: plot(arange(10))
If this succeeds, a plot window with a straight line should pop up.
GNU/Linux
NOTE
Some, but not all, Linux distributions include sufficiently up-to-date versions of all the required Python packages and can be installed using the built-in package management tool like apt. I detail setup using EPDFree as it's easily reproducible across distributions.
Linux details will vary a bit depending on your Linux flavor, but here I give details for Debian-based GNU/Linux systems like Ubuntu and Mint. Setup is similar to OS X with the exception of how EPDFree is installed. The installer is a shell script that must be executed in the terminal. Depending on whether you have a 32-bit or 64-bit system, you will either need to install the x86 (32-bit) or x86_64 (64-bit) installer. You will then have a file named something similar to epd_free-7.3-1-rh5-x86_64.sh. To install it, execute this script with bash:
$ bash epd_free-7.3-1-rh5-x86_64.sh
After accepting the license, you will be presented with a choice of where to put the EPDFree files. I recommend installing the files in your home directory, say /home/wesm/epd (substituting your own username for wesm).
Once the installer has finished, you need to add EPDFree’s bin directory to your $PATH variable. If you are using the bash shell (the default in Ubuntu, for example), this means adding the following path addition in your .bashrc:
export PATH=/home/wesm/epd/bin:$PATH
Obviously, substitute the installation directory you used for /home/wesm/epd/. After doing this you can either start a new terminal process or execute your .bashrc again with source ~/.bashrc.
You need a C compiler such as gcc to move forward; many Linux distributions include gcc, but others may not. On Debian systems, you can install gcc by executing:
sudo apt-get install gcc
If you type gcc on the command line it should say something like:
$ gcc
gcc: no input files
Now, time to install pandas:
$ easy_install pandas
If you installed EPDFree as root, you may need to add sudo to the command and enter the sudo or root password. To verify things are working, perform the same checks as in the OS X section.
Python 2 and Python 3
The Python community is currently undergoing a drawn-out transition from the Python 2 series of interpreters to the Python 3 series. Until the appearance of Python 3.0, all Python code was backwards compatible. The community decided that in order to move the language forward, certain backwards incompatible changes were necessary.
I am writing this book with Python 2.7 as its basis, as the majority of the scientific Python community has not yet transitioned to Python 3. The good news is that, with a few exceptions, you should have no trouble following along with the book if you happen to be using Python 3.2.
Integrated Development Environments (IDEs)
When asked about my standard development environment, I almost always say “IPython plus a text editor”. I typically write a program and iteratively test and debug each piece of it in IPython. It is also useful to be able to play around with data interactively and visually verify that a particular set of data manipulations are doing the right thing. Libraries like pandas and NumPy are designed to be easy-to-use in the shell.
However, some will still prefer to work in an IDE instead of a text editor. They do provide many nice “code intelligence” features like completion or quickly pulling up the documentation associated with functions and classes. Here are some that you can explore:
Eclipse with PyDev Plugin
Python Tools for Visual Studio (for Windows users)
PyCharm
Spyder
Komodo IDE
Community and Conferences
Outside of an Internet search, the scientific Python mailing lists are generally helpful and responsive to questions. Some ones to take a look at are:
pydata: a Google Group list for questions related to Python for data analysis and pandas
pystatsmodels: for statsmodels or pandas-related questions
numpy-discussion: for NumPy-related questions
scipy-user: for general SciPy or scientific Python questions
I deliberately did not post URLs for these in case they change. They can be easily located via Internet search.
Each year many conferences are held all over the world for Python programmers. PyCon and EuroPython are the two main general Python conferences in the United States and Europe, respectively. SciPy and EuroSciPy are scientific-oriented Python conferences where you will likely find many “birds of a feather” if you become more involved with using Python for data analysis after reading this book.
Navigating This Book
If you have never programmed in Python before, you may actually want to start at the end of the book, where I have placed a condensed tutorial on Python syntax, language features, and built-in data structures like tuples, lists, and dicts. These things are considered prerequisite knowledge for the remainder of the book.
The book starts by introducing you to the IPython environment. Next, I give a short introduction to the key features of NumPy, leaving more advanced NumPy use for another chapter at the end of the book. Then, I introduce pandas and devote the rest of the book to data analysis topics applying pandas, NumPy, and matplotlib (for visualization). I have structured the material in the most incremental way possible, though there is occasionally some minor cross-over between chapters.
Data files and related material for each chapter are hosted as a git repository on GitHub:
http://github.com/pydata/pydata-book
I encourage you to download the data and use it to replicate the book’s code examples and experiment with the tools presented in each chapter. I will happily accept contributions, scripts, IPython notebooks, or any other materials you wish to contribute to the book's repository for all to enjoy.
Code Examples
Most of the code examples in the book are shown with input and output as it would appear executed in the IPython shell.
In [5]: code
Out[5]: output
At times, for clarity, multiple code examples will be shown side by side. These should be read left to right and executed separately.
In [5]: code In [6]: code2
Out[5]: output Out[6]: output2
Data for Examples
Data sets for the examples in each chapter are hosted in a repository on GitHub: http://github.com/pydata/pydata-book. You can download this data either by using the git revision control command-line program or by downloading a zip file of the repository from the website.
I have made every effort to ensure that it contains everything necessary to reproduce the examples, but I may have made some mistakes or omissions. If so, please send me an e-mail: wesmckinn@gmail.com.
Import Conventions
The Python community has adopted a number of naming conventions for commonly-used modules:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
This means that when you see np.arange, this is a reference to the arange function in NumPy. This is done as it’s considered bad practice in Python software development to import everything (from numpy import *) from a large package like NumPy.
Jargon
I’ll use some terms common both to programming and data science that you may not be familiar with. Thus, here are some brief definitions:
Munge/Munging/Wrangling
Describes the overall process of manipulating unstructured and/or messy data into a structured or clean form. The word has snuck its way into the jargon of many modern day data hackers. Munge rhymes with “lunge”.
Pseudocode
A description of an algorithm or process that takes a code-like form while likely not being actual valid source code.
Syntactic sugar
Programming syntax which does not add new features, but makes something more convenient or easier to type.
Acknowledgements
It would have been difficult for me to write this book without the support of a large number of people.
On the O’Reilly staff, I’m very grateful for my editors Meghan Blanchette and Julie Steele who guided me through the process. Mike Loukides also worked with me in the proposal stages and helped make the book a reality.
I received a wealth of technical review from a large cast of characters. In particular, Martin Blais and Hugh White were incredibly helpful in improving the book’s examples, clarity, and organization from cover to cover. James Long, Drew Conway, Fernando Pérez, Brian Granger, Thomas Kluyver, Adam Klein, Josh Klein, Chang She, and Stéfan van der Walt each reviewed one or more chapters, providing pointed feedback from many different perspectives.
I got many great ideas for examples and data sets from friends and colleagues in the data community, among them: Mike Dewar, Jeff Hammerbacher, James Johndrow, Kristian Lum, Adam Klein, Hilary Mason, Chang She, and Ashley Williams.
I am of course indebted to the many leaders in the open source scientific Python community who’ve built the foundation for my development work and gave encouragement while I was writing this book: the IPython core team (Fernando Pérez, Brian Granger, Min Ragan-Kelly, Thomas Kluyver, and others), John Hunter, Skipper Seabold, Travis Oliphant, Peter Wang, Eric Jones, Robert Kern, Josef Perktold, Francesc Alted, Chris Fonnesbeck, and too many others to mention. Several other people provided a great deal of support, ideas, and encouragement along the way: Drew Conway, Sean Taylor, Giuseppe Paleologo, Jared Lander, David Epstein, John Krowas, Joshua Bloom, Den Pilsworth, John Myles-White, and many others I’ve forgotten.
I’d also like to thank a number of people from my formative years. First, my former AQR colleagues who’ve cheered me on in my pandas work over the years: Alex Reyfman, Michael Wong, Tim Sargen, Oktay Kurbanov, Matthew Tschantz, Roni Israelov, Michael Katz, Chris Uga, Prasad Ramanan, Ted Square, and Hoon Kim. Lastly, my academic advisors Haynes Miller (MIT) and Mike West (Duke).
On the personal side, Casey Dinkin provided invaluable day-to-day support during the writing process, tolerating my highs and lows as I hacked together the final draft on top of an already overcommitted schedule. Lastly, my parents, Bill and Kim, taught me to always follow my dreams and to never settle for less.
Chapter 2. Introductory Examples
This book teaches you the Python tools to work productively with data. While readers may have many different end goals for their work, the tasks required generally fall into a number of different broad groups:
Interacting with the outside world
Reading and writing with a variety of file formats and databases.
Preparation
Cleaning, munging, combining, normalizing, reshaping, slicing and dicing, and transforming data for analysis.
Transformation
Applying mathematical and statistical operations to groups of data sets to derive new data sets. For example, aggregating a large table by group variables.
Modeling and computation
Connecting your data to statistical models, machine learning algorithms, or other computational tools
Presentation
Creating interactive or static graphical visualizations or textual summaries
In this chapter I will show you a few data sets and some things we can do with them. These examples are just intended to pique your interest and thus will only be explained at a high level. Don’t worry if you have no experience with any of these tools; they will be discussed in great detail throughout the rest of the book. In the code examples you’ll see input and output prompts like In [15]:; these are from the IPython shell.
1.usa.gov data from bit.ly
In 2011, URL shortening service bit.ly partnered with the United States government website usa.gov to provide a feed of anonymous data gathered from users who shorten links ending with .gov or .mil. As of this writing, in addition to providing a live feed, hourly snapshots are available as downloadable text files.[1]
In the case of the hourly snapshots, each line in each file contains a common form of web data known as JSON, which stands for JavaScript Object Notation. For example, if we read just the first line of a file you may see something like
In [15]: path = 'ch02/usagov_bitly_data2012-03-16-1331923249.txt'
In [16]: open(path).readline()
Out[16]: '{ "a": "Mozilla\\/5.0 (Windows NT 6.1; WOW64) AppleWebKit\\/535.11
(KHTML, like Gecko) Chrome\\/17.0.963.78 Safari\\/535.11", "c": "US", "nk": 1,
"tz": "America\\/New_York", "gr": "MA", "g": "A6qOVH", "h": "wfLQtf", "l":
"orofrog", "al": "en-US,en;q=0.8", "hh": "1.usa.gov", "r":
"http:\\/\\/www.facebook.com\\/l\\/7AQEFzjSi\\/1.usa.gov\\/wfLQtf", "u":
"http:\\/\\/www.ncbi.nlm.nih.gov\\/pubmed\\/22415991", "t": 1331923247, "hc":
1331822918, "cy": "Danvers", "ll": [42.576698, -70.954903] }\n'
Python has numerous built-in and 3rd party modules for converting a JSON string into a Python dictionary object. Here I’ll use the json module and its loads function invoked on each line in the sample file I downloaded:
import json
path = 'ch02/usagov_bitly_data2012-03-16-1331923249.txt'
records = [json.loads(line) for line in open(path)]
If you’ve never programmed in Python before, the last expression here is called a list comprehension, which is a concise way of applying an operation (like json.loads) to a collection of strings or other objects. Conveniently, iterating over an open file handle gives you a sequence of its lines. The resulting object records is now a list of Python dicts:
In [18]: records[0]
Out[18]:
{u'a': u'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like
Gecko) Chrome/17.0.963.78 Safari/535.11',
u'al': u'en-US,en;q=0.8',
u'c': u'US',
u'cy': u'Danvers',
u'g': u'A6qOVH',
u'gr': u'MA',
u'h': u'wfLQtf',
u'hc': 1331822918,
u'hh': u'1.usa.gov',
u'l': u'orofrog',
u'll': [42.576698, -70.954903],
u'nk': 1,
u'r': u'http://www.facebook.com/l/7AQEFzjSi/1.usa.gov/wfLQtf',
u't': 1331923247,
u'tz': u'America/New_York',
u'u': u'http://www.ncbi.nlm.nih.gov/pubmed/22415991'}
Note that Python indices start at 0 and not 1 like some other languages (like R). It’s now easy to access individual values within records by passing a string for the key you wish to access:
In [19]: records[0]['tz']
Out[19]: u'America/New_York'
The u here in front of the quotation stands for unicode, a standard form of string encoding. Note that IPython shows the time zone string object representation here rather than its print equivalent:
In [20]: print records[0]['tz']
America/New_York
Counting Time Zones in Pure Python
Suppose we were interested in the most often-occurring time zones in the data set (the tz field). There are many ways we could do this. First, let’s extract a list of time zones again using a list comprehension:
In [25]: time_zones = [rec['tz'] for rec in records]

KeyError Traceback (most recent call last)
/home/wesm/book_scripts/whetting/<ipython> in <module>()
----> 1 time_zones = [rec['tz'] for rec in records]
KeyError: 'tz'
Oops! Turns out that not all of the records have a time zone field. This is easy to handle as we can add the check if 'tz' in rec at the end of the list comprehension:
In [26]: time_zones = [rec['tz'] for rec in records if 'tz' in rec]
In [27]: time_zones[:10]
Out[27]:
[u'America/New_York',
u'America/Denver',
u'America/New_York',
u'America/Sao_Paulo',
u'America/New_York',
u'America/New_York',
u'Europe/Warsaw',
u'',
u'',
u'']
Just looking at the first 10 time zones we see that some of them are unknown (empty). You can filter these out also but I’ll leave them in for now. Now, to produce counts by time zone I’ll show two approaches: the harder way (using just the Python standard library) and the easier way (using pandas). One way to do the counting is to use a dict to store counts while we iterate through the time zones:
def get_counts(sequence):
counts = {}
for x in sequence:
if x in counts:
counts[x] += 1
else:
counts[x] = 1
return counts
If you know a bit more about the Python standard library, you might prefer to write the same thing more briefly:
from collections import defaultdict
def get_counts2(sequence):
counts = defaultdict(int) # values will initialize to 0
for x in sequence:
counts[x] += 1
return counts
I put this logic in a function just to make it more reusable. To use it on the time zones, just pass the time_zones list:
In [31]: counts = get_counts(time_zones)
In [32]: counts['America/New_York']
Out[32]: 1251
In [33]: len(time_zones)
Out[33]: 3440
If we wanted the top 10 time zones and their counts, we have to do a little bit of dictionary acrobatics:
def top_counts(count_dict, n=10):
value_key_pairs = [(count, tz) for tz, count in count_dict.items()]
value_key_pairs.sort()
return value_key_pairs[-n:]
We have then:
In [35]: top_counts(counts)
Out[35]:
[(33, u'America/Sao_Paulo'),
(35, u'Europe/Madrid'),
(36, u'Pacific/Honolulu'),
(37, u'Asia/Tokyo'),
(74, u'Europe/London'),
(191, u'America/Denver'),
(382, u'America/Los_Angeles'),
(400, u'America/Chicago'),
(521, u''),
(1251, u'America/New_York')]
If you search the Python standard library, you may find the collections.Counter class, which makes this task a lot easier:
In [49]: from collections import Counter
In [50]: counts = Counter(time_zones)
In [51]: counts.most_common(10)
Out[51]:
[(u'America/New_York', 1251),
(u'', 521),
(u'America/Chicago', 400),
(u'America/Los_Angeles', 382),
(u'America/Denver', 191),
(u'Europe/London', 74),
(u'Asia/Tokyo', 37),
(u'Pacific/Honolulu', 36),
(u'Europe/Madrid', 35),
(u'America/Sao_Paulo', 33)]
Counting Time Zones with pandas
The main pandas data structure is the DataFrame, which you can think of as representing a table or spreadsheet of data. Creating a DataFrame from the original set of records is simple:
In [289]: from pandas import DataFrame, Series
In [290]: import pandas as pd
In [291]: frame = DataFrame(records)
In [292]: frame
Out[292]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3560 entries, 0 to 3559
Data columns:
heartbeat 120 non-null values
a 3440 non-null values
al 3094 non-null values
c 2919 non-null values
cy 2919 non-null values
g 3440 non-null values
gr 2919 non-null values
h 3440 non-null values
hc 3440 non-null values
hh 3440 non-null values
kw 93 non-null values
l 3440 non-null values
ll 2919 non-null values
nk 3440 non-null values
r 3440 non-null values
t 3440 non-null values
tz 3440 non-null values
u 3440 non-null values
dtypes: float64(4), object(14)
In [293]: frame['tz'][:10]
Out[293]:
0 America/New_York
1 America/Denver
2 America/New_York
3 America/Sao_Paulo
4 America/New_York
5 America/New_York
6 Europe/Warsaw
7
8
9
Name: tz
The output shown for the frame is the summary view, shown for large DataFrame objects. The Series object returned by frame['tz'] has a method value_counts that gives us what we’re looking for:
In [294]: tz_counts = frame['tz'].value_counts()
In [295]: tz_counts[:10]
Out[295]:
America/New_York 1251
521
America/Chicago 400
America/Los_Angeles 382
America/Denver 191
Europe/London 74
Asia/Tokyo 37
Pacific/Honolulu 36
Europe/Madrid 35
America/Sao_Paulo 33
Then, we might want to make a plot of this data using plotting library, matplotlib. You can do a bit of munging to fill in a substitute value for unknown and missing time zone data in the records. The fillna function can replace missing (NA) values and unknown (empty strings) values can be replaced by boolean array indexing:
In [296]: clean_tz = frame['tz'].fillna('Missing')
In [297]: clean_tz[clean_tz == ''] = 'Unknown'
In [298]: tz_counts = clean_tz.value_counts()
In [299]: tz_counts[:10]
Out[299]:
America/New_York 1251
Unknown 521
America/Chicago 400
America/Los_Angeles 382
America/Denver 191
Missing 120
Europe/London 74
Asia/Tokyo 37
Pacific/Honolulu 36
Europe/Madrid 35
Making a horizontal bar plot can be accomplished using the plot method on the counts objects:
In [301]: tz_counts[:10].plot(kind='barh', rot=0)
See Figure 2-1 for the resulting figure. We’ll explore more tools for working with this kind of data. For example, the a field contains information about the browser, device, or application used to perform the URL shortening:
In [302]: frame['a'][1]
Out[302]: u'GoogleMaps/RochesterNY'
In [303]: frame['a'][50]
Out[303]: u'Mozilla/5.0 (Windows NT 5.1; rv:10.0.2) Gecko/20100101 Firefox/10.0.2'
In [304]: frame['a'][51]
Out[304]: u'Mozilla/5.0 (Linux; U; Android 2.2.2; en-us; LG-P925/V10e Build/FRG83G) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1'
Figure 2-1. Top time zones in the 1.usa.gov sample data
Parsing all of the interesting information in these “agent” strings may seem like a daunting task. Luckily, once you have mastered Python’s built-in string functions and regular expression capabilities, it is really not so bad. For example, we could split off the first token in the string (corresponding roughly to the browser capability) and make another summary of the user behavior:
In [305]: results = Series([x.split()[0] for x in frame.a.dropna()])
In [306]: results[:5]
Out[306]:
0 Mozilla/5.0
1 GoogleMaps/RochesterNY
2 Mozilla/4.0
3 Mozilla/5.0
4 Mozilla/5.0
In [307]: results.value_counts()[:8]
Out[307]:
Mozilla/5.0 2594
Mozilla/4.0 601
GoogleMaps/RochesterNY 121
Opera/9.80 34
TEST_INTERNET_AGENT 24
GoogleProducer 21
Mozilla/6.0 5
BlackBerry8520/5.0.0.681 4
Now, suppose you wanted to decompose the top time zones into Windows and non-Windows users. As a simplification, let’s say that a user is on Windows if the string 'Windows' is in the agent string. Since some of the agents are missing, I’ll exclude these from the data:
In [308]: cframe = frame[frame.a.notnull()]
We want to then compute a value whether each row is Windows or not:
In [309]: operating_system = np.where(cframe['a'].str.contains('Windows'),
.....: 'Windows', 'Not Windows')
In [310]: operating_system[:5]
Out[310]:
0 Windows
1 Not Windows
2 Windows
3 Not Windows
4 Windows
Name: a
Then, you can group the data by its time zone column and this new list of operating systems:
In [311]: by_tz_os = cframe.groupby(['tz', operating_system])
The group counts, analogous to the value_counts function above, can be computed using size. This result is then reshaped into a table with unstack:
In [312]: agg_counts = by_tz_os.size().unstack().fillna(0)
In [313]: agg_counts[:10]
Out[313]:
a Not Windows Windows
tz
245 276
Africa/Cairo 0 3
Africa/Casablanca 0 1
Africa/Ceuta 0 2
Africa/Johannesburg 0 1
Africa/Lusaka 0 1
America/Anchorage 4 1
America/Argentina/Buenos_Aires 1 0
America/Argentina/Cordoba 0 1
America/Argentina/Mendoza 0 1
Finally, let’s select the top overall time zones. To do so, I construct an indirect index array from the row counts in agg_counts:
Use to sort in ascending order
In [314]: indexer = agg_counts.sum(1).argsort()
In [315]: indexer[:10]
Out[315]:
tz
24
Africa/Cairo 20
Africa/Casablanca 21
Africa/Ceuta 92
Africa/Johannesburg 87
Africa/Lusaka 53
America/Anchorage 54
America/Argentina/Buenos_Aires 57
America/Argentina/Cordoba 26
America/Argentina/Mendoza 55
I then use take to select the rows in that order, then slice off the last 10 rows:
In [316]: count_subset = agg_counts.take(indexer)[-10:]
In [317]: count_subset
Out[317]:
a Not Windows Windows
tz
America/Sao_Paulo 13 20
Europe/Madrid 16 19
Pacific/Honolulu 0 36
Asia/Tokyo 2 35
Europe/London 43 31
America/Denver 132 59
America/Los_Angeles 130 252
America/Chicago 115 285
245 276
America/New_York 339 912
Then, as shown in the preceding code block, this can be plotted in a bar plot; I’ll make it a stacked bar plot by passing stacked=True (see Figure 2-2) :
In [319]: count_subset.plot(kind='barh', stacked=True)
Figure 2-2. Top time zones by Windows and non-Windows users
The plot doesn’t make it easy to see the relative percentage of Windows users in the smaller groups, but the rows can easily be normalized to sum to 1 then plotted again (see Figure 2-3):
In [321]: normed_subset = count_subset.div(count_subset.sum(1), axis=0)
In [322]: normed_subset.plot(kind='barh', stacked=True)
Figure 2-3. Percentage Windows and non-Windows users in top-occurring time zones
All of the methods employed here will be examined in great detail throughout the rest of the book.
MovieLens 1M Data Set
GroupLens Research (http://www.grouplens.org/node/73) provides a number of collections of movie ratings data collected from users of MovieLens in the late 1990s and early 2000s. The data provide movie ratings, movie metadata (genres and year), and demographic data about the users (age, zip code, gender, and occupation). Such data is often of interest in the development of recommendation systems based on machine learning algorithms. While I will not be exploring machine learning techniques in great detail in this book, I will show you how to slice and dice data sets like these into the exact form you need.
The MovieLens 1M data set contains 1 million ratings collected from 6000 users on 4000 movies. It’s spread across 3 tables: ratings, user information, and movie information. After extracting the data from the zip file, each table can be loaded into a pandas DataFrame object using pandas.read_table:
import pandas as pd
unames = ['user_id', 'gender', 'age', 'occupation', 'zip']
users = pd.read_table('ml-1m/users.dat', sep='::', header=None,
names=unames)
rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None,
names=rnames)
mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None,
names=mnames)
You can verify that everything succeeded by looking at the first few rows of each DataFrame with Python's slice syntax:
In [334]: users[:5]
Out[334]:
user_id gender age occupation zip
0 1 F 1 10 48067
1 2 M 56 16 70072
2 3 M 25 15 55117
3 4 M 45 7 02460
4 5 M 25 20 55455
In [335]: ratings[:5]
Out[335]:
user_id movie_id rating timestamp
0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291
In [336]: movies[:5]
Out[336]:
movie_id title genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
In [337]: ratings
Out[337]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000209 entries, 0 to 1000208
Data columns:
user_id 1000209 non-null values
movie_id 1000209 non-null values
rating 1000209 non-null values
timestamp 1000209 non-null values
dtypes: int64(4)
Note that ages and occupations are coded as integers indicating groups described in the data set’s README file. Analyzing the data spread across three tables is not a simple task; for example, suppose you wanted to compute mean ratings for a particular movie by sex and age. As you will see, this is much easier to do with all of the data merged together into a single table. Using pandas’s merge function, we first merge ratings with users then merging that result with the movies data. pandas infers which columns to use as the merge (or join) keys based on overlapping names:
In [338]: data = pd.merge(pd.merge(ratings, users), movies)
In [339]: data
Out[339]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000209 entries, 0 to 1000208
Data columns:
user_id 1000209 non-null values
movie_id 1000209 non-null values
rating 1000209 non-null values
timestamp 1000209 non-null values
gender 1000209 non-null values
age 1000209 non-null values
occupation 1000209 non-null values
zip 1000209 non-null values
title 1000209 non-null values
genres 1000209 non-null values
dtypes: int64(6), object(4)
In [340]: data.ix[0]
Out[340]:
user_id 1
movie_id 1
rating 5
timestamp 978824268
gender F
age 1
occupation 10
zip 48067
title Toy Story (1995)
genres Animation|Children's|Comedy
Name: 0
In this form, aggregating the ratings grouped by one or more user or movie attributes is straightforward once you build some familiarity with pandas. To get mean movie ratings for each film grouped by gender, we can use the pivot_table method:
In [341]: mean_ratings = data.pivot_table('rating', rows='title',
.....: cols='gender', aggfunc='mean')
In [342]: mean_ratings[:5]
Out[342]:
gender F M
title
$1,000,000 Duck (1971) 3.375000 2.761905
'Night Mother (1986) 3.388889 3.352941
'Til There Was You (1997) 2.675676 2.733333
'burbs, The (1989) 2.793478 2.962085
...And Justice for All (1979) 3.828571 3.689024
This produced another DataFrame containing mean ratings with movie totals as row labels and gender as column labels. First, I’m going to filter down to movies that received at least 250 ratings (a completely arbitrary number); to do this, I group the data by title and use size() to get a Series of group sizes for each title:
In [343]: ratings_by_title = data.groupby('title').size()
In [344]: ratings_by_title[:10]
Out[344]:
title
$1,000,000 Duck (1971) 37
'Night Mother (1986) 70
'Til There Was You (1997) 52
'burbs, The (1989) 303
...And Justice for All (1979) 199
1-900 (1994) 2
10 Things I Hate About You (1999) 700
101 Dalmatians (1961) 565
101 Dalmatians (1996) 364
12 Angry Men (1957) 616
In [345]: active_titles = ratings_by_title.index[ratings_by_title >= 250]
In [346]: active_titles
Out[346]:
Index(['burbs, The (1989), 10 Things I Hate About You (1999),
101 Dalmatians (1961), ..., Young Sherlock Holmes (1985),
Zero Effect (1998), eXistenZ (1999)], dtype=object)
The index of titles receiving at least 250 ratings can then be used to select rows from mean_ratings above:
In [347]: mean_ratings = mean_ratings.ix[active_titles]
In [348]: mean_ratings
Out[348]:
<class 'pandas.core.frame.DataFrame'>
Index: 1216 entries, 'burbs, The (1989) to eXistenZ (1999)
Data columns:
F 1216 non-null values
M 1216 non-null values
dtypes: float64(2)
To see the top films among female viewers, we can sort by the F column in descending order:
In [350]: top_female_ratings = mean_ratings.sort_index(by='F', ascending=False)
In [351]: top_female_ratings[:10]
Out[351]:
gender F M
Close Shave, A (1995) 4.644444 4.473795
Wrong Trousers, The (1993) 4.588235 4.478261
Sunset Blvd. (a.k.a. Sunset Boulevard) (1950) 4.572650 4.464589
Wallace & Gromit: The Best of Aardman Animation (1996) 4.563107 4.385075
Schindler's List (1993) 4.562602 4.491415
Shawshank Redemption, The (1994) 4.539075 4.560625
Grand Day Out, A (1992) 4.537879 4.293255
To Kill a Mockingbird (1962) 4.536667 4.372611
Creature Comforts (1990) 4.513889 4.272277
Usual Suspects, The (1995) 4.513317 4.518248
Measuring rating disagreement
Suppose you wanted to find the movies that are most divisive between male and female viewers. One way is to add a column to mean_ratings containing the difference in means, then sort by that:
In [352]: mean_ratings['diff'] = mean_ratings['M'] - mean_ratings['F']
Sorting by 'diff' gives us the movies with the greatest rating difference and which were preferred by women:
In [353]: sorted_by_diff = mean_ratings.sort_index(by='diff')
In [354]: sorted_by_diff[:15]
Out[354]:
gender F M diff
Dirty Dancing (1987) 3.790378 2.959596 -0.830782
Jumpin' Jack Flash (1986) 3.254717 2.578358 -0.676359
Grease (1978) 3.975265 3.367041 -0.608224
Little Women (1994) 3.870588 3.321739 -0.548849
Steel Magnolias (1989) 3.901734 3.365957 -0.535777
Anastasia (1997) 3.800000 3.281609 -0.518391
Rocky Horror Picture Show, The (1975) 3.673016 3.160131 -0.512885
Color Purple, The (1985) 4.158192 3.659341 -0.498851
Age of Innocence, The (1993) 3.827068 3.339506 -0.487561
Free Willy (1993) 2.921348 2.438776 -0.482573
French Kiss (1995) 3.535714 3.056962 -0.478752
Little Shop of Horrors, The (1960) 3.650000 3.179688 -0.470312
Guys and Dolls (1955) 4.051724 3.583333 -0.468391
Mary Poppins (1964) 4.197740 3.730594 -0.467147
Patch Adams (1998) 3.473282 3.008746 -0.464536
Reversing the order of the rows and again slicing off the top 15 rows, we get the movies preferred by men that women didn’t rate as highly:
Reverse order of rows, take first 15 rows
In [355]: sorted_by_diff[::-1][:15]
Out[355]:
gender F M diff
Good, The Bad and The Ugly, The (1966) 3.494949 4.221300 0.726351
Kentucky Fried Movie, The (1977) 2.878788 3.555147 0.676359
Dumb & Dumber (1994) 2.697987 3.336595 0.638608
Longest Day, The (1962) 3.411765 4.031447 0.619682
Cable Guy, The (1996) 2.250000 2.863787 0.613787
Evil Dead II (Dead By Dawn) (1987) 3.297297 3.909283 0.611985
Hidden, The (1987) 3.137931 3.745098 0.607167
Rocky III (1982) 2.361702 2.943503 0.581801
Caddyshack (1980) 3.396135 3.969737 0.573602
For a Few Dollars More (1965) 3.409091 3.953795 0.544704
Porky's (1981) 2.296875 2.836364 0.539489
Animal House (1978) 3.628906 4.167192 0.538286
Exorcist, The (1973) 3.537634 4.067239 0.529605
Fright Night (1985) 2.973684 3.500000 0.526316
Barb Wire (1996) 1.585366 2.100386 0.515020
Suppose instead you wanted the movies that elicited the most disagreement among viewers, independent of gender. Disagreement can be measured by the variance or standard deviation of the ratings:
Standard deviation of rating grouped by title
In [356]: rating_std_by_title = data.groupby('title')['rating'].std()
Filter down to active_titles
In [357]: rating_std_by_title = rating_std_by_title.ix[active_titles]
Order Series by value in descending order
In [358]: rating_std_by_title.order(ascending=False)[:10]
Out[358]:
title
Dumb & Dumber (1994) 1.321333
Blair Witch Project, The (1999) 1.316368
Natural Born Killers (1994) 1.307198
Tank Girl (1995) 1.277695
Rocky Horror Picture Show, The (1975) 1.260177
Eyes Wide Shut (1999) 1.259624
Evita (1996) 1.253631
Billy Madison (1995) 1.249970
Fear and Loathing in Las Vegas (1998) 1.246408
Bicentennial Man (1999) 1.245533
Name: rating
You may have noticed that movie genres are given as a pipe-separated (|) string. If you wanted to do some analysis by genre, more work would be required to transform the genre information into a more usable form. I will revisit this data later in the book to illustrate such a transformation.
US Baby Names 1880-2010
The United States Social Security Administration (SSA) has made available data on the frequency of baby names from 1880 through the present. Hadley Wickham, an author of several popular R packages, has often made use of this data set in illustrating data manipulation in R.
In [4]: names.head(10)
Out[4]:
name sex births year
0 Mary F 7065 1880
1 Anna F 2604 1880
2 Emma F 2003 1880
3 Elizabeth F 1939 1880
4 Minnie F 1746 1880
5 Margaret F 1578 1880
6 Ida F 1472 1880
7 Alice F 1414 1880
8 Bertha F 1320 1880
9 Sarah F 1288 1880
There are many things you might want to do with the data set:
Visualize the proportion of babies given a particular name (your own, or another name) over time.
Determine the relative rank of a name.
Determine the most popular names in each year or the names with largest increases or decreases.
Analyze trends in names: vowels, consonants, length, overall diversity, changes in spelling, first and last letters
Analyze external sources of trends: biblical names, celebrities, demographic changes
Using the tools we’ve looked at so far, most of these kinds of analyses are very straightforward, so I will walk you through many of them. I encourage you to download and explore the data yourself. If you find an interesting pattern in the data, I would love to hear about it.
As of this writing, the US Social Security Administration makes available data files, one per year, containing the total number of births for each sex/name combination. The raw archive of these files can be obtained here:
http://www.ssa.gov/oact/babynames/limits.html
In the event that this page has been moved by the time you’re reading this, it can most likely be located again by Internet search. After downloading the “National data” file names.zip and unzipping it, you will have a directory containing a series of files like yob1880.txt. I use the UNIX head command to look at the first 10 lines of one of the files (on Windows, you can use the more command or open it in a text editor):
In [367]: !head -n 10 names/yob1880.txt
Mary,F,7065
Anna,F,2604
Emma,F,2003
Elizabeth,F,1939
Minnie,F,1746
Margaret,F,1578
Ida,F,1472
Alice,F,1414
Bertha,F,1320
Sarah,F,1288
As this is a nicely comma-separated form, it can be loaded into a DataFrame with pandas.read_csv:
In [368]: import pandas as pd
In [369]: names1880 = pd.read_csv('names/yob1880.txt', names=['name', 'sex', 'births'])
In [370]: names1880
Out[370]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2000 entries, 0 to 1999
Data columns:
name 2000 non-null values
sex 2000 non-null values
births 2000 non-null values
dtypes: int64(1), object(2)
These files only contain names with at least 5 occurrences in each year, so for simplicity’s sake we can use the sum of the births column by sex as the total number of births in that year:
In [371]: names1880.groupby('sex').births.sum()
Out[371]:
sex
F 90993
M 110493
Name: births
Since the data set is split into files by year, one of the first things to do is to assemble all of the data into a single DataFrame and further to add a year field. This is easy to do using pandas.concat:
2010 is the last available year right now
years = range(1880, 2011)
pieces = []
columns = ['name', 'sex', 'births']
for year in years:
path = 'names/yob%d.txt' % year
frame = pd.read_csv(path, names=columns)
frame['year'] = year
pieces.append(frame)
Concatenate everything into a single DataFrame
names = pd.concat(pieces, ignore_index=True)
There are a couple things to note here. First, remember that concat glues the DataFrame objects together row-wise by default. Secondly, you have to pass ignore_index=True because we’re not interested in preserving the original row numbers returned from read_csv. So we now have a very large DataFrame containing all of the names data:
Now the names DataFrame looks like:
In [373]: names
Out[373]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1690784 entries, 0 to 1690783
Data columns:
name 1690784 non-null values
sex 1690784 non-null values
births 1690784 non-null values
year 1690784 non-null values
dtypes: int64(2), object(2)
With this data in hand, we can already start aggregating the data at the year and sex level using groupby or pivot_table, see Figure 2-4:
In [374]: total_births = names.pivot_table('births', rows='year',
.....: cols='sex', aggfunc=sum)
In [375]: total_births.tail()
Out[375]:
sex F M
year
2006 1896468 2050234
2007 1916888 2069242
2008 1883645 2032310
2009 1827643 1973359
2010 1759010 1898382
In [376]: total_births.plot(title='Total births by sex and year')
Figure 2-4. Total births by sex and year
Next, let’s insert a column prop with the fraction of babies given each name relative to the total number of births. A prop value of 0.02 would indicate that 2 out of every 100 babies was given a particular name. Thus, we group the data by year and sex, then add the new column to each group:
def add_prop(group):
Integer division floors
births = group.births.astype(float)
group['prop'] = births / births.sum()
return group
names = names.groupby(['year', 'sex']).apply(add_prop)
NOTE
Remember that because births is of integer type, we have to cast either the numerator or denominator to floating point to compute a fraction (unless you are using Python 3!).
The resulting complete data set now has the following columns:
In [378]: names
Out[378]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1690784 entries, 0 to 1690783
Data columns:
name 1690784 non-null values
sex 1690784 non-null values
births 1690784 non-null values
year 1690784 non-null values
prop 1690784 non-null values
dtypes: float64(1), int64(2), object(2)
When performing a group operation like this, it's often valuable to do a sanity check, like verifying that the prop column sums to 1 within all the groups. Since this is floating point data, use np.allclose to check that the group sums are sufficiently close to (but perhaps not exactly equal to) 1:
In [379]: np.allclose(names.groupby(['year', 'sex']).prop.sum(), 1)
Out[379]: True
Now that this is done, I’m going to extract a subset of the data to facilitate further analysis: the top 1000 names for each sex/year combination. This is yet another group operation:
def get_top1000(group):
return group.sort_index(by='births', ascending=False)[:1000]
grouped = names.groupby(['year', 'sex'])
top1000 = grouped.apply(get_top1000)
If you prefer a do-it-yourself approach, you could also do:
pieces = []
for year, group in names.groupby(['year', 'sex']):
pieces.append(group.sort_index(by='births', ascending=False)[:1000])
top1000 = pd.concat(pieces, ignore_index=True)
The resulting data set is now quite a bit smaller:
In [382]: top1000
Out[382]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 261877 entries, 0 to 261876
Data columns:
name 261877 non-null values
sex 261877 non-null values
births 261877 non-null values
year 261877 non-null values
prop 261877 non-null values
dtypes: float64(1), int64(2), object(2)
We’ll use this Top 1,000 data set in the following investigations into the data.
Analyzing Naming Trends
With the full data set and Top 1,000 data set in hand, we can start analyzing various naming trends of interest. Splitting the Top 1,000 names into the boy and girl portions is easy to do first:
In [383]: boys = top1000[top1000.sex == 'M']
In [384]: girls = top1000[top1000.sex == 'F']
Simple time series, like the number of Johns or Marys for each year can be plotted but require a bit of munging to be a bit more useful. Let’s form a pivot table of the total number of births by year and name:
In [385]: total_births = top1000.pivot_table('births', rows='year', cols='name',
.....: aggfunc=sum)
Now, this can be plotted for a handful of names using DataFrame’s plot method:
In [386]: total_births
Out[386]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 131 entries, 1880 to 2010
Columns: 6865 entries, Aaden to Zuri
dtypes: float64(6865)
In [387]: subset = total_births[['John', 'Harry', 'Mary', 'Marilyn']]
In [388]: subset.plot(subplots=True, figsize=(12, 10), grid=False,
.....: title="Number of births per year")
See Figure 2-5 for the result. On looking at this, you might conclude that these names have grown out of favor with the American population. But the story is actually more complicated than that, as will be explored in the next section.
Figure 2-5. A few boy and girl names over time
Measuring the increase in naming diversity
One explanation for the decrease in plots above is that fewer parents are choosing common names for their children. This hypothesis can be explored and confirmed in the data. One measure is the proportion of births represented by the top 1000 most popular names, which I aggregate and plot by year and sex:
In [390]: table = top1000.pivot_table('prop', rows='year',
.....: cols='sex', aggfunc=sum)
In [391]: table.plot(title='Sum of table1000.prop by year and sex',
.....: yticks=np.linspace(0, 1.2, 13), xticks=range(1880, 2020, 10))
See Figure 2-6 for this plot. So you can see that, indeed, there appears to be increasing name diversity (decreasing total proportion in the top 1,000). Another interesting metric is the number of distinct names, taken in order of popularity from highest to lowest, in the top 50% of births. This number is a bit more tricky to compute. Let’s consider just the boy names from 2010:
In [392]: df = boys[boys.year == 2010]
In [393]: df
Out[393]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000 entries, 260877 to 261876
Data columns:
name 1000 non-null values
sex 1000 non-null values
births 1000 non-null values
year 1000 non-null values
prop 1000 non-null values
dtypes: float64(1), int64(2), object(2)
Figure 2-6. Proportion of births represented in top 1000 names by sex
After sorting prop in descending order, we want to know how many of the most popular names it takes to reach 50%. You could write a for loop to do this, but a vectorized NumPy way is a bit more clever. Taking the cumulative sum, cumsum, of prop then calling the method searchsorted returns the position in the cumulative sum at which 0.5 would need to be inserted to keep it in sorted order:
In [394]: prop_cumsum = df.sort_index(by='prop', ascending=False).prop.cumsum()
In [395]: prop_cumsum[:10]
Out[395]:
260877 0.011523
260878 0.020934
260879 0.029959
260880 0.038930
260881 0.047817
260882 0.056579
260883 0.065155
260884 0.073414
260885 0.081528
260886 0.089621
In [396]: prop_cumsum.searchsorted(0.5)
Out[396]: 116
Since arrays are zero-indexed, adding 1 to this result gives you a result of 117. By contrast, in 1900 this number was much smaller:
In [397]: df = boys[boys.year == 1900]
In [398]: in1900 = df.sort_index(by='prop', ascending=False).prop.cumsum()
In [399]: in1900.searchsorted(0.5) + 1
Out[399]: 25
It should now be fairly straightforward to apply this operation to each year/sex combination; groupby those fields and apply a function returning the count for each group:
def get_quantile_count(group, q=0.5):
group = group.sort_index(by='prop', ascending=False)
return group.prop.cumsum().searchsorted(q) + 1
diversity = top1000.groupby(['year', 'sex']).apply(get_quantile_count)
diversity = diversity.unstack('sex')
This resulting DataFrame diversity now has two time series, one for each sex, indexed by year. This can be inspected in IPython and plotted as before (see Figure 2-7):
In [401]: diversity.head()
Out[401]:
sex F M
year
1880 38 14
1881 38 14
1882 38 15
1883 39 15
1884 39 16
In [402]: diversity.plot(title="Number of popular names in top 50%")
Figure 2-7. Plot of diversity metric by year
As you can see, girl names have always been more diverse than boy names, and they have only become more so over time. Further analysis of what exactly is driving the diversity, like the increase of alternate spellings, is left to the reader.
The “Last letter” Revolution
In 2007, a baby name researcher Laura Wattenberg pointed out on her website (http://www.babynamewizard.com) that the distribution of boy names by final letter has changed significantly over the last 100 years. To see this, I first aggregate all of the births in the full data set by year, sex, and final letter:
extract last letter from name column
get_last_letter = lambda x: x[-1]
last_letters = names.name.map(get_last_letter)
last_letters.name = 'last_letter'
table = names.pivot_table('births', rows=last_letters,
cols=['sex', 'year'], aggfunc=sum)
Then, I select out three representative years spanning the history and print the first few rows:
In [404]: subtable = table.reindex(columns=[1910, 1960, 2010], level='year')
In [405]: subtable.head()
Out[405]:
sex F M
year 1910 1960 2010 1910 1960 2010
last_letter
a 108376 691247 670605 977 5204 28438
b NaN 694 450 411 3912 38859
c 5 49 946 482 15476 23125
d 6750 3729 2607 22111 262112 44398
e 133569 435013 313833 28655 178823 129012
Next, normalize the table by total births to compute a new table containing proportion of total births for each sex ending in each letter:
In [406]: subtable.sum()
Out[406]:
sex year
F 1910 396416
1960 2022062
2010 1759010
M 1910 194198
1960 2132588
2010 1898382
In [407]: letter_prop = subtable / subtable.sum().astype(float)
With the letter proportions now in hand, I can make bar plots for each sex broken down by year. See Figure 2-8:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
letter_prop['M'].plot(kind='bar', rot=0, ax=axes[0], title='Male')
letter_prop['F'].plot(kind='bar', rot=0, ax=axes[1], title='Female',
legend=False)
Figure 2-8. Proportion of boy and girl names ending in each letter
As you can see, boy names ending in “n” have experienced significant growth since the 1960s. Going back to the full table created above, I again normalize by year and sex and select a subset of letters for the boy names, finally transposing to make each column a time series:
In [410]: letter_prop = table / table.sum().astype(float)
In [411]: dny_ts = letter_prop.ix[['d', 'n', 'y'], 'M'].T
In [412]: dny_ts.head()
Out[412]:
d n y
year
1880 0.083055 0.153213 0.075760
1881 0.083247 0.153214 0.077451
1882 0.085340 0.149560 0.077537
1883 0.084066 0.151646 0.079144
1884 0.086120 0.149915 0.080405
With this DataFrame of time series in hand, I can make a plot of the trends over time again with its plot method (see Figure 2-9):
In [414]: dny_ts.plot()
Figure 2-9. Proportion of boys born with names ending in d/n/y over time
Boy names that became girl names (and vice versa)
Another fun trend is looking at boy names that were more popular with one sex earlier in the sample but have “changed sexes” in the present. One example is the name Lesley or Leslie. Going back to the top1000 dataset, I compute a list of names occurring in the dataset starting with 'lesl':
In [415]: all_names = top1000.name.unique()
In [416]: mask = np.array(['lesl' in x.lower() for x in all_names])
In [417]: lesley_like = all_names[mask]
In [418]: lesley_like
Out[418]: array([Leslie, Lesley, Leslee, Lesli, Lesly], dtype=object)
From there, we can filter down to just those names and sum births grouped by name to see the relative frequencies:
In [419]: filtered = top1000[top1000.name.isin(lesley_like)]
In [420]: filtered.groupby('name').births.sum()
Out[420]:
name
Leslee 1082
Lesley 35022
Lesli 929
Leslie 370429
Lesly 10067
Name: births
Next, let’s aggregate by sex and year and normalize within year:
In [421]: table = filtered.pivot_table('births', rows='year',
.....: cols='sex', aggfunc='sum')
In [422]: table = table.div(table.sum(1), axis=0)
In [423]: table.tail()
Out[423]:
sex F M
year
2006 1 NaN
2007 1 NaN
2008 1 NaN
2009 1 NaN
2010 1 NaN
Lastly, it’s now easy to make a plot of the breakdown by sex over time (Figure 2-10):
In [425]: table.plot(style={'M': 'k-', 'F': 'k--'})
Figure 2-10. Proportion of male/female Lesley-like names over time
Conclusions and The Path Ahead
The examples in this chapter are rather simple, but they’re here to give you a bit of a flavor of what sorts of things you can expect in the upcoming chapters. The focus of this book is on tools as opposed to presenting more sophisticated analytical methods. Mastering the techniques in this book will enable you to implement your own analyses (assuming you know what you want to do!) in short order.
[1] http://www.usa.gov/About/developer-resources/1usagov.shtml
Chapter 3. IPython: An Interactive Computing and Development Environment
Act without doing; work without effort. Think of the small as large and the few as many. Confront the difficult while it is still easy; accomplish the great task by a series of small acts.
—Laozi
People often ask me, “What is your Python development environment?” My answer is almost always the same, “IPython and a text editor”. You may choose to substitute an Integrated Development Environment (IDE) for a text editor in order to take advantage of more advanced graphical tools and code completion capabilities. Even if so, I strongly recommend making IPython an important part of your workflow. Some IDEs even provide IPython integration, so it’s possible to get the best of both worlds.
The IPython project began in 2001 as Fernando Pérez’s side project to make a better interactive Python interpreter. In the subsequent 11 years it has grown into what’s widely considered one of the most important tools in the modern scientific Python computing stack. While it does not provide any computational or data analytical tools by itself, IPython is designed from the ground up to maximize your productivity in both interactive computing and software development. It encourages an execute-explore workflow instead of the typical edit-compile-run workflow of many other programming languages. It also provides very tight integration with the operating system’s shell and file system. Since much of data analysis coding involves exploration, trial and error, and iteration, IPython will, in almost all cases, help you get the job done faster.
Of course, the IPython project now encompasses a great deal more than just an enhanced, interactive Python shell. It also includes a rich GUI console with inline plotting, a web-based interactive notebook format, and a lightweight, fast parallel computing engine. And, as with so many other tools designed for and by programmers, it is highly customizable. I’ll discuss some of these features later in the chapter.
Since IPython has interactivity at its core, some of the features in this chapter are difficult to fully illustrate without a live console. If this is your first time learning about IPython, I recommend that you follow along with the examples to get a feel for how things work. As with any keyboard-driven console-like environment, developing muscle-memory for the common commands is part of the learning curve.
NOTE
Many parts of this chapter (for example: profiling and debugging) can be safely omitted on a first reading as they are not necessary for understanding the rest of the book. This chapter is intended to provide a standalone, rich overview of the functionality provided by IPython.
IPython Basics
You can launch IPython on the command line just like launching the regular Python interpreter except with the ipython command:
$ ipython
Python 2.7.2 (default, May 27 2012, 21:26:12)
Type "copyright", "credits" or "license" for more information.
IPython 0.12 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: a = 5
In [2]: a
Out[2]: 5
You can execute arbitrary Python statements by typing them in and pressing <return>. When typing just a variable into IPython, it renders a string representation of the object:
In [542]: data = {i : randn() for i in range(7)}
In [543]: data
Out[543]:
{0: 0.6900018528091594,
1: 1.0015434424937888,
2: -0.5030873913603446,
3: -0.6222742250596455,
4: -0.9211686080130108,
5: -0.726213492660829,
6: 0.2228955458351768}
Many kinds of Python objects are formatted to be more readable, or pretty-printed, which is distinct from normal printing with print. If you printed a dict like the above in the standard Python interpreter, it would be much less readable:
>>> from numpy.random import randn
>>> data = {i : randn() for i in range(7)}
>>> print data
{0: -1.5948255432744511, 1: 0.10569006472787983, 2: 1.972367135977295,
3: 0.15455217573074576, 4: -0.24058577449429575, 5: -1.2904897053651216,
6: 0.3308507317325902}
IPython also provides facilities to make it easy to execute arbitrary blocks of code (via somewhat glorified copy-and-pasting) and whole Python scripts. These will be discussed shortly.
Tab Completion
On the surface, the IPython shell looks like a cosmetically slightly-different interactive Python interpreter. Users of Mathematica may find the enumerated input and output prompts familiar. One of the major improvements over the standard Python shell is tab completion, a feature common to most interactive data analysis environments. While entering expressions in the shell, pressing <Tab> will search the namespace for any variables (objects, functions, etc.) matching the characters you have typed so far:
In [1]: an_apple = 27
In [2]: an_example = 42
In [3]: an<Tab>
an_apple and an_example any
In this example, note that IPython displayed both the two variables I defined as well as the Python keyword and and built-in function any. Naturally, you can also complete methods and attributes on any object after typing a period:
In [3]: b = [1, 2, 3]
In [4]: b.<Tab>
b.append b.extend b.insert b.remove b.sort
b.count b.index b.pop b.reverse
The same goes for modules:
In [1]: import datetime
In [2]: datetime.<Tab>
datetime.date datetime.MAXYEAR datetime.timedelta
datetime.datetime datetime.MINYEAR datetime.tzinfo
datetime.datetime_CAPI datetime.time
NOTE
Note that IPython by default hides methods and attributes starting with underscores, such as magic methods and internal “private” methods and attributes, in order to avoid cluttering the display (and confusing new Python users!). These, too, can be tab-completed but you must first type an underscore to see them. If you prefer to always see such methods in tab completion, you can change this setting in the IPython configuration.
Tab completion works in many contexts outside of searching the interactive namespace and completing object or module attributes.When typing anything that looks like a file path (even in a Python string), pressing <Tab> will complete anything on your computer’s file system matching what you’ve typed:
In [3]: book_scripts/<Tab>
book_scripts/cprof_example.py book_scripts/ipython_script_test.py
book_scripts/ipython_bug.py book_scripts/prof_mod.py
In [3]: path = 'book_scripts/<Tab>
book_scripts/cprof_example.py book_scripts/ipython_script_test.py
book_scripts/ipython_bug.py book_scripts/prof_mod.py
Combined with the %run command (see later section), this functionality will undoubtedly save you many keystrokes.
Another area where tab completion saves time is in the completion of function keyword arguments (including the = sign!).
Introspection
Using a question mark (?) before or after a variable will display some general information about the object:
In [545]: b?
Type: list
String Form:[1, 2, 3]
Length: 3
Docstring:
list() -> new empty list
list(iterable) -> new list initialized from iterable's items
This is referred to as object introspection. If the object is a function or instance method, the docstring, if defined, will also be shown. Suppose we’d written the following function:
def add_numbers(a, b):
"""
Add two numbers together
Returns

the_sum : type of arguments
"""
return a + b
Then using ? shows us the docstring:
In [547]: add_numbers?
Type: function
String Form:<function add_numbers at 0x5fad848>
File: book_scripts/<ipython-input-546-5473012eeb65>
Definition: add_numbers(a, b)
Docstring:
Add two numbers together
Returns

the_sum : type of arguments
Using ?? will also show the function’s source code if possible:
In [548]: add_numbers??
Type: function
String Form:<function add_numbers at 0x5fad848>
File: book_scripts/<ipython-input-546-5473012eeb65>
Definition: add_numbers(a, b)
Source:
def add_numbers(a, b):
"""
Add two numbers together
Returns

the_sum : type of arguments
"""
return a + b
? has a final usage, which is for searching the IPython namespace in a manner similar to the standard UNIX or Windows command line. A number of characters combined with the wildcard (*) will show all names matching the wildcard expression. For example, we could get a list of all functions in the top level NumPy namespace containing load:
In [549]: np.*load*?
np.load
np.loads
np.loadtxt
np.pkgload
The %run Command
Any file can be run as a Python program inside the environment of your IPython session using the %run command. Suppose you had the following simple script stored in ipython_script_test.py:
def f(x, y, z):
return (x + y) / z
a = 5
b = 6
c = 7.5
result = f(a, b, c)
This can be executed by passing the file name to %run:
In [550]: %run ipython_script_test.py
The script is run in an empty namespace (with no imports or other variables defined) so that the behavior should be identical to running the program on the command line using python script.py. All of the variables (imports, functions, and globals) defined in the file (up until an exception, if any, is raised) will then be accessible in the IPython shell:
In [551]: c
Out[551]: 7.5
In [552]: result
Out[552]: 1.4666666666666666
If a Python script expects command line arguments (to be found in sys.argv), these can be passed after the file path as though run on the command line.
NOTE
Should you wish to give a script access to variables already defined in the interactive IPython namespace, use %run -i instead of plain %run.
Interrupting running code
Pressing <Ctrl-C> while any code is running, whether a script through %run or a long-running command, will cause a KeyboardInterrupt to be raised. This will cause nearly all Python programs to stop immediately except in very exceptional cases.
WARNING
When a piece of Python code has called into some compiled extension modules, pressing <Ctrl-C> will not cause the program execution to stop immediately in all cases. In such cases, you will have to either wait until control is returned to the Python interpreter, or, in more dire circumstances, forcibly terminate the Python process via the OS task manager.
Executing Code from the Clipboard
A quick-and-dirty way to execute code in IPython is via pasting from the clipboard. This might seem fairly crude, but in practice it is very useful. For example, while developing a complex or time-consuming application, you may wish to execute a script piece by piece, pausing at each stage to examine the currently loaded data and results. Or, you might find a code snippet on the Internet that you want to run and play around with, but you’d rather not create a new .py file for it.
Code snippets can be pasted from the clipboard in many cases by pressing <Ctrl-Shift-V>. Note that it is not completely robust as this mode of pasting mimics typing each line into IPython, and line breaks are treated as <return>. This means that if you paste code with an indented block and there is a blank line, IPython will think that the indented block is over. Once the next line in the block is executed, an IndentationError will be raised. For example the following code:
x = 5
y = 7
if x > 5:
x += 1
y = 8
will not work if simply pasted:
In [1]: x = 5
In [2]: y = 7
In [3]: if x > 5:
...: x += 1
...:
In [4]: y = 8
IndentationError: unexpected indent
If you want to paste code into IPython, try the %paste and %cpaste
magic functions.
As the error message suggests, we should instead use the %paste and %cpaste magic functions. %paste takes whatever text is in the clipboard and executes it as a single block in the shell:
In [6]: %paste
x = 5
y = 7
if x > 5:
x += 1
y = 8
-- End pasted text --
CAUTION
Depending on your platform and how you installed Python, there’s a small chance that %paste will not work. Packaged distributions like EPDFree (as described in in the intro) should not be a problem.
%cpaste is similar, except that it gives you a special prompt for pasting code into:
In [7]: %cpaste
Pasting code; enter '--' alone on the line to stop or use Ctrl-D.
:x = 5
:y = 7
:if x > 5:
: x += 1
:
: y = 8
:--
With the %cpaste block, you have the freedom to paste as much code as you like before executing it. You might decide to use %cpaste in order to look at the pasted code before executing it. If you accidentally paste the wrong code, you can break out of the %cpaste prompt by pressing <Ctrl-C>.
Later, I’ll introduce the IPython HTML Notebook which brings a new level of sophistication for developing analyses block-by-block in a browser-based notebook format with executable code cells.
IPython interaction with editors and IDEs
Some text editors, such as Emacs and vim, have 3rd party extensions enabling blocks of code to be sent directly from the editor to a running IPython shell. Refer to the IPython website or do an Internet search to find out more.
Some IDEs, such as the PyDev plugin for Eclipse and Python Tools for Visual Studio from Microsoft (and possibly others), have integration with the IPython terminal application. If you want to work in an IDE but don’t want to give up the IPython console features, this may be a good option for you.
Keyboard Shortcuts
IPython has many keyboard shortcuts for navigating the prompt (which will be familiar to users of the Emacs text editor or the UNIX bash shell) and interacting with the shell’s command history (see later section). Table 3-1 summarizes some of the most commonly used shortcuts. See Figure 3-1 for an illustration of a few of these, such as cursor movement.
Figure 3-1. Illustration of some of IPython’s keyboard shortcuts
Table 3-1. Standard IPython Keyboard Shortcuts
Exceptions and Tracebacks
If an exception is raised while %run-ing a script or executing any statement, IPython will by default print a full call stack trace (traceback) with a few lines of context around the position at each point in the stack.
In [553]: %run ch03/ipython_bug.py

AssertionError Traceback (most recent call last)
/home/wesm/code/ipython/IPython/utils/py3compat.pyc in execfile(fname, *where)
176 else:
177 filename = fname
--> 178 __builtin__.execfile(filename, *where)
book_scripts/ch03/ipython_bug.py in <module>()
13 throws_an_exception()
14
---> 15 calling_things()
book_scripts/ch03/ipython_bug.py in calling_things()
11 def calling_things():
12 works_fine()
---> 13 throws_an_exception()
14
15 calling_things()
book_scripts/ch03/ipython_bug.py in throws_an_exception()
7 a = 5
8 b = 6
----> 9 assert(a + b == 10)
10
11 def calling_things():
AssertionError:
Having additional context by itself is a big advantage over the standard Python interpreter (which does not provide any additional context). The amount of context shown can be controlled using the %xmode magic command, from minimal (same as the standard Python interpreter) to verbose (which inlines function argument values and more). As you will see later in the chapter, you can step into the stack (using the %debug or %pdb magics) after an error has occurred for interactive post-mortem debugging.
Magic Commands
IPython has many special commands, known as “magic” commands, which are designed to faciliate common tasks and enable you to easily control the behavior of the IPython system. A magic command is any command prefixed by the the percent symbol %. For example, you can check the execution time of any Python statement, such as a matrix multiplication, using the %timeit magic function (which will be discussed in more detail later):
In [554]: a = np.random.randn(100, 100)
In [555]: %timeit np.dot(a, a)
10000 loops, best of 3: 69.1 us per loop
Magic commands can be viewed as command line programs to be run within the IPython system. Many of them have additional “command line” options, which can all be viewed (as you might expect) using ?:
In [1]: %reset?
Resets the namespace by removing all names defined by the user.
Parameters

-f : force reset without asking for confirmation.
-s : 'Soft' reset: Only clears your namespace, leaving history intact.
References to objects may be kept. By default (without this option),
we do a 'hard' reset, giving you a new session and removing all
references to objects from the current session.
Examples

In [6]: a = 1
In [7]: a
Out[7]: 1
In [8]: 'a' in _ip.user_ns
Out[8]: True
In [9]: %reset -f
In [1]: 'a' in _ip.user_ns
Out[1]: False
Magic functions can be used by default without the percent sign, as long as no variable is defined with the same name as the magic function in question. This feature is called automagic and can be enabled or disabled using %automagic.
Since IPython’s documentation is easily accessible from within the system, I encourage you to explore all of the special commands available by typing %quickref or %magic. I will highlight a few more of the most critical ones for being productive in interactive computing and Python development in IPython.
Table 3-2. Frequently-used IPython Magic Commands
Qt-based Rich GUI Console
The IPython team has developed a Qt framework-based GUI console, designed to wed the features of the terminal-only applications with the features provided by a rich text widget, like embedded images, multiline editing, and syntax highlighting. If you have either PyQt or PySide installed, the application can be launched with inline plotting by running this on the command line:
ipython qtconsole --pylab=inline
The Qt console can launch multiple IPython processes in tabs, enabling you to switch between tasks. It can also share a process with the IPython HTML Notebook application, which I’ll highlight later.
Figure 3-2. IPython Qt Console
Matplotlib Integration and Pylab Mode
Part of why IPython is so widely used in scientific computing is that it is designed as a companion to libraries like matplotlib and other GUI toolkits. Don’t worry if you have never used matplotlib before; it will be discussed in much more detail later in this book. If you create a matplotlib plot window in the regular Python shell, you’ll be sad to find that the GUI event loop “takes control” of the Python session until the plot window is closed. That won’t work for interactive data analysis and visualization, so IPython has implemented special handling for each GUI framework so that it will work seamlessly with the shell.
The typical way to launch IPython with matplotlib integration is by adding the --pylab flag (two dashes).
$ ipython --pylab
This will cause several things to happen. First IPython will launch with the default GUI backend integration enabled so that matplotlib plot windows can be created with no issues. Secondly, most of NumPy and matplotlib will be imported into the top level interactive namespace to produce an interactive computing environment reminiscent of MATLAB and other domain-specific scientific computing environments. It’s possible to do this setup by hand by using %gui, too (try running %gui? to find out how).
Figure 3-3. Pylab mode: IPython with matplotlib windows
Using the Command History
IPython maintains a small on-disk database containing the text of each command that you execute. This serves various purposes:
Searching, completing, and executing previously-executed commands with minimal typing
Persisting the command history between sessions.
Logging the input/output history to a file
Searching and Reusing the Command History
Being able to search and execute previous commands is, for many people, the most useful feature. Since IPython encourages an iterative, interactive code development workflow, you may often find yourself repeating the same commands, such as a %run command or some other code snippet. Suppose you had run:
In[7]: %run first/second/third/data_script.py
and then explored the results of the script (assuming it ran successfully), only to find that you made an incorrect calculation. After figuring out the problem and modifying data_script.py, you can start typing a few letters of the %run command then press either the <Ctrl-P> key combination or the <up arrow> key. This will search the command history for the first prior command matching the letters you typed. Pressing either <Ctrl-P> or <up arrow> multiple times will continue to search through the history. If you pass over the command you wish to execute, fear not. You can move forward through the command history by pressing either <Ctrl-N> or <down arrow>. After doing this a few times you may start pressing these keys without thinking!
Using <Ctrl-R> gives you the same partial incremental searching capability provided by the readline used in UNIX-style shells, such as the bash shell. On Windows, readline functionality is emulated by IPython. To use this, press <Ctrl-R> then type a few characters contained in the input line you want to search for:
In [1]: a_command = foo(x, y, z)
(reverse-i-search)`com': a_command = foo(x, y, z)
Pressing <Ctrl-R> will cycle through the history for each line matching the characters you’ve typed.
Input and Output Variables
Forgetting to assign the result of a function call to a variable can be very annoying. Fortunately, IPython stores references to both the input (the text that you type) and output (the object that is returned) in special variables. The previous two outputs are stored in the _ (one underscore) and __ (two underscores) variables, respectively:
In [556]: 2 ** 27
Out[556]: 134217728
In [557]: _
Out[557]: 134217728
Input variables are stored in variables named like _iX, where X is the input line number. For each such input variables there is a corresponding output variable _X. So after input line 27, say, there will be two new variables _27 (for the output) and _i27 for the input.
In [26]: foo = 'bar'
In [27]: foo
Out[27]: 'bar'
In [28]: _i27
Out[28]: u'foo'
In [29]: _27
Out[29]: 'bar'
Since the input variables are strings, that can be executed again using the Python exec keyword:
In [30]: exec _i27
Several magic functions allow you to work with the input and output history. %hist is capable of printing all or part of the input history, with or without line numbers. %reset is for clearing the interactive namespace and optionally the input and output caches. The %xdel magic function is intended for removing all references to a particular object from the IPython machinery. See the documentation for both of these magics for more details.
WARNING
When working with very large data sets, keep in mind that IPython’s input and output history causes any object referenced there to not be garbage collected (freeing up the memory), even if you delete the variables from the interactive namespace using the del keyword. In such cases, careful usage of %xdel and %reset can help you avoid running into memory problems.
Logging the Input and Output
IPython is capable of logging the entire console session including input and output. Logging is turned on by typing %logstart:
In [3]: %logstart
Activating auto-logging. Current session state plus future input saved.
Filename : ipython_log.py
Mode : rotate
Output logging : False
Raw input log : False
Timestamping : False
State : active
IPython logging can be enabled at any time and it will record your entire session (including previous commands). Thus, if you are working on something and you decide you want to save everything you did, you can simply enable logging. See the docstring of %logstart for more options (including changing the output file path), as well as the companion functions %logoff, %logon, %logstate, and %logstop.
Interacting with the Operating System
Another important feature of IPython is that it provides very strong integration with the operating system shell. This means, among other things, that you can perform most standard command line actions as you would in the Windows or UNIX (Linux, OS X) shell without having to exit IPython. This includes executing shell commands, changing directories, and storing the results of a command in a Python object (list or string). There are also simple shell command aliasing and directory bookmarking features.
See Table 3-3 for a summary of magic functions and syntax for calling shell commands. I’ll briefly visit these features in the next few sections.
Table 3-3. IPython system-related commands
Shell Commands and Aliases
Starting a line in IPython with an exclamation point !, or bang, tells IPython to execute everything after the bang in the system shell. This means that you can delete files (using rm or del, depending on your OS), change directories, or execute any other process. It’s even possible to start processes that take control away from IPython, even another Python interpreter:
In [2]: !python
Python 2.7.2 |EPD 7.1-2 (64-bit)| (default, Jul 3 2011, 15:17:51)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-44)] on linux2
Type "packages", "demo" or "enthought" for more information.
>>>
The console output of a shell command can be stored in a variable by assigning the !-escaped expression to a variable. For example, on my Linux-based machine connected to the Internet via ethernet, I can get my IP address as a Python variable:
In [1]: ip_info = !ifconfig eth0 | grep "inet "
In [2]: ip_info[0].strip()
Out[2]: 'inet addr:192.168.1.137 Bcast:192.168.1.255 Mask:255.255.255.0'
The returned Python object ip_info is actually a custom list type containing various versions of the console output.
IPython can also substitute in Python values defined in the current environment when using !. To do this, preface the variable name by the dollar sign $:
In [3]: foo = 'test*'
In [4]: !ls $foo
test4.py test.py test.xml
The %alias magic function can define custom shortcuts for shell commands. As a simple example:
In [1]: %alias ll ls -l
In [2]: ll /usr
total 332
drwxr-xr-x 2 root root 69632 2012-01-29 20:36 bin/
drwxr-xr-x 2 root root 4096 2010-08-23 12:05 games/
drwxr-xr-x 123 root root 20480 2011-12-26 18:08 include/
drwxr-xr-x 265 root root 126976 2012-01-29 20:36 lib/
drwxr-xr-x 44 root root 69632 2011-12-26 18:08 lib32/
lrwxrwxrwx 1 root root 3 2010-08-23 16:02 lib64 -> lib/
drwxr-xr-x 15 root root 4096 2011-10-13 19:03 local/
drwxr-xr-x 2 root root 12288 2012-01-12 09:32 sbin/
drwxr-xr-x 387 root root 12288 2011-11-04 22:53 share/
drwxrwsr-x 24 root src 4096 2011-07-17 18:38 src/
Multiple commands can be executed just as on the command line by separating them with semicolons:
In [558]: %alias test_alias (cd ch08; ls; cd ..)
In [559]: test_alias
macrodata.csv spx.csv tips.csv
You’ll notice that IPython “forgets” any aliases you define interactively as soon as the session is closed. To create permanent aliases, you will need to use the configuration system. See later in the chapter.
Directory Bookmark System
IPython has a simple directory bookmarking system to enable you to save aliases for common directories so that you can jump around very easily. For example, I’m an avid user of Dropbox, so I can define a bookmark to make it easy to change directories to my Dropbox:
In [6]: %bookmark db /home/wesm/Dropbox/
Once I’ve done this, when I use the %cd magic, I can use any bookmarks I’ve defined
In [7]: cd db
(bookmark:db) -> /home/wesm/Dropbox/
/home/wesm/Dropbox
If a bookmark name conflicts with a directory name in your current working directory, you can use the -b flag to override and use the bookmark location. Using the -l option with %bookmark lists all of your bookmarks:
In [8]: %bookmark -l
Current bookmarks:
db -> /home/wesm/Dropbox/
Bookmarks, unlike aliases, are automatically persisted between IPython sessions.
Software Development Tools
In addition to being a comfortable environment for interactive computing and data exploration, IPython is well suited as a software development environment. In data analysis applications, it’s important first to have correct code. Fortunately, IPython has closely integrated and enhanced the built-in Python pdb debugger. Secondly you want your code to be fast. For this IPython has easy-to-use code timing and profiling tools. I will give an overview of these tools in detail here.
Interactive Debugger
IPython’s debugger enhances pdb with tab completion, syntax highlighting, and context for each line in exception tracebacks. One of the best times to debug code is right after an error has occurred. The %debug command, when entered immediately after an exception, invokes the “post-mortem” debugger and drops you into the stack frame where the exception was raised:
In [2]: run ch03/ipython_bug.py

