

 [image: cover]

 Restlet in Action:
Developing RESTful web APIs in Java

 Jerome Louvel, Thierry Templier, and Thierry Boileau

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Jeff Bleiel
Copyeditor : Corbin Collins
Proofreaders : Elizabeth Martin, Melody Dolab
Typesetter : Dennis Dalinnik
Cover designer : Marija Tudor

ISBN: 9781935182344

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Dedication

 To my father, Guy Louvel, for his love of life and people and for inspiring my passion for computers

 —J.L.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Introducing the Restlet Framework

 Chapter 2. Beginning a Restlet application

 Chapter 3. Deploying a Restlet application

 2. Getting ready to roll out

 Chapter 4. Producing and consuming Restlet representations

 Chapter 5. Securing a Restlet application

 Chapter 6. Documenting and versioning a Restlet application

 Chapter 7. Enhancing a Restlet application with recipes and best practices

 3. Further use possibilities

 Chapter 8. Using Restlet with cloud platforms

 Chapter 9. Using Restlet in browsers and mobile devices

 Chapter 10. Embracing hypermedia and the Semantic Web

 Chapter 11. The future of Restlet

 Appendixes

 Appendix A. Overview of the Restlet Framework

 Appendix B. Installing the Restlet Framework

 Appendix C. Introducing the REST architecture style

 Appendix D. Designing a RESTful web API

 Appendix E. Mapping REST, HTTP, and the Restlet API

 Appendix F. Getting additional help

 References

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Introducing the Restlet Framework

 1.1. “Hello World” with Restlet

 1.1.1. Coding a ServerResource subclass

 1.1.2. Running the server

 1.1.3. Using the ClientResource class

 1.2. Overview of the Restlet Framework

 1.2.1. Main benefits of the Restlet API

 1.2.2. Overall design of the Restlet Framework

 1.2.3. Available editions and deployment targets

 1.3. Summary

 Chapter 2. Beginning a Restlet application

 2.1. The purpose of Restlet applications

 2.2. The structure of Restlet applications

 2.3. Setting up a Restlet application

 2.3.1. Creating an Application subclass

 2.3.2. Setting application properties

 2.3.3. Exploring the application context

 2.3.4. Configuring common services

 2.4. The Restlet routing system

 2.4.1. Preprocessing and postprocessing calls with a Filter

 2.4.2. Using a router to dispatch calls based on URIs

 2.5. Using Restlet resources in an application

 2.5.1. Resource, the base of all resources

 2.5.2. Using ServerResource as target of calls

 2.5.3. Using ClientResource as source of calls

 2.5.4. Higher-level resources with Java annotations

 2.5.5. Updating the example mail application

 2.6. Summary

 Chapter 3. Deploying a Restlet application

 3.1. The purpose of Restlet components

 3.2. The structure of Restlet components

 3.3. Standalone deployment with Java SE

 3.3.1. Creating a Component subclass

 3.3.2. Adding server and client connectors

 3.3.3. Setting up virtual hosting

 3.3.4. Configuring common services

 3.4. Declarative configuration in XML

 3.4.1. XML configuration with Component

 3.4.2. XML configuration with Spring Framework

 3.5. Deployment in an existing Java EE server

 3.5.1. The Servlet extension

 3.5.2. Servlet engine as a connector for a Restlet component

 3.5.3. Servlet engine as a container of Restlet applications

 3.5.4. The Oracle XML DB extension

 3.5.5. Restlet Framework as a library inside Servlet applications

 3.5.6. Dynamic deployment in OSGi environments

 3.6. Summary

 2. Getting ready to roll out

 Chapter 4. Producing and consuming Restlet representations

 4.1. Overview of representations

 4.1.1. The Variant and RepresentationInfo base classes

 4.1.2. The Representation class and its common subclasses

 4.2. Producing and consuming XML representations

 4.2.1. The org.restlet.ext.xml.XmlRepresentation class

 4.2.2. Using the DOM API

 4.2.3. Using the SAX API

 4.2.4. Evaluating XPath expressions

 4.2.5. Handling XML namespaces

 4.2.6. Validating against XML schemas

 4.2.7. Applying XSLT transformations

 4.2.8. Using the JAXB extension

 4.2.9. Alternative XML binding extensions

 4.3. Producing and consuming JSON representations

 4.3.1. Using the JSON.org extension

 4.3.2. Using the Jackson extension

 4.4. Applying template representations

 4.4.1. Using the FreeMarker extension

 4.4.2. Using the Velocity extension

 4.5. Content negotiation

 4.5.1. Introducing HTTP content negotiation

 4.5.2. Declaring resource variants

 4.5.3. Configuring client preferences

 4.5.4. Combining annotated interfaces and the converter service

 4.6. Summary

 Chapter 5. Securing a Restlet application

 5.1. Ensuring transport confidentiality and integrity

 5.1.1. Understanding TLS and SSL

 5.1.2. Storing keys and certificates

 5.1.3. Generating a self-signed certificate

 5.1.4. Generating a certificate request

 5.1.5. Importing a trusted certificate

 5.1.6. Enabling HTTPS in Restlet

 5.1.7. Providing a custom SSL context

 5.2. Authenticating users

 5.2.1. Providing authentication credentials on the client side

 5.2.2. The org.restlet.security.Authenticator class

 5.2.3. Challenge-based authentication

 5.2.4. Verifying user credentials

 5.2.5. Certificate-based authentication

 5.3. Assigning roles to authenticated users

 5.3.1. Request principals

 5.3.2. The org.restlet.security.Enroler interface

 5.3.3. Organizations, users, and groups

 5.3.4. The default enroler and verifier

 5.4. Authorizing user actions

 5.4.1. The org.restlet.security.Authorizer class

 5.4.2. The role authorizer

 5.4.3. The method authorizer

 5.4.4. Fine-grained authorization

 5.4.5. Using Java security manager

 5.5. Ensuring end-to-end integrity of data

 5.5.1. Ensuring representation integrity

 5.5.2. Representation digesting

 5.5.3. Digesting without losing content

 5.6. Summary

 Chapter 6. Documenting and versioning a Restlet application

 6.1. The purpose of documentation and versioning

 6.1.1. Use cases

 6.1.2. Pitfalls

 6.1.3. Recommendations

 6.2. Introducing WADL

 6.3. The WadlApplication class

 6.4. The WadlServerResource class

 6.4.1. Overview of properties and methods

 6.4.2. Improving description of existing server resources

 6.4.3. Describing a single resource

 6.5. Automatic conversion to HTML

 6.6. Summary

 Chapter 7. Enhancing a Restlet application with recipes and best practices

 7.1. Handling common web elements

 7.1.1. Managing forms

 7.1.2. Managing cookies

 7.1.3. Serving file directories

 7.1.4. Customizing error pages

 7.1.5. Handling file uploads

 7.2. Dealing with Atom and RSS feeds

 7.2.1. Exposing web feeds

 7.2.2. Consuming web feeds

 7.3. Redirecting client calls

 7.3.1. Manual redirection

 7.3.2. The org.restlet.Redirector class

 7.4. Improving performances

 7.4.1. Streaming representations

 7.4.2. Compressing representations

 7.4.3. Partial representations

 7.4.4. Setting cache information

 7.4.5. Conditional methods

 7.4.6. Removing server-side session state

 7.5. Modularizing large applications

 7.5.1. Server dispatcher

 7.5.2. RIAP pseudoprotocol

 7.5.3. Private applications

 7.6. Persisting resources state

 7.6.1. The JDBC extension

 7.6.2. The Lucene extension

 7.6.3. Best design practices

 7.7. Summary

 3. Further use possibilities

 Chapter 8. Using Restlet with cloud platforms

 8.1. Restlet main benefits in the cloud

 8.1.1. Better SaaS portability

 8.1.2. Easy client access to services from the cloud

 8.2. Deployment in Google App Engine

 8.2.1. What is GAE?

 8.2.2. Deploying Restlet applications in GAE

 8.2.3. Using Google Accounts authentication

 8.3. Deployment in Amazon Elastic Beanstalk

 8.3.1. What is Elastic Beanstalk?

 8.3.2. Deploying Restlet applications

 8.4. Deployment in Windows Azure

 8.4.1. What is Azure?

 8.4.2. Deploying Restlet applications

 8.5. Accessing web APIs from GAE

 8.5.1. GAE restrictions and URL fetch

 8.5.2. Using Restlet to access RESTful applications

 8.6. Accessing OData services

 8.6.1. What is OData?

 8.6.2. Generating classes for access using Restlet

 8.6.3. Calling OData services

 8.7. Accessing Amazon S3 resources

 8.7.1. Configuring a bucket

 8.7.2. Accessing a resource with the bucket

 8.8. Accessing Azure services

 8.8.1. Configuring storage accounts

 8.8.2. Using table service

 8.9. Accessing intranet resources with Restlet’s SDC extension

 8.9.1. Secure Data Connector overview

 8.9.2. Installing SDC agent

 8.9.3. Using the Restlet SDC connector

 8.9.4. Restlet SDC support in GAE edition

 8.10. Summary

 Chapter 9. Using Restlet in browsers and mobile devices

 9.1. Understanding GWT

 9.1.1. GWT overview

 9.1.2. Installing and using GWT

 9.1.3. GWT and REST

 9.2. The Restlet edition for GWT

 9.2.1. The RequestBuilder class of GWT

 9.2.2. Restlet port to GWT

 9.2.3. Communicating with a REST API

 9.2.4. Handling cross-domain requests on the client side

 9.3. Server-side GWT extension

 9.3.1. Working along with GWT-RPC

 9.3.2. Handling cross-domain requests on the server side

 9.4. Understanding Android

 9.4.1. Android overview

 9.4.2. Installing Android and Eclipse plug-ins

 9.5. The Restlet edition for Android

 9.5.1. Restlet port to Android

 9.5.2. Client-side support

 9.5.3. Server-side support

 9.6. Summary

 Chapter 10. Embracing hypermedia and the Semantic Web

 10.1. Hypermedia as the engine of RESTful web APIs

 10.1.1. The HATEOAS principle

 10.1.2. What are hypermedia and hypertext?

 10.1.3. Hypertext support in Restlet

 10.1.4. The new hyperdata trend

 10.2. The Semantic Web with Linked Data

 10.2.1. REST and the Semantic Web

 10.2.2. Using RDF in representations

 10.3. Exposing and consuming Linked Data with Restlet

 10.3.1. Exposing RDF resources

 10.3.2. Consuming linked data with Restlet

 10.4. Summary

 Chapter 11. The future of Restlet

 11.1. Evolution of HTTP and the rise of SPDY

 11.1.1. HTTP history so far

 11.1.2. Refactoring with HTTP/1.1 bis

 11.1.3. The rise of alternatives

 11.2. The Restlet roadmap

 11.2.1. Connectors for SPDY, HTTP and SIP

 11.2.2. Enhancements to the Restlet API

 11.2.3. Editions for JavaScript and Dart

 11.2.4. Restlet Forge

 11.2.5. Restlet Platform

 11.2.6. APISpark, the online platform for web APIs

 11.3. Restlet community

 11.3.1. Third-party projects

 11.3.2. Contributing to Restlet

 11.4. Summary

 Appendixes

 Appendix A. Overview of the Restlet Framework

 A.1. Restlet API

 A.1.1. Root package

 A.1.2. Data package

 A.1.3. Representation package

 A.1.4. Resource package

 A.1.5. Routing package

 A.1.6. Security package

 A.1.7. Service package

 A.1.8. Util package

 A.2. Restlet Engine

 A.3. Extensions

 A.4. Editions

 A.4.1. Edition for Java SE

 A.4.2. Edition for Java EE

 A.4.3. Edition for OSGi environments

 A.4.4. Edition for Google App Engine

 A.4.5. Edition for Google Web Toolkit

 A.4.6. Edition for Android

 A.4.7. Matrix of extensions per edition

 A.5. Restlet versioning

 A.5.1. Logical versions

 A.5.2. Versioning scheme

 Appendix B. Installing the Restlet Framework

 B.1. Restlet distributions

 B.1.1. Maven repository

 B.1.2. Zip files

 B.1.3. Windows Installer

 B.1.4. Eclipse update site

 B.2. Setting up your IDE

 B.2.1. Eclipse

 B.2.2. NetBeans

 B.2.3. IntelliJ IDEA

 B.2.4. Command line

 B.3. Suggested testing tools

 B.3.1. Unit testing

 B.3.2. Integration testing

 B.3.3. Debugging problems

 Appendix C. Introducing the REST architecture style

 C.1. Supporting all web features with REST

 C.1.1. The all-embracing web

 C.1.2. How REST explains the architecture elements of the web

 C.1.3. Understanding the relationship between REST and HTTP

 C.2. How REST became an alternative to RPC

 Appendix D. Designing a RESTful web API

 D.1. Succeeding in a RESTful project: the ROA/D methodology

 D.1.1. Introducing Resource-Oriented Analysis & Design (ROA/D)

 D.1.2. Incepting the project

 D.1.3. Elaborating the solution

 D.1.4. Constructing the solution

 D.1.5. Transitioning the project

 D.2. Gathering requirements

 D.2.1. Collecting requirements from the sources

 D.2.2. Classifying requirements by priority

 D.3. Analyzing requirements

 D.3.1. Describing usage scenarios

 D.3.2. Defining the domain model

 D.3.3. Describing system sequences

 D.4. Designing the solution

 D.4.1. Defining the logical architecture

 D.4.2. Deriving the resource model

 D.4.3. Identifying and classifying the resources

 D.4.4. Defining the URI space

 D.4.5. Defining allowed methods

 D.4.6 Defining response statuses

 D.4.7. Defining representation classes

 Appendix E. Mapping REST, HTTP, and the Restlet API

 E.1. Mapping REST concepts to Restlet classes

 E.2. Mapping HTTP concepts to Restlet classes

 E.3. Mapping HTTP headers to Restlet properties

 E.4. Available connectors

 E.5. Available converters

 E.6. Supported security challenge schemes

 E.7. Scheme authorities of RIAP and CLAP pseudoprotocols

 Appendix F. Getting additional help

 F.1. Accessing online documentation

 Javadocs

 Wiki

 F.2. Asking questions

 F.3. Code and issues repository

 F.4. Professional services

 References

 For further reading

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 News flash: the web is kind of a Big Deal.

 It is difficult to consider its full impact on technology, society, commerce, education, governance, and entertainment without
 resorting to grand language that has been stated many times before. It is a Big Deal and we will never be the same because
 of it.

 But, here’s the thing. If we sat down and tried to rebuild the web today, knowing what we know from 20 years of experience
 with it, we would probably fail. The problem is that as software developers, we generally think in terms of software constructs:
 objects, services, methods, etc. While useful from a solution space perspective, they can induce coupling and coupling does
 not scale.

 The web works because in its design, Sir Tim Berners-Lee and his cohorts embraced the notion of change. The thing we forget
 is that they were not trying to build the web that we know; they were trying to build a system that worked for a dynamic organization
 such as CERN. Logically named resources could be requested and manipulated with no regard to how back-end systems worked.
 New shapes of information could be negotiated over time without disrupting deployed systems. Clients and servers could evolve
 independently.

 The REpresentational State Transfer (REST) architectural style embraced these ideas and began to describe how to build flexible,
 scalable, change-tolerant systems. The primary shift was away from implementation details and toward the information that
 flows through the infrastructure. Clients were less cognizant of what to expect and more reactive to what they were told.
 The focus was on the properties induced by the architectural choices, not the technologies used to implement the solutions.

 This is an important point because most REST frameworks built in languages such as Java ignore these distinctions. Their choices
 reflect a desire to bend REST to a privileged Java world view, not the other way around. What makes REST special and interesting
 is lost in the process, which is why I think most of them ultimately fail. Jérôme’s work on Restlet struck me as having the
 appropriate perspective: how can we conveniently surface the ideas of REST in a language like Java without debasing the goals
 of the architectural style.

 He tackled the problem from both the client and the server perspectives. He introduced objects that stood for a Resource itself.
 He turned concepts such as content negotiation and metadata management into registered services, outside of the concerns of
 these resources. He embraced the idea of logically named protocols to extend the idea of REST into the framework with tools
 like the Restlet Internal Access Protocol (RIAP) and the Class Loader Access Protocol (CLAP). He understood the value of getting
 the APIs to a consistent, uniform place before declaring success. The resulting framework is cleaner, more flexible, and more
 true to the spirit of REST than any other language-based approach I have seen.

 While the Restlet documentation has always been adequate, as I introduced the API in my talks and courses, I longed for a
 solid book on the subject. I even toyed with the idea of writing one. Thankfully, now, as I look at the manuscript in front
 of me, I do not have to.

 Restlet in Action by Jérôme et al. is exactly the broad, deep, and example-driven book I had hoped for. The list of topics they tackle is impressive.
 The authors provide thorough but not overwhelming coverage of REST itself, security, and performance. Beyond that, they also
 discuss issues of growing interest such as mobile applications, the cloud, the Semantic Web, Linked Data, and the future of
 HTTP. The whole endeavor is grounded in practical advice on how to use Restlet toward those ends. These ideas are a Big Deal
 and this book will help you understand why and how to benefit from them.

 I have already preordered Restlet in Action for many of my clients and students and anticipate it being a staple in my courses for years to come.

 BRIAN SLETTEN
PRESIDENT
BOSATSU CONSULTING, INC.

Preface

 When I had a chance to use the Mosaic web browser way back in 1994, I fell in love with the web at first sight and became
 interested in HTML and the way the W3C was driving the growth of the web along with the IETF. A year later, I discovered Java
 by reading Sun’s white paper and was convinced that it would lead to a great future. I started using it professionally to
 write a web load-testing tool using CORBA and an HTTP proxy.

 In 2001, while reading Weaving the Web by Tim Berners-Lee, I was hooked by his grand vision of a read-write Semantic Web and started to think about the best way
 to help it come about. In 2004, I built a website in my spare time called Semalink which bridged the classic web of documents
 with the semantic web of data. As I wanted to stay true to the principles of the web, I read more and more about REST and
 the core HTTP and URI standards and realized that the Servlet API had too large a gap applying those principles. That’s when
 Restlet emerged as a higher-level Java API derived directly from REST and HTTP. This was very helpful, so I thought about
 sharing it with others. I believed that it could radically change the way we develop web applications, in the same way that
 REST was radically changing the way I was thinking about the web.

 After announcing the Restlet Framework on December 2005 in an article on TheServerSide website, I hoped that this open source
 project, the first REST framework for Java, would contribute to the success of REST in the Java world. I wasn’t sure how the
 Java community would welcome it since the industry was strongly behind Java EE (including Servlet, JSP, and Spring MVC) and
 WS-* (based on the SOAP protocol) technologies.

 Feedback was quick and mostly positive, suggesting features and leading me to dedicate more time to this project than I had
 initially planned. While REST was gaining wider support, from early adopters to the whole industry, Restlet matured by broadening
 its scope of features and by growing its community. In 2007, my friend Thierry Boileau joined me fulltime as a core developer,
 and one year later we formally created a company to provide professional services to the Restlet community, ensuring that
 we could dedicate even more time to Restlet.

 Early on, users of the framework asked for better and more complete documentation and it became clear that we needed to make
 serious efforts on this front. At the end of 2008, we started to look for a publisher who would support our idea for a Restlet
 book. When Guillaume Laforge, head of Groovy development, told us that Manning was looking for exciting new technology to
 add to its list, it was clear that a “Restlet in Action” book would be ideal, especially with Manning’s Early Access Program
 (MEAP) that would give the community access to the electronic version of the draft manuscript, and provide us continuous and
 valuable feedback during the writing process.

 Philippe Mougin, a web services expert, joined us for a few months and contributed important content on REST, including proper
 URI design and a comparison with the RPC style. Also, Bruno Harbulot, a PhD from the University of Manchester who had been
 instrumental during the design of the Restlet security API, contributed the initial content for the chapter on security.

 Later in 2010, Thierry Templier, a Java EE expert and author of several books published by Manning, started to collaborate
 with us on the Restlet project and became the third coauthor, contributing two chapters on the cloud, GWT, and Android, as
 well as content on Spring integration, OSGi deployment, and security. He is now part of our team, focusing on the development
 of our new APISpark Platform as a Service (PaaS) and on editions of the Restlet Framework for JavaScript and OSGi.

 In addition, Tim Peierls, coauthor of Java Concurrency in Practice and a key contributor in the Restlet community, provided valuable technical feedback on our draft manuscript. He also contributed
 an introduction to chapter 1 and worked hard to help us improve the quality of the English in the manuscript.

 Finally, after three years of intense effort, Restlet in Action is ready for a new life in the world of bookstores and libraries. Speaking for all the coauthors and all the contributors
 to this book, I hope that you will enjoy reading it and developing RESTful web APIs using the Restlet Framework.

 JÉRÔME LOUVEL

Acknowledgments

 We are sincerely and humbly indebted to Roy T. Fielding for his PhD dissertation that described REST and created a radical
 shift in the way we envisioned the web and its core standards. Without his work on REST and the HTTP protocol, Restlet wouldn’t
 exist. We would also like to thank all Restlet Framework contributors, including past and present committers, as well as users
 submitting issues, helping with the documentation, and answering questions of other users.

 Thanks to Jim Alateras, John D. Mitchell, and Steve Loughran for their help during the book’s inception phase, especially
 Guillaume Laforge who introduced us to Manning.

 Our sincere thanks to the staff at Manning, including Marjan Bace, Michael Stephens, Mary Piergies, Maureen Spencer, Christina
 Rudloff, Corbin Collins, Elizabeth Martin, Ozren Harlovic, and Melody Dolab. Special thanks to our editor Jeff Bleiel for
 his patience and support during the book’s development phase.

 Manning rounded up a great group of reviewers, whom we thank for helping to transform our drafts into the book you are now
 reading through incremental enhancements and some refactoring ideas. The reviewers include Adam Taft, Aron Roberts, Brian
 Sletten, Bryan Hunt, Colin Yates, Dave Nicolette, Dave Pawson, Doug Warren, Dustin Jenkins, Fabián Mandelbaum, Gabriel Ciuloaica,
 Gordon Dickens, James Ferrans, Jeff Thomas, Jeroen Nouws, Jim Alateras, Johannes Kirschnick, John Logsdon, Kristoffer Gronowski,
 Marcelo Ochoa, Rhett Sutphin, Richard E. Brewster, Stephen Koops, Tal Liron, Vincent Nonnenmacher, and Rob Heittman.

 Special thanks to Tim Peierls and Nick Watts, our technical proofreaders, for their careful review, just before the book went
 into production, of the chapters and the appendixes respectively. Thank you as well to all our MEAP readers who posted feedback
 messages on Manning’s Author Online forum; we tried to take all of them into account. We also thank Brian Sletten for penning
 the foreword.

 Finally, our special thanks go to Benoit Maujean and Stève Sfartz for their continuous support through the years and to our
 advisory team members, Didier Girard, Jean-Paul Figer, and Frederic Renouard, for sharing their experience and for helping
 us at both the technical and business levels.

 Jérôme Louvel

 First, I’d like to thank Lance Tatro who assured me that I could indeed write a technical book in English. Thanks also to
 my entire family and to my closest friends for their support. Finally, I’d like to thank my wife, Sandrine, and my two-year-old
 daughter, Clara, for their patience during the writing process and the numerous evenings and weekends spent working on the
 book. I am grateful for your support and your love.

 Thierry Templier

 I would like to thank my wife, Séverine, and our lovely little boy, Maël, for being by my side in life. I also want to thank
 Jérôme and Thierry for bringing me to this project, and thanks to the Manning team for their confidence, support, and professionalism.
 Thanks finally to everyone who helps me move forward in life and be the best that I can be.

 Thierry Boileau

 I am deeply grateful to Jérôme Louvel for bringing me to the Restlet project. I would also like to thank the Restlet community
 and its active contributors like Tim Peierls, Kristoffer Gronowski, Martin Svensson, Bryan Hunt, Wolfgang Werner, Shaun Elliott,
 and many others, for their time and dedication. Thanks to Benoît Roblin for reviewing the first chapters. Thanks to Didier
 Arnachellum for happily playing with the framework. In conclusion, and in French, un petit clin d’œil à mon frère Fabrice.

About this Book

 We wrote this book to help readers efficiently develop RESTful web APIs based on the Restlet Framework. It is also an answer
 to the open source Restlet community’s request for a comprehensive guide to this technology. The book introduces you to the
 world of REST and HTTP through the use of the Restlet Framework, which directly derives from those standards.

 We’ve tried to stay very practical throughout the book by providing many source code listings and illustrative figures, introducing
 Restlet concepts and fundamentals along the way. In addition, an example RESTful mail system serves as a conductor all along
 the book.

 Six appendixes provide additional details related to the Restlet technology as well as a generic presentation of the REST
 architecture style and of the ROA/D design methodology that are both valuable beyond the Restlet Framework.

 Audience

 Our main audience is Java developers who are interested in the web standards such as HTTP and REST, as well as their usage
 to expose and consume web APIs. No prior knowledge of Restlet is required.

 Readers should ideally be familiar with the Java EE ecosystem including technologies such as Servlet, OSGi, and Spring Framework
 to make the most of the book, but this isn’t a prerequisite to reading the book.

 The secondary audience is web API project managers and architects who want to understand how to design and develop a RESTful
 web API in a controlled manner, using the Restlet Framework or alternative technologies for the implementation.

 Roadmap

 Part 1 gets you acquainted with the Restlet Framework, quickly looking at the code while introducing important Restlet concepts
 such as editions, applications, routing, resources, components, and available deployment options.

 Chapter 1 gets you started with the Restlet Framework by showing you how to write your first client and server programs. It reviews
 the main features and benefits of Restlet and gives you an overview of the Restlet Framework, an open source REST framework
 for Java.

 Chapter 2 starts with background information on Restlet applications. It explains how to set up a Restlet application and how the filtering
 and dispatching of calls works with Restlet’s routing system. Finally, it covers using client-side and server-side Restlet
 resources including both method-overriding and annotation-based resource implementation.

 Chapter 3 starts with background information on Restlet components. It explains how to deploy in standalone Java SE virtual machines,
 configuring virtual hosts and log and status services using either Java-based or declarative XML configuration. It also covers
 the deployment in Java EE application servers and OSGi environments.

 Part 2 gets you to the next level of knowledge with more advanced topics such as security, documentation, and versioning or optimization.
 Those topics will become essential as you move your Restlet application closer to a deployment in production.

 Chapter 4 covers producing and consuming XML and JSON representations, as well as producing HTML using template representations. It
 explains how HTTP content negotiation is supported by Restlet Framework and describes how to simplify representation handling
 with the converter service.

 Chapter 5 covers how to secure a Restlet application at various levels. It starts with the use of SSL/TLS to secure communication,
 then explains how to authenticate remote users, assigning roles in order to authorize them to perform actions on the system.
 Finally, it describes how to ensure end-to-end integrity of the data.

 Chapter 6 explains why you need to document and version your web API and describes the main pitfalls and recommendations for doing
 so. It introduces the Web Application Description Language (WADL) and its support in Restlet Framework.

 Chapter 7 covers handling common web artifacts, such as forms and cookies. It explains how servers can redirect clients and how to
 handle file uploads on the client and server side. It also provides guidance on how to improve performance of Restlet applications
 and how to split a large Restlet application into several modules.

 Part 3 looks at further Restlet usage possibilities, such as with cloud platforms, browsers, and mobile devices. It also explains
 how to embrace hypermedia and the Semantic Web in your Restlet projects and what the future of Restlet looks like.

 Chapter 8 covers how to use Restlet in the cloud. It starts with deploying Restlet applications to cloud platforms such as Google App
 Engine, AWS Elastic Beanstalk, and Microsoft Azure. It explains how to access RESTful applications from the cloud using OData,
 AWS S3, and Azure services and it describes how to securely access intranet resources from public cloud platforms with Restlet,
 thanks to the Secure Data Connector protocol.

 Chapter 9 starts with a description of Restlet editions for GWT and Android. Then it explains how to use REST within GWT applications
 and within Android-based mobile devices with the Restlet Framework.

 Chapter 10 explains why hypermedia is important for RESTful web APIs and describes how hypertext and hyperdata are supported in Restlet
 to drive applications. In addition, it discusses the relationship between REST and the Semantic Web. Finally, it covers how
 Restlet can expose and consume Linked Data in RDF.

 Chapter 11 starts by covering the state of the HTTP protocol and alternatives. It introduces the SPDY protocol and discusses its impact
 on REST, HTTP, and Restlet. An overview of the Restlet roadmap covers planned enhancements to Restlet API, extensions, and
 editions; the planned Restlet Studio tool for Eclipse; and the planned online Restlet Cloud service. It concludes the book
 with the new “API Spark” platform offering Restlet as a service, as well as a review of Restlet community driven projects.

 The book also contains six appendixes. The first gives an overview of the Restlet Framework, its Java API and engine, its
 available extensions for each edition, and its versioning scheme. The second explains how to install the Restlet Framework
 using the various distributions provided and the major IDEs available. Appendix C introduces the REST architecture style and how it became an alternative to RPC. Appendix D explains how to design a RESTful web API following the iterative and agile ROA/D methodology in order to succeed in your
 projects. Appendix E provides reference materials, mapping REST and HTTP to the Java-based Restlet API. The last appendix gives some pointers
 on where to get additional help beyond this book.

 Online and printed references mentioned in the book are listed at the end of the book.

 Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. In many listings, the code is annotated to point out key concepts, and numbered
 bullets are sometimes used in the text to provide additional information about the code.

 The source code for the examples in the book is available for download from the publisher’s website at www.manning.com/RestletinAction. It is also available for download as part of regular Restlet distributions in the src/org.restlet.example org.restlet.example.book.restlet root package. See the respective chapters for details about the dependencies required to compile and run the examples.

 All the source code in the examples has been written for and tested with Restlet Framework version 2.1 and should mostly work
 with version 2.0 as well, except for features added in version 2.1. The source code should continue to work well with future
 2.x releases.

 Visit www.restlet.org to download the latest Restlet Framework release. See both chapter 1 and appendix B for more details on how to get started. The only requirement is to have a Java Development Kit (JDK) version 1.5 or above
 installed on your computer.

 Author Online

 Purchase of Restlet in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/RestletinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

 About the authors

 Jerome Louvel is cofounder and CEO of Restlet Inc. and Restlet SAS, and the creator of the Restlet Framework. Thierry Templier
 is an R&D architect at Restlet SAS, and a core developer of the Restlet Framework. Thierry Boileau is cofounder of Restlet
 SAS, an open source community manager, and core developer of the Restlet Framework.

About the Cover Illustration

 The figure on the cover of Restlet in Action is captioned “An Arbanas man, from Zadar, Dalmatia, Croatia.” The illustration is taken from a reproduction of an album of
 Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in
 Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself
 situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around
 AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions
 of the costumes and of everyday life.

 Arbanas is an old Croatian family name associated with the town of Zadar, a seaport on the Adriatic coast in central Dalmatia,
 an area rich in Roman and Venetian history. The first settlement in this location dates to the Stone Age and the town became
 an important stop on maritime trading routes for Romans and Venetians, subsequently becoming part of the Austrian Empire,
 Italy, and Yugoslavia, before Dalmatia became part of an independent Croatian state. Today the ancient walled city is a popular
 tourist destination with its many churches, cultural attractions, and seaside location.

 The figure on the cover is wearing blue woolen trousers and, over a white linen shirt, a red vest which is richly trimmed
 with the colorful embroidery typical for this region. A green embroidered jacket is slung over his shoulder and a red cap
 and leather moccasins complete the outfit.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Getting started

 Do you want to blend your web services, websites, and web clients into unified web applications, exposing and consuming RESTful
 web APIs? The three chapters in part 1 show how this is possible using the open source Restlet Framework and its unique Java API available in six consistent editions
 for Java SE, Java EE, OSGi, GAE, Android, and GWT!

 The Restlet Framework supports the web in all its forms, in a simple and unified way. You can use it to both expose and consume
 web APIs, including web pages and web services. One benefit is that it supports all core HTTP features, making a radical difference
 when you stop adapting your applications to the web and instead naturally use its full power.

 Chapter 1 gets you started immediately with the Restlet Framework. You’ll develop your first Restlet “Hello World” program right away
 and then find out about the main features and benefits of this framework.

 In chapter 2 we show you how to create fully featured Restlet applications, implementing an example mail system that you’ll develop throughout
 the book. You’ll learn how to put together major Restlet building blocks such as client-side and server-side resources, filters,
 and routers.

 Because one of the strengths of the Restlet Framework is its ability to work in various technical environments, chapter 3 covers how to deploy Restlet applications on your own computers, using a simple Java SE virtual machine or a full-blown Java
 EE server—or even a dynamic OSGi container. You’ll also see how to declaratively configure Restlet applications using XML
 and the Spring Framework.

 That’s a lot of exciting content, so let’s get started!

Chapter 1. Introducing the Restlet Framework

	

 This chapter covers

 	Writing your first Restlet client and server programs

 	Restlet’s features and benefits

 	Overview of the Restlet Framework, an open source REST framework for Java

 	

Let’s say you headed a team that built a new kind of email service. It was a web application written in Java that made heavy
 use of servlets, and although initially it worked fine, it didn’t scale well to larger loads when launched in the cloud. Your
 team had trouble responding to requests to expose the service to clients other than a browser using a SOAP-based web services
 stack. As a result, your service lost ground to more scalable and interoperable systems; your team was disbanded; and you
 were let go.

 You’re okay—you found a similar position at a better company with a shorter commute. Only one problem: the first thing they
 want you to do is head a team building...a new kind of email service! You don’t want to repeat the same mistakes this time
 around.

 What were those mistakes, anyway? You’re pretty sure it wasn’t the choice of programming language. You needed the type-safety,
 the rich built-in library, and the access to powerful open source libraries that Java developers enjoy. Besides, Java is your core expertise, and it was easy
 to find competent Java programmers for your team. It wasn’t that servlets didn’t perform as promised, and it wasn’t due to
 bad programming practices. In fact, it’s hard to pinpoint any specific mistakes.

 In the time between jobs, you read about REST and web API designs (see the Resources section near the end of the book, for
 more information about these). At first you think it’s a step backward, working directly with HTTP, which seems like a lower-level
 layer, and having no easy access to anything like the session state you were used to with servlets. You’re also understandably
 leery of buzzwords that can cause religious wars between purists. As you face this new design challenge, a few things about
 REST begin to click for you:

 	It’s not fair to think of HTTP as a lower-level layer— HTTP is a mature application-level protocol with support for advanced features like caching and conditional requests, compression,
 and negotiation between multiple languages and media types; the web depends on it directly for its existence. Although adding
 these features to your old service would have been prohibitively expensive, a RESTful design, done correctly, would be able
 to take advantage of them for free.

 	It’s not fair to complain about the absence of session state in HTTP— One of the things hampering the scalability of your old service was the need to share session state between servers in a
 cluster, which caused high latency as users’ application states were shunted from server to server. Had the design been more
 RESTful, application state would have been encoded into the URLs and maintained by the client, leaving the servers dedicated
 to server-side state.

Maybe you’re not entirely convinced, but at least you’re willing to look further. You want to try a framework for building
 RESTful services and clients in Java that doesn’t shut out other non-Java clients. You want to be able to deploy these services
 and clients in a variety of environments, including lightweight ones that don’t involve Java EE. Even if your story isn’t
 exactly like this (and we hope it isn’t), the punch line is the same: you want Restlet.

 An open source project for Java developers, Restlet Framework makes it as easy as possible for you to take advantage of REST
 and the web in Java. It provides an extensive set of classes and routines that you can call or extend, saving you from writing
 a great deal of code you would otherwise need to write and allowing you to focus instead on your domain requirements. Restlet
 helps you use the rich set of HTTP features such as content negotiation, caching, conditional processing, and secure authentication.
 It can open the doors of the web to you in all its forms—from the classic web to the semantic web, from web services to rich
 web clients and websites, from the mobile web to cloud computing.

 In this chapter we show you some sample Restlet code based on the traditional “Hello World” on both the client and server
 sides. Then, we explain what the Restlet Framework is and why it’s valuable. By the end of this opening chapter, you’ll have
 a good overview of the framework, its design, and its capabilities.

	

 Which version of Restlet Framework do I need?

 The minimum version necessary to run all examples in the book is 2.0, but we recommend using version 2.1 or later for new
 developments. To get started, see appendix B for installation and IDE configuration instructions.

 	

	

 Where can I download the source code for the book examples?

 The Restlet Framework distributions since version 2.0 contain the complete source code for the examples as well as all the
 dependencies necessary to run them. Once you have installed a copy of this distribution (choose the Java SE or Java EE edition
 of the framework to get started), you’ll find the source code in the following directory:

 /src/org.restlet.example/org/restlet/example/book/restlet/

 Please note that the printed examples have been made as compact as possible for clarity of illustration. Real-life code would
 be made more robust by following typical programming practices.

 	

1.1. “Hello World” with Restlet

 In this section coding a “Hello World” program in Restlet will show you how resources are materialized in Restlet, on both the client and server side. We don’t explain all the details right now. Our goal is
 to show you how basic HTTP clients and servers are developed with Restlet.

 At this point it’s important to note that resources is in italics in this chapter to clarify that we are talking about REST resources, the domain concepts identified by URIs and manipulated through HTTP standard method and representations such as HTML documents
 and JSON data. If you don’t feel familiar enough with REST concepts, we encourage you to read appendix C, which briefly introduces the architectural style of the web.

 1.1.1. Coding a ServerResource subclass

 First, how does Restlet enable you to implement your own resources on the server side? In a few lines of code, listing 1.1 implements one that returns the “hello, world” string. It creates a subclass of the org.restlet.resource.ServerResource class.

 Next, you add a represent() Java method, then use a Restlet-specific @Get annotation imported from the same org.restlet.resource package to expose it as a GET method defined in HTTP.

 Listing 1.1. Creating a server-side resource

 [image:]

 In this case the @Get annotation means “Here is the code to be run when a client wants to retrieve a representation of a resource implemented by the HelloServer-Resource class.” The name of the annotated Java method is flexible for your convenience. We used represent() here, but you can choose any other name as long as it doesn’t override a method of ServerResource or one of its supertypes, such as get().

 Note that the signature of an annotated Java method is important and requires you to understand the meaning of the associated
 HTTP method. An application receiving an HTTP GET request is required to provide a representation of the resource identified in the request by the URI. This is translated into the Java world by a call to a method that returns a value.
 Here the representation is a simple string, but you’ll see in chapter 4 how to return more complex representations such as XML or JSON documents.

 Later in the book, we look at the entire set of existing annotations, how to extend it, and alternative ways to define behavior
 in ServerResource subclasses that don’t rely on annotations but on overriding regular Java methods.

 1.1.2. Running the server

 Once written, your Hello resource needs to be exposed and served. The main() method in listing 1.2 creates an HTTP server connector, which is an instance of the Server class available in the org.restlet package. It’s configured with the protocol, the listening socket port, and the target Restlet that will handle the requests—in
 this case, the HelloServerResource class.

 After launching this Java program, you can point your web browser to the http://localhost:8111 URI and get this line of text:
 “hello, world.”

 Listing 1.2. Serving the Hello server resource

 import org.restlet.Server;
import org.restlet.data.Protocol;
public class HelloServer {
 public static void main(String[] args) throws Exception {
 Server helloServer = new Server(Protocol.HTTP, 8111,
 HelloServerResource.class);
 helloServer.start();
 }
}

 Passing the HelloServerResource class to the Server constructor might suggest that a kind of factory is used. That’s true. Each incoming request is handled by a new instance
 of HelloServerResource. It lets you focus on the behavior and ensure that each resource instance starts with a clean slate in a way that mirrors the statelessness of REST. As an additional benefit, it simplifies
 concurrent programming.

 By design, a Server instance can’t run without a Protocol. The listening port is optional, because each protocol defines a default port (for example, port number 80 for HTTP, 443
 for HTTPS). Creating and starting a Server object is a way to associate a listening port to an object that will handle incoming requests. Such objects can be ServerResource subclasses, as illustrated earlier, but can also be instances of the org.restlet.Restlet class that I present in the next section. Focus your attention on the fact that a Server instance has a set of methods dedicated to its lifecycle—a start() and a stop() method.

 Even though this program works fine, many features are lacking to make it a fully featured web application. All URIs, as an
 example, will be mapped to the same resource class, which isn’t what you would do in a real application. You’ll see in chapter 3 how you can map more specific URIs and how Restlet supports routing and filtering in complex situations such as virtual hosting.

 At this point it seems important to clarify what we mean by a web application. In this terminology, as illustrated in figure 1.1, it covers web services in the sense of programmatic interactions over HTTP, static and dynamic websites, and even web clients
 in the sense of browser-hosted or standalone programs.

 Figure 1.1. We use the term web applications to refer to web services, websites, and web clients.

 [image:]

 It’s common for a web application to mix those types—something can be a web service and a web client at the same time. Let’s
 now switch to the client side.

 1.1.3. Using the ClientResource class

 As mentioned earlier, Restlet not only is a server-side framework, but also gives you the ability to write clients that consume
 and manipulate resources exposed on the web. Let’s illustrate this by accessing a sample server. If you run the following code, either in your IDE
 or your shell, the “hello, world” text will be displayed in the console.

 Listing 1.3. Using a client-side resource

 [image:]

 The ClientResource class is analogous to a ServerResource but located on the client side. This aspect is enforced by the fact that instances of this class are created with the URI
 of the resource [image:]. You can consider a ClientResource as a local proxy of the remote resource. The communication aspects are handled in an intuitive way, with Java methods that are simple transpositions of HTTP methods
 such as get() for GET and delete() for DELETE.

 Note that the ClientResource class allows a series of methods to be invoked on the same target resource, automatically follows redirections, and can retry idempotent requests (requests that produce the same result when executed several times) when network errors occur.

 Figure 1.2 illustrates the decomposition of resources between client side and server side. This separation is based on the uniform interface defined by REST and concretized by
 HTTP (see appendix C for details), which means the client side can interact with any server-side resource on the basis of predefined rules.

 Figure 1.2. Decomposition of an abstract resource intoRestlet artifacts

 [image:]

 1.2. Overview of the Restlet Framework

 The Restlet Framework, the main topic of this book, has been available since its launch in 2005 as an open source project
 at www.restlet.org. It’s free, meaning you can use it without charge for in-house, commercial, and open source projects, subject to the relevant
 license agreement. It’s also mature, meaning it has been under active development since its creation. It’s well supported
 thanks to an extremely active community; questions asked on the mailing list are usually answered quickly.

 In this section we briefly describe this framework, its main features and benefits, its overall design, and the target environments
 supported.

 1.2.1. Main benefits of the Restlet API

 The main feature of the Restlet Framework is its Restlet API, a compact and portable Java API located in an org.restlet package that embodies major REST concepts such as:

 	Uniform interface— Standard way to interact with resources via requests and responses

 	Components— Logical containers for Restlet applications

 	Connectors— Enable communication between REST components using a protocol

 	Representations— Expose the state of a REST resource

The Restlet API also abstracts the main features of the HTTP application protocol without requiring deep knowledge of HTTP
 methods, headers, and statuses:

 	Content negotiation— Selects the best representation variant based on format (media type), language, or encoding, taking into account client capabilities
 as well as server preferences

 	Automatic compression— Reduces the size of representations sent and expands compressed representations received using built-in HTTP capabilities

 	Partial representations— Retrieves only the part you need via ranged requests, for download resumption or partial-update scenarios

 	Conditional processing— Executes an HTTP method only if a given condition is met, such as a change in the signature (E-Tag) of the representation
 you want to retrieve

 	Caching— Gives hints to clients about the way they should cache and update retrieved representations

The Restlet API is also thread-safe and designed for high concurrency and scalable deployment environments.

 As illustrated in figure 1.3, this API has built-in support for routing that is both comprehensive and dynamic (in contrast to the Servlet API, which
 relies on static XML configuration or annotations for those aspects). It even supports virtual hosting in a way comparable
 to Apache httpd server but even more flexible. In addition, it comes with a complete web server for both static and dynamic
 web pages, blurring the distinction between web services and websites which merge into web applications exposing web APIs.

 Figure 1.3. Example of one use of the comprehensive and modular Restlet architecture

 [image:]

 In addition, the Restlet API offers comprehensive support for security based on HTTP features including authentication, authorization
 (both coarse- and fined-grained), confidentiality (HTTPS, TLS/SSL, Google SDC), and access logging. This built-in feature
 reduces the complexity of your web projects, removing the need to select and learn a third-party security API for common security
 needs. But it’s easy to integrate this API with other libraries using standard extensions for JAAS, OAuth, and OpenID, and
 there is support for authentication schemes such as Azure Shared Key and Amazon Web Services.

 In conjunction with a large set of extensions, this single Java API lets you use several protocols such as POP3, SMTP, and
 pseudoprotocols such as FILE and WAR in a REST-like way. Numerous representation types are supported for XML, JSON, and many more media types.

 Finally, its unifying Java API is unique from many points of view in being usable both for server-side and client-side interactions—or
 even both at the same time, as with mash-up scenarios. This usability reduces the learning curve and increases productivity.

 1.2.2. Overall design of the Restlet Framework

 The Restlet Framework is composed of a lightweight core and a growing set of extensions. The core is distributed as a single
 org.restlet.jar file with a size of around 500 KB and which contains both the Restlet API and the Restlet Engine. Users typically write programs
 against the API, indirectly using the engine. But it’s also possible to directly use the engine or extend its behavior by
 registering new plug-ins, such as connectors for new protocols or helpers for new authentication schemes.

 As illustrated in figure 1.4, Restlet user projects can use a growing number of extensions adding standards support (like Atom, JAX-RS, JSON, RDF, and
 WADL), pluggable connectors (like POP3, SMTP, and FTP), or third-party integrations (like Apache FileUpload, FreeMarker, Jackson,
 JAXB, Spring, Velocity, and XStream).

 Figure 1.4. Overall Restlet design

 [image:]

 As a result, the Restlet Framework offers a comprehensive solution thanks to its numerous extensions while keeping a simple
 and compact core. For additional details on those extensions, see appendix A, sections A.1–A.3, as well as the project Javadocs. We’ll now describe the target environments supported by this framework.

 1.2.3. Available editions and deployment targets

 The Restlet Framework is Java-based software supporting REST and the all-embracing web. In addition to being usable on both
 client and server sides, with the HTTP protocol and others like POP3, SMTP, and FTP, the framework is available and supported
 on several Java-based platforms.

 As shown in figure 1.5, those platforms are Java Standard Edition (Java SE) version 5.0 and above, Java Enterprise Edition (Java EE) version 5.0
 and above, OSGi version 4.2 and above, Google App Engine (GAE), Android version 1.0 and above, and Google Web Toolkit (GWT)
 version 1.7 and above. You may not be familiar with all these platforms, so we’ll introduce them next.

 Figure 1.5. Platforms supported by Restlet

 [image:]

 Java SE is the classic Java edition that you use when you install a JDK or a JRE. It’s composed of a set of runtime libraries
 on which Java applications can be built and run. Java EE builds on top of Java SE and adds a standard set of APIs such as
 the Servlet, JavaMail, JPA, and EJB APIs. We cover Restlet editions for Java SE and Java EE in parts 1 (chapters 1-3) and 2 (chapters 4-7) of this book. OSGi is a dynamic module system for Java made popular by its support in the Eclipse IDE, by Apache Felix,
 and by its use as a kernel of application servers such as JBoss.

 GAE is a cloud computing service that lets you deploy your application on Google’s own infrastructure, with virtually unlimited
 CPU power, network bandwidth, and storage capacities. We cover the Restlet edition for GAE in chapter 8.

 GWT is an open source technology that lets you develop Rich Internet Applications for web browsers with no additional plug-in.
 You write and debug using the Java language, but a special compiler produces optimized JavaScript code for execution in a
 web browser. We cover the Restlet edition for GWT in chapter 9.

 Finally there is Android, an open source OS based on Linux and Dalvik, a special virtual machine that can run Java-based programs
 on mobile devices. It’s supported by Google and a large consortium called the Open Handset Alliance. We cover the Restlet
 edition for Android in chapter 9 as well.

 As promised, this was a brief overview. If you want to get more details at this stage, we encourage you to read sections A.4 and A.5 of appendix A, which presents the various editions of the Restlet Framework, including the matrix of available extensions and the logical
 versioning scheme of the project.

 Now that you’ve had a glance at Restlet programming, you’re ready to move forward to more realistic Restlet application development
 in chapter 2.

 1.3. Summary

 In the context of the growing success of RESTful web APIs, the goal of the Restlet Framework is simple: making it as easy
 as possible for you to take advantage of REST and the web in Java. It provides an object-oriented framework that helps you
 use the rich set of HTTP features such as content negotiation, caching, conditional processing, and authentication.

 This chapter gave you an overview of the Restlet API, a Java API abstracting REST and HTTP concepts and features and enriched
 by a growing number of Restlet extensions.

 The Restlet Framework helps you build first-class RESTful systems, because it was designed from the start to support the REST
 style. You can use it to create RESTful web services, websites, or client programs, and deploy on a number of platforms including
 Java SE, Java EE, OSGi, GAE, GWT, and Android, thanks to its multiple editions.

 Let’s now continue our exploration of the Restlet Framework with chapter 2 and begin creating Restlet applications.

Chapter 2. Beginning a Restlet application

	

 This chapter covers

 	Setting up a Restlet application

 	Filtering and dispatching calls with Restlet’s routing system

 	Using client-side and server-side Restlet resources

 	Method-overriding and annotation-based resource implementation

 	

In chapter 1 we introduced the Restlet Framework with a basic demonstration of a single resource implementation. In this chapter you’ll
 see the first structuring features of the framework with Restlet applications.

 After learning the purpose of Restlet applications, you’ll see how to set them up, how to filter and dispatch calls with the
 Restlet routing system, and how to use Restlet resources as targets or sources of calls. We also show how to implement resources
 using annotations as an alternative to overriding methods.

 We want to begin with a solid foundation for developing Restlet applications, so we won’t go into full details now; we cover
 aspects such as Restlet representations, security, and documentation later in the book. As in real projects, we’ll need to
 iterate several times before we end up with a fully featured Restlet application. For now, let’s start with background information
 about Restlet applications.

 2.1. The purpose of Restlet applications

 The Restlet Framework can be used as an embeddable toolkit, as a library where you pick a few features that interest you (like
 the client connectors or the URI template support), or as a comprehensive framework that will fully take care of your web
 applications. In this chapter we explore the latter option, which is the most powerful one.

 Restlet applications provide a way to implement a RESTful web API (commonly shortened to REST API) by grouping RESTful resource
 classes that share common data and services. Such applications can use third-party libraries and frameworks, such as Hibernate
 and EclipseLink for persistence and FreeMarker and Velocity for template representations, either directly or via one of the
 Restlet extensions.

 Restlet applications aren’t necessarily the largest elements of a Restlet solution; they can be part of Restlet components for deployment, as we explain in chapter 3. Figure 2.1 illustrates that Restlet applications are containers that provide a way to organize server and/or client resources and to
 route calls to/from them.

 Figure 2.1. Restlet applications are containers of server resources and/or client

 [image:]

 Note that we’re talking about both the usual notion of web application and the particular concept of application in the Restlet Framework. The realization of the concept of web application as a Restlet class allows application code to
 be independent of these deployment aspects:

 	Technical platform such as Java SE, Java EE, OSGi, or Google App Engine (GAE)

 	Packaging solution such as JAR file, WAR file, or cloud deployment

 	Domain name, root URI, and security context

Restlet applications also provide a way to modularize large RESTful systems into several pieces hosted in the same JVM or
 in separate ones. They’re the main units of reusability for Restlet code.

 We’re intentionally discussing server and client usage of Restlet at the same time. Most web frameworks and HTTP libraries
 are specific to the client side or the server side, but Restlet is unique in the way that it blurs this artificial separation.
 Consider that most web server applications also need to consume other web resources, becoming web client applications! With
 Restlet, when we talk about Restlet applications, you know they can be server side, both client and server side at the same
 time, or even client side.

 In the next section, we get more concrete and explain how Restlet applications are structured into layers by the Restlet Framework.

 2.2. The structure of Restlet applications

 Restlet applications have multiple important purposes, so it’s essential to understand how they’re structured and used at
 runtime in Restlet projects. Figure 2.2 illustrates their overall design as three concentric layers, from the most generic and reusable on the edge to the most specific
 in the center. As mentioned, an application can handle both inbound server calls and outbound client calls, which are depicted
 using arrows.

 Figure 2.2. Restlet applications are structured into three concentric layers, processing inbound

 [image:]

 An inbound call first goes through a service filtering layer, which is common to all resources contained in the application.
 This layer can handle things such as automatic decoding of compressed representations and support for partial representations.
 Then the call goes through a user routing layer, where you can do your own filtering (such as for authentication purposes)
 and you can route the request to a target resource, typically based on its URI. Finally, the call can reach the resource handling
 layer, where the target resource will handle the request and reply with a response that will return to the original client,
 following the same path. In addition, client calls can be initiated by applications, typically while handling server calls
 inside server resources, by creating client resources. A client resource sends a request outward through the layers, where
 it reaches some target resource (typically on a remote host, and not necessarily a Restlet resource) and finally comes back with a response. The user routing layer will have a chance
 to filter or dispatch the request—for example, to handle automatic authentication—whereas the upper service filtering layer
 will be able to provide services such as automatic decompression of representations received in responses.

 Now that you have a good understanding of the purpose of Restlet applications and their overall structure, let’s get into
 the details of the design, based on figures 2.3 and 2.4. In each figure, three columns correspond to the three layers introduced earlier.

 The service filtering column includes one or more filters, allowing the application to provide common features to all handled
 calls and all contained resources. We discuss those services in section 2.3.4.

 The resource handling column is based on what you learned in chapter 1 when we created a simple subclass of ServerResource and used a ClientResource. This is the core of a RESTful application, and we cover it extensively in section 2.5.

 The central user routing column is where application developers are given a chance to filter and route calls (perhaps for
 security purposes) and to dispatch them to target server resources based on URI templates. This is different from the filtering
 done in the service filtering column, which applies to all calls and target resources. Section 2.4 covers in detail how to route calls in Restlet.

 For now, we would like to highlight again that user routing is primarily done on the server side but can also be useful on
 the client side, as illustrated in figure 2.4. For this purpose, we rely on two special elements to attach this routing logic: the inbound root and the outbound root, depicted as small circles in figure 2.3 and 2.4 They define the starting points for user routing of calls received by server connectors in figure 2.3, and of calls sent to client connectors in figure 2.4.

 Figure 2.3. Server calls enter a Restlet application through the service filtering layer, continue into the user routing layer via the
 inbound root, then reach the target server resources.

 [image:]

 Figure 2.4. Client calls start from client resources, enter the user routing layer via the outbound root, and leave the application after
 going through the service filtering layer.

 [image:]

 At this point, you should have enough background information to understand the purpose and structure of Restlet applications.
 Let’s now start coding your first Restlet application, extending the org.restlet.Application parent class.

 2.3. Setting up a Restlet application

 In this section we explain how Restlet applications are built by extending org.restlet.Application. We also present application context, properties, and common services and describe how to configure them. To illustrate what
 you’ll learn, you’ll implement a RESTful mail system.

	

 Book example: RESTful mail system

 In this book we’ll progressively implement a RESTful mail system. For a more detailed description of this system, its requirements,
 and how to design its RESTful web API, see appendix D.

 	

2.3.1. Creating an Application subclass

 Going back to the RESTful mail system, let’s start the implementation by creating a shell application for the RESTful mail
 server. As illustrated in the following listing, the first step is to create an org.restlet.Application subclass and add a static main method that creates an HTTP server connector, listening on port 8111 and transferring all
 calls to an instance of your application.

 Listing 2.1. Providing the inbound root Restlet for the application

 [image:]

 [image:]

 The second method, overriding createInboundRoot(), is a factory method called by the framework when the application starts. It’s in charge of creating the inbound root Restlet
 (shown as a small circle in figure 2.3). For now, you attach a simple Restlet that returns a string formatted from the method name, the target resource URI, and information on the user agent. If you
 run this example and point your browser to http://localhost:8111/test/abcd, a result page like this will be displayed:

 Method : GET
Resource URI : http://localhost:8111/test/abcd
IP address : 127.0.0.1
Agent name : Firefox
Agent version: 12

 Now that you have a basic application working, it’s time to explore what else Restlet applications have to offer, starting
 with their main properties.

 2.3.2. Setting application properties

 In this subsection we look more closely at the org.restlet.Application class and describe its main properties and methods. For visual reference, the UML class diagram in figure 2.5 displays the Application class below its parent class, org.restlet.Restlet.

 Figure 2.5. Class diagram of Application and its parent class, Restlet

 [image:]

 Some of the properties and methods that we discuss, like the name and description properties and the start() method, come from the Restlet class and apply to other subclasses than Application.

 Table 2.1 summarizes the properties inherited from Restlet.

 Table 2.1. Properties of Restlet inherited by Application

 	
 Name

 	
 Description

	author
 	Developer who is the author of this Restlet subclass

	description
 	Description of the purpose of this Restlet subclass

	name
 	Displayable name for this Restlet subclass

	owner
 	Name of the organization owning the source code

	application
 	Parent application containing this Restlet instance (read-only)

	context
 	Execution context of this Restlet instance

	logger
 	Logger to which warning, info, or debug messages can be sent

	started
 	Indicates whether the Restlet instance was started (read-only)

	stopped
 	Indicates whether the Restlet instance was stopped (read-only)

The first four properties are optional, but it can be useful to set their values for debugging purposes and feedback in administration
 consoles. The other properties provide information on the execution environment of Restlet and its lifecycle. The following listing defines the constructor of the application by setting some common properties.

 Note also that org.restlet.Restlet implements the org.restlet.Uniform interface, which defines the central method that must be implemented by all Restlet subclasses to handle inbound or outbound calls: handle (Request, Response).

 We can now look at the Application class and its additional properties. The inboundRoot and outboundRoot serve as communication hooks between the framework and the user routing layer (discussed previously and illustrated in figures 2.3 and 2.4). By default the inboundRoot is null; you have to supply something useful in order to handle incoming application calls. In the next section we explore
 some routing features available in Restlet. The outboundRoot property has a default value corresponding to the clientDispatcher property of the application’s context, but you can easily change it—for example, to preauthenticate calls before sending them to the target secured remote resources.
 Applications have an important responsibility regarding security because they define the list of available roles using a roles property. Those roles can be “administrator,” “supervisor,” “salesRep,” “director,” or anything that makes sense in your
 application domain. The roles should be separate from the organization using the application, such as particular users and user groups. We’ll come back to this important
 topic in chapter 5.

 Listing 2.2. Setting basic application properties

 [image:]

 Then you find a static current property that lets you retrieve the current Application instance based on a variable stored in the current thread. Notice the finderClass property, which will be of interest if you want to integrate the Restlet Framework with your preferred Inversion of Control
 (IoC) container such as Spring or Guice, a topic we cover in section 4.4.

 Let’s continue our presentation of the properties in the next two subsections. First we describe the central context property that provides access to the application’s environment. Then we’ll cover the group of *Service properties listed in figure 2.5, which correspond to the service filtering layer.

 2.3.3. Exploring the application context

 Each Restlet application operates inside a given execution environment. This environment may vary significantly from one deployment
 of the application to another. For example, a given installation might use a standalone Java SE virtual machine, and another
 might use a complete Java EE Servlet container or even a cloud computing platform such as GAE. One deployment might use an
 LDAP directory to store user profiles, and another might prefer static files or a relational database.

 To ensure the portability of your application and its isolation (from a security perspective) from other applications potentially
 hosted in the same JVM, you rely on the org.restlet.Context class. You’ll normally share the same instance of this class between all the members of your application, which means between
 all objects of the user routing layer and between all client and server resources of the resource handling layer. For developers
 familiar with the Servlet API, the org.restlet.Context class is similar to the ServletContext class.

 What does this Context class provide exactly? As summarized in figure 2.6, it first gives you two generic collections to store attributes and parameters. The attributes property is a map where you can add your own objects using unique names as keys (note that the org.restlet name prefix is reserved by the framework for its internal use). Note that by property we mean a Java member variable that is exposed through getter and setter methods, in this case get-Attributes() and setAttributes().

 Figure 2.6. Class diagram of the Context class listing properties and special methods

 [image:]

 The parameters property is a Series of Parameter objects typically used for static configuration purposes. Each Parameter has a name String and a value String. Note that Series is a generic class from the org.restlet.util package implementing the java.util.List<Parameter> interface.

 In addition, there are two dispatcher objects. The clientDispatcher provides a lower-level way to communicate with client connectors, such as sending HTTP requests. You generally don’t use
 this property directly but instead rely on the higher-level org.restlet.resource.ClientResource class (introduced in chapter 1). More information will come in subsection 2.5.3, and you’ll also learn how to add and configure client connectors in chapter 3, where we discuss deployment options for your Restlet applications.

 Next the serverDispatcher property gives you access to a pseudoclient connector that lets you issue calls to the container of your application as if
 they were coming from a regular server connector like an HTTP server. The advantage of this approach over using a true HTTP
 client connector is that you bypass the entire network layer, resulting in performance improvements. We discuss this optimization
 topic in chapter 7.

 What else does the Context class have to offer? It has a logger property, based on the standard java.util.logging API. This API can be used to hook many logging mechanisms such as the popular log4j and Logback libraries, if needed. If
 at any point in your application code you feel the need to log warnings, information messages, or debug traces, this is the
 property you should use. You’ll read in chapter 3 about how the logging system can be configured to write rotating log files and more.

 Two properties relate to the security context of your application: the default-Verifier property, to verify the credentials of a user wanting to authenticate, and the defaultEnroler property, to obtain the roles that apply to an authenticated user. We cover these features extensively in chapter 5 when you learn how to secure a Restlet application.

 Two static class properties are available: current, returning the current context associated with the executing thread, and the related currentLogger property. These static methods can be useful in situations where you don’t have direct access to the context, such as inside
 some third-party library callbacks.

 To be exhaustive, there is also a createChildContext() method that lets you create an isolated child context—for example, to make sure two applications hosted in the same JVM remain
 isolated unless communication is explicitly allowed. By default, it clears all the properties and wraps the client and server
 dispatchers. You won’t usually need to invoke this method yourself.

 2.3.4. Configuring common services

 Let’s complete our review of Application properties with the group of *Service properties corresponding, as their name implies, to the application services part of the service filtering layer. The complete
 list is presented in table 2.2.

 Table 2.2. Restlet applications offer several built-in services.

 	
 Name

 	
 Description

	ConnectorService
 	Lets an application declare which connectors are expected to be available. It also provides callback methods for response
 lifecycle events (when a representation is about to be written, or when a representation is fully written), allowing the release
 of pending resources such as database transactions.

	ConnegService
 	Provides a way to control the content-negotiation behavior at the application level. It offers two modes: strict and flexible
 (default). Other algorithms can be plugged in by overriding this class and reusing the Conneg subclasses in the Restlet engine.

	ConverterService
 	Supports the automatic conversion between Restlet representations and regular Java objects. The conversion can work in both
 directions. We say more about this in section 2.4.

	DecoderService
 	Provides automatic decoding or uncompressing of received entities (server-side requests or client-side responses). By default
 it supports the GZip and Deflate compression formats.

	EncoderService
 	Provides automatic encoding or compressing of entities that are about to be sent (server-side responses or client-side requests).
 By default it supports the GZip and Deflate compression formats.

	MetadataService
 	Gives access to metadata such as media types, character sets, languages or encodings, and their associated extension names.
 A list of default mappings covers most common cases. (An extension name can be used as a file extension or in URI parameters
 or in Restlet annotation values, as seen in section 2.3.4.)

	RangeService

 	Automatically exposes partial resource representations. Server resources don’t need to manually handle requested HTTP ranges;
 they can always return full representations that are then transparently cropped by this service, allowing the client to benefit
 from partial downloads.

	StatusService
 	Handles error statuses. If an exception is thrown within your application or Restlet code, it will be intercepted by this
 service to customize the response status code and even the response entity to ensure a consistent look and feel.

	TaskService
 	Launches tasks asynchronously with full Restlet context. The service instance returned won’t invoke the runnable task in the
 current thread. In addition to allowing pooling, executing threads will have the thread local variables copied from the calling
 thread, ensuring that calls to methods like Application.getCurrent() work.

	TunnelService
 	Rewrites request methods or client preferences. The tunneling can use URI query parameters, file-like extensions, or specific
 headers. This is particularly useful for browser-based applications that don’t have full control over how HTTP requests are
 sent. See the example in the next section.

Application services are extensions of the org.restlet.service.Service class and provide inbound or outbound filtering of calls (logging or decoding of compressed request entities, for example).
 They can also support features common to all Restlets and resources of your application, like a metadata registry or the management
 of a thread pool.

 The lifecycle of a service is the same as that of its parent application; it’s started and stopped at the same time. In addition,
 a service can be enabled or disabled and is given a chance by the framework to provide both an inbound and an outbound filter
 to intercept calls made to or from your application.

 You can register your own services if you need to, thanks to the services property of Application. It’s also easy to retrieve them using the getService(Class) method. If your service is defined by the MyService class, you could register it using myApplication.getServices().add(new MyService()) and retrieve it with myApplication.getService(MyService.class).

 Let’s launch the application again and check that it does benefit from the default services we described. The default TunnelService lets you work around the limitations of some browsers that don’t support all HTTP methods. It lets you specify a URI query
 parameter (named method) with the method name of your request. When issuing a GET request, it allows you to specify an OPTIONS method as an alternative;
 and when issuing a POST request, it allows you to specify any method, like PUT or DELETE.

 To see the TunnelService in action, start the Restlet application from listing 2.1 and enter http://localhost:8111/test/abcd?method=options in your browser. You’ll see the following result page:

 Method : OPTIONS
Resource URI : http://localhost:8111/test/abcd
IP address : 127.0.0.1
Agent name : Firefox
Agent version: 3.5.3

 It’s a nice result because this workaround is fully transparent to your application code. You receive an OPTIONS request as
 if it were issued by a fully capable HTTP client, and the target URI doesn’t retain a trace of this extra URI query parameter.
 This illustrates one important goal of Restlet applications as the main unit of reusability and their ability to execute consistently
 in heterogeneous environments.

 At this point we encourage you to look at the Javadocs of the Restlet API at www.restlet.org/documentation/ or in your Restlet distribution. They’ll give you important details about each of the services in the org.restlet.service package, the features they provide, and the properties that can be customized. We’ll continue to use these services during
 the rest of the book.

 You’ve learned that Restlet applications are structured into three layers and discovered their various properties, including
 the group of *Service properties corresponding to the service filtering layer. The next section introduces you to the Restlet routing system, which is the basis of the user routing layer when filtering and dispatching calls.

 2.4. The Restlet routing system

 So far, the user routing layer you’ve used has been limited: a simple Restlet subclass tracing incoming calls. How can you
 build a filter that blocks some IP addresses or routes calls to target server resources based on a URI?

 In this section we introduce the Restlet routing system and answer these questions. In particular, we present Restlet filters
 and routers, the two key elements of the routing system. Filters facilitate the preprocessing and postprocessing of calls,
 and routers dispatch calls to one of the several target routes available, typically based on a target URI.

 2.4.1. Preprocessing and postprocessing calls with a Filter

 On the server side, after receiving calls, or on the client side before sending calls, it’s usual to systematically apply
 some behavior that doesn’t depend on the target resource URI of the call. The common name for such processing elements is
 filter. Naturally the Restlet Framework offers an abstract org.restlet.routing.Filter class, which is a subclass of org.restlet.Restlet.

	

 Restlet subclasses are multithreaded

 Restlet subclasses must be thread-safe and support concurrent access. Writing code that behaves properly when executed by several
 threads isn’t easy, and we highly recommend you read the book Java Concurrency in Practice [1] on this topic.

 	

Figure 2.7 illustrates three concurrent calls (A, B, and C) processed by the same Filter instance. Each thread supports a call (a request and response couple) and attempts to traverse the filter to reach the next
 Restlet. Sometimes the call will get blocked by the filter, and the thread will return immediately, without going to the next
 Restlet. (This is what org.restlet.security.Authorizer, a filter discussed later in the book, is designed to do.) In figure 2.7, call B is stopped by the filter as illustrated by the “stop” sign.

 Figure 2.7. This filter is handling three concurrent calls, passing two of them to the next Restlet and blocking the third one.

 [image:]

 Like all Restlet subclasses, Filter’s entry point is the final handle(Request, Response) method declared in the Uniform interface. This method works in three steps. First it invokes the beforeHandle(Request, Response) method, which lets the filter preprocess the call. This method returns a result flag that indicates whether the processing
 should continue to the next Restlet, skip the next Restlet, or stop immediately and return up the thread stack.

 In the first case, the filter invokes the next Restlet that was attached to it by invoking the doHandle(Request, Response) method (step 2). If no Restlet is attached, a “server internal error” (HTTP status 500) is set on the response.

 When the next Restlet returns, or if the preprocessing asks to skip the next Restlet, the afterHandle(Request, Response) method (step 3) is invoked, giving the filter a chance to postprocess the call. Postprocessing is typically based on the
 response received—for example, to compress the representation returned for an HTTP GET method.

 The following listing shows a concrete example that provides a blocking filter based on IP addresses. Note that you use a
 special thread-safe implementation of the Set<String> interface to store the list of blocked IP addresses.

 Listing 2.3. An IP address-blocking filter

 [image:]

 To test this filter, you need to update your application, in particular the create-InboundRoot() method, to return an instance of the Blocker filter instead of the Tracer class that contains the same logic as in listing 2.1 but packaged as a separate class extending Restlet.

	

 Supporting IP v6 network addresses

 If your OS is configured by default to use an IPv6 network stack, such as recent Linux distributions, you’ll have to either
 adjust values such as 127.0.0.1 to the IPv6 format or switch back to an IPv4 stack, with this JVM setting:

 System.setProperty("java.net.preferIPv4Stack", "true");

 	

You can see in the following listing how the filter is returned as the new inbound root and attached to a Tracer instance using the setNext(Restlet) method.

 Listing 2.4. An IP address-blocking filter

 @Override
public Restlet createInboundRoot(){
 Blocker blocker = new Blocker (getContext());
 // blocker.getBlockedAddresses().add("127.0.0.1");
 blocker.setNext(new Tracer(getContext()));
 return blocker;
 }

 The next listing contains the simple Tracer class that responds to incoming requests with information on the resource URI,
 the client IP address, and user agent.

 Listing 2.5. Restlet returning common request properties to the client

 public class Tracer extends Restlet {

 public Tracer (Context context) {
 super(context);
 }

 @Override
 public void handle(Request request, Response response) {
 String entity = "Method : " + request.getMethod()
 + "\nResource URI : "
 + request.getResourceRef()
 + "\nIP address : "
 + request.getClientInfo().getAddress()
 + "\nAgent name : "
 + request.getClientInfo().getAgentName()
 + "\nAgent version: "
 + request.getClientInfo().getAgentVersion();
 response.setEntity(entity, MediaType.TEXT_PLAIN);
 }

}

 To test the filter, launch the updated application and point your browser to http://127.0.0.1:8111/test/abcd. It should return the same result as the previous listings. Now uncomment the second line in the method in listing 2.5, and restart your application. If you refresh your browser page, this time you should see the message “Your IP address was
 blocked,” indicating that the Blocker filter worked.

 In addition to the base Filter class, the Restlet API comes with several filters ready to use, as shown in figure 2.8. The Extractor filter provides a way to extract values from request cookies, query parameters or posted forms, and store them as request
 attributes for easier processing down the road. Also, the Validator filter can verify the presence of specific attributes and then validate the format of their value.

 Figure 2.8. Class diagram showing common org.restlet.routing.Filter subclasses

 [image:]

 There are two security-related filters: Authenticator, to ask the user to supply credentials and verify them when provided; and Authorizer, to enforce access policies. In chapter 5 we explain those last two filters in detail.

 Note that these filters should be used when their behavior is applicable to a set of target resources; otherwise, it’s better
 to add this logic inside your resources directly. There is a fifth filter called Route and its common TemplateRoute subclass, which aren’t displayed in figure 2.8 because they’re rarely used directly. Instead you use them indirectly via the Router class, which is the topic of the next subsection.

 2.4.2. Using a router to dispatch calls based on URIs

 So far we’ve shown how inbound or outbound calls can be filtered to apply preprocessing or postprocessing. What’s missing
 from this puzzle is a way to direct calls to target resources, routing them based on properties like the target URI. This
 is the purpose of the org.restlet.routing.Router class, a direct subclass of Restlet that consists of a list of routes and a set of properties that define how the routing of an incoming call to one of the routes
 happens.

 Figure 2.9 shows how three calls (A, B, and C) supported by three concurrent threads enter a Router instance to end into one of the three attached routes (1, 2. and 3), but not necessarily at the same time. In this illustration,
 call A reaches route 1, and calls B and C reach route 2. If you pay attention to the form of the figure used for routes, you’ll
 recognize the cylinder that we used for filters.

 Figure 2.9. The router is handling three concurrent calls and dispatching them to attached routes.

 [image:]

 The class used is TemplateRoute in the same package, which defines a next Restlet like all filters, but also a score(Request, Response) method. As its name implies, this method computes an affinity score based on the matching of the URI of the target resource
 (contained in the Request.resourceRef property) with a given URI template. URI templates look like regular URIs, with the addition of variable parts, as in http://localhost:8111/accounts/{accountId}.
 We introduce them in detail in appendix D when explaining how to define the URI space of a web API.

 To illustrate what you’ve learned, in the following listing you run a simple example based on the Tracer and Blocker classes previously developed and attach them to a Router instance.

 Listing 2.6. Illustrating URI-based routing

 @Override
public Restlet createInboundRoot(){
 Tracer tracer = new Tracer (getContext());

 Blocker blocker = new Blocker (getContext());
 blocker.getBlockedAddresses().add("127.0.0.1");
 blocker.setNext(tracer);

 Router router = new Router(getContext());
 router.attach("http://localhost:8111/", tracer);
 router.attach("http://localhost:8111/accounts/", tracer);
 router.attach("http://localhost:8111/accounts/{accountId}", blocker);

 return router;
}

 In this scenario you create two Restlet instances: a Tracer instance and a Blocker filter with that Tracer instance as its next Restlet. Then, based on URI templates, you define which Restlet to dispatch to when the request’s target
 URI matches a given route. Note that TemplateRoute instances aren’t created explicitly; you use the attach(String, Restlet) method instead. Let’s start the updated application and test a few URIs in a browser, as detailed in table 2.3.

 Table 2.3. Results of a routing example

 	
 URI retrieved

 	
 Result observed

	http://localhost:8111/
 	Trace results are displayed.

	http://localhost:8111/?param=value
 	Trace results are displayed, including the query string.

	http://localhost:8111/123
 	Error: “The server has not found anything matching the request URI.”

	http://localhost:8111/accounts/
 	Trace results are displayed.

	http://localhost:8111/accounts/123
 	Error: “Your IP address was blocked.”

One of the nice features of Router and TemplateRoute is that the URI variables are automatically extracted and stored in the attributes map of the request. In the last example
 URI, the string “123”, corresponding to the {accountId} variable in the URI template http://localhost:8111/accounts/{accountId}, will be stored in an attribute named accountId. You’ll use this when you handle the call in a ServerResource sub-class to retrieve the underlying domain object from the database.

 In some cases it’s necessary to customize the way the URI matching happens. The Router class has a full range of options to take care of this need. The defaultMatching-Mode property indicates whether only the beginning of the URI must match (see the org.restlet.routing.Template.STARTS_WITH constant) or whether the entire URI must match (see the EQUALS constant). The latter case is the default mode since Restlet 2.0, so be careful if you upgrade from a previous version.

 Another Router property is defaultMatchQuery, which indicates whether the query string at the end of target URIs (the characters after the optional ? character) should
 be considered during matching. By default its value is false because the order of query parameters is rarely enforceable. Restlet developers tend to prefer handling them inside the resource
 classes.

 When the router evaluates each route, it’s possible to define when it considers a given route as the one to select and pass
 the call to. This is the purpose of the routingMode property, which can have one of the following values (those constants are defined in the Router class):

 	Best match

 	First match (default since Restlet 2.0)

 	Last match

 	Random match

 	Round robin

 	Custom

This arrangement opens the way for many interesting uses, such as writing a load-balancer of calls to several instances of
 a back-end web service.

 In addition to Restlet instances, you can attach server resource classes directly to a Router using an attach (String, Class<? Extends Server-Resource>) method, as illustrated in figure 2.10. But what exactly happens inside this method?

 Figure 2.10. Router dispatching concurrent calls to three target server resources

 [image:]

 Filter and Router are the basic classes of the Restlet routing system. A third class, Redirector, will be presented in section 8.3. Now that you know how Restlet applications are structured and how service filtering and user routing layers work, let’s transition to the resource handling layer. This layer, composed of Restlet client and server resources, is the heart of any Restlet application.

 2.5. Using Restlet resources in an application

 In this section you continue the development of an initial Restlet application by using Restlet resources to handle calls.
 The org.restlet.Resource base class, renamed from UniformResource in version 2.1, encapsulates the state of all resources and exposes it through the uniform REST interface, typically composed
 of standard HTTP methods like GET, PUT, DELETE, and POST. We cover the server-side handling of incoming calls with the ServerResource class and then switch to the client side with the ClientResource class, which is used to make outgoing calls.

 We also will explain how the five Java annotations supported by the Restlet API offer a high-level way to express the functionality
 of client and server Restlet resources. We then briefly compare the Restlet API with the JAX-RS API standard and update our
 example application fully using annotations.

 2.5.1. Resource, the base of all resources

 The org.restlet.Resource abstract class is the base class of all Restlet resources. It was designed to be as close as possible to the idea of a web
 resource in REST, the intended conceptual target of a URI reference and the main element of RESTful web APIs. In contrast
 to the org.restlet.Restlet class introduced in chapter 1, which is designed to support concurrent calls, a separate Resource instance is needed each time a particular resource is handled.

 In practice, the state of a resource in Restlet Framework is composed of the call’s request, the call’s response, the parent
 application’s context that we introduced earlier, and some user-provided state such as a persistent bean or a database result
 set.

 In addition to its internal state, the Resource class provides many convenient methods to manipulate the request and response objects. Table 2.4 shows a few examples. Refer to the Javadocs of the class for the complete list of methods available.

 Table 2.4. Shortcut methods in the Resource class

 	
 Method name

 	
 Equivalent call

	getCookies()
 	getRequest().getCookies()

	getCookieSettings()
 	getResponse().getCookieSettings()

	getReference()
 	getRequest().getResourceRef()

	getQuery()
 	getReference().getQueryAsForm()

	getQueryValue(String)
 	getQuery().getFirstValue(String)

	setQueryValue(...)
 	getReference().setQuery(getQuery().set(...)

The Resource class defines three lifecycle methods: init(Context, Request, Response) to provide the initial state of the resource; the handle() method to trigger the processing of the associated call, either on the client or the server side; and the release() method to prepare the resource for collection by the garbage collector. Three additional helper methods are provided to facilitate
 the customization of the resource initialization (the doInit() method), the release (the doRelease() method), and each time an exception or an error is caught (the doCatch(Throwable) method).

 2.5.2. Using ServerResource as target of calls

 A subclass of Resource that helps develop server-side RESTful web resources is org.restlet.resource.ServerResource. As explained in the previous subsection, all Restlet resources have a precise lifecycle composed of initialization, handling,
 and releasing steps.

 In the case of ServerResource, it’s the responsibility of the org.restlet.resource.Finder class to enforce this lifecycle when it instantiates a new resource instance to ask it to handle a call. You’ll rarely manipulate
 a Finder directly, because it’s implicitly created by the Filter.setNext(Class) and Router.attach(String, Class) methods, but it’s nonetheless essential to clearly understand its role. Figure 2.11 illustrates this sequence of method invocations.

 Figure 2.11. Lifecycle of a server resource for a given call

 [image:]

 The Finder class stores the class name of the target resource and creates a new instance of it for each incoming call, following the
 factory design pattern. This class provides the transition from the user routing layer to the resource handling layer.

 To make you feel fully comfortable with these aspects, let’s change the Mail-ServerApplication to attach a resource class to a router. Note in the following listing how you pass the .class value of the ServerResource subclass and not an instance of that class.

 Listing 2.7. Routing to server resources

 @Override
public Restlet createInboundRoot(){
 Router router = new Router(getContext());
 router.attach("http://localhost:8111/",
 RootServerResource.class);

 return router;
}

 In addition to the methods found in its superclass, ServerResource provides shortcut methods that are useful when updating the response, as illustrated in table 2.5. Two common application services are also easily accessible via the getConverterService() and getMetadataService() methods.

 Table 2.5. Shortcut methods in the ServerResource class

 	
 Method name

 	
 Equivalent call

	getAttribute(String)
 	getRequestAttributes().get(String)

	redirectPermanent(String)
 	getResponse().redirectPermanent(String)

	redirectTemporary(String)
 	getResponse().redirectTemporary (String)

	setStatus(Status)
 	getResponse().setStatus(Status)

	setStatus(Status, String)
 	getResponse().setStatus(Status, String)

Regarding security, a convenience isInRole(String) method will help you test whether the authenticated user has been granted a given application role (we cover securing Restlet
 applications in detail in chapter 5). The idea is to make your development life easier by putting the most important information in your hands when you develop those server resources. Additional properties are available to configure the default behavior of your server resources,
 as summarized in table 2.6.

 Table 2.6. Special properties of ServerResource

 	
 Name

 	
 Description

	annotated
 	Indicates whether annotations are supported. If your resource doesn’t use them, you might see a small performance gain by
 setting this property to false. By default it’s true. Resource annotations are discussed in section 2.5.4.

	autoCommitting
 	Indicates whether the response should be automatically committed. When processing a request on the server side, setting this
 property to false lets you ask the server connector to wait for commit() to be explicitly called before sending the response
 back to the client. Only used for asynchronous call processing.

	committed
 	Indicates whether the response has already been committed. Only used for asynchronous call processing.

	conditional
 	Indicates whether conditional handling is enabled. Conditional handling is a feature of HTTP that lets you specify conditions
 on methods such as GET and PUT in order to prevent the retrieval of an unchanged representation or the update of an identical
 one. By default it’s true.

	existing
 	Indicates whether the resource identified by this instance of ServerResource exists. By default it’s true. If the underlying
 domain object doesn’t yet exist, you can set this property to false, and the client will automatically receive a “Not found
 client error” (HTTP status code 404) in response.

	negotiated
 	Indicates whether content negotiation is enabled. Content negotiation is a powerful feature of HTTP that lets you define several
 representation variants for the same resource and automatically pick the best based on client preferences. By default it’s
 true. We discuss this in chapter 4.

	variants
 	Modifiable list useful for content negotiation to declare the supported representation variants. See chapter 4 for more details on its use.

Now you define the RootServerResource class to make it trace the steps of the resource lifecycle in the following listing. To simplify matters, you disable content
 negotiation in the constructor—otherwise you’d have to override the get(Variant) and options(Variant) methods instead of get() and options(). We cover content negotiation in chapter 4.

 Listing 2.8. Illustrating server resource lifecycle

 [image:]

 [image:]

 In addition to the constructor—the doInit(), doRelease(), and doCatch(Throwable) methods—the resource overrides two methods to handle HTTP methods: get() and options() for HTTP GET and OPTIONS handling. Note that additional delete(), post(Representation), put(Representation), and head() methods are available.

 When receiving a GET call, you print a trace in the console and return a string representation using org.restlet.representation.StringRepresentation. In chapter 4 we present many more types of representations available in Restlet, but for now don’t worry about this line and think of
 it as a wrapper around a Java string that will be sent back to the client.

 When receiving an OPTIONS call, you also print a trace. But instead of returning a representation, you throw an exception
 indicating that this method isn’t yet implemented in order to test the doCatch(Throwable) method.

 Let’s launch the new application and try to retrieve the following URIs in a browser: http://localhost:8111/ and then http://localhost:8111/?method=options.
 Feel free to comment out the lines attaching resource classes like Account, because they will be introduced late in this chapter. The result displayed in the console confirms our explanations on the
 lifecycle and handling methods:

 The root resource was initialized.
The GET method of root resource was invoked.
The root resource was released.

The root resource was initialized.
The OPTIONS method of root resource was invoked.
An exception was thrown in the root resource.
The root resource was released.

 Uncomment the setExisting(false) line in the constructor, restart the application, and retrieve http://localhost:8111/. This time, instead of displaying “This
 is the root resource,” the browser displays “The server has not found anything matching the request URI” and returns an HTTP
 404 status code, as expected!

 There is more to say about ServerResource regarding content negotiation and the use of Java annotations to mark handler methods. We cover this topic in section 2.5.4, but for now let’s switch to the other side and discuss the ClientResource class.

 2.5.3. Using ClientResource as source of calls

 Client-side resources are supported by the ClientResource class, the other subclass of Resource, presented in section 2.5.1. It acts as a proxy of a target resource. It can work with any remote server-side resource implemented in any technology
 for which there is a protocol defined and a Restlet connector available, such as HTTP, POP3, or FTP.

 We present this class as a higher-level client because, in addition to the connectivity offered by lower-level client connectors
 (Restlet elements concretely implementing a specific protocol, something we haven’t described yet), it offers features such
 as a retry strategy for failed requests, an ability to automatically follow redirection or the transparent serialization between
 Restlet representations sent or retrieved, and higher-level Java objects as representations.

 Like ServerResource, ClientResource has its own shortcut methods to conveniently manipulate the wrapped request, as illustrated in table 2.7.

 Table 2.7. Shortcut methods in the ClientResource class

 	
 Method name

 	
 Equivalent call

	setAttribute(String, Object)
 	getRequestAttributes().put(...)

	setChallengeResponse(...)
 	getRequest().setChallengeResponse(...)

	setConditions(Conditions)

 	getRequest().setConditions(Conditions)

	setCookies(Series<Cookie>)
 	getRequest().setCookies(Series<Cookie>)

	setReference(String)
 	getRequest().setReference(String)

ClientResource also provides special properties to control its behavior, as detailed in table 2.8.

 Table 2.8. Special properties of ClientResource

 	
 Name

 	
 Description

	followRedirects
 	Indicates whether redirections should be automatically followed. Note that potential infinite loops are detected for you.
 By default it’s true.

	maxRedirects
 	Indicates the maximum number of HTTP redirects that can be automatically followed. By default it’s 10.

	next
 	The next Restlet processing the calls. By default it’s the clientDispatcher property of the current context. If no context
 is available, a client connector is automatically instantiated based on the scheme protocol of the target URI.

	requestEntityBuffering
 	Indicates whether transient or unknown-size request entities should be buffered before being sent. This is useful to increase
 the chance of being able to resubmit a failed request due to network error or to prevent chunked encoding from being used.

	responseEntityBuffering
 	Indicates whether transient or unknown-size response entities should be buffered after being received. This is useful to be
 able to systematically reuse and process a response entity several times after retrieval.

	retryOnError
 	Indicates whether idempotent requests (such as GET, HEAD, and OPTIONS) should be retried when a recoverable error is detected.
By default it’s true.

	retryAttempts
 	Number of retry attempts before reporting a recoverable error. By default it’s 2.

	retryDelay
 	Delay in milliseconds between two retry attempts. By default it has a value of 2 seconds.

	parent
 	The parent resource based on the parent URI of the current client resource.

It’s now time to put those features in action with an example. The following listing creates an instance of ClientResource pointing to the resource at the http://localhost:8111/ URI. You then attempt to retrieve a representation of this resource
 by invoking the get() method, which returns an instance of the Representation class that you can display on the console thanks to a shortcut method, write(OutputStream).

 Listing 2.9. Illustrating features of client resources

 import org.restlet.resource.ClientResource;

public class MailClient {

 public static void main(String[] args) throws Exception {
 ClientResource mailRoot =
 new ClientResource("http://localhost:8111/");
 mailRoot.get().write(System.out);
 }

}

 If you have your mail server application from previous examples still running, stop it first because we want to illustrate
 what happens when a remote resource is unreachable. Then launch the MailClient program for the first time. Here’s the console output, based on Restlet default logging messages, with timestamps removed
 for clarity:

 Starting the internal [HTTP/1.1] client
A recoverable error was detected (1000), attempting again in 2000 ms.
A recoverable error was detected (1000), attempting again in 2000 ms.
Exception in thread "main" Connection Error (1000) - Unable to establish a
 connection to localhost/127.0.0.1:8111
 at org.restlet.resource.ClientResource.doError(ClientResource.java:639)
 at org.restlet.resource.ClientResource.handleInbound(...)
 at org.restlet.resource.ClientResource.handle(ClientResource.java:1101)
 at org.restlet.resource.ClientResource.handle(ClientResource.java:1076)
 at org.restlet.resource.ClientResource.handle(ClientResource.java:980)
 at org.restlet.resource.ClientResource.get(ClientResource.java:685)
 at org.restlet.example.book.restlet.ch02.sec5.sub3.MailClient.main(...)

 As you can see, an HTTP client connector is automatically started, which is normal because no context is available; this is
 the case because you don’t run inside a parent Restlet application, and the next property isn’t set. Then you see two traces indicating that a recoverable error was detected with a 1000 status code and
 two retries were attempted. This status code isn’t a standard HTTP status but a special status returned by Restlet when a
 connector error occurs, in this case meaning the communication with the HTTP server couldn’t even be established. The org.restlet.data.Status class has more details about the statuses, their code, and their description.