AssertionError Traceback (most recent call last)
/home/wesm/book_scripts/ch03/ipython_bug.py in <module>()
13 throws_an_exception()
14
---> 15 calling_things()
/home/wesm/book_scripts/ch03/ipython_bug.py in calling_things()
11 def calling_things():
12 works_fine()
---> 13 throws_an_exception()
14
15 calling_things()
/home/wesm/book_scripts/ch03/ipython_bug.py in throws_an_exception()
7 a = 5
8 b = 6
----> 9 assert(a + b == 10)
10
11 def calling_things():
AssertionError:
In [3]: %debug
> /home/wesm/book_scripts/ch03/ipython_bug.py(9)throws_an_exception()
8 b = 6
----> 9 assert(a + b == 10)
10
ipdb>
Once inside the debugger, you can execute arbitrary Python code and explore all of the objects and data (which have been “kept alive” by the interpreter) inside each stack frame. By default you start in the lowest level, where the error occurred. By pressing u (up) and d (down), you can switch between the levels of the stack trace:
ipdb> u
> /home/wesm/book_scripts/ch03/ipython_bug.py(13)calling_things()
12 works_fine()
---> 13 throws_an_exception()
14
Executing the %pdb command makes it so that IPython automatically invokes the debugger after any exception, a mode that many users will find especially useful.
It’s also easy to use the debugger to help develop code, especially when you wish to set breakpoints or step through the execution of a function or script to examine the state at each stage. There are several ways to accomplish this. The first is by using %run with the -d flag, which invokes the debugger before executing any code in the passed script. You must immediately press s (step) to enter the script:
In [5]: run -d ch03/ipython_bug.py
Breakpoint 1 at /home/wesm/book_scripts/ch03/ipython_bug.py:1
NOTE: Enter 'c' at the ipdb> prompt to start your script.
> <string>(1)<module>()
ipdb> s
--Call--
> /home/wesm/book_scripts/ch03/ipython_bug.py(1)<module>()
1---> 1 def works_fine():
2 a = 5
3 b = 6
After this point, it’s up to you how you want to work your way through the file. For example, in the above exception, we could set a breakpoint right before calling the works_fine method and run the script until we reach the breakpoint by pressing c (continue):
ipdb> b 12
ipdb> c
> /home/wesm/book_scripts/ch03/ipython_bug.py(12)calling_things()
11 def calling_things():
2--> 12 works_fine()
13 throws_an_exception()
At this point, you can step into works_fine() or execute works_fine() by pressing n (next) to advance to the next line:
ipdb> n
> /home/wesm/book_scripts/ch03/ipython_bug.py(13)calling_things()
2 12 works_fine()
---> 13 throws_an_exception()
14
Then, we could step into throws_an_exception and advance to the line where the error occurs and look at the variables in the scope. Note that debugger commands take precedence over variable names; in such cases preface the variables with ! to examine their contents.
ipdb> s
--Call--
> /home/wesm/book_scripts/ch03/ipython_bug.py(6)throws_an_exception()
5
----> 6 def throws_an_exception():
7 a = 5
ipdb> n
> /home/wesm/book_scripts/ch03/ipython_bug.py(7)throws_an_exception()
6 def throws_an_exception():
----> 7 a = 5
8 b = 6
ipdb> n
> /home/wesm/book_scripts/ch03/ipython_bug.py(8)throws_an_exception()
7 a = 5
----> 8 b = 6
9 assert(a + b == 10)
ipdb> n
> /home/wesm/book_scripts/ch03/ipython_bug.py(9)throws_an_exception()
8 b = 6
----> 9 assert(a + b == 10)
10
ipdb> !a
5
ipdb> !b
6
Becoming proficient in the interactive debugger is largely a matter of practice and experience. See Table 3-3 for a full catalogue of the debugger commands. If you are used to an IDE, you might find the terminal-driven debugger to be a bit bewildering at first, but that will improve in time. Most of the Python IDEs have excellent GUI debuggers, but it is usually a significant productivity gain to remain in IPython for your debugging.
Table 3-4. (I)Python debugger commands
Other ways to make use of the debugger
There are a couple of other useful ways to invoke the debugger. The first is by using a special set_trace function (named after pdb.set_trace), which is basically a “poor man’s breakpoint”. Here are two small recipes you might want to put somewhere for your general use (potentially adding them to your IPython profile as I do):
def set_trace():
from IPython.core.debugger import Pdb
Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back)
def debug(f, *args, **kwargs):
from IPython.core.debugger import Pdb
pdb = Pdb(color_scheme='Linux')
return pdb.runcall(f, *args, **kwargs)
The first function, set_trace, is very simple. Put set_trace() anywhere in your code that you want to stop and take a look around (for example, right before an exception occurs):
In [7]: run ch03/ipython_bug.py
> /home/wesm/book_scripts/ch03/ipython_bug.py(16)calling_things()
15 set_trace()
---> 16 throws_an_exception()
17
Pressing c (continue) will cause the code to resume normally with no harm done.
The debug function above enables you to invoke the interactive debugger easily on an arbitrary function call. Suppose we had written a function like
def f(x, y, z=1):
tmp = x + y
return tmp / z
and we wished to step through its logic. Ordinarily using f would look like f(1, 2, z=3). To instead step into f, pass f as the first argument to debug followed by the positional and keyword arguments to be passed to f:
In [6]: debug(f, 1, 2, z=3)
> <ipython-input>(2)f()
1 def f(x, y, z):
----> 2 tmp = x + y
3 return tmp / z
ipdb>
I find that these two simple recipes save me a lot of time on a day-to-day basis.
Lastly, the debugger can be used in conjunction with %run. By running a script with %run -d, you will be dropped directly into the debugger, ready to set any breakpoints and start the script:
In [1]: %run -d ch03/ipython_bug.py
Breakpoint 1 at /home/wesm/book_scripts/ch03/ipython_bug.py:1
NOTE: Enter 'c' at the ipdb> prompt to start your script.
> <string>(1)<module>()
ipdb>
Adding -b with a line number starts the debugger with a breakpoint set already:
In [2]: %run -d -b2 ch03/ipython_bug.py
Breakpoint 1 at /home/wesm/book_scripts/ch03/ipython_bug.py:2
NOTE: Enter 'c' at the ipdb> prompt to start your script.
> <string>(1)<module>()
ipdb> c
> /home/wesm/book_scripts/ch03/ipython_bug.py(2)works_fine()
1 def works_fine():
1---> 2 a = 5
3 b = 6
ipdb>
Timing Code: %time and %timeit
For larger-scale or longer-running data analysis applications, you may wish to measure the execution time of various components or of individual statements or function calls. You may want a report of which functions are taking up the most time in a complex process. Fortunately, IPython enables you to get this information very easily while you are developing and testing your code.
Timing code by hand using the built-in time module and its functions time.clock and time.time is often tedious and repetitive, as you must write the same uninteresting boilerplate code:
import time
start = time.time()
for i in range(iterations):
some code to run here
elapsed_per = (time.time() - start) / iterations
Since this is such a common operation, IPython has two magic functions %time and %timeit to automate this process for you. %time runs a statement once, reporting the total execution time. Suppose we had a large list of strings and we wanted to compare different methods of selecting all strings starting with a particular prefix. Here is a simple list of 700,000 strings and two identical methods of selecting only the ones that start with 'foo':
a very large list of strings
strings = ['foo', 'foobar', 'baz', 'qux',
'python', 'Guido Van Rossum'] * 100000
method1 = [x for x in strings if x.startswith('foo')]
method2 = [x for x in strings if x[:3] == 'foo']
It looks like they should be about the same performance-wise, right? We can check for sure using %time:
In [561]: %time method1 = [x for x in strings if x.startswith('foo')]
CPU times: user 0.19 s, sys: 0.00 s, total: 0.19 s
Wall time: 0.19 s
In [562]: %time method2 = [x for x in strings if x[:3] == 'foo']
CPU times: user 0.09 s, sys: 0.00 s, total: 0.09 s
Wall time: 0.09 s
The Wall time is the main number of interest. So, it looks like the first method takes more than twice as long, but it’s not a very precise measurement. If you try %time-ing those statements multiple times yourself, you’ll find that the results are somewhat variable. To get a more precise measurement, use the %timeit magic function. Given an arbitrary statement, it has a heuristic to run a statement multiple times to produce a fairly accurate average runtime.
In [563]: %timeit [x for x in strings if x.startswith('foo')]
10 loops, best of 3: 159 ms per loop
In [564]: %timeit [x for x in strings if x[:3] == 'foo']
10 loops, best of 3: 59.3 ms per loop
This seemingly innocuous example illustrates that it is worth understanding the performance characteristics of the Python standard library, NumPy, pandas, and other libraries used in this book. In larger-scale data analysis applications, those milliseconds will start to add up!
%timeit is especially useful for analyzing statements and functions with very short execution times, even at the level of microseconds (1e-6 seconds) or nanoseconds (1e-9 seconds). These may seem like insignificant amounts of time, but of course a 20 microsecond function invoked 1 million times takes 15 seconds longer than a 5 microsecond function. In the above example, we could very directly compare the two string operations to understand their performance characteristics:
In [565]: x = 'foobar'
In [566]: y = 'foo'
In [567]: %timeit x.startswith(y)
1000000 loops, best of 3: 267 ns per loop
In [568]: %timeit x[:3] == y
10000000 loops, best of 3: 147 ns per loop
Basic Profiling: %prun and %run -p
Profiling code is closely related to timing code, except it is concerned with determining where time is spent. The main Python profiling tool is the cProfile module, which is not specific to IPython at all. cProfile executes a program or any arbitrary block of code while keeping track of how much time is spent in each function.
A common way to use cProfile is on the command line, running an entire program and outputting the aggregated time per function. Suppose we had a simple script which does some linear algebra in a loop (computing the maximum absolute eigenvalues of a series of 100 x 100 matrices):
import numpy as np
from numpy.linalg import eigvals
def run_experiment(niter=100):
K = 100
results = []
for _ in xrange(niter):
mat = np.random.randn(K, K)
max_eigenvalue = np.abs(eigvals(mat)).max()
results.append(max_eigenvalue)
return results
some_results = run_experiment()
print 'Largest one we saw: %s' % np.max(some_results)
Don’t worry if you are not familiar with NumPy. You can run this script through cProfile by running the following in the command line:
python -m cProfile cprof_example.py
If you try that, you’ll find that the results are outputted sorted by function name. This makes it a bit hard to get an idea of where the most time is spent, so it’s very common to specify a sort order using the -s flag:
$ python -m cProfile -s cumulative cprof_example.py
Largest one we saw: 11.923204422
15116 function calls (14927 primitive calls) in 0.720 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.721 0.721 cprof_example.py:1(<module>)
100 0.003 0.000 0.586 0.006 linalg.py:702(eigvals)
200 0.572 0.003 0.572 0.003 {numpy.linalg.lapack_lite.dgeev}
1 0.002 0.002 0.075 0.075 __init__.py:106(<module>)
100 0.059 0.001 0.059 0.001 {method 'randn')
1 0.000 0.000 0.044 0.044 add_newdocs.py:9(<module>)
2 0.001 0.001 0.037 0.019 __init__.py:1(<module>)
2 0.003 0.002 0.030 0.015 __init__.py:2(<module>)
1 0.000 0.000 0.030 0.030 type_check.py:3(<module>)
1 0.001 0.001 0.021 0.021 __init__.py:15(<module>)
1 0.013 0.013 0.013 0.013 numeric.py:1(<module>)
1 0.000 0.000 0.009 0.009 __init__.py:6(<module>)
1 0.001 0.001 0.008 0.008 __init__.py:45(<module>)
262 0.005 0.000 0.007 0.000 function_base.py:3178(add_newdoc)
100 0.003 0.000 0.005 0.000 linalg.py:162(_assertFinite)
...
Only the first 15 rows of the output are shown. It’s easiest to read by scanning down the cumtime column to see how much total time was spent inside each function. Note that if a function calls some other function, the clock does not stop running. cProfile records the start and end time of each function call and uses that to produce the timing.
In addition to the above command-line usage, cProfile can also be used programmatically to profile arbitrary blocks of code without having to run a new process. IPython has a convenient interface to this capability using the %prun command and the -p option to %run. %prun takes the same “command line options” as cProfile but will profile an arbitrary Python statement instead of a while .py file:
In [4]: %prun -l 7 -s cumulative run_experiment()
4203 function calls in 0.643 seconds
Ordered by: cumulative time
List reduced from 32 to 7 due to restriction <7>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.643 0.643 <string>:1(<module>)
1 0.001 0.001 0.643 0.643 cprof_example.py:4(run_experiment)
100 0.003 0.000 0.583 0.006 linalg.py:702(eigvals)
200 0.569 0.003 0.569 0.003 {numpy.linalg.lapack_lite.dgeev}
100 0.058 0.001 0.058 0.001 {method 'randn'}
100 0.003 0.000 0.005 0.000 linalg.py:162(_assertFinite)
200 0.002 0.000 0.002 0.000 {method 'all' of 'numpy.ndarray' objects}
Similarly, calling %run -p -s cumulative cprof_example.py has the same effect as the command-line approach above, except you never have to leave IPython.
Profiling a Function Line-by-Line
In some cases the information you obtain from %prun (or another cProfile-based profile method) may not tell the whole story about a function’s execution time, or it may be so complex that the results, aggregated by function name, are hard to interpret. For this case, there is a small library called line_profiler (obtainable via PyPI or one of the package management tools). It contains an IPython extension enabling a new magic function %lprun that computes a line-by-line-profiling of one or more functions. You can enable this extension by modifying your IPython configuration (see the IPython documentation or the section on configuration later in this chapter) to include the following line:
A list of dotted module names of IPython extensions to load.
c.TerminalIPythonApp.extensions = ['line_profiler']
line_profiler can be used programmatically (see the full documentation), but it is perhaps most powerful when used interactively in IPython. Suppose you had a module prof_mod with the following code doing some NumPy array operations:
from numpy.random import randn
def add_and_sum(x, y):
added = x + y
summed = added.sum(axis=1)
return summed
def call_function():
x = randn(1000, 1000)
y = randn(1000, 1000)
return add_and_sum(x, y)
If we wanted to understand the performance of the add_and_sum function, %prun gives us the following:
In [569]: %run prof_mod
In [570]: x = randn(3000, 3000)
In [571]: y = randn(3000, 3000)
In [572]: %prun add_and_sum(x, y)
4 function calls in 0.049 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.036 0.036 0.046 0.046 prof_mod.py:3(add_and_sum)
1 0.009 0.009 0.009 0.009 {method 'sum' of 'numpy.ndarray' objects}
1 0.003 0.003 0.049 0.049 <string>:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
This is not especially enlightening. With the line_profiler IPython extension activated, a new command %lprun is available. The only difference in usage is that we must instruct %lprun which function or functions we wish to profile. The general syntax is:
%lprun -f func1 -f func2 statement_to_profile
In this case, we want to profile add_and_sum, so we run:
In [573]: %lprun -f add_and_sum add_and_sum(x, y)
Timer unit: 1e-06 s
File: book_scripts/prof_mod.py
Function: add_and_sum at line 3
Total time: 0.045936 s
Line # Hits Time Per Hit % Time Line Contents
==
3 def add_and_sum(x, y):
4 1 36510 36510.0 79.5 added = x + y
5 1 9425 9425.0 20.5 summed = added.sum(axis=1)
6 1 1 1.0 0.0 return summed
You’ll probably agree this is much easier to interpret. In this case we profiled the same function we used in the statement. Looking at the module code above, we could call call_function and profile that as well as add_and_sum, thus getting a full picture of the performance of the code:
In [574]: %lprun -f add_and_sum -f call_function call_function()
Timer unit: 1e-06 s
File: book_scripts/prof_mod.py
Function: add_and_sum at line 3
Total time: 0.005526 s
Line # Hits Time Per Hit % Time Line Contents
==
3 def add_and_sum(x, y):
4 1 4375 4375.0 79.2 added = x + y
5 1 1149 1149.0 20.8 summed = added.sum(axis=1)
6 1 2 2.0 0.0 return summed
File: book_scripts/prof_mod.py
Function: call_function at line 8
Total time: 0.121016 s
Line # Hits Time Per Hit % Time Line Contents
==
8 def call_function():
9 1 57169 57169.0 47.2 x = randn(1000, 1000)
10 1 58304 58304.0 48.2 y = randn(1000, 1000)
11 1 5543 5543.0 4.6 return add_and_sum(x, y)
As a general rule of thumb, I tend to prefer %prun (cProfile) for “macro” profiling and %lprun (line_profiler) for “micro” profiling. It’s worthwhile to have a good understanding of both tools.
NOTE
The reason that you have to specify explicitly the names of the functions you want to profile with %lprun is that the overhead of “tracing” the execution time of each line is significant. Tracing functions that are not of interest would potentially significantly alter the profile results.
IPython HTML Notebook
Figure 3-4. IPython Notebook
Starting in 2011, the IPython team, led by Brian Granger, built a web technology−based interactive computational document format that is commonly known as the IPython Notebook. It has grown into a wonderful tool for interactive computing and an ideal medium for reproducible research and teaching. I’ve used it while writing most of the examples in the book; I encourage you to make use of it, too.
It has a JSON-based .ipynb document format that enables easy sharing of code, output, and figures. Recently in Python conferences, a popular approach for demonstrations has been to use the notebook and post the .ipynb files online afterward for everyone to play with.
The notebook application runs as a lightweight server process on the command line. It can be started by running:
$ ipython notebook --pylab=inline
[NotebookApp] Using existing profile dir: u'/home/wesm/.config/ipython/profile_default'
[NotebookApp] Serving notebooks from /home/wesm/book_scripts
[NotebookApp] The IPython Notebook is running at: http://127.0.0.1:8888/
[NotebookApp] Use Control-C to stop this server and shut down all kernels.
On most platforms, your primary web browser will automatically open up to the notebook dashboard. In some cases you may have to navigate to the listed URL. From there, you can create a new notebook and start exploring.
Since you use the notebook inside a web browser, the server process can run anywhere. You can even securely connect to notebooks running on cloud service providers like Amazon EC2. As of this writing, a new project NotebookCloud (http://notebookcloud.appspot.com) makes it easy to launch notebooks on EC2.
Tips for Productive Code Development Using IPython
Writing code in a way that makes it easy to develop, debug, and ultimately use interactively may be a paradigm shift for many users. There are procedural details like code reloading that may require some adjustment as well as coding style concerns.
As such, most of this section is more of an art than a science and will require some experimentation on your part to determine a way to write your Python code that is effective and productive for you. Ultimately you want to structure your code in a way that makes it easy to use iteratively and to be able to explore the results of running a program or function as effortlessly as possible. I have found software designed with IPython in mind to be easier to work with than code intended only to be run as as standalone command-line application. This becomes especially important when something goes wrong and you have to diagnose an error in code that you or someone else might have written months or years beforehand.
Reloading Module Dependencies
In Python, when you type import some_lib, the code in some_lib is executed and all the variables, functions, and imports defined within are stored in the newly created some_lib module namespace. The next time you type import some_lib, you will get a reference to the existing module namespace. The potential difficulty in interactive code development in IPython comes when you, say, %run a script that depends on some other module where you may have made changes. Suppose I had the following code in test_script.py:
import some_lib
x = 5
y = [1, 2, 3, 4]
result = some_lib.get_answer(x, y)
If you were to execute %run test_script.py then modify some_lib.py, the next time you execute %run test_script.py you will still get the old version of some_lib because of Python’s “load-once” module system. This behavior differs from some other data analysis environments, like MATLAB, which automatically propagate code changes.[2] To cope with this, you have a couple of options. The first way is to use Python's built-in reload function, altering test_script.py to look like the following:
import some_lib
reload(some_lib)
x = 5
y = [1, 2, 3, 4]
result = some_lib.get_answer(x, y)
This guarantees that you will get a fresh copy of some_lib every time you run test_script.py. Obviously, if the dependencies go deeper, it might be a bit tricky to be inserting usages of reload all over the place. For this problem, IPython has a special dreload function (not a magic function) for “deep” (recursive) reloading of modules. If I were to run import some_lib then type dreload(some_lib), it will attempt to reload some_lib as well as all of its dependencies. This will not work in all cases, unfortunately, but when it does it beats having to restart IPython.
Code Design Tips
There’s no simple recipe for this, but here are some high-level principles I have found effective in my own work.
Keep relevant objects and data alive
It’s not unusual to see a program written for the command line with a structure somewhat like the following trivial example:
from my_functions import g
def f(x, y):
return g(x + y)
def main():
x = 6
y = 7.5
result = x + y
if __name__ == '__main__':
main()
Do you see what might be wrong with this program if we were to run it in IPython? After it’s done, none of the results or objects defined in the main function willl be accessible in the IPython shell. A better way is to have whatever code is in main execute directly in the module’s global namespace (or in the if __name__ == '__main__': block, if you want the module to also be importable). That way, when you %run the code, you’ll be able to look at all of the variables defined in main. It’s less meaningful in this simple example, but in this book we’ll be looking at some complex data analysis problems involving large data sets that you will want to be able to play with in IPython.
Flat is better than nested
Deeply nested code makes me think about the many layers of an onion. When testing or debugging a function, how many layers of the onion must you peel back in order to reach the code of interest? The idea that “flat is better than nested” is a part of the Zen of Python, and it applies generally to developing code for interactive use as well. Making functions and classes as decoupled and modular as possible makes them easier to test (if you are writing unit tests), debug, and use interactively.
Overcome a fear of longer files
If you come from a Java (or another such language) background, you may have been told to keep files short. In many languages, this is sound advice; long length is usually a bad “code smell”, indicating refactoring or reorganization may be necessary. However, while developing code using IPython, working with 10 small, but interconnected files (under, say, 100 lines each) is likely to cause you more headache in general than a single large file or two or three longer files. Fewer files means fewer modules to reload and less jumping between files while editing, too. I have found maintaining larger modules, each with high internal cohesion, to be much more useful and pythonic. After iterating toward a solution, it sometimes will make sense to refactor larger files into smaller ones.
Obviously, I don’t support taking this argument to the extreme, which would to be to put all of your code in a single monstrous file. Finding a sensible and intuitive module and package structure for a large codebase often takes a bit of work, but it is especially important to get right in teams. Each module should be internally cohesive, and it should be as obvious as possible where to find functions and classes responsible for each area of functionality.
Advanced IPython Features
Making Your Own Classes IPython-friendly
IPython makes every effort to display a console-friendly string representation of any object that you inspect. For many objects, like dicts, lists, and tuples, the built-in pprint module is used to do the nice formatting. In user-defined classes, however, you have to generate the desired string output yourself. Suppose we had the following simple class:
class Message:
def __init__(self, msg):
self.msg = msg
If you wrote this, you would be disappointed to discover that the default output for your class isn’t very nice:
In [576]: x = Message('I have a secret')
In [577]: x
Out[577]: <__main__.Message instance at 0x60ebbd8>
IPython takes the string returned by the __repr__ magic method (by doing output = repr(obj)) and prints that to the console. Thus, we can add a simple __repr__ method to the above class to get a more helpful output:
class Message:
def __init__(self, msg):
self.msg = msg
def __repr__(self):
return 'Message: %s' % self.msg
In [579]: x = Message('I have a secret')
In [580]: x
Out[580]: Message: I have a secret
Profiles and Configuration
Most aspects of the appearance (colors, prompt, spacing between lines, etc.) and behavior of the IPython shell are configurable through an extensive configuration system. Here are some of the things you can do via configuration:
Change the color scheme
Change how the input and output prompts look, or remove the blank line after Out and before the next In prompt
Change how the input and output prompts look
Execute an arbitrary list of Python statements. These could be imports that you use all the time or anything else you want to happen each time you launch IPython
Enable IPython extensions, like the %lprun magic in line_profiler
Define your own magics or system aliases
All of these configuration options are specified in a special ipython_config.py file which will be found in the ~/.config/ipython/ directory on UNIX-like systems and %HOME%/.ipython/ directory on Windows. Where your home directory is depends on your system. Configuration is performed based on a particular profile. When you start IPython normally, you load up, by default, the default profile, stored in the profile_default directory. Thus, on my Linux OS the full path to my default IPython configuration file is:
/home/wesm/.config/ipython/profile_default/ipython_config.py
I’ll spare you the gory details of what’s in this file. Fortunately it has comments describing what each configuration option is for, so I will leave it to the reader to tinker and customize. One additional useful feature is that it’s possible to have multiple profiles. Suppose you wanted to have an alternate IPython configuration tailored for a particular application or project. Creating a new profile is as simple is typing something like
ipython profile create secret_project
Once you’ve done this, edit the config files in the newly-created profile_secret_project directory then launch IPython like so
$ ipython --profile=secret_project
Python 2.7.2 |EPD 7.1-2 (64-bit)| (default, Jul 3 2011, 15:17:51)
Type "copyright", "credits" or "license" for more information.
IPython 0.13 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
IPython profile: secret_project
In [1]:
As always, the online IPython documentation is an excellent resource for more on profiles and configuration.
Credits
Parts of this chapter were derived from the wonderful documentation put together by the IPython Development Team. I can’t thank them enough for all of their work building this amazing set of tools.
[2] Since a module or package may be imported in many different places in a particular program, Python caches a module’s code the first time it is imported rather than executing the code in the module every time. Otherwise, modularity and good code organization could potentially cause inefficiency in an application.
Chapter 4. NumPy Basics: Arrays and Vectorized Computation
NumPy, short for Numerical Python, is the fundamental package required for high performance scientific computing and data analysis. It is the foundation on which nearly all of the higher-level tools in this book are built. Here are some of the things it provides:
ndarray, a fast and space-efficient multidimensional array providing vectorized arithmetic operations and sophisticated broadcasting capabilities
Standard mathematical functions for fast operations on entire arrays of data without having to write loops
Tools for reading / writing array data to disk and working with memory-mapped files
Linear algebra, random number generation, and Fourier transform capabilities
Tools for integrating code written in C, C++, and Fortran
The last bullet point is also one of the most important ones from an ecosystem point of view. Because NumPy provides an easy-to-use C API, it is very easy to pass data to external libraries written in a low-level language and also for external libraries to return data to Python as NumPy arrays. This feature has made Python a language of choice for wrapping legacy C/C++/Fortran codebases and giving them a dynamic and easy-to-use interface.
While NumPy by itself does not provide very much high-level data analytical functionality, having an understanding of NumPy arrays and array-oriented computing will help you use tools like pandas much more effectively. If you’re new to Python and just looking to get your hands dirty working with data using pandas, feel free to give this chapter a skim. For more on advanced NumPy features like broadcasting, see Chapter 12.
For most data analysis applications, the main areas of functionality I’ll focus on are:
Fast vectorized array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations
Common array algorithms like sorting, unique, and set operations
Efficient descriptive statistics and aggregating/summarizing data
Data alignment and relational data manipulations for merging and joining together heterogeneous data sets
Expressing conditional logic as array expressions instead of loops with if-elif-else branches
Group-wise data manipulations (aggregation, transformation, function application). Much more on this in Chapter 5
While NumPy provides the computational foundation for these operations, you will likely want to use pandas as your basis for most kinds of data analysis (especially for structured or tabular data) as it provides a rich, high-level interface making most common data tasks very concise and simple. pandas also provides some more domain-specific functionality like time series manipulation, which is not present in NumPy.
NOTE
In this chapter and throughout the book, I use the standard NumPy convention of always using import numpy as np. You are, of course, welcome to put from numpy import * in your code to avoid having to write np., but I would caution you against making a habit of this.
The NumPy ndarray: A Multidimensional Array Object
One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large data sets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the equivalent operations between scalar elements:
In [8]: data
Out[8]:
array([[0.9526, -0.246 , -0.8856],
[0.5639, 0.2379, 0.9104]])
In [9]: data * 10 In [10]: data + data
Out[9]: Out[10]:
array([[9.5256, -2.4601, -8.8565], array([[1.9051, -0.492 , -1.7713],
[5.6385, 2.3794, 9.104]]) [1.1277, 0.4759, 1.8208]])
An ndarray is a generic multidimensional container for homogeneous data; that is, all of the elements must be the same type. Every array has a shape, a tuple indicating the size of each dimension, and a dtype, an object describing the data type of the array:
In [11]: data.shape
Out[11]: (2, 3)
In [12]: data.dtype
Out[12]: dtype('float64')
This chapter will introduce you to the basics of using NumPy arrays, and should be sufficient for following along with the rest of the book. While it’s not necessary to have a deep understanding of NumPy for many data analytical applications, becoming proficient in array-oriented programming and thinking is a key step along the way to becoming a scientific Python guru.
NOTE
Whenever you see “array”, “NumPy array”, or “ndarray” in the text, with few exceptions they all refer to the same thing: the ndarray object.
Creating ndarrays
The easiest way to create an array is to use the array function. This accepts any sequence-like object (including other arrays) and produces a new NumPy array containing the passed data. For example, a list is a good candidate for conversion:
In [13]: data1 = [6, 7.5, 8, 0, 1]
In [14]: arr1 = np.array(data1)
In [15]: arr1
Out[15]: array([6. , 7.5, 8. , 0. , 1.])
Nested sequences, like a list of equal-length lists, will be converted into a multidimensional array:
In [16]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
In [17]: arr2 = np.array(data2)
In [18]: arr2
Out[18]:
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
In [19]: arr2.ndim
Out[19]: 2
In [20]: arr2.shape
Out[20]: (2, 4)
Unless explicitly specified (more on this later), np.array tries to infer a good data type for the array that it creates. The data type is stored in a special dtype object; for example, in the above two examples we have:
In [21]: arr1.dtype
Out[21]: dtype('float64')
In [22]: arr2.dtype
Out[22]: dtype('int64')
In addition to np.array, there are a number of other functions for creating new arrays. As examples, zeros and ones create arrays of 0’s or 1’s, respectively, with a given length or shape. empty creates an array without initializing its values to any particular value. To create a higher dimensional array with these methods, pass a tuple for the shape:
In [23]: np.zeros(10)
Out[23]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
In [24]: np.zeros((3, 6))
Out[24]:
array([[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]])
In [25]: np.empty((2, 3, 2))
Out[25]:
array([[[4.94065646e-324, 4.94065646e-324],
[3.87491056e-297, 2.46845796e-130],
[4.94065646e-324, 4.94065646e-324]],
[[1.90723115e+083, 5.73293533e-053],
[-2.33568637e+124, -6.70608105e-012],
[4.42786966e+160, 1.27100354e+025]]])
CAUTION
It’s not safe to assume that np.empty will return an array of all zeros. In many cases, as previously shown, it will return uninitialized garbage values.
arange is an array-valued version of the built-in Python range function:
In [26]: np.arange(15)
Out[26]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
See Table 4-1 for a short list of standard array creation functions. Since NumPy is focused on numerical computing, the data type, if not specified, will in many cases be float64 (floating point).
Table 4-1. Array creation functions
Data Types for ndarrays
The data type or dtype is a special object containing the information the ndarray needs to interpret a chunk of memory as a particular type of data:
In [27]: arr1 = np.array([1, 2, 3], dtype=np.float64)
In [28]: arr2 = np.array([1, 2, 3], dtype=np.int32)
In [29]: arr1.dtype In [30]: arr2.dtype
Out[29]: dtype('float64') Out[30]: dtype('int32')
Dtypes are part of what make NumPy so powerful and flexible. In most cases they map directly onto an underlying machine representation, which makes it easy to read and write binary streams of data to disk and also to connect to code written in a low-level language like C or Fortran. The numerical dtypes are named the same way: a type name, like float or int, followed by a number indicating the number of bits per element. A standard double-precision floating point value (what’s used under the hood in Python’s float object) takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See Table 4-2 for a full listing of NumPy’s supported data types.
NOTE
Don’t worry about memorizing the NumPy dtypes, especially if you’re a new user. It’s often only necessary to care about the general kind of data you’re dealing with, whether floating point, complex, integer, boolean, string, or general Python object. When you need more control over how data are stored in memory and on disk, especially large data sets, it is good to know that you have control over the storage type.
Table 4-2. NumPy data types
You can explicitly convert or cast an array from one dtype to another using ndarray’s astype method:
In [31]: arr = np.array([1, 2, 3, 4, 5])
In [32]: arr.dtype
Out[32]: dtype('int64')
In [33]: float_arr = arr.astype(np.float64)
In [34]: float_arr.dtype
Out[34]: dtype('float64')
In this example, integers were cast to floating point. If I cast some floating point numbers to be of integer dtype, the decimal part will be truncated:
In [35]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
In [36]: arr
Out[36]: array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
In [37]: arr.astype(np.int32)
Out[37]: array([3, -1, -2, 0, 12, 10], dtype=int32)
Should you have an array of strings representing numbers, you can use astype to convert them to numeric form:
In [38]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)
In [39]: numeric_strings.astype(float)
Out[39]: array([1.25, -9.6 , 42.])
If casting were to fail for some reason (like a string that cannot be converted to float64), a TypeError will be raised. See that I was a bit lazy and wrote float instead of np.float64; NumPy is smart enough to alias the Python types to the equivalent dtypes.
You can also use another array’s dtype attribute:
In [40]: int_array = np.arange(10)
In [41]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)
In [42]: int_array.astype(calibers.dtype)
Out[42]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
There are shorthand type code strings you can also use to refer to a dtype:
In [43]: empty_uint32 = np.empty(8, dtype='u4')
In [44]: empty_uint32
Out[44]:
array([0, 0, 65904672, 0, 64856792, 0,
39438163, 0], dtype=uint32)
NOTE
Calling astype always creates a new array (a copy of the data), even if the new dtype is the same as the old dtype.
CAUTION
It’s worth keeping in mind that floating point numbers, such as those in float64 and float32 arrays, are only capable of approximating fractional quantities. In complex computations, you may accrue some floating point error, making comparisons only valid up to a certain number of decimal places.
Operations between Arrays and Scalars
Arrays are important because they enable you to express batch operations on data without writing any for loops. This is usually called vectorization. Any arithmetic operations between equal-size arrays applies the operation elementwise:
In [45]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])
In [46]: arr
Out[46]:
array([[1., 2., 3.],
[4., 5., 6.]])
In [47]: arr * arr In [48]: arr - arr
Out[47]: Out[48]:
array([[1., 4., 9.], array([[0., 0., 0.],
[16., 25., 36.]]) [0., 0., 0.]])
Arithmetic operations with scalars are as you would expect, propagating the value to each element:
In [49]: 1 / arr In [50]: arr ** 0.5
Out[49]: Out[50]:
array([[1. , 0.5 , 0.3333], array([[1. , 1.4142, 1.7321],
[0.25 , 0.2 , 0.1667]]) [2. , 2.2361, 2.4495]])
Operations between differently sized arrays is called broadcasting and will be discussed in more detail in Chapter 12. Having a deep understanding of broadcasting is not necessary for most of this book.
Basic Indexing and Slicing
NumPy array indexing is a rich topic, as there are many ways you may want to select a subset of your data or individual elements. One-dimensional arrays are simple; on the surface they act similarly to Python lists:
In [51]: arr = np.arange(10)
In [52]: arr
Out[52]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [53]: arr[5]
Out[53]: 5
In [54]: arr[5:8]
Out[54]: array([5, 6, 7])
In [55]: arr[5:8] = 12
In [56]: arr
Out[56]: array([0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
As you can see, if you assign a scalar value to a slice, as in arr[5:8] = 12, the value is propagated (or broadcasted henceforth) to the entire selection. An important first distinction from lists is that array slices are views on the original array. This means that the data is not copied, and any modifications to the view will be reflected in the source array:
In [57]: arr_slice = arr[5:8]
In [58]: arr_slice[1] = 12345
In [59]: arr
Out[59]: array([0, 1, 2, 3, 4, 12, 12345, 12, 8, 9])
In [60]: arr_slice[:] = 64
In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
If you are new to NumPy, you might be surprised by this, especially if they have used other array programming languages which copy data more zealously. As NumPy has been designed with large data use cases in mind, you could imagine performance and memory problems if NumPy insisted on copying data left and right.
CAUTION
If you want a copy of a slice of an ndarray instead of a view, you will need to explicitly copy the array; for example arr[5:8].copy().
With higher dimensional arrays, you have many more options. In a two-dimensional array, the elements at each index are no longer scalars but rather one-dimensional arrays:
In [62]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [63]: arr2d[2]
Out[63]: array([7, 8, 9])
Thus, individual elements can be accessed recursively. But that is a bit too much work, so you can pass a comma-separated list of indices to select individual elements. So these are equivalent:
In [64]: arr2d[0][2]
Out[64]: 3
In [65]: arr2d[0, 2]
Out[65]: 3
See Figure 4-1 for an illustration of indexing on a 2D array.
Figure 4-1. Indexing elements in a NumPy array
In multidimensional arrays, if you omit later indices, the returned object will be a lower-dimensional ndarray consisting of all the data along the higher dimensions. So in the 2 × 2 × 3 array arr3d
In [66]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
In [67]: arr3d
Out[67]:
array([[[1, 2, 3],
[4, 5, 6]],
[[7, 8, 9],
[10, 11, 12]]])
arr3d[0] is a 2 × 3 array:
In [68]: arr3d[0]
Out[68]:
array([[1, 2, 3],
[4, 5, 6]])
Both scalar values and arrays can be assigned to arr3d[0]:
In [69]: old_values = arr3d[0].copy()
In [70]: arr3d[0] = 42
In [71]: arr3d
Out[71]:
array([[[42, 42, 42],
[42, 42, 42]],
[[7, 8, 9],
[10, 11, 12]]])
In [72]: arr3d[0] = old_values
In [73]: arr3d
Out[73]:
array([[[1, 2, 3],
[4, 5, 6]],
[[7, 8, 9],
[10, 11, 12]]])
Similarly, arr3d[1, 0] gives you all of the values whose indices start with (1, 0), forming a 1-dimensional array:
In [74]: arr3d[1, 0]
Out[74]: array([7, 8, 9])
Note that in all of these cases where subsections of the array have been selected, the returned arrays are views.
Indexing with slices
Like one-dimensional objects such as Python lists, ndarrays can be sliced using the familiar syntax:
In [75]: arr[1:6]
Out[75]: array([1, 2, 3, 4, 64])
Higher dimensional objects give you more options as you can slice one or more axes and also mix integers. Consider the 2D array above, arr2d. Slicing this array is a bit different:
In [76]: arr2d In [77]: arr2d[:2]
Out[76]: Out[77]:
array([[1, 2, 3], array([[1, 2, 3],
[4, 5, 6], [4, 5, 6]])
[7, 8, 9]])
As you can see, it has sliced along axis 0, the first axis. A slice, therefore, selects a range of elements along an axis. You can pass multiple slices just like you can pass multiple indexes:
In [78]: arr2d[:2, 1:]
Out[78]:
array([[2, 3],
[5, 6]])
When slicing like this, you always obtain array views of the same number of dimensions. By mixing integer indexes and slices, you get lower dimensional slices:
In [79]: arr2d[1, :2] In [80]: arr2d[2, :1]
Out[79]: array([4, 5]) Out[80]: array([7])
See Figure 4-2 for an illustration. Note that a colon by itself means to take the entire axis, so you can slice only higher dimensional axes by doing:
In [81]: arr2d[:, :1]
Out[81]:
array([[1],
[4],
[7]])
Of course, assigning to a slice expression assigns to the whole selection:
In [82]: arr2d[:2, 1:] = 0
Boolean Indexing
Let’s consider an example where we have some data in an array and an array of names with duplicates. I’m going to use here the randn function in numpy.random to generate some random normally distributed data:
In [83]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [84]: data = randn(7, 4)
In [85]: names
Out[85]:
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
dtype='|S4')
In [86]: data
Out[86]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
[-0.268 , 0.5465, 0.0939, -2.0445],
[-0.047 , -2.026 , 0.7719, 0.3103],
[2.1452, 0.8799, -0.0523, 0.0672],
[-1.0023, -0.1698, 1.1503, 1.7289],
[0.1913, 0.4544, 0.4519, 0.5535],
[0.5994, 0.8174, -0.9297, -1.2564]])
Figure 4-2. Two-dimensional array slicing
Suppose each name corresponds to a row in the data array. If we wanted to select all the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons (such as ==) with arrays are also vectorized. Thus, comparing names with the string 'Bob' yields a boolean array:
In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)
This boolean array can be passed when indexing the array:
In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
[2.1452, 0.8799, -0.0523, 0.0672]])
The boolean array must be of the same length as the axis it’s indexing. You can even mix and match boolean arrays with slices or integers (or sequences of integers, more on this later):
In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],
[-0.0523, 0.0672]])
In [90]: data[names == 'Bob', 3]
Out[90]: array([1.2792, 0.0672])
To select everything but 'Bob', you can either use != or negate the condition using -:
In [91]: names != 'Bob'
Out[91]: array([False, True, True, False, True, True, True], dtype=bool)
In [92]: data[-(names == 'Bob')]
Out[92]:
array([[-0.268 , 0.5465, 0.0939, -2.0445],
[-0.047 , -2.026 , 0.7719, 0.3103],
[-1.0023, -0.1698, 1.1503, 1.7289],
[0.1913, 0.4544, 0.4519, 0.5535],
[0.5994, 0.8174, -0.9297, -1.2564]])
Selecting two of the three names to combine multiple boolean conditions, use boolean arithmetic operators like & (and) and | (or):
In [93]: mask = (names == 'Bob') | (names == 'Will')
In [94]: mask
Out[94]: array([True, False, True, True, True, False, False], dtype=bool)
In [95]: data[mask]
Out[95]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
[-0.047 , -2.026 , 0.7719, 0.3103],
[2.1452, 0.8799, -0.0523, 0.0672],
[-1.0023, -0.1698, 1.1503, 1.7289]])
Selecting data from an array by boolean indexing always creates a copy of the data, even if the returned array is unchanged.
CAUTION
The Python keywords and and or do not work with boolean arrays.
Setting values with boolean arrays works in a common-sense way. To set all of the negative values in data to 0 we need only do:
In [96]: data[data < 0] = 0
In [97]: data
Out[97]:
array([[0. , 0.5433, 0. , 1.2792],
[0. , 0.5465, 0.0939, 0.],
[0. , 0. , 0.7719, 0.3103],
[2.1452, 0.8799, 0. , 0.0672],
[0. , 0. , 1.1503, 1.7289],
[0.1913, 0.4544, 0.4519, 0.5535],
[0.5994, 0.8174, 0. , 0.]])
Setting whole rows or columns using a 1D boolean array is also easy:
In [98]: data[names != 'Joe'] = 7
In [99]: data
Out[99]:
array([[7. , 7. , 7. , 7.],
[0. , 0.5465, 0.0939, 0.],
[7. , 7. , 7. , 7.],
[7. , 7. , 7. , 7.],
[7. , 7. , 7. , 7.],
[0.1913, 0.4544, 0.4519, 0.5535],
[0.5994, 0.8174, 0. , 0.]])
Fancy Indexing
Fancy indexing is a term adopted by NumPy to describe indexing using integer arrays. Suppose we had a 8 × 4 array:
In [100]: arr = np.empty((8, 4))
In [101]: for i in range(8):
.....: arr[i] = i
In [102]: arr
Out[102]:
array([[0., 0., 0., 0.],
[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.],
[4., 4., 4., 4.],
[5., 5., 5., 5.],
[6., 6., 6., 6.],
[7., 7., 7., 7.]])
To select out a subset of the rows in a particular order, you can simply pass a list or ndarray of integers specifying the desired order:
In [103]: arr[[4, 3, 0, 6]]
Out[103]:
array([[4., 4., 4., 4.],
[3., 3., 3., 3.],
[0., 0., 0., 0.],
[6., 6., 6., 6.]])
Hopefully this code did what you expected! Using negative indices select rows from the end:
In [104]: arr[[-3, -5, -7]]
Out[104]:
array([[5., 5., 5., 5.],
[3., 3., 3., 3.],
[1., 1., 1., 1.]])
Passing multiple index arrays does something slightly different; it selects a 1D array of elements corresponding to each tuple of indices:
more on reshape in Chapter 12
In [105]: arr = np.arange(32).reshape((8, 4))
In [106]: arr
Out[106]:
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
In [107]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[107]: array([4, 23, 29, 10])
Take a moment to understand what just happened: the elements (1, 0), (5, 3), (7, 1), and (2, 2) were selected. The behavior of fancy indexing in this case is a bit different from what some users might have expected (myself included), which is the rectangular region formed by selecting a subset of the matrix’s rows and columns. Here is one way to get that:
In [108]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[108]:
array([[4, 7, 5, 6],
[20, 23, 21, 22],
[28, 31, 29, 30],
[8, 11, 9, 10]])
Another way is to use the np.ix_ function, which converts two 1D integer arrays to an indexer that selects the square region:
In [109]: arr[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]
Out[109]:
array([[4, 7, 5, 6],
[20, 23, 21, 22],
[28, 31, 29, 30],
[8, 11, 9, 10]])
Keep in mind that fancy indexing, unlike slicing, always copies the data into a new array.
Transposing Arrays and Swapping Axes
Transposing is a special form of reshaping which similarly returns a view on the underlying data without copying anything. Arrays have the transpose method and also the special T attribute:
In [110]: arr = np.arange(15).reshape((3, 5))
In [111]: arr In [112]: arr.T
Out[111]: Out[112]:
array([[0, 1, 2, 3, 4], array([[0, 5, 10],
[5, 6, 7, 8, 9], [1, 6, 11],
[10, 11, 12, 13, 14]]) [2, 7, 12],
[3, 8, 13],
[4, 9, 14]])
When doing matrix computations, you will do this very often, like for example computing the inner matrix product XTX using np.dot:
In [113]: arr = np.random.randn(6, 3)
In [114]: np.dot(arr.T, arr)
Out[114]:
array([[2.584 , 1.8753, 0.8888],
[1.8753, 6.6636, 0.3884],
[0.8888, 0.3884, 3.9781]])
For higher dimensional arrays, transpose will accept a tuple of axis numbers to permute the axes (for extra mind bending):
In [115]: arr = np.arange(16).reshape((2, 2, 4))
In [116]: arr
Out[116]:
array([[[0, 1, 2, 3],
[4, 5, 6, 7]],
[[8, 9, 10, 11],
[12, 13, 14, 15]]])
In [117]: arr.transpose((1, 0, 2))
Out[117]:
array([[[0, 1, 2, 3],
[8, 9, 10, 11]],
[[4, 5, 6, 7],
[12, 13, 14, 15]]])
Simple transposing with .T is just a special case of swapping axes. ndarray has the method swapaxes which takes a pair of axis numbers:
In [118]: arr In [119]: arr.swapaxes(1, 2)
Out[118]: Out[119]:
array([[[0, 1, 2, 3], array([[[0, 4],
[4, 5, 6, 7]], [1, 5],
[2, 6],
[[8, 9, 10, 11], [3, 7]],
[12, 13, 14, 15]]])
[[8, 12],
[9, 13],
[10, 14],
[11, 15]]])
swapaxes similarly returns a view on the data without making a copy.
Universal Functions: Fast Element-wise Array Functions
A universal function, or ufunc, is a function that performs elementwise operations on data in ndarrays. You can think of them as fast vectorized wrappers for simple functions that take one or more scalar values and produce one or more scalar results.
Many ufuncs are simple elementwise transformations, like sqrt or exp:
In [120]: arr = np.arange(10)
In [121]: np.sqrt(arr)
Out[121]:
array([0. , 1. , 1.4142, 1.7321, 2. , 2.2361, 2.4495,
2.6458, 2.8284, 3.])
In [122]: np.exp(arr)
Out[122]:
array([1. , 2.7183, 7.3891, 20.0855, 54.5982,
148.4132, 403.4288, 1096.6332, 2980.958 , 8103.0839])
These are referred to as unary ufuncs. Others, such as add or maximum, take 2 arrays (thus, binary ufuncs) and return a single array as the result:
In [123]: x = randn(8)
In [124]: y = randn(8)
In [125]: x
Out[125]:
array([0.0749, 0.0974, 0.2002, -0.2551, 0.4655, 0.9222, 0.446 ,
-0.9337])
In [126]: y
Out[126]:
array([0.267 , -1.1131, -0.3361, 0.6117, -1.2323, 0.4788, 0.4315,
-0.7147])
In [127]: np.maximum(x, y) # element-wise maximum
Out[127]:
array([0.267 , 0.0974, 0.2002, 0.6117, 0.4655, 0.9222, 0.446 ,
-0.7147])
While not common, a ufunc can return multiple arrays. modf is one example, a vectorized version of the built-in Python divmod: it returns the fractional and integral parts of a floating point array:
In [128]: arr = randn(7) * 5
In [129]: np.modf(arr)
Out[129]:
(array([-0.6808, 0.0636, -0.386 , 0.1393, -0.8806, 0.9363, -0.883]),
array([-2., 4., -3., 5., -3., 3., -6.]))
See Table 4-3 and Table 4-4 for a listing of available ufuncs.
Table 4-3. Unary ufuncs
Table 4-4. Binary universal functions
Data Processing Using Arrays
Using NumPy arrays enables you to express many kinds of data processing tasks as concise array expressions that might otherwise require writing loops. This practice of replacing explicit loops with array expressions is commonly referred to as vectorization. In general, vectorized array operations will often be one or two (or more) orders of magnitude faster than their pure Python equivalents, with the biggest impact in any kind of numerical computations. Later, in Chapter 12, I will explain broadcasting, a powerful method for vectorizing computations.
As a simple example, suppose we wished to evaluate the function sqrt(x^2 + y^2) across a regular grid of values. The np.meshgrid function takes two 1D arrays and produces two 2D matrices corresponding to all pairs of (x, y) in the two arrays:
In [130]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points
In [131]: xs, ys = np.meshgrid(points, points)
In [132]: ys
Out[132]:
array([[-5. , -5. , -5. , ..., -5. , -5. , -5.],
[-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
[-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
...,
[4.97, 4.97, 4.97, ..., 4.97, 4.97, 4.97],
[4.98, 4.98, 4.98, ..., 4.98, 4.98, 4.98],
[4.99, 4.99, 4.99, ..., 4.99, 4.99, 4.99]])
Now, evaluating the function is a simple matter of writing the same expression you would write with two points:
In [134]: import matplotlib.pyplot as plt
In [135]: z = np.sqrt(xs ** 2 + ys ** 2)
In [136]: z
Out[136]:
array([[7.0711, 7.064 , 7.0569, ..., 7.0499, 7.0569, 7.064],
[7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569],
[7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
...,
[7.0499, 7.0428, 7.0357, ..., 7.0286, 7.0357, 7.0428],
[7.0569, 7.0499, 7.0428, ..., 7.0357, 7.0428, 7.0499],
[7.064 , 7.0569, 7.0499, ..., 7.0428, 7.0499, 7.0569]])
In [137]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
Out[137]: <matplotlib.colorbar.Colorbar instance at 0x4e46d40>
In [138]: plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
Out[138]: <matplotlib.text.Text at 0x4565790>
See Figure 4-3. Here I used the matplotlib function imshow to create an image plot from a 2D array of function values.
Figure 4-3. Plot of function evaluated on grid
Expressing Conditional Logic as Array Operations
The numpy.where function is a vectorized version of the ternary expression x if condition else y. Suppose we had a boolean array and two arrays of values:
In [140]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
In [141]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
In [142]: cond = np.array([True, False, True, True, False])
Suppose we wanted to take a value from xarr whenever the corresponding value in cond is True otherwise take the value from yarr. A list comprehension doing this might look like:
In [143]: result = [(x if c else y)
.....: for x, y, c in zip(xarr, yarr, cond)]
In [144]: result
Out[144]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 2.5]
This has multiple problems. First, it will not be very fast for large arrays (because all the work is being done in pure Python). Secondly, it will not work with multidimensional arrays. With np.where you can write this very concisely:
In [145]: result = np.where(cond, xarr, yarr)
In [146]: result
Out[146]: array([1.1, 2.2, 1.3, 1.4, 2.5])
The second and third arguments to np.where don’t need to be arrays; one or both of them can be scalars. A typical use of where in data analysis is to produce a new array of values based on another array. Suppose you had a matrix of randomly generated data and you wanted to replace all positive values with 2 and all negative values with -2. This is very easy to do with np.where:
In [147]: arr = randn(4, 4)
In [148]: arr
Out[148]:
array([[0.6372, 2.2043, 1.7904, 0.0752],
[-1.5926, -1.1536, 0.4413, 0.3483],
[-0.1798, 0.3299, 0.7827, -0.7585],
[0.5857, 0.1619, 1.3583, -1.3865]])
In [149]: np.where(arr > 0, 2, -2)
Out[149]:
array([[2, 2, 2, 2],
[-2, -2, 2, 2],
[-2, 2, 2, -2],
[2, 2, 2, -2]])
In [150]: np.where(arr > 0, 2, arr) # set only positive values to 2
Out[150]:
array([[2. , 2. , 2. , 2.],
[-1.5926, -1.1536, 2. , 2.],
[-0.1798, 2. , 2. , -0.7585],
[2. , 2. , 2. , -1.3865]])
The arrays passed to where can be more than just equal sizes array or scalers.
With some cleverness you can use where to express more complicated logic; consider this example where I have two boolean arrays, cond1 and cond2, and wish to assign a different value for each of the 4 possible pairs of boolean values:
result = []
for i in range(n):
if cond1[i] and cond2[i]:
result.append(0)
elif cond1[i]:
result.append(1)
elif cond2[i]:
result.append(2)
else:
result.append(3)
While perhaps not immediately obvious, this for loop can be converted into a nested where expression:
np.where(cond1 & cond2, 0,
np.where(cond1, 1,
np.where(cond2, 2, 3)))
In this particular example, we can also take advantage of the fact that boolean values are treated as 0 or 1 in calculations, so this could alternatively be expressed (though a bit more cryptically) as an arithmetic operation:
result = 1 * cond1 + 2 * cond2 + 3 * -(cond1 | cond2)
Mathematical and Statistical Methods
A set of mathematical functions which compute statistics about an entire array or about the data along an axis are accessible as array methods. Aggregations (often called reductions) like sum, mean, and standard deviation std can either be used by calling the array instance method or using the top level NumPy function:
In [151]: arr = np.random.randn(5, 4) # normally-distributed data
In [152]: arr.mean()
Out[152]: 0.062814911084854597
In [153]: np.mean(arr)
Out[153]: 0.062814911084854597
In [154]: arr.sum()
Out[154]: 1.2562982216970919
Functions like mean and sum take an optional axis argument which computes the statistic over the given axis, resulting in an array with one fewer dimension:
In [155]: arr.mean(axis=1)
Out[155]: array([-1.2833, 0.2844, 0.6574, 0.6743, -0.0187])
In [156]: arr.sum(0)
Out[156]: array([-3.1003, -1.6189, 1.4044, 4.5712])
Other methods like cumsum and cumprod do not aggregate, instead producing an array of the intermediate results:
In [157]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
In [158]: arr.cumsum(0) In [159]: arr.cumprod(1)
Out[158]: Out[159]:
array([[0, 1, 2], array([[0, 0, 0],
[3, 5, 7], [3, 12, 60],
[9, 12, 15]]) [6, 42, 336]])
See Table 4-5 for a full listing. We’ll see many examples of these methods in action in later chapters.
Table 4-5. Basic array statistical methods
Methods for Boolean Arrays
Boolean values are coerced to 1 (True) and 0 (False) in the above methods. Thus, sum is often used as a means of counting True values in a boolean array:
In [160]: arr = randn(100)
In [161]: (arr > 0).sum() # Number of positive values
Out[161]: 44
There are two additional methods, any and all, useful especially for boolean arrays. any tests whether one or more values in an array is True, while all checks if every value is True:
In [162]: bools = np.array([False, False, True, False])
In [163]: bools.any()
Out[163]: True
In [164]: bools.all()
Out[164]: False
These methods also work with non-boolean arrays, where non-zero elements evaluate to True.
Sorting
Like Python’s built-in list type, NumPy arrays can be sorted in-place using the sort method:
In [165]: arr = randn(8)
In [166]: arr
Out[166]:
array([0.6903, 0.4678, 0.0968, -0.1349, 0.9879, 0.0185, -1.3147,
-0.5425])
In [167]: arr.sort()
In [168]: arr
Out[168]:
array([-1.3147, -0.5425, -0.1349, 0.0185, 0.0968, 0.4678, 0.6903,
0.9879])
Multidimensional arrays can have each 1D section of values sorted in-place along an axis by passing the axis number to sort:
In [169]: arr = randn(5, 3)
In [170]: arr
Out[170]:
array([[-0.7139, -1.6331, -0.4959],
[0.8236, -1.3132, -0.1935],
[-1.6748, 3.0336, -0.863],
[-0.3161, 0.5362, -2.468],
[0.9058, 1.1184, -1.0516]])
In [171]: arr.sort(1)
In [172]: arr
Out[172]:
array([[-1.6331, -0.7139, -0.4959],
[-1.3132, -0.1935, 0.8236],
[-1.6748, -0.863 , 3.0336],
[-2.468 , -0.3161, 0.5362],
[-1.0516, 0.9058, 1.1184]])
The top level method np.sort returns a sorted copy of an array instead of modifying the array in place. A quick-and-dirty way to compute the quantiles of an array is to sort it and select the value at a particular rank:
In [173]: large_arr = randn(1000)
In [174]: large_arr.sort()
In [175]: large_arr[int(0.05 * len(large_arr))] # 5% quantile
Out[175]: -1.5791023260896004
For more details on using NumPy’s sorting methods, and more advanced techniques like indirect sorts, see Chapter 12. Several other kinds of data manipulations related to sorting (for example, sorting a table of data by one or more columns) are also to be found in pandas.
Unique and Other Set Logic
NumPy has some basic set operations for one-dimensional ndarrays. Probably the most commonly used one is np.unique, which returns the sorted unique values in an array:
In [176]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [177]: np.unique(names)
Out[177]:
array(['Bob', 'Joe', 'Will'],
dtype='|S4')
In [178]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])
In [179]: np.unique(ints)
Out[179]: array([1, 2, 3, 4])
Contrast np.unique with the pure Python alternative:
In [180]: sorted(set(names))
Out[180]: ['Bob', 'Joe', 'Will']
Another function, np.in1d, tests membership of the values in one array in another, returning a boolean array:
In [181]: values = np.array([6, 0, 0, 3, 2, 5, 6])
In [182]: np.in1d(values, [2, 3, 6])
Out[182]: array([True, False, False, True, True, False, True], dtype=bool)
See Table 4-6 for a listing of set functions in NumPy.
Table 4-6. Array set operations
File Input and Output with Arrays
NumPy is able to save and load data to and from disk either in text or binary format. In later chapters you will learn about tools in pandas for reading tabular data into memory.
Storing Arrays on Disk in Binary Format
np.save and np.load are the two workhorse functions for efficiently saving and loading array data on disk. Arrays are saved by default in an uncompressed raw binary format with file extension .npy.
In [183]: arr = np.arange(10)
In [184]: np.save('some_array', arr)
If the file path does not already end in .npy, the extension will be appended. The array on disk can then be loaded using np.load:
In [185]: np.load('some_array.npy')
Out[185]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
You save multiple arrays in a zip archive using np.savez and passing the arrays as keyword arguments:
In [186]: np.savez('array_archive.npz', a=arr, b=arr)
When loading an .npz file, you get back a dict-like object which loads the individual arrays lazily:
In [187]: arch = np.load('array_archive.npz')
In [188]: arch['b']
Out[188]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Saving and Loading Text Files
Loading text from files is a fairly standard task. The landscape of file reading and writing functions in Python can be a bit confusing for a newcomer, so I will focus mainly on the read_csv and read_table functions in pandas. It will at times be useful to load data into vanilla NumPy arrays using np.loadtxt or the more specialized np.genfromtxt.
These functions have many options allowing you to specify different delimiters, converter functions for certain columns, skipping rows, and other things. Take a simple case of a comma-separated file (CSV) like this:
In [191]: !cat array_ex.txt
0.580052,0.186730,1.040717,1.134411
0.194163,-0.636917,-0.938659,0.124094
-0.126410,0.268607,-0.695724,0.047428
-1.484413,0.004176,-0.744203,0.005487
2.302869,0.200131,1.670238,-1.881090
-0.193230,1.047233,0.482803,0.960334
This can be loaded into a 2D array like so:
In [192]: arr = np.loadtxt('array_ex.txt', delimiter=',')
In [193]: arr
Out[193]:
array([[0.5801, 0.1867, 1.0407, 1.1344],
[0.1942, -0.6369, -0.9387, 0.1241],
[-0.1264, 0.2686, -0.6957, 0.0474],
[-1.4844, 0.0042, -0.7442, 0.0055],
[2.3029, 0.2001, 1.6702, -1.8811],
[-0.1932, 1.0472, 0.4828, 0.9603]])
np.savetxt performs the inverse operation: writing an array to a delimited text file. genfromtxt is similar to loadtxt but is geared for structured arrays and missing data handling; see Chapter 12 for more on structured arrays.
TIP
For more on file reading and writing, especially tabular or spreadsheet-like data, see the later chapters involving pandas and DataFrame objects.
Linear Algebra
Linear algebra, like matrix multiplication, decompositions, determinants, and other square matrix math, is an important part of any array library. Unlike some languages like MATLAB, multiplying two two-dimensional arrays with * is an element-wise product instead of a matrix dot product. As such, there is a function dot, both an array method, and a function in the numpy namespace, for matrix multiplication:
In [194]: x = np.array([[1., 2., 3.], [4., 5., 6.]])
In [195]: y = np.array([[6., 23.], [-1, 7], [8, 9]])
In [196]: x In [197]: y
Out[196]: Out[197]:
array([[1., 2., 3.], array([[6., 23.],
[4., 5., 6.]]) [-1., 7.],
[8., 9.]])
In [198]: x.dot(y) # equivalently np.dot(x, y)
Out[198]:
array([[28., 64.],
[67., 181.]])
A matrix product between a 2D array and a suitably sized 1D array results in a 1D array:
In [199]: np.dot(x, np.ones(3))
Out[199]: array([6., 15.])
numpy.linalg has a standard set of matrix decompositions and things like inverse and determinant. These are implemented under the hood using the same industry-standard Fortran libraries used in other languages like MATLAB and R, such as like BLAS, LAPACK, or possibly (depending on your NumPy build) the Intel MKL:
In [201]: from numpy.linalg import inv, qr
In [202]: X = randn(5, 5)
In [203]: mat = X.T.dot(X)
In [204]: inv(mat)
Out[204]:
array([[3.0361, -0.1808, -0.6878, -2.8285, -1.1911],
[-0.1808, 0.5035, 0.1215, 0.6702, 0.0956],
[-0.6878, 0.1215, 0.2904, 0.8081, 0.3049],
[-2.8285, 0.6702, 0.8081, 3.4152, 1.1557],
[-1.1911, 0.0956, 0.3049, 1.1557, 0.6051]])
In [205]: mat.dot(inv(mat))
Out[205]:
array([[1., 0., 0., 0., -0.],
[0., 1., -0., 0., 0.],
[0., -0., 1., 0., 0.],
[0., -0., -0., 1., -0.],
[0., 0., 0., 0., 1.]])
In [206]: q, r = qr(mat)
In [207]: r
Out[207]:
array([[-6.9271, 7.389 , 6.1227, -7.1163, -4.9215],
[0. , -3.9735, -0.8671, 2.9747, -5.7402],
[0. , 0. , -10.2681, 1.8909, 1.6079],
[0. , 0. , 0. , -1.2996, 3.3577],
[0. , 0. , 0. , 0. , 0.5571]])
See Table 4-7 for a list of some of the most commonly-used linear algebra functions.
NOTE
The scientific Python community is hopeful that there may be a matrix multiplication infix operator implemented someday, providing syntactically nicer alternative to using np.dot. But for now this is the way.
Table 4-7. Commonly-used numpy.linalg functions
Random Number Generation
The numpy.random module supplements the built-in Python random with functions for efficiently generating whole arrays of sample values from many kinds of probability distributions. For example, you can get a 4 by 4 array of samples from the standard normal distribution using normal:
In [208]: samples = np.random.normal(size=(4, 4))
In [209]: samples
Out[209]:
array([[0.1241, 0.3026, 0.5238, 0.0009],
[1.3438, -0.7135, -0.8312, -2.3702],
[-1.8608, -0.8608, 0.5601, -1.2659],
[0.1198, -1.0635, 0.3329, -2.3594]])
Python’s built-in random module, by contrast, only samples one value at a time. As you can see from this benchmark, numpy.random is well over an order of magnitude faster for generating very large samples:
In [210]: from random import normalvariate
In [211]: N = 1000000
In [212]: %timeit samples = [normalvariate(0, 1) for _ in xrange(N)]
1 loops, best of 3: 1.33 s per loop
In [213]: %timeit np.random.normal(size=N)
10 loops, best of 3: 57.7 ms per loop
See table Table 4-8 for a partial list of functions available in numpy.random. I’ll give some examples of leveraging these functions’ ability to generate large arrays of samples all at once in the next section.
Table 4-8. Partial list of numpy.random functions
Example: Random Walks
An illustrative application of utilizing array operations is in the simulation of random walks. Let’s first consider a simple random walk starting at 0 with steps of 1 and -1 occurring with equal probability. A pure Python way to implement a single random walk with 1,000 steps using the built-in random module:
import random
position = 0
walk = [position]
steps = 1000
for i in xrange(steps):
step = 1 if random.randint(0, 1) else -1
position += step
walk.append(position)
See Figure 4-4 for an example plot of the first 100 values on one of these random walks.
Figure 4-4. A simple random walk
You might make the observation that walk is simply the cumulative sum of the random steps and could be evaluated as an array expression. Thus, I use the np.random module to draw 1,000 coin flips at once, set these to 1 and -1, and compute the cumulative sum:
In [215]: nsteps = 1000
In [216]: draws = np.random.randint(0, 2, size=nsteps)
In [217]: steps = np.where(draws > 0, 1, -1)
In [218]: walk = steps.cumsum()
From this we can begin to extract statistics like the minimum and maximum value along the walk’s trajectory:
In [219]: walk.min() In [220]: walk.max()
Out[219]: -3 Out[220]: 31
A more complicated statistic is the first crossing time, the step at which the random walk reaches a particular value. Here we might want to know how long it took the random walk to get at least 10 steps away from the origin 0 in either direction. np.abs(walk) >= 10 gives us a boolean array indicating where the walk has reached or exceeded 10, but we want the index of the first 10 or -10. Turns out this can be computed using argmax, which returns the first index of the maximum value in the boolean array (True is the maximum value):
In [221]: (np.abs(walk) >= 10).argmax()
Out[221]: 37
Note that using argmax here is not always efficient because it always makes a full scan of the array. In this special case once a True is observed we know it to be the maximum value.
Simulating Many Random Walks at Once
If your goal was to simulate many random walks, say 5,000 of them, you can generate all of the random walks with minor modifications to the above code. The numpy.random functions if passed a 2-tuple will generate a 2D array of draws, and we can compute the cumulative sum across the rows to compute all 5,000 random walks in one shot:
In [222]: nwalks = 5000
In [223]: nsteps = 1000
In [224]: draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1
In [225]: steps = np.where(draws > 0, 1, -1)
In [226]: walks = steps.cumsum(1)
In [227]: walks
Out[227]:
array([[1, 0, 1, ..., 8, 7, 8],
[1, 0, -1, ..., 34, 33, 32],
[1, 0, -1, ..., 4, 5, 4],
...,
[1, 2, 1, ..., 24, 25, 26],
[1, 2, 3, ..., 14, 13, 14],
[-1, -2, -3, ..., -24, -23, -22]])
Now, we can compute the maximum and minimum values obtained over all of the walks:
In [228]: walks.max() In [229]: walks.min()
Out[228]: 138 Out[229]: -133
Out of these walks, let’s compute the minimum crossing time to 30 or -30. This is slightly tricky because not all 5,000 of them reach 30. We can check this using the any method:
In [230]: hits30 = (np.abs(walks) >= 30).any(1)
In [231]: hits30
Out[231]: array([False, True, False, ..., False, True, False], dtype=bool)
In [232]: hits30.sum() # Number that hit 30 or -30
Out[232]: 3410
We can use this boolean array to select out the rows of walks that actually cross the absolute 30 level and call argmax across axis 1 to get the crossing times:
In [233]: crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)
In [234]: crossing_times.mean()
Out[234]: 498.88973607038122
Feel free to experiment with other distributions for the steps other than equal sized coin flips. You need only use a different random number generation function, like normal to generate normally distributed steps with some mean and standard deviation:
In [235]: steps = np.random.normal(loc=0, scale=0.25,
.....: size=(nwalks, nsteps))
Chapter 5. Getting Started with pandas
pandas will be the primary library of interest throughout much of the rest of the book. It contains high-level data structures and manipulation tools designed to make data analysis fast and easy in Python. pandas is built on top of NumPy and makes it easy to use in NumPy-centric applications.
As a bit of background, I started building pandas in early 2008 during my tenure at AQR, a quantitative investment management firm. At the time, I had a distinct set of requirements that were not well-addressed by any single tool at my disposal:
Data structures with labeled axes supporting automatic or explicit data alignment. This prevents common errors resulting from misaligned data and working with differently-indexed data coming from different sources.
Integrated time series functionality.
The same data structures handle both time series data and non-time series data.
Arithmetic operations and reductions (like summing across an axis) would pass on the metadata (axis labels).
Flexible handling of missing data.
Merge and other relational operations found in popular database databases (SQL-based, for example).
I wanted to be able to do all of these things in one place, preferably in a language well-suited to general purpose software development. Python was a good candidate language for this, but at that time there was not an integrated set of data structures and tools providing this functionality.
Over the last four years, pandas has matured into a quite large library capable of solving a much broader set of data handling problems than I ever anticipated, but it has expanded in its scope without compromising the simplicity and ease-of-use that I desired from the very beginning. I hope that after reading this book, you will find it to be just as much of an indispensable tool as I do.
Throughout the rest of the book, I use the following import conventions for pandas:
In [1]: from pandas import Series, DataFrame
In [2]: import pandas as pd
Thus, whenever you see pd. in code, it’s referring to pandas. Series and DataFrame are used so much that I find it easier to import them into the local namespace.
Introduction to pandas Data Structures
To get started with pandas, you will need to get comfortable with its two workhorse data structures: Series and DataFrame. While they are not a universal solution for every problem, they provide a solid, easy-to-use basis for most applications.
Series
A Series is a one-dimensional array-like object containing an array of data (of any NumPy data type) and an associated array of data labels, called its index. The simplest Series is formed from only an array of data:
In [4]: obj = Series([4, 7, -5, 3])
In [5]: obj
Out[5]:
0 4
1 7
2 -5
3 3
The string representation of a Series displayed interactively shows the index on the left and the values on the right. Since we did not specify an index for the data, a default one consisting of the integers 0 through N - 1 (where N is the length of the data) is created. You can get the array representation and index object of the Series via its values and index attributes, respectively:
In [6]: obj.values
Out[6]: array([4, 7, -5, 3])
In [7]: obj.index
Out[7]: Int64Index([0, 1, 2, 3])
Often it will be desirable to create a Series with an index identifying each data point:
In [8]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [9]: obj2
Out[9]:
d 4
b 7
a -5
c 3
In [10]: obj2.index
Out[10]: Index([d, b, a, c], dtype=object)
Compared with a regular NumPy array, you can use values in the index when selecting single values or a set of values:
In [11]: obj2['a']
Out[11]: -5
In [12]: obj2['d'] = 6
In [13]: obj2[['c', 'a', 'd']]
Out[13]:
c 3
a -5
d 6
NumPy array operations, such as filtering with a boolean array, scalar multiplication, or applying math functions, will preserve the index-value link:
In [14]: obj2
Out[14]:
d 6
b 7
a -5
c 3
In [15]: obj2[obj2 > 0] In [16]: obj2 * 2 In [17]: np.exp(obj2)
Out[15]: Out[16]: Out[17]:
d 6 d 12 d 403.428793
b 7 b 14 b 1096.633158
c 3 a -10 a 0.006738
c 6 c 20.085537
Another way to think about a Series is as a fixed-length, ordered dict, as it is a mapping of index values to data values. It can be substituted into many functions that expect a dict:
In [18]: 'b' in obj2
Out[18]: True
In [19]: 'e' in obj2
Out[19]: False
Should you have data contained in a Python dict, you can create a Series from it by passing the dict:
In [20]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [21]: obj3 = Series(sdata)
In [22]: obj3
Out[22]:
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
When only passing a dict, the index in the resulting Series will have the dict’s keys in sorted order.
In [23]: states = ['California', 'Ohio', 'Oregon', 'Texas']
In [24]: obj4 = Series(sdata, index=states)
In [25]: obj4
Out[25]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
In this case, 3 values found in sdata were placed in the appropriate locations, but since no value for 'California' was found, it appears as NaN (not a number) which is considered in pandas to mark missing or NA values. I will use the terms “missing” or “NA” to refer to missing data. The isnull and notnull functions in pandas should be used to detect missing data:
In [26]: pd.isnull(obj4) In [27]: pd.notnull(obj4)
Out[26]: Out[27]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
Series also has these as instance methods:
In [28]: obj4.isnull()
Out[28]:
California True
Ohio False
Oregon False
Texas False
I discuss working with missing data in more detail later in this chapter.
A critical Series feature for many applications is that it automatically aligns differently-indexed data in arithmetic operations:
In [29]: obj3 In [30]: obj4
Out[29]: Out[30]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
In [31]: obj3 + obj4
Out[31]:
California NaN
Ohio 70000
Oregon 32000
Texas 142000
Utah NaN
Data alignment features are addressed as a separate topic.
Both the Series object itself and its index have a name attribute, which integrates with other key areas of pandas functionality:
In [32]: obj4.name = 'population'
In [33]: obj4.index.name = 'state'
In [34]: obj4
Out[34]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population
A Series’s index can be altered in place by assignment:
In [35]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [36]: obj
Out[36]:
Bob 4
Steve 7
Jeff -5
Ryan 3
DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.). The DataFrame has both a row and column index; it can be thought of as a dict of Series (one for all sharing the same index). Compared with other such DataFrame-like structures you may have used before (like R’s data.frame), row-oriented and column-oriented operations in DataFrame are treated roughly symmetrically. Under the hood, the data is stored as one or more two-dimensional blocks rather than a list, dict, or some other collection of one-dimensional arrays. The exact details of DataFrame’s internals are far outside the scope of this book.
NOTE
While DataFrame stores the data internally in a two-dimensional format, you can easily represent much higher-dimensional data in a tabular format using hierarchical indexing, a subject of a later section and a key ingredient in many of the more advanced data-handling features in pandas.
There are numerous ways to construct a DataFrame, though one of the most common is from a dict of equal-length lists or NumPy arrays
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
frame = DataFrame(data)
The resulting DataFrame will have its index assigned automatically as with Series, and the columns are placed in sorted order:
In [38]: frame
Out[38]:
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
If you specify a sequence of columns, the DataFrame’s columns will be exactly what you pass:
In [39]: DataFrame(data, columns=['year', 'state', 'pop'])
Out[39]:
year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
As with Series, if you pass a column that isn’t contained in data, it will appear with NA values in the result:
In [40]: frame2 = DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
....: index=['one', 'two', 'three', 'four', 'five'])
In [41]: frame2
Out[41]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
In [42]: frame2.columns
Out[42]: Index([year, state, pop, debt], dtype=object)
A column in a DataFrame can be retrieved as a Series either by dict-like notation or by attribute:
In [43]: frame2['state'] In [44]: frame2.year
Out[43]: Out[44]:
one Ohio one 2000
two Ohio two 2001
three Ohio three 2002
four Nevada four 2001
five Nevada five 2002
Name: state Name: year
Note that the returned Series have the same index as the DataFrame, and their name attribute has been appropriately set.
Rows can also be retrieved by position or name by a couple of methods, such as the ix indexing field (much more on this later):
In [45]: frame2.ix['three']
Out[45]:
year 2002
state Ohio
pop 3.6
debt NaN
Name: three
Columns can be modified by assignment. For example, the empty 'debt' column could be assigned a scalar value or an array of values:
In [46]: frame2['debt'] = 16.5
In [47]: frame2
Out[47]:
year state pop debt
one 2000 Ohio 1.5 16.5
two 2001 Ohio 1.7 16.5
three 2002 Ohio 3.6 16.5
four 2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
In [48]: frame2['debt'] = np.arange(5.)
In [49]: frame2
Out[49]:
year state pop debt
one 2000 Ohio 1.5 0
two 2001 Ohio 1.7 1
three 2002 Ohio 3.6 2
four 2001 Nevada 2.4 3
five 2002 Nevada 2.9 4
When assigning lists or arrays to a column, the value’s length must match the length of the DataFrame. If you assign a Series, it will be instead conformed exactly to the DataFrame’s index, inserting missing values in any holes:
In [50]: val = Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
In [51]: frame2['debt'] = val
In [52]: frame2
Out[52]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
Assigning a column that doesn’t exist will create a new column. The del keyword will delete columns as with a dict:
In [53]: frame2['eastern'] = frame2.state == 'Ohio'
In [54]: frame2
Out[54]:
year state pop debt eastern
one 2000 Ohio 1.5 NaN True
two 2001 Ohio 1.7 -1.2 True
three 2002 Ohio 3.6 NaN True
four 2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
In [55]: del frame2['eastern']
In [56]: frame2.columns
Out[56]: Index([year, state, pop, debt], dtype=object)
CAUTION
The column returned when indexing a DataFrame is a view on the underlying data, not a copy. Thus, any in-place modifications to the Series will be reflected in the DataFrame. The column can be explicitly copied using the Series’s copy method.
Another common form of data is a nested dict of dicts format:
In [57]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
....: 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
If passed to DataFrame, it will interpret the outer dict keys as the columns and the inner keys as the row indices:
In [58]: frame3 = DataFrame(pop)
In [59]: frame3
Out[59]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
Of course you can always transpose the result:
In [60]: frame3.T
Out[60]:
2000 2001 2002
Nevada NaN 2.4 2.9
Ohio 1.5 1.7 3.6
The keys in the inner dicts are unioned and sorted to form the index in the result. This isn’t true if an explicit index is specified:
In [61]: DataFrame(pop, index=[2001, 2002, 2003])
Out[61]:
Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2003 NaN NaN
Dicts of Series are treated much in the same way:
In [62]: pdata = {'Ohio': frame3['Ohio'][:-1],
....: 'Nevada': frame3['Nevada'][:2]}
In [63]: DataFrame(pdata)
Out[63]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
For a complete list of things you can pass the DataFrame constructor, see Table 5-1.
If a DataFrame’s index and columns have their name attributes set, these will also be displayed:
In [64]: frame3.index.name = 'year'; frame3.columns.name = 'state'
In [65]: frame3
Out[65]:
state Nevada Ohio
year
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
Like Series, the values attribute returns the data contained in the DataFrame as a 2D ndarray:
In [66]: frame3.values
Out[66]:
array([[nan, 1.5],
[2.4, 1.7],
[2.9, 3.6]])
If the DataFrame’s columns are different dtypes, the dtype of the values array will be chosen to accomodate all of the columns:
In [67]: frame2.values
Out[67]:
array([[2000, Ohio, 1.5, nan],
[2001, Ohio, 1.7, -1.2],
[2002, Ohio, 3.6, nan],
[2001, Nevada, 2.4, -1.5],
[2002, Nevada, 2.9, -1.7]], dtype=object)
Table 5-1. Possible data inputs to DataFrame constructor
Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata (like the axis name or names). Any array or other sequence of labels used when constructing a Series or DataFrame is internally converted to an Index:
In [68]: obj = Series(range(3), index=['a', 'b', 'c'])
In [69]: index = obj.index
In [70]: index
Out[70]: Index([a, b, c], dtype=object)
In [71]: index[1:]
Out[71]: Index([b, c], dtype=object)
Index objects are immutable and thus can’t be modified by the user:
In [72]: index[1] = 'd'

Exception Traceback (most recent call last)
<ipython-input-72-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/Users/wesm/code/pandas/pandas/core/index.pyc in __setitem__(self, key, value)
302 def __setitem__(self, key, value):
303 """Disable the setting of values."""
--> 304 raise Exception(str(self.__class__) + ' object is immutable')
305
306 def __getitem__(self, key):
Exception: <class 'pandas.core.index.Index'> object is immutable
Immutability is important so that Index objects can be safely shared among data structures:
In [73]: index = pd.Index(np.arange(3))
In [74]: obj2 = Series([1.5, -2.5, 0], index=index)
In [75]: obj2.index is index
Out[75]: True
Table 5-2 has a list of built-in Index classes in the library. With some development effort, Index can even be subclassed to implement specialized axis indexing functionality.
NOTE
Many users will not need to know much about Index objects, but they’re nonetheless an important part of pandas’s data model.
Table 5-2. Main Index objects in pandas
In addition to being array-like, an Index also functions as a fixed-size set:
In [76]: frame3
Out[76]:
state Nevada Ohio
year
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
In [77]: 'Ohio' in frame3.columns
Out[77]: True
In [78]: 2003 in frame3.index
Out[78]: False
Each Index has a number of methods and properties for set logic and answering other common questions about the data it contains. These are summarized in Table 5-3.
Table 5-3. Index methods and properties
Essential Functionality
In this section, I’ll walk you through the fundamental mechanics of interacting with the data contained in a Series or DataFrame. Upcoming chapters will delve more deeply into data analysis and manipulation topics using pandas. This book is not intended to serve as exhaustive documentation for the pandas library; I instead focus on the most important features, leaving the less common (that is, more esoteric) things for you to explore on your own.
Reindexing
A critical method on pandas objects is reindex, which means to create a new object with the data conformed to a new index. Consider a simple example from above:
In [79]: obj = Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
In [80]: obj
Out[80]:
d 4.5
b 7.2
a -5.3
c 3.6
Calling reindex on this Series rearranges the data according to the new index, introducing missing values if any index values were not already present:
In [81]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
In [82]: obj2
Out[82]:
a -5.3
b 7.2
c 3.6
d 4.5
e NaN
In [83]: obj.reindex(['a', 'b', 'c', 'd', 'e'], fill_value=0)
Out[83]:
a -5.3
b 7.2
c 3.6
d 4.5
e 0.0
For ordered data like time series, it may be desirable to do some interpolation or filling of values when reindexing. The method option allows us to do this, using a method such as ffill which forward fills the values:
In [84]: obj3 = Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
In [85]: obj3.reindex(range(6), method='ffill')
Out[85]:
0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow
Table 5-4 lists available method options. At this time, interpolation more sophisticated than forward- and backfilling would need to be applied after the fact.
Table 5-4. reindex method (interpolation) options
Argument	Description
ffill or pad | Fill (or carry) values forward |
bfill or backfill | Fill (or carry) values backward |
With DataFrame, reindex can alter either the (row) index, columns, or both. When passed just a sequence, the rows are reindexed in the result:
In [86]: frame = DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'],
....: columns=['Ohio', 'Texas', 'California'])
In [87]: frame
Out[87]:
Ohio Texas California
a 0 1 2
c 3 4 5
d 6 7 8
In [88]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])
In [89]: frame2
Out[89]:
Ohio Texas California
a 0 1 2
b NaN NaN NaN
c 3 4 5
d 6 7 8
The columns can be reindexed using the columns keyword:
In [90]: states = ['Texas', 'Utah', 'California']
In [91]: frame.reindex(columns=states)
Out[91]:
Texas Utah California
a 1 NaN 2
c 4 NaN 5
d 7 NaN 8
Both can be reindexed in one shot, though interpolation will only apply row-wise (axis 0):
In [92]: frame.reindex(index=['a', 'b', 'c', 'd'], method='ffill',
....: columns=states)
Out[92]:
Texas Utah California
a 1 NaN 2
b 1 NaN 2
c 4 NaN 5
d 7 NaN 8
As you’ll see soon, reindexing can be done more succinctly by label-indexing with ix:
In [93]: frame.ix[['a', 'b', 'c', 'd'], states]
Out[93]:
Texas Utah California
a 1 NaN 2
b NaN NaN NaN
c 4 NaN 5
d 7 NaN 8
Table 5-5. reindex function arguments
Argument | Description |
---|---|
index | New sequence to use as index. Can be Index instance or any other sequence-like Python data structure. An Index will be used exactly as is without any copying |
method | Interpolation (fill) method, see Table 5-4 for options. |
fill_value | Substitute value to use when introducing missing data by reindexing |
limit | When forward- or backfilling, maximum size gap to fill |
level | Match simple Index on level of MultiIndex, otherwise select subset of |
copy | Do not copy underlying data if new index is equivalent to old index. True by default (i.e. always copy data). |
Dropping entries from an axis
Dropping one or more entries from an axis is easy if you have an index array or list without those entries. As that can require a bit of munging and set logic, the drop method will return a new object with the indicated value or values deleted from an axis:
In [94]: obj = Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
In [95]: new_obj = obj.drop('c')
In [96]: new_obj
Out[96]:
a 0
b 1
d 3
e 4
In [97]: obj.drop(['d', 'c'])
Out[97]:
a 0
b 1
e 4
With DataFrame, index values can be deleted from either axis:
In [98]: data = DataFrame(np.arange(16).reshape((4, 4)),
....: index=['Ohio', 'Colorado', 'Utah', 'New York'],
....: columns=['one', 'two', 'three', 'four'])
In [99]: data.drop(['Colorado', 'Ohio'])
Out[99]:
one two three four
Utah 8 9 10 11
New York 12 13 14 15
In [100]: data.drop('two', axis=1) In [101]: data.drop(['two', 'four'], axis=1)
Out[100]: Out[101]:
one three four one three
Ohio 0 2 3 Ohio 0 2
Colorado 4 6 7 Colorado 4 6
Utah 8 10 11 Utah 8 10
New York 12 14 15 New York 12 14
Indexing, selection, and filtering
Series indexing (obj[...]) works analogously to NumPy array indexing, except you can use the Series’s index values instead of only integers. Here are some examples this:
In [102]: obj = Series(np.arange(4.), index=['a', 'b', 'c', 'd'])
In [103]: obj['b'] In [104]: obj[1]
Out[103]: 1.0 Out[104]: 1.0
In [105]: obj[2:4] In [106]: obj[['b', 'a', 'd']]
Out[105]: Out[106]:
c 2 b 1
d 3 a 0
d 3
In [107]: obj[[1, 3]] In [108]: obj[obj < 2]
Out[107]: Out[108]:
b 1 a 0
d 3 b 1
Slicing with labels behaves differently than normal Python slicing in that the endpoint is inclusive:
In [109]: obj['b':'c']
Out[109]:
b 1
c 2
Setting using these methods works just as you would expect:
In [110]: obj['b':'c'] = 5
In [111]: obj
Out[111]:
a 0
b 5
c 5
d 3
As you’ve seen above, indexing into a DataFrame is for retrieving one or more columns either with a single value or sequence:
In [112]: data = DataFrame(np.arange(16).reshape((4, 4)),
.....: index=['Ohio', 'Colorado', 'Utah', 'New York'],
.....: columns=['one', 'two', 'three', 'four'])
In [113]: data
Out[113]:
one two three four
Ohio 0 1 2 3
Colorado 4 5 6 7
Utah 8 9 10 11
New York 12 13 14 15
In [114]: data['two'] In [115]: data[['three', 'one']]
Out[114]: Out[115]:
Ohio 1 three one
Colorado 5 Ohio 2 0
Utah 9 Colorado 6 4
New York 13 Utah 10 8
Name: two New York 14 12
Indexing like this has a few special cases. First selecting rows by slicing or a boolean array:
In [116]: data[:2] In [117]: data[data['three'] > 5]
Out[116]: Out[117]:
one two three four one two three four
Ohio 0 1 2 3 Colorado 4 5 6 7
Colorado 4 5 6 7 Utah 8 9 10 11
New York 12 13 14 15
This might seem inconsistent to some readers, but this syntax arose out of practicality and nothing more. Another use case is in indexing with a boolean DataFrame, such as one produced by a scalar comparison:
In [118]: data < 5
Out[118]:
one two three four
Ohio True True True True
Colorado True False False False
Utah False False False False
New York False False False False
In [119]: data[data < 5] = 0
In [120]: data
Out[120]:
one two three four
Ohio 0 0 0 0
Colorado 0 5 6 7
Utah 8 9 10 11
New York 12 13 14 15
This is intended to make DataFrame syntactically more like an ndarray in this case.
For DataFrame label-indexing on the rows, I introduce the special indexing field ix. It enables you to select a subset of the rows and columns from a DataFrame with NumPy-like notation plus axis labels. As I mentioned earlier, this is also a less verbose way to do reindexing:
In [121]: data.ix['Colorado', ['two', 'three']]
Out[121]:
two 5
three 6
Name: Colorado
In [122]: data.ix[['Colorado', 'Utah'], [3, 0, 1]]
Out[122]:
four one two
Colorado 7 0 5
Utah 11 8 9
In [123]: data.ix[2] In [124]: data.ix[:'Utah', 'two']
Out[123]: Out[124]:
one 8 Ohio 0
two 9 Colorado 5
three 10 Utah 9
four 11 Name: two
Name: Utah
In [125]: data.ix[data.three > 5, :3]
Out[125]:
one two three
Colorado 0 5 6
Utah 8 9 10
New York 12 13 14
So there are many ways to select and rearrange the data contained in a pandas object. For DataFrame, there is a short summary of many of them in Table 5-6. You have a number of additional options when working with hierarchical indexes as you’ll later see.
NOTE
When designing pandas, I felt that having to type frame[:, col] to select a column was too verbose (and error-prone), since column selection is one of the most common operations. Thus I made the design trade-off to push all of the rich label-indexing into ix.
Table 5-6. Indexing options with DataFrame
Arithmetic and data alignment
One of the most important pandas features is the behavior of arithmetic between objects with different indexes. When adding together objects, if any index pairs are not the same, the respective index in the result will be the union of the index pairs. Let’s look at a simple example:
In [126]: s1 = Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
In [127]: s2 = Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])
In [128]: s1 In [129]: s2
Out[128]: Out[129]:
a 7.3 a -2.1
c -2.5 c 3.6
d 3.4 e -1.5
e 1.5 f 4.0
g 3.1
Adding these together yields:
In [130]: s1 + s2
Out[130]:
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN
The internal data alignment introduces NA values in the indices that don’t overlap. Missing values propagate in arithmetic computations.
In the case of DataFrame, alignment is performed on both the rows and the columns:
In [131]: df1 = DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
.....: index=['Ohio', 'Texas', 'Colorado'])
In [132]: df2 = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
.....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [133]: df1 In [134]: df2
Out[133]: Out[134]:
b c d b d e
Ohio 0 1 2 Utah 0 1 2
Texas 3 4 5 Ohio 3 4 5
Colorado 6 7 8 Texas 6 7 8
Oregon 9 10 11
Adding these together returns a DataFrame whose index and columns are the unions of the ones in each DataFrame:
In [135]: df1 + df2
Out[135]:
b c d e
Colorado NaN NaN NaN NaN
Ohio 3 NaN 6 NaN
Oregon NaN NaN NaN NaN
Texas 9 NaN 12 NaN
Utah NaN NaN NaN NaN
Arithmetic methods with fill values
In arithmetic operations between differently-indexed objects, you might want to fill with a special value, like 0, when an axis label is found in one object but not the other:
In [136]: df1 = DataFrame(np.arange(12.).reshape((3, 4)), columns=list('abcd'))
In [137]: df2 = DataFrame(np.arange(20.).reshape((4, 5)), columns=list('abcde'))
In [138]: df1 In [139]: df2
Out[138]: Out[139]:
a b c d a b c d e
0 0 1 2 3 0 0 1 2 3 4
1 4 5 6 7 1 5 6 7 8 9
2 8 9 10 11 2 10 11 12 13 14
3 15 16 17 18 19
Adding these together results in NA values in the locations that don’t overlap:
In [140]: df1 + df2
Out[140]:
a b c d e
0 0 2 4 6 NaN
1 9 11 13 15 NaN
2 18 20 22 24 NaN
3 NaN NaN NaN NaN NaN
Using the add method on df1, I pass df2 and an argument to fill_value:
In [141]: df1.add(df2, fill_value=0)
Out[141]:
a b c d e
0 0 2 4 6 4
1 9 11 13 15 9
2 18 20 22 24 14
3 15 16 17 18 19
Relatedly, when reindexing a Series or DataFrame, you can also specify a different fill value:
In [142]: df1.reindex(columns=df2.columns, fill_value=0)
Out[142]:
a b c d e
0 0 1 2 3 0
1 4 5 6 7 0
2 8 9 10 11 0
Table 5-7. Flexible arithmetic methods
Method | Description |
---|---|
add | Method for addition (+) |
sub | Method for subtraction (-) |
div | Method for division (/) |
mul | Method for multiplication (*) |
Operations between DataFrame and Series
As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First, as a motivating example, consider the difference between a 2D array and one of its rows:
In [143]: arr = np.arange(12.).reshape((3, 4))
In [144]: arr
Out[144]:
array([[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.]])
In [145]: arr[0]
Out[145]: array([0., 1., 2., 3.])
In [146]: arr - arr[0]
Out[146]:
array([[0., 0., 0., 0.],
[4., 4., 4., 4.],
[8., 8., 8., 8.]])
This is referred to as broadcasting and is explained in more detail in Chapter 12. Operations between a DataFrame and a Series are similar:
In [147]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
.....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [148]: series = frame.ix[0]
In [149]: frame In [150]: series
Out[149]: Out[150]:
b d e b 0
Utah 0 1 2 d 1
Ohio 3 4 5 e 2
Texas 6 7 8 Name: Utah
Oregon 9 10 11
By default, arithmetic between DataFrame and Series matches the index of the Series on the DataFrame's columns, broadcasting down the rows:
In [151]: frame - series
Out[151]:
b d e
Utah 0 0 0
Ohio 3 3 3
Texas 6 6 6
Oregon 9 9 9
If an index value is not found in either the DataFrame’s columns or the Series’s index, the objects will be reindexed to form the union:
In [152]: series2 = Series(range(3), index=['b', 'e', 'f'])
In [153]: frame + series2
Out[153]:
b d e f
Utah 0 NaN 3 NaN
Ohio 3 NaN 6 NaN
Texas 6 NaN 9 NaN
Oregon 9 NaN 12 NaN
If you want to instead broadcast over the columns, matching on the rows, you have to use one of the arithmetic methods. For example:
In [154]: series3 = frame['d']
In [155]: frame In [156]: series3
Out[155]: Out[156]:
b d e Utah 1
Utah 0 1 2 Ohio 4
Ohio 3 4 5 Texas 7
Texas 6 7 8 Oregon 10
Oregon 9 10 11 Name: d
In [157]: frame.sub(series3, axis=0)
Out[157]:
b d e
Utah -1 0 1
Ohio -1 0 1
Texas -1 0 1
Oregon -1 0 1
The axis number that you pass is the axis to match on. In this case we mean to match on the DataFrame’s row index and broadcast across.
Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:
In [158]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
.....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [159]: frame In [160]: np.abs(frame)
Out[159]: Out[160]:
b d e b d e
Utah -0.204708 0.478943 -0.519439 Utah 0.204708 0.478943 0.519439
Ohio -0.555730 1.965781 1.393406 Ohio 0.555730 1.965781 1.393406
Texas 0.092908 0.281746 0.769023 Texas 0.092908 0.281746 0.769023
Oregon 1.246435 1.007189 -1.296221 Oregon 1.246435 1.007189 1.296221
Another frequent operation is applying a function on 1D arrays to each column or row. DataFrame’s apply method does exactly this:
In [161]: f = lambda x: x.max() - x.min()
In [162]: frame.apply(f) In [163]: frame.apply(f, axis=1)
Out[162]: Out[163]:
b 1.802165 Utah 0.998382
d 1.684034 Ohio 2.521511
e 2.689627 Texas 0.676115
Oregon 2.542656
Many of the most common array statistics (like sum and mean) are DataFrame methods, so using apply is not necessary.
The function passed to apply need not return a scalar value, it can also return a Series with multiple values:
In [164]: def f(x):
.....: return Series([x.min(), x.max()], index=['min', 'max'])
In [165]: frame.apply(f)
Out[165]:
b d e
min -0.555730 0.281746 -1.296221
max 1.246435 1.965781 1.393406
Element-wise Python functions can be used, too. Suppose you wanted to compute a formatted string from each floating point value in frame. You can do this with applymap:
In [166]: format = lambda x: '%.2f' % x
In [167]: frame.applymap(format)
Out[167]:
b d e
Utah -0.20 0.48 -0.52
Ohio -0.56 1.97 1.39
Texas 0.09 0.28 0.77
Oregon 1.25 1.01 -1.30
The reason for the name applymap is that Series has a map method for applying an element-wise function:
In [168]: frame['e'].map(format)
Out[168]:
Utah -0.52
Ohio 1.39
Texas 0.77
Oregon -1.30
Name: e
Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort lexicographically by row or column index, use the sort_index method, which returns a new, sorted object:
In [169]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])
In [170]: obj.sort_index()
Out[170]:
a 1
b 2
c 3
d 0
With a DataFrame, you can sort by index on either axis:
In [171]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
.....: columns=['d', 'a', 'b', 'c'])
In [172]: frame.sort_index() In [173]: frame.sort_index(axis=1)
Out[172]: Out[173]:
d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4
The data is sorted in ascending order by default, but can be sorted in descending order, too:
In [174]: frame.sort_index(axis=1, ascending=False)
Out[174]:
d c b a
three 0 3 2 1
one 4 7 6 5
To sort a Series by its values, use its order method:
In [175]: obj = Series([4, 7, -3, 2])
In [176]: obj.order()
Out[176]:
2 -3
3 2
0 4
1 7
Any missing values are sorted to the end of the Series by default:
In [177]: obj = Series([4, np.nan, 7, np.nan, -3, 2])
In [178]: obj.order()
Out[178]:
4 -3
5 2
0 4
2 7
1 NaN
3 NaN
On DataFrame, you may want to sort by the values in one or more columns. To do so, pass one or more column names to the by option:
In [179]: frame = DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})
In [180]: frame In [181]: frame.sort_index(by='b')
Out[180]: Out[181]:
a b a b
0 0 4 2 0 -3
1 1 7 3 1 2
2 0 -3 0 0 4
3 1 2 1 1 7
To sort by multiple columns, pass a list of names:
In [182]: frame.sort_index(by=['a', 'b'])
Out[182]:
a b
2 0 -3
0 0 4
3 1 2
1 1 7
Ranking is closely related to sorting, assigning ranks from one through the number of valid data points in an array. It is similar to the indirect sort indices produced by numpy.argsort, except that ties are broken according to a rule. The rank methods for Series and DataFrame are the place to look; by default rank breaks ties by assigning each group the mean rank:
In [183]: obj = Series([7, -5, 7, 4, 2, 0, 4])
In [184]: obj.rank()
Out[184]:
0 6.5
1 1.0
2 6.5
3 4.5
4 3.0
5 2.0
6 4.5
Ranks can also be assigned according to the order they’re observed in the data:
In [185]: obj.rank(method='first')
Out[185]:
0 6
1 1
2 7
3 4
4 3
5 2
6 5
Naturally, you can rank in descending order, too:
In [186]: obj.rank(ascending=False, method='max')
Out[186]:
0 2
1 7
2 2
3 4
4 5
5 6
6 4
See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks over the rows or the columns:
In [187]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
.....: 'c': [-2, 5, 8, -2.5]})
In [188]: frame In [189]: frame.rank(axis=1)
Out[188]: Out[189]:
a b c a b c
0 0 4.3 -2.0 0 2 3 1
1 1 7.0 5.0 1 1 3 2
2 0 -3.0 8.0 2 2 1 3
3 1 2.0 -2.5 3 2 3 1
Table 5-8. Tie-breaking methods with rank
Axis indexes with duplicate values
Up until now all of the examples I’ve showed you have had unique axis labels (index values). While many pandas functions (like reindex) require that the labels be unique, it’s not mandatory. Let’s consider a small Series with duplicate indices:
In [190]: obj = Series(range(5), index=['a', 'a', 'b', 'b', 'c'])
In [191]: obj
Out[191]:
a 0
a 1
b 2
b 3
c 4
The index’s is_unique property can tell you whether its values are unique or not:
In [192]: obj.index.is_unique
Out[192]: False
Data selection is one of the main things that behaves differently with duplicates. Indexing a value with multiple entries returns a Series while single entries return a scalar value:
In [193]: obj['a'] In [194]: obj['c']
Out[193]: Out[194]: 4
a 0
a 1
The same logic extends to indexing rows in a DataFrame:
In [195]: df = DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 'b'])
In [196]: df
Out[196]:
0 1 2
a 0.274992 0.228913 1.352917
a 0.886429 -2.001637 -0.371843
b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228
In [197]: df.ix['b']
Out[197]:
0 1 2
b 1.669025 -0.438570 -0.539741
b 0.476985 3.248944 -1.021228
Summarizing and Computing Descriptive Statistics
pandas objects are equipped with a set of common mathematical and statistical methods. Most of these fall into the category of reductions or summary statistics, methods that extract a single value (like the sum or mean) from a Series or a Series of values from the rows or columns of a DataFrame. Compared with the equivalent methods of vanilla NumPy arrays, they are all built from the ground up to exclude missing data. Consider a small DataFrame:
In [198]: df = DataFrame([[1.4, np.nan], [7.1, -4.5],
.....: [np.nan, np.nan], [0.75, -1.3]],
.....: index=['a', 'b', 'c', 'd'],
.....: columns=['one', 'two'])
In [199]: df
Out[199]:
one two
a 1.40 NaN
b 7.10 -4.5
c NaN NaN
d 0.75 -1.3
Calling DataFrame’s sum method returns a Series containing column sums:
In [200]: df.sum()
Out[200]:
one 9.25
two -5.80
Passing axis=1 sums over the rows instead:
In [201]: df.sum(axis=1)
Out[201]:
a 1.40
b 2.60
c NaN
d -0.55
NA values are excluded unless the entire slice (row or column in this case) is NA. This can be disabled using the skipna option:
In [202]: df.mean(axis=1, skipna=False)
Out[202]:
a NaN
b 1.300
c NaN
d -0.275
See Table 5-9 for a list of common options for each reduction method options.
Table 5-9. Options for reduction methods
Some methods, like idxmin and idxmax, return indirect statistics like the index value where the minimum or maximum values are attained:
In [203]: df.idxmax()
Out[203]:
one b
two d
Other methods are accumulations:
In [204]: df.cumsum()
Out[204]:
one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8
Another type of method is neither a reduction nor an accumulation. describe is one such example, producing multiple summary statistics in one shot:
In [205]: df.describe()
Out[205]:
one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000
On non-numeric data, describe produces alternate summary statistics:
In [206]: obj = Series(['a', 'a', 'b', 'c'] * 4)
In [207]: obj.describe()
Out[207]:
count 16
unique 3
top a
freq 8
See Table 5-10 for a full list of summary statistics and related methods.
Table 5-10. Descriptive and summary statistics
Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of arguments. Let’s consider some DataFrames of stock prices and volumes obtained from Yahoo! Finance:
import pandas.io.data as web
all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
all_data[ticker] = web.get_data_yahoo(ticker, '1/1/2000', '1/1/2010')
price = DataFrame({tic: data['Adj Close']
for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
for tic, data in all_data.iteritems()})
I now compute percent changes of the prices:
In [209]: returns = price.pct_change()
In [210]: returns.tail()
Out[210]:
AAPL GOOG IBM MSFT
Date
2009-12-24 0.034339 0.011117 0.004420 0.002747
2009-12-28 0.012294 0.007098 0.013282 0.005479
2009-12-29 -0.011861 -0.005571 -0.003474 0.006812
2009-12-30 0.012147 0.005376 0.005468 -0.013532
2009-12-31 -0.004300 -0.004416 -0.012609 -0.015432
The corr method of Series computes the correlation of the overlapping, non-NA, aligned-by-index values in two Series. Relatedly, cov computes the covariance:
In [211]: returns.MSFT.corr(returns.IBM)
Out[211]: 0.49609291822168838
In [212]: returns.MSFT.cov(returns.IBM)
Out[212]: 0.00021600332437329015
DataFrame’s corr and cov methods, on the other hand, return a full correlation or covariance matrix as a DataFrame, respectively:
In [213]: returns.corr()
Out[213]:
AAPL GOOG IBM MSFT
AAPL 1.000000 0.470660 0.410648 0.424550
GOOG 0.470660 1.000000 0.390692 0.443334
IBM 0.410648 0.390692 1.000000 0.496093
MSFT 0.424550 0.443334 0.496093 1.000000
In [214]: returns.cov()
Out[214]:
AAPL GOOG IBM MSFT
AAPL 0.001028 0.000303 0.000252 0.000309
GOOG 0.000303 0.000580 0.000142 0.000205
IBM 0.000252 0.000142 0.000367 0.000216
MSFT 0.000309 0.000205 0.000216 0.000516
Using DataFrame’s corrwith method, you can compute pairwise correlations between a DataFrame’s columns or rows with another Series or DataFrame. Passing a Series returns a Series with the correlation value computed for each column:
In [215]: returns.corrwith(returns.IBM)
Out[215]:
AAPL 0.410648
GOOG 0.390692
IBM 1.000000
MSFT 0.496093
Passing a DataFrame computes the correlations of matching column names. Here I compute correlations of percent changes with volume:
In [216]: returns.corrwith(volume)
Out[216]:
AAPL -0.057461
GOOG 0.062644
IBM -0.007900
MSFT -0.014175
Passing axis=1 does things row-wise instead. In all cases, the data points are aligned by label before computing the correlation.
Unique Values, Value Counts, and Membership
Another class of related methods extracts information about the values contained in a one-dimensional Series. To illustrate these, consider this example:
In [217]: obj = Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])
The first function is unique, which gives you an array of the unique values in a Series:
In [218]: uniques = obj.unique()
In [219]: uniques
Out[219]: array([c, a, d, b], dtype=object)
The unique values are not necessarily returned in sorted order, but could be sorted after the fact if needed (uniques.sort()). Relatedly, value_counts computes a Series containing value frequencies:
In [220]: obj.value_counts()
Out[220]:
c 3
a 3
b 2
d 1
The Series is sorted by value in descending order as a convenience. value_counts is also available as a top-level pandas method that can be used with any array or sequence:
In [221]: pd.value_counts(obj.values, sort=False)
Out[221]:
a 3
b 2
c 3
d 1
Lastly, isin is responsible for vectorized set membership and can be very useful in filtering a data set down to a subset of values in a Series or column in a DataFrame:
In [222]: mask = obj.isin(['b', 'c'])
In [223]: mask In [224]: obj[mask]
Out[223]: Out[224]:
0 True 0 c
1 False 5 b
2 False 6 b
3 False 7 c
4 False 8 c
5 True
6 True
7 True
8 True
See Table 5-11 for a reference on these methods.
Table 5-11. Unique, value counts, and binning methods
Method | Description |
---|---|
isin | Compute boolean array indicating whether each Series value is contained in the passed sequence of values. |
unique | Compute array of unique values in a Series, returned in the order observed. |
value_counts | Return a Series containing unique values as its index and frequencies as its values, ordered count in descending order. |
In some cases, you may want to compute a histogram on multiple related columns in a DataFrame. Here’s an example:
In [225]: data = DataFrame({'Qu1': [1, 3, 4, 3, 4],
.....: 'Qu2': [2, 3, 1, 2, 3],
.....: 'Qu3': [1, 5, 2, 4, 4]})
In [226]: data
Out[226]:
Qu1 Qu2 Qu3
0 1 2 1
1 3 3 5
2 4 1 2
3 3 2 4
4 4 3 4
Passing pandas.value_counts to this DataFrame’s apply function gives:
In [227]: result = data.apply(pd.value_counts).fillna(0)
In [228]: result
Out[228]:
Qu1 Qu2 Qu3
1 1 1 1
2 0 2 1
3 2 2 0
4 2 0 2
5 0 0 1
Handling Missing Data
Missing data is common in most data analysis applications. One of the goals in designing pandas was to make working with missing data as painless as possible. For example, all of the descriptive statistics on pandas objects exclude missing data as you’ve seen earlier in the chapter.
pandas uses the floating point value NaN (Not a Number) to represent missing data in both floating as well as in non-floating point arrays. It is just used as a sentinel that can be easily detected:
In [229]: string_data = Series(['aardvark', 'artichoke', np.nan, 'avocado'])
In [230]: string_data In [231]: string_data.isnull()
Out[230]: Out[231]:
0 aardvark 0 False
1 artichoke 1 False
2 NaN 2 True
3 avocado 3 False
The built-in Python None value is also treated as NA in object arrays:
In [232]: string_data[0] = None
In [233]: string_data.isnull()
Out[233]:
0 True
1 False
2 True
3 False
I do not claim that pandas’s NA representation is optimal, but it is simple and reasonably consistent. It’s the best solution, with good all-around performance characteristics and a simple API, that I could concoct in the absence of a true NA data type or bit pattern in NumPy’s data types. Ongoing development work in NumPy may change this in the future.
Table 5-12. NA handling methods
Filtering Out Missing Data
You have a number of options for filtering out missing data. While doing it by hand is always an option, dropna can be very helpful. On a Series, it returns the Series with only the non-null data and index values:
In [234]: from numpy import nan as NA
In [235]: data = Series([1, NA, 3.5, NA, 7])
In [236]: data.dropna()
Out[236]:
0 1.0
2 3.5
4 7.0
Naturally, you could have computed this yourself by boolean indexing:
In [237]: data[data.notnull()]
Out[237]:
0 1.0
2 3.5
4 7.0
With DataFrame objects, these are a bit more complex. You may want to drop rows or columns which are all NA or just those containing any NAs. dropna by default drops any row containing a missing value:
In [238]: data = DataFrame([[1., 6.5, 3.], [1., NA, NA],
.....: [NA, NA, NA], [NA, 6.5, 3.]])
In [239]: cleaned = data.dropna()
In [240]: data In [241]: cleaned
Out[240]: Out[241]:
0 1 2 0 1 2
0 1 6.5 3 0 1 6.5 3
1 1 NaN NaN
2 NaN NaN NaN
3 NaN 6.5 3
Passing how='all' will only drop rows that are all NA:
In [242]: data.dropna(how='all')
Out[242]:
0 1 2
0 1 6.5 3
1 1 NaN NaN
3 NaN 6.5 3
Dropping columns in the same way is only a matter of passing axis=1:
In [243]: data[4] = NA
In [244]: data In [245]: data.dropna(axis=1, how='all')
Out[244]: Out[245]:
0 1 2 4 0 1 2
0 1 6.5 3 NaN 0 1 6.5 3
1 1 NaN NaN NaN 1 1 NaN NaN
2 NaN NaN NaN NaN 2 NaN NaN NaN
3 NaN 6.5 3 NaN 3 NaN 6.5 3
A related way to filter out DataFrame rows tends to concern time series data. Suppose you want to keep only rows containing a certain number of observations. You can indicate this with the thresh argument:
In [246]: df = DataFrame(np.random.randn(7, 3))
In [247]: df.ix[:4, 1] = NA; df.ix[:2, 2] = NA
In [248]: df In [249]: df.dropna(thresh=3)
Out[248]: Out[249]:
0 1 2 0 1 2
0 -0.577087 NaN NaN 5 0.332883 -2.359419 -0.199543
1 0.523772 NaN NaN 6 -1.541996 -0.970736 -1.307030
2 -0.713544 NaN NaN
3 -1.860761 NaN 0.560145
4 -1.265934 NaN -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
Filling in Missing Data
Rather than filtering out missing data (and potentially discarding other data along with it), you may want to fill in the “holes” in any number of ways. For most purposes, the fillna method is the workhorse function to use. Calling fillna with a constant replaces missing values with that value:
In [250]: df.fillna(0)
Out[250]:
0 1 2
0 -0.577087 0.000000 0.000000
1 0.523772 0.000000 0.000000
2 -0.713544 0.000000 0.000000
3 -1.860761 0.000000 0.560145
4 -1.265934 0.000000 -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
Calling fillna with a dict you can use a different fill value for each column:
In [251]: df.fillna({1: 0.5, 3: -1})
Out[251]:
0 1 2
0 -0.577087 0.500000 NaN
1 0.523772 0.500000 NaN
2 -0.713544 0.500000 NaN
3 -1.860761 0.500000 0.560145
4 -1.265934 0.500000 -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
fillna returns a new object, but you can modify the existing object in place:
always returns a reference to the filled object
In [252]: _ = df.fillna(0, inplace=True)
In [253]: df
Out[253]:
0 1 2
0 -0.577087 0.000000 0.000000
1 0.523772 0.000000 0.000000
2 -0.713544 0.000000 0.000000
3 -1.860761 0.000000 0.560145
4 -1.265934 0.000000 -1.063512
5 0.332883 -2.359419 -0.199543
6 -1.541996 -0.970736 -1.307030
The same interpolation methods available for reindexing can be used with fillna:
In [254]: df = DataFrame(np.random.randn(6, 3))
In [255]: df.ix[2:, 1] = NA; df.ix[4:, 2] = NA
In [256]: df
Out[256]:
0 1 2
0 0.286350 0.377984 -0.753887
1 0.331286 1.349742 0.069877
2 0.246674 NaN 1.004812
3 1.327195 NaN -1.549106
4 0.022185 NaN NaN
5 0.862580 NaN NaN
In [257]: df.fillna(method='ffill') In [258]: df.fillna(method='ffill', limit=2)
Out[257]: Out[258]:
0 1 2 0 1 2
0 0.286350 0.377984 -0.753887 0 0.286350 0.377984 -0.753887
1 0.331286 1.349742 0.069877 1 0.331286 1.349742 0.069877
2 0.246674 1.349742 1.004812 2 0.246674 1.349742 1.004812
3 1.327195 1.349742 -1.549106 3 1.327195 1.349742 -1.549106
4 0.022185 1.349742 -1.549106 4 0.022185 NaN -1.549106
5 0.862580 1.349742 -1.549106 5 0.862580 NaN -1.549106
With fillna you can do lots of other things with a little creativity. For example, you might pass the mean or median value of a Series:
In [259]: data = Series([1., NA, 3.5, NA, 7])
In [260]: data.fillna(data.mean())
Out[260]:
0 1.000000
1 3.833333
2 3.500000
3 3.833333
4 7.000000
See Table 5-13 for a reference on fillna.
Table 5-13. fillna function arguments
Argument	Description
value | Scalar value or dict-like object to use to fill missing values |
method | Interpolation, by default 'ffill' if function called with no other arguments |
axis | Axis to fill on, default axis=0 |
inplace | Modify the calling object without producing a copy |
limit | For forward and backward filling, maximum number of consecutive periods to fill |
Hierarchical Indexing
Hierarchical indexing is an important feature of pandas enabling you to have multiple (two or more) index levels on an axis. Somewhat abstractly, it provides a way for you to work with higher dimensional data in a lower dimensional form. Let’s start with a simple example; create a Series with a list of lists or arrays as the index:
In [261]: data = Series(np.random.randn(10),
.....: index=[['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'd', 'd'],
.....: [1, 2, 3, 1, 2, 3, 1, 2, 2, 3]])
In [262]: data
Out[262]:
a 1 0.670216
2 0.852965
3 -0.955869
b 1 -0.023493
2 -2.304234
3 -0.652469
c 1 -1.218302
2 -1.332610
d 2 1.074623
3 0.723642
What you’re seeing is a prettified view of a Series with a MultiIndex as its index. The “gaps” in the index display mean “use the label directly above”:
In [263]: data.index
Out[263]:
MultiIndex
[('a', 1) ('a', 2) ('a', 3) ('b', 1) ('b', 2) ('b', 3) ('c', 1)
('c', 2) ('d', 2) ('d', 3)]
With a hierarchically-indexed object, so-called partial indexing is possible, enabling you to concisely select subsets of the data:
In [264]: data['b']
Out[264]:
1 -0.023493
2 -2.304234
3 -0.652469
In [265]: data['b':'c'] In [266]: data.ix[['b', 'd']]
Out[265]: Out[266]:
b 1 -0.023493 b 1 -0.023493
2 -2.304234 2 -2.304234
3 -0.652469 3 -0.652469
c 1 -1.218302 d 2 1.074623
2 -1.332610 3 0.723642
Selection is even possible in some cases from an “inner” level:
In [267]: data[:, 2]
Out[267]:
a 0.852965
b -2.304234
c -1.332610
d 1.074623
Hierarchical indexing plays a critical role in reshaping data and group-based operations like forming a pivot table. For example, this data could be rearranged into a DataFrame using its unstack method:
In [268]: data.unstack()
Out[268]:
1 2 3
a 0.670216 0.852965 -0.955869
b -0.023493 -2.304234 -0.652469
c -1.218302 -1.332610 NaN
d NaN 1.074623 0.723642
The inverse operation of unstack is stack:
In [269]: data.unstack().stack()
Out[269]:
a 1 0.670216
2 0.852965
3 -0.955869
b 1 -0.023493
2 -2.304234
3 -0.652469
c 1 -1.218302
2 -1.332610
d 2 1.074623
3 0.723642
stack and unstack will be explored in more detail in Chapter 7.
With a DataFrame, either axis can have a hierarchical index:
In [270]: frame = DataFrame(np.arange(12).reshape((4, 3)),
.....: index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
.....: columns=[['Ohio', 'Ohio', 'Colorado'],
.....: ['Green', 'Red', 'Green']])
In [271]: frame
Out[271]:
Ohio Colorado
Green Red Green
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
The hierarchical levels can have names (as strings or any Python objects). If so, these will show up in the console output (don’t confuse the index names with the axis labels!):
In [272]: frame.index.names = ['key1', 'key2']
In [273]: frame.columns.names = ['state', 'color']
In [274]: frame
Out[274]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
With partial column indexing you can similarly select groups of columns:
In [275]: frame['Ohio']
Out[275]:
color Green Red
key1 key2
a 1 0 1
2 3 4
b 1 6 7
2 9 10
A MultiIndex can be created by itself and then reused; the columns in the above DataFrame with level names could be created like this:
MultiIndex.from_arrays([['Ohio', 'Ohio', 'Colorado'], ['Green', 'Red', 'Green']],
names=['state', 'color'])
Reordering and Sorting Levels
At times you will need to rearrange the order of the levels on an axis or sort the data by the values in one specific level. The swaplevel takes two level numbers or names and returns a new object with the levels interchanged (but the data is otherwise unaltered):
In [276]: frame.swaplevel('key1', 'key2')
Out[276]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11
sortlevel, on the other hand, sorts the data (stably) using only the values in a single level. When swapping levels, it’s not uncommon to also use sortlevel so that the result is lexicographically sorted:
In [277]: frame.sortlevel(1) In [278]: frame.swaplevel(0, 1).sortlevel(0)
Out[277]: Out[278]:
state Ohio Colorado state Ohio Colorado
color Green Red Green color Green Red Green
key1 key2 key2 key1
a 1 0 1 2 1 a 0 1 2
b 1 6 7 8 b 6 7 8
a 2 3 4 5 2 a 3 4 5
b 2 9 10 11 b 9 10 11
NOTE
Data selection performance is much better on hierarchically indexed objects if the index is lexicographically sorted starting with the outermost level, that is, the result of calling sortlevel(0) or sort_index().
Summary Statistics by Level
Many descriptive and summary statistics on DataFrame and Series have a level option in which you can specify the level you want to sum by on a particular axis. Consider the above DataFrame; we can sum by level on either the rows or columns like so:
In [279]: frame.sum(level='key2')
Out[279]:
state Ohio Colorado
color Green Red Green
key2
1 6 8 10
2 12 14 16
In [280]: frame.sum(level='color', axis=1)
Out[280]:
color Green Red
key1 key2
a 1 2 1
2 8 4
b 1 14 7
2 20 10
Under the hood, this utilizes pandas’s groupby machinery which will be discussed in more detail later in the book.
Using a DataFrame’s Columns
It’s not unusual to want to use one or more columns from a DataFrame as the row index; alternatively, you may wish to move the row index into the DataFrame’s columns. Here’s an example DataFrame:
In [281]: frame = DataFrame({'a': range(7), 'b': range(7, 0, -1),
.....: 'c': ['one', 'one', 'one', 'two', 'two', 'two', 'two'],
.....: 'd': [0, 1, 2, 0, 1, 2, 3]})
In [282]: frame
Out[282]:
a b c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3
DataFrame’s set_index function will create a new DataFrame using one or more of its columns as the index:
In [283]: frame2 = frame.set_index(['c', 'd'])
In [284]: frame2
Out[284]:
a b
c d
one 0 0 7
1 1 6
2 2 5
two 0 3 4
1 4 3
2 5 2
3 6 1
By default the columns are removed from the DataFrame, though you can leave them in:
In [285]: frame.set_index(['c', 'd'], drop=False)
Out[285]:
a b c d
c d
one 0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
two 0 3 4 two 0
1 4 3 two 1
2 5 2 two 2
3 6 1 two 3
reset_index, on the other hand, does the opposite of set_index; the hierarchical index levels are are moved into the columns:
In [286]: frame2.reset_index()
Out[286]:
c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1
Other pandas Topics
Here are some additional topics that may be of use to you in your data travels.
Integer Indexing
Working with pandas objects indexed by integers is something that often trips up new users due to some differences with indexing semantics on built-in Python data structures like lists and tuples. For example, you would not expect the following code to generate an error:
ser = Series(np.arange(3.))
ser[-1]
In this case, pandas could “fall back” on integer indexing, but there’s not a safe and general way (that I know of) to do this without introducing subtle bugs. Here we have an index containing 0, 1, 2, but inferring what the user wants (label-based indexing or position-based) is difficult::
In [288]: ser
Out[288]:
0 0
1 1
2 2
On the other hand, with a non-integer index, there is no potential for ambiguity:
In [289]: ser2 = Series(np.arange(3.), index=['a', 'b', 'c'])
In [290]: ser2[-1]
Out[290]: 2.0
To keep things consistent, if you have an axis index containing indexers, data selection with integers will always be label-oriented. This includes slicing with ix, too:
In [291]: ser.ix[:1]
Out[291]:
0 0
1 1
In cases where you need reliable position-based indexing regardless of the index type, you can use the iget_value method from Series and irow and icol methods from DataFrame:
In [292]: ser3 = Series(range(3), index=[-5, 1, 3])
In [293]: ser3.iget_value(2)
Out[293]: 2
In [294]: frame = DataFrame(np.arange(6).reshape(3, 2)), index=[2, 0, 1])
In [295]: frame.irow(0)
Out[295]:
0 0
1 1
Name: 2
Panel Data
While not a major topic of this book, pandas has a Panel data structure, which you can think of as a three-dimensional analogue of DataFrame. Much of the development focus of pandas has been in tabular data manipulations as these are easier to reason about, and hierarchical indexing makes using truly N-dimensional arrays unnecessary in a lot of cases.
To create a Panel, you can use a dict of DataFrame objects or a three-dimensional ndarray:
import pandas.io.data as web
pdata = pd.Panel(dict((stk, web.get_data_yahoo(stk, '1/1/2009', '6/1/2012'))
for stk in ['AAPL', 'GOOG', 'MSFT', 'DELL']))
Each item (the analogue of columns in a DataFrame) in the Panel is a DataFrame:
In [297]: pdata
Out[297]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 861 (major) x 6 (minor)
Items: AAPL to MSFT
Major axis: 2009-01-02 00:00:00 to 2012-06-01 00:00:00
Minor axis: Open to Adj Close
In [298]: pdata = pdata.swapaxes('items', 'minor')
In [299]: pdata['Adj Close']
Out[299]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 861 entries, 2009-01-02 00:00:00 to 2012-06-01 00:00:00
Data columns:
AAPL 861 non-null values
DELL 861 non-null values
GOOG 861 non-null values
MSFT 861 non-null values
dtypes: float64(4)
ix-based label indexing generalizes to three dimensions, so we can select all data at a particular date or a range of dates like so:
In [300]: pdata.ix[:, '6/1/2012', :]
Out[300]:
Open High Low Close Volume Adj Close
AAPL 569.16 572.65 560.52 560.99 18606700 560.99
DELL 12.15 12.30 12.05 12.07 19396700 12.07
GOOG 571.79 572.65 568.35 570.98 3057900 570.98
MSFT 28.76 28.96 28.44 28.45 56634300 28.45
In [301]: pdata.ix['Adj Close', '5/22/2012':, :]
Out[301]:
AAPL DELL GOOG MSFT
Date
2012-05-22 556.97 15.08 600.80 29.76
2012-05-23 570.56 12.49 609.46 29.11
2012-05-24 565.32 12.45 603.66 29.07
2012-05-25 562.29 12.46 591.53 29.06
2012-05-29 572.27 12.66 594.34 29.56
2012-05-30 579.17 12.56 588.23 29.34
2012-05-31 577.73 12.33 580.86 29.19
2012-06-01 560.99 12.07 570.98 28.45
An alternate way to represent panel data, especially for fitting statistical models, is in “stacked” DataFrame form:
In [302]: stacked = pdata.ix[:, '5/30/2012':, :].to_frame()
In [303]: stacked
Out[303]:
Open High Low Close Volume Adj Close
major minor
2012-05-30 AAPL 569.20 579.99 566.56 579.17 18908200 579.17
DELL 12.59 12.70 12.46 12.56 19787800 12.56
GOOG 588.16 591.90 583.53 588.23 1906700 588.23
MSFT 29.35 29.48 29.12 29.34 41585500 29.34
2012-05-31 AAPL 580.74 581.50 571.46 577.73 17559800 577.73
DELL 12.53 12.54 12.33 12.33 19955500 12.33
GOOG 588.72 590.00 579.00 580.86 2968300 580.86
MSFT 29.30 29.42 28.94 29.19 39134000 29.19
2012-06-01 AAPL 569.16 572.65 560.52 560.99 18606700 560.99
DELL 12.15 12.30 12.05 12.07 19396700 12.07
GOOG 571.79 572.65 568.35 570.98 3057900 570.98
MSFT 28.76 28.96 28.44 28.45 56634300 28.45
DataFrame has a related to_panel method, the inverse of to_frame:
In [304]: stacked.to_panel()
Out[304]:
<class 'pandas.core.panel.Panel'>
Dimensions: 6 (items) x 3 (major) x 4 (minor)
Items: Open to Adj Close
Major axis: 2012-05-30 00:00:00 to 2012-06-01 00:00:00
Minor axis: AAPL to MSFT
Chapter 6. Data Loading, Storage, and File Formats
The tools in this book are of little use if you can’t easily import and export data in Python. I’m going to be focused on input and output with pandas objects, though there are of course numerous tools in other libraries to aid in this process. NumPy, for example, features low-level but extremely fast binary data loading and storage, including support for memory-mapped array. See Chapter 12 for more on those.
Input and output typically falls into a few main categories: reading text files and other more efficient on-disk formats, loading data from databases, and interacting with network sources like web APIs.
Reading and Writing Data in Text Format
Python has become a beloved language for text and file munging due to its simple syntax for interacting with files, intuitive data structures, and convenient features like tuple packing and unpacking.
pandas features a number of functions for reading tabular data as a DataFrame object. Table 6-1 has a summary of all of them, though read_csv and read_table are likely the ones you’ll use the most.
Table 6-1. Parsing functions in pandas
I’ll give an overview of the mechanics of these functions, which are meant to convert text data into a DataFrame. The options for these functions fall into a few categories:
Indexing: can treat one or more columns as the returned DataFrame, and whether to get column names from the file, the user, or not at all.
Type inference and data conversion: this includes the user-defined value conversions and custom list of missing value markers.
Datetime parsing: includes combining capability, including combining date and time information spread over multiple columns into a single column in the result.
Iterating: support for iterating over chunks of very large files.
Unclean data issues: skipping rows or a footer, comments, or other minor things like numeric data with thousands separated by commas.
Type inference is one of the more important features of these functions; that means you don’t have to specify which columns are numeric, integer, boolean, or string. Handling dates and other custom types requires a bit more effort, though. Let’s start with a small comma-separated (CSV) text file:
In [846]: !cat ch06/ex1.csv
a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
Since this is comma-delimited, we can use read_csv to read it into a DataFrame:
In [847]: df = pd.read_csv('ch06/ex1.csv')
In [848]: df
Out[848]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
We could also have used read_table and specifying the delimiter:
In [849]: pd.read_table('ch06/ex1.csv', sep=',')
Out[849]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
NOTE
Here I used the Unix cat shell command to print the raw contents of the file to the screen. If you’re on Windows, you can use type instead of cat to achieve the same effect.
A file will not always have a header row. Consider this file:
In [850]: !cat ch06/ex2.csv
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
To read this in, you have a couple of options. You can allow pandas to assign default column names, or you can specify names yourself:
In [851]: pd.read_csv('ch06/ex2.csv', header=None)
Out[851]:
X.1 X.2 X.3 X.4 X.5
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [852]: pd.read_csv('ch06/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[852]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
Suppose you wanted the message column to be the index of the returned DataFrame. You can either indicate you want the column at index 4 or named 'message' using the index_col argument:
In [853]: names = ['a', 'b', 'c', 'd', 'message']
In [854]: pd.read_csv('ch06/ex2.csv', names=names, index_col='message')
Out[854]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
In the event that you want to form a hierarchical index from multiple columns, just pass a list of column numbers or names:
In [855]: !cat ch06/csv_mindex.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16
In [856]: parsed = pd.read_csv('ch06/csv_mindex.csv', index_col=['key1', 'key2'])
In [857]: parsed
Out[857]:
value1 value2
key1 key2
one a 1 2
b 3 4
c 5 6
d 7 8
two a 9 10
b 11 12
c 13 14
d 15 16
In some cases, a table might not have a fixed delimiter, using whitespace or some other pattern to separate fields. In these cases, you can pass a regular expression as a delimiter for read_table. Consider a text file that looks like this:
In [858]: list(open('ch06/ex3.txt'))
Out[858]:
[' A B C\n',
'aaa -0.264438 -1.026059 -0.619500\n',
'bbb 0.927272 0.302904 -0.032399\n',
'ccc -0.264273 -0.386314 -0.217601\n',
'ddd -0.871858 -0.348382 1.100491\n']
While you could do some munging by hand, in this case fields are separated by a variable amount of whitespace. This can be expressed by the regular expression \s+, so we have then:
In [859]: result = pd.read_table('ch06/ex3.txt', sep='\s+')
In [860]: result
Out[860]:
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
Because there was one fewer column name than the number of data rows, read_table infers that the first column should be the DataFrame’s index in this special case.
The parser functions have many additional arguments to help you handle the wide variety of exception file formats that occur (see Table 6-2). For example, you can skip the first, third, and fourth rows of a file with skiprows:
In [861]: !cat ch06/ex4.csv
hey!
a,b,c,d,message
just wanted to make things more difficult for you
who reads CSV files with computers, anyway?
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
In [862]: pd.read_csv('ch06/ex4.csv', skiprows=[0, 2, 3])
Out[862]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
Handling missing values is an important and frequently nuanced part of the file parsing process. Missing data is usually either not present (empty string) or marked by some sentinel value. By default, pandas uses a set of commonly occurring sentinels, such as NA, -1.#IND, and NULL:
In [863]: !cat ch06/ex5.csv
something,a,b,c,d,message
one,1,2,3,4,NA
two,5,6,,8,world
three,9,10,11,12,foo
In [864]: result = pd.read_csv('ch06/ex5.csv')
In [865]: result
Out[865]:
something a b c d message
0 one 1 2 3 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11 12 foo
In [866]: pd.isnull(result)
Out[866]:
something a b c d message
0 False False False False False True
1 False False False True False False
2 False False False False False False
The na_values option can take either a list or set of strings to consider missing values:
In [867]: result = pd.read_csv('ch06/ex5.csv', na_values=['NULL'])
In [868]: result
Out[868]:
something a b c d message
0 one 1 2 3 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11 12 foo
Different NA sentinels can be specified for each column in a dict:
In [869]: sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [870]: pd.read_csv('ch06/ex5.csv', na_values=sentinels)
Out[870]:
something a b c d message
0 one 1 2 3 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11 12 NaN
Table 6-2. read_csv /read_table function arguments
Reading Text Files in Pieces
When processing very large files or figuring out the right set of arguments to correctly process a large file, you may only want to read in a small piece of a file or iterate through smaller chunks of the file.
In [871]: result = pd.read_csv('ch06/ex6.csv')
In [872]: result
Out[872]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000 entries, 0 to 9999
Data columns:
one 10000 non-null values
two 10000 non-null values
three 10000 non-null values
four 10000 non-null values
key 10000 non-null values
dtypes: float64(4), object(1)
If you want to only read out a small number of rows (avoiding reading the entire file), specify that with nrows:
In [873]: pd.read_csv('ch06/ex6.csv', nrows=5)
Out[873]:
one two three four key
0 0.467976 -0.038649 -0.295344 -1.824726 L
1 -0.358893 1.404453 0.704965 -0.200638 B
2 -0.501840 0.659254 -0.421691 -0.057688 G
3 0.204886 1.074134 1.388361 -0.982404 R
4 0.354628 -0.133116 0.283763 -0.837063 Q
To read out a file in pieces, specify a chunksize as a number of rows:
In [874]: chunker = pd.read_csv('ch06/ex6.csv', chunksize=1000)
In [875]: chunker
Out[875]: <pandas.io.parsers.TextParser at 0x8398150>
The TextParser object returned by read_csv allows you to iterate over the parts of the file according to the chunksize. For example, we can iterate over ex6.csv, aggregating the value counts in the 'key' column like so:
chunker = pd.read_csv('ch06/ex6.csv', chunksize=1000)
tot = Series([])
for piece in chunker:
tot = tot.add(piece['key'].value_counts(), fill_value=0)
tot = tot.order(ascending=False)
We have then:
In [877]: tot[:10]
Out[877]:
E 368
X 364
L 346
O 343
Q 340
M 338
J 337
F 335
K 334
H 330
TextParser is also equipped with a get_chunk method which enables you to read pieces of an arbitrary size.
Writing Data Out to Text Format
Data can also be exported to delimited format. Let’s consider one of the CSV files read above:
In [878]: data = pd.read_csv('ch06/ex5.csv')
In [879]: data
Out[879]:
something a b c d message
0 one 1 2 3 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11 12 foo
Using DataFrame’s to_csv method, we can write the data out to a comma-separated file:
In [880]: data.to_csv('ch06/out.csv')
In [881]: !cat ch06/out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo
Other delimiters can be used, of course (writing to sys.stdout so it just prints the text result):
In [882]: data.to_csv(sys.stdout, sep='|')
|something|a|b|c|d|message
0|one|1|2|3.0|4|
1|two|5|6||8|world
2|three|9|10|11.0|12|foo
Missing values appear as empty strings in the output. You might want to denote them by some other sentinel value:
In [883]: data.to_csv(sys.stdout, na_rep='NULL')
,something,a,b,c,d,message
0,one,1,2,3.0,4,NULL
1,two,5,6,NULL,8,world
2,three,9,10,11.0,12,foo
With no other options specified, both the row and column labels are written. Both of these can be disabled:
In [884]: data.to_csv(sys.stdout, index=False, header=False)
one,1,2,3.0,4,
two,5,6,,8,world
three,9,10,11.0,12,foo
You can also write only a subset of the columns, and in an order of your choosing:
In [885]: data.to_csv(sys.stdout, index=False, cols=['a', 'b', 'c'])
a,b,c
1,2,3.0
5,6,
9,10,11.0
Series also has a to_csv method:
In [886]: dates = pd.date_range('1/1/2000', periods=7)
In [887]: ts = Series(np.arange(7), index=dates)
In [888]: ts.to_csv('ch06/tseries.csv')
In [889]: !cat ch06/tseries.csv
2000-01-01 00:00:00,0
2000-01-02 00:00:00,1
2000-01-03 00:00:00,2
2000-01-04 00:00:00,3
2000-01-05 00:00:00,4
2000-01-06 00:00:00,5
2000-01-07 00:00:00,6
With a bit of wrangling (no header, first column as index), you can read a CSV version of a Series with read_csv, but there is also a from_csv convenience method that makes it a bit simpler:
In [890]: Series.from_csv('ch06/tseries.csv', parse_dates=True)
Out[890]:
2000-01-01 0
2000-01-02 1
2000-01-03 2
2000-01-04 3
2000-01-05 4
2000-01-06 5
2000-01-07 6
See the docstrings for to_csv and from_csv in IPython for more information.
Manually Working with Delimited Formats
Most forms of tabular data can be loaded from disk using functions like pandas.read_table. In some cases, however, some manual processing may be necessary. It’s not uncommon to receive a file with one or more malformed lines that trip up read_table. To illustrate the basic tools, consider a small CSV file:
In [891]: !cat ch06/ex7.csv
"a","b","c"
"1","2","3"
"1","2","3","4"
For any file with a single-character delimiter, you can use Python’s built-in csv module. To use it, pass any open file or file-like object to csv.reader:
import csv
f = open('ch06/ex7.csv')
reader = csv.reader(f)
Iterating through the reader like a file yields tuples of values in each like with any quote characters removed:
In [893]: for line in reader:
.....: print line
['a', 'b', 'c']
['1', '2', '3']
['1', '2', '3', '4']
From there, it’s up to you to do the wrangling necessary to put the data in the form that you need it. For example:
In [894]: lines = list(csv.reader(open('ch06/ex7.csv')))
In [895]: header, values = lines[0], lines[1:]
In [896]: data_dict = {h: v for h, v in zip(header, zip(*values))}
In [897]: data_dict
Out[897]: {'a': ('1', '1'), 'b': ('2', '2'), 'c': ('3', '3')}
CSV files come in many different flavors. Defining a new format with a different delimiter, string quoting convention, or line terminator is done by defining a simple subclass of csv.Dialect:
class my_dialect(csv.Dialect):
lineterminator = '\n'
delimiter = ';'
quotechar = '"'
reader = csv.reader(f, dialect=my_dialect)
Individual CSV dialect parameters can also be given as keywords to csv.reader without having to define a subclass:
reader = csv.reader(f, delimiter='|')
The possible options (attributes of csv.Dialect) and what they do can be found in Table 6-3.
Table 6-3. CSV dialect options
NOTE
For files with more complicated or fixed multicharacter delimiters, you will not be able to use the csv module. In those cases, you’ll have to do the line splitting and other cleanup using string’s split method or the regular expression method re.split.
To write delimited files manually, you can use csv.writer. It accepts an open, writable file object and the same dialect and format options as csv.reader:
with open('mydata.csv', 'w') as f:
writer = csv.writer(f, dialect=my_dialect)
writer.writerow(('one', 'two', 'three'))
writer.writerow(('1', '2', '3'))
writer.writerow(('4', '5', '6'))
writer.writerow(('7', '8', '9'))
JSON Data
JSON (short for JavaScript Object Notation) has become one of the standard formats for sending data by HTTP request between web browsers and other applications. It is a much more flexible data format than a tabular text form like CSV. Here is an example:
obj = """
{"name": "Wes",
"places_lived": ["United States", "Spain", "Germany"],
"pet": null,
"siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},
{"name": "Katie", "age": 33, "pet": "Cisco"}]
}
"""
JSON is very nearly valid Python code with the exception of its null value null and some other nuances (such as disallowing trailing commas at the end of lists). The basic types are objects (dicts), arrays (lists), strings, numbers, booleans, and nulls. All of the keys in an object must be strings. There are several Python libraries for reading and writing JSON data. I’ll use json here as it is built into the Python standard library. To convert a JSON string to Python form, use json.loads:
In [899]: import json
In [900]: result = json.loads(obj)
In [901]: result
Out[901]:
{u'name': u'Wes',
u'pet': None,
u'places_lived': [u'United States', u'Spain', u'Germany'],
u'siblings': [{u'age': 25, u'name': u'Scott', u'pet': u'Zuko'},
{u'age': 33, u'name': u'Katie', u'pet': u'Cisco'}]}
json.dumps on the other hand converts a Python object back to JSON:
In [902]: asjson = json.dumps(result)
How you convert a JSON object or list of objects to a DataFrame or some other data structure for analysis will be up to you. Conveniently, you can pass a list of JSON objects to the DataFrame constructor and select a subset of the data fields:
In [903]: siblings = DataFrame(result['siblings'], columns=['name', 'age'])
In [904]: siblings
Out[904]:
name age
0 Scott 25
1 Katie 33
For an extended example of reading and manipulating JSON data (including nested records), see the USDA Food Database example in the next chapter.
NOTE
An effort is underway to add fast native JSON export (to_json) and decoding (from_json) to pandas. This was not ready at the time of writing.
XML and HTML: Web Scraping
Python has many libraries for reading and writing data in the ubiquitous HTML and XML formats. lxml (http://lxml.de) is one that has consistently strong performance in parsing very large files. lxml has multiple programmer interfaces; first I’ll show using lxml.html for HTML, then parse some XML using lxml.objectify.
Many websites make data available in HTML tables for viewing in a browser, but not downloadable as an easily machine-readable format like JSON, HTML, or XML. I noticed that this was the case with Yahoo! Finance’s stock options data. If you aren’t familiar with this data; options are derivative contracts giving you the right to buy (call option) or sell (put option) a company’s stock at some particular price (the strike) between now and some fixed point in the future (the expiry). People trade both call and put options across many strikes and expiries; this data can all be found together in tables on Yahoo! Finance.
To get started, find the URL you want to extract data from, open it with urllib2 and parse the stream with lxml like so:
from lxml.html import parse
from urllib2 import urlopen
parsed = parse(urlopen('http://finance.yahoo.com/q/op?s=AAPL+Options'))
doc = parsed.getroot()
Using this object, you can extract all HTML tags of a particular type, such as table tags containing the data of interest. As a simple motivating example, suppose you wanted to get a list of every URL linked to in the document; links are a tags in HTML. Using the document root’s findall method along with an XPath (a means of expressing “queries” on the document):
In [906]: links = doc.findall('.//a')
In [907]: links[15:20]
Out[907]:
[<Element a at 0x6c488f0>,
<Element a at 0x6c48950>,
<Element a at 0x6c489b0>,
<Element a at 0x6c48a10>,
<Element a at 0x6c48a70>]
But these are objects representing HTML elements; to get the URL and link text you have to use each element’s get method (for the URL) and text_content method (for the display text):
In [908]: lnk = links[28]
In [909]: lnk
Out[909]: <Element a at 0x6c48dd0>
In [910]: lnk.get('href')
Out[910]: 'http://biz.yahoo.com/special.html'
In [911]: lnk.text_content()
Out[911]: 'Special Editions'
Thus, getting a list of all URLs in the document is a matter of writing this list comprehension:
In [912]: urls = [lnk.get('href') for lnk in doc.findall('.//a')]
In [913]: urls[-10:]
Out[913]:
['http://info.yahoo.com/privacy/us/yahoo/finance/details.html',
'http://info.yahoo.com/relevantads/',
'http://docs.yahoo.com/info/terms/',
'http://docs.yahoo.com/info/copyright/copyright.html',
'http://help.yahoo.com/l/us/yahoo/finance/forms_index.html',
'http://help.yahoo.com/l/us/yahoo/finance/quotes/fitadelay.html',
'http://help.yahoo.com/l/us/yahoo/finance/quotes/fitadelay.html',
'http://www.capitaliq.com',
'http://www.csidata.com',
'http://www.morningstar.com/']
Now, finding the right tables in the document can be a matter of trial and error; some websites make it easier by giving a table of interest an id attribute. I determined that these were the two tables containing the call data and put data, respectively:
tables = doc.findall('.//table')
calls = tables[9]
puts = tables[13]
Each table has a header row followed by each of the data rows:
In [915]: rows = calls.findall('.//tr')
For the header as well as the data rows, we want to extract the text from each cell; in the case of the header these are th cells and td cells for the data:
def _unpack(row, kind='td'):
elts = row.findall('.//%s' % kind)
return [val.text_content() for val in elts]
Thus, we obtain:
In [917]: _unpack(rows[0], kind='th')
Out[917]: ['Strike', 'Symbol', 'Last', 'Chg', 'Bid', 'Ask', 'Vol', 'Open Int']
In [918]: _unpack(rows[1], kind='td')
Out[918]:
['295.00',
'AAPL120818C00295000',
'310.40',
' 0.00',
'289.80',
'290.80',
'1',
'169']
Now, it’s a matter of combining all of these steps together to convert this data into a DataFrame. Since the numerical data is still in string format, we want to convert some, but perhaps not all of the columns to floating point format. You could do this by hand, but, luckily, pandas has a class TextParser that is used internally in the read_csv and other parsing functions to do the appropriate automatic type conversion:
from pandas.io.parsers import TextParser
def parse_options_data(table):
rows = table.findall('.//tr')
header = _unpack(rows[0], kind='th')
data = [_unpack(r) for r in rows[1:]]
return TextParser(data, names=header).get_chunk()
Finally, we invoke this parsing function on the lxml table objects and get DataFrame results:
In [920]: call_data = parse_options_data(calls)
In [921]: put_data = parse_options_data(puts)
In [922]: call_data[:10]
Out[922]:
Strike Symbol Last Chg Bid Ask Vol Open Int
0 295 AAPL120818C00295000 310.40 0.0 289.80 290.80 1 169
1 300 AAPL120818C00300000 277.10 1.7 284.80 285.60 2 478
2 305 AAPL120818C00305000 300.97 0.0 279.80 280.80 10 316
3 310 AAPL120818C00310000 267.05 0.0 274.80 275.65 6 239
4 315 AAPL120818C00315000 296.54 0.0 269.80 270.80 22 88
5 320 AAPL120818C00320000 291.63 0.0 264.80 265.80 96 173
6 325 AAPL120818C00325000 261.34 0.0 259.80 260.80 N/A 108
7 330 AAPL120818C00330000 230.25 0.0 254.80 255.80 N/A 21
8 335 AAPL120818C00335000 266.03 0.0 249.80 250.65 4 46
9 340 AAPL120818C00340000 272.58 0.0 244.80 245.80 4 30
Parsing XML with lxml.objectify
XML (extensible markup language) is another common structured data format supporting hierarchical, nested data with metadata. The files that generate the book you are reading actually form a series of large XML documents.
Above, I showed the lxml library and its lxml.html interface. Here I show an alternate interface that’s convenient for XML data, lxml.objectify.
The New York Metropolitan Transportation Authority (MTA) publishes a number of data series about its bus and train services (http://www.mta.info/developers/download.html). Here we’ll look at the performance data which is contained in a set of XML files. Each train or bus service has a different file (like Performance_MNR.xml for the Metro-North Railroad) containing monthly data as a series of XML records that look like this:
<INDICATOR>
<INDICATOR_SEQ>373889</INDICATOR_SEQ>
<PARENT_SEQ></PARENT_SEQ>
<AGENCY_NAME>Metro-North Railroad</AGENCY_NAME>
<INDICATOR_NAME>Escalator Availability</INDICATOR_NAME>
<DESCRIPTION>Percent of the time that escalators are operational
systemwide. The availability rate is based on physical observations performed
the morning of regular business days only. This is a new indicator the agency
began reporting in 2009.</DESCRIPTION>
<PERIOD_YEAR>2011</PERIOD_YEAR>
<PERIOD_MONTH>12</PERIOD_MONTH>
<CATEGORY>Service Indicators</CATEGORY>
<FREQUENCY>M</FREQUENCY>
<DESIRED_CHANGE>U</DESIRED_CHANGE>
<INDICATOR_UNIT>%</INDICATOR_UNIT>
<DECIMAL_PLACES>1</DECIMAL_PLACES>
<YTD_TARGET>97.00</YTD_TARGET>
<YTD_ACTUAL></YTD_ACTUAL>
<MONTHLY_TARGET>97.00</MONTHLY_TARGET>
<MONTHLY_ACTUAL></MONTHLY_ACTUAL>
</INDICATOR>
Using lxml.objectify, we parse the file and get a reference to the root node of the XML file with getroot:
from lxml import objectify
path = 'Performance_MNR.xml'
parsed = objectify.parse(open(path))
root = parsed.getroot()
root.INDICATOR return a generator yielding each <INDICATOR> XML element. For each record, we can populate a dict of tag names (like YTD_ACTUAL) to data values (excluding a few tags):
data = []
skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ',
'DESIRED_CHANGE', 'DECIMAL_PLACES']
for elt in root.INDICATOR:
el_data = {}
for child in elt.getchildren():
if child.tag in skip_fields:
continue
el_data[child.tag] = child.pyval
data.append(el_data)
Lastly, convert this list of dicts into a DataFrame:
In [927]: perf = DataFrame(data)
In [928]: perf
Out[928]:
Empty DataFrame
Columns: array([], dtype=int64)
Index: array([], dtype=int64)
XML data can get much more complicated than this example. Each tag can have metadata, too. Consider an HTML link tag which is also valid XML:
from StringIO import StringIO
tag = 'Google'
root = objectify.parse(StringIO(tag)).getroot()
You can now access any of the fields (like href) in the tag or the link text:
In [930]: root
Out[930]: <Element a at 0x88bd4b0>
In [931]: root.get('href')
Out[931]: 'http://www.google.com'
In [932]: root.text
Out[932]: 'Google'
Binary Data Formats
One of the easiest ways to store data efficiently in binary format is using Python’s built-in pickle serialization. Conveniently, pandas objects all have a save method which writes the data to disk as a pickle:
In [933]: frame = pd.read_csv('ch06/ex1.csv')
In [934]: frame
Out[934]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [935]: frame.save('ch06/frame_pickle')
You read the data back into Python with pandas.load, another pickle convenience function:
In [936]: pd.load('ch06/frame_pickle')
Out[936]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
CAUTION
pickle is only recommended as a short-term storage format. The problem is that it is hard to guarantee that the format will be stable over time; an object pickled today may not unpickle with a later version of a library. I have made every effort to ensure that this does not occur with pandas, but at some point in the future it may be necessary to “break” the pickle format.
Using HDF5 Format
There are a number of tools that facilitate efficiently reading and writing large amounts of scientific data in binary format on disk. A popular industry-grade library for this is HDF5, which is a C library with interfaces in many other languages like Java, Python, and MATLAB. The “HDF” in HDF5 stands for hierarchical data format. Each HDF5 file contains an internal file system-like node structure enabling you to store multiple datasets and supporting metadata. Compared with simpler formats, HDF5 supports on-the-fly compression with a variety of compressors, enabling data with repeated patterns to be stored more efficiently. For very large datasets that don’t fit into memory, HDF5 is a good choice as you can efficiently read and write small sections of much larger arrays.
There are not one but two interfaces to the HDF5 library in Python, PyTables and h5py, each of which takes a different approach to the problem. h5py provides a direct, but high-level interface to the HDF5 API, while PyTables abstracts many of the details of HDF5 to provide multiple flexible data containers, table indexing, querying capability, and some support for out-of-core computations.
pandas has a minimal dict-like HDFStore class, which uses PyTables to store pandas objects:
In [937]: store = pd.HDFStore('mydata.h5')
In [938]: store['obj1'] = frame
In [939]: store['obj1_col'] = frame['a']
In [940]: store
Out[940]:
<class 'pandas.io.pytables.HDFStore'>
File path: mydata.h5
obj1 DataFrame
obj1_col Series
Objects contained in the HDF5 file can be retrieved in a dict-like fashion:
In [941]: store['obj1']
Out[941]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
If you work with huge quantities of data, I would encourage you to explore PyTables and h5py to see how they can suit your needs. Since many data analysis problems are IO-bound (rather than CPU-bound), using a tool like HDF5 can massively accelerate your applications.
CAUTION
HDF5 is not a database. It is best suited for write-once, read-many datasets. While data can be added to a file at any time, if multiple writers do so simultaneously, the file can become corrupted.
Reading Microsoft Excel Files
pandas also supports reading tabular data stored in Excel 2003 (and higher) files using the ExcelFile class. Interally ExcelFile uses the xlrd and openpyxl packages, so you may have to install them first. To use ExcelFile, create an instance by passing a path to an xls or xlsx file:
xls_file = pd.ExcelFile('data.xls')
Data stored in a sheet can then be read into DataFrame using parse:
table = xls_file.parse('Sheet1')
Interacting with HTML and Web APIs
Many websites have public APIs providing data feeds via JSON or some other format. There are a number of ways to access these APIs from Python; one easy-to-use method that I recommend is the requests package (http://docs.python-requests.org). To search for the words “python pandas” on Twitter, we can make an HTTP GET request like so:
In [944]: import requests
In [945]: url = 'http://search.twitter.com/search.json?q=python%20pandas'
In [946]: resp = requests.get(url)
In [947]: resp
Out[947]: <Response [200]>
The Response object’s text attribute contains the content of the GET query. Many web APIs will return a JSON string that must be loaded into a Python object:
In [948]: import json
In [949]: data = json.loads(resp.text)
In [950]: data.keys()
Out[950]:
[u'next_page',
u'completed_in',
u'max_id_str',
u'since_id_str',
u'refresh_url',
u'results',
u'since_id',
u'results_per_page',
u'query',
u'max_id',
u'page']
The results field in the response contains a list of tweets, each of which is represented as a Python dict that looks like:
{u'created_at': u'Mon, 25 Jun 2012 17:50:33 +0000',
u'from_user': u'wesmckinn',
u'from_user_id': 115494880,
u'from_user_id_str': u'115494880',
u'from_user_name': u'Wes McKinney',
u'geo': None,
u'id': 217313849177686018,
u'id_str': u'217313849177686018',
u'iso_language_code': u'pt',
u'metadata': {u'result_type': u'recent'},
u'source': u'web',
u'text': u'Lunchtime pandas-fu http://t.co/SI70xZZQ #pydata',
u'to_user': None,
u'to_user_id': 0,
u'to_user_id_str': u'0',
u'to_user_name': None}
We can then make a list of the tweet fields of interest then pass the results list to DataFrame:
In [951]: tweet_fields = ['created_at', 'from_user', 'id', 'text']
In [952]: tweets = DataFrame(data['results'], columns=tweet_fields)
In [953]: tweets
Out[953]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 15 entries, 0 to 14
Data columns:
created_at 15 non-null values
from_user 15 non-null values
id 15 non-null values
text 15 non-null values
dtypes: int64(1), object(3)
Each row in the DataFrame now has the extracted data from each tweet:
In [121]: tweets.ix[7]
Out[121]:
created_at Thu, 23 Jul 2012 09:54:00 +0000
from_user deblike
id 227419585803059201
text pandas: powerful Python data analysis toolkit
Name: 7
With a bit of elbow grease, you can create some higher-level interfaces to common web APIs that return DataFrame objects for easy analysis.
Interacting with Databases
In many applications data rarely comes from text files, that being a fairly inefficient way to store large amounts of data. SQL-based relational databases (such as SQL Server, PostgreSQL, and MySQL) are in wide use, and many alternative non-SQL (so-called NoSQL) databases have become quite popular. The choice of database is usually dependent on the performance, data integrity, and scalability needs of an application.
Loading data from SQL into a DataFrame is fairly straightforward, and pandas has some functions to simplify the process. As an example, I’ll use an in-memory SQLite database using Python’s built-in sqlite3 driver:
import sqlite3
query = """
CREATE TABLE test
(a VARCHAR(20), b VARCHAR(20),
c REAL, d INTEGER
);"""
con = sqlite3.connect(':memory:')
con.execute(query)
con.commit()
Then, insert a few rows of data:
data = [('Atlanta', 'Georgia', 1.25, 6),
('Tallahassee', 'Florida', 2.6, 3),
('Sacramento', 'California', 1.7, 5)]
stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"
con.executemany(stmt, data)
con.commit()
Most Python SQL drivers (PyODBC, psycopg2, MySQLdb, pymssql, etc.) return a list of tuples when selecting data from a table:
In [956]: cursor = con.execute('select * from test')
In [957]: rows = cursor.fetchall()
In [958]: rows
Out[958]:
[(u'Atlanta', u'Georgia', 1.25, 6),
(u'Tallahassee', u'Florida', 2.6, 3),
(u'Sacramento', u'California', 1.7, 5)]
You can pass the list of tuples to the DataFrame constructor, but you also need the column names, contained in the cursor’s description attribute:
In [959]: cursor.description
Out[959]:
(('a', None, None, None, None, None, None),
('b', None, None, None, None, None, None),
('c', None, None, None, None, None, None),
('d', None, None, None, None, None, None))
In [960]: DataFrame(rows, columns=zip(*cursor.description)[0])
Out[960]:
a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5
This is quite a bit of munging that you’d rather not repeat each time you query the database. pandas has a read_frame function in its pandas.io.sql module that simplifies the process. Just pass the select statement and the connection object:
In [961]: import pandas.io.sql as sql
In [962]: sql.read_frame('select * from test', con)
Out[962]:
a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5
Storing and Loading Data in MongoDB
NoSQL databases take many different forms. Some are simple dict-like key-value stores like BerkeleyDB or Tokyo Cabinet, while others are document-based, with a dict-like object being the basic unit of storage. I've chosen MongoDB (http://mongodb.org) for my example. I started a MongoDB instance locally on my machine, and connect to it on the default port using pymongo, the official driver for MongoDB:
import pymongo
con = pymongo.Connection('localhost', port=27017)
Documents stored in MongoDB are found in collections inside databases. Each running instance of the MongoDB server can have multiple databases, and each database can have multiple collections. Suppose I wanted to store the Twitter API data from earlier in the chapter. First, I can access the (currently empty) tweets collection:
tweets = con.db.tweets
Then, I load the list of tweets and write each of them to the collection using tweets.save (which writes the Python dict to MongoDB):
import requests, json
url = 'http://search.twitter.com/search.json?q=python%20pandas'
data = json.loads(requests.get(url).text)
for tweet in data['results']:
tweets.save(tweet)
Now, if I wanted to get all of my tweets (if any) from the collection, I can query the collection with the following syntax:
cursor = tweets.find({'from_user': 'wesmckinn'})
The cursor returned is an iterator that yields each document as a dict. As above I can convert this into a DataFrame, optionally extracting a subset of the data fields in each tweet:
tweet_fields = ['created_at', 'from_user', 'id', 'text']
result = DataFrame(list(cursor), columns=tweet_fields)
Chapter 7. Data Wrangling: Clean, Transform, Merge, Reshape
Much of the programming work in data analysis and modeling is spent on data preparation: loading, cleaning, transforming, and rearranging. Sometimes the way that data is stored in files or databases is not the way you need it for a data processing application. Many people choose to do ad hoc processing of data from one form to another using a general purpose programming, like Python, Perl, R, or Java, or UNIX text processing tools like sed or awk. Fortunately, pandas along with the Python standard library provide you with a high-level, flexible, and high-performance set of core manipulations and algorithms to enable you to wrangle data into the right form without much trouble.
If you identify a type of data manipulation that isn’t anywhere in this book or elsewhere in the pandas library, feel free to suggest it on the mailing list or GitHub site. Indeed, much of the design and implementation of pandas has been driven by the needs of real world applications.
Combining and Merging Data Sets
Data contained in pandas objects can be combined together in a number of built-in ways:
pandas.merge connects rows in DataFrames based on one or more keys. This will be familiar to users of SQL or other relational databases, as it implements database join operations.
pandas.concat glues or stacks together objects along an axis.
combine_first instance method enables splicing together overlapping data to fill in missing values in one object with values from another.
I will address each of these and give a number of examples. They’ll be utilized in examples throughout the rest of the book.
Database-style DataFrame Merges
Merge or join operations combine data sets by linking rows using one or more keys. These operations are central to relational databases. The merge function in pandas is the main entry point for using these algorithms on your data.
Let’s start with a simple example:
In [15]: df1 = DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [16]: df2 = DataFrame({'key': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [17]: df1 In [18]: df2
Out[17]: Out[18]:
data1 key data2 key
0 0 b 0 0 a
1 1 b 1 1 b
2 2 a 2 2 d
3 3 c
4 4 a
5 5 a
6 6 b
This is an example of a many-to-one merge situation; the data in df1 has multiple rows labeled a and b, whereas df2 has only one row for each value in the key column. Calling merge with these objects we obtain:
In [19]: pd.merge(df1, df2)
Out[19]:
data1 key data2
0 2 a 0
1 4 a 0
2 5 a 0
3 0 b 1
4 1 b 1
5 6 b 1
Note that I didn’t specify which column to join on. If not specified, merge uses the overlapping column names as the keys. It’s a good practice to specify explicitly, though:
In [20]: pd.merge(df1, df2, on='key')
Out[20]:
data1 key data2
0 2 a 0
1 4 a 0
2 5 a 0
3 0 b 1
4 1 b 1
5 6 b 1
If the column names are different in each object, you can specify them separately:
In [21]: df3 = DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
....: 'data1': range(7)})
In [22]: df4 = DataFrame({'rkey': ['a', 'b', 'd'],
....: 'data2': range(3)})
In [23]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[23]:
data1 lkey data2 rkey
0 2 a 0 a
1 4 a 0 a
2 5 a 0 a
3 0 b 1 b
4 1 b 1 b
5 6 b 1 b
You probably noticed that the 'c' and 'd' values and associated data are missing from the result. By default merge does an 'inner' join; the keys in the result are the intersection. Other possible options are 'left', 'right', and 'outer'. The outer join takes the union of the keys, combining the effect of applying both left and right joins:
In [24]: pd.merge(df1, df2, how='outer')
Out[24]:
data1 key data2
0 2 a 0
1 4 a 0
2 5 a 0
3 0 b 1
4 1 b 1
5 6 b 1
6 3 c NaN
7 NaN d 2
Many-to-many merges have well-defined though not necessarily intuitive behavior. Here’s an example:
In [25]: df1 = DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
....: 'data1': range(6)})
In [26]: df2 = DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
....: 'data2': range(5)})
In [27]: df1 In [28]: df2
Out[27]: Out[28]:
data1 key data2 key
0 0 b 0 0 a
1 1 b 1 1 b
2 2 a 2 2 a
3 3 c 3 3 b
4 4 a 4 4 d
5 5 b
In [29]: pd.merge(df1, df2, on='key', how='left')
Out[29]:
data1 key data2
0 2 a 0
1 2 a 2
2 4 a 0
3 4 a 2
4 0 b 1
5 0 b 3
6 1 b 1
7 1 b 3
8 5 b 1
9 5 b 3
10 3 c NaN
Many-to-many joins form the Cartesian product of the rows. Since there were 3 'b' rows in the left DataFrame and 2 in the right one, there are 6 'b' rows in the result. The join method only affects the distinct key values appearing in the result:
In [30]: pd.merge(df1, df2, how='inner')
Out[30]:
data1 key data2
0 2 a 0
1 2 a 2
2 4 a 0
3 4 a 2
4 0 b 1
5 0 b 3
6 1 b 1
7 1 b 3
8 5 b 1
9 5 b 3
To merge with multiple keys, pass a list of column names:
In [31]: left = DataFrame({'key1': ['foo', 'foo', 'bar'],
....: 'key2': ['one', 'two', 'one'],
....: 'lval': [1, 2, 3]})
In [32]: right = DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
....: 'key2': ['one', 'one', 'one', 'two'],
....: 'rval': [4, 5, 6, 7]})
In [33]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[33]:
key1 key2 lval rval
0 bar one 3 6
1 bar two NaN 7
2 foo one 1 4
3 foo one 1 5
4 foo two 2 NaN
To determine which key combinations will appear in the result depending on the choice of merge method, think of the multiple keys as forming an array of tuples to be used as a single join key (even though it’s not actually implemented that way).
CAUTION
When joining columns-on-columns, the indexes on the passed DataFrame objects are discarded.
A last issue to consider in merge operations is the treatment of overlapping column names. While you can address the overlap manually (see the later section on renaming axis labels), merge has a suffixes option for specifying strings to append to overlapping names in the left and right DataFrame objects:
In [34]: pd.merge(left, right, on='key1')
Out[34]:
key1 key2_x lval key2_y rval
0 bar one 3 one 6
1 bar one 3 two 7
2 foo one 1 one 4
3 foo one 1 one 5
4 foo two 2 one 4
5 foo two 2 one 5
In [35]: pd.merge(left, right, on='key1', suffixes=('_left', '_right'))
Out[35]:
key1 key2_left lval key2_right rval
0 bar one 3 one 6
1 bar one 3 two 7
2 foo one 1 one 4
3 foo one 1 one 5
4 foo two 2 one 4
5 foo two 2 one 5
See Table 7-1 for an argument reference on merge. Joining on index is the subject of the next section.
Table 7-1. merge function arguments
Merging on Index
In some cases, the merge key or keys in a DataFrame will be found in its index. In this case, you can pass left_index=True or right_index=True (or both) to indicate that the index should be used as the merge key:
In [36]: left1 = DataFrame({'key': ['a', 'b', 'a', 'a', 'b', 'c'],
....: 'value': range(6)})
In [37]: right1 = DataFrame({'group_val': [3.5, 7]}, index=['a', 'b'])
In [38]: left1 In [39]: right1
Out[38]: Out[39]:
key value group_val
0 a 0 a 3.5
1 b 1 b 7.0
2 a 2
3 a 3
4 b 4
5 c 5
In [40]: pd.merge(left1, right1, left_on='key', right_index=True)
Out[40]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
Since the default merge method is to intersect the join keys, you can instead form the union of them with an outer join:
In [41]: pd.merge(left1, right1, left_on='key', right_index=True, how='outer')
Out[41]:
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0
5 c 5 NaN
With hierarchically-indexed data, things are a bit more complicated:
In [42]: lefth = DataFrame({'key1': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
....: 'key2': [2000, 2001, 2002, 2001, 2002],
....: 'data': np.arange(5.)})
In [43]: righth = DataFrame(np.arange(12).reshape((6, 2)),
....: index=[['Nevada', 'Nevada', 'Ohio', 'Ohio', 'Ohio', 'Ohio'],
....: [2001, 2000, 2000, 2000, 2001, 2002]],
....: columns=['event1', 'event2'])
In [44]: lefth In [45]: righth
Out[44]: Out[45]:
data key1 key2 event1 event2
0 0 Ohio 2000 Nevada 2001 0 1
1 1 Ohio 2001 2000 2 3
2 2 Ohio 2002 Ohio 2000 4 5
3 3 Nevada 2001 2000 6 7
4 4 Nevada 2002 2001 8 9
2002 10 11
In this case, you have to indicate multiple columns to merge on as a list (pay attention to the handling of duplicate index values):
In [46]: pd.merge(lefth, righth, left_on=['key1', 'key2'], right_index=True)
Out[46]:
data key1 key2 event1 event2
3 3 Nevada 2001 0 1
0 0 Ohio 2000 4 5
0 0 Ohio 2000 6 7
1 1 Ohio 2001 8 9
2 2 Ohio 2002 10 11
In [47]: pd.merge(lefth, righth, left_on=['key1', 'key2'],
....: right_index=True, how='outer')
Out[47]:
data key1 key2 event1 event2
4 NaN Nevada 2000 2 3
3 3 Nevada 2001 0 1
4 4 Nevada 2002 NaN NaN
0 0 Ohio 2000 4 5
0 0 Ohio 2000 6 7
1 1 Ohio 2001 8 9
2 2 Ohio 2002 10 11
Using the indexes of both sides of the merge is also not an issue:
In [48]: left2 = DataFrame([[1., 2.], [3., 4.], [5., 6.]], index=['a', 'c', 'e'],
....: columns=['Ohio', 'Nevada'])
In [49]: right2 = DataFrame([[7., 8.], [9., 10.], [11., 12.], [13, 14]],
....: index=['b', 'c', 'd', 'e'], columns=['Missouri', 'Alabama'])
In [50]: left2 In [51]: right2
Out[50]: Out[51]:
Ohio Nevada Missouri Alabama
a 1 2 b 7 8
c 3 4 c 9 10
e 5 6 d 11 12
e 13 14
In [52]: pd.merge(left2, right2, how='outer', left_index=True, right_index=True)
Out[52]:
Ohio Nevada Missouri Alabama
a 1 2 NaN NaN
b NaN NaN 7 8
c 3 4 9 10
d NaN NaN 11 12
e 5 6 13 14
DataFrame has a more convenient join instance for merging by index. It can also be used to combine together many DataFrame objects having the same or similar indexes but non-overlapping columns. In the prior example, we could have written:
In [53]: left2.join(right2, how='outer')
Out[53]:
Ohio Nevada Missouri Alabama
a 1 2 NaN NaN
b NaN NaN 7 8
c 3 4 9 10
d NaN NaN 11 12
e 5 6 13 14
In part for legacy reasons (much earlier versions of pandas), DataFrame’s join method performs a left join on the join keys. It also supports joining the index of the passed DataFrame on one of the columns of the calling DataFrame:
In [54]: left1.join(right1, on='key')
Out[54]:
key value group_val
0 a 0 3.5
1 b 1 7.0
2 a 2 3.5
3 a 3 3.5
4 b 4 7.0
5 c 5 NaN
Lastly, for simple index-on-index merges, you can pass a list of DataFrames to join as an alternative to using the more general concat function described below:
In [55]: another = DataFrame([[7., 8.], [9., 10.], [11., 12.], [16., 17.]],
....: index=['a', 'c', 'e', 'f'], columns=['New York', 'Oregon'])
In [56]: left2.join([right2, another])
Out[56]:
Ohio Nevada Missouri Alabama New York Oregon
a 1 2 NaN NaN 7 8
c 3 4 9 10 9 10
e 5 6 13 14 11 12
In [57]: left2.join([right2, another], how='outer')
Out[57]:
Ohio Nevada Missouri Alabama New York Oregon
a 1 2 NaN NaN 7 8
b NaN NaN 7 8 NaN NaN
c 3 4 9 10 9 10
d NaN NaN 11 12 NaN NaN
e 5 6 13 14 11 12
f NaN NaN NaN NaN 16 17
Concatenating Along an Axis
Another kind of data combination operation is alternatively referred to as concatenation, binding, or stacking. NumPy has a concatenate function for doing this with raw NumPy arrays:
In [58]: arr = np.arange(12).reshape((3, 4))
In [59]: arr
Out[59]:
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])
In [60]: np.concatenate([arr, arr], axis=1)
Out[60]:
array([[0, 1, 2, 3, 0, 1, 2, 3],
[4, 5, 6, 7, 4, 5, 6, 7],
[8, 9, 10, 11, 8, 9, 10, 11]])
In the context of pandas objects such as Series and DataFrame, having labeled axes enable you to further generalize array concatenation. In particular, you have a number of additional things to think about:
If the objects are indexed differently on the other axes, should the collection of axes be unioned or intersected?
Do the groups need to be identifiable in the resulting object?
Does the concatenation axis matter at all?
The concat function in pandas provides a consistent way to address each of these concerns. I’ll give a number of examples to illustrate how it works. Suppose we have three Series with no index overlap:
In [61]: s1 = Series([0, 1], index=['a', 'b'])
In [62]: s2 = Series([2, 3, 4], index=['c', 'd', 'e'])
In [63]: s3 = Series([5, 6], index=['f', 'g'])
Calling concat with these object in a list glues together the values and indexes:
In [64]: pd.concat([s1, s2, s3])
Out[64]:
a 0
b 1
c 2
d 3
e 4
f 5
g 6
By default concat works along axis=0, producing another Series. If you pass axis=1, the result will instead be a DataFrame (axis=1 is the columns):
In [65]: pd.concat([s1, s2, s3], axis=1)
Out[65]:
0 1 2
a 0 NaN NaN
b 1 NaN NaN
c NaN 2 NaN
d NaN 3 NaN
e NaN 4 NaN
f NaN NaN 5
g NaN NaN 6
In this case there is no overlap on the other axis, which as you can see is the sorted union (the 'outer' join) of the indexes. You can instead intersect them by passing join='inner':
In [66]: s4 = pd.concat([s1 * 5, s3])
In [67]: pd.concat([s1, s4], axis=1) In [68]: pd.concat([s1, s4], axis=1, join='inner')
Out[67]: Out[68]:
0 1 0 1
a 0 0 a 0 0
b 1 5 b 1 5
f NaN 5
g NaN 6
You can even specify the axes to be used on the other axes with join_axes:
In [69]: pd.concat([s1, s4], axis=1, join_axes=[['a', 'c', 'b', 'e']])
Out[69]:
0 1
a 0 0
c NaN NaN
b 1 5
e NaN NaN
One issue is that the concatenated pieces are not identifiable in the result. Suppose instead you wanted to create a hierarchical index on the concatenation axis. To do this, use the keys argument:
In [70]: result = pd.concat([s1, s1, s3], keys=['one', 'two', 'three'])
In [71]: result
Out[71]:
one a 0
b 1
two a 0
b 1
three f 5
g 6
Much more on the unstack function later
In [72]: result.unstack()
Out[72]:
a b f g
one 0 1 NaN NaN
two 0 1 NaN NaN
three NaN NaN 5 6
In the case of combining Series along axis=1, the keys become the DataFrame column headers:
In [73]: pd.concat([s1, s2, s3], axis=1, keys=['one', 'two', 'three'])
Out[73]:
one two three
a 0 NaN NaN
b 1 NaN NaN
c NaN 2 NaN
d NaN 3 NaN
e NaN 4 NaN
f NaN NaN 5
g NaN NaN 6
The same logic extends to DataFrame objects:
In [74]: df1 = DataFrame(np.arange(6).reshape(3, 2), index=['a', 'b', 'c'],
....: columns=['one', 'two'])
In [75]: df2 = DataFrame(5 + np.arange(4).reshape(2, 2), index=['a', 'c'],
....: columns=['three', 'four'])
In [76]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'])
Out[76]:
level1 level2
one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
If you pass a dict of objects instead of a list, the dict’s keys will be used for the keys option:
In [77]: pd.concat({'level1': df1, 'level2': df2}, axis=1)
Out[77]:
level1 level2
one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
There are a couple of additional arguments governing how the hierarchical index is created (see Table 7-2):
In [78]: pd.concat([df1, df2], axis=1, keys=['level1', 'level2'],
....: names=['upper', 'lower'])
Out[78]:
upper level1 level2
lower one two three four
a 0 1 5 6
b 2 3 NaN NaN
c 4 5 7 8
A last consideration concerns DataFrames in which the row index is not meaningful in the context of the analysis:
In [79]: df1 = DataFrame(np.random.randn(3, 4), columns=['a', 'b', 'c', 'd'])
In [80]: df2 = DataFrame(np.random.randn(2, 3), columns=['b', 'd', 'a'])
In [81]: df1 In [82]: df2
Out[81]: Out[82]:
a b c d b d a
0 -0.204708 0.478943 -0.519439 -0.555730 0 0.274992 0.228913 1.352917
1 1.965781 1.393406 0.092908 0.281746 1 0.886429 -2.001637 -0.371843
2 0.769023 1.246435 1.007189 -1.296221
In this case, you can pass ignore_index=True:
In [83]: pd.concat([df1, df2], ignore_index=True)
Out[83]:
a b c d
0 -0.204708 0.478943 -0.519439 -0.555730
1 1.965781 1.393406 0.092908 0.281746
2 0.769023 1.246435 1.007189 -1.296221
3 1.352917 0.274992 NaN 0.228913
4 -0.371843 0.886429 NaN -2.001637
Table 7-2. concat function arguments
Combining Data with Overlap
Another data combination situation can’t be expressed as either a merge or concatenation operation. You may have two datasets whose indexes overlap in full or part. As a motivating example, consider NumPy’s where function, which expressed a vectorized if-else:
In [84]: a = Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [85]: b = Series(np.arange(len(a), dtype=np.float64),
....: index=['f', 'e', 'd', 'c', 'b', 'a'])
In [86]: b[-1] = np.nan
In [87]: a In [88]: b In [89]: np.where(pd.isnull(a), b, a)
Out[87]: Out[88]: Out[89]:
f NaN f 0 f 0.0
e 2.5 e 1 e 2.5
d NaN d 2 d 2.0
c 3.5 c 3 c 3.5
b 4.5 b 4 b 4.5
a NaN a NaN a NaN
Series has a combine_first method, which performs the equivalent of this operation plus data alignment:
In [90]: b[:-2].combine_first(a[2:])
Out[90]:
a NaN
b 4.5
c 3.0
d 2.0
e 1.0
f 0.0
With DataFrames, combine_first naturally does the same thing column by column, so you can think of it as “patching” missing data in the calling object with data from the object you pass:
In [91]: df1 = DataFrame({'a': [1., np.nan, 5., np.nan],
....: 'b': [np.nan, 2., np.nan, 6.],
....: 'c': range(2, 18, 4)})
In [92]: df2 = DataFrame({'a': [5., 4., np.nan, 3., 7.],
....: 'b': [np.nan, 3., 4., 6., 8.]})
In [93]: df1.combine_first(df2)
Out[93]:
a b c
0 1 NaN 2
1 4 2 6
2 5 4 10
3 3 6 14
4 7 8 NaN
Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are alternatingly referred to as reshape or pivot operations.
Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame. There are two primary actions:
stack: this “rotates” or pivots from the columns in the data to the rows
unstack: this pivots from the rows into the columns
I’ll illustrate these operations through a series of examples. Consider a small DataFrame with string arrays as row and column indexes:
In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
....: index=pd.Index(['Ohio', 'Colorado'], name='state'),
....: columns=pd.Index(['one', 'two', 'three'], name='number'))
In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
Using the stack method on this data pivots the columns into the rows, producing a Series:
In [96]: result = data.stack()
In [97]: result
Out[97]:
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame with unstack:
In [98]: result.unstack()
Out[98]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
By default the innermost level is unstacked (same with stack). You can unstack a different level by passing a level number or name:
In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5
Unstacking might introduce missing data if all of the values in the level aren’t found in each of the subgroups:
In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])
In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])
In [104]: data2.unstack()
Out[104]:
a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6
Stacking filters out missing data by default, so the operation is easily invertible:
In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
b 1 b 1
c 2 c 2
d 3 d 3
two c 4 e NaN
d 5 two a NaN
e 6 b NaN
c 4
d 5
e 6
When unstacking in a DataFrame, the level unstacked becomes the lowest level in the result:
In [107]: df = DataFrame({'left': result, 'right': result + 5},
.....: columns=pd.Index(['left', 'right'], name='side'))
In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5
two 1 6
three 2 7
Colorado one 3 8
two 4 9
three 5 10
In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
three left 2 5
right 7 10
Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long or stacked format:
In [116]: ldata[:10]
Out[116]:
date item value
0 1959-03-31 00:00:00 realgdp 2710.349
1 1959-03-31 00:00:00 infl 0.000
2 1959-03-31 00:00:00 unemp 5.800
3 1959-06-30 00:00:00 realgdp 2778.801
4 1959-06-30 00:00:00 infl 2.340
5 1959-06-30 00:00:00 unemp 5.100
6 1959-09-30 00:00:00 realgdp 2775.488
7 1959-09-30 00:00:00 infl 2.740
8 1959-09-30 00:00:00 unemp 5.300
9 1959-12-31 00:00:00 realgdp 2785.204
Data is frequently stored this way in relational databases like MySQL as a fixed schema (column names and data types) allows the number of distinct values in the item column to increase or decrease as data is added or deleted in the table. In the above example date and item would usually be the primary keys (in relational database parlance), offering both relational integrity and easier joins and programmatic queries in many cases. The downside, of course, is that the data may not be easy to work with in long format; you might prefer to have a DataFrame containing one column per distinct item value indexed by timestamps in the date column. DataFrame’s pivot method performs exactly this transformation:
In [117]: pivoted = ldata.pivot('date', 'item', 'value')
In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
The first two values passed are the columns to be used as the row and column index, and finally an optional value column to fill the DataFrame. Suppose you had two value columns that you wanted to reshape simultaneously:
In [119]: ldata['value2'] = np.random.randn(len(ldata))
In [120]: ldata[:10]
Out[120]:
date item value value2
0 1959-03-31 00:00:00 realgdp 2710.349 1.669025
1 1959-03-31 00:00:00 infl 0.000 -0.438570
2 1959-03-31 00:00:00 unemp 5.800 -0.539741
3 1959-06-30 00:00:00 realgdp 2778.801 0.476985
4 1959-06-30 00:00:00 infl 2.340 3.248944
5 1959-06-30 00:00:00 unemp 5.100 -1.021228
6 1959-09-30 00:00:00 realgdp 2775.488 -0.577087
7 1959-09-30 00:00:00 infl 2.740 0.124121
8 1959-09-30 00:00:00 unemp 5.300 0.302614
9 1959-12-31 00:00:00 realgdp 2785.204 0.523772
By omitting the last argument, you obtain a DataFrame with hierarchical columns:
In [121]: pivoted = ldata.pivot('date', 'item')
In [122]: pivoted[:5]
Out[122]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232
In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2
Note that pivot is just a shortcut for creating a hierarchical index using set_index and reshaping with unstack:
In [124]: unstacked = ldata.set_index(['date', 'item']).unstack('item')
In [125]: unstacked[:7]
Out[125]:
value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232
1960-06-30 0.14 2834.390 5.2 -0.860757 -1.860761 0.560145
1960-09-30 2.70 2839.022 5.6 0.119827 -1.265934 -1.063512
Data Transformation
So far in this chapter we’ve been concerned with rearranging data. Filtering, cleaning, and other tranformations are another class of important operations.
Removing Duplicates
Duplicate rows may be found in a DataFrame for any number of reasons. Here is an example:
In [126]: data = DataFrame({'k1': ['one'] * 3 + ['two'] * 4,
.....: 'k2': [1, 1, 2, 3, 3, 4, 4]})
In [127]: data
Out[127]:
k1 k2
0 one 1
1 one 1
2 one 2
3 two 3
4 two 3
5 two 4
6 two 4
The DataFrame method duplicated returns a boolean Series indicating whether each row is a duplicate or not:
In [128]: data.duplicated()
Out[128]:
0 False
1 True
2 False
3 False
4 True
5 False
6 True
Relatedly, drop_duplicates returns a DataFrame where the duplicated array is True:
In [129]: data.drop_duplicates()
Out[129]:
k1 k2
0 one 1
2 one 2
3 two 3
5 two 4
Both of these methods by default consider all of the columns; alternatively you can specify any subset of them to detect duplicates. Suppose we had an additional column of values and wanted to filter duplicates only based on the 'k1' column:
In [130]: data['v1'] = range(7)
In [131]: data.drop_duplicates(['k1'])
Out[131]:
k1 k2 v1
0 one 1 0
3 two 3 3
duplicated and drop_duplicates by default keep the first observed value combination. Passing take_last=True will return the last one:
In [132]: data.drop_duplicates(['k1', 'k2'], take_last=True)
Out[132]:
k1 k2 v1
1 one 1 1
2 one 2 2
4 two 3 4
6 two 4 6
Transforming Data Using a Function or Mapping
For many data sets, you may wish to perform some transformation based on the values in an array, Series, or column in a DataFrame. Consider the following hypothetical data collected about some kinds of meat:
In [133]: data = DataFrame({'food': ['bacon', 'pulled pork', 'bacon', 'Pastrami',
.....: 'corned beef', 'Bacon', 'pastrami', 'honey ham',
.....: 'nova lox'],
.....: 'ounces': [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})
In [134]: data
Out[134]:
food ounces
0 bacon 4.0
1 pulled pork 3.0
2 bacon 12.0
3 Pastrami 6.0
4 corned beef 7.5
5 Bacon 8.0
6 pastrami 3.0
7 honey ham 5.0
8 nova lox 6.0
Suppose you wanted to add a column indicating the type of animal that each food came from. Let’s write down a mapping of each distinct meat type to the kind of animal:
meat_to_animal = {
'bacon': 'pig',
'pulled pork': 'pig',
'pastrami': 'cow',
'corned beef': 'cow',
'honey ham': 'pig',
'nova lox': 'salmon'
}
The map method on a Series accepts a function or dict-like object containing a mapping, but here we have a small problem in that some of the meats above are capitalized and others are not. Thus, we also need to convert each value to lower case:
In [136]: data['animal'] = data['food'].map(str.lower).map(meat_to_animal)
In [137]: data
Out[137]:
food ounces animal
0 bacon 4.0 pig
1 pulled pork 3.0 pig
2 bacon 12.0 pig
3 Pastrami 6.0 cow
4 corned beef 7.5 cow
5 Bacon 8.0 pig
6 pastrami 3.0 cow
7 honey ham 5.0 pig
8 nova lox 6.0 salmon
We could also have passed a function that does all the work:
In [138]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[138]:
0 pig
1 pig
2 pig
3 cow
4 cow
5 pig
6 cow
7 pig
8 salmon
Name: food
Using map is a convenient way to perform element-wise transformations and other data cleaning-related operations.
Replacing Values
Filling in missing data with the fillna method can be thought of as a special case of more general value replacement. While map, as you’ve seen above, can be used to modify a subset of values in an object, replace provides a simpler and more flexible way to do so. Let’s consider this Series:
In [139]: data = Series([1., -999., 2., -999., -1000., 3.])
In [140]: data
Out[140]:
0 1
1 -999
2 2
3 -999
4 -1000
5 3
The -999 values might be sentinel values for missing data. To replace these with NA values that pandas understands, we can use replace, producing a new Series:
In [141]: data.replace(-999, np.nan)
Out[141]:
0 1
1 NaN
2 2
3 NaN
4 -1000
5 3
If you want to replace multiple values at once, you instead pass a list then the substitute value:
In [142]: data.replace([-999, -1000], np.nan)
Out[142]:
0 1
1 NaN
2 2
3 NaN
4 NaN
5 3
To use a different replacement for each value, pass a list of substitutes:
In [143]: data.replace([-999, -1000], [np.nan, 0])
Out[143]:
0 1
1 NaN
2 2
3 NaN
4 0
5 3
The argument passed can also be a dict:
In [144]: data.replace({-999: np.nan, -1000: 0})
Out[144]:
0 1
1 NaN
2 2
3 NaN
4 0
5 3
Renaming Axis Indexes
Like values in a Series, axis labels can be similarly transformed by a function or mapping of some form to produce new, differently labeled objects. The axes can also be modified in place without creating a new data structure. Here’s a simple example:
In [145]: data = DataFrame(np.arange(12).reshape((3, 4)),
.....: index=['Ohio', 'Colorado', 'New York'],
.....: columns=['one', 'two', 'three', 'four'])
Like a Series, the axis indexes have a map method:
In [146]: data.index.map(str.upper)
Out[146]: array([OHIO, COLORADO, NEW YORK], dtype=object)
You can assign to index, modifying the DataFrame in place:
In [147]: data.index = data.index.map(str.upper)
In [148]: data
Out[148]:
one two three four
OHIO 0 1 2 3
COLORADO 4 5 6 7
NEW YORK 8 9 10 11
If you want to create a transformed version of a data set without modifying the original, a useful method is rename:
In [149]: data.rename(index=str.title, columns=str.upper)
Out[149]:
ONE TWO THREE FOUR
Ohio 0 1 2 3
Colorado 4 5 6 7
New York 8 9 10 11
Notably, rename can be used in conjunction with a dict-like object providing new values for a subset of the axis labels:
In [150]: data.rename(index={'OHIO': 'INDIANA'},
.....: columns={'three': 'peekaboo'})
Out[150]:
one two peekaboo four
INDIANA 0 1 2 3
COLORADO 4 5 6 7
NEW YORK 8 9 10 11
rename saves having to copy the DataFrame manually and assign to its index and columns attributes. Should you wish to modify a data set in place, pass inplace=True:
Always returns a reference to a DataFrame
In [151]: _ = data.rename(index={'OHIO': 'INDIANA'}, inplace=True)
In [152]: data
Out[152]:
one two three four
INDIANA 0 1 2 3
COLORADO 4 5 6 7
NEW YORK 8 9 10 11
Discretization and Binning
Continuous data is often discretized or otherwised separated into “bins” for analysis. Suppose you have data about a group of people in a study, and you want to group them into discrete age buckets:
In [153]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
Let’s divide these into bins of 18 to 25, 26 to 35, 35 to 60, and finally 60 and older. To do so, you have to use cut, a function in pandas:
In [154]: bins = [18, 25, 35, 60, 100]
In [155]: cats = pd.cut(ages, bins)
In [156]: cats
Out[156]:
Categorical:
array([(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], (18, 25],
(35, 60], (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]], dtype=object)
Levels (4): Index([(18, 25], (25, 35], (35, 60], (60, 100]], dtype=object)
The object pandas returns is a special Categorical object. You can treat it like an array of strings indicating the bin name; internally it contains a levels array indicating the distinct category names along with a labeling for the ages data in the labels attribute:
In [157]: cats.labels
Out[157]: array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1])
In [158]: cats.levels
Out[158]: Index([(18, 25], (25, 35], (35, 60], (60, 100]], dtype=object)
In [159]: pd.value_counts(cats)
Out[159]:
(18, 25] 5
(35, 60] 3
(25, 35] 3
(60, 100] 1
Consistent with mathematical notation for intervals, a parenthesis means that the side is open while the square bracket means it is closed (inclusive). Which side is closed can be changed by passing right=False:
In [160]: pd.cut(ages, [18, 26, 36, 61, 100], right=False)
Out[160]:
Categorical:
array([[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), [18, 26),
[36, 61), [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)], dtype=object)
Levels (4): Index([[18, 26), [26, 36), [36, 61), [61, 100)], dtype=object)
You can also pass your own bin names by passing a list or array to the labels option:
In [161]: group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']
In [162]: pd.cut(ages, bins, labels=group_names)
Out[162]:
Categorical:
array([Youth, Youth, Youth, YoungAdult, Youth, Youth, MiddleAged,
YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult], dtype=object)
Levels (4): Index([Youth, YoungAdult, MiddleAged, Senior], dtype=object)
If you pass cut a integer number of bins instead of explicit bin edges, it will compute equal-length bins based on the minimum and maximum values in the data. Consider the case of some uniformly distributed data chopped into fourths:
In [163]: data = np.random.rand(20)
In [164]: pd.cut(data, 4, precision=2)
Out[164]:
Categorical:
array([(0.45, 0.67], (0.23, 0.45], (0.0037, 0.23], (0.45, 0.67],
(0.67, 0.9], (0.45, 0.67], (0.67, 0.9], (0.23, 0.45], (0.23, 0.45],
(0.67, 0.9], (0.67, 0.9], (0.67, 0.9], (0.23, 0.45], (0.23, 0.45],
(0.23, 0.45], (0.67, 0.9], (0.0037, 0.23], (0.0037, 0.23],
(0.23, 0.45], (0.23, 0.45]], dtype=object)
Levels (4): Index([(0.0037, 0.23], (0.23, 0.45], (0.45, 0.67],
(0.67, 0.9]], dtype=object)
A closely related function, qcut, bins the data based on sample quantiles. Depending on the distribution of the data, using cut will not usually result in each bin having the same number of data points. Since qcut uses sample quantiles instead, by definition you will obtain roughly equal-size bins:
In [165]: data = np.random.randn(1000) # Normally distributed
In [166]: cats = pd.qcut(data, 4) # Cut into quartiles
In [167]: cats
Out[167]:
Categorical:
array([(-0.022, 0.641], [-3.745, -0.635], (0.641, 3.26], ...,
(-0.635, -0.022], (0.641, 3.26], (-0.635, -0.022]], dtype=object)
Levels (4): Index([[-3.745, -0.635], (-0.635, -0.022], (-0.022, 0.641],
(0.641, 3.26]], dtype=object)
In [168]: pd.value_counts(cats)
Out[168]:
[-3.745, -0.635] 250
(0.641, 3.26] 250
(-0.635, -0.022] 250
(-0.022, 0.641] 250
Similar to cut you can pass your own quantiles (numbers between 0 and 1, inclusive):
In [169]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
Out[169]:
Categorical:
array([(-0.022, 1.302], (-1.266, -0.022], (-0.022, 1.302], ...,
(-1.266, -0.022], (-0.022, 1.302], (-1.266, -0.022]], dtype=object)
Levels (4): Index([[-3.745, -1.266], (-1.266, -0.022], (-0.022, 1.302],
(1.302, 3.26]], dtype=object)
We’ll return to cut and qcut later in the chapter on aggregation and group operations, as these discretization functions are especially useful for quantile and group analysis.
Detecting and Filtering Outliers
Filtering or transforming outliers is largely a matter of applying array operations. Consider a DataFrame with some normally distributed data:
In [170]: np.random.seed(12345)
In [171]: data = DataFrame(np.random.randn(1000, 4))
In [172]: data.describe()
Out[172]:
0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean -0.067684 0.067924 0.025598 -0.002298
std 0.998035 0.992106 1.006835 0.996794
min -3.428254 -3.548824 -3.184377 -3.745356
25% -0.774890 -0.591841 -0.641675 -0.644144
50% -0.116401 0.101143 0.002073 -0.013611
75% 0.616366 0.780282 0.680391 0.654328
max 3.366626 2.653656 3.260383 3.927528
Suppose you wanted to find values in one of the columns exceeding three in magnitude:
In [173]: col = data[3]
In [174]: col[np.abs(col) > 3]
Out[174]:
97 3.927528
305 -3.399312
400 -3.745356
Name: 3
To select all rows having a value exceeding 3 or -3, you can use the any method on a boolean DataFrame:
In [175]: data[(np.abs(data) > 3).any(1)]
Out[175]:
0 1 2 3
5 -0.539741 0.476985 3.248944 -1.021228
97 -0.774363 0.552936 0.106061 3.927528
102 -0.655054 -0.565230 3.176873 0.959533
305 -2.315555 0.457246 -0.025907 -3.399312
324 0.050188 1.951312 3.260383 0.963301
400 0.146326 0.508391 -0.196713 -3.745356
499 -0.293333 -0.242459 -3.056990 1.918403
523 -3.428254 -0.296336 -0.439938 -0.867165
586 0.275144 1.179227 -3.184377 1.369891
808 -0.362528 -3.548824 1.553205 -2.186301
900 3.366626 -2.372214 0.851010 1.332846
Values can just as easily be set based on these criteria. Here is code to cap values outside the interval -3 to 3:
In [176]: data[np.abs(data) > 3] = np.sign(data) * 3
In [177]: data.describe()
Out[177]:
0 1 2 3
count 1000.000000 1000.000000 1000.000000 1000.000000
mean -0.067623 0.068473 0.025153 -0.002081
std 0.995485 0.990253 1.003977 0.989736
min -3.000000 -3.000000 -3.000000 -3.000000
25% -0.774890 -0.591841 -0.641675 -0.644144
50% -0.116401 0.101143 0.002073 -0.013611
75% 0.616366 0.780282 0.680391 0.654328
max 3.000000 2.653656 3.000000 3.000000
The ufunc np.sign returns an array of 1 and -1 depending on the sign of the values.
Permutation and Random Sampling
Permuting (randomly reordering) a Series or the rows in a DataFrame is easy to do using the numpy.random.permutation function. Calling permutation with the length of the axis you want to permute produces an array of integers indicating the new ordering:
In [178]: df = DataFrame(np.arange(5 * 4).reshape(5, 4))
In [179]: sampler = np.random.permutation(5)
In [180]: sampler
Out[180]: array([1, 0, 2, 3, 4])
That array can then be used in ix-based indexing or the take function:
In [181]: df In [182]: df.take(sampler)
Out[181]: Out[182]:
0 1 2 3 0 1 2 3
0 0 1 2 3 1 4 5 6 7
1 4 5 6 7 0 0 1 2 3
2 8 9 10 11 2 8 9 10 11
3 12 13 14 15 3 12 13 14 15
4 16 17 18 19 4 16 17 18 19
To select a random subset without replacement, one way is to slice off the first k elements of the array returned by permutation, where k is the desired subset size. There are much more efficient sampling-without-replacement algorithms, but this is an easy strategy that uses readily available tools:
In [183]: df.take(np.random.permutation(len(df))[:3])
Out[183]:
0 1 2 3
1 4 5 6 7
3 12 13 14 15
4 16 17 18 19
To generate a sample with replacement, the fastest way is to use np.random.randint to draw random integers:
In [184]: bag = np.array([5, 7, -1, 6, 4])
In [185]: sampler = np.random.randint(0, len(bag), size=10)
In [186]: sampler
Out[186]: array([4, 4, 2, 2, 2, 0, 3, 0, 4, 1])
In [187]: draws = bag.take(sampler)
In [188]: draws
Out[188]: array([4, 4, -1, -1, -1, 5, 6, 5, 4, 7])
Computing Indicator/Dummy Variables
Another type of transformation for statistical modeling or machine learning applications is converting a categorical variable into a “dummy” or “indicator” matrix. If a column in a DataFrame has k distinct values, you would derive a matrix or DataFrame containing k columns containing all 1’s and 0’s. pandas has a get_dummies function for doing this, though devising one yourself is not difficult. Let’s return to an earlier example DataFrame:
In [189]: df = DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
.....: 'data1': range(6)})
In [190]: pd.get_dummies(df['key'])
Out[190]:
a b c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0
In some cases, you may want to add a prefix to the columns in the indicator DataFrame, which can then be merged with the other data. get_dummies has a prefix argument for doing just this:
In [191]: dummies = pd.get_dummies(df['key'], prefix='key')
In [192]: df_with_dummy = df[['data1']].join(dummies)
In [193]: df_with_dummy
Out[193]:
data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0
If a row in a DataFrame belongs to multiple categories, things are a bit more complicated. Let’s return to the MovieLens 1M dataset from earlier in the book:
In [194]: mnames = ['movie_id', 'title', 'genres']
In [195]: movies = pd.read_table('ch07/movies.dat', sep='::', header=None,
.....: names=mnames)
In [196]: movies[:10]
Out[196]:
movie_id title genres
0 1 Toy Story (1995) Animation|Children's|Comedy
1 2 Jumanji (1995) Adventure|Children's|Fantasy
2 3 Grumpier Old Men (1995) Comedy|Romance
3 4 Waiting to Exhale (1995) Comedy|Drama
4 5 Father of the Bride Part II (1995) Comedy
5 6 Heat (1995) Action|Crime|Thriller
6 7 Sabrina (1995) Comedy|Romance
7 8 Tom and Huck (1995) Adventure|Children's
8 9 Sudden Death (1995) Action
9 10 GoldenEye (1995) Action|Adventure|Thriller
Adding indicator variables for each genre requires a little bit of wrangling. First, we extract the list of unique genres in the dataset (using a nice set.union trick):
In [197]: genre_iter = (set(x.split('|')) for x in movies.genres)
In [198]: genres = sorted(set.union(*genre_iter))
Now, one way to construct the indicator DataFrame is to start with a DataFrame of all zeros:
In [199]: dummies = DataFrame(np.zeros((len(movies), len(genres))), columns=genres)
Now, iterate through each movie and set entries in each row of dummies to 1:
In [200]: for i, gen in enumerate(movies.genres):
.....: dummies.ix[i, gen.split('|')] = 1
Then, as above, you can combine this with movies:
In [201]: movies_windic = movies.join(dummies.add_prefix('Genre_'))
In [202]: movies_windic.ix[0]
Out[202]:
movie_id 1
title Toy Story (1995)
genres Animation|Children's|Comedy
Genre_Action 0
Genre_Adventure 0
Genre_Animation 1
Genre_Children's 1
Genre_Comedy 1
Genre_Crime 0
Genre_Documentary 0
Genre_Drama 0
Genre_Fantasy 0
Genre_Film-Noir 0
Genre_Horror 0
Genre_Musical 0
Genre_Mystery 0
Genre_Romance 0
Genre_Sci-Fi 0
Genre_Thriller 0
Genre_War 0
Genre_Western 0
Name: 0
NOTE
For much larger data, this method of constructing indicator variables with multiple membership is not especially speedy. A lower-level function leveraging the internals of the DataFrame could certainly be written.
A useful recipe for statistical applications is to combine get_dummies with a discretization function like cut:
In [204]: values = np.random.rand(10)
In [205]: values
Out[205]:
array([0.9296, 0.3164, 0.1839, 0.2046, 0.5677, 0.5955, 0.9645,
0.6532, 0.7489, 0.6536])
In [206]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
In [207]: pd.get_dummies(pd.cut(values, bins))
Out[207]:
(0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]
0 0 0 0 0 1
1 0 1 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 1 0 0
6 0 0 0 0 1
7 0 0 0 1 0
8 0 0 0 1 0
9 0 0 0 1 0
String Manipulation
Python has long been a popular data munging language in part due to its ease-of-use for string and text processing. Most text operations are made simple with the string object’s built-in methods. For more complex pattern matching and text manipulations, regular expressions may be needed. pandas adds to the mix by enabling you to apply string and regular expressions concisely on whole arrays of data, additionally handling the annoyance of missing data.
String Object Methods
In many string munging and scripting applications, built-in string methods are sufficient. As an example, a comma-separated string can be broken into pieces with split:
In [208]: val = 'a,b, guido'
In [209]: val.split(',')
Out[209]: ['a', 'b', ' guido']
split is often combined with strip to trim whitespace (including newlines):
In [210]: pieces = [x.strip() for x in val.split(',')]
In [211]: pieces
Out[211]: ['a', 'b', 'guido']
These substrings could be concatenated together with a two-colon delimiter using addition:
In [212]: first, second, third = pieces
In [213]: first + '::' + second + '::' + third
Out[213]: 'a::b::guido'
But, this isn’t a practical generic method. A faster and more Pythonic way is to pass a list or tuple to the join method on the string '::':
In [214]: '::'.join(pieces)
Out[214]: 'a::b::guido'
Other methods are concerned with locating substrings. Using Python’s in keyword is the best way to detect a substring, though index and find can also be used:
In [215]: 'guido' in val
Out[215]: True
In [216]: val.index(',') In [217]: val.find(':')
Out[216]: 1 Out[217]: -1
Note the difference between find and index is that index raises an exception if the string isn’t found (versus returning -1):
In [218]: val.index(':')