 Start the mail server application from section 2.3.2 with the setExisting(false); line commented out in the RootServerResource class. Launch the mail client again. This time the program runs successfully and displays “This is the root resource” in
 the console. Stop the application, uncomment the setExisting(false); line, and run the app again. This time the program throws a runtime ResourceException corresponding to the HTTP status code 404 (Not Found).

 Other HTTP methods are supported in the same spirit: delete(), head(), options(), post(Representation), and put(Representation). It’s also possible to directly invoke the underlying handle() method, but you need to first make sure the method is set manually by using setMethod(Method). In this case exceptions won’t be automatically thrown when the response status is an error.

 If you look at the Javadocs, you’ll notice that all those methods we cite have additional signatures including an extra Class parameter and returning an instance of this class. This might puzzle you initially, so here is a usage example: String result = mailRoot.get(String.class). If you run it, the result variable will contain the same “This is the root resource” string. The extra parameter indicates
 the desired result when converting from the resource representation; ClientResource attempts to do the conversion automatically, with the help of the converterService mentioned earlier (and presented in detail in chapter 5). Used in combination with resource annotations, the topic of the next subsection, this automatic conversion service can
 yield powerful results.

 2.5.4. Higher-level resources with Java annotations

 Even though the Resource, ServerResource, and ClientResource classes provide a convenient API for implementing RESTful resources, it’s tempting to go even farther down the abstraction
 road by taking advantage of Java annotations.

 As a member of the expert group at the Java Community Process (JCP) that helped define the JAX-RS API, Jérôme Louvel realized
 that although annotations could be a powerful abstraction, at the same time there were drawbacks to an API mainly based on
 annotations: the code seemed less readable, extending the default behavior was harder, supporting dynamic applications wasn’t
 easy, and how the framework worked was less obvious.

 With the help of the Restlet community feedback, we found a middle ground that builds on the classic Restlet API and adds
 the best of the annotation-based JAX-RS API. This resulted in the addition of 5 annotations in version 2.0 of the Restlet
 API (compared to the 21 annotations in JAX-RS 1.1), one for each HTTP method, as detailed in table 2.9.

 Table 2.9. Restlet provides annotations for defining resources

 	
 Name

 	
 Description

	@Get
 	Annotation for methods that retrieve a resource representation. Its semantics are equivalent to an HTTP GET method. No input
 entity allowed.

	@Put
 	Annotation for methods that store submitted representations. Its semantics are equivalent to an HTTP PUT method. Input entity
 allowed.

	@Delete
 	Annotation for methods that remove representations. Its semantics are equivalent to an HTTP DELETE method. No input entity
 allowed.

	@Post
 	Annotation for methods that accept submitted representations. Its semantics are equivalent to an HTTP POST method. Input entity
 allowed.

	@Options
 	Annotation for methods that describe a resource. Its semantics are equivalent to an HTTP OPTIONS method. No input entity allowed.

Each of these annotations has an optional value that lets you restrict the metadata of the response entity, typically the
 media type but also (since version 2.1) other meta-data such as the language, character set, or encoding. Those metadata are
 specified using their extension names as specified in the MetadataService and not their full name. For the JPEG media type, you would use a jpg annotation value instead of the image/jpeg MIME type name.

 Request entities can also be specified to have different metadata than response entities using the : separator, and alternative variants can be specified using the | separator, such as @Post(json|form:html) to accept entities posted in either JSON or web form media type, returning an HTML response entity.

 Also, a single variant can specify multiple metadata using the + separator, such as @Get(xml+fr) to retrieve an XML representation in French. Since version 2.1, it’s possible to use the same annotation for multiple query
 parameters by adding the query string in the annotation value, such as ?light or ?logLevel=fine right after the optional value specifying the supported metadata.

 You can put these annotations in action by rewriting the RootServerResource to take advantage of the @Get and @Options annotations, as illustrated in the following listing.

 Listing 2.10. Illustrating resource annotations

 import org.restlet.resource.Get;
import org.restlet.resource.Options;
import org.restlet.resource.ServerResource;

public class RootServerResource extends ServerResource {

 @Get ("txt")
 public String represent(){
 return "This is the root resource";
 }

 @Options ("txt")
 public String describe(){
 throw new RuntimeException("Not yet implemented");
 }

}

 We encourage you to run the application and test the GET and OPTIONS methods again to observe that the result is the same
 or similar depending on your Restlet Framework version. In contrast to the previous approach of overriding the get() and options() methods of ServerResource, you’re free to name the methods as you want: represent(), toString(), toText(), or anything you like. Another benefit is that you can return representations as regular Java objects and not as Restlet
 Representation subclasses as before.

 This conversion is possible thanks to the extensible ConverterService. This service knows, for example, how to convert a String into a StringRepresentation but can go much further and convert plain Java objects (POJOs) into XML or JSON representations. More on this topic in chapter 4, where we discuss representations.

 Another difference compared to JAX-RS 1.1 is that those annotations are usable on the client side as well! In fact, they let
 you express your resource uniform interfaces as annotated Java interfaces. The design implementation step can then become straightforward because your RESTful web API will result in a set of annotated Java interfaces, one
 for each resource class. Once they’re defined, you can use those interfaces either with the ClientResource to create a dynamic client proxy or with a subclass of Server-Resource, implementing it as illustrated in figure 2.12.

 Figure 2.12. Restlet-annotated Java interfaces can be used by client resources as a client proxy or when implementing a server resource
 subclass.

 [image:]

 Let’s take advantage of this new approach by refactoring RootServerResource. First, extract an annotated interface that you name RootResource, as in the following listing.

 Listing 2.11. Annotated Java interface for the root resource

 import org.restlet.resource.Get;
import org.restlet.resource.Options;

public interface RootResource {

 @Get ("txt")
 public String represent();

 @Options ("txt")
 public String describe();

}

 Now that you’ve defined the contract as a Java interface, you can refactor the RootServerResource class to implement it as shown in the following listing.

 Listing 2.12. Implementing the Java annotated resource interface

 import org.restlet.resource.ServerResource;

public class RootServerResource
 extends ServerResource implements RootResource {

 public String represent(){
 return "This is the root resource";
 }

 public String describe(){
 throw new RuntimeException("Not yet implemented");
 }

}

 You can launch your application again and verify that it still behaves the same. Now you have one more artifact to maintain—the
 annotated Java interface—but what are the benefits compared to a single annotated ServerResource subclass? First, it’s easier to create those interfaces based on a designed web API than to develop shell server resources.
 Also, those interfaces can be put in a common package and immediately used on the client side to build client toolkits or
 unit tests without having to wait for a testable server-side implementation, even as a mock-up.

 Let’s look at how to use this interface on the client side. The idea is to take advantage of a little-known feature of Java
 called dynamic proxies (see the java.lang.reflect.Proxy class introduced in Java 1.3), which let you dynamically provide an implementation of a given interface. Based on this mechanism,
 the ClientResource provides methods that return a proxy instance of an annotated interface as illustrated in the following listing.

 Listing 2.13. Creating dynamic proxies based on annotated Java interfaces

 import org.restlet.resource.ClientResource;

public class MailClient {

 public static void main(String[] args) throws Exception {
 RootResource mailRoot = ClientResource.create(
 "http://localhost:8111/", RootResource.class);
 String result = mailRoot.represent();
 System.out.println(result);
 }

}

 What’s remarkable is that you can directly invoke the represent() method, which transparently issues an HTTP GET call to the remote RootServerResource implementing this exact same annotated Java method! The URI of the target resource was provided to the create() method: "http://localhost:8111/" in this case. Like the static create(String, Class) method, other ones are provided by ClientResource including the wrap(Class), getChild(String, Class), and getParent(Class) methods.

	

 Restlet API vs. JAX-RS API

 In addition to its much broader features scope—like its ability to work on the client side and the server side, its availability
 in several editions (Java SE, Java EE, OSGi, GWT, GAE, and Android), its powerful routing and security APIs, and its ability
 to use several protocols besides HTTP—the Restlet API comes with the best of Java annotations usage for RESTful Java development
 based on the experience of the JAX-RS API design by the JCP expert group. Plus its classic inheritance-based design makes
 it easier to learn, debug, and extend.

 Despite our criticisms of the JAX-RS API, we recognize its important role as a JCP-approved standard in broadening the adoption
 of REST in Java land. The Restlet Framework even provides a solid implementation of JAX-RS, contributed by Stefan Koops. This
 implementation ships as the org.restlet.ext.jaxrs extension and makes it possible for JAX-RS applications to use the Restlet API at the same time.

 	

2.5.5. Updating the example mail application

 To finish this chapter, let’s update the MailServerApplication to achieve a more comprehensive working application. As a first step, let’s implement the three top resources (modeled in
 figure D.14, found in appendix D)—the Root, Accounts, and Account resources—with the exact HTTP methods that they should support.

 To store the accounts, use an in-memory list of strings, with the account name as sole value for now. You’ll also decouple
 the application with a specific deployment environment, to make it more reusable, by attaching the resources relative to a
 parent URI. The following listing contains the updated application.

 Listing 2.14. Updating the MailServerApplication

 [image:]

 To better organize this growing example, we have decided to split the classes into three packages. We recommend that you follow
 a similar structure for your own Restlet projects. Note that instead of packages, you may prefer separate projects:

 	Common for the annotated Java interfaces and related classes shared by the client and server sides

 	Server for your application and the server resources implementing the interfaces in “common”

 	Client for containing the mail clients developed in the next chapter

Let’s now update the interfaces in the “common” package, still based on the exposed method defined in the resource model of
 appendix D. The following listing shows the result.

 Listing 2.15. Annotated interfaces in the “common” package

 [image:]

 Now that the REST API is defined in terms of a Java API annotated with Restlet-specific markers, let’s provide the server-side
 implementations (see the following listing). The code should be self-explanatory. Let’s highlight how you obtain the accountId value in the AccountServerResource directly from the request attributes. This value is automatically extracted from the resource URI by the Restlet Framework
 because you attached the resource to your application router with the URI template /accounts/{accountId}.

 Listing 2.16. Implementation of annotated interfaces in the “server” package

 [image:]

 [image:]

 Note that this implementation is simple but naïve because the index of accounts in the list is used in their URI. If you delete
 one account, the URI of the remaining accounts changes, which isn’t useful because URIs aren’t stable and can’t be usefully
 bookmarked. A better implementation would use a unique and stable identifier, part of a more complex account structure (for
 example, based on relational database sequences or UUIDs).

 Also, because you changed the attachment URIs to remove the http://localhost:8111 prefixes, you cannot test the application directly, as in the previous sections. This is intentional and only temporary;
 you’re now in good shape to begin the next chapter and see how you can concretely deploy this example application using Restlet
 components.

 2.6. Summary

 In this chapter you learned how to begin the development of Restlet applications. You saw their purpose as structuring elements
 of a RESTful web API project, illustrating why Restlet Framework is not merely a toolkit or a library where you can pick features
 as needed. You saw that Restlet applications are containers of RESTful web resources on both the server side and client side,
 and how they provide the main units of reuse across heterogeneous deployment environments.

 You learned how Restlet applications are structured in three concentric layers and looked at the details of each layer, including
 the special role of inboundRoot and outboundRoot as anchors for the user routing layer:

 	The outermost service filtering layer provides services common to all contained resources, such as automatic decoding of compressed
 representations and support for partial representations.

 	The middle user routing layer is where inbound or outbound calls can be filtered (for example, for authentication purposes)
 or dispatched based on a target URI.

 	The innermost resource handling layer is where a target server resource handles a request and replies with a response and
 where a source client resource can issue calls to remote resources or other local resources.

In addition you applied this background information in developing a concrete Restlet application, and you saw the properties
 available, including the special context property that helps isolate an application from specific deployment environments, and the *Service properties that allow configuration and extension of the service filtering layer.

 We continued the exploration with the user routing layer, introducing the Restlet routing system that allows preprocessing
 and postprocessing of both inbound and outbound calls with the Filter class, and call dispatching to routes attached using the Router class.

 Finally, you saw how resource handling works, using both server-side and client-side resources as instances of ServerResource and ClientResource, both extending Resource. You saw that those resources encapsulate generic state, such as the call request and response and the parent context, and
 also user-specific state, such as persistent domain objects. We explained how the Restlet Framework uses five Java annotations
 to provide an alternative way to develop Restlet resources, using an annotated Java interface as a realization of a RESTful
 web API.

 You’re now well advanced in the “getting started” part of this book, which ends with a chapter explaining how Restlet applications
 can be deployed in a standalone Java SE virtual machine, in a Java EE container such as Apache Tomcat, or in OSGi environments
 such as Eclipse Equinox.

Chapter 3. Deploying a Restlet application

	

 This chapter covers

 	Background on Restlet components

 	Deploying in standalone Java SE virtual machines

 	Configuring virtual hosts and log and status services

 	Declarative XML configuration

 	Deploying in Java EE application servers and OSGi environments

 	

In chapter 2 you learned how to develop a Restlet application, the basic unit of reuse in the Restlet Framework. Your goal now is to deploy
 those applications to local machines in your organization and to make sure that they can be properly used and tested.

 In this chapter you’ll learn the purpose of a Restlet component and how it’s structured in four layers. You’ll then see how
 to set up a Restlet component in a Java SE environment, adding server and client connectors, exploring virtual hosting and
 internal routing, and configuring logging and default status messages.

 As an alternative to using the Restlet API with Java code, we introduce two ways to use XML for more declarative configuration
 of Restlet components—one built in the Restlet Framework and another relying on the Spring Framework. Then we explain how to deploy the same Restlet application
 to a pre-existing Java EE server. Finally we mention a third deployment approach based on OSGi.

 This chapter isn’t the last one covering deployment; chapter 8 shows how Restlet applications can be easily deployed in cloud computing infrastructures such as Google App Engine, Amazon
 EC2, or Microsoft Azure.

 3.1. The purpose of Restlet components

 When we introduced REST in chapter 1, we mentioned the role of REST components as coarse-grained distributed architecture elements that communicate between themselves
 using connectors and network protocols such as HTTP. We also indicated how the Restlet Framework directly embodies those elements
 in its API. Like chapter 2, where we illustrate how REST resources map to instances of Restlet Resource class (specifically its subclasses, ClientResource and ServerResource), this chapter introduces the Restlet Component, Connector, Client, and Server classes.

 Figure 3.1 expands figure C.5 from appendix C (introducing the REST architecture style in detail) to illustrate how a Restlet component interacts with other REST components
 using client and server connectors. Note that the other components need not be developed using Restlet; the interoperability
 is solely based on the communication protocols implemented by the connectors and on the data exchanged (the resource representations).

 Figure 3.1. Restlet components are containers of Restlet applications and connect them to other distributed REST components.

 [image:]

 Figure 3.1 tells us another important thing about the purpose of a Restlet component: it’s a container of Restlet applications. The
 containment plus the connectivity offered to applications makes the Restlet components the perfect vehicles to deploy and
 run applications on local or remote infrastructures.

 As you’ll see in the next sections—where the purpose of applications is to ensure portability of user routing logic and contained
 resources—the purpose of components is to deploy those applications and adapt them to specific target environments, such as
 Java SE and Java EE. This ensures, for example, that your applications aren’t tied to a specific IP address or domain name,
 thanks to the virtual hosting capabilities of components.

 Also Restlet components provide, through the Realm class, the ability to abstract contained applications from security aspects specific to a given deployment environment, such
 as how and where user credentials (logins, passwords, certificates, and so on) are stored (LDAP directory, relational database,
 local file, and so forth) and which application roles are granted to authenticated users. More details on the security aspects
 are explained in chapter 5.

 In the next section we get more concrete and explain how Restlet components are organized in layers.

 3.2. The structure of Restlet components

 As in section 2.2, where we discuss the structure of Restlet applications, the structure of Restlet components is organized in concentric layers,
 which are progressively more specific in their function as you move toward the center. Restlet components are like applications
 in being able to handle both inbound and outbound calls, as illustrated in figure 3.2 with large arrows.

 Figure 3.2. Restlet components are structured into four concentric layers, processing inbound and outbound calls in logical steps.

 [image:]

 An inbound call is first received by the connectivity layer, which handles transport aspects of network protocols, such as
 HTTP persistent connections or FTP connection establishment. Then the call goes through the service filtering layer, similar
 to the one found inside each Restlet application. By default, this layer provides global access logging, similar to the HTTP
 access logs produced by traditional servers like Apache HTTP or Microsoft IIS. Next the call enters into the virtual hosting
 layer, which is only relevant on the server side.

	

 Virtual hosting

 This is a common mechanism found in HTTP servers helping to serve several domain names and websites from a single IP address
 and port number. It’s useful when the number of available IP addresses is limited on a single machine and you still want to
 use the default ports of protocols. For example, HTTP uses 80 as its default port, so you can omit :80 in HTTP URIs.

 	

Once the call has been dispatched to one of the declared virtual hosts, it can enter into the application handling layer.
 This layer is the Restlet application handling described in chapter 2.

 On the other side, a client call is typically issued by a contained application in the application handling layer. It goes
 directly to the service filtering layer because virtual hosting doesn’t apply to outbound calls. It then enters the connectivity
 layer, where it’s picked up by the matching client connector, based on either an explicit call protocol or a protocol implied
 by its context (for example, the target URI of the call). Client connectors are reused across all outbound calls of all applications
 and must be scalable and stateless to ensure isolation between applications.

 To illustrate the call flow, figure 3.3 expands on the Restlet component portion of figure 3.1 and provides more detail. Two virtual hosts are declared, and the three application instances are attached to them using
 relative URI paths (for example, /app3). Note that the same application instance can be attached to several virtual hosts.
 (It’s also possible to instantiate a Restlet application class several times, attaching each instance to its own virtual host,
 typically for data-isolation purposes.)

 Figure 3.3. A closer look at the content of a Restlet component

 [image:]

 Also note that an internal router is shown with a forbidden link from the server connector. This is a private router to your
 component that can only be accessed for internal calls; such calls don’t go through the local network loopback. The internal
 router is closely related to the Restlet Internal Access Protocol (RIAP) pseudoprotocol that we take advantage of in section 7.5.2 when talking about modularizing large Restlet systems.

 At this point you should have enough background information to understand the purpose and structure of Restlet components.
 Let’s write a first Restlet component using the Restlet edition for Java SE and the example mail server application from the
 end of chapter 2.

 3.3. Standalone deployment with Java SE

 In this section we explain how to use Restlet components to deploy standalone applications on a regular Java SE virtual machine,
 which is the simplest way to get started with Restlet deployment, but still a powerful one. For this purpose we use the Restlet
 edition for Java SE, which is best suited for development phases, when you need instant turnaround between coding and testing;
 for embedded scenarios, when the lightest footprint is required; and in situations where you have complete access to the server
 machine and want the maximum flexibility regarding which connectors to use.

	

 Minimum Java SE version

 The main requirement for the version of the Restlet Framework covered by this book (2.1) is Java SE 5.0 and above.

 	

You’ll see how to set up an org.restlet.Component object via Java code, how to add client and server connectors, how to set up virtual hosts, and how to configure the common
 services, such as the default log and status services.

 3.3.1. Creating a Component subclass

 Starting with the Restlet mail server application and resources defined in section 2.5.5, we’ll create a Restlet component. The first step will be to extend org.restlet.Component. In listing 3.1 you add an HTTP server connector to the component’s list of servers and attach your application to the default virtual host. Note that Restlet components are typically configured
 in their constructor, whereas applications are configured in an overridden createInboundRoot() method, and resources in an overridden doInit() method.

 Listing 3.1. Creating the MailServerComponent to deploy the application

 [image:]

 As you can see, starting the component is as easy as invoking its start() method, which in turn arranges for the HTTP server connector added in the constructor to listen on port 8111, ready to answer
 to inbound calls. In the next subsection, we study in detail how to configure a Restlet component, its connectors, virtual
 hosts, services, and other features—but before that you need to ensure that the component is actually working.

 Listing 3.2 shows a simple mail client that sets up a base service client resource and obtains child client proxies for each remote resource
 from that service that it needs to interact with. You create client proxies for child resources using the getChild(String relativeUri, Class<T>) method, as demonstrated in listing 2.13. For space reasons, we’ve omitted the class declaration.

 Listing 3.2. Simple mail client interacting with component resources

 System.out.println("\n1) Set up the service client resource\n");
Client client = new Client(new Context(), Protocol.HTTP);
ClientResource service = new ClientResource("http://localhost:8111");
service.setNext(client);

System.out.println("\n2) Display the root resource\n");
RootResource mailRoot = service.getChild("/", RootResource.class);
System.out.println(mailRoot.represent());

System.out.println("\n3) Display the initial list of accounts\n");
AccountsResource mailAccounts = service.getChild("/accounts/",
 AccountsResource.class);
String list = mailAccounts.represent();
System.out.println(list == null ? "<empty>\n" : list);

System.out.println("4) Adds new accounts\n");
mailAccounts.add("Homer Simpson");
mailAccounts.add("Marjorie Simpson");
mailAccounts.add("Bart Simpson");
System.out.println("Three accounts added !");

System.out.println("\n5) Display the updated list of accounts\n");
System.out.println(mailAccounts.represent());

System.out.println("6) Display the second account\n");
AccountResource mailAccount = service.getChild(
 "/accounts/1", AccountResource.class);
System.out.println(mailAccount.represent());

System.out.println(
 "\n7) Update the individual account and display it again\n");
mailAccount.store("Homer Jay Simpson");
System.out.println(mailAccount.represent());

System.out.println(
 "\n8) Delete the first account and display the list again\n");
mailAccount = service.getChild("/accounts/0", AccountResource.class);
mailAccount.remove();
System.out.println(mailAccounts.represent());

 Note how each call to a remote resource looks as though that resource were locally present. You might also wonder what happens
 when an error occurs or when you need access to underlying HTTP details (for example, for preemptive authentication). To give
 you that access, dynamic client proxies created by ClientResource also implement the org.restlet.resource.ClientProxy interface. This interface declares a single getClientResource() method that points to the wrapped ClientResource instance and provides the richness of all the Restlet API to inspect and modify the request and response objects.

 After making sure that the server-side component is started, you can launch the MailClient class and observe the console output, which looks like this:

 1) Set up the service client resource

org.restlet.engine.http.connector.HttpClientHelper start
INFO: Starting the default HTTP client

2) Display the root resource

Welcome to the RESTful Mail Server application !

3) Display the initial list of accounts

<empty>

4) Adds new accounts

Three accounts added !

5) Display the updated list of accounts

Homer Simpson
Marjorie Simpson
Bart Simpson

6) Display the second account

Marjorie Simpson

7) Update the individual account and display it again

Marge Simpson

8) Delete the first account and display the list again

Marge Simpson
Bart Simpson

 After this basic test run of the Component class, embedding the example mail system started in chapter 2, let’s continue with the description of connectors and how they can be managed by a Restlet component.

 3.3.2. Adding server and client connectors

 When your Restlet application needs to communicate with other applications—either locally or remotely, acting as a server
 or as a client—it needs to use a specific medium, like a TCP/IP socket, and exchange data following a specific protocol, such
 as HTTP, FTP, or SMTP.

 In REST, connectors are in charge of those communication needs. The Restlet API, as usual, exactly follows this terminology
 by having an abstract org.restlet.Connector class and two concrete subclasses—org.restlet.Client and org.restlet.Server—each of which can be used with a variety of protocols thanks to the uniform interface supported by all Restlet subclasses.

 The class diagram in figure 3.4 illustrates the relationships between those three classes along with their main properties. (To be concise, we don’t mention
 all the constructors of the Server class.) Refer to the Javadocs for authoritative information about the Restlet API. Table 3.1 presents each property of the classes.

 Figure 3.4. Class diagram of the Connector superclass and the Client and Server child classes

 [image:]

 Table 3.1. Properties of the Connector, Client, and Server classes

 	
 Name

 	
 Description

	protocols
 	List of the protocols expected to be supported at the same time by the same connector instance. On the server side, it’s generally
 one protocol like HTTP or HTTPS but not both. On the client side, it can be both HTTP and HTTPS at the same time.

	available
 	Indicates whether the connector was able to look up an implementation helper matching the specified protocol(s).

	connectTimeout
 	The delay in milliseconds that a client connector will wait while attempting to establish a network connection with a remote
 host.

	address
 	The optional listening IP address in textual format. It’s generally specified at construction time, and changes aren’t taken
 into account until the connector is restarted.

	ephemeralPort
 	Actual ephemeral port used by a server connector when the listening port is set to 0. This allows you to listen on any available
 port without knowing it in advance, typically for unit-testing purposes when you don’t know the available fixed ports.

	next
 	Reference to the Restlet that will handle inbound calls received by a server connector. When a ServerResource subclass is
 specified, an implicit Finder is used as a resource factory.

	port
 	The listening socket port number. It’s generally specified at construction time, and changes aren’t taken into account until
 the server connector is restarted.

The Restlet Engine comes with built-in connectors, but additional ones are also available via the set of Restlet Extensions.
 You can also develop your own connectors and plug them dynamically in the Restlet Engine. If you want to do so, contact the
 Restlet community for guidance and additional documentation.

 Let’s review the available connectors and their main characteristics, starting with the default ones provided in the Restlet
 core (distributed as a single org.restlet.jar file in version 2.1). All these built-in connectors listed in table 3.2 are usable in both development and light deployment scenarios.

 Table 3.2. Characteristics of built-in connectors

 	
 Protocols

 	
 Description

	HTTP/HTTPS client and server
 	Complete client and server connectors supporting all HTTP features, including
 	Persistent connections (with limit settable per host and in total)

 	Pipelining connections (for reduced network latency)

 	Chunked encoding (for entities with unknown length)

 	Provisional responses (for informational status)

 	Configurable worker thread pool

 	Raw tracing of requests and responses to system console

 	Asynchronous callbacks (added to Restlet API 2.0)

	FILE client
 	Local client connector to manipulate (list, read, write, and delete) files using the file URI scheme. For example, you can send a PUT request to the file:///C/www/index.html resource with a request entity that holds
 the new content of the (existing or new) file identified by the URI. Note that for best portability across OS, you should
 try using the CLAP client or the WAR client under the Java EE environment.

	ZIP/JAR client
 	Local client connectors to read resources inside local ZIP or JAR files using the zip or jar URI scheme. For example, you can send a GET request to the jar:file:///C/foo/foo.jar!/org/foo/Bar.class URI.

	CLAP client
 	JVM connector to get the representations of resources accessible via class loaders and the clap URI scheme. Class Loader Access Protocol (CLAP) supports these URI authorities:
 	class—For resources accessible via the classloader of the connector class. If your request contains an “org.restlet.clap.classLoader”
 attribute, you can provide a custom classloader.

 	system—For resources accessible via the system’s classloader. See the System, getSystemClassLoader () method for details.

 	thread—For resources accessible via the current thread’s classloader. See the Thread.getContextClassLoader () for details on this
 classloader.

 For example, you can send a GET request to the clap://class/org/restlet/Restlet.class resource to retrieve the content of
 the org.restlet.Restlet.class file. It can also retrieve properties files or be used to serve static websites bundled as JAR
 files.

	RIAP client and server
 	JVM connector to manipulate (with any method) the representation of resources accessible via the local Restlet Framework and
 the riap URI scheme. RIAP supports these URI authorities:
 	application—For resources accessible relative to the current Restlet application if available

 	component—For resources accessible relative to the current Restlet component if available

 	host—For resources accessible relative to the current Restlet virtual host if available For example, you can send a PUT request
 to update the riap://application/foo/bar resource to update the resource under the relative URI foo/bar in the current application.
 This pseudoprotocol is implicitly available through the Context.clientDispatcher mechanism.

Those connectors are key elements of the framework, but in the end you’ll rarely directly invoke them. Instead, you’ll use
 higher-level classes such as ClientResource and ServerResource as discussed previously, or the Directory class to serve static files as you’ll see in section 8.1. We make concrete use of the RIAP pseudoprotocol in section 8.5 when discussing modularization of large applications.

 Let’s now introduce the extension connectors that are provided in extension JAR files, such as org.restlet.ext.jetty.jar.
 Additional library dependencies are provided in the Restlet distribution for Java SE and described in a readme.txt file of
 the lib top directory. Table 3.3 lists the connectors available.

 Table 3.3. Characteristics of extension connectors

 	
 Extension

 	
 Protocols

 	
 Description

	HTTP Client
 	HTTP/HTTPS client
 	Complete and production-ready connector based on the latest versionof the popular Apache HTTP Client library. All HTTP features
 are supported, including:
 	Persistent connections (with limit settable per host and in total)

 	Chunked encoding (for entities with unknown length)

 	HTTP proxy configuration

 	Timeout configuration

	JavaMail
 	POP/POPS,SMTP/SMTPS/SMTP StartTLS client
 	Complete and production-ready client connector to post and retrieve emails from a remote mail server based on the JavaMail
 API and reference implementation. It also supports common authentication mechanisms. The originality of this connector is
 that it maps the HTTP semantics of the GET and POST methods to the JavaMail API, using XML documents to represent emails and
 mail boxes. There’s no need to learn JavaMail to use it. Dynamic XML emails can easily be created using a template engine
 such as FreeMarker or Velocity.

	JDBC
 	JDBC client
 	Complete and production-ready client connector to post SQL statements to a JDBC data source, typically a relational database
 based on the JDBC API. It supports regular authentication and connection pooling via the Apache Commons Pool library.
 The originality of this connector is that it maps the HTTP semantics of the POST method to the JDBC API, using XML documents
 to represent SQL statements and result sets. There’s no need to learn JDBC to use it. Dynamic XML statements can easily be
 created using a template engine such as FreeMarker or Velocity.

	Jetty
 	AJP/HTTP/HTTPSserver
 	Complete and production-ready connector based on the popular Jetty HTTP server. Most HTTP features are supported:
 	Persistent connections (with limit settable per host and in total)

 	Chunked encoding (for entities with unknown length)

 	Configurable worker thread pool

 	Graceful shutdown

 	Timeouts configuration

 	Buffer size configuration

 	Choice of BIO or NIO implementation

	
 	
 	Besides the usual HTTP and HTTPS protocols, this connector supports the AJP protocol, which is sometimes used to tunnel HTTP
 calls between a front-end Apache HTTP daemon and a back end HTTP server as an alternative to reverse HTTP proxies.

	Lucene
 	SOLR client
 	Client connector to an embedded Apache Solr indexing and retrieval engine.

	Net
 	HTTP/HTTPS and FTP clients
 	Complete and production-ready connector based on the java.net.HttpURLConnection class from the JDK. Main HTTP features are
 supported, including:
 	Persistent connections

 	Chunked encoding (for entities with unknown length)

 	HTTP proxy configuration (JVM settings)

 	Timeout configuration

	
 	
 	The main interest of this connector is that it requires no additional dependency and is the only HTTP client supported in
 the Google App Engine edition.

	Simple
 	HTTP/ HTTPS server
 	Alternative server connector ready for production based on the lightweight Simple HTTP framework, with features including:
 	Chunked encoding (for entities with unknown length)

 	Configurable worker thread pool

 	Graceful shutdown

	SIP
 	SIP client and server
 	Standalone client and server connectors built on top of the internal HTTP/ NIO connector, enabling the construction of convergent
 web and VoIP applications. SIP is the base protocol of VoIP, inspired by HTTP.
 Note that the extension doesn’t provide a SIP state machine but only a Java API that maps most SIP methods, statuses, and
 headers as well as SipClientResource and SipServerResource classes to process SIP calls.

In addition to the main features described in table 3.3, you can obtain more information in the Javadocs, including a list of parameters that can be adjusted for each connector.
 The following listing shows how to configure such a parameter by adjusting the MailServerComponent class from listing 3.1.

	

 Removed connectors

 Note that some experimental connectors based on Grizzly and Netty NIO frameworks were introduced in version 2.0, then removed
 in 2.1 in favor of new internal HTTP connectors that take full advantage of asynchronous NIO processing.

 	

Listing 3.3. Adding HTTP tracing to the internal server connector

 ...
// Adds an HTTP server connector
Server server = getServers().add(Protocol.HTTP, 8111);
server.getContext().getParameters().set("tracing", "true");
...

 To be taken into account, the "tracing" parameter must be set before the connector is started. When enabled it asks the default HTTP server to trace in the Java
 console the exact content of all the requests and responses exchanged with clients. This can be handy when troubleshooting.

 The next subsection explores virtual hosting.

 3.3.3. Setting up virtual hosting

 In chapter 2, we discuss the Restlet routing system and in particular the Router class. The role of a router is to dispatch inbound calls to the best of the attached routes based on some criteria, typically
 the target URI of the request, or more precisely the relative part of the URI that hasn’t been routed.

 For example, inside the MailServerApplication class updated in listing 3.13, we attached resources to the root router using relative URI paths, assuming that the base of the URI had already been consumed by the default host in MailServerComponent in listing 3.1. In this section we examine how the base of the URI—for example, http://localhost:8111—is effectively matched by a Restlet
 component and the exact behavior of a virtual host.

 Virtual hosting in Restlet allows you to bind the same IP address to several internet domain names and still retain the ability
 to serve each domain name with a separate Restlet application. You can also listen at the same time to several IP addresses,
 handled by the same application if necessary—for example, for network load-balancing or fail-over purposes.

 To get started, look at table 3.4, which lists the properties of org.restlet.routing.VirtualHost, which extends the Router class.

 Table 3.4. Properties of the VirtualHost classes

 	
 Property

 	
 Description

	hostDomain
 	Pattern string that is matched against the domain name of the host URI reference of the incoming call, extracted from the
 Request.hostRef.hostDomain property.

	hostPort
 	Pattern string that is matched against the port number of the host URI reference of the incoming call, extracted from the
 Request.hostRef.hostPort property. If not present in the URI, the pattern is matched against the default port number of the
 scheme, such as 80 for HTTP or 443 for HTTPS.

	hostScheme
 	Pattern string that is matched against the scheme name of the host URI reference of the incoming call, extracted from the
 Request.hostRef.scheme property.

	resourceDomain
 	Pattern string that is matched against the domain name of the target resource URI reference of the incoming call, extracted
 from the Request.resourceRef.hostDomain property.

	resourcePort
 	Pattern string that is matched against the port number of the target resource URI reference of the incoming call, extracted
 from the Request.resourceRef.hostPort property. If not present in the URI, the pattern is matched against the default port
 number of the scheme, such as 80 for HTTP or 443 for HTTPS.

	resourceScheme
 	Pattern string that is matched against the scheme name of the target resource URI reference of the incoming call, extracted
 from the Request.resourceRef.scheme property.

	serverAddress
 	Pattern string that is matched against the server IP address that received the incoming call, extracted from the Response.serverInfo.address
 property.

	serverPort
 	Pattern string that is matched against the server IP port number that received the incoming call, extracted from the Response.serverInfo.port
 property. If not specified, the pattern is matched against the default port number of the protocol used to receive the call,
 defined by Request.protocol.defaultPort.

Each property is a string containing a pattern to be matched. The expression language used for the pattern is defined by the
 java.util.regex.Pattern class. For example, all the properties have the same default value .*, which matches any sequence of characters. The value a* would only match a sequence of zero or more a characters. Regular expressions can be powerful but complex, so we recommend reading the Javadocs of the Pattern class and related documentation for help.

 The last piece that’s missing is the selection of the best virtual host for an inbound call by attempting to match the previously
 mentioned properties. This is the role of the engine logic inside each Restlet component, which uses a special router adding
 a route for each virtual host declared via the Component.hosts property as well as the Component.defaultHost property. In case no virtual host matches, a 404 (Not Found) status is returned.

 Note that the Component’s default host is initialized to match any request, so be careful when going into production and precisely check which Restlet
 applications are attached to it. You can set it to null or make sure that its patterns are more restrictive, like a regular
 virtual host bound to a specific domain name or IP address. Finally, remember that a VirtualHost instance is still a kind of Router instance, so you can attach applications to it, or any kind of Restlet instance if necessary, using several attachment subpaths for different applications attached to the same host.

 Applying what you’ve learned, let’s plan an (imaginary) production deployment of the RESTful mail system that makes MailServerComponent and the contained MailServerApplication available on the Web at the following URIs: www.rmep.com, www.rmep.net, and www.rmep.org. Let’s also imagine that the dedicated server machine has two network cards for network fail-over reasons, each linked to
 a different internet provider. (Another reason for having multiple IP addresses could be for network load-balancing or to
 map different domain names to separate IP addresses.) Figure 3.5 summarizes the virtual host configuration you want to obtain.

 Figure 3.5. Virtual host listening on two IP addresses and serving several domain names

 [image:]

 You want to update your component to match the desired configuration. Because there’s only one virtual host, you’ll reconfigure
 the default virtual host, which by default matches all requests. The following listing sets more precise patterns to match
 the host domain name of the request and the HTTP server IP address and port number.

 Listing 3.4. Configuring the virtual hosting

 [image:]

 If you restart the component and attempt to GET the http://localhost:8111/accounts/URI in your browser, the following error
 message is displayed: “No virtual host could handle the request.” It might appear that you can’t test this configuration unless
 all the domain names are bought and the network is configured with the matching IP addresses. Now it’s time to demonstrate
 how to use the Restlet Framework for testing purposes by creating test requests and responses and locally invoking any Restlets
 (components, applications) without going through the connector and network layers.

 Listing 3.5 presents a simple JUnit test case that builds a request/response as it would be received by the server connector. It directly
 invokes a local instance of the MailServerComponent class. To make sure this test fails if the domain name doesn’t match, try running it again after changing the request domain
 name to rmep1.org.

 Listing 3.5. Unit test for virtual host

 [image:]

 We’re now nearly done with our exploration of standalone deployment of Restlet applications; we need to cover the available
 services in Component and declarative XML configuration.

 3.3.4. Configuring common services

 In section 2.3.4, we explain how to configure common services for Application. For the Component class, the same service mechanism applies; services extend the Service class and can be added to the Component.services property for registration. Two default services are available, listed in table 3.5, enabled and preregistered for you.

 Table 3.5. Restlet applications can use several built-in component services.

 	
 Name

 	
 Description

	LogService
 	Global access log for all server connectors and applications contained in the component. By default, it produces log entries
 in a format similar to IIS and Apache HTTP servers.

	StatusService
 	Handles error statuses. If an exception is thrown within your application or Restlet code, it’s intercepted by this service
 in order to customize the response status code and entity to ensure a consistent look-and-feel.

The status service is complementary to the one defined in each application but can be configured to overwrite the status pages
 to make sure that they have a consistent look-and-feel across all applications contained.

 Let’s look more closely at the log service and configure it to maintain a rotating access log file. The following listing
 updates the MailServerComponent to load logging properties via the classpath.

 Listing 3.6. Configuring access logging

 [image:]

 In this example it’s interesting to note how you use the Restlet client connector for the CLAP pseudoprotocol to easily retrieve
 the log.properties file from the classpath so it can be stored in the same directory as the MailServerComponent.java source
 file. Have a look at the self-documented configuration file to understand how you set up log handlers for the console, the
 rotating access log file, and the rotating debug file. You can easily adjust the logging level in this configuration to capture
 more or fewer log events in the console or in the log files.

 Alternatively, you can indicate the location of the login properties with a JVM parameter:

 -Djava.util.logging.config.file="/foo/bar/log.properties"

 You can use advanced logging frameworks via the org.restlet.ext.slf4j extension. Switch Restlet logging from built-in Java logging to SLF4J by setting the org.restlet.engine.loggerFacadeClass system property to the value org.restlet.ext.slf4j.Slf4jLoggerFacade—or achieve the same effect programmatically with this code:

 Engine.getInstance().setLoggerFacade(new Slf4jLoggerFacade());

 SLF4J documentation describes how to configure the façade to use the desired framework (LogBack, log4j, and others). Note
 that currently the line numbers in log messages aren’t for the calling code but are from the logger façade class itself. Apart
 from this drawback, the Restlet bridge from java.util.logging to SLF4J is more efficient than the one provided by SLF4J because
 no additional log record objects are created; the façade invokes the SLF4J APIs directly.

 In this section you saw that the Restlet API encompasses all aspects of REST and lets you build coarse-grained components
 and connectors using simple Java code. We described the available connectors and virtual hosts and saw how to configure them
 within Restlet components. You’ll now see a completely different way to configure Restlet components—using XML.

 3.4. Declarative configuration in XML

 Imagine that your system administrator has no Java skills but still needs to adjust the virtual hosts, port numbers, and IP
 addresses for your deployed applications. In such cases, you can use XML to configure your standalone Restlet components.

 In this section we explain how to configure a component using a declarative XML approach with results equivalent to those
 obtained using plain Java code. You’ll see an example using the simple XML format supported by the Component class and then learn about a more complete and powerful approach based on the Spring Framework.

 3.4.1. XML configuration with Component

 The first way to use XML is built into the Component class itself, allowing you to use a simple XML document to configure your connectors, virtual hosts, and other properties
 that we used in the MailServerComponent class. The following listing replaces the MailServerComponent class with a single XML document.

 Listing 3.7. Declarative XML configuration with the Component class

 [image:]

 This configuration is similar to the equivalent Java code but can be more easily changed, without recompilation or Java knowledge.
 To run this component, you invoke the Component.main() static method, passing as a parameter a URI that refers to the XML configuration. Any available protocol or pseudoprotocol
 can be used, such as CLAP for the classpath, FILE for a local file, and even HTTP. In this case, we stored the configuration
 in a component-simple.xml file stored in the source package, resulting in this URI: clap://system/org/restlet/example/book/restlet/ch03/sec3/
 server/component-simple.xml.

 3.4.2. XML configuration with Spring Framework

	

 Spring Framework

 Spring is a layered application framework and lightweight container with foundations in the book Expert One-on-One J2EE Design and Development by Rod Johnson (Peer Information, 2002). (The Spring project itself started in 2003.) The lightweight container and an aspect-oriented
 programming (AOP) system are the main building blocks of Spring. Spring also comes with a common abstraction layer for transaction
 management, integration with various persistence solutions (plain JDBC, Hibernate, JPA), and Java enterprise technologies
 (JMS, JMX). Spring even provides its own Model View Controller (MVC) Web framework called Spring MVC. The Spring framework
 isn’t an “all-or-nothing” solution: you can choose the modules according to need, the lightweight container being the glue
 for the application and the Spring classes.

 	

Another popular way to declaratively configure a Restlet component is with the Spring Framework, using its special XML syntax
 for dependency injection even though it’s also possible to use annotations. This approach encourages loose coupling between entities and improves application maintainability.

 To simplify using Restlet with the Spring Framework, a special extension is provided in the org.restlet.ext.spring module. It contains classes to facilitate configuration; for example, you can use SpringComponent instead of its parent Component class.

 The following listing demonstrates configuring a component equivalent to the MailServerComponent using Spring XML.

 Listing 3.8. Declarative XML configuration with the Spring Framework

 [image:]

 [image:]

 Each instance managed by Spring is defined using a bean XML element that can specify both the class of the instance (the class
 attribute) and its properties (the properties XML element). The property XML element can contain either a value or a reference
 to another bean managed by Spring. The given configuration declares the equivalent of the existing MailServerComponent.

 With the Spring Framework, you can go further and configure other parts of the Restlet API, such as an application and its
 contained resources. The following listing contains the continuation of listing 3.8.

 Listing 3.9. Declarative XML configuration with the Spring Framework (continued)

 [image:]

 This part of the configuration is a bit verbose because there’s a lot of information to provide on the application. First
 you set the child context and general application information. Then you define a SpringRouter instance and its attachments property to indicate how to access your resources. This router is injected within the application using its inboundRoot property. This corresponds to what you specify in the create-InboundRoot method without Spring.

 Note that you have to manually create a child context because the component’s context can’t be directly passed to isolate
 all contained applications, for security reasons. With the Java API, this child context is automatically created by the attachment
 methods, but with Spring it has to be done explicitly at instantiation time.

 As a result, you can configure both your component and your application in XML with Spring, leaving only the server resources
 to code. This can be useful in situations where you want to provide different sets of resources for an application based on
 some deployment aspects, or different sets of applications for a component.

 This is an overview of the features offered by the Spring extension for Restlet. Refer to the Javadocs and the online user
 guide for details. Let’s now make sure the Spring XML configuration works by running the small bootstrap code in the following
 listing.

 Listing 3.10. Running the declarative XML configuration with the Spring Framework

 public class MailServerSpring {

 public static void main(String[] args) throws Exception {
 // Load the Spring container
 ClassPathResource resource = new ClassPathResource(
 "org/restlet/example/book/restlet/ch03/sec3/server/component-spring.xml");
 BeanFactory factory = new XmlBeanFactory(resource);

 // Start the Restlet component
 Component component = factory.getBean("component", Component.class);
 component.start();
 }

}

 The BeanFactory entity representing the Spring container can be loaded using several strategies. Listing 3.10 loads from the classpath based on the ClassPathResource class. The latter looks for the file in the classpath interpreting the path relative to the classpath root. Because you use
 an XML file for metadata, the XmlBeanFactory class is used. Now that the container is loaded, you can access configured beans by identifier using the getBean method. The example gets the Restlet component instance and starts it with its start method.

 In this section you saw how to configure Restlet components with XML instead of Java code, first using the built-in XML configuration
 capabilities of the Component class and then using the more advanced XML configuration based on the Spring Framework. More approaches have been successfully
 explored by Restlet community members, such as the use of other dependency injection frameworks like Google Guice and dynamic
 languages such as Groovy and Scala.

 Spring XML configurations can be verbose due to XML itself. To address this issue, Spring lets you use dedicated XML schemas
 for particular use cases. The most well-known are the ones for AOP and transactions. With them, there’s no need to know about the underlying beans; the schema hides this
 complexity. The Restlet extension for Spring doesn’t provide such a schema yet, but work is in progress (see issue #508 on
 GitHub for more details). Once available, the resulting XML configuration will look like the following listing.

 Listing 3.11. Configuration using Spring namespace for Restlet

 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:restlet="http://www.restlet.org/schema/spring-restlet"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.restlet.org/schema/spring-restlet
 http://www.restlet.org/schema/restlet/spring-restlet.xsd">

 <restlet:application id="application">
 <restlet:attachments>
 <restlet:attachment route="/companies/{id}"
 resource="companyResource"/>
 </restlet:attachments>
 </restlet:application>
</beans>

 Next we introduce another common way to deploy Restlet applications: reusing existing investments in Java EE application servers.

 3.5. Deployment in an existing Java EE server

 As you saw in section 3.3, the Restlet Framework can be used as a standalone framework on top of Java SE providing a lightweight web development platform.
 But it’s often necessary to deploy to Java EE application servers in production environments or to integrate with existing
 Servlet applications to add RESTful support without starting again from scratch.

 In this section we present the Java EE edition of the Restlet Framework, especially its Servlet extension, and we discuss
 the integration modes supported. We illustrate those integration options by deploying our example RESTful email system into
 Apache Tomcat, the most widely used Servlet engine.

 3.5.1. The Servlet extension

 The Java EE edition of the Restlet Framework contains the exact same API and engine as the Java SE edition but comes with
 a different set of extensions. For example, the standalone HTTP/HTTPS server connectors such as Jetty and Simple aren’t provided
 but the new Servlet extension is.

 This extension, available as an org.restlet.ext.servlet.jar file, provides a bridge between the Servlet API and the Restlet
 API. This bridge was possible because the Restlet API is designed at a higher abstraction level and has a much broader feature
 scope.

	

Note

 Moving forward in this section, you’ll need to download the distribution for Java EE, including the addition Servlet extension,
 in order to run the examples.

 	

Now let’s look at the main bridging scenarios supported by the extension.

 3.5.2. Servlet engine as a connector for a Restlet component

 The first scenario makes the most use of the Restlet Framework. You keep using a Restlet component as a container of Restlet
 applications. The underlying Servlet engine is only used as a server connector to support HTTP and HTTPS protocols, as illustrated
 in figure 3.6.

 Figure 3.6. Using the Servlet engine as an HTTP server connector for a Restlet component

 [image:]

 This scenario can ensure broad portability of a Restlet project from a standalone Java SE deployment to a Java EE deployment
 but requires extra care in the way the Servlet engine is configured. Indeed, although the Restlet API gives you full control
 over its routing system, the Servlet API has adopted a more declarative way, typically based on a /WEB-INF/web.xml file.

 As a result, the initial URI-based routing of incoming calls will be routed first through the Servlet engine before reaching
 the Restlet component. Because the Restlet component is designed to fully handle routing, including virtual hosting, it starts
 the routing again from the beginning of the URI. Therefore you must ensure that its routing configuration is consistent with
 the Servlet’s.

 Let’s put that advice in practice by deploying the MailServerComponent inside Apache Tomcat 6.0, a popular Servlet engine. First, you trim the class down a little in the following listing because
 you don’t need to declare the HTTP server connector anymore and you can rely on Tomcat to write the access log.

 Listing 3.12. Trimmed down MailServerComponent for Servlet deployment

 public class MailServerComponent extends Component {

 public MailServerComponent() throws Exception {
 // Set basic properties
 setName("RESTful Mail Server component");
 setDescription("Example for 'Restlet in Action' book");
 setOwner("Restlet SAS");
 setAuthor("The Restlet Team");

 // Attach the application to the default virtual host
 getDefaultHost().attachDefault(new MailServerApplication());
 }

}

 As you can see, you don’t need to declare the CLAP client connector because you no longer load the log properties file. But
 it’s common in the Servlet world to store configuration files inside the WAR structure, typically in the /WEB-INF/ directory.
 Those files are easily accessible from the Restlet world thanks to a WAR client connector that’s automatically added to your
 component. As an exception, you don’t have to manually declare it. To use it, use a ClientResource or the Context.client-Dispatcher property and issue GET requests on URI references like war:///WEB-INF/ myConfig.xml.

 Let’s now configure the Servlet engine to route HTTP calls to your component. For this, you need to edit the usual /WEB-INF/web.xml
 file, using the ServerServlet adapter class from the Servlet extension, as illustrated in the following listing.

 Listing 3.13. Configuring the Servlet’s web.xml file

 [image:]

 The next step is to copy two JARs from the Restlet distribution for Java EE into the /WEB-INF/lib/ directory:

 	org.restlet.jar

 	org.restlet.ext.servlet.jar

Finally you need to package the Servlet project as a WAR and deploy it with no base URI path. (Ordinarily the WAR name is
 used as the base URI path, but this wouldn’t match the URI routing declared inside the MailServerComponent where / maps to the RootServer-Resource.) You can then launch Tomcat and test your Restlet component by entering the following URI in your browser: http://localhost:8080/.
 The following message should be displayed: “Welcome to the RESTful Mail Server application!” Note that the default port number
 of Tomcat is 8080—a change from the 8111 value you’ve used until now.

 3.5.3. Servlet engine as a container of Restlet applications

 This second scenario is useful when you have existing Servlet applications deployed and want to deploy Restlet applications
 as well under separate URI paths. In this case the idea is to consider the Servlet engine as the component containing the
 applications and providing the server HTTP connector.

 Figure 3.7 illustrates a Java EE deployment with two Servlet applications and one Restlet application coexisting. Each application is
 supposed to be deployed as a separate WAR file, contrary to the previous scenario.

 Figure 3.7. Using the Servlet engine as a container of Restlet applications

 [image:]

 Let’s now configure the Servlet engine to route HTTP calls to the example MailServerApplication. For this you need to edit the usual /WEB-INF/ web.xml file, using the ServerServlet adapter class from the Servlet extension as illustrated in the following listing.

 Listing 3.14. Configuring the Servlet’s web.xml file

 [image:]

 Using the same JAR files as in the previous scenario, you can now deploy your WAR into Tomcat. This time, you can attach our
 Servlet WAR to any base URI—for example, to /rest/ in order to keep other root paths for other web applications, potentially
 including other bridged Restlet applications. After restarting Tomcat, you can access the http://localhost:8080/rest/URI in
 your browser to see the welcome message.

 This example illustrates how portable Restlet applications are. The exact same code was used in both standalone Java SE and
 Java EE deployments. Note that in this scenario, it’s possible to declare several Restlet applications at the same time. You
 need to give them different servlet-name values and adjust the servlet-mapping element accordingly.

 In the next section, we look at another way to deploy Restlet applications within a Servlet engine—more precisely, inside
 an Oracle RDBMS!

 3.5.4. The Oracle XML DB extension

 The org.restlet.ext.xdb extension provides a Restlet server connector usable within an Oracle 11g database. It allows you to expose RESTful web APIs
 using the Oracle JVM, an embedded JVM compatible with Java 1.5 running inside the database. This approach has the benefits of saving memory space and being fast due to local access to the SQL resources. In addition, Oracle
 XML DB provides a Servlet 2.2 engine that can work together with the Restlet Framework to process HTTP calls.

 In order to deploy your Restlet application inside the Oracle JVM, you need to enable the HTTP service in Oracle and then
 use the org.restlet.ext.xdb.XdbServerServlet class instead of the usual ServerServlet. This special subclass is necessary due to the limited capabilities of Oracle’s embedded Servlet engine (no session, no cookies,
 only one Servlet context supported, and no request dispatcher).

 Those constraints are fine from a Restlet point of view, which makes it a good fit if you’re already using an Oracle database
 to store the state of your Restlet resources. You can even benefit from native optimization when writing XML documents.

 3.5.5. Restlet Framework as a library inside Servlet applications

 The last scenario is sometimes preferred by Restlet users because it allows a fine-grained integration between existing Servlet
 applications and the Restlet Framework. It considers the Restlet Framework as a regular library or toolkit from which selected
 features, such as the ClientResource class or the Representation subclasses, can be used without bringing in the entire Restlet framework. Figure 3.8 illustrates this scenario with three Servlet applications deployed, one of them using Restlet as a library rather than as
 part of a comprehensive framework.

 Figure 3.8. Using the Restlet Framework as a library inside Servlet applications

 [image:]

 Another intermediary case is when you still want to use Restlet for server-side resources, but after some Servlet-based handling.
 For this purpose, the Servlet extension provides an org.restlet.ext.servlet.ServletAdapter class that has a service(HttpServlet-Request, HttpServletResponse) method that’s able to adapt a Servlet call into a Restlet call and to pass it to an attached Restlet defined by the next property. For example, the RestletFrameworkServlet class in the org.restlet.ext.spring extension makes use of the adapter class to provide another integration mode between Spring and Restlet.

 We next introduce an alternative way to deploy Restlet applications, based on the highly modular and dynamic OSGi environments.

 3.5.6. Dynamic deployment in OSGi environments

 OSGi is a popular execution environment on top of the JVM that allows dynamic assembly of applications. Its main features
 are the ability to isolate applications running in the same JVM, even allowing deployment of several versions of the same
 application or library at the same time. It also provides hot deployment, hot update, and a loosely coupled service framework.
 The most famous OSGi example is the Eclipse IDE itself, but in recent years use has expanded to the server side as well.

 The Restlet Framework provides out-of-the-box support for OSGi with a dedicated edition that ensures that each of its modules,
 including the Restlet core and extension JARs, are properly defined OSGi bundles. As a result, Restlet applications can be
 part of larger OSGi systems. Restlet can be embedded within OSGi bundles based on activators, entities that are triggered when bundles start and stop. In a Restlet context this enables you to start a Restlet server
 on bundle startup and stop it on bundle shutdown. The following listing describes how to implement this approach.

 Listing 3.15. An OSGi activator to manage an embedded Restlet server

 [image:]

 The activator then needs to be specified in the MANIFEST.MF file of the bundle that embeds it, as described in the following
 snippet:

 Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: Embedded Restlet Server
Bundle-SymbolicName: org.restlet.osgi.server
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: org.restlet.osgi.server.ServerActivator
Import-Package: org.osgi.framework;version="1.3.0"
Require-Bundle: org.restlet;bundle-version="2.1.0"

 Because OSGi implements strict class loading, you must import the necessary packages and bundles corresponding to the classes
 you used in your activator (the OSGi package as well as the Restlet core bundle, in this case).

 At this point, you have an embedded Restlet server in an OSGi container but no virtual hosts or applications are associated
 with it. You could configure everything within a single bundle, but you would lose modularity by not taking advantage of OSGi’s
 dynamic capabilities. The idea here is to detect virtual hosts and automatically configure against the previous server. This
 is the classic OSGi approach, following the white-board pattern.

	

 OSGi and the whiteboard pattern

 This pattern is based on the OSGi service registry. Some providers register service implementations against a particular interface,
 and consumers listen for matching services. When such services are added or removed, consumers are notified and can adapt
 their processing.

 This pattern allows simple decoupling of producers from consumers and uses the dynamic capabilities of OSGi.

 For information see http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf. (Peter Kriens and BJ Hargrave, 2001–2004, OSGi Alliance.)

 	

Some bundles provide virtual hosts using the OSGi service registry. Each virtual host that needs to be added within the component
 is registered as an OSGi service. Activators of provided bundles are responsible for this registration and unregistration,
 as shown in the following listing.

 Listing 3.16. An OSGi activator to manage registration of a virtual host

 [image:]

 Now you need to update the server bundle to listen to service updates—in particular, services of type VirtualHost. If a service is registered, the bundle detects it and adds it to the component. On unregistration, the bundle removes it
 from the component. This feature is based on listening mechanisms provided by OSGi.

 The code contained in the following listing must be added at the end of the start method of the server activator.

 Listing 3.17. Handling registrations and unregistrations of virtual host services

 [image:]

 You need to find out whether some virtual host services are already present in the OSGi container [image:]. By default, bundles can randomly start, and the server bundle can start up after some bundles providing virtual host services.
 For those that will be added or removed after, a listener is implemented and registered [image:]. Its serviceChanged method is called on such events. After detecting the service type, the method handles the registration or the unregistration
 of the virtual host against the Restlet component.

 Don’t forget to remove the OSGi service listener on bundle shutdown in the stop method of the server activator, as described in the following snippet:

 bundleContext.removeServiceListener(virtualHostListener);

 Another promising way to use OSGi with Restlet is the Eclipse Virgo project (the contribution of SpringSource dm Server to
 the Eclipse Foundation, available at www.eclipse.org/virgo/), which provides a completely OSGified web application server alternative to the usual Java EE application servers.

 You can also directly use Eclipse Gemini project (the contribution of SpringSource “Spring Dynamic Modules,” available at
 www.eclipse.org/gemini/) to let Spring manage your Restlet applications in an OSGi environment.

 To learn more about deploying Restlet applications in OSGi, we recommend reading Spring Dynamic Modules in Action (Manning, 2011)—especially chapter 8, “Developing OSGi web components with Spring DM and web frameworks.” It even comes with a comprehensive deployment example
 for the Restlet Framework 2.0!

 3.6. Summary

 In this chapter you learned how to deploy Restlet applications on premises, a term used to describe machines that you physically control. You saw that the purpose of a Restlet component is to provide
 a RESTful web container for developers to host their Restlet applications and connect them with other REST components with
 client and server connectors. You saw that Restlet components are structured with four layers:

 	The outermost connectivity layer provides shared client and server connectors between all contained applications.

 	The service filtering layer provides services common to all contained applications such as access logging or global status
 handling.

 	The virtual hosting layer, available only on the server side, provides component-level pre-routing on host, port, and scheme;
 this allows, for example, several applications, each with its own domain name, to share the same IP address.

 	The central application handling layer handles inbound calls with Restlet applications and can issue outbound calls.

We also introduced the connectors provided in the Restlet Core and in Restlet Extensions, supporting a broad set of protocols
 and pseudoprotocols, including CLAP, FILE, FTP, HTTP/HTTPS, JAR/ZIP, JDBC, POP, RIAP, SOLR, and SMTP. We described the main
 characteristics of those connectors, helping you to make the best decision regarding which one to select in specific scenarios.
 You also learned how to use the virtual hosting and service filtering layers to, for example, map several IP addresses to
 a single domain name and to configure a web access log.

 We described two alternative deployment mechanisms useful for administrators who can’t recompile Java code to configure things
 specific to deployment environments, such as port number and domain name. In those cases, declarative XML configuration files
 can be used, using the Spring Framework if necessary.

 We also showed you some benefits of Restlet application portability by covering how Restlet edition for Java EE can let you
 easily deploy to Servlet engines such as Apache Tomcat, Oracle XML DB, and even OSGi environments. We described the main deployment
 scenarios with various levels of usage of Restlet.

 You’ve now completed the “Getting started” part of this book. So far, we briefly introduced REST (additional details are available
 in appendix C) and then dove into Restlet coding, beginning the development of Restlet applications and resources and deploying them on
 premises with Restlet components.

 You’ll now start the second part of your journey, exploring in more depth important aspects of Restlet development, such as
 resource representations, security, documentation and more, giving you enough knowledge to roll out into production.

Part 2. Getting ready to roll out

 Part 1 showed that the Restlet Framework provides a comprehensive solution to developing your RESTful web projects. So far, we’ve
 put the framework in action with the RESTful mail system example by introducing only the concepts needed to get you started.
 This second part shares with you the necessary knowledge to change a prototype into a production-ready Restlet application.

 Chapter 4 extensively covers the development of Restlet representations. Rather than simple strings, as in part 1, you’ll expose and consume complex representations using languages such as XML, JSON, and HTML. You’ll see how to use a minimal
 amount of code with techniques such as content negotiation and automatic binding with the converter service.

 Chapter 5 explains how to secure a Restlet application, covering aspects such as confidentiality with TLS/SSL and user authentication.
 It covers authorization of specific actions using coarse- or fine-grained approaches as well as ways to ensure end-to-end
 data integrity—for example, to ensure nonrepudiation.

 Chapter 6 goes over common requirements for RESTful web APIs: producing and maintaining user documentation and listing available resources,
 their URI templates, their exposed representations, and allowed methods. WADL is the de facto standard for this in RESTful
 applications, and chapter 6 discusses how it’s supported in Restlet. We also discuss when and how to version your web API.

 Chapter 7 talks about how to fulfill common needs such as processing web forms, handling file uploads, and setting cookies on web clients.
 You’ll also learn best practices regarding testing and optimization of Restlet applications.

 By the end of part 2 you should be equipped to develop a complete Restlet application and make it ready for deployment in production!

Chapter 4. Producing and consuming Restlet representations

	

 This chapter covers

 	Producing and consuming XML and JSON representations

 	Producing HTML using template representations

 	HTTP content negotiation

 	Simplifying representation handling with the converter service

 	

In part 1 of the book, we had several opportunities to discuss representations. In chapter 1 we briefly explained that representations in REST are used to transfer resource state. We pointed to appendix A for an overview of the org.restlet.representation package and to appendix D for details on RESTful representation design, covering the definition of representation classes and the importance of hypermedia
 as the preferred mechanism to interact with an application in REST. Finally we manipulated basic representations in chapters 2 and 3 using the StringRepresentation class and using the converter service to return String instances directly, without needing to wrap them in a complete representation.

 In this chapter we explore in detail how to create and consume real-world representations. As XML is a primary language for
 RESTful representations, a large part of this chapter covers its deep support in Restlet. What you learn will also be applicable to other textual formats or media
 types. As an illustration we use a mail representation from appendix D and expose it in various formats using Restlet extensions.

 4.1. Overview of representations

 In the previous chapters we mainly explained how to work with resources and animate them with RESTful method calls. When needing
 to expose a representation on the server side or display one on the client side, we used the StringRepresentation class or the String class. Even though this is sufficient for basic cases, in real life you will find many reasons to go beyond that—for example,
 working with large representations and using automatic serialization and deserialization of regular Java objects to media
 types such as XML and JSON.

 All those possibilities are based on the org.restlet.representation package introduced in chapter 1 and a set of Restlet extensions. In this section we explore this package, starting with root Variant and RepresentationInfo classes used to describe representation variants. We then continue with the abstract Representation class and the various subclasses provided to deal with byte and character content.

 4.1.1. The Variant and RepresentationInfo base classes

 This section provides a closer look at those two classes, starting with a class diagram in figure 4.1.

 Figure 4.1. The Variant and RepresentationInfo classes are ancestors of all Restlet representations.

 [image:]

 The purpose of the Variant class is to describe a representation with enough metadata for content negotiation to work. Content negotiation is a powerful
 feature of HTTP that we cover in section 4.5, but for now you can see Variant as the ancestor of all representations, containing the most important properties as detailed in table 4.1.

 Table 4.1. Variant properties

 	
 Name

 	
 Description

 	
 Equivalent HTTP header

	characterSet
 	Character set used to encode characters in textual representations.
 	Content-Type, charset parameter

	encodings
 	Modifiable list of encodings applied. Encodings are modifiers of a representation’s media type, useful to apply compression
 without losing the identity of the underlying media type or to mark a template representation with the type of template engine.

 	Content-Encoding

	identifier

 	Optional identifier of the representation as a URI reference. If specified, it can be treated as an independent resource.
 	Content-Location

	languages
 	Modifiable list of languages. Normally only one language is used for a single representation, but it can happen that several
 languages are interleaved.

 	Content-Language

	mediaType
 	Media type that defines the exact format of the representation (that is, text/HTML, text/plain).
 	Content-Type

Note that each of the properties in table 4.1 relies on classes located in the org.restlet.data package—that is, CharacterSet, Encoding, Language, and MediaType. For the identifier property we rely on the Reference class, which allows flexible manipulation of any kind of URI reference. These classes provide constants for common meta-data
 such as CharacterSet.UTF_8, Encoding.ZIP, or MediaType.APPLICATION_XML.

 The RepresentationInfo class extends Variant to provide the two additional properties, shown in table 4.2. Its purpose is to support conditional method processing in an optimized way, without having to build full representations
 when a condition does not hold. First it adds the tag property based on the org.restlet.data.Tag class and a modificationDate property based on the usual java.util.Date class.

 Table 4.2. RepresentationInfo properties

 	
 Name

 	
 Description

 	
 Equivalent HTTP header

	modificationDate
 	Timestamp of this representation’s last modification
 	Last-Modified

	tag
 	Validation tag uniquely identifying the content of the representation
 	ETag

Because this sort of optimization is an advanced topic, we address it in chapter 7, section 7.4.5. For now, view it as a holder of additional representation properties you should try to set.

 4.1.2. The Representation class and its common subclasses

 Let’s continue our overview of Restlet representations with the abstract Representation class itself, the superclass of all concrete representations. Figure 4.2 gives an overview of this class, its parent RepresentationInfo class, and its main properties and methods.

 Figure 4.2. The abstract Representation class is the superclass of all Restlet representations.

 [image:]

 In REST, representations correspond to the current or intended state of a resource. They’re composed of content as a sequence
 of bytes and metadata as a collection of properties.

 The content of a representation can be retrieved several times if there is a stable and accessible source, like a local file
 or a string. When the representation is obtained via a temporary source like a network socket, its content can be retrieved
 only once. The transient and available properties are available to help you figure out those aspects at runtime.

 Properties in addition to those provided by Variant and RepresentationInfo are added by the Representation class, as summarized in table 4.3. They use the Digest, Disposition, and Range classes from the org.restlet.data package.

 Table 4.3. Additional Representation properties

 	
 Name

 	
 Description

 	
 Equivalent HTTP header

	available
 	Indicates whether some fresh content is available, without having to consume it.
 	N/A

	availableSize
 	Size effectively available. This value is the same as the size property except for partial representation where this is the
 size of the selected range.

 	Content-Length and Content-Range

	digest
 	Value and algorithm name of the digest or checksum associated to the representation.
 	Content-MD5

	disposition
 	Suggested download filename for this representation.
 	Content-Disposition

	expirationDate
 	Future timestamp when this representation expires.
 	Expires

	range
 	Range within the full content where the available partial content applies.
 	Content-Range

	size
 	Size in bytes if known, UNKNOWN_SIZE (-1) otherwise.
 	Content-Length

	transient
 	Indicates whether the representation’s content is transient, meaning that it can be obtained only once.

 	N/A

In addition to all those properties, the Representation class provides many ways to consume its content, such as the getStream(), getReader(), getChannel(), and getText() methods that return, respectively, an instance of the java.io.InputStream, java.io.Reader, java.nio.ReadableByteChannel, and java.lang.String classes.

 Another common way to consume the content of a representation is to ask it to write itself onto a target medium like a java.io.OutputStream, java.io.Writer, or java.nio.WritableByteChannel via one of the available write(...) methods. (Note that this approach requires the calling thread to block, which isn’t optimal for asynchronous handling.) Figure 4.3 summarizes how the content of any Restlet representation can be consumed.

 Figure 4.3. The various ways to consume representations’ content

 [image:]

 When you need to provide a concrete representation, you rarely start from scratch with this abstract Representation class but instead use one of its subclasses. The four class diagrams in figures 4.4, 4.5, 4.6, and 4.7 present the hierarchy of base representations provided in the core Restlet API. (Classes with italicized names are abstract.)

 Figure 4.4. Subclasses of representation

 [image:]

 Figure 4.5. Character-based representation classes

 [image:]

 Figure 4.6. BIO stream-based representation classes

 [image:]

 Figure 4.7. NIO channel-based representation classes

 [image:]

 You’ve already seen StringRepresentation in earlier chapters, but notice in figure 4.5 that a convenient subclass called Appendable-Representation lets you build a string in several steps without having to supply the full text at construction time.

 Keep in mind that additional representations are provided by Restlet extensions. We cover some of these extensions later in
 the book, but we encourage you to check the Javadocs and additional online documentation for comprehensive coverage.

 As explained later in this chapter, the converter service reduces the need to manipulate those representation classes directly,
 but it’s nonetheless important to be familiar with them and to be able to manipulate them occasionally. The following listing
 shows a little sample of how an AppendableRepresentation wraps textual content that grows dynamically and that can be manipulated in various ways.

 Listing 4.1. Manipulating the AppendableRepresentation

 [image:]

 If you run this test case, it should succeed as no exception is thrown and the assertion is valid. The console should also
 print four lines with the abcd1234 content. We will have other opportunities to discuss these representation classes, such as in section 7.4 when explaining how to improve the performance of your Restlet applications.

 Although the classes discussed define the foundation of all Restlet representations, you will often prefer to use more specific
 classes, such as SaxRepresentation, Jaxb-Representation, JsonRepresentation, and JacksonRepresentation, to handle complex structures like XML or JSON documents. The goal is to use higher levels of abstraction instead of working
 with representations at the byte or character level. The next section extensively covers different ways of dealing with XML
 representations.

 4.2. Producing and consuming XML representations

 As XML is the most popular format used by REST resources to expose their state as representations, it’s essential to cover
 how the Restlet Framework supports them. XML is as important for programmatic REST clients as HTML is for human REST clients.
 It’s a generic markup language with numerous concrete applications such as Atom for web feeds, DocBook for technical publications,
 RDF for semantic description of resources, and SVG for vector graphics, among others.

 As you’ll see in this section, the Restlet Framework provides numerous powerful and extensible ways to produce XML representations,
 consume and validate them, transform them, extract specific content, and bind them to regular Java beans.

 The first ways to produce and consume representations as XML documents are based on the standard DOM and SAX APIs, which offer
 very fine-grained levels of manipulation—for example, allowing evaluation of XPath expressions, handling of XML namespaces,
 and validation against XML schemas. We introduce three convenient Restlet extensions (org.restlet.ext.jaxb, org.restlet.ext.jibx, and org.restlet.ext.xstream) supporting the automatic binding between XML representations and regular Java objects. JAXB is a standard API built into
 Java SE since version 6, and JiBX and XStream are powerful open source libraries.

 To illustrate those features, we represent the Homer mail resource number 123 introduced in section 2.4.7 as an XML document.
 This resource corresponds to a specific email resource that would have been received by the Homer user of our RESTful mail
 system. Having an XML representation of this email allows its retrieval in other applications—for example, in indexing and
 search purposes. Figure 4.8 illustrates this use case, with the resource identified by the /accounts/chunkylover53/mails/123 absolute URI.

 Figure 4.8. Example resource exposing an XML document as representation

 [image:]

 For reference, the following listing shows the XML mail document that we want to expose and consume as a representation of
 the Homer mail resource.

 Listing 4.2. The target XML mail representation

 <mail>
 <status>received</status>
 <subject>Message to self</subject>
 <content>Doh!</content>
 <accountRef>
 http://www.rmep.org/accounts/chunkylover53/
 </accountRef>
 ...
</mail>

 Before using DOM and SAX support available in Restlet via the DomRepresentation and SaxRepresentation, you should know about their parent XmlRepresentation class.

 4.2.1. The org.restlet.ext.xml.XmlRepresentation class

 The XmlRepresentation abstract class has been provided since version 2.0 of the framework in the org.restlet.ext.xml extension. As illustrated in figure 4.9, it first contains a set of mostly Boolean properties that allows the configuration of SAX and DOM parsers in a way similar
 to the properties defined in the standard JAXP API provided in Java SE in the javax.xml.parser package.

 Figure 4.9. Partial details of the base XmlRepresentation class

 [image:]

 The default values of those properties are typically sufficient to get started, so we don’t present them in detail in this
 book, but you can refer to Restlet Java-docs if you want to know more about each of them. Additional properties are also available
 and will be introduced in other subsections.

 In the methods compartment, we find two constructors and four methods that can be used to manipulate an XmlRepresentation instance as a JAXP source object for integration purposes. The last static method is a convenience method that can aggregate
 all the text content of a given DOM node. More methods are available; they’re introduced in the subsections covering XML namespace
 handling, XPath expression evaluation, and XML schema validation. Speaking of DOM, the next section shows how to concretely
 build and parse XML representation as DOM documents.

 4.2.2. Using the DOM API

 The Document Object Model (DOM) API was defined by the W3C and provides a standard way to manipulate an XML document in Java
 as a hierarchy of node objects. As the document is fully stored in memory, this API allows node navigation, insertion and
 removal. The main drawback is the memory consumed, especially for large documents.

 In Java SE, the org.w3c.dom package and subpackages provide the DOM API itself, mostly as a set of Java interfaces, whereas the javax.xml.parser package provides the classes to parse XML documents as DOM documents. In Restlet, we support DOM-driven manipulation of XML
 documents with DomRepresentation, also part of the org.restlet.ext.xml extension.

 As illustrated in figure 4.10, the Dom-Representation class contains two properties, document and indenting. The document property is the DOM document object that has been parsed or that has been created empty (by default) and that can be written
 as XML content using the standard representation methods such as getStream() or write(OutputStream). The indenting Boolean property indicates if XML content should be pretty printed with nice indentation or written in a more compact way.

 Figure 4.10. Properties and methods of the DomRepresentation class

 [image:]

 Regarding constructors, the first two assume that you want to start with an empty DOM document that you will later edit via
 the document property, and the third provides an existing Document instance as a starting point. The last constructor can parse XML representations, independent of the Representation subclass used, into a DOM document object. Note that in this case the parsing is done lazily, only when the getDocument() method is invoked. Providing several representation constructors for different purposes is a common and important Restlet
 API design pattern.

 The methods compartment contains three methods that can be useful for advanced scenarios. For example, createTransformer() can be overridden to customize the way the DOM document is serialized as XML.

 For the mail server example, imagine that you want to use DOM to produce the XML representations of emails exchanged with
 your clients. As illustrated in the following listing, we first create a simple test application where you can attach the
 MailServerResource class on the proper URI template.

 Listing 4.3. Simple test application serving mail resources

 [image:]

 Nothing much is new in listing 4.3, so check out listing 4.4 for the MailServer-Resource class, which uses a DomRepresentation. This class supports the GET and PUT methods to illustrate the generation of a DOM representation as well as its parsing.

 Listing 4.4. Mail server resource using the DOM API

 [image:]

 [image:]

 If you’re familiar with the DOM API, listing 4.4 should look simple and natural. If not, we recommend reading the Java & XML book [2] which also covers other ways to manipulate XML in Java, which we explore in the rest of this chapter.

 The following listing shows a simple mail client that will first GET the XML mail and then PUT it back in the same state.

 Listing 4.5. Mail client retrieving a mail, then storing it again on the same resource

 public class MailClient {
 public static void main(String[] args) throws Exception {
 ClientResource mailClient = new ClientResource(
 "http://localhost:8111/accounts/chunkylover53/mails/123");
 Representation mailRepresentation = mailClient.get();
 mailClient.put(mailRepresentation);
 }

}

 To try it out, we first launch the MailServerApplication class, thanks to its main method, and then the MailClient. The output you should see in the console, ensuring that DOM document creation, serialization, deserialization, and parsing
 are working as expected, looks like this:

 Status: received
Subject: Message to self
Content: Doh!
Account URI: http://localhost:8111/accounts/chunkylover53/

 Let’s now imagine that the mail XML representation is getting very large and that your server has to handle many of them at
 the same time. You can’t hold all the DOM documents in memory, so you need to look at alternative approaches. The SAX API
 introduced in the next subsection is an excellent solution to this problem.

 4.2.3. Using the SAX API

 The Simple API for XML (SAX), defined by David Megginson, provides a standard way to manipulate an XML document in Java as
 a stream of events. Because the document isn’t fully stored in memory, this API allows processing of infinitely large XML
 documents. The main drawback is that it’s harder to process and modify XML because it must happen on the fly, whereas the
 DOM API is easier to process with but can use a lot of memory.

 In Java SE, the org.xml.sax package and subpackages provide the SAX API itself, as a set of Java interfaces and classes, whereas the javax.xml.parser package provides the classes to parse XML documents as SAX event streams. In Restlet we support SAX-driven parsing and writing
 of XML documents with SaxRepresentation, also part of the org.restlet.ext.xml extension.

 As illustrated in figure 4.11, the Sax-Representation class contains a single source property that is the source of SAX events, typically a Restlet XML representation. Note that this property only describes the source—in the same way that java.io.File is only a file descriptor. In order to get the XML content, you need to explicitly call the parse(Content-Handler) method. On the other side, if you want to write a SAX representation, you need to produce SAX events on the fly by overriding
 the write(XmlWriter) method. Regarding constructors, the first two assume that you want to produce SAX events, and the other constructors will
 set up the saxSource property to parse XML content.

 Figure 4.11. Properties and methods of the SaxRepresentation class

 [image:]

 The following listing illustrates those features with the same example that we used for the DomRepresentation, but this time using a SaxRepresentation.

 Listing 4.6. Mail server resource using the SAX API

 [image:]

 [image:]

 If you execute the MailClient again with this different code, you will obtain the exact same output on the console. Note how we used an anonymous subclass
 of SAX’s DefaultHandler to get called back by the SAX parser each time a parsing event occurs, such as the start of an element. In this case the
 parsing logic is rather straightforward, but it can quickly get complex if your XML structure is deep or if the same element
 name is used in several parts of the document, as you will have to maintain some sort of state machine. The great advantage
 again is the ability to parse very large XML representations using limited system resources.

 Now let’s look at a convenient way to extract specific content from an XML representation using XPath.

 4.2.4. Evaluating XPath expressions

 When we introduced the XmlRepresentation class, we didn’t list all the available methods. The additional methods in figure 4.12 evaluate XML Path Language (XPath) expressions. XPath is a W3C recommendation that can be used to address specific parts
 of an XML document. It can be used standalone (explained soon), inside XSLT documents (see subsection 4.2.7), or in other places such as XQuery or XPointer (not covered in this book—refer to other books or online documentation for
 more information). In Java SE, the javax.xml.xpath package contains a standard API for XPath engines.

 Figure 4.12. XPath-related methods of the XmlRepresentation class

 [image:]

 The XmlRepresentation class and its two concrete DomRepresentation and SaxRepresentation subclasses can call those methods to evaluate an XPath expression passed as a string parameter and return a single Boolean, a DOM Node, a Double number, or character String.

 When the expression is expected to return several items, you can use getNodes(String) which returns an instance of org.restlet.ext.xml.NodeList. Note that this Restlet’s NodeList class implements both the List<Node> and DOM’s Node-List interface by wrapping an instance of DOM’s NodeList. The advantage is that you can use this structure in a loop thanks to its iterator, whereas DOM’s interface has to be manually
 iterated.

 The following listing shows the result of implementing the PUT method of the MailServerResource to use XPath expression to get the elements’ content.

 Listing 4.7. Mail server resource using the XPath API

 [image:]

 As before, if you run the MailClient you will obtain the same output in the console. Compared to the DOM and SAX equivalents listed earlier, this PUT method implementation
 is very simple. And we barely used XPath’s capabilities; there is an extensive XPath functions library.

 The advanced topic of XML name-spaces and how the XmlRepresentation subclasses can handle them continues our exploration of XML support in Restlet.

 4.2.5. Handling XML namespaces

 XML namespaces allow the mixing of XML elements and attributes from several vocabularies in the same XML document. Namespaces
 are identified by URI references, and prefixes are used as shortcuts.

 In Java SE, XML namespaces are supported by two packages: javax.xml with its XMLConstants class containing common namespace URI references and prefixes, as well as the javax.xml.namespace package and its NamespaceContext interface, which is implemented by our XmlRepresentation class. Figure 4.13 lists the three methods of NamespaceContext plus the namespaceAware Boolean property used to activate its support in the DomRepresentation and SaxRepresentation subclasses, and the namespaces property, containing a modifiable map of namespace prefix and URI references.

 Figure 4.13. XML namespace-related properties and methods of the XmlRepresentation class

 [image:]

 Now it’s time to add XML namespace support to the example MailServerResource. In the following listing we update the example based on DomRepresentation to create an XML element inside a dedicated RMEP namespace with a URI of www.rmep.org/namespaces/1.0.

 Listing 4.8. Mail server resource-handling XML namespaces

 [image:]

 [image:]

 In the GET handling method, we used the createElementNS(String, String) method from the DOM API to create XML elements qualified with the RMEP namespace. If you try to obtain the XML representation
 in a browser entering the URI reference http://localhost:8111/accounts/chunkylover53/mails/123, you will obtain the following
 document. Note that a default namespace (without prefix) is declared with the xmlns attribute on the root mail element:

 <?xml version="1.0" encoding="UTF-8"?>
<mail xmlns="http://www.rmep.org/namespaces/1.0">
 <status>received</status>
 <subject>Message to self</subject>
 <content>Doh!</content>
 <accountRef>http://localhost:8111/accounts/chunkylover53/</accountRef>
</mail>

 Coming back to listing 4.8, let’s present the method-handling PUT requests. We still use the XPath approach but this time have to declare namespaces—otherwise
 the code from subsection 4.2.4 would no longer work. To illustrate the flexibility provided in XPath expressions, we declare two prefixes for the same RMEP
 namespace URI: “” for the default namespace and “rmep.” Then we can qualify the XML elements to select, such as :mail or rmep:mail. We encourage you to run the MailClient again to verify that the console output is still the same!

 Even if this mechanism adds some complexity, it allows you to mix several XML languages in the same document, which is necessary
 with languages such as Atom XML for web feeds. Let’s continue our exploration of XML features provided by Restlet with XML
 schemas—powerful mechanisms to validate the correctness of the structure and content of XML documents.

 4.2.6. Validating against XML schemas

 Imagine that you need to validate the XML documents submitted by users of your applications and warn them precisely about
 the cause of the refusal. How would you do it?

 XML schema languages such as W3C XML Schema (XSD) and Relax NG (RNG) can help. Let’s see how to use them in Restlet with the
 XmlRepresentation by first looking at the remaining properties and methods listed in figure 4.14.

 Figure 4.14. XML schema validation-related properties and methods of the XmlRepresentation class

 [image:]

 Restlet largely relies on the features of the javax.xml.validation package to offer an integrated, simpler way to validate XML representations. For example, the schema property is an instance of the Schema class from this package, but there’s also a setSchema(Representation) method that allows you to provide the schema using any type of Restlet representation—but with the media type correctly set
 (application/x-xsd+xml for W3C XML Schemas, application/relax-ng-compact-syntax, and application/x-relax-ng+xml for Relax NG).

 Note that DTDs are an older way to validate XML documents, built directly inside the XML language. DTD has been largely deprecated,
 so we recommend you use XML Schema or modern alternatives such as Relax NG or Schematron instead. In case you need DTD validation
 at parsing time, you can turn the validatingDtd Boolean property to true.

 Let’s now illustrate how this could be used with our example mail resource. The W3C XML Schema in the following listing corresponds
 to our current mail XML format.

 Listing 4.9. W3C XML Schema for the mail XML representations

 <?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rmep="http://www.rmep.org/namespaces/1.0"
 targetNamespace="http://www.rmep.org/namespaces/1.0"
 elementFormDefault="qualified">
 <element name="mail">
 <complexType>
 <sequence>
 <element name="status" type="string" />
 <element name="subject" type="string" />
 <element name="content" type="string" />
 <element name="accountRef" type="string" />
 </sequence>
 </complexType>
 </element>
</schema>

 This schema defines a root mail element as a sequence of four elements: status, subject, content, and accountRef, themselves of the datatype XSD string. With the proper definition of the target namespace, this schema matches the XML representation produced in the previous
 subsection.

 The next listing shows how to ensure that the XML representations PUT to your mail resource validate against this schema.
 There are two steps: first set the schema property and then set the errorHandler to catch parsing errors and warnings.

 Listing 4.10. Mail server resource handling XML namespaces

 [image:]

 [image:]

 Now you can run the MailClient against this new resource to verify that the XML representation received by the PUT method is indeed valid. Then change the
 name of an element in the GET method—for example, mail to email—to observe that a failure to validate produces a log entry on both the server and client sides, with an explicit description
 of the error.

 Note that it’s not usually a good idea to systematically require inbound XML documents to conform to a given schema. Web browsers
 are flexible about the format of the HTML documents they can parse, so you should consider giving this level of flexibility
 to your users, using XPath for parsing, for example. But when you send output XML documents, you should try to respect any
 provided schema as closely as possible. This general internet rule was nicely summarized by Jon Postel: “Be conservative in
 what you do; be liberal in what you accept from others.” (“DoD standard Transmission Protocol.” http://tools.ietf.org/html/rfc761.)

 Restlet’s XML support isn’t limited to static XML documents. With XML transformations, you can produce representations in
 other text formats.

 4.2.7. Applying XSLT transformations

 XSL Transformations (XSLT) is a standard XML transformation language that is natively supported by Java SE, thanks to the
 javax.xml.transform package and sub-packages. It’s ideal for producing other markup-oriented XML languages such as HTML or XHTML or XML vocabularies.

 Here we want to illustrate the use of the TransformRepresentation class, part of the org.restlet.ext.xml package described in figure 4.15. Note that unlike Dom-Representation and SaxRepresentation classes, TransformRepresentation is a oneway converter. The two important properties are sourceRepresentation, which defines the wrapped XML representation to be transformed, and transformSheet, which contains the XSLT document to apply to the source to obtain the resulting TransformRepresentation. Other properties support more advanced configuration options. All the methods mentioned provide ways to customize the default
 behavior.

 Figure 4.15. Properties and methods of the TransformRepresentation class

 [image:]

 To illustrate this feature we transform the example XML mail into a format used by Restlet’s extension for JavaMail.

 Introducing JavaMail extension

 To add support for the SMTP and POP 3 protocols to your Restlet application, you can use the JavaMail API directly in your
 resource classes. But the org.restlet.ext.javamail extension provides an easier-to-use and more flexible alternative that’s also more RESTful. The idea is to use a pseudoprotocol
 based on the SMTP and POP URI schemes, as in

 smtp://host[:port]
pop://host[:port]

 Authentication is handled using the ChallengeResponse class (introduced in chapter 5) and the SMTP_PLAIN, POP_BASIC, and POP_DIGEST authentication schemes. The client connector provided is capable of sending and receiving emails using either the Java-Mail
 Message class or Restlet’s specific XML format, as follows:

 <?xml version="1.0" encoding="ISO-8859-1" ?>
<email>
 <head>
 <subject>Account activation</subject>
 <from>support@restlet.org</from>
 <to>user@domain.com</to>
 <cc>log@restlet.org</cc>
 </head>
 <body>
 <![CDATA[Your account was successfully created!]]>
 </body>
</email>

 When sending an email out, you need to POST an email representation to the relaying SMTP server defined by the target smtp://
 URI. When reading an email from your inbox, you GET it from the POP3 server defined by the target pop:// URI. Generally you first need to retrieve the representation of the list of available emails as Restlet’s specific XML
 document.

 <?xml version="1.0" encoding="ISO-8859-1" ?>
 <emails>
 <email href="/1234"/>
 <email href="/5678"/>
 <email href="/9012"/>
 <email href="/3456"/>
 </emails>

 Now that you have a better understanding of the JavaMail extension and the XML representations required, you can use XSLT
 to achieve your original goal.

 Applying the XSLT Transformation

 The next listing contains the XSLT transform sheet that we’ll apply to the example XML mail representation to obtain the desired
 JavaMail XML format. We could use this capability to provide a bridge between our RESTful mail system and traditional SMTP
 and POP servers.

 Listing 4.11. XSLT transform sheet

 [image:]

 The transform sheet contains a skeleton for the target XML document we want to produce, including xsl:value-of elements using XPath expressions in select attributes to dynamically insert content from the source XML representation.

 Look at the modified MailServerResource in the following listing.

 Listing 4.12. Mail server resource applying an XSLT transformation

 [image:]

 As you can see, the code is straightforward; the hardest part is writing the XSLT transform sheet. If you call GET on the
 resource in your browser, you will obtain the following output:

 <?xml version="1.0" encoding="UTF-8"?>
<email>
<head>
<subject>Message to self</subject>
<from>chunkylover53@rmep.org</from>
<to>test@domain.com</to>
</head>
<body>Doh!</body>
</email>

 Now you can run the MailClient again and observe the expected values for the subject and body XML elements on the console log.