ValueError Traceback (most recent call last)
<ipython-input-218-280f8b2856ce> in <module>()
----> 1 val.index(':')
ValueError: substring not found
Relatedly, count returns the number of occurrences of a particular substring:
In [219]: val.count(',')
Out[219]: 2
replace will substitute occurrences of one pattern for another. This is commonly used to delete patterns, too, by passing an empty string:
In [220]: val.replace(',', '::') In [221]: val.replace(',', '')
Out[220]: 'a::b:: guido' Out[221]: 'ab guido'
Regular expressions can also be used with many of these operations as you’ll see below.
Table 7-3. Python built-in string methods
Regular expressions
Regular expressions provide a flexible way to search or match string patterns in text. A single expression, commonly called a regex, is a string formed according to the regular expression language. Python’s built-in re module is responsible for applying regular expressions to strings; I’ll give a number of examples of its use here.
NOTE
The art of writing regular expressions could be a chapter of its own and thus is outside the book’s scope. There are many excellent tutorials and references on the internet, such as Zed Shaw’s Learn Regex The Hard Way (http://regex.learncodethehardway.org/book/).
The re module functions fall into three categories: pattern matching, substitution, and splitting. Naturally these are all related; a regex describes a pattern to locate in the text, which can then be used for many purposes. Let’s look at a simple example: suppose I wanted to split a string with a variable number of whitespace characters (tabs, spaces, and newlines). The regex describing one or more whitespace characters is \s+:
In [222]: import re
In [223]: text = "foo bar\t baz \tqux"
In [224]: re.split('\s+', text)
Out[224]: ['foo', 'bar', 'baz', 'qux']
When you call re.split('\s+', text), the regular expression is first compiled, then its split method is called on the passed text. You can compile the regex yourself with re.compile, forming a reusable regex object:
In [225]: regex = re.compile('\s+')
In [226]: regex.split(text)
Out[226]: ['foo', 'bar', 'baz', 'qux']
If, instead, you wanted to get a list of all patterns matching the regex, you can use the findall method:
In [227]: regex.findall(text)
Out[227]: [' ', '\t ', ' \t']
NOTE
To avoid unwanted escaping with \ in a regular expression, use raw string literals like r'C:\x' instead of the equivalent 'C:\\x'.
Creating a regex object with re.compile is highly recommended if you intend to apply the same expression to many strings; doing so will save CPU cycles.
match and search are closely related to findall. While findall returns all matches in a string, search returns only the first match. More rigidly, match only matches at the beginning of the string. As a less trivial example, let’s consider a block of text and a regular expression capable of identifying most email addresses:
text = """Dave dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Ryan ryan@yahoo.com
"""
pattern = r'[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}'
re.IGNORECASE makes the regex case-insensitive
regex = re.compile(pattern, flags=re.IGNORECASE)
Using findall on the text produces a list of the e-mail addresses:
In [229]: regex.findall(text)
Out[229]: ['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']
search returns a special match object for the first email address in the text. For the above regex, the match object can only tell us the start and end position of the pattern in the string:
In [230]: m = regex.search(text)
In [231]: m
Out[231]: <_sre.SRE_Match at 0x10a05de00>
In [232]: text[m.start():m.end()]
Out[232]: 'dave@google.com'
regex.match returns None, as it only will match if the pattern occurs at the start of the string:
In [233]: print regex.match(text)
None
Relatedly, sub will return a new string with occurrences of the pattern replaced by the a new string:
In [234]: print regex.sub('REDACTED', text)
Dave REDACTED
Steve REDACTED
Rob REDACTED
Ryan REDACTED
Suppose you wanted to find email addresses and simultaneously segment each address into its 3 components: username, domain name, and domain suffix. To do this, put parentheses around the parts of the pattern to segment:
In [235]: pattern = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
In [236]: regex = re.compile(pattern, flags=re.IGNORECASE)
A match object produced by this modified regex returns a tuple of the pattern components with its groups method:
In [237]: m = regex.match('wesm@bright.net')
In [238]: m.groups()
Out[238]: ('wesm', 'bright', 'net')
findall returns a list of tuples when the pattern has groups:
In [239]: regex.findall(text)
Out[239]:
[('dave', 'google', 'com'),
('steve', 'gmail', 'com'),
('rob', 'gmail', 'com'),
('ryan', 'yahoo', 'com')]
sub also has access to groups in each match using special symbols like \1, \2, etc.:
In [240]: print regex.sub(r'Username: \1, Domain: \2, Suffix: \3', text)
Dave Username: dave, Domain: google, Suffix: com
Steve Username: steve, Domain: gmail, Suffix: com
Rob Username: rob, Domain: gmail, Suffix: com
Ryan Username: ryan, Domain: yahoo, Suffix: com
There is much more to regular expressions in Python, most of which is outside the book’s scope. To give you a flavor, one variation on the above email regex gives names to the match groups:
regex = re.compile(r"""
(?P<username>[A-Z0-9._%+-]+)
@
(?P<domain>[A-Z0-9.-]+)
\.
(?P<suffix>[A-Z]{2,4})""", flags=re.IGNORECASE|re.VERBOSE)
The match object produced by such a regex can produce a handy dict with the specified group names:
In [242]: m = regex.match('wesm@bright.net')
In [243]: m.groupdict()
Out[243]: {'domain': 'bright', 'suffix': 'net', 'username': 'wesm'}
Table 7-4. Regular expression methods
Vectorized string functions in pandas
Cleaning up a messy data set for analysis often requires a lot of string munging and regularization. To complicate matters, a column containing strings will sometimes have missing data:
In [244]: data = {'Dave': 'dave@google.com', 'Steve': 'steve@gmail.com',
.....: 'Rob': 'rob@gmail.com', 'Wes': np.nan}
In [245]: data = Series(data)
In [246]: data In [247]: data.isnull()
Out[246]: Out[247]:
Dave dave@google.com Dave False
Rob rob@gmail.com Rob False
Steve steve@gmail.com Steve False
Wes NaN Wes True
String and regular expression methods can be applied (passing a lambda or other function) to each value using data.map, but it will fail on the NA. To cope with this, Series has concise methods for string operations that skip NA values. These are accessed through Series’s str attribute; for example, we could check whether each email address has 'gmail' in it with str.contains:
In [248]: data.str.contains('gmail')
Out[248]:
Dave False
Rob True
Steve True
Wes NaN
Regular expressions can be used, too, along with any re options like IGNORECASE:
In [249]: pattern
Out[249]: '([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})'
In [250]: data.str.findall(pattern, flags=re.IGNORECASE)
Out[250]:
Dave [('dave', 'google', 'com')]
Rob [('rob', 'gmail', 'com')]
Steve [('steve', 'gmail', 'com')]
Wes NaN
There are a couple of ways to do vectorized element retrieval. Either use str.get or index into the str attribute:
In [251]: matches = data.str.match(pattern, flags=re.IGNORECASE)
In [252]: matches
Out[252]:
Dave ('dave', 'google', 'com')
Rob ('rob', 'gmail', 'com')
Steve ('steve', 'gmail', 'com')
Wes NaN
In [253]: matches.str.get(1) In [254]: matches.str[0]
Out[253]: Out[254]:
Dave google Dave dave
Rob gmail Rob rob
Steve gmail Steve steve
Wes NaN Wes NaN
You can similarly slice strings using this syntax:
In [255]: data.str[:5]
Out[255]:
Dave dave@
Rob rob@g
Steve steve
Wes NaN
Table 7-5. Vectorized string methods
Example: USDA Food Database
The US Department of Agriculture makes available a database of food nutrient information. Ashley Williams, an English hacker, has made available a version of this database in JSON format (http://ashleyw.co.uk/project/food-nutrient-database). The records look like this:
{
"id": 21441,
"description": "KENTUCKY FRIED CHICKEN, Fried Chicken, EXTRA CRISPY,
Wing, meat and skin with breading",
"tags": ["KFC"],
"manufacturer": "Kentucky Fried Chicken",
"group": "Fast Foods",
"portions": [
{
"amount": 1,
"unit": "wing, with skin",
"grams": 68.0
},
...
],
"nutrients": [
{
"value": 20.8,
"units": "g",
"description": "Protein",
"group": "Composition"
},
...
]
}
Each food has a number of identifying attributes along with two lists of nutrients and portion sizes. Having the data in this form is not particularly amenable for analysis, so we need to do some work to wrangle the data into a better form.
After downloading and extracting the data from the link above, you can load it into Python with any JSON library of your choosing. I’ll use the built-in Python json module:
In [256]: import json
In [257]: db = json.load(open('ch07/foods-2011-10-03.json'))
In [258]: len(db)
Out[258]: 6636
Each entry in db is a dict containing all the data for a single food. The 'nutrients' field is a list of dicts, one for each nutrient:
In [259]: db[0].keys() In [260]: db[0]['nutrients'][0]
Out[259]: Out[260]:
[u'portions', {u'description': u'Protein',
u'description', u'group': u'Composition',
u'tags', u'units': u'g',
u'nutrients', u'value': 25.18}
u'group',
u'id',
u'manufacturer']
In [261]: nutrients = DataFrame(db[0]['nutrients'])
In [262]: nutrients[:7]
Out[262]:
description group units value
0 Protein Composition g 25.18
1 Total lipid (fat) Composition g 29.20
2 Carbohydrate, by difference Composition g 3.06
3 Ash Other g 3.28
4 Energy Energy kcal 376.00
5 Water Composition g 39.28
6 Energy Energy kJ 1573.00
When converting a list of dicts to a DataFrame, we can specify a list of fields to extract. We’ll take the food names, group, id, and manufacturer:
In [263]: info_keys = ['description', 'group', 'id', 'manufacturer']
In [264]: info = DataFrame(db, columns=info_keys)
In [265]: info[:5]
Out[265]:
description group id manufacturer
0 Cheese, caraway Dairy and Egg Products 1008
1 Cheese, cheddar Dairy and Egg Products 1009
2 Cheese, edam Dairy and Egg Products 1018
3 Cheese, feta Dairy and Egg Products 1019
4 Cheese, mozzarella, part skim milk Dairy and Egg Products 1028
In [266]: info
Out[266]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6636 entries, 0 to 6635
Data columns:
description 6636 non-null values
group 6636 non-null values
id 6636 non-null values
manufacturer 5195 non-null values
dtypes: int64(1), object(3)
You can see the distribution of food groups with value_counts:
In [267]: pd.value_counts(info.group)[:10]
Out[267]:
Vegetables and Vegetable Products 812
Beef Products 618
Baked Products 496
Breakfast Cereals 403
Legumes and Legume Products 365
Fast Foods 365
Lamb, Veal, and Game Products 345
Sweets 341
Pork Products 328
Fruits and Fruit Juices 328
Now, to do some analysis on all of the nutrient data, it’s easiest to assemble the nutrients for each food into a single large table. To do so, we need to take several steps. First, I’ll convert each list of food nutrients to a DataFrame, add a column for the food id, and append the DataFrame to a list. Then, these can be concatenated together with concat:
nutrients = []
for rec in db:
fnuts = DataFrame(rec['nutrients'])
fnuts['id'] = rec['id']
nutrients.append(fnuts)
nutrients = pd.concat(nutrients, ignore_index=True)
If all goes well, nutrients should look like this:
In [269]: nutrients
Out[269]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 389355 entries, 0 to 389354
Data columns:
description 389355 non-null values
group 389355 non-null values
units 389355 non-null values
value 389355 non-null values
id 389355 non-null values
dtypes: float64(1), int64(1), object(3)
I noticed that, for whatever reason, there are duplicates in this DataFrame, so it makes things easier to drop them:
In [270]: nutrients.duplicated().sum()
Out[270]: 14179
In [271]: nutrients = nutrients.drop_duplicates()
Since 'group' and 'description' is in both DataFrame objects, we can rename them to make it clear what is what:
In [272]: col_mapping = {'description' : 'food',
.....: 'group' : 'fgroup'}
In [273]: info = info.rename(columns=col_mapping, copy=False)
In [274]: info
Out[274]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 6636 entries, 0 to 6635
Data columns:
food 6636 non-null values
fgroup 6636 non-null values
id 6636 non-null values
manufacturer 5195 non-null values
dtypes: int64(1), object(3)
In [275]: col_mapping = {'description' : 'nutrient',
.....: 'group' : 'nutgroup'}
In [276]: nutrients = nutrients.rename(columns=col_mapping, copy=False)
In [277]: nutrients
Out[277]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 389354
Data columns:
nutrient 375176 non-null values
nutgroup 375176 non-null values
units 375176 non-null values
value 375176 non-null values
id 375176 non-null values
dtypes: float64(1), int64(1), object(3)
With all of this done, we’re ready to merge info with nutrients:
In [278]: ndata = pd.merge(nutrients, info, on='id', how='outer')
In [279]: ndata
Out[279]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 375176 entries, 0 to 375175
Data columns:
nutrient 375176 non-null values
nutgroup 375176 non-null values
units 375176 non-null values
value 375176 non-null values
id 375176 non-null values
food 375176 non-null values
fgroup 375176 non-null values
manufacturer 293054 non-null values
dtypes: float64(1), int64(1), object(6)
In [280]: ndata.ix[30000]
Out[280]:
nutrient Folic acid
nutgroup Vitamins
units mcg
value 0
id 5658
food Ostrich, top loin, cooked
fgroup Poultry Products
manufacturer
Name: 30000
The tools that you need to slice and dice, aggregate, and visualize this dataset will be explored in detail in the next two chapters, so after you get a handle on those methods you might return to this dataset. For example, we could a plot of median values by food group and nutrient type (see Figure 7-1):
In [281]: result = ndata.groupby(['nutrient', 'fgroup'])['value'].quantile(0.5)
In [282]: result['Zinc, Zn'].order().plot(kind='barh')
Figure 7-1. Median Zinc values by nutrient group
With a little cleverness, you can find which food is most dense in each nutrient:
by_nutrient = ndata.groupby(['nutgroup', 'nutrient'])
get_maximum = lambda x: x.xs(x.value.idxmax())
get_minimum = lambda x: x.xs(x.value.idxmin())
max_foods = by_nutrient.apply(get_maximum)[['value', 'food']]
make the food a little smaller
max_foods.food = max_foods.food.str[:50]
The resulting DataFrame is a bit too large to display in the book; here is just the 'Amino Acids' nutrient group:
In [284]: max_foods.ix['Amino Acids']['food']
Out[284]:
nutrient
Alanine Gelatins, dry powder, unsweetened
Arginine Seeds, sesame flour, low-fat
Aspartic acid Soy protein isolate
Cystine Seeds, cottonseed flour, low fat (glandless)
Glutamic acid Soy protein isolate
Glycine Gelatins, dry powder, unsweetened
Histidine Whale, beluga, meat, dried (Alaska Native)
Hydroxyproline KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINAL R
Isoleucine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Leucine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Lysine Seal, bearded (Oogruk), meat, dried (Alaska Nativ
Methionine Fish, cod, Atlantic, dried and salted
Phenylalanine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Proline Gelatins, dry powder, unsweetened
Serine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Threonine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Tryptophan Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Valine Soy protein isolate, PROTEIN TECHNOLOGIES INTERNA
Name: food
Chapter 8. Plotting and Visualization
Making plots and static or interactive visualizations is one of the most important tasks in data analysis. It may be a part of the exploratory process; for example, helping identify outliers, needed data transformations, or coming up with ideas for models. For others, building an interactive visualization for the web using a toolkit like d3.js (http://d3js.org/) may be the end goal. Python has many visualization tools (see the end of this chapter), but I’ll be mainly focused on matplotlib (http://matplotlib.sourceforge.net).
matplotlib is a (primarily 2D) desktop plotting package designed for creating publication-quality plots. The project was started by John Hunter in 2002 to enable a MATLAB-like plotting interface in Python. He, Fernando Pérez (of IPython), and others have collaborated for many years since then to make IPython combined with matplotlib a very functional and productive environment for scientific computing. When used in tandem with a GUI toolkit (for example, within IPython), matplotlib has interactive features like zooming and panning. It supports many different GUI backends on all operating systems and additionally can export graphics to all of the common vector and raster graphics formats: PDF, SVG, JPG, PNG, BMP, GIF, etc. I have used it to produce almost all of the graphics outside of diagrams in this book.
Figure 8-1. A more complex matplotlib financial plot
matplotlib has a number of add-on toolkits, such as mplot3d for 3D plots and basemap for mapping and projections. I will give an example using basemap to plot data on a map and to read shapefiles at the end of the chapter.
To follow along with the code examples in the chapter, make sure you have started IPython in Pylab mode (ipython --pylab) or enabled GUI event loop integration with the %gui magic.
A Brief matplotlib API Primer
There are several ways to interact with matplotlib. The most common is through pylab mode in IPython by running ipython --pylab. This launches IPython configured to be able to support the matplotlib GUI backend of your choice (Tk, wxPython, PyQt, Mac OS X native, GTK). For most users, the default backend will be sufficient. Pylab mode also imports a large set of modules and functions into IPython to provide a more MATLAB-like interface. You can test that everything is working by making a simple plot:
plot(np.arange(10))
If everything is set up right, a new window should pop up with a line plot. You can close it by using the mouse or entering close(). Matplotlib API functions like plot and close are all in the matplotlib.pyplot module, which is typically imported by convention as:
import matplotlib.pyplot as plt
While the pandas plotting functions described later deal with many of the mundane details of making plots, should you wish to customize them beyond the function options provided you will need to learn a bit about the matplotlib API.
NOTE
There is not enough room in the book to give a comprehensive treatment to the breadth and depth of functionality in matplotlib. It should be enough to teach you the ropes to get up and running. The matplotlib gallery and documentation are the best resource for becoming a plotting guru and using advanced features.
Figures and Subplots
Plots in matplotlib reside within a Figure object. You can create a new figure with plt.figure:
In [13]: fig = plt.figure()
If you are in pylab mode in IPython, a new empty window should pop up. plt.figure has a number of options, notably figsize will guarantee the figure has a certain size and aspect ratio if saved to disk. Figures in matplotlib also support a numbering scheme (for example, plt.figure(2)) that mimics MATLAB. You can get a reference to the active figure using plt.gcf().
You can’t make a plot with a blank figure. You have to create one or more subplots using add_subplot:
In [14]: ax1 = fig.add_subplot(2, 2, 1)
This means that the figure should be 2 × 2, and we’re selecting the first of 4 subplots (numbered from 1). If you create the next two subplots, you’ll end up with a figure that looks like Figure 8-2.
In [15]: ax2 = fig.add_subplot(2, 2, 2)
In [16]: ax3 = fig.add_subplot(2, 2, 3)
Figure 8-2. An empty matplotlib Figure with 3 subplots
When you issue a plotting command like plt.plot([1.5, 3.5, -2, 1.6]), matplotlib draws on the last figure and subplot used (creating one if necessary), thus hiding the figure and subplot creation. Thus, if we run the following command, you’ll get something like Figure 8-3:
In [17]: from numpy.random import randn
In [18]: plt.plot(randn(50).cumsum(), 'k--')
Figure 8-3. Figure after single plot
The 'k--' is a style option instructing matplotlib to plot a black dashed line. The objects returned by fig.add_subplot above are AxesSubplot objects, on which you can directly plot on the other empty subplots by calling each one’s instance methods, see Figure 8-4:
In [19]: _ = ax1.hist(randn(100), bins=20, color='k', alpha=0.3)
In [20]: ax2.scatter(np.arange(30), np.arange(30) + 3 * randn(30))
Figure 8-4. Figure after additional plots
You can find a comprehensive catalogue of plot types in the matplotlib documentation.
Since creating a figure with multiple subplots according to a particular layout is such a common task, there is a convenience method, plt.subplots, that creates a new figure and returns a NumPy array containing the created subplot objects:
In [22]: fig, axes = plt.subplots(2, 3)
In [23]: axes
Out[23]:
array([[Axes(0.125,0.536364;0.227941x0.363636),
Axes(0.398529,0.536364;0.227941x0.363636),
Axes(0.672059,0.536364;0.227941x0.363636)],
[Axes(0.125,0.1;0.227941x0.363636),
Axes(0.398529,0.1;0.227941x0.363636),
Axes(0.672059,0.1;0.227941x0.363636)]], dtype=object)
This is very useful as the axes array can be easily indexed like a two-dimensional array; for example, axes[0, 1]. You can also indicate that subplots should have the same X or Y axis using sharex and sharey, respectively. This is especially useful when comparing data on the same scale; otherwise, matplotlib auto-scales plot limits independently. See Table 8-1 for more on this method.
Table 8-1. pyplot.subplots options
Adjusting the spacing around subplots
By default matplotlib leaves a certain amount of padding around the outside of the subplots and spacing between subplots. This spacing is all specified relative to the height and width of the plot, so that if you resize the plot either programmatically or manually using the GUI window, the plot will dynamically adjust itself. The spacing can be most easily changed using the subplots_adjust Figure method, also available as a top-level function:
subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)
wspace and hspace controls the percent of the figure width and figure height, respectively, to use as spacing between subplots. Here is a small example where I shrink the spacing all the way to zero (see Figure 8-5):
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
for j in range(2):
axes[i, j].hist(randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)
Figure 8-5. Figure with no inter-subplot spacing
You may notice that the axis labels overlap. matplotlib doesn’t check whether the labels overlap, so in a case like this you would need to fix the labels yourself by specifying explicit tick locations and tick labels. More on this in the coming sections.
Colors, Markers, and Line Styles
Matplotlib’s main plot function accepts arrays of X and Y coordinates and optionally a string abbreviation indicating color and line style. For example, to plot x versus y with green dashes, you would execute:
ax.plot(x, y, 'g--')
This way of specifying both color and linestyle in a string is provided as a convenience; in practice if you were creating plots programmatically you might prefer not to have to munge strings together to create plots with the desired style. The same plot could also have been expressed more explicitly as:
ax.plot(x, y, linestyle='--', color='g')
There are a number of color abbreviations provided for commonly-used colors, but any color on the spectrum can be used by specifying its RGB value (for example, '#CECECE'). You can see the full set of linestyles by looking at the docstring for plot.
Line plots can additionally have markers to highlight the actual data points. Since matplotlib creates a continuous line plot, interpolating between points, it can occasionally be unclear where the points lie. The marker can be part of the style string, which must have color followed by marker type and line style (see Figure 8-6):
In [28]: plt.plot(randn(30).cumsum(), 'ko--')
Figure 8-6. Line plot with markers example
This could also have been written more explicitly as:
plot(randn(30).cumsum(), color='k', linestyle='dashed', marker='o')
For line plots, you will notice that subsequent points are linearly interpolated by default. This can be altered with the drawstyle option:
In [30]: data = randn(30).cumsum()
In [31]: plt.plot(data, 'k--', label='Default')
Out[31]: [<matplotlib.lines.Line2D at 0x461cdd0>]
In [32]: plt.plot(data, 'k-', drawstyle='steps-post', label='steps-post')
Out[32]: [<matplotlib.lines.Line2D at 0x461f350>]
In [33]: plt.legend(loc='best')
Figure 8-7. Line plot with different drawstyle options
Ticks, Labels, and Legends
For most kinds of plot decorations, there are two main ways to do things: using the procedural pyplot interface (which will be very familiar to MATLAB users) and the more object-oriented native matplotlib API.
The pyplot interface, designed for interactive use, consists of methods like xlim, xticks, and xticklabels. These control the plot range, tick locations, and tick labels, respectively. They can be used in two ways:
Called with no arguments returns the current parameter value. For example plt.xlim() returns the current X axis plotting range
Called with parameters sets the parameter value. So plt.xlim([0, 10]), sets the X axis range to 0 to 10
All such methods act on the active or most recently-created AxesSubplot. Each of them corresponds to two methods on the subplot object itself; in the case of xlim these are ax.get_xlim and ax.set_xlim. I prefer to use the subplot instance methods myself in the interest of being explicit (and especially when working with multiple subplots), but you can certainly use whichever you find more convenient.
Setting the title, axis labels, ticks, and ticklabels
To illustrate customizing the axes, I’ll create a simple figure and plot of a random walk (see Figure 8-8):
In [34]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)
In [35]: ax.plot(randn(1000).cumsum())
Figure 8-8. Simple plot for illustrating xticks
To change the X axis ticks, it’s easiest to use set_xticks and set_xticklabels. The former instructs matplotlib where to place the ticks along the data range; by default these locations will also be the labels. But we can set any other values as the labels using set_xticklabels:
In [36]: ticks = ax.set_xticks([0, 250, 500, 750, 1000])
In [37]: labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
....: rotation=30, fontsize='small')
Lastly, set_xlabel gives a name to the X axis and set_title the subplot title:
In [38]: ax.set_title('My first matplotlib plot')
Out[38]: <matplotlib.text.Text at 0x7f9190912850>
In [39]: ax.set_xlabel('Stages')
See Figure 8-9 for the resulting figure. Modifying the Y axis consists of the same process, substituting y for x in the above.
Figure 8-9. Simple plot for illustrating xticks
Adding legends
Legends are another critical element for identifying plot elements. There are a couple of ways to add one. The easiest is to pass the label argument when adding each piece of the plot:
In [40]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)
In [41]: ax.plot(randn(1000).cumsum(), 'k', label='one')
Out[41]: [<matplotlib.lines.Line2D at 0x4720a90>]
In [42]: ax.plot(randn(1000).cumsum(), 'k--', label='two')
Out[42]: [<matplotlib.lines.Line2D at 0x4720f90>]
In [43]: ax.plot(randn(1000).cumsum(), 'k.', label='three')
Out[43]: [<matplotlib.lines.Line2D at 0x4723550>]
Once you’ve done this, you can either call ax.legend() or plt.legend() to automatically create a legend:
In [44]: ax.legend(loc='best')
Figure 8-10. Simple plot with 3 lines and legend
See Figure 8-10. The loc tells matplotlib where to place the plot. If you aren’t picky 'best' is a good option, as it will choose a location that is most out of the way. To exclude one or more elements from the legend, pass no label or label='_nolegend_'.
Annotations and Drawing on a Subplot
In addition to the standard plot types, you may wish to draw your own plot annotations, which could consist of text, arrows, or other shapes.
Annotations and text can be added using the text, arrow, and annotate functions. text draws text at given coordinates (x, y) on the plot with optional custom styling:
ax.text(x, y, 'Hello world!',
family='monospace', fontsize=10)
Annotations can draw both text and arrows arranged appropriately. As an example, let’s plot the closing S&P 500 index price since 2007 (obtained from Yahoo! Finance) and annotate it with some of the important dates from the 2008-2009 financial crisis. See Figure 8-11 for the result:
from datetime import datetime
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
data = pd.read_csv('ch08/spx.csv', index_col=0, parse_dates=True)
spx = data['SPX']
spx.plot(ax=ax, style='k-')
crisis_data = [
(datetime(2007, 10, 11), 'Peak of bull market'),
(datetime(2008, 3, 12), 'Bear Stearns Fails'),
(datetime(2008, 9, 15), 'Lehman Bankruptcy')
]
for date, label in crisis_data:
ax.annotate(label, xy=(date, spx.asof(date) + 50),
xytext=(date, spx.asof(date) + 200),
arrowprops=dict(facecolor='black'),
horizontalalignment='left', verticalalignment='top')
Zoom in on 2007-2010
ax.set_xlim(['1/1/2007', '1/1/2011'])
ax.set_ylim([600, 1800])
ax.set_title('Important dates in 2008-2009 financial crisis')
See the online matplotlib gallery for many more annotation examples to learn from.
Drawing shapes requires some more care. matplotlib has objects that represent many common shapes, referred to as patches. Some of these, like Rectangle and Circle are found in matplotlib.pyplot, but the full set is located in matplotlib.patches.
To add a shape to a plot, you create the patch object shp and add it to a subplot by calling ax.add_patch(shp) (see Figure 8-12):
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color='k', alpha=0.3)
circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3)
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
color='g', alpha=0.5)
ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)
Figure 8-11. Important dates in 2008-2009 financial crisis
Figure 8-12. Figure composed from 3 different patches
If you look at the implementation of many familiar plot types, you will see that they are assembled from patches.
Saving Plots to File
The active figure can be saved to file using plt.savefig. This method is equivalent to the figure object’s savefig instance method. For example, to save an SVG version of a figure, you need only type:
plt.savefig('figpath.svg')
The file type is inferred from the file extension. So if you used .pdf instead you would get a PDF. There are a couple of important options that I use frequently for publishing graphics: dpi, which controls the dots-per-inch resolution, and bbox_inches, which can trim the whitespace around the actual figure. To get the same plot as a PNG above with minimal whitespace around the plot and at 400 DPI, you would do:
plt.savefig('figpath.png', dpi=400, bbox_inches='tight')
savefig doesn’t have to write to disk; it can also write to any file-like object, such as a StringIO:
from io import StringIO
buffer = StringIO()
plt.savefig(buffer)
plot_data = buffer.getvalue()
For example, this is useful for serving dynamically-generated images over the web.
Table 8-2. Figure.savefig options
matplotlib Configuration
matplotlib comes configured with color schemes and defaults that are geared primarily toward preparing figures for publication. Fortunately, nearly all of the default behavior can be customized via an extensive set of global parameters governing figure size, subplot spacing, colors, font sizes, grid styles, and so on. There are two main ways to interact with the matplotlib configuration system. The first is programmatically from Python using the rc method. For example, to set the global default figure size to be 10 x 10, you could enter:
plt.rc('figure', figsize=(10, 10))
The first argument to rc is the component you wish to customize, such as 'figure', 'axes', 'xtick', 'ytick', 'grid', 'legend' or many others. After that can follow a sequence of keyword arguments indicating the new parameters. An easy way to write down the options in your program is as a dict:
font_options = {'family' : 'monospace',
'weight' : 'bold',
'size' : 'small'}
plt.rc('font', **font_options)
For more extensive customization and to see a list of all the options, matplotlib comes with a configuration file matplotlibrc in the matplotlib/mpl-data directory. If you customize this file and place it in your home directory titled .matplotlibrc, it will be loaded each time you use matplotlib.
Plotting Functions in pandas
As you’ve seen, matplotlib is actually a fairly low-level tool. You assemble a plot from its base components: the data display (the type of plot: line, bar, box, scatter, contour, etc.), legend, title, tick labels, and other annotations. Part of the reason for this is that in many cases the data needed to make a complete plot is spread across many objects. In pandas we have row labels, column labels, and possibly grouping information. This means that many kinds of fully-formed plots that would ordinarily require a lot of matplotlib code can be expressed in one or two concise statements. Therefore, pandas has an increasing number of high-level plotting methods for creating standard visualizations that take advantage of how data is organized in DataFrame objects.
CAUTION
As of this writing, the plotting functionality in pandas is undergoing quite a bit of work. As part of the 2012 Google Summer of Code program, a student is working full time to add features and to make the interface more consistent and usable. Thus, it’s possible that this code may fall out-of-date faster than the other things in this book. The online pandas documentation will be the best resource in that event.
Line Plots
Series and DataFrame each have a plot method for making many different plot types. By default, they make line plots (see Figure 8-13):
In [55]: s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
In [56]: s.plot()
Figure 8-13. Simple Series plot example
The Series object’s index is passed to matplotlib for plotting on the X axis, though this can be disabled by passing use_index=False. The X axis ticks and limits can be adjusted using the xticks and xlim options, and Y axis respectively using yticks and ylim. See Table 8-3 for a full listing of plot options. I’ll comment on a few more of them throughout this section and leave the rest to you to explore.
Most of pandas’s plotting methods accept an optional ax parameter, which can be a matplotlib subplot object. This gives you more flexible placement of subplots in a grid layout. There will be more on this in the later section on the matplotlib API.
DataFrame’s plot method plots each of its columns as a different line on the same subplot, creating a legend automatically (see Figure 8-14):
In [57]: df = DataFrame(np.random.randn(10, 4).cumsum(0),
....: columns=['A', 'B', 'C', 'D'],
....: index=np.arange(0, 100, 10))
In [58]: df.plot()
Figure 8-14. Simple DataFrame plot example
NOTE
Additional keyword arguments to plot are passed through to the respective matplotlib plotting function, so you can further customize these plots by learning more about the matplotlib API.
Table 8-3. Series.plot method arguments
DataFrame has a number of options allowing some flexibility with how the columns are handled; for example, whether to plot them all on the same subplot or to create separate subplots. See Table 8-4 for more on these.
Table 8-4. DataFrame-specific plot arguments
NOTE
For time series plotting, see Chapter 10.
Bar Plots
Making bar plots instead of line plots is a simple as passing kind='bar' (for vertical bars) or kind='barh' (for horizontal bars). In this case, the Series or DataFrame index will be used as the X (bar) or Y (barh) ticks (see Figure 8-15):
In [59]: fig, axes = plt.subplots(2, 1)
In [60]: data = Series(np.random.rand(16), index=list('abcdefghijklmnop'))
In [61]: data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7)
Out[61]: <matplotlib.axes.AxesSubplot at 0x4ee7750>
In [62]: data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7)
NOTE
For more on the plt.subplots function and matplotlib axes and figures, see the later section in this chapter.
With a DataFrame, bar plots group the values in each row together in a group in bars, side by side, for each value. See Figure 8-16:
In [63]: df = DataFrame(np.random.rand(6, 4),
....: index=['one', 'two', 'three', 'four', 'five', 'six'],
....: columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))
In [64]: df
Out[64]:
Genus A B C D
one 0.301686 0.156333 0.371943 0.270731
two 0.750589 0.525587 0.689429 0.358974
three 0.381504 0.667707 0.473772 0.632528
four 0.942408 0.180186 0.708284 0.641783
five 0.840278 0.909589 0.010041 0.653207
six 0.062854 0.589813 0.811318 0.060217
In [65]: df.plot(kind='bar')
Figure 8-15. Horizonal and vertical bar plot example
Note that the name “Genus” on the DataFrame’s columns is used to title the legend.
Stacked bar plots are created from a DataFrame by passing stacked=True, resulting in the value in each row being stacked together (see Figure 8-17):
In [67]: df.plot(kind='barh', stacked=True, alpha=0.5)
NOTE
A useful recipe for bar plots (as seen in an earlier chapter) is to visualize a Series’s value frequency using value_counts: s.value_counts().plot(kind='bar')
Returning to the tipping data set used earlier in the book, suppose we wanted to make a stacked bar plot showing the percentage of data points for each party size on each day. I load the data using read_csv and make a cross-tabulation by day and party size:
In [68]: tips = pd.read_csv('ch08/tips.csv')
In [69]: party_counts = pd.crosstab(tips.day, tips.size)
In [70]: party_counts
Out[70]:
size 1 2 3 4 5 6
day
Fri 1 16 1 1 0 0
Sat 2 53 18 13 1 0
Sun 0 39 15 18 3 1
Thur 1 48 4 5 1 3
Not many 1- and 6-person parties
In [71]: party_counts = party_counts.ix[:, 2:5]
Figure 8-16. DataFrame bar plot example
Figure 8-17. DataFrame stacked bar plot example
Then, normalize so that each row sums to 1 (I have to cast to float to avoid integer division issues on Python 2.7) and make the plot (see Figure 8-18):
Normalize to sum to 1
In [72]: party_pcts = party_counts.div(party_counts.sum(1).astype(float), axis=0)
In [73]: party_pcts
Out[73]:
size 2 3 4 5
day
Fri 0.888889 0.055556 0.055556 0.000000
Sat 0.623529 0.211765 0.152941 0.011765
Sun 0.520000 0.200000 0.240000 0.040000
Thur 0.827586 0.068966 0.086207 0.017241
In [74]: party_pcts.plot(kind='bar', stacked=True)
Figure 8-18. Fraction of parties by size on each day
So you can see that party sizes appear to increase on the weekend in this data set.
Histograms and Density Plots
A histogram, with which you may be well-acquainted, is a kind of bar plot that gives a discretized display of value frequency. The data points are split into discrete, evenly spaced bins, and the number of data points in each bin is plotted. Using the tipping data from before, we can make a histogram of tip percentages of the total bill using the hist method on the Series (see Figure 8-19):
In [76]: tips['tip_pct'] = tips['tip'] / tips['total_bill']
In [77]: tips['tip_pct'].hist(bins=50)
Figure 8-19. Histogram of tip percentages
A related plot type is a density plot, which is formed by computing an estimate of a continuous probability distribution that might have generated the observed data. A usual procedure is to approximate this distribution as a mixture of kernels, that is, simpler distributions like the normal (Gaussian) distribution. Thus, density plots are also known as KDE (kernel density estimate) plots. Using plot with kind='kde' makes a density plot using the standard mixture-of-normals KDE (see Figure 8-20):
In [79]: tips['tip_pct'].plot(kind='kde')
Figure 8-20. Density plot of tip percentages
These two plot types are often plotted together; the histogram in normalized form (to give a binned density) with a kernel density estimate plotted on top. As an example, consider a bimodal distribution consisting of draws from two different standard normal distributions (see Figure 8-21):
In [81]: comp1 = np.random.normal(0, 1, size=200) # N(0, 1)
In [82]: comp2 = np.random.normal(10, 2, size=200) # N(10, 4)
In [83]: values = Series(np.concatenate([comp1, comp2]))
In [84]: values.hist(bins=100, alpha=0.3, color='k', normed=True)
Out[84]: <matplotlib.axes.AxesSubplot at 0x5cd2350>
In [85]: values.plot(kind='kde', style='k--')
Figure 8-21. Normalized histogram of normal mixture with density estimate
Scatter Plots
Scatter plots are a useful way of examining the relationship between two one-dimensional data series. matplotlib has a scatter plotting method that is the workhorse of making these kinds of plots. To give an example, I load the macrodata dataset from the statsmodels project, select a few variables, then compute log differences:
In [86]: macro = pd.read_csv('ch08/macrodata.csv')
In [87]: data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]
In [88]: trans_data = np.log(data).diff().dropna()
In [89]: trans_data[-5:]
Out[89]:
cpi m1 tbilrate unemp
198 -0.007904 0.045361 -0.396881 0.105361
199 -0.021979 0.066753 -2.277267 0.139762
200 0.002340 0.010286 0.606136 0.160343
201 0.008419 0.037461 -0.200671 0.127339
202 0.008894 0.012202 -0.405465 0.042560
It’s easy to plot a simple scatter plot using plt.scatter (see Figure 8-22):
In [91]: plt.scatter(trans_data['m1'], trans_data['unemp'])
Out[91]: <matplotlib.collections.PathCollection at 0x43c31d0>
In [92]: plt.title('Changes in log %s vs. log %s' % ('m1', 'unemp'))
Figure 8-22. A simple scatter plot
In exploratory data analysis it’s helpful to be able to look at all the scatter plots among a group of variables; this is known as a pairs plot or scatter plot matrix. Making such a plot from scratch is a bit of work, so pandas has a scatter_matrix function for creating one from a DataFrame. It also supports placing histograms or density plots of each variable along the diagonal. See Figure 8-23 for the resulting plot:
In [93]: scatter_matrix(trans_data, diagonal='kde', color='k', alpha=0.3)
Figure 8-23. Scatter plot matrix of statsmodels macro data
Plotting Maps: Visualizing Haiti Earthquake Crisis Data
Ushahidi is a non-profit software company that enables crowdsourcing of information related to natural disasters and geopolitical events via text message. Many of these data sets are then published on their website for analysis and visualization. I downloaded the data collected during the 2010 Haiti earthquake crisis and aftermath, and I’ll show you how I prepared the data for analysis and visualization using pandas and other tools we have looked at thus far. After downloading the CSV file from the above link, we can load it into a DataFrame using read_csv:
In [94]: data = pd.read_csv('ch08/Haiti.csv')
In [95]: data
Out[95]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3593 entries, 0 to 3592
Data columns:
Serial 3593 non-null values
INCIDENT TITLE 3593 non-null values
INCIDENT DATE 3593 non-null values
LOCATION 3593 non-null values
DESCRIPTION 3593 non-null values
CATEGORY 3587 non-null values
LATITUDE 3593 non-null values
LONGITUDE 3593 non-null values
APPROVED 3593 non-null values
VERIFIED 3593 non-null values
dtypes: float64(2), int64(1), object(7)
It’s easy now to tinker with this data set to see what kinds of things we might want to do with it. Each row represents a report sent from someone’s mobile phone indicating an emergency or some other problem. Each has an associated timestamp and a location as latitude and longitude:
In [96]: data[['INCIDENT DATE', 'LATITUDE', 'LONGITUDE']][:10]
Out[96]:
INCIDENT DATE LATITUDE LONGITUDE
0 05/07/2010 17:26 18.233333 -72.533333
1 28/06/2010 23:06 50.226029 5.729886
2 24/06/2010 16:21 22.278381 114.174287
3 20/06/2010 21:59 44.407062 8.933989
4 18/05/2010 16:26 18.571084 -72.334671
5 26/04/2010 13:14 18.593707 -72.310079
6 26/04/2010 14:19 18.482800 -73.638800
7 26/04/2010 14:27 18.415000 -73.195000
8 15/03/2010 10:58 18.517443 -72.236841
9 15/03/2010 11:00 18.547790 -72.410010
The CATEGORY field contains a comma-separated list of codes indicating the type of message:
In [97]: data['CATEGORY'][:6]
Out[97]:
0 1. Urgences | Emergency, 3. Public Health,
1 1. Urgences | Emergency, 2. Urgences logistiques
2 2. Urgences logistiques | Vital Lines, 8. Autre |
3 1. Urgences | Emergency,
4 1. Urgences | Emergency,
5 5e. Communication lines down,
Name: CATEGORY
If you notice above in the data summary, some of the categories are missing, so we might want to drop these data points. Additionally, calling describe shows that there are some aberrant locations:
In [98]: data.describe()
Out[98]:
Serial LATITUDE LONGITUDE
count 3593.000000 3593.000000 3593.000000
mean 2080.277484 18.611495 -72.322680
std 1171.100360 0.738572 3.650776
min 4.000000 18.041313 -74.452757
25% 1074.000000 18.524070 -72.417500
50% 2163.000000 18.539269 -72.335000
75% 3088.000000 18.561820 -72.293570
max 4052.000000 50.226029 114.174287
Cleaning the bad locations and removing the missing categories is now fairly simple:
In [99]: data = data[(data.LATITUDE > 18) & (data.LATITUDE < 20) &
....: (data.LONGITUDE > -75) & (data.LONGITUDE < -70)
....: & data.CATEGORY.notnull()]
Now we might want to do some analysis or visualization of this data by category, but each category field may have multiple categories. Additionally, each category is given as a code plus an English and possibly also a French code name. Thus, a little bit of wrangling is required to get the data into a more agreeable form. First, I wrote these two functions to get a list of all the categories and to split each category into a code and an English name:
def to_cat_list(catstr):
stripped = (x.strip() for x in catstr.split(','))
return [x for x in stripped if x]
def get_all_categories(cat_series):
cat_sets = (set(to_cat_list(x)) for x in cat_series)
return sorted(set.union(*cat_sets))
def get_english(cat):
code, names = cat.split('.')
if '|' in names:
names = names.split(' | ')[1]
return code, names.strip()
You can test out that the get_english function does what you expect:
In [101]: get_english('2. Urgences logistiques | Vital Lines')
Out[101]: ('2', 'Vital Lines')
Now, I make a dict mapping code to name because we’ll use the codes for analysis. We’ll use this later when adorning plots (note the use of a generator expression in lieu of a list comprehension):
In [102]: all_cats = get_all_categories(data.CATEGORY)
Generator expression
In [103]: english_mapping = dict(get_english(x) for x in all_cats)
In [104]: english_mapping['2a']
Out[104]: 'Food Shortage'
In [105]: english_mapping['6c']
Out[105]: 'Earthquake and aftershocks'
There are many ways to go about augmenting the data set to be able to easily select records by category. One way is to add indicator (or dummy) columns, one for each category. To do that, first extract the unique category codes and construct a DataFrame of zeros having those as its columns and the same index as data:
def get_code(seq):
return [x.split('.')[0] for x in seq if x]
all_codes = get_code(all_cats)
code_index = pd.Index(np.unique(all_codes))
dummy_frame = DataFrame(np.zeros((len(data), len(code_index))),
index=data.index, columns=code_index)
If all goes well, dummy_frame should look something like this:
In [107]: dummy_frame.ix[:, :6]
Out[107]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3569 entries, 0 to 3592
Data columns:
1 3569 non-null values
1a 3569 non-null values
1b 3569 non-null values
1c 3569 non-null values
1d 3569 non-null values
2 3569 non-null values
dtypes: float64(6)
As you recall, the trick is then to set the appropriate entries of each row to 1, lastly joining this with data:
for row, cat in zip(data.index, data.CATEGORY):
codes = get_code(to_cat_list(cat))
dummy_frame.ix[row, codes] = 1
data = data.join(dummy_frame.add_prefix('category_'))
data finally now has new columns like:
In [109]: data.ix[:, 10:15]
Out[109]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3569 entries, 0 to 3592
Data columns:
category_1 3569 non-null values
category_1a 3569 non-null values
category_1b 3569 non-null values
category_1c 3569 non-null values
category_1d 3569 non-null values
dtypes: float64(5)
Let’s make some plots! As this is spatial data, we’d like to plot the data by category on a map of Haiti. The basemap toolkit (http://matplotlib.github.com/basemap), an add-on to matplotlib, enables plotting 2D data on maps in Python. basemap provides many different globe projections and a means for transforming projecting latitude and longitude coordinates on the globe onto a two-dimensional matplotlib plot. After some trial and error and using the above data as a guideline, I wrote this function which draws a simple black and white map of Haiti:
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
def basic_haiti_map(ax=None, lllat=17.25, urlat=20.25,
lllon=-75, urlon=-71):
create polar stereographic Basemap instance.
m = Basemap(ax=ax, projection='stere',
lon_0=(urlon + lllon) / 2,
lat_0=(urlat + lllat) / 2,
llcrnrlat=lllat, urcrnrlat=urlat,
llcrnrlon=lllon, urcrnrlon=urlon,
resolution='f')
draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
return m
The idea, now, is that the returned Basemap object, knows how to transform coordinates onto the canvas. I wrote the following code to plot the data observations for a number of report categories. For each category, I filter down the data set to the coordinates labeled by that category, plot a Basemap on the appropriate subplot, transform the coordinates, then plot the points using the Basemap’s plot method:
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05)
to_plot = ['2a', '1', '3c', '7a']
lllat=17.25; urlat=20.25; lllon=-75; urlon=-71
for code, ax in zip(to_plot, axes.flat):
m = basic_haiti_map(ax, lllat=lllat, urlat=urlat,
lllon=lllon, urlon=urlon)
cat_data = data[data['category_%s' % code] == 1]
compute map proj coordinates.
x, y = m(cat_data.LONGITUDE, cat_data.LATITUDE)
m.plot(x, y, 'k.', alpha=0.5)
ax.set_title('%s: %s' % (code, english_mapping[code]))
The resulting figure can be seen in Figure 8-24.
Figure 8-24. Haiti crisis data for 4 categories
It seems from the plot that most of the data is concentrated around the most populous city, Port-au-Prince. basemap allows you to overlap additional map data which comes from what are called shapefiles. I first downloaded a shapefile with roads in Port-au-Prince (see http://cegrp.cga.harvard.edu/haiti/?q=resources_data). The Basemap object conveniently has a readshapefile method so that, after extracting the road data archive, I added just the following lines to my code:
shapefile_path = 'ch08/PortAuPrince_Roads/PortAuPrince_Roads'
m.readshapefile(shapefile_path, 'roads')
After a little more trial and error with the latitude and longitude boundaries, I was able to make Figure 8-25 for the “Food shortage” category.
Figure 8-25. Food shortage reports in Port-au-Prince during the Haiti earthquake crisis
Python Visualization Tool Ecosystem
As is common with open source, there are a plethora of options for creating graphics in Python (too many to list). In addition to open source, there are numerous commercial libraries with Python bindings.
In this chapter and throughout the book, I have been primarily concerned with matplotlib as it is the most widely used plotting tool in Python. While it’s an important part of the scientific Python ecosystem, matplotlib has plenty of shortcomings when it comes to the creation and display of statistical graphics. MATLAB users will likely find matplotlib familiar, while R users (especially users of the excellent ggplot2 and trellis packages) may be somewhat disappointed (at least as of this writing). It is possible to make beautiful plots for display on the web in matplotlib, but doing so often requires significant effort as the library is designed for the printed page. Aesthetics aside, it is sufficient for most needs. In pandas, I, along with the other developers, have sought to build a convenient user interface that makes it easier to make most kinds of plots commonplace in data analysis.
There are a number of other visualization tools in wide use. I list a few of them here and encourage you to explore the ecosystem.
Chaco
Chaco (http://code.enthought.com/chaco/), developed by Enthought, is a plotting toolkit suitable both for static plotting and interactive visualizations. It is especially well-suited for expressing complex visualizations with data interrelationships. Compared with matplotlib, Chaco has much better support for interacting with plot elements and rendering is very fast, making it a good choice for building interactive GUI applications.
Figure 8-26. A Chaco example plot
mayavi
The mayavi project, developed by Prabhu Ramachandran, Gaël Varoquaux, and others, is a 3D graphics toolkit built on the open source C++ graphics library VTK. mayavi, like matplotlib, integrates with IPython so that it is easy to use interactively. The plots can be panned, rotated, and zoomed using the mouse and keyboard. I used mayavi to make one of the illustrations of broadcasting in Chapter 12. While I don’t show any mayavi-using code here, there is plenty of documentation and examples available online. In many cases, I believe it is a good alternative to a technology like WebGL, though the graphics are harder to share in interactive form.
Other Packages
Of course, there are numerous other visualization libraries and applications available in Python: PyQwt, Veusz, gnuplot-py, biggles, and others. I have seen PyQwt put to good use in GUI applications built using the Qt application framework using PyQt. While many of these libraries continue to be under active development (some of them are part of much larger applications), I have noted in the last few years a general trend toward web-based technologies and away from desktop graphics. I’ll say a few more words about this in the next section.
The Future of Visualization Tools?
Visualizations built on web technologies (that is, JavaScript-based) appear to be the inevitable future. Doubtlessly you have used many different kinds of static or interactive visualizations built in Flash or JavaScript over the years. New toolkits (such as d3.js and its numerous off-shoot projects) for building such displays are appearing all the time. In contrast, development in non web-based visualization has slowed significantly in recent years. This holds true of Python as well as other data analysis and statistical computing environments like R.
The development challenge, then, will be in building tighter integration between data analysis and preparation tools, such as pandas, and the web browser. I am hopeful that this will become a fruitful point of collaboration between Python and non-Python users as well.
Chapter 9. Data Aggregation and Group Operations
Categorizing a data set and applying a function to each group, whether an aggregation or transformation, is often a critical component of a data analysis workflow. After loading, merging, and preparing a data set, a familiar task is to compute group statistics or possibly pivot tables for reporting or visualization purposes. pandas provides a flexible and high-performance groupby facility, enabling you to slice and dice, and summarize data sets in a natural way.
One reason for the popularity of relational databases and SQL (which stands for “structured query language”) is the ease with which data can be joined, filtered, transformed, and aggregated. However, query languages like SQL are rather limited in the kinds of group operations that can be performed. As you will see, with the expressiveness and power of Python and pandas, we can perform much more complex grouped operations by utilizing any function that accepts a pandas object or NumPy array. In this chapter, you will learn how to:
Split a pandas object into pieces using one or more keys (in the form of functions, arrays, or DataFrame column names)
Computing group summary statistics, like count, mean, or standard deviation, or a user-defined function
Apply a varying set of functions to each column of a DataFrame
Apply within-group transformations or other manipulations, like normalization, linear regression, rank, or subset selection
Compute pivot tables and cross-tabulations
Perform quantile analysis and other data-derived group analyses
NOTE
Aggregation of time series data, a special use case of groupby, is referred to as resampling in this book and will receive separate treatment in Chapter 10.
GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming language, coined the term split-apply-combine for talking about group operations, and I think that’s a good description of the process. In the first stage of the process, data contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into groups based on one or more keys that you provide. The splitting is performed on a particular axis of an object. For example, a DataFrame can be grouped on its rows (axis=0) or its columns (axis=1). Once this is done, a function is applied to each group, producing a new value. Finally, the results of all those function applications are combined into a result object. The form of the resulting object will usually depend on what’s being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.
Figure 9-1. Illustration of a group aggregation
Each grouping key can take many forms, and the keys do not have to be all of the same type:
A list or array of values that is the same length as the axis being grouped
A value indicating a column name in a DataFrame
A dict or Series giving a correspondence between the values on the axis being grouped and the group names
A function to be invoked on the axis index or the individual labels in the index
Note that the latter three methods are all just shortcuts for producing an array of values to be used to split up the object. Don’t worry if this all seems very abstract. Throughout this chapter, I will give many examples of all of these methods. To get started, here is a very simple small tabular dataset as a DataFrame:
In [13]: df = DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
....: 'key2' : ['one', 'two', 'one', 'two', 'one'],
....: 'data1' : np.random.randn(5),
....: 'data2' : np.random.randn(5)})
In [14]: df
Out[14]:
data1 data2 key1 key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
4 1.965781 1.246435 a one
Suppose you wanted to compute the mean of the data1 column using the groups labels from key1. There are a number of ways to do this. One is to access data1 and call groupby with the column (a Series) at key1:
In [15]: grouped = df['data1'].groupby(df['key1'])
In [16]: grouped
Out[16]: <pandas.core.groupby.SeriesGroupBy at 0x2d78b10>
This grouped variable is now a GroupBy object. It has not actually computed anything yet except for some intermediate data about the group key df['key1']. The idea is that this object has all of the information needed to then apply some operation to each of the groups. For example, to compute group means we can call the GroupBy’s mean method:
In [17]: grouped.mean()
Out[17]:
key1
a 0.746672
b -0.537585
Later, I'll explain more about what’s going on when you call .mean(). The important thing here is that the data (a Series) has been aggregated according to the group key, producing a new Series that is now indexed by the unique values in the key1 column. The result index has the name 'key1' because the DataFrame column df['key1'] did.
If instead we had passed multiple arrays as a list, we get something different:
In [18]: means = df['data1'].groupby([df['key1'], df['key2']]).mean()
In [19]: means
Out[19]:
key1 key2
a one 0.880536
two 0.478943
b one -0.519439
two -0.555730
In this case, we grouped the data using two keys, and the resulting Series now has a hierarchical index consisting of the unique pairs of keys observed:
In [20]: means.unstack()
Out[20]:
key2 one two
key1
a 0.880536 0.478943
b -0.519439 -0.555730
In these examples, the group keys are all Series, though they could be any arrays of the right length:
In [21]: states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
In [22]: years = np.array([2005, 2005, 2006, 2005, 2006])
In [23]: df['data1'].groupby([states, years]).mean()
Out[23]:
California 2005 0.478943
2006 -0.519439
Ohio 2005 -0.380219
2006 1.965781
Frequently the grouping information to be found in the same DataFrame as the data you want to work on. In that case, you can pass column names (whether those are strings, numbers, or other Python objects) as the group keys:
In [24]: df.groupby('key1').mean()
Out[24]:
data1 data2
key1
a 0.746672 0.910916
b -0.537585 0.525384
In [25]: df.groupby(['key1', 'key2']).mean()
Out[25]:
data1 data2
key1 key2
a one 0.880536 1.319920
two 0.478943 0.092908
b one -0.519439 0.281746
two -0.555730 0.769023
You may have noticed in the first case df.groupby('key1').mean() that there is no key2 column in the result. Because df['key2'] is not numeric data, it is said to be a nuisance column, which is therefore excluded from the result. By default, all of the numeric columns are aggregated, though it is possible to filter down to a subset as you’ll see soon.
Regardless of the objective in using groupby, a generally useful GroupBy method is size which return a Series containing group sizes:
In [26]: df.groupby(['key1', 'key2']).size()
Out[26]:
key1 key2
a one 2
two 1
b one 1
two 1
CAUTION
As of this writing, any missing values in a group key will be excluded from the result. It’s possible (and, in fact, quite likely), that by the time you are reading this there will be an option to include the NA group in the result.
Iterating Over Groups
The GroupBy object supports iteration, generating a sequence of 2-tuples containing the group name along with the chunk of data. Consider the following small example data set:
In [27]: for name, group in df.groupby('key1'):
....: print name
....: print group
....:
a
data1 data2 key1 key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
4 1.965781 1.246435 a one
b
data1 data2 key1 key2
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
In the case of multiple keys, the first element in the tuple will be a tuple of key values:
In [28]: for (k1, k2), group in df.groupby(['key1', 'key2']):
....: print k1, k2
....: print group
....:
a one
data1 data2 key1 key2
0 -0.204708 1.393406 a one
4 1.965781 1.246435 a one
a two
data1 data2 key1 key2
1 0.478943 0.092908 a two
b one
data1 data2 key1 key2
2 -0.519439 0.281746 b one
b two
data1 data2 key1 key2
3 -0.55573 0.769023 b two
Of course, you can choose to do whatever you want with the pieces of data. A recipe you may find useful is computing a dict of the data pieces as a one-liner:
In [29]: pieces = dict(list(df.groupby('key1')))
In [30]: pieces['b']
Out[30]:
data1 data2 key1 key2
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
By default groupby groups on axis=0, but you can group on any of the other axes. For example, we could group the columns of our example df here by dtype like so:
In [31]: df.dtypes
Out[31]:
data1 float64
data2 float64
key1 object
key2 object
In [32]: grouped = df.groupby(df.dtypes, axis=1)
In [33]: dict(list(grouped))
Out[33]:
{dtype('float64'): data1 data2
0 -0.204708 1.393406
1 0.478943 0.092908
2 -0.519439 0.281746
3 -0.555730 0.769023
4 1.965781 1.246435,
dtype('object'): key1 key2
0 a one
1 a two
2 b one
3 b two
4 a one}
Selecting a Column or Subset of Columns
Indexing a GroupBy object created from a DataFrame with a column name or array of column names has the effect of selecting those columns for aggregation. This means that:
df.groupby('key1')['data1']
df.groupby('key1')[['data2']]
are syntactic sugar for:
df['data1'].groupby(df['key1'])
df[['data2']].groupby(df['key1'])
Especially for large data sets, it may be desirable to aggregate only a few columns. For example, in the above data set, to compute means for just the data2 column and get the result as a DataFrame, we could write:
In [34]: df.groupby(['key1', 'key2'])[['data2']].mean()
Out[34]:
data2
key1 key2
a one 1.319920
two 0.092908
b one 0.281746
two 0.769023
The object returned by this indexing operation is a grouped DataFrame if a list or array is passed and a grouped Series is just a single column name that is passed as a scalar:
In [35]: s_grouped = df.groupby(['key1', 'key2'])['data2']
In [36]: s_grouped
Out[36]: <pandas.core.groupby.SeriesGroupBy at 0x2e215d0>
In [37]: s_grouped.mean()
Out[37]:
key1 key2
a one 1.319920
two 0.092908
b one 0.281746
two 0.769023
Name: data2
Grouping with Dicts and Series
Grouping information may exist in a form other than an array. Let’s consider another example DataFrame:
In [38]: people = DataFrame(np.random.randn(5, 5),
....: columns=['a', 'b', 'c', 'd', 'e'],
....: index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
In [39]: people.ix[2:3, ['b', 'c']] = np.nan # Add a few NA values
In [40]: people
Out[40]:
a b c d e
Joe 1.007189 -1.296221 0.274992 0.228913 1.352917
Steve 0.886429 -2.001637 -0.371843 1.669025 -0.438570
Wes -0.539741 NaN NaN -1.021228 -0.577087
Jim 0.124121 0.302614 0.523772 0.000940 1.343810
Travis -0.713544 -0.831154 -2.370232 -1.860761 -0.860757
Now, suppose I have a group correspondence for the columns and want to sum together the columns by group:
In [41]: mapping = {'a': 'red', 'b': 'red', 'c': 'blue',
....: 'd': 'blue', 'e': 'red', 'f' : 'orange'}
Now, you could easily construct an array from this dict to pass to groupby, but instead we can just pass the dict:
In [42]: by_column = people.groupby(mapping, axis=1)
In [43]: by_column.sum()
Out[43]:
blue red
Joe 0.503905 1.063885
Steve 1.297183 -1.553778
Wes -1.021228 -1.116829
Jim 0.524712 1.770545
Travis -4.230992 -2.405455
The same functionality holds for Series, which can be viewed as a fixed size mapping. When I used Series as group keys in the above examples, pandas does, in fact, inspect each Series to ensure that its index is aligned with the axis it’s grouping:
In [44]: map_series = Series(mapping)
In [45]: map_series
Out[45]:
a red
b red
c blue
d blue
e red
f orange
In [46]: people.groupby(map_series, axis=1).count()
Out[46]:
blue red
Joe 2 3
Steve 2 3
Wes 1 2
Jim 2 3
Travis 2 3
Grouping with Functions
Using Python functions in what can be fairly creative ways is a more abstract way of defining a group mapping compared with a dict or Series. Any function passed as a group key will be called once per index value, with the return values being used as the group names. More concretely, consider the example DataFrame from the previous section, which has people’s first names as index values. Suppose you wanted to group by the length of the names; you could compute an array of string lengths, but instead you can just pass the len function:
In [47]: people.groupby(len).sum()
Out[47]:
a b c d e
3 0.591569 -0.993608 0.798764 -0.791374 2.119639
5 0.886429 -2.001637 -0.371843 1.669025 -0.438570
6 -0.713544 -0.831154 -2.370232 -1.860761 -0.860757
Mixing functions with arrays, dicts, or Series is not a problem as everything gets converted to arrays internally:
In [48]: key_list = ['one', 'one', 'one', 'two', 'two']
In [49]: people.groupby([len, key_list]).min()
Out[49]:
a b c d e
3 one -0.539741 -1.296221 0.274992 -1.021228 -0.577087
two 0.124121 0.302614 0.523772 0.000940 1.343810
5 one 0.886429 -2.001637 -0.371843 1.669025 -0.438570
6 two -0.713544 -0.831154 -2.370232 -1.860761 -0.860757
Grouping by Index Levels
A final convenience for hierarchically-indexed data sets is the ability to aggregate using one of the levels of an axis index. To do this, pass the level number or name using the level keyword:
In [50]: columns = pd.MultiIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],
....: [1, 3, 5, 1, 3]], names=['cty', 'tenor'])
In [51]: hier_df = DataFrame(np.random.randn(4, 5), columns=columns)
In [52]: hier_df
Out[52]:
cty US JP
tenor 1 3 5 1 3
0 0.560145 -1.265934 0.119827 -1.063512 0.332883
1 -2.359419 -0.199543 -1.541996 -0.970736 -1.307030
2 0.286350 0.377984 -0.753887 0.331286 1.349742
3 0.069877 0.246674 -0.011862 1.004812 1.327195
In [53]: hier_df.groupby(level='cty', axis=1).count()
Out[53]:
cty JP US
0 2 3
1 2 3
2 2 3
3 2 3
Data Aggregation
By aggregation, I am generally referring to any data transformation that produces scalar values from arrays. In the examples above I have used several of them, such as mean, count, min and sum. You may wonder what is going on when you invoke mean() on a GroupBy object. Many common aggregations, such as those found in Table 9-1, have optimized implementations that compute the statistics on the dataset in place. However, you are not limited to only this set of methods. You can use aggregations of your own devising and additionally call any method that is also defined on the grouped object. For example, as you recall quantile computes sample quantiles of a Series or a DataFrame’s columns [3]:
In [54]: df
Out[54]:
data1 data2 key1 key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
4 1.965781 1.246435 a one
In [55]: grouped = df.groupby('key1')
In [56]: grouped['data1'].quantile(0.9)
Out[56]:
key1
a 1.668413
b -0.523068
While quantile is not explicitly implemented for GroupBy, it is a Series method and thus available for use. Internally, GroupBy efficiently slices up the Series, calls piece.quantile(0.9) for each piece, then assembles those results together into the result object.
To use your own aggregation functions, pass any function that aggregates an array to the aggregate or agg method:
In [57]: def peak_to_peak(arr):
....: return arr.max() - arr.min()
In [58]: grouped.agg(peak_to_peak)
Out[58]:
data1 data2
key1
a 2.170488 1.300498
b 0.036292 0.487276
You’ll notice that some methods like describe also work, even though they are not aggregations, strictly speaking:
In [59]: grouped.describe()
Out[59]:
data1 data2
key1
a count 3.000000 3.000000
mean 0.746672 0.910916
std 1.109736 0.712217
min -0.204708 0.092908
25% 0.137118 0.669671
50% 0.478943 1.246435
75% 1.222362 1.319920
max 1.965781 1.393406
b count 2.000000 2.000000
mean -0.537585 0.525384
std 0.025662 0.344556
min -0.555730 0.281746
25% -0.546657 0.403565
50% -0.537585 0.525384
75% -0.528512 0.647203
max -0.519439 0.769023
I will explain in more detail what has happened here in the next major section on group-wise operations and transformations.
NOTE
You may notice that custom aggregation functions are much slower than the optimized functions found in Table 9-1. This is because there is significant overhead (function calls, data rearrangement) in constructing the intermediate group data chunks.
Table 9-1. Optimized groupby methods
To illustrate some more advanced aggregation features, I’ll use a less trivial dataset, a dataset on restaurant tipping. I obtained it from the R reshape2 package; it was originally found in Bryant & Smith’s 1995 text on business statistics (and found in the book’s GitHub repository). After loading it with read_csv, I add a tipping percentage column tip_pct.
In [60]: tips = pd.read_csv('ch08/tips.csv')
Add tip percentage of total bill
In [61]: tips['tip_pct'] = tips['tip'] / tips['total_bill']
In [62]: tips[:6]
Out[62]:
total_bill tip sex smoker day time size tip_pct
0 16.99 1.01 Female No Sun Dinner 2 0.059447
1 10.34 1.66 Male No Sun Dinner 3 0.160542
2 21.01 3.50 Male No Sun Dinner 3 0.166587
3 23.68 3.31 Male No Sun Dinner 2 0.139780
4 24.59 3.61 Female No Sun Dinner 4 0.146808
5 25.29 4.71 Male No Sun Dinner 4 0.186240
Column-wise and Multiple Function Application
As you’ve seen above, aggregating a Series or all of the columns of a DataFrame is a matter of using aggregate with the desired function or calling a method like mean or std. However, you may want to aggregate using a different function depending on the column or multiple functions at once. Fortunately, this is straightforward to do, which I’ll illustrate through a number of examples. First, I’ll group the tips by sex and smoker:
In [63]: grouped = tips.groupby(['sex', 'smoker'])
Note that for descriptive statistics like those in Table 9-1, you can pass the name of the function as a string:
In [64]: grouped_pct = grouped['tip_pct']
In [65]: grouped_pct.agg('mean')
Out[65]:
sex smoker
Female No 0.156921
Yes 0.182150
Male No 0.160669
Yes 0.152771
Name: tip_pct
If you pass a list of functions or function names instead, you get back a DataFrame with column names taken from the functions:
In [66]: grouped_pct.agg(['mean', 'std', peak_to_peak])
Out[66]:
mean std peak_to_peak
sex smoker
Female No 0.156921 0.036421 0.195876
Yes 0.182150 0.071595 0.360233
Male No 0.160669 0.041849 0.220186
Yes 0.152771 0.090588 0.674707
You don’t need to accept the names that GroupBy gives to the columns; notably lambda functions have the name '<lambda>' which make them hard to identify (you can see for yourself by looking at a function’s __name__ attribute). As such, if you pass a list of (name, function) tuples, the first element of each tuple will be used as the DataFrame column names (you can think of a list of 2-tuples as an ordered mapping):
In [67]: grouped_pct.agg([('foo', 'mean'), ('bar', np.std)])
Out[67]:
foo bar
sex smoker
Female No 0.156921 0.036421
Yes 0.182150 0.071595
Male No 0.160669 0.041849
Yes 0.152771 0.090588
With a DataFrame, you have more options as you can specify a list of functions to apply to all of the columns or different functions per column. To start, suppose we wanted to compute the same three statistics for the tip_pct and total_bill columns:
In [68]: functions = ['count', 'mean', 'max']
In [69]: result = grouped['tip_pct', 'total_bill'].agg(functions)
In [70]: result
Out[70]:
tip_pct total_bill
count mean max count mean max
sex smoker
Female No 54 0.156921 0.252672 54 18.105185 35.83
Yes 33 0.182150 0.416667 33 17.977879 44.30
Male No 97 0.160669 0.291990 97 19.791237 48.33
Yes 60 0.152771 0.710345 60 22.284500 50.81
As you can see, the resulting DataFrame has hierarchical columns, the same as you would get aggregating each column separately and using concat to glue the results together using the column names as the keys argument:
In [71]: result['tip_pct']
Out[71]:
count mean max
sex smoker
Female No 54 0.156921 0.252672
Yes 33 0.182150 0.416667
Male No 97 0.160669 0.291990
Yes 60 0.152771 0.710345
As above, a list of tuples with custom names can be passed:
In [72]: ftuples = [('Durchschnitt', 'mean'), ('Abweichung', np.var)]
In [73]: grouped['tip_pct', 'total_bill'].agg(ftuples)
Out[73]:
tip_pct total_bill
Durchschnitt Abweichung Durchschnitt Abweichung
sex smoker
Female No 0.156921 0.001327 18.105185 53.092422
Yes 0.182150 0.005126 17.977879 84.451517
Male No 0.160669 0.001751 19.791237 76.152961
Yes 0.152771 0.008206 22.284500 98.244673
Now, suppose you wanted to apply potentially different functions to one or more of the columns. The trick is to pass a dict to agg that contains a mapping of column names to any of the function specifications listed so far:
In [74]: grouped.agg({'tip' : np.max, 'size' : 'sum'})
Out[74]:
size tip
sex smoker
Female No 140 5.2
Yes 74 6.5
Male No 263 9.0
Yes 150 10.0
In [75]: grouped.agg({'tip_pct' : ['min', 'max', 'mean', 'std'],
....: 'size' : 'sum'})
Out[75]:
tip_pct size
min max mean std sum
sex smoker
Female No 0.056797 0.252672 0.156921 0.036421 140
Yes 0.056433 0.416667 0.182150 0.071595 74
Male No 0.071804 0.291990 0.160669 0.041849 263
Yes 0.035638 0.710345 0.152771 0.090588 150
A DataFrame will have hierarchical columns only if multiple functions are applied to at least one column.
Returning Aggregated Data in “unindexed” Form
In all of the examples up until now, the aggregated data comes back with an index, potentially hierarchical, composed from the unique group key combinations observed. Since this isn’t always desirable, you can disable this behavior in most cases by passing as_index=False to groupby:
In [76]: tips.groupby(['sex', 'smoker'], as_index=False).mean()
Out[76]:
sex smoker total_bill tip size tip_pct
0 Female No 18.105185 2.773519 2.592593 0.156921
1 Female Yes 17.977879 2.931515 2.242424 0.182150
2 Male No 19.791237 3.113402 2.711340 0.160669
3 Male Yes 22.284500 3.051167 2.500000 0.152771
Of course, it’s always possible to obtain the result in this format by calling reset_index on the result.
CAUTION
Using groupby in this way is generally less flexible; results with hierarchical columns, for example, are not currently implemented as the form of the result would have to be somewhat arbitrary.
Group-wise Operations and Transformations
Aggregation is only one kind of group operation. It is a special case in the more general class of data transformations; that is, it accepts functions that reduce a one-dimensional array to a scalar value. In this section, I will introduce you to the transform and apply methods, which will enable you to do many other kinds of group operations.
Suppose, instead, we wanted to add a column to a DataFrame containing group means for each index. One way to do this is to aggregate, then merge:
In [77]: df
Out[77]:
data1 data2 key1 key2
0 -0.204708 1.393406 a one
1 0.478943 0.092908 a two
2 -0.519439 0.281746 b one
3 -0.555730 0.769023 b two
4 1.965781 1.246435 a one
In [78]: k1_means = df.groupby('key1').mean().add_prefix('mean_')
In [79]: k1_means
Out[79]:
mean_data1 mean_data2
key1
a 0.746672 0.910916
b -0.537585 0.525384
In [80]: pd.merge(df, k1_means, left_on='key1', right_index=True)
Out[80]:
data1 data2 key1 key2 mean_data1 mean_data2
0 -0.204708 1.393406 a one 0.746672 0.910916
1 0.478943 0.092908 a two 0.746672 0.910916
4 1.965781 1.246435 a one 0.746672 0.910916
2 -0.519439 0.281746 b one -0.537585 0.525384
3 -0.555730 0.769023 b two -0.537585 0.525384
This works, but is somewhat inflexible. You can think of the operation as transforming the two data columns using the np.mean function. Let’s look back at the people DataFrame from earlier in the chapter and use the transform method on GroupBy:
In [81]: key = ['one', 'two', 'one', 'two', 'one']
In [82]: people.groupby(key).mean()
Out[82]:
a b c d e
one -0.082032 -1.063687 -1.047620 -0.884358 -0.028309
two 0.505275 -0.849512 0.075965 0.834983 0.452620
In [83]: people.groupby(key).transform(np.mean)
Out[83]:
a b c d e
Joe -0.082032 -1.063687 -1.047620 -0.884358 -0.028309
Steve 0.505275 -0.849512 0.075965 0.834983 0.452620
Wes -0.082032 -1.063687 -1.047620 -0.884358 -0.028309
Jim 0.505275 -0.849512 0.075965 0.834983 0.452620
Travis -0.082032 -1.063687 -1.047620 -0.884358 -0.028309
As you may guess, transform applies a function to each group, then places the results in the appropriate locations. If each group produces a scalar value, it will be propagated (broadcasted). Suppose instead you wanted to subtract the mean value from each group. To do this, create a demeaning function and pass it to transform:
In [84]: def demean(arr):
....: return arr - arr.mean()
In [85]: demeaned = people.groupby(key).transform(demean)
In [86]: demeaned
Out[86]:
a b c d e
Joe 1.089221 -0.232534 1.322612 1.113271 1.381226
Steve 0.381154 -1.152125 -0.447807 0.834043 -0.891190
Wes -0.457709 NaN NaN -0.136869 -0.548778
Jim -0.381154 1.152125 0.447807 -0.834043 0.891190
Travis -0.631512 0.232534 -1.322612 -0.976402 -0.832448
You can check that demeaned now has zero group means:
In [87]: demeaned.groupby(key).mean()
Out[87]:
a b c d e
one 0 -0 0 0 0
two -0 0 0 0 0
As you’ll see in the next section, group demeaning can be achieved using apply also.
Apply: General split-apply-combine
Like aggregate, transform is a more specialized function having rigid requirements: the passed function must either produce a scalar value to be broadcasted (like np.mean) or a transformed array of the same size. The most general purpose GroupBy method is apply, which is the subject of the rest of this section. As in Figure 9-1, apply splits the object being manipulated into pieces, invokes the passed function on each piece, then attempts to concatenate the pieces together.
Returning to the tipping data set above, suppose you wanted to select the top five tip_pct values by group. First, it’s straightforward to write a function that selects the rows with the largest values in a particular column:
In [88]: def top(df, n=5, column='tip_pct'):
....: return df.sort_index(by=column)[-n:]
In [89]: top(tips, n=6)
Out[89]:
total_bill tip sex smoker day time size tip_pct
109 14.31 4.00 Female Yes Sat Dinner 2 0.279525
183 23.17 6.50 Male Yes Sun Dinner 4 0.280535
232 11.61 3.39 Male No Sat Dinner 2 0.291990
67 3.07 1.00 Female Yes Sat Dinner 1 0.325733
178 9.60 4.00 Female Yes Sun Dinner 2 0.416667
172 7.25 5.15 Male Yes Sun Dinner 2 0.710345
Now, if we group by smoker, say, and call apply with this function, we get the following:
In [90]: tips.groupby('smoker').apply(top)
Out[90]:
total_bill tip sex smoker day time size tip_pct
smoker
No 88 24.71 5.85 Male No Thur Lunch 2 0.236746
185 20.69 5.00 Male No Sun Dinner 5 0.241663
51 10.29 2.60 Female No Sun Dinner 2 0.252672
149 7.51 2.00 Male No Thur Lunch 2 0.266312
232 11.61 3.39 Male No Sat Dinner 2 0.291990
Yes 109 14.31 4.00 Female Yes Sat Dinner 2 0.279525
183 23.17 6.50 Male Yes Sun Dinner 4 0.280535
67 3.07 1.00 Female Yes Sat Dinner 1 0.325733
178 9.60 4.00 Female Yes Sun Dinner 2 0.416667
172 7.25 5.15 Male Yes Sun Dinner 2 0.710345
What has happened here? The top function is called on each piece of the DataFrame, then the results are glued together using pandas.concat, labeling the pieces with the group names. The result therefore has a hierarchical index whose inner level contains index values from the original DataFrame.
If you pass a function to apply that takes other arguments or keywords, you can pass these after the function:
In [91]: tips.groupby(['smoker', 'day']).apply(top, n=1, column='total_bill')
Out[91]:
total_bill tip sex smoker day time size tip_pct
smoker day
No Fri 94 22.75 3.25 Female No Fri Dinner 2 0.142857
Sat 212 48.33 9.00 Male No Sat Dinner 4 0.186220
Sun 156 48.17 5.00 Male No Sun Dinner 6 0.103799
Thur 142 41.19 5.00 Male No Thur Lunch 5 0.121389
Yes Fri 95 40.17 4.73 Male Yes Fri Dinner 4 0.117750
Sat 170 50.81 10.00 Male Yes Sat Dinner 3 0.196812
Sun 182 45.35 3.50 Male Yes Sun Dinner 3 0.077178
Thur 197 43.11 5.00 Female Yes Thur Lunch 4 0.115982
NOTE
Beyond these basic usage mechanics, getting the most out of apply is largely a matter of creativity. What occurs inside the function passed is up to you; it only needs to return a pandas object or a scalar value. The rest of this chapter will mainly consist of examples showing you how to solve various problems using groupby.
You may recall above I called describe on a GroupBy object:
In [92]: result = tips.groupby('smoker')['tip_pct'].describe()
In [93]: result
Out[93]:
smoker
No count 151.000000
mean 0.159328
std 0.039910
min 0.056797
25% 0.136906
50% 0.155625
75% 0.185014
max 0.291990
Yes count 93.000000
mean 0.163196
std 0.085119
min 0.035638
25% 0.106771
50% 0.153846
75% 0.195059
max 0.710345
In [94]: result.unstack('smoker')
Out[94]:
smoker No Yes
count 151.000000 93.000000
mean 0.159328 0.163196
std 0.039910 0.085119
min 0.056797 0.035638
25% 0.136906 0.106771
50% 0.155625 0.153846
75% 0.185014 0.195059
max 0.291990 0.710345
Inside GroupBy, when you invoke a method like describe, it is actually just a shortcut for:
f = lambda x: x.describe()
grouped.apply(f)
Suppressing the group keys
In the examples above, you see that the resulting object has a hierarchical index formed from the group keys along with the indexes of each piece of the original object. This can be disabled by passing group_keys=False to groupby:
In [95]: tips.groupby('smoker', group_keys=False).apply(top)
Out[95]:
total_bill tip sex smoker day time size tip_pct
88 24.71 5.85 Male No Thur Lunch 2 0.236746
185 20.69 5.00 Male No Sun Dinner 5 0.241663
51 10.29 2.60 Female No Sun Dinner 2 0.252672
149 7.51 2.00 Male No Thur Lunch 2 0.266312
232 11.61 3.39 Male No Sat Dinner 2 0.291990
109 14.31 4.00 Female Yes Sat Dinner 2 0.279525
183 23.17 6.50 Male Yes Sun Dinner 4 0.280535
67 3.07 1.00 Female Yes Sat Dinner 1 0.325733
178 9.60 4.00 Female Yes Sun Dinner 2 0.416667
172 7.25 5.15 Male Yes Sun Dinner 2 0.710345
Quantile and Bucket Analysis
As you may recall from Chapter 7, pandas has some tools, in particular cut and qcut, for slicing data up into buckets with bins of your choosing or by sample quantiles. Combining these functions with groupby, it becomes very simple to perform bucket or quantile analysis on a data set. Consider a simple random data set and an equal-length bucket categorization using cut:
In [96]: frame = DataFrame({'data1': np.random.randn(1000),
....: 'data2': np.random.randn(1000)})
In [97]: factor = pd.cut(frame.data1, 4)
In [98]: factor[:10]
Out[98]:
Categorical:
array([(-1.23, 0.489], (-2.956, -1.23], (-1.23, 0.489], (0.489, 2.208],
(-1.23, 0.489], (0.489, 2.208], (-1.23, 0.489], (-1.23, 0.489],
(0.489, 2.208], (0.489, 2.208]], dtype=object)
Levels (4): Index([(-2.956, -1.23], (-1.23, 0.489], (0.489, 2.208],
(2.208, 3.928]], dtype=object)
The Factor object returned by cut can be passed directly to groupby. So we could compute a set of statistics for the data2 column like so:
In [99]: def get_stats(group):
....: return {'min': group.min(), 'max': group.max(),
....: 'count': group.count(), 'mean': group.mean()}
In [100]: grouped = frame.data2.groupby(factor)
In [101]: grouped.apply(get_stats).unstack()
Out[101]:
count max mean min
data1
(-1.23, 0.489] 598 3.260383 -0.002051 -2.989741
(-2.956, -1.23] 95 1.670835 -0.039521 -3.399312
(0.489, 2.208] 297 2.954439 0.081822 -3.745356
(2.208, 3.928] 10 1.765640 0.024750 -1.929776
These were equal-length buckets; to compute equal-size buckets based on sample quantiles, use qcut. I’ll pass labels=False to just get quantile numbers.
Return quantile numbers
In [102]: grouping = pd.qcut(frame.data1, 10, labels=False)
In [103]: grouped = frame.data2.groupby(grouping)
In [104]: grouped.apply(get_stats).unstack()
Out[104]:
count max mean min
0 100 1.670835 -0.049902 -3.399312
1 100 2.628441 0.030989 -1.950098
2 100 2.527939 -0.067179 -2.925113
3 100 3.260383 0.065713 -2.315555
4 100 2.074345 -0.111653 -2.047939
5 100 2.184810 0.052130 -2.989741
6 100 2.458842 -0.021489 -2.223506
7 100 2.954439 -0.026459 -3.056990
8 100 2.735527 0.103406 -3.745356
9 100 2.377020 0.220122 -2.064111
Example: Filling Missing Values with Group-specific Values
When cleaning up missing data, in some cases you will filter out data observations using dropna, but in others you may want to impute (fill in) the NA values using a fixed value or some value derived from the data. fillna is the right tool to use; for example here I fill in NA values with the mean:
In [105]: s = Series(np.random.randn(6))
In [106]: s[::2] = np.nan
In [107]: s
Out[107]:
0 NaN
1 -0.125921
2 NaN
3 -0.884475
4 NaN
5 0.227290
In [108]: s.fillna(s.mean())
Out[108]:
0 -0.261035
1 -0.125921
2 -0.261035
3 -0.884475
4 -0.261035
5 0.227290
Suppose you need the fill value to vary by group. As you may guess, you need only group the data and use apply with a function that calls fillna on each data chunk. Here is some sample data on some US states divided into eastern and western states:
In [109]: states = ['Ohio', 'New York', 'Vermont', 'Florida',
.....: 'Oregon', 'Nevada', 'California', 'Idaho']
In [110]: group_key = ['East'] * 4 + ['West'] * 4
In [111]: data = Series(np.random.randn(8), index=states)
In [112]: data[['Vermont', 'Nevada', 'Idaho']] = np.nan
In [113]: data
Out[113]:
Ohio 0.922264
New York -2.153545
Vermont NaN
Florida -0.375842
Oregon 0.329939
Nevada NaN
California 1.105913
Idaho NaN
In [114]: data.groupby(group_key).mean()
Out[114]:
East -0.535707
West 0.717926
We can fill the NA values using the group means like so:
In [115]: fill_mean = lambda g: g.fillna(g.mean())
In [116]: data.groupby(group_key).apply(fill_mean)
Out[116]:
Ohio 0.922264
New York -2.153545
Vermont -0.535707
Florida -0.375842
Oregon 0.329939
Nevada 0.717926
California 1.105913
Idaho 0.717926
In another case, you might have pre-defined fill values in your code that vary by group. Since the groups have a name attribute set internally, we can use that:
In [117]: fill_values = {'East': 0.5, 'West': -1}
In [118]: fill_func = lambda g: g.fillna(fill_values[g.name])
In [119]: data.groupby(group_key).apply(fill_func)
Out[119]:
Ohio 0.922264
New York -2.153545
Vermont 0.500000
Florida -0.375842
Oregon 0.329939
Nevada -1.000000
California 1.105913
Idaho -1.000000
Example: Random Sampling and Permutation
Suppose you wanted to draw a random sample (with or without replacement) from a large dataset for Monte Carlo simulation purposes or some other application. There are a number of ways to perform the “draws”; some are much more efficient than others. One way is to select the first K elements of np.random.permutation(N), where N is the size of your complete dataset and K the desired sample size. As a more fun example, here’s a way to construct a deck of English-style playing cards:
Hearts, Spades, Clubs, Diamonds
suits = ['H', 'S', 'C', 'D']
card_val = (range(1, 11) + [10] * 3) * 4
base_names = ['A'] + range(2, 11) + ['J', 'K', 'Q']
cards = []
for suit in ['H', 'S', 'C', 'D']:
cards.extend(str(num) + suit for num in base_names)
deck = Series(card_val, index=cards)
So now we have a Series of length 52 whose index contains card names and values are the ones used in blackjack and other games (to keep things simple, I just let the ace be 1):
In [121]: deck[:13]
Out[121]:
AH 1
2H 2
3H 3
4H 4
5H 5
6H 6
7H 7
8H 8
9H 9
10H 10
JH 10
KH 10
QH 10
Now, based on what I said above, drawing a hand of 5 cards from the desk could be written as:
In [122]: def draw(deck, n=5):
.....: return deck.take(np.random.permutation(len(deck))[:n])
In [123]: draw(deck)
Out[123]:
AD 1
8C 8
5H 5
KC 10
2C 2
Suppose you wanted two random cards from each suit. Because the suit is the last character of each card name, we can group based on this and use apply:
In [124]: get_suit = lambda card: card[-1] # last letter is suit
In [125]: deck.groupby(get_suit).apply(draw, n=2)
Out[125]:
C 2C 2
3C 3
D KD 10
8D 8
H KH 10
3H 3
S 2S 2
4S 4
alternatively
In [126]: deck.groupby(get_suit, group_keys=False).apply(draw, n=2)
Out[126]:
KC 10
JC 10
AD 1
5D 5
5H 5
6H 6
7S 7
KS 10
Example: Group Weighted Average and Correlation
Under the split-apply-combine paradigm of groupby, operations between columns in a DataFrame or two Series, such a group weighted average, become a routine affair. As an example, take this dataset containing group keys, values, and some weights:
In [127]: df = DataFrame({'category': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'],
.....: 'data': np.random.randn(8),
.....: 'weights': np.random.rand(8)})
In [128]: df
Out[128]:
category data weights
0 a 1.561587 0.957515
1 a 1.219984 0.347267
2 a -0.482239 0.581362
3 a 0.315667 0.217091
4 b -0.047852 0.894406
5 b -0.454145 0.918564
6 b -0.556774 0.277825
7 b 0.253321 0.955905
The group weighted average by category would then be:
In [129]: grouped = df.groupby('category')
In [130]: get_wavg = lambda g: np.average(g['data'], weights=g['weights'])
In [131]: grouped.apply(get_wavg)
Out[131]:
category
a 0.811643
b -0.122262
As a less trivial example, consider a data set from Yahoo! Finance containing end of day prices for a few stocks and the S&P 500 index (the SPX ticker):
In [132]: close_px = pd.read_csv('ch09/stock_px.csv', parse_dates=True, index_col=0)
In [133]: close_px
Out[133]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2214 entries, 2003-01-02 00:00:00 to 2011-10-14 00:00:00
Data columns:
AAPL 2214 non-null values
MSFT 2214 non-null values
XOM 2214 non-null values
SPX 2214 non-null values
dtypes: float64(4)
In [134]: close_px[-4:]
Out[134]:
AAPL MSFT XOM SPX
2011-10-11 400.29 27.00 76.27 1195.54
2011-10-12 402.19 26.96 77.16 1207.25
2011-10-13 408.43 27.18 76.37 1203.66
2011-10-14 422.00 27.27 78.11 1224.58
One task of interest might be to compute a DataFrame consisting of the yearly correlations of daily returns (computed from percent changes) with SPX. Here is one way to do it:
In [135]: rets = close_px.pct_change().dropna()
In [136]: spx_corr = lambda x: x.corrwith(x['SPX'])
In [137]: by_year = rets.groupby(lambda x: x.year)
In [138]: by_year.apply(spx_corr)
Out[138]:
AAPL MSFT XOM SPX
2003 0.541124 0.745174 0.661265 1
2004 0.374283 0.588531 0.557742 1
2005 0.467540 0.562374 0.631010 1
2006 0.428267 0.406126 0.518514 1
2007 0.508118 0.658770 0.786264 1
2008 0.681434 0.804626 0.828303 1
2009 0.707103 0.654902 0.797921 1
2010 0.710105 0.730118 0.839057 1
2011 0.691931 0.800996 0.859975 1
There is, of course, nothing to stop you from computing inter-column correlations:
Annual correlation of Apple with Microsoft
In [139]: by_year.apply(lambda g: g['AAPL'].corr(g['MSFT']))
Out[139]:
2003 0.480868
2004 0.259024
2005 0.300093
2006 0.161735
2007 0.417738
2008 0.611901
2009 0.432738
2010 0.571946
2011 0.581987
Example: Group-wise Linear Regression
In the same vein as the previous example, you can use groupby to perform more complex group-wise statistical analysis, as long as the function returns a pandas object or scalar value. For example, I can define the following regress function (using the statsmodels econometrics library) which executes an ordinary least squares (OLS) regression on each chunk of data:
import statsmodels.api as sm
def regress(data, yvar, xvars):
Y = data[yvar]
X = data[xvars]
X['intercept'] = 1.
result = sm.OLS(Y, X).fit()
return result.params
Now, to run a yearly linear regression of AAPL on SPX returns, I execute:
In [141]: by_year.apply(regress, 'AAPL', ['SPX'])
Out[141]:
SPX intercept
2003 1.195406 0.000710
2004 1.363463 0.004201
2005 1.766415 0.003246
2006 1.645496 0.000080
2007 1.198761 0.003438
2008 0.968016 -0.001110
2009 0.879103 0.002954
2010 1.052608 0.001261
2011 0.806605 0.001514
Pivot Tables and Cross-Tabulation
A pivot table is a data summarization tool frequently found in spreadsheet programs and other data analysis software. It aggregates a table of data by one or more keys, arranging the data in a rectangle with some of the group keys along the rows and some along the columns. Pivot tables in Python with pandas are made possible using the groupby facility described in this chapter combined with reshape operations utilizing hierarchical indexing. DataFrame has a pivot_table method, and additionally there is a top-level pandas.pivot_table function. In addition to providing a convenience interface to groupby, pivot_table also can add partial totals, also known as margins.
Returning to the tipping data set, suppose I wanted to compute a table of group means (the default pivot_table aggregation type) arranged by sex and smoker on the rows:
In [142]: tips.pivot_table(rows=['sex', 'smoker'])
Out[142]:
size tip tip_pct total_bill
sex smoker
Female No 2.592593 2.773519 0.156921 18.105185
Yes 2.242424 2.931515 0.182150 17.977879
Male No 2.711340 3.113402 0.160669 19.791237
Yes 2.500000 3.051167 0.152771 22.284500
This could have been easily produced using groupby. Now, suppose we want to aggregate only tip_pct and size, and additionally group by day. I’ll put smoker in the table columns and day in the rows:
In [143]: tips.pivot_table(['tip_pct', 'size'], rows=['sex', 'day'],
.....: cols='smoker')
Out[143]:
tip_pct size
smoker No Yes No Yes
sex day
Female Fri 0.165296 0.209129 2.500000 2.000000
Sat 0.147993 0.163817 2.307692 2.200000
Sun 0.165710 0.237075 3.071429 2.500000
Thur 0.155971 0.163073 2.480000 2.428571
Male Fri 0.138005 0.144730 2.000000 2.125000
Sat 0.162132 0.139067 2.656250 2.629630
Sun 0.158291 0.173964 2.883721 2.600000
Thur 0.165706 0.164417 2.500000 2.300000
This table could be augmented to include partial totals by passing margins=True. This has the effect of adding All row and column labels, with corresponding values being the group statistics for all the data within a single tier. In this below example, the All values are means without taking into account smoker vs. non-smoker (the All columns) or any of the two levels of grouping on the rows (the All row):
In [144]: tips.pivot_table(['tip_pct', 'size'], rows=['sex', 'day'],
.....: cols='smoker', margins=True)
Out[144]:
size tip_pct
smoker No Yes All No Yes All
sex day
Female Fri 2.500000 2.000000 2.111111 0.165296 0.209129 0.199388
Sat 2.307692 2.200000 2.250000 0.147993 0.163817 0.156470
Sun 3.071429 2.500000 2.944444 0.165710 0.237075 0.181569
Thur 2.480000 2.428571 2.468750 0.155971 0.163073 0.157525
Male Fri 2.000000 2.125000 2.100000 0.138005 0.144730 0.143385
Sat 2.656250 2.629630 2.644068 0.162132 0.139067 0.151577
Sun 2.883721 2.600000 2.810345 0.158291 0.173964 0.162344
Thur 2.500000 2.300000 2.433333 0.165706 0.164417 0.165276
All 2.668874 2.408602 2.569672 0.159328 0.163196 0.160803
To use a different aggregation function, pass it to aggfunc. For example, 'count' or len will give you a cross-tabulation (count or frequency) of group sizes:
In [145]: tips.pivot_table('tip_pct', rows=['sex', 'smoker'], cols='day',
.....: aggfunc=len, margins=True)
Out[145]:
day Fri Sat Sun Thur All
sex smoker
Female No 2 13 14 25 54
Yes 7 15 4 7 33
Male No 2 32 43 20 97
Yes 8 27 15 10 60
All 19 87 76 62 244
If some combinations are empty (or otherwise NA), you may wish to pass a fill_value:
In [146]: tips.pivot_table('size', rows=['time', 'sex', 'smoker'],
.....: cols='day', aggfunc='sum', fill_value=0)
Out[146]:
day Fri Sat Sun Thur
time sex smoker
Dinner Female No 2 30 43 2
Yes 8 33 10 0
Male No 4 85 124 0
Yes 12 71 39 0
Lunch Female No 3 0 0 60
Yes 6 0 0 17
Male No 0 0 0 50
Yes 5 0 0 23
See Table 9-2 for a summary of pivot_table methods.
Table 9-2. pivot_table options
Cross-Tabulations: Crosstab
A cross-tabulation (or crosstab for short) is a special case of a pivot table that computes group frequencies. Here is a canonical example taken from the Wikipedia page on cross-tabulation:
In [150]: data
Out[150]:
Sample Gender Handedness
0 1 Female Right-handed
1 2 Male Left-handed
2 3 Female Right-handed
3 4 Male Right-handed
4 5 Male Left-handed
5 6 Male Right-handed
6 7 Female Right-handed
7 8 Female Left-handed
8 9 Male Right-handed
9 10 Female Right-handed
As part of some survey analysis, we might want to summarize this data by gender and handedness. You could use pivot_table to do this, but the pandas.crosstab function is very convenient:
In [151]: pd.crosstab(data.Gender, data.Handedness, margins=True)
Out[151]:
Handedness Left-handed Right-handed All
Gender
Female 1 4 5
Male 2 3 5
All 3 7 10
The first two arguments to crosstab can each either be an array or Series or a list of arrays. As in the tips data:
In [152]: pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
Out[152]:
smoker No Yes All
time day
Dinner Fri 3 9 12
Sat 45 42 87
Sun 57 19 76
Thur 1 0 1
Lunch Fri 1 6 7
Thur 44 17 61
All 151 93 244
Example: 2012 Federal Election Commission Database
The US Federal Election Commission publishes data on contributions to political campaigns. This includes contributor names, occupation and employer, address, and contribution amount. An interesting dataset is from the 2012 US presidential election (http://www.fec.gov/disclosurep/PDownload.do). As of this writing (June 2012), the full dataset for all states is a 150 megabyte CSV file P00000001-ALL.csv, which can be loaded with pandas.read_csv:
In [13]: fec = pd.read_csv('ch09/P00000001-ALL.csv')
In [14]: fec
Out[14]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1001731 entries, 0 to 1001730
Data columns:
cmte_id 1001731 non-null values
cand_id 1001731 non-null values
cand_nm 1001731 non-null values
contbr_nm 1001731 non-null values
contbr_city 1001716 non-null values
contbr_st 1001727 non-null values
contbr_zip 1001620 non-null values
contbr_employer 994314 non-null values
contbr_occupation 994433 non-null values
contb_receipt_amt 1001731 non-null values
contb_receipt_dt 1001731 non-null values
receipt_desc 14166 non-null values
memo_cd 92482 non-null values
memo_text 97770 non-null values
form_tp 1001731 non-null values
file_num 1001731 non-null values
dtypes: float64(1), int64(1), object(14)
A sample record in the DataFrame looks like this:
In [15]: fec.ix[123456]
Out[15]:
cmte_id C00431445
cand_id P80003338
cand_nm Obama, Barack
contbr_nm ELLMAN, IRA
contbr_city TEMPE
contbr_st AZ
contbr_zip 852816719
contbr_employer ARIZONA STATE UNIVERSITY
contbr_occupation PROFESSOR
contb_receipt_amt 50
contb_receipt_dt 01-DEC-11
receipt_desc NaN
memo_cd NaN
memo_text NaN
form_tp SA17A
file_num 772372
Name: 123456
You can probably think of many ways to start slicing and dicing this data to extract informative statistics about donors and patterns in the campaign contributions. I’ll spend the next several pages showing you a number of different analyses that apply techniques you have learned about so far.
You can see that there are no political party affiliations in the data, so this would be useful to add. You can get a list of all the unique political candidates using unique (note that NumPy suppresses the quotes around the strings in the output):
In [16]: unique_cands = fec.cand_nm.unique()
In [17]: unique_cands
Out[17]:
array([Bachmann, Michelle, Romney, Mitt, Obama, Barack,
Roemer, Charles E. 'Buddy' III, Pawlenty, Timothy,
Johnson, Gary Earl, Paul, Ron, Santorum, Rick, Cain, Herman,
Gingrich, Newt, McCotter, Thaddeus G, Huntsman, Jon, Perry, Rick], dtype=object)
In [18]: unique_cands[2]
Out[18]: 'Obama, Barack'
An easy way to indicate party affiliation is using a dict:[4]
parties = {'Bachmann, Michelle': 'Republican',
'Cain, Herman': 'Republican',
'Gingrich, Newt': 'Republican',
'Huntsman, Jon': 'Republican',
'Johnson, Gary Earl': 'Republican',
'McCotter, Thaddeus G': 'Republican',
'Obama, Barack': 'Democrat',
'Paul, Ron': 'Republican',
'Pawlenty, Timothy': 'Republican',
'Perry, Rick': 'Republican',
"Roemer, Charles E. 'Buddy' III": 'Republican',
'Romney, Mitt': 'Republican',
'Santorum, Rick': 'Republican'}
Now, using this mapping and the map method on Series objects, you can compute an array of political parties from the candidate names:
In [20]: fec.cand_nm[123456:123461]
Out[20]:
123456 Obama, Barack
123457 Obama, Barack
123458 Obama, Barack
123459 Obama, Barack
123460 Obama, Barack
Name: cand_nm
In [21]: fec.cand_nm[123456:123461].map(parties)
Out[21]:
123456 Democrat
123457 Democrat
123458 Democrat
123459 Democrat
123460 Democrat
Name: cand_nm
Add it as a column
In [22]: fec['party'] = fec.cand_nm.map(parties)
In [23]: fec['party'].value_counts()
Out[23]:
Democrat 593746
Republican 407985
A couple of data preparation points. First, this data includes both contributions and refunds (negative contribution amount):
In [24]: (fec.contb_receipt_amt > 0).value_counts()
Out[24]:
True 991475
False 10256
To simplify the analysis, I’ll restrict the data set to positive contributions:
In [25]: fec = fec[fec.contb_receipt_amt > 0]
Since Barack Obama and Mitt Romney are the main two candidates, I’ll also prepare a subset that just has contributions to their campaigns:
In [26]: fec_mrbo = fec[fec.cand_nm.isin(['Obama, Barack', 'Romney, Mitt'])]
Donation Statistics by Occupation and Employer
Donations by occupation is another oft-studied statistic. For example, lawyers (attorneys) tend to donate more money to Democrats, while business executives tend to donate more to Republicans. You have no reason to believe me; you can see for yourself in the data. First, the total number of donations by occupation is easy:
In [27]: fec.contbr_occupation.value_counts()[:10]
Out[27]:
RETIRED 233990
INFORMATION REQUESTED 35107
ATTORNEY 34286
HOMEMAKER 29931
PHYSICIAN 23432
INFORMATION REQUESTED PER BEST EFFORTS 21138
ENGINEER 14334
TEACHER 13990
CONSULTANT 13273
PROFESSOR 12555
You will notice by looking at the occupations that many refer to the same basic job type, or there are several variants of the same thing. Here is a code snippet illustrates a technique for cleaning up a few of them by mapping from one occupation to another; note the “trick” of using dict.get to allow occupations with no mapping to “pass through”:
occ_mapping = {
'INFORMATION REQUESTED PER BEST EFFORTS' : 'NOT PROVIDED',
'INFORMATION REQUESTED' : 'NOT PROVIDED',
'INFORMATION REQUESTED (BEST EFFORTS)' : 'NOT PROVIDED',
'C.E.O.': 'CEO'
}
If no mapping provided, return x
f = lambda x: occ_mapping.get(x, x)
fec.contbr_occupation = fec.contbr_occupation.map(f)
I’ll also do the same thing for employers:
emp_mapping = {
'INFORMATION REQUESTED PER BEST EFFORTS' : 'NOT PROVIDED',
'INFORMATION REQUESTED' : 'NOT PROVIDED',
'SELF' : 'SELF-EMPLOYED',
'SELF EMPLOYED' : 'SELF-EMPLOYED',
}
If no mapping provided, return x
f = lambda x: emp_mapping.get(x, x)
fec.contbr_employer = fec.contbr_employer.map(f)
Now, you can use pivot_table to aggregate the data by party and occupation, then filter down to the subset that donated at least $2 million overall:
In [34]: by_occupation = fec.pivot_table('contb_receipt_amt',
....: rows='contbr_occupation',
....: cols='party', aggfunc='sum')
In [35]: over_2mm = by_occupation[by_occupation.sum(1) > 2000000]
In [36]: over_2mm
Out[36]:
party Democrat Republican
contbr_occupation
ATTORNEY 11141982.97 7477194.430000
CEO 2074974.79 4211040.520000
CONSULTANT 2459912.71 2544725.450000
ENGINEER 951525.55 1818373.700000
EXECUTIVE 1355161.05 4138850.090000
HOMEMAKER 4248875.80 13634275.780000
INVESTOR 884133.00 2431768.920000
LAWYER 3160478.87 391224.320000
MANAGER 762883.22 1444532.370000
NOT PROVIDED 4866973.96 20565473.010000
OWNER 1001567.36 2408286.920000
PHYSICIAN 3735124.94 3594320.240000
PRESIDENT 1878509.95 4720923.760000
PROFESSOR 2165071.08 296702.730000
REAL ESTATE 528902.09 1625902.250000
RETIRED 25305116.38 23561244.489999
SELF-EMPLOYED 672393.40 1640252.540000
It can be easier to look at this data graphically as a bar plot ('barh' means horizontal bar plot, see Figure 9-2):
In [38]: over_2mm.plot(kind='barh')
Figure 9-2. Total donations by party for top occupations
You might be interested in the top donor occupations or top companies donating to Obama and Romney. To do this, you can group by candidate name and use a variant of the top method from earlier in the chapter:
def get_top_amounts(group, key, n=5):
totals = group.groupby(key)['contb_receipt_amt'].sum()
Order totals by key in descending order
return totals.order(ascending=False)[-n:]
Then aggregated by occupation and employer:
In [40]: grouped = fec_mrbo.groupby('cand_nm')
In [41]: grouped.apply(get_top_amounts, 'contbr_occupation', n=7)
Out[41]:
cand_nm contbr_occupation
Obama, Barack RETIRED 25305116.38
ATTORNEY 11141982.97
NOT PROVIDED 4866973.96
HOMEMAKER 4248875.80
PHYSICIAN 3735124.94
LAWYER 3160478.87
CONSULTANT 2459912.71
Romney, Mitt RETIRED 11508473.59
NOT PROVIDED 11396894.84
HOMEMAKER 8147446.22
ATTORNEY 5364718.82
PRESIDENT 2491244.89
EXECUTIVE 2300947.03
C.E.O. 1968386.11
Name: contb_receipt_amt
In [42]: grouped.apply(get_top_amounts, 'contbr_employer', n=10)
Out[42]:
cand_nm contbr_employer
Obama, Barack RETIRED 22694358.85
SELF-EMPLOYED 18626807.16
NOT EMPLOYED 8586308.70
NOT PROVIDED 5053480.37
HOMEMAKER 2605408.54
STUDENT 318831.45
VOLUNTEER 257104.00
MICROSOFT 215585.36
SIDLEY AUSTIN LLP 168254.00
REFUSED 149516.07
Romney, Mitt NOT PROVIDED 12059527.24
RETIRED 11506225.71
HOMEMAKER 8147196.22
SELF-EMPLOYED 7414115.22
STUDENT 496490.94
CREDIT SUISSE 281150.00
MORGAN STANLEY 267266.00
GOLDMAN SACH & CO. 238250.00
BARCLAYS CAPITAL 162750.00
H.I.G. CAPITAL 139500.00
Name: contb_receipt_amt
Bucketing Donation Amounts
A useful way to analyze this data is to use the cut function to discretize the contributor amounts into buckets by contribution size:
In [43]: bins = np.array([0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000])
In [44]: labels = pd.cut(fec_mrbo.contb_receipt_amt, bins)
In [45]: labels
Out[45]:
Categorical:contb_receipt_amt
array([(10, 100], (100, 1000], (100, 1000], ..., (1, 10], (10, 100],
(100, 1000]], dtype=object)
Levels (8): array([(0, 1], (1, 10], (10, 100], (100, 1000], (1000, 10000],
(10000, 100000], (100000, 1000000], (1000000, 10000000]], dtype=object)
We can then group the data for Obama and Romney by name and bin label to get a histogram by donation size:
In [46]: grouped = fec_mrbo.groupby(['cand_nm', labels])
In [47]: grouped.size().unstack(0)
Out[47]:
cand_nm Obama, Barack Romney, Mitt
contb_receipt_amt
(0, 1] 493 77
(1, 10] 40070 3681
(10, 100] 372280 31853
(100, 1000] 153991 43357
(1000, 10000] 22284 26186
(10000, 100000] 2 1
(100000, 1000000] 3 NaN
(1000000, 10000000] 4 NaN
This data shows that Obama has received a significantly larger number of small donations than Romney. You can also sum the contribution amounts and normalize within buckets to visualize percentage of total donations of each size by candidate:
In [48]: bucket_sums = grouped.contb_receipt_amt.sum().unstack(0)
In [49]: bucket_sums
Out[49]:
cand_nm Obama, Barack Romney, Mitt
contb_receipt_amt
(0, 1] 318.24 77.00
(1, 10] 337267.62 29819.66
(10, 100] 20288981.41 1987783.76
(100, 1000] 54798531.46 22363381.69
(1000, 10000] 51753705.67 63942145.42
(10000, 100000] 59100.00 12700.00
(100000, 1000000] 1490683.08 NaN
(1000000, 10000000] 7148839.76 NaN
In [50]: normed_sums = bucket_sums.div(bucket_sums.sum(axis=1), axis=0)
In [51]: normed_sums
Out[51]:
cand_nm Obama, Barack Romney, Mitt
contb_receipt_amt
(0, 1] 0.805182 0.194818
(1, 10] 0.918767 0.081233
(10, 100] 0.910769 0.089231
(100, 1000] 0.710176 0.289824
(1000, 10000] 0.447326 0.552674
(10000, 100000] 0.823120 0.176880
(100000, 1000000] 1.000000 NaN
(1000000, 10000000] 1.000000 NaN
In [52]: normed_sums[:-2].plot(kind='barh', stacked=True)
I excluded the two largest bins as these are not donations by individuals. See Figure 9-3 for the resulting figure.
Figure 9-3. Percentage of total donations received by candidates for each donation size
There are of course many refinements and improvements of this analysis. For example, you could aggregate donations by donor name and zip code to adjust for donors who gave many small amounts versus one or more large donations. I encourage you to download it and explore it yourself.
Donation Statistics by State
Aggregating the data by candidate and state is a routine affair:
In [53]: grouped = fec_mrbo.groupby(['cand_nm', 'contbr_st'])
In [54]: totals = grouped.contb_receipt_amt.sum().unstack(0).fillna(0)
In [55]: totals = totals[totals.sum(1) > 100000]
In [56]: totals[:10]
Out[56]:
cand_nm Obama, Barack Romney, Mitt
contbr_st
AK 281840.15 86204.24
AL 543123.48 527303.51
AR 359247.28 105556.00
AZ 1506476.98 1888436.23
CA 23824984.24 11237636.60
CO 2132429.49 1506714.12
CT 2068291.26 3499475.45
DC 4373538.80 1025137.50
DE 336669.14 82712.00
FL 7318178.58 8338458.81
If you divide each row by the total contribution amount, you get the relative percentage of total donations by state for each candidate:
In [57]: percent = totals.div(totals.sum(1), axis=0)
In [58]: percent[:10]
Out[58]:
cand_nm Obama, Barack Romney, Mitt
contbr_st
AK 0.765778 0.234222
AL 0.507390 0.492610
AR 0.772902 0.227098
AZ 0.443745 0.556255
CA 0.679498 0.320502
CO 0.585970 0.414030
CT 0.371476 0.628524
DC 0.810113 0.189887
DE 0.802776 0.197224
FL 0.467417 0.532583
I thought it would be interesting to look at this data plotted on a map, using ideas from Chapter 8. After locating a shape file for the state boundaries (http://nationalatlas.gov/atlasftp.html?openChapters=chpbound) and learning a bit more about matplotlib and its basemap toolkit (I was aided by a blog posting from Thomas Lecocq)[5], I ended up with the following code for plotting these relative percentages:
from mpl_toolkits.basemap import Basemap, cm
import numpy as np
from matplotlib import rcParams
from matplotlib.collections import LineCollection
import matplotlib.pyplot as plt
from shapelib import ShapeFile
import dbflib
obama = percent['Obama, Barack']
fig = plt.figure(figsize=(12, 12))
ax = fig.add_axes([0.1,0.1,0.8,0.8])
lllat = 21; urlat = 53; lllon = -118; urlon = -62
m = Basemap(ax=ax, projection='stere',
lon_0=(urlon + lllon) / 2, lat_0=(urlat + lllat) / 2,
llcrnrlat=lllat, urcrnrlat=urlat, llcrnrlon=lllon,
urcrnrlon=urlon, resolution='l')
m.drawcoastlines()
m.drawcountries()
shp = ShapeFile('../states/statesp020')
dbf = dbflib.open('../states/statesp020')
for npoly in range(shp.info()[0]):
Draw colored polygons on the map
shpsegs = []
shp_object = shp.read_object(npoly)
verts = shp_object.vertices()
rings = len(verts)
for ring in range(rings):
lons, lats = zip(*verts[ring])
x, y = m(lons, lats)
shpsegs.append(zip(x,y))
if ring == 0:
shapedict = dbf.read_record(npoly)
name = shapedict['STATE']
lines = LineCollection(shpsegs,antialiaseds=(1,))
state_to_code dict, e.g. 'ALASKA' -> 'AK', omitted
try:
per = obama[state_to_code[name.upper()]]
except KeyError:
continue
lines.set_facecolors('k')
lines.set_alpha(0.75 * per) # Shrink the percentage a bit
lines.set_edgecolors('k')
lines.set_linewidth(0.3)
ax.add_collection(lines)
plt.show()
See Figure 9-4 for the result.
Figure 9-4. US map aggregated donation statistics overlay (darker means more Democratic)
[3] Note that quantile performs linear interpolation if there is no value at exactly the passed percentile.
[4] This makes the simplifying assumption that Gary Johnson is a Republican even though he later became the Libertarian party candidate.
[5] http://www.geophysique.be/2011/01/27/matplotlib-basemap-tutorial-07-shapefiles-unleached/
Chapter 10. Time Series
Time series data is an important form of structured data in many different fields, such as finance, economics, ecology, neuroscience, or physics. Anything that is observed or measured at many points in time forms a time series. Many time series are fixed frequency, which is to say that data points occur at regular intervals according to some rule, such as every 15 seconds, every 5 minutes, or once per month. Time series can also be irregular without a fixed unit or time or offset between units. How you mark and refer to time series data depends on the application and you may have one of the following:
Timestamps, specific instants in time
Fixed periods, such as the month January 2007 or the full year 2010
Intervals of time, indicated by a start and end timestamp. Periods can be thought of as special cases of intervals
Experiment or elapsed time; each timestamp is a measure of time relative to a particular start time. For example, the diameter of a cookie baking each second since being placed in the oven
In this chapter, I am mainly concerned with time series in the first 3 categories, though many of the techniques can be applied to experimental time series where the index may be an integer or floating point number indicating elapsed time from the start of the experiment. The simplest and most widely used kind of time series are those indexed by timestamp.
pandas provides a standard set of time series tools and data algorithms. With this, you can efficiently work with very large time series and easily slice and dice, aggregate, and resample irregular and fixed frequency time series. As you might guess, many of these tools are especially useful for financial and economics applications, but you could certainly use them to analyze server log data, too.
NOTE
Some of the features and code, in particular period logic, presented in this chapter were derived from the now defunct scikits.timeseries library.
Date and Time Data Types and Tools
The Python standard library includes data types for date and time data, as well as calendar-related functionality. The datetime, time, and calendar modules are the main places to start. The datetime.datetime type, or simply datetime, is widely used:
In [317]: from datetime import datetime
In [318]: now = datetime.now()
In [319]: now
Out[319]: datetime.datetime(2012, 8, 4, 17, 9, 21, 832092)
In [320]: now.year, now.month, now.day
Out[320]: (2012, 8, 4)
datetime stores both the date and time down to the microsecond. datetime.timedelta represents the temporal difference between two datetime objects:
In [321]: delta = datetime(2011, 1, 7) - datetime(2008, 6, 24, 8, 15)
In [322]: delta
Out[322]: datetime.timedelta(926, 56700)
In [323]: delta.days In [324]: delta.seconds
Out[323]: 926 Out[324]: 56700
You can add (or subtract) a timedelta or multiple thereof to a datetime object to yield a new shifted object:
In [325]: from datetime import timedelta
In [326]: start = datetime(2011, 1, 7)
In [327]: start + timedelta(12)
Out[327]: datetime.datetime(2011, 1, 19, 0, 0)
In [328]: start - 2 * timedelta(12)
Out[328]: datetime.datetime(2010, 12, 14, 0, 0)
The data types in the datetime module are summarized in Table 10-1. While this chapter is mainly concerned with the data types in pandas and higher level time series manipulation, you will undoubtedly encounter the datetime-based types in many other places in Python the wild.
Table 10-1. Types in datetime module
Converting between string and datetime
datetime objects and pandas Timestamp objects, which I’ll introduce later, can be formatted as strings using str or the strftime method, passing a format specification:
In [329]: stamp = datetime(2011, 1, 3)
In [330]: str(stamp) In [331]: stamp.strftime('%Y-%m-%d')
Out[330]: '2011-01-03 00:00:00' Out[331]: '2011-01-03'
See Table 10-2 for a complete list of the format codes. These same format codes can be used to convert strings to dates using datetime.strptime:
In [332]: value = '2011-01-03'
In [333]: datetime.strptime(value, '%Y-%m-%d')
Out[333]: datetime.datetime(2011, 1, 3, 0, 0)
In [334]: datestrs = ['7/6/2011', '8/6/2011']
In [335]: [datetime.strptime(x, '%m/%d/%Y') for x in datestrs]
Out[335]: [datetime.datetime(2011, 7, 6, 0, 0), datetime.datetime(2011, 8, 6, 0, 0)]
datetime.strptime is the best way to parse a date with a known format. However, it can be a bit annoying to have to write a format spec each time, especially for common date formats. In this case, you can use the parser.parse method in the third party dateutil package:
In [336]: from dateutil.parser import parse
In [337]: parse('2011-01-03')
Out[337]: datetime.datetime(2011, 1, 3, 0, 0)
dateutil is capable of parsing almost any human-intelligible date representation:
In [338]: parse('Jan 31, 1997 10:45 PM')
Out[338]: datetime.datetime(1997, 1, 31, 22, 45)
In international locales, day appearing before month is very common, so you can pass dayfirst=True to indicate this:
In [339]: parse('6/12/2011', dayfirst=True)
Out[339]: datetime.datetime(2011, 12, 6, 0, 0)
pandas is generally oriented toward working with arrays of dates, whether used as an axis index or a column in a DataFrame. The to_datetime method parses many different kinds of date representations. Standard date formats like ISO8601 can be parsed very quickly.
In [340]: datestrs
Out[340]: ['7/6/2011', '8/6/2011']
In [341]: pd.to_datetime(datestrs)
Out[341]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-07-06 00:00:00, 2011-08-06 00:00:00]
Length: 2, Freq: None, Timezone: None
It also handles values that should be considered missing (None, empty string, etc.):
In [342]: idx = pd.to_datetime(datestrs + [None])
In [343]: idx
Out[343]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-07-06 00:00:00, ..., NaT]
Length: 3, Freq: None, Timezone: None
In [344]: idx[2]
Out[344]: NaT
In [345]: pd.isnull(idx)
Out[345]: array([False, False, True], dtype=bool)
NaT (Not a Time) is pandas’s NA value for timestamp data.
CAUTION
dateutil.parser is a useful, but not perfect tool. Notably, it will recognize some strings as dates that you might prefer that it didn’t, like '42' will be parsed as the year 2042 with today’s calendar date.
Table 10-2. Datetime format specification (ISO C89 compatible)
datetime objects also have a number of locale-specific formatting options for systems in other countries or languages. For example, the abbreviated month names will be different on German or French systems compared with English systems.
Table 10-3. Locale-specific date formatting
Time Series Basics
The most basic kind of time series object in pandas is a Series indexed by timestamps, which is often represented external to pandas as Python strings or datetime objects:
In [346]: from datetime import datetime
In [347]: dates = [datetime(2011, 1, 2), datetime(2011, 1, 5), datetime(2011, 1, 7),
.....: datetime(2011, 1, 8), datetime(2011, 1, 10), datetime(2011, 1, 12)]
In [348]: ts = Series(np.random.randn(6), index=dates)
In [349]: ts
Out[349]:
2011-01-02 0.690002
2011-01-05 1.001543
2011-01-07 -0.503087
2011-01-08 -0.622274
2011-01-10 -0.921169
2011-01-12 -0.726213
Under the hood, these datetime objects have been put in a DatetimeIndex, and the variable ts is now of type TimeSeries:
In [350]: type(ts)
Out[350]: pandas.core.series.TimeSeries
In [351]: ts.index
Out[351]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-02 00:00:00, ..., 2011-01-12 00:00:00]
Length: 6, Freq: None, Timezone: None
NOTE
It’s not necessary to use the TimeSeries constructor explicitly; when creating a Series with a DatetimeIndex, pandas knows that the object is a time series.
Like other Series, arithmetic operations between differently-indexed time series automatically align on the dates:
In [352]: ts + ts[::2]
Out[352]:
2011-01-02 1.380004
2011-01-05 NaN
2011-01-07 -1.006175
2011-01-08 NaN
2011-01-10 -1.842337
2011-01-12 NaN
pandas stores timestamps using NumPy’s datetime64 data type at the nanosecond resolution:
In [353]: ts.index.dtype
Out[353]: dtype('datetime64[ns]')
Scalar values from a DatetimeIndex are pandas Timestamp objects
In [354]: stamp = ts.index[0]
In [355]: stamp
Out[355]: <Timestamp: 2011-01-02 00:00:00>
A Timestamp can be substituted anywhere you would use a datetime object. Additionally, it can store frequency information (if any) and understands how to do time zone conversions and other kinds of manipulations. More on both of these things later.
Indexing, Selection, Subsetting
TimeSeries is a subclass of Series and thus behaves in the same way with regard to indexing and selecting data based on label:
In [356]: stamp = ts.index[2]
In [357]: ts[stamp]
Out[357]: -0.50308739136034464
As a convenience, you can also pass a string that is interpretable as a date:
In [358]: ts['1/10/2011'] In [359]: ts['20110110']
Out[358]: -0.92116860801301081 Out[359]: -0.92116860801301081
For longer time series, a year or only a year and month can be passed to easily select slices of data:
In [360]: longer_ts = Series(np.random.randn(1000),
.....: index=pd.date_range('1/1/2000', periods=1000))
In [361]: longer_ts
Out[361]:
2000-01-01 0.222896
2000-01-02 0.051316
2000-01-03 -1.157719
2000-01-04 0.816707
...
2002-09-23 -0.395813
2002-09-24 -0.180737
2002-09-25 1.337508
2002-09-26 -0.416584
Freq: D, Length: 1000
In [362]: longer_ts['2001'] In [363]: longer_ts['2001-05']
Out[362]: Out[363]:
2001-01-01 -1.499503 2001-05-01 1.662014
2001-01-02 0.545154 2001-05-02 -1.189203
2001-01-03 0.400823 2001-05-03 0.093597
2001-01-04 -1.946230 2001-05-04 -0.539164
... ...
2001-12-28 -1.568139 2001-05-28 -0.683066
2001-12-29 -0.900887 2001-05-29 -0.950313
2001-12-30 0.652346 2001-05-30 0.400710
2001-12-31 0.871600 2001-05-31 -0.126072
Freq: D, Length: 365 Freq: D, Length: 31
Slicing with dates works just like with a regular Series:
In [364]: ts[datetime(2011, 1, 7):]
Out[364]:
2011-01-07 -0.503087
2011-01-08 -0.622274
2011-01-10 -0.921169
2011-01-12 -0.726213
Because most time series data is ordered chronologically, you can slice with timestamps not contained in a time series to perform a range query:
In [365]: ts In [366]: ts['1/6/2011':'1/11/2011']
Out[365]: Out[366]:
2011-01-02 0.690002 2011-01-07 -0.503087
2011-01-05 1.001543 2011-01-08 -0.622274
2011-01-07 -0.503087 2011-01-10 -0.921169
2011-01-08 -0.622274
2011-01-10 -0.921169
2011-01-12 -0.726213
As before you can pass either a string date, datetime, or Timestamp. Remember that slicing in this manner produces views on the source time series just like slicing NumPy arrays. There is an equivalent instance method truncate which slices a TimeSeries between two dates:
In [367]: ts.truncate(after='1/9/2011')
Out[367]:
2011-01-02 0.690002
2011-01-05 1.001543
2011-01-07 -0.503087
2011-01-08 -0.622274
All of the above holds true for DataFrame as well, indexing on its rows:
In [368]: dates = pd.date_range('1/1/2000', periods=100, freq='W-WED')
In [369]: long_df = DataFrame(np.random.randn(100, 4),
.....: index=dates,
.....: columns=['Colorado', 'Texas', 'New York', 'Ohio'])
In [370]: long_df.ix['5-2001']
Out[370]:
Colorado Texas New York Ohio
2001-05-02 0.943479 -0.349366 0.530412 -0.508724
2001-05-09 0.230643 -0.065569 -0.248717 -0.587136
2001-05-16 -1.022324 1.060661 0.954768 -0.511824
2001-05-23 -1.387680 0.767902 -1.164490 1.527070
2001-05-30 0.287542 0.715359 -0.345805 0.470886
Time Series with Duplicate Indices
In some applications, there may be multiple data observations falling on a particular timestamp. Here is an example:
In [371]: dates = pd.DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/2/2000',
.....: '1/3/2000'])
In [372]: dup_ts = Series(np.arange(5), index=dates)
In [373]: dup_ts
Out[373]:
2000-01-01 0
2000-01-02 1
2000-01-02 2
2000-01-02 3
2000-01-03 4
We can tell that the index is not unique by checking its is_unique property:
In [374]: dup_ts.index.is_unique
Out[374]: False
Indexing into this time series will now either produce scalar values or slices depending on whether a timestamp is duplicated:
In [375]: dup_ts['1/3/2000'] # not duplicated
Out[375]: 4
In [376]: dup_ts['1/2/2000'] # duplicated
Out[376]:
2000-01-02 1
2000-01-02 2
2000-01-02 3
Suppose you wanted to aggregate the data having non-unique timestamps. One way to do this is to use groupby and pass level=0 (the only level of indexing!):
In [377]: grouped = dup_ts.groupby(level=0)
In [378]: grouped.mean() In [379]: grouped.count()
Out[378]: Out[379]:
2000-01-01 0 2000-01-01 1
2000-01-02 2 2000-01-02 3
2000-01-03 4 2000-01-03 1
Date Ranges, Frequencies, and Shifting
Generic time series in pandas are assumed to be irregular; that is, they have no fixed frequency. For many applications this is sufficient. However, it’s often desirable to work relative to a fixed frequency, such as daily, monthly, or every 15 minutes, even if that means introducing missing values into a time series. Fortunately pandas has a full suite of standard time series frequencies and tools for resampling, inferring frequencies, and generating fixed frequency date ranges. For example, in the example time series, converting it to be fixed daily frequency can be accomplished by calling resample:
In [380]: ts In [381]: ts.resample('D')
Out[380]: Out[381]:
2011-01-02 0.690002 2011-01-02 0.690002
2011-01-05 1.001543 2011-01-03 NaN
2011-01-07 -0.503087 2011-01-04 NaN
2011-01-08 -0.622274 2011-01-05 1.001543
2011-01-10 -0.921169 2011-01-06 NaN
2011-01-12 -0.726213 2011-01-07 -0.503087
2011-01-08 -0.622274
2011-01-09 NaN
2011-01-10 -0.921169
2011-01-11 NaN
2011-01-12 -0.726213
Freq: D
Conversion between frequencies or resampling is a big enough topic to have its own section later. Here I’ll show you how to use the base frequencies and multiples thereof.
Generating Date Ranges
While I used it previously without explanation, you may have guessed that pandas.date_range is responsible for generating a DatetimeIndex with an indicated length according to a particular frequency:
In [382]: index = pd.date_range('4/1/2012', '6/1/2012')
In [383]: index
Out[383]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-04-01 00:00:00, ..., 2012-06-01 00:00:00]
Length: 62, Freq: D, Timezone: None
By default, date_range generates daily timestamps. If you pass only a start or end date, you must pass a number of periods to generate:
In [384]: pd.date_range(start='4/1/2012', periods=20)
Out[384]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-04-01 00:00:00, ..., 2012-04-20 00:00:00]
Length: 20, Freq: D, Timezone: None
In [385]: pd.date_range(end='6/1/2012', periods=20)
Out[385]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-13 00:00:00, ..., 2012-06-01 00:00:00]
Length: 20, Freq: D, Timezone: None
The start and end dates define strict boundaries for the generated date index. For example, if you wanted a date index containing the last business day of each month, you would pass the 'BM' frequency (business end of month) and only dates falling on or inside the date interval will be included:
In [386]: pd.date_range('1/1/2000', '12/1/2000', freq='BM')
Out[386]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-31 00:00:00, ..., 2000-11-30 00:00:00]
Length: 11, Freq: BM, Timezone: None
date_range by default preserves the time (if any) of the start or end timestamp:
In [387]: pd.date_range('5/2/2012 12:56:31', periods=5)
Out[387]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-02 12:56:31, ..., 2012-05-06 12:56:31]
Length: 5, Freq: D, Timezone: None
Sometimes you will have start or end dates with time information but want to generate a set of timestamps normalized to midnight as a convention. To do this, there is a normalize option:
In [388]: pd.date_range('5/2/2012 12:56:31', periods=5, normalize=True)
Out[388]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-02 00:00:00, ..., 2012-05-06 00:00:00]
Length: 5, Freq: D, Timezone: None
Frequencies and Date Offsets
Frequencies in pandas are composed of a base frequency and a multiplier. Base frequencies are typically referred to by a string alias, like 'M' for monthly or 'H' for hourly. For each base frequency, there is an object defined generally referred to as a date offset. For example, hourly frequency can be represented with the Hour class:
In [389]: from pandas.tseries.offsets import Hour, Minute
In [390]: hour = Hour()
In [391]: hour
Out[391]: <1 Hour>
You can define a multiple of an offset by passing an integer:
In [392]: four_hours = Hour(4)
In [393]: four_hours
Out[393]: <4 Hours>
In most applications, you would never need to explicitly create one of these objects, instead using a string alias like 'H' or '4H'. Putting an integer before the base frequency creates a multiple:
In [394]: pd.date_range('1/1/2000', '1/3/2000 23:59', freq='4h')
Out[394]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-03 20:00:00]
Length: 18, Freq: 4H, Timezone: None
Many offsets can be combined together by addition:
In [395]: Hour(2) + Minute(30)
Out[395]: <150 Minutes>
Similarly, you can pass frequency strings like '2h30min' which will effectively be parsed to the same expression:
In [396]: pd.date_range('1/1/2000', periods=10, freq='1h30min')
Out[396]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01 00:00:00, ..., 2000-01-01 13:30:00]
Length: 10, Freq: 90T, Timezone: None
Some frequencies describe points in time that are not evenly spaced. For example, 'M' (calendar month end) and 'BM' (last business/weekday of month) depend on the number of days in a month and, in the latter case, whether the month ends on a weekend or not. For lack of a better term, I call these anchored offsets.
See Table 10-4 for a listing of frequency codes and date offset classes available in pandas.
NOTE
Users can define their own custom frequency classes to provide date logic not available in pandas, though the full details of that are outside the scope of this book.
Table 10-4. Base Time Series Frequencies
Alias	Offset Type	Description
D | Day | Calendar daily |
B | BusinessDay | Business daily |
H | Hour | Hourly |
T or min | Minute | Minutely |
S | Second | Secondly |
L or ms | Milli | Millisecond (1/1000th of 1 second) |
U | Micro | Microsecond (1/1000000th of 1 second) |
M | MonthEnd | Last calendar day of month |
BM | BusinessMonthEnd | Last business day (weekday) of month |
MS | MonthBegin | First calendar day of month |
BMS | BusinessMonthBegin | First weekday of month |
W-MON, W-TUE, ... | Week | Weekly on given day of week: MON, TUE, WED, THU, FRI, SAT, or SUN. |
WOM-1MON, WOM-2MON, ... | WeekOfMonth | Generate weekly dates in the first, second, third, or fourth week of the month. For example, WOM-3FRI for the 3rd Friday of each month. |
Q-JAN, Q-FEB, ... | QuarterEnd | Quarterly dates anchored on last calendar day of each month, for year ending in indicated month: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC. |
BQ-JAN, BQ-FEB, ... | BusinessQuarterEnd | Quarterly dates anchored on last weekday day of each month, for year ending in indicated month |
QS-JAN, QS-FEB, ... | QuarterBegin | Quarterly dates anchored on first calendar day of each month, for year ending in indicated month |
BQS-JAN, BQS-FEB, ... | BusinessQuarterBegin | Quarterly dates anchored on first weekday day of each month, for year ending in indicated month |
A-JAN, A-FEB, ... | YearEnd | Annual dates anchored on last calendar day of given month: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC. |
BA-JAN, BA-FEB, ... | BusinessYearEnd | Annual dates anchored on last weekday of given month |
AS-JAN, AS-FEB, ... | YearBegin | Annual dates anchored on first day of given month |
BAS-JAN, BAS-FEB, ... | BusinessYearBegin | Annual dates anchored on first weekday of given month |
Week of month dates
One useful frequency class is “week of month”, starting with WOM. This enables you to get dates like the third Friday of each month:
In [397]: rng = pd.date_range('1/1/2012', '9/1/2012', freq='WOM-3FRI')
In [398]: list(rng)
Out[398]:
[<Timestamp: 2012-01-20 00:00:00>,
<Timestamp: 2012-02-17 00:00:00>,
<Timestamp: 2012-03-16 00:00:00>,
<Timestamp: 2012-04-20 00:00:00>,
<Timestamp: 2012-05-18 00:00:00>,
<Timestamp: 2012-06-15 00:00:00>,
<Timestamp: 2012-07-20 00:00:00>,
<Timestamp: 2012-08-17 00:00:00>]
Traders of US equity options will recognize these dates as the standard dates of monthly expiry.
Shifting (Leading and Lagging) Data
“Shifting” refers to moving data backward and forward through time. Both Series and DataFrame have a shift method for doing naive shifts forward or backward, leaving the index unmodified:
In [399]: ts = Series(np.random.randn(4),
.....: index=pd.date_range('1/1/2000', periods=4, freq='M'))
In [400]: ts In [401]: ts.shift(2) In [402]: ts.shift(-2)
Out[400]: Out[401]: Out[402]:
2000-01-31 0.575283 2000-01-31 NaN 2000-01-31 1.814582
2000-02-29 0.304205 2000-02-29 NaN 2000-02-29 1.634858
2000-03-31 1.814582 2000-03-31 0.575283 2000-03-31 NaN
2000-04-30 1.634858 2000-04-30 0.304205 2000-04-30 NaN
Freq: M Freq: M Freq: M
A common use of shift is computing percent changes in a time series or multiple time series as DataFrame columns. This is expressed as
ts / ts.shift(1) - 1
Because naive shifts leave the index unmodified, some data is discarded. Thus if the frequency is known, it can be passed to shift to advance the timestamps instead of simply the data:
In [403]: ts.shift(2, freq='M')
Out[403]:
2000-03-31 0.575283
2000-04-30 0.304205
2000-05-31 1.814582
2000-06-30 1.634858
Freq: M
Other frequencies can be passed, too, giving you a lot of flexibility in how to lead and lag the data:
In [404]: ts.shift(3, freq='D') In [405]: ts.shift(1, freq='3D')
Out[404]: Out[405]:
2000-02-03 0.575283 2000-02-03 0.575283
2000-03-03 0.304205 2000-03-03 0.304205
2000-04-03 1.814582 2000-04-03 1.814582
2000-05-03 1.634858 2000-05-03 1.634858
In [406]: ts.shift(1, freq='90T')
Out[406]:
2000-01-31 01:30:00 0.575283
2000-02-29 01:30:00 0.304205
2000-03-31 01:30:00 1.814582
2000-04-30 01:30:00 1.634858
Shifting dates with offsets
The pandas date offsets can also be used with datetime or Timestamp objects:
In [407]: from pandas.tseries.offsets import Day, MonthEnd
In [408]: now = datetime(2011, 11, 17)
In [409]: now + 3 * Day()
Out[409]: datetime.datetime(2011, 11, 20, 0, 0)
If you add an anchored offset like MonthEnd, the first increment will roll forward a date to the next date according to the frequency rule:
In [410]: now + MonthEnd()
Out[410]: datetime.datetime(2011, 11, 30, 0, 0)
In [411]: now + MonthEnd(2)
Out[411]: datetime.datetime(2011, 12, 31, 0, 0)
Anchored offsets can explicitly “roll” dates forward or backward using their rollforward and rollback methods, respectively:
In [412]: offset = MonthEnd()
In [413]: offset.rollforward(now)
Out[413]: datetime.datetime(2011, 11, 30, 0, 0)
In [414]: offset.rollback(now)
Out[414]: datetime.datetime(2011, 10, 31, 0, 0)
A clever use of date offsets is to use these methods with groupby:
In [415]: ts = Series(np.random.randn(20),
.....: index=pd.date_range('1/15/2000', periods=20, freq='4d'))
In [416]: ts.groupby(offset.rollforward).mean()
Out[416]:
2000-01-31 -0.448874
2000-02-29 -0.683663
2000-03-31 0.251920
Of course, an easier and faster way to do this is using resample (much more on this later):
In [417]: ts.resample('M', how='mean')
Out[417]:
2000-01-31 -0.448874
2000-02-29 -0.683663
2000-03-31 0.251920
Freq: M
Time Zone Handling
Working with time zones is generally considered one of the most unpleasant parts of time series manipulation. In particular, daylight savings time (DST) transitions are a common source of complication. As such, many time series users choose to work with time series in coordinated universal time or UTC, which is the successor to Greenwich Mean Time and is the current international standard. Time zones are expressed as offsets from UTC; for example, New York is four hours behind UTC during daylight savings time and 5 hours the rest of the year.
In Python, time zone information comes from the 3rd party pytz library, which exposes the Olson database, a compilation of world time zone information. This is especially important for historical data because the DST transition dates (and even UTC offsets) have been changed numerous times depending on the whims of local governments. In the United States,the DST transition times have been changed many times since 1900!
For detailed information about pytz library, you’ll need to look at that library’s documentation. As far as this book is concerned, pandas wraps pytz’s functionality so you can ignore its API outside of the time zone names. Time zone names can be found interactively and in the docs:
In [418]: import pytz
In [419]: pytz.common_timezones[-5:]
Out[419]: ['US/Eastern', 'US/Hawaii', 'US/Mountain', 'US/Pacific', 'UTC']
To get a time zone object from pytz, use pytz.timezone:
In [420]: tz = pytz.timezone('US/Eastern')
In [421]: tz
Out[421]: <DstTzInfo 'US/Eastern' EST-1 day, 19:00:00 STD>
Methods in pandas will accept either time zone names or these objects. I recommend just using the names.
Localization and Conversion
By default, time series in pandas are time zone naive. Consider the following time series:
rng = pd.date_range('3/9/2012 9:30', periods=6, freq='D')
ts = Series(np.random.randn(len(rng)), index=rng)
The index’s tz field is None:
In [423]: print(ts.index.tz)
None
Date ranges can be generated with a time zone set:
In [424]: pd.date_range('3/9/2012 9:30', periods=10, freq='D', tz='UTC')
Out[424]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-09 09:30:00, ..., 2012-03-18 09:30:00]
Length: 10, Freq: D, Timezone: UTC
Conversion from naive to localized is handled by the tz_localize method:
In [425]: ts_utc = ts.tz_localize('UTC')
In [426]: ts_utc
Out[426]:
2012-03-09 09:30:00+00:00 0.414615
2012-03-10 09:30:00+00:00 0.427185
2012-03-11 09:30:00+00:00 1.172557
2012-03-12 09:30:00+00:00 -0.351572
2012-03-13 09:30:00+00:00 1.454593
2012-03-14 09:30:00+00:00 2.043319
Freq: D
In [427]: ts_utc.index
Out[427]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-09 09:30:00, ..., 2012-03-14 09:30:00]
Length: 6, Freq: D, Timezone: UTC
Once a time series has been localized to a particular time zone, it can be converted to another time zone using tz_convert:
In [428]: ts_utc.tz_convert('US/Eastern')
Out[428]:
2012-03-09 04:30:00-05:00 0.414615
2012-03-10 04:30:00-05:00 0.427185
2012-03-11 05:30:00-04:00 1.172557
2012-03-12 05:30:00-04:00 -0.351572
2012-03-13 05:30:00-04:00 1.454593
2012-03-14 05:30:00-04:00 2.043319
Freq: D
In the case of the above time series, which straddles a DST transition in the US/Eastern time zone, we could localize to EST and convert to, say, UTC or Berlin time:
In [429]: ts_eastern = ts.tz_localize('US/Eastern')
In [430]: ts_eastern.tz_convert('UTC')
Out[430]:
2012-03-09 14:30:00+00:00 0.414615
2012-03-10 14:30:00+00:00 0.427185
2012-03-11 13:30:00+00:00 1.172557
2012-03-12 13:30:00+00:00 -0.351572
2012-03-13 13:30:00+00:00 1.454593
2012-03-14 13:30:00+00:00 2.043319
Freq: D
In [431]: ts_eastern.tz_convert('Europe/Berlin')
Out[431]:
2012-03-09 15:30:00+01:00 0.414615
2012-03-10 15:30:00+01:00 0.427185
2012-03-11 14:30:00+01:00 1.172557
2012-03-12 14:30:00+01:00 -0.351572
2012-03-13 14:30:00+01:00 1.454593
2012-03-14 14:30:00+01:00 2.043319
Freq: D
tz_localize and tz_convert are also instance methods on DatetimeIndex:
In [432]: ts.index.tz_localize('Asia/Shanghai')
Out[432]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-09 09:30:00, ..., 2012-03-14 09:30:00]
Length: 6, Freq: D, Timezone: Asia/Shanghai
CAUTION
Localizing naive timestamps also checks for ambiguous or non-existent times around daylight savings time transitions.
Operations with Time Zone−aware Timestamp Objects
Similar to time series and date ranges, individual Timestamp objects similarly can be localized from naive to time zone-aware and converted from one time zone to another:
In [433]: stamp = pd.Timestamp('2011-03-12 04:00')
In [434]: stamp_utc = stamp.tz_localize('utc')
In [435]: stamp_utc.tz_convert('US/Eastern')
Out[435]: <Timestamp: 2011-03-11 23:00:00-0500 EST, tz=US/Eastern>
You can also pass a time zone when creating the Timestamp:
In [436]: stamp_moscow = pd.Timestamp('2011-03-12 04:00', tz='Europe/Moscow')
In [437]: stamp_moscow
Out[437]: <Timestamp: 2011-03-12 04:00:00+0300 MSK, tz=Europe/Moscow>
Time zone-aware Timestamp objects internally store a UTC timestamp value as nanoseconds since the UNIX epoch (January 1, 1970); this UTC value is invariant between time zone conversions:
In [438]: stamp_utc.value
Out[438]: 1299902400000000000
In [439]: stamp_utc.tz_convert('US/Eastern').value
Out[439]: 1299902400000000000
When performing time arithmetic using pandas’s DateOffset objects, daylight savings time transitions are respected where possible:
30 minutes before DST transition
In [440]: from pandas.tseries.offsets import Hour
In [441]: stamp = pd.Timestamp('2012-03-12 01:30', tz='US/Eastern')
In [442]: stamp
Out[442]: <Timestamp: 2012-03-12 01:30:00-0400 EDT, tz=US/Eastern>
In [443]: stamp + Hour()
Out[443]: <Timestamp: 2012-03-12 02:30:00-0400 EDT, tz=US/Eastern>
90 minutes before DST transition
In [444]: stamp = pd.Timestamp('2012-11-04 00:30', tz='US/Eastern')
In [445]: stamp
Out[445]: <Timestamp: 2012-11-04 00:30:00-0400 EDT, tz=US/Eastern>
In [446]: stamp + 2 * Hour()
Out[446]: <Timestamp: 2012-11-04 01:30:00-0500 EST, tz=US/Eastern>
Operations between Different Time Zones
If two time series with different time zones are combined, the result will be UTC. Since the timestamps are stored under the hood in UTC, this is a straightforward operation and requires no conversion to happen:
In [447]: rng = pd.date_range('3/7/2012 9:30', periods=10, freq='B')
In [448]: ts = Series(np.random.randn(len(rng)), index=rng)
In [449]: ts
Out[449]:
2012-03-07 09:30:00 -1.749309
2012-03-08 09:30:00 -0.387235
2012-03-09 09:30:00 -0.208074
2012-03-12 09:30:00 -1.221957
2012-03-13 09:30:00 -0.067460
2012-03-14 09:30:00 0.229005
2012-03-15 09:30:00 -0.576234
2012-03-16 09:30:00 0.816895
2012-03-19 09:30:00 -0.772192
2012-03-20 09:30:00 -1.333576
Freq: B
In [450]: ts1 = ts[:7].tz_localize('Europe/London')
In [451]: ts2 = ts1[2:].tz_convert('Europe/Moscow')
In [452]: result = ts1 + ts2
In [453]: result.index
Out[453]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-07 09:30:00, ..., 2012-03-15 09:30:00]
Length: 7, Freq: B, Timezone: UTC
Periods and Period Arithmetic
Periods represent time spans, like days, months, quarters, or years. The Period class represents this data type, requiring a string or integer and a frequency from the above table:
In [454]: p = pd.Period(2007, freq='A-DEC')
In [455]: p
Out[455]: Period('2007', 'A-DEC')
In this case, the Period object represents the full timespan from January 1, 2007 to December 31, 2007, inclusive. Conveniently, adding and subtracting integers from periods has the effect of shifting by their frequency:
In [456]: p + 5 In [457]: p - 2
Out[456]: Period('2012', 'A-DEC') Out[457]: Period('2005', 'A-DEC')
If two periods have the same frequency, their difference is the number of units between them:
In [458]: pd.Period('2014', freq='A-DEC') - p
Out[458]: 7
Regular ranges of periods can be constructed using the period_range function:
In [459]: rng = pd.period_range('1/1/2000', '6/30/2000', freq='M')
In [460]: rng
Out[460]:
<class 'pandas.tseries.period.PeriodIndex'>
freq: M
[2000-01, ..., 2000-06]
length: 6
The PeriodIndex class stores a sequence of periods and can serve as an axis index in any pandas data structure:
In [461]: Series(np.random.randn(6), index=rng)
Out[461]:
2000-01 -0.309119
2000-02 0.028558
2000-03 1.129605
2000-04 -0.374173
2000-05 -0.011401
2000-06 0.272924
Freq: M
If you have an array of strings, you can also appeal to the PeriodIndex class itself:
In [462]: values = ['2001Q3', '2002Q2', '2003Q1']
In [463]: index = pd.PeriodIndex(values, freq='Q-DEC')
In [464]: index
Out[464]:
<class 'pandas.tseries.period.PeriodIndex'>
freq: Q-DEC
[2001Q3, ..., 2003Q1]
length: 3
Period Frequency Conversion
Periods and PeriodIndex objects can be converted to another frequency using their asfreq method. As an example, suppose we had an annual period and wanted to convert it into a monthly period either at the start or end of the year. This is fairly straightforward:
In [465]: p = pd.Period('2007', freq='A-DEC')
In [466]: p.asfreq('M', how='start') In [467]: p.asfreq('M', how='end')
Out[466]: Period('2007-01', 'M') Out[467]: Period('2007-12', 'M')
You can think of Period('2007', 'A-DEC') as being a cursor pointing to a span of time, subdivided by monthly periods. See Figure 10-1 for an illustration of this. For a fiscal year ending on a month other than December, the monthly subperiods belonging are different:
In [468]: p = pd.Period('2007', freq='A-JUN')
In [469]: p.asfreq('M', 'start') In [470]: p.asfreq('M', 'end')
Out[469]: Period('2006-07', 'M') Out[470]: Period('2007-07', 'M')
When converting from high to low frequency, the superperiod will be determined depending on where the subperiod “belongs”. For example, in A-JUN frequency, the month Aug-2007 is actually part of the 2008 period:
In [471]: p = pd.Period('2007-08', 'M')
In [472]: p.asfreq('A-JUN')
Out[472]: Period('2008', 'A-JUN')
Whole PeriodIndex objects or TimeSeries can be similarly converted with the same semantics:
In [473]: rng = pd.period_range('2006', '2009', freq='A-DEC')
In [474]: ts = Series(np.random.randn(len(rng)), index=rng)
In [475]: ts
Out[475]:
2006 -0.601544
2007 0.574265
2008 -0.194115
2009 0.202225
Freq: A-DEC
In [476]: ts.asfreq('M', how='start') In [477]: ts.asfreq('B', how='end')
Out[476]: Out[477]:
2006-01 -0.601544 2006-12-29 -0.601544
2007-01 0.574265 2007-12-31 0.574265
2008-01 -0.194115 2008-12-31 -0.194115
2009-01 0.202225 2009-12-31 0.202225
Freq: M Freq: B
Figure 10-1. Period frequency conversion illustration
Quarterly Period Frequencies
Quarterly data is standard in accounting, finance, and other fields. Much quarterly data is reported relative to a fiscal year end, typically the last calendar or business day of one of the 12 months of the year. As such, the period 2012Q4 has a different meaning depending on fiscal year end. pandas supports all 12 possible quarterly frequencies as Q-JAN through Q-DEC:
In [478]: p = pd.Period('2012Q4', freq='Q-JAN')
In [479]: p
Out[479]: Period('2012Q4', 'Q-JAN')
In the case of fiscal year ending in January, 2012Q4 runs from November through January, which you can check by converting to daily frequency. See Figure 10-2 for an illustration:
In [480]: p.asfreq('D', 'start') In [481]: p.asfreq('D', 'end')
Out[480]: Period('2011-11-01', 'D') Out[481]: Period('2012-01-31', 'D')
Thus, it’s possible to do period arithmetic very easily; for example, to get the timestamp at 4PM on the 2nd to last business day of the quarter, you could do:
In [482]: p4pm = (p.asfreq('B', 'e') - 1).asfreq('T', 's') + 16 * 60
In [483]: p4pm
Out[483]: Period('2012-01-30 16:00', 'T')
In [484]: p4pm.to_timestamp()
Out[484]: <Timestamp: 2012-01-30 16:00:00>
Figure 10-2. Different quarterly frequency conventions
Generating quarterly ranges works as you would expect using period_range. Arithmetic is identical, too:
In [485]: rng = pd.period_range('2011Q3', '2012Q4', freq='Q-JAN')
In [486]: ts = Series(np.arange(len(rng)), index=rng)
In [487]: ts
Out[487]:
2011Q3 0
2011Q4 1
2012Q1 2
2012Q2 3
2012Q3 4
2012Q4 5
Freq: Q-JAN
In [488]: new_rng = (rng.asfreq('B', 'e') - 1).asfreq('T', 's') + 16 * 60
In [489]: ts.index = new_rng.to_timestamp()
In [490]: ts
Out[490]:
2010-10-28 16:00:00 0
2011-01-28 16:00:00 1
2011-04-28 16:00:00 2
2011-07-28 16:00:00 3
2011-10-28 16:00:00 4
2012-01-30 16:00:00 5
Converting Timestamps to Periods (and Back)
Series and DataFrame objects indexed by timestamps can be converted to periods using the to_period method:
In [491]: rng = pd.date_range('1/1/2000', periods=3, freq='M')
In [492]: ts = Series(randn(3), index=rng)
In [493]: pts = ts.to_period()
In [494]: ts In [495]: pts
Out[494]: Out[495]:
2000-01-31 -0.505124 2000-01 -0.505124
2000-02-29 2.954439 2000-02 2.954439
2000-03-31 -2.630247 2000-03 -2.630247
Freq: M Freq: M
Since periods always refer to non-overlapping timespans, a timestamp can only belong to a single period for a given frequency. While the frequency of the new PeriodIndex is inferred from the timestamps by default, you can specify any frequency you want. There is also no problem with having duplicate periods in the result:
In [496]: rng = pd.date_range('1/29/2000', periods=6, freq='D')
In [497]: ts2 = Series(randn(6), index=rng)
In [498]: ts2.to_period('M')
Out[498]:
2000-01 -0.352453
2000-01 -0.477808
2000-01 0.161594
2000-02 1.686833
2000-02 0.821965
2000-02 -0.667406
Freq: M
To convert back to timestamps, use to_timestamp:
In [499]: pts = ts.to_period()
In [500]: pts
Out[500]:
2000-01 -0.505124
2000-02 2.954439
2000-03 -2.630247
Freq: M
In [501]: pts.to_timestamp(how='end')
Out[501]:
2000-01-31 -0.505124
2000-02-29 2.954439
2000-03-31 -2.630247
Freq: M
Creating a PeriodIndex from Arrays
Fixed frequency data sets are sometimes stored with timespan information spread across multiple columns. For example, in this macroeconomic data set, the year and quarter are in different columns:
In [502]: data = pd.read_csv('ch08/macrodata.csv')
In [503]: data.year In [504]: data.quarter
Out[503]: Out[504]:
0 1959 0 1
1 1959 1 2
2 1959 2 3
3 1959 3 4
... ...
199 2008 199 4
200 2009 200 1
201 2009 201 2
202 2009 202 3
Name: year, Length: 203 Name: quarter, Length: 203
By passing these arrays to PeriodIndex with a frequency, they can be combined to form an index for the DataFrame:
In [505]: index = pd.PeriodIndex(year=data.year, quarter=data.quarter, freq='Q-DEC')
In [506]: index
Out[506]:
<class 'pandas.tseries.period.PeriodIndex'>
freq: Q-DEC
[1959Q1, ..., 2009Q3]
length: 203
In [507]: data.index = index
In [508]: data.infl
Out[508]:
1959Q1 0.00
1959Q2 2.34
1959Q3 2.74
1959Q4 0.27
...
2008Q4 -8.79
2009Q1 0.94
2009Q2 3.37
2009Q3 3.56
Freq: Q-DEC, Name: infl, Length: 203
Resampling and Frequency Conversion
Resampling refers to the process of converting a time series from one frequency to another. Aggregating higher frequency data to lower frequency is called downsampling, while converting lower frequency to higher frequency is called upsampling. Not all resampling falls into either of these categories; for example, converting W-WED (weekly on Wednesday) to W-FRI is neither upsampling nor downstampling.
pandas objects are equipped with a resample method, which is the workhorse function for all frequency conversion:
In [509]: rng = pd.date_range('1/1/2000', periods=100, freq='D')
In [510]: ts = Series(randn(len(rng)), index=rng)
In [511]: ts.resample('M', how='mean')
Out[511]:
2000-01-31 0.170876
2000-02-29 0.165020
2000-03-31 0.095451
2000-04-30 0.363566
Freq: M
In [512]: ts.resample('M', how='mean', kind='period')
Out[512]:
2000-01 0.170876
2000-02 0.165020
2000-03 0.095451
2000-04 0.363566
Freq: M
resample is a flexible and high-performance method that can be used to process very large time series. I’ll illustrate its semantics and use through a series of examples.
Table 10-5. Resample method arguments
Downsampling
Aggregating data to a regular, lower frequency is a pretty normal time series task. The data you’re aggregating doesn’t need to be fixed frequently; the desired frequency defines bin edges that are used to slice the time series into pieces to aggregate. For example, to convert to monthly, 'M' or 'BM', the data need to be chopped up into one month intervals. Each interval is said to be half-open; a data point can only belong to one interval, and the union of the intervals must make up the whole time frame. There are a couple things to think about when using resample to downsample data:
Which side of each interval is closed
How to label each aggregated bin, either with the start of the interval or the end
To illustrate, let’s look at some one-minute data:
In [513]: rng = pd.date_range('1/1/2000', periods=12, freq='T')
In [514]: ts = Series(np.arange(12), index=rng)
In [515]: ts
Out[515]:
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
2000-01-01 00:09:00 9
2000-01-01 00:10:00 10
2000-01-01 00:11:00 11
Freq: T
Suppose you wanted to aggregate this data into five-minute chunks or bars by taking the sum of each group:
In [516]: ts.resample('5min', how='sum')
Out[516]:
2000-01-01 00:00:00 0
2000-01-01 00:05:00 15
2000-01-01 00:10:00 40
2000-01-01 00:15:00 11
Freq: 5T
The frequency you pass defines bin edges in five-minute increments. By default, the right bin edge is inclusive, so the 00:05 value is included in the 00:00 to 00:05 interval.[6] Passing closed='left' changes the interval to be closed on the left:
In [517]: ts.resample('5min', how='sum', closed='left')
Out[517]:
2000-01-01 00:05:00 10
2000-01-01 00:10:00 35
2000-01-01 00:15:00 21
Freq: 5T
As you can see, the resulting time series is labeled by the timestamps from the right side of each bin. By passing label='left' you can label them with the left bin edge:
In [518]: ts.resample('5min', how='sum', closed='left', label='left')
Out[518]:
2000-01-01 00:00:00 10
2000-01-01 00:05:00 35
2000-01-01 00:10:00 21
Freq: 5T
See Figure 10-3 for an illustration of minutely data being resampled to five-minute.
Figure 10-3. 5-minute resampling illustration of closed, label conventions
Lastly, you might want to shift the result index by some amount, say subtracting one second from the right edge to make it more clear which interval the timestamp refers to. To do this, pass a string or date offset to loffset:
In [519]: ts.resample('5min', how='sum', loffset='-1s')
Out[519]:
1999-12-31 23:59:59 0
2000-01-01 00:04:59 15
2000-01-01 00:09:59 40
2000-01-01 00:14:59 11
Freq: 5T
This also could have been accomplished by calling the shift method on the result without the loffset.
Open-High-Low-Close (OHLC) resampling
In finance, an ubiquitous way to aggregate a time series is to compute four values for each bucket: the first (open), last (close), maximum (high), and minimal (low) values. By passing how='ohlc' you will obtain a DataFrame having columns containing these four aggregates, which are efficiently computed in a single sweep of the data:
In [520]: ts.resample('5min', how='ohlc')
Out[520]:
open high low close
2000-01-01 00:00:00 0 0 0 0
2000-01-01 00:05:00 1 5 1 5
2000-01-01 00:10:00 6 10 6 10
2000-01-01 00:15:00 11 11 11 11
Resampling with GroupBy
An alternate way to downsample is to use pandas’s groupby functionality. For example, you can group by month or weekday by passing a function that accesses those fields on the time series’s index:
In [521]: rng = pd.date_range('1/1/2000', periods=100, freq='D')
In [522]: ts = Series(np.arange(100), index=rng)
In [523]: ts.groupby(lambda x: x.month).mean()
Out[523]:
1 15
2 45
3 75
4 95
In [524]: ts.groupby(lambda x: x.weekday).mean()
Out[524]:
0 47.5
1 48.5
2 49.5
3 50.5
4 51.5
5 49.0
6 50.0
Upsampling and Interpolation
When converting from a low frequency to a higher frequency, no aggregation is needed. Let’s consider a DataFrame with some weekly data:
In [525]: frame = DataFrame(np.random.randn(2, 4),
.....: index=pd.date_range('1/1/2000', periods=2, freq='W-WED'),
.....: columns=['Colorado', 'Texas', 'New York', 'Ohio'])
In [526]: frame[:5]
Out[526]:
Colorado Texas New York Ohio
2000-01-05 -0.609657 -0.268837 0.195592 0.85979
2000-01-12 -0.263206 1.141350 -0.101937 -0.07666
When resampling this to daily frequency, by default missing values are introduced:
In [527]: df_daily = frame.resample('D')
In [528]: df_daily
Out[528]:
Colorado Texas New York Ohio
2000-01-05 -0.609657 -0.268837 0.195592 0.85979
2000-01-06 NaN NaN NaN NaN
2000-01-07 NaN NaN NaN NaN
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.263206 1.141350 -0.101937 -0.07666
Suppose you wanted to fill forward each weekly value on the non-Wednesdays. The same filling or interpolation methods available in the fillna and reindex methods are available for resampling:
In [529]: frame.resample('D', fill_method='ffill')
Out[529]:
Colorado Texas New York Ohio
2000-01-05 -0.609657 -0.268837 0.195592 0.85979
2000-01-06 -0.609657 -0.268837 0.195592 0.85979
2000-01-07 -0.609657 -0.268837 0.195592 0.85979
2000-01-08 -0.609657 -0.268837 0.195592 0.85979
2000-01-09 -0.609657 -0.268837 0.195592 0.85979
2000-01-10 -0.609657 -0.268837 0.195592 0.85979
2000-01-11 -0.609657 -0.268837 0.195592 0.85979
2000-01-12 -0.263206 1.141350 -0.101937 -0.07666
You can similarly choose to only fill a certain number of periods forward to limit how far to continue using an observed value:
In [530]: frame.resample('D', fill_method='ffill', limit=2)
Out[530]:
Colorado Texas New York Ohio
2000-01-05 -0.609657 -0.268837 0.195592 0.85979
2000-01-06 -0.609657 -0.268837 0.195592 0.85979
2000-01-07 -0.609657 -0.268837 0.195592 0.85979
2000-01-08 NaN NaN NaN NaN
2000-01-09 NaN NaN NaN NaN
2000-01-10 NaN NaN NaN NaN
2000-01-11 NaN NaN NaN NaN
2000-01-12 -0.263206 1.141350 -0.101937 -0.07666
Notably, the new date index need not overlap with the old one at all:
In [531]: frame.resample('W-THU', fill_method='ffill')
Out[531]:
Colorado Texas New York Ohio
2000-01-06 -0.609657 -0.268837 0.195592 0.85979
2000-01-13 -0.263206 1.141350 -0.101937 -0.07666
Resampling with Periods
Resampling data indexed by periods is reasonably straightforward and works as you would hope:
In [532]: frame = DataFrame(np.random.randn(24, 4),
.....: index=pd.period_range('1-2000', '12-2001', freq='M'),
.....: columns=['Colorado', 'Texas', 'New York', 'Ohio'])
In [533]: frame[:5]
Out[533]:
Colorado Texas New York Ohio
2000-01 0.120837 1.076607 0.434200 0.056432
2000-02 -0.378890 0.047831 0.341626 1.567920
2000-03 -0.047619 -0.821825 -0.179330 -0.166675
2000-04 0.333219 -0.544615 -0.653635 -2.311026
2000-05 1.612270 -0.806614 0.557884 0.580201
In [534]: annual_frame = frame.resample('A-DEC', how='mean')
In [535]: annual_frame
Out[535]:
Colorado Texas New York Ohio
2000 0.352070 -0.553642 0.196642 -0.094099
2001 0.158207 0.042967 -0.360755 0.184687
Upsampling is more nuanced as you must make a decision about which end of the timespan in the new frequency to place the values before resampling, just like the asfreq method. The convention argument defaults to 'end' but can also be 'start':
Q-DEC: Quarterly, year ending in December
In [536]: annual_frame.resample('Q-DEC', fill_method='ffill')
Out[536]:
Colorado Texas New York Ohio
2000Q4 0.352070 -0.553642 0.196642 -0.094099
2001Q1 0.352070 -0.553642 0.196642 -0.094099
2001Q2 0.352070 -0.553642 0.196642 -0.094099
2001Q3 0.352070 -0.553642 0.196642 -0.094099
2001Q4 0.158207 0.042967 -0.360755 0.184687
In [537]: annual_frame.resample('Q-DEC', fill_method='ffill', convention='start')
Out[537]:
Colorado Texas New York Ohio
2000Q1 0.352070 -0.553642 0.196642 -0.094099
2000Q2 0.352070 -0.553642 0.196642 -0.094099
2000Q3 0.352070 -0.553642 0.196642 -0.094099
2000Q4 0.352070 -0.553642 0.196642 -0.094099
2001Q1 0.158207 0.042967 -0.360755 0.184687
Since periods refer to timespans, the rules about upsampling and downsampling are more rigid:
In downsampling, the target frequency must be a subperiod of the source frequency.
In upsampling, the target frequency must be a superperiod of the source frequency.
If these rules are not satisfied, an exception will be raised. This mainly affects the quarterly, annual, and weekly frequencies; for example, the timespans defined by Q-MAR only line up with A-MAR, A-JUN, A-SEP, and A-DEC:
In [538]: annual_frame.resample('Q-MAR', fill_method='ffill')
Out[538]:
Colorado Texas New York Ohio
2001Q3 0.352070 -0.553642 0.196642 -0.094099
2001Q4 0.352070 -0.553642 0.196642 -0.094099
2002Q1 0.352070 -0.553642 0.196642 -0.094099
2002Q2 0.352070 -0.553642 0.196642 -0.094099
2002Q3 0.158207 0.042967 -0.360755 0.184687
Time Series Plotting
Plots with pandas time series have improved date formatting compared with matplotlib out of the box. As an example, I downloaded some stock price data on a few common US stock from Yahoo! Finance:
In [539]: close_px_all = pd.read_csv('ch09/stock_px.csv', parse_dates=True, index_col=0)
In [540]: close_px = close_px_all[['AAPL', 'MSFT', 'XOM']]
In [541]: close_px = close_px.resample('B', fill_method='ffill')
In [542]: close_px
Out[542]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2292 entries, 2003-01-02 00:00:00 to 2011-10-14 00:00:00
Freq: B
Data columns:
AAPL 2292 non-null values
MSFT 2292 non-null values
XOM 2292 non-null values
dtypes: float64(3)
Calling plot on one of the columns grenerates a simple plot, seen in Figure 10-4.
In [544]: close_px['AAPL'].plot()
Figure 10-4. AAPL Daily Price
When called on a DataFrame, as you would expect, all of the time series are drawn on a single subplot with a legend indicating which is which. I’ll plot only the year 2009 data so you can see how both months and years are formatted on the X axis; see Figure 10-5.
In [546]: close_px.ix['2009'].plot()
Figure 10-5. Stock Prices in 2009
In [548]: close_px['AAPL'].ix['01-2011':'03-2011'].plot()
Figure 10-6. Apple Daily Price in 1/2011-3/2011
Quarterly frequency data is also more nicely formatted with quarterly markers, something that would be quite a bit more work to do by hand. See Figure 10-7.
In [550]: appl_q = close_px['AAPL'].resample('Q-DEC', fill_method='ffill')
In [551]: appl_q.ix['2009':].plot()
Figure 10-7. Apple Quarterly Price 2009-2011
A last feature of time series plotting in pandas is that by right-clicking and dragging to zoom in and out, the dates will be dynamically expanded or contracted and reformatting depending on the timespan contained in the plot view. This is of course only true when using matplotlib in interactive mode.
Moving Window Functions
A common class of array transformations intended for time series operations are statistics and other functions evaluated over a sliding window or with exponentially decaying weights. I call these moving window functions, even though it includes functions without a fixed-length window like exponentially-weighted moving average. Like other statistical functions, these also automatically exclude missing data.
rolling_mean is one of the simplest such functions. It takes a TimeSeries or DataFrame along with a window (expressed as a number of periods):
In [555]: close_px.AAPL.plot()
Out[555]: <matplotlib.axes.AxesSubplot at 0x1099b3990>
In [556]: pd.rolling_mean(close_px.AAPL, 250).plot()
See Figure 10-8 for the plot. By default functions like rolling_mean require the indicated number of non-NA observations. This behavior can be changed to account for missing data and, in particular, the fact that you will have fewer than window periods of data at the beginning of the time series (see Figure 10-9):
In [558]: appl_std250 = pd.rolling_std(close_px.AAPL, 250, min_periods=10)
In [559]: appl_std250[5:12]
Out[559]:
2003-01-09 NaN
2003-01-10 NaN
2003-01-13 NaN
2003-01-14 NaN
2003-01-15 0.077496
2003-01-16 0.074760
2003-01-17 0.112368
Freq: B
In [560]: appl_std250.plot()
Figure 10-8. Apple Price with 250-day MA
Figure 10-9. Apple 250-day daily return standard deviation
To compute an expanding window mean, you can see that an expanding window is just a special case where the window is the length of the time series, but only one or more periods is required to compute a value:
Define expanding mean in terms of rolling_mean
In [561]: expanding_mean = lambda x: rolling_mean(x, len(x), min_periods=1)
Calling rolling_mean and friends on a DataFrame applies the transformation to each column (see Figure 10-10):
In [563]: pd.rolling_mean(close_px, 60).plot(logy=True)
Figure 10-10. Stocks Prices 60-day MA (log Y-axis)
See Table 10-6 for a listing of related functions in pandas.
Table 10-6. Moving window and exponentially-weighted functions
NOTE
bottleneck, a Python library by Keith Goodman, provides an alternate implementation of NaN-friendly moving window functions and may be worth looking at depending on your application.
Exponentially-weighted functions
An alternative to using a static window size with equally-weighted observations is to specify a constant decay factor to give more weight to more recent observations. In mathematical terms, if mat is the moving average result at time t and x is the time series in question, each value in the result is computed as mat = a * mat - 1 + (a - 1) * x_t, where a is the decay factor. There are a couple of ways to specify the decay factor, a popular one is using a span, which makes the result comparable to a simple moving window function with window size equal to the span.
Since an exponentially-weighted statistic places more weight on more recent observations, it “adapts” faster to changes compared with the equal-weighted version. Here’s an example comparing a 60-day moving average of Apple’s stock price with an EW moving average with span=60 (see Figure 10-11):
fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, sharey=True,
figsize=(12, 7))
aapl_px = close_px.AAPL['2005':'2009']
ma60 = pd.rolling_mean(aapl_px, 60, min_periods=50)
ewma60 = pd.ewma(aapl_px, span=60)
aapl_px.plot(style='k-', ax=axes[0])
ma60.plot(style='k--', ax=axes[0])
aapl_px.plot(style='k-', ax=axes[1])
ewma60.plot(style='k--', ax=axes[1])
axes[0].set_title('Simple MA')
axes[1].set_title('Exponentially-weighted MA')
Figure 10-11. Simple moving average versus exponentially-weighted
Binary Moving Window Functions
Some statistical operators, like correlation and covariance, need to operate on two time series. As an example, financial analysts are often interested in a stock’s correlation to a benchmark index like the S&P 500. We can compute that by computing the percent changes and using rolling_corr (see Figure 10-12):
In [570]: spx_rets = spx_px / spx_px.shift(1) - 1
In [571]: returns = close_px.pct_change()
In [572]: corr = pd.rolling_corr(returns.AAPL, spx_rets, 125, min_periods=100)
In [573]: corr.plot()
Figure 10-12. Six-month AAPL return correlation to S&P 500
Suppose you wanted to compute the correlation of the S&P 500 index with many stocks at once. Writing a loop and creating a new DataFrame would be easy but maybe get repetitive, so if you pass a TimeSeries and a DataFrame, a function like rolling_corr will compute the correlation of the TimeSeries (spx_rets in this case) with each column in the DataFrame. See Figure 10-13 for the plot of the result:
In [575]: corr = pd.rolling_corr(returns, spx_rets, 125, min_periods=100)
In [576]: corr.plot()
Figure 10-13. Six-month return correlations to S&P 500
User-Defined Moving Window Functions
The rolling_apply function provides a means to apply an array function of your own devising over a moving window. The only requirement is that the function produce a single value (a reduction) from each piece of the array. For example, while we can compute sample quantiles using rolling_quantile, we might be interested in the percentile rank of a particular value over the sample. The scipy.stats.percentileofscore function does just this:
In [578]: from scipy.stats import percentileofscore
In [579]: score_at_2percent = lambda x: percentileofscore(x, 0.02)
In [580]: result = pd.rolling_apply(returns.AAPL, 250, score_at_2percent)
In [581]: result.plot()
Figure 10-14. Percentile rank of 2% AAPL return over 1 year window
Performance and Memory Usage Notes
Timestamps and periods are represented as 64-bit integers using NumPy’s datetime64 dtype. This means that for each data point, there is an associated 8 bytes of memory per timestamp. Thus, a time series with 1 million float64 data points has a memory footprint of approximately 16 megabytes. Since pandas makes every effort to share indexes among time series, creating views on existing time series do not cause any more memory to be used. Additionally, indexes for lower frequencies (daily and up) are stored in a central cache, so that any fixed-frequency index is a view on the date cache. Thus, if you have a large collection of low-frequency time series, the memory footprint of the indexes will not be as significant.
Performance-wise, pandas has been highly optimized for data alignment operations (the behind-the-scenes work of differently indexed ts1 + ts2) and resampling. Here is an example of aggregating 10MM data points to OHLC:
In [582]: rng = pd.date_range('1/1/2000', periods=10000000, freq='10ms')
In [583]: ts = Series(np.random.randn(len(rng)), index=rng)
In [584]: ts
Out[584]:
2000-01-01 00:00:00 -1.402235
2000-01-01 00:00:00.010000 2.424667
2000-01-01 00:00:00.020000 -1.956042
2000-01-01 00:00:00.030000 -0.897339
...
2000-01-02 03:46:39.960000 0.495530
2000-01-02 03:46:39.970000 0.574766
2000-01-02 03:46:39.980000 1.348374
2000-01-02 03:46:39.990000 0.665034
Freq: 10L, Length: 10000000
In [585]: ts.resample('15min', how='ohlc')
Out[585]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 113 entries, 2000-01-01 00:00:00 to 2000-01-02 04:00:00
Freq: 15T
Data columns:
open 113 non-null values
high 113 non-null values
low 113 non-null values
close 113 non-null values
dtypes: float64(4)
In [586]: %timeit ts.resample('15min', how='ohlc')
10 loops, best of 3: 61.1 ms per loop
The runtime may depend slightly on the relative size of the aggregated result; higher frequency aggregates unsurprisingly take longer to compute:
In [587]: rng = pd.date_range('1/1/2000', periods=10000000, freq='1s')
In [588]: ts = Series(np.random.randn(len(rng)), index=rng)
In [589]: %timeit ts.resample('15s', how='ohlc')
1 loops, best of 3: 88.2 ms per loop
It’s possible that by the time you read this, the performance of these algorithms may be even further improved. As an example, there are currently no optimizations for conversions between regular frequencies, but that would be fairly straightforward to do.
[6] The choice of closed='right', label='right' as the default might seem a bit odd to some users. In practice the choice is somewhat arbitrary; for some target frequencies, closed='left' is preferable, while for others closed='right' makes more sense. The important thing is that you keep in mind exactly how you are segmenting the data.
Chapter 11. Financial and Economic Data Applications
The use of Python in the financial industry has been increasing rapidly since 2005, led largely by the maturation of libraries (like NumPy and pandas) and the availability of skilled Python programmers. Institutions have found that Python is well-suited both as an interactive analysis environment as well as enabling robust systems to be developed often in a fraction of the time it would have taken in Java or C++. Python is also an ideal glue layer; it is easy to build Python interfaces to legacy libraries built in C or C++.
While the field of financial analysis is broad enough to fill an entire book, I hope to show you how the tools in this book can be applied to a number of specific problems in finance. As with other research and analysis domains, too much programming effort is often spent wrangling data rather than solving the core modeling and research problems. I personally got started building pandas in 2008 while grappling with inadequate data tools.
In these examples, I’ll use the term cross-section to refer to data at a fixed point in time. For example, the closing prices of all the stocks in the S&P 500 index on a particular date form a cross-section. Cross-sectional data at multiple points in time over multiple data items (for example, prices together with volume) form a panel. Panel data can either be represented as a hierarchically-indexed DataFrame or using the three-dimensional Panel pandas object.
Data Munging Topics
Many helpful data munging tools for financial applications are spread across the earlier chapters. Here I’ll highlight a number of topics as they relate to this problem domain.
Time Series and Cross-Section Alignment
One of the most time-consuming issues in working with financial data is the so-called data alignment problem. Two related time series may have indexes that don’t line up perfectly, or two DataFrame objects might have columns or row labels that don’t match. Users of MATLAB, R, and other matrix-programming languages often invest significant effort in wrangling data into perfectly aligned forms. In my experience, having to align data by hand (and worse, having to verify that data is aligned) is a far too rigid and tedious way to work. It is also rife with potential for bugs due to combining misaligned data.
pandas take an alternate approach by automatically aligning data in arithmetic operations. In practice, this grants immense freedom and enhances your productivity. As an example, let’s consider a couple of DataFrames containing time series of stock prices and volume:
In [16]: prices
Out[16]:
AAPL JNJ SPX XOM
2011-09-06 379.74 64.64 1165.24 71.15
2011-09-07 383.93 65.43 1198.62 73.65
2011-09-08 384.14 64.95 1185.90 72.82
2011-09-09 377.48 63.64 1154.23 71.01
2011-09-12 379.94 63.59 1162.27 71.84
2011-09-13 384.62 63.61 1172.87 71.65
2011-09-14 389.30 63.73 1188.68 72.64
In [17]: volume
Out[17]:
AAPL JNJ XOM
2011-09-06 18173500 15848300 25416300
2011-09-07 12492000 10759700 23108400
2011-09-08 14839800 15551500 22434800
2011-09-09 20171900 17008200 27969100
2011-09-12 16697300 13448200 26205800
Suppose you wanted to compute a volume-weighted average price using all available data (and making the simplifying assumption that the volume data is a subset of the price data). Since pandas aligns the data automatically in arithmetic and excludes missing data in functions like sum, we can express this concisely as:
In [18]: prices * volume
Out[18]:
AAPL JNJ SPX XOM
2011-09-06 6901204890 1024434112 NaN 1808369745
2011-09-07 4796053560 704007171 NaN 1701933660
2011-09-08 5700560772 1010069925 NaN 1633702136
2011-09-09 7614488812 1082401848 NaN 1986085791
2011-09-12 6343972162 855171038 NaN 1882624672
2011-09-13 NaN NaN NaN NaN
2011-09-14 NaN NaN NaN NaN
In [19]: vwap = (prices * volume).sum() / volume.sum()
In [20]: vwap In [21]: vwap.dropna()
Out[20]: Out[21]:
AAPL 380.655181 AAPL 380.655181
JNJ 64.394769 JNJ 64.394769
SPX NaN XOM 72.024288
XOM 72.024288
Since SPX wasn’t found in volume, you can choose to explicitly discard that at any point. Should you wish to align by hand, you can use DataFrame’s align method, which returns a tuple of reindexed versions of the two objects:
In [22]: prices.align(volume, join='inner')
Out[22]:
(AAPL JNJ XOM
2011-09-06 379.74 64.64 71.15
2011-09-07 383.93 65.43 73.65
2011-09-08 384.14 64.95 72.82
2011-09-09 377.48 63.64 71.01
2011-09-12 379.94 63.59 71.84,
AAPL JNJ XOM
2011-09-06 18173500 15848300 25416300
2011-09-07 12492000 10759700 23108400
2011-09-08 14839800 15551500 22434800
2011-09-09 20171900 17008200 27969100
2011-09-12 16697300 13448200 26205800)
Another indispensable feature is constructing a DataFrame from a collection of potentially differently indexed Series:
In [23]: s1 = Series(range(3), index=['a', 'b', 'c'])
In [24]: s2 = Series(range(4), index=['d', 'b', 'c', 'e'])
In [25]: s3 = Series(range(3), index=['f', 'a', 'c'])
In [26]: DataFrame({'one': s1, 'two': s2, 'three': s3})
Out[26]:
one three two
a 0 1 NaN
b 1 NaN 1
c 2 2 2
d NaN NaN 0
e NaN NaN 3
f NaN 0 NaN
As you have seen earlier, you can of course specify explicitly the index of the result, discarding the rest of the data:
In [27]: DataFrame({'one': s1, 'two': s2, 'three': s3}, index=list('face'))
Out[27]:
one three two
f NaN 0 NaN
a 0 1 NaN
c 2 2 2
e NaN NaN 3
Operations with Time Series of Different Frequencies
Economic time series are often of annual, quarterly, monthly, daily, or some other more specialized frequency. Some are completely irregular; for example, earnings revisions for a stock may arrive at any time. The two main tools for frequency conversion and realignment are the resample and reindex methods. resample converts data to a fixed frequency while reindex conforms data to a new index. Both support optional interpolation (such as forward filling) logic.
Let’s consider a small weekly time series:
In [28]: ts1 = Series(np.random.randn(3),
....: index=pd.date_range('2012-6-13', periods=3, freq='W-WED'))
In [29]: ts1
Out[29]:
2012-06-13 -1.124801
2012-06-20 0.469004
2012-06-27 -0.117439
Freq: W-WED
If you resample this to business daily (Monday-Friday) frequency, you get holes on the days where there is no data:
In [30]: ts1.resample('B')
Out[30]:
2012-06-13 -1.124801
2012-06-14 NaN
2012-06-15 NaN
2012-06-18 NaN
2012-06-19 NaN
2012-06-20 0.469004
2012-06-21 NaN
2012-06-22 NaN
2012-06-25 NaN
2012-06-26 NaN
2012-06-27 -0.117439
Freq: B
Of course, using 'ffill' as the fill_method forward fills values in those gaps. This is a common practice with lower frequency data as you compute a time series of values on each timestamp having the latest valid or “as of” value:
In [31]: ts1.resample('B', fill_method='ffill')
Out[31]:
2012-06-13 -1.124801
2012-06-14 -1.124801
2012-06-15 -1.124801
2012-06-18 -1.124801
2012-06-19 -1.124801
2012-06-20 0.469004
2012-06-21 0.469004
2012-06-22 0.469004
2012-06-25 0.469004
2012-06-26 0.469004
2012-06-27 -0.117439
Freq: B
In practice, upsampling lower frequency data to a higher, regular frequency is a fine solution, but in the more general irregular time series case it may be a poor fit. Consider an irregularly sampled time series from the same general time period:
In [32]: dates = pd.DatetimeIndex(['2012-6-12', '2012-6-17', '2012-6-18',
....: '2012-6-21', '2012-6-22', '2012-6-29'])
In [33]: ts2 = Series(np.random.randn(6), index=dates)
In [34]: ts2
Out[34]:
2012-06-12 -0.449429
2012-06-17 0.459648
2012-06-18 -0.172531
2012-06-21 0.835938
2012-06-22 -0.594779
2012-06-29 0.027197
If you wanted to add the “as of” values in ts1 (forward filling) to ts2. One option would be to resample both to a regular frequency then add, but if you want to maintain the date index in ts2, using reindex is a more precise solution:
In [35]: ts1.reindex(ts2.index, method='ffill')
Out[35]:
2012-06-12 NaN
2012-06-17 -1.124801
2012-06-18 -1.124801
2012-06-21 0.469004
2012-06-22 0.469004
2012-06-29 -0.117439
In [36]: ts2 + ts1.reindex(ts2.index, method='ffill')
Out[36]:
2012-06-12 NaN
2012-06-17 -0.665153
2012-06-18 -1.297332
2012-06-21 1.304942
2012-06-22 -0.125775
2012-06-29 -0.090242
Using periods instead of timestamps
Periods (representing time spans) provide an alternate means of working with different frequency time series, especially financial or economic series with annual or quarterly frequency having a particular reporting convention. For example, a company might announce its quarterly earnings with fiscal year ending in June, thus having Q-JUN frequency. Consider a pair of macroeconomic time series related to GDP and inflation:
In [37]: gdp = Series([1.78, 1.94, 2.08, 2.01, 2.15, 2.31, 2.46],
....: index=pd.period_range('1984Q2', periods=7, freq='Q-SEP'))
In [38]: infl = Series([0.025, 0.045, 0.037, 0.04],
....: index=pd.period_range('1982', periods=4, freq='A-DEC'))
In [39]: gdp In [40]: infl
Out[39]: Out[40]:
1984Q2 1.78 1982 0.025
1984Q3 1.94 1983 0.045
1984Q4 2.08 1984 0.037
1985Q1 2.01 1985 0.040
1985Q2 2.15 Freq: A-DEC
1985Q3 2.31
1985Q4 2.46
Freq: Q-SEP
Unlike time series with timestamps, operations between different-frequency time series indexed by periods are not possible without explicit conversions. In this case, if we know that infl values were observed at the end of each year, we can then convert to Q-SEP to get the right periods in that frequency:
In [41]: infl_q = infl.asfreq('Q-SEP', how='end')
In [42]: infl_q
Out[42]:
1983Q1 0.025
1984Q1 0.045
1985Q1 0.037
1986Q1 0.040
Freq: Q-SEP
That time series can then be reindexed with forward-filling to match gdp:
In [43]: infl_q.reindex(gdp.index, method='ffill')
Out[43]:
1984Q2 0.045
1984Q3 0.045
1984Q4 0.045
1985Q1 0.037
1985Q2 0.037
1985Q3 0.037
1985Q4 0.037
Freq: Q-SEP
Time of Day and “as of” Data Selection
Suppose you have a long time series containing intraday market data and you want to extract the prices at a particular time of day on each day of the data. What if the data are irregular such that observations do not fall exactly on the desired time? In practice this task can make for error-prone data munging if you are not careful. Here is an example for illustration purposes:
Make an intraday date range and time series
In [44]: rng = pd.date_range('2012-06-01 09:30', '2012-06-01 15:59', freq='T')
Make a 5-day series of 9:30-15:59 values
In [45]: rng = rng.append([rng + pd.offsets.BDay(i) for i in range(1, 4)])
In [46]: ts = Series(np.arange(len(rng), dtype=float), index=rng)
In [47]: ts
Out[47]:
2012-06-01 09:30:00 0
2012-06-01 09:31:00 1
2012-06-01 09:32:00 2
2012-06-01 09:33:00 3
...
2012-06-06 15:56:00 1556
2012-06-06 15:57:00 1557
2012-06-06 15:58:00 1558
2012-06-06 15:59:00 1559
Length: 1560
Indexing with a Python datetime.time object will extract values at those times:
In [48]: from datetime import time
In [49]: ts[time(10, 0)]
Out[49]:
2012-06-01 10:00:00 30
2012-06-04 10:00:00 420
2012-06-05 10:00:00 810
2012-06-06 10:00:00 1200
Under the hood, this uses an instance method at_time (available on individual time series and DataFrame objects alike):
In [50]: ts.at_time(time(10, 0))
Out[50]:
2012-06-01 10:00:00 30
2012-06-04 10:00:00 420
2012-06-05 10:00:00 810
2012-06-06 10:00:00 1200
You can select values between two times using the related between_time method:
In [51]: ts.between_time(time(10, 0), time(10, 1))
Out[51]:
2012-06-01 10:00:00 30
2012-06-01 10:01:00 31
2012-06-04 10:00:00 420
2012-06-04 10:01:00 421
2012-06-05 10:00:00 810
2012-06-05 10:01:00 811
2012-06-06 10:00:00 1200
2012-06-06 10:01:00 1201
As mentioned above, it might be the case that no data actually fall exactly at a time like 10 AM, but you might want to know the last known value at 10 AM:
Set most of the time series randomly to NA
In [53]: indexer = np.sort(np.random.permutation(len(ts))[700:])
In [54]: irr_ts = ts.copy()
In [55]: irr_ts[indexer] = np.nan
In [56]: irr_ts['2012-06-01 09:50':'2012-06-01 10:00']
Out[56]:
2012-06-01 09:50:00 20
2012-06-01 09:51:00 NaN
2012-06-01 09:52:00 22
2012-06-01 09:53:00 23
2012-06-01 09:54:00 NaN
2012-06-01 09:55:00 25
2012-06-01 09:56:00 NaN
2012-06-01 09:57:00 NaN
2012-06-01 09:58:00 NaN
2012-06-01 09:59:00 NaN
2012-06-01 10:00:00 NaN
By passing an array of timestamps to the asof method, you will obtain an array of the last valid (non-NA) values at or before each timestamp. So we construct a date range at 10 AM for each day and pass that to asof:
In [57]: selection = pd.date_range('2012-06-01 10:00', periods=4, freq='B')
In [58]: irr_ts.asof(selection)
Out[58]:
2012-06-01 10:00:00 25
2012-06-04 10:00:00 420
2012-06-05 10:00:00 810
2012-06-06 10:00:00 1197
Freq: B
Splicing Together Data Sources
In Chapter 7, I described a number of strategies for merging together two related data sets. In a financial or economic context, there are a few widely occurring use cases:
Switching from one data source (a time series or collection of time series) to another at a specific point in time
“Patching” missing values in a time series at the beginning, middle, or end using another time series
Completely replacing the data for a subset of symbols (countries, asset tickers, and so on)
In the first case, switching from one set of time series to another at a specific instant, it is a matter of splicing together two TimeSeries or DataFrame objects using pandas.concat:
In [59]: data1 = DataFrame(np.ones((6, 3), dtype=float),
....: columns=['a', 'b', 'c'],
....: index=pd.date_range('6/12/2012', periods=6))
In [60]: data2 = DataFrame(np.ones((6, 3), dtype=float) * 2,
....: columns=['a', 'b', 'c'],
....: index=pd.date_range('6/13/2012', periods=6))
In [61]: spliced = pd.concat([data1.ix[:'2012-06-14'], data2.ix['2012-06-15':]])
In [62]: spliced
Out[62]:
a b c
2012-06-12 1 1 1
2012-06-13 1 1 1
2012-06-14 1 1 1
2012-06-15 2 2 2
2012-06-16 2 2 2
2012-06-17 2 2 2
2012-06-18 2 2 2
Suppose in a similar example that data1 was missing a time series present in data2:
In [63]: data2 = DataFrame(np.ones((6, 4), dtype=float) * 2,
....: columns=['a', 'b', 'c', 'd'],
....: index=pd.date_range('6/13/2012', periods=6))
In [64]: spliced = pd.concat([data1.ix[:'2012-06-14'], data2.ix['2012-06-15':]])
In [65]: spliced
Out[65]:
a b c d
2012-06-12 1 1 1 NaN
2012-06-13 1 1 1 NaN
2012-06-14 1 1 1 NaN
2012-06-15 2 2 2 2
2012-06-16 2 2 2 2
2012-06-17 2 2 2 2
2012-06-18 2 2 2 2
Using combine_first, you can bring in data from before the splice point to extend the history for 'd' item:
In [66]: spliced_filled = spliced.combine_first(data2)
In [67]: spliced_filled
Out[67]:
a b c d
2012-06-12 1 1 1 NaN
2012-06-13 1 1 1 2
2012-06-14 1 1 1 2
2012-06-15 2 2 2 2
2012-06-16 2 2 2 2
2012-06-17 2 2 2 2
2012-06-18 2 2 2 2
Since data2 does not have any values for 2012-06-12, no values are filled on that day.
DataFrame has a related method update for performing in-place updates. You have to pass overwrite=False to make it only fill the holes:
In [68]: spliced.update(data2, overwrite=False)
In [69]: spliced
Out[69]:
a b c d
2012-06-12 1 1 1 NaN
2012-06-13 1 1 1 2
2012-06-14 1 1 1 2
2012-06-15 2 2 2 2
2012-06-16 2 2 2 2
2012-06-17 2 2 2 2
2012-06-18 2 2 2 2
To replace the data for a subset of symbols, you can use any of the above techniques, but sometimes it’s simpler to just set the columns directly with DataFrame indexing:
In [70]: cp_spliced = spliced.copy()
In [71]: cp_spliced[['a', 'c']] = data1[['a', 'c']]
In [72]: cp_spliced
Out[72]:
a b c d
2012-06-12 1 1 1 NaN
2012-06-13 1 1 1 2
2012-06-14 1 1 1 2
2012-06-15 1 2 1 2
2012-06-16 1 2 1 2
2012-06-17 1 2 1 2
2012-06-18 NaN 2 NaN 2
Return Indexes and Cumulative Returns
In a financial context, returns usually refer to percent changes in the price of an asset. Let’s consider price data for Apple in 2011 and 2012:
In [73]: import pandas.io.data as web
In [74]: price = web.get_data_yahoo('AAPL', '2011-01-01')['Adj Close']
In [75]: price[-5:]
Out[75]:
Date
2012-07-23 603.83
2012-07-24 600.92
2012-07-25 574.97
2012-07-26 574.88
2012-07-27 585.16
Name: Adj Close
For Apple, which has no dividends, computing the cumulative percent return between two points in time requires computing only the percent change in the price:
In [76]: price['2011-10-03'] / price['2011-3-01'] - 1
Out[76]: 0.072399874037388123
For other stocks with dividend payouts, computing how much money you make from holding a stock can be more complicated. The adjusted close values used here have been adjusted for splits and dividends, however. In all cases, it’s quite common to derive a return index, which is a time series indicating the value of a unit investment (one dollar, say). Many assumptions can underlie the return index; for example, some will choose to reinvest profit and others not. In the case of Apple, we can compute a simple return index using cumprod:
In [77]: returns = price.pct_change()
In [78]: ret_index = (1 + returns).cumprod()
In [79]: ret_index[0] = 1 # Set first value to 1
In [80]: ret_index
Out[80]:
Date
2011-01-03 1.000000
2011-01-04 1.005219
2011-01-05 1.013442
2011-01-06 1.012623
...
2012-07-24 1.823346
2012-07-25 1.744607
2012-07-26 1.744334
2012-07-27 1.775526
Length: 396
With a return index in hand, computing cumulative returns at a particular resolution is simple:
In [81]: m_returns = ret_index.resample('BM', how='last').pct_change()
In [82]: m_returns['2012']
Out[82]:
Date
2012-01-31 0.127111
2012-02-29 0.188311
2012-03-30 0.105284
2012-04-30 -0.025969
2012-05-31 -0.010702
2012-06-29 0.010853
2012-07-31 0.001986
Freq: BM
Of course, in this simple case (no dividends or other adjustments to take into account) these could have been computed from the daily percent changed by resampling with aggregation (here, to periods):
In [83]: m_rets = (1 + returns).resample('M', how='prod', kind='period') - 1
In [84]: m_rets['2012']
Out[84]:
Date
2012-01 0.127111
2012-02 0.188311
2012-03 0.105284
2012-04 -0.025969
2012-05 -0.010702
2012-06 0.010853
2012-07 0.001986
Freq: M
If you had dividend dates and percentages, including them in the total return per day would look like:
returns[dividend_dates] += dividend_pcts
Group Transforms and Analysis
In Chapter 9, you learned the basics of computing group statistics and applying your own transformations to groups in a dataset.
Let’s consider a collection of hypothetical stock portfolios. I first randomly generate a broad universe of 2000 tickers:
import random; random.seed(0)
import string
N = 1000
def rands(n):
choices = string.ascii_uppercase
return ''.join([random.choice(choices) for _ in xrange(n)])
tickers = np.array([rands(5) for _ in xrange(N)])
I then create a DataFrame containing 3 columns representing hypothetical, but random portfolios for a subset of tickers:
M = 500
df = DataFrame({'Momentum' : np.random.randn(M) / 200 + 0.03,
'Value' : np.random.randn(M) / 200 + 0.08,
'ShortInterest' : np.random.randn(M) / 200 - 0.02},
index=tickers[:M])
Next, let’s create a random industry classification for the tickers. To keep things simple, I’ll just keep it to 2 industries, storing the mapping in a Series:
ind_names = np.array(['FINANCIAL', 'TECH'])
sampler = np.random.randint(0, len(ind_names), N)
industries = Series(ind_names[sampler], index=tickers,
name='industry')
Now we can group by industries and carry out group aggregation and transformations:
In [90]: by_industry = df.groupby(industries)
In [91]: by_industry.mean()
Out[91]:
Momentum ShortInterest Value
industry
FINANCIAL 0.029485 -0.020739 0.079929
TECH 0.030407 -0.019609 0.080113
In [92]: by_industry.describe()
Out[92]:
Momentum ShortInterest Value
industry
FINANCIAL count 246.000000 246.000000 246.000000
mean 0.029485 -0.020739 0.079929
std 0.004802 0.004986 0.004548
min 0.017210 -0.036997 0.067025
25% 0.026263 -0.024138 0.076638
50% 0.029261 -0.020833 0.079804
75% 0.032806 -0.017345 0.082718
max 0.045884 -0.006322 0.093334
TECH count 254.000000 254.000000 254.000000
mean 0.030407 -0.019609 0.080113
std 0.005303 0.005074 0.004886
min 0.016778 -0.032682 0.065253
25% 0.026456 -0.022779 0.076737
50% 0.030650 -0.019829 0.080296
75% 0.033602 -0.016923 0.083353
max 0.049638 -0.003698 0.093081
By defining transformation functions, it’s easy to transform these portfolios by industry. For example, standardizing within industry is widely used in equity portfolio construction:
Within-Industry Standardize
def zscore(group):
return (group - group.mean()) / group.std()
df_stand = by_industry.apply(zscore)
You can verify that each industry has mean 0 and standard deviation 1:
In [94]: df_stand.groupby(industries).agg(['mean', 'std'])
Out[94]:
Momentum ShortInterest Value
mean std mean std mean std
industry
FINANCIAL 0 1 0 1 0 1
TECH -0 1 -0 1 -0 1
Other, built-in kinds of transformations, like rank, can be used more concisely:
Within-industry rank descending
In [95]: ind_rank = by_industry.rank(ascending=False)
In [96]: ind_rank.groupby(industries).agg(['min', 'max'])
Out[96]:
Momentum ShortInterest Value
min max min max min max
industry
FINANCIAL 1 246 1 246 1 246
TECH 1 254 1 254 1 254
In quantitative equity, “rank and standardize” is a common sequence of transforms. You could do this by chaining together rank and zscore like so:
Industry rank and standardize
In [97]: by_industry.apply(lambda x: zscore(x.rank()))
Out[97]:
<class 'pandas.core.frame.DataFrame'>
Index: 500 entries, VTKGN to PTDQE
Data columns:
Momentum 500 non-null values
ShortInterest 500 non-null values
Value 500 non-null values
dtypes: float64(3)
Group Factor Exposures
Factor analysis is a technique in quantitative portfolio management. Portfolio holdings and performance (profit and less) are decomposed using one or more factors (risk factors are one example) represented as a portfolio of weights. For example, a stock price’s co-movement with a benchmark (like S&P 500 index) is known as its beta, a common risk factor. Let’s consider a contrived example of a portfolio constructed from 3 randomly-generated factors (usually called the factor loadings) and some weights:
from numpy.random import rand
fac1, fac2, fac3 = np.random.rand(3, 1000)
ticker_subset = tickers.take(np.random.permutation(N)[:1000])
Weighted sum of factors plus noise
port = Series(0.7 * fac1 - 1.2 * fac2 + 0.3 * fac3 + rand(1000),
index=ticker_subset)
factors = DataFrame({'f1': fac1, 'f2': fac2, 'f3': fac3},
index=ticker_subset)
Vector correlations between each factor and the portfolio may not indicate too much:
In [99]: factors.corrwith(port)
Out[99]:
f1 0.402377
f2 -0.680980
f3 0.168083
The standard way to compute the factor exposures is by least squares regression; using pandas.ols with factors as the explanatory variables we can compute exposures over the entire set of tickers:
In [100]: pd.ols(y=port, x=factors).beta
Out[100]:
f1 0.761789
f2 -1.208760
f3 0.289865
intercept 0.484477
As you can see, the original factor weights can nearly be recovered since there was not too much additional random noise added to the portfolio. Using groupby you can compute exposures industry by industry. To do so, write a function like so:
def beta_exposure(chunk, factors=None):
return pd.ols(y=chunk, x=factors).beta
Then, group by industries and apply that function, passing the DataFrame of factor loadings:
In [102]: by_ind = port.groupby(industries)
In [103]: exposures = by_ind.apply(beta_exposure, factors=factors)
In [104]: exposures.unstack()
Out[104]:
f1 f2 f3 intercept
industry
FINANCIAL 0.790329 -1.182970 0.275624 0.455569
TECH 0.740857 -1.232882 0.303811 0.508188
Decile and Quartile Analysis
Analyzing data based on sample quantiles is another important tool for financial analysts. For example, the performance of a stock portfolio could be broken down into quartiles (four equal-sized chunks) based on each stock’s price-to-earnings. Using pandas.qcut combined with groupby makes quantile analysis reasonably straightforward.
As an example, let’s consider a simple trend following or momentum strategy trading the S&P 500 index via the SPY exchange-traded fund. You can download the price history from Yahoo! Finance:
In [105]: import pandas.io.data as web
In [106]: data = web.get_data_yahoo('SPY', '2006-01-01')
In [107]: data
Out[107]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1655 entries, 2006-01-03 00:00:00 to 2012-07-27 00:00:00
Data columns:
Open 1655 non-null values
High 1655 non-null values
Low 1655 non-null values
Close 1655 non-null values
Volume 1655 non-null values
Adj Close 1655 non-null values
dtypes: float64(5), int64(1)
Now, we’ll compute daily returns and a function for transforming the returns into a trend signal formed from a lagged moving sum:
px = data['Adj Close']
returns = px.pct_change()
def to_index(rets):
index = (1 + rets).cumprod()
first_loc = max(index.notnull().argmax() - 1, 0)
index.values[first_loc] = 1
return index
def trend_signal(rets, lookback, lag):
signal = pd.rolling_sum(rets, lookback, min_periods=lookback - 5)
return signal.shift(lag)
Using this function, we can (naively) create and test a trading strategy that trades this momentum signal every Friday:
In [109]: signal = trend_signal(returns, 100, 3)
In [110]: trade_friday = signal.resample('W-FRI').resample('B', fill_method='ffill')
In [111]: trade_rets = trade_friday.shift(1) * returns
We can then convert the strategy returns to a return index and plot them (see Figure 11-1):
In [112]: to_index(trade_rets).plot()
Figure 11-1. SPY momentum strategy return index
Suppose you wanted to decompose the strategy performance into more and less volatile periods of trading. Trailing one-year annualized standard deviation is a simple measure of volatility, and we can compute Sharpe ratios to assess the reward-to-risk ratio in various volatility regimes:
vol = pd.rolling_std(returns, 250, min_periods=200) * np.sqrt(250)
def sharpe(rets, ann=250):
return rets.mean() / rets.std() * np.sqrt(ann)
Now, dividing vol into quartiles with qcut and aggregating with sharpe we obtain:
In [114]: trade_rets.groupby(pd.qcut(vol, 4)).agg(sharpe)
Out[114]:
[0.0955, 0.16] 0.490051
(0.16, 0.188] 0.482788
(0.188, 0.231] -0.731199
(0.231, 0.457] 0.570500
These results show that the strategy performed the best during the period when the volatility was the highest.
More Example Applications
Here is a small set of additional examples.
Signal Frontier Analysis
In this section, I’ll describe a simplified cross-sectional momentum portfolio and show how you might explore a grid of model parameterizations. First, I’ll load historical prices for a portfolio of financial and technology stocks:
names = ['AAPL', 'GOOG', 'MSFT', 'DELL', 'GS', 'MS', 'BAC', 'C']
def get_px(stock, start, end):
return web.get_data_yahoo(stock, start, end)['Adj Close']
px = DataFrame({n: get_px(n, '1/1/2009', '6/1/2012') for n in names})
We can easily plot the cumulative returns of each stock (see Figure 11-2):
In [117]: px = px.asfreq('B').fillna(method='pad')
In [118]: rets = px.pct_change()
In [119]: ((1 + rets).cumprod() - 1).plot()
For the portfolio construction, we’ll compute momentum over a certain lookback, then rank in descending order and standardize:
def calc_mom(price, lookback, lag):
mom_ret = price.shift(lag).pct_change(lookback)
ranks = mom_ret.rank(axis=1, ascending=False)
demeaned = ranks - ranks.mean(axis=1)
return demeaned / demeaned.std(axis=1)
With this transform function in hand, we can set up a strategy backtesting function that computes a portfolio for a particular lookback and holding period (days between trading), returning the overall Sharpe ratio:
compound = lambda x : (1 + x).prod() - 1
daily_sr = lambda x: x.mean() / x.std()
def strat_sr(prices, lb, hold):
Compute portfolio weights
freq = '%dB' % hold
port = calc_mom(prices, lb, lag=1)
daily_rets = prices.pct_change()
Compute portfolio returns
port = port.shift(1).resample(freq, how='first')
returns = daily_rets.resample(freq, how=compound)
port_rets = (port * returns).sum(axis=1)
return daily_sr(port_rets) * np.sqrt(252 / hold)
Figure 11-2. Cumulative returns for each of the stocks
When called with the prices and a parameter combination, this function returns a scalar value:
In [122]: strat_sr(px, 70, 30)
Out[122]: 0.27421582756800583
From there, you can evaluate the strat_sr function over a grid of parameters, storing them as you go in a defaultdict and finally putting the results in a DataFrame:
from collections import defaultdict
lookbacks = range(20, 90, 5)
holdings = range(20, 90, 5)
dd = defaultdict(dict)
for lb in lookbacks:
for hold in holdings:
dd[lb][hold] = strat_sr(px, lb, hold)
ddf = DataFrame(dd)
ddf.index.name = 'Holding Period'
ddf.columns.name = 'Lookback Period'
To visualize the results and get an idea of what’s going on, here is a function that uses matplotlib to produce a heatmap with some adornments:
import matplotlib.pyplot as plt
def heatmap(df, cmap=plt.cm.gray_r):
fig = plt.figure()
ax = fig.add_subplot(111)
axim = ax.imshow(df.values, cmap=cmap, interpolation='nearest')
ax.set_xlabel(df.columns.name)
ax.set_xticks(np.arange(len(df.columns)))
ax.set_xticklabels(list(df.columns))
ax.set_ylabel(df.index.name)
ax.set_yticks(np.arange(len(df.index)))
ax.set_yticklabels(list(df.index))
plt.colorbar(axim)
Calling this function on the backtest results, we get Figure 11-3:
In [125]: heatmap(ddf)
Figure 11-3. Heatmap of momentum strategy Sharpe ratio (higher is better) over various lookbacks and holding periods
Future Contract Rolling
A future is an ubiquitous form of derivative contract; it is an agreement to take delivery of a certain asset (such as oil, gold, or shares of the FTSE 100 index) on a particular date. In practice, modeling and trading futures contracts on equities, currencies, commodities, bonds, and other asset classes is complicated by the time-limited nature of each contract. For example, at any given time for a type of future (say silver or copper futures) multiple contracts with different expiration dates may be traded. In many cases, the future contract expiring next (the near contract) will be the most liquid (highest volume and lowest bid-ask spread).
For the purposes of modeling and forecasting, it can be much easier to work with a continuous return index indicating the profit and loss associated with always holding the near contract. Transitioning from an expiring contract to the next (or far) contract is referred to as rolling. Computing a continuous future series from the individual contract data is not necessarily a straightforward exercise and typically requires a deeper understanding of the market and how the instruments are traded. For example, in practice when and how quickly would you trade out of an expiring contract and into the next contract? Here I describe one such process.
First, I’ll use scaled prices for the SPY exchange-traded fund as a proxy for the S&P 500 index:
In [127]: import pandas.io.data as web
Approximate price of S&P 500 index
In [128]: px = web.get_data_yahoo('SPY')['Adj Close'] * 10
In [129]: px
Out[129]:
Date
2011-08-01 1261.0
2011-08-02 1228.8
2011-08-03 1235.5
...
2012-07-25 1339.6
2012-07-26 1361.7
2012-07-27 1386.8
Name: Adj Close, Length: 251
Now, a little bit of setup. I put a couple of S&P 500 future contracts and expiry dates in a Series:
from datetime import datetime
expiry = {'ESU2': datetime(2012, 9, 21),
'ESZ2': datetime(2012, 12, 21)}
expiry = Series(expiry).order()
expiry then looks like:
In [131]: expiry
Out[131]:
ESU2 2012-09-21 00:00:00
ESZ2 2012-12-21 00:00:00
Then, I use the Yahoo! Finance prices along with a random walk and some noise to simulate the two contracts into the future:
np.random.seed(12347)
N = 200
walk = (np.random.randint(0, 200, size=N) - 100) * 0.25
perturb = (np.random.randint(0, 20, size=N) - 10) * 0.25
walk = walk.cumsum()
rng = pd.date_range(px.index[0], periods=len(px) + N, freq='B')
near = np.concatenate([px.values, px.values[-1] + walk])
far = np.concatenate([px.values, px.values[-1] + walk + perturb])
prices = DataFrame({'ESU2': near, 'ESZ2': far}, index=rng)
prices then has two time series for the contracts that differ from each other by a random amount:
In [133]: prices.tail()
Out[133]:
ESU2 ESZ2
2013-04-16 1416.05 1417.80
2013-04-17 1402.30 1404.55
2013-04-18 1410.30 1412.05
2013-04-19 1426.80 1426.05
2013-04-22 1406.80 1404.55
One way to splice time series together into a single continuous series is to construct a weighting matrix. Active contracts would have a weight of 1 until the expiry date approaches. At that point you have to decide on a roll convention. Here is a function that computes a weighting matrix with linear decay over a number of periods leading up to expiry:
def get_roll_weights(start, expiry, items, roll_periods=5):
start : first date to compute weighting DataFrame
expiry : Series of ticker -> expiration dates
items : sequence of contract names
dates = pd.date_range(start, expiry[-1], freq='B')
weights = DataFrame(np.zeros((len(dates), len(items))),
index=dates, columns=items)
prev_date = weights.index[0]
for i, (item, ex_date) in enumerate(expiry.iteritems()):
if i < len(expiry) - 1:
weights.ix[prev_date:ex_date - pd.offsets.BDay(), item] = 1
roll_rng = pd.date_range(end=ex_date - pd.offsets.BDay(),
periods=roll_periods + 1, freq='B')
decay_weights = np.linspace(0, 1, roll_periods + 1)
weights.ix[roll_rng, item] = 1 - decay_weights
weights.ix[roll_rng, expiry.index[i + 1]] = decay_weights
else:
weights.ix[prev_date:, item] = 1
prev_date = ex_date
return weights
The weights look like this around the ESU2 expiry:
In [135]: weights = get_roll_weights('6/1/2012', expiry, prices.columns)
In [136]: weights.ix['2012-09-12':'2012-09-21']
Out[136]:
ESU2 ESZ2
2012-09-12 1.0 0.0
2012-09-13 1.0 0.0
2012-09-14 0.8 0.2
2012-09-17 0.6 0.4
2012-09-18 0.4 0.6
2012-09-19 0.2 0.8
2012-09-20 0.0 1.0
2012-09-21 0.0 1.0
Finally, the rolled future returns are just a weighted sum of the contract returns:
In [137]: rolled_returns = (prices.pct_change() * weights).sum(1)
Rolling Correlation and Linear Regression
Dynamic models play an important role in financial modeling as they can be used to simulate trading decisions over a historical period. Moving window and exponentially-weighted time series functions are an example of tools that are used for dynamic models.
Correlation is one way to look at the co-movement between the changes in two asset time series. pandas’s rolling_corr function can be called with two return series to compute the moving window correlation. First, I load some price series from Yahoo! Finance and compute daily returns:
aapl = web.get_data_yahoo('AAPL', '2000-01-01')['Adj Close']
msft = web.get_data_yahoo('MSFT', '2000-01-01')['Adj Close']
aapl_rets = aapl.pct_change()
msft_rets = msft.pct_change()
Then, I compute and plot the one-year moving correlation (see Figure 11-4):
In [140]: pd.rolling_corr(aapl_rets, msft_rets, 250).plot()
One issue with correlation between two assets is that it does not capture differences in volatility. Least-squares regression provides another means for modeling the dynamic relationship between a variable and one or more other predictor variables.
In [142]: model = pd.ols(y=aapl_rets, x={'MSFT': msft_rets}, window=250)
In [143]: model.beta
Out[143]:
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2913 entries, 2000-12-28 00:00:00 to 2012-07-27 00:00:00
Data columns:
MSFT 2913 non-null values
intercept 2913 non-null values
dtypes: float64(2)
In [144]: model.beta['MSFT'].plot()
Figure 11-4. One-year correlation of Apple with Microsoft
Figure 11-5. One-year beta (OLS regression coefficient) of Apple to Microsoft
pandas’s ols function implements static and dynamic (expanding or rolling window) least squares regressions. For more sophisticated statistical and econometrics models, see the statsmodels project (http://statsmodels.sourceforge.net).
Chapter 12. Advanced NumPy
ndarray Object Internals
The NumPy ndarray provides a means to interpret a block of homogeneous data (either contiguous or strided, more on this later) as a multidimensional array object. As you’ve seen, the data type, or dtype, determines how the data is interpreted as being floating point, integer, boolean, or any of the other types we’ve been looking at.
Part of what makes ndarray powerful is that every array object is a strided view on a block of data. You might wonder, for example, how the array view arr[::2, ::-1] does not copy any data. Simply put, the ndarray is more than just a chunk of memory and a dtype; it also has striding information which enables the array to move through memory with varying step sizes. More precisely, the ndarray internally consists of the following:
A pointer to data, that is a block of system memory
The data type or dtype
A tuple indicating the array’s shape; For example, a 10 by 5 array would have shape (10, 5)
In [8]: np.ones((10, 5)).shape
Out[8]: (10, 5)
A tuple of strides, integers indicating the number of bytes to “step” in order to advance one element along a dimension; For example, a typical (C order, more on this later) 3 x 4 x 5 array of float64 (8-byte) values has strides (160, 40, 8)
In [9]: np.ones((3, 4, 5), dtype=np.float64).strides
Out[9]: (160, 40, 8)
While it is rare that a typical NumPy user would be interested in the array strides, they are the critical ingredient in constructing copyless array views. Strides can even be negative which enables an array to move backward through memory, which would be the case in a slice like obj[::-1] or obj[:, ::-1].
See Figure 12-1 for a simple mockup the ndarray innards.
Figure 12-1. The NumPy ndarray object
NumPy dtype Hierarchy
You may occasionally have code which needs to check whether an array contains integers, floating point numbers, strings, or Python objects. Because there are many types of floating point numbers (float16 through float128), checking that the dtype is among a list of types would be very verbose. Fortunately, the dtypes have superclasses such as np.integer and np.floating which can be used in conjunction with the np.issubdtype function:
In [10]: ints = np.ones(10, dtype=np.uint16)
In [11]: floats = np.ones(10, dtype=np.float32)
In [12]: np.issubdtype(ints.dtype, np.integer)
Out[12]: True
In [13]: np.issubdtype(floats.dtype, np.floating)
Out[13]: True
You can see all of the parent classes of a specific dtype by calling the type’s mro method:
In [14]: np.float64.mro()
Out[14]:
[numpy.float64,
numpy.floating,
numpy.inexact,
numpy.number,
numpy.generic,
float,
object]
Most NumPy users will never have to know about this, but it occasionally comes in handy. See Figure 12-2 for a graph of the dtype hierarchy and parent-subclass relationships [7].
Figure 12-2. The NumPy dtype class hierarchy
Advanced Array Manipulation
There are many ways to work with arrays beyond fancy indexing, slicing, and boolean subsetting. While much of the heavy lifting for data analysis applications is handled by higher level functions in pandas, you may at some point need to write a data algorithm that is not found in one of the existing libraries.
Reshaping Arrays
Given what we know about NumPy arrays, it should come as little surprise that you can convert an array from one shape to another without copying any data. To do this, pass a tuple indicating the new shape to the reshape array instance method. For example, suppose we had a one-dimensional array of values that we wished to rearrange into a matrix:
In [15]: arr = np.arange(8)
In [16]: arr
Out[16]: array([0, 1, 2, 3, 4, 5, 6, 7])
In [17]: arr.reshape((4, 2))
Out[17]:
array([[0, 1],
[2, 3],
[4, 5],
[6, 7]])
A multidimensional array can also be reshaped:
In [18]: arr.reshape((4, 2)).reshape((2, 4))
Out[18]:
array([[0, 1, 2, 3],
[4, 5, 6, 7]])
One of the passed shape dimensions can be -1, in which case the value used for that dimension will be inferred from the data:
In [19]: arr = np.arange(15) In [20]: arr.reshape((5, -1))
Out[20]:
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]])
Since an array’s shape attribute is a tuple, it can be passed to reshape, too:
In [21]: other_arr = np.ones((3, 5))
In [22]: other_arr.shape
Out[22]: (3, 5)
In [23]: arr.reshape(other_arr.shape)
Out[23]:
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
The opposite operation of reshape from one-dimensional to a higher dimension is typically known as flattening or raveling:
In [24]: arr = np.arange(15).reshape((5, 3)) In [25]: arr
Out[25]:
array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11],
[12, 13, 14]])
In [26]: arr.ravel()
Out[26]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
ravel does not produce a copy of the underlying data if it does not have to (more on this below). The flatten method behaves like ravel except it always returns a copy of the data:
In [27]: arr.flatten()
Out[27]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
The data can be reshaped or raveled in different orders. This is a slightly nuanced topic for new NumPy users and is therefore the next subtopic.
C versus Fortran Order
Contrary to some other scientific computing environments like R and MATLAB, NumPy gives you much more control and flexibility over the layout of your data in memory. By default, NumPy arrays are created in row major order. Spatially this means that if you have a two-dimensional array of data, the items in each row of the array are stored in adjacent memory locations. The alternative to row major ordering is column major order, which means that (you guessed it) values within each column of data are stored in adjacent memory locations.
For historical reasons, row and column major order are also know as C and Fortran order, respectively. In FORTRAN 77, the language of our forebears, matrices were all column major.
Functions like reshape and ravel, accept an order argument indicating the order to use the data in the array. This can be 'C' or 'F' in most cases (there are also less commonly-used options 'A' and 'K'; see the NumPy documentation). These are illustrated in Figure 12-3.
In [28]: arr = np.arange(12).reshape((3, 4))
In [29]: arr
Out[29]:
array([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]])
In [30]: arr.ravel()
Out[30]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
In [31]: arr.ravel('F')
Out[31]: array([0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11])
Reshaping arrays with more than two dimensions can be a bit mind-bending. The key difference between C and Fortran order is the order in which the dimensions are walked:
C / row major order: traverse higher dimensions first (e.g. axis 1 before advancing on axis 0).
Fortran / column major order: traverse higher dimensions last (e.g. axis 0 before advancing on axis 1).
Concatenating and Splitting Arrays
numpy.concatenate takes a sequence (tuple, list, etc.) of arrays and joins them together in order along the input axis.
In [32]: arr1 = np.array([[1, 2, 3], [4, 5, 6]])
In [33]: arr2 = np.array([[7, 8, 9], [10, 11, 12]])
In [34]: np.concatenate([arr1, arr2], axis=0)
Out[34]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10, 11, 12]])
In [35]: np.concatenate([arr1, arr2], axis=1)
Out[35]:
array([[1, 2, 3, 7, 8, 9],
[4, 5, 6, 10, 11, 12]])
Figure 12-3. Reshaping in C (row major) or Fortran (column major) order
There are some convenience functions, like vstack and hstack, for common kinds of concatenation. The above operations could have been expressed as:
In [36]: np.vstack((arr1, arr2)) In [37]: np.hstack((arr1, arr2))
Out[36]: Out[37]:
array([[1, 2, 3], array([[1, 2, 3, 7, 8, 9],
[4, 5, 6], [4, 5, 6, 10, 11, 12]])
[7, 8, 9],
[10, 11, 12]])
split, on the other hand, slices apart an array into multiple arrays along an axis:
In [38]: from numpy.random import randn
In [39]: arr = randn(5, 2) In [40]: arr
Out[40]:
array([[0.1689, 0.3287],
[0.4703, 0.8989],
[0.1535, 0.0243],
[-0.2832, 1.1536],
[0.2707, 0.8075]])
In [41]: first, second, third = np.split(arr, [1, 3])
In [42]: first
Out[42]: array([[0.1689, 0.3287]])
In [43]: second In [44]: third
Out[43]: Out[44]:
array([[0.4703, 0.8989], array([[-0.2832, 1.1536],
[0.1535, 0.0243]]) [0.2707, 0.8075]])
See Table 12-1 for a list of all relevant concatenation and splitting functions, some of which are provided only as a convenience of the very general purpose concatenate.
Table 12-1. Array concatenation functions
Stacking helpers: r_ and c_
There are two special objects in the NumPy namespace, r_ and c_, that make stacking arrays more concise:
In [45]: arr = np.arange(6)
In [46]: arr1 = arr.reshape((3, 2))
In [47]: arr2 = randn(3, 2)
In [48]: np.r_[arr1, arr2] In [49]: np.c_[np.r_[arr1, arr2], arr]
Out[48]: Out[49]:
array([[0. , 1.], array([[0. , 1. , 0.],
[2. , 3.], [2. , 3. , 1.],
[4. , 5.], [4. , 5. , 2.],
[0.7258, -1.5325], [0.7258, -1.5325, 3.],
[-0.4696, -0.2127], [-0.4696, -0.2127, 4.],
[-0.1072, 1.2871]]) [-0.1072, 1.2871, 5.]])
These additionally can translate slices to arrays:
In [50]: np.c_[1:6, -10:-5]
Out[50]:
array([[1, -10],
[2, -9],
[3, -8],
[4, -7],
[5, -6]])
See the docstring for more on what you can do with c_ and r_.
Repeating Elements: Tile and Repeat
NOTE
The need to replicate or repeat arrays is less common with NumPy than it is with other popular array programming languages like MATLAB. The main reason for this is that broadcasting fulfills this need better, which is the subject of the next section.
The two main tools for repeating or replicating arrays to produce larger arrays are the repeat and tile functions. repeat replicates each element in an array some number of times, producing a larger array:
In [51]: arr = np.arange(3)
In [52]: arr.repeat(3)
Out[52]: array([0, 0, 0, 1, 1, 1, 2, 2, 2])
By default, if you pass an integer, each element will be repeated that number of times. If you pass an array of integers, each element can be repeated a different number of times:
In [53]: arr.repeat([2, 3, 4])
Out[53]: array([0, 0, 1, 1, 1, 2, 2, 2, 2])
Multidimensional arrays can have their elements repeated along a particular axis.
In [54]: arr = randn(2, 2)
In [55]: arr In [56]: arr.repeat(2, axis=0)
Out[55]: Out[56]:
array([[0.7157, -0.6387], array([[0.7157, -0.6387],
[0.3626, 0.849]]) [0.7157, -0.6387],
[0.3626, 0.849],
[0.3626, 0.849]])
Note that if no axis is passed, the array will be flattened first, which is likely not what you want. Similarly you can pass an array of integers when repeating a multidimensional array to repeat a given slice a different number of times:
In [57]: arr.repeat([2, 3], axis=0)
Out[57]:
array([[0.7157, -0.6387],
[0.7157, -0.6387],
[0.3626, 0.849],
[0.3626, 0.849],
[0.3626, 0.849]])
In [58]: arr.repeat([2, 3], axis=1)
Out[58]:
array([[0.7157, 0.7157, -0.6387, -0.6387, -0.6387],
[0.3626, 0.3626, 0.849 , 0.849 , 0.849]])
tile, on the other hand, is a shortcut for stacking copies of an array along an axis. You can visually think about it as like “laying down tiles”:
In [59]: arr
Out[59]:
array([[0.7157, -0.6387],
[0.3626, 0.849]])
In [60]: np.tile(arr, 2)
Out[60]:
array([[0.7157, -0.6387, 0.7157, -0.6387],
[0.3626, 0.849 , 0.3626, 0.849]])
The second argument is the number of tiles; with a scalar, the tiling is made row-by-row, rather than column by column: The second argument to tile can be a tuple indicating the layout of the “tiling”:
In [61]: arr
Out[61]:
array([[0.7157, -0.6387],
[0.3626, 0.849]])
In [62]: np.tile(arr, (2, 1)) In [63]: np.tile(arr, (3, 2))
Out[62]: Out[63]:
array([[0.7157, -0.6387], array([[0.7157, -0.6387, 0.7157, -0.6387],
[0.3626, 0.849], [0.3626, 0.849 , 0.3626, 0.849],
[0.7157, -0.6387], [0.7157, -0.6387, 0.7157, -0.6387],
[0.3626, 0.849]]) [0.3626, 0.849 , 0.3626, 0.849],
[0.7157, -0.6387, 0.7157, -0.6387],
[0.3626, 0.849 , 0.3626, 0.849]])
Fancy Indexing Equivalents: Take and Put
As you may recall from Chapter 4, one way to get and set subsets of arrays is by fancy indexing using integer arrays:
In [64]: arr = np.arange(10) * 100
In [65]: inds = [7, 1, 2, 6] In [66]: arr[inds]
Out[66]: array([700, 100, 200, 600])
There are alternate ndarray methods that are useful in the special case of only making a selection on a single axis:
In [67]: arr.take(inds)
Out[67]: array([700, 100, 200, 600])
In [68]: arr.put(inds, 42)
In [69]: arr
Out[69]: array([0, 42, 42, 300, 400, 500, 42, 42, 800, 900])
In [70]: arr.put(inds, [40, 41, 42, 43])
In [71]: arr
Out[71]: array([0, 41, 42, 300, 400, 500, 43, 40, 800, 900])
To use take along other axes, you can pass the axis keyword:
In [72]: inds = [2, 0, 2, 1]
In [73]: arr = randn(2, 4)
In [74]: arr
Out[74]:
array([[-0.8237, 2.6047, -0.4578, -1.],
[2.3198, -1.0792, 0.518 , 0.2527]])
In [75]: arr.take(inds, axis=1)
Out[75]:
array([[-0.4578, -0.8237, -0.4578, 2.6047],
[0.518 , 2.3198, 0.518 , -1.0792]])
put does not accept an axis argument but rather indexes into the flattened (one-dimensional, C order) version of the array (this could be changed in principle). Thus, when you need to set elements using an index array on other axes, you will want to use fancy indexing.
NOTE
As of this writing, the take and put functions in general have better performance than their fancy indexing equivalents by a significant margin. I regard this as a “bug” and something to be fixed in NumPy, but it’s something worth keeping in mind if you’re selecting subsets of large arrays using integer arrays:
In [76]: arr = randn(1000, 50)
Random sample of 500 rows
In [77]: inds = np.random.permutation(1000)[:500]
In [78]: %timeit arr[inds]
1000 loops, best of 3: 356 us per loop
In [79]: %timeit arr.take(inds, axis=0)
10000 loops, best of 3: 34 us per loop
Broadcasting
Broadcasting describes how arithmetic works between arrays of different shapes. It is a very powerful feature, but one that can be easily misunderstood, even by experienced users. The simplest example of broadcasting occurs when combining a scalar value with an array:
In [80]: arr = np.arange(5)
In [81]: arr In [82]: arr * 4
Out[81]: array([0, 1, 2, 3, 4]) Out[82]: array([0, 4, 8, 12, 16])
Here we say that the scalar value 4 has been broadcast to all of the other elements in the multiplication operation.
For example, we can demean each column of an array by subtracting the column means. In this case, it is very simple:
In [83]: arr = randn(4, 3)
In [84]: arr.mean(0)
Out[84]: array([0.1321, 0.552 , 0.8571])
In [85]: demeaned = arr - arr.mean(0)
In [86]: demeaned In [87]: demeaned.mean(0)
Out[86]: Out[87]: array([0., -0., -0.])
array([[0.1718, -0.1972, -1.3669],
[-0.1292, 1.6529, -0.3429],
[-0.2891, -0.0435, 1.2322],
[0.2465, -1.4122, 0.4776]])
See Figure 12-4 for an illustration of this operation. Demeaning the rows as a broadcast operation requires a bit more care. Fortunately, broadcasting potentially lower dimensional values across any dimension of an array (like subtracting the row means from each column of a two-dimensional array) is possible as long as you follow the rules. This brings us to:
Figure 12-4. Broadcasting over axis 0 with a 1D array
THE BROADCASTING RU
Two arrays are compatible for broadcasting if for each trailing dimension (that is, starting from the end), the axis lengths match or if either of the lengths is 1. Broadcasting is then performed over the missing and / or length 1 dimensions.
Even as an experienced NumPy user, I often must stop to draw pictures and think about the broadcasting rule. Consider the last example and suppose we wished instead to subtract the mean value from each row. Since arr.mean(0) has length 3, it is compatible for broadcasting across axis 0 because the trailing dimension in arr is 3 and therefore matches. According to the rules, to subtract over axis 1 (that is, subtract the row mean from each row), the smaller array must have shape (4, 1):
In [88]: arr
Out[88]:
array([[0.3039, 0.3548, -0.5097],
[0.0029, 2.2049, 0.5142],
[-0.1571, 0.5085, 2.0893],
[0.3786, -0.8602, 1.3347]])
In [89]: row_means = arr.mean(1) In [90]: row_means.reshape((4, 1))
Out[90]:
array([[0.0496],
[0.9073],
[0.8136],
[0.2844]])
In [91]: demeaned = arr - row_means.reshape((4, 1))
In [92]: demeaned.mean(1)
Out[92]: array([0., 0., 0., 0.])
Has your head exploded yet? See Figure 12-5 for an illustration of this operation.
Figure 12-5. Broadcasting over axis 1 of a 2D array
See Figure 12-6 for another illustration, this time subtracting a two-dimensional array from a three-dimensional one across axis 0.
Broadcasting Over Other Axes
Broadcasting with higher dimensional arrays can seem even more mind-bending, but it is really a matter of following the rules. If you don’t, you’ll get an error like this:
In [93]: arr - arr.mean(1)