 The Transformer class in org.restlet.ext.xml can provide a Restlet filter to systematically apply the same XSLT transformation to incoming request entities or to outgoing
 response entities.

 This overview of the Restlet XML extension is now over, but the Restlet Framework provides additional ways to handle XML,
 thanks to the integration with XML binding libraries such as JAXB, JiBX, and XStream. These are the topics of the next three
 subsections.

 4.2.8. Using the JAXB extension

 Java Architecture for XML Binding (JAXB) is a standard Java API that’s built into Java SE version 6.0 but is also usable with
 Java SE 5.0 as an additional library. Compared to DOM and SAX, it works at a higher level, providing marshaling (serialization)
 and unmarshaling (deserialization) between Java classes and XML documents.

 You can use JAXB in three ways. The first and most common is to start from a W3C XML Schema and generate the corresponding
 Java classes using the provided xjc tool. The second way uses the provided schemagen tool to derive an XML Schema from Java classes. And you can manually annotate your own Java classes to generate the correct
 XML documents. All three approaches can be customized and work fine, but starting from an XML Schema is definitely a convenient and productive way.

 Let’s generate the JAXB artifacts from the Mail.xsd file that we introduced in subsection 4.2.6; the following listing shows the command line to accomplish this.

 Listing 4.13. Compiling the XML Schema into JAXB annotated Java classes

 xjc -npa -p org.restlet.example.book.restlet.ch04.sec2.sub8
 org\restlet\example\book\restlet\ch04\sec2\sub8\Mail.xsd

 The xjc tool produces two Java classes in the example package: Mail, containing your four simple properties, and Object-Factory, acting as both a factory and a JAXB registry.

 The Restlet extension for JAXB is available in the org.restlet.ext.jaxb package. The main class, JaxbRepresentation<T>, is illustrated in figure 4.16. It either parses an XML representation into a given Java class or generates an XML representation given a Java object. All
 properties are optional; in this example we set the formattedOutput property to get nice indentation and line breaks for easier debugging in a web browser.

 Figure 4.16. Properties and methods of the JaxbRepresentation class

 [image:]

 It’s time to rework the mail example using JAXB and compare with previous approaches. The following listing contains the new
 MailServerResource.

 Listing 4.14. Compiling the XML Schema into JAXB annotated Java classes

 [image:]

 The resulting code is very simple, and the parsing logic produced is optimized and naturally provides schema validation. Although
 you gained productivity, you lost some flexibility, such as the ability to interact with the XML parsing logic. For example,
 it’s harder to make evolutions to schema without requiring changes to existing clients of your application. This is the usual
 drawback of these kinds of abstractions, but they’re so powerful that it is hard to resist using them!

 In addition to JAXB, the Restlet Framework supports several alternatives, which we introduce in the next section.

 4.2.9. Alternative XML binding extensions

 Although JAXB is a standard binding solution for Java, it comes with the drawbacks discussed, leaving some place for alternative
 solutions. In the Restlet Framework, we decided to support three alternatives: EMF, JiBX, and XStream. It would be easy to
 support others if necessary.

 The first extension is for Eclipse Modeling Framework (EMF), an open source library-facilitating, model-driven development
 with code generation and tooling within Eclipse IDE. You can use EMF to define representation structures and generate the
 matching representation beans in Java for use with Restlet-annotated interfaces. The generated classes extend base EMF classes
 by default, which doesn’t fit very well with other XML serialization mechanisms supported by the Restlet Framework.

 But EMF comes with its own serialization capabilities. By default, EMF lets you serialize any EMF object as XML Metadata Interchange
 (XMI), a generic XML language originating from UML to exchange diagrams. Plus, if your EMF model was created by importing
 an XML Schema, EMF is capable of producing and consuming regular XML representations, conforming to the original schema.

 Logically the org.restlet.ext.emf extension uses this capability with an Emf-Representation class and a related converter helper. EmfRepresentation can produce simple HTML representations, even distinguishing property values corresponding to hyperlinks by adding special
 EMF eAnnotations to your model. Those annotations need to be defined in the www.restlet.org/schemas/2011/emf/html namespace and then contain an entry with the linked name and a true value.

 The second extension is for JiBX, an open source library providing XML binding. JiBX uses byte code enhancement instead of
 Java reflection and a special pull parser to obtain the best parsing and generation performance. It also offers a rich XML
 language to define the mapping between the XML structure and the Java structure. To define the binding, it provides tools
 to start from either code or an XML schema. For more information read the Javadocs of the org.restlet.ext.jibx package and the JiBX project’s documentation itself.

 The third extension is for XStream, another open source library providing XML binding. This library has a focus on ease of
 use—for example, removing the need for mapping information in many cases. It is also a nonintrusive solution that can work
 with Java classes over which you have no control, which can prove very convenient. For more information read the Javadocs
 of the org.restlet.ext.xstream package and the XStream project’s documentation itself.

 It’s time to wrap up our coverage of XML representations, which took you from the low-level SAX and DOM APIs to higher-level
 JAXB and XStream binding libraries. Although XML is an excellent format for most REST representations, it isn’t the most compact
 and can affect performance of intensive AJAX applications. That’s why an alternative JSON format has emerged, with a lighter
 syntax and fewer features. In the next section you’ll discover that the Restlet Framework provides an equivalent support for
 JSON, with the exception of validation, transformation, and XPath-like selection, which aren’t available yet for JSON.

 4.3. Producing and consuming JSON representations

 JavaScript Object Notation (JSON) is a lightweight data format that’s typically used for exchanges between AJAX clients and
 web services. You can use JSON in other situations, but keep in mind that it’s simpler than XML. For example, there’s no standard
 like XPath to select content from JSON content, nor is there one like W3C XML Schema to validate a JSON document.

 The Restlet Framework has extensive support for JSON, thanks to three dedicated extensions. In this section we continue to
 illustrate Restlet features using our example Homer mail resource—except this time exposing and consuming a JSON representation,
 as illustrated in figure 4.17.

 Figure 4.17. Example resource exposing a JSON document as representation

 [image:]

 For reference, the JSON mail document that we want to expose and consume as a representation of the Homer mail resource is
 in the following listing.

 Listing 4.15. The target JSON mail representation

 {
 "content":"Doh!",
 "status":"received",
 "subject":"Message to self",
 "accountRef":"http://localhost:8111/accounts/chunkylover53/"
}

 The first way to build and consume representations as JSON documents is an equivalent of the DOM API for JSON. We then introduce
 two convenient Restlet extensions (org.restlet.ext.xstream and org.restlet.ext.jackson) supporting the automatic binding between JSON representations and regular Java objects.

 4.3.1. Using the JSON.org extension

 The www.json.org website is the official home of the JSON language and provides a Java library to manipulate JSON documents that lives in
 org.json.* packages. It’s similar to the DOM API for XML documents in the sense that it stores all the JSON data in memory when parsing,
 but this is rarely an issue because JSON documents are not generally intended to be very large due to AJAX constraints in
 browsers.

 Let’s rewrite the MailServerResource to exchange JSON representations. Listing 4.16 contains the new code, using the org.json.JSONObject class to store a map of properties. You can then use the JsonRepresentation from the org.restlet.ext.json package to wrap this JSON object and provide the proper metadata. By default the application/json media type is used.

 Listing 4.16. Mail server resource using the JSON.org API

 [image:]

 If you GET the mail resource in your browser, you should obtain the same document as in listing 4.15, except the order of the properties might vary. This is normal because JSON objects are unordered structures. The JsonRepresentation class illustrated in figure 4.18 is rather simple and works like the other extensions in this chapter by wrapping either a JSON value or a JSON representation,
 providing various methods to parse or consume this value.

 Figure 4.18. Properties and methods of the JsonRepresentation

 [image:]

 As with XML representations, it’s often more convenient to use a JSON binding library to marshal and unmarshal JSON representations.
 The Restlet Framework has two extensions to achieve this: XStream and Jackson. The XStream extension—a powerful XML binding
 solution introduced in the previous section—provides an interesting bridge to JSON representations by using the Jettison JSON
 library. But the JSON representations that it produces tend to be verbose, so we generally recommend using the more specialized
 Jackson extension for JSON instead.

 4.3.2. Using the Jackson extension

 Jackson is an open source library that was quickly embraced by various frameworks due to its features and outstanding performance.
 It’s a comprehensive solution providing both a DOM-like API and a JSON binding mechanism.

 In this section we illustrate the org.restlet.ext.jackson extension and its main JacksonRepresentation class, described in figure 4.19. It has three properties: the object property contains the wrapped Java object that was parsed or can be formatted; the objectClass indicates the target class of the object to parse; and objectMapper offers a way to customize the mapping. There are three constructors, two for serialization and one for deserialization, and
 a createObjectMapper() method that can be overridden to customize Jackson’s behavior.

 Figure 4.19. Properties and methods of the JacksonRepresentation

 [image:]

 Even though the class looks simple, it can produce very nice results, as illustrated in listing 4.17. We manually wrote a Mail class, containing our four String properties with getters and setters, and then in the GET handling method let Jackson produce the correct JSON representation.
 Handling of the PUT methods and parsing of the JSON representation received into a Mail instance is equally simple and very
 similar to the way the JAXB extension is working.

 Listing 4.17. Mail server resource using the Jackson extension

 [image:]

 Not surprisingly the MailClient class, with logic unchanged since the beginning of the chapter, works equally well. When you consider how close this example
 is to the JAXB one, it’s tempting to ask whether it would be possible to unify both approaches to produce XML or JSON at the
 same time. In fact this is indeed possible, and we cover that in section 4.5 when introducing the converter service—but there are a few steps to climb before that.

 Template representations are useful in producing HTML representations in a way comparable to JSP technology.

 4.4. Applying template representations

 So far in this chapter, you’ve exchanged data-oriented representations using the XML and JSON languages, but we’ve barely
 explained how to produce HTML representations to be displayed in a web browser. You need a solution to realize the promise
 (made in chapter 1) of web applications unifying web services and websites.

 Because Restlet applications can be deployed standalone, outside Servlet containers, we can’t rely on the standard Java Server
 Pages (JSP) technology. But that’s not an issue because we have powerful alternatives: dynamic representations powered by
 the FreeMarker and Apache Velocity template engines. We call them template representations because they’re built around the
 skeleton of the target document, filled with instructions to insert dynamic values provided by a data model.

 Figure 4.20 shows a new variant of our Homer mail resource, a dynamically built HTML document. Keep in mind that template representations
 can be successfully used to produce any kind of textual representations, such as XML representations or even Java code. HTML
 is a particularly appropriate target language.

 Figure 4.20. Example resource exposing an HTML document as representation

 [image:]

 For reference, the following listing shows the HTML mail document that we want the Homer mail resource to expose.

 Listing 4.18. The target HTML mail representation

 <html>
<head>
 <title>Example mail</title>
</head>
<body>
<table>
 <tbody>
 <tr>
 <td>Status</td>
 <td>received</td>
 </tr>
 <tr>
 <td>Subject</td>
 <td>Message to self</td>
 </tr>
 <tr>
 <td>Content</td>
 <td>Doh!</td>
 </tr>
 <tr>
 <td>Account</td>
 <td>Link</
 a></td>
 </tr>
 </tbody>
</table>
</body>
</html>

 In the next subsection we put those ideas into practice by using FreeMarker to dynamically generate the preceding HTML representation.

 4.4.1. Using the FreeMarker extension

 FreeMarker is a powerful open source template engine with a comprehensive syntax allowing simple value insertion, loop control,
 conditions, custom macros, and directives. We recommend it as an alternative to JSP to produce HTML or other textual representations.

 The template corresponding to the example HTML mail in the next listing takes the same structure as the target HTML representation
 and uses ${variableName} to insert the content provided with an object data model. This data model can be hierarchical or even be an XML document. (The
 complete syntax of FreeMarker is explained at www.freemarker.org.)

 Listing 4.19. The FreeMarker template HTML representation

 <html>
<head>
 <title>Example mail</title>
</head>
<body>
<table>
 <tbody>
 <tr>
 <td>Status</td>
 <td>${mail.status}</td>
 </tr>
 <tr>
 <td>Subject</td>
 <td>${mail.subject}</td>
 </tr>
 <tr>
 <td>Content</td>
 <td>${mail.content}</td>
 </tr>
 <tr>
 <td>Account</td>
 <td>Link</td>
 </tr>
 </tbody>
</table>
</body>
</html>

 With the template file ready, we can now use the FreeMarker extension for Restlet, located in org.restlet.ext.freemarker, to produce the target representation. This extension contains the TemplateRepresentation class, which works by wrapping a template object and a data model.

 Various constructors are also available, providing different ways to create or obtain the template. Either you provide it
 as a Restlet representation, as in listing 4.20, or you indicate only a template name.

 In the latter case FreeMarker will load the template from a local directory that you indicate with a Configuration instance, which can be reused for several Template-Representation instances. This approach is more scalable because FreeMarker can use its caching strategies to accelerate the resolution
 of your templates.

 For the data model you can provide Java beans or collections such as maps and lists. There’s also a setDataModel(Request, Response) method able to wrap a Restlet call to allow access to request and response values using shortcut variable names (see the
 org.restlet.util.Resolver interface for details on these shortcuts).

 Listing 4.20. Mail server resource using the FreeMarker extension

 [image:]

 In listing 4.20 we only implemented the GET method because it’s rarely useful to consume HTML representations. We cover the processing of
 HTML form posts in section 7.1.1. Our MailClient was also slightly modified to write the HTML representation on the console. Launch the application again and go to the http://localhost:8111/accounts/chunkylover53/mails/123
 URI and see the HTML page produced.

 In addition to this FreeMarker extension, a similar extension is provided for the Apache Velocity template engine.

 4.4.2. Using the Velocity extension

 Velocity is another popular open source template engine provided by the Apache Foundation, similar to FreeMarker but with
 a slightly different syntax and set of features. Listing 4.21 shows the template corresponding to our example HTML mail. It takes the same structure as the target HTML representation
 and uses the $variable-Name to insert the content provided with an object data model. This data model can be hierarchical or even an XML document. (For
 more information, the complete syntax of Velocity is explained at http://velocity.apache.org.)

 Listing 4.21. The Velocity template HTML representation

 <html>
<head>
<title>Example mail</title>
</head>
<body>
<table>
 <tbody>
 <tr>
 <td>Status</td>
 <td>$mail.status</td>
 </tr>
 <tr>
 <td>Subject</td>
 <td>$mail.subject</td>
 </tr>
 <tr>
 <td>Content</td>
 <td>$mail.content</td>
 </tr>
 <tr>
 <td>Account</td>
 <td>Link</td>
 </tr>
 </tbody>
</table>
</body>
</html>

 With the template file ready, you can now use the Velocity extension for Restlet, located at org.restlet.ext.velocity, to produce the target representation. This extension contains the TemplateRepresentation, which works exactly like the Free-Marker extension, as shown in the following listing.

 Listing 4.22. Mail server resource using the Velocity extension

 [image:]

 At this point, you’ve learned various techniques to exchange XML, JSON, and HTML representations for the example Homer mail
 resource, but each time you had to develop a separate Restlet application, with a new MailServerResource class. This isn’t exactly the idea of unified web applications proposed in chapter 1. The key feature missing to realize our goal is the topic of the next section: HTTP content negotiation.

 4.5. Content negotiation

 The modern web supports many kinds of clients, each with different capacities and expectations: classic desktop web browsers,
 mobile web browsers, native mobile applications, programmatic (not human-driven) clients like search bots, and so on. Wouldn’t
 it be nice to avoid building a different version of your application for each client? The good news is that HTTP has a content
 negotiation feature (frequently shortened to conneg) that can help you unify your developments. Let’s now look at how HTTP
 conneg works before learning how to apply it within the Restlet Framework.

 4.5.1. Introducing HTTP content negotiation

 HTTP allows any resource to have multiple representations, called variants, and specify how a client and a server can determine
 which variant is the most appropriate for a given interaction. You might prefer to use HTML when exchanging representations
 with a web browser and XML or JSON with a programmatic client wanting structured data that’s easy to manipulate.

 Let’s illustrate those concepts with our RESTful mail example. In figure 4.21 we reuse the type of diagrams introduced in figure 1.4 when explaining the relationships between resources, identifiers (URIs), and representations. We also apply it to our Homer
 mail resource described in appendix D and used throughout this chapter.

 Figure 4.21. Account resource identified by a URI and represented by three variants

 [image:]

 What the figure says is that the Homer mail resource is identified by a single URI, /accounts/chunkylover53/mails/123, and
 exposes three variants, each corresponding to a different type of content:

 	HTML variant for retrieval by web browsers

 	XML variant for consumption by programmatic clients

 	JSON variant typically for retrieval by AJAX applications

HTTP uses a system where possible types of content are described by media types. A media type has a name and defines how conforming content should be interpreted. A number of standard media types have been defined (see table 4.4 for examples), and you can define your own if needed. The Restlet API naturally supports media types with the org.restlet.data.MediaType class, which declares many constants as well. Note that you can always create your own instances if no constant matches your
 needs.

 Table 4.4. A few examples of common standard media types

 	
 Name

 	
 Description

	text/plain
 	Some plain text

	text/html
 	An HTML document

	application/xml
 	An XML document

	application/json
 	A JSON document

	image/jpeg
 	An image in JPEG format

	image/png
 	An image in PNG format

	application/pdf
 	A PDF document

When issuing an HTTP request, a client can include an Accept header that lists the acceptable media types for the representation that the server could send back in the response. It’s
 even possible to specify the degree of preference for each acceptable media type, using the q parameter to associate weights to media types.

 The server can then use this information to generate the best representation possible for that particular client. The following
 header specifies that the client expects either an XML or a JSON representation, with a preference for JSON:

 Accept: application/json; q=1.0, application/xml; q=0.5

 In addition to the Accept header, HTTP defines other useful headers related to other dimensions of content negotiation:

 	The Accept-Language header specifies preferred languages for the response (for example, English or French).

 	The Accept-Encoding header specifies preferences for content encoding (for example, to indicate support for receiving gzip-compressed responses).

 	The Accept-Charset header specifies supported character sets such as UTF-8.

 	The User-Agent header can also be used to drive content generation. It identifies the client (for example, discriminating between Internet
 Explorer and Firefox) and lets you adapt your content to its specificities or limitations.

Content negotiation is a powerful feature of HTTP, and you should consider using it for your applications. In the next subsections
 we put it into practice with the Restlet Framework, first showing how resource variants can be declared and then configuring
 the client to retrieve the desired variants.

 4.5.2. Declaring resource variants

 Since version 2.0 of the Restlet Framework, there are two ways for a server resource to declare the variants that it exposes.
 The first is programmatic, using the modifiable variants property, and the second is based on Restlet annotations (discussed in subsection 4.5.4).

 If you declare some variants, your ServerResource subclass needs to override the get(Variant) method instead of the get() one, or the put(Representation, Variant) instead of put(Representation). Note that content negotiation can be used for all methods, not just GET ones, but they only apply to the response entity.

 Let’s illustrate this feature with the same example, but this time trying to expose and consume the mail as XML or JSON representations
 depending on client preferences. For XML, you use XStream instead of JAXB because it can work with the same Mail class already
 used with Jackson for JSON representations in subsection 4.3.2. Note in listing 4.23 how you override the doInit() method to declare the supported variants.

 Then you test the variant parameter of the get(Variant) method to know which variant is preferred by the client. The selection of the best variant matching the client preferences
 is done transparently by the Restlet Framework!

 Listing 4.23. Mail server resource supporting XML and JSON representations

 [image:]

 [image:]

 In the put(Representation, Variant) method, we test the value of the representation’s media type, not the variant’s media type. The variant only defines the preferred response type. You could, for example, submit a representation in XML
 and receive HTML as a result. In the next subsection we continue the example on the client side by configuring the client
 preferences to retrieve a specific variant.

 4.5.3. Configuring client preferences

 You can define your preferences in different ways as a client when issuing requests so that a server can make the best guess
 regarding the variant you want to obtain via content negotiation.

 As shown in subsection 4.5.1, the standard HTTP way is to set the Accept* headers. The Restlet API facilitates this, thanks to a set of ClientInfo.accepted* properties that are instances of List<Preference<T extends Metadata>>. Subclasses of Metadata are defined for all the dimensions of content negotiation: CharacterSet, Encoding, Language, and MediaType metadata classes, all from the org.restlet.data package.

 The advantage of using those properties is that you can set fined-grained preferences, with various levels of qualities for
 each media type you accept. But in many cases you only want to retrieve a single specific media type. In this case it’s easy
 to use helper methods directly on the ClientResource class, as illustrated in the next listing.

 Listing 4.24. Mail client selecting XML, then JSON variants

 public static void main(String[] args) throws Exception {
 ClientResource mailClient = new ClientResource(
 "http://localhost:8111/accounts/chunkylover53/mails/123");
 Representation mailRepresentation = mailClient
 .get(MediaType.APPLICATION_XML);
 mailClient.put(mailRepresentation);

 mailRepresentation = mailClient.get(MediaType.APPLICATION_JSON);
 mailClient.put(mailRepresentation);
}

 In this example you issue two GET calls, the first requesting the XML variant and the second the JSON variant. If you run
 your server application and then this mail client, the server displays the following output on its console:

 XML representation received
Status: received
Subject: Message to self
Content: Doh!
Account URI: http://localhost:8111/accounts/chunkylover53/

JSON representation received
Status: received
Subject: Message to self
Content: Doh!
Account URI: http://localhost:8111/accounts/chunkylover53/

 In addition, since version 2.1 the ClientResource class provides the convenient shortcut accept(Metadata...) method that lets you add new preferences with a 1.0 quality. Another way to express your preferences is to rely on the TunnelService (briefly presented in section 2.3.4). For example you can enter the following URI in your browser to retrieve the JSON representation:

 http://localhost:8111/accounts/chunkylover53/mails/123?media=json

 The json value passed in the query parameter at the end of the URI must correspond to one of the declared prefixes in the MetadataService, which defines default extension names for common media types. To end this chapter we combine the power of conneg with the
 converter service that we also encountered in chapter 2, resulting in even simpler code.

 4.5.4. Combining annotated interfaces and the converter service

 In chapter 2 we used the converter service and annotated Java interfaces to simplify the implementation of example account resources exchanging
 simple strings as representations.

 What we’d like now is to use the same mechanism with more complex structures, like our Mail bean class. In figure 4.22 we enhance our previous one to introduce the representation bean (the Mail class in our case) and its relationship with the resource’s state and the variants that can be serialized from it.

 Figure 4.22. Account resource represented by bean serialized in three variants

 [image:]

 We start by defining the annotated MailResource interface in the following listing that will be implemented on the server side and used as a proxy on the client side.

 Listing 4.25. Annotated MailResource interface

 public interface MailResource {

 @Get
 public Mail retrieve();

 @Put
 public void store(Mail mail);

}

 As mentioned in chapter 1, the @Get and @Put annotations come from the org.restlet.resource package and define the binding between Java and HTTP methods. Let’s implement the server side (see the next listing). Again,
 the code is extremely straightforward. We abstracted away many Restlet concepts, but note that we’re still extending the ServerResource class, giving us access to the whole call context, such as the resource reference used in the accountRef property.

 Listing 4.26. Mail server resource implementing the MailResource interface

 public class MailServerResource extends ServerResource
implements MailResource {

 public Mail retrieve(){
 Mail mail = new Mail();
 mail.setStatus("received");
 mail.setSubject("Message to self");
 mail.setContent("Doh!");
 mail.setAccountRef(new Reference(getReference(), "..").
getTargetRef().toString());
 return mail;
 }
 public void store(Mail mail) {
 System.out.println("Status: " + mail.getStatus());
 System.out.println("Subject: " + mail.getSubject());
 System.out.println("Content: " + mail.getContent());
 System.out.println("Account URI: " + mail.getAccountRef());
 System.out.println();
 }

}

 The nice thing about this code is that all the serialization and deserialization is done transparently by the Restlet Framework.
 In order to work as expected, it’s essential to properly configure your classpath to have the org.restlet.ext.jackson extension first, covering JSON serialization, then the org.restlet.ext.xstream extension, covering XML serialization. This is because the XStream also has the ability to convert to JSON, and not only
 to XML, but is less powerful than Jackson for this purpose.

 At this point you can already launch the mail server application and try to get the mail resource from your browser. Adjusting
 the media query parameter should let you obtain either JSON or XML representation produced by Jackson or XStream. What’s remarkable
 is that we obtained transparent serialization of the Mail beans as well as the ability to negotiate their format using standard
 HTTP conneg. You could potentially support additional formats by adding new extensions with the proper converter to your classpath!
 The following listing shows how the MailClient looks.

 Listing 4.27. Mail server resource implementing the MailResource interface

 [image:]

 If you need access to the ClientResource instance backing the dynamic proxy created, you can make your interface extend the org.restlet.resource.ClientProxy to have access to an getClientResource() method automatically implemented.

 You can now run the client to confirm that the server works the same as for alternative approaches presented earlier in the
 chapter. We dramatically reduced the number of lines of code while keeping the full power of the Restlet API in hand if needed.

 4.6. Summary

 In this chapter you explored in depth how representations are supported by the Restlet Framework, from the low level Variant, RepresentationInfo, and Representation classes to the higher level JacksonRepresentation or XstreamRepresentation classes, providing an automatic binding between HTTP entities and Java classes.

 You learned how to manipulate XML representations with powerful features such as XPath selections, XML schema validation,
 or XSLT transformation. You also saw two ways to deal with JSON representations and used template representations with engines
 such as FreeMarker to produce HTML representations dynamically.

 Then you learned about the power of HTTP content negotiation and two main ways to support it in Restlet, through explicit
 declaration or transparently with the converter service and annotated Java interfaces. In the last case you obtained a remarkable
 reduction in terms of number of lines of source code.

 Abstracting away the parsing and formatting logic makes you dependent on binding libraries such as JAXB, XStream, and Jackson
 for properly handling the evolution of your representation beans. For simple evolutions like the addition or removal of properties,
 you should be pretty safe, but you need to be aware of the impact of deeper structural changes.

 In the end the various abstraction mechanisms provided are very attractive due to the huge productivity gains, but they couple
 your client and server code (while still retaining the ability to use any HTTP client using standard content negotiation).
 For most applications this is an acceptable trade-off, although others will need to keep a finer control on those aspects
 by using the more explicit approach that we’ve seen before.

 With the Restlet Framework you’re free to choose the approach that best fits your requirements, even keeping the ability to
 mix both approaches if needed. In the next chapter we discuss a totally different, but nonetheless very important, subject:
 how to secure your Restlet applications.

Chapter 5. Securing a Restlet application

	

 This chapter covers

 	Securing the communication

 	Authenticating the remote user

 	Assigning roles to the authenticated user

 	Authorizing the user to perform actions on the system

 	Ensuring end-to-end integrity of the data

 	

In chapter 3 you saw how to deploy a Restlet application on premises, but this application was freely accessible to any client. In the
 real world free accessibility is rarely desirable, and a point comes when you need to take security into account. This chapter
 covers how to secure a Restlet application. We address the issue of securing the communication between the client and the
 server by using transport level security that can ensure confidentiality and integrity of the exchange.

 Then we go through three related notions: authentication, assignment of roles, and authorization. The section on authentication
 guides you through verifying the identity of the remote user. The section on role assignments shows how remote users may be
 mapped into the system’s overall identity management structures, specifically via roles in the application. The section on
 authorization shows how to grant or deny users permission to perform an action, depending on their authentication status and on the action they wish
 to perform.

 Finally we show how to protect against accidental modification during the exchange of representations using the mechanisms
 that ensure end-to-end integrity of the data. We begin by explaining how to implement transport confidentiality and integrity
 with Restlet.

 5.1. Ensuring transport confidentiality and integrity

 The most common way of securing communication over the internet is to use the Transport Level Security (TLS) protocol, or
 the Secure Socket Layer (SSL) protocol from which TLS is derived. TLS can be used to ensure the confidentiality and integrity
 of the communication between a client and a server, making the communication immune to eavesdropping or alteration by a third
 party or through network failure.

 This section covers TLS and SSL and describes how to configure a Restlet component to use them. First we explain how the TLS
 protocol works, particularly in the context of HTTP, and the purpose of certificates. Then we describe what keystores are,
 how to generate private and public keys, and how to handle certificates in Java. Finally we explain how Restlet is configured
 to use certificates and how to configure custom SSL contexts for specialized applications.

 5.1.1. Understanding TLS and SSL

 The purpose of TLS is to ensure the security of the communications between a client and a server. It provides applications
 with secure sockets, which have been designed to match normal sockets as closely as possible. Correct configuration of TLS
 is necessary in order to ensure the confidentiality and integrity of the communication.

 TLS is the Internet Engineering Task Force’s (IETF) standard for a transport layer security protocol. TLS v1.0 is based on
 SSL v3. As a result TLS is still often referred to as SSL in a number of frameworks and applications. For the purpose of this
 book, TLS and SSL can be considered to be the same except when an explicit version is given. In Java, most of the classes
 related to the configuration of TLS/SSL use the SSL prefix.

 TLS normally relies on Public Key Cryptography, which uses a pair of keys to encrypt and decrypt messages. The pair of keys
 consists of a private key, known only to the person or machine by which it was generated, and an associated public key, which
 may be distributed publicly. Two main operations can be performed: encryption and signing. Encryption is used to make the
 content of a message secret and is done using the public key; decryption can then only be performed using the corresponding
 private key. Signing is used to assert the authenticity of a message and involves similar operations, but is done using the
 private key; validating the signature is done using the corresponding public key. Here the action of signing means using a
 private key to encrypt the result of applying a hash function to the content of the message being sent.

 A fundamental requirement to avoid man-in-the-middle attacks is to enable the client to verify the identity of the server
 with which it’s communicating. Without this verification, the client could be talking to an impostor relaying, eavesdropping, and possibly altering the messages exchanged
 with the legitimate server. The mechanism to verify the identity of a remote server relies on certificates (usually based
 on the X.509 standard), which bind a public key to an identity and are distributed as part of a Public Key Infrastructure
 (PKI). For this reason, the server must be configured to use a certificate.

 A certificate is a signed statement that includes a public key and other information such as date of validity, Subject Distinguished
 Name (Subject DN), and the Issuer Distinguished Name (Issuer DN). The Subject is the entity to which the certificate is issued;
 it’s the entity that has the private key associated with the public key in the certificate. The Issuer is the entity that
 asserts that the information in the certificate, in particular the identity of the subject, is correct. The issuer is usually
 a Certification Authority (CA), which may be a commercial company or may be a local CA created within your institution or
 company. PKIs describe the relationships and trust models between the CAs and are associated with legal documents describing
 the intended use of various X.509 attributes (depending on CA policies).

 The verification process in a PKI relies on the certificate consumer to be configured with a set of certificates it trusts
 a priori: the trusted anchors. Verifying a certificate then consists of building a chain between that certificate and one of the trusted
 anchors; there may be intermediate certificates in the chain.

 Alternative trust models exist, such as FOAF+SSL, that may require more specialized SSL settings. Certificates can also be
 self-signed, in which case the trust model has to be established by some other means (for example, someone you trust gives
 you this certificate in person). Figure 5.1 illustrates the HTTPS connection process.

 Figure 5.1. HTTPS sequence diagram with TLS/SSL

 [image:]

 When a user agent connects to an HTTPS server, it first verifies the certificate of the server during the TLS handshake (before
 any HTTP data is exchanged). Web browsers are generally bundled with a number of CA certificates (the trusted anchors), often
 from commercial or governmental CAs. The Oracle Java SE also comes with a set of trust anchors (the default truststore in
 Java’s terminology), but the reference guide for the Java Secure Socket Extension (JSSE), which is the part of the Java SE
 responsible for handling TLS, recommends checking the content of that truststore when deploying applications.

 Once the certificate has been verified against a set of trusted anchors, the client must also verify that the certificate
 matches the name of the host it intends to connect to. To be acceptable, the host name must be in the Subject Alternative
 Name DNS entry (an X.509 extension) or, if this extension is absent, in the Common Name (CN) field of the certificate’s Subject
 DN.

 Only once these verifications have been performed may the TLS handshake proceed, including the exchange of random session
 keys. Upon completion of the handshake, the HTTP communication may begin on top of the TLS layer. TLS protects the HTTP communication
 from eavesdropping, using encryption, and from third-party alteration, because such attacks would make the communication terminate
 abruptly (which would cause an exception in Java).

 In addition, clients may also send a certificate to the server during the TLS handshake, when the server wishes to use client-certificate
 authentication. The verification process on the server side is similar except that there is no requirement to check the host
 name.

 5.1.2. Storing keys and certificates

 In general, special files are used to store certificates and private keys. For TLS two kinds of files are used, keystores
 and truststores, which can also be used in Java code via the java.security.KeyStore class. The names may appear confusing, but both keystores and truststores are instances of KeyStore.

 In this context, the keystore is the store that has the information local to the application; the keystore contains the server certificate and its private
 key on a server and the client certificate and its private key on a client.

 In contrast, the truststore is the store used for making trust decisions regarding certificates presented by remote peers. The truststore is used by
 the client to verify the certificates of the servers it connects to and by the server to verify the client certificates it
 receives (if the server is configured to ask for client certificates).

 The Oracle JRE is provided with a default truststore that contains a number of commercial CA certificates (similar to browsers).
 The Oracle Java SE supports a number of types of keystores. The default type is JKS, but PKCS12 (PKCS#12 format) is also supported and can be used for importing and exporting .p12 files with a number of tools such as web browsers or OpenSSL. Java
 provides a command-line tool to manipulate keystores called keytool. Other third-party tools exist.

 The following subsections give an overview of the keytool operations used to create and manage certificates for use with Restlet.

 5.1.3. Generating a self-signed certificate

 This section describes how to generate a key pair using keytool, which also creates a self-signed certificate implicitly. Note that this tool has been greatly enhanced in Java 5.

 The following command creates a 2048-bit RSA key pair and creates a self-signed certificate for CN=simpson.org,OU=Simpson family,O=The Simpsons,C=US where CN is the common name (fully qualified domain name or IP address), OU the organizational unit, O the organization,
 and C the country code, using an SHA1 signature digest. Then it stores it into the server alias of a keystore file called
 serverKey.jks:

 keytool -keystore serverKey.jks -alias server -genkey -keyalg RSA
 -keysize 2048 -dname
 "CN=simpson.org,OU=Simpson family,O=The Simpsons,C=US"
 -sigalg "SHA1withRSA"

 Note that you’ll be prompted for passwords for the keystore and the key itself. Let’s enter password as the example value. This certificate can then be exported as an independent certificate file server.crt, using this command
 (providing the same password):

 keytool -exportcert -keystore serverKey.jks
 -alias server -file serverKey.crt

 The certificate file can then be distributed and imported explicitly in browsers, whereas the private key remains in the keystore
 file. By design, private keys can’t be recovered from public keys or certificates, so backing up the keystore at this stage
 is recommended. In the following subsection you see how to have this key material certified by a certification authority (CA).

 5.1.4. Generating a certificate request

 This section describes how to generate a certificate signing request (CSR), which may be required by the CA that will provide
 your certificate. (Alternatively, some CAs have web interfaces that allow for the key material generation within the browser.)

 A CSR binds a public key to a requested identity and attributes and is as such similar to a certificate. But it can’t be used
 as a certificate. CAs may choose to emit certificates that have different attributes or DN structures than those that were
 requested, depending on their policies. A CSR is signed by the private key corresponding to its public key, therefore proving
 that whoever generated the CSR owns this private key.

 A prerequisite for the generation of a CSR is a key pair, generated as described in the previous section. Then the CSR can
 be created with this command:

 keytool -certreq -keystore serverKey.jks
 -alias server -file serverKey.csr

 Alternatively, tools such as OpenSSL can be used to generate certificates, certificate requests, and CAs. OpenSSL users may
 want to start with the man-page for CA.pl.

 Next you must import the resulting certificate created by the CA into the keystore to be able to use it.

 5.1.5. Importing a trusted certificate

 After approval of the certificate request, the CA will provide a certificate file, usually in PEM or DER format. It needs
 to be imported back into the keystore to be used as a server certificate:

 keytool -import -keystore serverKey.jks
 -alias server -file serverKey.crt

 This command is also used for importing CA certificates into a special keystore that’s going to be used as a truststore—on
 the client side, for example. In this case the -trustcacerts options may also be required:

 keytool -import -keystore clientTrust.jks -trustcacerts
 -alias server -file serverKey.crt

 This trusted certificate may also be imported explicitly into your browser or used by a programmatic HTTPS client. This is
 useful if you’re deploying your own infrastructure, or during development phases.

 5.1.6. Enabling HTTPS in Restlet

 Enabling HTTPS on a Restlet server is only relevant to standalone Restlet server connectors. If your Restlet application is
 running within a Servlet container, the container’s connectors must be configured according to its documentation.

 Configuration regarding HTTPS can be set using the parameters of the server’s context. Table 5.1 lists all useable parameters in this context.

 Table 5.1. Parameters of the server context related to the use of HTTPS

 	
 Parameter name

 	
 Description

	keystorePath
 	Specifies the path for the keystore used by the server

	keystorePassword
 	Specifies the password for the keystore containing several keys

	keystoreType
 	Specifies the type of the keystore

	keyPassword
 	Specifies the password of the specific key used

	truststorePath
 	Specifies the path to the truststore

	truststorePassword
 	Specifies the password of the truststore

	truststoreType
 	Specifies the type of the truststore

	sslContextFactory
 	Specifies a custom SslContextFactory implementation

	needClientAuthentication
 	Indicates whether to require client certificate authentication

	wantClientAuthentication
 	Indicates whether you want client certificate authentication

Next we cover a basic configuration of the keystore for an HTTPS-based server. The use of the sslContextFactory parameter is described in subsection 5.1.7.

 The code in the following listing illustrates how to set up an HTTPS server using a certificate stored in serverKey.jks, as
 described in the previous sections.

 Listing 5.1. Basic configuration of the keystore on a server

 [image:]

 After having configured and added the HTTPS server to the component [image:], you need to set the parameters related to HTTPS in order to configure the associated keystore [image:]. They correspond to its path, password, and type. Another password also needs to be set for the associated key.

	

Note

 In order to run this example, you need to ensure that you correctly generated the SSL keystore in the previous section. If
 you’re using version 2.0 of the framework, you also need to add HTTPS client and server connectors to your classpath, such
 as org.restlet.ext.net.jar and org.restlet.ext.jetty.jar, and its dependencies.

 	

You should then be able to start your server and point your browser to https://localhost:8183/accounts/chunkylover53/mails/123.
 Remember that the certificate must be trusted by the browser; otherwise you will get a warning message. Even if you are getting
 a warning from the browser (perhaps because you are running in a test environment where you have not configured your trusted
 certificates), the browser should let you see the certificate and verify that it’s the one you have indeed configured on the
 server, then manually accept it.

 Let’s now see how to invoke this HTTPS server with Restlet on the client side. This time, because you use the server certificate
 to encrypt the communication, you don’t need to provide a keystore. But because you used a self-signed certificate so far,
 you need to explicitly say that you trust it using the previously created truststore on the client side, as detailed in the
 following listing.

 Listing 5.2. Basic configuration of the truststore on a client

 [image:]

 After having created and configured the HTTPS client [image:], you need to explicitly add it to the ClientResource instance that you’ll use to communicate with your previous HTTPS server [image:]. The parameters correspond to the client-side truststore. You can now launch this HTTPS client after making sure that the
 HTTPS server is still running to see that everything works as expected.

 The settings presented in this section represent the traditional cases for enabling SSL on a server and a client. More advanced
 settings with custom management of trust or with other types of keystore configurations may also be used, as described next.

 5.1.7. Providing a custom SSL context

 In addition to the settings described previously, it’s possible to provide a Restlet server with customized SSL settings,
 using its org.restlet.ext.ssl.SslContextFactory abstract class (in Restlet Framework version 2.1). This can be configured via a parameter (using the class name) or via an
 attribute (using an existing instance). Table 5.2 lists all implementations of this interface provided by Restlet.

 Table 5.2. Provided implementations of the SslContextFactory interface

 	
 Implementation

 	
 Description

	DefaultSslContextFactory
 	Makes it possible to configure most basic options when building an SSLContext

	JsslutilsSslContextFactory
 	Corresponds to a wrapper for the SSLContextFactory of jSSLutils

	PkixSslContextFactory
 	Uses PKIXSSLContextFactory from jSSLutils and can be configured via parameters

To configure it via a parameter, pass the fully qualified class name of an implementation of SslContextFactory into the sslContextFactory parameter of the connector’s context. An instance of this class will be created and its init() method called using the connector’s parameters.

 To configure it via an instance, pass the configured instance into the sslContext-Factory attribute of the connector’s context. Configuring the SslContextFactory can be used for FOAF+SSL authentication or grid proxy certificates. The Restlet SSL extension (see the org.restlet.ext.ssl package) provides a JsslutilsSslContextFactory which wraps jSSLutils’s SSLContextFactory that implements some of these cases.

	

 jSSLutils

 jSSLutils is a small library designed to assist users who need SSL settings that are often not configurable by using the default
 text parameters in Java.

 It provides a consistent way of setting SSL-related parameters in Restlet, Jetty, and Apache Tomcat, such as methods for configuring
 PKCS#11 keystores (typically based on hardware cryptographic devices) and explicit configuration of Certificate Revocation
 Lists (CRL), for example.

 It also provides extensions to alter the trust management, for example to accept grid proxy certificates (a type of certificate
 used for delegation of credentials in grid computing) or FOAF+SSL certificates (used to authenticate a WebID [3] using semantic web and social networking technologies).

 This project is hosted at http://code.google.com/p/jsslutils/.

 	

The following snippet describes how to specify a custom SSL context factory at the Restlet client side:

 final SSLContext customSslContext = (...)
client.getContext().getAttributes().put("sslContextFactory",
 new SslContextFactory(){
 public SSLContext createSslContext()throws Exception {
 return customSslContext;
 }
 public void init(Series<Parameter> parameters) {
 // customSSLContext ignores standard parameters.
 }
});

 At this point, you know how to ensure the confidentiality and the integrity of exchanges between clients and servers using
 TLS, SSL, and HTTPS. The next step is to explain how servers can authenticate those clients to ensure that they are indeed
 who they say they are.

 5.2. Authenticating users

 This section describes how to authenticate users, or check the identity of a client that connects to a server. Authentication
 is a prerequisite for authorization, which consists of making and enforcing an authorization decision depending on authentication
 information.

 Figure 5.2 describes elements involved when implementing authentication with Restlet from client to server sides. Note that in HTTP,
 authentication is most often synonymous with challenge authentication, which means that the server first specifies the type
 of credentials that it’s expecting from the client in order to successfully authenticate subsequent requests. Then, the client
 can respond by providing the proper credentials to the server.

 Figure 5.2. Entities involved when using authentication with Restlet on both client and server sides

 [image:]

 Let’s first describe how to configure authentication on the client side.

 5.2.1. Providing authentication credentials on the client side

 On the client side, several classes from the org.restlet.security package of the Restlet API are involved regarding authentication:

 	ChallengeRequest—Corresponds to the authentication challenge sent by an origin server to a client. Upon reception of this request, the client
 should send a new request with the proper ChallengeResponse set. When used with HTTP connectors, this class maps to the WWW-Authenticate header. Note that multiple challenge requests can be sent to a client at the same time, in case several schemes are supported.

 	ChallengeResponse—Corresponds to the authentication response sent by a client to an origin server. This is typically following a ChallengeRequest sent by the origin server to the client. Sometimes, it might be faster to preemptively issue a challenge response if the
 client knows for sure that the target resource will require authentication. When used with HTTP connectors, this class maps
 to the Authorization header.

 	ChallengeScheme—Corresponds to the challenge mechanism used to authenticate remote clients, such as HTTP Basic.

Let’s now describe how to add client credentials to requests on the client side based on these classes.

 Setting Authentication Credentials in a Request

 Securing a request with Restlet is done using the ChallengeResponse class. After initializing the class, you can set it on the entity making the request, either the Request itself or a ClientResource instance, using the setChallengeResponse method.

 The constructor of the ChallengeResponse class accepts three parameters:

 	The challenge scheme—Specifies the scheme used to authenticate remote clients.

 	The identifier—Corresponds to the user identifier, such as a login name or an access key.

 	The secret—Corresponds to the user secret, such as a password or a secret key.

Restlet provides an important range of built-in security schemes. These are defined as constants in the ChallengeScheme class. Table 5.3 lists all these schemes available in version 2.1.

 Table 5.3. Security schemes declared by the ChallengeScheme class

 	
 Name

 	
 Description

	CUSTOM
 	Custom scheme based on IP address, query parameters, and so on

	FTP_PLAIN
 	Plain FTP scheme

	HTTP_AWS_QUERY
 	Amazon Web Services scheme using a URI query parameter

	HTTP_AWS_S3
 	Amazon Web Services digest-like HTTP scheme for S3

	HTTP_AZURE_SHAREDKEY
 	Microsoft Azure Shared Key scheme

	HTTP_AZURE_SHAREDKEY_LITE
 	Microsoft Azure Shared Key lite scheme

	HTTP_BASIC
 	Standard HTTP Basic scheme

	HTTP_COOKIE
 	Special scheme using HTTP cookies

	HTTP_DIGEST
 	Standard HTTP Digest scheme

	HTTP_NTLM
 	Microsoft NTLM HTTP scheme

	HTTP_OAUTH
 	OAuth HTTP scheme

	POP_BASIC
 	Basic POP scheme

	POP_DIGEST
 	Digest POP scheme

	SDC
 	Google Secure Data Connector scheme

	SMTP_PLAIN
 	Plain SMTP scheme

We won’t describe all of these schemes in this chapter; we focus on HTTP Basic in this section and on HTTP Digest in the next
 section. Some of the schemes are described in other chapters, the S3 and SDC ones in chapter 8, respectively in sections 8.7 and 8.8.3.

	

 Support for OAuth 2.0 and OpenID 2.0

 Two new extensions related to security were added to version 2.1 of Restlet Framework, based on a contribution from Ericsson
 Labs. They provide support for draft versions of OAuth 2.0 (supporting delegated authentication to web APIs) and OpenID 2.0
 (interoperable authentication, client and server sides).

 	

Let’s implement HTTP Basic authentication for a request. Imagine that your mail server is now secured and requires you to
 provide a username and a password, as we’ll explain in section 5.2.4, “Verifying user credentials.” The following code snippet describes how to preemptively provide those credentials:

 ChallengeResponse authentication = new ChallengeResponse(
 ChallengeScheme.HTTP_BASIC, "chunkylover53", "pwd");
clientResource.setChallengeResponse(authentication);

 As you can see, the ChallengeResponse class is the central class to provide those credentials in a request. Restlet internally relies on an authentication helper
 to convert this information into a proper HTTP header.

 There are cases where authentication is a bit complex and requires some exchanges between client and server. In the next section,
 we’ll describe the case of the HTTP Digest authentication and how Restlet manages it.

 Receiving Security Credentials in a Response

 Some security schemes are more complex than others to implement on the client side because they require a preliminary exchange
 with the server before being able to authenticate a request. That’s the case with digest authentication.

 The first step is to send the request without any authentication hints. The server will send back HTTP error 401 (Client Unauthorized),
 telling that you need an authentication. In this response, the HTTP WWW-Authenticate header is present and gives unique and transient information to build the authentication credentials for the next requests.
 Figure 5.3 gives details about interactions between client and server regarding digest authentication.

 Figure 5.3. Interactions between client and server sides during HTTP Digest digest authentication

 [image:]

 Information to build authenticated requests and send them back from the server are available with Restlet using the ChallengeRequest class. To get the corresponding instances, you need to iterate over the list returned by the getChallengeRequests() method. The one with the HTTP Digest scheme is the one you’re prepared to support in this example. This instance will be used
 to instantiate the ChallengeResponse for subsequent requests to secured resources in addition to username and password. Listing 5.3 describes how to implement HTTP Digest authentication based on security hints received from the server on the first unauthenticated
 request.

 Listing 5.3. Two-step client authentication with HTTP Digest

 [image:]

 The first step is to extract security hints sent back by the server after the first unauthenticated request. Based on them,
 you create a new ChallengeResponse instance, adding the username and password. Once set on the ClientResource instance, the request can be sent again. This time around it will be successfully authenticated.

 Before dealing with the server-side security support in Restlet and testing the previous client-side code, let’s look at how
 the framework allows proxy authentication.

 Support for Proxy Authentication

 Restlet also supports proxy authentication that is sometimes required in large organization in order to leave the intranet
 and access the web at large. This support is based on the proxyChallengeResponse property of Request. This property holds credentials that contain the authentication information of the user agent for the proxy. These credentials
 are sent to the server using the Proxy-Authorization HTTP header.

 This feature is also used by the SDC support within Restlet in order to provide credentials necessary to authenticate with
 the secured channel. For more details, refer to chapter 8, section 8.9, “Accessing intranet resources with Restlet’s SDC extension.”

 Let’s dive now into the server side of Restlet authentication support.

 5.2.2. The org.restlet.security.Authenticator class

 The Authenticator class is a Filter subclass that implements the mechanisms for authenticating remote users. Its function is to associate a user identity with
 a request using a Verifier. In addition, it may use the optional Enroler, if present, to associate the user with roles. Figure 5.4 illustrates the main Authenticator subclasses as well as the Restlet classes and interfaces involved in the authentication process that we’ll describe in this
 subsection.

 Figure 5.4. Hierarchy of authenticator classes

 [image:]

 The Authenticator is an abstract class that requires the definition of the authenticate(Request, Response) method in its concrete subclasses. All the preceding details about challenge requests and responses are useful when implementing
 this method. Typically, authentication is performed by presenting the client with a challenge, via an HTTP header mechanism.

 The ChallengeAuthenticator, described in the next subsection, is a concrete Authenticator that implements the challenge mechanism and uses a Verifier, described in section 5.2.4, to verify the response to such challenges.

 Some authenticators only rely on existing information associated with the request, without requiring an additional challenge.
 This is the case with the Certificate-Authenticator, described in section 5.2.5, which supports the authentication via trusted TLS client certificates.

 By default, authenticators don’t forward the request to the next Restlet in the routing chain if the request isn’t authenticated
 successfully. But they may be configured for optional authentication using the optional Boolean property, in which case the request will go through even if no authentication information was obtained.

 Authenticators aren’t to be confused with authorizers, covered in section 5.4, which make authorization decisions about whether the request will be able to proceed, with or without user authentication. Typically, an Authenticator is immediately chained to an Authorizer, which is then chained to the protected Restlet.

 Let’s now describe the authenticator that uses the challenge mechanism described previously to authenticate requests.

 5.2.3. Challenge-based authentication

 The ChallengeAuthenticator class provides mechanisms to authenticate client requests via a challenge. The verification of the credentials provided by
 the client in response to this challenge is delegated to its Verifier, as described in the next subsection. The ChallengeAuthenticator expects to be initialized with a Challenge-Scheme, a realm name (used by a number of challenge schemes), and a Verifier.

 The purpose of the Verifier is to ascertain that the user’s response to the challenge is the one that was expected (ensuring that users are who they
 say they are). Because authenticators are filters, they use the Restlet routing system described in section 2.4.

 The simplest ChallengeAuthenticator is one that uses HTTP Basic authentication, where the user identifier and password are almost sent as clear text via standard
 HTTP headers. This mode triggers a popup dialog in web browsers. Once the identifier and passwords reach the ChallengeAuthenticator, it can use a Verifier to check whether they match what is expected, as described in the next section. Note that as the password is sent in the
 clear, this scheme is only acceptable when used over HTTPS. The following listing shows how to protect your example mail server
 application with the HTTP Basic scheme.

 Listing 5.4. Protecting resources with HTTP Basic

 [image:]

 Even though in this example you used the MapVerifier class to store the authentication secrets in an easy way, keep in mind that this verifier isn’t secure by itself because
 all passwords are available in clear from the JVM memory.

 Another common authentication mechanism is HTTP Digest, also using standard HTTP headers. It’s stronger than Basic, using
 a hash signature computed from the password as a shared key. It can be used over regular HTTP but has documented weaknesses
 in brute force attacks. Because the mechanism required for HTTP Digest authentication is more complex and requires cryptographic
 functions, this is implemented in the DigestAuthenticator, a subclass of ChallengeAuthenticator present in the org.restlet.ext.crypto extension. The next listing adapts the example to use HTTP Digest authentication.

 Listing 5.5. Protecting resources with HTTP Digest

 [image:]

 You might have noticed that the previous snippet called the setWrappedVerifier() method instead of the setVerifier() one used in the HTTP Basic case because DigestAuthenticator needs to wrap your regular verifier into a DigestVerifier one to do all the HTTP Digest computation, as illustrated in figure 5.4.

 In the next section, we explain what a verifier is and how to verify the credentials in a ChallengeResponse obtained by the ChallengeAuthenticator object.

 5.2.4. Verifying user credentials

 Although the ChallengeAuthenticator is the Restlet filter presenting the challenge and receiving its response, the verification of the response provided by the
 user is delegated to the Verifier interface, described in the figure 5.5.

 Figure 5.5. Hierarchy of credentials verifiers

 [image:]

 The verify method is responsible for checking if the user can be authenticated using credentials present in the request. This method
 returns an integer describing the corresponding result. Some constants are present in the interface to describe all possible
 results.

 Three implementations of the Verifier interface are described in this section: the SecretVerifier (the simplest form), the DigestVerifier (used for HTTP Digest authentication), and the JaasVerifier (that relies on the standard Java Authentication and Authorization Service).

 Let’s look at those three types of verifiers in more detail.

 Secret Verifier

 The SecretVerifier is an abstract Verifier implementation that can check the identifier and secret (typically a password) provided by the user. Upon success, it associates
 the Request with a new User built from the identifier value. The SecretVerifier doesn’t require shared knowledge of the secret, but at least needs a way to verify that secret, for example via a one-way
 digest of the password. It can be implemented as a map of identifiers and passwords (see the MapVerifier class) or check the secret against other mechanisms, such as Apache Httpd’s htaccess files or an LDAP store.

 The following snippet describes a simple implementation of the SecretVerifier class that checks a hard-coded username and password. The verification process could also be done using a database or a directory:

 public class SimpleSecretVerifier extends SecretVerifier {
 @Override
 public int verify(String identifier, char[] secret) {
 return (("chunkylover53".equals(identifier)) && compare(
 "pwd".toCharArray(), secret)) ?
 RESULT_VALID : RESULT_INVALID;
 }
}

 Let’s deal with another kind of verifier, the one dedicated to secret digest-based authentication.

 Secret Digest Verifier

 Due to the nature of HTTP Digest authentication, the DigestAuthenticator requires the Verifier to know the secret to verify. This is an extra constraint compared with the SecretVerifier. The LocalVerifier is a subclass of SecretVerifier that not only verifies that a secret is valid, but can also get this shared secret in clear text in order to compute a digest
 from it that can be compared with the digest provided by the user, following the standard HTTP Digest mechanism.

 As you saw in listing 5.5, such a SecretVerifier is then wrapped in the Digest-Verifier associated with the DigestAuthenticator. Let’s deal with the Restlet security support based on the JAAS technology.

 JAAS Verifier

 In circumstances where your Restlet application is deployed as part of a more complex system, it may be useful to rely on
 the Java Authentication and Authorization Service (JAAS) to verify the user’s credentials with JAAS login modules. If you
 aren’t familiar with JAAS, you might want to read more about this standard Java API first, or skip this subsection as it’s
 a pretty advanced topic.

 The LoginModule interface is an abstraction for a pluggable authentication mechanism in the JAAS architecture. It’s responsible for verifying
 the user credentials and populating the JAAS Subject passed to it with various Principals when authentication is successful. A principal is a general way of modeling an authenticated entity, such as an individual
 or a role, as described in section 5.3.1. Then, a LoginModule can communicate with the application requesting authentication via Callbacks and the application’s CallbackHandler.

 The JaasVerifier, part of the org.restlet.ext.jaas extension, provides a Call-backHandler that supports the NameCallback and the PasswordCallback, obtained from the ChallengeResponse’s identifier and secret, respectively. Therefore, the Jaas-Verifier can be configured to use any LoginModule that requires either or both of these Callbacks, which are common. There are a number of LoginModules provided as part of various libraries or containers. Some, like the LdapLoginModule, are provided with Java SE. Although documenting JAAS and LoginModules in detail is outside the scope of this book, here is an example showing how to use the LdapLoginModule with Restlet. The JaasVerifier can be plugged into any ChallengeAuthenticator from which it can extract a secret; for example one with HTTP Basic authentication, as illustrated here:

 JaasVerifier verifier = new JaasVerifier("MailServerApplication");
verifier.setUserPrincipalClassName("com.sun.security.auth.UserPrincipal");
authenticator.setVerifier(verifier);

 In addition, JAAS must be configured, either programmatically or via a policy file passed via the java.security.auth.login.config system property. In this case, the policy file could be along these lines (you are invited to look up the Java API documentation
 of LdapLoginModule for further details):

 MailServerApplication {
 com.sun.security.auth.module.LdapLoginModule REQUIRED

 userProvider="ldap://ldap.example.net/"
 authIdentity="uid={USERNAME},ou=people,dc=example,dc=net"
 useSSL="false"
 debug="true"
 };

 Here, MailServerApplication is the JAAS application name, which must match the name given when constructing the JaasVerifier. This login module will provide new principals when the authentication is successful. In particular, this module adds an
 instance of com.sun.security.auth.UserPrincipal containing the username and an LdapPrincipal. Each LoginModule can add any number of principals to the Subject. Each of these instances may be from different concrete implementations of Principal. They may represent the users or various attributes such as roles. To distinguish what these instances represent, the JaasVerifier can be configured with a class name to indicate from which instance to extract the Restlet User name. In the previous example,
 using setUserPrincipalClassName(), the request’s User is set to the name of the first principal returned of class com.sun.security.auth.UserPrincipal.

 Although the JaasVerifier doesn’t do any mapping of potential role principals obtained via a LoginModule to Restlet roles, these principals are retained with the ClientInfo list of principals and may be used by an Enroler.

 Even though this is the most common authentication mechanism in HTTP, challenge authentication isn’t the only one available.
 Another popular one is based on SSL certificates and is presented next.

 5.2.5. Certificate-based authentication

 Certificate-based authentication is a mechanism that doesn’t rely on a challenge at the HTTP or application layer, because
 this is done via the TLS handshake underneath.

 Client certificate authentication is done via the configuration, on the server side, of the TLS stack to request a certificate
 from the client. The server must be configured with a trust store that contains the trust anchors used to verify a client
 certificate and additionally configured to want (or need) a client certificate when the client connects. If the wantClientAuthentication parameter is set to true, the connection will be established even if the client doesn’t present a certificate. In contrast, if the needClientAuthentication parameter is set to true, the TLS handshake will fail if no certificate is presented, without moving the connection to the HTTP layer. Presenting
 a certificate that isn’t trusted will make the connection abort in either mechanism. Note that if both parameters are set
 to true, it’s equivalent to requiring a client certificate:

 parameters.add("wantClientAuthentication", "true");

 In both cases the server asks for a client certificate. The wantClientAuthentication parameter indicates that it’s an optional request, but needClientAuthentication will abort the SSL handshake if no client certificate is presented, without any HTTP exchange allowed, and therefore without
 the possibility of an error page being presented.

 Client certificate authentication will often require you to configure a trust store to indicate which CA certificates you
 trust to have issued client certificates for your system. This can be done by setting the following additional properties
 on the context:

 parameters.add("truststorePath",
 "src/org/restlet/example/book/restlet/ch05/serverTrust.jks");
parameters.add("truststorePassword", "password");
parameters.add("truststoreType", "JKS");

 Configuring a client certificate allows complete trusted communication. From the client to the server, requests are encrypted
 using the server certificate. This is already the case without a client certificate. What is different now is that the response
 is encrypted using the client certificate so only this client can decrypt the corresponding content.

 Such configuration can also be defined within Web navigators. Firefox contains its own certificate store that can be managed
 through the Preferences – Advanced – Manage certificates section. Internet Explorer directly relies on the Windows certificate
 store.

 In addition, the javax.net.ssl.SSLContext may be configured via customized instances of org.restlet.engine.security.SslContextFactory to change the trust settings. The Java SE default settings use the PKIX algorithm, whereby certificates are verified against
 CA certificates in the trust store; this is also the traditional model used by browsers. In this model, a hierarchical chain
 is built between the certificates to verify a certificate in the trust store. A certificate is verified if it has been emitted
 using a certificate in the trust store or via an intermediary that has; there may be a number of intermediate certificates
 in the chain (see section 5.1.1 for details).

 Other TrustManagers may be configured if you need alternative trust models that aren’t handled by default in Java, for example to accept grid
 proxy certificates (RFC 3280) or FOAF+SSL certificates, using a custom SslContextFactory, as described in section 5.1.6.

 Once the authentication has been successful at the TLS layer, it needs to be handled at the HTTP layer in Restlet. This may
 be done by extending the Authenticator class to take the certificate chain presented in the request’s clientInfo.certificates property and mapping it to a user Principal.

 You can now adapt the mail example application to this authentication scheme. First, you have to create a key store for the
 client side using this command line:

 keytool -keystore clientKey.jks -alias client -genkey -keyalg RSA
 -keysize 2048 -dname
 "CN=friends.simpson.org,OU=Simpson friends,O=The Simpsons,C=US"
 -sigalg "SHA1withRSA"

 Now, you can export the new certificate and import it into a new serverTrust.jks truststore as explained in sections 5.1.3 and 5.1.5. Then, you need to configure the MailClient HTTPS connector with both a keystore (clientKey.jks) and a truststore (client-Trust.jks). On the server side, you only need to replace, in the MailApplication, the challenge-based authenticator with the CertificateAuthenticator (added to the SSL extension in version 2.1) as illustrated in the next listing.

 Listing 5.6. Protecting resources with trusted TLS client certificates

 [image:]

 Once the authentication of the user has been completed, whether via a client certificate or via an HTTP challenge, as described
 in this section, it’s generally useful to obtain additional information regarding the user, so as to be able to make an authorization
 decision. Typically, this additional information consists of roles that the user may have in the organization or the system,
 as described next.

 5.3. Assigning roles to authenticated users

 Many systems rely on Role-Based Access Control (RBAC), in which individuals are assigned roles in the system, which are then
 used to make the authorization decision. This allows for the decoupling of the individuals from the authorization they’re
 granted.

 For example, instead of authorizing Homer to read a particular document because this document is part of the payroll application
 and Homer also is the head of the Simpson’s family finances, the CFO role could be defined and granted to Homer so that if
 it’s no longer him, then the next user in that role will still have access to this document.

 This section presents the org.restlet.security.Enroler interface and its associated classes aimed to associate roles with user requests. It also presents the structures available
 to model organizations, groups of users, and roles.

 5.3.1. Request principals

 The Java security framework relies on the java.security.Principal interface for granting permissions. The Principal interface has only one method, getName(), and represents an authenticated entity, in the broad sense of the term: this can be an individual, a service, a role, and
 so forth.

 On the Restlet API side, the request’s clientInfo property can contain three kinds of principals: one user, a list of roles, and a list of additional principals. User and Role classes in the org.restlet.security package are two predefined principals in the Restlet API. All principals can be accessed and modified via their accessors
 on an instance of ClientInfo (see the getUser(), getRoles(), and getPrincipals() methods). The association of roles based on a user is done via the Enroler interface, described in the next subsection.

 5.3.2. The org.restlet.security.Enroler interface

 The Authenticator class typically invokes the Enroler specified via the enroler property after a successful authentication in order to associate roles with the request’s clientInfo property. Its single method, enrole(ClientInfo), is expected to add roles to the ClientInfo instance based on the authenticated user and principals it already refers to. It may also be used to add other principals
 if necessary.

 Such information may be obtained independently of the act of verifying the remote user’s identity, although it should only
 be associated with an authenticated entity. This provides some flexibility regarding modeling of roles and other userrelated
 data. The Restlet API provides a level of abstraction to model these roles and a default Enroler, described in the next subsection.

 Alternatively, more customized retrieval of role data can be achieved, for example, by querying an LDAP directory based on
 the Distinguished Name authenticated via a TLS client certificate.

 5.3.3. Organizations, users, and groups

 The structure of an organization, in particular users, groups, and roles, may be modeled via the org.restlet.security.Realm class, more specifically, the MemoryRealm.

 In this model, a number of users may be grouped into an org.restlet.security.Group instance, and groups can also be nested. Both users and groups may be associated with roles. The groups are useful for allocating
 roles to a set of users, as the role in the system may depend on whether users belong to a particular group. Users and groups
 tend to represent entities within the scope of an organization, whereas roles are mapped from users and groups within the
 context of a particular application. One benefit of this separation is the increased portability of the application between
 heterogeneous deployment environments.

 Let’s put this feature in practice in the next listing, defining the Simpsons family as an organization composed of users
 within the MailServerComponent introduced in section 3.3.1. At the same time, you complete the example in order to fully use annotated interfaces covered in section 4.5.4. You can see the result in the source code provided along this book.

 Listing 5.7. Defining a memory realm with users and mapping to roles

 [image:]

 On the client side, you don’t need to change anything to your MailClient provided in listing 3.2 besides adding the challenge authentication (switching back to HTTP Basic) exactly like in section 5.2.1. You can launch the test client to confirm that the example still works, but note that although the authenticated Homer is
 given the CFO role, it isn’t taken into account when processing. In section 5.4, we’ll cover how to enforce authorization policies, but for now let’s explain how the realm’s enroler and verifier can be
 used within the application.

 5.3.4. The default enroler and verifier

 The default enroler of the application’s context is the enroler used by the authenticators within that application (unless
 specified otherwise). It’s called after each successful authentication to allocate roles to the request, whether or not it’s
 configured with your main realm’s enroler (as shown previously).

 It’s convenient to set such an enroler for your application, so as to avoid having to repeat this code explicitly for each
 authenticator it may contain. In the same spirit, there is a default verifier that can be set on the Context class that is used by default in ChallengeAuthenticator instances when no custom verifier is provided.

 5.4. Authorizing user actions

 This section describes how to authorize access, following the authentication of the user. This is where the decision of granting
 or denying access is made and enforced.

 5.4.1. The org.restlet.security.Authorizer class

 The Authorizer is a Filter subclass that provides the mechanism to authorize requests. Its function is to grant or deny the request access to the next
 Restlet it protects, depending on the authentication information passed to it.

 In particular, the authentication information may include a user name, roles, and various principals, as described in section 5.3, which may be used, for example, by the RoleAuthorizer (see section 5.4.2). In addition, the authorization can also depend on the request itself; for example, the MethodAuthorizer (see section 5.4.3) makes its authorization decisions depending on the HTTP method.

 In figure 5.6 hereafter, you can see the Authorizer subclasses provided by the Restlet Framework, including ConfidentialAuthorizer to only authorize secure requests, such as those coming through an HTTPS connector.

 Figure 5.6. Hierarchy of authorizers

 [image:]

 In next subsection, we’ll look more closely at the role authorizer.

 5.4.2. The role authorizer

 As described in section 5.3, permissions are often granted to roles rather than a specific user, allowing for more flexibility in the management of the
 permissions within an organization. Permissions tend to be granted to people depending on their role with respect to the application,
 which in turn may depend on the position within the organization, rather than being tied to a particular individual. The mapping
 of roles to users is done using the Enroler, described in section 5.3, before the request is passed on to the authorizer.

 The RoleAuthorizer is an authorizer that makes its decision depending on whether the client has been allocated certain roles. This authorizer
 is configured with a set of authorized and forbidden roles. A client will be allowed through only if it has at least one of
 the authorized roles and none of the forbidden roles.

 A RoleAuthorizer that would only authorize users that have the CFO role would be configured as follows:

 RoleAuthorizer authorizer = new RoleAuthorizer();
authorizer.getAuthorizedRoles().add(getRole("CFO"));
authorizer.setNext(router);

 This uses the getRole(String) method of Application to get the registered instance of Role from its name. Note that you also need to declare the supported roles in the MailServerApplication’s constructor like this:

 getRoles().add(new Role("CFO"));
getRoles().add(new Role("User"));

 Alternatively, some authorizers may depend on the method used, but not necessarily on the identity or roles of the user. The
 next subsection presents the method authorizer.

 5.4.3. The method authorizer

 The MethodAuthorizer is an authorizer that makes its decision depending on the request method and on whether the client is anonymous or authenticated.
 This authorizer is configured with a set of methods allowed for anonymous users and a set of methods allowed for authenticated
 users. A MethodAuthorizer that would let any GET user do a request but allow POST only for authenticated users would be configured as illustrated here:

 MethodAuthorizer authorizer = new MethodAuthorizer();
authorizer.getAnonymousMethods().add(Method.GET);
authorizer.getAuthenticatedMethods().add(Method.GET);
authorizer.getAuthenticatedMethods().add(Method.POST);
authorizer.setNext(router);

 In some cases, knowing only the method used in the request to perform the action is too coarse to be able to make an authorization
 decision. The next subsection explains how to implement fine-grained authorization, where the decision may also depend on
 the state of the resource.

 5.4.4. Fine-grained authorization

 Finer-grained authorization may be performed within a given resource; for example, if authorization also depends on the content
 of this resource. This is often done in a bespoke manner, although the authorizers described previously may be used independently
 of being filters (using their authorize method).

 In an email application, each account has a different owner. Only Homer ought to be able to read his emails. When the client
 sends a request to read emails from a given account, it’s only once the data about this particular account has been retrieved
 by the ServerResource that an authorization decision can be made.

 In addition, authorization regarding a particular resource may depend on the state of that resource at a given moment in time.
 In these cases, finer-grained authorization that depends on the state of the resource itself is required. This could not be
 achieved by a filter that would not have prior knowledge of the resource data.

 Although this may require some customized implementation depending on the data this kind of resource models, utility methods
 such as ServerResource.isInRole (String roleName) can assist when performing fine-grained authorization within the resource as illustrated here:

 public String represent(){
 String result = AccountsServerResource.getAccounts()
 .get(this.accountId);

 if (isInRole("CFO")) {
 return result + " (CFO access)";
 } else {

 return result;
 }
 }

 We’ll now complete our overview of authorization support in Restlet by covering how to use the JVM security manager, combined
 with JAAS.

 5.4.5. Using Java security manager

 It can be desirable to benefit from the Java security manager’s ability to sandbox a Restlet Application within its host virtual
 machine. Although the Restlet Framework doesn’t provide an explicit security manager configuration, this section provides
 pointers and examples regarding how this can be done.

 If you intend to use the security manager, it’s recommended that you read its official Java documentation, in particular the
 section on the syntax of policy files. Activating the default security manager can be done using this system property flag
 (no value is required):

 -Djava.security.manager

 The policy file may be configured using this flag:

 -Djava.security.policy="src/org/restlet/example/book/restlet/ch05/sec4/
 server/jaas.policy"

 This section is based on a short example, whereby a server resource is allowed to read the server’s home directory only if
 the user connecting to it has the CFO role. An example policy file is shown in listing 5.8. The first grant block grants permissions with the basics for the Restlet server to run. The second block grants the permission to read the
 server’s home directory to subjects with the CFO role. (This is only an example, which is probably too permissive for serious
 applications.)

 Listing 5.8. Example policy file

 grant {
 permission java.lang.RuntimePermission "*";
 permission java.net.NetPermission "*";
 permission java.util.logging.LoggingPermission "control";
 permission java.util.PropertyPermission "*", "read";
 permission java.net.SocketPermission "*", "listen,accept,resolve";
 permission javax.security.auth.AuthPermission "modifyPrincipals";
 permission javax.security.auth.AuthPermission "doAsPrivileged";
};

grant principal org.restlet.security.Role "CFO" {
 permission java.io.FilePermission "${user.home}", "read";
};

 In order to associate the user’s principals to the request, the static JaasUtils.doAsPrivileged() method may be used within a ServerResource, as illustrated next.

 Listing 5.9. Running sensitive code as a privileged user

 [image:]

 If you attach this FilesServerResource to the router of your MailServerApplication using the /accounts/{accountId}/files URI template, you can issue GET calls and compare the result with and without proper authentication of the chunkylover53
 user, which grants to the authenticated user a principal of class org.restlet.security.Role, with the name CFO. Then, the action of reading the home directory is allowed, as instructed in the second grant block in
 the example policy file.

 In the next section, we move away from the topic of authentication and authorization, to focus on ensuring the integrity of
 the data transfers.

 5.5. Ensuring end-to-end integrity of data

 In some cases, one of the risks that may be associated with an application is due to the potential failures that would cause
 the data to be altered before, during, or after the communication. This section presents how to ensure end-to-end integrity
 of data, by using digests of the representations. These digests aren’t cryptographically signed, therefore they protect only against accidental modifications of the representations, not against man-in-the-middle attacks,
 which could potentially replace the digest too.

 This section briefly introduces the concepts related to digests in general and within the context of HTTP (more specifically
 the Content-MD5 header). Then, we show how to use them with the Restlet Framework.

 5.5.1. Ensuring representation integrity

 HTTP provides a way to ensure the integrity of a representation by using a header that contains the digest of the representation.
 The digest is the result of a one-way function that would change almost completely given a minor alteration of the representation.
 Commonly used digest algorithms include MD5 and SHA-1, although both are now considered to have weaknesses. Users willing
 to ensure additional security against active attackers will need to check the robustness of the digest algorithm they use
 when they implement their systems.

 The Content-MD5 header, defined in the HTTP specification, is optional and may be present in responses and requests that have an entity. This header
 must contain the MD5 digest of the representation in the associated entity. It may be verified by any parties in the exchange,
 but must not be modified by intermediates, in particular by proxy servers. The next listing shows an example HTTP response
 that includes a Content- MD5 header.

 Listing 5.10. Example HTTP response with Content-MD5 header

 HTTP/1.1 200 The request has succeeded
Date: Thu, 27 May 2010 20:31:39 GMT
Server: Restlet-Framework
Content-Length: 12
Content-MD5: 7Qdih1MuhjZehB6Sv8UNjA==
Content-Type: text/plain; charset=UTF-8

Hello World!

 The recipient of this representation may verify the integrity of the representation by computing its digest and comparing
 it with the reference digest in the Content-MD5 header. Computing the digest and attaching it to the representation can be done in the Restlet Framework using the DigesterRepresentation, which wraps an existing representation and provides the utility methods for sending and verifying the digests, as described
 next.

 5.5.2. Representation digesting

 The operations used for digesting representations as a sender and as a receiver are similar. In both cases, the representation
 must be fully read and the digest must be computed. The main distinction between the two operations is that the receiver must
 compare the digest it computed from the representation it has received with the digest that was received with it. Both operations
 can be handled with a Digester-Representation, more specifically its computeDigest() and checkDigest() methods.

 These two methods only finalize the computation; consuming the representation via the DigesterRepresentation methods is an essential part of the computation.

 As a sender, setting the digest of a representation in the Content-MD5 header can be achieved by wrapping this representation in a DigesterRepresentation. This is a four-step process, as illustrated in listing 5.11:

 	The initial representation must be wrapped into a DigesterRepresentation.

 	Its content must be fully read, as this contributes to the computation of the digest (in this particular example, the content
 is read and discarded via exhaust()).

 	The digest must be computed and finalized, using computeDigest().

 	The digest must be set as a property of the representation.

Listing 5.11. Example setting the representation’s digest as a sender

 [image:]

 As exhaust() consumes and discards the representation entirely, this technique can’t be used for representations for which the source
 may only be read once, otherwise the content would be entirely lost. The next section describes how to use the Digester-Representation without losing content.

 As a receiver, verifying the digest of a representation is a three-step process. First, the received representation must be
 wrapped with a DigesterRepresentation. Second, its content must be read fully. Third, the digest must be computed and compared with the existing Content-MD5 header. This last step is done via the checkDigest() method:

 DigesterRepresentation digesterRepresentation =
 new DigesterRepresentation (response.getEntity());
digesterRepresentation.exhaust();
boolean correctDigest = digesterRepresentation.checkDigest();

 Again, this example discards the content representation received using exhaust(). The following section describes how not to lose content when digesting a representation.

 5.5.3. Digesting without losing content

 The computation of the digest of a representation requires processing the entire content of this representation. The DigesterRepresentation class is a wrapper that can let you use a representation and compute its digest while the content is being read. Therefore,
 using a DigesterRepresentation via its getStream(), getReader(), getText(), or write() methods will transparently contribute to the computation of the digest of the wrapped representation. Once the entire representation
 has been processed, the computeDigest() method will return the computed digest, or checkDigest() will verify the representation against the associated digest property.

 This can be achieved when processing a representation that is being received, while using its content. Unfortunately, when
 sending the representation, this requires the representation to be read twice from its beginning, because the related HTTP
 header has to be sent before the content. This problem could be overcome by using trailer headers, which aren’t supported
 yet in Restlet Framework 2.1.

 The following example writes the representation received onto System.out. Because the write() method is called on the wrapping DigesterRepresentation and not the original representation, the digest is computed while the representation is being consumed:

 Representation responseEntity = response.getEntity();
DigesterRepresentation digesterRepresentation =
 new DigesterRepresentation (responseEntity);
digesterRepresentation.write(System.out);
boolean correctDigest = digesterRepresentation.checkDigest();

 This lets the application use the content of the representation while computing its digest at the same time. The checkDigest() method then finalizes the digest computation and checks it against the value obtained from the Content-MD5 header. If no digest was associated with the original representation, then checkDigest() will return false.

 5.6. Summary

 In this chapter, you have learned how to enable a number of security features in a Restlet application. These can be categorized
 into three themes: protecting the communication between the client and the server; dealing with user authentication, identity
 management, and authorization; and protection against accidental network failures.

 You saw how to enable HTTPS on a Restlet server to protect the communication between the client and the server by configuring
 TLS/SSL and creating certificates.

 You also learned how to authenticate remote users, or verify their identity using authenticators and verifiers. The API for
 authentication is flexible and allows for simple use cases (for example, a list of usernames and passwords) as well as larger
 organizational structures (for example, authentication and identity management via a company directory).

 Then, you learned how to make and enforce an authorization decision based on the information about the client, its user, and
 the action they’re trying to perform. Finally, you saw how to protect the representations against accidental alterations,
 using representation digests.

 After covering security, let’s now continue our road to the deployment of a Restlet application with chapter 6 which will discuss other essential tasks which are to document the RESTful web API it exposes and to deal with the versioning
 needs of an application during its life cycle.

Chapter 6. Documenting and versioning a Restlet application

	

 This chapter covers

 	Documenting your web API

 	When to version your web API

 	Web Application Description Language (WADL)

 	

Now that you’ve seen how to secure Restlet applications, it’s time to continue your exploration of the tasks required to get
 ready to roll out. This chapter covers how to document and version the RESTful web API of your Restlet application.

 First we discuss the use cases, pitfalls, and recommendations when documenting and versioning your web API. Documenting is
 essential in helping a development team communicate during active development or maintenance and helping users learn how to
 use it. Versioning ensures that existing clients won’t break and alienate your user community.

 We cover the Web Application Description Language (WADL) that’s well-suited for documentation of RESTful web APIs and the
 Restlet extension for WADL, including WadlApplication, WadlServerResource, and other artifacts. You learn how to progressively describe parts of a WADL document, such as the application title and
 description, the list of resources, their names, URI paths, methods, and representations. To illustrate the use of this extension
 you’ll reuse the sample RESTful mail application developed in previous chapters.

 Finally you’ll see how easy it is to automatically convert the WADL documents into a user-friendly HTML document.

 6.1. The purpose of documentation and versioning

 This section explores the need for documenting and versioning your RESTful web APIs with common uses cases, pitfalls when
 tackling such a project, and best practices to follow.

 6.1.1. Use cases

 The first and most common use case is to provide human-readable documentation of your web API to developers on the client
 side so they can read it online or print it. After a learning phase they’ll continue to use it as a reference document while
 developing their client programs. Those developers are mainly looking for the URI entry points to your API resources, the
 supported methods, and a description of their representations.

 The second use case is to coordinate among a large development team for construction or maintenance purposes. Imagine that
 you need to develop version 2.0 of an existing web API, without any previous knowledge. You’d naturally look for the equivalent
 of Javadocs for this API to learn not just how to use it but also how it was designed and implemented. This knowledge should
 be complementary to technical specifications and properly commented code as an essential deliverable of any RESTful web project.

 The third use case is allowing the automatic generation of client programs, or at least part of them. This use case requires
 a formal and precise description of your REST API and is often criticized as reproducing the issues of the previous SOAP-based
 web services. But it can be provided for convenience purposes, in addition to a regular HTTP access.

 Finally the need to maintain several versions of the same API occurs when the existing clients aren’t under the control of
 the project, such as for open web APIs, and when you don’t want to break clients by forcing them to use a newer API.

 6.1.2. Pitfalls

 In theory there’s no need to generate client SDKs for a RESTful web API because clients should automatically discover the
 API through hypermedia-driven navigation; nor is there a need to document it because it should be self-describing. A website
 is a good comparison: web browsers don’t need to read a user guide to display or interact with websites. This principle is
 hard to respect in practice, though, unless you limit yourself to standard hypermedia-driven media types such as HTML/XHTML,
 Atom/ AtomPub, or RDF (we discuss this topic in greater detail in chapter 10 when covering Restlet support for hypermedia and the Semantic Web).

 But when you use your own XML- or JSON-based media types (for example, by using XStream or Jackson extensions provided by
 Restlet), you gain in terms of productivity. This is particularly true for the first phases of your project, where iterations
 are short and reactivity is key, but you’ll reduce the capacity of your clients to adapt to future changes of your API. Change is common among web APIs, even those labeled “REST,” but by creating new XML or JSON dialects
 you introduce coupling between clients and servers that can lead to brittle interfaces and the need for proper versioning
 to prevent evolution headaches. Also most if not all web APIs available today provide users with documentation to help learn
 and interact with them.

 Another common problem you’ll face when documenting a web API is the need to keep it synchronized with the code developed.
 This is true during the elaboration and construction phases of a project, but also later on when evolutions are being pushed
 into production. Having documentation that doesn’t reflect the reality of your API will certainly cause trouble for your users.

 Let’s review some best practices to help you solve or work around these issues.

 6.1.3. Recommendations

 If you’re developing an open web API that can be consumed by clients outside your control, the first recommendation is to
 reuse existing and proven hypermedia types such as HTML/XHTML, Atom/AtomPub, and RDF and extend them if necessary. This design
 choice will make your API more RESTful, easier to document and consume (higher-level clients for those media types exist in
 many environments), more reusable, and easier to evolve. But this choice comes with a development cost: you won’t be able
 to use transparent and bi-directional serialization mechanisms such as those provided by XStream, Jackson, JiBX, or JAXB.

 If your API relies on custom media types not specifically designed with hypermedia and independent evolution of client and
 server in mind, the second recommendation is to add a version number to your URIs such as http://api.mycompany.com/v1.0/. This way you’ll be able to maintain older versions of your API while offering a new version in a parallel URI space for
 API enhancements.

 If you use custom media types for productivity reasons, try to make it as hypermediacapable as possible, at least by providing
 hyperlinks to related resources. One way to do it is to add HREF attributes to XML elements, as in HTML. Hyperlinking, as
 opposed to forms and scripting, is rather easy to support, so make sure to use it extensively (for example, to point to items
 in a collection resource).

 Regarding documentation, unless you target only browsers used by humans you’ll need to provide more formal documentation and
 keep it perpetually up to date, ideally by maintaining it close to your source code, as for Javadocs. If you target robots
 and other programmatic clients only, then consider using HTTP content negotiation to provide alternative HTML representations
 of your resources. Doing so will be useful for the developer of those clients to navigate, learn, and test your web API.

 In HTTP, the standard way to request a description of a resource is via the OPTIONS method. If you invoke it on a root URI,
 or with the “*” special URI, it should return a description of the target URI subspace, typically of the whole application.

 At this point you may feel like it adds a lot of work to follow those recommendations in a real project, so let’s look at
 how the Restlet Framework can help. In the next section we introduce WADL and explain how Restlet supports it to document your web APIs.

 6.2. Introducing WADL

 WADL is a useful XML vocabulary designed by Marc Hadley as a more RESTful way to describe web applications than its WSDL 1.1
 predecessor, which had roots in the SOAP world. Note that WSDL 2.0 added better support for RESTful web APIs but still isn’t
 as elegant as WADL for our purpose. WADL was submitted in 2009 to the W3C by Sun Microsystems [4].

 To get more concrete, the following listing shows a simple WADL example for the mail application developed in previous chapters.
 Though the example is small, it already provides useful information, such as the list of resources, their URIs, and the supported
 HTTP methods.

 Listing 6.1. Sample WADL description

 [image:]

 [image:]

 This example is pretty simple, but WADL can also be used to describe expected request and response messages, including query
 parameters and representation media types. Let’s now explore the Restlet extension for WADL provided in the org.restlet.ext.wadl.jar file. This extension is composed of a set of description classes such as ApplicationInfo, ResourcesInfo, ResourceInfo, RequestInfo, and so on corresponding to the WADL information model. In addition the WadlRepresentation class can be used to either parse an existing WADL document or generate one based on a given ApplicationInfo or ResourceInfo instance.

 The two most useful classes, WadlApplication and WadlServerResource, can help to produce WADL descriptions.

 6.3. The WadlApplication class

 The most common use case for this extension is to describe a complete Restlet application as a WADL document. That’s the purpose
 of the WadlApplication class, which extends org.restlet.Application (illustrated in figure 6.1) and intercepts incoming calls on the base URI of the application with the OPTIONS method. It provides several protected
 methods, such as createWadlRepresentation(ApplicationInfo), that can be extended to customize their default behavior, even though in most cases you won’t need to look into this.

 Figure 6.1. The WadlApplication class can be used to describe an application in WADL.

 [image:]

 Imagine that you want to describe the API of the sample mail application developed in chapter 3. You update the MailServerApplication to make it extend Wadl-Application and see how it behaves. To test this let’s write a simple client program that outputs the WADL document retrieved on the
 console.

 public static void main(String[] args) throws Exception {
 ClientResource service = new ClientResource("http://localhost:8111");
 System.out.println(service.options().getText());
}

 You could also use any kind of HTTP client, such as curl or a web browser via the tunnel service, using the URI http://localhost:8111?method=options.
 If you first launch the MailServerComponent, including the modified MailServerApplication, and then test the client program, the console will display (as you may have guessed) the same WADL document as the one in
 listing 6.1. With little effort, you already have a useful result!

 By automatically introspecting the application, the WadlApplication class was able to detect the available resources and their URI templates, the methods supported by each, and the request
 and response representations supported. Note that the name and description properties of the application are also automatically
 extracted into the WADL documentation in the root application element.

 This introspection process is capable of recursively traversing filters and routers until it reaches a leaf ServerResource subclass and then instantiates them—which, by the way, can help you detect implementation issues. As you know, other sorts
 of leaves can be found in a Restlet routing graph, typically Restlet instances. For those situations, to provide a description of those leaves in the resulting WADL document, you can either
 have the object implement the WadlDescribable interface or wrap it into a WadlWrapper instance. You’ll then only have to override the getResourceInfo() method and build your own WADL resource descriptor using the ResourceInfo class available in the WADL extension.

 Next we introduce the WadlServerResource class to further describe each resource of the mail application in WADL.

 6.4. The WadlServerResource class

 Even though the WadlApplication can already discover quite a bit of useful information on your server resources, there’s a limit to what can be guessed during
 introspection. To go beyond this limit, you need to explicitly provide additional information. For this purpose the WADL extension
 includes WadlServerResource, a subclass of ServerResource, which can be extended to describe anything that’s supported by the WADL specification.

 In this section we introduce the class and its properties, update the server resources from the sample mail application to
 improve their description, and illustrate how descriptions of a single resource can also be retrieved.

 6.4.1. Overview of properties and methods

 To discover this essential class of the WADL extension, you will first get an overview of its main properties and methods.
 We already covered the ones inherited from ServerResource in section 2.5. For this purpose we illustrate this class in figure 6.2 as a UML class diagram, including its three properties and its sets of methods.

 Figure 6.2. The WadlServerResource class can be used to further describe resources in WADL.

 [image:]

 First the autoDescribing Boolean property indicates whether the resource should directly support the OPTIONS method. By default it’s enabled and allows
 a client to retrieve a WADL description snippet only for the resource that’s the target of the request, and not the whole
 web API. We illustrate this possibility later in the section.

 The two other name and description properties allow easy documentation of your resources with the possibility of using dynamic information from the request.
 Note that this dynamic aspect wouldn’t be possible if you used regular Javadocs comments or special Java annotations.

 Now to get an overview of the class methods. As you can see, many describe*() methods should be viewed as callbacks to be invoked by a parent WadlApplication, giving you a chance to customize the values returned by default.

 For example if you merely want to update the description of the GET method with additional documentation, you need to override
 only describeGet(MethodInfo), invoking super.describeGet(methodInfo) (unless you want to completely bypass the default behavior), and then add your own values to the methodInfo parameter.

 Two methods, createHtmlRepresentation(ApplicationInfo) and createWadl-Representation(ApplicationInfo), allow you to customize the WADL and HTML representation generated when OPTIONS is directly invoked on a WadlServerResource subclass. Finally, canDescribe(Method) allows you to remove the description of a specific method—for example, if the user doesn’t have the required role.

 For further explanations, including on the default behavior, refer to the Javadocs. You’ll now put this useful class into
 practice.

 6.4.2. Improving description of existing server resources

 To improve the description of the sample mail application, you’ll make the three server resources extend the WadlServerResource class instead of ServerResource. Start with the AccountServerResource and reuse the accountID attribute in the name and description properties, as illustrated in the following listing.

 Listing 6.2. WADL-enhanced account resource with a dynamic name and description

 [image:]

 The following listing continues updating the sample resources to provide static documentation for the AccountsServerResource class.

 Listing 6.3. WADL-enhanced accounts server resource with static documentation

 public class AccountsServerResource extends WadlServerResource implements
 AccountsResource {

 private static final List<String> accounts
 = new CopyOnWriteArrayList<String>();
 @Override
 protected void doInit()throws ResourceException {
 setName("Mail accounts resource");
 setDescription(
 "The resource containing the list of mail accounts");
 }
 public static List<String> getAccounts(){
 return accounts;
 }
 public String represent(){
 StringBuilder result = new StringBuilder();

 for (String account : getAccounts()) {
 result.append((account == null) ? "" : account).append('\n');
 }
 return result.toString();
 }
 public String add(String account) {
 getAccounts().add(account);
 return Integer.toString(getAccounts().indexOf(account));
 }
}

 Finally you take care of the RootServerResource in listing 6.4, which provides a name and a description but also sets the autoDescribing property to false. Why do this? If you remember, WadlApplication is intercepting OPTIONS calls to the root URI of the application to automatically describe the whole web API exposed to clients.
 This action is done when a client requests the root URI of the application and there is no other reply by underlying resources.

 If you let the RootServerResource autodescribe itself in reply to OPTIONS calls, then you’d only be able to retrieve the snippet covering the root resource,
 not the whole API description.

 Listing 6.4. WADL-enhanced root server resource

 public class RootServerResource extends WadlServerResource implements
 RootResource {
 @Override
 protected void doInit() throws ResourceException {
 setAutoDescribing(false);
 setName("Root resource");
 setDescription("The root resource of the mail server application");
 }
 public String represent() {
 return "Welcome to the " + getApplication().getName() + " !";
 }
}

 Now that you’ve associated a name and description to each resource, let’s see how you could describe representations more
 precisely than with a text/plain media type. For this, you’ll override some of the describe*() methods provided by the WadlServerResource. First override the describe(ApplicationInfo) method in AccountsServerResource to add a global description of the textual representation that you use for accounts, as illustrated in the following snippet.
 Note that it sets an account identifier on this representation description to be able to reference it in other descriptions:

 @Override
protected void describe(ApplicationInfo applicationInfo) {
 super.describe(applicationInfo);
 RepresentationInfo rep =
 new RepresentationInfo(MediaType.TEXT_PLAIN);
 rep.setIdentifier("account");
 applicationInfo.getRepresentations().add(rep);

 DocumentationInfo doc = new DocumentationInfo();
 doc.setTitle("Account");
 doc.setTextContent("Simple string containing the account ID");
 rep.getDocumentations().add(doc);
}

 Then you want to describe the fact that both AccountsServerResource and AccountServerResource rely on this textual media type to represent an account in the sample application. For this purpose you’ll override another
 describe(...) method as illustrated in this snippet:

 @Override
protected RepresentationInfo describe(MethodInfo methodInfo,
 Class<?> representationClass, Variant variant) {
 RepresentationInfo result = super.describe(methodInfo,
 representationClass, variant);
 result.setReference("account");
 return result;
}

 Finally you want to describe the remaining representation type returned by the GET method of RootServerResource. Again, you override the same method, but because this representation isn’t reused elsewhere, it’s directly described:

 @Override
protected RepresentationInfo describe(MethodInfo methodInfo,
 Class<?> representationClass, Variant variant) {
 RepresentationInfo result = super.describe(methodInfo,
 representationClass, variant);
 result.setMediaType(MediaType.TEXT_PLAIN);
 result.setIdentifier("root");

 DocumentationInfo doc = new DocumentationInfo();
 doc.setTitle("Mail application");
 doc.setTextContent("Simple string welcoming the user " +
 "to the mail application");

 result.getDocumentations().add(doc);
 return result;
}

 It’s been a while since you tested the WADL description of the application, so launch the test client again. The result displayed
 in the following listing shows some nice improvements to the documentation.

 Listing 6.5. Improved WADL application description

 <?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="wadl2html.xslt"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
 <doc title="RESTful Mail Server application">
 Example application for 'Restlet in Action' book
 </doc>
 <representation id="account" mediaType="text/plain">
 <doc title="Account">Simple string containing the account ID</doc>
 </representation>
 <resources base="http://localhost:8111/">
 <resource>
 <doc title="Root resource">
 The root resource of the mail server application
 </doc>
 <method name="GET">
 <response>
 <representation id="root" mediaType="text/plain">
 <doc title="Mail application">
 Simple string welcoming the user to the
 mail application
 </doc>
 </representation>
 </response>
 </method>
 </resource>
 <resource path="accounts/">
 <doc title="Mail accounts resource">
 The resource containing the list of mail accounts
 </doc>
 <method name="GET">
 <response>
 <representation href="#account"/></response>
 </method>
 <method name="POST">
 <request>
 <representation href="#account"/></request>
 <response>
 <representation href="#account"/></response>
 </method>
 </resource>
 <resource path="accounts/{accountId}">
 <doc title="Mail account resource">
 The resource describing a mail account</doc>
 <method name="DELETE"/>

 <method name="GET">
 <response>
 <representation href="#account"/></response>
 </method>
 <method name="PUT">
 <request>
 <representation href="#account"/></request>
 </method>
 </resource>
 </resources>
</application>

 Let’s see if it’s as easy to describe a single resource instead of the whole application.

 6.4.3. Describing a single resource

 Earlier in the chapter we mentioned describing a single resource instead of the whole application. You can now demonstrate
 this feature without any additional development. Modify the test client to address the collection of accounts and see the
 result:

 public static void main(String[] args) throws Exception {
 ClientResource service = new ClientResource("http://localhost:8111");
 System.out.println(service.getChild("/accounts/").options().getText());
}

 In the following listing you can see the resulting WADL description that should be displayed in your console.

 Listing 6.6. WADL resource description snippet

 <?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="wadl2html.xslt"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
 <doc title="Mail accounts resource"/>
 <representation id="account" mediaType="text/plain">
 <doc title="Account">Simple string containing the account ID</doc>
 </representation>
 <resources>
 <resource path="accounts/">
 <doc title="Mail accounts resource">
 The resource containing the list of mail accounts
 </doc>
 <method name="GET">
 <response>
 <representation href="#account"/></response>
 </method>
 <method name="POST">
 <request>
 <representation href="#account"/></request>
 <response>
 <representation href="#account"/></response>
 </method>
 </resource>
 </resources>
</application>

 You can also override other WadlServerResource methods, such as describeGet (MethodInfo) to describe the GET methods; see figure 6.2 and Javadocs of the WADL extension for details.

 So far we’ve retrieved WADL descriptions in their original XML form, but that’s not easily readable by a human using a browser
 to learn about your cool web API. There’s another built-in feature of this WADL extension: the ability to automatically convert
 WADL documents to an HTML equivalent.

 6.5. Automatic conversion to HTML

 The WADL documents you’ve produced so far are nice for formal descriptions or when those descriptions need to be automatically
 processed, but in general your users will look for something more user-friendly, typically a web page.

 For this purpose the WADL extension embeds an XSLT document that was developed by Marc Nottingham from Yahoo! This XSLT transformation
 can be automatically applied by the WadlApplication and WadlServerResource classes, relying on standard HTTP content negotiation.

	

Note

 Because this WADL-to-HTML stylesheet uses the nonstandard EXSLT functions library, you need to have a recent version of Xalan-Java
 in your classpath instead of the default one bundled in Java SE. Version 2.6.0 has been tested successfully, but version 2.4.1
 and above should work fine as well.

 	

If you open http://localhost:8111/?method=options in your browser, you’ll see the web page in figure 6.3. Try http://localhost:8111/accounts/?method=options to see an HTML snippet describing the AccountServerResource only. The application knows it has to return HTML due to the browser preferences set in the Accept HTTP header.

 Figure 6.3. The partial WADL documentation converted to HTML

 [image:]

 Note that the method query parameter is interpreted by the TunnelService discussed in previous chapters and allows the sending of OPTIONS requests from your browser. If you want to use the GET method
 instead, override the WadlApplication.handle(Request, Response) method and invoke the WADL generation logic directly via the wadlRepresent(Request, Response) method.

 With no further development you can provide a clear documentation of the API that will always stay synchronized with your
 source code.

 The WADL extension can also use a WADL document—for example, provided by a third-party tool—as an input for configuring a
 Restlet application. This isn’t as powerful as the XML configuration mechanism introduced in chapter 3, especially a configuration based on Spring, but this can come in handy in some situations. For additional details, have
 a look at the constructors of the WadlComponent and Wadl-Application classes.

 6.6. Summary

 This chapter explored how to document and version a RESTful web API exposed by a server-side Restlet application. We presented
 common use cases, such as the need to learn an API and have a reference document to look at when using it, or the need to
 coordinate among a large team of developers. Versioning is also used when the web API or the technical environment can’t transparently
 handle the independent evolution of clients and servers.

 You also saw main pitfalls such as coupling too many clients and servers in opposition to REST principles and recommendations
 such as using existing media types like HTML, Atom, or RDF built to respect REST’s hypermedia principle.

 This led you to WADL and its support in the Restlet Framework. You learned how to use the WadlApplication class as an alternative parent class to org.restlet.Application in order to automatically describe the existing sample mail application. You then used the WadlServerResource class and saw how it complements Wadl-Application to provide more detailed descriptions of resources and representations that constitute your API and to generate a snippet
 description for a single resource instead of the whole API.

 Finally you saw how to convert the XML documents produced by the Restlet extension for WADL into user-friendly HTML documents
 that display nicely in a web browser.

 The second part of this book ends with a chapter packed with Restlet recipes and best practices. Chapter 7 discusses handling of web forms, cookies, static files, error pages feeds, and redirections, as well as how to improve performance
 and how to modularize your Restlet application to make it ready for production rollout.

Chapter 7. Enhancing a Restlet application with recipes and best practices

	

 This chapter covers

 	Handling common web artifacts such as forms and cookies

 	How servers can redirect clients

 	Handling file uploads on the client and server side

 	Improving the performance of Restlet applications

 	Splitting a large Restlet application into several modules

 	

As you near the end of the second part of this book, you’ve already read about many important topics that required dedicated
 chapters, such as dealing with representations and securing and documenting your web API. But many important questions have
 yet to be covered—questions that still matter when you want to bring your Restlet application closer to production.

 First you’ll see how to deal with common Restlet developer needs, such as handling web forms, cookies, and file uploads. We
 also explain how Restlet can replace a classic web server by serving static files, how to customize default error pages, and
 how to deal with web feeds.

 Then we explain how to redirect client calls, at first manually and then in a more sophisticated way with the Redirector class, with both client-side and server-side redirections. We continue exploring Restlet with features and best practices
 to improve performance such as streaming and compression of representations, caching, and conditional processing.

 Finally you learn how to manage complexity with the server dispatcher, the RIAP pseudoprotocol, and internal routing to modularize
 your applications. For each development topic we provide small, reusable example code to copy and paste in your own application
 to save you time.

 7.1. Handling common web elements

 Even though the Restlet Framework is quite suitable for building RESTful web APIs accessible by programmatic clients, you
 can also use it to build regular websites.

 In this section we illustrate those features and show how to manage web forms and cookies and how to serve static files without
 needing a separate HTTP server such as Apache HTTPd. And you learn how to deal with web feeds and how to customize error pages.
 Let’s get started!

 7.1.1. Managing forms

 Web forms are a very common way to ask a user to enter or edit information using a web browser. Several popular technologies
 are available (such as XForms and PDF Forms) that can be used with Restlet (because they submit XML documents), but the most
 popular one covered here is HTML forms [5].

 In this section you’ll see how to present an HTML form in a browser and how to process its submission on the server side.
 You’ll also see how a simple Restlet client can also submit forms without needing a browser. As an illustration we’ll start
 and enhance the example started in section 4.4.1 related to FreeMarker template representations.

 First you need to modify the mail template to return an HTML form instead of a read-only HTML table, as illustrated in the
 following listing, allowing the mail subject to be edited as a text field and the content to be edited as a text area.

 Listing 7.1. Mail-editing form as a FreeMarker template

 [image:]

 Because the purpose of the form is to update the state of a mail resource, you want to use the proper HTTP PUT method—but
 PUT isn’t allowed by HTML 4, so you take advantage of the TunnelService (introduced in section 2.3.4) by adding a method query parameter.

	

Note

 At the time of this writing, HTML 5 is still a working draft, but after initially supporting methods other than GET and POST
 as valid values for the form method attribute (such as PUT and DELETE), the later drafts dropped this possibility for unknown
 reasons.

 	

Continue modifying the original example by adding a Java method supporting PUT, as illustrated here:

 @Put
public String store(Form form) {
 for (Parameter entry : form) {
 System.out.println(entry.getName() + "=" + entry.getValue());
 }
 return "Mail updated!";
}

 Now start the original MailServerApplication class again and point your browser to http://localhost:8111/accounts/chunkylover53/mails/123 to display the mail form. The
 output from Firefox is shown in figure 7.1.

 Figure 7.1. Displaying the mail-editing form

 [image:]

 Now in your browser change the subject to “Message to Jérôme,” change the content to have several lines and special characters,
 and click the Save button. On the server side the console will first display the raw form value and then the result of the
 iteration over the higher-level Form object, as illustrated here:

 subject=Message to Jérôme
content=Doh!

Allo?

 As you can see, the raw value is a long string containing a sequence of encoded form values separated by & characters. Using the org.restlet.data.Form allows you to automatically decode this structure and navigate it as a list of org.restlet.data.Parameter instances, each of which is a pair of Strings: a parameter name and a parameter value.

 There are many interesting methods in the Form class, such as getValues-Array(String name), which returns all values with the same name in a String array, or the getFirstValue(String name) which is convenient when you assume that only one value should be available for a given parameter name.

 But that’s not all with the Form class! It can also create new forms from scratch and update them. To illustrate this, write a simple programmatic client
 to the MailServer-Resource, as in the following snippet:

 public static void main(String[] args) throws Exception {
 ClientResource mailClient = new ClientResource(
 "http://localhost:8111/accounts/chunkylover53/mails/123");
 Form form = new Form();
 form.add("subject", "Message to Jérôme");
 form.add("content", "Doh!\n\nAllo?");
 System.out.println(form.getWebRepresentation());
 mailClient.put(form).write(System.out);
}

 If you run this client, it will display the raw and encoded form sent and then the “Mail updated!” message in console. Note
 how you were able to pass the Form instance directly to the ClientResource.put(Object) method, which transparently relies on the getWebRepresentation() method and on the converter service.

 Now that we’ve covered processing basic web forms, we explore the support for setting and reading cookies in the Restlet Framework
 in the next section. We come back to the topic in section 7.4 when explaining how to process file uploads.

 7.1.2. Managing cookies

 Even though REST discourages the use of cookies [6], there are situations where they’re still needed. The most common case is for browser-based authentication, when using regular
 HTTP authentication isn’t desired for usability reasons, or to support Web Single Sign-On (SSO) mechanisms. Other common use
 cases are personalization of representations and navigation tracking.

 The Restlet API has extensive support for both reading cookies sent by a client on the server side and setting cookies on
 the server for storage on the client side, allowing control of expiration, applicable URI path, and domain name.

 For this purpose it provides two classes: org.restlet.data.Cookie to exchange existing cookies between clients and servers, and org.restlet.data.CookieSetting to let servers create or update new cookies on clients. Setting a cookie requires a client to store it for a given duration
 and send it again to the same server in subsequent requests. It also provides two related modifiable list properties on Request: cookies and cookieSettings. You’ll now use those classes and properties to build a cookie-based authentication mechanism.

 Listing 7.2 shows a naïve NaiveCookieAuthenticator class extending the Challenge-Authenticator class (introduced in chapter 5 during the discussion of security aspects). This filter can authenticate a client based on a special cookie and challenge
 the client by displaying a login HTML form and intercepting its submission to set or update the cookie with an expiration
 time set to 30 seconds.

 Listing 7.2. Simple cookie-based authentication

 [image:]

 [image:]

 One of the benefits of extending ChallengeAuthenticator is that you can take advantage of default behavior like the use of SecretVerifier to check passwords. The following listing shows a portion of the updated MailServerApplication presented in the previous section; the createInboundRoot() method now creates the NaiveCookie-Authenticator and its associated verifier.

 Listing 7.3. Guarding the mail server application

 @Override
public Restlet createInboundRoot() {
 Router router = new Router(getContext());
 router.attach("/accounts/{accountId}/mails/{mailId}",
 MailServerResource.class);

 MapVerifier verifier = new MapVerifier();
 verifier.getLocalSecrets().put("chunkylover53", "pwd".toCharArray());

 NaiveCookieAuthenticator() authenticator = new NaiveCookieAuthenticator(
 getContext(), "Cookie Test");
 authenticator.setVerifier(verifier);
 authenticator.setNext(router);
 return authenticator;
}

 Now launch the main method of the MailServerApplication and try to retrieve the previous email. The first time, you should see a login page where you can enter chunkylover53 as the identifier and pwd as the password and click the Login button to effectively display the mail form. If you reload the same page immediately
 you should see it directly. But if you wait more than 30 seconds, the login page should be presented again because the authentication
 cookie expired.

 If you try to launch the previous MailClient, you should get a 401 (Unauthorized) status in the console because authentication credentials are missing. To solve this
 you need to authenticate like a web browser, sending the expected Credentials cookie with a value of chunkylover53=pwd as illustrated in the following listing.

 Listing 7.4. Authenticating the mail client

 public static void main(String[] args) throws Exception {
 ClientResource mailClient = new ClientResource(
 "http://localhost:8111/accounts/chunkylover53/mails/123");

 mailClient.getRequest().getCookies()
 .add(new Cookie("Credentials", "chunkylover53=pwd"));

 Form form = new Form();
 form.add("subject", "Message to Jérôme");
 form.add("content", "Doh!\n\nAllo?");
 mailClient.put(form).write(System.out);
}

 If you launch this authenticating client, the “Mail updated!” message should be displayed in the console instead of the previous
 error, illustrating how to programmatically send cookies on the client side.

	

Warning

 Again, this example is a naïve implementation to illustrate the use of cookies; it’s unsecure as login and password are stored
 in the clear. In a real application those values must be encrypted to prevent attacks. In version 2.1 of the Restlet Framework, a more robust org.restlet.ext.crypto.Cookie-Authenticator class is available.

 	

Now that you know how to deal with cookies, you can continue your exploration by learning how to serve static files and potentially
 replace an Apache HTTPd server.

 7.1.3. Serving file directories

 Even though the Restlet Framework is frequently used to expose or consume web APIs, and therefore dynamic data, you can also
 use it to develop any kind of web application, blurring the lines between websites and web services. You already saw those
 ideas in chapter 1, and now it’s time to put this feature in action.

 The main class supporting this feature is the org.restlet.resource.Directory class that can serve static files in a way similar to a regular web server but in a lighter and embeddable way. To use it
 you need to give it the root URI, from which it will serve the static files, and attach it to a Router that will make it visible to your clients.

 The following listing creates an HTTP server exposing a web service on the http://localhost:8111/hello URI, as well as the
 directory of temporary files on your machine on the http://localhost:8111/home/ URI.

 Listing 7.5. Merging websites and web services

 [image:]

 The example sets the listingAllowed property to true in order to display the content of the directory as an HTML listing if no predefined index file is present, like a regular
 Apache HTTPd server would do. Figure 7.2 lists other properties you can set and methods you can override to display a customized representation of this index page.

 Figure 7.2. Class diagram of Directory

 [image:]

 Note also that you can change the way entries are sorted in the listing using the comparator property, as detailed in table 7.1, or by directly calling the useAlpha-Comparator() or useAlphaNumComparator() method. The latter sorting algorithm is the default, but you may prefer to revert to the former one for performance reasons.

 Table 7.1. Directory class properties

 	
 Name

 	
 Description

 	
 Default value

	comparator
 	Comparator object used to sort URI references displayed on index pages
 	Friendly Alphanum algorithm based on Dave Koelle’s original idea [7]

	deeplyAccessible
 	Indicates whether the subdirectories are deeply accessible
 	true

	indexName
 	The index name, without file extensions
 	index

	listingAllowed
 	Indicates whether the display of directory listings is allowed when no index file is found
 	false

	modifiable
 	Indicates whether modifications to local resources (most likely files) are allowed
 	false

	negotiatingContent
 	Indicates whether the best file variant is automatically negotiated with the client based on its preferences
 	true

	rootRef
 	The root URI from which the relative resource URIs will be looked up
 	Undefined

Thanks to Restlet’s pluggable client connectors, you can use any URI scheme in the rootRef property to retrieve and serve files from various types of locations, such as the following:

 	Local file directories using the built-in FILE client

 	Local JAR or ZIP files using the built-in JAR and ZIP clients

 	Classpaths using the built-in CLAP client

 	WAR archives using the org.restlet.ext.servlet extension

 	FTP sites using the org.restlet.ext.net extension

When configuring a Directory it’s important to keep in mind that not all these sources are born equal. For example the ClassLoader Access Protocol (CLAP)
 client doesn’t have the ability to list the content of directories due to technical limitations. In this case turning on the
 directory listing by setting the listingAllowed Boolean property to true will have no effect. Because connectors such as CLAP and WAR are inherently read-only, enabling modification on a Directory by setting the modifiable property will return an error. Speaking of errors, now you’ll see how Restlet deals with them and how you can customize error
 pages.

 7.1.4. Customizing error pages

 Dealing with errors is an important part of the web developer’s job. Errors can come from your own program or its dependencies,
 from your host machine, from a remote client or server, or from the network. One of the reasons for the Web’s scalability
 comes from a design choice made by its creator, Tim Berners-Lee [8], to allow for broken hyperlinks and those famous 404 (Not Found) error pages.

 When developing your Restlet application, you should strive to use stable URI names that aren’t likely to change. You should
 also try to detect bugs in advance with proper testing practices (covered in detail in section 7.5), but you can’t anticipate all of them, particularly those outside of your reach.

 For programmatic clients it’s generally sufficient to return the proper response status code, but for regular web browsers
 you need to be ready to present a friendlier error page. The good news is that the Restlet Framework generates such pages
 for you automatically when your application or component returns an error status in a response. This feature is managed by
 the org.restlet.service.StatusService class and the associated statusService properties on Component and Application. Figure 7.3 shows the default error page displayed when a resource doesn’t exist.

 Figure 7.3. Default error page

 [image:]

 Let’s see how you can customize this page on a per-application basis or on a percomponent basis. The easiest way to customize
 this representation is to change the home page URI by setting the homeRef property on StatusService, but generally you want to change the whole document by overriding the getRepresentation(Status, Request, Response) method, as illustrated in the following listing. In this case we decided to rely on FreeMarker again to provide a template
 error page that’s dynamically filled with data from the application and specific error status.

 Listing 7.6. Changing the default status service

 [image:]

 The missing piece is the MailStatus.ftl template document in the following listing, which displays the application name and a logo of the Restlet Framework.

 Listing 7.7. Content of the MailStatus.ftl template

 <html>
<head>
 <title>Mail status page</title>
</head>

<body style="font-family: serif;">
 <p>An error was detected in the ${applicationName}
 application.</p>
 <p>${statusName} : ${statusDescription}</p>
 <p>

 </p>
</body>
</html>

 The next step is to configure this customized status service, which you achieve by updating the MailServerApplication constructor to set the statusService property, as in the following snippet:

 [image:]

 You can now try the invalid http://localhost:8111/doh URI in a browser again to observe the new error page in figure 7.4. You could go much further in term of userfriendliness, but at this point there’s no special limit to your creativity.

 Figure 7.4. Customized error page

 [image:]

 Beyond the customization of the error representations, it’s also possible to change the association between exceptions caught
 in Resource subclasses by the doCatch (Throwable) method and Status instances by overriding the StatusService.get- Status(Throwable, UniformResource) method. By default it returns the 500 (Internal Error) status, but you could define a NotFoundException class that would map to the 404 status. Note that in that case, you still have access to the underlying exception via the Status.getThrowable() method, so you could easily display more information about the cause of the error status.

 The next section covers advanced forms that need to upload files from an HTML page and retrieve those files on the server
 side.

 7.1.5. Handling file uploads

 When you need to upload a file from a web browser to a web application, your HTML form uses a special multipart/form-data media type. This changes the way your form content is encoded so that on the server side you can’t use the org.restlet.data.Form class anymore; it only supports the application/x-www-form-urlencoded media type that you saw in the first section.

 Currently, the Restlet Framework relies on an org.restlet.ext.fileupload extension to parse multipart forms on the server side. This extension depends on the Apache Commons FileUpload library (http://commons.apache.org/fileupload/) provided in the /lib directory of your Restlet Framework installation, along with two additional dependencies (org.apache.commons.io and javax.servlet).

 To illustrate the use of this feature, you’ll enhance the mail-editing form developed in section 7.1.2 to allow the upload of an attachment file. First modify the mail form template to change the form encoding and add the file
 upload field, as in the following listing.

 Listing 7.8. Adding a file attachment field to the mail-editing form

 [image:]

 [image:]

 The next step is to update the PUT handling logic in the MailServerResource class. The important thing to note in listing 7.9 is that you need to instantiate an org.restlet.ext.fileupload.RestletFileUpload class and retrieve from it a list of form fields. It’s then easy to detect whether a field is a regular form field, like
 the subject and content fields, or a file upload field that should have a special treatment.

 Listing 7.9. Adding a file attachment field to the mail-editing form

 [image:]

 We encourage you to try this example and observe that the console still displays the mail subject and content fields, plus
 the uploaded attachment file. That was easy! Note also that Apache FileUpload offers various strategies to parse this multipart
 form, including a streaming API for maximum efficiency that can be accessed via the RestletFileUpload.getItemIterator(Representation) method. For additional information, look at the FileUpload library documentation.

 Let’s now continue with the second section of the chapter—web feeds.

 7.2. Dealing with Atom and RSS feeds

 Exposing or consuming web feeds has become a common requirement for web applications, and the Restlet Framework has comprehensive
 support for them, through two extensions.

 The first is the org.restlet.ext.atom extension, which provides comprehensive Atom and AtomPub support with dependency only on the Restlet core and on the org.restlet.ext.xml extension for XML parsing and writing support. This is a lightweight implementation (about 80 Kb in size, dependencies included)
 integrating naturally with the Restlet API. If you only require Atom support in your applications, either client side or server
 side, this is the way to go.

 The second extension is org.restlet.ext.rome, which integrates with the popular ROME open source library that’s heavier (350 Kb in size, dependencies included) but has
 the ability to parse and write all feed formats, including RSS and Atom, with a single API. If you can’t solely rely on Atom
 and AtomPub, this is the extension to use.

 7.2.1. Exposing web feeds

 Let’s illustrate those extensions with the RESTful mail example by implementing a feed resource associated with an account
 that exposes its data in both Atom 1.0 (via the Atom extension) and RSS 2.0 (via the ROME extension), so you can compare them
 side by side. The source code of the server resource is in the following listing.

 Listing 7.10. Account feed server resource

 [image:]

 [image:]

 Both representation variants are built similarly; the Atom extension is more compact because there’s no separation between
 Java API interfaces and the implementation classes as there is in ROME.

 If you attach this resource to the application’s inbound router at the /accounts/{accountId}/feeds/{feedId} URI template, you can test them from your web browser. To compare the RSS and Atom variants, you can take advantage of the
 tunnel service by adding a ?media=rss or ?media=atom query string at the end of the URI. Figure 7.5 shows the result obtained in Firefox. The browser recognizes the media type set by Restlet and displays the feed.

 Figure 7.5. Retrieving Restlet web feeds

 [image:]

 Those feed resource implementations are quite minimal, but the extensions provide comprehensive APIs supporting most subtleties
 encountered with more complex feeds, so you should be pretty safe moving forward on those foundations.

 Because modern web browsers tend to provide a nice rendering of web feeds, in either Atom or RSS media types, let’s try another
 way to obtain raw representation using the command line curl or wget tools. Here’s raw output obtained:

 ~$ curl http://localhost:8111/accounts/chunkylover53/feeds/xyz?media=atom
<?xml version="1.0" standalone='yes'?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title type="text">Homer's feed</title>
 <entry>
 <summary>Doh! This is the content of mail #1</summary>
 <title type="text">Mail #1</title>
 </entry>
...
</feed>

 Serving feeds was pretty easy, but what about the client side?

 7.2.2. Consuming web feeds

 Unsurprisingly, consumption of Atom and RSS feeds is equally easy in Restlet and relies on the same classes in both cases,
 as illustrated in the following listing.

 Listing 7.11. Consuming account feeds

 [image:]

 Again you can see the power and simplicity of the converter service and its ability to automatically negotiate the best representation
 variant based on the Java type passed to the ClientResource.get(Class<T>) method.

 As a final note on this topic, keep in mind that using Java APIs like the Atom and ROME extensions gives a very convenient
 abstraction to expose feeds but isn’t always the best way to achieve this task compared to template representations. There’s
 more to say about feeds—including how they’re used by higher level web APIs such as OData (see the dedicated Restlet extension
 available since version 2.0) and GData—but we need to continue exploring Restlet best practices with a section on web redirection
 followed by optimization and modularization advice.

 7.3. Redirecting client calls

 Redirections are an essential feature when developing web applications. They can be divided into two categories: client-side
 redirections and server-side redirections. Clientside redirections are useful to point a client to the new location of a resource,
 to a fallback resource when the target one has been deleted, or to the original target resource after authenticating the user
 with a single sign-on mechanism such as OpenID.

 Server-side redirections are transparent to the client making the call, but facilitate the internal processing either by delegating
 to another resource within the component (inbound server redirection), or by delegating to a resource outside the component (outbound server redirection, often referred to as a reverse proxy).

 The Restlet Framework has comprehensive support for all of these cases. First we cover how redirection can be handled manually,
 and then we introduce the powerful Redirector class.

 7.3.1. Manual redirection

 Client-side redirections use dedicated HTTP status codes. Those codes are in the Restlet API with their equivalent constants
 in the org.restlet.data.Status class and set with the org.restlet.Response.status property. For more details using status codes when designing your web API, refer to appendix D.

 When writing a server-side resource, you can call the various ServerResource.setStatus(...) methods directly or use the following shortcut methods: redirect-Permanent(targetUri), redirectSeeOther(targetUri), and redirectTemporary (targetUri). Those methods accept absolute and relative URIs; relative URIs are resolved against the current base reference of the resource.

	

 HTML redirections

 Note that when clients are web browsers, you can also implement client-side redirection by adding an HTML META tag in a document
 head like this: <meta http-equiv="refresh" content="5; URL=http://my.targetLocation.com">

 In this example, the result page will be displayed for five seconds before redirecting the browser to the target URI. Be warned,
 though, that this approach is outside HTTP and can therefore be overlooked by some clients, including programmatic ones. It
 might also have a negative impact on search engine referencing and should be used sparingly.

 	

Let’s assume that you have an application that contains an old REST resource that was replaced by a newer one at a different
 URI and even a different HTTP port. You’d like to ensure that existing clients don’t receive a 404 status when attempting
 to retrieve the old resource and at the same time would like to inform them that there’s a new location that should be used,
 updating previous bookmarks it may have. The following listing contains the code of the old resource doing the permanent redirection.

 Listing 7.12. Redirecting clients to a new permanent location

 [image:]

 The program in the next listing serves both the old resource from listing 7.12 on port 8183 and the new resource (HelloServerResource) on port 8111.

 Listing 7.13. Server program listing hosting the old and new resource

 [image:]

 The final step in this example is to write a client program that tries to reach the old resource and verify that the ClientResource class and its followRedirects feature work as expected, retrieving the result of the new resource. In the following code snippet you can see how simple
 it is to write such a client:

 public class RedirectedClient {

 public static void main(String[] args) throws Exception {
 ClientResource resource
 = new ClientResource ("http://localhost:8113/");
 resource.get().write(System.out);
 }
}

 If you launch this RedirectedClient class, you’ll observe that the client console displays the “hello, world” string. At the same time, the server console displays
 the “Redirecting client to new location...” message, proving that it worked as expected. Finally, you can open http://localhost:8113/
 in a web browser to observe the same result, including the change of URI in the address bar.

 Even if writing a redirecting server is easy for a single resource, you can guess how tedious it can be to redirect a large
 set of resources—for example, if a complete application migrated from one domain name to another. In the next section we explain
 how the Restlet Framework can help solve this use case.

 7.3.2. The org.restlet.Redirector class

 As introduced earlier, the Redirector class is a special Restlet subclass that redirects all requests reaching it in two modes: client-side or server-side redirections.

 First it can issue for you a response with a client-side redirection, exactly as explained in the previous section, with an
 additional feature: the target URI reference provided can be a URI template where variables are replaced automatically for
 you. For example, you can append the URI remaining part (relative to the current base URI) to your target URI, by using this
 target template: http://my.targetDomain.com/{rr}. Table 7.2 lists a few common variables.

 Table 7.2. Common URI template variables

 	
 Variable name

 	
 Description

	cia
 	IP address of the client (request.clientInfo.address)

	cig
 	User agent name (request.clientInfo.agent)

	m
 	Method (request.method)

	rr
 	Remaining part of the URI reference (request.reference.remainingPart)

To obtain a comprehensive list of supported variables, check the Javadocs of the org.restlet.util.Resolver<T> class, which is used to wrap a request and response pair as a template data model.

 This URI template mechanism lets you easily redirect a subset of your URI space to a new location. It can also be used in
 the second server-side redirection mode. In this mode, the redirection is transparent from the client point of view and handled
 entirely on the server side while the user is waiting for a response.

 We complete the discussion of the Redirector class with the class diagram in figure 7.6.

 Figure 7.6. Redirector class diagram

 [image:]

 As you can see, there are two properties: targetTemplate for the URI template to redirect to and mode to indicate the redirection mode to use with a value in this list of constants:

 	MODE_CLIENT_FOUND :—Client-side mode for Status.REDIRECTION_FOUND

 	MODE_CLIENT_SEE_OTHER :—Client-side mode for Status.REDIRECTION_SEE_OTHER

 	MODE_CLIENT_TEMPORARY :—Client-side mode for Status.REDIRECTION_TEMPORARY

 	MODE_SERVER_OUTBOUND :—Server-side mode for application’s outboundRoot or context’s clientDispatcher (using client connectors)

 	MODE_SERVER_INBOUND :—Server-side mode for context’s serverDispatcher

The server outbound mode allows you to define a reverse proxy transferring requests to a remote service, typically by rewriting
 the request’s URI. The inbound mode is valuable when trying to modularize a large application, as we discuss in section 7.4.

 The rewrite(Representation) method is invoked for the server-side redirections. By default it does nothing, but you can override it to provide your own
 logic—such as to rewrite hyperlinks for response entities received from remote applications.

 Let’s see an example of this class in action. The following listing provides a search resource relying on Google search to
 illustrate two things: how to use a target URI template to insert a dynamic variable (the keywords to search) and how to extract
 an attribute automatically from a request’s URI query parameter.

 Listing 7.14. Client-side redirection with attribute extraction

 [image:]

 As you can see, you use Extractor, another class from the Restlet routing system, to automatically add a request attribute by extracting a URI query parameter
 named kwd. Note that this class also works with cookies and posted web forms via additional extractFrom*() methods.

 Launch the search redirector program and test it by entering the following URI in your web browser: http://localhost:8111/search?kwd=book.
 You should see a redirection to the Google search page with the following search string: "site:mysite.org book."

 Adding new resources and new features such as web feeds and forms is important to cover the requirements of your application,
 but this shouldn’t be your sole enhancement focus. The next section continues your exploration of best practices with a discussion
 of Restlet application performance and how to improve it.

 7.4. Improving performances

 Performance improvement of web applications is a vast topic that would require at least one complete book to do it justice.
 Our goal here is to explore six powerful features of REST, HTTP, and the Restlet Framework to help you improve the latency
 and system resource consumption of your Restlet application.

 We first explain how to stream large representations that may not fit in available memory (for example, a multigigabyte file)
 or would consume too much memory under load. Then you see how compression is a simple and powerful way to save bandwidth and
 reduce latency. We finish with four additional ways to improve performance.

 7.4.1. Streaming representations

 In most use cases, HTTP requests and responses must contain a header that specifies the length in bytes of the message body,
 if there is one (note that this length doesn’t take into account headers or other control information such as the status code).
 For instance, a server that answers a request with the ASCII character string “hello, world” will include the following header
 in its response, as the string is composed of 12 characters:

 Content-Length: 12

 Doing this requires knowing the length of the data before you start sending it. But that’s not always the case; for example,
 the data can be generated dynamically and you might not know its length up front. You could generate all the data before starting
 to send it, because that would allow you to know its size and fill in the Content-Length header correctly (or its equivalent Representation.size property in the Restlet API).

 But if the data is large or takes a long time to generate, you might want to start sending it before it’s entirely generated.
 Streaming data like that is made possible by TCP, which is usually the transport protocol you use for sending HTTP requests
 and responses over the network. When a TCP connection is established between the client and the server, data can be sent over
 that connection piece by piece, progressively.

 In such situations, to solve the unknown Content-Length problem, you can use a technique called content streaming. Instead of indicating the entire content length, you specify that
 the entity will contain a series of chunks, using a Transfer-Encoding: chunked header. Each chunk specifies its own size, and the end of the series is marked with a zero-sized chunk.

 When enough data is ready to be sent, you put it in a chunk that you send over the network. That way the recipient can process
 it while you’re generating other chunks. As you can imagine, this ability for HTTP components to easily exchange and process
 data progressively as it becomes available can be very beneficial to the performance and responsiveness of your applications.
 Let’s now see how the Restlet API supports this.

 Content Streaming Example with Restlet

 Using the Restlet Framework, performing content streaming is easy. You still need to prepare a representation, as usual. The
 following listing illustrates the generation of such dynamic content.

 Listing 7.15. Server Resource that generates dynamic content

 [image:]

 The Restlet Framework provides a broad set of Representation subclasses dedicated to common usages. The WriterRepresentation is an abstract class that handles the generation of dynamic and potentially large content, ensuring that the chunked encoding
 is automatically used to communicate with HTTP clients. Subclasses are only required to override the write(Writer) method where they can implement the logic of writing the representation’s content of any length.

 7.4.2. Compressing representations

 Another great feature of HTTP that isn’t widely used is its ability to compress the content of entities exchanged between
 components. This feature relies on the Accept-Encoding and Content-Encoding HTTP headers and the Representation.encodings and ClientInfo.acceptedEncodings properties of the Restlet API.

 Even though some entities—such as most image, audio, and video formats—are already compressed, the average win for textual
 entities is 70%. The only condition is that both clients and servers support the same encoding algorithm, which is increasingly
 common, especially for the GZip algorithm.

 Since version 2.1, the Restlet Framework is fully capable of automatically compressing and uncompressing entities exchanged
 with other remote components. This support comes with the DecoderService and EncoderService properties available to applications. By default the decoding of compressed message entities received is enabled, but encoding
 is disabled. To turn it on for a Restlet application, call get-EncoderService().setEnabled(true) in the application constructor.

 Compression is configurable through a list of accepted media types (all types by default), combined with a list of ignored
 media types (archive, audio, image, and video by default). You can also set a minimum size (default value of 1000 bytes) to
 prevent compression of small entities, where the benefit is small compared to the extra overhead in CPU, memory, and latency.

 We recommend you turn on this service in production after proper testing with representative clients. During development the
 lack of entity readability due to compression can be a drawback when debugging, though. Next we show the importance of partial
 representations and the RangeService to manipulate large entities.

 7.4.3. Partial representations

 Suppose that, while receiving the representation of some resource in response to a GET request, your client application suffers
 a temporary network problem that drops the connection to the server. When the network is back, if the representation is large,
 wouldn’t it be beneficial to be able to request only the missing part of the representation instead of restarting from the
 beginning?

 Or suppose that your client application, for whatever reason, only needs a portion of a particular representation. Wouldn’t
 it be nice to be able to ask the server to send only the needed portion? For large data sets, this can reduce network traffic
 local storage capacity requirements and improve performance.

 For such situations, HTTP offers a Range header to specify the desired range(s) to return in a response, expressed in bytes. Optionally, on the server side, an application
 can also advertise its support for serving partial content, on a per-resource basis, by including Accept-Ranges headers in response to regular requests. The possible values associated with this header are the names of the units in which
 ranges can be specified (for example, bytes) or the word none to express that partial content delivery isn’t supported on the target resource. The latter is useful to advise the client
 not to attempt a range request.

 As you can imagine, this ability to exchange partial content is another powerful feature of HTTP, so consider using it when
 implementing your applications. Let’s illustrate range usage with the HelloServerResource class and a client that wants the first five characters of the “hello, world” sentence—that is to say, hello. The following listing shows a client that asks for the first five characters of the remote resource.

 Listing 7.16. Requesting parts of a resource

 [image:]

 Because the server supports the range feature, a client can obtain a specific portion of a resource’s representation using
 the ranges property, which maps to the Range header. Note that if you ran the same client after launching the DynamicContentServer of the previous section, the client would still receive the full representation. This is merely due to the fact that this
 server isn’t using a Restlet application as a container for its resource, thereby missing the RangeService providing the partial representation processing.

 Let’s continue exploring HTTP performance optimization mechanisms with caching. For this purpose we first explain how to set
 cache information on the server side, then how to use conditional methods to revalidate cached responses.

 7.4.4. Setting cache information

 The purpose of caching is to allow a client or an intermediary, under certain conditions, to keep previous responses sent
 by the server and reuse them instead of performing real requests over the network. There are two main benefits: reduced latency
 (the time to wait for the response) and reduced network traffic.

 HTTP provides powerful support for caching. Making use of it requires some cooperation from your application because what
 is cacheable and what isn’t is specific to each application (and potentially each resource that it contains). In addition,
 to benefit from caching, your clients must manage the cached representations. Fortunately most HTTP client libraries, including
 web browsers, provide automatic cache management.

 When a client issues a GET request, it can look in its local cache to see if this request has previously been answered by
 the server and stored in the cache. If this is the case, and if the cached response is fresh enough, the cached response will
 be used, without the need for network interactions with the server.

 If the cached response appears to be stale, the cache can try to revalidate the response by sending a request to the server
 and letting it know it already has a cached response. If the server determines that the cached response held by the client
 is fresh enough, it can avoid further processing and inform the client that its cached response is still fresh. Finally, you
 can choose to allow certain cached responses to be handed to the client even if they’re stale. This can be useful as a fallback
 mechanism if the client is disconnected from the server.

 The way all this works is specified by the HTTP protocol. A server can add an Expires header to a response; this element contains a date and time after which the response should be considered stale. Usually,
 it’s application-dependent. For example, if the state of a given resource changes every day at midnight, the server can return
 an Expires header set to midnight, along with the resource representation, when serving a GET request on that resource. The client’s
 cache can then use this information in subsequent requests for that resource to determine whether a response it holds is fresh
 enough to be returned to the client.

 A number of additional mechanisms are defined by HTTP to control the caching strategy—for example, a response that must not
 be cached can be tagged with a Cache-control header with a no-cache value. For in-depth coverage of HTTP caching, we recommend the excellent online tutorial written by Mark Nottingham [9].

 When implementing a RESTful system, you should consider making use of these caching mechanisms. You should specify information
 about the cacheability of responses emitted by your server-side application. The Restlet API has integrated support for all
 these headers via the following properties:

 	RepresentationInfo.tag :—E-Tag-based validation

 	RepresentationInfo.modificationDate :—Date-based validation

 	Representation.expirationDate :—Date-based cache control

 	Message.cacheDirectives :—Advanced cache control

We can’t illustrate every kind of caching mechanism available, because that’s beyond the scope of this book. Instead we focus
 on a simple way for a server resource to help clients such as browsers optimize their requests.

 In listing 7.17, the resource updates its representation with a modification date, an expiration date, and an entity tag (E-Tag). This cache
 information can then be used by web browsers and intermediary caches such as Squid (www.squid-cache.org) to prevent or shortcut future requests to the same resource.

 Listing 7.17. Server resource that time-stamps its representation

 [image:]

 Note that if you launch this server and try to access it from a web browser, you won’t see the browser cache in action because
 browsers bypass the cache for localhost sites. You need to deploy the server under a real domain name. As an alternative,
 verify that this information is available on the client side, as shown in the following listing.

 Listing 7.18. Retrieving caching metadata

 [image:]

 In this particular example, on the server side the resource always generates the same representation, so its modification
 date remains unchanged. But in real cases those values would be adjusted based on the resource lifecycle, including its state
 changes.

 Next you’ll see how you can use conditional methods to revalidate cached responses and prevent the lost update problem.

 7.4.5. Conditional methods

 Sometimes a client wants to ask the server to process a request only if certain conditions are met. HTTP supports headers
 that allow conditional method processing: If-Match, If-Modified-Since, If-None-Match, and If-Unmodified-Since.

 A client might want to retrieve the state of a resource (with a GET method), do some processing, and then update the state
 on the server (with a PUT method) only if the resource state has not changed in the meantime—for example, after concurrent
 editing by another client. To accomplish this, the client’s PUT request should include an If-Match header specifying the entity tag included in the response to the previous GET request. An E-Tag is a character string generated
 by the server that allows it to determine whether two representations of a given resource are equivalent.

 Conditional Method Example

 The following code snippet adds a PUT method to the previous CachingServer-Resource. The implementation displays a message on the server console:

 @Put
public void store(Representation entity) {
 System.out.println("Storing a new entity.");
}

 On the client side, in listing 7.19 you retrieve the original representation and do a conditional GET based on the modification date and E-Tag. Then you do two
 conditional PUTs, one with a matching E-Tag and then one with a nonmatching E-Tag, to demonstrate that it produces an error
 due to a failed condition.

 Listing 7.19. Updating a resource with conditions

 [image:]

 Running this client obtains the following output in the console:

 OK (200) - OK
Not Modified (304) - Not Modified
Not Modified (304) - Not Modified
OK (200) - OK
Exception in thread "main" Precondition Failed (412) - Precondition failed

	

Tip

 The last line is quite interesting because the framework automatically prevented an update of the resource due to the (simulated)
 detection of a change in the representation E-Tag. Because this condition isn’t met, the PUT request was ignored by the ServerResource class. This is a great way to prevent the lost update problem that occurs when several concurrent clients update the same
 resource concurrently without previously acquiring locks.

 	

Now we describe a last performance best practice, directly inherited from the REST architecture style: living without sessions.

 7.4.6. Removing server-side session state

 In many web applications, including those developed with Java Servlet technology, there’s a notion of server-side session
 used to maintain conversational state between clients and servers. This session is typically identified uniquely by a cookie
 or a query parameter. For each request received, the server is then able to look up the correct session and update it if necessary
 (for example, to maintain a shopping cart). At first glance this looks like a convenient feature for developers.

 Unfortunately, this leads to numerous problems such as reduced scalability as servers are encumbered by in-memory data. Also,
 client requests must be processed by servers that contain or have access to the associated session state (also known as session affinity) when load balancing becomes necessary—otherwise constant session replication must be used. Reliability is also harder to
 achieve because session state potentially has to be reliably stored and restored in the case of server failure. Finally, this
 prevents the HTTP infrastructure and network intermediaries from providing some services because a request can no longer be
 understood in isolation from this out-of-band conversation.

 From an HTTP point of view, each request should contain all the information needed by the server to process it without having
 to refer to out-of-band information. The Restlet Framework helps you enforce this rule by not providing any server-side session mechanism in its Restlet API. If you find yourself in desperate need of Servlet-like sessions,
 you usually need to rethink your design more RESTfully, relying on the two approaches discussed next, separately or in conjunction.

 The first solution is to store this conversational state on the client side, as hypermedia information, cookies, JavaScript
 logic, HTML 5 offline databases, and so on. Often people talk about the stateless principle of REST, implying that there can’t be any session state between clients and servers.
 This isn’t true; session state can be kept on the client side. But the client should send the relevant state along with each request to the server. One way
 to achieve this is by using the HATEOAS pattern (Hypermedia As The Engine Of Application State) discussed in chapter 10, where possible state transitions are encoded inside the hypermedia representations exchanged between the server and the
 client. Another way is to develop rich clients with technologies such as GWT (see chapter 9 for details), Flex, or Silverlight.

 The second solution is to convert this conversational state into first-class resources in your web API. You could have a caddie
 resource with its own URI and HTTP methods to manipulate it. Its state could be persisted in a database for a rather long
 time (not the usual 30 minutes of a Servlet session) and let the user continue shopping a few days later. The scalability
 issue doesn’t disappear in this case but is transformed into a well-understood problem that can be solved using database sharding,
 replication, or cloud-scale databases (for example NoSQL). The advantage of this approach is that it puts low requirements
 on the clients, which is important for mobile devices.

 You are now done with your review of Restlet best practices for improving performance. Before ending this chapter and the
 second part of the book, we’d like to wrap things up by consolidating pieces of the example mail component and address its
 slowly growing complexity by introducing solutions to modularize large Restlet applications.

 7.5. Modularizing large applications

 When we introduced Restlet components in chapter 3, you saw how they can act as containers of several applications. This is the most obvious way to modularize your web presence,
 creating more or less isolated functional spaces. The advantage is that you can later decide to deploy those applications
 separately, on different host machines for example. But when an individual application is becoming in itself too complex,
 maybe due to a growing list of contained resources, you can split it into several applications, still hosting them in the
 same component and benefiting from intra-JVM communication.

 In this section you’ll see that Restlet provides a mechanism, similar to Servlet’s request dispatcher, called the server dispatcher.
 Then we introduce the more powerful RIAP pseudoprotocol, inspired by Apache Cocoon. We illustrate how to use RIAP to separate
 a large application into two parts—a public part and a private part not reachable by clients outside of the current component.

 7.5.1. Server dispatcher

 If you’re a Servlet developer, there’s a good chance you’ve already used the Servlet context’s request dispatcher to include
 the result of another Servlet or to forward call processing. The Restlet API comes with a similar mechanism called the server
 dispatcher, which works like the client dispatcher but sends requests to the current component as if they came from the outside instead
 of asking server connectors to process them.

 This object can be retrieved from the current context using the serverDispatcher property, which is an instance of the Restlet class like clientDispatcher. To invoke it you need to create a new Request object with the proper target resource URI reference and method set. If your local target resource is protected, you need
 to properly authenticate yourself as there won’t be much difference between your call and an outsider call. You can also use
 ClientResource as long as you set the serverDispatcher as the value for the next property.

 To illustrate these advanced concepts, go back to the example mail server component. In previous chapters you’ve developed
 a web application mixing web API aspects and website aspects, with bean representations and annotated interfaces for the former
 one and template HTML representations for the latter. Although this approach works fine when security requirements and resource
 granularity are the same, there are cases where it’s wiser to split this application into two complementary applications:
 a web API layer at the bottom exposing the domain data into a reusable RESTful API, and a website layer picking up, splitting,
 or aggregating various resources from one or several RESTful APIs underneath. In your case, this results in two Restlet applications,
 as illustrated in figure 7.7: MailSiteApplication and MailApiApplication. At the same time, you consolidate in those applications many features introduced in the first two parts of the book. We
 won’t review all the resulting code in the manuscript, but you can refer to the source code available on the book’s website.

 Figure 7.7. Mail server component split into a web API and a website application

 [image:]

 The following listing demonstrates the use of the server dispatcher in this new architecture. You build template HTML representations
 of mail messages in the Mail-SiteApplication by first retrieving the mail bean from the MailApiApplication and then by resolving the FreeMarker template exactly as done in section 4.4.

 Listing 7.20. Optimizing internal calls with the server dispatcher

 [image:]

 If you test the new application with the following mail URI, you should first see the login page where you can enter the usual
 chunkylover53 login and pwd password and then see the HTML page with the mail-editing form filled with the mail data obtained from the mail API:

 http://localhost:8111/site/accounts/chunkylover53/mails/123

 What’s remarkable is that by setting the context’s server dispatcher as the next property of the client resource, you optimize
 the call to the API by not even going through the network local loopback. This is more optimal because you save the formatting
 and parsing of the HTTP messages. If you removed the setNext(...) call, the application would still work, but you’d need to add an HTTP client connector to the parent MailComponent.

	

Note

 To test the previous example without manually setting the base URI of the mail resource in the mail API application, you need
 to use a recent version of the Restlet Framework, in either the 2.0 branch or the 2.1 branch.

 	

Technically speaking, the server dispatcher is providing a shortcut path that forwards your calls right before the virtual
 host routing in the parent component. Even though this mechanism works very well, it lacks flexibility; it requires you to
 specify the full absolute resource URI on the request. Also, because it doesn’t come with a specific URI scheme, you can’t
 use it as the target of references (in an XSLT representation, for example). This is where the RIAP feature of the Restlet
 Framework comes into play.

 7.5.2. RIAP pseudoprotocol

 Restlet Internal Access Protocol (RIAP) is a mechanism that allows various Restlet applications to call upon each other to
 retrieve resources for further processing. This feature can be used to access resources contained in the same Restlet component,
 virtual host, or application, allowing powerful modularization of larger Restlet applications or even calls internal to a
 single application.

 RIAP arose as a solution to support execution of XSLT stylesheets capable of importing and transforming local documents without
 suffering network costs. It comes with a riap:// URI scheme that identifies a pseudoprotocol. This terminology is derived from Apache Cocoon; it describes the difference
 between a “real” or “official” public protocol and the RIAP scheme, which only relates to internal processing of the Restlet
 system architecture.

 RIAP brings a URI notation for interapplication calls that exposes them through the uniform interface. There are three flavors
 of this protocol, with distinct URI authorities for different use cases:

 	riap://application/ :—Resolves the rest of the URI relative to the current context’s application (applications can use this scheme to call resources
 within themselves)

 	riap://host/ :—Resolves the rest of the URI relative to the current context’s virtual host

 	riap://component/ :—Resolves the rest of the URI with respect to the internal router of the current context’s component

The following listing updates the previous example to use RIAP instead of the server dispatcher. As you can see, the resulting
 source code is slightly simpler and offers more flexibility. In terms of performance this is equivalent to the server dispatcher.

 Listing 7.21. Optimizing internal calls with the RIAP pseudoprotocol

 [image:]

 Note that internal resources that require protocol-specific attributes of the URI where it’s invoked (like the hostname) might
 yield errors or unexpected results when called via the RIAP protocol. The main advantage of RIAP is flexible decomposition
 of your component into smaller, reusable, configurable, and interchangeable applications while assuring optimal efficiency
 when calling between them.

 The RIAP schemes application and host are easy to understand and use, but how to use the component authority is probably unclear at this point. The final section of this chapter covers the internal router and how those modularized
 applications can be made private to the component, unreachable from the outside world. Note that you can create instances
 of Client and Server classes with the RIAP pseudoprotocol and send calls between them inside the same component, which should be unique to the
 current JVM. This method can be useful when the client side has no direct access to the current Restlet’s context or its client dispatcher, such as inside callback methods of a third-party library invoked
 from Restlet’s server resources.

 7.5.3. Private applications

 Sometimes application modules should not be accessible directly from the outside world but only via other applications contained
 in the same component. The Restlet API supports such private applications by providing a Component.internalRouter property where applications (or any org.restlet.Restlet instance) can be attached. If this application instance isn’t attached at the same time to a virtual host, then it’s guaranteed
 to not be reachable from one of the server connectors.

 With this additional private router (which can be thought of as a private host), you can effectively modularize a larger component
 and separate public applications facing the web from private ones, only providing support resources to the former ones.

 That’s great, but you may think one piece is missing in this puzzle: how can public applications invoke the private ones?
 Because each application is technically isolated from the parent component except via the Context class, you have to rely again on the RIAP feature, this time using the riap://component/ flavor listed in the previous subsection.

 You implement this public/private architecture with the sample MailServer-Component as illustrated in figure 7.8. As you can see, we decided to isolate the Mail-ApiApplication by attaching it to the internal router under the /api root URI path from the MailSiteApplication publicly available under the default virtual host attached to the /site root URI path.

 Figure 7.8. Isolating public and private applications

 [image:]

 Reviewing the source code, there are a few differences compared to the previous RIAP example to achieve this design. First
 you need to modify the constructor of Mail-ServerComponent, as illustrated in the following snippet, to change the MailApi-Application attachment:

 getDefaultHost().attach("/site", new MailSiteApplication());
getInternalRouter().attach("/api", new MailApiApplication());

 The second point is to update the MailServerResource to modify the way the mail URI is built in order to use the RIAP component scheme:

 String mailApiUri = "riap://component/api/accounts/" + accountId +
 "/mails/" + mailId;

 You can now test that the component is working fine by opening http://localhost:8111/site/accounts/chunkylover53/mails/123
 in your browser and verifying that http://localhost:8111/api/accounts/homer/mails/123 can’t be reached anymore!

 Before ending this chapter we’ll discuss how to persist the state of your Restlet applications in general and more precisely
 of their resources state.

 7.6. Persisting resources state

 When you need to provide persistence for your Restlet application, you can choose among dozens of serious technologies. Several
 types of storage mechanisms are frequently used in addition to relational databases, such as cloud databases like Cassandra,
 object databases like db4o, graph databases like Neo4j, distributed data grids like Hazelcast, or full-text indexes like Lucene.

 For relational databases the most common standard is Java Database Connectivity (JDBC), which can be used directly via its
 Java API or indirectly via object-relational mapping (ORM) tools such as Hibernate, iBatis, or DataNucleus. Higher-level persistence
 Java APIs such as JPA and JDO APIs are also reasonable choices.

 7.6.1. The JDBC extension

 As with presentation technologies, the Restlet Framework tries to stay agnostic regarding your persistence choices because
 this decision often depends on your project’s technical environment and goals.

 Restlet provides the org.restlet.ext.jdbc extension as an alternative, more RESTful way to use JDBC. This isn’t a recommendation over other approaches to managing
 persistence—it’s only one option. The idea is to use a pseudoprotocol based on the JDBC URI scheme. To access a MySQL database
 the URI template is as follows:

 jdbc:mysql://{hostname}/{database}

 This extension offers a Restlet client connector supporting only the POST method in order to issue JDBC requests, using an
 XML representation as in the following listing.

 Listing 7.22. XML request for the JDBC client connector

 [image:]

 When you create such a request, you can either use an AppendableRepresentation by hand or use FreeMarker or Velocity template representations. This XML request is then parsed and converted to an equivalent
 JDBC call in Java. The result set and additional properties are also returned as an instance of the RowSetRepresentation class, which can be automatically converted to XML, reusing the format defined by the javax.sql.rowset.WebRowSet interface. When it’s used directly, you can also access the optional list of generated keys and update count.

 Let’s now continue exploring Restlet support for persistence technologies with the Lucene extension for searching.

 7.6.2. The Lucene extension

 A frequent feature that developers want to add to web applications is search. In Java land and even beyond, the Apache Lucene
 open source project has become the de facto standard for efficient indexing and retrieval, in particular for textual content.

 To help you use Lucene, Restlet comes with an org.restlet.ext.lucene extension that facilitates integration with two subprojects:

 	Apache Tika—A content analysis toolkit

 	Apache Solr—An enterprise search platform

For Tika the extension provides a TikaRepresentation class that facilitates the extraction of textual content from various media types such as PDF, Word, HTML, and XML. It can
 also extract useful metadata about those textual representations, such as the page count, the author, or the modification
 data.

 For Solr the extension provides a pseudoconnector for this specific URI scheme:

 solr:///{command}
solr://{coreName}/{command}

 This client connector lets you interact with an embedded Solr engine from your Restlet application using the Restlet API.
 You have access to the same web API as the one accessible through HTTP from a standalone Solr installation [10]. You’ll now look at some best practices when dealing with resource state persistence before moving on to the third part
 of the book.

 7.6.3. Best design practices

 When using any persistence solution with Restlet, you should try loading and storing the state of your resources each time
 a ServerResource instance is created in order to process a new call. The goal is to respect the stateless constraint of REST.

 This constraint doesn’t mean that your application can’t have state, but that the conversation between clients and servers
 shouldn’t be driven by out-of-band information such as cookie-based sessions promoted in the Servlet API.

 For efficiency reasons you should consider putting in place database connection pools and data caches in your Restlet application
 subclasses, accessing those mechanisms by casting the result of the ServerResource#getApplication() method. Another option to share state between several resource instances is via the parent Context instance, which contains a map of attributes.

 When dealing with transient data, such as a shopping cart or transactions running across several web pages, you should rethink
 your application design to turn this data into resources, such as a shopping cart resource with a specific URI. The state
 of those resources might be stored in a database like other resources, maybe with a shorter lifecycle but without special
 treatment.

 Far from being a backward step, this stateless constraint can even benefit your end users—they won’t experience the typical
 session expiration issue when taking too long to complete a purchase order, for example.

 7.7. Summary

 In this chapter you learned best practices that, taken together, make the difference between a prototype Restlet application
 and a more mature one suitable for production.

 You first saw how to complete an application with the usual web elements manipulated in most web APIs and websites, such as
 HTML forms handling, static file serving, and cookie manipulation. Each feature has been carefully illustrated in the context
 of the ongoing mail server example.

 You also learned two complementary ways to handle web feeds in the Atom and RSS formats using two Restlet extensions, comparing
 the advantages and disadvantages of each of them. Then you learned how to redirect client calls, either manually by setting
 the proper HTTP statuses or more automatically and powerfully with the Redirector class.

 We also discussed performance and modularization aspects in order to deal with applications growing in size and complexity.
 We looked at HTTP built-in features such a conditional method processing, entity compression, and caching support. We also
 introduced Restlet-specific features such as the server dispatcher, the internal router, and the RIAP pseudoprotocol to communicate
 optimally inside a Restlet component.

 You’ll now continue exploring further Restlet Framework possibilities, such as deployment in cloud computing, web browsers,
 and smartphones—and innovative semantic web support.

Part 3. Further use possibilities

 Part 2 gave you the necessary knowledge to turn a Restlet prototype application into a production-ready Restlet application. We
 went relatively deep inside the Restlet Framework and covered many advanced features. Now, in part 3, we step back and look at the bigger Restlet picture: Restlet as part of the modern multifaceted Web, including mobile web,
 semantic web, and cloud computing.

 Chapter 8 covers how to use Restlet in cloud computing environments such as Google App Engine, Amazon Web Services, and Windows Azure,
 including deployment of both server-side and client-side web applications and consumption of cloud-based web APIs such as
 Amazon S3 and APIs based on OData.

 Chapter 9 shows that the Restlet Framework is flexible enough to be used in mobile Android devices as well as in web browsers, not
 only as a Java Applet but also without any plug-ins through the Restlet edition for Google Web Toolkit. We cover all remaining
 Restlet editions and position the framework as a unique RESTful middleware for mobile cloud computing.

 In chapter 10 we explain how web APIs built with Restlet can not only support usual representation media types such as XML, JSON, or HTML
 but also RDF, the core format of the Semantic Web, ensuring that your Restlet application can be part of the quickly growing
 Linked Data.

 Chapter 11 concludes the book by covering what the Restlet ecosystem has to offer, revealing the roadmap for future Restlet development,
 and suggesting ways in which you can contribute to this open source project.

 At the end of part 3 you should be equipped to develop complex web APIs deployed in popular cloud platforms and accessible from many types of
 clients, including rich web clients, smartphones, tablets, and even Semantic Web robots!

Chapter 8. Using Restlet with cloud platforms

	

 This chapter covers

 	Using Restlet in the cloud

 	Deploying Restlet applications to various cloud platforms

 	Accessing RESTful applications from the cloud using Restlet

 	Securely accessing intranet resources from public cloud platforms with Restlet

 	

From the beginning of the book, you’ve seen how Restlet is an easy, convenient, and powerful framework for implementing and
 accessing RESTful applications. But Restlet goes further—it’s also a complete middleware for connecting heterogeneous remote
 applications based on REST and HTTP.

 In this chapter we describe the benefits of using Restlet for cloud computing in both providing and consuming RESTful web
 APIs. We first look at how to deploy Restlet applications into various cloud platforms, such as Google App Engine, Amazon
 Beanstalk, and Windows Azure.

 Then we look at how you can use Restlet to access web APIs deployed in the cloud. You can see Restlet as a universal client
 to consume RESTful applications (and any kind of HTTP backend). We discuss Restlet’s built-in features that ease access to web services such as OData and
 Amazon S3. We cover OData in depth because Restlet provides comprehensive support for this technology with an abstraction
 layer, which makes using OData services much easier. We finish the chapter by covering Restlet’s support for the Secure Data
 Connector protocol, which lets cloud applications access intranet resources in a highly secure way. Primarily developed by
 Google for the Google App Engine platform, SDC is now available to all kinds of platforms, thanks to Restlet.

 8.1. Restlet main benefits in the cloud

 Before going into the details of Restlet’s capabilities and benefits in the context of cloud computing, figure 8.1 introduces the main three layers of cloud computing.

 Figure 8.1. Three layers of cloud computing

 [image:]

 As with regular architectures, each layer builds on top of the layers below it. Table 8.1 describes each cloud layer in more details.

 Table 8.1. Description of cloud computing layers

 	
 Layer

 	
 Description

	Infrastructure as a Service (IaaS)
 	Delivers computer and storage infrastructure, typically using a virtualized data center, as a service. Rather than purchasing
 servers, software, data center space, and network equipment, clients instead buy those resources as a fully outsourced service.
 Typically, the provisioning of those resources doesn’t require any manual operation, thanks to the use of web API.

	Platform as a Service (PaaS)
 	Provides a computing platform that facilitates the development, deployment, and management of applications without the cost
 and complexity of buying and managing the underlying software stack. This layer typically builds on top the IaaS layer.

	Software as a Service (SaaS)
 	Provides ready-to-use applications accessible by users from a web browser. Those applications don’t require any installation
 or maintenance on the user’s computers, resulting in great cost savings and higher productivity. The main drawback is the
 need for fast and reliable internet connectivity.

Let’s see how Restlet fits in a cloud computing environment, first by improving portability and reducing vendor lock-ins.

 8.1.1. Better SaaS portability

 As you’ve seen in previous chapters, Restlet pluggable extension design lets you avoid dragging in unnecessary dependencies,
 ensuring an optimal footprint for your application. In addition to extensions, Restlet Framework provides the concept of edition
 targeting specific execution environments by handling its specificities and restrictions. In the context of cloud computing,
 four editions are provided, as listed in table 8.2.

 Table 8.2. Restlet editions related to cloud computing

 	
 Edition

 	
 Description

	Edition for Java EE (JEE)
 	Major PaaS offerings such as AWS Beanstalk, AppFog, Heroku, and CloudBees support the deployment of standard Java EE applications.
 Restlet edition for Java EE comes with few restrictions besides the need to go through the Servlet API, preventing the use
 of standalone HTTP server connectors.

	Edition for Google App Engine (GAE)
 	Targets the GAE platform as a service by only supporting JRE classes that are part of GAE’s white list. The edition also provides
 special extensions usable in this context to take advantage of GAE security features without gluing your application too much
 with GAE’s proprietary Java APIs.

	Edition for Java SE (JSE)
 	Targets the lower-level IaaS cloud offerings when you need to have control of the JVM, the network configuration, and the
 full deployment context such as with Amazon EC2 and Rackspace servers. More work is required from you, but you can use more
 of the Restlet Framework, including standalone connectors.

	Edition for OSGi Environments (OSGi)
 	Targets the lower-level IaaS cloud offerings like the JSE edition, but provides additional level of dynamicity and versioning
 management features thanks to its multitenant JVM features. This makes it wellsuited for highly available cloud environments.

The combination of editions and extensions helps you consistently execute the same code in different contexts. Although the
 original Java slogan is “write once, execute anywhere,” that isn’t true for all Java-based environments because of their restrictions.
 Restlet goes further by trying to support this slogan with cloud platforms as well. This benefit also applies to browsers
 and mobile devices (covered in the next chapter).

 Figure 8.2 illustrates how a SaaS application can be built with the Restlet Framework, based on any of the four mentioned editions,
 without compromising much portability.

 Figure 8.2. Restlet Framework positioning in cloud layers

 [image:]

 You can also start developing your application locally, without an IaaS, deploy it within a regular Java EE container or simple
 JVM or OSGi environment, and later decide to migrate it to the cloud without much additional work.

 Beyond increased portability of your applications to the cloud and within the cloud, let’s now see how Restlet can also help
 to consume services from the cloud.

 8.1.2. Easy client access to services from the cloud

 As you’ve seen before, Restlet is equally capable of creating web applications accessible via RESTful web APIs and consuming
 third-party web services. This capability is very important in a cloud context in order to consume services provided by:

 	The IaaS layer such as object storage services, queuing services, and managed databases

 	Third-party services such as AWS S3, Twitter, Twilio, Bit.ly, Netflix, or LinkedIn via their web APIs

 	Secure intranet applications that are hosted behind your organization firewall without changing its configuration

Initially you may want to use the client SDKs provided by those services, adding them to your application stack. But you’ll
 quickly end up with redundant or incompatible dependencies and a heavy footprint.

 That’s where Restlet comes in handy—by taking advantage of the natural interoperability offered by REST and HTTP. It also
 provides extensions that support specific security schemes to provide access to Amazon S3 resources and OData services, and
 even support for Google Secure Data Connector (SDC) in order to be connected to intranet resources, as illustrated in figure 8.3.

 Figure 8.3. Restlet as a cloud middleware to deploy, execute, and connect RESTful applications

 [image:]

 Now that you’ve seen Restlet’s overall place in the cloud, let’s get more concrete and describe how to deploy Restlet applications
 to various cloud platforms, starting with Google App Engine (GAE).

 8.2. Deployment in Google App Engine

 Google App Engine is a generic Platform as a Service that can host any web application and offer it massive scalability in
 terms of storage and network and computing power. Free accounts are available for limited usage, and you can pay for extra
 resources (CPU time, bandwidth, storage, and mails sent).

 GAE has many benefits but comes with important constraints because you share computing resources with others. GAE makes your
 web applications live in a sandbox with access to a limited set of base Java APIs. Before describing deployment aspects, let’s
 look more closely at the GAE platform, how it works, and its constraints.

 8.2.1. What is GAE?

 GAE is the cloud platform offered by Google that enables the development and hosting of web applications on top of Google’s
 infrastructure, using the same technologies and data centers that power Google’s own applications. Administration is simplified
 as well, and you don’t need to worry about hardware and scalability. Everything is handled by the platform.

 GAE currently supports Go (Google’s own C-derived language), Python, and Java to develop applications, but we naturally focus
 here on the Java support. Figure 8.4 describes the overall architecture of GAE.

 Figure 8.4. Global architecture of the GAE platform

 [image:]

 Compared to other cloud platforms, such as Amazon Beanstalk (described later in the chapter), GAE makes it easier to write
 scalable applications but comes with restrictions because it can only run a limited range of applications designed specifically
 for that platform. Here are some of these restrictions:

 	Read-only access to the filesystem is allowed.

 	Only code triggered by HTTP requests, XMPP requests, or the Task service can be executed.

 	Only a subset of the classes from the Java Standard Edition is available (the JRE Class White List).

 	Sockets aren’t under the application’s control.

 	Applications can’t create new threads.

 	Incoming HTTP requests have a limited time to complete, typically 60 seconds.

 	HTTP chunked encoding isn’t supported, so the size of entities sent to the application must be known in advance.

	

 Workaround for chunked encoding provided by Restlet

 At this time, GAE ignores request entities that are chunk-encoded. To work around this limitation, you can call the ClientResource.setRequestEntityBuffering(true) method. This configuration prevents the use of chunk encoding for request entities by prebuffering them in order to compute
 their size.

 	

Due to those restrictions, a dedicated edition of the Restlet Framework was developed and is available for download. This
 edition guarantees that only Java classes from the GAE/J whitelist are used for processing within the Restlet Framework. At
 the time of writing, a wide range of extensions from the more generic Java EE edition is usable except JDBC, XStream, and
 a couple of other ones. The complete list is provided in the Javadocs of the GAE edition.

 Let’s now get started and deploy a Restlet application on the GAE platform.

 8.2.2. Deploying Restlet applications in GAE

 The first step in deploying a Restlet application in GAE is to register an application in the remote console located at https://appengine.google.com. In the registration screen, you have to specify an application identifier and a description. The identifier will be part
 of the root URI of the application. If you choose reia for the identifier, the root address for the application will be http://reia.appspot.com. You can also configure other configuration hints regarding security, storage, and replication here.

 Once the application is configured, it appears in the application list, as shown in figure 8.5.

 Figure 8.5. Application list containing the Restlet application

 [image:]

 To deploy the web application, Google App Engine provides a set of various tools:

 	Command-line tools—Scripts to upload web application content in the GAE platform and to start the local development server. Versions written
 in Java and Python are available.

 	Eclipse support—A plug-in that can upload your application from the Eclipse IDE by clicking a button. This approach requires having a project
 of type Web Application.

In addition to regular Servlet deployment artifacts, described in chapter 3, your Restlet application must include a file named appengine-web.xml in order to be deployed on the Google App Engine platform.
 This file is located under the WEB-INF directory of your Web application. At a minimum, it contains the application identifier
 and the version of the content, as described in the following snippet:

 <?xml version="1.0" encoding="utf-8"?>
<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">
 <application>reia</application>
 <version>1</version>
</appengine-web-app>

 Additional configuration properties are available and described at length in GAE documentation, although you will likely want
 to add the <threadsafe>true</threadsafe> line that ensures that concurrent requests can be made to your application, something that Restlet naturally supports, reducing
 your GAE bill at the end of the month.

 The last steps consist of packaging the application within a WAR file and pushing it to GAE. We first use the Java-based command
 line tool to show how to upload the application to Google App Engine.

 Using The Command Line Tool

 After downloading the SDK from http://code.google.com/appengine/downloads.html and unzipping it, you have access to the appcfg.sh script under the bin folder. This script allows you to upload the application.

 The first parameter corresponds to the action to execute, update in this case. The second parameter specifies the folder where the application content is located. The following snippet shows
 the command to execute in order to upload your Restlet application:

 <APPENGINE_JAVA_SDK_HOME>/bin/appcfg.sh update <APPLICATION_ROOT>/war

 Figure 8.6 indicates that a version is now deployed and available.

 Figure 8.6. Application list containing the deployed Restlet application

 [image:]

 In this case, the Restlet application is now available at the address http://reia.appspot.com. To get the contact with identifier 1, you can use the address http://reia.appspot.com/contacts/1.

 Let’s continue by briefly looking at the deployment option from an Eclipse IDE.

 Eclipse Support for GAE

 Google provides an Eclipse plug-in to facilitate the development of GAE applications. It provides wizards to create a GAE
 application as an Eclipse project, test it locally, and deploy it to GAE. This plug-in, called Google Plugin for Eclipse,
 also supports Google Web Toolkit, Google Cloud SQL, and Google APIs development.

 It’s available at https://developers.google.com/eclipse/. We describe its GWT features in more detail in the next chapter, in section 9.1.2.

 Before ending the GAE section, we’ll describe a convenient feature of Restlet that was added to the GAE edition in order to
 provide an easier integration of Google Accounts authentication with Restlet’s regular security API.

 8.2.3. Using Google Accounts authentication

 GAE provides a built-in authentication mechanism based on Google Accounts. To help you take advantage of this feature, Restlet
 provides an extension to integrate it with its security API for authentication and authorization. (The security API is described
 in sections 5.2 and 5.3 in chapter 5.)

 Security in Restlet is based on the Authenticator class to authenticate the current user of a request and the Enroler interface to determine its granted roles. For using the authentication based on Google Accounts, the org.restlet.ext.gae extension provides dedicated classes:

 	GaeAuthenticator class—Provides integration to the GAE UserService.

 	GaeEnroler class—Adds a Restlet Role object to the request’s clientInfo property only if GAE reports that the user is an administrator.

You can configure these two classes within the createInboundRoot method of your Restlet application, as described in the following listing.

 Listing 8.1. Configuring Google Accounts-based authentication in Restlet applications

 [image:]

 The GaeAuthenticator needs to be instantiated [image:] and returned by the create-InboundRoot method to secure the applications. A dedicated enroler needs then to be instantiated [image:] with admin as the Restlet role name and then set on the previous authenticator.

 We’ll now tackle the next cloud platform in our list: Amazon Elastic Beanstalk.

 8.3. Deployment in Amazon Elastic Beanstalk

 At the beginning of 2011, Amazon announced a new offering: AWS Elastic Beanstalk. It provides a very convenient way to deploy
 and manage applications in the AWS cloud. It truly simplifies deployment and execution of Servlet-based applications, compared
 to the existing lower-level Amazon EC2 and S3 products.

 In this section we describe the features and characteristics of the platform and guide you step-by-step to deploy Restlet-based
 applications.

 8.3.1. What is Elastic Beanstalk?

 Amazon Elastic Beanstalk is a complete and generic platform (PaaS) to deploy and execute any Servlet-based applications. When
 deploying such an application, the service under the covers automatically deploys it on one or more EC2 instances, depending
 on the current load monitored, each running an Apache Tomcat server. Restlet easily supports such applications using its Java
 EE edition, including the org.restlet.ext.servlet extension.

 Figure 8.7 provides an overview of the platform provided by Beanstalk and associated services for deployment, execution, and management.
 It’s comparable to GAE, with fewer technical constraints but with potentially higher costs in production. For comparison,
 GAE provides a free plan allowing developers to deploy ten applications with no limit in time.

 Figure 8.7. Overview of Amazon Beanstalk parts

 [image:]

 The deployed applications are automatically added to a load balancer to distribute requests more evenly and efficiently across
 instances in order to help maintain scalability. In addition, AWS Elastic Beanstalk provides a set of tools to manage and monitor your Restlet applications:

 	AWS Management Console—Used to upload WAR files and configure the runtime environment. Other tools, like the AWS Toolkit for Eclipse, the web service
 APIs, or the Command Line Tools, are also available.

 	CloudWatch monitoring—Provides monitoring metrics such as average CPU utilization, request count, and average latency.

 	Amazon Simple Notification Service—Allows sending notifications through email when application health changes or application servers are added or removed.

Now that you have an overview of what Amazon Elastic Beanstalk is, let’s concentrate on how to deploy Restlet applications
 on this platform.

 8.3.2. Deploying Restlet applications

 The AWS Management Console, at https://console.aws.amazon.com/elasticbeanstalk/, is the place to manage applications and deploy them. It provides a consolidated view of each service provided by Amazon
 AWS. The tab dedicated to Elastic Beanstalk shows all your configured applications (figure 8.8).

 Figure 8.8. Overview of the Elastic Beanstalk tab of the AWS Console

 [image:]

 Now to describe step-by-step how to add a Restlet application. The first step of the creation wizard consists of specifying
 the application name and the corresponding WAR file to upload. You then specify some environment details, like the name under
 which the application will be published (which determines its URI) and the container type to use. You can then provide configuration
 details like the EC2 instance type and the application health check address.

 Figure 8.9 shows the screen summarizing all hints filled during the application creation wizard.

 Figure 8.9. Overview of the application creation details

 [image:]

 Beanstalk then configures all the necessary resources for the environment within the Amazon AWS platform—in particular, the
 EC2 instance(s). Because the “Launch a new environment running the application” check box is checked, the environment is automatically
 launched. The square to the left of the application name indicates whether the application is being started (spinning circle),
 as shown in figure 8.10. It then becomes either green or red depending on the deployment result.

 Figure 8.10. Overview of the application while being deployed to AWS Elastic Beanstalk

 [image:]

	

 Eclipse support for AWS

 Amazon also provides an Eclipse plug-in facilitating the development, debugging, and deployment of AWS-based applications.
 It provides an SDK for Java and tools to manage SimpleDB and EC2 services. This plug-in is available at http://aws.amazon.com/eclipse/.

 	

In this case, the Restlet application is available through the address http://reiadev.elasticbeanstalk.com. To get the contact with identifier 1, you can use the address http://reiadev.elasticbeanstalk.com/contacts/1.

 As you can see in the wizard, you need to specify a health check URI to check whether the application is up. You can’t neglect this aspect or you’ll have errors during launching, and the
 application won’t be available. This special URI needs to be provided by the Restlet application. For this purpose we attach
 a dedicated URI within the application to an inline server resource that returns an empty representation when handling any
 HTTP method, shown in the following snippet:

 public Restlet createInboundRoot() {
 Router router = new Router(getContext());
 (...)
 router.attach("/healthCheck", new Restlet(getContext()){
 public void handle(Request request, Response response){
 }
 });
 (...)
}

 The last cloud platform in our list is Windows Azure, by Microsoft. Although this platform wasn’t initially designed for the
 Java language, it regularly improves its support for Java, along with other languages.

 8.4. Deployment in Windows Azure

 Windows Azure provides a comprehensive and scalable cloud computing environment with computing, storage, hosting, and management
 capabilities. It can integrate on-premises applications with secure connectivity, messaging, and identity management.

 In this section we first focus on features and characteristics of the platform and describe step-by-step how to deploy Restlet-based
 applications to it.

 8.4.1. What is Azure?

 The Windows Azure platform is a comprehensive public cloud that corresponds to a group of cloud technologies, each providing
 a specific set of services to application developers. The following list describes the main components of the platform:

 	Windows Azure—Provides an IaaS solution with computing (web and worker roles), storage (blob storage, table storage), hosting (queue service,
 content delivery network), and management capabilities. It can integrate on-premises applications with secure connectivity,
 messaging, and identity management.

 	Microsoft SQL Azure—Corresponds to a cloud-hosted relational database that’s a managed version of Microsoft SQL Server.

 	Azure AppFabric—Provides a PaaS solution with access control, caching, service bus, and integration services.

 	Marketplace— Provides both an application marketplace comparable to Google Apps marketplace and a data marketplace based on the OData
 protocol.

Windows Azure has been built from the ground up with interoperability in mind. This translates differently at different levels.
 The platform lets the user choose between .NET, PHP, Ruby, Python, and Java for the application programming language. Moreover, the platform supports major standards
 including HTTP, XML, SOAP, and REST to offer interoperability. Figure 8.11 summarizes Azure from a Java deployment point of view.

 Figure 8.11. Overview of the Windows Azure platform

 [image:]

 Let’s now concentrate on the deployment of a Restlet application on this platform.

 8.4.2. Deploying Restlet applications

 Before deploying applications in Azure, you need to install tools to build and package the applications for this platform:

 	Windows Azure SDK—Provides developers with the APIs, basic tools, documentation, and samples needed to develop web applications that can run
 on Windows Azure.

 	Windows Starter Kit For Java—Corresponds to a project template to build and package a Java-based application as an Azure-compliant one. This tool is available
 at http://wastarterkit4java.codeplex.com/. It requires using Windows 7 or Vista.

 	Apache Ant—The famous Java build tool is available at http://ant.apache.org.

To install the Windows Azure SDK, Microsoft recommends using the Web Platform Installer available at www.microsoft.com/web/downloads/platform.aspx. This tool helps to download, install, and upgrade components of the Microsoft Web platform. Specify Azure in its search tool and add the Windows Azure SDK entry for install. When launching the process, the Web Platform Installer
 transparently downloads it and its required dependencies and installs all of them. This will save you a lot of time and pain.

 Now that this SDK is installed, you have access to the Windows Azure SDK command prompt that you’ll use to package the application
 using the command line. Install Apache Ant and the Windows Starter Kit for Java by downloading the distribution files from www.windowsazure.com/en-us/develop/java/java-home/ and unzipping them. After that, everything is in place to begin work on your web application.

 You need to add specific tools within your Azure applications to execute them using Java technologies. For Restlet applications,
 the overall package must contain the following elements:

 	Java Runtime Environment (JRE) to execute Java applications within the Azure platform

 	Servlet engine (Tomcat) to execute Java Web applications

 	Content of the Restlet application

Let’s start with the first one, the JRE. Because distributions aren’t available from Oracle as zip files, you need to manually
 zip your JRE installation directory. You then create a JRE directory under the approot one and put your zipped file there.
 Do the same for Tomcat by copying the zipped distribution of the server under a tomcat directory.

 Figure 8.12 shows the complete structure of the Azure project after adding the JRE and the Tomcat server as zipped files. Notice the
 WEB-INF and META-INF folders, containing elements of the Restlet web application.

 Figure 8.12. Structure of the project after adding JRE and Tomcat

 [image:]

	

 Eclipse support for Azure

 An Eclipse plug-in is provided to help in developing Java-based Azure applications. It provides some visual tools to create
 the project structure, based on a dedicated Eclipse project, and to edit role and endpoint configurations. You can obtain
 more information at http://mng.bz/5nrB.

 	

Before going ahead in the application configuration, let’s look at what’s present in the template project of the Windows Azure
 Starter Kit for Java. Table 8.3 lists its main elements.

 Table 8.3. Elements present in the template project of the Windows Azure Starter Kit for Java

 	
 Element

 	
 Description

	.cspack.jar
 	Contains the Java implementation of the windowsazurepackage ant task.

	ServiceConfiguration.cscfg
 	Specifies the number of instances to deploy for each role and provides values for any configuration settings declared in the
 service definition file.

	ServiceDefinition.csdef
 	Describes the service model. It defines the roles included with the service and their endpoints and declares configuration
 settings for each role.

	unzip.vbs
 	Corresponds to the script that makes it easy to unzip archives.

	download.vbs
 	Corresponds to the utility script for downloading files from URL locations into the approot as part of the startup.

In addition to this content, you need to add the actual content of your Restlet application. Copy the contents of the WAR
 file to the approot folder. In this case, it corresponds to the content present in the WEB-INF directory:

 	web.xml file—Descriptor file for the Java-based web application

 	Lib—Directory containing all the third-party libraries needed, such as Restlet JARs

 	Classes—Directory containing classes for the web application

The last step to configure the Azure application is to set how to access it within the ServiceDefinition.csdef file, shown
 in the following listing.

 Listing 8.2. Content of the ServiceDefinition.csdef file

 [image:]

 The InputEndpoint XML element specifies which protocol is supported to access the application and the corresponding port translation [image:]. In this case, you specify to the Windows Azure load balancer that traffic on port 80 for the application needs to be forwarded
 to port 8080 on the machine running the Azure instance.

 Another important file to update is the one located in the util directory under the approot one. It contains all the commands
 to execute when the hosted service starts up. In this case, it consists of unzipping JRE and Tomcat archives and copying the
 web application content within the webapps directory of Tomcat. You need to be very careful when implementing this file because
 an error in paths will cause failures at startup. The following listing describes its content.

 Listing 8.3. Commands to execute at the hosted service startup

 [image:]

 The first commands unzip archives contained the Java Runtime Environment 6 and Apache Tomcat 7.0.12 [image:]. You copy all web application files in the webapps directory of the Tomcat distribution to a directory corresponding to the
 application name [image:]. In this case, the name is reia. The remaining commands deal with starting up the Tomcat server [image:].

 By default, the application is configured for use with the local Azure cloud platform. The resulting structure after packaging
 will be exactly the one on the target Windows Azure cloud. Because you want to directly upload the application to Azure, you
 need to update the content of the package.xml build file. In the packagetype attribute of the windowsazurepackage XML element, we specify the cloud value instead of the local one, as described in the following snippet:

 [image:]

 Executing the Ant script (see the following snippet) will generate artifacts for a deployment using the Azure Console. The
 createwapackage target corresponds to the default one and is executed when no target is specified.

 ant –buildfile package.xml

 This generates two files in the deploy directory that must be uploaded in the console:

 	The csdef file—Corresponds to the definition file

 	The cscfg file—Corresponds to the configuration file

Let’s connect to the Azure console from the address https://windows.azure.com and identify ourselves. Then from the main screen, select the Hosted Services item in the left-hand menu. This gives you
 access to a dedicated toolbar including commands to create and manage services. To deploy the application, you need to create
 a new hosted service, using the wizard described in figure 8.13.

 Figure 8.13. Creating the new hosted service on which the Azure application is deployed

 [image:]

 In addition to the hints regarding the hosted service, like its name, URL prefix, region, and deployment name, you also need
 to reference the two files created during the packaging phase:

 	WindowsAzurePackage.cspkg file in the Package location field—Corresponds to the content of the service in an archive file

 	ServiceConfiguration.cscfg file in the Configuration file field—Corresponds to the configuration hints for the service

After validating data, service creation starts, and content is uploaded, as shown in figure 8.14. The structure of the service is then created by adding the worker role and instance, as shown in figure 8.15.

 Figure 8.14. The console displays the status of the service deployment

 [image:]

 Figure 8.15. Creation of the worker role and instance after deploying the service

 [image:]

 Because you checked the “Start after successful deployment” option in the creation wizard, the hosted service is automatically
 started, as shown in figure 8.16. As you can see in the DNS name field of the properties area, Azure dynamically associates an entry in the cloudapp.net domain to access the service.