ValueError Traceback (most recent call last)
<ipython-input-93-7b87b85a20b2> in <module>()
----> 1 arr - arr.mean(1)
ValueError: operands could not be broadcast together with shapes (4,3) (4)
Figure 12-6. Broadcasting over axis 0 of a 3D array
It’s quite common to want to perform an arithmetic operation with a lower dimensional array across axes other than axis 0. According to the broadcasting rule, the “broadcast dimensions” must be 1 in the smaller array. In the example of row demeaning above this meant reshaping the row means to be shape (4, 1) instead of (4,):
In [94]: arr - arr.mean(1).reshape((4, 1))
Out[94]:
array([[0.2542, 0.3051, -0.5594],
[-0.9044, 1.2976, -0.3931],
[-0.9707, -0.3051, 1.2757],
[0.0942, -1.1446, 1.0503]])
In the three-dimensional case, broadcasting over any of the three dimensions is only a matter of reshaping the data to be shape-compatible. See Figure 12-7 for a nice visualization of the shapes required to broadcast over each axis of a three-dimensional array.
A very common problem, therefore, is needing to add a new axis with length 1 specifically for broadcasting purposes, especially in generic algorithms. Using reshape is one option, but inserting an axis requires constructing a tuple indicating the new shape. This can often be a tedious exercise. Thus, NumPy arrays offer a special syntax for inserting new axes by indexing. We use the special np.newaxis attribute along with “full” slices to insert the new axis:
In [95]: arr = np.zeros((4, 4))
In [96]: arr_3d = arr[:, np.newaxis, :] In [97]: arr_3d.shape
Out[97]: (4, 1, 4)
In [98]: arr_1d = np.random.normal(size=3)
In [99]: arr_1d[:, np.newaxis] In [100]: arr_1d[np.newaxis, :]
Out[99]: Out[100]: array([[-0.3899, 0.396 , -0.1852]])
array([[-0.3899],
[0.396],
[-0.1852]])
Figure 12-7. Compatible 2D array shapes for broadcasting over a 3D array
Thus, if we had a three-dimensional array and wanted to demean axis 2, say, we would only need to write:
In [101]: arr = randn(3, 4, 5)
In [102]: depth_means = arr.mean(2)
In [103]: depth_means
Out[103]:
array([[0.1097, 0.3118, -0.5473, 0.2663],
[0.1747, 0.1379, 0.1146, -0.4224],
[0.0217, 0.3686, -0.0468, 1.3026]])
In [104]: demeaned = arr - depth_means[:, :, np.newaxis]
In [105]: demeaned.mean(2)
Out[105]:
array([[0., 0., -0., 0.],
[0., -0., -0., 0.],
[-0., -0., 0., 0.]])
If you’re completely confused by this, don’t worry. With practice you will get the hang of it!
Some readers might wonder if there’s a way to generalize demeaning over an axis without sacrificing performance. There is, in fact, but it requires some indexing gymnastics:
def demean_axis(arr, axis=0):
means = arr.mean(axis)
This generalized things like [:, :, np.newaxis] to N dimensions
indexer = [slice(None)] * arr.ndim
indexer[axis] = np.newaxis
return arr - means[indexer]
Setting Array Values by Broadcasting
The same broadcasting rule governing arithmetic operations also applies to setting values via array indexing. In the simplest case, we can do things like:
In [106]: arr = np.zeros((4, 3))
In [107]: arr[:] = 5 In [108]: arr
Out[108]:
array([[5., 5., 5.],
[5., 5., 5.],
[5., 5., 5.],
[5., 5., 5.]])
However, if we had a one-dimensional array of values we wanted to set into the columns of the array, we can do that as long as the shape is compatible:
In [109]: col = np.array([1.28, -0.42, 0.44, 1.6])
In [110]: arr[:] = col[:, np.newaxis] In [111]: arr
Out[111]:
array([[1.28, 1.28, 1.28],
[-0.42, -0.42, -0.42],
[0.44, 0.44, 0.44],
[1.6 , 1.6 , 1.6]])
In [112]: arr[:2] = [[-1.37], [0.509]] In [113]: arr
Out[113]:
array([[-1.37 , -1.37 , -1.37],
[0.509, 0.509, 0.509],
[0.44 , 0.44 , 0.44],
[1.6 , 1.6 , 1.6]])
Advanced ufunc Usage
While many NumPy users will only make use of the fast element-wise operations provided by the universal functions, there are a number of additional features that occasionally can help you write more concise code without loops.
ufunc Instance Methods
Each of NumPy’s binary ufuncs has special methods for performing certain kinds of special vectorized operations. These are summarized in Table 12-2, but I’ll give a few concrete examples to illustrate how they work.
reduce takes a single array and aggregates its values, optionally along an axis, by performing a sequence of binary operations. For example, an alternate way to sum elements in an array is to use np.add.reduce:
In [114]: arr = np.arange(10)
In [115]: np.add.reduce(arr)
Out[115]: 45
In [116]: arr.sum()
Out[116]: 45
The starting value (0 for add) depends on the ufunc. If an axis is passed, the reduction is performed along that axis. This allows you to answer certain kinds of questions in a concise way. As a less trivial example, we can use np.logical_and to check whether the values in each row of an array are sorted:
In [118]: arr = randn(5, 5)
In [119]: arr[::2].sort(1) # sort a few rows
In [120]: arr[:, :-1] < arr[:, 1:]
Out[120]:
array([[True, True, True, True],
[False, True, False, False],
[True, True, True, True],
[True, False, True, True],
[True, True, True, True]], dtype=bool)
In [121]: np.logical_and.reduce(arr[:, :-1] < arr[:, 1:], axis=1)
Out[121]: array([True, False, True, False, True], dtype=bool)
Of course, logical_and.reduce is equivalent to the all method.
accumulate is related to reduce like cumsum is related to sum. It produces an array of the same size with the intermediate “accumulated” values:
In [122]: arr = np.arange(15).reshape((3, 5))
In [123]: np.add.accumulate(arr, axis=1)
Out[123]:
array([[0, 1, 3, 6, 10],
[5, 11, 18, 26, 35],
[10, 21, 33, 46, 60]])
outer performs a pairwise cross-product between two arrays:
In [124]: arr = np.arange(3).repeat([1, 2, 2])
In [125]: arr
Out[125]: array([0, 1, 1, 2, 2])
In [126]: np.multiply.outer(arr, np.arange(5))
Out[126]:
array([[0, 0, 0, 0, 0],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8],
[0, 2, 4, 6, 8]])
The output of outer will have a dimension that is the sum of the dimensions of the inputs:
In [127]: result = np.subtract.outer(randn(3, 4), randn(5))
In [128]: result.shape
Out[128]: (3, 4, 5)
The last method, reduceat, performs a “local reduce”, in essence an array groupby operation in which slices of the array are aggregated together. While it’s less flexible than the GroupBy capabilities in pandas, it can be very fast and powerful in the right circumstances. It accepts a sequence of “bin edges” which indicate how to split and aggregate the values:
In [129]: arr = np.arange(10)
In [130]: np.add.reduceat(arr, [0, 5, 8])
Out[130]: array([10, 18, 17])
The results are the reductions (here, sums) performed over arr[0:5], arr[5:8], and arr[8:]. Like the other methods, you can pass an axis argument:
In [131]: arr = np.multiply.outer(np.arange(4), np.arange(5))
In [132]: arr In [133]: np.add.reduceat(arr, [0, 2, 4], axis=1)
Out[132]: Out[133]:
array([[0, 0, 0, 0, 0], array([[0, 0, 0],
[0, 1, 2, 3, 4], [1, 5, 4],
[0, 2, 4, 6, 8], [2, 10, 8],
[0, 3, 6, 9, 12]]) [3, 15, 12]])
Table 12-2. ufunc methods
Custom ufuncs
There are a couple facilities for creating your own functions with ufunc-like semantics. numpy.frompyfunc accepts a Python function along with a specification for the number of inputs and outputs. For example, a simple function that adds element-wise would be specified as:
In [134]: def add_elements(x, y):
.....: return x + y
In [135]: add_them = np.frompyfunc(add_elements, 2, 1)
In [136]: add_them(np.arange(8), np.arange(8))
Out[136]: array([0, 2, 4, 6, 8, 10, 12, 14], dtype=object)
Functions created using frompyfunc always return arrays of Python objects which isn’t very convenient. Fortunately, there is an alternate, but slightly less featureful function numpy.vectorize that is a bit more intelligent about type inference:
In [137]: add_them = np.vectorize(add_elements, otypes=[np.float64])
In [138]: add_them(np.arange(8), np.arange(8))
Out[138]: array([0., 2., 4., 6., 8., 10., 12., 14.])
These functions provide a way to create ufunc-like functions, but they are very slow because they require a Python function call to compute each element, which is a lot slower than NumPy’s C-based ufunc loops:
In [139]: arr = randn(10000)
In [140]: %timeit add_them(arr, arr)
100 loops, best of 3: 2.12 ms per loop
In [141]: %timeit np.add(arr, arr)
100000 loops, best of 3: 11.6 us per loop
There are a number of projects under way in the scientific Python community to make it easier to define new ufuncs whose performance is closer to that of the built-in ones.
Structured and Record Arrays
You may have noticed up until now that ndarray is a homogeneous data container; that is, it represents a block of memory in which each element takes up the same number of bytes, determined by the dtype. On the surface, this would appear to not allow you to represent heterogeneous or tabular-like data. A structured array is an ndarray in which each element can be thought of as representing a struct in C (hence the “structured” name) or a row in a SQL table with multiple named fields:
In [142]: dtype = [('x', np.float64), ('y', np.int32)]
In [143]: sarr = np.array([(1.5, 6), (np.pi, -2)], dtype=dtype)
In [144]: sarr
Out[144]:
array([(1.5, 6), (3.141592653589793, -2)],
dtype=[('x', '<f8'), ('y', '<i4')])
There are several ways to specify a structured dtype (see the online NumPy documentation). One typical way is as a list of tuples with (field_name, field_data_type). Now, the elements of the array are tuple-like objects whose elements can be accessed like a dictionary:
In [145]: sarr[0]
Out[145]: (1.5, 6)
In [146]: sarr[0]['y']
Out[146]: 6
The field names are stored in the dtype.names attribute. On accessing a field on the structured array, a strided view on the data is returned thus copying nothing:
In [147]: sarr['x']
Out[147]: array([1.5 , 3.1416])
Nested dtypes and Multidimensional Fields
When specifying a structured dtype, you can additionally pass a shape (as an int or tuple):
In [148]: dtype = [('x', np.int64, 3), ('y', np.int32)]
In [149]: arr = np.zeros(4, dtype=dtype)
In [150]: arr
Out[150]:
array([([0, 0, 0], 0), ([0, 0, 0], 0), ([0, 0, 0], 0), ([0, 0, 0], 0)],
dtype=[('x', '<i8', (3,)), ('y', '<i4')])
In this case, the x field now refers to an array of length three for each record:
In [151]: arr[0]['x']
Out[151]: array([0, 0, 0])
Conveniently, accessing arr['x'] then returns a two-dimensional array instead of a one-dimensional array as in prior examples:
In [152]: arr['x']
Out[152]:
array([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
This enables you to express more complicated, nested structures as a single block of memory in an array. Though, since dtypes can be arbitrarily complex, why not nested dtypes? Here is a simple example:
In [153]: dtype = [('x', [('a', 'f8'), ('b', 'f4')]), ('y', np.int32)]
In [154]: data = np.array([((1, 2), 5), ((3, 4), 6)], dtype=dtype)
In [155]: data['x']
Out[155]:
array([(1.0, 2.0), (3.0, 4.0)],
dtype=[('a', '<f8'), ('b', '<f4')])
In [156]: data['y']
Out[156]: array([5, 6], dtype=int32)
In [157]: data['x']['a']
Out[157]: array([1., 3.])
As you can see, variable-shape fields and nested records is a very rich feature that can be the right tool in certain circumstances. A DataFrame from pandas, by contrast, does not support this feature directly, though it is similar to hierarchical indexing.
Why Use Structured Arrays?
Compared with, say, a DataFrame from pandas, NumPy structured arrays are a comparatively low-level tool. They provide a means to interpreting a block of memory as a tabular structure with arbitrarily complex nested columns. Since each element in the array is represented in memory as a fixed number of bytes, structured arrays provide a very fast and efficient way of writing data to and from disk (including memory maps, more on this later), transporting it over the network, and other such use.
As another common use for structured arrays, writing data files as fixed length record byte streams is a common way to serialize data in C and C++ code, which is commonly found in legacy systems in industry. As long as the format of the file is known (the size of each record and the order, byte size, and data type of each element), the data can be read into memory using np.fromfile. Specialized uses like this are beyond the scope of this book, but it’s worth knowing that such things are possible.
Structured Array Manipulations: numpy.lib.recfunctions
While there is not as much functionality available for structured arrays as for DataFrames, the NumPy module numpy.lib.recfunctions has some helpful tools for adding and dropping fields or doing basic join-like operations. The thing to remember with these tools is that it is typically necessary to create a new array to make any modifications to the dtype (like adding or dropping a column). These functions are left to the interested reader to explore as I do not use them anywhere in this book.
More About Sorting
Like Python’s built-in list, the ndarray sort instance method is an in-place sort, meaning that the array contents are rearranged without producing a new array:
In [158]: arr = randn(6)
In [159]: arr.sort()
In [160]: arr
Out[160]: array([-1.082 , 0.3759, 0.8014, 1.1397, 1.2888, 1.8413])
When sorting arrays in-place, remember that if the array is a view on a different ndarray, the original array will be modified:
In [161]: arr = randn(3, 5)
In [162]: arr
Out[162]:
array([[-0.3318, -1.4711, 0.8705, -0.0847, -1.1329],
[-1.0111, -0.3436, 2.1714, 0.1234, -0.0189],
[0.1773, 0.7424, 0.8548, 1.038 , -0.329]])
In [163]: arr[:, 0].sort() # Sort first column values in-place
In [164]: arr
Out[164]:
array([[-1.0111, -1.4711, 0.8705, -0.0847, -1.1329],
[-0.3318, -0.3436, 2.1714, 0.1234, -0.0189],
[0.1773, 0.7424, 0.8548, 1.038 , -0.329]])
On the other hand, numpy.sort creates a new, sorted copy of an array. Otherwise it accepts the same arguments (such as kind, more on this below) as ndarray.sort:
In [165]: arr = randn(5)
In [166]: arr
Out[166]: array([-1.1181, -0.2415, -2.0051, 0.7379, -1.0614])
In [167]: np.sort(arr)
Out[167]: array([-2.0051, -1.1181, -1.0614, -0.2415, 0.7379])
In [168]: arr
Out[168]: array([-1.1181, -0.2415, -2.0051, 0.7379, -1.0614])
All of these sort methods take an axis argument for sorting the sections of data along the passed axis independently:
In [169]: arr = randn(3, 5)
In [170]: arr
Out[170]:
array([[0.5955, -0.2682, 1.3389, -0.1872, 0.9111],
[-0.3215, 1.0054, -0.5168, 1.1925, -0.1989],
[0.3969, -1.7638, 0.6071, -0.2222, -0.2171]])
In [171]: arr.sort(axis=1)
In [172]: arr
Out[172]:
array([[-0.2682, -0.1872, 0.5955, 0.9111, 1.3389],
[-0.5168, -0.3215, -0.1989, 1.0054, 1.1925],
[-1.7638, -0.2222, -0.2171, 0.3969, 0.6071]])
You may notice that none of the sort methods have an option to sort in descending order. This is not actually a big deal because array slicing produces views, thus not producing a copy or requiring any computational work. Many Python users are familiar with the “trick” that for a list values, values[::-1] returns a list in reverse order. The same is true for ndarrays:
In [173]: arr[:, ::-1]
Out[173]:
array([[1.3389, 0.9111, 0.5955, -0.1872, -0.2682],
[1.1925, 1.0054, -0.1989, -0.3215, -0.5168],
[0.6071, 0.3969, -0.2171, -0.2222, -1.7638]])
Indirect Sorts: argsort and lexsort
In data analysis it’s very common to need to reorder data sets by one or more keys. For example, a table of data about some students might need to be sorted by last name then by first name. This is an example of an indirect sort, and if you’ve read the pandas-related chapters you have already seen many higher-level examples. Given a key or keys (an array or values or multiple arrays of values), you wish to obtain an array of integer indices (I refer to them colloquially as indexers) that tells you how to reorder the data to be in sorted order. The two main methods for this are argsort and numpy.lexsort. As a trivial example:
In [174]: values = np.array([5, 0, 1, 3, 2])
In [175]: indexer = values.argsort()
In [176]: indexer
Out[176]: array([1, 2, 4, 3, 0])
In [177]: values[indexer]
Out[177]: array([0, 1, 2, 3, 5])
As a less trivial example, this code reorders a 2D array by its first row:
In [178]: arr = randn(3, 5)
In [179]: arr[0] = values
In [180]: arr
Out[180]:
array([[5. , 0. , 1. , 3. , 2.],
[-0.3636, -0.1378, 2.1777, -0.4728, 0.8356],
[-0.2089, 0.2316, 0.728 , -1.3918, 1.9956]])
In [181]: arr[:, arr[0].argsort()]
Out[181]:
array([[0. , 1. , 2. , 3. , 5.],
[-0.1378, 2.1777, 0.8356, -0.4728, -0.3636],
[0.2316, 0.728 , 1.9956, -1.3918, -0.2089]])
lexsort is similar to argsort, but it performs an indirect lexicographical sort on multiple key arrays. Suppose we wanted to sort some data identified by first and last names:
In [182]: first_name = np.array(['Bob', 'Jane', 'Steve', 'Bill', 'Barbara'])
In [183]: last_name = np.array(['Jones', 'Arnold', 'Arnold', 'Jones', 'Walters'])
In [184]: sorter = np.lexsort((first_name, last_name))
In [185]: zip(last_name[sorter], first_name[sorter])
Out[185]:
[('Arnold', 'Jane'),
('Arnold', 'Steve'),
('Jones', 'Bill'),
('Jones', 'Bob'),
('Walters', 'Barbara')]
lexsort can be a bit confusing the first time you use it because the order in which the keys are used to order the data starts with the last array passed. As you can see, last_name was used before first_name.
NOTE
pandas methods like Series’s and DataFrame’s sort_index methods and the Series order method are implemented with variants of these functions (which also must take into account missing values)
Alternate Sort Algorithms
A stable sorting algorithm preserves the relative position of equal elements. This can be especially important in indirect sorts where the relative ordering is meaningful:
In [186]: values = np.array(['2:first', '2:second', '1:first', '1:second', '1:third'])
In [187]: key = np.array([2, 2, 1, 1, 1])
In [188]: indexer = key.argsort(kind='mergesort')
In [189]: indexer
Out[189]: array([2, 3, 4, 0, 1])
In [190]: values.take(indexer)
Out[190]:
array(['1:first', '1:second', '1:third', '2:first', '2:second'],
dtype='|S8')
The only stable sort available is mergesort which has guaranteed O(n log n) performance (for complexity buffs), but its performance is on average worse than the default quicksort method. See Table 12-3 for a summary of available methods and their relative performance (and performance guarantees). This is not something that most users will ever have to think about but useful to know that it’s there.
Table 12-3. Array sorting methods
Kind	Speed	Stable	Work space	Worst-case
'quicksort' | 1 | No | 0 | O(n 2) |
'mergesort' | 2 | Yes | n / 2 | O(n log n) |
'heapsort' | 3 | No | 0 | O(n log n) |
WARNING
At the time of this writing, sort algorithms other than quicksort are not available on arrays of Python objects (dtype=object). This means occasionally that algorithms requiring stable sorting will require workarounds when dealing with Python objects.
numpy.searchsorted: Finding elements in a Sorted Array
searchsorted is an array method that performs a binary search on a sorted array, returning the location in the array where the value would need to be inserted to maintain sortedness:
In [191]: arr = np.array([0, 1, 7, 12, 15])
In [192]: arr.searchsorted(9)
Out[192]: 3
As you might expect, you can also pass an array of values to get an array of indices back:
In [193]: arr.searchsorted([0, 8, 11, 16])
Out[193]: array([0, 3, 3, 5])
You might have noticed that searchsorted returned 0 for the 0 element. This is because the default behavior is to return the index at the left side of a group of equal values:
In [194]: arr = np.array([0, 0, 0, 1, 1, 1, 1])
In [195]: arr.searchsorted([0, 1])
Out[195]: array([0, 3])
In [196]: arr.searchsorted([0, 1], side='right')
Out[196]: array([3, 7])
As another application of searchsorted, suppose we had an array of values between 0 and 10,000) and a separate array of “bucket edges” that we wanted to use to bin the data:
In [197]: data = np.floor(np.random.uniform(0, 10000, size=50))
In [198]: bins = np.array([0, 100, 1000, 5000, 10000])
In [199]: data
Out[199]:
array([8304., 4181., 9352., 4907., 3250., 8546., 2673., 6152.,
2774., 5130., 9553., 4997., 1794., 9688., 426., 1612.,
651., 8653., 1695., 4764., 1052., 4836., 8020., 3479.,
1513., 5872., 8992., 7656., 4764., 5383., 2319., 4280.,
4150., 8601., 3946., 9904., 7286., 9969., 6032., 4574.,
8480., 4298., 2708., 7358., 6439., 7916., 3899., 9182.,
871., 7973.])
To then get a labeling of which interval each data point belongs to (where 1 would mean the bucket [0, 100)), we can simply use searchsorted:
In [200]: labels = bins.searchsorted(data)
In [201]: labels
Out[201]:
array([4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 4, 2, 3, 2, 4, 3, 3, 3, 3, 4,
3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4,
3, 4, 2, 4])
This, combined with pandas’s groupby, can be used to easily bin data:
In [202]: Series(data).groupby(labels).mean()
Out[202]:
2 649.333333
3 3411.521739
4 7935.041667
Note that NumPy actually has a function digitize that computes this bin labeling:
In [203]: np.digitize(data, bins)
Out[203]:
array([4, 3, 4, 3, 3, 4, 3, 4, 3, 4, 4, 3, 3, 4, 2, 3, 2, 4, 3, 3, 3, 3, 4,
3, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 3, 4, 4, 4,
3, 4, 2, 4])
NumPy Matrix Class
Compared with other languages for matrix operations and linear algebra, like MATLAB, Julia, and GAUSS, NumPy’s linear algebra syntax can often be quite verbose. One reason is that matrix multiplication requires using numpy.dot. Also NumPy’s indexing semantics are different, which makes porting code to Python less straightforward at times. Selecting a single row (e.g. X[1, :]) or column (e.g. X[:, 1]) from a 2D array yields a 1D array compared with a 2D array as in, say, MATLAB.
In [204]: X = np.array([[8.82768214, 3.82222409, -1.14276475, 2.04411587],
.....: [3.82222409, 6.75272284, 0.83909108, 2.08293758],
.....: [-1.14276475, 0.83909108, 5.01690521, 0.79573241],
.....: [2.04411587, 2.08293758, 0.79573241, 6.24095859]])
In [205]: X[:, 0] # one-dimensional
Out[205]: array([8.8277, 3.8222, -1.1428, 2.0441])
In [206]: y = X[:, :1] # two-dimensional by slicing
In [207]: X
Out[207]:
array([[8.8277, 3.8222, -1.1428, 2.0441],
[3.8222, 6.7527, 0.8391, 2.0829],
[-1.1428, 0.8391, 5.0169, 0.7957],
[2.0441, 2.0829, 0.7957, 6.241]])
In [208]: y
Out[208]:
array([[8.8277],
[3.8222],
[-1.1428],
[2.0441]])
In this case, the product yT X y would be expressed like so:
In [209]: np.dot(y.T, np.dot(X, y))
Out[209]: array([[1195.468]])
To aid in writing code with a lot of matrix operations, NumPy has a matrix class which has modified indexing behavior to make it more MATLAB-like: single rows and columns come back two-dimensional and multiplication with * is matrix multiplication. The above operation with numpy.matrix would look like:
In [210]: Xm = np.matrix(X)
In [211]: ym = Xm[:, 0]
In [212]: Xm
Out[212]:
matrix([[8.8277, 3.8222, -1.1428, 2.0441],
[3.8222, 6.7527, 0.8391, 2.0829],
[-1.1428, 0.8391, 5.0169, 0.7957],
[2.0441, 2.0829, 0.7957, 6.241]])
In [213]: ym
Out[213]:
matrix([[8.8277],
[3.8222],
[-1.1428],
[2.0441]])
In [214]: ym.T * Xm * ym
Out[214]: matrix([[1195.468]])
matrix also has a special attribute I which returns the matrix inverse:
In [215]: Xm.I * X
Out[215]:
matrix([[1., -0., -0., -0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
I do not recommend using numpy.matrix as a replacement for regular ndarrays because they are generally more seldom used. In individual functions with lots of linear algebra, it may be helpful to convert the function argument to matrix type, then cast back to regular arrays with np.asarray (which does not copy any data) before returning them.
Advanced Array Input and Output
In Chapter 4, I introduced you to np.save and np.load for storing arrays in binary format on disk. There are a number of additional options to consider for more sophisticated use. In particular, memory maps have the additional benefit of enabling you to work with data sets that do not fit into RAM.
Memory-mapped Files
A memory-mapped file is a method for treating potentially very large binary data on disk as an in-memory array. NumPy implements a memmap object that is ndarray-like, enabling small segments of a large file to be read and written without reading the whole array into memory. Additionally, a memmap has the same methods as an in-memory array and thus can be substituted into many algorithms where an ndarray would be expected.
To create a new memmap, use the function np.memmap and pass a file path, dtype, shape, and file mode:
In [216]: mmap = np.memmap('mymmap', dtype='float64', mode='w+', shape=(10000, 10000))
In [217]: mmap
Out[217]:
memmap([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
Slicing a memmap returns views on the data on disk:
In [218]: section = mmap[:5]
If you assign data to these, it will be buffered in memory (like a Python file object), but can be written to disk by calling flush:
In [219]: section[:] = np.random.randn(5, 10000)
In [220]: mmap.flush()
In [221]: mmap
Out[221]:
memmap([[-0.1614, -0.1768, 0.422 , ..., -0.2195, -0.1256, -0.4012],
[0.4898, -2.2219, -0.7684, ..., -2.3517, -1.0782, 1.3208],
[-0.6875, 1.6901, -0.7444, ..., -1.4218, -0.0509, 1.2224],
...,
[0. , 0. , 0. , ..., 0. , 0. , 0.],
[0. , 0. , 0. , ..., 0. , 0. , 0.],
[0. , 0. , 0. , ..., 0. , 0. , 0.]])
In [222]: del mmap
Whenever a memory map falls out of scope and is garbage-collected, any changes will be flushed to disk also. When opening an existing memory map, you still have to specify the dtype and shape as the file is just a block of binary data with no metadata on disk:
In [223]: mmap = np.memmap('mymmap', dtype='float64', shape=(10000, 10000))
In [224]: mmap
Out[224]:
memmap([[-0.1614, -0.1768, 0.422 , ..., -0.2195, -0.1256, -0.4012],
[0.4898, -2.2219, -0.7684, ..., -2.3517, -1.0782, 1.3208],
[-0.6875, 1.6901, -0.7444, ..., -1.4218, -0.0509, 1.2224],
...,
[0. , 0. , 0. , ..., 0. , 0. , 0.],
[0. , 0. , 0. , ..., 0. , 0. , 0.],
[0. , 0. , 0. , ..., 0. , 0. , 0.]])
Since a memory map is just an on-disk ndarray, there are no issues using a structured dtype as described above.
HDF5 and Other Array Storage Options
PyTables and h5py are two Python projects providing NumPy-friendly interfaces for storing array data in the efficient and compressible HDF5 format (HDF stands for hierarchical data format). You can safely store hundreds of gigabytes or even terabytes of data in HDF5 format. The use of these libraries is unfortunately outside the scope of the book.
PyTables provides a rich facility for working with structured arrays with advanced querying features and the ability to add column indexes to accelerate queries. This is very similar to the table indexing capabilities provided by relational databases.
Performance Tips
Getting good performance out of code utilizing NumPy is often straightforward, as array operations typically replace otherwise comparatively extremely slow pure Python loops. Here is a brief list of some of the things to keep in mind:
Convert Python loops and conditional logic to array operations and boolean array operations
Use broadcasting whenever possible
Avoid copying data using array views (slicing)
Utilize ufuncs and ufunc methods
If you can’t get the performance you require after exhausting the capabilities provided by NumPy alone, writing code in C, Fortran, or especially Cython (see a bit more on this below) may be in order. I personally use Cython (http://cython.org) heavily in my own work as an easy way to get C-like performance with minimal development.
The Importance of Contiguous Memory
While the full extent of this topic is a bit outside the scope of this book, in some applications the memory layout of an array can significantly affect the speed of computations. This is based partly on performance differences having to do with the cache hierarchy of the CPU; operations accessing contiguous blocks of memory (for example, summing the rows of a C order array) will generally be the fastest because the memory subsystem will buffer the appropriate blocks of memory into the ultrafast L1 or L2 CPU cache. Also, certain code paths inside NumPy’s C codebase have been optimized for the contiguous case in which generic strided memory access can be avoided.
To say that an array’s memory layout is contiguous means that the elements are stored in memory in the order that they appear in the array with respect to Fortran (column major) or C (row major) ordering. By default, NumPy arrays are created as C-contiguous or just simply contiguous. A column major array, such as the transpose of a C-contiguous array, is thus said to be Fortran-contiguous. These properties can be explicitly checked via the flags attribute on the ndarray:
In [227]: arr_c = np.ones((1000, 1000), order='C')
In [228]: arr_f = np.ones((1000, 1000), order='F')
In [229]: arr_c.flags In [230]: arr_f.flags
Out[229]: Out[230]:
C_CONTIGUOUS : True C_CONTIGUOUS : False
F_CONTIGUOUS : False F_CONTIGUOUS : True
OWNDATA : True OWNDATA : True
WRITEABLE : True WRITEABLE : True
ALIGNED : True ALIGNED : True
UPDATEIFCOPY : False UPDATEIFCOPY : False
In [231]: arr_f.flags.f_contiguous
Out[231]: True
In this example, summing the rows of these arrays should, in theory, be faster for arr_c than arr_f since the rows are contiguous in memory. Here I check for sure using %timeit in IPython:
In [232]: %timeit arr_c.sum(1)
1000 loops, best of 3: 1.33 ms per loop
In [233]: %timeit arr_f.sum(1)
100 loops, best of 3: 8.75 ms per loop
When looking to squeeze more performance out of NumPy, this is often a place to invest some effort. If you have an array that does not have the desired memory order, you can use copy and pass either 'C' or 'F':
In [234]: arr_f.copy('C').flags
Out[234]:
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
When constructing a view on an array, keep in mind that the result is not guaranteed to be contiguous:
In [235]: arr_c[:50].flags.contiguous In [236]: arr_c[:, :50].flags
Out[235]: True Out[236]:
C_CONTIGUOUS : False
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
Other Speed Options: Cython, f2py, C
In recent years, the Cython project ((http://cython.org) has become the tool of choice for many scientific Python programmers for implementing fast code that may need to interact with C or C++ libraries, but without having to write pure C code. You can think of Cython as Python with static types and the ability to interleave functions implemented in C into Python-like code. For example, a simple Cython function to sum the elements of a one-dimensional array might look like:
from numpy cimport ndarray, float64_t
def sum_elements(ndarray[float64_t] arr):
cdef Py_ssize_t i, n = len(arr)
cdef float64_t result = 0
for i in range(n):
result += arr[i]
return result
Cython takes this code, translates it to C, then compiles the generated C code to create a Python extension. Cython is an attractive option for performance computing because the code is only slightly more time-consuming to write than pure Python code and it integrates closely with NumPy. A common workflow is to get an algorithm working in Python, then translate it to Cython by adding type declarations and a handful of other tweaks. For more, see the project documentation.
Some other options for writing high performance code with NumPy include f2py, a wrapper generator for Fortran 77 and 90 code, and writing pure C extensions.
[7] Some of the dtypes have trailing underscores in their names. These are there to avoid variable name conflicts between the NumPy-specific types and the Python built-in ones.
Appendix A. Python Language Essentials
Knowledge is a treasure, but practice is the key to it.
—Thomas Fuller
People often ask me about good resources for learning Python for data-centric applications. While there are many excellent Python language books, I am usually hesitant to recommend some of them as they are intended for a general audience rather than tailored for someone who wants to load in some data sets, do some computations, and plot some of the results. There are actually a couple of books on “scientific programming in Python”, but they are geared toward numerical computing and engineering applications: solving differential equations, computing integrals, doing Monte Carlo simulations, and various topics that are more mathematically-oriented rather than being about data analysis and statistics. As this is a book about becoming proficient at working with data in Python, I think it is valuable to spend some time highlighting the most important features of Python’s built-in data structures and libraries from the perspective of processing and manipulating structured and unstructured data. As such, I will only present roughly enough information to enable you to follow along with the rest of the book.
This chapter is not intended to be an exhaustive introduction to the Python language but rather a biased, no-frills overview of features which are used repeatedly throughout this book. For new Python programmers, I recommend that you supplement this chapter with the official Python tutorial (http://docs.python.org) and potentially one of the many excellent (and much longer) books on general purpose Python programming. In my opinion, it is not necessary to become proficient at building good software in Python to be able to productively do data analysis. I encourage you to use IPython to experiment with the code examples and to explore the documentation for the various types, functions, and methods. Note that some of the code used in the examples may not necessarily be fully-introduced at this point.
Much of this book focuses on high performance array-based computing tools for working with large data sets. In order to use those tools you must often first do some munging to corral messy data into a more nicely structured form. Fortunately, Python is one of the easiest-to-use languages for rapidly whipping your data into shape. The greater your facility with Python, the language, the easier it will be for you to prepare new data sets for analysis.
The Python Interpreter
Python is an interpreted language. The Python interpreter runs a program by executing one statement at a time. The standard interactive Python interpreter can be invoked on the command line with the python command:
$ python
Python 2.7.2 (default, Oct 4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 5
>>> print a
5
The >>> you see is the prompt where you’ll type expressions. To exit the Python interpreter and return to the command prompt, you can either type exit() or press Ctrl-D.
Running Python programs is as simple as calling python with a .py file as its first argument. Suppose we had created hello_world.py with these contents:
print 'Hello world'
This can be run from the terminal simply as:
$ python hello_world.py
Hello world
While many Python programmers execute all of their Python code in this way, many scientific Python programmers make use of IPython, an enhanced interactive Python interpreter. Chapter 3 is dedicated to the IPython system. By using the %run command, IPython executes the code in the specified file in the same process, enabling you to explore the results interactively when it’s done.
$ ipython
Python 2.7.2 |EPD 7.1-2 (64-bit)| (default, Jul 3 2011, 15:17:51)
Type "copyright", "credits" or "license" for more information.
IPython 0.12 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: %run hello_world.py
Hello world
In [2]:
The default IPython prompt adopts the numbered In [2]: style compared with the standard >>> prompt.
The Basics
Language Semantics
The Python language design is distinguished by its emphasis on readability, simplicity, and explicitness. Some people go so far as to liken it to “executable pseudocode”.
Indentation, not braces
Python uses whitespace (tabs or spaces) to structure code instead of using braces as in many other languages like R, C++, Java, and Perl. Take the for loop in the above quicksort algorithm:
for x in array:
if x < pivot:
less.append(x)
else:
greater.append(x)
A colon denotes the start of an indented code block after which all of the code must be indented by the same amount until the end of the block. In another language, you might instead have something like:
for x in array {
if x < pivot {
less.append(x)
} else {
greater.append(x)
}
}
One major reason that whitespace matters is that it results in most Python code looking cosmetically similar, which means less cognitive dissonance when you read a piece of code that you didn’t write yourself (or wrote in a hurry a year ago!). In a language without significant whitespace, you might stumble on some differently formatted code like:
for x in array
{
if x < pivot
{
less.append(x)
}
else
{
greater.append(x)
}
}
Love it or hate it, significant whitespace is a fact of life for Python programmers, and in my experience it helps make Python code a lot more readable than other languages I’ve used. While it may seem foreign at first, I suspect that it will grow on you after a while.
NOTE
I strongly recommend that you use 4 spaces to as your default indentation and that your editor replace tabs with 4 spaces. Many text editors have a setting that will replace tab stops with spaces automatically (do this!). Some people use tabs or a different number of spaces, with 2 spaces not being terribly uncommon. 4 spaces is by and large the standard adopted by the vast majority of Python programmers, so I recommend doing that in the absence of a compelling reason otherwise.
As you can see by now, Python statements also do not need to be terminated by semicolons. Semicolons can be used, however, to separate multiple statements on a single line:
a = 5; b = 6; c = 7
Putting multiple statements on one line is generally discouraged in Python as it often makes code less readable.
Everything is an object
An important characteristic of the Python language is the consistency of its object model. Every number, string, data structure, function, class, module, and so on exists in the Python interpreter in its own “box” which is referred to as a Python object. Each object has an associated type (for example, string or function) and internal data. In practice this makes the language very flexible, as even functions can be treated just like any other object.
Comments
Any text preceded by the hash mark (pound sign) # is ignored by the Python interpreter. This is often used to add comments to code. At times you may also want to exclude certain blocks of code without deleting them. An easy solution is to comment out the code:
results = []
for line in file_handle:
keep the empty lines for now
if len(line) == 0:
continue
results.append(line.replace('foo', 'bar'))
Function and object method calls
Functions are called using parentheses and passing zero or more arguments, optionally assigning the returned value to a variable:
result = f(x, y, z)
g()
Almost every object in Python has attached functions, known as methods, that have access to the object’s internal contents. They can be called using the syntax:
obj.some_method(x, y, z)
Functions can take both positional and keyword arguments:
result = f(a, b, c, d=5, e='foo')
Variables and pass-by-reference
When assigning a variable (or name) in Python, you are creating a reference to the object on the right hand side of the equals sign. In practical terms, consider a list of integers:
In [241]: a = [1, 2, 3]
Suppose we assign a to a new variable b:
In [242]: b = a
In some languages, this assignment would cause the data [1, 2, 3] to be copied. In Python, a and b actually now refer to the same object, the original list [1, 2, 3] (see Figure A-1 for a mockup). You can prove this to yourself by appending an element to a and then examining b:
In [243]: a.append(4)
In [244]: b
Out[244]: [1, 2, 3, 4]
Figure A-1. Two references for the same object
Understanding the semantics of references in Python and when, how, and why data is copied is especially critical when working with larger data sets in Python.
NOTE
Assignment is also referred to as binding, as we are binding a name to an object. Variables names that have been assigned may occasionally be referred to as bound variables.
When you pass objects as arguments to a function, you are only passing references; no copying occurs. Thus, Python is said to pass by reference, whereas some other languages support both pass by value (creating copies) and pass by reference. This means that a function can mutate the internals of its arguments. Suppose we had the following function:
def append_element(some_list, element):
some_list.append(element)
Then given what’s been said, this should not come as a surprise:
In [2]: data = [1, 2, 3]
In [3]: append_element(data, 4)
In [4]: data
Out[4]: [1, 2, 3, 4]
Dynamic references, strong types
In contrast with many compiled languages, such as Java and C++, object references in Python have no type associated with them. There is no problem with the following:
In [245]: a = 5 In [246]: type(a)
Out[246]: int
In [247]: a = 'foo' In [248]: type(a)
Out[248]: str
Variables are names for objects within a particular namespace; the type information is stored in the object itself. Some observers might hastily conclude that Python is not a “typed language”. This is not true; consider this example:
In [249]: '5' + 5