 Figure 8.16. All elements of the hosted service correctly deployed, created, and started

 [image:]

 In this case, the service could be reached at the following address: http://e0e47ca9c2a54708b79d0cf96a3e1967.cloudapp.net/reia/contacts/1.

 This coverage of Restlet applications deployment to the Azure platform closes the deployment section. As you’ve seen, Restlet
 applications offer a wide range of cloud environments from Google App Engine to Amazon Web Services and Windows Azure. More
 platforms are also supported, such as Heroku and CloudBees. But the cloud support offered by Restlet doesn’t end here, because
 facilities are also provided on the client side to access web APIs from the cloud and in the cloud. Let’s start by describing
 how to access web APIs from GAE.

 8.5. Accessing web APIs from GAE

 As described in section 8.2.2, Google App Engine comes with restrictions on applications due to its scalability and multitenancy requirements. One of them
 is that GAE applications can’t make socket connections directly in order to access remote resources. They need to use services
 provided by the platform to be able to use higher-level protocols such as HTTP and XMPP.

 In this section we describe how to call remote resources using Restlet after covering the specifics in the context of GAE.

 8.5.1. GAE restrictions and URL fetch

 GAE prevents you from managing low-level sockets but provides a service called URL Fetch to make possible execute requests
 on remote addresses. It’s possible to use it directly, but this service is also provided via the classic java.net.URLConnection class. HTTP requests GET, POST, PUT, DELETE, and HEAD can be used and include HTTP request headers and an HTTP request body.
 Both HTTP and HTTPS protocols are supported. As with the rest of the GAE platform, executing requests on remote addresses
 comes with limitations:

 	Responses can’t exceed the maximum response size limit of GAE.

 	Requests can only be executed asynchronously by using the low-level API of URL Fetch (but a synchronous mode is available
 via HttpURLConnection class).

 	For security and optimization reasons, some HTTP headers can’t be modified by the application. These headers are Accept-Encoding, Content-Length, Host, Vary, Via, and X-Forwarded-For.

The URL fetch service also supports the ability to access systems behind a company’s firewall using the Secure Data Connector
 (SDC) technology. This aspect is described in section 8.9. Let’s look at how to support the Restlet client support in this context.

 8.5.2. Using Restlet to access RESTful applications

 Because GAE makes it possible to use its URL Fetch service through the synchronous HttpURLConnection class, you’ll use the org.restlet.ext.net extension when accessing external URLs by putting that extension’s JAR file in the classpath of the GAE application. Client
 requests are then automatically executed through this connector.

 When using a Restlet client-side API in this context, you must be very careful to not use features, such as chunked and hanging
 requests, that aren’t supported by the URL Fetch service.

 In the next section we cover Restlet support for accessing OData services.

 8.6. Accessing OData services

 In recent years, Microsoft has enhanced its technology named Astoria, and then called ADO.NET Data Services, by splitting
 it into an open specification of a datadriven REST API, called OData (for Open Data Protocol), and a proprietary server-side
 framework called WCF Data Services.

 The OData protocol has also been embraced by IBM in its Java-based WebSphere eXtreme Scale product, and Microsoft has used
 it in several of its products, like Excel PowerPivot, SharePoint Server, Windows Azure Table Storage, and SQL Server Reporting.
 Other recent initiatives are the project code-named Dallas, which offers a marketplace for data services with full support
 for access control and billing, and the OData visualizer part of Visual Studio 2010.

 OData offers a nice way to connect applications and exchange data on top of REST, HTTP, and Atom/JSON, comparable to the Google
 Data (GData) protocol. The OData extension for the Restlet Framework provides a convenient way to consume heterogeneous services
 and access data from a large set of systems typically exposed with Microsoft .NET technology. Figure 8.17 provides an overview of the systems and applications that can be accessed and queried.

 Figure 8.17. Systems accessible using the Restlet OData support

 [image:]

 As a result, the Restlet extension for OData fosters the interoperability between Java and Microsoft environments. In this
 section, we first provide an overview of the OData protocol and then illustrate the use of the Restlet extension.

 8.6.1. What is OData?

 The Open Data Protocol, OData for short, is a protocol for sharing data between applications. This protocol is open and standardized
 by the OData specification, which is available under the Microsoft Open Specification Promise (OSP) and recently submitted
 to the OASIS group for broader standardization. It allows querying and updating data over the HTTP protocol.

 The OData specification supports features like pagination, ordering, and filtering of data. Several formats such as XML-based
 Atom and JSON are supported for data. OData is related to Atom and AtomPub—many of its parts are designed as extensions. OData provides a complete data-centric protocol accessible using HTTP in a RESTful way, thanks to these features:

 	Standardization of URI patterns used to expose data resources

 	Definition of the HTTP methods available to access and manipulate data

 	Definition of an abstract data model (EDM format) but also concrete structure for XML-based Atom and JSON

 	Use of URI structuring to query data provided by consumed services

	

 Atom and AtomPub

 The Atom term applies to several standards. Atom Syndication Format is an XML language used to expose web feeds; Atom Publishing Protocol
 (AtomPub or APP) is a RESTful web API for creating and updating web feeds and similarly structured web resources.

 We also discuss Atom in section 7.2.

 	

Let’s provide examples of URIs to use for querying and updating data, and what representations look like. We concentrate on
 the XML-based Atom format here.

 First, look at an OData query. Consider a service that manages products at host services.odata.org. The simplest query gets all products with an HTTP GET of a URI like /OData/OData.svc/Products where OData could have any other service name:

 GET /OData/OData.svc/Products HTTP/1.1
Host: services.odata.org
Accept: application/atom+xml

 From a client point of view, it’s a regular HTTP request and response, except for the additional response header indicating
 the OData protocol version supported by the server.

 The following listing shows the corresponding response and uses the XML-based Atom format because an Accept HTTP header with this content type is specified in the request.

 Listing 8.4. Content returned by a simple OData request

 [image:]

 The HTTP response is standard and contains the status line and headers [image:]. The OData content [image:] is contained within the HTTP response as body and uses the Atom XML format.

 The response contains a feed of products that can be huge. For this reason OData supports pagination and allows selecting
 a set of data using criteria. Table 8.4 provides examples of query URIs. Further details are available on www.odata.org in the URI conventions page.

 Table 8.4. Examples of OData URIs to query data of services

 	
 URI

 	
 Description

	/OData/OData.svc/Products(1)
 	Returns the first product of the collection.

	/OData/OData.svc/Products(1)/Description
 	Returns the complete description property of the first product of the collection.

	/OData/OData.svc/Products(1)/Description/$value
 	Returns only the value of the description property of the first product of the collection.

	/OData/OData.svc/Products?$orderby=Rating asc
 	Returns the product collection in ascending order of the rating property.

	/OData/OData.svc/Products?$top=5
 	Returns the first five product entries where the corresponding collection is sorted using a scheme determined by the OData
 service.

	/OData/OData.svc/Products?$select=Price,Name
 	Selects price and name properties in the product collection.

	/OData/OData.svc/Products?$filter=Price%20lt%2010
 	Returns products where price property value is below 10.

In addition, OData can manage resources in a RESTful way with the following HTTP methods:

 	POST—Creates an entity and returns its URI using the Location HTTP header. Entity content is provided through the HTTP request
 body.

 	PUT—Updates an entity using the content provided in the HTTP request body.

 	DELETE—Deletes an entity based on request URI.

The following listing provides an example of a request to add a category to the previous service. The /OData/ODate.svc/Categories URI representing all categories must be used in this case.

 Listing 8.5. Adding a category with OData using an HTTP POST request

 [image:]

 Adding a category is done using an HTTP POST request on the address corresponding to categories [image:]. The content type for the category to add is specified using the Content-Type header [image:]. The category content is then specified as body for the request [image:]. As a side note, optional properties that are missing in the request are automatically set with their default value, as defined
 by the service.

 Once the resource has been created on the server side, the response described in the following listing is returned. This response
 provides the autogenerated identifier in the Location HTTP header and contains the final state of the resource.

 Listing 8.6. Response received for the add request for a category

 [image:]

 The response is successful with the status code 201 and message Created [image:]. The address of the created resource is specified using the Location header [image:], and the content is provided as response body [image:].

 OData provides an SDK with a set of tools in different languages to consume and expose OData services. Because the protocol
 is based on HTTP and the REST architecture style, Restlet is a natural solution to consume OData services from Java. In the
 following sections we describe how to use the Restlet support for OData.

 8.6.2. Generating classes for access using Restlet

 From the client perspective, the Restlet OData extension provides a generation tool that will make your OData life easier.
 Based on the metadata exposed by any OData service, it will generate, for each declared data entity, the matching Java class
 with the correct properties and save a lot of time in your development. Parsing and formatting the Atom/XML is done automatically
 by another generated Service subclass and its internal helpers.

 Figure 8.18 provides an overview of the way to use the Restlet OData extension to generate classes to consume OData services.

 Figure 8.18. OData class generation support provided by Restlet

 [image:]

 The OData extension lives in the org.restlet.ext.odata package and includes the generator tool. Generated classes support the following features:

 	Querying data

 	Managing entities

 	Projections, similar to database view

 	Transparent server-side paging

 	Blobs, to expose media resources

 	Row counts retrieval

 	Customizable Atom feeds

 	Version headers

 	Operations, to expose stored procedures

The extension is also available on the Restlet edition for Android, allowing you to directly access OData services hosted,
 for example, on the Azure cloud computing platform, from a smartphone.

 Let’s reuse the product service described in the previous section and generate OData classes with Restlet support. When using
 XML-based Atom, you need to use the extensions described in table 8.5 in addition to core Restlet.

 Table 8.5. Needed extensions for generation in context of OData with XML-based Atom

 	
 Extension

 	
 Description

	org.restlet.ext.odata
 	Extension corresponding to the OData support and including the generator

	org.restlet.ext.atom
 	Extension providing support for Atom

	org.restlet.ext.xml
 	Extension providing support for XML

	org.restlet.ext.freemarker
 	Extension corresponding to the integration of FreeMarker template engine within Restlet, used for code generation

The org.restlet.ext.odata.Generator class has a main method to launch the generation. This launcher class accepts three parameters to configure the generator
 as described in table 8.6.

 Table 8.6. Parameters of the generator class

 	
 Parameter

 	
 Description

	SERVICE_URI
 	Base URI of the remote service.

	OUTPUT_DIRECTORY
 	Directory path where the classes for the service will be generated.

	SERVICE_CLASS_NAME
 	Name for the generated service class. This parameter is optional.

To launch the generation, you can use this Java command:

 java -cp org.restlet.jar:org.restlet.ext.xml.jar:org.restlet.ext.atom.jar :org.restlet.ext.freemarker.jar:org.restlet.ext.odata.jar :org.freemarker.jar org.restlet.ext.odata.Generator http://services.odata.org/OData/OData.svc out/

 In order to simplify this generation launch, we created the Ant configuration file shown in the following listing. It configures
 the classpath based on a lib directory containing all dependencies and also provides a generate task to call the generator.

 Listing 8.7. Ant script for launching the OData generation of Restlet

 [image:]

 The Ant task called generate uses the OData generator of Restlet to create OData classes for the specified service in the out directory.

 Now that these classes have been generated, we describe how to use them to interact with the remote service.

 8.6.3. Calling OData services

 In the previous section you generated all the classes for the OData service based on its root URI. We’ll explain how to use
 them to manipulate the data. Let’s first talk about the generated classes. We distinguish two kinds of classes:

 	Data—There are data classes for each entity supported by the service. They correspond to POJOs with a property for each data attribute.

 	Service—This acts as a manager for a specific remote OData service. OData services are stateless, but service instances aren’t. State
 on the client is maintained between interactions as a local cache in order to support features such as update management.

Now you’ll find out how to use these classes to interact with the service. We begin with the query support. For each entity,
 a method is created, called create<ENTITY>Query, that returns a Query object from a given search URI path. The following snippet describes how to have access to all elements of the type Product:

 Query<Product> queryProduct = service.createProductQuery ("/Products");

for (Product product : queryProduct) {
 String id = product.getId();
 String description = product.getDescription();
}

 Notice here that the OData syntax for a query can be used within the URI path. For example, you can retrieve the first Product item with the following snippet:

 Query<Product> queryProduct = service.createProductQuery ("/Products(1)");
Product product = queryProduct.iterator().next();

 Some advanced features are also supported based on properties provided by the Query class (listed in table 8.7) that support complex use cases for implementing OData queries.

 Table 8.7. Properties provided by the Query class

 	
 Method

 	
 Description

	expand
 	Specifies that the query needs to return matching elements including their dependencies. The value defines which property
 to expand.

	orderby
 	Allows ordering the result of the query based on a data property.

	filter
 	Applies filtering constraints using the Language-Integrated Query (LINQ) on a set of data. Its syntax is very close to SQL’s.

	skip
 	Takes one value which corresponds to the number of the start entities to omit in the set of data theoretically returned by
 the query.

	top

 	Takes a numeric value which represents the maximum number of results that the query will return.

	select
 	Specifies which properties will be returned for elements matching the query. Transitivity in property names is supported here.

	inlineCount
 	Enables the inlineCount feature if the service supports it. In this case the count of returned element is obtained from the
 feed document itself. This allows retrieval of both count data and entries in the same request.

	getCount
 	Gets the number of retrieved elements for a query.

All these properties can be combined on the same query. Let’s describe the features provided, beginning with filtering.

 The filter method must be called on the Query object created with the create-ProductQuery method. The parameter of this first method corresponds to the query string. In the following snippet, we only select items
 whose Name property value is “Milk”:

 Query<Product> query = service.createProductQuery(
 "/Products").filter("Name eq 'Milk'");

 The skip and top properties allow the client to control pagination. The first one specifies the number of entities to be skipped by the server
 in response to a query, and the other one defines the maximum number of entities to be received. The following snippet describes
 how to get page two containing at most 20 products:

 Query<Product> queryProduct = service.createProductQuery(
 "/Products").skip(20).top(20);

 Another feature corresponds to projection using the select method. The latter allows specifying properties that will only be returned. At this level, transitive expressions are supported
 in order to browse inner elements of data. The following snippet describes how to use the select method:

 Query<Product> queryProduct = service.createItemQuery(
 "/Products").select("Description");

 In addition to queries, the Restlet OData support can modify the data of the remote service: the addProduct method for adding, updateProduct for updating, and deleteProduct for deletion. The following listing describes a complete data management lifecycle based on these methods.

 Listing 8.8. Implementing the CRUD methods to manage entities of OData service

 [image:]

 After creating an instance of type Product and setting its identifier, you call the addProduct method [image:] on the service instance to add it. You can also update this item and the changes persisted using the updateProduct method [image:]. The deleteProduct method [image:] removes it. Unfortunately you can’t test such features with the read-only online test OData service.

 As you can see, Restlet provides a very convenient client façade in order to access and use OData services by hiding all complexity
 and technical plumbing. Restlet also takes care of the painful and time-consuming work of generating data objects for the
 target service.

 We end our look at access to static resources in the cloud by tackling the case of S3 resources provided by Amazon AWS or
 a compatible provider.

 8.7. Accessing Amazon S3 resources

 As described briefly in section 8.3 on Amazon Elastic Beanstalk, Simple Storage Service (S3) is the online storage web service provided by Amazon Web Services
 allowing storing data in the cloud.

 You can access and manage S3 resources through simple HTTP requests, but they rely on a custom security scheme and extension
 HTTP headers.

 8.7.1. Configuring a bucket

 A bucket corresponds to a place in S3 where you can store resources, such as a folder if you prefer. Before trying to access and manage
 elements, you first need to create a bucket. To do that, go into the S3 tab in the AWS Management Console and click the Create
 Bucket button. Once that’s done, you can upload a file in the newly created bucket—for example, the picture corresponding
 to the cover of the book.

 Figure 8.19 shows the AWS Management Console after the creation of a bucket called reiabucket and the upload of the louvel_cover150.jpg file.

 Figure 8.19. AWS Management Console describing the reiabucket element and its elements

 [image:]

 You’re now almost ready to access and manage elements in the bucket using HTTP requests through Restlet.

 8.7.2. Accessing a resource with the bucket

 Amazon S3 uses a dedicated security mechanism to authenticate requests. This mechanism is based on secret keys that are known
 on both client and server sides and used to compute signatures of requests. A request is authenticated when computed signatures
 on both sides match. Authentication hints are sent within the request using the Authorization header following this syntax:

 Authorization: AWS AWSAccessKeyId:<Signature>

 You can access the AWS access key identifier in your AWS account in the Security Credentials section. The latter gives you
 access to all keys associated to your account and corresponding secret keys. Such keys are useful to sign requests based on
 their content. Figure 8.20 shows the Access Keys tab in the AWS account providing all available access keys.

 Figure 8.20. Access Keys tab provides all available access keys.

 [image:]

 Using Restlet, you don’t have to manage the Authorization header by yourself because the AWS S3 security scheme is automatically supported. This support is logically located in the
 org.restlet.ext.crypto extension, as it requires encryption.

 This kind of security is enabled when specifying the HTTP_AWS_S3 challenge scheme in configuration of the challenge response. The following listing gives an example that downloads the picture
 uploaded in the previous section and writes it to a local file.

 Listing 8.9. Using AWS S3 security in HTTP requests with Restlet

 [image:]

 You set hints for AWS S3 security using the challenge response that can be specified on the request instance using its setChallengeResponse method [image:]. The HTTP_AWS_S3 scheme must be specified here in the ChallengeResponse. In our context, its identifier corresponds to the AWS access key identifier and the password to the secret key that will
 be used to sign the request. The request can then be executed as usual and the content present in the response extracted through
 its associated representation [image:].

 Amazon S3 service also supports other HTTP methods to remotely manage the resource. Using a PUT method will update the resource
 on the server (or create it if it doesn’t exist), and DELETE will remove it. The following listing describes how to remotely
 create and delete S3 resources within a bucket using Restlet.

 Listing 8.10. Remotely create and delete S3 resources using Restlet

 [image:]

 As you can see for creation [image:], you need to specify the resource content using the representation associated to the request. Deletion is like getting a
 resource but using the HTTP DELETE method [image:]. For both requests, Amazon S3 security is applied, as in listing 8.10, based on challenge response.

 You can configure permissions to access and manage resources within buckets in the Permissions tab of bucket properties within
 the AWS Management Console, as shown in figure 8.21. For each Amazon account, you can specify which operations (list, upload, and delete) are possible.

 Figure 8.21. Configuration of permissions for AWS account to access and manage resources in buckets

 [image:]

 Since version 2.1, Restlet also implements S3 server-side authentication. This makes it possible to use AWS security for your
 applications even outside of the Amazon S3 platform. Microsoft also provides online services for storage that you can access
 in a way similar to AWS S3 using Restlet. In the next section we describe how to use them.

 8.8. Accessing Azure services

 Windows Azure offers online services requiring a security scheme similar to AWS, based on secret keys and extension HTTP headers.
 Restlet also supports these schemes via its crypto extension.

 Before going through how to use them, let’s configure a storage account within the Windows Azure console.

 8.8.1. Configuring storage accounts

 Configuring a storage account is simple. After selecting Storage accounts in the left-hand menu, click the Create storage
 account button. After entering a name, the account is created and appears in the list, as shown in figure 8.22.

 Figure 8.22. List of storage accounts present in the Azure console for a subscription

 [image:]

 The Properties tab on the right of the screen gives access addresses for the different storage services. For the table service,
 in this case, the address is reia.table.core.windows.net. Let’s find out how to use this service using Restlet.

 8.8.2. Using table service

 Windows Azure provides three kinds of online storage services usable from a storage account:

 	Blob service—Stores text and binary data through three kinds of resources (the storage account, containers, and blobs).

 	Queue service—Stores messages that may be read by any client with access to the storage account.

 	Table service—Offers structured storage in the form of tables.

In this section we describe how to use the table service, providing three kinds of operations. The first one consists in querying
 the list for all available tables. Two other ones implement table management to create and delete tables.

 As with S3 services, the Azure storage services require a secret key-based authentication. This key is used to sign requests.
 Authentication details are sent within the request using the Authorization header following the standard syntax. This kind of authentication is automatically supported when specifying the HTTP_AZURE_SHAREDKEY challenge scheme in the configuration of the challenge response. The next listing describes how to integrate HTTP_AZURE_SHAREDKEY security in HTTP requests with Restlet. The code gets the list of tables for the storage account.

 Listing 8.11. Using Azure secret key security in HTTP requests with Restlet

 [image:]

 After instantiating the Restlet client resource, you set the Azure security info using a challenge response [image:], then execute the GET request [image:] that returns the list of tables. Azure table service uses Atom format as content type. For this reason, we use the Restlet
 Atom extension to get a Feed representation and iterate over its entries [image:].

 The REST API of the service also allows creating a table with an HTTP POST method. The table name is specified through the
 sent content using an Atom entry element. The following listing shows how to create a table within the table service.

 Listing 8.12. Creating a table using the REST API of the table service

 [image:]

 The delete operation is also supported through the HTTP DELETE method. In the case of a table with the name myTable, the address to use is http://myaccount.table.core.windows.net/Tables(‘mytable’).

 You’ve seen how to access and manage tables hosted by Azure using Restlet. Let’s move on to another interesting feature recently
 provided by the framework in order to give access to intranet resources from the cloud with Restlet’s SDC extension.

 8.9. Accessing intranet resources with Restlet’s SDC extension

 When providing applications in the cloud, companies may be reluctant to expose their data to the world because of security
 concerns, but sharing is sometimes necessary. Giving access to internal applications or the company’s data is risky because
 they correspond to the core of the business and can open a door to potential attacks from the outside. On the other hand,
 sharing this data with users and partners through web APIs is often important strategically.

 For such use cases, Google provides an interesting and secure solution called Secure Data Connector (SDC). In this section
 we describe how this technology works and what its main benefits are. We show how it’s tied to Google’s cloud platform and
 present the Restlet SDC extension.

 8.9.1. Secure Data Connector overview

 Google provides a robust solution called SDC to enable accessing data behind a corporate firewall in a secure and unobtrusive
 way from a public cloud platform. Its approach doesn’t require giving full access to the company’s backend by opening the
 firewall or the DMZ but implements a secure data tunnel between the service exposed in the cloud and the intranet.

 The key principle of this technology is that the connection isn’t initiated from outside but from the intranet. The firewall
 always remains active, isn’t reconfigured, and still protects the intranet. The SDC agent keeps full control over what’s accessed and provides a secure tunnel to communicate
 with dedicated applications. This mechanism is implemented with two distinct parts:

 	Google SDC agent—Corresponds to the software executed within the intranet receiving requests from applications exposed through the cloud.

 	Google SDC tunnel server—Corresponds to the software that associates request domains with corresponding connections. It also forwards requests to
 the intranet using the matching tunnel connection.

Figure 8.23 illustrates all SDC-related parts involved in both the Google cloud platform and the user’s company intranet.

 Figure 8.23. All involved parts to implement SDC technology in both Google platform and intranet

 [image:]

 Because the connection is initiated by the SDC agent, it can pass the firewall. Communications can then happen both ways (from
 cloud platform to intranet and vice versa). Google’s Protocol Buffer provides automated and optimized formatting and parsing
 as well as multiplexing over a singled TLS socket per active tunnel.

 Now let’s see how to use the SDC agent provided by Google as an open source project.

 8.9.2. Installing SDC agent

 As you can see from the overview, SDC can’t work without the SDC agent running within the company intranet. In this section
 we focus on the open source project provided by Google at http://code.google.com/securedataconnector/.

 The SDC agent is responsible for the secure bridge between the company intranet and the public cloud platform. It must be
 installed and run within the intranet and consists of a single Java application.

 First, download the zip file for the chosen release. In this case we use the latest version, 1.3 RC2. After extracting this
 file, you have access to the JAR file of the tool and startup and shutdown scripts for Linux. Don’t be afraid if you use Windows
 because the tool is a Java application and can be executed on any platform that supports a recent Java SE 6 runtime. Start
 up the agent by executing the following command line:

 java -jar lib/sdc-agent.jar -log4jPropertiesFile config/log4j.properties -
 rulesFile config/resourceRules.xml -localConfigFile config/
 localConfig.xml

 Now that you know how to start up the SDC agent process, let’s dive into what parameters you can use to configure it—in particular,
 the access authorizations. Table 8.8 lists its main launching parameters.

 Table 8.8. Main launching parameters of the SDC agent application

 	
 Parameter

 	
 Description

	agentId
 	Specifies an identifier for the running agent process sent to the SDC tunnel server.

	debug
 	Enables debug messages.

	domain
 	Specifies the SDC domain name, sent to the SDC tunnel server.

	localConfigFile
 	Specifies the file to configure the SDC agent and its connection to Google Apps.

	log4jPropertiesFile
 	Specifies the file to configure log4j trace messages.

	rulesFile
 	Specifies the file to configure which Google applications users and which components can access which resources within the
 domain associated to the agent.

As you can see in table 8.8, the SDC agent process is based on two main files for configuration. The first one, by default called localConfig.xml, aims
 to configure the SDC agent and its connection to the SDC server, typically in the Google cloud. The following listing describes
 how to specify hints regarding SDC server to access, the domain, user, and agent identifier for the agent process.

 Listing 8.13. Global configuration of the SDC agent

 [image:]

 The first properties have to do with the remote SDC tunnel server and how to access it [image:]. You then define the domain associated with the agent [image:]. Requests proxied with this domain from the client side will be routed to this agent. Finally you specify properties regarding
 the agent itself, such as its identifier and corresponding user and password [image:]. When used by the Google cloud, the sdcServerHost value must be apps-secure-data-connector.google.com and the sdcServerPort value 443.

 The second configuration file, called resourceRules.xml, configures which client application users and which components can
 access which resources within your domain. The following listing describes how to configure rules to give access to users for domains.

 Listing 8.14. Rule configuration to access intranet applications through SDC agent

 [image:]

 The configuration file contains a set of rules [image:] that defines how the intranet can be accessed. You can see the URL that will become accessible in the intranet [image:]. You can also specify authorized applications and the agents in the configuration.

 You now have enough information to understand what SDC is and how to configure the intranet agent. Let’s see how Restlet can
 help you use this technology from cloud platforms other than GAE.

 8.9.3. Using the Restlet SDC connector

 Google SDC is a perfect match if you exclusively use applications provided by the Google ecosystem, but the tool comes with
 several limitations:

 	The SDC agent is available as an open source project, but that’s not the case with the SDC Tunnel Server part.

 	The Google App Engine SDK doesn’t provide a way to test SDC locally without deploying your application in the cloud.

 	This technology isn’t portable because it can’t be used with other cloud platforms such as Amazon EC2 and Windows Azure.

 	You can’t easily port a GAE application using SDC to another platform, private cloud, or public cloud and remain locked on
 GAE.

Because one of the Restlet Framework goals is to favor portability across various PaaS offerings, those SDC challenges were
 compelling in order to make figure 8.24 become a reality.

 Figure 8.24. Cross cloud platform implementation of the SDC tunnel server provided by Restlet

 [image:]

 In order to make the SDC technology usable in other cloud platforms, Restlet provides an alternative open source implementation
 of the SDC tunnel server. It supports the same SDC protocol by using the Protocol Buffer library of Google’s open source SDC
 agent in order to implement a multiplexing tunnel (frames going both ways without constraint) over TLS.

 This server is implemented within the org.restlet.ext.sdc extension of Restlet providing a specific client connector that embeds a SDC tunnel server. This extension has been available
 since version 2.1 and later in the Restlet Java SE, Java EE, and OSGi editions. Putting the corresponding JAR file in the
 classpath registers the SDC connector with the Restlet engine. You can then use it with its protocol identifier SDC, as in
 the following snippet:

 Client sdcClient = new Client(new Context(), Protocol.SDC));
(...)
sdcClient.start();

 The tunnel server is automatically started at connector startup when its start method is called. Some configuration is needed at this level regarding encryption:

 Client sdcClient = new Client(new Context(), Protocol.SDC);
Series<Parameter> parameters = sdcClient.getContext().getParameters();
parameters.add("keystorePath", "sdc.keystore");
parameters.add("keystorePassword", "password");
parameters.add("enabledCipherSuites", "TLS_RSA_WITH_AES_128_CBC_SHA");
parameters.add("sslProtocol", "TLSv1");
sdcClient.start();

 An important thing to remember is that this connector needs to be started before launching the SDC agent because it will immediately
 attempt to reach the tunnel server. Now that these two steps are done, you can use the SDC tunnel to execute an HTTP request
 using Restlet. The thing to understand here is the way to route requests through the SDC connector. In this context you need
 to explicitly set the SDC protocol and override the one deduced from the HTTP address by Restlet. This aspect can be a bit
 disturbing at first sight, because you usually leave Restlet to automatically find out protocol from request URI, but that
 isn’t suitable in this case.

 The other required configuration is to specify which domain the request is executing for. The tunnel server checks the correspondence
 between the domain and actual tunnel connection. You can do that using the Restlet proxy challenge response. Within it, you
 can set the SDC protocol name, the user of the domain, and a password. Apart from these aspects, the Restlet client support
 is usable in the same way as regular HTTP clients. The following snippet shows how to execute HTTP requests using the Request and Response objects through a SDC tunnel:

 ClientResource cr = new ClientResource("http://www.restlet.org");
cr.setProtocol(Protocol.SDC);
cr.setProxyChallengeResponse(ChallengeScheme.SDC, "myUser@example.com",
 "myPassword");
cr.get().write(System.out);

 To improve code source portability, the GAE edition supports a similar syntax even though in this case there’s no need for
 the SDC extension at all, because it’s based on a native GAE feature.

 8.9.4. Restlet SDC support in GAE edition

 Within classic GAE applications, you normally have to specify the “use_intranet" header with the value true for this purpose. The following snippet shows how to set this header using the HttpURLConnection class:

 [image:]

 Since version 2.1 of Restlet’s edition for GAE, this is now done transparently without having to set this header. Specifying
 the SDC protocol for the request is sufficient to use the corresponding secured tunnel. Internally Restlet adds the header
 when the SDC protocol is specified and ignores the proxy authorization property.

 The selection of the tunnel is based in this case on the domain specified for your GAE application. Notice that the Restlet
 SDC provides more flexibility because it allows the use of several domains within the same application.

 That closes this chapter on using Restlet in the cloud. This support by Restlet provides further perspectives for the SDC
 technology created by Google.

 8.10. Summary

 Restlet provides comprehensive support for both exposing and consuming RESTful applications in the cloud. It can be seen as
 a RESTful middleware to allow interactions between heterogeneous cloud client and server applications.

 Based on its multiple editions and associated extensions, Restlet provides a convenient way to handle environment specifics
 and restrictions and improve your application portability. You learned in this chapter how to deploy Restlet applications
 in the most popular cloud platforms: Google App Engine, Amazon Elastic Beanstalk, and Windows Azure.

 In addition, you saw how Restlet facilitates access to a wide range of RESTful web services. They can be consumed using the
 standard Restlet machinery, but Restlet provides additional support for OData-based and S3 services. Restlet provides support
 for Azure custom security schemes, code generation of data objects, and a service proxy class to simplify its use. In the
 case of S3, it provides support for the custom security scheme on both the client and server side.

 Restlet provides SDC support that enables the use of this technology in all cloud platforms, not just Google’s. SDC gives
 access to intranet resources located behind corporate firewalls, from a public cloud and in a highly secure way.

 As a result you can increase the portability of Restlet applications across cloud infrastructures, but this doesn’t stop here
 because other editions for Android and GWT also make using the Restlet API in web navigators and mobile devices possible and
 consistent. We focus on that topic in the next chapter.

Chapter 9. Using Restlet in browsers and mobile devices

	

 This chapter covers

 	Restlet editions for GWT and Android

 	Using REST within GWT applications with Restlet

 	Using REST within Android-based mobile devices with Restlet

 	

This chapter explains how to access web APIs using Restlet from clients ranging from light web browsers to mobile devices.
 First, it’s possible to use the Restlet API within a browser, with no additional plug-ins, via the Google Web Toolkit (GWT).
 This chapter discusses the Restlet edition for GWT, a port of the Restlet client-side API to GWT, and how to use Restlet on
 the server side to address issues such as cross-domain calls and automatic object serialization. This approach allows Rich
 Internet Applications (RIA) to consume and modify REST resources.

 We then look at the Android OS for mobile devices. It runs a Dalvik virtual machine that understands code compiled from Java
 source and provides a subset of Java SE APIs, plus specific APIs. We describe how the Restlet edition for Android makes it
 easy to access the web APIs from Android applications.

 For each technology we provide basic introductions, describing concepts and how to use them. No prior knowledge is required
 for these technologies before reading this chapter. Moreover we always follow an “in action” approach by developing our mail application as a case study
 for both technologies. In the case of the GWT technology, this consists of a mail client which calls our example mail server
 to retrieve and send emails. For Android, we implement a mobile mail program with both client- and server-side applications.

 We begin by describing what GWT is and how REST can be used within it.

 9.1. Understanding GWT

 Implementing AJAX or RIA can be a painful task. Such applications require advanced skills in several different technologies
 such as HTML, CSS, and JavaScript. Many developers have basic skills in these areas, but things become harder with advanced
 concepts, like connecting client and server with AJAX.

 The situation becomes even more problematic when trying to handle browser specifics. Making applications have a consistent
 behavior across different browsers is a tedious task. Because JavaScript is dynamically and weakly typed, debugging is more
 complex than when using strongly typed languages like Java. Moreover such technologies don’t benefit from integrated development
 environments as advanced as those for the Java platform.

 The GWT enhances productivity while developing high-performance web applications without having strong knowledge of technologies
 involved in browsers. In this section we give an overview of the technology and describe how to implement it. Finally we tackle
 how to make it consume web APIs.

 9.1.1. GWT overview

 With GWT, you can continue to develop your web applications using the Java language on both the browser side and on the server
 side. Implementing browser-side processing in Java without relying on an Applet plug-in is unusual. It doesn’t mean that the
 code will be executed in the same way as with an Applet. In fact, GWT compiles this code into JavaScript code that will be
 executed natively by the browser without any additional plug-in. Figure 9.1 describes this mechanism.

 Figure 9.1. GWT application mechanisms

 [image:]

 The main benefit of this approach is that GWT can apply optimizations for distinct browser types at compilation time. Browser-specific
 idiosyncrasies are taken into account while still providing the same behavior. Furthermore, this complex task is done transparently
 for developers, contributing to the magic of this solution.

 Figure 9.1 shows a GWT application using Java on the server side. But once compiled into JavaScript, the client side of a GWT application
 corresponds to a set of static JavaScript files that could be served from any web server, such as PHP or Python.

 Let’s go deeper inside the organization of a GWT application. Such an application is composed of a set of GWT modules that
 follow a particular file structure. Here’s how a module is composed:

 	Java classes related to the UI, data objects, and remote service interfaces— All these classes will be compiled into JavaScript in order to be natively executed within web browsers.

 	Java classes related to remote services used within the module— They respond to AJAX requests triggered from the client side of the GWT module, and corresponding classes will be typically
 executed within a Java server application.

 	Web resources— CSS style sheets, HTML pages, and additional JavaScript code required by the module.

 	A configuration file per module— This defines GWT elements used and the entry point class.

In order to provide these files, GWT requires the following structure:

 	Root package for the module can be freely named.

 	Packages corresponding to the client side must be located by default under a client subpackage of the module package.

 	Packages corresponding to the server side must be located by default under a server subpackage of the module package.

 	The folder for web resources must be under the public one right below the root package.

 	A module called MODULE-NAME is described by a configuration file named <MODULE-NAME>.gwt.xml located directly under the module package.

Now we’ll describe how to install and use it.

 9.1.2. Installing and using GWT

 GWT provides a dedicated Software Development Kit (SDK) which consists of a set of JAR files and command-line tools to create
 applications and tune them. This SDK is provided as a standalone tool that can be downloaded from the GWT website on Google
 Code at http://code.google.com/webtoolkit/.

 Although you can develop GWT applications with this SDK and any Java IDE, we chose Eclipse because Google offers a convenient
 plug-in for it. Here are the additional features it provides:

 	Wizards to create and configure the project files necessary for GWT applications

 	Efficiently build GWT applications, execute them, and debug them

 	Dedicated editors for GWT artifacts

To install this tool, you can use the Update Manager of Eclipse, which is available from the Help > Install new Software menu.
 Then you need to specify the Update Site for the Google Plugin using http://dl.google.com/eclipse/plugin/3.6 for version 3.6 of Eclipse. (Change the number at the end of the address for another version of Eclipse.) Next you can see
 the installable items, as shown in figure 9.2.

 Figure 9.2. Google Plugin for Eclipse installation through Eclipse’s update manager tool

 [image:]

 As you can see, the SDK is also available through the update site, so you don’t need to download and install it separately.
 You can select the required Google Plugin for Eclipse and even additional ones such as the visual GWT Designer; then launch
 the installation. After a restart of Eclipse, the Google Plugin for Eclipse with GWT support is available within your workspace.

 9.1.3. GWT and REST

 As you’ve seen in previous chapters, REST provides much flexibility between the client- and server-side resources in the way
 they interact.

 GWT natively integrates mechanisms to execute remote calls using a built-in proprietary protocol called GWT-RPC. It requires
 the use of a custom object serialization format to exchange content. This structure is specific to the GWT technology and
 isn’t compatible with the standard Java object serialization format. By default, GWT favors the use of its GWT-RPC technology
 to communicate between the browser and the back end, relying on GWT-provided Servlets on the server side to interact with
 remote methods. This clearly discourages you from using non-GWT-based server-side services such as RESTful web APIs and technologies
 other than Java. Figure 9.3 illustrates this GWT-RPC architecture.

 Figure 9.3. Default GWT remoting support

 [image:]

 The first concern with this solution is that it relies on the RPC paradigm, which has many drawbacks compared to REST, as
 explained in appendix C. In particular, when RESTfully using HTTP, you can benefit from content negotiation to select among several representation
 media types, reducing the coupling between clients and specific server–side technologies—the opposite of the GWT-RPC architecture.
 Figure 9.4 illustrates how GWT applications can access REST resources without using GWT-RPC-based calls, relying instead on the Request-Builder class in GWT’s HTTP module.

 Figure 9.4. Using REST resources from GWT applications without GWT-RPC

 [image:]

 We dive deeper into these aspects in the next section. In particular we demonstrate the flexibility offered by Restlet Framework
 on the GWT client side in section 9.2.2.

 9.2. The Restlet edition for GWT

 As introduced before, Restlet provides different editions for various execution environments. At this point in the book you’ve
 seen the Java SE, Java EE, OSGi, and GAE editions, but Restlet also provides a dedicated edition for GWT. In this case only
 a limited part of the Restlet API is provided, including most of the client side, due to limitations inherent to browsers.

 In this section we describe the Restlet support on the GWT client side. First we introduce classes provided by GWT to execute
 HTTP requests and then we show how to use them to call REST resources.

 9.2.1. The RequestBuilder class of GWT

 As described in section 9.1.3, you need to bypass the remote procedure call mechanisms of GWT in order to access RESTful origin servers and reuse an existing
 web API.

 You need to use the low-level Java API provided by GWT to execute HTTP calls without the RPC abstraction layer. For this purpose,
 GWT has the RequestBuilder class supporting all HTTP methods and providing two ways of handling requests. The first way uses the command pattern. After instantiating the RequestBuilder, you set request parameters and the response callback. Then execute the request with the send method. In the second approach, you provide a callback method when executing the request using the sendRequest method, which also accepts data to send as parameter. (In either case you need to specify headers before calling the method.)

 Listing 9.1 describes how to use this second approach to call a remote web resource with the GET method.

 Listing 9.1. Using RequestBuilder class

 [image:]

 First you instantiate the RequestBuilder class and provide it the HTTP method to use and the URL of the resource to address. After specifying HTTP headers, send the
 request using the sendRequest method [image:], passing a callback object including a method invoked in case of success [image:] of the HTTP request and another in case of error [image:].

 The RequestBuilder class is close to the HTTP protocol. It allows you to completely define request content and to extract content from the corresponding
 response. Using it can be painful because it requires knowledge of all the subtleties of the HTTP protocol such as how to
 format and parse HTTP headers. In addition, as strange as it sounds, RequestBuilder doesn’t natively support HTTP Basic authentication, which requires a Base 64 algorithm implementation to encode the header
 value.

 As you can see, using this class in the context of REST would be tedious when trying to take advantage of all the capabilities
 such as authentication, content negotiation, partial requests, conditional requests, or precise cache control. This is where
 the Restlet API brings its value to GWT applications with a dedicated edition built on top of RequestBuilder.

 9.2.2. Restlet port to GWT

 Although GWT offers support for low-level HTTP calls, it doesn’t help much when you want to use HTTP features such as content
 negotiation, ranged questions, or cache management. In addition, it lacks an easy way to automate representation serialization
 and deserialization at the Java class level, leading many developers to use GWT-RPC instead, requiring a GWT-specific backend,
 when a RESTful web API can talk with any client, not only GWT ones.

 There is a need for a higher-level API and framework to solve those issues. As you’ve guessed, this is exactly what the Restlet
 Framework edition for GWT provides! In this section you’ll see the ideas behind the Restlet port for GWT and how to call REST
 resources in action.

 Concepts

 As described in previous sections, GWT lets you develop using the Java language, but because it runs inside the web browser
 with no plug-in, it has to be compiled into JavaScript before being executed, limiting the number of Java SE APIs supported.

 Restlet port to GWT is an adaptation of Restlet’s client-side API to work on top of GWT’s low-level HTTP client API, as shown
 in figure 9.5. This edition doesn’t include the server-side parts of Restlet and comes with a limited set of extensions. In addition, on
 the server side the full Restlet API from other editions can be used and can even benefit from a server-side GWT extension
 that we cover later on.

 Figure 9.5. How the Restlet edition for GWT fits in the overall GWT architecture

 [image:]

 This approach provides a flexible way to use Restlet on the GWT client side and to let RIA communicate with web APIs. As previously
 mentioned, Java isn’t required on the server side. Let’s see how to concretely use Restlet Framework edition for GWT with
 such architecture.

 Architecture Flexibility

 GWT comes with a default RPC-style mechanism to interact with the server-side part of applications. As previously mentioned
 in section 9.1.3, GWT integrates a proprietary GWT-RPC protocol which ties the server side to GWT and the Servlet API. Although this approach
 can work for applications using GWT technology exclusively, it isn’t flexible in the context of REST. A RESTful web API should
 be accessible from any kind of HTTP client, and not be tied only to GWT.

 The Restlet edition for GWT brings this flexibility within your GWT-based applications. It allows using an open range of formats
 for exchanging content, such as JSON and XML (and any other content type that you can parse and format from a string). Moreover
 you aren’t tied to a particular technology on the server side (not even Restlet). Figure 9.6 summarizes this.

 Figure 9.6. All the aspects shown here display the flexibility of the Restlet edition of GWT, which is one of its key features.

 [image:]

 Restlet isn’t required on the server side, but it offers comprehensive server-side support, including a convenient solution
 to cross-domain calls in an AJAX environment with the Redirector class. We discuss this feature in section 9.3.3. Moreover Restlet support doesn’t prevent you from using GWT-RPC if necessary
 (or more likely, if already in place), as both mechanisms can work in parallel. Figure 9.7 shows the full flexibility of using GWT with Restlet.

 Figure 9.7. Full flexibility using GWT-RPC and Restlet for GWT

 [image:]

 Now that we’ve set the scene for the GWT client-side support of Restlet, it’s time to see how to use it in practice when calling
 a REST resource from a GWT client.

 9.2.3. Communicating with a REST API

 The central feature of the GWT edition of Restlet consists of communicating with REST resources from the client side of GWT
 applications. As introduced in the previous section, Restlet for GWT provides an API that’s close to other Restlet editions.
 It also takes advantage of GWT features like deferred binding to make Restlet easier to use and remove the need for representation
 formatting and parsing.

 In this section we implement a web mail client application based on the example code available in the GWT distribution at
 http://gwt.google.com/samples/Mail/ that provides a rich mail client UI, but without true persistence. You’ll connect this GUI to the mail application developed in
 previous chapters using the Restlet Framework edition for GWT.

 Using Client-Side Restlet API

 The nature of the underlying AJAX mechanism limits the Restlet API available in the GWT edition. Some standard classes, like
 java.net.URI, aren’t available. The use of asynchronous calls is required and there is no support for reflection. Calling REST resources
 located in other domains also requires some workarounds.

	

 Base package of the GWT edition for Restlet

 In the Restlet edition for GWT, the base package is org.restlet.client instead of the usual org.restlet. The reason is that a GWT application contains both client and server sides in the same web application, and having different
 packages for each side greatly facilitates their coexistence.

 This edition corresponds to a GWT module and needs to conform to GWT naming conventions, as described in section 9.1.1. In this context, client-side content is located in a client subpackage by default.

 	

The Restlet edition for GWT makes it possible to use extensions within GWT applications. The list of available extensions
 is much more restricted than in other editions due to the underlying browser capacities. Table 9.1 lists all compatible Restlet modules available.

 Table 9.1. Modules usable with GWT

 	
 Module

 	
 Description

	org.restlet.Restlet
 	Port of client-side of the Restlet API

	org.restlet.JSON
 	Port of JSON representation support

	org.restlet.XML
 	Port of XML representation support

As with every GWT module, you need to specify the required dependencies within the module descriptor file. The GWT edition
 of Restlet integrates such a descriptor in each JAR file. For this example, you use the core module as well as the JSON and
 XML extensions. In the GWT mail client application, the descriptor called Mail.gwt.xml and located in the org.restlet.example.book.restlet.ch09 package contains these lines:

 <module>
 (...)
 <inherits name="org.restlet.Restlet"/>
 <inherits name="org.restlet.JSON"/>
 <inherits name="org.restlet.XML"/>
 (...)
</module>

 Unsurprisingly the central class of Restlet client support for GWT is ClientResource. It has a similar contract to what we’ve seen, except that some methods have been removed due to GWT limitations for client
 side, as summarized in table 9.2

 Table 9.2. ClientResource methods removed for the GWT edition

 	
 Method kind

 	
 Description

	Static create methods
 	Take a Class parameter and are built on the wrap method, which uses Java reflection.

	ClientResource constructor using URI class
 	The URI class isn’t available in client-side GWT support.

	handle methods accepting Class parameter
 	Indirectly use Java reflection.

	Methods to execute HTTP methods and accepting Class parameter
 	These methods (get, post, put, delete, and options) accept a Class parameter and are built on the previous handle methods.

	Methods getChild, getParent and wrap
 	Some signatures of these methods accept a Class parameter and use Java reflection.

The major change when using the GWT edition of ClientResource is that only asynchronous response handling is supported. For this reason, responses must be retrieved using callbacks, and
 calling methods always return immediately. Executing a call without specifying a callback throws an exception.

 Let’s now enhance the GWT-based webmail application to add data persistence using Restlet. To remain concise, you’ll focus
 only on the contacts list, corresponding to code in the Contacts class initially in the com.google.gwt.sample.mail.client package and moved into org.restlet.example.book.restlet.ch09.client.

 We first remove the inner class Contact from the original sample code and the contacts property. Instead, we use the ContactRepresentation class provided by the Restlet mail application in the common package as defined in the previous chapter for GAE.

 Listing 9.2 describes how to use the ClientResource class to make HTTP calls from client-side GWT code and retrieve the list of contacts for an artificially fixed Homer user.
 The way to initialize the instance and execute the request is different from the previous use you’ve seen, as you need to
 make asynchronous calls.

 Listing 9.2. Using the ClientResource class within GWT client side

 [image:]

 After creating the ClientResource and specifying the target resource URI, set the callback to handle the response using the setOnResponse method and the Uniform callback interface. The latter has a handle method [image:] that is only called when the response has been received from the server. Now that the callback is set, you can execute the
 request using the get method [image:], which immediately returns (Void result parameter). Specify the desired representation format (JSON in the listing) with the first method parameter. Now let’s concentrate on
 using GWT support for JSON and XML with the corresponding Restlet extensions.

 Using Json and Xml Representations

 Using JSON and XML technologies within GWT is a bit specific because they correspond to the port of JavaScript ones into Java.
 They’re provided through modules com.google.gwt.json.JSON and com.google.gwt.xml.XML.

 For JSON, the central class is JSONParser, which parses text and returns a set of JSON objects. But the use of the JSON parser is hidden within the JsonRepresentation class of Restlet. The root type for JSON element corresponds to JSONValue, which has subclasses for specific types available in the com.google.gwt.json.client package, as listed in Table 9.3

 Table 9.3. Classes corresponding to supported JSON types

 	
 JSON type

 	
 Description

	JSONArray
 	Array of JSON values

	JSONBoolean
 	Boolean value

	JSONNull
 	Null value

	JSONNumber
 	Numeric value

	JSONObject
 	JSON object with string-keyed property values

	JSONString
 	String value

The next listing describes how to use these classes to browse the contacts array present in the received JSON content. According
 to the expected type of element, you can cast it to the corresponding one listed in Table 9.3

 Listing 9.3. Parsing JSON content received through the representation

 [image:]

 You first get the JSON contact array directly from the representation using its get-Value method [image:], noting that since version 2.1 there is now a getJsonArray() method. Then iterate the array and get a JSONObject instance representing a contact for each contained element [image:]. You’re now able to build a Contact instance from the properties of this JSONObject [image:]. You can then use the Contact instance to update the contact part of the UI (not shown).

 Next we’ll implement the same processing in XML. In this case the representation gives access to a Document instance representing the XML document. From the latter you have access to the root document and its children. Using the getFirstChild and getElementsByTagName methods, you can browse the whole XML tree of information, making it possible to build a list of contacts that will be used
 to update the UI. The following listing describes how to use the GWT XML API to handle the received XML content.

 Listing 9.4. Parsing XML content received through the representation

 [image:]

 You first get the XML document directly from the representation using its get-Document method [image:]. You then browse the XML tree and get an Element instance representing a contact for each contained element [image:]. You can now instantiate a ContactRepresentation instance and fill it with the previous element’s attributes [image:].

 As you can see, directly using JSON and XML formats within GWT applications can be painful and results in a lot of code. In
 the next section we describe an automatic serialization mechanism that version 2.0 of Restlet Framework introduced for GWT.

 Automatic Object Serialization Support

 As you saw in the previous section, writing the formatting and parsing code for exchanged data is time-consuming. The GWT
 edition of Restlet provides a convenient way to automatically generate this serialization code.

 This edition goes further than the simple port of the ClientResource class and relies on a powerful feature of GWT called deferred binding. Using this feature, extra code can be automatically generated during the compilation phase. Restlet uses it to generate
 automatic serialization code.

 With this approach, you don’t need to manually provide implementations of the Restlet annotated interface; you can directly
 create instances with the GWT.create static method. The deferred binding is activated during the compilation phase if you extend the org.restlet.client.resource.ClientProxy interface in your annotated Restlet interfaces:

 <module>
 (...)
 <generate-with class="org.restlet.rebind.ClientProxyGenerator">
 <when-type-assignable class="org.restlet.client.resource.ClientProxy"/>
 </generate-with>
</module>

 Nothing else has to be done in the module file of your GWT application except specifying the org.restlet.Restlet module as in the previous section. The deferred binding configuration is automatically inherited.

 Before we describe how to call the REST resource with this feature, you need to declare a ClientProxy extension dedicated to this resource. This entity will act as a proxy in front of the resource and handle all the plumbing
 required to communicate with it through REST. The power of this approach is that you can use common Restlet annotations to
 associate HTTP methods with Java methods. When a method of this interface is invoked, a call to the related HTTP method is
 transparently executed.

	

 GWT and Restlet versions

 Restlet Framework version 2.0 supports version 2.0 and 2.1 of Google Web Toolkit, but not later, due to API breaking changes
 introduced in GWT 2.2. Restlet Framework version 2.1 supports GWT 2.3 and above, but not previous versions.

 	

In addition, you have to add a parameter of type Result<?> to each method corresponding to a remote call in order to asynchronously handle the response. The following snippet describes
 how to declare a dedicated ClientProxy extension for the contacts resource in order to remotely manage it through REST:

 [image:]

 ContactsResourceProxy extends the ClientProxy interface [image:], indicating that it acts as a client proxy for the remote Contacts resource. It adds a method to retrieve contacts and associates it with the corresponding HTTP method [image:][image:] to use when executing them. The same Restlet annotations are used as in other editions, for example @Get for the GET HTTP method, except that they come from the org.restlet.client.resource package.

 In the end, a call to retrieve turns into an HTTP GET call. The method has one parameter of type Result to handle the response. This type is parameterized by the expected type for response. The magic here is that Restlet will
 internally manage the conversion to and from representations, relying on GWT-specific object serialization format.

	

 Comparison between GWT and regular Java object serializations

 In regular Java SE, there are two ways to automatically serialize Java objects. The first uses a special binary format via
 the java.io.ObjectInputStream and Object-OutputStream classes, and the second uses an XML format via the java.beans.XMLEncoder and XMLDecoder classes.

 Restlet edition for Java SE supports those mechanisms by default when handling media types corresponding to the MediaType.APPLICATION_JAVA_OBJECT and APPLICATION_JAVA_OBJECT_XML constants.

 GWT object serialization is another compact format optimized for size but comparable to native Java serialization. It’s specific
 to the GWT technology and was introduced for the GWT-RPC mechanism. Restlet only reuses the object format and not the rest
 of the GWT-RPC plumbing, associating it to the APPLICATION_JAVA_OBJECT_GWT constant.

 Note that each class that needs to be serialized by GWT needs to implement the Serializable interface and not use collections interfaces by concrete classes such as ArrayList instead of List.

 	

The GWT AsyncCallback interface is also supported as the last parameter of each Restlet-annotated method corresponding to a remote call. This interface
 from GWT-RPC defines a similar contract to Restlet’s Result class and can be useful to reduce code changes when converting GWT-RPC calls into RESTful ones. If you care more about portability
 of the client side, then you should use the Result class, which is also supported in non-GWT editions to make asynchronous calls.

 Although GWT-RPC requires you to write special server-side code, you don’t need to change anything on the server side for
 Restlet resources besides adding the org.restlet.ext.gwt extension. It’s now time to illustrate this approach by calling REST resources from GWT client code. The code shown in listing 9.5 retrieves the list of contacts.

	

 Supported data format for Restlet deferred binding support

 At the time of writing, the deferred binding support of Restlet only supports the special GWT object serialization format.
 In future versions, XML and JSON-based formats could be added by leveraging the Piriti library. This library provides JSON
 and XML mappers for GWT based on annotations and deferred binding. Further details are available on Google Code at http://code.google.com/p/piriti/.

 	

Listing 9.5. Using deferred binding support of Restlet to execute REST call

 [image:]

 The first step consists of creating the client proxy for the contacts resource with GWT.create [image:]. Because the ContactsResourceProxy extends the ClientProxy interface, you have access to the underlying ClientResource instance through the getClientResource method to set properties of the call, like the target address, supported media types, or authentication info [image:]. The call to the retrieve method [image:] executes the HTTP request. Handling the corresponding response [image:][image:] is done asynchronously using the Result callback interface in its onSuccess method (if everything goes well).

 Now that every part of the execution chain is implemented, you can test it to get contacts from a RESTful application and
 display them in the UI. Let’s start the application within Eclipse using Run As > Web Application. This starts hosted mode;
 access it in a browser using the address http://127.0.0.1:8888/Mail.html?gwt.codesvr=127.0.0.1:9997.

 When the Contacts tab in the menu on the left is displayed, you should see all the contacts returned by the RESTful mail server,
 as illustrated in figure 9.8.

 Figure 9.8. GWT mail client accessing the RESTful web API

 [image:]

 Before describing the server-side GWT extension, let’s see how to handle cross-domain requests on HTTP resources from the
 client side.

 9.2.4. Handling cross-domain requests on the client side

 A common issue with web browsers is that they block resources located in domains different from the one that served the resource
 making the request. This security policy is known as the Same Origin Policy (SOP) and comes from restrictions on using the
 XMLHttpRequest object in JavaScript. Restlet provides an elegant solution on the server side, as we describe in section 9.3.3.

 Past solutions to cross-domain limitations used workarounds, such as dynamic script element generation, which aren’t convenient
 because they don’t provide a consistent solution across browsers and don’t support all representation media types for data.
 The common JSONP approach, natively supported by GWT with its JsonpRequestBuilder class, is shown in the following listing.

 Listing 9.6. Using jsonp within GWT

 JsonpRequestBuilder jsonp = new JsonpRequestBuilder();
jsonp.requestObject("http://otherdomain.com/mypath", new
 AsyncCallback<MyData>() {
 public void onFailure(Throwable throwable) {
 (...)
 }
 public void onSuccess (MyData data) {
 (...)
 }
});

 The problem here is that the returned content contains not only data but also the name of the JavaScript callback, as described
 in following snippet. For this reason, this approach is more of a hack than an ideal solution because it doesn’t truly follow
 the REST principles:

 <callback>(<json data>)

 In addition to these workarounds, the W3C has proposed the new Cross-Origin Resource Sharing (CORS) working draft, which provides
 a way for web servers to support cross-site access controls based on response headers. Such an approach is built on the Access-Control-Allow-Origin header, which is not yet supported by all browsers.

 The browser uses the content of the header to determine whether the resource can be accessed by any domain in a cross-site
 manner. Specifying * defines that all domains can access the resource whereas a specific one or a list restricts this access. Listing 9.7 describes how to use the Access-Control-Allow-Origin header in the response to an HTTP resource call using Restlet. Even though it requires changes on the server-side to set
 this header, the calls will effectively be made directly by the client.

 Listing 9.7. Using cross-domain header in a Restlet response

 [image:]

 You’ve now completed your tour of the client-side edition of Restlet for GWT. It provides a way to access REST resources from
 GWT applications that mimics the way Restlet works in Java SE and EE applications. This edition also uses GWT’s deferred binding
 to allow transparent calls to REST resources with a minimum amount of manual code. So far we’ve only discussed the client
 side of GWT applications, but Restlet also supports GWT on the server side.

 9.3. Server-side GWT extension

 In addition to the edition for GWT on the client side, the Restlet Framework provides a dedicated server-side extension called
 org.restlet.ext.gwt, available in the following editions: Java SE, Java EE, Google App Engine, and OSGi. This extension is light because it only
 converts between GWT binary representations and Java objects, based on a dedicated media type, without implementing additional
 GWT-RPC plumbing. The ConverterService uses this extension to convert Java objects in GWT object serialization format for request with the corresponding media type.
 (We detail the conversion mechanism in section 4.5.4.)

 These entities are directly integrated with the Restlet engine when the extension is present in the classpath; no explicit
 configuration is necessary.

 Two issues regarding the server side need to be detailed here: How to make GWT-RPC work with the Restlet support for GWT,
 and how to enable cross-domain requests from the server side.

 9.3.1. Working along with GWT-RPC

 As described in section 9.2.2, Restlet edition for GWT retains the ability to use GWT-RPC in parallel to a RESTful web API.

 Imagine that you want to have a remote contact service on a server that you can call using default remoting mechanisms of
 GWT. By default, implementing such services requires you to implement the remote interface by extending the GWT Remote-ServiceServlet Servlet with service methods. These GWT remote services are typically Servlets, as described in following snippet:

 public class ContactsServiceImpl
 extends RemoteServiceServlet
 implements ContactsService {
 public List<Contact> getContacts() {
 (...)
 }
 (...)
}

 The ContactsServiceImpl class is then configured within the web.xml file as a Servlet. Now that this first part is done, let’s configure the REST
 resources.

 There are several ways to configure such resources on the server side with Restlet. For this demonstration, you’ll configure
 the Restlet application using the Servlet extension and its ServerServlet class. The following listing describes how to configure both approaches in the web.xml file of a web application, the Restlet
 application, and the GWT-RPC remote service.

 Listing 9.8. Configure both GWT-RPC and Restlet support

 [image:]

 As you can see, you configured two Servlets in the web.xml file, corresponding to the two approaches. First the ServerServlet Servlet [image:] of Restlet configures the entry point to the Restlet application called org.restlet.example.book.restlet.ch09.resource. ContactApplication using the org.restlet.application initialization parameter. The default GWT-RPC approach is then configured [image:] using an implementation of RemoteServiceServlet called ContactsServiceImpl.

 Configuring the REST approach along with RPC-based approach is based on Servlet configurations. Before ending our discussion
 of server-side support for GWT, we’ll explain a convenient and elegant way to issue cross-domain calls without the previous
 limitations.

 9.3.2. Handling cross-domain requests on the server side

 Although there are some solutions on the client side to make cross-domain calls on HTTP resources, they aren’t completely
 standard or they depend on proper browser support. You can implement an alternative approach on the server side. In this case
 you need to have an additional component acting as a reverse proxy for the target HTTP resources. This approach can add latency
 because two requests are now executed in sequence.

 Restlet provides the org.restlet.routing.Redirector class to implement a reverse proxy, as shown in figure 9.9. This class is much more generic than this GWT use case and therefore isn’t part of the GWT extension for this reason. We
 describe it here, though, because it provides a convenient solution to this problem. For further details, refer to section 8.3.

 Figure 9.9. Implementing reverse proxy using the Redirector class

 [image:]

 The redirector is typically configured in the createInboundRoot method of the application, as described in the following snippet:

 public Restlet createInboundRoot() {
 Router router = new Router(getContext());
 String target = "http://www.restlet.org{rr}";
 Redirector redirector = new Redirector(
 getContext(), target,

 Redirector.MODE_SERVER_OUTBOUND);
 router.attach("/search", redirector);
}

 In the preceding snippet the first step consists of instantiating the Redirector class. The use of this class is described in section 7.3.

 Notice the {rr} pattern when attaching the redirector on the router. This allows appending to the target URI all elements present at the
 end of the original URI. Without it, all requests would be redirected to only one. In the end, requests to www.myexample.com/search/foo/bar will be served as if they were made to www.restlet.org/foo/bar, but without the cross-domain limitations.

 This section ends the coverage of the GWT edition of the framework. Restlet integrates all internal issues and also takes
 advantage of GWT’s deferred binding to simplify use further. Based on the design experience of this edition, asynchronous
 call support was added to the Restlet API in other editions. Its use is almost identical, involving both ClientProxy and Result interfaces. We now turn to another thin client for RESTful applications: Android. We’ll describe how to use Restlet on Android-based
 mobile phones with the Restlet edition for Android.

 9.4. Understanding Android

 With the commodification of smartphones started by the Palm Treo and pushed further by the Apple iPhone, more and more mobile
 users have a usable access to the web from their phones. So far developers have been stuck with proprietary platforms that
 lacked the productivity and portability common in the Java world. Then came Android!

 Android is an open source mobile OS initiated and driven by Google and the Open Handset Alliance, including prestigious manufacturers.
 Needless to say, Android has gained a lot of traction recently.

 Technically speaking, Android is built on a customized Linux kernel, libraries such as WebKit for the web browser, and an
 extensible Application Framework developed in the Java language but running on a special Dalvik virtual machine (see a complete
 overview in figure 9.10). All the built-in applications are written in Java and can be accessed or customized via the Android API.

 Figure 9.10. Layers of the Android platform

 [image:]

 Before describing how to use REST with Android, we’ll give a few more details about the Android technology itself. We’ll then
 describe how Restlet can help and how you can use it within Android applications to access RESTful web APIs.

 9.4.1. Android overview

 Android is a complete software stack targeting mobile devices that includes an OS, middleware, and key applications. It provides
 a complete foundation to build native mobile applications. For this purpose, the Android SDK includes tools and APIs written
 for the Java programming language. Figure 9.10 shows a high-level description of the Android platform.

 Table 9.4 lists more details on each part of this platform.

 Table 9.4. Different parts of the Android platform

 	
 Part name

 	
 Description

	Applications
 	Android comes with a set of core applications for common use cases. These applications correspond to email and SMS clients,
 calendar and contact managers, maps, browsers, and so on. All these are built on the application framework and are written
 using the Java programming language.

	Application framework
 	This framework is powerful and truly open because it gives access to the same Java APIs as core applications and is used in
 a component-based approach. Reusing components is simple, and any application can publish its features and consume other ones.
 The framework also makes it possible to override or replace components.

	Libraries
 	Android includes a set of C/C++ libraries used by components of the Android platform, such as System C library, media, and
 2D/3D libraries. You don’t need to know more about these libraries right now—only that their features are exposed to developers
 through the previously described application framework.

	Android runtime
 	Android internally uses a special virtual machine (VM) called Dalvik, which has been optimized to run on mobile devices and
 to run multiple VMs efficiently. This virtual machine is built on the Linux kernel for underlying functionality such as threading
 and low-level memory management. This tool includes a set of core libraries that provides most of the functionality available
 in the core libraries of the Java programming language.

	Linux Kernel
 	Android uses Linux version 2.6 as the OS for core system services, memory and process management, network stack, and driver
 model. The kernel can be seen as an abstraction layer between the hardware and the rest of the software stack above it.

Because a full description of Android is beyond the scope of this book, we won’t provide details here; we recommend Android in Action, 3rd Edition, by W. Frank Ableson, Robi Sen, Chris King, and C. Enrique Ortiz (Manning, 2011), for more information.

 9.4.2. Installing Android and Eclipse plug-ins

 Developing Android applications requires you to install the Android SDK, available at http://developer.android.com/sdk/. An emulator called the Android Virtual Device (AVD) comes with the SDK and simulates real Android-based mobile phones. After
 downloading the SDK, you should run the Android SDK Manager and install the suggested packages, including the Android SDK
 Platform tools, as shown in figure 9.11.

 Figure 9.11. Android SDK Manager

 [image:]

	

 Increasing memory allocated to Eclipse IDE

 As you install plug-ins for GWT, GAE, and Android, the memory allocated by default to your Eclipse environment might become
 too limited and produce strange errors when you try to launch an Android application in the device emulator.

 To raise this limit, edit your eclipse.ini file and set a value of 512m or higher for the launcher.XXMaxPermSize property, and 512m or higher for the -Xmx argument.

 	

Next, you’ll use the AVD Manager that manages the AVD, on which you’ll execute Android applications developed with Eclipse.
 Click the New button, provide a name for the AVD, and leave default values in properties. When you’re done, click the Create
 AVD button, and the new AVD will appear in the list, as shown in figure 9.12.

 Figure 9.12. Android Virtual Device Manager

 [image:]

 In addition to the basic SDK, a special integration with Eclipse, called the Android Development Tools (ADT) plug-in, provides
 the following features:

 	Integration of external Android development tools within Eclipse

 	Wizards to create and configure artifacts necessary for Android applications

 	Facilities to efficiently build Android applications and generate signed APKs (Android packages similar to JAR files), which
 can be shipped to end users

 	Dedicated editors for Android application files like layout files

To install this tool, use the Update Manager of Eclipse, available from the Help > Install New Software menu. You need to
 specify the Update Site for ADT within the corresponding window. The address of this site is https://dl-ssl.google.com/android/eclipse/.
 After specifying it, you have access to the modules described in figure 9.13. In addition to Android development tools, select the following modules:

 	Dalvik Debug Monitor Server tool (DDMS)— Provides a debugging tool for Android application development

 	Android Hierarchy view— To debug and optimize your user interfaces

 	Android TraceView— Provides a graphical viewer for execution logs saved by your application

Figure 9.13. ADT modules to install through Eclipse’s update manager tool

 [image:]

 Let’s select all of them and start their installation. After restarting Eclipse, ADT is available within your Eclipse instance.

 Now that you have everything properly installed for developing Android applications with Eclipse, let’s come back to our subject
 and tackle how to use REST within Android applications. Because Android targets mobile devices, corresponding applications
 are commonly connected to the internet and can access its resources. As you’re about to see, the Restlet Framework can provide
 a useful help to access remote web APIs from Android applications.

 9.5. The Restlet edition for Android

 As with GWT, Android provides a particular execution environment based on the Java language but with differences in terms
 of available runtime APIs. Differences between the Dalvik VM and the regular Java VM correspond to issues such as garbage
 collection, memory footprint, and CPU use. The other differences are related to the runtime APIs available, with some packages
 added and others removed. For this reason Restlet provides a dedicated edition that’s compatible with Dalvik and the APIs
 provided by Android.

 You’ll see throughout this section that all facilities provided by Restlet to consume web APIs are usable within Android-based
 devices. After describing the features of the edition for Android, we’ll illustrate Restlet’s use in Android native applications
 for both client-side and server-side support. The major benefit here is the ability to use the high-level API of Restlet instead
 of the low-level HTTP clients provided natively by Android.

 9.5.1. Restlet port to Android

 The Restlet edition for Android contains some adjustments to take into account, such as classes not supported by the Android
 runtime environment, but otherwise is similar to the Java SE edition.

 With this edition, you can use Restlet on Android with both client-side and server-side HTTP connectors. Restlet extensions
 are being progressively ported; at the time of writing, all extensions listed in table 9.5 have been tested and work on the Android platform.

 Table 9.5. Restlet extensions that can be used with Android

 	
 Extension

 	
 Description

	org.restlet.ext.atom
 	Support for the Atom and AtomPub standards

	org.restlet.ext.crypto
 	Support for cryptography including AWS and Azure

	org.restlet.ext.html
 	Support for multipart HTML forms sending

	org.restlet.ext.httpclient
 	Integration with Apache HTTP Client 4.1

	org.restlet.ext.jaas
 	Support for JAAS authentication and authorization framework

	org.restlet.ext.jackson
 	Integration with Jackson library for automatic JSON serialization

	org.restlet.ext.json
 	Support for JSON representations

	org.restlet.ext.net
 	Integration with Java URLConnection class

	org.restlet.ext.odata
 	Support for the OData web protocol (client side)

	org.restlet.ext.rdf

 	Support for RDF parsing and formatting

	org.restlet.ext.sip
 	Support for Session Initiation Protocol (SIP)

	org.restlet.ext.xml
 	Support for XML and XSLT representations

Let’s look at how to develop Android applications using Restlet support for client and server sides.

 9.5.2. Client-side support

 The client-side support in Android edition remains the same as the Java SE edition and is based on the ClientResource class. Three HTTP client connectors are currently available: the internal Restlet one, the Apache HTTP client already available
 on Android, and the HttpURLConnection class.

 As the time of writing, the best choice for Android 2.2 (Froyo) and above is to use the HttpURLConnection class, which has the lightest footprint and is recommended by the Android team moving forward [11]. When the footprint isn’t a concern, and internet connectivity is reliable, you can also consider the two other connectors
 that bring other benefits.

 In all cases, you need to remember to add the android.permission.INTERNET Uses Permission in your AndroidManifest.xml file to ensure that your Android application is allowed by the end user to access
 the internet via the HTTP protocol.

	

 Specific issues when using Restlet on Android

 The internal HTTP client has been rewritten using the java.nio package. On some android devices, this may lead to encountering this kind of exception: java.net.SocketException: Bad address family. In this case, you can turn off the IPv6 preference as follows:

 System.setProperty("java.net.preferIPv6Addresses", "false");

 	

Also, contrary to other editions, the Android edition can’t make use of Restlet’s autodiscovery mechanism for connectors and
 converters provided as Restlet extensions. This is due to a limitation in the way Android repackages JAR files into APK files,
 leaving out the descriptor files in the META-INF/services folder used by the Restlet Framework for autodiscovery. The internal connector and converters are still automatically configured
 and can be used without additional configuration.

 The workaround for extensions consists in manually registering those additional connectors and converters with the Restlet
 Engine. You can do this by adding to the list returned by the getRegisteredConverters and getRegisteredClients methods of the org.restlet.engine.Engine instance, as illustrated in listing 9.9

 Now that we’re done with the Android-specific set-ups, we can focus on the application. We’ll implement a simple Android application
 to display emails based on the GAE mail server that you used for the GWT client earlier.

 You first create an Android Project with the corresponding New wizard of Eclipse ADT, check the activity creation, and specify
 MobileMailClientMainActivity for its name. Because you want to use the Restlet edition for Android, you must add the corresponding library JARs to the
 special libs folder, which adds them to the Java Build Path, as shown in figure 9.14.

 Figure 9.14. Configuring Restlet JARs for the Android project

 [image:]

 Everything is now configured within the project. No time to waste—let’s complete the autogenerated MobileMailClientMainActivity class to retrieve the list of emails from the web application in the back end at startup. For that, you complete the existing
 onCreate method. This class extends ListActivity because you want to display a list of emails, as shown in the next listing.

 Listing 9.9. Implementation of the SimpleWebMailActivity class

 [image:]

 [image:]

 The use of the ClientResource class within an Android activity is identical to regular Java applications, including the ability to use annotated interfaces.
 The main differences are in the way Android strongly suggests you run your HTTP calls using AsyncTask and only updating the UI using the runOnUiThread method.

 Now, if you launch the Android client via the emulator, it should properly connect to the GAE back end accessible publicly
 and display the UI in figure 9.15.

 Figure 9.15. Simple mobile Android mail client

 [image:]

 This section discussed how to access RESTful applications using the client-side support in the Restlet edition for Android.
 There were additional steps to take in order to make Restlet work in this context, but it still provided higher-level support compared to the native Android platform, especially
 when you already use Restlet for your backend. Let’s now describe Restlet’s server-side support for Android.

	

 Using 127.0.0.1 and localhost for application testing

 Be careful when using 127.0.0.1 or localhost within a URI. They correspond to the phone itself and not the machine when using Android emulator within Eclipse, for example.
 If you want to access RESTful applications running outside Android applications, you must necessarily use host names or IP
 addresses.

 	

9.5.3. Server-side support

 In contrast to GWT, which compiles Java into JavaScript, Android applications are, like regular Java applications, compiled
 into byte code and executed on a Linux OS instead of a web browser. This aspect makes it possible for these applications to
 act as HTTP servers, not just clients.

 Keep in mind that Android targets mobile devices that are less capable in terms of memory and CPU. Although Dalvik is similar
 to a JVM, it doesn’t provide all the APIs present in standard JVMs. Because of these restrictions, it’s not so simple to use
 classic server-side tools such as Java EE web containers. But Restlet edition for Android comes to the rescue.

 As on the client side, you can use server-side support for Restlet in Android applications. This makes it possible to implement
 server applications, including HTTP servers. For that purpose, you can use all of Restlet’s capabilities described throughout
 the book to implement RESTful applications on your mobile phone. The next listing describes how to start a standalone Restlet
 server within the onCreate method of an Android activity. This method is called when the activity is first created.

 Listing 9.10. Starting a Restlet server within an Android activity

 [image:]

 An Android port of the well-known web container Jetty is also provided by the i-Jetty project. Although Restlet provides its
 own internal HTTP server and all you need to implement server-side RESTful applications, i-jetty might be useful if you need
 Servlet support.

 Using Restlet server support on smartphones is a marginal use case, because it’s impossible to reach the IP of smartphones
 through mobile networks due to telco security restrictions. But this issue will become more useful because Android is starting
 to target other mobile devices, such as tablets and notebooks, using more open wifi networks.

 In addition, the Android Cloud to Device Messaging framework (C2DM) helps developers send data from servers to their applications
 running on Android devices.

 9.6. Summary

 The edition-based approach of Restlet allows you to use the same Java API (or at least a subset because of specific restrictions)
 when implementing or accessing RESTful applications across various execution environments. Some of these editions target cloud
 environments as seen in chapter 8, and others target RIAs and mobile devices, as covered in this chapter.

 GWT is a technology that allows the development of rich browser-based applications using the Java language. The client part
 is compiled to JavaScript and can be executed within a regular web browser. The server side is a full Java-based server application
 executed by an application server. You can use the client Restlet API within client-side GWT applications to asynchronously
 call RESTful applications. Although the standard Restlet API is usable, this edition goes further and uses the deferred binding
 feature of GWT to provide an even simpler way to use Restlet with automatic representation serialization.

 Android is a popular technology focused on mobile devices such as smartphones and providing a complete execution environment
 based on a Linux kernel and a special Dalvik VM. Using Restlet in this environment is possible thanks to its Android edition
 taking into account restrictions on the client side and server side. As a result, your Android applications can both consume
 and expose RESTful web APIs.

 In this chapter you saw how to deploy Restlet applications to different execution environments using the same API and features.
 This makes the Restlet Framework a good choice to increase the portability of your client- or server-side code across those
 various environments, especially if you rely on Google technologies such as Android, GWT, and GAE.

 In the next chapter we’ll connect the dots between the REST world, its hypermedia roots, and the quickly-growing subject of
 Linked Data, which is part of the larger Semantic Web. Chapter 10 will give you another great example of the benefits of basing your application architecture on a REST foundation using the
 Restlet Framework.

Chapter 10. Embracing hypermedia and the Semantic Web

	

 This chapter covers

 	Hypermedia and why it’s important for RESTful web APIs

 	Hypertext and hyperdata support in Restlet to drive applications

 	The relationship between REST and the Semantic Web

 	How Restlet can expose and consume linked data in RDF

 	

As you’ve seen in the previous chapters, the Restlet Framework was designed on top of REST, the architectural style of the
 web. One of the benefits of that is that Restlet can be used to build all kinds of web applications, classic websites (Web
 1.0), RIAs and web APIs (Web 2.0), and now even Semantic Web Services (Web 3.0).

 In this chapter we cover in detail one of the core REST principles: hypermedia as the engine of application state (HATEOAS). This principle is important for designing RESTful web APIs but difficult to understand and implement correctly
 and pervasively. We’ll explain ways to support this principle and rely on our RESTful mail application to illustrate design
 options.

 We’ll explain how Restlet can support the new hyperdata trend, describing its support for the RDF media type via a dedicated
 extension, on both the client and server sides. REST and the Semantic Web are a perfect match, and a concrete example of this
 is Restlet’s ability to expose and consume linked data in RDF. As an illustration you’ll “semantify” the mail application
 by adding support for semantic contacts using the FOAF standard format.

 Let’s get started with a short introduction to hypermedia and its relation to the web and to REST.

 10.1. Hypermedia as the engine of RESTful web APIs

 The most challenging principle of the REST architecture style to understand and apply correctly is that your application should
 be driven by hypermedia. This may at first seem cryptic and less important than other REST principles, such as the identification
 of resources using URIs or the interaction with resources via a uniform interface, but it’s the last link that closes the
 REST design loop.

 In this section we’ll first describe the HATEOAS principle before defining hypermedia and two of its common specializations,
 hypertext and hyperdata (and explaining along the way how the Restlet Framework can help you deal with them).

 10.1.1. The HATEOAS principle

 REST was designed to reduce coupling issues between clients and servers and to allow their independent evolution. This remarkable
 capability, exploited daily by web browsers that don’t need to be recompiled for each website you navigate, relies on the
 power of hypermedia to progressively discover the next state and available actions of a web application, relying on hyperlinks,
 embedded scripts, and web forms. This principle is often called HATEOAS, based on chapter 5 of the dissertation that defined REST [12].

 HATEOAS means that when accessing a RESTful web API, programmatic clients should be able to dynamically navigate its resources,
 just as a web browser does with websites, progressively discovering the supported methods, related resources, and so on, thanks
 to the use of hypermedia. URIs should have no special meaning to clients, even though servers will likely organize them in
 a specific structure to facilitate implementation of resources, and even though they should be stable to facilitate bookmarking
 and replaying actions just as with websites.

 In general, web API designers prefer to build this knowledge inside API client kits and developer documentation, using custom
 XML or JSON media types and versioned URIs, as you saw in chapter 6 when we talked about documenting and versioning Restlet applications. One of the reasons is that even though HATEOAS is a
 core REST principle, designing hypermedia media types isn’t a simple task. Let’s look closer at this issue, reminding ourselves
 first what hypermedia and hypertext mean.

 10.1.2. What are hypermedia and hypertext?

 Before becoming such a widespread concept, the idea of hypermedia was first envisioned in 1945 by Vannevar Bush in his famous
 article “As We May Think” [13], describing Memex, a system that would help humans to artificially reproduce their mental associative thinking process.

 In 1963 Ted Nelson invented the terms hypermedia and hypertext and tried to illustrate how they could work in an ambitious project named Xanadu, described in an extensive article in Wired [14]. Here’s his original definition from his book Literary Machines: “By ‘hypertext’ I mean nonsequential writing—text that branches and allows choice to the reader, best read at an interactive
 screen.”

 Even though Xanadu never became complete or usable, it was a great source of inspiration for products such as Hypercard, first
 published by Apple in 1987, and later the World Wide Web, with HTML as a simplified variant.

 Combined with HTTP, HTML found a sweet spot inside the emerging internet and became a central aspect of the REST architecture
 style. The original WWW document from Tim Berners-Lee and Robert Cailliau in 1990 was titled “WorldWide-Web: Proposal for
 a HyperText Project,” underlying how critical hypertext and hypermedia were to the web. Here’s the first sentence of their
 founding email: “HyperText is a way to link and access information of various kinds as a web of nodes in which the user can
 browse at will. It provides a single user-interface to large classes of information (reports, notes, data-bases, computer
 documentation, and on-line help).” Over the years, several other formats added hypermedia capabilities, such as:

 	PDF, Word, PowerPoint, Excel, and similar office productivity tools that allow inclusion of hyperlinks to web documents, potentially
 in the same format

 	SVG vector image, which embed XLinks to other web documents

 	Atom feeds, including links to other blog posts or resources

All those popular formats required significant effort and time to be designed and correctly implemented, but none is as popular
 as HTML. HTML is lightweight, human-readable, extremely versatile, and interoperable. In addition, it has a built-in forms
 feature that complements hyperlinks as a way to animate the application, discover next available transitions that a user can
 follow to navigate existing resources, change their state, create new ones, and so on.

 10.1.3. Hypertext support in Restlet

 As you’ve seen in previous chapters, there are several ways to produce HTML representations using the Restlet Framework. Here
 are the main options to remember:

 	Use a template representation from the FreeMarker or the Velocity extensions, which can be combined with a data model to produce
 an HTML page to be rendered by a browser. This is similar to the JSP approach.

 	Use an XML representation, built using either SAX or DOM APIs or retrieved via another means, such as a third-party web API,
 and wrap it with an XSLT representation as explained in section 4.2, in order to produce HTML output.

 	Build the HTML document programmatically by appending elements, attributes, and content to an AppendableRepresentation and sending it back to a browser. This works well for short HTML documents that can be held in memory.

 	Build the HTML document programmatically by extending the write(Writer) method of a WriterRepresentation as illustrated in section 8.4.1 and sending it back to a browser. This is a little bit harder to program than the previous option, but can produce an HTML
 document of any length without requiring large amounts of memory, because the content is progressively streamed to the browser.
 This is perfect when you convert large amounts of data retrieved from a database on the fly to HTML.

 	Serve static HTML documents from disk using a FileRepresentation, or even serve static directories like a regular web server, using the Directory class as explained in section 8.1.3.

In addition, Restlet can add forms to HTML documents using the previous options and process posted form data sets using either
 the built-in org.restlet.data.Form class for simple URL encoded forms, as explained in section 8.1.1, or the Apache File-Upload extension, illustrated in section 8.1.5 for multipart postings, typically including a mix of regular
 fields and uploaded files.

 Turning to the client side, the typical HTML client is a web browser, but sometimes you need to do a form posting programmatically.
 For simple forms, the Form class will work fine. But to send multipart forms you’ll need to use the new org.restlet.ext .html extension introduced in version 2.1 of Restlet, including a FormDataSet class.

 In our context, the problem with HTML is that it was primarily intended for hypertext representations displayed in web browsers,
 with a human interacting with the application. Most web APIs are used by programmatic clients that need to exchange what are
 typically stable data structures. This is clearly the main difficulty faced by web APIs that want to be RESTful. As noted
 by Roy T. Fielding in his blog [15], if you don’t respect this principle, you shouldn’t mark your web API as RESTful.

 As a compromise, you could say it’s inspired by REST, or REST-like, but there’s clearly a need to mix structured data exchanges with hypertext and hypermedia in a way that’s usable by programmatic
 clients and not only humans. This new trend is often called hyperdata, illustrated in figure 10.1. It’s the topic of our next section.

 Figure 10.1. Hyperdata and other types of hypermedia

 [image:]

 10.1.4. The new hyperdata trend

 When you imagine your web API, you probably first visualize it from the server point of view, in terms of resource classes,
 hierarchies of URIs, or XML- or JSON-based data structures exchanged with clients. For a more guided approach, the ROA/D methodology
 described in appendix D proposes precise steps to develop your web API.

 To make it truly RESTful you also need to put yourself in your clients’ shoes and make sure that their coupling with your
 server is minimal, ideally only consisting of some base URIs, knowledge of the uniform interface used (typically HTTP standard
 methods), and finally knowledge of the media type. Let’s focus here on the last point and see more concretely how you can
 make the XML- or JSON-based media types suitable for REST.

 In the next subsections, you’ll see three main approaches you can follow, not necessarily in an exclusive way.

 Using Standard Representations

 The easiest approach is to rely on a standard media type such as Atom and its sister AtomPub standards to define how to exchange
 structured content such as blog entries, eventually extending it, as GData from Google and OData from Microsoft are doing.

 Even though Atom and AtomPub are based on XML, retrieving the content in JSON form is generally possible as an alternative.
 The main benefit from this approach is that you increase the interoperability of your web API, because more clients will be
 able to access and understand its language. The main drawback is that you need to adapt or wrap your domain data inside those
 standard structures, which leads to additional complexity. Unless you’re building a blog or a notification application, you
 can end up using the Atom structure as an unnecessary envelope for your own data.

 Mixing Microformats and HTML Representations

 The second possibility is to use HTML and insert structured data directly inside it, such as business cards, calendar events,
 social connections, and so on. This approach has been pioneered by the Microformats community [16] and is interesting because search engines like Google and Bing will detect the additional data and use it to enrich their
 search results.

 But for programmatic clients the use bar is high, because parsing HTML documents is already a complex task, and parsing additional
 embedded data is even harder. Although it’s a great idea to expose your API resources in HTML with embedded data, you should
 consider this as one option among other media types by supporting HTTP content negotiation, as explained in section 5.5.

 Creating Custom Representations

 The remaining common possibility is to create your own XML- or JSON-based media types from scratch and add hypermedia capabilities
 to them. The classic web of HTML pages gains a lot of its power from the inclusion of hyperlinks to other pages. This gives
 modularity, reusability, and navigability of content. In your own custom XML or JSON media types, you can apply the same idea
 and use the ability to embed links to other resources in the data you exchange between client and servers, just as you’re used to doing with HTML documents.

 In the email system you expose resources such as mails, accounts, and so forth. In addition to HTML representations aimed
 at HTML clients, these resources will provide XML representations for programmatic clients that are interested only in raw
 data. For example, Mr. Homer Simpson, one of the users of the system, has an account at www.rmep.org/accounts/chunkylover53/. The representation of this resource (the data clients and server exchange when describing this user account) could be some
 XML containing the name of the user, its login, the name used when sending a message using this account, and so on:

 <account>
 <firstName>Homer</firstName>
 <lastName>Simpson</lastName>
 <login>chunkylover53</login>
 <nickname>Personal mailbox of Homer</nickname>
 <senderName>Homer</senderName >
 ...
</account>

 Likewise, the representation for a resource exposing a mail item could be some XML including its subject line, its content,
 its status (draft, sent, received), and so on. Each mail item is also stored in a particular account. In the representation
 of the mail resource you can refer to this account by using the URI as a hyperlink, as shown in the following snippet, where
 the account in question is none other than Mr. Simpson’s:

 <mail>
 <status>received</status>
 <subject>Message to self</subject>
 <content>Doh!</content>
 <accountRef>
 http://www.rmep.org/accounts/chunkylover53/
 </accountRef>
 ...
</mail>

 A programmatic client that is handed the representation of a given mail item can then, if needed, interact with the account
 in which the mail is stored using the URI reference. The client application can get the representation of the account using
 the GET method and modify it with other methods such as PUT, POST, and DELETE, if allowed.

 Using URIs like this to refer to other resources is easy and straightforward and will make your web API closer to being RESTful,
 with reasonable design and implementation effort.

 But a limitation of this custom media type approach is that it restricts the clients that can use your web API. If you don’t
 have the ability to develop and distribute client kits or libraries for popular platforms such as Java, .NET, Python, PHP,
 Android, or iOS, your clients will first need to develop parsers and formatters for your media types, which is a barrier for
 use and interoperability.

 Whichever option you choose for your representations, you should expect to spend as much time on their design as you do for
 other web API aspects, including URI namespace structure.

 As you’ve seen, interoperability between RESTful clients and servers based on standard formats is important and is a key factor
 in the success of the classic web-based on the HTML, HTTP, and URI trio. But it’s possible to go beyond this when developing
 hyperdata formats. The idea is to add a level of interoperability among the data itself, using the Semantic Web and its RDF
 standard format in a lightweight and pragmatic way. This approach is often called Linked Data and is the topic of the next section.

 10.2. The Semantic Web with Linked Data

 As you’ve seen, hypermedia isn’t only about hypertext media types, but is also about hyperdata and, more importantly, interoperability
 of data. This goal is shared by the Semantic Web, which was also initiated by Tim Berners-Lee.

 In this section we first give a brief overview of the Semantic Web and its relationship to REST via the new Linked Data initiative,
 which is a great illustration of hyperdata. Then we introduce RDF, the core standard for semantic representations, and explain
 how to expose, consume, and browse linked data with Restlet. This is also a good time to introduce FOAF, an RDF vocabulary
 to describe social relationships.