TypeError Traceback (most recent call last)
<ipython-input-249-f9dbf5f0b234> in <module>()
----> 1 '5' + 5
TypeError: cannot concatenate 'str' and 'int' objects
In some languages, such as Visual Basic, the string '5' might get implicitly converted (or casted) to an integer, thus yielding 10. Yet in other languages, such as JavaScript, the integer 5 might be casted to a string, yielding the concatenated string '55'. In this regard Python is considered a strongly-typed language, which means that every object has a specific type (or class), and implicit conversions will occur only in certain obvious circumstances, such as the following:
In [250]: a = 4.5
In [251]: b = 2
String formatting, to be visited later
In [252]: print 'a is %s, b is %s' % (type(a), type(b))
a is <type 'float'>, b is <type 'int'>
In [253]: a / b
Out[253]: 2.25
Knowing the type of an object is important, and it’s useful to be able to write functions that can handle many different kinds of input. You can check that an object is an instance of a particular type using the isinstance function:
In [254]: a = 5 In [255]: isinstance(a, int)
Out[255]: True
isinstance can accept a tuple of types if you want to check that an object’s type is among those present in the tuple:
In [256]: a = 5; b = 4.5
In [257]: isinstance(a, (int, float)) In [258]: isinstance(b, (int, float))
Out[257]: True Out[258]: True
Attributes and methods
Objects in Python typically have both attributes, other Python objects stored “inside” the object, and methods, functions associated with an object which can have access to the object’s internal data. Both of them are accessed via the syntax obj.attribute_name:
In [1]: a = 'foo'
In [2]: a.<Tab>
a.capitalize a.format a.isupper a.rindex a.strip
a.center a.index a.join a.rjust a.swapcase
a.count a.isalnum a.ljust a.rpartition a.title
a.decode a.isalpha a.lower a.rsplit a.translate
a.encode a.isdigit a.lstrip a.rstrip a.upper
a.endswith a.islower a.partition a.split a.zfill
a.expandtabs a.isspace a.replace a.splitlines
a.find a.istitle a.rfind a.startswith
Attributes and methods can also be accessed by name using the getattr function:
>>> getattr(a, 'split')
<function split>
While we will not extensively use the functions getattr and related functions hasattr and setattr in this book, they can be used very effectively to write generic, reusable code.
“Duck” typing
Often you may not care about the type of an object but rather only whether it has certain methods or behavior. For example, you can verify that an object is iterable if it implemented the iterator protocol. For many objects, this means it has a __iter__ “magic method”, though an alternative and better way to check is to try using the iter function:
def isiterable(obj):
try:
iter(obj)
return True
except TypeError: # not iterable
return False
This function would return True for strings as well as most Python collection types:
In [260]: isiterable('a string') In [261]: isiterable([1, 2, 3])
Out[260]: True Out[261]: True
In [262]: isiterable(5)
Out[262]: False
A place where I use this functionality all the time is to write functions that can accept multiple kinds of input. A common case is writing a function that can accept any kind of sequence (list, tuple, ndarray) or even an iterator. You can first check if the object is a list (or a NumPy array) and, if it is not, convert it to be one:
if not isinstance(x, list) and isiterable(x):
x = list(x)
Imports
In Python a module is simply a .py file containing function and variable definitions along with such things imported from other .py files. Suppose that we had the following module:
some_module.py
PI = 3.14159
def f(x):
return x + 2
def g(a, b):
return a + b
If we wanted to access the variables and functions defined in some_module.py, from another file in the same directory we could do:
import some_module
result = some_module.f(5)
pi = some_module.PI
Or equivalently:
from some_module import f, g, PI
result = g(5, PI)
By using the as keyword you can give imports different variable names:
import some_module as sm
from some_module import PI as pi, g as gf
r1 = sm.f(pi)
r2 = gf(6, pi)
Binary operators and comparisons
Most of the binary math operations and comparisons are as you might expect:
In [263]: 5 - 7 In [264]: 12 + 21.5
Out[263]: -2 Out[264]: 33.5
In [265]: 5 <= 2
Out[265]: False
See Table A-1 for all of the available binary operators.
To check if two references refer to the same object, use the is keyword. is not is also perfectly valid if you want to check that two objects are not the same:
In [266]: a = [1, 2, 3]
In [267]: b = a
Note, the list function always creates a new list
In [268]: c = list(a)
In [269]: a is b In [270]: a is not c
Out[269]: True Out[270]: True
Note this is not the same thing is comparing with ==, because in this case we have:
In [271]: a == c
Out[271]: True
A very common use of is and is not is to check if a variable is None, since there is only one instance of None:
In [272]: a = None
In [273]: a is None
Out[273]: True
Table A-1. Binary operators
Operation	Description
a + b | Add a and b |
a - b | Subtract b from a |
a * b | Multiply a by b |
a / b | Divide a by b |
a // b | Floor-divide a by b , dropping any fractional remainder |
a ** b | Raise a to the b power |
a & b | True if both a and b are True. For integers, take the bitwise AND . |
a | b | True if either a or b is True. For integers, take the bitwise OR . |
a ^ b | For booleans, True if a or b is True, but not both. For integers, take the bitwise EXCLUSIVE-OR . |
a == b | True if a equals b |
a != b | True if a is not equal to b |
a <= b, a < b | True if a is less than (less than or equal) to b |
a > b, a >= b | True if a is greater than (greater than or equal) to b |
a is b | True if a and b reference same Python object |
a is not b | True if a and b reference different Python objects |
Strictness versus laziness
When using any programming language, it’s important to understand when expressions are evaluated. Consider the simple expression:
a = b = c = 5
d = a + b * c
In Python, once these statements are evaluated, the calculation is immediately (or strictly) carried out, setting the value of d to 30. In another programming paradigm, such as in a pure functional programming language like Haskell, the value of d might not be evaluated until it is actually used elsewhere. The idea of deferring computations in this way is commonly known as lazy evaluation. Python, on the other hand, is a very strict (or eager) language. Nearly all of the time, computations and expressions are evaluated immediately. Even in the above simple expression, the result of b * c is computed as a separate step before adding it to a.
There are Python techniques, especially using iterators and generators, which can be used to achieve laziness. When performing very expensive computations which are only necessary some of the time, this can be an important technique in data-intensive applications.
Mutable and immutable objects
Most objects in Python are mutable, such as lists, dicts, NumPy arrays, or most user-defined types (classes). This means that the object or values that they contain can be modified.
In [274]: a_list = ['foo', 2, [4, 5]]
In [275]: a_list[2] = (3, 4)
In [276]: a_list
Out[276]: ['foo', 2, (3, 4)]
Others, like strings and tuples, are immutable:
In [277]: a_tuple = (3, 5, (4, 5))
In [278]: a_tuple[1] = 'four'

TypeError Traceback (most recent call last)
<ipython-input-278-b7966a9ae0f1> in <module>()
----> 1 a_tuple[1] = 'four'
TypeError: 'tuple' object does not support item assignment
Remember that just because you can mutate an object does not mean that you always should. Such actions are known in programming as side effects. For example, when writing a function, any side effects should be explicitly communicated to the user in the function’s documentation or comments. If possible, I recommend trying to avoid side effects and favor immutability, even though there may be mutable objects involved.
Scalar Types
Python has a small set of built-in types for handling numerical data, strings, boolean (True or False) values, and dates and time. See Table A-2 for a list of the main scalar types. Date and time handling will be discussed separately as these are provided by the datetime module in the standard library.
Table A-2. Standard Python Scalar Types
Numeric types
The primary Python types for numbers are int and float. The size of the integer which can be stored as an int is dependent on your platform (whether 32 or 64-bit), but Python will transparently convert a very large integer to long, which can store arbitrarily large integers.
In [279]: ival = 17239871
In [280]: ival ** 6
Out[280]: 26254519291092456596965462913230729701102721L
Floating point numbers are represented with the Python float type. Under the hood each one is a double-precision (64 bits) value. They can also be expressed using scientific notation:
In [281]: fval = 7.243
In [282]: fval2 = 6.78e-5
In Python 3, integer division not resulting in a whole number will always yield a floating point number:
In [284]: 3 / 2
Out[284]: 1.5
In Python 2.7 and below (which some readers will likely be using), you can enable this behavior by default by putting the following cryptic-looking statement at the top of your module:
from __future__ import division
Without this in place, you can always explicitly convert the denominator into a floating point number:
In [285]: 3 / float(2)
Out[285]: 1.5
To get C-style integer division (which drops the fractional part if the result is not a whole number), use the floor division operator //:
In [286]: 3 // 2
Out[286]: 1
Complex numbers are written using j for the imaginary part:
In [287]: cval = 1 + 2j
In [288]: cval * (1 - 2j)
Out[288]: (5+0j)
Strings
Many people use Python for its powerful and flexible built-in string processing capabilities. You can write string literal using either single quotes ' or double quotes ":
a = 'one way of writing a string'
b = "another way"
For multiline strings with line breaks, you can use triple quotes, either ''' or """:
c = """
This is a longer string that
spans multiple lines
"""
Python strings are immutable; you cannot modify a string without creating a new string:
In [289]: a = 'this is a string'
In [290]: a[10] = 'f'

TypeError Traceback (most recent call last)
<ipython-input-290-5ca625d1e504> in <module>()
----> 1 a[10] = 'f'
TypeError: 'str' object does not support item assignment
In [291]: b = a.replace('string', 'longer string')
In [292]: b
Out[292]: 'this is a longer string'
Many Python objects can be converted to a string using the str function:
In [293]: a = 5.6 In [294]: s = str(a)
In [295]: s
Out[295]: '5.6'
Strings are a sequence of characters and therefore can be treated like other sequences, such as lists and tuples:
In [296]: s = 'python' In [297]: list(s)
Out[297]: ['p', 'y', 't', 'h', 'o', 'n']
In [298]: s[:3]
Out[298]: 'pyt'
The backslash character \ is an escape character, meaning that it is used to specify special characters like newline \n or unicode characters. To write a string literal with backslashes, you need to escape them:
In [299]: s = '12\\34'
In [300]: print s
12\34
If you have a string with a lot of backslashes and no special characters, you might find this a bit annoying. Fortunately you can preface the leading quote of the string with r which means that the characters should be interpreted as is:
In [301]: s = r'this\has\no\special\characters'
In [302]: s
Out[302]: 'this\\has\\no\\special\\characters'
Adding two strings together concatenates them and produces a new string:
In [303]: a = 'this is the first half '
In [304]: b = 'and this is the second half'
In [305]: a + b
Out[305]: 'this is the first half and this is the second half'
String templating or formatting is another important topic. The number of ways to do so has expanded with the advent of Python 3, here I will briefly describe the mechanics of one of the main interfaces. Strings with a % followed by one or more format characters is a target for inserting a value into that string (this is quite similar to the printf function in C). As an example, consider this string:
In [306]: template = '%.2f %s are worth $%d'
In this string, %s means to format an argument as a string, %.2f a number with 2 decimal places, and %d an integer. To substitute arguments for these format parameters, use the binary operator % with a tuple of values:
In [307]: template % (4.5560, 'Argentine Pesos', 1)
Out[307]: '4.56 Argentine Pesos are worth $1'
String formatting is a broad topic; there are multiple methods and numerous options and tweaks available to control how values are formatted in the resulting string. To learn more, I recommend you seek out more information on the web.
I discuss general string processing as it relates to data analysis in more detail in Chapter 7.
Booleans
The two boolean values in Python are written as True and False. Comparisons and other conditional expressions evaluate to either True or False. Boolean values are combined with the and and or keywords:
In [308]: True and True
Out[308]: True
In [309]: False or True
Out[309]: True
Almost all built-in Python tops and any class defining the __nonzero__ magic method have a True or False interpretation in an if statement:
In [310]: a = [1, 2, 3]
.....: if a:
.....: print 'I found something!'
.....:
I found something!
In [311]: b = []
.....: if not b:
.....: print 'Empty!'
.....:
Empty!
Most objects in Python have a notion of true- or falseness. For example, empty sequences (lists, dicts, tuples, etc.) are treated as False if used in control flow (as above with the empty list b). You can see exactly what boolean value an object coerces to by invoking bool on it:
In [312]: bool([]), bool([1, 2, 3])
Out[312]: (False, True)
In [313]: bool('Hello world!'), bool('')
Out[313]: (True, False)
In [314]: bool(0), bool(1)
Out[314]: (False, True)
Type casting
The str, bool, int and float types are also functions which can be used to cast values to those types:
In [315]: s = '3.14159'
In [316]: fval = float(s) In [317]: type(fval)
Out[317]: float
In [318]: int(fval) In [319]: bool(fval) In [320]: bool(0)
Out[318]: 3 Out[319]: True Out[320]: False
None
None is the Python null value type. If a function does not explicitly return a value, it implicitly returns None.
In [321]: a = None In [322]: a is None
Out[322]: True
In [323]: b = 5 In [324]: b is not None
Out[324]: True
None is also a common default value for optional function arguments:
def add_and_maybe_multiply(a, b, c=None):
result = a + b
if c is not None:
result = result * c
return result
While a technical point, it’s worth bearing in mind that None is not a reserved keyword but rather a unique instance of NoneType.
Dates and times
The built-in Python datetime module provides datetime, date, and time types. The datetime type as you may imagine combines the information stored in date and time and is the most commonly used:
In [325]: from datetime import datetime, date, time
In [326]: dt = datetime(2011, 10, 29, 20, 30, 21)
In [327]: dt.day In [328]: dt.minute
Out[327]: 29 Out[328]: 30
Given a datetime instance, you can extract the equivalent date and time objects by calling methods on the datetime of the same name:
In [329]: dt.date() In [330]: dt.time()
Out[329]: datetime.date(2011, 10, 29) Out[330]: datetime.time(20, 30, 21)
The strftime method formats a datetime as a string:
In [331]: dt.strftime('%m/%d/%Y %H:%M')
Out[331]: '10/29/2011 20:30'
Strings can be converted (parsed) into datetime objects using the strptime function:
In [332]: datetime.strptime('20091031', '%Y%m%d')
Out[332]: datetime.datetime(2009, 10, 31, 0, 0)
See Table 10-2 for a full list of format specifications.
When aggregating of otherwise grouping time series data, it will occasionally be useful to replace fields of a series of datetimes, for example replacing the minute and second fields with zero, producing a new object:
In [333]: dt.replace(minute=0, second=0)
Out[333]: datetime.datetime(2011, 10, 29, 20, 0)
The difference of two datetime objects produces a datetime.timedelta type:
In [334]: dt2 = datetime(2011, 11, 15, 22, 30)
In [335]: delta = dt2 - dt
In [336]: delta In [337]: type(delta)
Out[336]: datetime.timedelta(17, 7179) Out[337]: datetime.timedelta
Adding a timedelta to a datetime produces a new shifted datetime:
In [338]: dt
Out[338]: datetime.datetime(2011, 10, 29, 20, 30, 21)
In [339]: dt + delta
Out[339]: datetime.datetime(2011, 11, 15, 22, 30)
Control Flow
if, elif, and else
The if statement is one of the most well-known control flow statement types. It checks a condition which, if True, evaluates the code in the block that follows:
if x < 0:
print 'It's negative'
An if statement can be optionally followed by one or more elif blocks and a catch-all else block if all of the conditions are False:
if x < 0:
print 'It's negative'
elif x == 0:
print 'Equal to zero'
elif 0 < x < 5:
print 'Positive but smaller than 5'
else:
print 'Positive and larger than or equal to 5'
If any of the conditions is True, no further elif or else blocks will be reached. With a compound condition using and or or, conditions are evaluated left-to-right and will short circuit:
In [340]: a = 5; b = 7
In [341]: c = 8; d = 4
In [342]: if a < b or c > d:
.....: print 'Made it'
Made it
In this example, the comparison c > d never gets evaluated because the first comparison was True.
for loops
for loops are for iterating over a collection (like a list or tuple) or an iterater. The standard syntax for a for loop is:
for value in collection:
do something with value
A for loop can be advanced to the next iteration, skipping the remainder of the block, using the continue keyword. Consider this code which sums up integers in a list and skips None values:
sequence = [1, 2, None, 4, None, 5]
total = 0
for value in sequence:
if value is None:
continue
total += value
A for loop can be exited altogether using the break keyword. This code sums elements of the list until a 5 is reached:
sequence = [1, 2, 0, 4, 6, 5, 2, 1]
total_until_5 = 0
for value in sequence:
if value == 5:
break
total_until_5 += value
As we will see in more detail, if the elements in the collection or iterator are sequences (tuples or lists, say), they can be conveniently unpacked into variables in the for loop statement:
for a, b, c in iterator:
do something
while loops
A while loop specifies a condition and a block of code that is to be executed until the condition evaluates to False or the loop is explicitly ended with break:
x = 256
total = 0
while x > 0:
if total > 500:
break
total += x
x = x // 2
pass
pass is the “no-op” statement in Python. It can be used in blocks where no action is to be taken; it is only required because Python uses whitespace to delimit blocks:
if x < 0:
print 'negative!'
elif x == 0:
TODO: put something smart here
pass
else:
print 'positive!'
It’s common to use pass as a place-holder in code while working on a new piece of functionality:
def f(x, y, z):
TODO: implement this function!
pass
Exception handling
Handling Python errors or exceptions gracefully is an important part of building robust programs. In data analysis applications, many functions only work on certain kinds of input. As an example, Python’s float function is capable of casting a string to a floating point number, but fails with ValueError on improper inputs:
In [343]: float('1.2345')
Out[343]: 1.2345
In [344]: float('something')

ValueError Traceback (most recent call last)
<ipython-input-344-439904410854> in <module>()
----> 1 float('something')
ValueError: could not convert string to float: something
Suppose we wanted a version of float that fails gracefully, returning the input argument. We can do this by writing a function that encloses the call to float in a try/except block:
def attempt_float(x):
try:
return float(x)
except:
return x
The code in the except part of the block will only be executed if float(x) raises an exception:
In [346]: attempt_float('1.2345')
Out[346]: 1.2345
In [347]: attempt_float('something')
Out[347]: 'something'
You might notice that float can raise exceptions other than ValueError:
In [348]: float((1, 2))

TypeError Traceback (most recent call last)
<ipython-input-348-842079ebb635> in <module>()
----> 1 float((1, 2))
TypeError: float() argument must be a string or a number
You might want to only suppress ValueError, since a TypeError (the input was not a string or numeric value) might indicate a legitimate bug in your program. To do that, write the exception type after except:
def attempt_float(x):
try:
return float(x)
except ValueError:
return x
We have then:
In [350]: attempt_float((1, 2))

TypeError Traceback (most recent call last)
<ipython-input-350-9bdfd730cead> in <module>()
----> 1 attempt_float((1, 2))
<ipython-input-349-3e06b8379b6b> in attempt_float(x)
1 def attempt_float(x):
2 try:
----> 3 return float(x)
4 except ValueError:
5 return x
TypeError: float() argument must be a string or a number
You can catch multiple exception types by writing a tuple of exception types instead (the parentheses are required):
def attempt_float(x):
try:
return float(x)
except (TypeError, ValueError):
return x
In some cases, you may not want to suppress an exception, but you want some code to be executed regardless of whether the code in the try block succeeds or not. To do this, use finally:
f = open(path, 'w')
try:
write_to_file(f)
finally:
f.close()
Here, the file handle f will always get closed. Similarly, you can have code that executes only if the try: block succeeds using else:
f = open(path, 'w')
try:
write_to_file(f)
except:
print 'Failed'
else:
print 'Succeeded'
finally:
f.close()
range and xrange
The range function produces a list of evenly-spaced integers:
In [352]: range(10)
Out[352]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Both a start, end, and step can be given:
In [353]: range(0, 20, 2)
Out[353]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
As you can see, range produces integers up to but not including the endpoint. A common use of range is for iterating through sequences by index:
seq = [1, 2, 3, 4]
for i in range(len(seq)):
val = seq[i]
For very long ranges, it’s recommended to use xrange, which takes the same arguments as range but returns an iterator that generates integers one by one rather than generating all of them up-front and storing them in a (potentially very large) list. This snippet sums all numbers from 0 to 9999 that are multiples of 3 or 5:
sum = 0
for i in xrange(10000):
% is the modulo operator
if x % 3 == 0 or x % 5 == 0:
sum += i
NOTE
In Python 3, range always returns an iterator, and thus it is not necessary to use the xrange function
Ternary Expressions
A ternary expression in Python allows you combine an if-else block which produces a value into a single line or expression. The syntax for this in Python is
value = true-expr if condition else
false-expr
Here, true-expr and false-expr can be any Python expressions. It has the identical effect as the more verbose
if condition:
value = true-expr
else:
value = false-expr
This is a more concrete example:
In [354]: x = 5
In [355]: 'Non-negative' if x >= 0 else 'Negative'
Out[355]: 'Non-negative'
As with if-else blocks, only one of the expressions will be evaluated. While it may be tempting to always use ternary expressions to condense your code, realize that you may sacrifice readability if the condition as well and the true and false expressions are very complex.
Data Structures and Sequences
Python’s data structures are simple, but powerful. Mastering their use is a critical part of becoming a proficient Python programmer.
Tuple
A tuple is a one-dimensional, fixed-length, immutable sequence of Python objects. The easiest way to create one is with a comma-separated sequence of values:
In [356]: tup = 4, 5, 6
In [357]: tup
Out[357]: (4, 5, 6)
When defining tuples in more complicated expressions, it’s often necessary to enclose the values in parentheses, as in this example of creating a tuple of tuples:
In [358]: nested_tup = (4, 5, 6), (7, 8)
In [359]: nested_tup
Out[359]: ((4, 5, 6), (7, 8))
Any sequence or iterator can be converted to a tuple by invoking tuple:
In [360]: tuple([4, 0, 2])
Out[360]: (4, 0, 2)
In [361]: tup = tuple('string')
In [362]: tup
Out[362]: ('s', 't', 'r', 'i', 'n', 'g')
Elements can be accessed with square brackets [] as with most other sequence types. Like C, C++, Java, and many other languages, sequences are 0-indexed in Python:
In [363]: tup[0]
Out[363]: 's'
While the objects stored in a tuple may be mutable themselves, once created it’s not possible to modify which object is stored in each slot:
In [364]: tup = tuple(['foo', [1, 2], True])
In [365]: tup[2] = False

TypeError Traceback (most recent call last)
<ipython-input-365-c7308343b841> in <module>()
----> 1 tup[2] = False
TypeError: 'tuple' object does not support item assignment
however
In [366]: tup[1].append(3)
In [367]: tup
Out[367]: ('foo', [1, 2, 3], True)
Tuples can be concatenated using the + operator to produce longer tuples:
In [368]: (4, None, 'foo') + (6, 0) + ('bar',)
Out[368]: (4, None, 'foo', 6, 0, 'bar')
Multiplying a tuple by an integer, as with lists, has the effect of concatenating together that many copies of the tuple.
In [369]: ('foo', 'bar') * 4
Out[369]: ('foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar')
Note that the objects themselves are not copied, only the references to them.
Unpacking tuples
If you try to assign to a tuple-like expression of variables, Python will attempt to unpack the value on the right-hand side of the equals sign:
In [370]: tup = (4, 5, 6)
In [371]: a, b, c = tup
In [372]: b
Out[372]: 5
Even sequences with nested tuples can be unpacked:
In [373]: tup = 4, 5, (6, 7)
In [374]: a, b, (c, d) = tup
In [375]: d
Out[375]: 7
Using this functionality it’s easy to swap variable names, a task which in many languages might look like:
tmp = a
a = b
b = tmp
b, a = a, b
One of the most common uses of variable unpacking when iterating over sequences of tuples or lists:
seq = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]
for a, b, c in seq:
pass
Another common use is for returning multiple values from a function. More on this later.
Tuple methods
Since the size and contents of a tuple cannot be modified, it is very light on instance methods. One particularly useful one (also available on lists) is count, which counts the number of occurrences of a value:
In [376]: a = (1, 2, 2, 2, 3, 4, 2)
In [377]: a.count(2)
Out[377]: 4
List
In contrast with tuples, lists are variable-length and their contents can be modified. They can be defined using square brackets [] or using the list type function:
In [378]: a_list = [2, 3, 7, None]
In [379]: tup = ('foo', 'bar', 'baz')
In [380]: b_list = list(tup) In [381]: b_list
Out[381]: ['foo', 'bar', 'baz']
In [382]: b_list[1] = 'peekaboo' In [383]: b_list
Out[383]: ['foo', 'peekaboo', 'baz']
Lists and tuples are semantically similar as one-dimensional sequences of objects and thus can be used interchangeably in many functions.
Adding and removing elements
Elements can be appended to the end of the list with the append method:
In [384]: b_list.append('dwarf')
In [385]: b_list
Out[385]: ['foo', 'peekaboo', 'baz', 'dwarf']
Using insert you can insert an element at a specific location in the list:
In [386]: b_list.insert(1, 'red')
In [387]: b_list
Out[387]: ['foo', 'red', 'peekaboo', 'baz', 'dwarf']
WARNING
insert is computationally expensive compared with append as references to subsequent elements have to be shifted internally to make room for the new element.
The inverse operation to insert is pop, which removes and returns an element at a particular index:
In [388]: b_list.pop(2)
Out[388]: 'peekaboo'
In [389]: b_list
Out[389]: ['foo', 'red', 'baz', 'dwarf']
Elements can be removed by value using remove, which locates the first such value and removes it from the last:
In [390]: b_list.append('foo')
In [391]: b_list.remove('foo')
In [392]: b_list
Out[392]: ['red', 'baz', 'dwarf', 'foo']
If performance is not a concern, by using append and remove, a Python list can be used as a perfectly suitable “multi-set” data structure.
You can check if a list contains a value using the in keyword:
In [393]: 'dwarf' in b_list
Out[393]: True
Note that checking whether a list contains a value is a lot slower than dicts and sets as Python makes a linear scan across the values of the list, whereas the others (based on hash tables) can make the check in constant time.
Concatenating and combining lists
Similar to tuples, adding two lists together with + concatenates them:
In [394]: [4, None, 'foo'] + [7, 8, (2, 3)]
Out[394]: [4, None, 'foo', 7, 8, (2, 3)]
If you have a list already defined, you can append multiple elements to it using the extend method:
In [395]: x = [4, None, 'foo']
In [396]: x.extend([7, 8, (2, 3)])
In [397]: x
Out[397]: [4, None, 'foo', 7, 8, (2, 3)]
Note that list concatenation is a compartively expensive operation since a new list must be created and the objects copied over. Using extend to append elements to an existing list, especially if you are building up a large list, is usually preferable. Thus,
everything = []
for chunk in list_of_lists:
everything.extend(chunk)
is faster than than the concatenative alternative
everything = []
for chunk in list_of_lists:
everything = everything + chunk
Sorting
A list can be sorted in-place (without creating a new object) by calling its sort function:
In [398]: a = [7, 2, 5, 1, 3]
In [399]: a.sort()
In [400]: a
Out[400]: [1, 2, 3, 5, 7]
sort has a few options that will occasionally come in handy. One is the ability to pass a secondary sort key, i.e. a function that produces a value to use to sort the objects. For example, we could sort a collection of strings by their lengths:
In [401]: b = ['saw', 'small', 'He', 'foxes', 'six']
In [402]: b.sort(key=len)
In [403]: b
Out[403]: ['He', 'saw', 'six', 'small', 'foxes']
Binary search and maintaining a sorted list
The built-in bisect module implements binary-search and insertion into a sorted list. bisect.bisect finds the location where an element should be inserted to keep it sorted, while bisect.insort actually inserts the element into that location:
In [404]: import bisect
In [405]: c = [1, 2, 2, 2, 3, 4, 7]
In [406]: bisect.bisect(c, 2) In [407]: bisect.bisect(c, 5)
Out[406]: 4 Out[407]: 6
In [408]: bisect.insort(c, 6)
In [409]: c
Out[409]: [1, 2, 2, 2, 3, 4, 6, 7]
CAUTION
The bisect module functions do not check whether the list is sorted as doing so would be computationally expensive. Thus, using them with an unsorted list will succeed without error but may lead to incorrect results.
Slicing
You can select sections of list-like types (arrays, tuples, NumPy arrays) by using slice notation, which in its basic form consists of start:stop passed to the indexing operator []:
In [410]: seq = [7, 2, 3, 7, 5, 6, 0, 1]
In [411]: seq[1:5]
Out[411]: [2, 3, 7, 5]
Slices can also be assigned to with a sequence:
In [412]: seq[3:4] = [6, 3]
In [413]: seq
Out[413]: [7, 2, 3, 6, 3, 5, 6, 0, 1]
While element at the start index is included, the stop index is not included, so that the number of elements in the result is stop - start.
Either the start or stop can be omitted in which case they default to the start of the sequence and the end of the sequence, respectively:
In [414]: seq[:5] In [415]: seq[3:]
Out[414]: [7, 2, 3, 6, 3] Out[415]: [6, 3, 5, 6, 0, 1]
Negative indices slice the sequence relative to the end:
In [416]: seq[-4:] In [417]: seq[-6:-2]
Out[416]: [5, 6, 0, 1] Out[417]: [6, 3, 5, 6]
Slicing semantics takes a bit of getting used to, especially if you’re coming from R or MATLAB. See Figure A-2 for a helpful illustrating of slicing with positive and negative integers.
A step can also be used after a second colon to, say, take every other element:
In [418]: seq[::2]
Out[418]: [7, 3, 3, 6, 1]
A clever use of this is to pass -1 which has the useful effect of reversing a list or tuple:
In [419]: seq[::-1]
Out[419]: [1, 0, 6, 5, 3, 6, 3, 2, 7]
Figure A-2. Illustration of Python slicing conventions
Built-in Sequence Functions
Python has a handful of useful sequence functions that you should familiarize yourself with and use at any opportunity.
enumerate
It’s common when iterating over a sequence to want to keep track of the index of the current item. A do-it-yourself approach would look like:
i = 0
for value in collection:
do something with value
i += 1
Since this is so common, Python has a built-in function enumerate which returns a sequence of (i, value) tuples:
for i, value in enumerate(collection):
do something with value
When indexing data, a useful pattern that uses enumerate is computing a dict mapping the values of a sequence (which are assumed to be unique) to their locations in the sequence:
In [420]: some_list = ['foo', 'bar', 'baz']
In [421]: mapping = dict((v, i) for i, v in enumerate(some_list))
In [422]: mapping
Out[422]: {'bar': 1, 'baz': 2, 'foo': 0}
sorted
The sorted function returns a new sorted list from the elements of any sequence:
In [423]: sorted([7, 1, 2, 6, 0, 3, 2])
Out[423]: [0, 1, 2, 2, 3, 6, 7]
In [424]: sorted('horse race')
Out[424]: [' ', 'a', 'c', 'e', 'e', 'h', 'o', 'r', 'r', 's']
A common pattern for getting a sorted list of the unique elements in a sequence is to combine sorted with set:
In [425]: sorted(set('this is just some string'))
Out[425]: [' ', 'e', 'g', 'h', 'i', 'j', 'm', 'n', 'o', 'r', 's', 't', 'u']
zip
zip “pairs” up the elements of a number of lists, tuples, or other sequences, to create a list of tuples:
In [426]: seq1 = ['foo', 'bar', 'baz']
In [427]: seq2 = ['one', 'two', 'three']
In [428]: zip(seq1, seq2)
Out[428]: [('foo', 'one'), ('bar', 'two'), ('baz', 'three')]
zip can take an arbitrary number of sequences, and the number of elements it produces is determined by the shortest sequence:
In [429]: seq3 = [False, True]
In [430]: zip(seq1, seq2, seq3)
Out[430]: [('foo', 'one', False), ('bar', 'two', True)]
A very common use of zip is for simultaneously iterating over multiple sequences, possibly also combined with enumerate:
In [431]: for i, (a, b) in enumerate(zip(seq1, seq2)):
.....: print('%d: %s, %s' % (i, a, b))
.....:
0: foo, one
1: bar, two
2: baz, three
Given a “zipped” sequence, zip can be applied in a clever way to “unzip” the sequence. Another way to think about this is converting a list of rows into a list of columns. The syntax, which looks a bit magical, is:
In [432]: pitchers = [('Nolan', 'Ryan'), ('Roger', 'Clemens'),
.....: ('Schilling', 'Curt')]
In [433]: first_names, last_names = zip(*pitchers)
In [434]: first_names
Out[434]: ('Nolan', 'Roger', 'Schilling')
In [435]: last_names
Out[435]: ('Ryan', 'Clemens', 'Curt')
We’ll look in more detail at the use of * in a function call. It is equivalent to the following:
zip(seq[0], seq[1], ..., seq[len(seq) - 1])
reversed
reversed iterates over the elements of a sequence in reverse order:
In [436]: list(reversed(range(10)))
Out[436]: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Dict
dict is likely the most important built-in Python data structure. A more common name for it is hash map or associative array. It is a flexibly-sized collection of key-value pairs, where key and value are Python objects. One way to create one is by using curly braces {} and using colons to separate keys and values:
In [437]: empty_dict = {}
In [438]: d1 = {'a' : 'some value', 'b' : [1, 2, 3, 4]}
In [439]: d1
Out[439]: {'a': 'some value', 'b': [1, 2, 3, 4]}
Elements can be accessed and inserted or set using the same syntax as accessing elements of a list or tuple:
In [440]: d1[7] = 'an integer'
In [441]: d1
Out[441]: {7: 'an integer', 'a': 'some value', 'b': [1, 2, 3, 4]}
In [442]: d1['b']
Out[442]: [1, 2, 3, 4]
You can check if a dict contains a key using the same syntax as with checking whether a list or tuple contains a value:
In [443]: 'b' in d1
Out[443]: True
Values can be deleted either using the del keyword or the pop method (which simultaneously returns the value and deletes the key):
In [444]: d1[5] = 'some value'
In [445]: d1['dummy'] = 'another value'
In [446]: del d1[5]
In [447]: ret = d1.pop('dummy') In [448]: ret
Out[448]: 'another value'
The keys and values method give you lists of the keys and values, respectively. While the key-value pairs are not in any particular order, these functions output the keys and values in the same order:
In [449]: d1.keys() In [450]: d1.values()
Out[449]: ['a', 'b', 7] Out[450]: ['some value', [1, 2, 3, 4], 'an integer']
WARNING
If you’re using Python 3, dict.keys() and dict.values() are iterators instead of lists.
One dict can be merged into another using the update method:
In [451]: d1.update({'b' : 'foo', 'c' : 12})
In [452]: d1
Out[452]: {7: 'an integer', 'a': 'some value', 'b': 'foo', 'c': 12}
Creating dicts from sequences
It’s common to occasionally end up with two sequences that you want to pair up element-wise in a dict. As a first cut, you might write code like this:
mapping = {}
for key, value in zip(key_list, value_list):
mapping[key] = value
Since a dict is essentially a collection of 2-tuples, it should be no shock that the dict type function accepts a list of 2-tuples:
In [453]: mapping = dict(zip(range(5), reversed(range(5))))
In [454]: mapping
Out[454]: {0: 4, 1: 3, 2: 2, 3: 1, 4: 0}
In a later section we’ll talk about dict comprehensions, another elegant way to construct dicts.
Default values
It’s very common to have logic like:
if key in some_dict:
value = some_dict[key]
else:
value = default_value
Thus, the dict methods get and pop can take a default value to be returned, so that the above if-else block can be written simply as:
value = some_dict.get(key, default_value)
get by default will return None if the key is not present, while pop will raise an exception. With setting values, a common case is for the values in a dict to be other collections, like lists. For example, you could imagine categorizing a list of words by their first letters as a dict of lists:
In [455]: words = ['apple', 'bat', 'bar', 'atom', 'book']
In [456]: by_letter = {}
In [457]: for word in words:
.....: letter = word[0]
.....: if letter not in by_letter:
.....: by_letter[letter] = [word]
.....: else:
.....: by_letter[letter].append(word)
.....:
In [458]: by_letter
Out[458]: {'a': ['apple', 'atom'], 'b': ['bat', 'bar', 'book']}
The setdefault dict method is for precisely this purpose. The if-else block above can be rewritten as:
by_letter.setdefault(letter, []).append(word)
The built-in collections module has a useful class, defaultdict, which makes this even easier. One is created by passing a type or function for generating the default value for each slot in the dict:
from collections import defaultdict
by_letter = defaultdict(list)
for word in words:
by_letter[word[0]].append(word)
The initializer to defaultdict only needs to be a callable object (e.g. any function), not necessarily a type. Thus, if you wanted the default value to be 4 you could pass a function returning 4
counts = defaultdict(lambda: 4)
Valid dict key types
While the values of a dict can be any Python object, the keys have to be immutable objects like scalar types (int, float, string) or tuples (all the objects in the tuple need to be immutable, too). The technical term here is hashability. You can check whether an object is hashable (can be used as a key in a dict) with the hash function:
In [459]: hash('string')
Out[459]: -9167918882415130555
In [460]: hash((1, 2, (2, 3)))
Out[460]: 1097636502276347782
In [461]: hash((1, 2, [2, 3])) # fails because lists are mutable