 10.2.1. REST and the Semantic Web

 The Semantic Web is an ambitious initiative that was publicly launched in 2001 by a now-famous Scientific American article [17] that resulted in great expectations. The work on its foundations involved many researchers across the globe and took a significant
 amount of time. During this time, developers and companies were left wondering how they could best take advantage of the specifications
 that had started to come out of the W3C, such as RDF, RDF Schema, OWL, and SPARQL. An impression of excessive complexity started
 to emerge along with the perceived lack of real-world use cases where the Semantic Web could shine.

 That’s when Tim Berners-Lee introduced his Linked Data idea, as an application of the Semantic Web that would allow browsing
 of semantically linked resources. Instead of storing semantic data in large specialized databases and requiring a special
 language to interact with them, the idea was to use the web and its HTTP protocol as a way to interact directly with the graph
 of semantic data, using hyperlinks to jump from one hyperdata document to another, just as we do with hypertext documents.

 Linked Data finally offers a pragmatic and operational approach to the Semantic Web that’s also perfectly in line with REST
 principles, including HATEOAS. This lighter approach was the foundation of Restlet support for the Semantic Web, available
 in the org.restlet.ext.rdf extension.

 Concretely, Linked Data relies on URIs (which are HTTP URLs) to identify important data, in the same way that they identify
 documents on the regular web. It also relies on HTTP to retrieve, create, update, or delete the data, as with other RESTful
 web APIs.

	

 Restlet and its semantic roots

 When the Restlet Framework launched in 2005, it was the result of extracting a generic piece of code from a website project
 called Semalink, aimed at facilitating the adoption of the Semantic Web by closing the gap with the regular web of documents.
 Later on, the success of the Linked Data initiative and its support in Restlet via the RDF extension were in a way a return
 to the project roots.

 	

As illustrated in figure 10.2, Linked Data relies on the RDF language (on top of the REST, URI, and HTTP lower layers) to represent those data resources
 and their relationships with other resources and their attributes. Finally we have RDF Schema and its richer cousin, Ontology
 Web Language (OWL), which are languages (also expressed in RDF) used to define valid RDF graph structures called ontologies, or meta-models if you’re more familiar with model-driven engineering.

 Figure 10.2. The Linked Data technological stack

 [image:]

 In the long term you can expect other layers of the Semantic Web vision to find their way inside this stack to solve issues
 such as distributed queries, proof, and trust. There are already proposals to address these needs, such as SPARQL to query
 RDF databases. Some of these were defined before the Linked Data initiative and will probably have to be rethought to fit
 better with the regular web in order to reach a broader use level.

 Regarding trust, there’s a WebID protocol [3] in the W3C Incubator which aims at using HTTPS and client SSL certificates to build a web of trust in a pragmatic way that
 can nicely complement Linked Data. We’ve mentioned RDF several times, so now it’s time to have a closer look at it and see
 how to use it for resource representations.

 10.2.2. Using RDF in representations

 RDF is the acronym for Resource Description Framework, where a resource has the same meaning as in the REST architecture style—something
 of interest that can be addressed by a URI. As its name implies, RDF provides a way to describe and represent web resources
 in a precise and interoperable manner. To help you understand how RDF works, we first present the RDF data model, explaining
 the main concepts involved and how they relate to REST, and discuss the serialization media types available for this data
 model.

 To make this discussion more concrete, we’ll use examples from the FOAF language, which lets you express social links between
 people, a much simpler but open and semantic variant of Facebook or LinkedIn data sets.

 RDF Data Model

 In RDF all the data is defined as a graph, where nodes are either resources identified by a URI or literals (like a string
 or an integer) and where links connect either one resource to another or a resource and a literal defined as an attribute
 value. Those links are also frequently called statements, triples, or properties.

 Figure 10.3 partially describes the Homer Simpson resource as a graph with a central resource node, three literal nodes on the left,
 and three related resource nodes on the right.

 Figure 10.3. Example RDF graph partially describing Homer Simpson

 [image:]

 As you can see, the links have labels defining how Homer relates to the Marge, Bart, and Lisa resources and the meaning of
 the "Homer," "Simpson," and "homer@simpson.org" literals. Obviously, Homer knows his wife and children, and we could have added more links to express the exact familial
 relationships, such as father and husband. But in this case we decided to follow the FOAF vocabulary [18], which is less interested in family relationships than in generic links between people.

 With the previous example, you almost have a valid RDF graph. The piece that’s missing is unambiguous information telling
 you that the links are related to FOAF and not to another vocabulary. For this purpose, RDF relies again on URIs to precisely
 and uniquely define the meaning of those links.

 This is the most important difference with hyperlinks found in HTML documents: better interoperability and the ability to
 have several links between the same pair of resources. In this case, the exact value of knows is http://xmlns.com/foaf/0.1/knows, the value of mbox is http://xmlns.com/foaf/0.1/mbox, and so on.

 Let’s create this example RDF graph using the RDF extension of the Restlet Framework available in the org.restlet.ext.rdf.jar
 file. As illustrated in the following listing, the translation is straightforward, because you’re able to reuse the Reference class from the org.restlet.data package to define URI references.

 Listing 10.1. Creating an RDF graph with Restlet RDF extension

 [image:]

 As introduced in figure 10.2, it’s also possible to define the structure of valid RDF graphs as ontologies using the RDF Schema and OWL languages. Ontology might sound like a daunting term, but in this setting it refers to a set of object classes where the relations between classes
 and attributes are typed using a URI rather than a potentially ambiguous and imprecise label.

 Figure 10.4 illustrates how to visualize a part of the FOAF ontology as a regular UML class diagram. If you read appendix D on the ROA/D methodology, you should be able to see how remarkably this diagram can complement figure D.15 and the Account resource class. An RDF class defined as Linked Data can be exactly the same as a REST resource class defined in a web API
 (see section D.4.3, “Identifying and classifying the resources,” for details), but adding further information about its attributes and relationships
 with other resource classes, such as other persons, images, and documents in the FOAF case.

 Figure 10.4. Person class in the FOAF vocabulary

 [image:]

 Let’s move beyond the abstract RDF data model and see how to serialize RDF graphs and use them as representations.

 RDF Representation Variants

 Contrary to XML vocabularies such as Atom or XHTML, RDF doesn’t force you to use a single serialization format. Even though
 the primary format is XML-based, there are others available:

 	RDF/XML, a comprehensive XML serialization format for RDF

 	Notation 3 (or n3), a compact alternative to RDF/XML also able to express rules

 	Turtle, a subset of n3, simple and human-readable

 	N-Triples, an even simpler subset of Turtle, useful for storing and exchanging RDF

To make those formats more concrete, you’ll now serialize the example FOAF graph built with the Restlet extension. Let’s add
 the following lines of code to the code in listing 10.2:

 System.out.println("\nRDF/XML format:\n");
example.getRdfXmlRepresentation().write(System.out);

System.out.println("\nRDF/n3 format:\n");
example.getRdfN3Representation().write(System.out);

System.out.println("\nRDF/Turtle format:\n");
example.getRdfTurtleRepresentation().write(System.out);

System.out.println("\nRDF/NTriples format:\n");
example.getRdfNTriplesRepresentation().write(System.out);

 The getRdf*Representation() methods create an instance of the RdfRepresentation class, passing it the Graph instance and the proper media type constant. Now, if you run this code, you’ll first serialize the graph into RDF/XML. The
 key XML element is rdf:Description, which contains all the properties related to the Homer resource identified by the XML attribute rdf:about. Note also how a prefix __NS1 was declared for the FOAF ontology URI:

 <?xml version="1.0" standalone='yes'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:__NS1="http://xmlns.com/foaf/0.1/">
 <rdf:Description rdf:about="http://www.rmep.org/accounts/chunkylover53/">
 <__NS1:firstName>Homer</__NS1:firstName>
 <__NS1:lastName>Simpson</__NS1:lastName>
 <__NS1:mbox>mailto:homer@simpson.org</__NS1:mbox>

 <__NS1:knows>
 <rdf:Description rdf:about="http://www.rmep.org/accounts/bretzels34/
 "/></__NS1:knows>
 <__NS1:knows>
 <rdf:Description rdf:about="http://www.rmep.org/accounts/jojo10/"/
 ></__NS1:knows>
 <__NS1:knows>
 <rdf:Description rdf:about="http://www.rmep.org/accounts/lisa1984/"/
 ></__NS1:knows>
 </rdf:Description>
</rdf:RDF>

 The second and third serializations are for n3 and Turtle formats and produce the same result. Note in the following snippet
 that the graph is all written in one line starting with <http://www.rmep.org/accounts/chunkylover53/>. In addition you can use namespace as illustrated in the first lines:

 @prefix #: <:>.
@prefix rdfs: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix type: <http://www.w3.org/2001/XMLSchema#>.
@prefix rdf: <http://www.w3.org/2000/01/rdf-schema#>.
@keywords a, is, of, has.
<http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/firstName> "Homer";
<http://xmlns.com/foaf/0.1/lastName> "Simpson";
<http://xmlns.com/foaf/0.1/mbox> "mailto:homer@simpson.org";
<http://xmlns.com/foaf/0.1/knows>
<http://www.rmep.org/accounts/bretzels34/>,
<http://www.rmep.org/accounts/jojo10/>,
<http://www.rmep.org/accounts/lisa1984/>.

 Let’s see how the fourth and simplest format, N-Triples, serializes the graph. For each link there’s a new line, and no prefixes
 or factorizations are used. The result is more verbose but also straightforward to write, read, and understand:

 <http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/firstName> "Homer".
<http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/lastName> "Simpson".
<http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/mbox> "mailto:homer@simpson.org".
<http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/knows>
<http://www.rmep.org/accounts/bretzels34/>.
<http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/knows>
<http://www.rmep.org/accounts/jojo10/>.
<http://www.rmep.org/accounts/chunkylover53/>
<http://xmlns.com/foaf/0.1/knows>
<http://www.rmep.org/accounts/lisa1984/>.

 In addition to those pure RDF serializations, it’s also possible to embed RDF inside other documents such as XHTML pages to
 enrich them with semantic data. The W3C-supported way to do this is RDFa, but similar efforts have been proposed, such as
 Microformats and HTML 5 Microdata [19]. In the following snippet you can see one way to express the example graph as an XHTML page with RDFa special attributes:

 <div xmlns:foaf="http://xmlns.com/foaf/0.1/"
 about="http://www.rmep.org/accounts/chunkylover53/">
 Homer
 Simpson

homer@simpson.org

Marge

Bart

Lisa
</div>

 The mixed approach illustrated by RDFa makes it easy to embed semantic data in web pages but also makes it harder to extract
 the data back into proper RDF. To solve these issues W3C proposed GRDDL as a standard way to extract the RDF data by applying
 XSLT stylesheets to the XHTML documents.

	

 The Schema.org initiative

 In June 2011, Google, Bing, and Yahoo! launched the Schema.org initiative to facilitate semantic annotation of data in regular
 web pages. They provide a way to express semantic data using HTML Microdata, including both common ontologies for things such
 as Persons, Places, Organizations, and so on, and support for their extraction in the most popular web search engines. A mapping
 to RDFa is also specified, making it a great option to consider for mixing RDF and web pages.

 	

At this point, you should understand how powerful the RDF data model is—capable of modeling anything in a precise way—and
 how flexible it can be used in representation formats depending on the use context. In the next section you use RDF and its
 support in the Restlet Framework to expose the mail accounts as Linked Data.

 10.3. Exposing and consuming Linked Data with Restlet

 In this section you restore the example mail application and expose two variants of the account resources, one in XML and
 one in RDF, using the FOAF vocabulary. Finally we look at the client side and see how to consume Linked Data and navigate
 from one resource to another by following RDF links.

 10.3.1. Exposing RDF resources

 As you saw in listing 10.1, the RDF extension of Restlet comes with a DOM-like API composed of the following classes:

 	Graph contains links and can produce an RDF representation.

 	Link is equivalent to an RDF statement or a triple composed of a source resource URI reference, a link type URI reference, and
 a target value, either literal or resource.

 	Literal provides target values along with a datatype URI reference and language.

Once you’ve built a Graph instance, you can return it directly via a Restlet resource with annotated methods. To put this into practice in the example
 application, you first need to complete the account resource to expose a richer domain model than in previous chapters, where
 you only used a simple string.

 Figure 10.5 shows enriched Account and Contact classes with new properties and relationships. Note how it resembles figure D.8 in appendix D (covering the ROA/D methodology, applied to our mail example), presenting only a part of the whole domain model but with
 more detail on the available properties.

 Figure 10.5. RESTful mail example domain object model

 [image:]

 Beyond the obvious properties in Account, the profileRef property in Contact is supposed to contain a URI reference to the FOAF profile of the contact. If the contact is also managed
 by the RESTful mail application, the URI will refer to the related Account resource (which will have a FOAF variant exposed).

 The following listing initializes the domain model with four user accounts—for Homer Simpson and the three other members of
 his family: Marge, Bart, and Lisa.

 Listing 10.2. Setting up the domain model with user accounts

 [image:]

 [image:]

 Let’s now enhance the AccountResource annotated interface to expose the FOAF variant representation. As illustrated in listing 10.3, our first choice would have been to use a generic AccountRepresentation bean, to offer automatic conversion with XML, JSON, and similar formats using the XStream, Jackson, and similar Restlet extensions,
 as detailed in chapter 4. But for RDF representations we don’t yet have an integrated and automated solution to annotate beans to produce proper RDF,
 even though existing open source projects [20] could be integrated to Restlet to achieve this. As a workaround you declare another getFoafProfile() method annotated with @Get but this time specifying with the "rdf" annotation value that this only returns RDF variants, either in RDF/XML, RDF/n3, Turtle, or N-Triples format.

 Listing 10.3. Enhanced Account annotated resource interface

 [image:]

 Let’s continue by providing the implementation of this enhanced resource via the AccountServerResource class, shown in listing 10.4. The implementation of both annotated methods is similar in the sense that they both populate a representation, using simple
 Java properties in the first case and URI properties in the second case, based on the FOAF ontology. Both approaches have
 benefits and drawbacks in terms of simplicity and interoperability.

 The first approach is simpler because regular POJOs are used, but the interoperability is limited because the clients must
 have knowledge of those properties and their meanings to interpret and make good use of them.

 The second approach is more complex because you need to type each property using a URI based on a parent ontology, which is
 less natural for Java developers. The benefit is that interoperability is improved because clients will be able to interpret
 the data at a higher level than raw XML. If they understand the ontology (such as the one defined by FOAF), they can precisely
 interpret the resulting semantic representations.

 One of the advantages of using Restlet is that you can use both approaches at the same time, without additional development
 cost, as illustrated in the following listing.

 Listing 10.4. Enhanced Account server resource

 [image:]

 [image:]

 When you return the Graph instance from the getFoafProfile() method, the ConverterService takes over the process. If you’ve correctly added the org.restlet.ext.rdf.jar in your classpath, the RdfConverter will automatically wrap the Graph instance into an RdfRepresentation using the correct RDF media type based on client preferences.

 At this point we encourage you to launch the server component and retrieve both representations from a web browser using the
 following URIs:

 http://localhost:8111/accounts/chunkylover53/?media=xml
http://localhost:8111/accounts/chunkylover53/?media=rdf

 As a result, you should obtain XML and FOAF documents similar to the one presented in sections 10.1.4 and 10.2.2. The mail example application is now not only RESTful but also part of the Linked Data!

 SAX-Like RDF Processing

 In addition, the RDF extension is also capable of handling large RDF representations. The issue with the DOM-like Graph approach is that all links are stored in memory before being serialized or after being parsed.

 For this purpose, the extension comes with a GraphHandler abstract class that’s similar in spirit to the SAX ContentHandler interface. You can use this class for both RDF parsing and writing purposes, and it contains a callback method for RDF processing
 events such as startGraph(), endGraph(), and link(...).

 We won’t cover this SAX-like RDF feature in detail here, but if you want to experiment with it, you should look at the GraphBuilder class provided, which is a subclass of GraphHandler creating a Graph instance when parsing an RDF representation. There’s also RdfRepresentation and its parse(GraphHandler) and write(Graph-Handler) methods, which you can override to provide custom handling.

 Template RDF Generation

 Remember that it’s always possible to produce RDF representations using template engines like FreeMarker and Velocity, if
 that fits your use case. There’s nothing wrong with this approach; it can easily give you precise control over RDF formatting.

 Let’s move to the client side and see how you can consume—and, more important, browse—your Linked Data mail application.

 10.3.2. Consuming linked data with Restlet

 In this section we’ll explain how Restlet can consume RDF representations and we’ll address the two main challenges you face
 when consuming linked data.

 The first challenge is the need to support several RDF formats, such as RDF/XML and RDF/n3. For this purpose, the Restlet
 extension for RDF gives you an abstraction layer with the RdfRepresentation class, which is capable of using the correct parser based on the media type of the RDF representation returned by an origin
 server.

 The second challenge is to have the ability to easily navigate among hyperlinked resources based on your use case. Again the
 RDF extension has a handy solution thanks to its RdfClientResource, which adds class methods to ClientResource for retrieving linked RDF resources and literal-valued properties.

 Another challenge is to add knowledge to your clients of the RDF vocabularies (also known as ontologies) commonly used in
 Linked Data, and sometimes to map from one ontology to another. Here the best practice is to use existing ontologies such
 as RDF Schema, OWL, Dublin Core or FOAF as much as possible.

 Let’s get back to coding and try to consume the account resources using RDF. You could use the annotated AccountResource interface, but let’s assume that the back-end isn’t necessarily written in Restlet. After all, a web API should be accessible
 from any kind of HTTP client. listing 10.5 only provides the URI of Homer’s account, and still you’re able to display the literal value of each of its properties, as
 well as the properties of each of its contacts, by navigating to the linked FOAF profile based on the FoafConstants.KNOWS URI (http://xmlns.com/foaf/0.1/knows).

 Listing 10.5. Generic FOAF browser

 [image:]

 If you launch this FoafBrowser after starting the server, you should see the following output in the console, plus some log messages related to the HTTP
 connector launch:

 lastName: Simpson
firstName: Homer
nick: Personal mailbox of Homer
name: Homer
mbox: mailto:homer@simpson.org
--
lastName: Simpson
mbox: mailto:lisa@simpson.org
name: Lisa
firstName: Lisa
nick: Personal mailbox of Lisa
--
lastName: Simpson
firstName: Bartholomew
mbox: mailto:bart@simpson.org
nick: Personal mailbox of Bart
name: Bart
--
firstName: Marjorie
nick: Personal mailbox of Marge
name: Marge
mbox: mailto:homer@simpson.org
lastName: Simpson
--

 Although that approach is convenient and expressive, it requires you to load all of the DF representations in memory, in a
 DOM-like way. If you need to load larger representations or have a finer-grained control of your RDF client, you can also
 use the RdfRepresentation class directly, in a SAX-like way. For this purpose you can use the constructor that takes a Representation parameter and then invoke the parse (GraphHandler) method to consume its content as a series of Link instances, one link at a time.

 As you’ve seen in this section, consuming linked resources using RDF representations is as easy as exposing them with the
 Restlet extension for RDF. It provides a solution for most of the challenges you’ll face with only a few additional classes,
 mainly RdfClientResource and RdfRepresentation.

 10.4. Summary

 This chapter covered a lot of ground, including advanced topics that many web API developers aren’t initially aware of. Awareness
 of these topics is increasingly important for the future of RESTful web APIs.

 Hypermedia, Linked Data, and above all the Semantic Web are topics that are much too large to cover in this chapter (or even
 in this book). We tried to present the important parts of the RESTful web in a pragmatic and Restlet-centric way to give you
 a sense of both the importance and the power of concepts such as HATEOAS and hyperdata, while giving concrete examples of
 implementation using Restlet on both client and server sides.

 We presented the RDF extension of Restlet, which is capable of handling most common RDF serialization formats, such as RDF/XML,
 RDF/n3, Turtle, and N-Triples, and provides a convenient abstraction layer for both reading and writing, using either a DOM-like
 or SAX-like approach (to draw a parallel with common XML-processing techniques).

 You’re now approaching the end of this book, with a final chapter that steps back a little to see what Restlet has to offer
 beyond what’s been covered so far, such as extra extensions available, resources provided by the community that extend or
 make use of the Restlet Framework, and the roadmap for the next Restlet version.

Chapter 11. The future of Restlet

	

 This chapter covers

 	State of the HTTP protocol and alternatives

 	The rise of SPDY and its impact on REST, HTTP, and Restlet

 	Planned enhancements to Restlet API, extensions, and editions

 	Planned Restlet Studio tool for Eclipse and Restlet Cloud service

 	

As you near the end of this book, we’ll step back and look beyond the detailed coverage of Restlet in action. This final chapter
 summarizes the state of HTTP and REST and introduces alternatives, such as WebSockets, Server-Sent Events or SPDY (the “SPeeDY”
 protocol initiated by Google), and puts them into perspective with the evolution of HTTP—in particular, the well-advanced
 HTTP/1.1 bis initiative.

 This is a topic with a major impact on Restlet development because the Restlet API directly maps REST and HTTP concepts, as
 explained throughout the book and detailed in appendix E. With an HTTP/2.0 version now being planned by IETF, will the Restlet API stay relevant?

 We’ll review the Restlet roadmap, including evolution of the Restlet API, packaging of the Restlet Forge for multiedition
 development, as well as the introduction of the broader Restlet Platform plan, including an open source Restlet Apps suite, a productivity-oriented Restlet Studio
 based on Eclipse IDE, and a Restlet Cloud hosting facility.

 We’ll wrap up by introducing the APISpark online web API platform developed by Restlet’s creators and explain how it relates
 to the Restlet Platform, illustrating what you can achieve by putting Restlet in action in an original way! We’ll conclude
 by presenting external Restlet community projects and by explaining how you can contribute back to this open source project.

 Let’s get started with the evolution of HTTP and see whether the rise of the alternative SPDY protocol supported by Google
 and Amazon is a threat or an opportunity.

 11.1. Evolution of HTTP and the rise of SPDY

 REST dates to 2000, but HTTP was created nearly a decade before and is continuing to evolve, though at a slower pace. In this
 section we review the history of HTTP and discuss alternative protocols, in particular SPDY, and how they could influence
 HTTP moving forward.

 11.1.1. HTTP history so far

 The HTTP protocol started as notes written [10] by Tim Berners-Lee in 1991. After an IETF standardization effort, the first standard HTTP/1.0 version (RFC 1945 [21]) was published by Tim Berners-Lee, Roy T. Fielding, and Henrik Frystyk in 1996.

 With the exponential growth of the web, it quickly became urgent to improve this protocol and address scalability, performance,
 and interoperability issues observed in the field. This led to the definition of HTTP/1.1 (RFC 2616 [22]) and the formalization of REST [12], the architecture style of the web, with major contributions made by Roy T. Fielding.

 HTTP 1.0 is now used by the vast majority of websites, web APIs, and web clients today, but there are still questions regarding
 the interpretation of its now aging and monolithic specification. In 2007, an IETF working group was launched to revise HTTP/1.1
 and address those issues, but without changing the protocol.

 Figure 11.1 summarizes the evolution of HTTP over time, up to the formalization of REST in 2000 and added perspectives for future versions,
 including revision HTTP/ 1.1 bis.

 Figure 11.1. Timeline of the HTTP protocol

 [image:]

 11.1.2. Refactoring with HTTP/1.1 bis

 The HTTP/1.1 bis initiative is led by Mark Nottingham and involves Julian Resche, Roy T. Fielding, Yves Lafon, and a few others.
 It’s now well advanced, and we can hope for this work to be complete this year or soon after.

 This rewrite splits the specification into seven parts as illustrated in figure 11.2. At the bottom, we find the Messaging part which deals with connection management, raw message syntax, and HTTP(S) URI schemes.
 The layers above Messaging describe the semantics of HTTP and the major features offered, such as caching, authentication,
 conditional requests, and ranged requests. Those layers are exactly what the Restlet API exposes using Java.

 Figure 11.2. Parts of the HTTP 1.1 bis specifications

 [image:]

 In addition, a registration process for standard methods and authentication schemes is proposed via IANA, which already manages
 media types, HTTP status codes, and encodings.

 The timing of this effort is perfect because of the growing pressure to bypass the limitations of HTTP/1.1. Let’s look at
 those alternatives.

 11.1.3. The rise of alternatives

 Despite being a huge success, several HTTP/1.1 limitations were identified:

 	Hard to provide near-real-time client updates

 	Excessive use of concurrent sockets by modern browsers

 	Excessive bandwidth consumption due to verbose messages

To work around those issues, techniques such as Comet have emerged, pushing HTTP to its limits. Alternative protocols such
 as WebSocket, Server-Sent Events, and SPDY are also being promoted, introducing both innovations and a risk of fragmentation.

 Websocket

 To overcome the real-time communications limits of HTTP between web browsers and servers, the HTML 5 Working Group has initiated
 a new WebSocket protocol that allows bidirectional exchanges between a browser and a server using HTTP for the initial handshake
 and upgrading to a full duplex connection.

 Using WebSocket, a single TCP connection can be used to send and receive events asynchronously. Figure 11.3 illustrates how Web-Socket is positioned to the side of HTTP/1.1 and REST rather than on top of them.

 Figure 11.3. WebSocket and REST

 [image:]

 This protocol has now been taken over by the IETF in a “BiDirectional or Server-Initiated HTTP (hybi)” working group [23], but it’s unlikely at this point that this protocol will attempt to respect REST principles as discussed in this blog post
 [24].

 Even though the rise of WebSocket has been slowed by security issues in first draft versions, leading some browser vendors
 to disable early implementations, this new protocol poses a fragmentation risk by bypassing HTTP/1.1 for long-running, event-driven
 communications. Indeed, by building on top of a TCP connection with loosely enforced semantics, there is a risk that developers
 will start to overuse it by reinventing unRESTful communication strategies on top of it.

 Server-Sent Events

 For certain applications, HTTP appears to need enhancement. Let’s now look at a simpler yet RESTful alternative also proposed
 by the HTML 5 Working Group and led by the W3C: Server-Sent Events (SSE). This specification [25] uses HTTP and JavaScript cleanly and proposes a special media type that facilitates implementation of event-driven, near-real-time
 applications.

 Here’s a simple example of SSE representation, identified by the text/event-stream media type, which is a stream of lines of text:

 event: add
data: 73857293

event: remove
data: 2153

event: add
data: 113411

 The problem with multitab browsers, Comet, SSE, WebSocket, and other new techniques and protocols is that they require your
 browser to open and maintain several TCP connections in parallel to the same remote server, posing scalability issues at both
 ends and increasing network congestion. Even when nonblocking IO can help deal with these issues (as supported by the Restlet
 Framework), things are more complex than they should be, at least from a network TCP/IP point of view.

 SPDY

 This is where the SPDY protocol [26] offers an innovative solution. It was introduced by Google as part of the Chromium project [27] (the open source project at the basis of Google Chrome browser). SPDY aims to reduce web page latency and positions itself
 as an experimental protocol for a faster web.

 Besides its experimental support in Google Chrome, SPDY won a strong supporter at the end of 2011 when Amazon announced its
 Kindle Fire tablet. This tablet came with a new way of browsing the web using limited mobile devices, using the power of the
 cloud in terms of network connectivity, processing power, and storage capabilities.

 The most exciting part of Kindle Fire isn’t its hardware but its Silk browser (http://amazonsilk.wordpress.com/) and the cloud browsing infrastructure it uses to achieve what Amazon calls split browsing. This radical change in the way we might browse the mobile web tomorrow is the result of combining traditional caching web
 proxies used in large organizations to save bandwidth with the capabilities of the Amazon cloud infrastructure.

 The goal is to provide a faster browsing experience by adjusting web content (for example, scaling down images) to the capabilities
 of the device and offering better network latency thanks to the Amazon data centers, which provide the same connectivity and
 caching capabilities that AWS S3 and CloudFront enjoy. The final and most radical change is the Silk browser’s use of the
 SPDY protocol.

 Technically speaking, SPDY multiplexes several HTTP streams over a single TCP connection. Those streams can go in both directions,
 can be initiated by either the client or server, and are always secured using TLS. SPDY also offers an alternative messaging
 layer to HTTP/1.1 but intends to stay compatible with all other HTTP layers above, including HTTP/1.1 bis.

 As illustrated in figure 11.4, it’s also possible to emulate the WebSocket’s JavaScript API on top of SPDY using a special option in the Chrome browser.

 Figure 11.4. SPDY positioning

 [image:]

 Is this the beginning of the end of HTTP? Instead of being a threat, SPDY’s design qualities and its growing support and usage
 by key players such as Google and Amazon is more of an opportunity for HTTP to see a version 2.0 defined (see figure 11.5).

 Figure 11.5. Potential HTTP/2.0 development

 [image:]

 This new version would replace the existing messaging part of HTTP/1.1 with a fully multiplexed and compact alternative based
 on SPDY and inspired by other alternatives such as Roy T. Fielding’s own Waka [28] or HTTP-MPLEX.

 Looking at HTTP’s history, changes to such a fundamental protocol won’t happen overnight, but Mark Nottingham wrote [29] about SPDY (ex-FLIP) back in 2009, already talking about a potential HTTP/2.0. In 2012, the HTTP 1.1 bis Working Group has
 even formally started to work on a HTTP/2.0 proposal, taking into account presentations from the SPDY team among others.

 We’ve discussed the future of SPDY with respect to REST and HTTP. Let’s see how it fits into the Restlet roadmap.

 11.2. The Restlet roadmap

 This book covers the 2.1 version of the Restlet Framework, the latest version available at the time of writing. This last
 chapter is a great place to summarize the roadmap for the next versions and beyond. Let’s start with the support for SPDY.

 11.2.1. Connectors for SPDY, HTTP and SIP

 We’ve explained how SPDY could become the basis of a future HTTP/2.0 version, retaining compatibility with HTTP/1.1 semantics,
 so it’s natural for Restlet to provide both client and server connectors for this promising protocol.

 Those connectors will be built on top of the nonblocking NIO foundation powering the internal HTTP and SIP connectors in version
 2.1. The goal is to add connectors compatible with the Google Chrome and Amazon Silk web browsers. For Restlet application
 developers this feature will be both easy and transparent to take advantage of, only requiring the addition of connectors
 to the parent Restlet component.

 In addition at Restlet we’ll continue to improve the internal HTTP and SIP connectors, based on this common NIO core, to bring
 them to the same level of performance as the extension connectors based on the Jetty and Simple libraries.

 The next section lists the main areas of enhancements to the Restlet API itself before looking at the broader Restlet open
 source project.

 11.2.2. Enhancements to the Restlet API

 Although the Restlet API is now mature, there are still plans for new features and simplifications. Here we’ll review the
 most important ones considered.

 Java 6 Support

 The first major change in version 2.2 will be the requirement of Java 6 as the minimum version instead of Java 5, which has
 been supported since version 1.0. Java 5 has entered the end-of-life process at Oracle, and only paying customers are now
 receiving security fixes.

 In doing this migration, new features available in the Java SE and Java EE editions will be exploited, like the built-in support
 for the META-INF/services discovery pattern.

 New Cacheservice

 In addition, the long-awaited CacheService will be added, including a pluggable mechanism to support cache engines such as file-based caches, in-memory caches, and
 so on. Currently, the Restlet API has a comprehensive support for HTTP caching metadata and directives but no built-in way
 to support client-side and server-side caching of content of calls and representations. The goal is to speed up the response
 of Restlet calls, in particular those generating large and dynamic but rarely changing representations, both on client and
 server side.

 Better Converterservice

 Although the ConverterService is one of the most powerful Restlet API features, useful enhancements can still be made. Currently this service supports
 the serialization of objects into representations or the deserialization of representations into objects. This works fine and uses a plug-in mechanism
 for extensions such as XStream, Jackson, JAXB, JiBX, and a few more, but it would be great to go beyond this and support other
 use cases, such as:

 	From representation to representation

 	From object to representation using a formatting document (such as Free-Marker or Velocity templates)

 	From representation to object using a parsing document (such as FreeMarker or Velocity templates)

 	From object to object using a transformation document (such as XSLT stylesheets or Jackson’s ObjectMapper class)

In addition the Restlet API will provide a way to declare the converters to use for each application as well as their respective
 order. The goal is to provide a more deterministic way to use multiple converters at the same time, without relying on the
 classpath order or on the OSGi bundle start level for this (which isn’t even possible with WAR files in the Java EE and GAE
 editions).

 Unified Bean Converter

 Currently we rely on extensions to support conversion between representation beans and common formats such as JSON (JSON.org,
 XStream+Jettison, Jackson), XML (XStream, JAXB, JiBX), RDF or GWT, and so on. But those extensions and the related libraries
 tend to be redundant and lack integration with REST representation aspects such as metadata and hyperlinks.

 As Roy T. Fielding reminds us in his blog post [15], REST APIs must be hypermedia-driven, particularly on the client side, if you want to loosely couple web clients with web
 servers. Therefore, the goal for next Restlet versions is to help you easily support content negotiation over various media
 types, with a single, consistent set of representation annotations and supporting common media types such as XML, JSON, HTML/
 Form post, RDF, or CSV, while using a flexible internal converter.

 Because this will be an important development effort, the current extension-based approach will continue to be supported.
 This strategy is similar to the one underway regarding the internal NIO-based connector.

 Better Connegservice

 In addition, there is a need to facilitate content negotiation based on other dimensions than typical representation metadata.
 For example, the account.html.ftl.ie file could be mapped to the HTML media type, decoded using the FreeMarker template engine,
 and returned only for Internet Explorer browsers. The vary HTTP header (Response#dimensions property) should also be updated properly. Here is a list of new dimensions that could be taken into account:

 	User agent type (example: Firefox)

 	User agent category (example: mobile, desktop)

 	User agent version

 	User preferences

 	IP address and domain name (example: UI branding, white-label)

 	Authentication state (example: anonymous version)

 	Authorization state (example: user role)

Editions Size Optimization

 In addition to previous Restlet API enhancements, a new module profile mechanism will be developed in order to distribute
 light Restlet modules, which is essential for Android and GWT editions.

 On Android devices, instead of the Restlet internal connector, most Restlet developers prefer to use the Apache HTTP Client
 connector because it’s already shipped on the devices. The problem is that currently the org.restlet.jar module is always
 distributed with the internal connector even if it isn’t used.

 With the profile mechanism, you’ll be able to choose among several versions of the same JAR file such as org.restlet.jar for
 the regular file and org.restlet-lightclient.jar for a version without the server-side part of the API and the internal HTTP
 connector.

 While we’re discussing Restlet editions, let’s discuss the next two editions that are considered for the next Restlet versions.

 11.2.3. Editions for JavaScript and Dart

 Due to the emergence of HTML 5 on all sorts of browser platforms, including mobile ones, the improvement of JavaScript engines
 such as Chrome V8, Firefox SpiderMonkey, and the emergence of Node.js on the server side, it seems increasingly important
 to provide the richness of the Restlet API to JavaScript on both client side (browser and Node.js) and server side (Node.js).

 There’s already the GWT edition of Restlet, which provides a nice solution by compiling Java to JavaScript, but there is room
 for a lighter and more hypermedia-driven/ document-oriented solution, combining AJAX and UI libraries such as jQuery, Ext
 JS, and YUI, to name a few.

 In Restlet Incubator, there’s already a prototype of a native JavaScript port working in browsers and Node.js on the client
 side. The first goal is to complete this port and start distributing it as an additional edition.

 Next we plan to develop another edition for the new and promising Dart language. Dart was launched by Google in 2011, positioned
 at the crossroads of JavaScript and Java, and providing features of both statically and dynamically typed languages with a
 syntax similar to Java. Thanks to its syntax and its proper OO typing system, it looks like a semiautomated port from the
 main Java code base is possible, as with the GWT edition. This offers a good transition to the next roadmap item: the planned
 enhancements to the Restlet Forge.

 11.2.4. Restlet Forge

 Since version 1.1, the Restlet Framework has been distributed in several editions, leading to the development of an innovative
 porting mechanism to automate as much as possible the maintenance of the six editions now available in version 2.1.

 For this purpose we use code annotations to provide text transformation rules in order to generate a new version of a given
 class for a specific edition. The following transformations are supported:

 	Removing a specific block of code, single instruction, method, or member

 	Adding a specific block of code, single instruction, method, or member

 	Excluding an entire class

The implementation is not based on Java annotations, because they aren’t flexible enough for this purpose. The idea is closer to the concept of conditional
 compilation used in other languages like C. It consists only of simple Java comments such as the following:

 	// [ifdef <list of editions>] <optional keywords>

 	// [ifndef <list of editions>] <optional keywords>

 	// [enddef]

The advantage of using comments is that they can be put everywhere in the source code, and they’re preserved even if the source
 code is automatically formatted by the development environment. (Unfortunately, Eclipse doesn’t allow such comments in the
 import section.)

 Using Code Annotations

 The ifdef and ifndef annotations mark the beginning of a block and target a list of editions specified with a simple comma-separated list of edition
 IDs. Depending on the optional keywords used, they can require an enddef marker.

 Here is how to indicate that a block of code only applies to the Java EE and Java SE editions:

 // [ifdef jee,jse]
instructions1;
instructions2;
// [enddef]

 On the contrary, the following code will be removed from the GWT edition, but will be kept in other editions:

 // [ifndef gwt]
instructions1;
instructions2;
// [enddef]

 Now, imagine that the GWT edition requires a set of instructions that must not be compiled in the main source code. This code
 must be commented in the main source code but uncommented for the GWT edition, using the uncomment keyword:

 // [ifdef gwt] uncomment
// instructions1;
// instructions2;
// [enddef]

 The uncomment keyword applies for both ifdef and ifndef block markers and handles only single-line comments (comments starting with //).

 Other available keywords are provided to reduce the amount of markup by getting rid of the enddef marker: member, method, and instruction.

 These keywords can be used in conjunction with the mandatory ifdef/ifndef block markers and the optional uncomment keyword. Imagine that you want to add an attribute (including its comment) for a specific edition. Let’s use member:

 // [ifdef gwt] member uncomment
/** This is a specific attribute for the GWT edition. */
// private String attribute;

 And you can remove a whole method only for the GAE and GWT editions:

 // [ifndef gae,gwt] method
 /**
 * Handles a call.
 *
 * @param request
 * The request to handle.
 * @return The returned response.
 */
public final Response handle(Request request) {
 final Response response = new Response(request);
 handle(request, response);
 return response;
}

 The instruction keyword handles a single instruction line inside a method. The following code shows how to remove a single instruction for
 any edition except GWT and replace it by another one for GWT:

 // [ifndef gwt] instruction
this.context = context;
// [ifdef gwt] instruction uncomment
// this.context = (context != null) ? context : new Context();

 As you can see, this customization mechanism is simple yet powerful and, more important, isn’t specific to the Restlet Framework.
 One goal moving forward is to let you make use of the Restlet Forge for your own multiedition applications. Besides the traditional
 portability needs not addressed by the JVM, there is also a growing need to support portability across cloud platforms.

 Distribution Workflow

 In addition, the Restlet Forge comes with a built-in mechanism to package the compiled Restlet artifacts and distribute them
 in various forms such as a zip file, a Windows installer, a Maven repository, and even an Eclipse/p2 update site as illustrated
 in figure 11.6.

 Figure 11.6. Restlet Forge workflow

 [image:]

 Internally, the Restlet Forge relies on Ant, FreeMarker, and additional open source libraries and uses XML files to describe
 editions, modules, and libraries of the project to build and distribute. The remaining work consists in packaging and documenting
 this piece of code and ensuring that there is no aspect specific to the Restlet Framework remaining in it.

 The next section introduces a plan to expand this open source project beyond its Restlet Framework roots into a broader Restlet
 Platform.

 11.2.5. Restlet Platform

 After covering the Restlet Framework in depth in this book, including the Restlet API, Engine, and Extensions, we introduced
 the Restlet Forge and talked about how it will gain importance moving forward as part of a larger Restlet open source project.
 As illustrated in figure 11.7, there are more pieces planned as part of this Restlet Platform.

 Figure 11.7. Restlet Platform overview

 [image:]

 Let’s start this overview with the Restlet Apps planned right on top of the Restlet Framework.

 Restlet Apps

 One of the core design choices of the Restlet Framework is to make it as generic as possible regarding the domain- and business-specific
 aspects of applications developed with it. In addition, no persistence or presentation technology is preferred over another
 at the Restlet API level, but optional extensions are provided to facilitate the use of some of them.

 Over the years it appeared that there was space to provide generic and highly reusable Restlet applications for common needs
 such as searching, administration consoles, reverse proxies, static websites, and so on.

 Moving forward, a set of open source Restlet Apps will be developed and distributed as additional org.restlet.app.<name> modules, including ready-to-run features, easily customizable and embeddable inside larger Restlet components.

 To get started, an org.restlet.app.search application will be added to speed up the development of your Restlet projects requiring some search functionality. This
 will allow you to focus more on your domain-specific features.

 This Restlet Search application will use Apache Lucene and the existing Restlet extension for Lucene, supporting the semantic
 indexing and retrieval of resources based on their multimedia representations. This project will be based on an existing development
 effort completed by Restlet creators as part of a collaborative R&D effort named HD3D2, initiated by several postproduction studios, including Mikros Image.

 Those optional Restlet Apps will be developed in the same open source manner as the existing Restlet Framework, using the
 same licensing options.

 Restlet Studio

 In addition, in order to facilitate the use of the Restlet Framework within Eclipse IDE, tooling support will be proposed
 via a Restlet Studio product (see figure 11.8) including a set of wizards to facilitate the creation of Restlet applications, filters, and resources, as well as model-driven
 tooling to easily generate Restlet applications. It could be installed either as a standalone Eclipse-based application or
 as a set of plug-ins extending an existing Eclipse installation.

 Figure 11.8. Restlet Studio welcome page

 [image:]

 This tool is still under development by the Restlet creators. It’s at an advanced prototype stage and will be freely available
 to Restlet developers in the future.

 A special focus is being placed on productivity in order to develop RESTful web APIs, generating the base Restlet server code,
 client kits for various platforms such as Java, PHP, C#, or iOS, as well as up-to-date web API documentation. Those automated,
 extensible generation capabilities will rely on a comprehensive web API model expressed using the EMF ECore technology already
 introduced in this book.

 In addition, the core development team is migrating the main Restlet code base to Java 6 and GitHub for version 2.2, relying
 on Eclipse Juno (4.2) as the main IDE development tool, ensuring that no errors and warnings appear.

 Restlet Cloud

 To facilitate the hosting of Restlet applications, a comprehensive Restlet Cloud hosting solution is being developed. It uses
 the Restlet Framework for remote deployment and administration of hosted applications and relies on OSGi as a foundation technology
 to provide both hot deployment and update.

 Restlet Cloud will be usable both privately on your own machines and via an online service available at http://restlet.net. Even though this service is only part of the Restlet roadmap at this stage, it’s already used by Restlet creators in the
 recently launched APISpark online service.

 11.2.6. APISpark, the online platform for web APIs

 Following the success of REST, a quickly growing number of web APIs is being developed, as illustrated by the statistics from
 the ProgrammableWeb.com website, a famous web API directory. The growth curve is exponential, and there is no reason why it
 will stop during the next decade. Just as it’s common today to have a website and a blog for an organization (or even an individual),
 tomorrow it will be as common to have web APIs in order to foster an innovative community, to provide data and service across
 multiple channels with a consistent user experience, and to communicate across connected devices.

 In the face of this massive need for web APIs, we need to lower the barrier of entry to their development and operation, using
 the power of the Restlet Framework in a simpler way. This is why Restlet creators are developing APISpark, an all-in-one online
 platform for web APIs, covering the needs of all actors of the web API chain as illustrated in figure 11.9.

 Figure 11.9. Main actors in the web API chain

 [image:]

 APISpark has put the Restlet Platform in action to simplify the creation, hosting, management, and use of web APIs. It powers
 both the website itself and the generated users’ APIs. In addition the upcoming Restlet Cloud hosting solution is already
 being used. Generated web APIs rely only on the open source Restlet Framework and Restlet Apps, creating no lock-in with closed-source
 software, as illustrated in figure 11.10.

 Figure 11.10. APISpark relationships with the Restlet Platform

 [image:]

 APISpark can be used from a simple web browser by any web developer because it doesn’t require any knowledge of Java or of
 the Restlet Framework. Thanks to its API template approach, web APIs can be created in minutes instead of weeks or months
 for a traditional IT development project using the Restlet Framework. Figure 11.11 illustrates the home page of a web API created on APISpark.

 Figure 11.11. Web API overview on APISpark

 [image:]

 Once configured and deployed, the web APIs and their underlying data stores (containing both structured entities and flat
 file folders) are immediately accessible by API users on an apispark.net subdomain or custom domain. They can then be monitored by an API manager person, using features such as API analytics reports
 illustrated in figure 11.12.

 Figure 11.12. Web API analytics on APISpark

 [image:]

 As you can see, APISpark is offering a concrete and easy way to see Restlet in action beyond this book. You can learn more
 about the service and try it at http://apispark.com.

 Let’s conclude by explaining the place of the Restlet community, how it works, and how you can be part of it.

 11.3. Restlet community

 Developing the Restlet Framework as an open source project since 2005 has been a great experience for the Restlet team, technically
 and personally challenging but also rewarding thanks to the numerous exchanges with the Restlet community. This community
 includes users seeking help in forums, suggesting new features, or reporting bugs, as well as developers contributing patches
 to fix bugs, enhance an existing feature, or even add and maintain a complete new feature such as a Restlet extension.

 Over the years we’ve also seen a growing number of other open source projects developed using the Restlet Framework. The next
 section reviews some interesting and active ones that we’re aware of.

 11.3.1. Third-party projects

 There are several categories of third-party projects, depending on their level of Restlet use. Some are direct extensions
 of the Framework, whereas others provide higher-level features on top of it.

 Restlet Integrations

 First, there are two similar integration efforts by popular open source Enterprise Service Buses (ESB)—Apache Camel and Mule
 ESB—allowing use of the Restlet Framework as part of their event-driven processing chain. MuleSource has developed a special
 transport for Restlet that lets you use the Restlet API within Mule ESB and provides a Restlet client connector. Camel developers
 have integrated a pluggable Restlet component to facilitate both consuming and exposing RESTful web APIs.

 The Piriti project (http://code.google.com/p/piriti/) provides JSON and XML mappers for GWT. It comes with an extension for the Restlet edition for GWT, offering a great way
 to interact with JSON and XML representations exposed by web APIs not developed using Restlet. If your backend is Restlet-driven, though, you’ll prefer the default GWT object serialization mechanism
 provided to reduce the mapping overhead.

 Restlet Stacks

 In addition to the previous integrations, some open source projects propose a comprehensive stack based on Restlet to cover
 a more specific need. Atomojo (http://code.google.com/p/atomojo/) provides a complete AtomPub client and server solution, whereas Xeerkat (http://code.google.com/p/xeerkat/) offers an embeddable P2P computing framework based on the XMPP protocol (supported by Jabber and Google Talk).

 Next we have Kauri (www.kauriproject.org), a Restlet-based Web App Framework including Spring configuration, module wiring, built-in template language, and client-side
 (JavaScript, jQuery, AJAX) forms framework.

 In a similar vein, GoGoEgo (http://code.google.com/p/gogoego/) offers a RESTful web content management system supporting WebDAV, using OSGi and scripting languages such as JavaScript
 and including a visual console developed in GWT.

 Prudence (http://threecrickets.com/prudence/) proposes a scalable RESTful web development platform for the JVM, including advanced support for many scripting languages. It can also act as an easily configurable deployment container for stand-alone Restlet applications, adding another
 option to the GAE, Java EE, and OSGi containers available via Restlet editions. On top of Prudence, there’s a specific flavor
 called Savory Framework that uses the JavaScript language and offers ready-to-use drop-in features and integration with presentation
 frameworks such as ExtJS, Face-book, and Sencha Touch.

 For additional projects you can also refer to the Restlet web site, which contains a more comprehensive directory of Restlet-based
 projects.

 11.3.2. Contributing to Restlet

 Using an open source project properly is a first, necessary step—reading available documentation and reaching out to users
 and developers in forums. Moving forward, you’ll find many rewarding opportunities to go beyond fulfilling your immediate
 project needs.

 Restlet has the advantage of being directly mapped to REST and HTTP concepts; therefore, the more you learn about Restlet,
 the more you understand the web and its architectural style. This knowledge and experience will enrich you professionally;
 even if tomorrow you have to use another technology, you won’t have to learn everything again from scratch but instead can
 map new terms to stable concepts that you already know.

 To go beyond this book, you should put what you learn here into action in your own projects. But we also encourage you to
 get involved more directly with the Restlet Community, depending on your time and areas of interest, as many others have done
 in the past (www.restlet.org/about/team). This project has been shaped not only by Restlet creators and core developers but also by the many other contributors.
 As the Restlet Framework expands beyond its initial roots into a more comprehensive Restlet Platform, many innovation opportunities
 lie ahead.

 It’s now your turn to apply this new knowledge and realize your web ideas. We hope you enjoyed reading this book as much as
 we enjoyed writing it, and we wish you a long and pleasant Restlet development experience.

 11.4. Summary

 In this chapter you learned about HTTP’s past, present, and future, including the rewriting of HTTP/1.1 specifications into
 a more modular form (HTTP/1.1 bis) as well as the prospect of HTTP/2.0 that could take advantage of innovations from the SPDY
 protocol.

 Then you saw the high-level roadmap of the Restlet Framework, including both the evolution of the framework itself and the
 Restlet API, engine, and extensions, and a broader plan for a Restlet Platform including a reusable Restlet Forge; a set of
 Restlet Apps, including a first Restlet Search app; a Restlet Studio offering an Eclipse-based IDE for Restlet development;
 a Restlet Cloud hosting solution, using OSGi; and finally a higher-level online APISpark service to create, host, and manage
 RESTful web APIs from a simple web browser.

 We concluded with the Restlet community and how to contribute back to an open source project, with examples of third-party
 projects using Restlet in innovative ways.

 With this discussion, we have come to the end of the topics planned for this book. We encourage you to keep reading the appendices
 as they contain valuable guidance and reference materials, such as how to design a RESTful web API with the ROA/D methodology.

 This is the end of this book but only the start of your journey with REST and Restlet. We hope you’ll realize your next web
 ideas with Restlet!

Appendixes

 These appendixes contain additional material that should be useful to new and experienced Restlet users.

 Appendix A and appendix B provide a detailed overview of the framework as well as instructions to easily install and configure it in your preferred
 IDE, plus a list of recommended testing tools. Appendix C and appendix D provide reference material independent of Restlet, related to both REST architecture style and the ROA/D methodology for
 easy RESTful web API design.

 Appendix E contains reference material that’s practical to have in written form when developing with the Restlet Framework, such as
 the list of HTTP status codes, HTTP methods and the equivalent Restlet constants or REST concepts, and HTTP headers and the
 equivalent classes and properties in the Restlet API.

 Appendix F offers information to get additional help during your RESTful web API development projects beyond this book.

 Contrary to the main chapters, each appendix has been written in a fairly independent way so that you should be able to take
 advantage of their content while reading the rest of the book, or later on, while developing with Restlet.

Appendix A. Overview of the Restlet Framework

 This appendix continues the tour of the Restlet Framework started in the first chapter. It begins with a description of Restlet’s
 core module (which provides the Restlet API and its implementation, also known as the Restlet Engine) and extensions built
 on top of the core module. We then present the notion of editions, which is the way for the Restlet Framework to adapt to various technical contexts while still providing the same high-level
 API. We conclude this appendix by explaining the versioning scheme used, including the release tags such as stable, testing, and unstable.

 A.1. Restlet API

 The most important part of the Restlet Framework is its Restlet API. Once you learn it, you can understand most Restlet code
 and develop both client-side and server-side applications—or make use of many protocols beside HTTP. In contrast with the
 JAX-RS API, the Servlet API, or the HttpURLConnection class, Restlet uses a single uniform API, making it easy to write not only servers, but clients and even web proxies (applications
 acting both as server and client) in order to build cache systems or web API mashups.

 Another benefit of building your applications on top of this Java API is that it doesn’t require any dependency on third-party
 libraries, besides the standard libraries provided by your target environment. Also, the whole API has been designed to be
 thread-safe, ensuring consistent and efficient behavior when multiple threads access an object, either at the same time (concurrency)
 or at a different time (changes visibility).

 Therefore, if you’re careful regarding other dependencies, you can build your web applications on top of the Restlet API and
 ensure that they run equally well in several environments, such as Java SE, Java EE, OSGi, and Google App Engine for a server-side application, or Java SE, OSGi,
 Android, and GWT for a client-side application.

 By now, you’re probably eager to understand what the Restlet API looks like in detail. Under the root org.restlet Java package, you can find seven subpackages as illustrated in figure A.1.

 Figure A.1. The Restlet API packages

 [image:]

 Let’s review the purpose and content of each package.

 A.1.1. Root package

 The top-level package org.restlet contains the most important artifacts. First there’s the Uniform interface containing a single handle(Request, Response) method that embodies the principle of uniform interface for REST resources and the stateless nature of REST communications. Then there’s a hierarchy of core classes inheriting from Restlet. Figure A.2 illustrates their organization.

 Figure A.2. Hierarchy of classes in the root package

 [image:]

 The Restlet class implements the Uniform interface and provides the equivalent of the widely known javax.servlet.http.HttpServlet class. There are important differences, such as the way requests and responses abstract low-level details of HTTP in Restlet
 where the Servlet API leaves a lot of work in the hands of the developer. A good example is that in Restlet you don’t have
 to manually parse HTTP headers—all that work is done for you, and the useful information is available as Java classes and
 properties. You can get more detail in the book’s chapters, including section 4.1.1 and section 7.4.2, as well as an exhaustive mapping list in section 3 of appendix E, titled “Mapping HTTP headers to Restlet properties.”

 Contrary to the Servlet API, you’ll rarely need to directly subclass Restlet because the framework offers higher-level abstractions such as the ServerResource class. The advantage of the Restlet class is that its instances can be accessed concurrently by multiple threads in order to serve several requests at the same
 time, but this requires a good understanding of Java concurrency programming, equivalent to what is required for Servlet programming.

 The Application class is commonly extended to develop complete web applications and is extensively covered in chapter 2. You also have the Component, Connector, Client, and Server classes corresponding exactly to the REST architecture elements that we introduce in chapter 1. Those classes are necessary when you deploy your applications, as explained in chapter 3.

 The Context class provides contextual features to a set of Restlet instances that are part of the same container, typically a Component or an Application. You’ll be able to store attributes and parameters in this context, or access features provided by the container such as
 a logger, default credentials, verifiers, or a way to invoke connectors.

 The root package contains classes that embody the messages exchanged between components, either requests or responses, as
 illustrated in figure 1.7 where we discuss REST connectors.

 Naturally, the Restlet API strictly respects REST and has a hierarchy between its Message, Request, and Response classes, as depicted in figure A.3.

 Figure A.3. Message hierarchy

 [image:]

 A.1.2. Data package

 The org.restlet.data package contains classes used to read or write those messages which are composed of several properties, such as the request
 method (Method, Conditions), response status (Status), URI references (Reference), authentication information (ChallengeScheme, ChallengeRequest, and ChallengeResponse), agent information (ClientInfo, Preference and ServerInfo), or representation metadata (Character-Set, Encoding, Language, MediaType).

 There are also classes to facilitate the management of URI query parameters and web forms (Form and Parameter classes).

 A.1.3. Representation package

 Not all data elements were included in the data package! We didn’t cover the representations of resources that are sent or received in the body of the messages. As previously illustrated in figure 1.4, remember that in REST, clients manipulate resources through representations of their state.

 Naturally, Restlet supports representations via a Representation class and a broad set of subclasses covering the most common types. Figure A.4 shows the top of this hierarchy of classes. The ancestor class Variant describes a representation with enough metadata to support content negotiation—one of the powerful and often forgotten features
 of HTTP.

 Figure A.4. Representation hierarchy

 [image:]

 The RepresentationInfo class adds a few more properties necessary to support conditional methods, another powerful feature of HTTP. Finally we reach
 the abstract Representation class, mother of all concrete representations in Restlet.

 To produce representations, you need to provide concrete content. This content can be based on character strings (StringRepresentation and Appendable-Representation), byte streams (StreamRepresentation, Input Representation, ByteArrayRepresentation, and OutputRepresentation), character streams (Character Representation, ReaderRepresentation, WriterRepresentation), or byte channels (ChannelRepresentation, ReadableRepresentation, WritableRepresentation).

 There are also special cases for representations based on files (FileRepresentation), serializable Java objects (ObjectRepresentation), and empty ones (Empty Representation). It’s also possible to compute the digest (like a checksum) for any representation using a wrapper (DigesterRepresentation).

 Other types of representation are available via extension packages, as you’ll see later in this section. We cover this topic
 more extensively in chapter 4.

 A.1.4. Resource package

 The org.restlet.resource package contains the higher-level classes that you’ll use to create client-side resource proxies (ClientResource) or extend to create server-side resource implementations (ServerResource). We used those two classes to write our “Hello World” example in chapter 1, and we cover their use in detail in section 2.5. Figure A.5 shows the hierarchy composed with the parent Resource class (renamed from UniformResource since version 2.1).

 Figure A.5. Resource hierarchy

 [image:]

 This package also defines the common annotations used in ServerResource subclasses to facilitate the mapping between RESTful methods (typically HTTP methods) and the handling Java methods: @Get, @Put, @Delete, and @Post. You’ll find the convenient Directory class can expose a hierarchy of static files as RESTful resources (covered in section 7.1.3).

 A.1.5. Routing package

 The org.restlet.routing package contains all classes directly related to routing. When a request is received, there’s a need to route it along a
 predefined path in order to reach the target ServerResource subclass or a Restlet instance that will effectively handle it and return a response. This need comes from the fact that your application will
 likely contain several resources with different URIs or will need to apply specific filters for different resources—for example,
 for security or validation reasons. Figure A.6 shows how routing is supported via a set of Restlet subclasses.

 Figure A.6. Routing hierarchy

 [image:]

 The Filter class preprocesses the request, invokes an attached Restlet, and post-processes the response. Several specialized filters are provided, like an Extractor (looking up data like cookies and query parameters and storing them as request attributes) and a Validator (validating an attribute’s value against regular expressions). The Redirector class supports either client-side redirections (via special response statuses) or server-side redirections (often called
 reverse proxying).

 The Router class attempts to match the URI in the request against URI patterns defined by your application to determine which ServerResource class or Restlet instance to target. There’s also VirtualHost, a specialized router that adds the ability to match virtual hosts by domain name, IP address, and other properties.

 A.1.6. Security package

 Security is an important topic related to routing that deserves its own package: org.restlet.security. Two classic aspects are covered: authentication and authorization via a set of filters, as illustrated in figure A.7.

 Figure A.7. Security hierarchy

 [image:]

 The authentication step is managed by the Authenticator class and the more specialized ChallengeAuthenticator subclass, helped by the Enroler interface, adding Role instances to the authenticated User, and the Verifier interface (with SecretVerifier, LocalVerifier, and MapVerifier implementations) to verify the user credentials during challenge authentication.

 Then authorization is managed by the Authorizer class and more specialized subclasses (ConfidentialAuthorizer, Method-Authorizer, and RoleAuthorizer). It can also be checked with a finer precision inside your server resources code via isInRole() method calls.

 The Restlet security API also offers a clean separation between the unique way each application happens to define roles and
 the management of users, which is specific to each organization and deployment environment. Therefore, a notion of Realm is provided, exposing a contextual Verifier and Enroler. A default MemoryRealm is provided, supporting complex mappings between a Group and its User instances on one side and Role instances defined by a given application on the other side.

 We discuss this dense and important topic at length in chapter 5.

 A.1.7. Service package

 One of the advantages of Restlet is that your application or component automatically benefits from powerful features via a
 set of services included in the org.restlet .service package. It includes a parent Service class and several subclasses (Connector-Service, ConnegService, ConverterService, DecoderService, EncoderService, LogService, MetadataService, RangeService, StatusService, TaskService, and TunnelService). Each service has a lifecycle with start and stop methods and can add inbound or outbound filters to the container for which
 they’re enabled.

 For example, RangeService supports the retrieval of partial representations of resources, without having to change anything in your Restlet code. You
 can disable this service, like all others, if necessary.

 You may guess the purpose of some other services mentioned by their class name, but we describe them individually in the book
 when we discuss the topic to which they belong. In addition, we explain the common aspects to all services in section 2.3.4.

 A.1.8. Util package

 As its name implies, org.restlet.util contains several utility classes, such as wrapper classes and a string template mechanism (Template, Variable, and Resolver), covered in section 2.4.2 during a discussion of URI templates.

 It also contains a generic Series class implementing the java.util.List interface to manage series of parameters that come in as name=value pairs. For example, the Form class that we mentioned in the Data package derives from this Series class.

 A.2. Restlet Engine

 Now that you have a good overview of the Restlet API and the features it offers, we suggest you briefly look under the hood
 and see how the Restlet Engine is designed. We won’t cover the engine in detail, as it’s rarely necessary for Restlet users
 to have such a deep level of knowledge of its internals.

 Keep in mind that besides classes implementing the Restlet API, built-in HTTP client and server connectors can be used during
 development. For production environments, we currently recommend using the more robust HTTP connectors (based on Jetty or
 Simple) that are also provided in the Restlet distribution or to deploy to full-blown Servlet or OSGi containers. We cover
 the deployment of your applications more extensively in chapter 3.

 The root package org.restlet.engine contains a singleton of the Engine class for the whole JVM. This Engine singleton supports all applications, components, and connectors hosted in the current JVM and is a registry managing several
 sorts of plug-ins that inherit the Helper class as illustrated in figure A.8.

 Figure A.8. The Restlet Engine can be extended with pluggable helpers.

 [image:]

 AuthenticatorHelper instances support authentication schemes such as HTTP Basic, HTTP Digest, SMTP Plain, Amazon Web Services (S3 and all other
 services), or Microsoft SharedKey. ConverterHelper instances perform conversions between Java objects and Restlet representations to support the ConverterService mentioned in the description of the Service package. ClientHelper instances provide client connectors for URI schemes such as HTTP, FILE, or ZIP. ServerHelper instances do the same for server connectors.

 The fact that new helpers can be registered, either dynamically by adding a specific JAR in the classpath or by programmatically
 configuring the Engine instance, is quite powerful. As we said, you’ll rarely need to know more about this topic, so let’s move right away to the
 extensions you can use in your Restlet applications.

 A.3. Extensions

 Even though the Restlet API has a broad features scope, it attempts to stay as neutral as possible. It doesn’t, for example,
 enforce any particular presentation or persistence technology. Instead, a wide set of Restlet Extensions is offered in order
 to match the most common use cases. Three categories of extensions are provided:

 	Those that add support for standards like Atom/AtomPub, cryptography, HTML forms, JAAS authentication, JAX-RS, JSON, OAuth,
 OData, OpenID, RDF, SIP, SSL, WADL, and XML.

 	Those that provide new connectors such as Apache HTTP Client, JavaMail (SMTP and POP3 clients), JDBC, Jetty (HTTP server),
 Net (FTP and HTTP client based on java.net.HttpURLConnection), Simple Framework (HTTP server), and Servlet integration (HTTP pseudo-server).

 	Those that provide integration with third-party services such as template engines like FreeMarker or Apache Velocity, multipart
 handling via Apache FileUpload, XML serialization via EMF, GWT, Jackson, JAXB, JiBX, and XStream. Extensions also provide
 integration with technologies such as Lucene, ROME, SLF4J, Spring, and Oracle XDB.

That provides a lot of options for your applications! Keep in mind that each extension is available in a dedicated org.restlet.ext.<code> package, where <code> is the standard or technology name such as atom or xml. In the next section, we explain how the Restlet Framework is distributed via several editions.

 A.4. Editions

 The core org.restlet module ships the Restlet API and the Restlet Engine. Initially available in standalone mode on top of Java SE, an optional
 integration with Java EE and Servlet containers has quickly been developed. This integration was easy, as it left the primary
 Restlet API almost intact and provides a new Servlet extension that bridges the Servlet API and the Restlet API. Then other
 platforms developed by Google appeared: Google Web Toolkit, Android, Google App Engine. They’re similar only in the fact that
 they support a subset of the Java SE APIs. GWT is also particular in the sense that it proposes only a client API.

 Because the Restlet API had to be manually adjusted to work in these different contexts, the idea of several editions of the
 core module emerged. An edition is dedicated to a given platform and provides the core module which defines the Restlet API available, its implementation,
 and a subset of extensions.

 The six editions available in version 2.1 are Java SE, Java EE, GAE, GWT, Android, and OSGi. We include a table listing the
 extensions available by editions.

 A.4.1. Edition for Java SE

 This edition is aimed for development and deployment of Restlet applications inside a regular JVM. Because it relies on a
 standard JVM, few restrictions apply: it provides most of the extensions except the ones linked with the Java EE specification,
 such as the Servlet, Oracle XDB, and the ones specifically linked with the Google App Engine platform. It’s compatible with
 release 1.5 of the Java SE and higher.

 A.4.2. Edition for Java EE

 This edition targets the development and deployment of Restlet applications on Java EE application servers, or more precisely
 on Servlet containers such as Tomcat and WebLogic. It contains all extensions except the ones for HTTP server connectors such
 as Simple and Jetty, because the Servlet container already provides that. Also, this edition doesn’t contain the GAE extension
 specific to the GAE edition. It’s compatible with Servlet API version 2.5 and above, as well as the Java EE 5.0 specification
 and above.

 A.4.3. Edition for OSGi environments

 This edition includes the core module and the whole set of extensions adapted to the Open Services Gateway initiative platform
 (OSGi) except the GAE extension. Contrary to the Java SE and Java EE edition previously discussed, this edition can work either
 using standalone HTTP servers or the pseudoserver provided by the Servlet extension bridge.

 All these modules are plain OSGi bundles including an Activator class when necessary and a proper manifest file.

 A.4.4. Edition for Google App Engine

 This edition gathers the core module and a set of extensions adapted to the Google App Engine (GAE) solution. Due to the restrictions
 of the GAE platform based on Java 6, with a restricted list of APIs entirely or partly supported, we need to provide an adaptation
 of Restlet for this environment. Because GAE relies on the Servlet API for server-side aspects, it can be seen as an adaptation
 of the Java EE edition. The client API is supported via the Net extension, but not the NIO-based implementation of the internal
 connector, because sockets and threads can’t be directly created. This edition is compatible with Google App Engine 1.4.3
 and above.

 A.4.5. Edition for Google Web Toolkit

 GWT is a platform dedicated to the development of applications running in a web browser. By default, a custom GWT-RPC mechanism
 is provided to communicate with a custom Servlet-based server. The port of the Restlet Framework enables you to loosen this
 tight coupling and helps you expose your server resources on other back-end technologies. The communication is based on the
 same client API used in an asynchronous way. Also, due to underlying AJAX constraints, NIO channels and BIO streams can’t
 be supported.

 Restlet Framework 2.0 added support for annotated Restlet interfaces and automatic bean serialization into its GWT edition
 in a way that’s consistent with other editions. This edition is compatible with GWT 2.2 and above.

 A.4.6. Edition for Android

 The port of Restlet on Android includes both client and server APIs. You may wonder about the reason to provide another client
 API addition to the one already shipped with Android, which relies on the Apache HTTP Client library. One reason is that the
 client-side API of the Restlet Framework provides higher-level features than the default HTTP client library, such as integrated
 support of conditional requests, content negotiation, and other protocols. It can also rely on the Apache HTTP Client using
 the related Restlet extension.

 You may also wonder why you would have a web server on a mobile phone. Here are some reasons:

 	You can test web applications during the development phase without having to consume network access, which might be limited
 by cost or availability in some areas.

 	You can allow third-party applications on other phones or other platforms to remotely access your device. This requires strong
 security mechanisms provided in part by the Restlet Framework as well as network-level authorizations by the carrier, if any.

 	You can run local Android applications that are using the internal web browser and behaving like regular hypermedia applications.

Contrary to other editions, the Android edition can’t use Restlet’s autodiscovery mechanism for connectors and converters
 provided as Restlet extensions. This is due to a limitation in the way Android repackages JAR files, leaving out the descriptor
 files in the META-INF/services/ packages used by the Restlet Framework for autodiscovery. The workaround consist of manually
 registering those additional connectors and converters in the Restlet engine. Here’s an example for the Jackson converter:

 Engine.getInstance().getRegisteredConverters().add(new JacksonConverter());

 You may also face another blocking error. The internal HTTP client has been rewritten using the java.nio.package. This may lead, on some Android devices, to this kind of exception: java.net.SocketException: Bad address family. In this case, you can turn off the IPv6 preference as follows:

 System.setProperty("java.net.preferIPv6Addresses", "false");

 A.4.7. Matrix of extensions per edition

 Table A.1 exposes the list of the developed extensions (by their short name, which is the abbreviation of their root package name:
 org.restlet.ext.<extension>) and their availability by edition.

 Table A.1. Developed extensions by edition

 	
 Extensions

 	
 JSE

 	
 JEE

 	
 OSGI

 	
 GAE

 	
 GWT

 	
 Android

 	
 Description

	atom
 	X
 	X
 	X
 	X
 	X
 	X
 	Support for the Atom syndication and the AtomPub (Atom Publication Protocol) standards in the 1.0 version

	crypto
 	X
 	X
 	X
 	X
 	
 	X
 	Support for cryptography and HTTP authentication schemes

	emf
 	X
 	X
 	X
 	X
 	
 	
 	Integration with Eclipse Modeling Framework

	fileupload
 	X
 	X
 	X
 	X
 	
 	
 	Integration with Apache FileUpload

	freemarker
 	X
 	X
 	X
 	X
 	
 	
 	Integration with FreeMarker template engine

	gae
 	
 	
 	
 	X
 	
 	
 	Integration to the Google App Engine UserService for the GAE edition

	gwt
 	X
 	X
 	X
 	X
 	
 	
 	Server-side integration with GWT for object serialization

	html
 	X
 	X
 	X
 	X
 	
 	X
 	Support for the HTML (HyperText Markup Language) standard, particularly multipart file upload

	httpclient
 	X
 	X
 	X
 	
 	
 	X
 	Integration with Apache Commons HTTP Client

	jaas
 	X
 	X
 	X
 	X
 	
 	X
 	Support for JAAS based security

	jackson
 	X
 	X
 	X
 	X
 	
 	X
 	Integration with Jackson

	javamail
 	X
 	X
 	X
 	
 	
 	
 	Integration with JavaMail

	jaxb
 	X
 	X
 	X
 	X
 	
 	
 	Integration with Java XML Binding

	jaxrs
 	X
 	X
 	X
 	X
 	
 	
 	Implementation of JAX-RS (JSR-311)

	jdbc
 	X
 	X
 	X
 	
 	
 	
 	Integration with Java DataBase Connectivity (JDBC)

	jetty
 	X
 	
 	X
 	
 	
 	
 	Integration with Jetty

	jibx
 	X
 	X
 	X
 	X
 	
 	
 	Integration with JiBX

	json
 	X
 	X
 	X
 	X
 	X
 	X
 	Support for JSON representations

	lucene
 	X
 	X
 	X
 	X
 	
 	
 	Integration with Apache Lucene, Solr, and Tika subprojects

	net
 	X
 	X
 	X
 	X
 	
 	X
 	Integration with java.net.HttpURLConnection class

	oauth
 	X
 	X
 	X
 	X
 	
 	
 	Support for OAuth HTTP authentication

	odata
 	X
 	X
 	X
 	X
 	
 	X
 	Integration with OData services

	openid

 	X
 	X
 	X
 	X
 	
 	
 	Support for OpenID authentication

	rdf
 	X
 	X
 	X
 	X
 	
 	X
 	Support for the RDF parsing and generation

	rome
 	X
 	X
 	X
 	X
 	
 	
 	Support for syndicated representations via the ROME library

	sdc
 	X
 	X
 	X
 	
 	
 	
 	Integration with Google Secure Data Connector on the cloudside

	servlet
 	
 	X
 	X
 	X
 	
 	
 	Integration with Servlet API

	simple
 	X
 	
 	X
 	
 	
 	
 	Integration with Simple framework

	sip
 	X
 	X
 	X
 	
 	
 	X
 	Support for Session Initiation Protocol (SIP)

	slf4j
 	X
 	X
 	X
 	
 	
 	
 	Support for the SLF4J logging bridge

	spring
 	X
 	X
 	X
 	X
 	
 	
 	Integration with Spring Framework

	ssl
 	X
 	X
 	X
 	
 	
 	X
 	Utilities to configure SSL support

	velocity
 	X
 	X
 	X
 	X
 	
 	
 	Integration with Apache Velocity

	wadl
 	X
 	X
 	X
 	X
 	
 	
 	Support for the WADL specification

	xdb
 	
 	X
 	X
 	
 	
 	
 	Integration within OracleJVM via the Oracle XML DB feature

	xml
 	X
 	X
 	X
 	X
 	X
 	X
 	Support for the XML documents

	xstream
 	X
 	X
 	X
 	
 	
 	
 	Integration with XStream

A.5. Restlet versioning

 It’s important that you understand the Restlet versioning to assess which version is best to use for your projects.

 A.5.1. Logical versions

 Apart from the classical version numbers used, the Restlet Framework offers three versions, following the naming convention
 of the Debian Linux project:

 	Stable is the release recommended for applications in production. The API of this release is frozen, and only bug fixes are made.

 	Testing is the release recommended for new developments. The community is involved, and contributions of any kind (feedback, bugs,
 missing features, code, patches, and bug fixes) are welcomed.

 	Unstable is the release where active development happens. It corresponds to builds of the development trunk passing all unit tests.

The unstable release is generated every eight hours, assuming the code has been updated. The testing and stable releases are
 tagged in the revision control system (currently a GitHub repository) and are refreshed once the set of changes is important
 enough.

 Following the Git naming, the unstable and testing releases are taken from the master branch, whereas the stable release is
 built from a numbered branch, such as the 2.1 branch. The unstable release equals the testing version plus a set of enhancements
 and bugs fixes, but sometimes a regression can be introduced.

 A.5.2. Versioning scheme

 Restlet versions are composed of a standard triplet: major.minor.release. A major version corresponds to deep changes in the Restlet API without a guarantee of incremental compatibility, whereas
 the minor version denotes lighter changes: deprecated classes or methods are removed, and extensions can also be added or
 removed.

 Release is typically a numeric value. It starts from 0, then is incremented each time a bug-fixing version is released. This value
 can also be milestone (abbreviated m) or release candidate (abbreviated rc) concatenated with an increment (for example: 2.1m5, 2.1rc2, and so on). Milestones are released in the active phase of development
 where the framework can change freely. The intent of candidate releases is to freeze the features set and the API and only
 change it in case of design issues or bugs.

 Generally speaking, the lifecycle of releases lasts about two years, even if there’s a goal to lower it. Version 1.0.0 was
 released in April 2007; 1.1.0 in October 2008; 2.0.0 in July 2010; and 2.1 is planned for September 2012.

Appendix B. Installing the Restlet Framework

 The goal of this appendix is to help you install the Restlet Framework and get started with it, from a tooling perspective.
 We describe several ways to retrieve the framework artifacts, called distributions. We guide you through the basic installation and usage steps for major IDEs, showing in detail how to run a first Restlet
 program.

 We also review recommended testing tools and illustrate their basic use with Restlet. This provides an opportunity to focus
 on the key task of debugging Restlet-based programs.

 B.1. Restlet distributions

 The Restlet Framework is composed of a core module that depends only on Java SE, plus a set of extensions that generally depend
 on third-party libraries. Initially, the framework was distributed as a zip containing the Java binaries and source code of
 all of these artifacts. Then an automated installer for Windows was added, later a Maven repository, and recently an Eclipse
 update site. This section details these distributions and gives hints about how to use them. We’ll begin the tour with the
 Maven repository.

 B.1.1. Maven repository

 Maven is a software tool for the management of Java projects and for build automation. Created by Jason van Zyl in 2002, it
 is hosted by the Apache Software Foundation. Among other features that make this project popular, Maven allows users to keep
 their installation up-to-date by automatically retrieving dependent JAR files. Some Restlet users were frustrated by having
 to regularly check for the fresh bits and promoted this solution. It’s been decided to provide a public Maven repository available at http://maven.restlet.org. This is updated on a daily basis and stores all Restlet artifacts and third-party libraries that aren’t part of the central
 Maven repository (http://search.maven.org) or other public ones.

 Once Maven has been installed in your environment, you should declare the Restlet public repository either in the POM configuration
 file of your project or parent project. Add the following snippet of text in the <repositories> section:

 <repository>
 <id>maven-restlet</id>
 <name>Public online Restlet repository</name>
 <url>http://maven.restlet.org</url>
</repository>

 As an alternative, you can declare the repository for all your projects. Go to the installation directory of your Maven copy.
 Open and edit the conf/settings.xml file and add to the <profiles> section the following code:

 <profile>
 <id>restlet</id>
 <repositories>
 <repository>
 <id>maven-restlet</id>
 <name>Public online Restlet repository</name>
 <url>http://maven.restlet.org</url>
 </repository>
 </repositories>
</profile>

 After the </profiles> section add the following:

 <activeProfiles>
 <activeProfile>restlet</activeProfile>
</activeProfiles>

 With the introduction of the notion of edition, the group identifiers have evolved to match the template org.restlet.<edition>, where <edition> is the code of an edition:

 	jse for the Java SE edition

 	jee for the Java EE edition

 	osgi for the OSGi edition

 	gwt for the Google Web Toolkit edition

 	gae for the Google App Engine edition

 	android for the Android edition

If the artifact is a Restlet extension, the artifact identifiers follow the template org.restlet.ext.<extension>, where <extension> is the name of the extension. Note that the artifact ID is also the name of the root package of the extension.

 If the artifact is a third-party library, its artifact identifier follows the template: org.restlet.lib.<jar identifier>, where <jar identifier> is more or less the name of the root package of the third-party library.

 Regarding the version number, there are two cases. Assuming that the version is divided into three parts (major, minor, and
 patch), in case the patch part is a numerical value, the Maven version is as follows: major.minor.patch. Otherwise, the release is either a milestone
 or a release candidate, and the version is respectively as follows: major.minor-M<increment> or major.minor-RC<increment>,
 where <increment> is a numerical value starting from 0. Additional details on versioning are available in appendix A, section A.5.

 Each project based on the Restlet Framework needs to declare at least one dependency: the Restlet core module. According to
 your needs, you should complete the list of dependencies with the required extensions and connectors. For example, assuming
 your project is a web server delivering static files, you could use an extension HTTP server connector such as the one based
 on Simple.

 Because your Maven client correctly references the Restlet online repository, open and edit the pom.xml file for your project
 and add the following lines of text into the <dependencies> section. You should use the most recent version number available
 at the time you’re reading instead of 2.1-RC2, such as 2.1.0:

 <dependency>
 <groupId>org.restlet.jse</groupId>
 <artifactId>org.restlet</artifactId>
 <version>2.1-RC2</version>
</dependency>
<dependency>
 <groupId>org.restlet.jse</groupId>
 <artifactId>org.restlet.ext.simple</artifactId>
 <version>2.1-RC2</version>
</dependency>

 The next section introduces a less integrated way to get the several Restlet distributions by using compressed archives files.

 B.1.2. Zip files

 The zip file is available for all releases and by edition. All are available from www.restlet.org/downloads/.

 The zip contains the following directories and files:

 	docs—The Javadocs of the Restlet API, the Restlet Engine, and the extensions

 	lib—The JAR files of the Restlet API, the Restlet Engine, the extensions, and their dependencies

 	src—The source code of the framework and the provided examples

 	changes.txt—The list of fixed bugs and enhancements by release

 	readme.txt—Summary of the Restlet project

 	copyright.txt, license.txt, trademarks.txt—Some legal materials

Once downloaded, decompress the zip file into the desired directory. When developing, you’ll need to have a closer look at
 the lib directory in order to pick up the needed JAR files to add to your classpath (they aren’t all needed at the same time), and the docs directory, in order to read
 the Javadocs in your web browser.

 On Windows-based computers, an executable installer enables you to automate the installation of a distribution.

 B.1.3. Windows Installer

 The Windows Installer is available for all releases and all editions at www.restlet.org/downloads/. This distribution is more or less the self-extracting version of the zip file based on the NSIS installation software, with
 the addition of an easy way to uninstall it.

 The installation process is simple and requires your attention only in two places: to specify the installation directory and
 to accept the license. Figures B.1–B.5 are snapshots of the installation process. Double-clicking the executable file bring up the screen in figure B.1.

 Figure B.1. Front page of the installation process

 [image:]

 Click the Next button, and you’re asked to read and accept the license (figure B.2).

 Figure B.2. Read and accept the license.

 [image:]

 After you agree to the license, enter the root directory to put the files into and click Next (figure B.3).

 Figure B.3. Specify the installation directory.

 [image:]

 The next step is to confirm the Start Menu folder and launch the installation by clicking Install (figure B.4).

 Figure B.4. Choose the Start Menu folder.

 [image:]

 The installation will take a few minutes. Validate the last installation step (figure B.5).

 Figure B.5. End of the installation process

 [image:]

 The next section is dedicated to Eclipse users interested in the development of Eclipse plug-ins or OSGi-based applications.
 An Eclipse p2 repository provides the Restlet modules as OSGi bundles ready to be installed in the Eclipse IDE.

 B.1.4. Eclipse update site

 This update site is only available for the Restlet edition for OSGi environments since version 2.1. It allows the retrieval
 of Restlet modules as plain OSGi bundles (including their dependencies) directly from the Eclipse IDE. They’re gathered by
 type of module: Core module, support of standards, pluggable connectors, and integrations with third-party libraries.

	

 Regular Eclipse IDE development

 This Eclipse update site distribution is only useful for pure OSGi developments such as in an Eclipse RCP or Eclipse RT environment.
 For regular Eclipse IDE use of the Restlet Framework, such as for Java SE or Java EE, refer to section B.2.1.

 	

The URL of the update site is based on the following pattern: http://p2.restlet.org/<major_version>.<minor_version>. It provides all tagged releases (such as current snapshot, or milestones, releases candidates, and so on) and allows for
 easy upgrade.

 The next screenshots illustrate how to install the bundles into your Eclipse IDE. Choose Help > Install New Software. Enter
 the URL of the desired repository in the upper field, and click Add (figure B.6).

 Figure B.6. List of available items

 [image:]

 Make your selection from the list of available items, which are listed by category (Restlet Core, Pluggable connectors, and
 so forth). After you make your selection, click Finish (figure B.7).

 Figure B.7. List of selected items

 [image:]

 After a moment, which includes the detection of dependencies, you’ll be warned that you’re about to install unsigned content.
 Stick to your choice and click OK (figure B.8).

 Figure B.8. Warning: the content is unsigned

 [image:]

 The installation process goes on, and after a moment you’ll be asked to restart Eclipse in order to finalize the installation
 (figure B.9).

 Figure B.9. End of the installation

 [image:]

 The next section deals with the installation of the Restlet Framework into usual Integrated Development Environments (IDEs),
 such as Eclipse, NetBeans, and IntelliJ.

 B.2. Setting up your IDE

 The aim of this section is to give Java beginners a short review of the steps required to code a simple program based on the
 Restlet Framework with three major IDEs: Eclipse (version 3.6, aka Helios), NetBeans (version 7.0.1), and IntelliJ IDEA (version
 10.51). This guide will help beginners go through the basic tasks needed to create a project and update the list of dependencies.

 Although the three IDEs propose unsurprisingly distinct interfaces, note that they share at least some basic concepts that
 make it easy to go from one IDE to another if needed. This guide is illustrated by a simple test combining a simple server
 Restlet that serves the “hello, world” text and a simple ClientResource that gets it and prints it to the console. It depends
 only on the core module of the Restlet: org.restlet.jar.

 The whole test code is located in a single Java class called HelloWorld, whose package name is hello. In the following listing, you’ll find the content of this class.

 Listing B.1. Sample HelloWord program

 [image:]

 The remainder of this section assumes that the Restlet Framework has already been installed via the Windows Installer or the
 zip distribution so that the archives are available via the file system. Let’s start with the Eclipse IDE.

 B.2.1. Eclipse

 Eclipse is an open source project developed by the Eclipse community (www.eclipse.org). For the purpose of this book, we present a basic configuration of a Java application using Eclipse 3.6, known as Helios.
 Once Eclipse is started, go to the Java perspective and choose File > New > Java Project (figure B.10).

 Figure B.10. Create a new project.

 [image:]

 The first page of the wizard is where you enter the name of the project. Call it test-Restlet and leave the other parameters as their default values. Because the Next button leads you to define specific or advanced
 parameters, you’ll ignore it and finish the process by clicking Finish (figure B.11).

 Figure B.11. Enter the project name.

 [image:]

 Once the project is created, you need to add the dependency to the Restlet Framework, which, in that simple case, consists
 of a single Java archive: the code module org.restlet.jar. Open the contextual menu of the project by right-clicking the name of the project. Follow the Build Path submenu (figure B.12).

 Figure B.12. Open the contextual menu.

 [image:]

 Click Configure Build Path, and make sure the Libraries tab is selected. You should see the window shown in figure B.13.

 Figure B.13. Configure the build path.

 [image:]

 A direct way to add an archive is to click the Add External JARs button and browse your disk to select the desired archive.
 One drawback with this is that your project now depends on your filesystem. Eclipse offers two smarter ways to achieve this.
 The first is based on the declaration of variables which can be extended. The other is based on the declaration of the user
 library—refer to the documentation of the Eclipse project for more detail on this feature. In this case, you’ll create a RESTLET_HOME variable pointing to the root directory that contains Restlet libraries, and then this variable will be extended to list
 real Java archives. To achieve these two tasks, click the Add Variable button. You’ll see the dialog in figure B.14.

 Figure B.14. Creating and extending a variable, first page

 [image:]

 The first step is to create the variable. Click the Configure Variables button and then New.

 In this case, the variable is called RESTLET_HOME and points to a local directory. You can either browse your file system using the Folder menu or enter the directory manually.
 Here, you use the root directory of Restlet previously installed using the Windows Installer (figure B.15).

 Figure B.15. Creating a variable

 [image:]

 Once the variable has been created, you’re redirected to the window that lists the available variables (figure B.16).

 Figure B.16. Listing variables

 [image:]

 Because you’ve only defined a directory, you need to extend it. Choose the RESTLET_HOME variable and click the Extend button to reveal the extensions. This is a simple browser that will help you to choose the
 single entry used to extend the variable. In this case, the entry org.restlet.jar is located under the lib directory (figure B.17).

 Figure B.17. Locating the entry to extend the RESTLET_HOME variable

 [image:]

 Once the JAR file is selected, click OK and return to the Java Build Path dialog to see the new entry added to it (figure B.18).

 Figure B.18. Extending variables

 [image:]

 As a side note, classpath variables and user libraries can be configured outside a project in the preferences of Eclipse.
 They’re both available under the submenu Java > Build Path (figure B.19).

 Figure B.19. Managing variables and user libraries in Eclipse

 [image:]

 The project is created and its build path configured. Create a new package called hello and a new class called HelloWorld, and copy and paste the code specified in listing B.1. Figure B.20 gives a view of what you should see in your Eclipse session. Display the contextual menu by right-clicking the class. It
 will allow you to run the main method; choose Run As > Java Application.

 Figure B.20. Run the main class.

 [image:]

 Figure B.21 illustrates the result of the code once it has run. You should see in the Console view some log trace in red and the “hello, world” string printed in black.

 Figure B.21. The Console view

 [image:]

 Note that Eclipse is also integrated with Maven using the m2 plug-in. In addition, as seen in the previous section, Eclipse
 provides its own distribution system known as update sites. In the next section, you’ll repeat the same tasks using another open source IDE called NetBeans.

 B.2.2. NetBeans

 NetBeans is the development environment provided by Oracle (www.NetBeans.org). This section illustrates the basics steps of creating a simple Java project and running it using NetBeans version 7.0.1.

 Let’s begin with the creation of a brand-new project. Choose File > New project (figure B.22).

 Figure B.22. Create a new project.

 [image:]

 Choose Java Application in the first step of the creation process (figure B.23) and click Next.

 Figure B.23. Create a new Java project.

 [image:]

 On the second pane, enter the name of the project; the location will be built automatically (figure B.24).

 Figure B.24. Choose the project name and location.

 [image:]

 Once the project is created, it’s time to configure the dependency to the Restlet Framework (the single core module). Right-click
 the Libraries item (figure B.25).

 Figure B.25. Update dependencies. Figure B.26 Add a new global library.

 [image:]

 You can directly browse your local disks until you find the org.restlet.jar file using the Add JAR/Folder option. A better
 way is to first configure a container of Java archives for the whole workspace. This will ease the configuration of the next
 projects and prevent your project from depending directly on your filesystem. To do so, NetBeans proposes the concept of the
 library. Select the Add Library option and click Create. Enter the name of the library—for example, RestletLibrary2.1—and choose the Class Libraries type (figure B.26).

 Figure B.26. Add a new global library.

 [image:]

 The next step consists of gathering the list of Java archives that will be part of this library. Use the Add JAR/Folder button
 to pick each JAR file that you want to use. You can pick them one by one (figure B.27).

 Figure B.27. Complete the library.