TypeError Traceback (most recent call last)
<ipython-input-461-800cd14ba8be> in <module>()
----> 1 hash((1, 2, [2, 3])) # fails because lists are mutable
TypeError: unhashable type: 'list'
To use a list as a key, an easy fix is to convert it to a tuple:
In [462]: d = {}
In [463]: d[tuple([1, 2, 3])] = 5
In [464]: d
Out[464]: {(1, 2, 3): 5}
Set
A set is an unordered collection of unique elements. You can think of them like dicts, but keys only, no values. A set can be created in two ways: via the set function or using a set literal with curly braces:
In [465]: set([2, 2, 2, 1, 3, 3])
Out[465]: set([1, 2, 3])
In [466]: {2, 2, 2, 1, 3, 3}
Out[466]: set([1, 2, 3])
Sets support mathematical set operations like union, intersection, difference, and symmetric difference. See Table A-3 for a list of commonly used set methods.
In [467]: a = {1, 2, 3, 4, 5}
In [468]: b = {3, 4, 5, 6, 7, 8}
In [469]: a | b # union (or)
Out[469]: set([1, 2, 3, 4, 5, 6, 7, 8])
In [470]: a & b # intersection (and)
Out[470]: set([3, 4, 5])
In [471]: a - b # difference
Out[471]: set([1, 2])
In [472]: a ^ b # symmetric difference (xor)
Out[472]: set([1, 2, 6, 7, 8])
You can also check if a set is a subset of (is contained in) or a superset of (contains all elements of) another set:
In [473]: a_set = {1, 2, 3, 4, 5}
In [474]: {1, 2, 3}.issubset(a_set)
Out[474]: True
In [475]: a_set.issuperset({1, 2, 3})
Out[475]: True
As you might guess, sets are equal if their contents are equal:
In [476]: {1, 2, 3} == {3, 2, 1}
Out[476]: True
Table A-3. Python Set Operations
List, Set, and Dict Comprehensions
List comprehensions are one of the most-loved Python language features. They allow you to concisely form a new list by filtering the elements of a collection and transforming the elements passing the filter in one conscise expression. They take the basic form:
[expr for val in collection if condition]
This is equivalent to the following for loop:
result = []
for val in collection:
if condition:
result.append(expr)
The filter condition can be omitted, leaving only the expression. For example, given a list of strings, we could filter out strings with length 2 or less and also convert them to uppercase like this:
In [477]: strings = ['a', 'as', 'bat', 'car', 'dove', 'python']
In [478]: [x.upper() for x in strings if len(x) > 2]
Out[478]: ['BAT', 'CAR', 'DOVE', 'PYTHON']
Set and dict comprehensions are a natural extension, producing sets and dicts in a idiomatically similar way instead of lists. A dict comprehension looks like this:
dict_comp = {key-expr : value-expr for value in collection
if condition}
A set comprehension looks like the equivalent list comprehension except with curly braces instead of square brackets:
set_comp = {expr for value in collection if condition}
Like list comprehensions, set and dict comprehensions are just syntactic sugar, but they similarly can make code both easier to write and read. Consider the list of strings above. Suppose we wanted a set containing just the lengths of the strings contained in the collection; this could be easily computed using a set comprehension:
In [479]: unique_lengths = {len(x) for x in strings}
In [480]: unique_lengths
Out[480]: set([1, 2, 3, 4, 6])
As a simple dict comprehension example, we could create a lookup map of these strings to their locations in the list:
In [481]: loc_mapping = {val : index for index, val in enumerate(strings)}
In [482]: loc_mapping
Out[482]: {'a': 0, 'as': 1, 'bat': 2, 'car': 3, 'dove': 4, 'python': 5}
Note that this dict could be equivalently constructed by:
loc_mapping = dict((val, idx) for idx, val in enumerate(strings)}
The dict comprehension version is shorter and cleaner in my opinion.
NOTE
Dict and set comprehensions were added to Python fairly recently in Python 2.7 and Python 3.1+.
Nested list comprehensions
Suppose we have a list of lists containing some boy and girl names:
In [483]: all_data = [['Tom', 'Billy', 'Jefferson', 'Andrew', 'Wesley', 'Steven', 'Joe'],
.....: ['Susie', 'Casey', 'Jill', 'Ana', 'Eva', 'Jennifer', 'Stephanie']]
You might have gotten these names from a couple of files and decided to keep the boy and girl names separate. Now, suppose we wanted to get a single list containing all names with two or more e’s in them. We could certainly do this with a simple for loop:
names_of_interest = []
for names in all_data:
enough_es = [name for name in names if name.count('e') > 2]
names_of_interest.extend(enough_es)
You can actually wrap this whole operation up in a single nested list comprehension, which will look like:
In [484]: result = [name for names in all_data for name in names
.....: if name.count('e') >= 2]
In [485]: result
Out[485]: ['Jefferson', 'Wesley', 'Steven', 'Jennifer', 'Stephanie']
At first, nested list comprehensions are a bit hard to wrap your head around. The for parts of the list comprehension are arranged according to the order of nesting, and any filter condition is put at the end as before. Here is another example where we “flatten” a list of tuples of integers into a simple list of integers:
In [486]: some_tuples = [(1, 2, 3), (4, 5, 6), (7, 8, 9)]
In [487]: flattened = [x for tup in some_tuples for x in tup]
In [488]: flattened
Out[488]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
Keep in mind that the order of the for expressions would be the same if you wrote a nested for loop instead of a list comprehension:
flattened = []
for tup in some_tuples:
for x in tup:
flattened.append(x)
You can have arbitrarily many levels of nesting, though if you have more than two or three levels of nesting you should probably start to question your data structure design. It’s important to distinguish the above syntax from a list comprehension inside a list comprehension, which is also perfectly valid:
In [229]: [[x for x in tup] for tup in some_tuples]
Functions
Functions are the primary and most important method of code organization and reuse in Python. There may not be such a thing as having too many functions. In fact, I would argue that most programmers doing data analysis don’t write enough functions! As you have likely inferred from prior examples, functions are declared using the def keyword and returned from using the return keyword:
def my_function(x, y, z=1.5):
if z > 1:
return z * (x + y)
else:
return z / (x + y)
There is no issue with having multiple return statements. If the end of a function is reached without encountering a return statement, None is returned.
Each function can have some number of positional arguments and some number of keyword arguments. Keyword arguments are most commonly used to specify default values or optional arguments. In the above function, x and y are positional arguments while z is a keyword argument. This means that it can be called in either of these equivalent ways:
my_function(5, 6, z=0.7)
my_function(3.14, 7, 3.5)
The main restriction on function arguments it that the keyword arguments must follow the positional arguments (if any). You can specify keyword arguments in any order; this frees you from having to remember which order the function arguments were specified in and only what their names are.
Namespaces, Scope, and Local Functions
Functions can access variables in two different scopes: global and local. An alternate and more descriptive name describing a variable scope in Python is a namespace. Any variables that are assigned within a function by default are assigned to the local namespace. The local namespace is created when the function is called and immediately populated by the function’s arguments. After the function is finished, the local namespace is destroyed (with some exceptions, see section on closures below). Consider the following function:
def func():
a = []
for i in range(5):
a.append(i)
Upon calling func(), the empty list a is created, 5 elements are appended, then a is destroyed when the function exits. Suppose instead we had declared a
a = []
def func():
for i in range(5):
a.append(i)
Assigning global variables within a function is possible, but those variables must be declared as global using the global keyword:
In [489]: a = None
In [490]: def bind_a_variable():
.....: global a
.....: a = []
.....: bind_a_variable()
.....:
In [491]: print a
[]
CAUTION
I generally discourage people from using the global keyword frequently. Typically global variables are used to store some kind of state in a system. If you find yourself using a lot of them, it’s probably a sign that some object-oriented programming (using classes) is in order.
Functions can be declared anywhere, and there is no problem with having local functions that are dynamically created when a function is called:
def outer_function(x, y, z):
def inner_function(a, b, c):
pass
pass
In the above code, the inner_function will not exist until outer_function is called. As soon as outer_function is done executing, the inner_function is destroyed.
Nested inner functions can access the local namespace of the enclosing function, but they cannot bind new variables in it. I’ll talk a bit more about this in the section on closures.
In a strict sense, all functions are local to some scope, that scope may just be the module level scope.
Returning Multiple Values
When I first programmed in Python after having programmed in Java and C++, one of my favorite features was the ability to return multiple values from a function. Here’s a simple example:
def f():
a = 5
b = 6
c = 7
return a, b, c
a, b, c = f()
In data analysis and other scientific applications, you will likely find yourself doing this very often as many functions may have multiple outputs, whether those are data structures or other auxiliary data computed inside the function. If you think about tuple packing and unpacking from earlier in this chapter, you may realize that what’s happening here is that the function is actually just returning one object, namely a tuple, which is then being unpacked into the result variables. In the above example, we could have done instead:
return_value = f()
In this case, return_value would be, as you may guess, a 3-tuple with the three returned variables. A potentially attractive alternative to returning multiple values like above might be to return a dict instead:
def f():
a = 5
b = 6
c = 7
return {'a' : a, 'b' : b, 'c' : c}
Functions Are Objects
Since Python functions are objects, many constructs can be easily expressed that are difficult to do in other languages. Suppose we were doing some data cleaning and needed to apply a bunch of transformations to the following list of strings:
states = [' Alabama ', 'Georgia!', 'Georgia', 'georgia', 'FlOrIda',
'south carolina##', 'West virginia?']
Anyone who has ever worked with user-submitted survey data can expect messy results like these. Lots of things need to happen to make this list of strings uniform and ready for analysis: whitespace stripping, removing punctuation symbols, and proper capitalization. As a first pass, we might write some code like:
import re # Regular expression module
def clean_strings(strings):
result = []
for value in strings:
value = value.strip()
value = re.sub('[!#?]', '', value) # remove punctuation
value = value.title()
result.append(value)
return result
The result looks like this:
In [15]: clean_strings(states)
Out[15]:
['Alabama',
'Georgia',
'Georgia',
'Georgia',
'Florida',
'South Carolina',
'West Virginia']
An alternate approach that you may find useful is to make a list of the operations you want to apply to a particular set of strings:
def remove_punctuation(value):
return re.sub('[!#?]', '', value)
clean_ops = [str.strip, remove_punctuation, str.title]
def clean_strings(strings, ops):
result = []
for value in strings:
for function in ops:
value = function(value)
result.append(value)
return result
Then we have
In [22]: clean_strings(states, clean_ops)
Out[22]:
['Alabama',
'Georgia',
'Georgia',
'Georgia',
'Florida',
'South Carolina',
'West Virginia']
A more functional pattern like this enables you to easily modify how the strings are transformed at a very high level. The clean_strings function is also now more reusable!
You can naturally use functions as arguments to other functions like the built-in map function, which applies a function to a collection of some kind:
In [23]: map(remove_punctuation, states)
Out[23]:
[' Alabama ',
'Georgia',
'Georgia',
'georgia',
'FlOrIda',
'south carolina',
'West virginia']
Anonymous (lambda) Functions
Python has support for so-called anonymous or lambda functions, which are really just simple functions consisting of a single statement, the result of which is the return value. They are defined using the lambda keyword, which has no meaning other than “we are declaring an anonymous function.”
def short_function(x):
return x * 2
equiv_anon = lambda x: x * 2
I usually refer to these as lambda functions in the rest of the book. They are especially convenient in data analysis because, as you’ll see, there are many cases where data transformation functions will take functions as arguments. It’s often less typing (and clearer) to pass a lambda function as opposed to writing a full-out function declaration or even assigning the lambda function to a local variable. For example, consider this silly example:
def apply_to_list(some_list, f):
return [f(x) for x in some_list]
ints = [4, 0, 1, 5, 6]
apply_to_list(ints, lambda x: x * 2)
You could also have written [x * 2 for x in ints], but here we were able to succintly pass a custom operator to the apply_to_list function.
As another example, suppose you wanted to sort a collection of strings by the number of distinct letters in each string:
In [492]: strings = ['foo', 'card', 'bar', 'aaaa', 'abab']
Here we could pass a lambda function to the list’s sort method:
In [493]: strings.sort(key=lambda x: len(set(list(x))))
In [494]: strings
Out[494]: ['aaaa', 'foo', 'abab', 'bar', 'card']
NOTE
One reason lambda functions are called anonymous functions is that the function object itself is never given a name attribute.
Closures: Functions that Return Functions
Closures are nothing to fear. They can actually be a very useful and powerful tool in the right circumstance! In a nutshell, a closure is any dynamically-generated function returned by another function. The key property is that the returned function has access to the variables in the local namespace where it was created. Here is a very simple example:
def make_closure(a):
def closure():
print('I know the secret: %d' % a)
return closure
closure = make_closure(5)
The difference between a closure and a regular Python function is that the closure continues to have access to the namespace (the function) where it was created, even though that function is done executing. So in the above case, the returned closure will always print I know the secret: 5 whenever you call it. While it’s common to create closures whose internal state (in this example, only the value of a) is static, you can just as easily have a mutable object like a dict, set, or list that can be modified. For example, here’s a function that returns a function that keeps track of arguments it has been called with:
def make_watcher():
have_seen = {}
def has_been_seen(x):
if x in have_seen:
return True
else:
have_seen[x] = True
return False
return has_been_seen
Using this on a sequence of integers I obtain:
In [496]: watcher = make_watcher()
In [497]: vals = [5, 6, 1, 5, 1, 6, 3, 5]
In [498]: [watcher(x) for x in vals]
Out[498]: [False, False, False, True, True, True, False, True]
However, one technical limitation to keep in mind is that while you can mutate any internal state objects (like adding key-value pairs to a dict), you cannot bind variables in the enclosing function scope. One way to work around this is to modify a dict or list rather than binding variables:
def make_counter():
count = [0]
def counter():
increment and return the current count
count[0] += 1
return count[0]
return counter
counter = make_counter()
You might be wondering why this is useful. In practice, you can write very general functions with lots of options, then fabricate simpler, more specialized functions. Here’s an example of creating a string formatting function:
def format_and_pad(template, space):
def formatter(x):
return (template % x).rjust(space)
return formatter
You could then create a floating point formatter that always returns a length-15 string like so:
In [500]: fmt = format_and_pad('%.4f', 15)
In [501]: fmt(1.756)
Out[501]: ' 1.7560'
If you learn more about object-oriented programming in Python, you might observe that these patterns also could be implemented (albeit more verbosely) using classes.
Extended Call Syntax with *args, **kwargs
The way that function arguments work under the hood in Python is actually very simple. When you write func(a, b, c, d=some, e=value), the positional and keyword arguments are actually packed up into a tuple and dict, respectively. So the internal function receives a tuple args and dict kwargs and internally does the equivalent of:
a, b, c = args
d = kwargs.get('d', d_default_value)
e = kwargs.get('e', e_default_value)
This all happens nicely behind the scenes. Of course, it also does some error checking and allows you to specify some of the positional arguments as keywords also (even if they aren’t keyword in the function declaration!).
def say_hello_then_call_f(f, *args, **kwargs):
print 'args is', args
print 'kwargs is', kwargs
print("Hello! Now I'm going to call %s" % f)
return f(*args, **kwargs)
def g(x, y, z=1):
return (x + y) / z
Then if we call g with say_hello_then_call_f we get:
In [8]: say_hello_then_call_f(g, 1, 2, z=5.)
args is (1, 2)
kwargs is {'z': 5.0}
Hello! Now I'm going to call <function g at 0x2dd5cf8>
Out[8]: 0.6
Currying: Partial Argument Application
Currying is a fun computer science term which means deriving new functions from existing ones by partial argument application. For example, suppose we had a trivial function that adds two numbers together:
def add_numbers(x, y):
return x + y
Using this function, we could derive a new function of one variable, add_five, that adds 5 to its argument:
add_five = lambda y: add_numbers(5, y)
The second argument to add_numbers is said to be curried. There’s nothing very fancy here as we really only have defined a new function that calls an existing function. The built-in functools module can simplify this process using the partial function:
from functools import partial
add_five = partial(add_numbers, 5)
When discussing pandas and time series data, we’ll use this technique to create specialized functions for transforming data series
compute 60-day moving average of time series x
ma60 = lambda x: pandas.rolling_mean(x, 60)
Take the 60-day moving average of of all time series in data
data.apply(ma60)
Generators
Having a consistent way to iterate over sequences, like objects in a list or lines in a file, is an important Python feature. This is accomplished by means of the iterator protocol, a generic way to make objects iterable. For example, iterating over a dict yields the dict keys:
In [502]: some_dict = {'a': 1, 'b': 2, 'c': 3}
In [503]: for key in some_dict:
.....: print key,
a c b
When you write for key in some_dict, the Python interpreter first attempts to create an iterator out of some_dict:
In [504]: dict_iterator = iter(some_dict)
In [505]: dict_iterator
Out[505]: <dictionary-keyiterator at 0x10a0a1578>
Any iterator is any object that will yield objects to the Python interpreter when used in a context like a for loop. Most methods expecting a list or list-like object will also accept any iterable object. This includes built-in methods such as min, max, and sum, and type constructors like list and tuple:
In [506]: list(dict_iterator)
Out[506]: ['a', 'c', 'b']
A generator is a simple way to construct a new iterable object. Whereas normal functions execute and return a single value, generators return a sequence of values lazily, pausing after each one until the next one is requested. To create a generator, use the yield keyword instead of return in a function:
def squares(n=10):
for i in xrange(1, n + 1):
print 'Generating squares from 1 to %d' % (n ** 2)
yield i ** 2
When you actually call the generator, no code is immediately executed:
In [2]: gen = squares()
In [3]: gen
Out[3]: <generator object squares at 0x34c8280>
It is not until you request elements from the generator that it begins executing its code:
In [4]: for x in gen:
...: print x,
...:
Generating squares from 0 to 100
1 4 9 16 25 36 49 64 81 100
As a less trivial example, suppose we wished to find all unique ways to make change for $1 (100 cents) using an arbitrary set of coins. You can probably think of various ways to implement this and how to store the unique combinations as you come up with them. One way is to write a generator that yields lists of coins (represented as integers):
def make_change(amount, coins=[1, 5, 10, 25], hand=None):
hand = [] if hand is None else hand
if amount == 0:
yield hand
for coin in coins:
ensures we don't give too much change, and combinations are unique
if coin > amount or (len(hand) > 0 and hand[-1] < coin):
continue
for result in make_change(amount - coin, coins=coins,
hand=hand + [coin]):
yield result
The details of the algorithm are not that important (can you think of a shorter way?). Then we can write:
In [508]: for way in make_change(100, coins=[10, 25, 50]):
.....: print way
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]
[25, 25, 10, 10, 10, 10, 10]
[25, 25, 25, 25]
[50, 10, 10, 10, 10, 10]
[50, 25, 25]
[50, 50]
In [509]: len(list(make_change(100)))
Out[509]: 242
Generator expresssions
A simple way to make a generator is by using a generator expression. This is a generator analogue to list, dict and set comprehensions; to create one, enclose what would otherwise be a list comprehension with parenthesis instead of brackets:
In [510]: gen = (x ** 2 for x in xrange(100))
In [511]: gen
Out[511]: <generator object <genexpr> at 0x10a0a31e0>
This is completely equivalent to the following more verbose generator:
def _make_gen():
for x in xrange(100):
yield x ** 2
gen = _make_gen()
Generator expressions can be used inside any Python function that will accept a generator:
In [512]: sum(x ** 2 for x in xrange(100))
Out[512]: 328350
In [513]: dict((i, i **2) for i in xrange(5))
Out[513]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
itertools module
The standard library itertools module has a collection of generators for many common data algorithms. For example, groupby takes any sequence and a function; this groups consecutive elements in the sequence by return value of the function. Here’s an example:
In [514]: import itertools
In [515]: first_letter = lambda x: x[0]
In [516]: names = ['Alan', 'Adam', 'Wes', 'Will', 'Albert', 'Steven']
In [517]: for letter, names in itertools.groupby(names, first_letter):
.....: print letter, list(names) # names is a generator
A ['Alan', 'Adam']
W ['Wes', 'Will']
A ['Albert']
S ['Steven']
See Table A-4 for a list of a few other itertools functions I’ve frequently found useful.
Table A-4. Some useful itertools functions
NOTE
In Python 3, several built-in functions (zip, map, filter) producing lists have been replaced by their generator versions found in itertools in Python 2.
Files and the operating system
Most of this book uses high-level tools like pandas.read_csv to read data files from disk into Python data structures. However, it’s important to understand the basics of how to work with files in Python. Fortunately, it’s very simple, which is part of why Python is so popular for text and file munging.
To open a file for reading or writing, use the built-in open function with either a relative or absolute file path:
In [518]: path = 'ch13/segismundo.txt'
In [519]: f = open(path)
By default, the file is opened in read-only mode 'r'. We can then treat the file handle f like a list and iterate over the lines like so
for line in f:
pass
The lines come out of the file with the end-of-line (EOL) markers intact, so you’ll often see code to get an EOL-free list of lines in a file like
In [520]: lines = [x.rstrip() for x in open(path)]
In [521]: lines
Out[521]:
['Sue\xc3\xb1a el rico en su riqueza,',
'que m\xc3\xa1s cuidados le ofrece;',
'',
'sue\xc3\xb1a el pobre que padece',
'su miseria y su pobreza;',
'',
'sue\xc3\xb1a el que a medrar empieza,',
'sue\xc3\xb1a el que afana y pretende,',
'sue\xc3\xb1a el que agravia y ofende,',
'',
'y en el mundo, en conclusi\xc3\xb3n,',
'todos sue\xc3\xb1an lo que son,',
'aunque ninguno lo entiende.',
'']
If we had typed f = open(path, 'w'), a new file at ch13/segismundo.txt would have been created, overwriting any one in its place. See below for a list of all valid file read/write modes.
Table A-5. Python file modes
To write text to a file, you can use either the file’s write or writelines methods. For example, we could create a version of prof_mod.py with no blank lines like so:
In [522]: with open('tmp.txt', 'w') as handle:
.....: handle.writelines(x for x in open(path) if len(x) > 1)
In [523]: open('tmp.txt').readlines()
Out[523]:
['Sue\xc3\xb1a el rico en su riqueza,\n',
'que m\xc3\xa1s cuidados le ofrece;\n',
'sue\xc3\xb1a el pobre que padece\n',
'su miseria y su pobreza;\n',
'sue\xc3\xb1a el que a medrar empieza,\n',
'sue\xc3\xb1a el que afana y pretende,\n',
'sue\xc3\xb1a el que agravia y ofende,\n',
'y en el mundo, en conclusi\xc3\xb3n,\n',
'todos sue\xc3\xb1an lo que son,\n',
'aunque ninguno lo entiende.\n']
See Table A-6 for many of the most commonly-used file methods.
Table A-6. Important Python file methods or attributes
Index
A NOTE ON THE DIGITAL INDEX
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.
Symbols
! character, Shell Commands and Aliases, Shell Commands and Aliases, Interactive Debugger
!= operator, Boolean Indexing
!cmd command, Interacting with the Operating System
"two-language" problem, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem
(hash mark), Comments
$PATH variable, GNU/Linux
%a datetime format, Converting between string and datetime
%A datetime format, Converting between string and datetime
%alias magic function, Shell Commands and Aliases
%automagic magic function, Magic Commands
%b datetime format, Converting between string and datetime
%B datetime format, Converting between string and datetime
%bookmark magic function, Interacting with the Operating System, Directory Bookmark System
%c datetime format, Converting between string and datetime
%cd magic function, Interacting with the Operating System
%cpaste magic function, Executing Code from the Clipboard–Executing Code from the Clipboard, Magic Commands
%d datetime format, Converting between string and datetime
%D datetime format, Converting between string and datetime
%d format character, Strings
%debug magic function, Exceptions and Tracebacks–Magic Commands, Interactive Debugger
%dhist magic function, Interacting with the Operating System
%dirs magic function, Interacting with the Operating System
%env magic function, Interacting with the Operating System
%F datetime format, Converting between string and datetime
%gui magic function, Matplotlib Integration and Pylab Mode
%H datetime format, Converting between string and datetime
%hist magic function, Magic Commands, Input and Output Variables
%I datetime format, Converting between string and datetime
%logstart magic function, Logging the Input and Output
%logstop magic function, Logging the Input and Output
%lprun magic function, Profiling a Function Line-by-Line, Profiling a Function Line-by-Line
%m datetime format, Converting between string and datetime
%M datetime format, Converting between string and datetime
%magic magic function, Magic Commands, Magic Commands
%p datetime format, Converting between string and datetime
%page magic function, Magic Commands
%paste magic function, Executing Code from the Clipboard, Executing Code from the Clipboard, Executing Code from the Clipboard, Magic Commands
%pdb magic function, Exceptions and Tracebacks, Interactive Debugger
%popd magic function, Interacting with the Operating System
%prun magic function, Magic Commands, Profiling a Function Line-by-Line
%pushd magic function, Interacting with the Operating System
%pwd magic function, Interacting with the Operating System
%quickref magic function, Magic Commands, Magic Commands
%reset magic function, Magic Commands, Input and Output Variables, Input and Output Variables
%run magic function, The %run Command–Interrupting running code, Magic Commands, The Python Interpreter
%S datetime format, Converting between string and datetime
%s format character, Strings
%time magic function, Magic Commands, Timing Code: %time and %timeit, Timing Code: %time and %timeit, Timing Code: %time and %timeit
%timeit magic function, Magic Commands, Timing Code: %time and %timeit, Timing Code: %time and %timeit, Timing Code: %time and %timeit
%U datetime format, Converting between string and datetime
%w datetime format, Converting between string and datetime
%W datetime format, Converting between string and datetime
%who magic function, Magic Commands
%whos magic function, Magic Commands
%who_ls magic function, Magic Commands
%x datetime format, Converting between string and datetime
%X datetime format, Converting between string and datetime
%xdel magic function, Magic Commands, Input and Output Variables, Input and Output Variables
%xmode magic function, Exceptions and Tracebacks
%Y datetime format, Converting between string and datetime
%y datetime format, Converting between string and datetime
%z datetime format, Converting between string and datetime
& operator, Boolean Indexing
* operator, Linear Algebra
+ operator, Tuple, Concatenating and combining lists
2012 Federal Election Commission database example, Example: 2012 Federal Election Commission Database–Donation Statistics by State, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer, Bucketing Donation Amounts–Bucketing Donation Amounts, Donation Statistics by State–Donation Statistics by State
bucketing donation amounts, Bucketing Donation Amounts–Bucketing Donation Amounts
donation statistics by occupation and employer, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer
donation statistics by state, Donation Statistics by State–Donation Statistics by State
== operator, Binary operators and comparisons
>>> prompt, The Python Interpreter
? (question mark), Introspection, Introspection
\ (backslash), Strings
_ (underscore), Tab Completion, Input and Output Variables
__ (two underscores), Input and Output Variables
{} (braces), Dict
| operator, Boolean Indexing
A
a file mode, Files and the operating system
abs function, Universal Functions: Fast Element-wise Array Functions
accumulate method, ufunc Instance Methods
add method, Universal Functions: Fast Element-wise Array Functions, Arithmetic methods with fill values, Arithmetic methods with fill values, Set
add_patch method, Annotations and Drawing on a Subplot
add_subplot method, Figures and Subplots, Figures and Subplots
aggfunc option, Pivot Tables and Cross-Tabulation
aggregate method, Data Aggregation, Column-wise and Multiple Function Application
aggregations, Mathematical and Statistical Methods
algorithms for sorting, Alternate Sort Algorithms–Alternate Sort Algorithms
alignment of data, Time Series and Cross-Section Alignment–Time Series and Cross-Section Alignment
all method, Methods for Boolean Arrays, Methods for Boolean Arrays, ufunc Instance Methods
alpha argument, Line Plots
and keyword, Booleans, if, elif, and else
annotating in matplotlib, Annotations and Drawing on a Subplot–Annotations and Drawing on a Subplot
anonymous functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions
any method, Methods for Boolean Arrays, Methods for Boolean Arrays, Simulating Many Random Walks at Once, Detecting and Filtering Outliers
append method, Index Objects, Adding and removing elements
apply method, Measuring the increase in naming diversity, Function application and mapping, Function application and mapping, Function application and mapping, Unique Values, Value Counts, and Membership, Apply: General split-apply-combine–Suppressing the group keys, Suppressing the group keys–Suppressing the group keys, Example: Filling Missing Values with Group-specific Values
apt package management tool, GNU/Linux
arange function, Creating ndarrays, Creating ndarrays
arccos function, Universal Functions: Fast Element-wise Array Functions
arccosh function, Universal Functions: Fast Element-wise Array Functions
arcsin function, Universal Functions: Fast Element-wise Array Functions
arcsinh function, Universal Functions: Fast Element-wise Array Functions
arctan function, Universal Functions: Fast Element-wise Array Functions
arctanh function, Universal Functions: Fast Element-wise Array Functions
argmax method, Mathematical and Statistical Methods
argmin method, Mathematical and Statistical Methods, Summarizing and Computing Descriptive Statistics
argsort method, Sorting and ranking, Indirect Sorts: argsort and lexsort
arithmetic, Arithmetic and data alignment–Operations between DataFrame and Series, Arithmetic methods with fill values–Arithmetic methods with fill values, Operations between DataFrame and Series–Operations between DataFrame and Series
operations between DataFrame and Series, Operations between DataFrame and Series–Operations between DataFrame and Series
with fill values, Arithmetic methods with fill values–Arithmetic methods with fill values
arrays, Creating ndarrays–Creating ndarrays, Data Types for ndarrays–Data Types for ndarrays, Operations between Arrays and Scalars–Operations between Arrays and Scalars, Basic Indexing and Slicing–Indexing with slices, Basic Indexing and Slicing–Indexing with slices, Boolean Indexing–Boolean Indexing, Fancy Indexing–Fancy Indexing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations, Mathematical and Statistical Methods–Mathematical and Statistical Methods, Methods for Boolean Arrays–Methods for Boolean Arrays, Sorting–Sorting, Unique and Other Set Logic–Unique and Other Set Logic, File Input and Output with Arrays–Saving and Loading Text Files, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Saving and Loading Text Files–Saving and Loading Text Files, Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays, Advanced Array Manipulation–Fancy Indexing Equivalents: Take and Put, Reshaping Arrays–Reshaping Arrays, C versus Fortran Order–C versus Fortran Order, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting, Structured and Record Arrays–Structured Array Manipulations: numpy.lib.recfunctions, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields, Why Use Structured Arrays?–Why Use Structured Arrays?, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array, Advanced Array Input and Output–HDF5 and Other Array Storage Options
boolean arrays, Methods for Boolean Arrays–Methods for Boolean Arrays
boolean indexing for, Boolean Indexing–Boolean Indexing
conditional logic as operation, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations
creating, Creating ndarrays–Creating ndarrays
creating PeriodIndex from, Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays
data types for, Data Types for ndarrays–Data Types for ndarrays
fancy indexing, Fancy Indexing–Fancy Indexing
file input and output with, File Input and Output with Arrays–Saving and Loading Text Files, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Saving and Loading Text Files–Saving and Loading Text Files
saving and loading text files, Saving and Loading Text Files–Saving and Loading Text Files
storing on disk in binary format, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format
finding elements in sorted array, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array
in NumPy, Advanced Array Manipulation–Fancy Indexing Equivalents: Take and Put, Reshaping Arrays–Reshaping Arrays, C versus Fortran Order–C versus Fortran Order, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put, Advanced Array Input and Output–HDF5 and Other Array Storage Options
concatenating, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
c_ object, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_
layout of in memory, C versus Fortran Order–C versus Fortran Order
replicating, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat
reshaping, Reshaping Arrays–Reshaping Arrays
r_ object, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_
saving to file, Advanced Array Input and Output–HDF5 and Other Array Storage Options
splitting, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
subsets for, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put
indexes for, Basic Indexing and Slicing–Indexing with slices
operations between, Operations between Arrays and Scalars–Operations between Arrays and Scalars
setting values by broadcasting, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting
slicing, Basic Indexing and Slicing–Indexing with slices
sorting, Sorting–Sorting
statistical methods for, Mathematical and Statistical Methods–Mathematical and Statistical Methods
structured arrays, Structured and Record Arrays–Structured Array Manipulations: numpy.lib.recfunctions, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields, Why Use Structured Arrays?–Why Use Structured Arrays?, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
benefits of, Why Use Structured Arrays?–Why Use Structured Arrays?
mainpulating, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
nested data types, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields
swapping axes in, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
transposing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
unique function, Unique and Other Set Logic–Unique and Other Set Logic
where function, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations
arrow function, Annotations and Drawing on a Subplot
as keyword, Imports
asarray function, Creating ndarrays, NumPy Matrix Class
asfreq method, Period Frequency Conversion, Resampling with Periods
asof method, Time of Day and “as of” Data Selection–Time of Day and “as of” Data Selection, Time of Day and “as of” Data Selection
astype method, Data Types for ndarrays, Data Types for ndarrays, Data Types for ndarrays
attributes, Tab Completion, Attributes and methods–Attributes and methods
in Python, Attributes and methods–Attributes and methods
starting with underscore, Tab Completion
average method, Sorting and ranking
ax argument, Line Plots
axes, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Concatenating Along an Axis–Concatenating Along an Axis, Renaming Axis Indexes–Renaming Axis Indexes, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Broadcasting Over Other Axes–Broadcasting Over Other Axes
broadcasting over, Broadcasting Over Other Axes–Broadcasting Over Other Axes
concatenating along, Concatenating Along an Axis–Concatenating Along an Axis
labels for, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
renaming indexes for, Renaming Axis Indexes–Renaming Axis Indexes
swapping in arrays, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
AxesSubplot object, Figures and Subplots
axis argument, Concatenating Along an Axis
axis method, Summarizing and Computing Descriptive Statistics
B
b file mode, Files and the operating system
backslash (\), Strings
bar plots, Bar Plots–Bar Plots
Basemap object, Plotting Maps: Visualizing Haiti Earthquake Crisis Data, Plotting Maps: Visualizing Haiti Earthquake Crisis Data
.bashrc file, GNU/Linux
.bash_profile file, Apple OS X, Apple OS X
bbox_inches option, Saving Plots to File
benefits, Why Python for Data Analysis?–Why Not Python?, Python as Glue–Python as Glue, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem, Why Use Structured Arrays?–Why Use Structured Arrays?
of Python, Why Python for Data Analysis?–Why Not Python?, Python as Glue–Python as Glue, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem
glue for code, Python as Glue–Python as Glue
solving "two-language" problem with, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem
of structured arrays, Why Use Structured Arrays?–Why Use Structured Arrays?
beta function, Random Number Generation, Group Factor Exposures
defined, Group Factor Exposures
between_time method, Time of Day and “as of” Data Selection
bfill method, Reindexing
bin edges, Downsampling
binary data formats, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Binary Data Formats–Reading Microsoft Excel Files, Using HDF5 Format–Using HDF5 Format, Reading Microsoft Excel Files–Reading Microsoft Excel Files
HDF5, Using HDF5 Format–Using HDF5 Format
Microsoft Excel files, Reading Microsoft Excel Files–Reading Microsoft Excel Files
storing arrays in, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format
binary moving window functions, Binary Moving Window Functions–Binary Moving Window Functions
binary search of lists, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list
binary universal functions, Universal Functions: Fast Element-wise Array Functions
binding, Variables and pass-by-reference, Closures: Functions that Return Functions
defined, Variables and pass-by-reference
variables, Closures: Functions that Return Functions
binomial function, Random Number Generation
bisect module, Binary search and maintaining a sorted list, Binary search and maintaining a sorted list
bookmarking directories in IPython, Directory Bookmark System–Directory Bookmark System
Boolean, Data Types for ndarrays, Boolean Indexing–Boolean Indexing, Methods for Boolean Arrays–Methods for Boolean Arrays, Booleans–Booleans
arrays, Methods for Boolean Arrays–Methods for Boolean Arrays
data type, Data Types for ndarrays, Booleans–Booleans
indexing for arrays, Boolean Indexing–Boolean Indexing
bottleneck library, Moving Window Functions
braces ({}), Dict
break keyword, for loops
broadcasting, Basic Indexing and Slicing, Repeating Elements: Tile and Repeat, Broadcasting–Setting Array Values by Broadcasting, Broadcasting, Broadcasting Over Other Axes–Broadcasting Over Other Axes, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting
defined, Basic Indexing and Slicing, Repeating Elements: Tile and Repeat, Broadcasting
over other axes, Broadcasting Over Other Axes–Broadcasting Over Other Axes
setting array values by, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting
bucketing, Bucketing Donation Amounts–Bucketing Donation Amounts
C
calendar module, Date and Time Data Types and Tools
casting, Data Types for ndarrays
cat method, Reading and Writing Data in Text Format, Vectorized string functions in pandas
Categorical object, Discretization and Binning
ceil function, Universal Functions: Fast Element-wise Array Functions
center method, Vectorized string functions in pandas
chisquare function, Random Number Generation
chunksize argument, Reading and Writing Data in Text Format, Reading Text Files in Pieces, Reading Text Files in Pieces
clearing screen shortcut, Keyboard Shortcuts
clipboard, executing code from, Executing Code from the Clipboard–IPython interaction with editors and IDEs
clock function, Timing Code: %time and %timeit
close method, A Brief matplotlib API Primer, A Brief matplotlib API Primer, Files and the operating system
closures, Closures: Functions that Return Functions–Closures: Functions that Return Functions
cmd.exe, Windows
collections module, Default values
colons, Indentation, not braces
cols option, Pivot Tables and Cross-Tabulation
columns, grouping on, Selecting a Column or Subset of Columns–Selecting a Column or Subset of Columns
column_stack function, Concatenating and Splitting Arrays
combinations function, itertools module
combine_first method, Combining and Merging Data Sets, Combining Data with Overlap, Combining Data with Overlap
combining, Combining Data with Overlap–Combining Data with Overlap, Splicing Together Data Sources–Splicing Together Data Sources, Concatenating and combining lists–Concatenating and combining lists
data sources, Splicing Together Data Sources–Splicing Together Data Sources
data sources, with overlap, Combining Data with Overlap–Combining Data with Overlap
lists, Concatenating and combining lists–Concatenating and combining lists
commands, Keyboard Shortcuts, Using the Command History–Logging the Input and Output, Searching and Reusing the Command History–Searching and Reusing the Command History, Input and Output Variables–Input and Output Variables, Logging the Input and Output–Logging the Input and Output, Interactive Debugger, Interactive Debugger
(see also magic commands)
debugger, Interactive Debugger
history in IPython, Using the Command History–Logging the Input and Output, Searching and Reusing the Command History–Searching and Reusing the Command History, Input and Output Variables–Input and Output Variables, Logging the Input and Output–Logging the Input and Output
input and output variables, Input and Output Variables–Input and Output Variables
logging of, Logging the Input and Output–Logging the Input and Output
reusing command history, Searching and Reusing the Command History–Searching and Reusing the Command History
searching for, Keyboard Shortcuts
comment argument, Reading and Writing Data in Text Format
comments in Python, Comments–Comments
compile method, Regular expressions, Regular expressions
complex128 data type, Data Types for ndarrays
complex256 data type, Data Types for ndarrays
complex64 data type, Data Types for ndarrays
concat function, US Baby Names 1880-2010, Combining and Merging Data Sets, Merging on Index, Concatenating Along an Axis, Concatenating Along an Axis, Apply: General split-apply-combine, Concatenating and Splitting Arrays, Concatenating and Splitting Arrays, Concatenating and Splitting Arrays
concatenating, Concatenating Along an Axis–Concatenating Along an Axis, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
along axis, Concatenating Along an Axis–Concatenating Along an Axis
arrays, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
conditional logic as array operation, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations
conferences, Community and Conferences
configuring matplotlib, matplotlib Configuration–matplotlib Configuration
conforming, Reindexing
contains method, Vectorized string functions in pandas
contiguous memory, The Importance of Contiguous Memory–The Importance of Contiguous Memory
continue keyword, for loops
continuous return, Future Contract Rolling
convention argument, Resampling and Frequency Conversion
converting, Converting between string and datetime–Converting between string and datetime, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back)
between string and datetime, Converting between string and datetime–Converting between string and datetime
timestamps to periods, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back)
coordinated universal time (UTC), Time Zone Handling
copy argument, Database-style DataFrame Merges
copy method, DataFrame
copysign function, Universal Functions: Fast Element-wise Array Functions
corr method, Correlation and Covariance, Correlation and Covariance
correlation, Correlation and Covariance–Correlation and Covariance
corrwith method, Correlation and Covariance
cos function, Universal Functions: Fast Element-wise Array Functions
cosh function, Universal Functions: Fast Element-wise Array Functions
count method, Summarizing and Computing Descriptive Statistics, String Object Methods, Vectorized string functions in pandas, Data Aggregation, Tuple methods
Counter class, Counting Time Zones in Pure Python
cov method, Correlation and Covariance, Correlation and Covariance
covariance, Correlation and Covariance–Correlation and Covariance
CPython, Installation and Setup
cross-section, Financial and Economic Data Applications
crosstab function, Cross-Tabulations: Crosstab–Cross-Tabulations: Crosstab
crowdsourcing, Plotting Maps: Visualizing Haiti Earthquake Crisis Data
CSV files, Manually Working with Delimited Formats–Manually Working with Delimited Formats, Plotting Maps: Visualizing Haiti Earthquake Crisis Data
Ctrl-A keyboard shortcut, Keyboard Shortcuts
Ctrl-B keyboard shortcut, Keyboard Shortcuts
Ctrl-C keyboard shortcut, Keyboard Shortcuts
Ctrl-E keyboard shortcut, Keyboard Shortcuts
Ctrl-F keyboard shortcut, Keyboard Shortcuts
Ctrl-K keyboard shortcut, Keyboard Shortcuts
Ctrl-L keyboard shortcut, Keyboard Shortcuts
Ctrl-N keyboard shortcut, Keyboard Shortcuts
Ctrl-P keyboard shortcut, Keyboard Shortcuts
Ctrl-R keyboard shortcut, Keyboard Shortcuts
Ctrl-Shift-V keyboard shortcut, Keyboard Shortcuts
Ctrl-U keyboard shortcut, Keyboard Shortcuts
cummax method, Summarizing and Computing Descriptive Statistics
cummin method, Summarizing and Computing Descriptive Statistics
cumprod method, Mathematical and Statistical Methods, Summarizing and Computing Descriptive Statistics
cumsum method, Mathematical and Statistical Methods, Summarizing and Computing Descriptive Statistics
cumulative returns, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns
currying, Currying: Partial Argument Application–Currying: Partial Argument Application, Currying: Partial Argument Application
cursor, moving with keyboard, Keyboard Shortcuts
custom universal functions, Custom ufuncs–Custom ufuncs
cut function, Discretization and Binning, Discretization and Binning, Discretization and Binning, Discretization and Binning, Discretization and Binning, Quantile and Bucket Analysis, Bucketing Donation Amounts
Cython project, Python as Glue, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
c_ object, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_
D
data aggregation, Data Aggregation–Returning Aggregated Data in “unindexed” Form, Column-wise and Multiple Function Application–Column-wise and Multiple Function Application, Returning Aggregated Data in “unindexed” Form–Returning Aggregated Data in “unindexed” Form
returning data in unindexed form, Returning Aggregated Data in “unindexed” Form–Returning Aggregated Data in “unindexed” Form
using multiple functions, Column-wise and Multiple Function Application–Column-wise and Multiple Function Application
data alignment, Arithmetic and data alignment–Operations between DataFrame and Series, Arithmetic methods with fill values–Arithmetic methods with fill values, Operations between DataFrame and Series–Operations between DataFrame and Series
arithmetic methods with fill values, Arithmetic methods with fill values–Arithmetic methods with fill values
operations between DataFrame and Series, Operations between DataFrame and Series–Operations between DataFrame and Series
data munging, Data Munging Topics–Return Indexes and Cumulative Returns, Time Series and Cross-Section Alignment–Time Series and Cross-Section Alignment, Operations with Time Series of Different Frequencies–Using periods instead of timestamps, Time of Day and “as of” Data Selection–Time of Day and “as of” Data Selection, Splicing Together Data Sources–Splicing Together Data Sources
asof method, Time of Day and “as of” Data Selection–Time of Day and “as of” Data Selection
combining data, Splicing Together Data Sources–Splicing Together Data Sources
for data alignment, Time Series and Cross-Section Alignment–Time Series and Cross-Section Alignment
for specialized frequencies, Operations with Time Series of Different Frequencies–Using periods instead of timestamps
data structures for pandas, Introduction to pandas Data Structures–Index Objects, Series–Series, DataFrame–DataFrame, Index Objects–Index Objects, Panel Data–Panel Data
DataFrame, DataFrame–DataFrame
Index objects, Index Objects–Index Objects
Panel, Panel Data–Panel Data
Series, Series–Series
data types, Data Types for ndarrays–Data Types for ndarrays, Data Types for ndarrays–Data Types for ndarrays, Date and Time Data Types and Tools–Converting between string and datetime, Converting between string and datetime–Converting between string and datetime, ndarray Object Internals–NumPy dtype Hierarchy, NumPy dtype Hierarchy–NumPy dtype Hierarchy, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields, Scalar Types–Dates and times, Numeric types–Numeric types, Strings–Strings, Booleans–Booleans, Type casting–Type casting, None–None, Dates and times–Dates and times
for arrays, Data Types for ndarrays–Data Types for ndarrays
for ndarray, Data Types for ndarrays–Data Types for ndarrays
for NumPy, ndarray Object Internals–NumPy dtype Hierarchy, NumPy dtype Hierarchy–NumPy dtype Hierarchy
hierarchy of, NumPy dtype Hierarchy–NumPy dtype Hierarchy
for Python, Scalar Types–Dates and times, Numeric types–Numeric types, Strings–Strings, Booleans–Booleans, Type casting–Type casting, None–None, Dates and times–Dates and times
boolean data type, Booleans–Booleans
dates and times, Dates and times–Dates and times
None data type, None–None
numeric data types, Numeric types–Numeric types
str data type, Strings–Strings
type casting in, Type casting–Type casting
for time series data, Date and Time Data Types and Tools–Converting between string and datetime, Converting between string and datetime–Converting between string and datetime
converting between string and datetime, Converting between string and datetime–Converting between string and datetime
nested, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields
data wrangling, Combining and Merging Data Sets–Combining Data with Overlap, Database-style DataFrame Merges–Database-style DataFrame Merges, Merging on Index–Merging on Index, Concatenating Along an Axis–Concatenating Along an Axis, Combining Data with Overlap–Combining Data with Overlap, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing, Pivoting “long” to “wide” Format–Pivoting “long” to “wide” Format, Data Transformation–Computing Indicator/Dummy Variables, Removing Duplicates–Removing Duplicates, Transforming Data Using a Function or Mapping–Transforming Data Using a Function or Mapping, Replacing Values–Replacing Values, Renaming Axis Indexes–Renaming Axis Indexes, Discretization and Binning–Discretization and Binning, Detecting and Filtering Outliers–Detecting and Filtering Outliers, Permutation and Random Sampling–Permutation and Random Sampling, Computing Indicator/Dummy Variables–Computing Indicator/Dummy Variables, String Manipulation–Vectorized string functions in pandas, String Object Methods–String Object Methods, Regular expressions–Regular expressions, Vectorized string functions in pandas–Vectorized string functions in pandas, Example: USDA Food Database–Example: USDA Food Database
manipulating strings, String Manipulation–Vectorized string functions in pandas, String Object Methods–String Object Methods, Regular expressions–Regular expressions, Vectorized string functions in pandas–Vectorized string functions in pandas
methods for, String Object Methods–String Object Methods
vectorized string methods, Vectorized string functions in pandas–Vectorized string functions in pandas
with regular expressions, Regular expressions–Regular expressions
merging data, Combining and Merging Data Sets–Combining Data with Overlap, Database-style DataFrame Merges–Database-style DataFrame Merges, Merging on Index–Merging on Index, Concatenating Along an Axis–Concatenating Along an Axis, Combining Data with Overlap–Combining Data with Overlap
combining data with overlap, Combining Data with Overlap–Combining Data with Overlap
concatenating along axis, Concatenating Along an Axis–Concatenating Along an Axis
DataFrame merges, Database-style DataFrame Merges–Database-style DataFrame Merges
on index, Merging on Index–Merging on Index
pivoting, Pivoting “long” to “wide” Format–Pivoting “long” to “wide” Format
reshaping, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing
transforming data, Data Transformation–Computing Indicator/Dummy Variables, Removing Duplicates–Removing Duplicates, Transforming Data Using a Function or Mapping–Transforming Data Using a Function or Mapping, Replacing Values–Replacing Values, Renaming Axis Indexes–Renaming Axis Indexes, Discretization and Binning–Discretization and Binning, Detecting and Filtering Outliers–Detecting and Filtering Outliers, Permutation and Random Sampling–Permutation and Random Sampling, Computing Indicator/Dummy Variables–Computing Indicator/Dummy Variables
discretization, Discretization and Binning–Discretization and Binning
dummy variables, Computing Indicator/Dummy Variables–Computing Indicator/Dummy Variables
filtering outliers, Detecting and Filtering Outliers–Detecting and Filtering Outliers
mapping, Transforming Data Using a Function or Mapping–Transforming Data Using a Function or Mapping
permutation, Permutation and Random Sampling–Permutation and Random Sampling
removing duplicates, Removing Duplicates–Removing Duplicates
renaming axis indexes, Renaming Axis Indexes–Renaming Axis Indexes
replacing values, Replacing Values–Replacing Values
USDA food database example, Example: USDA Food Database–Example: USDA Food Database
databases, Interacting with Databases–Storing and Loading Data in MongoDB
reading and writing to, Interacting with Databases–Storing and Loading Data in MongoDB
DataFrame data structure, Counting Time Zones with pandas, MovieLens 1M Data Set, Introduction to pandas Data Structures, DataFrame–DataFrame, Operations between DataFrame and Series–Operations between DataFrame and Series, Using a DataFrame’s Columns–Using a DataFrame’s Columns, Database-style DataFrame Merges–Database-style DataFrame Merges
arithmetic operations between Series and, Operations between DataFrame and Series–Operations between DataFrame and Series
hierarchical indexing using, Using a DataFrame’s Columns–Using a DataFrame’s Columns
merging data with, Database-style DataFrame Merges–Database-style DataFrame Merges
dates and times, Index Objects, Reading and Writing Data in Text Format, Date and Time Data Types and Tools, Date and Time Data Types and Tools, Converting between string and datetime–Converting between string and datetime, Converting between string and datetime, Generating Date Ranges–Generating Date Ranges, Generating Date Ranges, Generating Date Ranges, Generating Date Ranges, Scalar Types, Dates and times–Dates and times, Dates and times
(see also time series data)
data types for, Date and Time Data Types and Tools, Dates and times–Dates and times
date ranges, Generating Date Ranges–Generating Date Ranges
datetime type, Converting between string and datetime–Converting between string and datetime, Scalar Types, Dates and times
DatetimeIndex Index object, Index Objects
dateutil package, Converting between string and datetime
date_parser argument, Reading and Writing Data in Text Format
date_range function, Generating Date Ranges, Generating Date Ranges, Generating Date Ranges
dayfirst argument, Reading and Writing Data in Text Format
debug function, Other ways to make use of the debugger, Other ways to make use of the debugger
debugger, IPython, Interactive Debugger–Other ways to make use of the debugger
in IPython, Interactive Debugger–Other ways to make use of the debugger
def keyword, Functions
defaults, Profiles and Configuration, Default values–Default values
profiles, Profiles and Configuration
values for dicts, Default values–Default values
del keyword, Input and Output Variables, DataFrame, Dict
delete method, Index Objects
delimited formats, Manually Working with Delimited Formats–Manually Working with Delimited Formats
density plots, Histograms and Density Plots–Histograms and Density Plots
describe method, Summarizing and Computing Descriptive Statistics, Summarizing and Computing Descriptive Statistics, Plotting Maps: Visualizing Haiti Earthquake Crisis Data, Apply: General split-apply-combine
design tips, Code Design Tips–Overcome a fear of longer files, Keep relevant objects and data alive–Keep relevant objects and data alive, Flat is better than nested–Flat is better than nested, Overcome a fear of longer files–Overcome a fear of longer files
flat is better than nested, Flat is better than nested–Flat is better than nested
keeping relevant objects and data alive, Keep relevant objects and data alive–Keep relevant objects and data alive
overcoming fear of longer files, Overcome a fear of longer files–Overcome a fear of longer files
det function, Linear Algebra
development tools in IPython, Software Development Tools–Profiling a Function Line-by-Line, Interactive Debugger–Other ways to make use of the debugger, Timing Code: %time and %timeit–Timing Code: %time and %timeit, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p, Profiling a Function Line-by-Line–Profiling a Function Line-by-Line
debugger, Interactive Debugger–Other ways to make use of the debugger
profiling code, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p
profiling function line-by-line, Profiling a Function Line-by-Line–Profiling a Function Line-by-Line
timing code, Timing Code: %time and %timeit–Timing Code: %time and %timeit
diag function, Linear Algebra
dicts, Interacting with the Operating System, Grouping with Dicts and Series–Grouping with Dicts and Series, Dict–Valid dict key types, Creating dicts from sequences–Creating dicts from sequences, Default values–Default values, Valid dict key types–Valid dict key types, List, Set, and Dict Comprehensions–Nested list comprehensions
creating, Creating dicts from sequences–Creating dicts from sequences
default values for, Default values–Default values
dict comprehensions, List, Set, and Dict Comprehensions–Nested list comprehensions
grouping on, Grouping with Dicts and Series–Grouping with Dicts and Series
keys for, Valid dict key types–Valid dict key types
returning system environment variables as, Interacting with the Operating System
diff method, Index Objects, Summarizing and Computing Descriptive Statistics
difference method, Set
digitize function, numpy.searchsorted: Finding elements in a Sorted Array
directories, Interacting with the Operating System, Directory Bookmark System–Directory Bookmark System
bookmarking in IPython, Directory Bookmark System–Directory Bookmark System
changing, commands for, Interacting with the Operating System
discretization, Discretization and Binning–Discretization and Binning
div method, Arithmetic methods with fill values
divide function, Universal Functions: Fast Element-wise Array Functions
.dmg file, Apple OS X
donation statistics, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer, Donation Statistics by State–Donation Statistics by State
by occupation and employer, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer
by state, Donation Statistics by State–Donation Statistics by State
dot function, Linear Algebra, Linear Algebra, NumPy Matrix Class
doublequote option, Manually Working with Delimited Formats
downsampling, Resampling and Frequency Conversion
dpi (dots-per-inch) option, Saving Plots to File, Saving Plots to File
dreload function, Reloading Module Dependencies
drop method, Index Objects, Dropping entries from an axis–Dropping entries from an axis, Dropping entries from an axis
dropna method, Handling Missing Data
drop_duplicates method, Removing Duplicates
dsplit function, Concatenating and Splitting Arrays
dstack function, Concatenating and Splitting Arrays
dtype object, What Is This Book About? (see data types)
“duck” typing in Python, “Duck” typing–“Duck” typing
dummy variables, Computing Indicator/Dummy Variables–Computing Indicator/Dummy Variables
dumps function, JSON Data
duplicated method, Removing Duplicates, Removing Duplicates
duplicates, Removing Duplicates–Removing Duplicates, Time Series with Duplicate Indices–Time Series with Duplicate Indices
indices, Time Series with Duplicate Indices–Time Series with Duplicate Indices
removing from data, Removing Duplicates–Removing Duplicates
dynamically-generated functions, Closures: Functions that Return Functions
E
edgecolo option, Saving Plots to File
edit-compile-run workflow, IPython: An Interactive Computing and Development Environment
eig function, Linear Algebra
elif blocks, What Is This Book About? (see if statements)
else block, What Is This Book About? (see if statements)
empty function, Creating ndarrays, Creating ndarrays
empty namespace, The %run Command
encoding argument, Reading and Writing Data in Text Format
endswith method, String Object Methods, Vectorized string functions in pandas, Vectorized string functions in pandas
enumerate function, enumerate–enumerate
environment variables, Windows, Interacting with the Operating System
EPD (Enthought Python Distribution), Windows–Windows
equal function, Universal Functions: Fast Element-wise Array Functions
escapechar option, Manually Working with Delimited Formats
ewma function, Moving Window Functions
ewmcorr function, Moving Window Functions
ewmcov function, Moving Window Functions
ewmstd function, Moving Window Functions
ewmvar function, Moving Window Functions
ExcelFile class, Using HDF5 Format, Reading Microsoft Excel Files, Reading Microsoft Excel Files
except block, Exception handling
exceptions, Magic Commands, Exception handling–Exception handling, Exception handling
automatically entering debugger after, Magic Commands
defined, Exception handling
handling in Python, Exception handling–Exception handling
exec keyword, Input and Output Variables
execute-explore workflow, IPython: An Interactive Computing and Development Environment
execution time, Magic Commands, Magic Commands
of code, Magic Commands
of single statement, Magic Commands
exit command, The Python Interpreter
exp function, Universal Functions: Fast Element-wise Array Functions
expanding window mean, Moving Window Functions
exponentially-weighted functions, Exponentially-weighted functions–Exponentially-weighted functions
extend method, Concatenating and combining lists, Concatenating and combining lists
extensible markup language (XML) files, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify
eye function, Creating ndarrays
F
fabs function, Universal Functions: Fast Element-wise Array Functions, Universal Functions: Fast Element-wise Array Functions
facecolor option, Saving Plots to File
factor analysis, Group Factor Exposures–Group Factor Exposures
Factor object, Quantile and Bucket Analysis
factors, Group Factor Exposures
fancy indexing, Fancy Indexing–Fancy Indexing, Fancy Indexing Equivalents: Take and Put
defined, Fancy Indexing Equivalents: Take and Put
for arrays, Fancy Indexing–Fancy Indexing
ffill method, Reindexing, Reindexing
figsize argument, Line Plots
Figure object, Figures and Subplots, Adjusting the spacing around subplots
file input/output, File Input and Output with Arrays–Saving and Loading Text Files, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Saving and Loading Text Files–Saving and Loading Text Files, Reading and Writing Data in Text Format–Parsing XML with lxml.objectify, Reading Text Files in Pieces–Reading Text Files in Pieces, Writing Data Out to Text Format–Writing Data Out to Text Format, Manually Working with Delimited Formats–Manually Working with Delimited Formats, JSON Data–JSON Data, XML and HTML: Web Scraping–Parsing XML with lxml.objectify, XML and HTML: Web Scraping–Parsing XML with lxml.objectify, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify, Binary Data Formats–Reading Microsoft Excel Files, Using HDF5 Format–Using HDF5 Format, Reading Microsoft Excel Files–Reading Microsoft Excel Files, Interacting with HTML and Web APIs–Interacting with HTML and Web APIs, Interacting with Databases–Storing and Loading Data in MongoDB, Saving Plots to File–Saving Plots to File, Memory-mapped Files–Memory-mapped Files, HDF5 and Other Array Storage Options–HDF5 and Other Array Storage Options, Files and the operating system–Files and the operating system
binary data formats for, Binary Data Formats–Reading Microsoft Excel Files, Using HDF5 Format–Using HDF5 Format, Reading Microsoft Excel Files–Reading Microsoft Excel Files
HDF5, Using HDF5 Format–Using HDF5 Format
Microsoft Excel files, Reading Microsoft Excel Files–Reading Microsoft Excel Files
for arrays, File Input and Output with Arrays–Saving and Loading Text Files, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Saving and Loading Text Files–Saving and Loading Text Files, Memory-mapped Files–Memory-mapped Files, HDF5 and Other Array Storage Options–HDF5 and Other Array Storage Options
HDF5, HDF5 and Other Array Storage Options–HDF5 and Other Array Storage Options
memory-mapped files, Memory-mapped Files–Memory-mapped Files
saving and loading text files, Saving and Loading Text Files–Saving and Loading Text Files
storing on disk in binary format, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format
in Python, Files and the operating system–Files and the operating system
saving plot to file, Saving Plots to File–Saving Plots to File
text files, Reading and Writing Data in Text Format–Parsing XML with lxml.objectify, Reading Text Files in Pieces–Reading Text Files in Pieces, Writing Data Out to Text Format–Writing Data Out to Text Format, Manually Working with Delimited Formats–Manually Working with Delimited Formats, JSON Data–JSON Data, XML and HTML: Web Scraping–Parsing XML with lxml.objectify, XML and HTML: Web Scraping–Parsing XML with lxml.objectify, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify
delimited formats, Manually Working with Delimited Formats–Manually Working with Delimited Formats
HTML files, XML and HTML: Web Scraping–Parsing XML with lxml.objectify
JSON data, JSON Data–JSON Data
lxml library, XML and HTML: Web Scraping–Parsing XML with lxml.objectify
reading in pieces, Reading Text Files in Pieces–Reading Text Files in Pieces
writing to, Writing Data Out to Text Format–Writing Data Out to Text Format
XML files, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify
with databases, Interacting with Databases–Storing and Loading Data in MongoDB
with Web APIs, Interacting with HTML and Web APIs–Interacting with HTML and Web APIs
filling in missing data, Filling in Missing Data–Filling in Missing Data, Example: Filling Missing Values with Group-specific Values–Example: Filling Missing Values with Group-specific Values
fillna method, Counting Time Zones with pandas, Handling Missing Data, Filling in Missing Data, Filling in Missing Data, Filling in Missing Data, Filling in Missing Data, Filling in Missing Data, Filling in Missing Data, Replacing Values, Example: Filling Missing Values with Group-specific Values, Example: Filling Missing Values with Group-specific Values, Upsampling and Interpolation
fill_method argument, Resampling and Frequency Conversion
fill_value option, Pivot Tables and Cross-Tabulation
filtering, Indexing, selection, and filtering–Indexing, selection, and filtering, Filtering Out Missing Data–Filtering Out Missing Data, Detecting and Filtering Outliers–Detecting and Filtering Outliers
in pandas, Indexing, selection, and filtering–Indexing, selection, and filtering
missing data, Filtering Out Missing Data–Filtering Out Missing Data
outliers, Detecting and Filtering Outliers–Detecting and Filtering Outliers
financial applications, Data Munging Topics–Return Indexes and Cumulative Returns, Time Series and Cross-Section Alignment–Time Series and Cross-Section Alignment, Operations with Time Series of Different Frequencies–Using periods instead of timestamps, Time of Day and “as of” Data Selection–Time of Day and “as of” Data Selection, Splicing Together Data Sources–Splicing Together Data Sources, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns, Group Transforms and Analysis–Decile and Quartile Analysis, Group Factor Exposures–Group Factor Exposures, Decile and Quartile Analysis–Decile and Quartile Analysis, Signal Frontier Analysis–Signal Frontier Analysis, Future Contract Rolling–Future Contract Rolling, Rolling Correlation and Linear Regression–Rolling Correlation and Linear Regression, Rolling Correlation and Linear Regression–Rolling Correlation and Linear Regression
cumulative returns, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns
data munging, Data Munging Topics–Return Indexes and Cumulative Returns, Time Series and Cross-Section Alignment–Time Series and Cross-Section Alignment, Operations with Time Series of Different Frequencies–Using periods instead of timestamps, Time of Day and “as of” Data Selection–Time of Day and “as of” Data Selection, Splicing Together Data Sources–Splicing Together Data Sources
asof method, Time of Day and “as of” Data Selection–Time of Day and “as of” Data Selection
combining data, Splicing Together Data Sources–Splicing Together Data Sources
for data alignment, Time Series and Cross-Section Alignment–Time Series and Cross-Section Alignment
for specialized frequencies, Operations with Time Series of Different Frequencies–Using periods instead of timestamps
future contract rolling, Future Contract Rolling–Future Contract Rolling
grouping for, Group Transforms and Analysis–Decile and Quartile Analysis, Group Factor Exposures–Group Factor Exposures, Decile and Quartile Analysis–Decile and Quartile Analysis
factor analysis with, Group Factor Exposures–Group Factor Exposures
quartile analysis, Decile and Quartile Analysis–Decile and Quartile Analysis
linear regression, Rolling Correlation and Linear Regression–Rolling Correlation and Linear Regression
return indexes, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns
rolling correlation, Rolling Correlation and Linear Regression–Rolling Correlation and Linear Regression
signal frontier analysis, Signal Frontier Analysis–Signal Frontier Analysis
find method, String Object Methods, String Object Methods, String Object Methods
findall method, XML and HTML: Web Scraping, Regular expressions, Regular expressions, Regular expressions, Vectorized string functions in pandas
finditer method, Regular expressions, Regular expressions
first crossing time, Example: Random Walks
first method, Sorting and ranking, Data Aggregation
flat is better than nested, Flat is better than nested–Flat is better than nested
flattening, Reshaping Arrays
float data type, Data Types for ndarrays, NumPy dtype Hierarchy, Scalar Types, Numeric types, Numeric types, Type casting
float function, Exception handling
float128 data type, Data Types for ndarrays
float16 data type, Data Types for ndarrays
float32 data type, Data Types for ndarrays
float64 data type, Data Types for ndarrays
floor function, Universal Functions: Fast Element-wise Array Functions
floor_divide function, Universal Functions: Fast Element-wise Array Functions
flow control, Control Flow–Ternary Expressions, if, elif, and else–if, elif, and else, for loops–for loops, while loops–while loops, pass–pass, Exception handling–Exception handling, range and xrange–range and xrange, range and xrange–range and xrange, Ternary Expressions–Ternary Expressions
exception handling, Exception handling–Exception handling
for loops, for loops–for loops
if statements, if, elif, and else–if, elif, and else
pass statements, pass–pass
range function, range and xrange–range and xrange
ternary expressions, Ternary Expressions–Ternary Expressions
while loops, while loops–while loops
xrange function, range and xrange–range and xrange
flush method, Files and the operating system
fmax function, Universal Functions: Fast Element-wise Array Functions, Universal Functions: Fast Element-wise Array Functions
fmin function, Universal Functions: Fast Element-wise Array Functions, Universal Functions: Fast Element-wise Array Functions
fname option, Saving Plots to File
for loops, Operations between Arrays and Scalars, Expressing Conditional Logic as Array Operations, for loops–for loops, List, Set, and Dict Comprehensions, Nested list comprehensions
format option, Saving Plots to File
frequencies, Frequencies and Date Offsets–Week of month dates, Week of month dates–Week of month dates, Period Frequency Conversion–Period Frequency Conversion, Operations with Time Series of Different Frequencies–Using periods instead of timestamps
converting, Period Frequency Conversion–Period Frequency Conversion
specialized frequencies, Operations with Time Series of Different Frequencies–Using periods instead of timestamps
week of month dates, Week of month dates–Week of month dates
frompyfunc function, Custom ufuncs, Custom ufuncs
from_csv method, Writing Data Out to Text Format, Writing Data Out to Text Format
functions, Reading and Writing Data in Text Format, Function and object method calls–Function and object method calls, Functions–itertools module, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Returning Multiple Values–Returning Multiple Values, Functions Are Objects–Functions Are Objects, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Closures: Functions that Return Functions–Closures: Functions that Return Functions, Extended Call Syntax with *args, **kwargs–Extended Call Syntax with *args, **kwargs, Currying: Partial Argument Application–Currying: Partial Argument Application
anonymous functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions
are objects, Functions Are Objects–Functions Are Objects
closures, Closures: Functions that Return Functions–Closures: Functions that Return Functions
currying of, Currying: Partial Argument Application–Currying: Partial Argument Application
extended call syntax for, Extended Call Syntax with *args, **kwargs–Extended Call Syntax with *args, **kwargs
lambda functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions
namespaces for, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions
parsing in pandas, Reading and Writing Data in Text Format
returning multiple values from, Returning Multiple Values–Returning Multiple Values
scope of, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions
functools module, Currying: Partial Argument Application
future contract rolling, Future Contract Rolling–Future Contract Rolling
futures, Future Contract Rolling
G
gamma function, Random Number Generation
gcc command, Apple OS X, GNU/Linux
generators, Generators–itertools module, Generators, Generator expresssions–Generator expresssions, itertools module–itertools module
defined, Generators
generator expressions, Generator expresssions–Generator expresssions
itertools module for, itertools module–itertools module
get method, XML and HTML: Web Scraping, Reading Microsoft Excel Files, Vectorized string functions in pandas, Default values, Default values
getattr function, Attributes and methods, Attributes and methods
get_chunk method, Reading Text Files in Pieces
get_dummies function, Computing Indicator/Dummy Variables, Computing Indicator/Dummy Variables, Computing Indicator/Dummy Variables
get_value method, Indexing, selection, and filtering
get_xlim method, Ticks, Labels, and Legends
GIL (global interpreter lock), Why Not Python?
global scope, Namespaces, Scope, and Local Functions, Namespaces, Scope, and Local Functions
glue for code, Python as Glue–Python as Glue
Python as, Python as Glue–Python as Glue
.gov domain, 1.usa.gov data from bit.ly
Granger, Brian, IPython HTML Notebook
graphics, Chaco–Chaco, mayavi–mayavi
Chaco, Chaco–Chaco
mayavi, mayavi–mayavi
greater function, Universal Functions: Fast Element-wise Array Functions
greater_equal function, Universal Functions: Fast Element-wise Array Functions
grid argument, Line Plots
group keys, Suppressing the group keys–Suppressing the group keys
groupby method, Measuring the increase in naming diversity, GroupBy Mechanics–Grouping by Index Levels, Iterating Over Groups–Iterating Over Groups, Selecting a Column or Subset of Columns–Selecting a Column or Subset of Columns, Grouping with Dicts and Series–Grouping with Dicts and Series, Grouping with Dicts and Series–Grouping with Dicts and Series, Grouping with Functions–Grouping with Functions, Grouping by Index Levels–Grouping by Index Levels, Time Series with Duplicate Indices, Resampling with GroupBy–Resampling with GroupBy, Resampling with GroupBy, Group Factor Exposures, Decile and Quartile Analysis, numpy.searchsorted: Finding elements in a Sorted Array, itertools module
iterating over groups, Iterating Over Groups–Iterating Over Groups
on column, Selecting a Column or Subset of Columns–Selecting a Column or Subset of Columns
on dict, Grouping with Dicts and Series–Grouping with Dicts and Series
on levels, Grouping by Index Levels–Grouping by Index Levels
resampling with, Resampling with GroupBy–Resampling with GroupBy
using functions with, Grouping with Functions–Grouping with Functions
with Series, Grouping with Dicts and Series–Grouping with Dicts and Series
grouping, GroupBy Mechanics–Grouping by Index Levels, Iterating Over Groups–Iterating Over Groups, Selecting a Column or Subset of Columns–Selecting a Column or Subset of Columns, Grouping with Dicts and Series–Grouping with Dicts and Series, Grouping with Dicts and Series–Grouping with Dicts and Series, Grouping with Functions–Grouping with Functions, Grouping by Index Levels–Grouping by Index Levels, Data Aggregation–Returning Aggregated Data in “unindexed” Form, Column-wise and Multiple Function Application–Column-wise and Multiple Function Application, Returning Aggregated Data in “unindexed” Form–Returning Aggregated Data in “unindexed” Form, Apply: General split-apply-combine–Suppressing the group keys, Quantile and Bucket Analysis–Quantile and Bucket Analysis, Example: Filling Missing Values with Group-specific Values–Example: Filling Missing Values with Group-specific Values, Example: Random Sampling and Permutation–Example: Random Sampling and Permutation, Example: Group Weighted Average and Correlation–Example: Group Weighted Average and Correlation, Example: Group-wise Linear Regression–Example: Group-wise Linear Regression, Pivot Tables and Cross-Tabulation–Cross-Tabulations: Crosstab, Cross-Tabulations: Crosstab–Cross-Tabulations: Crosstab, Example: 2012 Federal Election Commission Database–Donation Statistics by State, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer, Bucketing Donation Amounts–Bucketing Donation Amounts, Donation Statistics by State–Donation Statistics by State, Group Transforms and Analysis–Decile and Quartile Analysis, Group Factor Exposures–Group Factor Exposures, Decile and Quartile Analysis–Decile and Quartile Analysis
2012 Federal Election Commission database example, Example: 2012 Federal Election Commission Database–Donation Statistics by State, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer, Bucketing Donation Amounts–Bucketing Donation Amounts, Donation Statistics by State–Donation Statistics by State
bucketing donation amounts, Bucketing Donation Amounts–Bucketing Donation Amounts
donation statistics by occupation and employer, Donation Statistics by Occupation and Employer–Donation Statistics by Occupation and Employer
donation statistics by state, Donation Statistics by State–Donation Statistics by State
apply method, Apply: General split-apply-combine–Suppressing the group keys
data aggregation, Data Aggregation–Returning Aggregated Data in “unindexed” Form, Column-wise and Multiple Function Application–Column-wise and Multiple Function Application, Returning Aggregated Data in “unindexed” Form–Returning Aggregated Data in “unindexed” Form
returning data in unindexed form, Returning Aggregated Data in “unindexed” Form–Returning Aggregated Data in “unindexed” Form
using multiple functions, Column-wise and Multiple Function Application–Column-wise and Multiple Function Application
filling missing values with group-specific values, Example: Filling Missing Values with Group-specific Values–Example: Filling Missing Values with Group-specific Values
for financial applications, Group Transforms and Analysis–Decile and Quartile Analysis, Group Factor Exposures–Group Factor Exposures, Decile and Quartile Analysis–Decile and Quartile Analysis
factor analysis with, Group Factor Exposures–Group Factor Exposures
quartile analysis, Decile and Quartile Analysis–Decile and Quartile Analysis
group weighted average, Example: Group Weighted Average and Correlation–Example: Group Weighted Average and Correlation
groupby method, GroupBy Mechanics–Grouping by Index Levels, Iterating Over Groups–Iterating Over Groups, Selecting a Column or Subset of Columns–Selecting a Column or Subset of Columns, Grouping with Dicts and Series–Grouping with Dicts and Series, Grouping with Dicts and Series–Grouping with Dicts and Series, Grouping with Functions–Grouping with Functions, Grouping by Index Levels–Grouping by Index Levels
iterating over groups, Iterating Over Groups–Iterating Over Groups
on column, Selecting a Column or Subset of Columns–Selecting a Column or Subset of Columns
on dict, Grouping with Dicts and Series–Grouping with Dicts and Series
on levels, Grouping by Index Levels–Grouping by Index Levels
using functions with, Grouping with Functions–Grouping with Functions
with Series, Grouping with Dicts and Series–Grouping with Dicts and Series
linear regression for, Example: Group-wise Linear Regression–Example: Group-wise Linear Regression
pivot tables, Pivot Tables and Cross-Tabulation–Cross-Tabulations: Crosstab, Cross-Tabulations: Crosstab–Cross-Tabulations: Crosstab
cross-tabulation, Cross-Tabulations: Crosstab–Cross-Tabulations: Crosstab
quantile analysis with, Quantile and Bucket Analysis–Quantile and Bucket Analysis
random sampling with, Example: Random Sampling and Permutation–Example: Random Sampling and Permutation
H
Haiti earthquake crisis data example, Plotting Maps: Visualizing Haiti Earthquake Crisis Data–Plotting Maps: Visualizing Haiti Earthquake Crisis Data
half-open, Downsampling
hasattr function, Attributes and methods
hash mark (#), Comments
hashability, Valid dict key types
HDF5 (hierarchical data format), Using HDF5 Format–Using HDF5 Format, HDF5 and Other Array Storage Options–HDF5 and Other Array Storage Options
HDFStore class, Binary Data Formats
header argument, Reading and Writing Data in Text Format
heapsort sorting method, Alternate Sort Algorithms
hierarchical data format (HDF5), Using HDF5 Format–Using HDF5 Format, HDF5 and Other Array Storage Options–HDF5 and Other Array Storage Options
hierarchical indexing, Hierarchical Indexing–Using a DataFrame’s Columns, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Using a DataFrame’s Columns–Using a DataFrame’s Columns, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing
in pandas, Hierarchical Indexing–Using a DataFrame’s Columns, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Using a DataFrame’s Columns–Using a DataFrame’s Columns
sorting levels, Reordering and Sorting Levels–Reordering and Sorting Levels
summary statistics by level, Summary Statistics by Level–Summary Statistics by Level
with DataFrame columns, Using a DataFrame’s Columns–Using a DataFrame’s Columns
reshaping data with, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing
hist method, Histograms and Density Plots
histograms, Histograms and Density Plots–Histograms and Density Plots
history of commands, searching, Keyboard Shortcuts
homogeneous data container, Structured and Record Arrays
how argument, Database-style DataFrame Merges, Resampling and Frequency Conversion, Open-High-Low-Close (OHLC) resampling
hsplit function, Concatenating and Splitting Arrays
hstack function, Concatenating and Splitting Arrays
HTML files, XML and HTML: Web Scraping–Parsing XML with lxml.objectify
HTML Notebook in IPython, IPython HTML Notebook–IPython HTML Notebook
Hunter, John D., matplotlib, Plotting and Visualization
hyperbolic trigonometric functions, Universal Functions: Fast Element-wise Array Functions
I
icol method, Indexing, selection, and filtering, Integer Indexing
IDEs (Integrated Development Environments), Integrated Development Environments (IDEs)–Integrated Development Environments (IDEs), IPython interaction with editors and IDEs–IPython interaction with editors and IDEs
idxmax method, Summarizing and Computing Descriptive Statistics
idxmin method, Summarizing and Computing Descriptive Statistics
if statements, if, elif, and else–if, elif, and else, Default values, Default values
ifilter function, itertools module
iget_value method, Integer Indexing
ignore_index argument, Concatenating Along an Axis
imap function, itertools module
import directive, Import Conventions–Import Conventions, Imports–Imports
in Python, Imports–Imports
usage of in this book, Import Conventions–Import Conventions
imshow function, Data Processing Using Arrays
in keyword, Adding and removing elements
in-place sort, More About Sorting
in1d method, Unique and Other Set Logic
indentation, Executing Code from the Clipboard, Indentation, not braces–Indentation, not braces
in Python, Indentation, not braces–Indentation, not braces
IndentationError event, Executing Code from the Clipboard
index method, String Object Methods, String Object Methods, String Object Methods, String Object Methods
Index objects data structure, Index Objects–Index Objects
indexes, Basic Indexing and Slicing–Indexing with slices, Series, Axis indexes with duplicate values–Axis indexes with duplicate values, Hierarchical Indexing–Using a DataFrame’s Columns, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Using a DataFrame’s Columns–Using a DataFrame’s Columns, Integer Indexing–Integer Indexing, Merging on Index–Merging on Index, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing, Renaming Axis Indexes–Renaming Axis Indexes, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting
defined, Series
for arrays, Basic Indexing and Slicing–Indexing with slices
for axis, Renaming Axis Indexes–Renaming Axis Indexes
for TimeSeries class, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting
hierarchical indexing, Hierarchical Indexing–Using a DataFrame’s Columns, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Using a DataFrame’s Columns–Using a DataFrame’s Columns, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing
reshaping data with, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing
sorting levels, Reordering and Sorting Levels–Reordering and Sorting Levels
summary statistics by level, Summary Statistics by Level–Summary Statistics by Level
with DataFrame columns, Using a DataFrame’s Columns–Using a DataFrame’s Columns
in pandas, Axis indexes with duplicate values–Axis indexes with duplicate values
integer indexing, Integer Indexing–Integer Indexing
merging data on, Merging on Index–Merging on Index
index_col argument, Reading and Writing Data in Text Format
indirect sorts, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort, Indirect Sorts: argsort and lexsort
input variables, Input and Output Variables–Input and Output Variables
insert method, Index Objects, Adding and removing elements, Adding and removing elements, Adding and removing elements
insort method, Binary search and maintaining a sorted list
int data type, Data Types for ndarrays, Scalar Types, Numeric types, Numeric types, Type casting
int16 data type, Data Types for ndarrays
int32 data type, Data Types for ndarrays
int64 data type, Data Types for ndarrays
Int64Index Index object, Index Objects
int8 data type, Data Types for ndarrays
integer arrays, indexing using, What Is This Book About? (see fancy indexing)
integer indexing, Integer Indexing–Integer Indexing
Integrated Development Environments (IDEs), Integrated Development Environments (IDEs)–Integrated Development Environments (IDEs), IPython interaction with editors and IDEs–IPython interaction with editors and IDEs
interpreted languages, The Python Interpreter, The Python Interpreter
defined, The Python Interpreter
Python interpreter, The Python Interpreter
interrupting code, Interrupting running code–Interrupting running code, Keyboard Shortcuts
intersect1d method, Unique and Other Set Logic
intersection method, Index Objects, Set
intervals of time, Time Series
inv function, Linear Algebra
inverse trigonometric functions, Universal Functions: Fast Element-wise Array Functions
.ipynb files, IPython HTML Notebook, IPython HTML Notebook
IPython, IPython–IPython, Tab Completion–Tab Completion, Introspection–Introspection, The %run Command–Interrupting running code, Executing Code from the Clipboard–IPython interaction with editors and IDEs, IPython interaction with editors and IDEs–IPython interaction with editors and IDEs, Keyboard Shortcuts–Keyboard Shortcuts, Exceptions and Tracebacks–Exceptions and Tracebacks, Magic Commands–Magic Commands, Magic Commands, Qt-based Rich GUI Console–Qt-based Rich GUI Console, Matplotlib Integration and Pylab Mode–Matplotlib Integration and Pylab Mode, Using the Command History–Logging the Input and Output, Searching and Reusing the Command History–Searching and Reusing the Command History, Input and Output Variables–Input and Output Variables, Logging the Input and Output–Logging the Input and Output, Shell Commands and Aliases–Shell Commands and Aliases, Directory Bookmark System–Directory Bookmark System, Software Development Tools–Profiling a Function Line-by-Line, Interactive Debugger–Other ways to make use of the debugger, Timing Code: %time and %timeit–Timing Code: %time and %timeit, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p, Profiling a Function Line-by-Line–Profiling a Function Line-by-Line, IPython HTML Notebook–IPython HTML Notebook, Reloading Module Dependencies–Reloading Module Dependencies, Code Design Tips–Overcome a fear of longer files, Keep relevant objects and data alive–Keep relevant objects and data alive, Flat is better than nested–Flat is better than nested, Overcome a fear of longer files–Overcome a fear of longer files, Making Your Own Classes IPython-friendly–Making Your Own Classes IPython-friendly, Profiles and Configuration–Profiles and Configuration
bookmarking directories, Directory Bookmark System–Directory Bookmark System
command history in, Using the Command History–Logging the Input and Output, Searching and Reusing the Command History–Searching and Reusing the Command History, Input and Output Variables–Input and Output Variables, Logging the Input and Output–Logging the Input and Output
input and output variables, Input and Output Variables–Input and Output Variables
logging of, Logging the Input and Output–Logging the Input and Output
reusing command history, Searching and Reusing the Command History–Searching and Reusing the Command History
design tips, Code Design Tips–Overcome a fear of longer files, Keep relevant objects and data alive–Keep relevant objects and data alive, Flat is better than nested–Flat is better than nested, Overcome a fear of longer files–Overcome a fear of longer files
flat is better than nested, Flat is better than nested–Flat is better than nested
keeping relevant objects and data alive, Keep relevant objects and data alive–Keep relevant objects and data alive
overcoming fear of longer files, Overcome a fear of longer files–Overcome a fear of longer files
development tools, Software Development Tools–Profiling a Function Line-by-Line, Interactive Debugger–Other ways to make use of the debugger, Timing Code: %time and %timeit–Timing Code: %time and %timeit, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p, Profiling a Function Line-by-Line–Profiling a Function Line-by-Line
debugger, Interactive Debugger–Other ways to make use of the debugger
profiling code, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p
profiling function line-by-line, Profiling a Function Line-by-Line–Profiling a Function Line-by-Line
timing code, Timing Code: %time and %timeit–Timing Code: %time and %timeit
executing code from clipboard, Executing Code from the Clipboard–IPython interaction with editors and IDEs
HTML Notebook in, IPython HTML Notebook–IPython HTML Notebook
integration with IDEs and editors, IPython interaction with editors and IDEs–IPython interaction with editors and IDEs
integration with mathplotlib, Matplotlib Integration and Pylab Mode–Matplotlib Integration and Pylab Mode
keyboard shortcuts for, Keyboard Shortcuts–Keyboard Shortcuts
magic commands in, Magic Commands–Magic Commands
making classes output correctly, Making Your Own Classes IPython-friendly–Making Your Own Classes IPython-friendly
object introspection in, Introspection–Introspection
profiles for, Profiles and Configuration–Profiles and Configuration
Qt console for, Qt-based Rich GUI Console–Qt-based Rich GUI Console
Quick Reference Card for, Magic Commands
reloading module dependencies, Reloading Module Dependencies–Reloading Module Dependencies
%run command in, The %run Command–Interrupting running code
shell commands in, Shell Commands and Aliases–Shell Commands and Aliases
tab completion in, Tab Completion–Tab Completion
tracebacks in, Exceptions and Tracebacks–Exceptions and Tracebacks
ipython_config.py file, Profiles and Configuration
irow method, Indexing, selection, and filtering, Integer Indexing
is keyword, Binary operators and comparisons
isdisjoint method, Set
isfinite function, Universal Functions: Fast Element-wise Array Functions
isin method, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
isinf function, Universal Functions: Fast Element-wise Array Functions
isinstance function, Dynamic references, strong types, Dynamic references, strong types
isnull method, Universal Functions: Fast Element-wise Array Functions, Series, Handling Missing Data
issubdtype function, NumPy dtype Hierarchy
issubset method, Set
issuperset method, Set
is_monotonic method, Index Objects
is_unique method, Index Objects
iter function, “Duck” typing
iterating over groups, Iterating Over Groups–Iterating Over Groups
iterator argument, Reading and Writing Data in Text Format
iterator protocol, “Duck” typing, Generators
itertools module, itertools module–itertools module, itertools module
ix_ function, Fancy Indexing
J
join method, Merging on Index, Merging on Index, Merging on Index, String Object Methods, Vectorized string functions in pandas
JSON (JavaScript Object Notation), 1.usa.gov data from bit.ly, JSON Data–JSON Data, Example: USDA Food Database
K
KDE (kernel density estimate) plots, Histograms and Density Plots
keep_date_col argument, Reading and Writing Data in Text Format
kernels, Histograms and Density Plots
key-value pairs, Dict
keyboard shortcuts, Keyboard Shortcuts–Keyboard Shortcuts, Keyboard Shortcuts, Keyboard Shortcuts
for deleting text, Keyboard Shortcuts
for IPython, Keyboard Shortcuts–Keyboard Shortcuts
KeyboardInterrupt event, Interrupting running code
keys, Concatenating Along an Axis, Dict, Dict, Valid dict key types–Valid dict key types
argument, Concatenating Along an Axis
for dicts, Valid dict key types–Valid dict key types
method, Dict, Dict
keyword arguments, Function and object method calls, Functions
kind argument, Line Plots, Resampling and Frequency Conversion
kurt method, Summarizing and Computing Descriptive Statistics
L
label argument, Line Plots, Resampling and Frequency Conversion, Downsampling
lambda functions, Vectorized string functions in pandas, Column-wise and Multiple Function Application, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Anonymous (lambda) Functions, Anonymous (lambda) Functions
last method, Data Aggregation
layout of arrays in memory, C versus Fortran Order–C versus Fortran Order
left argument, Database-style DataFrame Merges
left_index argument, Database-style DataFrame Merges
left_on argument, Database-style DataFrame Merges
legends in matplotlib, Adding legends–Adding legends
len function, Vectorized string functions in pandas, Grouping with Functions
less function, Universal Functions: Fast Element-wise Array Functions
less_equal function, Universal Functions: Fast Element-wise Array Functions
level keyword, Grouping by Index Levels
levels, Hierarchical Indexing, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Grouping by Index Levels–Grouping by Index Levels
defined, Hierarchical Indexing
grouping on, Grouping by Index Levels–Grouping by Index Levels
sorting, Reordering and Sorting Levels–Reordering and Sorting Levels
summary statistics by, Summary Statistics by Level–Summary Statistics by Level
lexicographical sort, Indirect Sorts: argsort and lexsort, Indirect Sorts: argsort and lexsort
defined, Indirect Sorts: argsort and lexsort
lexsort method, Indirect Sorts: argsort and lexsort
libraries, Essential Python Libraries–SciPy, NumPy–NumPy, pandas–pandas, matplotlib–matplotlib, IPython–IPython, SciPy–SciPy
IPython, IPython–IPython
matplotlib, matplotlib–matplotlib
NumPy, NumPy–NumPy
pandas, pandas–pandas
SciPy, SciPy–SciPy
limit argument, Resampling and Frequency Conversion
linalg function, Linear Algebra
line plots, Line Plots–Line Plots
linear algebra, Linear Algebra–Linear Algebra
linear regression, Example: Group-wise Linear Regression–Example: Group-wise Linear Regression, Rolling Correlation and Linear Regression–Rolling Correlation and Linear Regression
lineterminator option, Manually Working with Delimited Formats
line_profiler extension, Profiling a Function Line-by-Line
Linux, setting up on, GNU/Linux–GNU/Linux
list comprehensions, List, Set, and Dict Comprehensions–Nested list comprehensions, Nested list comprehensions–Nested list comprehensions
nested list comprehensions, Nested list comprehensions–Nested list comprehensions
list function, List
lists, List–Slicing, Adding and removing elements–Adding and removing elements, Adding and removing elements–Adding and removing elements, Concatenating and combining lists–Concatenating and combining lists, Sorting–Sorting, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list, Slicing–Slicing, List, Set, and Dict Comprehensions–Nested list comprehensions
adding elements to, Adding and removing elements–Adding and removing elements
binary search of, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list
combining, Concatenating and combining lists–Concatenating and combining lists
insertion into sorted, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list
list comprehensions, List, Set, and Dict Comprehensions–Nested list comprehensions
removing elements from, Adding and removing elements–Adding and removing elements
slicing, Slicing–Slicing
sorting, Sorting–Sorting
ljust method, String Object Methods
load function, Storing Arrays on Disk in Binary Format, Advanced Array Input and Output
load method, Binary Data Formats
loads function, 1.usa.gov data from bit.ly
local scope, Namespaces, Scope, and Local Functions
localizing time series data, Localization and Conversion–Localization and Conversion
loffset argument, Resampling and Frequency Conversion, Downsampling
log function, Universal Functions: Fast Element-wise Array Functions
log1p function, Universal Functions: Fast Element-wise Array Functions
log2 function, Universal Functions: Fast Element-wise Array Functions
logging command history in IPython, Logging the Input and Output–Logging the Input and Output
logical_and function, Universal Functions: Fast Element-wise Array Functions
logical_not function, Universal Functions: Fast Element-wise Array Functions
logical_or function, Universal Functions: Fast Element-wise Array Functions
logical_xor function, Universal Functions: Fast Element-wise Array Functions
logy argument, Line Plots
long format, Pivoting “long” to “wide” Format
long type, Scalar Types, Numeric types
longer files overcoming fear of, Overcome a fear of longer files–Overcome a fear of longer files
lower method, String Object Methods, Vectorized string functions in pandas, Vectorized string functions in pandas
lstrip method, String Object Methods, Vectorized string functions in pandas
lstsq function, Linear Algebra
lxml library, XML and HTML: Web Scraping–Parsing XML with lxml.objectify
M
mad method, Summarizing and Computing Descriptive Statistics
magic methods, Tab Completion, Magic Commands–Magic Commands
main function, Keep relevant objects and data alive, Keep relevant objects and data alive
mainpulating structured arrays, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
many-to-many merge, Database-style DataFrame Merges
many-to-one merge, Database-style DataFrame Merges
map method, Function application and mapping, Transforming Data Using a Function or Mapping–Transforming Data Using a Function or Mapping, Transforming Data Using a Function or Mapping, Transforming Data Using a Function or Mapping, Replacing Values, Vectorized string functions in pandas, Example: 2012 Federal Election Commission Database, Functions Are Objects
margins, Pivot Tables and Cross-Tabulation
markers, Colors, Markers, and Line Styles
match method, Regular expressions–Vectorized string functions in pandas
matplotlib, matplotlib–matplotlib, Matplotlib Integration and Pylab Mode–Matplotlib Integration and Pylab Mode, A Brief matplotlib API Primer–matplotlib Configuration, Figures and Subplots–Adjusting the spacing around subplots, Colors, Markers, and Line Styles–Colors, Markers, and Line Styles, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Adding legends–Adding legends, Annotations and Drawing on a Subplot–Annotations and Drawing on a Subplot, Saving Plots to File–Saving Plots to File, matplotlib Configuration–matplotlib Configuration
annotating in, Annotations and Drawing on a Subplot–Annotations and Drawing on a Subplot
axis labels in, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
configuring, matplotlib Configuration–matplotlib Configuration
integrating with IPython, Matplotlib Integration and Pylab Mode–Matplotlib Integration and Pylab Mode
legends in, Adding legends–Adding legends
saving to file, Saving Plots to File–Saving Plots to File
styling for, Colors, Markers, and Line Styles–Colors, Markers, and Line Styles
subplots in, Figures and Subplots–Adjusting the spacing around subplots
ticks in, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
title in, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
matplotlibrc file, matplotlib Configuration
matrix operations in NumPy, NumPy Matrix Class–NumPy Matrix Class
max method, Mathematical and Statistical Methods, Sorting and ranking, Summarizing and Computing Descriptive Statistics, Data Aggregation, Generators
maximum function, Universal Functions: Fast Element-wise Array Functions, Universal Functions: Fast Element-wise Array Functions
mean method, Mathematical and Statistical Methods, Summarizing and Computing Descriptive Statistics, GroupBy Mechanics, GroupBy Mechanics, Data Aggregation, Data Aggregation, Group-wise Operations and Transformations
median method, Summarizing and Computing Descriptive Statistics, Data Aggregation
memmap object, Memory-mapped Files, Memory-mapped Files
memory, layout of arrays in, C versus Fortran Order–C versus Fortran Order
memory-mapped files, Memory-mapped Files–Memory-mapped Files, Memory-mapped Files
defined, Memory-mapped Files
saving arrays to file, Memory-mapped Files–Memory-mapped Files
mergesort sorting method, Alternate Sort Algorithms, Alternate Sort Algorithms
merging data, Combining and Merging Data Sets–Combining Data with Overlap, Database-style DataFrame Merges–Database-style DataFrame Merges, Merging on Index–Merging on Index, Concatenating Along an Axis–Concatenating Along an Axis, Combining Data with Overlap–Combining Data with Overlap
combining data with overlap, Combining Data with Overlap–Combining Data with Overlap
concatenating along axis, Concatenating Along an Axis–Concatenating Along an Axis
DataFrame merges, Database-style DataFrame Merges–Database-style DataFrame Merges
on index, Merging on Index–Merging on Index
meshgrid function, Data Processing Using Arrays
methods, Tab Completion, Function and object method calls–Function and object method calls, Function and object method calls, Tuple methods–Tuple methods
defined, Function and object method calls
for tuples, Tuple methods–Tuple methods
in Python, Function and object method calls–Function and object method calls
starting with underscore, Tab Completion
Microsoft Excel files, Reading Microsoft Excel Files–Reading Microsoft Excel Files
.mil domain, 1.usa.gov data from bit.ly
min method, Mathematical and Statistical Methods, Sorting and ranking, Summarizing and Computing Descriptive Statistics, Data Aggregation, Generators
minimum function, Universal Functions: Fast Element-wise Array Functions
missing data, Handling Missing Data–Filling in Missing Data, Filtering Out Missing Data–Filtering Out Missing Data, Filling in Missing Data–Filling in Missing Data
filling in, Filling in Missing Data–Filling in Missing Data
filtering out, Filtering Out Missing Data–Filtering Out Missing Data
mod function, Universal Functions: Fast Element-wise Array Functions
modf function, Universal Functions: Fast Element-wise Array Functions
modules, Imports
momentum, Decile and Quartile Analysis
MongoDB, Storing and Loading Data in MongoDB–Storing and Loading Data in MongoDB
MovieLens 1M data set example, MovieLens 1M Data Set–Measuring rating disagreement
moving window functions, Moving Window Functions–User-Defined Moving Window Functions, Exponentially-weighted functions–Exponentially-weighted functions, Binary Moving Window Functions–Binary Moving Window Functions, User-Defined Moving Window Functions–User-Defined Moving Window Functions
binary moving window functions, Binary Moving Window Functions–Binary Moving Window Functions
exponentially-weighted functions, Exponentially-weighted functions–Exponentially-weighted functions
user-defined, User-Defined Moving Window Functions–User-Defined Moving Window Functions
.mpkg file, Apple OS X
mro method, NumPy dtype Hierarchy
mul method, Arithmetic methods with fill values
MultiIndex Index object, Index Objects, Hierarchical Indexing, Hierarchical Indexing
multiple profiles, Profiles and Configuration
multiply function, Universal Functions: Fast Element-wise Array Functions
munging, Jargon
mutable objects, Mutable and immutable objects–Mutable and immutable objects
N
NA data type, Handling Missing Data
names argument, Reading and Writing Data in Text Format, Concatenating Along an Axis
namespaces, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Namespaces, Scope, and Local Functions
defined, Namespaces, Scope, and Local Functions
in Python, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions
naming trends, Analyzing Naming Trends–Boy names that became girl names (and vice versa), Measuring the increase in naming diversity–Measuring the increase in naming diversity, The “Last letter” Revolution–The “Last letter” Revolution, Boy names that became girl names (and vice versa)–Boy names that became girl names (and vice versa)
in US baby names 1880-2010 example, Analyzing Naming Trends–Boy names that became girl names (and vice versa), Measuring the increase in naming diversity–Measuring the increase in naming diversity, The “Last letter” Revolution–The “Last letter” Revolution, Boy names that became girl names (and vice versa)–Boy names that became girl names (and vice versa)
boy names that became girl names, Boy names that became girl names (and vice versa)–Boy names that became girl names (and vice versa)
measuring increase in diversity, Measuring the increase in naming diversity–Measuring the increase in naming diversity
revolution of last letter, The “Last letter” Revolution–The “Last letter” Revolution
NaN (not a number), Mathematical and Statistical Methods, Series, Handling Missing Data
na_values argument, Reading and Writing Data in Text Format
ncols option, Figures and Subplots
ndarray, The NumPy ndarray: A Multidimensional Array Object, Creating ndarrays–Creating ndarrays, Data Types for ndarrays–Data Types for ndarrays, Operations between Arrays and Scalars–Operations between Arrays and Scalars, Basic Indexing and Slicing–Indexing with slices, Basic Indexing and Slicing–Indexing with slices, Boolean Indexing–Boolean Indexing, Fancy Indexing–Fancy Indexing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
Boolean indexing, Boolean Indexing–Boolean Indexing
creating arrays, Creating ndarrays–Creating ndarrays
data types for, Data Types for ndarrays–Data Types for ndarrays
fancy indexing, Fancy Indexing–Fancy Indexing
indexes for, Basic Indexing and Slicing–Indexing with slices
operations between arrays, Operations between Arrays and Scalars–Operations between Arrays and Scalars
slicing arrays, Basic Indexing and Slicing–Indexing with slices
swapping axes in, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
transposing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
nested code, Flat is better than nested–Flat is better than nested
nested data types, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields
nested list comprehensions, Nested list comprehensions–Nested list comprehensions
New York MTA (Metropolitan Transportation Authority), Parsing XML with lxml.objectify
None data type, Scalar Types, None–None, None, None, None, None
normal function, Random Number Generation, Simulating Many Random Walks at Once
normalized timestamps, Generating Date Ranges
NoSQL databases, Storing and Loading Data in MongoDB
not a number (NaN), Mathematical and Statistical Methods, Series, Handling Missing Data
NotebookCloud, IPython HTML Notebook
notnull method, Series, Handling Missing Data
not_equal function, Universal Functions: Fast Element-wise Array Functions
.npy files, Storing Arrays on Disk in Binary Format
.npz files, Storing Arrays on Disk in Binary Format
nrows argument, Reading and Writing Data in Text Format, Figures and Subplots
nuisance column, GroupBy Mechanics
numeric data types, Numeric types–Numeric types
NumPy, NumPy–NumPy, Community and Conferences, The NumPy ndarray: A Multidimensional Array Object, Creating ndarrays–Creating ndarrays, Data Types for ndarrays–Data Types for ndarrays, Operations between Arrays and Scalars–Operations between Arrays and Scalars, Basic Indexing and Slicing–Indexing with slices, Basic Indexing and Slicing–Indexing with slices, Boolean Indexing–Boolean Indexing, Fancy Indexing–Fancy Indexing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Universal Functions: Fast Element-wise Array Functions–Universal Functions: Fast Element-wise Array Functions, Data Processing Using Arrays–Unique and Other Set Logic, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations, Mathematical and Statistical Methods–Mathematical and Statistical Methods, Methods for Boolean Arrays–Methods for Boolean Arrays, Sorting–Sorting, Unique and Other Set Logic–Unique and Other Set Logic, File Input and Output with Arrays–Saving and Loading Text Files, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Saving and Loading Text Files–Saving and Loading Text Files, Linear Algebra–Linear Algebra, Random Number Generation–Random Number Generation, Example: Random Walks–Simulating Many Random Walks at Once, Function application and mapping–Function application and mapping, ndarray Object Internals–NumPy dtype Hierarchy, Advanced Array Manipulation–Fancy Indexing Equivalents: Take and Put, Reshaping Arrays–Reshaping Arrays, C versus Fortran Order–C versus Fortran Order, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put, Broadcasting–Setting Array Values by Broadcasting, Broadcasting Over Other Axes–Broadcasting Over Other Axes, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting, Advanced ufunc Usage–Custom ufuncs, ufunc Instance Methods–ufunc Instance Methods, Custom ufuncs–Custom ufuncs, Structured and Record Arrays–Structured Array Manipulations: numpy.lib.recfunctions, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields, Why Use Structured Arrays?–Why Use Structured Arrays?, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions, More About Sorting–numpy.searchsorted: Finding elements in a Sorted Array, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort, Alternate Sort Algorithms–Alternate Sort Algorithms, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array, NumPy Matrix Class–NumPy Matrix Class, Advanced Array Input and Output–HDF5 and Other Array Storage Options, Performance Tips–Other Speed Options: Cython, f2py, C, The Importance of Contiguous Memory–The Importance of Contiguous Memory, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
arrays in, Advanced Array Manipulation–Fancy Indexing Equivalents: Take and Put, Reshaping Arrays–Reshaping Arrays, C versus Fortran Order–C versus Fortran Order, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put, Advanced Array Input and Output–HDF5 and Other Array Storage Options
concatenating, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
c_ object, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_
layout of in memory, C versus Fortran Order–C versus Fortran Order
replicating, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat
reshaping, Reshaping Arrays–Reshaping Arrays
r_ object, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_
saving to file, Advanced Array Input and Output–HDF5 and Other Array Storage Options
splitting, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
subsets for, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put
broadcasting, Broadcasting–Setting Array Values by Broadcasting, Broadcasting Over Other Axes–Broadcasting Over Other Axes, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting
over other axes, Broadcasting Over Other Axes–Broadcasting Over Other Axes
setting array values by, Setting Array Values by Broadcasting–Setting Array Values by Broadcasting
data processing using, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations
where function, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations
data processing using arrays, Data Processing Using Arrays–Unique and Other Set Logic, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations, Mathematical and Statistical Methods–Mathematical and Statistical Methods, Methods for Boolean Arrays–Methods for Boolean Arrays, Sorting–Sorting, Unique and Other Set Logic–Unique and Other Set Logic
conditional logic as array operation, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations
methods for boolean arrays, Methods for Boolean Arrays–Methods for Boolean Arrays
sorting arrays, Sorting–Sorting
statistical methods, Mathematical and Statistical Methods–Mathematical and Statistical Methods
unique function, Unique and Other Set Logic–Unique and Other Set Logic
data types for, ndarray Object Internals–NumPy dtype Hierarchy
file input and output with arrays, File Input and Output with Arrays–Saving and Loading Text Files, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format, Saving and Loading Text Files–Saving and Loading Text Files
saving and loading text files, Saving and Loading Text Files–Saving and Loading Text Files
storing on disk in binary format, Storing Arrays on Disk in Binary Format–Storing Arrays on Disk in Binary Format
linear algebra, Linear Algebra–Linear Algebra
matrix operations in, NumPy Matrix Class–NumPy Matrix Class
ndarray arrays, The NumPy ndarray: A Multidimensional Array Object, Creating ndarrays–Creating ndarrays, Data Types for ndarrays–Data Types for ndarrays, Operations between Arrays and Scalars–Operations between Arrays and Scalars, Basic Indexing and Slicing–Indexing with slices, Basic Indexing and Slicing–Indexing with slices, Boolean Indexing–Boolean Indexing, Fancy Indexing–Fancy Indexing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
Boolean indexing, Boolean Indexing–Boolean Indexing
creating, Creating ndarrays–Creating ndarrays
data types for, Data Types for ndarrays–Data Types for ndarrays
fancy indexing, Fancy Indexing–Fancy Indexing
indexes for, Basic Indexing and Slicing–Indexing with slices
operations between arrays, Operations between Arrays and Scalars–Operations between Arrays and Scalars
slicing arrays, Basic Indexing and Slicing–Indexing with slices
swapping axes in, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
transposing, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
numpy-discussion (mailing list), Community and Conferences
performance of, Performance Tips–Other Speed Options: Cython, f2py, C, The Importance of Contiguous Memory–The Importance of Contiguous Memory, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
contiguous memory, The Importance of Contiguous Memory–The Importance of Contiguous Memory
Cython project, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
random number generation, Random Number Generation–Random Number Generation
random walks example, Example: Random Walks–Simulating Many Random Walks at Once
sorting, More About Sorting–numpy.searchsorted: Finding elements in a Sorted Array, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort, Alternate Sort Algorithms–Alternate Sort Algorithms, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array
algorithms for, Alternate Sort Algorithms–Alternate Sort Algorithms
finding elements in sorted array, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array
indirect sorts, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort
structured arrays in, Structured and Record Arrays–Structured Array Manipulations: numpy.lib.recfunctions, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields, Why Use Structured Arrays?–Why Use Structured Arrays?, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
benefits of, Why Use Structured Arrays?–Why Use Structured Arrays?
mainpulating, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
nested data types, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields
universal functions for, Universal Functions: Fast Element-wise Array Functions–Universal Functions: Fast Element-wise Array Functions, Function application and mapping–Function application and mapping, Advanced ufunc Usage–Custom ufuncs, ufunc Instance Methods–ufunc Instance Methods, Custom ufuncs–Custom ufuncs
custom, Custom ufuncs–Custom ufuncs
in pandas, Function application and mapping–Function application and mapping
instance methods for, ufunc Instance Methods–ufunc Instance Methods
O
object introspection, Introspection–Introspection
object model, Everything is an object–Everything is an object
object type, Data Types for ndarrays
objectify function, XML and HTML: Web Scraping, Parsing XML with lxml.objectify
objs argument, Concatenating Along an Axis
offsets for time series data, Shifting dates with offsets–Shifting dates with offsets
OHLC (Open-High-Low-Close) resampling, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling
ols function, Rolling Correlation and Linear Regression
Olson database, Time Zone Handling
on argument, Database-style DataFrame Merges
ones function, Creating ndarrays
open function, Files and the operating system
Open-High-Low-Close (OHLC) resampling, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling
operators in Python, Binary operators and comparisons–Binary operators and comparisons
or keyword, if, elif, and else
order method, Indirect Sorts: argsort and lexsort
OS X, setting up Python on, Apple OS X–Apple OS X
outer method, ufunc Instance Methods, ufunc Instance Methods, ufunc Instance Methods
outliers, filtering, Detecting and Filtering Outliers–Detecting and Filtering Outliers
output variables, Input and Output Variables–Input and Output Variables
P
pad method, Vectorized string functions in pandas
pairs plot, Scatter Plots
pandas, pandas–pandas, Counting Time Zones with pandas–Counting Time Zones with pandas, Introduction to pandas Data Structures–Index Objects, Series–Series, DataFrame–DataFrame, Index Objects–Index Objects, Reindexing–Reindexing, Dropping entries from an axis–Dropping entries from an axis, Indexing, selection, and filtering–Indexing, selection, and filtering, Indexing, selection, and filtering–Indexing, selection, and filtering, Indexing, selection, and filtering–Indexing, selection, and filtering, Arithmetic and data alignment–Operations between DataFrame and Series, Arithmetic methods with fill values–Arithmetic methods with fill values, Operations between DataFrame and Series–Operations between DataFrame and Series, Function application and mapping–Function application and mapping, Sorting and ranking–Sorting and ranking, Sorting and ranking–Sorting and ranking, Axis indexes with duplicate values–Axis indexes with duplicate values, Summarizing and Computing Descriptive Statistics–Unique Values, Value Counts, and Membership, Correlation and Covariance–Correlation and Covariance, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Handling Missing Data–Filling in Missing Data, Filtering Out Missing Data–Filtering Out Missing Data, Filling in Missing Data–Filling in Missing Data, Hierarchical Indexing–Using a DataFrame’s Columns, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Using a DataFrame’s Columns–Using a DataFrame’s Columns, Integer Indexing–Integer Indexing, Panel Data–Panel Data, Plotting Functions in pandas, Line Plots–Line Plots, Bar Plots–Bar Plots, Histograms and Density Plots–Histograms and Density Plots, Histograms and Density Plots–Histograms and Density Plots, Scatter Plots–Scatter Plots
arithmetic and data alignment, Arithmetic and data alignment–Operations between DataFrame and Series, Arithmetic methods with fill values–Arithmetic methods with fill values, Operations between DataFrame and Series–Operations between DataFrame and Series
arithmetic methods with fill values, Arithmetic methods with fill values–Arithmetic methods with fill values
operations between DataFrame and Series, Operations between DataFrame and Series–Operations between DataFrame and Series
data structures for, Introduction to pandas Data Structures–Index Objects, Series–Series, DataFrame–DataFrame, Index Objects–Index Objects, Panel Data–Panel Data
DataFrame, DataFrame–DataFrame
Index objects, Index Objects–Index Objects
Panel, Panel Data–Panel Data
Series, Series–Series
drop function, Dropping entries from an axis–Dropping entries from an axis
filtering in, Indexing, selection, and filtering–Indexing, selection, and filtering
handling missing data, Handling Missing Data–Filling in Missing Data, Filtering Out Missing Data–Filtering Out Missing Data, Filling in Missing Data–Filling in Missing Data
filling in, Filling in Missing Data–Filling in Missing Data
filtering out, Filtering Out Missing Data–Filtering Out Missing Data
hierarchical indexing in, Hierarchical Indexing–Using a DataFrame’s Columns, Reordering and Sorting Levels–Reordering and Sorting Levels, Summary Statistics by Level–Summary Statistics by Level, Using a DataFrame’s Columns–Using a DataFrame’s Columns
sorting levels, Reordering and Sorting Levels–Reordering and Sorting Levels
summary statistics by level, Summary Statistics by Level–Summary Statistics by Level
with DataFrame columns, Using a DataFrame’s Columns–Using a DataFrame’s Columns
indexes in, Axis indexes with duplicate values–Axis indexes with duplicate values
indexing options, Indexing, selection, and filtering–Indexing, selection, and filtering
integer indexing, Integer Indexing–Integer Indexing
NumPy universal functions with, Function application and mapping–Function application and mapping
plotting with, Plotting Functions in pandas, Line Plots–Line Plots, Bar Plots–Bar Plots, Histograms and Density Plots–Histograms and Density Plots, Histograms and Density Plots–Histograms and Density Plots, Scatter Plots–Scatter Plots
bar plots, Bar Plots–Bar Plots
density plots, Histograms and Density Plots–Histograms and Density Plots
histograms, Histograms and Density Plots–Histograms and Density Plots
line plots, Line Plots–Line Plots
scatter plots, Scatter Plots–Scatter Plots
ranking data in, Sorting and ranking–Sorting and ranking
reductions in, Summarizing and Computing Descriptive Statistics–Unique Values, Value Counts, and Membership
reindex function, Reindexing–Reindexing
selecting in objects, Indexing, selection, and filtering–Indexing, selection, and filtering
sorting in, Sorting and ranking–Sorting and ranking
summary statistics in, Correlation and Covariance–Correlation and Covariance, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
correlation and covariance, Correlation and Covariance–Correlation and Covariance
isin function, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
unique function, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
value_counts function, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
usa.gov data from bit.ly example with, Counting Time Zones with pandas–Counting Time Zones with pandas
Panel data structure, Panel Data–Panel Data
panels, Financial and Economic Data Applications
parse method, Converting between string and datetime
parse_dates argument, Reading and Writing Data in Text Format
partial function, Currying: Partial Argument Application
partial indexing, Hierarchical Indexing
passing by reference, Variables and pass-by-reference
pasting, Keyboard Shortcuts, Magic Commands
keyboard shortcut for, Keyboard Shortcuts
magic command for, Magic Commands
patches, Annotations and Drawing on a Subplot
path argument, Reading and Writing Data in Text Format
Path variable, Windows, Windows
pct_change method, Summarizing and Computing Descriptive Statistics
pdb debugger, Software Development Tools, Interactive Debugger
.pdf files, Saving Plots to File, Saving Plots to File
percentileofscore function, User-Defined Moving Window Functions
Pérez, Fernando, IPython: An Interactive Computing and Development Environment, Plotting and Visualization
performance, Performance and Memory Usage Notes–Performance and Memory Usage Notes, Performance Tips–Other Speed Options: Cython, f2py, C, The Importance of Contiguous Memory–The Importance of Contiguous Memory, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
and time series data, Performance and Memory Usage Notes–Performance and Memory Usage Notes
of NumPy, Performance Tips–Other Speed Options: Cython, f2py, C, The Importance of Contiguous Memory–The Importance of Contiguous Memory, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
contiguous memory, The Importance of Contiguous Memory–The Importance of Contiguous Memory
Cython project, Other Speed Options: Cython, f2py, C–Other Speed Options: Cython, f2py, C
Period class, Periods and Period Arithmetic
PeriodIndex Index object, Index Objects, Converting Timestamps to Periods (and Back), Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays, Creating a PeriodIndex from Arrays
periods, Time Series, Periods and Period Arithmetic–Creating a PeriodIndex from Arrays, Periods and Period Arithmetic, Period Frequency Conversion–Period Frequency Conversion, Quarterly Period Frequencies–Quarterly Period Frequencies, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back), Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays, Resampling with Periods–Resampling with Periods, Using periods instead of timestamps–Using periods instead of timestamps
converting timestamps to, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back)
creating PeriodIndex from arrays, Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays
defined, Time Series, Periods and Period Arithmetic
frequency conversion for, Period Frequency Conversion–Period Frequency Conversion
instead of timestamps, Using periods instead of timestamps–Using periods instead of timestamps
quarterly periods, Quarterly Period Frequencies–Quarterly Period Frequencies
resampling with, Resampling with Periods–Resampling with Periods
period_range function, Periods and Period Arithmetic, Quarterly Period Frequencies
permutation, Permutation and Random Sampling–Permutation and Random Sampling
pickle serialization, Parsing XML with lxml.objectify
pinv function, Linear Algebra
pivoting data, MovieLens 1M Data Set, Reshaping and Pivoting, Pivoting “long” to “wide” Format–Pivoting “long” to “wide” Format, Pivot Tables and Cross-Tabulation–Cross-Tabulations: Crosstab, Cross-Tabulations: Crosstab–Cross-Tabulations: Crosstab
cross-tabulation, Cross-Tabulations: Crosstab–Cross-Tabulations: Crosstab
defined, Reshaping and Pivoting
pivot method, Pivoting “long” to “wide” Format–Pivoting “long” to “wide” Format
pivot_table method, MovieLens 1M Data Set, Pivot Tables and Cross-Tabulation–Cross-Tabulations: Crosstab
pivot_table aggregation type, Pivot Tables and Cross-Tabulation
plot method, Counting Time Zones with pandas, Analyzing Naming Trends, The “Last letter” Revolution, A Brief matplotlib API Primer, Colors, Markers, and Line Styles, Colors, Markers, and Line Styles, Line Plots, Histograms and Density Plots, Plotting Maps: Visualizing Haiti Earthquake Crisis Data, Time Series Plotting
plotting, A Brief matplotlib API Primer–matplotlib Configuration, Figures and Subplots–Adjusting the spacing around subplots, Colors, Markers, and Line Styles–Colors, Markers, and Line Styles, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Adding legends–Adding legends, Annotations and Drawing on a Subplot–Annotations and Drawing on a Subplot, Saving Plots to File–Saving Plots to File, matplotlib Configuration–matplotlib Configuration, Plotting Functions in pandas, Line Plots–Line Plots, Bar Plots–Bar Plots, Histograms and Density Plots–Histograms and Density Plots, Histograms and Density Plots–Histograms and Density Plots, Scatter Plots–Scatter Plots, Plotting Maps: Visualizing Haiti Earthquake Crisis Data–Plotting Maps: Visualizing Haiti Earthquake Crisis Data, Time Series Plotting–Time Series Plotting
Haiti earthquake crisis data example, Plotting Maps: Visualizing Haiti Earthquake Crisis Data–Plotting Maps: Visualizing Haiti Earthquake Crisis Data
time series data, Time Series Plotting–Time Series Plotting
with matplotlib, A Brief matplotlib API Primer–matplotlib Configuration, Figures and Subplots–Adjusting the spacing around subplots, Colors, Markers, and Line Styles–Colors, Markers, and Line Styles, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels, Adding legends–Adding legends, Annotations and Drawing on a Subplot–Annotations and Drawing on a Subplot, Saving Plots to File–Saving Plots to File, matplotlib Configuration–matplotlib Configuration
annotating in, Annotations and Drawing on a Subplot–Annotations and Drawing on a Subplot
axis labels in, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
configuring, matplotlib Configuration–matplotlib Configuration
legends in, Adding legends–Adding legends
saving to file, Saving Plots to File–Saving Plots to File
styling for, Colors, Markers, and Line Styles–Colors, Markers, and Line Styles
subplots in, Figures and Subplots–Adjusting the spacing around subplots
ticks in, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
title in, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
with pandas, Plotting Functions in pandas, Line Plots–Line Plots, Bar Plots–Bar Plots, Histograms and Density Plots–Histograms and Density Plots, Histograms and Density Plots–Histograms and Density Plots, Scatter Plots–Scatter Plots
bar plots, Bar Plots–Bar Plots
density plots, Histograms and Density Plots–Histograms and Density Plots
histograms, Histograms and Density Plots–Histograms and Density Plots
line plots, Line Plots–Line Plots
scatter plots, Scatter Plots–Scatter Plots
.png files, Saving Plots to File
pop method, Adding and removing elements, Dict
positional arguments, Function and object method calls
power function, Universal Functions: Fast Element-wise Array Functions
pprint module, Making Your Own Classes IPython-friendly
pretty printing, IPython Basics, Magic Commands
and displaying through pager, Magic Commands
defined, IPython Basics
private attributes, Tab Completion
private methods, Tab Completion
prod method, Data Aggregation
profiles, Profiles and Configuration–Profiles and Configuration, Profiles and Configuration
defined, Profiles and Configuration
for IPython, Profiles and Configuration–Profiles and Configuration
profile_default directory, Profiles and Configuration
profiling code, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p
in IPython, Basic Profiling: %prun and %run -p–Basic Profiling: %prun and %run -p
pseudocode, Jargon
put function, Fancy Indexing Equivalents: Take and Put
put method, Fancy Indexing Equivalents: Take and Put
.py files, Executing Code from the Clipboard, The Python Interpreter, Imports, Imports
pydata (Google group), Community and Conferences
pylab mode, A Brief matplotlib API Primer
pymongo driver, Interacting with Databases
pyplot module, A Brief matplotlib API Primer
pystatsmodels (mailing list), Community and Conferences
Python, Why Python for Data Analysis?–Why Not Python?, Python as Glue–Python as Glue, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem, Essential Python Libraries–SciPy, NumPy–NumPy, pandas–pandas, matplotlib–matplotlib, IPython–IPython, SciPy–SciPy, Installation and Setup–Integrated Development Environments (IDEs), Windows–Windows, Apple OS X–Apple OS X, GNU/Linux–GNU/Linux, Python 2 and Python 3–Python 2 and Python 3, Integrated Development Environments (IDEs)–Integrated Development Environments (IDEs), The Python Interpreter, Language Semantics–Mutable and immutable objects, Indentation, not braces–Indentation, not braces, Everything is an object–Everything is an object, Comments–Comments, Function and object method calls–Function and object method calls, Function and object method calls–Function and object method calls, Variables and pass-by-reference–Variables and pass-by-reference, Variables and pass-by-reference–Variables and pass-by-reference, Dynamic references, strong types–Dynamic references, strong types, Attributes and methods–Attributes and methods, “Duck” typing–“Duck” typing, Imports–Imports, Binary operators and comparisons–Binary operators and comparisons, Strictness versus laziness–Strictness versus laziness, Mutable and immutable objects–Mutable and immutable objects, Scalar Types–Dates and times, Numeric types–Numeric types, Strings–Strings, Booleans–Booleans, Type casting–Type casting, None–None, Dates and times–Dates and times, Control Flow–Ternary Expressions, if, elif, and else–if, elif, and else, for loops–for loops, while loops–while loops, pass–pass, Exception handling–Exception handling, range and xrange–range and xrange, range and xrange–range and xrange, Ternary Expressions–Ternary Expressions, Tuple–Tuple methods, Unpacking tuples–Unpacking tuples, Tuple methods–Tuple methods, List–Slicing, Adding and removing elements–Adding and removing elements, Adding and removing elements–Adding and removing elements, Concatenating and combining lists–Concatenating and combining lists, Sorting–Sorting, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list, Slicing–Slicing, Built-in Sequence Functions–reversed, enumerate–enumerate, sorted–sorted, zip–zip, reversed–reversed, Dict–Valid dict key types, Creating dicts from sequences–Creating dicts from sequences, Default values–Default values, Valid dict key types–Valid dict key types, Set–Set, List, Set, and Dict Comprehensions–Nested list comprehensions, List, Set, and Dict Comprehensions–Nested list comprehensions, List, Set, and Dict Comprehensions–Nested list comprehensions, Functions–itertools module, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Returning Multiple Values–Returning Multiple Values, Functions Are Objects–Functions Are Objects, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Closures: Functions that Return Functions–Closures: Functions that Return Functions, Extended Call Syntax with *args, **kwargs–Extended Call Syntax with *args, **kwargs, Currying: Partial Argument Application–Currying: Partial Argument Application, Generators–itertools module, Generator expresssions–Generator expresssions, itertools module–itertools module, Files and the operating system–Files and the operating system
benefits of using, Why Python for Data Analysis?–Why Not Python?, Python as Glue–Python as Glue, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem
glue for code, Python as Glue–Python as Glue
solving "two-language" problem with, Solving the “Two-Language” Problem–Solving the “Two-Language” Problem
data types for, Scalar Types–Dates and times, Numeric types–Numeric types, Strings–Strings, Booleans–Booleans, Type casting–Type casting, None–None, Dates and times–Dates and times
boolean data type, Booleans–Booleans
dates and times, Dates and times–Dates and times
None data type, None–None
numeric data types, Numeric types–Numeric types
str data type, Strings–Strings
type casting in, Type casting–Type casting
dict comprehensions in, List, Set, and Dict Comprehensions–Nested list comprehensions
dicts in, Dict–Valid dict key types, Creating dicts from sequences–Creating dicts from sequences, Default values–Default values, Valid dict key types–Valid dict key types
creating, Creating dicts from sequences–Creating dicts from sequences
default values for, Default values–Default values
keys for, Valid dict key types–Valid dict key types
file input/output in, Files and the operating system–Files and the operating system
flow control in, Control Flow–Ternary Expressions, if, elif, and else–if, elif, and else, for loops–for loops, while loops–while loops, pass–pass, Exception handling–Exception handling, range and xrange–range and xrange, range and xrange–range and xrange, Ternary Expressions–Ternary Expressions
exception handling, Exception handling–Exception handling
for loops, for loops–for loops
if statements, if, elif, and else–if, elif, and else
pass statements, pass–pass
range function, range and xrange–range and xrange
ternary expressions, Ternary Expressions–Ternary Expressions
while loops, while loops–while loops
xrange function, range and xrange–range and xrange
functions in, Functions–itertools module, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions, Returning Multiple Values–Returning Multiple Values, Functions Are Objects–Functions Are Objects, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions, Closures: Functions that Return Functions–Closures: Functions that Return Functions, Extended Call Syntax with *args, **kwargs–Extended Call Syntax with *args, **kwargs, Currying: Partial Argument Application–Currying: Partial Argument Application
anonymous functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions
are objects, Functions Are Objects–Functions Are Objects
closures, Closures: Functions that Return Functions–Closures: Functions that Return Functions
currying of, Currying: Partial Argument Application–Currying: Partial Argument Application
extended call syntax for, Extended Call Syntax with *args, **kwargs–Extended Call Syntax with *args, **kwargs
lambda functions, Anonymous (lambda) Functions–Anonymous (lambda) Functions
namespaces for, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions
returning multiple values from, Returning Multiple Values–Returning Multiple Values
scope of, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions
generators in, Generators–itertools module, Generator expresssions–Generator expresssions, itertools module–itertools module
generator expressions, Generator expresssions–Generator expresssions
itertools module for, itertools module–itertools module
IDEs for, Integrated Development Environments (IDEs)–Integrated Development Environments (IDEs)
interpreter for, The Python Interpreter
list comprehensions in, List, Set, and Dict Comprehensions–Nested list comprehensions
lists in, List–Slicing, Adding and removing elements–Adding and removing elements, Adding and removing elements–Adding and removing elements, Concatenating and combining lists–Concatenating and combining lists, Sorting–Sorting, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list, Slicing–Slicing
adding elements to, Adding and removing elements–Adding and removing elements
binary search of, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list
combining, Concatenating and combining lists–Concatenating and combining lists
insertion into sorted, Binary search and maintaining a sorted list–Binary search and maintaining a sorted list
removing elements from, Adding and removing elements–Adding and removing elements
slicing, Slicing–Slicing
sorting, Sorting–Sorting
Python 2 vs. Python 3, Python 2 and Python 3–Python 2 and Python 3
required libraries, Essential Python Libraries–SciPy, NumPy–NumPy, pandas–pandas, matplotlib–matplotlib, IPython–IPython, SciPy–SciPy
IPython, IPython–IPython
matplotlib, matplotlib–matplotlib
NumPy, NumPy–NumPy
pandas, pandas–pandas
SciPy, SciPy–SciPy
semantics of, Language Semantics–Mutable and immutable objects, Indentation, not braces–Indentation, not braces, Everything is an object–Everything is an object, Comments–Comments, Function and object method calls–Function and object method calls, Function and object method calls–Function and object method calls, Variables and pass-by-reference–Variables and pass-by-reference, Variables and pass-by-reference–Variables and pass-by-reference, Dynamic references, strong types–Dynamic references, strong types, Attributes and methods–Attributes and methods, “Duck” typing–“Duck” typing, Imports–Imports, Binary operators and comparisons–Binary operators and comparisons, Strictness versus laziness–Strictness versus laziness, Mutable and immutable objects–Mutable and immutable objects
attributes in, Attributes and methods–Attributes and methods
comments in, Comments–Comments
functions in, Function and object method calls–Function and object method calls
import directive, Imports–Imports
indentation, Indentation, not braces–Indentation, not braces
methods in, Function and object method calls–Function and object method calls
mutable objects in, Mutable and immutable objects–Mutable and immutable objects
object model, Everything is an object–Everything is an object
operators for, Binary operators and comparisons–Binary operators and comparisons
references in, Variables and pass-by-reference–Variables and pass-by-reference
strict evaluation, Strictness versus laziness–Strictness versus laziness
strongly-typed language, Dynamic references, strong types–Dynamic references, strong types
variables in, Variables and pass-by-reference–Variables and pass-by-reference
“duck” typing, “Duck” typing–“Duck” typing
sequence functions in, Built-in Sequence Functions–reversed, enumerate–enumerate, sorted–sorted, zip–zip, reversed–reversed
enumerate function, enumerate–enumerate
reversed function, reversed–reversed
sorted function, sorted–sorted
zip function, zip–zip
set comprehensions in, List, Set, and Dict Comprehensions–Nested list comprehensions
sets in, Set–Set
setting up, Installation and Setup–Integrated Development Environments (IDEs), Windows–Windows, Apple OS X–Apple OS X, GNU/Linux–GNU/Linux
on Linux, GNU/Linux–GNU/Linux
on OS X, Apple OS X–Apple OS X
on Windows, Windows–Windows
tuples in, Tuple–Tuple methods, Unpacking tuples–Unpacking tuples, Tuple methods–Tuple methods
methods for, Tuple methods–Tuple methods
unpacking, Unpacking tuples–Unpacking tuples
pytz library, Time Zone Handling, Time Zone Handling, Time Zone Handling
Q
qcut method, Discretization and Binning, Discretization and Binning, Discretization and Binning, Quantile and Bucket Analysis, Quantile and Bucket Analysis, Decile and Quartile Analysis
qr function, Linear Algebra
Qt console for IPython, Qt-based Rich GUI Console–Qt-based Rich GUI Console
quantile analysis, Quantile and Bucket Analysis–Quantile and Bucket Analysis
quarterly periods, Quarterly Period Frequencies–Quarterly Period Frequencies
quartile analysis, Decile and Quartile Analysis–Decile and Quartile Analysis
question mark (?), Introspection, Introspection
quicksort sorting method, Alternate Sort Algorithms
quotechar option, Manually Working with Delimited Formats
quoting option, Manually Working with Delimited Formats
R
r file mode, Files and the operating system
r+ file mode, Files and the operating system
Ramachandran, Prabhu, mayavi
rand function, Random Number Generation
randint function, Random Number Generation, Permutation and Random Sampling
randn function, Boolean Indexing, Random Number Generation
random number generation, Random Number Generation–Random Number Generation
random sampling with grouping, Example: Random Sampling and Permutation–Example: Random Sampling and Permutation
random walks example, Example: Random Walks–Simulating Many Random Walks at Once
range function, Creating ndarrays, range and xrange–range and xrange
ranking data, Sorting and ranking–Sorting and ranking, Sorting and ranking
defined, Sorting and ranking
in pandas, Sorting and ranking–Sorting and ranking
ravel method, Reshaping Arrays, Reshaping Arrays, C versus Fortran Order
rc method, matplotlib Configuration, matplotlib Configuration
re module, Regular expressions, Regular expressions
read method, Files and the operating system
read-only mode, Files and the operating system
reading, Reading Text Files in Pieces–Reading Text Files in Pieces, Interacting with Databases–Storing and Loading Data in MongoDB
from databases, Interacting with Databases–Storing and Loading Data in MongoDB
from text files in pieces, Reading Text Files in Pieces–Reading Text Files in Pieces
readline functionality, Searching and Reusing the Command History
readlines method, Files and the operating system, Files and the operating system
readshapefile method, Plotting Maps: Visualizing Haiti Earthquake Crisis Data
read_clipboard function, Reading and Writing Data in Text Format
read_csv function, Saving and Loading Text Files, Reading and Writing Data in Text Format, Reading and Writing Data in Text Format, Reading Text Files in Pieces, Writing Data Out to Text Format, Data Aggregation, Files and the operating system
read_frame function, Interacting with Databases
read_fwf function, Reading and Writing Data in Text Format
read_table function, Saving and Loading Text Files, Reading and Writing Data in Text Format, Reading and Writing Data in Text Format, Reading and Writing Data in Text Format, Reading and Writing Data in Text Format, Reading and Writing Data in Text Format, Manually Working with Delimited Formats, Manually Working with Delimited Formats
recfunctions module, Structured Array Manipulations: numpy.lib.recfunctions
reduce method, ufunc Instance Methods, ufunc Instance Methods
reduceat method, ufunc Instance Methods
reductions, Summarizing and Computing Descriptive Statistics–Unique Values, Value Counts, and Membership, Summarizing and Computing Descriptive Statistics, Summarizing and Computing Descriptive Statistics
(see also aggregations)
defined, Summarizing and Computing Descriptive Statistics
in pandas, Summarizing and Computing Descriptive Statistics–Unique Values, Value Counts, and Membership
references, Variables and pass-by-reference–Variables and pass-by-reference, Variables and pass-by-reference, Dynamic references, strong types
defined, Variables and pass-by-reference, Dynamic references, strong types
in Python, Variables and pass-by-reference–Variables and pass-by-reference
regress function, Example: Group-wise Linear Regression
regular expressions (regex), Regular expressions–Regular expressions, Regular expressions
defined, Regular expressions
manipulating strings with, Regular expressions–Regular expressions
reindex method, Reindexing–Reindexing, Upsampling and Interpolation, Operations with Time Series of Different Frequencies
reload function, Reloading Module Dependencies, Reloading Module Dependencies
remove method, Adding and removing elements, Set
rename method, Renaming Axis Indexes, Renaming Axis Indexes
renaming axis indexes, Renaming Axis Indexes–Renaming Axis Indexes
repeat method, Vectorized string functions in pandas, Repeating Elements: Tile and Repeat, Repeating Elements: Tile and Repeat
replace method, Replacing Values, String Object Methods, Vectorized string functions in pandas
replicating arrays, Repeating Elements: Tile and Repeat–Repeating Elements: Tile and Repeat
resampling, Resampling and Frequency Conversion–Resampling with Periods, Resampling and Frequency Conversion, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling, Resampling with GroupBy–Resampling with GroupBy, Upsampling and Interpolation–Upsampling and Interpolation, Resampling with Periods–Resampling with Periods, Operations with Time Series of Different Frequencies, Operations with Time Series of Different Frequencies
defined, Resampling and Frequency Conversion
OHLC (Open-High-Low-Close) resampling, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling
upsampling, Upsampling and Interpolation–Upsampling and Interpolation
with groupby method, Resampling with GroupBy–Resampling with GroupBy
with periods, Resampling with Periods–Resampling with Periods
reset_index function, Using a DataFrame’s Columns
reshape method, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing, Reshaping Arrays, Broadcasting Over Other Axes
reshaping, Reshaping and Pivoting, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing, Reshaping Arrays–Reshaping Arrays
arrays, Reshaping Arrays–Reshaping Arrays
defined, Reshaping and Pivoting
with hierarchical indexing, Reshaping with Hierarchical Indexing–Reshaping with Hierarchical Indexing
resources, Community and Conferences–Community and Conferences
return statements, Functions, Functions, Functions
returns, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns, Return Indexes and Cumulative Returns
cumulative returns, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns
defined, Return Indexes and Cumulative Returns
return indexes, Return Indexes and Cumulative Returns–Return Indexes and Cumulative Returns
reversed function, reversed–reversed, reversed
rfind method, String Object Methods
right argument, Database-style DataFrame Merges
right_index argument, Database-style DataFrame Merges
right_on argument, Database-style DataFrame Merges
rint function, Universal Functions: Fast Element-wise Array Functions
rjust method, String Object Methods
rollback method, Shifting dates with offsets
rollforward method, Shifting dates with offsets
rolling, Future Contract Rolling
rolling correlation, Rolling Correlation and Linear Regression–Rolling Correlation and Linear Regression
rolling_apply function, Moving Window Functions, User-Defined Moving Window Functions
rolling_corr function, Moving Window Functions, Rolling Correlation and Linear Regression
rolling_count function, Moving Window Functions
rolling_cov function, Moving Window Functions
rolling_kurt function, Moving Window Functions
rolling_mean function, Moving Window Functions, Moving Window Functions, Moving Window Functions, Moving Window Functions
rolling_median function, Moving Window Functions
rolling_min function, Moving Window Functions
rolling_mint function, Moving Window Functions
rolling_quantile function, Moving Window Functions, User-Defined Moving Window Functions
rolling_skew function, Moving Window Functions
rolling_std function, Moving Window Functions
rolling_sum function, Moving Window Functions
rolling_var function, Moving Window Functions
rot argument, Line Plots
rows option, Pivot Tables and Cross-Tabulation
row_stack function, Concatenating and Splitting Arrays, Concatenating and Splitting Arrays
rstrip method, String Object Methods, Vectorized string functions in pandas
r_ object, Stacking helpers: r_ and c_–Stacking helpers: r_ and c_
S
save function, Storing Arrays on Disk in Binary Format, Advanced Array Input and Output
save method, Binary Data Formats, Storing and Loading Data in MongoDB
savefig method, Saving Plots to File, Saving Plots to File, Saving Plots to File
savez function, Storing Arrays on Disk in Binary Format
saving text files, Saving and Loading Text Files–Saving and Loading Text Files
scatter method, Scatter Plots
scatter plots, Scatter Plots–Scatter Plots
scatter_matrix function, Scatter Plots
Scientific Python base, Installation and Setup
scipy-user (mailing list), Community and Conferences
scope, Namespaces, Scope, and Local Functions–Namespaces, Scope, and Local Functions
screen, clearing, Keyboard Shortcuts
scripting languages, Why Python for Data Analysis?
scripts, Why Python for Data Analysis?
search method, Regular expressions, Regular expressions, Regular expressions, Regular expressions
searchsorted method, numpy.searchsorted: Finding elements in a Sorted Array, numpy.searchsorted: Finding elements in a Sorted Array, numpy.searchsorted: Finding elements in a Sorted Array
seed function, Random Number Generation
seek method, Files and the operating system
semantics, Language Semantics–Mutable and immutable objects, Indentation, not braces–Indentation, not braces, Everything is an object–Everything is an object, Comments–Comments, Function and object method calls–Function and object method calls, Function and object method calls–Function and object method calls, Variables and pass-by-reference–Variables and pass-by-reference, Variables and pass-by-reference–Variables and pass-by-reference, Dynamic references, strong types–Dynamic references, strong types, Attributes and methods–Attributes and methods, “Duck” typing–“Duck” typing, Imports–Imports, Binary operators and comparisons–Binary operators and comparisons, Strictness versus laziness–Strictness versus laziness, Mutable and immutable objects–Mutable and immutable objects
attributes in, Attributes and methods–Attributes and methods
comments in, Comments–Comments
“duck” typing, “Duck” typing–“Duck” typing
functions in, Function and object method calls–Function and object method calls
import directive, Imports–Imports
indentation, Indentation, not braces–Indentation, not braces
methods in, Function and object method calls–Function and object method calls
mutable objects in, Mutable and immutable objects–Mutable and immutable objects
object model, Everything is an object–Everything is an object
operators for, Binary operators and comparisons–Binary operators and comparisons
references in, Variables and pass-by-reference–Variables and pass-by-reference
strict evaluation, Strictness versus laziness–Strictness versus laziness
strongly-typed language, Dynamic references, strong types–Dynamic references, strong types
variables in, Variables and pass-by-reference–Variables and pass-by-reference
semicolons, Indentation, not braces
sentinels, Handling Missing Data, Reading and Writing Data in Text Format
sep argument, Reading and Writing Data in Text Format
sequence functions, Built-in Sequence Functions–reversed, enumerate–enumerate, sorted–sorted, zip–zip, reversed–reversed
enumerate function, enumerate–enumerate
reversed function, reversed–reversed
sorted function, sorted–sorted
zip function, zip–zip
Series data structure, Introduction to pandas Data Structures, Series–Series, Operations between DataFrame and Series–Operations between DataFrame and Series, Grouping with Dicts and Series–Grouping with Dicts and Series
arithmetic operations between DataFrame and, Operations between DataFrame and Series–Operations between DataFrame and Series
grouping with, Grouping with Dicts and Series–Grouping with Dicts and Series
set comprehensions, List, Set, and Dict Comprehensions–Nested list comprehensions
set function, Set
setattr function, Attributes and methods
setdefault method, Default values
setdiff1d method, Unique and Other Set Logic
sets/set comprehensions, Set–Set
setxor1d method, Unique and Other Set Logic
set_index function, Using a DataFrame’s Columns, Using a DataFrame’s Columns
set_index method, Pivoting “long” to “wide” Format
set_title method, Setting the title, axis labels, ticks, and ticklabels
set_trace function, Other ways to make use of the debugger, Other ways to make use of the debugger, Other ways to make use of the debugger
set_value method, Indexing, selection, and filtering
set_xlabel method, Setting the title, axis labels, ticks, and ticklabels
set_xlim method, Ticks, Labels, and Legends
set_xticklabels method, Setting the title, axis labels, ticks, and ticklabels
set_xticks method, Setting the title, axis labels, ticks, and ticklabels
shapefiles, Plotting Maps: Visualizing Haiti Earthquake Crisis Data
shapes, The NumPy ndarray: A Multidimensional Array Object, ndarray Object Internals
sharex option, Figures and Subplots, Line Plots
sharey option, Figures and Subplots, Line Plots
shell commands in IPython, Shell Commands and Aliases–Shell Commands and Aliases
shifting in time series data, Shifting (Leading and Lagging) Data–Shifting dates with offsets
shortcuts, keyboard, Keyboard Shortcuts–Keyboard Shortcuts, Keyboard Shortcuts, Keyboard Shortcuts, Keyboard Shortcuts
for deleting text, Keyboard Shortcuts
for IPython, Keyboard Shortcuts–Keyboard Shortcuts
shuffle function, Random Number Generation
sign function, Universal Functions: Fast Element-wise Array Functions, Detecting and Filtering Outliers
signal frontier analysis, Signal Frontier Analysis–Signal Frontier Analysis
sin function, Universal Functions: Fast Element-wise Array Functions
sinh function, Universal Functions: Fast Element-wise Array Functions
size method, GroupBy Mechanics
skew method, Summarizing and Computing Descriptive Statistics
skipinitialspace option, Manually Working with Delimited Formats
skipna method, Summarizing and Computing Descriptive Statistics
skipna option, Summarizing and Computing Descriptive Statistics
skiprows argument, Reading and Writing Data in Text Format
skip_footer argument, Reading and Writing Data in Text Format
slice method, Vectorized string functions in pandas
slicing, Basic Indexing and Slicing–Indexing with slices, Slicing–Slicing
arrays, Basic Indexing and Slicing–Indexing with slices
lists, Slicing–Slicing
Social Security Administration (SSA), US Baby Names 1880-2010
solve function, Linear Algebra
sort argument, Database-style DataFrame Merges
sort method, Sorting, More About Sorting, More About Sorting, Sorting, Anonymous (lambda) Functions
sorted function, sorted–sorted, sorted, sorted
sorting, Sorting–Sorting, Sorting and ranking–Sorting and ranking, Reordering and Sorting Levels–Reordering and Sorting Levels, More About Sorting–numpy.searchsorted: Finding elements in a Sorted Array, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort, Alternate Sort Algorithms–Alternate Sort Algorithms, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array, Sorting–Sorting
arrays, Sorting–Sorting
finding elements in sorted array, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array
in NumPy, More About Sorting–numpy.searchsorted: Finding elements in a Sorted Array, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort, Alternate Sort Algorithms–Alternate Sort Algorithms, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array
algorithms for, Alternate Sort Algorithms–Alternate Sort Algorithms
finding elements in sorted array, numpy.searchsorted: Finding elements in a Sorted Array–numpy.searchsorted: Finding elements in a Sorted Array
indirect sorts, Indirect Sorts: argsort and lexsort–Indirect Sorts: argsort and lexsort
in pandas, Sorting and ranking–Sorting and ranking
levels, Reordering and Sorting Levels–Reordering and Sorting Levels
lists, Sorting–Sorting
sortlevel function, Reordering and Sorting Levels, Reordering and Sorting Levels
sort_columns argument, Line Plots
sort_index method, Sorting and ranking, Reordering and Sorting Levels, Indirect Sorts: argsort and lexsort
spaces, structuring code with, Indentation, not braces–Indentation, not braces
spacing around subplots, Adjusting the spacing around subplots–Adjusting the spacing around subplots
span, Exponentially-weighted functions
specialized frequencies, Operations with Time Series of Different Frequencies–Using periods instead of timestamps
data munging for, Operations with Time Series of Different Frequencies–Using periods instead of timestamps
split method, Manually Working with Delimited Formats, String Object Methods, Regular expressions, Vectorized string functions in pandas, Concatenating and Splitting Arrays
split-apply-combine, GroupBy Mechanics
splitting arrays, Concatenating and Splitting Arrays–Stacking helpers: r_ and c_
SQL databases, Interacting with Databases
sql module, Interacting with Databases
SQLite databases, Interacting with Databases
sqrt function, Universal Functions: Fast Element-wise Array Functions, Universal Functions: Fast Element-wise Array Functions
square function, Universal Functions: Fast Element-wise Array Functions
squeeze argument, Reading and Writing Data in Text Format
SSA (Social Security Administration), US Baby Names 1880-2010
stable sorting, Alternate Sort Algorithms
stacked format, Pivoting “long” to “wide” Format
startswith method, String Object Methods, Vectorized string functions in pandas, Vectorized string functions in pandas
statistical methods, Mathematical and Statistical Methods–Mathematical and Statistical Methods
std method, Mathematical and Statistical Methods, Summarizing and Computing Descriptive Statistics, Data Aggregation
stdout, Writing Data Out to Text Format
step index, Slicing
strftime method, Converting between string and datetime, Dates and times
strict evaluation/language, Strictness versus laziness–Strictness versus laziness, Strictness versus laziness
strides/strided view, ndarray Object Internals, ndarray Object Internals
strings, Data Types for ndarrays, Data Types for ndarrays, String Manipulation–Vectorized string functions in pandas, String Object Methods–String Object Methods, Regular expressions–Regular expressions, Vectorized string functions in pandas–Vectorized string functions in pandas, Converting between string and datetime–Converting between string and datetime, Strings–Strings
converting to datetime, Converting between string and datetime–Converting between string and datetime
data types for, Data Types for ndarrays, Data Types for ndarrays, Strings–Strings
manipulating, String Manipulation–Vectorized string functions in pandas, String Object Methods–String Object Methods, Regular expressions–Regular expressions, Vectorized string functions in pandas–Vectorized string functions in pandas
methods for, String Object Methods–String Object Methods
vectorized string methods, Vectorized string functions in pandas–Vectorized string functions in pandas
with regular expressions, Regular expressions–Regular expressions
strip method, String Object Methods, Vectorized string functions in pandas, Vectorized string functions in pandas
strongly-typed languages, Dynamic references, strong types–Dynamic references, strong types, Dynamic references, strong types
strptime method, Converting between string and datetime, Dates and times
structs, Structured and Record Arrays
structured arrays, Structured and Record Arrays–Structured Array Manipulations: numpy.lib.recfunctions, Structured and Record Arrays, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields, Why Use Structured Arrays?–Why Use Structured Arrays?, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
benefits of, Why Use Structured Arrays?–Why Use Structured Arrays?
defined, Structured and Record Arrays
mainpulating, Structured Array Manipulations: numpy.lib.recfunctions–Structured Array Manipulations: numpy.lib.recfunctions
nested data types, Nested dtypes and Multidimensional Fields–Nested dtypes and Multidimensional Fields
style argument, Line Plots
styling for matplotlib, Colors, Markers, and Line Styles–Colors, Markers, and Line Styles
sub method, Arithmetic methods with fill values, Regular expressions, Regular expressions
subn method, Regular expressions
subperiod, Resampling with Periods
subplots, Figures and Subplots–Adjusting the spacing around subplots
subplots method, Figures and Subplots
subplots_adjust method, Adjusting the spacing around subplots
subplot_kw option, Figures and Subplots
subsets for arrays, Fancy Indexing Equivalents: Take and Put–Fancy Indexing Equivalents: Take and Put
subtract function, Universal Functions: Fast Element-wise Array Functions
sudo command, GNU/Linux
suffixes argument, Database-style DataFrame Merges
sum method, Mathematical and Statistical Methods, Function application and mapping, Summarizing and Computing Descriptive Statistics, Summarizing and Computing Descriptive Statistics, Data Aggregation, Data Aggregation, Time Series and Cross-Section Alignment, Generators
summary statistics, Summarizing and Computing Descriptive Statistics, Correlation and Covariance–Correlation and Covariance, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Summary Statistics by Level–Summary Statistics by Level
by level, Summary Statistics by Level–Summary Statistics by Level
correlation and covariance, Correlation and Covariance–Correlation and Covariance
isin function, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
unique function, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
value_counts function, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
superperiod, Resampling with Periods
svd function, Linear Algebra
swapaxes method, Transposing Arrays and Swapping Axes
swaplevel function, Reordering and Sorting Levels
swapping axes in arrays, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
symmetric_difference method, Set
syntactic sugar, Jargon
system commands, defining alias for, Interacting with the Operating System
T
tab completion in IPython, Tab Completion–Tab Completion
tabs, structuring code with, Indentation, not braces–Indentation, not braces
take method, Permutation and Random Sampling, Fancy Indexing Equivalents: Take and Put, Fancy Indexing Equivalents: Take and Put
tan function, Universal Functions: Fast Element-wise Array Functions
tanh function, Universal Functions: Fast Element-wise Array Functions
tell method, Files and the operating system
ternary expressions, Ternary Expressions–Ternary Expressions
text editors, integrating with IPython, IPython interaction with editors and IDEs–IPython interaction with editors and IDEs
text files, Saving and Loading Text Files–Saving and Loading Text Files, Reading and Writing Data in Text Format–Parsing XML with lxml.objectify, Reading Text Files in Pieces–Reading Text Files in Pieces, Writing Data Out to Text Format–Writing Data Out to Text Format, Manually Working with Delimited Formats–Manually Working with Delimited Formats, JSON Data–JSON Data, XML and HTML: Web Scraping–Parsing XML with lxml.objectify, XML and HTML: Web Scraping–Parsing XML with lxml.objectify, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify
delimited formats, Manually Working with Delimited Formats–Manually Working with Delimited Formats
HTML files, XML and HTML: Web Scraping–Parsing XML with lxml.objectify
JSON data, JSON Data–JSON Data
lxml library, XML and HTML: Web Scraping–Parsing XML with lxml.objectify
reading in pieces, Reading Text Files in Pieces–Reading Text Files in Pieces
saving and loading, Saving and Loading Text Files–Saving and Loading Text Files
writing to, Writing Data Out to Text Format–Writing Data Out to Text Format
XML files, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify
TextParser class, Reading and Writing Data in Text Format, Reading Text Files in Pieces, XML and HTML: Web Scraping
text_content method, XML and HTML: Web Scraping
thousands argument, Reading and Writing Data in Text Format
thresh argument, Filtering Out Missing Data
ticks, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
tile function, Repeating Elements: Tile and Repeat, Repeating Elements: Tile and Repeat, Repeating Elements: Tile and Repeat
time series data, Date and Time Data Types and Tools–Converting between string and datetime, Converting between string and datetime–Converting between string and datetime, Time Series Basics–Time Series with Duplicate Indices, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting, Time Series with Duplicate Indices–Time Series with Duplicate Indices, Generating Date Ranges–Generating Date Ranges, Frequencies and Date Offsets–Week of month dates, Week of month dates–Week of month dates, Shifting (Leading and Lagging) Data–Shifting dates with offsets, Shifting dates with offsets–Shifting dates with offsets, Time Zone Handling–Operations between Different Time Zones, Localization and Conversion–Localization and Conversion, Operations with Time Zone−aware Timestamp Objects–Operations between Different Time Zones, Periods and Period Arithmetic–Creating a PeriodIndex from Arrays, Period Frequency Conversion–Period Frequency Conversion, Quarterly Period Frequencies–Quarterly Period Frequencies, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back), Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays, Resampling and Frequency Conversion–Resampling with Periods, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling, Resampling with GroupBy–Resampling with GroupBy, Upsampling and Interpolation–Upsampling and Interpolation, Resampling with Periods–Resampling with Periods, Time Series Plotting–Time Series Plotting, Moving Window Functions–User-Defined Moving Window Functions, Exponentially-weighted functions–Exponentially-weighted functions, Binary Moving Window Functions–Binary Moving Window Functions, User-Defined Moving Window Functions–User-Defined Moving Window Functions, Performance and Memory Usage Notes–Performance and Memory Usage Notes
and performance, Performance and Memory Usage Notes–Performance and Memory Usage Notes
data types for, Date and Time Data Types and Tools–Converting between string and datetime, Converting between string and datetime–Converting between string and datetime
converting between string and datetime, Converting between string and datetime–Converting between string and datetime
date ranges, Generating Date Ranges–Generating Date Ranges
frequencies, Frequencies and Date Offsets–Week of month dates, Week of month dates–Week of month dates
week of month dates, Week of month dates–Week of month dates
moving window functions, Moving Window Functions–User-Defined Moving Window Functions, Exponentially-weighted functions–Exponentially-weighted functions, Binary Moving Window Functions–Binary Moving Window Functions, User-Defined Moving Window Functions–User-Defined Moving Window Functions
binary moving window functions, Binary Moving Window Functions–Binary Moving Window Functions
exponentially-weighted functions, Exponentially-weighted functions–Exponentially-weighted functions
user-defined, User-Defined Moving Window Functions–User-Defined Moving Window Functions
periods, Periods and Period Arithmetic–Creating a PeriodIndex from Arrays, Period Frequency Conversion–Period Frequency Conversion, Quarterly Period Frequencies–Quarterly Period Frequencies, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back), Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays
converting timestamps to, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back)
creating PeriodIndex from arrays, Creating a PeriodIndex from Arrays–Creating a PeriodIndex from Arrays
frequency conversion for, Period Frequency Conversion–Period Frequency Conversion
quarterly periods, Quarterly Period Frequencies–Quarterly Period Frequencies
plotting, Time Series Plotting–Time Series Plotting
resampling, Resampling and Frequency Conversion–Resampling with Periods, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling, Resampling with GroupBy–Resampling with GroupBy, Upsampling and Interpolation–Upsampling and Interpolation, Resampling with Periods–Resampling with Periods
OHLC (Open-High-Low-Close) resampling, Open-High-Low-Close (OHLC) resampling–Open-High-Low-Close (OHLC) resampling
upsampling, Upsampling and Interpolation–Upsampling and Interpolation
with groupby method, Resampling with GroupBy–Resampling with GroupBy
with periods, Resampling with Periods–Resampling with Periods
shifting in, Shifting (Leading and Lagging) Data–Shifting dates with offsets, Shifting dates with offsets–Shifting dates with offsets
with offsets, Shifting dates with offsets–Shifting dates with offsets
time zones in, Time Zone Handling–Operations between Different Time Zones, Localization and Conversion–Localization and Conversion, Operations with Time Zone−aware Timestamp Objects–Operations between Different Time Zones
localizing objects, Localization and Conversion–Localization and Conversion
methods for time zone-aware objects, Operations with Time Zone−aware Timestamp Objects–Operations between Different Time Zones
TimeSeries class, Time Series Basics–Time Series with Duplicate Indices, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting, Time Series with Duplicate Indices–Time Series with Duplicate Indices
duplicate indices with, Time Series with Duplicate Indices–Time Series with Duplicate Indices
indexes for, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting
selecting data in, Indexing, Selection, Subsetting–Indexing, Selection, Subsetting
timestamps, Time Series, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back), Using periods instead of timestamps–Using periods instead of timestamps
converting to periods, Converting Timestamps to Periods (and Back)–Converting Timestamps to Periods (and Back)
defined, Time Series
using periods instead of, Using periods instead of timestamps–Using periods instead of timestamps
timing code, Timing Code: %time and %timeit–Timing Code: %time and %timeit
title in matplotlib, Setting the title, axis labels, ticks, and ticklabels–Setting the title, axis labels, ticks, and ticklabels
top method, Apply: General split-apply-combine, Donation Statistics by Occupation and Employer
to_csv method, Writing Data Out to Text Format, Writing Data Out to Text Format, Writing Data Out to Text Format
to_datetime method, Converting between string and datetime
to_panel method, Panel Data
to_period method, Converting Timestamps to Periods (and Back)
trace function, Linear Algebra
tracebacks, Exceptions and Tracebacks–Exceptions and Tracebacks
transform method, Group-wise Operations and Transformations–Apply: General split-apply-combine
transforming data, Data Transformation–Computing Indicator/Dummy Variables, Removing Duplicates–Removing Duplicates, Transforming Data Using a Function or Mapping–Transforming Data Using a Function or Mapping, Replacing Values–Replacing Values, Renaming Axis Indexes–Renaming Axis Indexes, Discretization and Binning–Discretization and Binning, Detecting and Filtering Outliers–Detecting and Filtering Outliers, Permutation and Random Sampling–Permutation and Random Sampling, Computing Indicator/Dummy Variables–Computing Indicator/Dummy Variables
discretization, Discretization and Binning–Discretization and Binning
dummy variables, Computing Indicator/Dummy Variables–Computing Indicator/Dummy Variables
filtering outliers, Detecting and Filtering Outliers–Detecting and Filtering Outliers
mapping, Transforming Data Using a Function or Mapping–Transforming Data Using a Function or Mapping
permutation, Permutation and Random Sampling–Permutation and Random Sampling
removing duplicates, Removing Duplicates–Removing Duplicates
renaming axis indexes, Renaming Axis Indexes–Renaming Axis Indexes
replacing values, Replacing Values–Replacing Values
transpose method, Transposing Arrays and Swapping Axes, Transposing Arrays and Swapping Axes
transposing arrays, Transposing Arrays and Swapping Axes–Transposing Arrays and Swapping Axes
trellis package, Python Visualization Tool Ecosystem
trigonometric functions, Universal Functions: Fast Element-wise Array Functions
truncate method, Indexing, Selection, Subsetting
try/except block, Exception handling, Exception handling
tuples, Tuple–Tuple methods, Unpacking tuples–Unpacking tuples, Tuple methods–Tuple methods
methods for, Tuple methods–Tuple methods
unpacking, Unpacking tuples–Unpacking tuples
type casting, Type casting–Type casting
type command, Reading and Writing Data in Text Format
TypeError event, Data Types for ndarrays, Exception handling
types, Everything is an object
tz_convert method, Localization and Conversion
tz_localize method, Localization and Conversion, Localization and Conversion
U
U file mode, Files and the operating system
uint16 data type, Data Types for ndarrays
uint32 data type, Data Types for ndarrays
uint64 data type, Data Types for ndarrays
uint8 data type, Data Types for ndarrays
unary functions, Universal Functions: Fast Element-wise Array Functions
underscore (_), Tab Completion, Input and Output Variables
unicode type, 1.usa.gov data from bit.ly, Data Types for ndarrays, Scalar Types
uniform function, Random Number Generation
union method, Unique and Other Set Logic, Index Objects, Computing Indicator/Dummy Variables, Set
unique method, Unique and Other Set Logic–Unique and Other Set Logic, Index Objects, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership, Example: 2012 Federal Election Commission Database
universal functions, Universal Functions: Fast Element-wise Array Functions–Universal Functions: Fast Element-wise Array Functions, Function application and mapping–Function application and mapping, Advanced ufunc Usage–Custom ufuncs, ufunc Instance Methods–ufunc Instance Methods, Custom ufuncs–Custom ufuncs
custom, Custom ufuncs–Custom ufuncs
in pandas, Function application and mapping–Function application and mapping
instance methods for, ufunc Instance Methods–ufunc Instance Methods
universal newline mode, Files and the operating system
unpacking tuples, Unpacking tuples–Unpacking tuples
unstack function, Hierarchical Indexing, Hierarchical Indexing
update method, Splicing Together Data Sources
upper method, String Object Methods, Vectorized string functions in pandas, Vectorized string functions in pandas
upsampling, Resampling and Frequency Conversion, Upsampling and Interpolation–Upsampling and Interpolation
US baby names 1880-2010 example, US Baby Names 1880-2010–Boy names that became girl names (and vice versa), Measuring the increase in naming diversity–Measuring the increase in naming diversity, The “Last letter” Revolution–The “Last letter” Revolution, Boy names that became girl names (and vice versa)–Boy names that became girl names (and vice versa)
boy names that became girl names, Boy names that became girl names (and vice versa)–Boy names that became girl names (and vice versa)
measuring increase in diversity, Measuring the increase in naming diversity–Measuring the increase in naming diversity
revolution of last letter, The “Last letter” Revolution–The “Last letter” Revolution
usa.gov data from bit.ly example, 1.usa.gov data from bit.ly–Counting Time Zones with pandas
USDA (US Department of Agriculture) food database example, Example: USDA Food Database–Example: USDA Food Database
use_index argument, Line Plots
UTC (coordinated universal time), Time Zone Handling
V
ValueError event, Exception handling, Exception handling
value_counts method, Unique Values, Value Counts, and Membership–Unique Values, Value Counts, and Membership
var method, Mathematical and Statistical Methods, Summarizing and Computing Descriptive Statistics, Data Aggregation
variables, Magic Commands, Magic Commands, Magic Commands, Magic Commands, Variables and pass-by-reference–Variables and pass-by-reference
(see also environment variables)
deleting, Magic Commands, Magic Commands
displaying, Magic Commands
in Python, Variables and pass-by-reference–Variables and pass-by-reference
Varoquaux, Gaël, mayavi
vectorization, Operations between Arrays and Scalars, Data Processing Using Arrays
defined, Data Processing Using Arrays
vectorize function, Custom ufuncs
vectorized string methods, Vectorized string functions in pandas–Vectorized string functions in pandas
verbose argument, Reading and Writing Data in Text Format
verify_integrity argument, Concatenating Along an Axis
views, Basic Indexing and Slicing, DataFrame
visualization tools, Chaco–Chaco, mayavi–mayavi
Chaco, Chaco–Chaco
mayavi, mayavi–mayavi
vsplit function, Concatenating and Splitting Arrays
vstack function, Concatenating and Splitting Arrays
W
w file mode, Files and the operating system
Wattenberg, Laura, The “Last letter” Revolution
Web APIs, file input/output with, Interacting with HTML and Web APIs–Interacting with HTML and Web APIs
week of month dates, Week of month dates–Week of month dates
when expressions, Strictness versus laziness
where function, Expressing Conditional Logic as Array Operations–Expressing Conditional Logic as Array Operations, Combining Data with Overlap
while loops, while loops–while loops, while loops
whitespace, structuring code with, Indentation, not braces–Indentation, not braces
Wickham, Hadley, GroupBy Mechanics
Williams, Ashley, Example: USDA Food Database
Windows, setting up Python on, Windows–Windows
working directory, Interacting with the Operating System, Interacting with the Operating System
changing to passed directory, Interacting with the Operating System
of current system, returning, Interacting with the Operating System
wrangling, What Is This Book About? (see data wrangling)
write method, Files and the operating system
write-only mode, Files and the operating system
writelines method, Files and the operating system
writer method, Manually Working with Delimited Formats
writing, Writing Data Out to Text Format–Writing Data Out to Text Format, Interacting with Databases–Storing and Loading Data in MongoDB
to databases, Interacting with Databases–Storing and Loading Data in MongoDB
to text files, Writing Data Out to Text Format–Writing Data Out to Text Format
X
Xcode, Apple OS X
xlim method, Ticks, Labels, and Legends, Ticks, Labels, and Legends
XML (extensible markup language) files, Parsing XML with lxml.objectify–Parsing XML with lxml.objectify
xrange function, range and xrange–range and xrange
xs method, Indexing, selection, and filtering
xticklabels method, Ticks, Labels, and Legends
Y
yield keyword, Generators
ylim argument, Line Plots
yticks argument, Line Plots
Z
zeros function, Creating ndarrays
About the Author
Wes McKinney is the main author of pandas, the popular open source Python library for data analysis. Wes is an active speaker and participant in the Python and open source communities. He worked as a quantitative analyst at AQR Capital Management before founding an enterprise data analysis company, Lambda Foundry, in 2012. He graduated from MIT with an S.B. in Mathematics.
Colophon
The animal on the cover of Python for Data Analysis is a golden-tailed, or pen-tailed, tree shrew (Ptilocercus lowii). The golden-tailed tree shrew is the only one of its species in the genus Ptilocercus and family Ptilocercidae; all the other tree shrews are of the family Tupaiidae. Tree shrews are identified by their long tails and soft red-brown fur. As nicknamed, the golden-tailed tree shrew has a tail that resembles the feather on a quill pen. Tree shrews are omnivores, feeding primarily on insects, fruit, seeds, and small vertebrates.
Found predominantly in Indonesia, Malaysia, and Thailand, these wild mammals are known for their chronic consumption of alcohol. Malaysian tree shrews were found to spend several hours consuming the naturally fermented nectar of the bertam palm, equalling about 10 to 12 glasses of wine with 3.8% alcohol content. Despite this, no golden-tailed tree shrew has ever been intoxicated, thanks largely to their impressive ethanol breakdown, which includes metabolizing the alcohol in a way not used by humans. Also more impressive than any of their mammal counterparts, including humans? Brain to body mass ratio.
Despite these mammals’ name, the golden-tailed shrew is not a true shrew, instead more closely related to primates. Because of their close relation, tree shrews have become an alternative to primates in medical experimentation for myopia, psychosocial stress, and hepatitis.
The cover image is from Cassel’s Natural History. The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.
Python for Data Analysis
Wes McKinney
Editor
Meghan Blanchette
Editor
Julie Steele
Revision History | |
---|---|
2012-10-05 | First release |
Copyright © 2012 Wes McKinney
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Python for Data Analysis, the cover image of a golden-tailed tree shrew, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
2012-10-08T06:57:40-07:00
Table of Contents
Conventions Used in This Book
Using Code Examples
Safari® Books Online
How to Contact Us
What Is This Book About?
Why Python for Data Analysis?
Python as Glue
Solving the “Two-Language” Problem
Why Not Python?
Essential Python Libraries
NumPy
pandas
matplotlib
IPython
SciPy
Installation and Setup
Windows
Apple OS X
GNU/Linux
Python 2 and Python 3
Integrated Development Environments (IDEs)
Community and Conferences
Navigating This Book
Code Examples
Data for Examples
Import Conventions
Jargon
Acknowledgements
1.usa.gov data from bit.ly
Counting Time Zones in Pure Python
Counting Time Zones with pandas
MovieLens 1M Data Set
Measuring rating disagreement
US Baby Names 1880-2010
Analyzing Naming Trends
Measuring the increase in naming diversity
The “Last letter” Revolution
Boy names that became girl names (and vice versa)
Conclusions and The Path Ahead
3. IPython: An Interactive Computing and Development Environment
IPython Basics
Tab Completion
Introspection
The %run Command
Interrupting running code
Executing Code from the Clipboard
IPython interaction with editors and IDEs
Keyboard Shortcuts
Exceptions and Tracebacks
Magic Commands
Qt-based Rich GUI Console
Matplotlib Integration and Pylab Mode
Using the Command History
Searching and Reusing the Command History
Input and Output Variables
Logging the Input and Output
Interacting with the Operating System
Shell Commands and Aliases
Directory Bookmark System
Software Development Tools
Interactive Debugger
Other ways to make use of the debugger
Timing Code: %time and %timeit
Basic Profiling: %prun and %run -p
Profiling a Function Line-by-Line
IPython HTML Notebook
Tips for Productive Code Development Using IPython
Reloading Module Dependencies
Code Design Tips
Keep relevant objects and data alive
Flat is better than nested
Overcome a fear of longer files
Advanced IPython Features
Making Your Own Classes IPython-friendly
Profiles and Configuration
Credits
4. NumPy Basics: Arrays and Vectorized Computation
The NumPy ndarray: A Multidimensional Array Object
Creating ndarrays
Data Types for ndarrays
Operations between Arrays and Scalars
Basic Indexing and Slicing
Indexing with slices
Boolean Indexing
Fancy Indexing
Transposing Arrays and Swapping Axes
Universal Functions: Fast Element-wise Array Functions
Data Processing Using Arrays
Expressing Conditional Logic as Array Operations
Mathematical and Statistical Methods
Methods for Boolean Arrays
Sorting
Unique and Other Set Logic
File Input and Output with Arrays
Storing Arrays on Disk in Binary Format
Saving and Loading Text Files
Linear Algebra
Random Number Generation
Example: Random Walks
Simulating Many Random Walks at Once
5. Getting Started with pandas
Introduction to pandas Data Structures
Series
DataFrame
Index Objects
Essential Functionality
Reindexing
Dropping entries from an axis
Indexing, selection, and filtering
Arithmetic and data alignment
Arithmetic methods with fill values
Operations between DataFrame and Series
Function application and mapping
Sorting and ranking
Axis indexes with duplicate values
Summarizing and Computing Descriptive Statistics
Correlation and Covariance
Unique Values, Value Counts, and Membership
Handling Missing Data
Filtering Out Missing Data
Filling in Missing Data
Hierarchical Indexing
Reordering and Sorting Levels
Summary Statistics by Level
Using a DataFrame’s Columns
Other pandas Topics
Integer Indexing
Panel Data
6. Data Loading, Storage, and File Formats
Reading and Writing Data in Text Format
Reading Text Files in Pieces
Writing Data Out to Text Format
Manually Working with Delimited Formats
JSON Data
XML and HTML: Web Scraping
Parsing XML with lxml.objectify
Binary Data Formats
Using HDF5 Format
Reading Microsoft Excel Files
Interacting with HTML and Web APIs
Interacting with Databases
Storing and Loading Data in MongoDB
7. Data Wrangling: Clean, Transform, Merge, Reshape
Combining and Merging Data Sets
Database-style DataFrame Merges
Merging on Index
Concatenating Along an Axis
Combining Data with Overlap
Reshaping and Pivoting
Reshaping with Hierarchical Indexing
Pivoting “long” to “wide” Format
Data Transformation
Removing Duplicates
Transforming Data Using a Function or Mapping
Replacing Values
Renaming Axis Indexes
Discretization and Binning
Detecting and Filtering Outliers
Permutation and Random Sampling
Computing Indicator/Dummy Variables
String Manipulation
String Object Methods
Regular expressions
Vectorized string functions in pandas
Example: USDA Food Database
A Brief matplotlib API Primer
Figures and Subplots
Adjusting the spacing around subplots
Colors, Markers, and Line Styles
Ticks, Labels, and Legends
Setting the title, axis labels, ticks, and ticklabels
Adding legends
Annotations and Drawing on a Subplot
Saving Plots to File
matplotlib Configuration
Plotting Functions in pandas
Line Plots
Bar Plots
Histograms and Density Plots
Scatter Plots
Plotting Maps: Visualizing Haiti Earthquake Crisis Data
Python Visualization Tool Ecosystem
Chaco
mayavi
Other Packages
The Future of Visualization Tools?
9. Data Aggregation and Group Operations
GroupBy Mechanics
Iterating Over Groups
Selecting a Column or Subset of Columns
Grouping with Dicts and Series
Grouping with Functions
Grouping by Index Levels
Data Aggregation
Column-wise and Multiple Function Application
Returning Aggregated Data in “unindexed” Form
Group-wise Operations and Transformations
Apply: General split-apply-combine
Suppressing the group keys
Quantile and Bucket Analysis
Example: Filling Missing Values with Group-specific Values
Example: Random Sampling and Permutation
Example: Group Weighted Average and Correlation
Example: Group-wise Linear Regression
Pivot Tables and Cross-Tabulation
Cross-Tabulations: Crosstab
Example: 2012 Federal Election Commission Database
Donation Statistics by Occupation and Employer
Bucketing Donation Amounts
Donation Statistics by State
Date and Time Data Types and Tools
Converting between string and datetime
Time Series Basics
Indexing, Selection, Subsetting
Time Series with Duplicate Indices
Date Ranges, Frequencies, and Shifting
Generating Date Ranges
Frequencies and Date Offsets
Week of month dates
Shifting (Leading and Lagging) Data
Shifting dates with offsets
Time Zone Handling
Localization and Conversion
Operations with Time Zone−aware Timestamp Objects
Operations between Different Time Zones
Periods and Period Arithmetic
Period Frequency Conversion
Quarterly Period Frequencies
Converting Timestamps to Periods (and Back)
Creating a PeriodIndex from Arrays
Resampling and Frequency Conversion
Downsampling
Open-High-Low-Close (OHLC) resampling
Resampling with GroupBy
Upsampling and Interpolation
Resampling with Periods
Time Series Plotting
Moving Window Functions
Exponentially-weighted functions
Binary Moving Window Functions
User-Defined Moving Window Functions
Performance and Memory Usage Notes
11. Financial and Economic Data Applications
Data Munging Topics
Time Series and Cross-Section Alignment
Operations with Time Series of Different Frequencies
Using periods instead of timestamps
Time of Day and “as of” Data Selection
Splicing Together Data Sources
Return Indexes and Cumulative Returns
Group Transforms and Analysis
Group Factor Exposures
Decile and Quartile Analysis
More Example Applications
Signal Frontier Analysis
Future Contract Rolling
Rolling Correlation and Linear Regression
ndarray Object Internals
NumPy dtype Hierarchy
Advanced Array Manipulation
Reshaping Arrays
C versus Fortran Order
Concatenating and Splitting Arrays
Stacking helpers: r_ and c_
Repeating Elements: Tile and Repeat
Fancy Indexing Equivalents: Take and Put
Broadcasting
Broadcasting Over Other Axes
Setting Array Values by Broadcasting
Advanced ufunc Usage
ufunc Instance Methods
Custom ufuncs
Structured and Record Arrays
Nested dtypes and Multidimensional Fields
Why Use Structured Arrays?
Structured Array Manipulations: numpy.lib.recfunctions
More About Sorting
Indirect Sorts: argsort and lexsort
Alternate Sort Algorithms
numpy.searchsorted: Finding elements in a Sorted Array
NumPy Matrix Class
Advanced Array Input and Output
Memory-mapped Files
HDF5 and Other Array Storage Options
Performance Tips
The Importance of Contiguous Memory
Other Speed Options: Cython, f2py, C
The Python Interpreter
The Basics
Language Semantics
Indentation, not braces
Everything is an object
Comments
Function and object method calls
Variables and pass-by-reference
Dynamic references, strong types
Attributes and methods
“Duck” typing
Imports
Binary operators and comparisons
Strictness versus laziness
Mutable and immutable objects
Scalar Types
Numeric types
Strings
Booleans
Type casting
None
Dates and times
Control Flow
if, elif, and else
for loops
while loops
pass
Exception handling
range and xrange
Ternary Expressions
Data Structures and Sequences
Tuple
Unpacking tuples
Tuple methods
List
Adding and removing elements
Concatenating and combining lists
Sorting
Binary search and maintaining a sorted list
Slicing
Built-in Sequence Functions
enumerate
sorted
zip
reversed
Dict
Creating dicts from sequences
Default values
Valid dict key types
Set
List, Set, and Dict Comprehensions
Nested list comprehensions
Functions
Namespaces, Scope, and Local Functions
Returning Multiple Values
Functions Are Objects
Anonymous (lambda) Functions
Closures: Functions that Return Functions
Extended Call Syntax with *args, **kwargs
Currying: Partial Argument Application
Generators
Generator expresssions
itertools module
Files and the operating system