 [image:]

 At the end of the process (after a few additional clicks), you can select this library for your project (figure B.28).

 Figure B.28. Add the library dependence to the project.

 [image:]

	

Note

 You can manage the libraries of your NetBeans workspace using the Tools/Libraries global menu.

 	

You’re done with the project creation and configuration. Create a new package called hello and a new class called HelloWorld, and copy and paste the code from listing B.1.

 Figure B.29 gives a view of what you should see in your NetBeans session. Display the contextual menu by right-clicking the class. It
 will allow you to run the main method by choosing the Run File option.

 Figure B.29. Run the main class.

 [image:]

 Figure B.30 illustrates the result of the execution of the main method. The Output view contains the log traces in red and the “hello, world” string in black.

 Figure B.30. The Output view

 [image:]

 It’s time to end this tour of development environments by introducing a popular commercial IDE called IntelliJ IDEA.

 B.2.3. IntelliJ IDEA

 As stated by the originators of IntelliJ IDEA (www.jetbrains.com/idea/): “IntelliJ IDEA is an intelligent Java IDE intensely focused on developer productivity. Our code editor is consistently
 called the best in the industry, and we support all the major languages and technologies with your productivity and teamwork
 in mind.”

 If you want to try it, download the community release—which is free but supports only the Java SE and not Java EE. Unsurprisingly,
 the story begins by choosing File > New Project (figure B.31).

 Figure B.31. Choose File > New Project.

 [image:]

 Enter the name, and choose Java Module as the project type. In the next panel (figure B.32), choose Create Project from Scratch and click Next.

 Figure B.32. Create a new project.

 [image:]

 Figure B.33 shows you the window where you enter the name of the project.

 Figure B.33. Specify the project name, location, and type.

 [image:]

 Leave the default values of the source directory, and click Next (figure B.34).

 Figure B.34. Specify the source directory.

 [image:]

 Leave the default JDK unless you have a special need (figure B.35).

 Figure B.35. Specify the JDK.

 [image:]

 The dialog in figure B.36 ends the project creation process. Click Finish.

 Figure B.36. Final step

 [image:]

 Once the project is created, you configure its dependency with only the core module of the Restlet Framework. Choose File
 > Project Structure (figure B.37).

 Figure B.37. Begin configuring the project dependency.

 [image:]

 In the left panel, choose Modules. In the right panel, select the Dependencies tab and click the Add button, using the Single-Entry
 Module Library option (or “JARs or directories” in version 11). See figure B.38.

 Figure B.38. Adding a dependency

 [image:]

 You can explore the filesystem to look for the org.restlet.jar file. Once found, select it. The project is then created and
 configured. Create a new package called hello and a new class called HelloWorld, and copy and paste the code from listing B.1. Figure B.39 shows what you should see in your IntelliJ session. Display the contextual menu by right-clicking the class. You can run
 the main method by choosing the Run HelloWorld.main() option (figure B.39).

 Figure B.39. Run the main class.

 [image:]

 Figure B.40 illustrates the result of the execution of the main method. The Output view contains the log traces in red and the “hello, world” string in black.

 Figure B.40. The Output view

 [image:]

 This concludes the steps for creating, configuring, and running a Restlet project inside IDEs. But this isn’t the end of the
 appendix. We’ll next discuss a less friendly way to develop a Restlet application, using only the command line.

 B.2.4. Command line

 Let’s go back to basics, relying only on the simple tools provided by the JDK: javac for compiling your source code and java to run the compiled code, plus a simple text editor. Once the content of the code has been written (in this case, the sample
 Java class HelloWorld.java), you can compile and launch your code with only two command lines, as illustrated in figure B.41, assuming that your org.restlet.jar file is available in the current directory.

 Figure B.41. Compile and launch the code.

 [image:]

 Note that you have to correctly and cautiously set the classpath for each command via the -cp parameter. The classpath should contain at least the core module of the Restlet Framework.

 B.3. Suggested testing tools

 This section reviews a set of common tools used for testing web APIs covering unit tests (JUnit, TestNG) and integration tests
 (cURL, RESTClient, ClientResource). We end with advice on debugging problems you may face during Restlet development.

 B.3.1. Unit testing

 This section illustrates the testing features of the Restlet Framework. The main one is that you can programmatically invoke
 all the API classes (Component, Application, Server-Resource, and so on) used during the development of your application, without going through regular network layers. This operation
 consists of creating the desired instance of the Request class with all its properties set (URI, method, entity, media type preferences, and so on) and invoking the handle(Request, Response) method. This method is available for any subclass of org.restlet.Restlet, such as Component, Application, Router, Filter. A similar handle() method is also available for subclasses of ServerResource.

 The rest of this section discusses how to do unit testing using the common JUnit and TestNG tools to automate and structure
 your test suites.

 JUnit

 JUnit is a widely known testing framework integrated into several tools and IDEs such as Eclipse, NetBeans, and IntelliJ IDEA.
 We’ll illustrate it using the mail management application developed in this book. We’ll focus on a particular resource and
 test it using three distinct layers of the application: the server resource itself, the hosting application, and the component.

 The following listing contains a simple JUnit test case that instantiates the RootServerResource class, builds a request/response as it would be received, and lets the resource handle the call.

 Listing B.2. Unit test for RootServerResource

 [image:]

 In this case the target server resource is simple, and its logic doesn’t rely on services offered by the parent application,
 such as the tunnel service. In real life, server resources are frequently using services and data from their parent application,
 shared with a sibling resource. It’s therefore better to test them in their natural context.

 The following listing contains a simple JUnit test case that builds a request/response as it would be received by the server
 connector and directly invokes a local instance of the MailServerApplication class.

 Listing B.3. Unit test for Application

 [image:]

 Another way to issue the client request is to create a ClientResource instance and locally attach the application to it using its setNext(...) method.

 To complete the test suite, you can test the resource at an even higher level using a parent Component. The following listing shows almost the same test code except that it targets the MailServerComponent class.

 Listing B.4. Unit test for Component

 [image:]

 As a side note, the editions for Java SE and Java EE include a test module called org.restlet.test that contains the whole test suite for the Restlet Framework. These tests are all written using JUnit and offer a good start
 point for discovering Restlet code.

 TestNG

 Inspired by JUnit, TestNG offers additional features such as running tests concurrently using thread pools. It’s also integrated
 by various tools and IDE such as Eclipse, IntelliJ IDEA, and more. The following listing is a transposition of the test case
 used for testing the Component class, but using 10 concurrent threads issuing a total of 100 calls.

 Listing B.5. Unit test for Component

 [image:]

 [image:]

 TestNG is also a good tool for integration testing, end to end, functional, and more.

 B.3.2. Integration testing

 This section introduces a set of tools that allows testing your application at the network level.

 cURL (HTTP://CURL.HAXX.SE/)

 cURL is a command-line tool that supports several communication protocols including HTTP, HTTPS, and FTP. It’s available for
 a wide range of OSs, including numerous Linux-based OSs, Windows, and MacOS.

 It offers a large set of commands, but we’ll stick to the simpler ones here. The first command allows you to get the representation
 of a resource. Give the URL of the remote resource as a single argument to the cURL command like this:

 C:\>curl http://localhost:8111/
Welcome to the RESTful Mail Server application !

 To get the whole set of response headers, add the –D option. The headers will be dumped to the provided text file:

 C:\ >curl -D header.txt http://localhost:8111/
Welcome to the RESTful Mail Server application !
C:\ >more header.txt
HTTP/1.1 200 OK
Date: Sun, 18 Sep 2011 16:21:57 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.1.m5
Content-Length: 48
Content-Type: text/plain; charset=UTF-8

 cURL is complete enough to give you the ability to manually specify all aspects of the request including headers (use the
 –H options), method (-X), and entity (--data, --data-binary, -T). We’ll let you discover the other capabilities of this tool. For now we’ll introduce RESTClient, which can be seen as a
 graphical version of cURL.

 RESTClient

 RESTClient (http://code.google.com/p/rest-client/)is a Java application to test RESTful web services. You can use it to test any kind of HTTP server.

 You’ll repeat the same GET method as in the preceding section. The window is more or less divided into two parts. The upper
 part lets you configure the request—for example, the URL of the remote resource—and the method (figure B.42).

 Figure B.42. Specify the request.

 [image:]

 The lower part is dedicated to the introspection of the response attributes: headers, body, and so forth. You can glance quickly
 at the set of response headers (figure B.43).

 Figure B.43. Response headers

 [image:]

 As you may have noticed, this tool offers a simple but powerful interface for precisely testing your web APIs. In addition,
 writing test scripts using Java code against a RESTClient Java API is possible.

 The following section adds the Restlet Framework to the heap.

 ClientResource (Java Code)

 In case you need to programmatically test your REST API, you may find it useful to rely on the client API offered by the Restlet
 Framework. It’s able to give you fine control on the request and access to all parts of the response: headers, entity, and
 entity attributes. Figure B.44 illustrates this in a few lines of code.

 Figure B.44. Use of a ClientResource to test a remote resource

 [image:]

 That’s our short review of tools that help you test your web API. We’ll end this appendix by sharing best debugging practices.

 B.3.3. Debugging problems

 How do you debug a Restlet application? On a running system, the main source of debugging information is the log file recording
 the application’s activity. We’ll consider some of the logging features in the Restlet Framework that ease the configuration
 of log traces and the exploitation of these traces. Then we’ll describe debugging practices when developing an application
 within an IDE.

 The Restlet Framework log feature is based on the standard java.util.logging log API provided by Java SE (since version 1.4). By default, Restlet components generate Apache/IIS-like logs, which facilitate
 their exploitation by standard tools such as Analog. Thanks to the standard log API, you can also configure the format, the
 location of the log files, the rotation of the log files, and more. By default, the configuration of the logs relies on the
 system property java.util.logging.config.file, which locates the standard configuration. In case this property is missing, it’s still possible to configure the log programmatically
 thanks to the org.restlet.engine.Engine class. This relies on two static members: logLevel and restletLogLevel. The first line of code in the following listing turns off the log level for all loggers, and the second one turns on all
 traces for the loggers with names starting with org.restlet.

 Listing B.6. Programmatically configuring the log level

 [image:]

 Another feature is the ability to restrict the generated logs according to the properties of the incoming request. Each Restlet
 component has a dedicated LogService object that copes with the access traces. The LogService class enables subclasses to customize the isLoggable(Request) method, which returns a Boolean. By default, it looks up the Request.loggable property that you can easily modify.

 You can also create your own implementation of the LogService class and override this method to enable a log for a particular set of URIs, method, or any other attributes of the incoming
 request. The following listing shows how to enable traces for Internet Explorer browsers only.

 Listing B.7. Programmatically enable log traces for MSIE clients

 public class MyLogService extends LogService {
 @Override
 public boolean isLoggable(Request request) {
 return request.getClientInfo().getAgent() != null
 && request.getClientInfo().getAgent().contains("MSIE");
 }
}

 When something goes wrong, and no trace can easily let you know what is going on, it’s easy to use the step-by-step debugger
 of your IDE. To get a hold on the current request, you need to override the handle(Request, Response) method of the specific Restlet you want to start inspection from, put a breakpoint inside it, and follow the processing.
 You should attach the source code of the Restlet Framework available in the distributions to let you step inside the Restlet
 code and be able to follow the processing chain down to the problem you encounter.

 Another rarely used feature offered by Java and easily usable with modern IDEs such as Eclipse is the ability to remotely
 debug a running JVM, including doing step-by-step debugging. If your server is hidden behind a firewall, it’s still possible
 to use this feature by setting a local port forwarding through an SSH session using tools such as Putty on Windows.

Appendix C. Introducing the REST architecture style

 This appendix will give you a minimal REST background that will help you understand the main concepts at the core of the Restlet
 Framework. Understanding REST is key to using the Restlet Framework because it’s the official architecture style of the web
 and because the Restlet API is a direct mapping of REST and HTTP concepts to Java. We’ll also discuss the relationship between
 REST and HTTP, comparing it with the historical RPC-like alternatives such as SOAP.

 C.1. Supporting all web features with REST

 Billions of people use the web in one form or another. Millions of developers create web applications. Yet only a small number
 of them have heard about REST, which defines the architectural style of the web. REST was created by Roy T. Fielding, the
 primary architect of HTTP 1.1, the backbone protocol of the web.

 REST is the acronym for REpresentational State Transfer. It’s a set of principles that, when correctly applied, helps in building software architectures and applications that benefit
 from all the qualities of the web. Those qualities are numerous and include greater scalability, efficient network use, and
 independent evolution of clients and servers (also called loose coupling).

 Now, would you build a Gothic church or an art deco hotel without knowing about the Gothic or art deco architectural styles?
 Certainly not! The same is true for the web; you shouldn’t build web applications without knowing about the architectural
 style of the web. By understanding the principles defined by REST and applying them in your development, you’ll be able to
 create distributed systems with highly valuable properties such as scalability, loose coupling, performance, and simplicity.

 This section gives you the big picture of the web—its increasing role as the center of our information system and its impact
 on all types of applications and platforms like mobile devices. Next we discuss REST and its architecture elements and explain
 its relationship to the HTTP protocol.

 C.1.1. The all-embracing web

 Everybody knows about the Web 1.0, the web of hyperlinked text documents built on top of the internet, where web browsers
 and web servers are kings using the HTTP protocol to exchange those documents.

 Later the AJAX technique offered a way to asynchronously send HTTP calls from web pages, clearing the path for Web 2.0 and
 the Rich Internet Applications that were more complex, reactive, and more social. This new way of using the web gave rise
 to a whole new range of frameworks, such as jQuery and Google Web Toolkit, that tried to facilitate the development of dynamic,
 JavaScript-based applications hosted in web browsers.

 Many efforts were made to realize Tim Berners-Lee’s vision of a web of machines talking to each other on behalf of their human
 owners in a more meaningful way. This is the Semantic Web, often called Web 3.0, that we cover in more detail in chapter 10. This led to the Linked Data movement and the creation of a web of hyperdata, mostly parallel to the previous forms of the
 web.

 Cloud computing introduced a radical change in the way we build and provision applications at web scale. Making extensive
 use of web APIs, as exemplified by Amazon Web Services, cloud computing drives significant cost reductions, simplifies maintenance,
 and allows organizations to be much more reactive and focused than when managing the infrastructure themselves.

 The latest wave has been led by mobile phones and tablets becoming smarter, touting fully featured web access, and offering
 new interaction experiences thanks to native apps and marketplaces. In countries where computers aren’t widespread, mobile
 phones have even become the primary way of accessing the web. Even though the web browser isn’t always at center stage, web
 standards such as HTTP and JSON connect those applications, often using back ends in the cloud to store and share data and
 do heavy processing.

 We’re now seeing the rise of the internet of things, also called the web of things, making the web more present in our daily
 lives and more transparent at the same time, entering our home in new forms such as connected body scales, thermostats, or
 power regulators. Hypermedia isn’t always the best UI, and HTML 5 might not be the answer to all our interaction needs, but
 the web is still at work to exchange information via web APIs and allow more consistent experiences across all those machines.

 Adapting to all those types of webs, as visualized in figure C.1, represents a big challenge when designing your web applications. They need to scale and adapt to various environments such
 as small screens, stay manageable, and evolve quickly to address new market trends or user needs.

 Figure C.1. Multiple forms of the web using REST and HTTP

 [image:]

 These are a few examples showing how much the web is becoming ubiquitous and exerting a strong attraction on information systems.
 In the last ten years, we all have tried to adapt to it, exposing internal applications and services to the web, developing
 web gateways or tunnels, and building specific applications for each type of web.

 We believe it’s time to think differently—to build from the web rather than to constantly adapt to it. With REST in your mind,
 you’ll be able to envision the web in a unified and empowering way. With Restlet in your hands, you’ll be able to map REST
 concepts directly to your design and code and build unified web applications capable of supporting all those types of web
 at the same time.

 C.1.2. How REST explains the architecture elements of the web

 One of the masterminds behind the web is Roy T. Fielding. In 1994 he started working as a doctorate student at University
 of California Irvine, contributing to the specification of several web standards and rationalizing the design choices that
 were made.

 In 2000, he published a PhD thesis under the rather abstract title Architectural Styles and the Design of Network-based Software Architectures, which included a chapter with an even more cryptic title: “REpresentational State Transfer (REST).” [12] This thesis remained confidential for a few years, but as REST was constantly promoted and interest in it grew quickly,
 the thesis became widely read and is still debated today.

 Why so much interest in this text that’s rather abstract and hard to digest? Well, REST explains the architecture of the web
 so well that it illuminates many features and design choices that were made by the builders of the web. It contains a blueprint
 that all web applications should follow.

 The thesis starts with a general discussion of software architectures, continuing with specifics of network-based application
 architectures. Fielding then proposes a classification of architectural styles such as pipe and filter, client-server, layered systems, remote sessions, virtual machines, code on demand, and distributed objects. Building architects could have the same discussion about building architectural styles such as Roman or Gothic.

 Fielding describes software architectures as a configuration of architectural elements, which are, in the case of REST, components, connectors, resources, representations, and a few data elements. In the following sections we take a look at the higher-level architectural elements, because this
 provides a good way to start comprehending REST and Restlet.

 Resources

 Let’s start our exploration with the most important element: resources. They’re the building blocks of the web. A resource can be anything of interest that an application wants to expose on the
 network for other applications to use. It can be the balance of a bank account, the current temperature in Paris, a Shakespearean
 text, a video of a play, a collection of pictures, a blog post, and so on.

 One important characteristic of those resources is that they’re linked together by embedded hyperlinks in HTML documents or
 URI references in feeds pointing to recent blog posts. In exactly the way it was envisioned and named by its creator Tim Berners-Lee,
 the web is a distributed set of resources that can be navigated and discovered dynamically.

 What’s amazing is that all those resources—retrieved, updated, or deleted by users, humans, or robots—form a complex system
 that’s constantly evolving and growing. Figure C.2 illustrates this and shows the potential relationships between resources via hyperlinks. In practice, only a few relationships
 will be used and may sometimes even be broken. We all know the 404 “Not found” error pages that are annoying but that also
 prove the liveliness of the web.

 Figure C.2. The web as a graph of potentially hyperlinked resources

 [image:]

 To allow users to retrieve them from anywhere in the world, each resource is given a unique name called a Uniform Resource
 Identifier or URI (for example, http://www.paris.fr/weather), enabling identification and remote access on the internet.

 As shown in figure C.3, a resource can expose its state via representations containing both metadata (such as size, media type, or character set)
 and content (binary image or text document). The representation of a confirmation of purchase on eBay could be an HTML document;
 for a wedding picture it could be a JPEG binary stream; for a contact in an address book web service it could be an XML fragment;
 and so on.

 Figure C.3. Relationships between resources, identifiers, and representations

 [image:]

 Let’s look closely at a resource to see how it’s typically implemented in an information system. The circle in figure C.4 delimits the resource from its external environment, which interacts with it.

 Figure C.4. Anatomy of a resource

 [image:]

 The resource is composed of some state depicted at the center, managed in any way that makes sense (like in a database, in a file, or
 computed dynamically) and of standard methods (like GET, PUT, DELETE, or POST explained right after) that together define
 its uniform interface.

 To give you an idea of the importance of resources, you can compare them to objects in the object-oriented paradigm. They are the backbone of your web applications, exposing both state and behavior. Compared to the object-oriented
 paradigm, the standard resource methods (usually HTTP methods) are similar to object methods, with a key difference: they’re
 limited in number and have a behavior that’s predefined by a protocol such as HTTP. Because applications use predefined methods,
 instead of defining their own, to express interactions over the network, the network infrastructure can understand to a certain
 degree the semantics of the interactions it’s carrying on. From this understanding comes the ability to provide a number of
 key services such as caching and automatic message reemission, things an infrastructure can’t do blindly without understanding
 some of the application-level semantics of the interactions.

	

 REST and persistent state

 REST itself doesn’t define where or how the state of resources should be stored, only how it can be retrieved (via GET) or
 provided (via PUT and POST). It’s also possible to have a read-only resource (only supporting GET). Otherwise, the resource
 state could be provided by any means such as a filesystem, a combination of other resources, physical sensors, and so on.

 In addition, RESTful databases such as Apache CouchDB (http://couchdb.apache.org) exist, blurring even more the separation between the web and traditional information systems where relational databases
 are king. Although REST communications are stateless, REST resources are definitely stateful!

 	

Another key advantage of this uniform interface principle is the reduction of coupling between clients and servers. The fact
 that you don’t need to generate stubs or proxies and recompile your web browser each time you want to visit a new web site
 is a benefit of manipulating resources through a uniform interface. In appendix D, we push this comparison further and talk in more detail about the resource-oriented paradigm that REST introduces.

 Components

 We’ve seen that resources are everywhere on the web, but that doesn’t tell us much about how they’re effectively distributed,
 managed, and accessed. For this, REST offers the notion of distributed components, coarse-grained software elements that encapsulate
 state and behavior and expose them on a distributed network such as the internet. It’s important to understand that in this
 book and in the Restlet API, components aren’t typical developer components but architectural actors in a distributed system.

 Figure C.5 illustrates four components, distributed on the web. The dotted links correspond to a network communication, typically a
 protocol like HTTP on top of TCP/IP.

 Figure C.5. Components are coarse-grained elements (HTTP server, client, proxy) distributed on the web

 [image:]

 There are many types of components, such as user agents, origin servers, gateways, and proxies. Well-known user agents are web browsers (like Mozilla Firefox) and common origin servers are web servers and web engines
 (like Microsoft IIS and Apache Tomcat). Note that the Restlet Framework provides all the technology needed to develop such
 components.

 Connectors

 Components need to communicate among themselves, and for that they use connectors, as illustrated in figure C.6, to abstract the communication details such as the network management (like TCP/IP sockets) and the protocol (like HTTP connections).

 Figure C.6. Components communicate via connectors.

 [image:]

 In REST, those communications are stateless. The client sends a request that’s self-sufficient, the server returns a response,
 and the communication is ended. More precisely, in the case of HTTP a socket connection is established that can be made persistent and reused for several transactions.

 There are many types of connectors, such as client connectors, server connectors, caches, resolvers, and tunnels. The most common connectors are client connectors (like the Apache HTTP Client library), which send requests, and server
 connectors (like the Jetty HTTP Server library), which listen for incoming requests and send back responses. The Restlet Framework
 also provides a comprehensive set of connectors for protocols such as HTTP, POP3, SMTP, FILE, and many more.

 Sample Interaction

 Let’s now consider a more complete scenario, depicted in figure C.7, where a user agent (like a web browser) would be the client of an origin server, invoking methods on target resources identified
 by URIs. Typically a first GET request would retrieve Representation 1.1 of Resource 1 as an HTML document that would then
 be displayed in a web browser.

 Figure C.7. Interaction between a user agent and an origin server

 [image:]

 Then, following a hyperlink found in the representation, the user agent could retrieve a second representation of the same
 resource (Representation 1.2) in a different format (like a PDF document). Following another hyperlink, the user agent could
 access another resource (Resource 2) and retrieve its representation as another Representation 2 HTML document. This sort
 of interaction doesn’t have to be limited to one user agent and one origin server or only to GET methods.

 C.1.3. Understanding the relationship between REST and HTTP

 You may still be unclear about the exact relationship between REST and HTTP. REST is definitely different in nature from HTTP
 because it doesn’t identify the same type of things. REST is an abstract architectural style, HTTP is a concrete communication
 protocol.

 HTTP is the main protocol to manipulate resources on the web and was at the basis of REST formalization. It’s a client-server
 network protocol: a client application, be it a web browser or any other kind of program, sends a request to a server application, which processes it and returns a response.
 This response can be an HTML document (in the case of a typical web site), an XML document (in the case of a typical web service),
 or any other kind of data. The fact that presentation information (in HTML, for instance) and raw data (in XML, for instance)
 are dealt with in the same way is particularly interesting: it unifies two kinds of distributed systems that have often been
 implemented with completely separate technologies in the past.

 But HTTP doesn’t merely define a request/reply message exchange pattern: it goes much further to specify the semantics of
 the interactions between clients and servers. With HTTP, you don’t say “send this request to this application” or “send back
 this response.” The request targets a specific resource, identified by a URI, and manipulates it using methods defined by
 HTTP, such as GET, PUT, POST, and DELETE. Therefore an HTTP client program expresses things such as “give me a representation
 of the current state of this resource” (with GET), or “create or update this resource with the representation I’m sending
 to you” (with PUT), or “remove this resource” (with DELETE), and so forth.

 Aside from this difference in nature, REST and HTTP are best friends because HTTP embodies the principles of REST. Consequently,
 creating RESTful applications is facilitated by the use of HTTP. But it isn’t enough to use HTTP or an HTTP toolkit to make
 your application RESTful. In the same way that you can create non-object-oriented programs using an object-oriented language,
 you can create non-RESTful applications using the HTTP protocol. This isn’t necessarily bad in itself, but if you want your
 application to benefit from the qualities of the REST architecture style, you need to actively apply its principles.

 In the end, REST isn’t dependent on a specific protocol such as HTTP. Its principles could be applied to other protocols.
 Roy T. Fielding has been considering a successor to HTTP—code-named Waka [28]—that would also be RESTful.

 C.2. How REST became an alternative to RPC

 Since the creation of the web in 1991, its spread has been so deep and fast that at the turn of the millennium, many believed
 that we understood it inside out. People had been developing websites, web clients, and web applications for 10 years, and
 the next step was to develop programmatic, machine-to-machine web services.

 In the 1980s, a way of building network-based distributed systems arose. Named RPC, for Remote Procedure Call, it was adapted to object-oriented programming in the 1990s under the name distributed objects. The idea behind this approach was both brilliant and fascinating. It consisted of generalizing to distributed interactions
 a notion that works wonderfully well in everyday programming: procedure call, or method invocation. Using this approach, procedures and methods are no longer confined to the innards of a given program. They can be exposed
 by a program on the network and called from other programs, providing a high-level and familiar model for application-to-application
 interactions.

 A number of toolkits were produced to support this distributed programming model and make its use as transparent as possible.
 The idea was to make calling a remote procedure as easy as calling a local one. To achieve this, an infrastructure of some
 sort had to kick in to marshal data (arguments and result) over the network and to coordinate the client and server process.
 The ultimate goal was to completely mask the distributed nature of the interaction, giving the illusion of calling a local
 routine and achieving full location transparency of the components in a distributed system.

 In figure C.8 you can see some of the main RPC and distributed objects specifications and technologies produced over the years. The latest
 generations of RPC-inspired protocols such as XML-RPC, SOAP RPC, and AMF (a protocol defined for Adobe Flex) have in common
 the ability to use HTTP as their message transport layer.

 Figure C.8. Evolution of the RPC and distributed objects technologies

 [image:]

 In the 1990s, with the advent of object-oriented programming, distributed objects systems became hyped as the general solution
 for distributed computing. They would mask the complexity of implementing distributed systems and lead us into a bright, pleasant
 programming world!

 Unfortunately, that turned out not to be the case. Although such technologies were relatively convenient for producing prototypes,
 creating robust, scalable, and working distributed systems was a nightmare. Moreover interoperability was limited, and coupling
 was strong between distributed components, making it difficult to evolve one component without disrupting existing callers.

 Although RPC was a seductive idea worth exploring, it turned out to be a bad one, at least in the context of the current computing
 technology. In 1994 a group of researchers at Sun published A Note on Distributed Computing, considered to be one of the most important papers in the field—a must-read for every software architect. It convincingly
 explained why trying to deal with remote objects as if they were local was doomed to failure. Another reminder was given by
 Martin Fowler in his first law of distributed computing.

	

 Early warnings against “transparent” distributed objects systems

 “We argue that objects that interact in a distributed system need to be dealt with in ways that are intrinsically different
 from objects that interact in a single address space. These differences are required because distributed systems require that
 the programmer be aware of latency, have a different model of memory access, and take into account issues of concurrency and
 partial failure [...] A better approach is to accept that there are irreconcilable differences between local and distributed
 computing, and to be conscious of those differences at all stages of the design and implementation of distributed applications
 [...]

 “Programming a distributed application will require the use of different techniques than those used for nondistributed applications.
 Programming a distributed application will require thinking about the problem in a different way than before it was thought
 about when the solution was a nondistributed application. But that’s only to be expected. Distributed objects are different
 from local objects, and keeping that difference visible will keep the programmer from forgetting the difference and making
 mistakes.”

 —Extracts from A Note on Distributed Computing [30]

 	

Despite these early warnings, the software industry proceeded with the RPC approach, trying to fix problems along the way
 while still pursuing the goal of location transparency. Some havoc ensued. For example, some realized that because it was
 impossible to manipulate remote objects like local ones, the only solution to preserve location transparency was to deal with
 local objects as if they were remote. This culminated with the introduction of components models such as COM/DCOM and EJB,
 where we had to deal with the complexities of distributed computing regardless of the nature, distributed or not, of the application
 in development.

 Meanwhile, an incredibly successful distributed platform was spreading like fire: the web, with HTTP as its core. Although
 the web was mainly used for user-facing applications (such as using a browser to interact with a remote server), some thought
 about a new way of using it: generalized programmatic application-to-application interactions over the network. Upon reception
 of an HTTP request, instead of returning an HTML document, an application could return raw data (in the form of an XML fragment,
 for instance) to another application (not necessarily a web browser). The idea of web services was born. Great inventions
 often use existing things in new ways—think about how people are using their phone line for watching movies or playing online
 games—and this simple idea had the distinctive mark of such inventions. It quickly became popular: using HTTP would allow
 using the existing infrastructure of the web, ensuring interoperability and making worldwide distributed interactions possible.

 At that point, two main approaches emerged. The first, supported by industry heavyweights such as Microsoft, IBM, and Sun,
 elected to use HTTP in what appears now to be a rather awkward way: as a mere low-level transport layer. This way uses only
 a tiny part of HTTP, mainly the bits that allow moving some data from one network node to another. On top of that, other protocols, such as SOAP, were defined to provide higher-level mechanisms, such as an
 extensible envelope abstraction, a way to convey application-level errors, and so on. This is awkward, because HTTP isn’t
 a transport layer protocol, like TCP and UDP are, but a higher-level protocol that already provides features such as extensible
 envelope, error management, support for application-level semantics, and more. Effectively, this approach consists of reinventing
 the wheel and putting somewhat useless layers and layers on top of the existing HTTP layer, while producing all sorts of mismatches
 and complexities along the way.

	

 How things develop

 Karl Popper’s comment, made in the context of biological evolution, also applies well to the development of the web: “It is
 always the existing structure of the network that determines possible variations or accretions. It is the existing network
 that holds the potential for the inventions to come.”

 	

Besides, although the natural architectural style of HTTP is REST, most of the web services toolkits were still designed according
 to the RPC style. They suffered consequently from many of the same woes as their CORBA and DCOM ancestors, including strong
 coupling—a fatal flaw for large-scale distributed systems spawning multiple organizations or development teams, given the
 high cost of coordination required to evolve such strong coupled systems over time. SOAP misused HTTP so much that it nullified
 many of its benefits. In particular, SOAP didn’t allow the use of URIs to identify important resources, contradicting one
 of the fundamental ideas behind the web. SOAP also initially only used the HTTP POST method to emit requests, even when the
 goal was pure information retrieval—something HTTP GET was designed and optimized for. It was like owning a Ferrari but driving
 it only in reverse.

	

 What an odd concept!

 In his MIX’07 session “Navigating the Programmable Web” [31], Don Box talk with great humor, as always, about mistakes made in the early web services approaches, notably in the design
 of SOAP, of which he was one of the main authors.

 “You could implement ‘get’ on top of POST if you wanted to, but you’re ignoring this fantastic piece of technology [that is
 the web]... Many of us tried to do ‘get’ on top of POST and it works, but it doesn’t work anywhere near as well as when you
 do ‘get’ on top of GET... What an odd concept!”

 	

Instead of expressing requests and responses with HTTP semantics, these SOAP and WS-*-based web services technologies produced
 messages with semantics that were opaque for the web infrastructure, making it impossible for this infrastructure to perform
 the essential services it was capable of, such as caching, content negotiation, automatic request reemission, incremental
 transmission, and so on. On the other hand, it allowed SOAP to be transport-protocol neutral—to be able to be tunneled over other protocols, not only over HTTP.
 “Great, my programs aren’t adherents to HTTP,” developers could have thought. But this was trading an adherence to HTTP for
 an adherence to SOAP, which was a questionable move in a world where the existing web infrastructure and technical ecosystem
 is HTTP-based, not SOAP-based.

 All these mismatches between the web and these web services initiatives probably came from the fact that, in the late 1990s,
 people crafting these technologies were just like most of us at that time: they didn’t understood HTTP and the web, and they
 were coming from the RPC world. The Fielding thesis wasn’t even published.

 But a few questioned this approach and investigated, using HTTP and its native architectural style to its full extent. If
 our account is correct, it was two people, Roy Fielding and Mark Baker, who started it all. They challenged the mainstream
 web services approach and started to explain how and why using HTTP the way it was designed was an idea worth exploring, even
 in this new context of application-to-application interactions. It may seem obvious now, but for many it was not so clear
 back in the early 2000s. Many in our field, including one of the authors of this book, are directly indebted to Mark Baker
 for being tipped in this direction.

 As years passed, REST became more and more popular as an alternative to RPC. It brought powerful architectural properties
 to distributed systems, including loose coupling, scalability, performance, and so on. Besides, directly using the HTTP semantics
 instead of relying on the SOAP/WS-* stack proved to be beneficial in most situations where using the web as a communication
 channel was a good option to begin with. REST is certainly not the only interesting architectural style, and it isn’t suited
 to every context. But as an alternative to RPC, it constitutes progress in the field of large-scale distributed systems.

 The HTTP specification itself changed in status. A few years before, most of us thought it wasn’t something an application
 developer had to bother with. We tended to see it as something low-level, like the TCP specification. We now realize that
 it’s a high-level protocol, designed to directly convey our applications’ semantics.

 Along the way, epic efforts—in particular in the W3C TAG working group—succeeded in making the SOAP/WS-* stack a little less
 web-hostile. But it wasn’t enough for the stack to ever recover, and it probably won’t escape the fate of its predecessor,
 CORBA.

 Finally, development frameworks dedicated to helping implementing RESTful systems appeared. In the Java world, Restlet pioneered
 this movement, which also happened on other platforms and is now embraced by the big vendors including Microsoft, IBM, and
 Oracle.

Appendix D. Designing a RESTful web API

 As described in appendix C, REST introduces a new paradigm for distributed systems. It may still feel unfamiliar, and you probably have many questions
 about how you can use it for your own projects. You may even have the feeling of coming late to the party, having to catch
 up with yet another huge set of concepts and techniques that others are already mastering. We think it’s time to share a little
 secret with you, which is also good news: you aren’t late; in fact, you’re among the first ones.

 This fact is one of the most exciting aspects of the current dynamic around REST: we’re witnessing the discovery and refinement
 of what makes the web so powerful and how it can be used for new things—in particular, in the field of enterprise computing
 (integration, cloud computing, Mobile Web, Semantic Web, and more). We’re at the beginning of mass adoption of REST in these
 domains, and a lot of fascinating discussions and innovations are happening in the REST space, similar to the early years
 of object-oriented programming. Researchers and practitioners around the world are proposing and discussing REST design and
 development practices, aware that some of them will be keys to the future of the web. Even better, many of these discussions
 and developments are public, and you can take part in them or benefit from them in your own projects.

 To that end, in this appendix we’ll look at RESTful web projects from a methodological perspective. We won’t cover Restlet
 specifically here: our goal is to give you guidance on how to carry on projects involving REST and how to design RESTful web
 APIs. The meat of the matter is the presentation of ROA/D, a pragmatic project methodology dedicated to Resource-Oriented
 Analysis & Design. ROA/D is based on our consulting experience at Restlet SAS since 2008, helping our customers to design their RESTful web APIs, and on the feedback of users in the Restlet community.

 We’ll start with an introduction to ROA/D, giving an overview of the four main phases of a project, which are composed of
 iterations over a number of steps. Along the road we’ll detail each step of the methodology by providing guidance and best
 practices, using UML for the visual communication. In the spirit of Manning’s in Action series of books, we’ll illustrate major concepts and practices in this appendix around an example: the RESTful email system
 that’s implemented across the book’s chapters.

 D.1. Succeeding in a RESTful project: the ROA/D methodology

 Choosing the Restlet Framework to build your next web application will take you a long way toward successfully using REST.
 This is the purpose of a framework after all—to make sure that the right things are easy to do and offer the necessary tooling.

 As you discovered in the book chapters, Restlet is perfect to implement RESTful applications. But as you can create Java programs
 that break all object-oriented principles, you can also create Restlet programs that break all REST principles. You need additional
 guidance, not software, to reach your goal.

 In this section we discuss the impact of REST on project-development practices and explain why it requires a change in development
 practices. Then we introduce the ROA/D methodology and highlight its similarities and differences with common methodologies
 such as Object-Oriented Analysis and Design (OOA/D). And we review usual project phases to see where REST, Restlet, and ROA/D
 matter the most.

 D.1.1. Introducing Resource-Oriented Analysis & Design (ROA/D)

 After reading chapter 1, we hope you felt the disruptive nature of REST and now understand why REST forces you to rethink web development. REST requires
 you to think in resources instead of the objects of the object-oriented world or the tables of the relational world. Those resources are identified
 by URIs and hyperlinked together, exposing representations of their state. They also offer a uniform way to interact with
 them, mainly via the HTTP standard methods (GET, PUT, DELETE, POST, and so on).

 Designing a RESTful web API while providing useful features to its users isn’t trivial. It requires special skills to understand
 the problem domain, analyze the requirements, and design the set of resources composing the API. Figure D.1 illustrates how we position the RESTful web API.

 Figure D.1. Overview of a RESTful web API

 [image:]

 We define a RESTful web API as a set of hyperlinked resources, forming a subset of the web, exposed by a web service or a
 website, and consumed by web clients. Defining this API isn’t easy and requires you to

 	Analyze the requirements of your web project and the features to provide

 	Design the set of resources, their granularity, their URIs, the content and structure of their representations, the standard
 methods that they expose (maybe depending on the user’s role), and the hyperlinks between themselves

Once you have your API defined, you can

 	Implement it using technologies like the Restlet Framework

 	Test it to make sure it satisfies requirements and doesn’t break in the future

 	Deploy it so that your users can use it

That’s a lot of work ahead, and you need to be well organized to succeed. To guide you during this journey, we propose you
 use ROA/D, a methodology that ensures that you won’t miss important steps during your RESTful web projects. We didn’t reinvent
 the wheel—ROA/D fits nicely into popular development processes such as SCRUM, XP (eXtreme Programming), and UP (Unified Process).
 All those processes are iterative in nature, as opposed to the classic waterfall processes. Each of those project iterations
 is composed of a set of steps as illustrated in figure D.2.

 Figure D.2. Typical project iteration steps

 [image:]

 The earlier you’re in a project, the more important the first steps (requirements gathering, requirements analysis, and solution design) are. As you move forward in your project, requirements and design should become more and more stable. Your focus will shift
 more on the later steps (design implementation and implementation testing). During the last iterations, you should have successfully deployed your project into production and ensured that users are
 using it successfully.

 Figure D.3 illustrates traditional project phases that every software development project follows, more or less formally. RESTful projects,
 no exception, also follow this series of phases.

 Figure D.3. Typical project phases defined byUP

 [image:]

 Even if those phases are sequential, they keep an iterative nature. Several iterations will likely be necessary during each
 phase, with a shifting focus from requirements, analysis, and design during inception and elaboration phases, toward a focus on implementation and testing during construction and transition phases. As you move from the beginning to the end of this process, your project should get more and more stable, encouraging
 early feedback and addition of requirements, while giving opportunities for features scope reduction in order to meet project
 goals in terms of time and budget.

 As its name implies, the ROA/D methodology is valuable during the inception and elaboration phases, when you progressively define and stabilize your RESTful web API. Using the Restlet Framework progressively increases
 to reach a peak during the construction phase. This methodology is an adaptation of the popular OOA/D methodology to RESTful application development.

 If you’re interested in learning more about OOA/D, we highly recommend Craig Larman’s book Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development [32]. Considering that Restlet is an object-oriented framework to implement resource-oriented designs in Java, OOA/D skills are
 valuable, in addition to those of ROA/D, to succeed in your REST project.

 While applying ROA/D we also use Unified Modeling Language (UML) as the recommended visual communication language rather than
 invent yet another visual notation. Doing so gives us the opportunity to clarify a common misconception: UML is neither a
 methodology nor a development process; it’s different from OOA/D, ROA/D, SCRUM, XP, and UP but also complementary to them. UML is a standardized visual diagramming notation that facilitates
 the communication between participants in a software project. It facilitates the representation and sharing of your models,
 which is extremely important, but it doesn’t say whether your models are good or bad.

 The following subsections review each phase of a typical ROA/D project.

 D.1.2. Incepting the project

 During inception, the project vision should be defined, more or less formally, producing a business case and a set of initial requirements.
 Those requirements will be refined during the next phases. At this point, you’re looking for an overall feature scope and
 main use cases.

 This phase is also a good time to clarify the overall time frame and budget of the project, assess its technical feasibility
 (for example, developing proof of concepts prototypes, UI sketches, and a logical architecture), and financial feasibility
 (for example, making buy-or-build decisions and ROI estimates). At the end of this phase, you should decide whether or not
 to continue, and under what conditions.

 D.1.3. Elaborating the solution

 During the elaboration phase you identify the majority of the requirements, define a domain model, detail the logical architecture, and reduce the
 main risks, making sure that the team is properly trained and organized.

 This is another phase where several iterations should happen, considering the unstable state of the project. It’s a great
 time for analysis and design workshops and technical prototypes that form reusable subsets of the final system. This is clearly
 the phase where the ROA/D methodology is the most useful, because your RESTful web API is specified with a good level of details
 and your Restlet-based architecture is in place.

 At the end of this phase, you should have a clear idea of the amount of effort remaining and the resources needed to successfully
 complete the system and deliver the project.

 D.1.4. Constructing the solution

 At the beginning of this phase, most of the uncertainties should have disappeared, and the team should be ready to efficiently
 implement the remaining features of the project. It should be a time of active coding (using the Restlet Framework, APISpark,
 or a similar technology) and steady progress.

 There’s still a good chance to have changes in scope and requirements along the way, but their impact should now be marginal.
 Otherwise, it means that the elaboration phase wasn’t correctly followed; maybe because of lack of time or because the external environment forced in some changes
 that couldn’t be correctly taken into account at that point.

 Again, the iterative nature of the process should ensure that you identify blocking issues as early as possible. At the end
 of this phase, all the features of the project should have been completely developed, and the quality level should be good.

 D.1.5. Transitioning the project

 The project should follow final rounds of testing and bug fixing and be deployed in production. At this point, no new feature
 should be added, the code base should be frozen, and only fixes should be made after peer review.

 This is also a phase where the migration procedures from the previous solution, if they exist, should be tested and, finally,
 executed. Users should also receive the proper training to ensure a smooth adaptation without too much impact on their productivity.

 Each of the phases we’ve described is composed of iterations over a number of steps (you saw them in figure D.2). Let’s examine these steps, one by one, for a typical ROA/D iteration, starting from the fundamental requirements-gathering
 step.

 D.2. Gathering requirements

 During the first step of an ROA/D iteration, you collect, write, and organize the requirements of an application. To illustrate
 this we reintroduce you to the example application developed in this book and show you how this step can be carried out in
 the context of this particular example.

 D.2.1. Collecting requirements from the sources

 Gathering requirements is essential because it’s the basis of the agreement between users and developers. They should be understandable
 by users and should be as free as possible of implementation details; the goal is to define the what, not the how. Frequently, users come up with a solution to the problem they face, but discussing and understanding the real issue is essential,
 because the naïve solution may not be the best in the end.

 In an ideal world, all requirements would be known and described in advance, before the next steps begin and during the project
 inception. In practice, those requirements are initially incomplete and evolve during the inception and elaboration phases to stabilize during the construction phase. Each of the iterations gives an opportunity to validate, refine, or remove the requirements—in particular, when users
 can test or react to proposed solutions.

 For our example application we wanted to find a domain that everyone would be familiar with along with a problem for which
 REST would be a particularly good fit. One of the most successful internet applications has been email. Its principle is simple:
 allow the asynchronous exchange of messages between people or programs across the internet. The SMTP protocol is used to exchange
 email messages, and the POP protocol is used to retrieve them from email boxes. Both protocols were defined in the 1980s—well
 before the HTTP protocol that now powers the web. Here’s our challenge for this book: build a RESTful email system that could
 be a basic alternative to classic email!

 D.2.2. Classifying requirements by priority

 The main deliverable for this step consists of a list of textual requirements, ordered by priority. Note that requirements
 are also sometimes called stories to underline the descriptive nature of the intended behavior of the application.

 It’s now time to look at the requirements of our example project. It would take too much space to describe all project iterations,
 so we’ll only show you the result. Keep in mind that this book project took us several months, during which we iterated over
 our example application and refined our requirements for it. We present the result obtained after the inception phase. We identified more than 20 requirements that we classified into three priority groups.

 Priority 1: Core Requirements

 First we described the foundation of the application—the core concepts and needs on which more advanced requirements are defined:

 	Mail is a textual message exchanged between a sender and receivers.

 	Mail is composed of a subject, date, and textual body.

 	Mail can have the following statuses: draft, sending, sent, receiving, or received.

 	Contacts are records about potential mail receivers.

 	Mail addresses are defined using HTTP URIs.

 	Contacts are composed of a name and a mail address.

 	Several accounts can be associated to a single user, called the owner.

 	Accounts contain the mails and contacts of their unique owner.

 	Mail servers manage several accounts.

 	Users can have two roles: application administrator and account owner.

 	Administrators can create and delete accounts.

 	At least one user with an administrator role exists.

Priority 2: Getting Users Organized

 With the core requirements, you can build a RESTful mail server. But to make it usable by end users, you need to add a series
 of requirements. Some are illustrated in figure D.4, providing an overview of the RESTful mail system.

 Figure D.4. Overview of our RESTful mail system

 [image:]

 	Mailboxes can be accessed and managed by their owners from a simple mail client (like a regular HTML browser), a rich mail
 client (like an AJAX web browser), or from a mobile mail client (like a smartphone).

 	Mail can be marked by the owner with any number of textual tags.

 	Mail status is managed using application tags.

 	Account owners can create web feeds, tracking the latest mail with a given set of tags.

 	Accounts contain the feeds of their owners.

Priority 3: Integration with Classical Mail

 To make the mail system usable in an existing context, you need to provide gateways to the classic mail system—the purpose
 of this final series of requirements.

 	Contacts can also contain a classical mail address (name@domain.tld).

 	Mail can be sent using the classical SMTP protocol when a contact has no URI address.

 	Mail can be received using the classical SMTP protocol and associated to a mailbox.

 	Mail can be retrieved from remote servers via the classical POP3 protocol.

 	Contacts can be exposed using the FOAF language, providing a mapping to their SMTP mail address in addition to their URI address.

Once the requirements are gathered, you can move to the next step: analyzing them.

 D.3. Analyzing requirements

 You can now go to the next step of an ROA/D iteration and analyze collected requirements in order to understand the problem
 domain and present them as more practical artifacts. The goal is to investigate and describe how the system will be used and
 what its main functions are. Analysis can also be helpful to identify additional requirements.

 This section contains only a high-level description, and we recommend that you consult a more complete reference such as the
 Applying UML and Patterns book from Craig Larman [32]. We cover the tasks that are typically done during the analysis steps:

 	Describe the main usage scenarios, with UML use case diagrams.

 	Define the domain model, with UML class diagrams.

 	Describe the main system sequences, with UML sequence diagrams.

D.3.1. Describing usage scenarios

 To explain what we expect from a system, it’s useful to describe how we’ll interact with it, as if it were a black box. For
 this purpose we define main usage scenarios in the text and illustrate them with UML use-case diagrams. Those diagrams describe
 interactions between the RESTful mail system and the outside world, also called external actors. While reading the requirements, we identified these actors: mail senders, receivers, account owners, and administrators.
 The first use case in figure D.5 shows an interaction between a mail sender and receivers using our system. At first sight, it looks trivial, but it’s important
 to describe the evident things in order to coin key terminology and ensure that you don’t lose the overall picture of the
 system.

 Figure D.5. Sender exchanging an email with receivers

 [image:]

 Before effectively exchanging emails, being able to manage the mail application is essential. This is the role of the administrators,
 illustrated in figure D.6. Those power users can create new accounts, grant them roles, and delete them.

 Figure D.6. System administrator managing accounts

 [image:]

 As explained in the requirements, an account is associated with one and only one user, but that doesn’t prevent a user from
 owning several accounts. Now let’s focus on the interactions between an account owner and the mail system, illustrated in
 figure D.7.

 Figure D.7. Account owner composing mails and managing web feeds, contacts, and received mail

 [image:]

 An account owner composes new mails by connecting to the system using a mail client, creating a draft mail, and entering the
 receivers, subject, and message. He can write his message in several shots, saving draft mails and editing them again later.
 Once satisfied with a draft, he can ask the mail server to send the mail. Section D.3.3 goes over exactly what happens when a mail is sent out, using a system sequence diagram.

 The account owner can consult the mailbox and select mails he wants to read, associating tags to stay organized. The mail
 status is also exposed via special tags. And he can create web feeds based on a selected set of tags and point his feed reader
 to the given URI to retrieve the matching mails.

 D.3.2. Defining the domain model

 The most important artifact resulting from the analysis is the domain model. It’s a rather conceptual model that’s the basis of other more concrete models created during the design steps. It serves
 to identify the main domain entities and their relationships.

 While reading the textual requirements, you should look for the most important nouns to identify these entities and their
 properties. Note that the required analysis skills are the same as the ones necessary in OOA/D. The domain model is still
 an object-oriented artifact that you later derive into resource-oriented artifacts.

 Figure D.8 identifies six main entities in the example mail system and illustrates their relationships using a standard UML class diagram.

 Figure D.8. Domain model of the mail system

 [image:]

 If you’re not too familiar with UML, note that the links with a black diamond indicate a composition; those with a white diamond
 indicate aggregation. Composition is a stronger form of association, indicating that the lifecycle of the contained class
 is directly connected to the one of its aggregate.

 For example, the Account class is composed of several occurrences of the Contact, Mail, and Feed classes. You can also read
 the associations the other way around. The Contact class is associated to one and only one Account, and the same is true for the Mail and Feed classes.

 There are interesting links between Mail, Feed, and Tag. They have no diamonds, indicating that there’s no “part of” relationship—no
 aggregation or composition. It’s a more balanced association relationship corresponding to the notion of “match” between the
 set of tags and mails or feeds.

 As you can see, there’s nothing specific to REST and resource orientation so far; you can rely on your existing analysis and
 UML knowledge. But this is a key step for the ROA/D methodology because it allows you to more easily build your resource model
 later on and bind it with a persistent object model.

 D.3.3. Describing system sequences

 Although the use-case diagrams are useful to identify the actors and list the main uses of the application, they don’t describe
 precisely the input and output events to the system and the sequence of actions that we discussed previously. That’s the role
 of system sequence diagrams. Figure D.9 details the typical sequence of actions involved when a user wants to compose and send an email.

 Figure D.9. Sequence diagram describing the email sending process

 [image:]

 The actors interacting are listed at the top of the UML sequence diagram, and each one of them has a vertical axis representing
 the time. The arrows illustrate the messages exchanged between the system parts (Sending mail server and Receiving mail server)
 and the actors (Mail client).

 Because the domain is relatively simple, this analysis task may not seem too compelling. But as the complexity of the domain
 grows, you’ll likely rely on it more often. This is also a good preparation for the interaction design in the next steps.

 Adding a textual description of the diagram and the various interactions would be useful. Also, you could define additional
 sequence diagrams—for example, regarding the use cases of the administrator. We leave that to you as an exercise.

 Once the requirements are analyzed, you can progress to the next step: designing a concrete software solution that matches
 your requirements and your understanding of the problem domain.

 D.4. Designing the solution

 After much effort spent specifying what you need to build and then understanding and describing this what, here comes the solution design step of an ROA/D iteration. In this step you actively take into account the specifics of the resource-oriented paradigm and
 think about how to implement the solution. In this section we discuss ROA/D’s design guidelines (summarized in figure D.10) and show how they can be applied to the example mail system (interleaving design guidelines with application of these guidelines
 to our example).

 Figure D.10. Summary of main analysis and design tasks in ROA/D

 [image:]

 D.4.1. Defining the logical architecture

 Your first design task is to define a coarse-grained architecture of your solution. At this point we assume that you chose
 to develop a RESTful web project using an object-oriented language such as Java. Figure D.11 proposes the preferred logical architecture to use when applying the ROA/D methodology. It’s composed of four layers building
 on each other as suggested by the pyramidal layout.

 Figure D.11. Layers of the ROA/D logical architecture

 [image:]

 At the top you have the UI layer supporting the interactions with users—for example, via a web browser or a programmatic HTTP
 client. To respect REST principles, those user interfaces must use hypermedia to animate the application and change its state.
 If the user is a human, it should rely on hypertext displayed in a browser or similar environment, letting the user follow
 hyperlinks and send forms to interact with the system. If the user is a robot—a programmatic client—then hypermedia still
 applies and becomes hyperdata, supported by languages such as XML, JSON, or RDF.

 Below the UI layer is the resources layer that’s manipulated by transferring representations back and forth, invoking HTTP methods on the resources. In this layer,
 typically implemented using a REST framework such as Restlet, it’s essential to respect another REST principle that says no
 state related to client interactions should be main-tained—for example, in the form of session objects. The responsibilities
 of this layer are the identification of resources by URIs, the formatting and parsing of representations of those resources,
 and the routing of calls or security enforcement.

 You could attempt to directly persist those resources into a data store, but in many cases introducing another layer is preferable.
 The objects layer lets you model more easily and extensively the complexity of your domain model and the associated logic. For example, you
 can define domain-specific object methods and have all the power of object-oriented programming.

 The data layer supports the persistence of the objects layer and indirectly of the resources layer. Various types of technologies are available,
 the most popular being the file system and databases (cloud-scale databases such as Cassandra, relational databases such as
 MySQL, and object databases such as db4o). You can use an Object-Relational Mapping (ORM) tool such as Hibernate to automatically
 persist your object model into a relational database.

 To summarize, each layer builds on top of the other, and the lower-level layers have no knowledge of layers above them, favoring
 separation of concerns and reusability. The highest layers are the most specific to a given application, whereas the lowest
 are the most generic and reusable.

 Each layer adds its unique features and advantages, relying on the best paradigm for the job at hand. This is illustrated
 in figure D.12 with another architecture diagram proposing a more topological view, showing the constitution of a server component in nested
 layers, interacting with a client component.

 Figure D.12. Topology of the ROA/D logical architecture

 [image:]

 In the rest of the book, we apply this architecture to the email system example:

 	For the UI layer, we rely on your preferred web browser and on a programmatic client for Android mobiles.

 	For the resources layer, we use the Restlet Framework, which is the central topic of this book.

 	The objects layer is built using Plain Old Java Objects (POJOs) and persisted into the data layer.

 	For the data layer we use in-memory persistence for simplicity, but in a more realistic situation we would use a proper database
 technology.

D.4.2. Deriving the resource model

 Now that you have a clearer picture of the target architecture and the main technological choices, it’s time to find out how
 you derive the initial domain model produced during the requirements analysis step into a resource model for the resources
 layer and into an object model for the objects layer. The production of a design object model from a conceptual domain model
 is a topic that has been extensively documented in the OOA/D methodology. We recommend that you consult a dedicated book [32] if you need assistance in this area.

 In addition, if you want to manually derive a relational model from our domain model, you also have methodologies like the
 IDEF1 standard [33] at hand. ORM tools can generate the relational model from the object model for you, or even the other way around.

 The remaining question is the derivation of the resource model from the domain model. This is the main specificity of our
 ROA/D methodology as illustrated in figure D.13.

 Figure D.13. Deriving the domain model

 [image:]

 Resource-Object Mapping (ROM) shown in figure D.13 is the equivalent of ORM but between resources and objects layers. As you see in the book’s chapters, the Restlet Framework
 greatly simplifies this mapping.

 For now, let’s detail the tasks to complete in order to derive the domain model into the resource model.

 D.4.3. Identifying and classifying the resources

 At this point in the design of your RESTful web API, you should identify the resources you’ll expose and classify them. Note
 that we use the terms class, type, and category interchangeably in their most common sense: a group of things that have similar
 characteristics.

 In general, because a resource can wrap any concept, listing all the potential types that you can find in applications is
 difficult. But you typically find entity resources, corresponding to domain entities in the domain model, collection resources
 to manage a set of entity resources, and also service resources focusing on processes such as form submission acceptors and
 search query processors.

 Besides this general typology, the most important question to ask is what information from your domain model needs to be exposed
 via the web API, and in which form? For sure, any class of objects in the domain model that should be publicly accessible
 should correspond to a class of resources. As a matter of simplicity, the object class and resource class should be given
 similar names.

 Relations with n-n cardinality between two kinds of objects (like the “receivers” relation between the Contact and Mail object classes) are
 also good candidates to become resource classes. Resources that act as containers of other resources should produce a collection
 resource class and an item resource class. For example, if an application’s main role is to manage mail messages, you should
 have a “Mails” collection resource class and a “Mail” entity resource class. Public methods of façade domain classes are also
 candidates to become service resource classes.

 Note that all domain categories of objects don’t need to be directly accessible and therefore won’t become resource types,
 but may instead become part of a representation class for a parent resource. Now, let’s go back to the design of the RESTful
 email system. Based on our domain model, we easily identify the following resource classes:

 	Root —Top resource of the RESTful mail system

 	Account —Holder of contacts, mails, and feeds

 	Contact —Holder of information on a known person

 	Mail —Message exchanged by users via their accounts

 	Feed —Selection of mails based on matching tags

You may have noticed that the Tag class of the domain model isn’t part of this list. In fact, we considered that even though
 it could be thought of as a resource, there isn’t enough interest in the example for it. We handle them instead using simple text tokens stored as properties of the related
 classes Mail and Feed.

 Among this initial list of resource classes, only Root has a single occurrence. For all others we need to introduce collection
 resources to manage the creation (POST and PUT methods) and the listing (via GET method) of contained resources. This gives
 us these additional resource classes:

 	Accounts —Container of account resources

 	Contacts —Container of contact resources in a given account

 	Mails —Container of mail resources in a given account

 	Feeds —Container of feed resources in a given account

When in doubt regarding a potential resource, ask yourself: do I need or want this potential resource to be accessible on
 the web, given a public URI?

 D.4.4. Defining the URI space

 As discussed in chapter 1, a resource is anything of interest that a server decides to expose and to uniquely identify with a URI. When you surf the
 web, each web page is a resource. Your browser typically retrieves its representation by using its URL, which is a kind of
 URI, along with the GET method. The URL contains enough information for the network infrastructure to find the computer hosting
 the resource and to identify the resource on the computer.

 Each Uri Identifies a Particular Resource

 To adopt this model you must decide what resources your server-side program exposes and assign each one a URI. As you saw
 in the previous section, resources are typically application-level entities you want to expose to remote clients. For example,
 if your application provides weather information, you may want to expose a report about the current weather in Paris at http://www.myGreatWeatherApp.com/Paris/. The current weather in Chicago could be described at http://www.myGreatWeatherApp.com/Chicago/. And so forth. Or maybe you want to provide finer-grained access to weather information and define separate resources for
 temperature, hygrometry, and so on. The current hygrometry in Paris could be identified by http://www.myGreatWeatherApp.com/Paris/hygrometry/ and consist of a number.

 Maybe providing weather information for whole cities isn’t all you want to do. Your application might use a more precise and
 global location system like the WGS84 (World Geodetic System), which is used by GPS. In that case you may decide to create
 a resource space that associates a weather report to each place on earth, localized by its coordinates. The current weather
 under the Eiffel tower could be at http://www.mygreatweatherapp.com/48.85834817715778,2.294543981552124.

 Crafting your Uris

 Each resource instance must be uniquely identifiable using a URI. The first thing is to choose the base URI of your application
 that you associate to a root resource—for example, http://www.mydomain.org/myApplication/v1/. Note that the appended /v1/
 lets you serve several versions of the same application at the same time in the future, facilitating the migration from one version
 to another without breaking existing clients.

 HTTP URIs—or URLs to be more precise—support a hierarchical naming system. The hierarchy is denoted by the / character inserted
 between adjacent elements, also called segments. This arrangement encourages you to organize your resources into a hierarchy, according to your own rules. The URI of each
 resource class is generally the concatenation of the base URI of your application with a resource class name and a trailing
 slash character (except for leaf resources, which can’t have any child resource). Here’s the URI for our example Accounts
 resource class: http://localhost:8111/accounts/.

 For each root you should append to the parent URI, and as you dive deeper inside the hierarchy append a leading slash and
 the chosen name of the current level. For each child resource class append a constant name for nonrepeating resources or a
 unique identifier, followed by a trailing slash if children exist. Because listing all potential values of the identifier
 would be cumbersome, we instead use URI variables like {myId}, following the URI Templates standard [34].

 For example, an Accounts resource class has the following URI template: http://localhost:8111/accounts/{accountId}. This is
 continued recursively for each child resource class until we reach the leaves. Figure D.14 illustrates the example resource classes using the UML class diagram. We tried to use a layout that reproduces the URI hierarchy
 like nested folders and added UML notes as URI hints.

 Figure D.14. Example resources hierarchy as a UML class diagram

 [image:]

 Choosing URIs for your resources is always an important design task. They’re part of the UI of your application because end
 users do see and manipulate them. Assume that URIs identify concepts and make them as user-friendly as possible.

 In the sample mail application, because we aren’t planning on hosting it with a registered domain name, we use the generic
 localhost domain as the base URI: http://localhost:8111/.

 Note that leaf resources don’t have a trailing slash character to reinforce the fact that they don’t contain anything. Again,
 this is purely a convenience that helps users of your application, but it’s not an aspect that determines whether or not your
 design is RESTful.

 URIs Identify Things, Not Actions

 When designing your URIs, keep in mind that they identify things, not actions. The action a client asks a server to perform
 is expressed using the HTTP method, and the request URI denotes the primary target of this action. The presence of verbs in
 URIs is often a good indicator of a problem in the design of a RESTful web API. If you come up with URIs that contains verbs
 in imperative form, you might be trying to encode requested actions inside your URIs. Double-check your design and make sure
 you aren’t bypassing, or reinventing, the HTTP method system (see section D.4.5).

 Verbs that aren’t used to request actions from the server can be perfectly valid URI elements. In the online English dictionary
 service provided by Merriam-Webster, the URI for the definition of the verb compute is http://www.merriam-webster.com/dictionary/compute. There are also cases where verbs in URIs are fine even if they describe actions to be performed by the server.

 The Query is a First-Class Uri Element

 The result of a Google search for the word Restlet has the following URI: http://www.google.com/search?q=Restlet. This is in line with REST and HTTP because this URI, as a whole, still references a thing: the result of searching for the
 word Restlet. Indeed, things defined as being the result of some action are still things. This thing is still manipulated using HTTP methods;
 in this example you can get its representation using the GET method. That’s what your web browser does when you use the Google
 website.

 On the other hand, the AWS SimpleDB API uses POST methods on URIs, such as https://sdb.amazonaws.com/?Action=DeleteDomain&DomainName=MyDomain
 (the actual URI has additional query parameters that were removed for clarity) that should have been expressed as DELETE methods
 on a URI, like https://sdb.amazonaws.com/domains/MyDomain.

 The Google search example also answers a common question about the status of the query string: is the query an integral part
 of the URI and consequently participates in resource identification? The answer is yes, as http://www.google.com/search?q=Restlet and http://www.google.com/search?q=pumpkin refer to two different resources, each the result of a different search. The query is an integral part of the URI, like other
 path components (/search, for example). Still, you can use different URIs to refer to the same resource if needed, but that’s
 a general ability of URIs, not something related to the use of the query string in particular. Remember that the query is
 a first-class URI element and that two URIs that differ only in the query can still refer to two different resources.

 URIs Allow your System to Become Part of the Web

 In effect, URIs are pointers. You can use them wherever needed to refer to resources. But they differ from pointers in traditional
 programming languages in one key aspect: a pointer in a C program, or a reference to an object in Java, is meaningful only
 inside the application in which it exists. A URI is meaningful for everyone, for every system.

 With URIs, pointers break the application boundaries. Your resources can be referenced by other systems, and you can reference
 resources provided by others. Your resources can be accessed and processed by a number of tools such as web browsers, search
 engines, and so on. Exposing resources identified by URIs allows your system to be part of the web and to enrich it.

 D.4.5. Defining allowed methods

 With HTTP, resources are manipulated through a few predefined operations, formally called methods. Each HTTP request message sent by a client includes the name of a method. HTTP defines the semantics of these methods at
 a generic level (see table D.1). Your application then specializes the meaning of each method, for each resource or execution context.

 Table D.1. Four main HTTP methods and what the client is asking the server to do when using them

 	
 Method

 	
 What the client is asking

 	
 Type

	GET
 	Give me back a representation of the target resource.
 	Safe and idempotent

	PUT
 	Create or update the target resource with the representation I’m sending you in the body of this request.
 	Nonsafe and idempotent

	POST
 	Make the target resource process the data I’m sending to you in the body of this request.
 	Nonsafe and nonidempotent

	DELETE
 	Delete the target resource and its associated state.
 	Nonsafe and idempotent

HTTP states that the DELETE method requests that the target resource be deleted from the server. The exact meaning of such
 an operation is then determined by each application. In our email application, deleting a resource that represents an account
 could remove the account from the system, including all related information in the database, such as the contained contacts
 and mails.

 Use Http Methods Properly

 To benefit fully from REST and HTTP, you must use HTTP methods according to the semantics mandated by HTTP. For example, the
 GET method is for information retrieval: getting the representation of a resource. You must not use it to express other kinds
 of interactions. To characterize methods, HTTP defines two important properties: safe and idempotent:

 	Safe methods are, from the point of view of the client, for pure information retrieval. If they have side effects, these effects
 must be such that the client can’t be held accountable for them, as it did not request them.

 	Idempotent methods are such that (aside from error or expiration issues) the side effects of multiple identical requests are
 the same as a single request. DELETE is idempotent because a sequence of two or more identical DELETE requests has the same
 effect on the server as one DELETE request: in both cases, the target resource is deleted. Trying to delete something that
 has already been deleted doesn’t change the outcome.

By these definitions, safe methods have the potential to be invoked automatically by some generic code on the client side
 (web crawlers make use of this) whereas nonsafe methods require explicit triggering by the end user or the client-side application
 programmer and awareness of the possible side effects.

 Requests with idempotent methods have the potential to be automatically reemitted by the network infrastructure when in doubt
 over correct reception by the server, without fear of unwanted effects caused by multiple receptions of the request.

 In addition to the four methods described in table D.1, HTTP also define an OPTIONS method to describe the communication options available on the target resource. In particular,
 it allows asking a resource for the list of methods it supports. A given resource might not support all the HTTP methods.
 For example, you may not want to allow remote clients to DELETE certain resources you expose. HTTP also defines the HEAD and
 TRACE methods. You’ll find a complete description of these methods in the HTTP specification [22].

	

Tip

 You shouldn’t regard HTTP as a low-level protocol an application developer doesn’t have to bother with. On the contrary, HTTP
 is the high-level protocol with which you’re going to directly express the interactions with your applications over the network.
 REST brings a set of principles that helps you make good use of HTTP, and the Restlet Framework puts all this in motion in
 your Java programs. Yes, HTTP is your new friend! We advise you to grab the HTTP specification [22], become familiar with it, and keep it at hand. You can also help yourself by reading a good book about HTTP such as HTTP: The Definitive Guide by David Gourley and Brian Totty (O’Reilly, 2002). Along with the Restlet documentation, these are going to be some of your
 main resources for everything related to web development.

 	

When possible, try to use the HTTP methods whose semantics are the most precise. In particular, use the POST method only if
 other HTTP methods aren’t a good fit. As specified by HTTP, POST has rather unbounded semantics. It means: “Take the data I’m sending to this target resource and process
 it.” As such, you can use it for any kind of operation, because you have a lot of freedom to define what “process it” means
 in the context of your application. But if an operation you want to expose on one of your resources fits the more specific
 semantics of GET, PUT, DELETE, or other HTTP method, you should use that method instead. At run time the HTTP infrastructure
 (composed of the HTTP clients, caches, and intermediary proxies) has more information about what the remote client is doing
 with your resources and can better handle the situation. It can automatically resend requests using idempotent methods in
 case of communication error. It can also cache results of the execution of the GET method and avoid sending some requests
 over the network, which can greatly improve performance and decrease load on servers.

 Consider Each Resource Class

 Let’s apply what you’ve learned to our example. In section D.4.4 we defined a complete hierarchy of resource classes with associated URI templates. We now need to define for each resource
 class what the allowed methods are. Assuming we use the HTTP protocol, the common list of methods is generally: GET, POST,
 PUT, DELETE, and sometimes OPTIONS. You can also use extension methods in some rare cases, such as WebDAV’s MOVE method—but
 be careful because this will limit the accessibility of your web API, as many HTTP clients only support basic HTTP methods.

 To facilitate the communication of your resource classes design among your team, we recommend creating detailed UML class
 diagrams containing sets of related resource classes. Figure D.15 refines the class diagram introduced in figure D.13 using an additional compartment below the class name to indicate the relative URI part, as allowed by UML. It also adds the
 HTTP methods supported.

 Figure D.15. Example resources hierarchy as a UML class diagram describing allowed methods

 [image:]

 Note that the Accounts resource class uses a POST method to support the creation of child accounts because you can’t know
 in advance the URI of those accounts and therefore can’t directly use PUT to create them.

 We leave you as an exercise the creation of a class diagram for the remaining example resources, children of Accounts: Contacts,
 Contact, Mails, Mail, Feeds, and Feed.

 D.4.6 Defining response statuses

 There’s an important bit of information that’s found in every HTTP response message: a status code. Using this code your server-side
 program can communicate crucial information to a client. The well-known code 404 means that the resource target has not been
 found, and consequently, the server wasn’t able to further process the request.

 HTTP standardizes several important things here:

 	The way to denote the status code in the response message, along with an associated human readable reason phrase

 	The status categories, also called status classes, such as Successful, Redirection, Server error, and Client error

 	A number of predefined status codes, with specified semantics

 	A way to create new status codes if needed

There are codes to signal various errors conditions, action required from the client to complete its interaction with the
 server, or other important information about the outcome of the request. A few examples are in table D.2. For a complete list, see table E.2 in appendix E.

 Table D.2. Examples of common status codes defined by HTTP

 	
 Code

 	
 Category

 	
 Name

 	
 Meaning

	200
 	Successful
 	Success
 	The request has succeeded.

	201
 	Successful
 	Created
 	The request has been fulfilled and resulted in a new resource being created. The URI of this new resource should be present
 in the response message, in the Location header field.

	202
 	Successful
 	Accepted
 	The request has been accepted for processing, but the processing has not been completed. The response message should include
 an indication of the request’s current status and either a pointer to a status monitor or some estimate of when the client
 can expect the request to be fulfilled.

	301
 	Redirection
 	Moved Permanently
 	The requested resource has been assigned a new permanent URI, and any future references to this resource should use this URI.
 The new URI should be present in the response message, in the Location header field.

	400
 	Client error
 	Bad Request
 	The request could not be understood by the server due to malformed syntax. The client should not repeat the request without
 modifications.

	404
 	Client error
 	Not Found
 	The server has not found anything matching the request-target.

	405
 	Client error
 	Method Not Allowed
 	The method specified in the Request-Line isn’t allowed for the target resource. The response includes an Allow header containing
 a list of valid methods for the requested resource.

	500
 	Server error
 	Internal Server Error
 	The server encountered an unexpected condition which prevented it from fulfilling the request.

Having a whole set of status codes already defined and ready to use is useful. Rather than reinvent the wheel, you can—and
 should—use these standardized codes. On the server side, you should strive to return status codes that accurately describe
 the outcome of the request. On the client side, you should check the status code of each response you receive and act accordingly.
 The HTTP specification gives you information on how to use status codes correctly, and the Restlet Framework helps you deal
 with them easily in Java, including automatically acting on some of them (for example, automatically using the redirection
 information on the client side to reemit a request if the target resource has moved).

 D.4.7. Defining representation classes

 Some HTTP requests or responses contain resource representations. For example, a response to a GET request typically includes
 the representation of the target resource. As discussed in chapter 1, a representation is some data describing the current or intended state of a resource. Obviously, an important task when
 designing your resource model is to define the format of these representations (such as an HTML document or an XML document
 with a given structure).

 Each resource class can have multiple types of representation (HTML can be used when interacting with web browsers, and XML
 when interacting with purely programmatic clients). These types of representation, called representation variants, are used
 by a powerful mechanism of HTTP called content negotiation (see section 4.5 for more on this).

 You should design and document the structure of each variant. For each variant you should indicate the media type, language,
 character set, and encoding if applicable. For some media types, such as XML, providing an XML Schema is also useful. This
 should be completed by textual descriptions if necessary.

 In our example email system, the Root resource is the main entry point for users. It will be accessed by web browsers and
 return a welcome HTML page. When the user tries to access this page for the first time, with a GET request, an HTTP Basic
 authentication mechanism prompts for a login and password. If the credentials are valid, the user will be redirected to their
 account. If the user is an administrator, they instead see a hyperlink to the Accounts resource.

 The Accounts resource returns an HTML page that contains a list of accessible Account resources. If the authenticated user
 is only an owner, they will only see their account. Administrators will see the list of all accounts. In addition, administrators
 see an HTML form allowing the creation of new accounts. When a creation is requested, a POST method is invoked, resulting
 in a redirection to the created Account. The Accounts resource returns an HTML page that contains a list of accessible Account
 resources. Administrators see the list of all existing accounts. In addition, administrators see an HTML form allowing the
 creation of new boxes. Simple owner users can’t create new boxes by themselves; they have to ask an administrator. The Account
 resource returns an HTML page with a form containing the properties (first name, last name, role, and nickname). This form can be used to update or delete the current account. The HTML page also contains hyperlinks
 to the related Contacts, Mails, and Feeds resources. And the resource can receive remote mails in XML format via its POST
 method.

 The Contacts resource returns an HTML page that contains a list of Contact resources contained in the parent MailBox. An HTML
 form allows the creation of new contacts. When a creation is requested, a POST method is invoked, resulting in a redirection
 to the created Contact. The Contact resource returns an HTML page with a form containing all the information related to the
 contact (first name, last name, and URI address). This form can be used to update or delete the current contact.

 The Mails resource returns an HTML page that contains a list of Mail resources contained in the parent MailBox. An HTML form
 allows the creation of new mails. When a creation is requested, a POST method is invoked, resulting in a redirection to the
 created Mail. The Mail resource returns an HTML page with a form containing all the information related to the mail (subject,
 receivers, body text, and tags). This form can be used to update or delete the current mail. This resource is also capable
 of sending the mail to the receiver by posting it to the receiver’s URI address, corresponding to the receiver’s account resource.

 The Feeds resource returns an HTML page that contains a list of Feed resources contained in the parent MailBox. In addition,
 an HTML form allows the creation of new feeds. When a creation is requested, a POST method is invoked, resulting in a redirection
 to the created Feed. The Feed resource can return an HTML page to web browsers with a form containing all the information
 related to the web feed (name and tags to match) and the list of matched mails. This form can be used to update or delete
 the current feed. This resource can also return an Atom representation for feed readers, using HTTP content negotiation.

 That should give you a good description of the behavior of our mail application from a web browser’s point of view. It’s not
 too different for a programmatic client, except that the representation formats use XML or JSON instead of HTML and web forms.
 If you want to visually describe this important design information, you can use UML state chart diagrams, which are a natural
 fit for hypermedia, UML sequence, and activity diagrams.

 Figure D.16 enriches the previous class diagrams with information related to the supported representations. We use a special redirect keyword to indicate that a redirection is issued, including the proper status code and the target URI reference to redirect
 to (communicated as a special Location HTTP header).

 Figure D.16. Example resources hierarchy as a UML class diagram describing representations

 [image:]

Appendix E. Mapping REST, HTTP, and the Restlet API

 This appendix is meant as a reference guide for the developer of Restlet applications. The first section lists key classes,
 properties, and constants used by the Restlet API and explains how they map to REST concepts, HTTP concepts, and headers.

 Then we list all client and server connectors as well as the automatic representation converters available in Restlet Framework
 version 2.1. And we discuss the supported security challenge schemes and the authorities specific to the RIAP and CLAP pseudoprotocols.

 E.1. Mapping REST concepts to Restlet classes

 Table E.1 lists the main concepts of the REST architecture style and indicates the classes or interfaces of the Restlet API that materialize
 them.

 Table E.1. Mapping REST concepts to Restlet classes

 	
 REST concept

 	
 Restlet class or interface

 	
 Description

	Client
 	org.restlet.Client
 	Connector acting as a generic client. It internally uses one of the available connector helpers registered with the Restlet
 Engine.

	Component
 	org.restlet.Component
 	Restlet managing a set of connectors, virtual hosts, services, and applications. Applications are expected to be directly
 attached to virtual hosts or to the internal router. Components also expose several services: access logging and status setting.

	Connector
 	org.restlet.Connector
 	Restlet enabling communication between components. It can be either a client or server.

	Metadata

 	org.restlet.data.Metadata
 	Representation metadata for content negotiation such as media type, language, character set, and encoding.

	Representation
 	org.restlet.representation.Representation
 	Current or intended state of a resource. The content of a representation can be retrieved several times if there’s a stable
 and accessible source, like a local file or a string. When the representation is obtained via a temporary source like a network
 socket, its content can be retrieved only once.

	Resource
 	org.restlet.resource.Resource
 	Base resource class exposing the uniform REST interface. Intended conceptual target of a hypertext reference. A uniform resource
 encapsulates a context, a request, and a response, corresponding to a specific target resource.

	Server
 	org.restlet.Server
 	Connector acting as a generic server. It internally uses one of the available connector helpers registered with the Restlet
 Engine.

	Uniform interface
 	org.restlet.Uniform
 	Uniform REST interface that defines the standard way to communicate between components via connectors. It corresponds to standard
 HTTP methods and to standard representation media types such as HTML, RDF, and Atom/AtomPub.

E.2. Mapping HTTP concepts to Restlet classes

 Table E.2 describes the mapping between HTTP concepts and Restlet classes or interfaces.

 Table E.2. Mapping HTTP concepts to Restlet classes

 	
 HTTP concept

 	
 Restlet class or interface

 	
 Definition from dissertation

	Message
 	org.restlet.Message
 	Generic message exchanged between components, either a request or a response.

	Request
 	org.restlet.Request
 	Generic request sent by client connectors. It’s received by server connectors and processed by Restlet. Requests are uniform
 across all types of connectors, protocols, and components.

	Response
 	org.restlet.Response
 	Generic response sent by server connectors and received by client connectors. Responses are uniform across all types of connectors,
 protocols, and components.

	Variant
 	org.restlet.representation.Variant
 	Descriptor for available representations of a resource. It contains all the important metadata about a representation but
 isn’t able to serve the representation’s content itself.

E.3. Mapping HTTP headers to Restlet properties

 The HTTP protocol is the main source of inspiration for the Restlet API, which was designed as a high-level abstraction of
 the HTTP protocol. On the other hand, many developers refer to HTTP headers and need a tool to help them map the Restlet API
 properties to those HTTP headers. Providing that tool is the aim of table E.3.

 Table E.3. Mapping HTTP headers to Restlet properties

 	
 Header

 	
 Restlet property name

 	
 Restlet property class

 	
 Description

	Accept
 	request.clientInfo.acceptedMedia-Types
 	List<org.restlet.data.Preference <MediaType>>
 	The list of media types accepted by the client.

	Accept-Charset
 	request.clientInfo.acceptedCharacterSets
 	List<org.restlet.data.Preference<CharacterSet>>
 	The list of character sets accepted by the client.

	Accept-Encoding
 	request.clientInfo.acceptedEncodings
 	List<org.restlet.data.Preference <Encoding>>
 	The list of encodings accepted by the client.

	Accept-Language
 	request.clientInfo.acceptedLanguages
 	List<org.restlet.data.Preference <Language>>
 	The list of languages accepted by the client.

	Accept-Ranges
 	response.serverInfo.acceptingRanges
 	boolean
 	Allows the server to indicate its support for range requests.

	Age
 	response.age
 	int
 	The estimated amount of time since the response was generated or revalidated by the origin server.

	Allow
 	response.allowedMethods
 	Set<org.restlet.data.Method>
 	Indicates the set of allowed methods. Can be retrieved with an OPTIONS call.

	Authentication-Info
 	response.authenticationInfo
 	org.restlet.data.AuthenticationInfo
 	Authentication information sent by an origin server to a client after a successful authentication attempt.

	Authorization
 	request.challengeResponse
 	org.restlet.data.ChallengeResponse
 	Credentials that contain the authentication information of the user agent for the realm of the resource being requested.

	Cache-Control
 	message.cacheDirectives
 	List<org.restlet.data.CacheDirective>
 	List of directives that must be obeyed by all caching mechanisms along the request/ response chain.

	Content-Disposition
 	message.entity .disposition
 	org.restlet.data .Disposition
 	Means for the origin server to suggest a default filename if the user requests that the content be saved to a file.

	Content-Encoding
 	message.entity.encodings
 	List<org.restlet.data.Encoding>
 	Indicates what additional content encodings have been applied to the entity-body.

	Content-Language
 	message.entity.languages
 	List<org.restlet.data.Language>
 	Describes the natural language(s) of the intended audience for the enclosed entity.

	Content-Length
 	message.entity .size
 	long
 	The size of the entity-body, in decimal number of OCTETs.

	Content-Location
 	message.entity.locationRef
 	org.restlet.data.Reference
 	Indicates the resource location for the entity enclosed in the message.

	Content-MD5
 	message.entity.digest
 	org.restlet.data.Digest
 	Value and algorithm name of the digest associated with a representation.

	Content-Range
 	message.entity.range
 	org.restlet.data.Range
 	Indicates where in the full entity-body the partial body should be applied.

	Content-Type
 	message.entity.mediaType and characterSet
 	org.restlet.data.MediaType + CharacterSet
 	Indicates the media type of the entity-body.

	Cookie
 	request.cookies
 	Series<org.restlet.data.Cookie>
 	List of one or more cookies sent by the client to the server.

	Date
 	message.date
 	Date
 	The date and time at which the message originated.

	ETag
 	message.entity.tag
 	org.restlet.data.Tag
 	The current value of the entity tag for the requested variant.

	Expect
 	request.clientInfo.expectations
 	List<org.restlet.data.Expectation>
 	Indicates that particular server behaviors are required by the client.

	Expires
 	message.entity.expirationDate
 	Date
 	The date/time after which the response is considered stale.

	From
 	request.clientInfo.from
 	String
 	The email address of the human user controlling the user agent.

	Host
 	request.hostRef
 	Reference
 	Specifies the internet host and port number of the resource being requested.

	If-Match
 	request.conditions.match
 	List<org.restlet.data.Tag>
 	Used with a method to make it conditional.

	If-Modified-Since
 	request.conditions.modifiedSince
 	Date
 	Used with a method to make it conditional.

	If-None-Match
 	request.conditions.noneMatch
 	List<org.restlet.data.Tag>
 	Used with a method to make it conditional.

	If-Range
 	request.conditions.rangeTag and rangeDate
 	org.restlet.data.Tag + Date
 	Used to conditionally return a part or the entire resource representation.

	If-Unmodified-Since
 	request.conditions.unmodifiedSince
 	Date
 	Used with a method to make it conditional.

	Last-Modified
 	message.entity.modificationDate
 	Date
 	Indicates the date and time at which the origin server believes the variant was last modified.

	Location
 	response.locationRef
 	org.restlet.data.Reference
 	Used to redirect the recipient to a location other than the Request-URI for completion of the request or identification of
 a new resource.

	Max-Forwards
 	request.maxForwards
 	int
 	Maximum number of proxies or gateways that can forward the request to the next inbound server.

	Proxy-Authenticate
 	response.proxyChallenge-Requests
 	List<org.restlet.data.ChallengeRequest>
 	Indicates the authentication scheme(s) and parameters applicable to the proxy.

	Proxy-Authorization
 	request.proxyChallenge-Response
 	org.restlet.data.ChallengeResponse
 	Credentials that contain the authentication information of the user agent for the proxy.

	Range
 	request.ranges
 	List<org.restlet.data.Range>
 	List of one or more ranges to return from the entity.

	Referer
 	request.refererRef
 	Reference
 	The address (URI) of the resource from which the Request-URI was obtained.

	Retry-After
 	response.retryAfter
 	Date
 	Indicates how long the service is expected to be unavailable to the requesting client.

	Server
 	response.serverInfo.agent
 	String
 	Information about the software used by the origin server to handle the request.

	Set-Cookie
 	response.cookieSettings
 	Series<org.restlet.data.CookieSetting>
 	List of one or more cookies sent by the server to the client.

	Set-Cookie2
 	response.cookieSettings
 	Series<org.restlet.data.CookieSetting>
 	List of one or more cookies sent by the server to the client.

	User-Agent
 	request.clientInfo.agent
 	String
 	Information about the user agent originating the request.

	Vary
 	response.dimensions
 	Set<org.restlet.data.Dimension>
 	Indicates the set of request-header fields that fully determines, while the response is fresh, whether a cache is permitted
 to use the response to reply to a subsequent request without revalidation.

	Via
 	message.recipientsInfo
 	List<org.restlet.data.RecipientInfo>
 	Used by gateways and proxies to indicate the intermediate protocols and recipients between the user agent and the server on
 requests, and between the origin server and the client on responses.

	Warning
 	message.warnings
 	List<org.restlet.data.Warning>
 	Additional warning information.

	WWW-Authenticate
 	response.challengeRequests
 	List<org.restlet.data.ChallengeRequest>
 	Indicates the authentication scheme(s) and parameters applicable to the Request-URI.

	X-Forwarded-For
 	request.clientInfo.forwarded-Addresses
 	List<String>
 	The list of client IP addresses, including intermediary proxies.

	X-HTTP-Method-Override
 	tunnelService.methodHeader
 	org.restlet.data.Method
 	Overrides the HTTP method for limited clients such as browsers.

By convention, the list of property names refers to Restlet classes such as Request, Response, or Message. The “Restlet property name” column contains values such as request.clientInfo.acceptedMediaTypes and response.age, referring to Java properties of the message classes. Those properties are accessible using the getter and setter methods,
 such as Request.getClientInfo().getAcceptedMediaTypes() and Response.getAge().

 E.4. Available connectors

 As mentioned in chapter 1, connectors are an essential part of the REST architectural style. They enable communication between components by implementing
 a particular network protocol.

 Because of the distinction between client and server components, this section contains two tables: one for the server connectors
 and one for client connectors as available in Restlet Framework version 2.1. Table E.4 lists the server connectors ordered by protocol name. Those connectors are available either in the core Restlet module (org.restlet) or in extension modules (org.restlet.ext.<moduleName>).

 Table E.4. Server connectors

 	
 Protocol

 	
 Module

	AJP
 	jetty

	HTTP
 	core, jetty, simple

	HTTPS
 	ssl, jetty, simple

	RIAP
 	core

	SIP
 	sip

	SIPS
 	sip

Table E.5 lists all the client connectors available.

 Table E.5. Client connectors

 	
 Protocol

 	
 Module

	CLAP
 	core

	FILE
 	core

	FTP
 	net

	HTTP
 	core, httpclient, net

	HTTPS
 	httpclient, net, ssl

	JDBC
 	jdbc

	POP (v3)
 	javamail

	POPS (v3)
 	javamail

	RIAP
 	core

	SDC
 	sdc

	SIP
 	sip

	SIPS

 	sip

	SMTP
 	javamail

	SMTPS
 	javamail

	SOLR
 	lucene

	ZIP
 	core

E.5. Available converters

 As discussed elsewhere in the book, the ConverterService plays a key role in the content negotiation and automatic conversion feature between beans and raw representations.

 Table E.6 lists the modules (either the core module or the extensions) that provide automatic serialization from representation beans
 to raw representations, including the media types and classes or interfaces supported.

 Table E.6. Converters that provide automatic serialization

 	
 Module

 	
 Target media type

 	
 Serializable source class

	core
 	Any kind, the one computed by the content negotiation
 	java.lang.String

	core
 	application/octet-stream
 	java.io.File

	core
 	application/octet-stream
 	java.io.InputStream

	core
 	application/x-java-serialized-object, application/x-java-serialized-object+xml, application/octet-stream
 	Implements java.io.Serializable

	core
 	Text based media types, or text/plain
 	java.io.Reader or subclasses

	core
 	application/x-www-form-urlencoded
 	org.restlet.data.Form

	atom
 	application/atom+xml
 	org.restlet.ext.atom.Feed

	atom
 	application/atomsvc+xml
 	org.restlet.ext.atom.Service

	emf
 	application/xmi+xml
 	Implements org.eclipse.emf.core.EObject

	emf

 	application/x-ecore+xmi+xml
 	Implements org.eclipse.emf.core.EObject

	emf
 	application/xml, text/xml, text_html
 	Implements org.eclipse.emf.core.EObject

	freemarker
 	Any kind, the one computed by content negotiation
 	org.freemarker.Template

	gwt
 	application/x-java-serialized-object+gwt
 	Implements java.lang.Serializable

	html
 	application/x-www-form-urlencoded
 	org.restlet.ext.html.FormDataSet

	html
 	multipart/form-data
 	org.restlet.ext.html.FormDataSet

	jackson
 	application/json
 	Any class

	javamail
 	application/xml
 	javax.mail.Message

	jdbc
 	text/xml
 	javax.sql.rowset.WebRowSet

	jdbc
 	text/xml
 	Java.sql.RowSet

	jdbc
 	text/xml
 	org.restlet.ext.jdbc.JdbcResultSet

	jaxb
 	According to content negotiation, one of the following: application/xml, text/xml, application/*+xml
 	Any class annotated with the javax.xml.bind.XmlRootElement

	jibx
 	According to content negotiation, one of the following: application/xml, text/xml, application/*+xml
 	Any class, as soon as it’s been bound

	json
 	application/json
 	org.json.JSONArray

	json
 	application/json
 	org.json.JSONObject

	json
 	application/json
 	org.json.JSONTokener

	rdf
 	application/*+xml
 	org.restlet.ext.rdf.Graph

	rdf
 	text/x-turtle
 	org.restlet.ext.rdf.Graph

	rdf
 	text/n-triples
 	org.restlet.ext.rdf.Graph

	rdf
 	text/n3
 	org.restlet.ext.rdf.Graph

	rome
 	application/atom+xml
 	com.sun.syndication.feed.synd.SyndFeed

	rome

 	application/rss+xml
 	com.sun.syndication.feed.synd.SyndFeed

	velocity
 	Any kind of media types
 	org.apache.velocity.Template

	wadl
 	application/vnd.sun.wadl+xml
 	org.restlet.ext.wadl.ApplicationInfo

	xml
 	application/*+xml, application/xml, text/xml
 	org.w3c.dom.Document

	xstream
 	application/json (with jettison library)
 	Any kind of class

	xstream
 	application/xml, text/xml, application/*+xml
 	Any kind of class

Note that the order of the converters in your classpath might matter and that each converter can express different scores
 for each media type or class, depending on their affinity with them.

 Table E.7 lists the modules (either the core module or the extensions) that provide automatic deserialization of raw representations
 into representation beans, including the media types and classes or interfaces supported.

 Table E.7. Converters that provides automatic deserialization

 	
 Module

 	
 Target class

 	
 Media type of the request’s entity

	core
 	java.lang.String
 	Any kind

	core
 	org.rest.representation.StringRepresentation
 	Any kind

	core
 	java.io.File
 	Only if the request's entity is an instance of org.restlet.representation.FileRepresentation

	core
 	org.restlet.data.Form
 	application/x-www-form-urlencoded

	core
 	java.io.InputStream
 	Any kind

	core
 	org.restlet.representation.InputRepresentation
 	Any kind

	core
 	java.io.Reader
 	Any kind

	core
 	org.restlet.representation.ReaderRepresentation
 	Any kind

	core

 	Implements java.io.Serializable
 	application/x-java-serialized-object, application/x-java-serialized-object+xml, application/octet-stream

	core
 	Java primitive type
 	application/x-java-serialized-object, application/x-java-serialized-object+xml, application/octet-stream

	emf
 	Implements org.eclipse.emf.ecore.xmi.impl.XMIResourceImpl
 	application/xmi+xml

	emf
 	Implements org.eclipse.emf.ecore.xmi.impl.EMOFResourceImpl
 	application/x-ecore+xmi+xml

	emf
 	Implements org.eclipse.emf.ecore.xmi.impl.XMLResourceImpl
 	application/xml, text/xml, text_html

	gwt
 	Implements java.lang.Serializable
 	application/x-java-serialized-object+gwt

	html
 	org.restlet.ext.html.FormDataSet
 	application/x-www-form-urlencoded

	jackson
 	Any class
 	application/json

	jaxb
 	Any class annotated with the javax.xml.bind.XmlRootElement
 	According to content negotiation, one of the following: application/xml, text/xml, application/*+xml

	jibx
 	Any class, as soon it’s been bound
 	According to content negotiation, one of the following: application/xml, text/xml, application/*+xml

	json
 	org.json.JSONArray
 	application/json

	json
 	org.json.JSONObject
 	application/json

	json
 	org.json.JSONTokener
 	application/json

	rdf
 	org.restlet.ext.rdf.Graph
 	application/*+xml

	rdf
 	org.restlet.ext.rdf.Graph
 	text/x-turtle

	rdf
 	org.restlet.ext.rdf.Graph
 	text/n-triples

	rdf
 	org.restlet.ext.rdf.Graph
 	text/n3

	rome
 	com.sun.syndication.feed.synd.SyndFeed
 	application/atom+xml

	rome

 	com.sun.syndication.feed.synd.SyndFeed
 	application/rss+xml

	wadl
 	org.restlet.ext.wadl.ApplicationInfo
 	application/vnd.sun.wadl+xml

	xml
 	org.w3c.dom.Document
 	application/*+xml, application/xml, text/xml

	xstream
 	Any kind of class
 	application/json (with Jettison library)

	xstream
 	Any kind of class
 	application/xml, text/xml, application/*+xml

E.6. Supported security challenge schemes

 Table E.8 lists all the security schemes supported by the Restlet Framework and the corresponding extensions (see also chapter 5). It also indicates whether the client and/or server sides of the security scheme are implemented.

 Table E.8. Challenge schemes and their implementation

 	
 Scheme

 	
 Module

 	
 Client, server class

 	
 Description

	FTP_PLAIN
 	net
 	FtpClientHelper (client only)
 	Plain FTP authentication

	HTTP_AWS_S3
 	crypto
 	AwsAuthenticator
 	Amazon S3 HTTP authentication

	HTTP_AWS_QUERY
 	crypto
 	HttpAwsQueryHelper (client only)
 	Amazon Query String authentication

	HTTP_AZURE_SHAREDKEY
 	crypto
 	HttpAzureSharedKeyHelper (client only)
 	Microsoft Azure Shared Key authorization (authentication)

	HTTP_AZURE_SHAREDKEY_LITE
 	crypto
 	HttpAzureSharedKeyLite Helper (client only)
 	Microsoft Azure Shared Key lite authorization (authentication)

	HTTP_BASIC
 	core
 	HttpBasicHelper
 	Basic HTTP authentication

	HTTP_COOKIE
 	crypto
 	CookieAuthenticator
 	Cookie HTTP authentication

	HTTP_DIGEST
 	crypto
 	DigestAuthenticator
 	Digest HTTP authentication

	HTTP_OAUTH
 	oauth
 	OAuthAuthorizer, OAuthHelper
 	Open protocol for API authentication

	POP_BASIC
 	javamail
 	JavaMailClientHelper (client only)
 	Basic POP authentication (USER/PASS commands)

	POP_DIGEST

 	javamail
 	JavaMailClientHelper (client only)
 	Digest POP authentication (APOP command)

	SDC
 	net
 	GAE edition (client only)
 	Secure Data Connector authentication (Google)

	SDC
 	sdc
 	JavaSE and JavaEE editions (client only)
 	Secure Data Connector authentication (Google)

	SMTP_PLAIN
 	javamail
 	Core and JavaMail ClientHelper (client only)
 	Plain SMTP authentication

E.7. Scheme authorities of RIAP and CLAP pseudoprotocols

 We’ve introduced the RIAP and CLAP pseudoprotocols in order to complete the vision of a unified way to access resources, even
 within a Restlet component, and not only from the outside using a network protocol.

 Much as HTTP lets you access resources on the Web, RIAP lets you access resources defined in your own Restlet applications
 and components, whereas CLAP lets you access resources available via Java class loaders.

 Such resources are designated as local resources. A special Reference subclass called org.restlet.data.LocalReference facilitates the creation of such references to local resources with several methods, such as createClapReference() and create-RiapReference().

 Table E.9 lists all important constants related to those pseudoprotocols and supported by the org.restlet.data.LocalReference class. The table should help you understand which kind of resource can be targeted.

 Table E.9. Types defined in the LocalReference class

 	
 Authority constant

 	
 Value

 	
 Description

	CLAP_DEFAULT
 	"" or empty string
 	The resources will be resolved from the class loader associated with the local class. This is the same as the CLAP_CLASS authority.

	CLAP_CLASS
 	class
 	The resources will be resolved from the class loader associated with the local class. This is the default CLAP authority.

	CLAP_SYSTEM
 	system
 	The resources will be resolved from the system’s class loader.

	CLAP_THREAD
 	thread
 	The resources will be resolved from the current thread’s class loader.

	RIAP_APPLICATION

 	application
 	The resources will be resolved from the current application’s root Restlet.

	RIAP_COMPONENT
 	component
 	The resources will be resolved from the current component’s internal (private) router.

	RIAP_HOST
 	host
 	The resources will be resolved from the current component’s virtual host.

Appendix F. Getting additional help

 Beyond this book’s broad presentation of the Restlet Framework, additional documentation is also available on the web. Also,
 you can directly interact with the Restlet community by asking questions and contributing in various ways, such as participating
 in discussion lists and checking out an issue tracker.

 Because the Restlet Framework has been created and mainly maintained by Restlet SAS (previously named Noelios Technologies),
 we’ll briefly point you to available professional services in case you need dedicated assistance or have specific needs.

 F.1. Accessing online documentation

 This section gives you pointers to the best online resources, including Javadocs, tutorials, and user guides to go beyond
 this book.

 Javadocs

 The Javadocs are available for each Restlet Framework version (such as 2.1) and edition (such as jse). For example, the Javadocs
 of version 2.1 of the Java SE edition are available at www.restlet.org/documentation/2.1/jse.

 Note that each distribution of the Restlet Framework also contains a copy of the Javadocs as well as the whole source code
 for easier contextual documentation within your favorite IDE or offline reading.

 Wiki

 Apart from the main www.restlet.org site, a wiki is available that provides structured documentation about the framework. It’s available at http://wiki.restlet.org
 and includes several sites. Each site has a table of contents on the left-hand side, a search box, and a set of pages visible
 on the right, sometimes in several versions (called variants by Daisy, the open source CMS used). Here are some interesting pages:

 	Description of the core Restlet API—/docs_2.1/27-restlet.html

 	Mapping between Restlet API and HTTP headers—/docs_2.1/130-restlet.html

 	Connectors—/docs_2.1/37-restlet.html

 	Services—/docs_2.1/331-restlet.html

 	Editions—/docs_2.1/275-restlet.html

 	Extensions—/docs_2.1/28-restlet.html

 	Tutorial—/docs_2.1/318-restlet.html

This tutorial illustrates a simple application deployed on the Google App Engine platform and consumed by three kinds of Restlet-based
 clients: a GWT module, an Android application, and a classical JVM.

 Another wiki site lists documentation provided by the Restlet community in other locations such as blog posts, YouTube videos,
 tutorials, articles, and books: http://wiki.restlet.org/community/167-restlet.html.

 F.2. Asking questions

 You have numerous ways to get in touch with other Restlet users or developers, but first make sure you read the available
 FAQs at http://wiki.restlet.org/docs_2.1/333-restlet.html.

 Then you can search the popular StackOverflow help site for similar questions—or post your own and start helping others: http://stackoverflow.com/search?q=restlet.

 You can get more directly in touch with Restlet users and developers via the discussion group (mailing list) at www.restlet.org/community/lists.

 F.3. Code and issues repository

 After using the Tigris.org forge for seven years, the project has recently moved to the more modern and productive GitHub
 platform for both the code repository (Git server) and the issues tracker. You can now fork the project at https://github.com/restlet/restlet-framework-java and contribute enhancements using the powerful pull request feature.

 F.4. Professional services

 If you need urgent help, can’t publicly ask for questions, or want to sponsor the development of new features for the Restlet
 Framework, you’re welcome to get in touch with Restlet SAS, the company behind this open source project. Here are some pointers:

 	Commercial licenses—www.restlet.com/products/restlet-framework

 	Technical support—www.restlet.com/products/support

 	Training—www.restlet.com/services/training

 	Consulting—www.restlet.com/services/consulting

 	Custom development—www.restlet.com/services/development

 	Codevelopment—www.restlet.com/services/development

Appendix. References

 [1] Goetz, Brian, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concurrency in Practice. Addison-Wesley Professional. 2006.

 [2] Mclaughlin, Brett and Justin Edelson. Java and XML, 3rd Edition. O’Reilly. 2006.

 [3] “WebID protocol, W3C Incubator.” www.w3.org/2005/Incubator/webid/spec/, http://webid.info/spec.

 [4] Hadley, Marc. “Web Application Description Language.” www.w3.org/Submission/wadl/.

 [5] “W3C – HTML 4.01 Specification – Forms. www.w3.org/TR/html4/interact/forms.html.”

 [6] REST – Cookies evaluation. http://roy.gbiv.com/pubs/dissertation/evaluation.htm#sec_6_3_4_2.

 [7] Koelle, David. “The Alphanum Algorithm.” www.davekoelle.com/alphanum.html.

 [8] Berners-Lee, Tim. Weaving the Web. Harper Paperbacks. 2000. (See www.w3.org/People/Berners-Lee/Weaving/Overview.html.)

 [9] Nottingham, Mark. “HTTP caching tutorial.” www.mnot.net/cache_docs/.

 [10] “The Original HTTP as defined in 1991.” www.w3.org/Protocols/HTTP/AsImplemented.html.

 [11] Wilson, Jesse (from Dalvik team). “Android’s HTTP Clients.” http://androiddevelopers.blogspot.fr/2011/09/androids-http-clients.html.

 [12] Fielding, Roy T. “Representational State Transfer (REST).” http://roy.gbiv.com/pubs/dissertation/rest_arch_style.htm.

 [13] Bush, Vannevar. “As We May Think.” www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/3881/.

 [14] Wolf, Gary. “The Curse of Xanadu.” www.wired.com/wired/archive/3.06/xanadu.html.

 [15] Fielding, Roy T. “REST APIs must be hypertext driven.” http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.

 [16] “Microformats community.” http://microformats.org.

 [17] Berners-Lee, Tim, James Hendler, and Ora Lassila. “The Semantic Web.” www.scientificamerican.com/article.cfm?id=the-semantic-web.

 [18] Brickley, Dan and Libby Miller. “Friend-Of-A-Friend specification.” http://xmlns.com/foaf/spec/.

 [19] Hickson, Ian. “HTML 5—Microdata.” http://dev.w3.org/html5/md/.

 [20] Cowan, Taylor. “Binding Java Objects to RDF.” http://semanticweb.com/binding-java-objects-to-rdf_b10682.

 [21] “Hypertext Transfer Protocol—HTTP/1.0.” http://tools.ietf.org/html/rfc1945.

 [22] Fielding, R., J. Gettys, J.C. Mogul, H.F. Nielsen, L. Masinter, P. Leach, and T. Berners-Lee. “Hypertext Transfer Protocol—HTTP/1.1.”
 Internet RFC 2616, 1999. http://tools.ietf.org/html/rfc2616. (An effort to revise this specification is underway. Drafts of the revised specification can be found at http://tools.ietf.org/wg/httpbis/.)

 [23] “BiDirectional or Server-Initiated HTTP (hybi).” https://datatracker.ietf.org/wg/hybi/charter/.

 [24] Banon, Shay. “REST and Web Sockets?” www.kimchy.org/rest_and_web_sockets/.

 [25] “W3C. Server-Sent Events working draft.” www.w3.org/TR/eventsource/.

 [26] Wikipedia. “SPDY protocol.” http://en.wikipedia.org/wiki/SPDY.

 [27] Chromium Project. “SPDY protocol.” http://dev.chromium.org/spdy.

 [28] Wikipedia. “Waka (protocol).” http://en.wikipedia.org/wiki/Waka_(protocol).

 [29] Nottingham, Mark. “Will HTTP/2.0 Happen After All?” www.mnot.net/blog/2009/11/13/flip.

 [30] Waldo, Jim, Geoff Wyant, Ann Wollrath, and Sam Kendall. Sun Microsystems Laboratories. November, 1994. http://labs.oracle.com/techrep/1994/smli_tr-94-29.pdf.

 [31] Box, Don and Steve Maine. Microsoft, 2007. http://channel9.msdn.com/Events/MIX/MIX07/DEV03.

 [32] Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development. Prentice Hall. 2005.

 [33] http://www.idef.com/IDEF1.htm.

 [34] Internet-Draft. “URI Template.” http://bitworking.org/projects/URI-Templates/.

 For further reading

 “Comet programming.” http://en.wikipedia.org/wiki/Comet_(programming).

 “HTTP/1.1 bis initiative.” http://tools.ietf.org/wg/httpbis/.

 Nottingham, Mark. “WADL to HTML transformation with XSLT.” http://github.com/mnot/wadl_stylesheets.

 Prescod, P. “Reinventing Email using REST.” http://www.prescod.net/rest/restmail/.

 Stone, Jonathan and Craig Partridge. “When The CRC and TCP Checksum Disagree, 2000.” SIGCOMM’00: Proceedings of the Conference
 on Applications, Technologies, Architectures, and Protocols for Computer Communication. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.7611&rep=rep1&type=pdf.

Index

 [SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X]

 SYMBOL

 @Delete annotation

@Get annotation, 2nd, 3rd

@Options annotation

@Post annotation

@Put annotation, 2nd, 3rd

${variableName}

$variableName

200 status code

201 status code

202 status code

301 status code

400 status code

404 status code

405 status code

500 status code

 A

 abstract data model

Accept-Charset header

Accept-Language header

Access-Control-Allow-Origin header

Account class, 2nd

account feeds

accountId attribute, 2nd

accountRef property, 2nd, 3rd

AccountRepresentation

AccountResource, 2nd

Accounts resource
 uses POST method

AccountServerResource class, 2nd

Activator class

Add External JARs button

Add JAR/Folder button

addProduct method

afterHandle

agentId parameter

alternatives to HTTP protocol
 SPDY protocol
 SSE
 WebSocket protocol

Amazon Elastic Beanstalk
 deploying applications in
 overview

Amazon S3 (Simple Storage Service)
 accessing resources
 configuring buckets

Amazon Simple Notification Service

Android
 editions for
 overview
 requirements for
 Restlet edition for
 client-side support
 extensions for
 server-side support

Android Hierarchy view

Android TraceView

Android Virtual Device.
 See AVD.

android.permission.INTERNET Uses Permission

AndroidManifest.xml file

annotated property

AOP (aspect-oriented programming), 2nd

APISpark platform

APOP command

APP (Atom Publishing Protocol)

appcfg.sh script

AppendableRepresentation, 2nd, 3rd, 4th

appengine-web.xml file

Application class, 2nd

APPLICATION_JAVA_OBJECT_GWT

APPLICATION_JAVA_OBJECT_XML

Application.getCurrent() method

ApplicationInfo class, 2nd

applications
 common services for
 context of
 properties for
 purpose of
 routing system for
 filtering for processing
 URI-based routing
 structure of
 subclass for
 using resources in
 ClientResource class
 in MailServerApplication
 Resource class
 ServerResource class
 using Java annotations

apps-secure-data-connector.google.com

architecture of Restlet edition for GWT

ArrayList class

aspect-oriented programming.
 See AOP.

AsyncCallback interface

AsyncTask

Atom Publishing Protocol.
 See APP.

Atom Syndication Format

AtomPub

attachments property

attribute extraction

authenticating users
 Authenticator class
 certificate-based authentication
 challenge-based authentication
 credentials in client
 receiving in response
 setting in request
 support for proxy authentication
 verifying credentials
 DigestAuthenticator class
 SecretVerifier class
 using JAAS

AuthenticatorHelper

Authorization header, 2nd

authorizing user actions
 Authorizer class
 for particular resources
 MethodAuthorizer class
 RoleAuthorizer class
 using Java security manager

autoCommitting property

autoDescribing property, 2nd

autodiscovery mechanism

automatic compression

Automatic object

automatic object serialization support, in Restlet edition for GWT

available property

availableSize property

AVD (Android Virtual Device)

AWS Management Console, 2nd

AwsAuthenticator

Azure table

 B

 beforeHandle

Berners-Lee, Tim

blob service

Blocker class

Boolean property

Box, Don

buckets, for Amazon S3

ByteArrayRepresentation

 C

 C2DM (Cloud to Device Messaging) framework

CA (Certification Authority)

CacheService

caching, 2nd

CallbackHandler

Certificate Revocation Lists.
 See CRL.

CertificateAuthenticator, 2nd

certificate-based authentication

Certification Authority.
 See CA.

challenge schemes

ChallengeAuthenticator, 4th
 and the JaasVerifier
 and verifiers
 extending

challenge-based authentication

ChallengeRequest, 2nd, 3rd

ChallengeResponse, 2nd, 3rd, 4th

ChallengeScheme, 2nd, 3rd

ChannelRepresentation

CharacterSet

characterSet property

checkDigest() method

cia variable

cig variable

CLAP_CLASS

CLAP_DEFAULT

CLAP_SYSTEM

CLAP_THREAD

Class Libraries type

Class parameter

ClassLoader Access Protocol.
 See CLAP.

Client class

client connectors, 2nd

clientDispatcher, 2nd

clientDispatcher property, 2nd, 3rd

ClientHelper

ClientInfo

clientInfo property, 2nd

clientInfo.certificates property

ClientProxy
 extension
 interface

ClientProxy interface

ClientResource.get(Class<T>) method

ClientResource.put(Object) method

ClientResource.setRequest EntityBuffering(true) method

client-side support, of Restlet edition for Android

clientTrust.jks

cloud platforms
 Amazon Elastic
 Beanstalk
 deploying applications in
 overview
 Amazon S3
 accessing resources
 benefits of
 client access to services
 SaaS portability
 Google App Engine
 deploying applications in
 Google Accounts authentication for
 overview
 URL fetch service for
 OData protocol
 calling services for
 generating classes for
 overview
 SDC extension for
 implementing
 in Google App Engine
 installing agent
 overview
 Windows Azure, 2nd
 configuring storage accounts
 deploying applications in
 overview
 using table service

Cloud to Device Messaging.
 See C2DM.

cloudapp.net domain

cloud-scale databases

CloudWatch monitoring

CN (Common Name)

code annotations

com.google.gwt.json.client package

com.sun.security.auth.UserPrincipal

com.sun.syndication.feed.synd.SyndFeed

command line, compiling with

command pattern

Command-line tools

commit() method

committed property

Common Name.
 See CN.

common services for applications

Comparator object

Component class, 3rd
 declarative XML configuration

Component.defaultHost property

Component.hosts property

Component.internalRouter property

Component.main() method

Component.services property

Component() method

components, 2nd
 in REST architecture style
 models
 structure of
 XML configuration for

compressing representations

computeDigest() method

conf/settings.xml file

ConfidentialAuthorizer, 2nd

configuration file
 per module

Configure Variables button

Connector class, 2nd

connectors, 3rd, 5th
 in REST architecture style
 Servlet engine as

ConnectorService

connectTimeout

ConnegService, 2nd

Console view

construction phase, 2nd

consuming
 feeds
 linked data

Contact class, 2nd

ContactRepresentation, 2nd

Contacts class

Contacts resource

ContactsResourceProxy

ContactsServiceImpl

containers, Servlet engine as

content negotiation

Content-Encoding

ContentHandler interface

ContentHandler() method

Content-MD5 header

Content-Type header

Context class, 2nd, 3rd, 4th

context, of applications

ConverterHelper

converters

ConverterService, 2nd, 3rd, 4th, 5th

CookieAuthenticator, 2nd

cookie-based authentication

cookies

CORS (Cross-Origin Resource Sharing)

Create AVD button

create method

Create Project from Scratch option

Create storage account button

create() method

create<ENTITY>Query method

createChildContext() method

createClapReference() method

createElementNS(String, String) method

createInboundRoot method, 2nd, 3rd, 4th, 5th, 6th, 7th

createObjectMapper() method

createProductQuery method

createRiapReference() method

createTransformer() method

createwapackage

credentials
 receiving in response
 setting in request
 support for proxy authentication
 verifying
 DigestAuthenticator class
 SecretVerifier class
 using JAAS

Credentials cookie

CRL (Certificate Revocation Lists)

cross-domain requests
 in Restlet edition for GWT
 in server-side extension for GWT

Cross-Origin Resource Sharing.
 See CORS.

cscfg file

csdef file

.cspack.jar

CSR (certificate signing request)

cURL

currentLogger property

CUSTOM scheme

 D

 Dalvik Debug Monitor Server.
 See DDMS.

Dart edition

database sharding, replication

Date class

DDMS (Dalvik Debug Monitor Server) tool

Debian Linux project

debug parameter

debugging

DecoderService, 2nd

deeplyAccessible property

DefaultHandler class

defaultMatchQuery property

DefaultSslContextFactory

defaultVerifier property

deferred binding, 4th
 activated during compilation phase
 supported data format

DELETE method, 2nd, 3rd, 4th, 5th

delete() method, 2nd, 3rd

deleteProduct method

deploying applications
 and Restlet components
 structure of
 in Amazon Elastic Beanstalk
 in Google App Engine
 in Java EE server
 in OSGi environments
 Oracle XML DB extension for
 Restlet framework as library
 Servlet engine as connector for components
 Servlet engine as container of applications
 Servlet extension for
 in Windows Azure
 with Java SE
 Component class
 configuring services for
 server and client connectors
 virtual hosting for
 XML configuration for
 with components
 with Spring framework

describeGet(MethodInfo)

Descriptor file

design implementation, 2nd

developed extensions

digest property

DigestAuthenticator, 2nd, 3rd

DigesterRepresentation, 2nd

digesting
 representation digesting
 without losing content

DigestVerifier, 2nd

Directory class, 2nd, 3rd, 4th

discussion groups

Disk-based file

Display table

disposition property

distributed objects
 systems

distributions
 Eclipse update site
 Maven repository
 Windows installer
 zip files

doCatch(Throwable) method

documenting
 overview
 pitfalls for
 recommendations for
 WADL
 converting documents to HTML
 overview
 WadlApplication class
 WadlServerResource
 class
 describing single resource with
 improving description of existing server resources with
 methods for

doInit() method, 2nd, 3rd, 4th

DOM API, XML representations using

domain parameter

doRelease() method, 2nd

download.vbs

DynamicContentServer

 E

Eclipse Modeling Framework.
 See EMF.

editions
 extensions for
 for Android
 for Google App Engine
 for Google Web Toolkit
 for Java EE
 for Java SE
 for OSGi environments
 logical versions
 versioning scheme for

elaboration phase

EMF (Eclipse Modeling Framework)

EmfRepresentation class

EncoderService, 2nd

encodings property

enddef marker

Engine class, 2nd

Enroler interface, 3rd, 4th
 default for

ephemeralPort

error pages

errorHandler

ESB (Enterprise Service Buses)

E-Tag (entity tag)

exhaust() method

existing property

expand property

expirationDate property

Expires header

exposing feeds

extending variables

external actors

Extractor filter

 F

 Feed class

feeds

Feeds resource

feedTableList.getEntries() method

Fielding, Roy T.

file attachment field

FILE client

file uploads

FileRepresentation, 2nd

Filter class, 2nd, 3rd

filter property

filtering for processing

Finder class

finderClass property

FoafBrowser, launch

followRedirects property, 2nd

Form class, 2nd, 3rd, 4th

formattedOutput property

FormDataSet class

forms

framework
 editions
 extensions for
 for Android
 for Google App Engine
 for Google Web Toolkit
 for Java EE
 for Java SE
 for OSGi environments
 logical versions
 versioning scheme for
 extensions
 Restlet API
 data package
 representation package
 resource package
 root package
 routing package
 security package
 service package
 util package
 Restlet engine

FreeMarker extension, template representations using

FreeMarker template, 2nd, 3rd

FTP_PLAIN scheme

future of Restlet
 APISpark platform
 connectors
 contributing to
 Dart edition
 enhancements
 CacheService
 ConnegService
 ConverterService
 JAVA 6 support
 size optimization
 unified bean converter
 JavaScript edition
 Restlet Apps
 Restlet Cloud
 Restlet forge
 Restlet Studio
 third-party projects
 integration efforts
 stacks
 using code annotations

 G

 GAE (Google App Engine), 2nd, 3rd, 4th
 deploying applications in
 editions for
 Google Accounts authentication for
 overview
 SDC extension in
 URL fetch service for

GaeAuthenticator

GaeEnroler class

GData (Google Data)

Generator class

get() method, 2nd, 3rd, 4th, 5th, 6th

getAttributes() method

getChallengeRequests() method

getChannel() method

getChild method

getClientResource method, 2nd, 3rd

getConverterService() method

getCookies() method

getCookieSettings() method

getCount property

getDefaultHost() method

getDocument method, 2nd

getElementsByTagName method

getEncoderService() method

getFirstChild method

getFirstValue(String name) method

getFoafProfile() method, 2nd

getJsonArray() method

getMetadataService() method

getName() method

getParent method

getQuery() method

getReader() method, 2nd

getReference() method

getRegisteredClients method

getRegisteredConverters method

getRepresentation(Status, Request, Response) method

getRequest() method, 2nd

getRequestAttributes() method, 2nd

getResourceInfo() method

getResponse() method, 2nd

getRoles() method

getStream() method, 2nd, 3rd

getText() method, 2nd

getUser() method

getValuesArray(String name) method

getWebRepresentation() method

Git server

GitHub platform

global library

Google App Engine.
 See GAE.

Google SDC agent

Google search

Google Web Toolkit.
 See GWT.

Gourley, David

Graph class

GraphBuilder class

GraphHandler, 2nd

groups, for user roles

GWT (Google Web Toolkit), 2nd
 and REST
 Android
 overview
 requirements for
 Restlet edition for
 editions for
 installing
 overview
 Restlet edition for
 architecture flexibility
 automatic object serialization support
 client-side API
 concepts of
 handling cross-domain requests
 JSON representations in
 RequestBuilder class
 XML representations in
 server-side extension for
 handling cross-domain requests
 with GWT-RPC

GWT object, 2nd, 3rd

GWT.create static method

GWT-specific object

 H

 handle method, 2nd, 3rd, 4th

handle(Request, Response) method, 2nd

HATEOAS (hypermedia as the engine of application state)
 principle

HEAD method

head() method, 2nd

headers, Restlet properties for

health check, 2nd

helloClientResource.get() method

helloServer.start() method

HelloServerResource, 2nd, 3rd

HelloWorld class, 2nd, 3rd

HelloWorld.java class

HelloWorld.main() method

Helper class

homeRef property

Host header

hostDomain property

hostPort property

hostScheme property

HTML redirections

HTML table

HTTP Client

HTTP content negotiation
 combining annotated interfaces and converter service
 configuring client preferences
 declaring resource variants for
 overview

HTTP protocol, 2nd, 3rd, 4th, 5th, 13th
 alternatives to
 SPDY protocol
 SSE
 WebSocket protocol
 and REST architecture style
 headers, Restlet properties for
 history of
 HTTP/1.1 bis initiative
 main ones
 Restlet classes for
 using correctly

HTTP WWW-Authenticate header

HTTP_AWS_QUERY scheme

HTTP_AWS_S3 scheme, 2nd

HTTP_AZURE_SHAREDKEY scheme, 2nd

HTTP_AZURE_SHAREDKEY_LITE scheme

HTTP_BASIC scheme

HTTP_COOKIE scheme

HTTP_DIGEST scheme

HTTP_NTLM scheme

HTTP_OAUTH scheme

HTTP/1.1 bis initiative

HTTP/HTTPS client

HttpAwsQueryHelper

HttpAzureSharedKeyHelper

HttpAzureSharedKeyLite

HttpBasicHelper

HTTPS, enabling

HttpServlet class

HttpServletResponse method

HttpURLConnection class, 2nd, 3rd, 4th, 5th

hyperdata, 2nd

hypermedia, 9th
 defined
 HATEOAS principle
 hyperdata, 2nd
 hypertext
 defined
 support for

hypermedia as the engine of application state.
 See HATEOAS.

hypertext
 defined
 support for

 I

 IaaS (Infrastructure as a Service)

IDE (integrated development environment)
 command line compiling
 Eclipse
 IntelliJ IDEA
 NetBeans

identifier property

IETF (Internet Engineering Task Force)

ifdef marker

If-Match header

If-Modified-Since header

ifndef marker

If-None-Match header

If-Unmodified-Since header

implementation testing

inbound
 root, 2nd, 3rd
 server redirection

inboundRoot property, 2nd

inception phase

indexName property

Infrastructure as a Service.
 See IaaS.

init() method

inlineCount property

InputEndpoint

instruction keyword

integrated development environment.
 See IDE.

integration testing
 ClientResource
 cURL
 RESTClient

IntelliJ IDEA

Internet Engineering Task Force.
 See IETF.

Inversion of Control.
 See IoC.

IoC (Inversion of Control)

isInRole() method

Issuer DN (Issuer Distinguished Name)

 J

 JAAS, verifying credentials using

JaasUtils.doAsPrivileged() method

JaasVerifier, 2nd

Jackson extension, JSON representations using

JacksonRepresentation class, 2nd

JAR file, 2nd, 3rd, 6th
 Android repackages, 2nd

JAVA 6 support

Java annotations

Java Community Process.
 See JCP.

Java Database Connectivity.
 See JDBC.

Java EE server
 deploying applications in
 in OSGi environments
 Oracle XML DB extension for
 Restlet framework as library
 Servlet engine as connector for components
 Servlet engine as container of applications
 Servlet extension for
 editions for

Java Enterprise Edition.
 See Java EE.

Java interface

Java method, 2nd, 3rd, 4th

Java object, 2nd, 3rd

Java Runtime Engironment.
 See JRE.

Java SE (Java Standard Edition)
 deploying applications with
 Component class
 configuring services for
 server and client connectors
 virtual hosting for
 editions for

Java Secure Socket Extension.
 See JSSE.

Java security manager, authorizing user actions using

Java Server Pages.
 See JSP.

Java Standard Edition.
 See Java SE.

java.beans.XMLEncoder class

java.io.File, 2nd, 3rd

java.io.InputStream, 2nd

java.io.ObjectInputStream class

java.io.OutputStream

java.io.Reader, 2nd

java.io.Serializable, 2nd

java.io.Writer

java.lang.Serializable

java.lang.String class, 2nd, 3rd

java.net.HttpURLConnection, 2nd

java.nio package

java.nio.ReadableByteChannel

java.nio.WritableByteChannel

java.security.Principal interface

Java.sql.RowSet

java.util.logging API

java.util.logging.config.file

Java-based command

Javadocs, 2nd, 3rd, 4th

JavaMail

JavaMailClientHelper

JavaScript edition

javax.mail.Message

javax.net.ssl.SSLContext

javax.servlet

javax.sql.rowset.WebRowSet

javax.xml.bind.XmlRoot-Element

javax.xml.parser package, 2nd

javax.xml.validation package

JAXB extension, XML representations using

JaxbRepresentation class, 2nd

JCP (Java Community Process)

JDBC (Java Database Connectivity), extension

JRE (Java Runtime Environment)

JSON
 representations
 in Restlet edition for GWT
 using Jackson extension
 using JSON.org extension
 type

JSON.org extension, JSON representations using

JSONArray

JSONBoolean

JSONNull

JSONNumber

JSONObject class, 2nd

JSONParser class

JsonpRequestBuilder class

JsonRepresentation class, 2nd, 3rd

JSONString

JSONValue class

JSP (Java Server Pages)

JSSE (Java Secure Socket Extension)

jSSLutils

JsslutilsSslContextFactory

JUnit

JVM parameter

 K

 keyPassword parameter

keys, storing

keystore
 configuring on a server
 importing CA certificates
 prompted for password and key

KeyStore class

keystorePassword parameter

keystorePath parameter

keystoreType parameter

keytool, 2nd

L

 languages property

Larman, Craig, 2nd

launcher.XXMaxPermSize property

LdapLoginModule

lib directory

library, Restlet framework as

Link class

LINQ (Language-Integrated Query)

lisa.getContacts() method

List interface

ListActivity

listingAllowed property

Literal class

Local file

localConfig.xml file

localConfigFile parameter

localhost

LocalReference class

LocalVerifier, 2nd

location transparency

log4jPropertiesFile parameter

logical architecture, for RESTful web APIs

logical versions

LoginModule

logLevel

LogService class, 2nd

loose coupling, 2nd

Lucene extension

 M

 m (milestone)

m variable

Mail class, 2nd, 3rd, 4th, 5th

Mail.gwt.xml

Mail.xsd file

MailApiApplication, 2nd

MailApplication

MailComponent

mail-editing form, 2nd, 3rd

MailResource interface

Mails resource

MailServerComponent class, 2nd, 3rd, 5th, 6th, 7th, 8th
 trimmed for Servlet deployment

MailServerResource class, 2nd, 3rd, 5th, 6th
 exchanging JSON representations

MailSiteApplication, 2nd

MailStatus.ftl template

MailStatusService() method

main() method

major.minor.release

MANIFEST.MF file

MapVerifier, 2nd, 3rd

Maven repository

maxRedirects property

MediaType class, 2nd

mediaType property

MediaType.APPLICATION_JAVA_OBJECT

MemoryRealm

Message class, 2nd

Message.cacheDirectives

MetadataService, 2nd, 3rd

META-INF/services folder

metamodels

MethodAuthorizer class, 2nd

methodInfo parameter

microformats

MIME type

MobileMailClientMainActivity

mode property

MODE_CLIENT_FOUND

MODE_CLIENT_SEE_OTHER

MODE_CLIENT_TEMPORARY

MODE_SERVER_INBOUND

MODE_SERVER_OUTBOUND

Model View Controller.
 See MVC.

modifiable property, 2nd

modificationDate property

modularizing applications
 and private applications
 RIAP pseudoprotocol
 server dispatcher for

MODULE-NAME module

<MODULE-NAME>.gwt.xml file

MOVE method

multithreaded subclasses

MVC (Model View Controller)

myApplication.getServices() method

MyService class

MyService() method

MySQL database

 N

 NaiveCookieAuthenticator

Name property

NameCallback

NamespaceContext interface

namespaces
 for XML representations
 property

needClientAuthentication parameter, 2nd

negotiated property

negotiatingContent property

Nelson, Ted

NetBeans

next property, 2nd

n-n cardinality

NodeList class

Noelios Technologies

nonrepeating resources

NotFoundException class

Nottingham, Mark

 O

 OAuth 2.0

OAuthAuthorizer

OAuthHelper

ObjectMapper class

Object-Oriented Analysis and Design.
 See OOA/D.

object-oriented paradigm

ObjectOutputStream class

Object-Relational Mapping.
 See ORM.

ObjectRepresentation

objects layer

onCreate method, 2nd

online documentation
 Javadocs
 wiki

onSuccess method

ontologies, 2nd, 3rd, 4th

Ontology Web Language.
 See OWL.

OOA/D (Object-Oriented Analysis and Design)

Open Specification Promise.
 See OSP.

OpenID 2.0

OPTIONS method, 2nd, 3rd, 4th, 5th, 6th

options() method, 2nd, 3rd

Oracle database

Oracle XML DB extension, for Java EE server

orderby property, 2nd

org.apache.commons.io

org.apache.velocity.Template

org.eclipse.emf.core.EObject

org.freemarker.Template

org.json.JSONArray, 2nd

org.json.JSONObject, 2nd

org.json.JSONTokener, 2nd

org.restlet package, 2nd, 3rd, 4th

org.restlet.<edition>

org.restlet.app.<name> modules

org.restlet.app.search application

org.restlet.Application, 2nd, 3rd, 4th

org.restlet.client, 2nd

org.restlet.client.resource package

org.restlet.client.resource.ClientProxy interface

org.restlet.Component, 2nd

org.restlet.Connector

org.restlet.Context class

org.restlet.data package class, 2nd, 3rd

org.restlet.data.Cookie class

org.restlet.data.CookieSetting class

org.restlet.data.Form class, 2nd, 3rd, 4th, 5th

org.restlet.data.LocalReference class

org.restlet.data.Metadata

org.restlet.data.Parameter

org.restlet.data.Status class

org.restlet.data.Tag class

org.restlet.engine.Engine class, 2nd

org.restlet.engine.security.SslContextFactory

org.restlet.ext.<code> package

org.restlet.ext.<extension>, 2nd

org.restlet.ext.atom extension, 2nd, 3rd

org.restlet.ext.atom.Feed

org.restlet.ext.atom.Service

org.restlet.ext.crypto extension, 2nd, 3rd

org.restlet.ext.crypto.Cookie-Authenticator class

org.restlet.ext.fileupload extension

org.restlet.ext.fileupload.RestletFileUpload class

org.restlet.ext.freemarker
 extension

org.restlet.ext.gae extension

org.restlet.ext.gwt extension, 2nd

org.restlet.ext.html

org.restlet.ext.html.FormDataSet

org.restlet.ext.httpclient

org.restlet.ext.jackson, 2nd, 3rd, 4th

org.restlet.ext.jaxrs

org.restlet.ext.jdbc extension

org.restlet.ext.jdbc.JdbcResultSet

org.restlet.ext.jetty.jar

org.restlet.ext.jibx package

org.restlet.ext.json package, 2nd

org.restlet.ext.lucene extension

org.restlet.ext.net

org.restlet.ext.net.jar

org.restlet.ext.odata

org.restlet.ext.odata extension

org.restlet.ext.rdf extension, 2nd

org.restlet.ext.rdf.Graph, 2nd

org.restlet.ext.rdf.jar, 2nd

org.restlet.ext.rome extension

org.restlet.ext.sdc extension

org.restlet.ext.servlet extension

org.restlet.ext.sip

org.restlet.ext.slf4j extension

org.restlet.ext.spring module

org.restlet.ext.ssl package

org.restlet.ext.velocity

org.restlet.ext.wadl.ApplicationInfo

org.restlet.ext.wadl.jar file

org.restlet.ext.xml, 2nd, 3rd, 4th, 5th, 6th

org.restlet.ext.xstream, 2nd, 3rd

org.restlet.jar, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th

org.restlet.JSON

org.restlet.lib.<jar identifier>

org.restlet.Message

org.restlet.representation package

org.restlet.representation.Representation

org.restlet.representation.StringRepresentation

org.restlet.representation.Variant

org.restlet.Request

org.restlet.resource package

org.restlet.resource.ClientResource class

org.restlet.resource.Directory class

org.restlet.resource.Resource

org.restlet.resource.ServerResource

org.restlet.Response

org.restlet.Restlet, 2nd, 3rd, 4th, 5th, 6th

org.restlet.routing.Redirector class

org.restlet.routing.Router class

org.restlet.security package, 2nd

org.restlet.security.Authorizer

org.restlet.security.Enroler interface

org.restlet.security.Group

org.restlet.security.Realm class

org.restlet.security.Role

org.restlet.Server

org.restlet.service package

org.restlet.service.Service class

org.restlet.service.StatusService

org.restlet.Uniform interface, 2nd

org.restlet.util.Resolver interface

org.restlet.util.Resolver<T> class

org.restlet.XML

org.xml.sax package

origin server

ORM (Object-Relational Mapping), 2nd

OSGi environments, 2nd, 3rd

OSP (Open Specification Promise)

outbound
 root
 server redirection

outboundRoot property

Output view, 2nd

OUTPUT_DIRECTORY parameter

OutputRepresentation

OWL (Ontology Web Language)

 P

 PaaS (Platform as a Service)

Package location field

package.xml file

packagetype attribute

parent property

partial representations, 2nd

PasswordCallback

Pattern class

performance
 caching information
 compressing representations
 partial representations
 removing server-side session state
 streaming representations
 using conditional methods

persistence
 JDBC extension for
 Lucene extension for
 tips for

PKI (Public Key Infrastructure)

PkixSslContextFactory

Plain Old Java Object.
 See POJO.

Platform as a Service.
 See PaaS.

POJO (Plain Old Java Object)

POP_BASIC scheme, 2nd

POP_DIGEST scheme, 2nd

Popper, Karl

portability, of SaaS

POST method, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th
 when invoked
 when to use

preauthenticating calls

Principal interface

priori

procedure call

professional services

profileRef property

<profiles> section

properties
 for applications
 for HTTP headers

Proxy-Authorization HTTP header

proxyChallengeResponse property

pseudoconnector

pseudoprotocols, 2nd, 3rd, 4th

Public Key Cryptography

Public Key Infrastructure.
 See PKI.

purpose, of applications

 Q

 Query class

queue service

 R

 range property

RangeService, 2nd

RBAC (Role-Based Access Control)

rc (release candidate)

RDF
 consuming linked data
 data model for
 exposing RDF resources
 representation variants

rdf:Description element

RdfClientResource

RdfConverter

RdfRepresentation, 2nd, 3rd

ReadableRepresentation

ReaderRepresentation

Realm class, 2nd

reason phrase

redirect keyword

RedirectedClient class

redirections
 manual
 Redirector class

Redirector class, 2nd, 3rd, 4th, 5th

Reference class, 2nd

reia, 2nd, 3rd, 4th

reia.table.core.windows.net

reiabucket

release candidate.
 See rc.

release() method

Remote Procedure Call.
 See RPC.

remote service interfaces

RemoteServiceServlet

repositories

<repositories> section

represent() method, 2nd, 3rd

Representation
 class, 2nd
 method
 parameter

Representation.expirationDate

Representation.size property

RepresentationInfo class, 2nd

RepresentationInfo.modificationDate

RepresentationInfo.tag

representations, 2nd
 classes for RESTful web APIs
 digesting
 HTTP content
 negotiation
 combining annotated interfaces and converter service
 configuring client preferences
 declaring resource variants for
 overview
 JSON representations
 using Jackson extension
 using JSON.org extension
 package
 Representation class
 RepresentationInfo class
 template
 representations
 using FreeMarker extension
 using Velocity extension
 Variant class
 XML representations
 and XPath expressions
 applying XSLT transformations to
 namespaces for
 using DOM API
 using JAXB extension
 using SAX API
 validating against schemas
 XmlRepresentation class for

Request class, 2nd, 3rd

request.clientInfo.accepted-CharacterSets

request.clientInfo.accepted-Encodings

request.clientInfo.accepted-Languages

request.clientInfo.accepted-MediaTypes

Request.getClientInfo() method

Request.hostRef.hostDomain property

Request.hostRef.hostPort property

Request.hostRef.scheme property

Request.loggable property

Request.resourceRef property

Request.resourceRef.hostDomain property

Request.resourceRef.hostPort property

Request.resourceRef.scheme property

RequestBuilder class

requestEntityBuffering property

RequestInfo class

Resolver interface

Resource class, 2nd, 3rd

resource model, for RESTful web APIs

resource package

resource variants, for HTTP content negotiation

resource.get() method

resourceDomain property

ResourceException

ResourceInfo class

Resource-Object Mapping.
 See ROM.

Resource-Oriented Analysis & Design.
 See ROA/D.

resource-oriented paradigm

resourcePort property

resourceRules.xml file

resources, 8th
 authorizing user actions for
 ClientResource class
 for RESTful web APIs
 in MailServerApplication
 in REST architecture style
 layer
 Resource class
 ServerResource class
 using Java annotations

resourceScheme property

ResourcesInfo class

response.age

Response.serverInfo.address property

Response.serverInfo.port property

Response.status property

Response#dimensions property

responseEntityBuffering property

REST architecture style
 and HTTP
 components in
 connectors in
 example of
 forms of web using
 resources in
 vs. RPC

RESTClient

RESTful method

Restlet API
 data package
 representation package
 resource package
 root package
 routing package
 security package
 service package
 util package

Restlet Apps

Restlet class, 2nd, 3rd, 4th, 5th, 6th, 8th
 advantage

Restlet edition for GWT concepts

Restlet framework
 as library
 benefits of
 design
 design of
 installing
 platforms supported by

Restlet Internal Access Protocol.
 See RIAP.

RESTLET_HOME variable

Restlet.class file

Restlet-annotated method

RestletFileUpload class

RestletFrameworkServlet class

restletLogLevel

Result class

retryAttempts property

retryDelay property

retryOnError property

reverse proxying

rewrite(Representation) method

RIA (Rich Internet Applications)

RIAP (Restlet Internal Access Protocol)
 client
 pseudoprotocol, 2nd

RIAP_APPLICATION

RIAP_COMPONENT

RIAP_HOST

Rich Internet Application.
 See RIA.

RNG (Relax NG)

ROA/D (Resource-Oriented Analysis & Design) methodology
 constructing solution
 elaboration phase
 inception phase
 overview
 transitioning project

Role object

RoleAuthorizer class, 2nd

Role-Based Access Control.
 See RBAC.

roles, user
 Enroler interface
 groups for
 Principal interface

ROM (Resource-Object Mapping)

root package

rootRef property

RootServerResource class, 2nd, 3rd, 5th, 6th
 refactor

Router class, 2nd, 3rd, 4th

routing package

routing system
 filtering for processing
 URI-based routing

routingMode property

RowSetRepresentation class

RPC (Remote Procedure Call)
 vs. REST architecture style

rulesFile parameter

runOnUiThread method

 S

 SaaS (Software as a Service)
 portability of

safe methods

SAX API
 XML representations using

SaxRepresentation class, 2nd, 3rd, 4th

Schema class

sdcServerHost

SecretVerifier, 2nd, 3rd

Secure Data Connector.
 See SDC.

Secure Socket Layer.
 See SSL.

security
 assigning roles to users
 Enroler interface
 groups for
 Principal interface
 authenticating users
 Authenticator class
 certificate-based authentication
 challenge-based authentication
 credentials in client
 verifying credentials
 authorizing user actions
 Authorizer class
 for particular resources
 MethodAuthorizer class
 RoleAuthorizer class
 using Java security manager
 ensuring end-to-end integrity of data
 digesting without losing content
 representation digesting
 using Content-MD5 header
 for communications
 enabling HTTPS
 generating certificate requests
 generating self-signed certificates
 importing trusted certificates
 SSL, 2nd
 storing keys and certificates
 TLS

security package

segments

select property

self-signed certificates, generating

Semalink

Semantic Web
 and REST
 using RDF in
 representations
 consuming linked data
 data model for
 exposing RDF resources
 representation variants

sendRequest method

Serializable interface

Series class

Server class, 2nd, 3rd, 4th

server connectors, 2nd

server dispatcher, for modularizing applications

server, running

server.crt file

serverAddress property

serverDispatcher property, 2nd, 3rd

ServerHelper

ServerInfo

serverKey.jks, 2nd

serverPort property

ServerResource class, 2nd

ServerResource#get-Application() method

Server-Sent Events.
 See SSE.

ServerServlet

server-side extension, for GWT
 handling cross-domain requests
 with GWT-RPC

server-side redirections

server-side session state, removing

server-side support, of Restlet edition for Android

Service class, 2nd, 3rd

service package

SERVICE_CLASS_NAME parameter

SERVICE_URI parameter

ServiceConfiguration.cscfg, 2nd

services, configuring

Servlet engine
 as connector for components
 as container of applications

Servlet extension for Java EE server

ServletAdapter class

ServletContext class

servlet-mapping element

servlet-name values

session affinity

Session Initiation Protocol.
 See SIP.

Set<String> interface

setAttributes()

setChallengeResponse method

setOnResponse method

setUserPrincipalClassName() method

setVerifier() method

setWrappedVerifier() method

Simple Storage Service, Amazon.
 See Amazon S3.

SimpleWebMailActivity class

Single Sign-On.
 See SSO.

Single-Entry Module Library option

SIP (Session Initiation Protocol)

skip property

SMTP_PLAIN scheme, 2nd

Software Development Kit.
 See SDK.

solution design, 2nd

sourceRepresentation property

SPDY protocol

split browsing

Spring framework, XML configuration for

SSE (Server-Sent Events)

SSL (Secure Socket Layer)
 custom settings for

SSLContext

SslContextFactory, 2nd, 3rd

sslContextFactory parameter

SSO (Single Sign-On)

stacks for Restlet

Start after successful deployment option

Start Menu folder

start() method, 2nd, 3rd

Status class

Status.getThrowable() method

StatusService class, 2nd, 3rd

statusService property

StatusService.getStatus (Throwable, Uniform-Resource) method

stop() method

streaming representations

StreamRepresentation class

String class, 2nd

String method

StringRepresentation, 2nd

Subject DN (Subject Distinguished Name)

super.describeGet(methodInfo)

System.getSystemClassLoader() method

 T

 table service for Windows Azure

Tag class

Target class

targetTemplate property

TaskService

template representations
 using FreeMarker extension
 using Velocity extension

TemplateRepresentation class

TemplateRoute class

testing
 debugging
 integration testing
 ClientResource
 cURL
 RESTClient
 unit testing
 JUnit
 TestNG

TestNG

testRestlet project

third-party projects
 integration efforts
 stacks

Thread.getContextClass-Loader() method

TikaRepresentation class

TLS (Transport Level Security)

top property

toString() method

toText() method

Totty, Brian

TRACE method

Tracer class, 2nd

Transformer class

TransformRepresentation class

transformSheet property

transient property

transition phase

trust models, 2nd

trusted certificates, importing

TrustManagers

truststore, 2nd, 3rd

truststorePassword parameter

truststorePath parameter

truststoreType parameter

 U

 UML (Unified Modeling Language), 2nd, 3rd, 4th

UML class, 2nd, 3rd

uncomment keyword

unified bean converter

Unified Modeling Language.
 See UML.

Unified Process.
 See UP.

uniform interface, 2nd, 3rd

UniformResource

unit testing
 JUnit
 TestNG

unzip.vbs

UP (Unified Process)

updateProduct method

URI-based routing

URLConnection class, 2nd

useAlphaComparator() method

useAlphaNumComparator() method

user agents

User-Agent header

util package

 V

 validating XML representations

validatingDtd property

Validator filter

Variant class

Vary header

Velocity extension

Verifier interface, 2nd, 3rd

versioning, for editions

Via header

virtual hosting, 3rd
 for deploying applications

VirtualHost

 W

WadlApplication class, 2nd, 3rd

WadlDescribable interface

wadlRepresent(Request, Response) method

WadlRepresentation class

WadlServerResource class
 describing single resource with
 improving description of existing server resources with
 methods for

wantClientAuthentication parameter, 2nd

WAR file, 2nd, 3rd, 4th

Web Application Description Language.
 See WADL.

web applications, 2nd

web elements
 cookies
 error pages
 feeds
 consuming
 exposing
 file uploads
 forms
 serving file directories

Web resources

web.xml file, 2nd

webapps directory

WEB-INF/web.xml file

WebRowSet interface

WebSocket protocol

wiki

Windows Azure, 4th
 configuring storage accounts
 deploying applications in
 overview
 using table service

Windows, installer for

windowsazurepackage, 2nd

WindowsAzurePackage.cspkg file

wrap method

WritableRepresentation

write() method

write(Writer) method, 2nd

writer.endDocument() method

WriterRepresentation, 2nd, 3rd

 X

 XdbServerServlet class

X-Forwarded-For header

XML configuration, for deploying applications
 with components
 with Spring framework

XML representations
 and XPath expressions
 applying XSLT transformations to
 in Restlet edition for GWT
 namespaces for
 using DOM API
 using JAXB extension
 using SAX API
 validating against schemas
 XmlRepresentation class for

XMLConstants class

XMLDecoder class

XMLHttpRequest object

xmlns attribute

XmlRepresentation class, 2nd, 3rd

-Xmx argument

XP (eXtreme Programming)

XPath expressions, and XML representations

XSD (W3C XML Schema)

List of Figures

 Chapter 1. Introducing the Restlet Framework

 Figure 1.1. We use the term web applications to refer to web services, websites, and web clients.

 Figure 1.2. Decomposition of an abstract resource intoRestlet artifacts

 Figure 1.3. Example of one use of the comprehensive and modular Restlet architecture

 Figure 1.4. Overall Restlet design

 Figure 1.5. Platforms supported by Restlet

 Chapter 2. Beginning a Restlet application

 Figure 2.1. Restlet applications are containers of server resources and/or client

 Figure 2.2. Restlet applications are structured into three concentric layers, processing inbound

 Figure 2.3. Server calls enter a Restlet application through the service filtering layer, continue into the user routing layer
 via the inbound root, then reach the target server resources.

 Figure 2.4. Client calls start from client resources, enter the user routing layer via the outbound root, and leave the application
 after going through the service filtering layer.

 Figure 2.5. Class diagram of Application and its parent class, Restlet

 Figure 2.6. Class diagram of the Context class listing properties and special methods

 Figure 2.7. This filter is handling three concurrent calls, passing two of them to the next Restlet and blocking the third
 one.

 Figure 2.8. Class diagram showing common org.restlet.routing.Filter subclasses

 Figure 2.9. The router is handling three concurrent calls and dispatching them to attached routes.

 Figure 2.10. Router dispatching concurrent calls to three target server resources

 Figure 2.11. Lifecycle of a server resource for a given call

 Figure 2.12. Restlet-annotated Java interfaces can be used by client resources as a client proxy or when implementing a server
 resource subclass.

 Chapter 3. Deploying a Restlet application

 Figure 3.1. Restlet components are containers of Restlet applications and connect them to other distributed REST components.

 Figure 3.2. Restlet components are structured into four concentric layers, processing inbound and outbound calls in logical
 steps.

 Figure 3.3. A closer look at the content of a Restlet component

 Figure 3.4. Class diagram of the Connector superclass and the Client and Server child classes

 Figure 3.5. Virtual host listening on two IP addresses and serving several domain names

 Figure 3.6. Using the Servlet engine as an HTTP server connector for a Restlet component

 Figure 3.7. Using the Servlet engine as a container of Restlet applications

 Figure 3.8. Using the Restlet Framework as a library inside Servlet applications

 Chapter 4. Producing and consuming Restlet representations

 Figure 4.1. The Variant and RepresentationInfo classes are ancestors of all Restlet representations.

 Figure 4.2. The abstract Representation class is the superclass of all Restlet representations.

 Figure 4.3. The various ways to consume representations’ content

 Figure 4.4. Subclasses of representation

 Figure 4.5. Character-based representation classes

 Figure 4.6. BIO stream-based representation classes

 Figure 4.7. NIO channel-based representation classes

 Figure 4.8. Example resource exposing an XML document as representation

 Figure 4.9. Partial details of the base XmlRepresentation class

 Figure 4.10. Properties and methods of the DomRepresentation class

 Figure 4.11. Properties and methods of the SaxRepresentation class

 Figure 4.12. XPath-related methods of the XmlRepresentation class

 Figure 4.13. XML namespace-related properties and methods of the XmlRepresentation class

 Figure 4.14. XML schema validation-related properties and methods of the XmlRepresentation class

 Figure 4.15. Properties and methods of the TransformRepresentation class

 Figure 4.16. Properties and methods of the JaxbRepresentation class

 Figure 4.17. Example resource exposing a JSON document as representation

 Figure 4.18. Properties and methods of the JsonRepresentation

 Figure 4.19. Properties and methods of the JacksonRepresentation

 Figure 4.20. Example resource exposing an HTML document as representation

 Figure 4.21. Account resource identified by a URI and represented by three variants

 Figure 4.22. Account resource represented by bean serialized in three variants

 Chapter 5. Securing a Restlet application

 Figure 5.1. HTTPS sequence diagram with TLS/SSL

 Figure 5.2. Entities involved when using authentication with Restlet on both client and server sides

 Figure 5.3. Interactions between client and server sides during HTTP Digest digest authentication

 Figure 5.4. Hierarchy of authenticator classes

 Figure 5.5. Hierarchy of credentials verifiers

 Figure 5.6. Hierarchy of authorizers

 Chapter 6. Documenting and versioning a Restlet application

 Figure 6.1. The WadlApplication class can be used to describe an application in WADL.

 Figure 6.2. The WadlServerResource class can be used to further describe resources in WADL.

 Figure 6.3. The partial WADL documentation converted to HTML

 Chapter 7. Enhancing a Restlet application with recipes and best practices

 Figure 7.1. Displaying the mail-editing form

 Figure 7.2. Class diagram of Directory

 Figure 7.3. Default error page

 Figure 7.4. Customized error page

 Figure 7.5. Retrieving Restlet web feeds

 Figure 7.6. Redirector class diagram

 Figure 7.7. Mail server component split into a web API and a website application

 Figure 7.8. Isolating public and private applications

 Chapter 8. Using Restlet with cloud platforms

 Figure 8.1. Three layers of cloud computing

 Figure 8.2. Restlet Framework positioning in cloud layers

 Figure 8.3. Restlet as a cloud middleware to deploy, execute, and connect RESTful applications

 Figure 8.4. Global architecture of the GAE platform

 Figure 8.5. Application list containing the Restlet application

 Figure 8.6. Application list containing the deployed Restlet application

 Figure 8.7. Overview of Amazon Beanstalk parts

 Figure 8.8. Overview of the Elastic Beanstalk tab of the AWS Console

 Figure 8.9. Overview of the application creation details

 Figure 8.10. Overview of the application while being deployed to AWS Elastic Beanstalk

 Figure 8.11. Overview of the Windows Azure platform

 Figure 8.12. Structure of the project after adding JRE and Tomcat

 Figure 8.13. Creating the new hosted service on which the Azure application is deployed

 Figure 8.14. The console displays the status of the service deployment

 Figure 8.15. Creation of the worker role and instance after deploying the service

 Figure 8.16. All elements of the hosted service correctly deployed, created, and started

 Figure 8.17. Systems accessible using the Restlet OData support

 Figure 8.18. OData class generation support provided by Restlet

 Figure 8.19. AWS Management Console describing the reiabucket element and its elements

 Figure 8.20. Access Keys tab provides all available access keys.

 Figure 8.21. Configuration of permissions for AWS account to access and manage resources in buckets

 Figure 8.22. List of storage accounts present in the Azure console for a subscription

 Figure 8.23. All involved parts to implement SDC technology in both Google platform and intranet

 Figure 8.24. Cross cloud platform implementation of the SDC tunnel server provided by Restlet

 Chapter 9. Using Restlet in browsers and mobile devices

 Figure 9.1. GWT application mechanisms

 Figure 9.2. Google Plugin for Eclipse installation through Eclipse’s update manager tool

 Figure 9.3. Default GWT remoting support

 Figure 9.4. Using REST resources from GWT applications without GWT-RPC

 Figure 9.5. How the Restlet edition for GWT fits in the overall GWT architecture

 Figure 9.6. All the aspects shown here display the flexibility of the Restlet edition of GWT, which is one of its key features.

 Figure 9.7. Full flexibility using GWT-RPC and Restlet for GWT

 Figure 9.8. GWT mail client accessing the RESTful web API

 Figure 9.9. Implementing reverse proxy using the Redirector class

 Figure 9.10. Layers of the Android platform

 Figure 9.11. Android SDK Manager

 Figure 9.12. Android Virtual Device Manager

 Figure 9.13. ADT modules to install through Eclipse’s update manager tool

 Figure 9.14. Configuring Restlet JARs for the Android project

 Figure 9.15. Simple mobile Android mail client

 Chapter 10. Embracing hypermedia and the Semantic Web

 Figure 10.1. Hyperdata and other types of hypermedia

 Figure 10.2. The Linked Data technological stack

 Figure 10.3. Example RDF graph partially describing Homer Simpson

 Figure 10.4. Person class in the FOAF vocabulary

 Figure 10.5. RESTful mail example domain object model

 Chapter 11. The future of Restlet

 Figure 11.1. Timeline of the HTTP protocol

 Figure 11.2. Parts of the HTTP 1.1 bis specifications

 Figure 11.3. WebSocket and REST

 Figure 11.4. SPDY positioning

 Figure 11.5. Potential HTTP/2.0 development

 Figure 11.6. Restlet Forge workflow

 Figure 11.7. Restlet Platform overview

 Figure 11.8. Restlet Studio welcome page

 Figure 11.9. Main actors in the web API chain

 Figure 11.10. APISpark relationships with the Restlet Platform

 Figure 11.11. Web API overview on APISpark

 Figure 11.12. Web API analytics on APISpark

 Appendix A. Overview of the Restlet Framework

 Figure A.1. The Restlet API packages

 Figure A.2. Hierarchy of classes in the root package

 Figure A.3. Message hierarchy

 Figure A.4. Representation hierarchy

 Figure A.5. Resource hierarchy

 Figure A.6. Routing hierarchy

 Figure A.7. Security hierarchy

 Figure A.8. The Restlet Engine can be extended with pluggable helpers.

 Appendix B. Installing the Restlet Framework

 Figure B.1. Front page of the installation process

 Figure B.2. Read and accept the license.

 Figure B.3. Specify the installation directory.

 Figure B.4. Choose the Start Menu folder.

 Figure B.5. End of the installation process

 Figure B.6. List of available items

 Figure B.7. List of selected items

 Figure B.8. Warning: the content is unsigned

 Figure B.9. End of the installation

 Figure B.10. Create a new project.

 Figure B.11. Enter the project name.

 Figure B.12. Open the contextual menu.

 Figure B.13. Configure the build path.

 Figure B.14. Creating and extending a variable, first page

 Figure B.15. Creating a variable

 Figure B.16. Listing variables

 Figure B.17. Locating the entry to extend the RESTLET_HOME variable

 Figure B.18. Extending variables

 Figure B.19. Managing variables and user libraries in Eclipse

 Figure B.20. Run the main class.

 Figure B.21. The Console view

 Figure B.22. Create a new project.

 Figure B.23. Create a new Java project.

 Figure B.24. Choose the project name and location.

 Figure B.25. Update dependencies. Figure B.26 Add a new global library.

 Figure B.26. Add a new global library.

 Figure B.27. Complete the library.

 Figure B.28. Add the library dependence to the project.

 Figure B.29. Run the main class.

 Figure B.30. The Output view

 Figure B.31. Choose File > New Project.

 Figure B.32. Create a new project.

 Figure B.33. Specify the project name, location, and type.

 Figure B.34. Specify the source directory.

 Figure B.35. Specify the JDK.

 Figure B.36. Final step

 Figure B.37. Begin configuring the project dependency.

 Figure B.38. Adding a dependency

 Figure B.39. Run the main class.

 Figure B.40. The Output view

 Figure B.41. Compile and launch the code.

 Figure B.42. Specify the request.

 Figure B.43. Response headers

 Figure B.44. Use of a ClientResource to test a remote resource

 Appendix C. Introducing the REST architecture style

 Figure C.1. Multiple forms of the web using REST and HTTP

 Figure C.2. The web as a graph of potentially hyperlinked resources

 Figure C.3. Relationships between resources, identifiers, and representations

 Figure C.4. Anatomy of a resource

 Figure C.5. Components are coarse-grained elements (HTTP server, client, proxy) distributed on the web

 Figure C.6. Components communicate via connectors.

 Figure C.7. Interaction between a user agent and an origin server

 Figure C.8. Evolution of the RPC and distributed objects technologies

 Appendix D. Designing a RESTful web API

 Figure D.1. Overview of a RESTful web API

 Figure D.2. Typical project iteration steps

 Figure D.3. Typical project phases defined byUP

 Figure D.4. Overview of our RESTful mail system

 Figure D.5. Sender exchanging an email with receivers

 Figure D.6. System administrator managing accounts

 Figure D.7. Account owner composing mails and managing web feeds, contacts, and received mail

 Figure D.8. Domain model of the mail system

 Figure D.9. Sequence diagram describing the email sending process

 Figure D.10. Summary of main analysis and design tasks in ROA/D

 Figure D.11. Layers of the ROA/D logical architecture

 Figure D.12. Topology of the ROA/D logical architecture

 Figure D.13. Deriving the domain model

 Figure D.14. Example resources hierarchy as a UML class diagram

 Figure D.15. Example resources hierarchy as a UML class diagram describing allowed methods

 Figure D.16. Example resources hierarchy as a UML class diagram describing representations

List of Tables

 Chapter 2. Beginning a Restlet application

 Table 2.1. Properties of Restlet inherited by Application

 Table 2.2. Restlet applications offer several built-in services.

 Table 2.3. Results of a routing example

 Table 2.4. Shortcut methods in the Resource class

 Table 2.5. Shortcut methods in the ServerResource class

 Table 2.6. Special properties of ServerResource

 Table 2.7. Shortcut methods in the ClientResource class

 Table 2.8. Special properties of ClientResource

 Table 2.9. Restlet provides annotations for defining resources

 Chapter 3. Deploying a Restlet application

 Table 3.1. Properties of the Connector, Client, and Server classes

 Table 3.2. Characteristics of built-in connectors

 Table 3.3. Characteristics of extension connectors

 Table 3.4. Properties of the VirtualHost classes

 Table 3.5. Restlet applications can use several built-in component services.

 Chapter 4. Producing and consuming Restlet representations

 Table 4.1. Variant properties

 Table 4.2. RepresentationInfo properties

 Table 4.3. Additional Representation properties

 Table 4.4. A few examples of common standard media types

 Chapter 5. Securing a Restlet application

 Table 5.1. Parameters of the server context related to the use of HTTPS

 Table 5.2. Provided implementations of the SslContextFactory interface

 Table 5.3. Security schemes declared by the ChallengeScheme class

 Chapter 7. Enhancing a Restlet application with recipes and best practices

 Table 7.1. Directory class properties

 Table 7.2. Common URI template variables

 Chapter 8. Using Restlet with cloud platforms

 Table 8.1. Description of cloud computing layers

 Table 8.2. Restlet editions related to cloud computing

 Table 8.3. Elements present in the template project of the Windows Azure Starter Kit for Java

 Table 8.4. Examples of OData URIs to query data of services

 Table 8.5. Needed extensions for generation in context of OData with XML-based Atom

 Table 8.6. Parameters of the generator class

 Table 8.7. Properties provided by the Query class

 Table 8.8. Main launching parameters of the SDC agent application

 Chapter 9. Using Restlet in browsers and mobile devices

 Table 9.1. Modules usable with GWT

 Table 9.2. ClientResource methods removed for the GWT edition

 Table 9.3. Classes corresponding to supported JSON types

 Table 9.4. Different parts of the Android platform

 Table 9.5. Restlet extensions that can be used with Android

 Appendix A. Overview of the Restlet Framework

 Table A.1. Developed extensions by edition

 Appendix D. Designing a RESTful web API

 Table D.1. Four main HTTP methods and what the client is asking the server to do when using them

 Table D.2. Examples of common status codes defined by HTTP

 Appendix E. Mapping REST, HTTP, and the Restlet API

 Table E.1. Mapping REST concepts to Restlet classes

 Table E.2. Mapping HTTP concepts to Restlet classes

 Table E.3. Mapping HTTP headers to Restlet properties

 Table E.4. Server connectors

 Table E.5. Client connectors

 Table E.6. Converters that provide automatic serialization

 Table E.7. Converters that provides automatic deserialization

 Table E.8. Challenge schemes and their implementation

 Table E.9. Types defined in the LocalReference class

List of Listings

 Chapter 1. Introducing the Restlet Framework

 Listing 1.1. Creating a server-side resource

 Listing 1.2. Serving the Hello server resource

 Listing 1.3. Using a client-side resource

 Chapter 2. Beginning a Restlet application

 Listing 2.1. Providing the inbound root Restlet for the application

 Listing 2.2. Setting basic application properties

 Listing 2.3. An IP address-blocking filter

 Listing 2.4. An IP address-blocking filter

 Listing 2.5. Restlet returning common request properties to the client

 Listing 2.6. Illustrating URI-based routing

 Listing 2.7. Routing to server resources

 Listing 2.8. Illustrating server resource lifecycle

 Listing 2.9. Illustrating features of client resources

 Listing 2.10. Illustrating resource annotations

 Listing 2.11. Annotated Java interface for the root resource

 Listing 2.12. Implementing the Java annotated resource interface

 Listing 2.13. Creating dynamic proxies based on annotated Java interfaces

 Listing 2.14. Updating the MailServerApplication

 Listing 2.15. Annotated interfaces in the “common” package

 Listing 2.16. Implementation of annotated interfaces in the “server” package

 Chapter 3. Deploying a Restlet application

 Listing 3.1. Creating the MailServerComponent to deploy the application

 Listing 3.2. Simple mail client interacting with component resources

 Listing 3.3. Adding HTTP tracing to the internal server connector

 Listing 3.4. Configuring the virtual hosting

 Listing 3.5. Unit test for virtual host

 Listing 3.6. Configuring access logging

 Listing 3.7. Declarative XML configuration with the Component class

 Listing 3.8. Declarative XML configuration with the Spring Framework

 Listing 3.9. Declarative XML configuration with the Spring Framework (continued)

 Listing 3.10. Running the declarative XML configuration with the Spring Framework

 Listing 3.11. Configuration using Spring namespace for Restlet

 Listing 3.12. Trimmed down MailServerComponent for Servlet deployment

 Listing 3.13. Configuring the Servlet’s web.xml file

 Listing 3.14. Configuring the Servlet’s web.xml file

 Listing 3.15. An OSGi activator to manage an embedded Restlet server

 Listing 3.16. An OSGi activator to manage registration of a virtual host

 Listing 3.17. Handling registrations and unregistrations of virtual host services

 Chapter 4. Producing and consuming Restlet representations

 Listing 4.1. Manipulating the AppendableRepresentation

 Listing 4.2. The target XML mail representation

 Listing 4.3. Simple test application serving mail resources

 Listing 4.4. Mail server resource using the DOM API

 Listing 4.5. Mail client retrieving a mail, then storing it again on the same resource

 Listing 4.6. Mail server resource using the SAX API

 Listing 4.7. Mail server resource using the XPath API

 Listing 4.8. Mail server resource-handling XML namespaces

 Listing 4.9. W3C XML Schema for the mail XML representations

 Listing 4.10. Mail server resource handling XML namespaces

 Listing 4.11. XSLT transform sheet

 Listing 4.12. Mail server resource applying an XSLT transformation

 Listing 4.13. Compiling the XML Schema into JAXB annotated Java classes

 Listing 4.14. Compiling the XML Schema into JAXB annotated Java classes

 Listing 4.15. The target JSON mail representation

 Listing 4.16. Mail server resource using the JSON.org API

 Listing 4.17. Mail server resource using the Jackson extension

 Listing 4.18. The target HTML mail representation

 Listing 4.19. The FreeMarker template HTML representation

 Listing 4.20. Mail server resource using the FreeMarker extension

 Listing 4.21. The Velocity template HTML representation

 Listing 4.22. Mail server resource using the Velocity extension

 Listing 4.23. Mail server resource supporting XML and JSON representations

 Listing 4.24. Mail client selecting XML, then JSON variants

 Listing 4.25. Annotated MailResource interface

 Listing 4.26. Mail server resource implementing the MailResource interface

 Listing 4.27. Mail server resource implementing the MailResource interface

 Chapter 5. Securing a Restlet application

 Listing 5.1. Basic configuration of the keystore on a server

 Listing 5.2. Basic configuration of the truststore on a client

 Listing 5.3. Two-step client authentication with HTTP Digest

 Listing 5.4. Protecting resources with HTTP Basic

 Listing 5.5. Protecting resources with HTTP Digest

 Listing 5.6. Protecting resources with trusted TLS client certificates

 Listing 5.7. Defining a memory realm with users and mapping to roles

 Listing 5.8. Example policy file

 Listing 5.9. Running sensitive code as a privileged user

 Listing 5.10. Example HTTP response with Content-MD5 header

 Listing 5.11. Example setting the representation’s digest as a sender

 Chapter 6. Documenting and versioning a Restlet application

 Listing 6.1. Sample WADL description

 Listing 6.2. WADL-enhanced account resource with a dynamic name and description

 Listing 6.3. WADL-enhanced accounts server resource with static documentation

 Listing 6.4. WADL-enhanced root server resource

 Listing 6.5. Improved WADL application description

 Listing 6.6. WADL resource description snippet

 Chapter 7. Enhancing a Restlet application with recipes and best practices

 Listing 7.1. Mail-editing form as a FreeMarker template

 Listing 7.2. Simple cookie-based authentication

 Listing 7.3. Guarding the mail server application

 Listing 7.4. Authenticating the mail client

 Listing 7.5. Merging websites and web services

 Listing 7.6. Changing the default status service

 Listing 7.7. Content of the MailStatus.ftl template

 Listing 7.8. Adding a file attachment field to the mail-editing form

 Listing 7.9. Adding a file attachment field to the mail-editing form

 Listing 7.10. Account feed server resource

 Listing 7.11. Consuming account feeds

 Listing 7.12. Redirecting clients to a new permanent location

 Listing 7.13. Server program listing hosting the old and new resource

 Listing 7.14. Client-side redirection with attribute extraction

 Listing 7.15. Server Resource that generates dynamic content

 Listing 7.16. Requesting parts of a resource

 Listing 7.17. Server resource that time-stamps its representation

 Listing 7.18. Retrieving caching metadata

 Listing 7.19. Updating a resource with conditions

 Listing 7.20. Optimizing internal calls with the server dispatcher

 Listing 7.21. Optimizing internal calls with the RIAP pseudoprotocol

 Listing 7.22. XML request for the JDBC client connector

 Chapter 8. Using Restlet with cloud platforms

 Listing 8.1. Configuring Google Accounts-based authentication in Restlet applications

 Listing 8.2. Content of the ServiceDefinition.csdef file

 Listing 8.3. Commands to execute at the hosted service startup

 Listing 8.4. Content returned by a simple OData request

 Listing 8.5. Adding a category with OData using an HTTP POST request

 Listing 8.6. Response received for the add request for a category

 Listing 8.7. Ant script for launching the OData generation of Restlet

 Listing 8.8. Implementing the CRUD methods to manage entities of OData service

 Listing 8.9. Using AWS S3 security in HTTP requests with Restlet

 Listing 8.10. Remotely create and delete S3 resources using Restlet

 Listing 8.11. Using Azure secret key security in HTTP requests with Restlet

 Listing 8.12. Creating a table using the REST API of the table service

 Listing 8.13. Global configuration of the SDC agent

 Listing 8.14. Rule configuration to access intranet applications through SDC agent

 Chapter 9. Using Restlet in browsers and mobile devices

 Listing 9.1. Using RequestBuilder class

 Listing 9.2. Using the ClientResource class within GWT client side

 Listing 9.3. Parsing JSON content received through the representation

 Listing 9.4. Parsing XML content received through the representation

 Listing 9.5. Using deferred binding support of Restlet to execute REST call

 Listing 9.6. Using jsonp within GWT

 Listing 9.7. Using cross-domain header in a Restlet response

 Listing 9.8. Configure both GWT-RPC and Restlet support

 Listing 9.9. Implementation of the SimpleWebMailActivity class

 Listing 9.10. Starting a Restlet server within an Android activity

 Chapter 10. Embracing hypermedia and the Semantic Web

 Listing 10.1. Creating an RDF graph with Restlet RDF extension

 Listing 10.2. Setting up the domain model with user accounts

 Listing 10.3. Enhanced Account annotated resource interface

 Listing 10.4. Enhanced Account server resource

 Listing 10.5. Generic FOAF browser

 Appendix B. Installing the Restlet Framework

 Listing B.1. Sample HelloWord program

 Listing B.2. Unit test for RootServerResource

 Listing B.3. Unit test for Application

 Listing B.4. Unit test for Component

 Listing B.5. Unit test for Component

 Listing B.6. Programmatically configuring the log level

 Listing B.7. Programmatically enable log traces for MSIE clients

 one.jpg

01fig02.jpg
Client side

01fig01.jpg

01list03_alt.jpg
import org.restlet.resource.ClientResource; o Createlocal
. ; proxy to
public class HelloClient { diidin]
public static void main(string(] args) throws Exception {
Clientresource helloClientResource -
new ClientResource("http://localhost:8111/"); L
helloclientResource . get () write (System.out) ; " 9
) 3 & Print resource’s
; representation to console

manning.jpg

01list01_alt.jpg
import org.restlet.rescurce.Get;
import org.restlet.resource.ServerResource;
public class HelloServerResource extends ServerResource (

acet <
Handler of GET
public String represent() { fociich

return "hello, world";
}

infin.jpg

03fig08.jpg
Serviet
Application 1

Sorviet B
Application 2

Serviet
Application 3

Serviet engine

03list16_alt.jpg
public class RestletComponentActivator implements BundleActivator {
private ServiceRegistration registration;
public void start (BundleContext bundleContext) throws Exception {
Virtuallost virtualHost = createVirtualHost();
this.registration e
ters
- bundleContext registerService (o bt
"org. restlet. routing.Virtualiost”,
virtualdost, null);

}
private VirtualHost createvirtualrost(){]

public void stop(BundleContext bundleContext) throws Exception {
if (registrationt=null) {

registration.unregister () ; 4—\ Unregisters
} virtual host

03list15_alt.jpg
public class RestletComponentActivator implements BundleActivator {
private Component component;

public void start (BundleContext bundleContext) throws Exception

component. = new Component () ;
component .getServers () .add (Protocol HITE, 8182); Starts Restet
component . start () ; companent

}

public void stop (BundleContext bundleContext) throws Exception {
if (component 1= null) {

component .stop () Stops Restlet
component = null;

) component

01fig03_alt.jpg
Application 1

1appt,
HTTP e
Pl
Uil oiech e Application 2
Pop ot
ol ‘connector

Application 3

Restlet component

two.jpg

01fig04.jpg

03list17_alt.jpg
// Finding out already registered virtual hosts S
serviceReference(] virtualHostReferences host services
- bundleContext .getServiceRaterences (
"org.restlet.routing.Virtuallost", null);
if (virtualHostReferences != null) {
for (ServiceReference serviceReference : virtualHostReferences) {
VirtualHost virtualMost = (VirtualHost)
bundleContext .getService (serviceReference) ;
/1 Register the virtual host
G

}

// Listening to virtual hosts services
ServiceListener virtualHostListener
- new ServiceListener () {
public void serviceChanged (ServiceEvent event) {
if (1isVirtualHostsService (event)) {

return;

}

int type = event.getType() : Crates il

if (type =- ServiceEvent.REGISTERED) { registers
/1 Register the virtual host ircual host
(o listener

} else if (type == ServiceEvent.UNREGISTERING) {
// Unregister the virtual host
Cowid

b
}i

Saibd Tetontant adibsrvi satiibener ivivbuniliosttistensss +

cover.jpg
Developing RESTFul web APIs in Java

Jerome Lovvel
Thieny Tenplie
Thirry Boileau
Foerworo by Brian Sletten

| | T

03list09_alt.jpg
B B R R e kR
<lookup-method name="createchildcontext®
bean«component .context® />

Create child
context

<o
o [<bean idsmondlssrverapplication classseors.restlet.applicationts
B et Mo s e
to by default. <property name="name" value="RESTful Mail Server application"/>
host <property name="description®
ekuoc-ixanpie. application for ‘Restlet in Action! book® /5
<oroperty namesromere valueerrestict S0+ />
oroperty hame-"author® valueewine Restier Teans />
rcperty nameetinboundRogts
Theon chamacrory revtiec.axt. spring. SprimBoutasts
conetructor-arg ref-raaiiservernppi icacions />
——— oropemty namararticomantars
‘ith SpringRouter <map>

<entry key="/*
values"org.restlet . example.book. restlet.
= ch03.sec3 .server RootServerResource® />
<entry Key=+/accounts/"
value"0xg.restlet . exanple.book. restlet .
= ch03.sec3 server AccounteServerResource />
<entxy key-*/accounts/ {account1d} "
value-"oxg.restlet . example.book. restlet.
= cho3.sec3 .server AccountServerRasource’ />
</map>
</property>
</bean>
</property>
</bean>
Y T

09list04_alt.jpg
contact
object
from
XML

DonRepresentation represencation
- new DomRepresentation (response .getEntity()) ; Get XML

Document. document. = representation.getbocument () ; document
Element listElement = (Element)document .getFirstChild() ;
NodeList nodes = listBlement.get8lementsByTagNane (

“org. restlet . example.book . restlet .cho3 . conmon . ContactRepresentation®) ;

for (int i = 0; i < nodes.getLength(); i+s) { 43 Browse XML document
Element contactElement
= (com.google gt .xml .client .Element)nodes. iten (i) ;

ContactRepresentation contact = new ContactRepresentation();
Element contactPirstNameElenent

- (Element) contactElement .getElenentasyTagliane ("£ixstiane®) . iten (0) ;
contact . setFirstiane (

contactFirstNaneElenent .getFirstchild() .getNodevalue())

Element contactLastNaneElenent
- (Element) contactElement .getElenent sByTaghane (*1astiane®) . item(0) ;
contact .setLastNane (
contactLastNameElenent .getFirstchild() .getiodevalue ()) ;

Element contactEmailElenent
- (Blement) contactElement .getElenentsByTaghane ("enail®) .iten(0) ;
contact .setEmail (contactEnailElenent .getFirstchild() .getNodevalue ()) ;

Element contactLoginBlement
- (Blement) contactElement .getElenentsByTaghiane ("login®) .iten (0) ;
contact .setLogin (contactLoginElenent .getFirstchild () .gettiodevalue () ;

Element contactSenderNameElement
- (Element) contactElement . getElenentsByTaghiane (*senderNane) .item(0) ;
contact . setsendexame (
contactSendexNaneElenent .getFirstchild () .getNodevalue ()) ;

f0386-01.jpg
Resource
model

Relational

09list03_alt.jpg
IRCHENIAREAUEEI D TEPEAEeRERL 00 Get SON array

= new JsonRepresentation(response.getEntity()); of contacts
3SONATTay jsonContacts
- (3soNArray) representation.getvalue() ; iterate

for (int i = 0; i < jsonContacts.size(); i+s) j over JSON

JsONObject jsonContact = (JSONObject)jsonContacts.get (i) array

ContactRepresentation contact = new ContactRepresentation();

contact .setFirstName (((JSONString) jsonContact.get (*firstName"))
stringValue());

contact . setLastName (((JSONString) jsoncontact.get (lastName™)) gy
-stringvalue) ; ositat

contact .setEmail (((JSONString) jsonContact.get ("emailt)) abject
.stringvalue) ; from

contact .setLogin(((JsoNstring) jsoncontact .get (*login®)) JSON
stringvalue();

contact . setsendexName (((JSONStxing) jsonContact.get ("sendexNamer))
stringvalue()) ;

}

ch03list08-1.jpg
NI KOYRT CERSLAT S ANRL [B0
</props> Virtual host with attached

</property> ‘mail server application

</bean>

<bean id="defaultiiost® classs"org.restlet.ext.spring.Springiost®s
<constructor-arg refs"conponent® />
<property name="hostDomain®

valuex"ww\\ .rmep\\ .com| e\ \ . Tmep\\ .net [wn\\ .rmep\\ .org" />
<property

erveraddress® values*1\\.2\\.3\\.10]1\\.2\\.3\\ 20"
»
<property

serverport® value="80" />

<property name-"defaultattachment® ref-"mailServerapplication® />
it

f0385-01.jpg
SRt amponam

« Hypermedia
 Interactivity User Interface
+ Visualization

- Distribution
Resources Uniform methods
+ Simplicity
- Encapsulation
+ Custom methods. Objects
+ Complexity
« Atomicity
 Consistency
+ Isolation
+ Durabilty

Server component

03list13_alt.jpg
SFENL VOLE e 3.0 SIOGSgeEIEa Ty

cweb-app Xmlng:xsi="http://www.w3.0rg/2001/XMLschena- instance®
xminss"http://java.sun.con/xml /ns/javace"
xmlns :web="http: //java . sun.con/xnl/ns/ javase web-app_2_5.xsd"
xsi:schemaLocation="http: //Java. sun. con/xnl /ns/ Javace

http://java.sun.con/xml /ns/javace/web-app_2_5.xsd"
WebApp_TD" version="2.5">

<display-name>
Serviet engine as a connector for a Restlet component
</display-name> Createbridge
<serviets b
<servlet-namesMailServerComponents/serviet-names
<serviet-class>
org.restlet ext.serviet.Serverserviet .
</sexviet-class> Point bridge
<init-param> to Restlet
<param-name>0rg. restlet .component </param-name> component
<param-value>
org.restlet example.book. restlet.cho3.sec3.server.
> MailserverComponent
</paran-values
</init-param>
</sexviets Map all URls to
<servlet-mapping> bridge Sarviet
<serviet-namesiailserverComponente/servlet-nane>
<url-patterns/*</url-patterns
</servlet-mapping>
RS e A

f0384-01.jpg

03fig06.jpg
Restlet

Servet engine's Restlet

HITP server Application 2
Restlet

Application 3

Restlet component

03list14_alt.jpg
<web-app xmlns:xsi="http://www.w}.org/2001/XMLSchema- instance”
xmlns="http://java.sun.con/xnl/ns/javaeer
xmlns :web="http: //Java.sun.con/xml /ns/javaee/web-app_2_5.xsd"
x8:schemaLocation="http://java.sun.con/xml/ns/Javace
http://java.sun.con/xul /ns/javaee/web-app_2_5.xsd"
‘WebApp_ID" version="2.5">

<display-names
Servlet engine as a container of Restlet applications
</display-name> Create bridge
<serviets Serviet
<serviet-namesMailServerApplication</servlet-nanes
<servlet-class>
org.restlet ext.serviet. Serverserviet

</serviet-class>
<init-param> bridge to
<paran-name>org. restlet .applications/param-nane> applicat

<param-value>
org.restlet.example book. restlet .ch03.secs .server.
= Mailserverpplication
</paran-values
</init-param>
</serviets Map all URIs to
<serviet-napping> bridge Serviet
<servlet-nameshailserverhpplications/servlet-nane>
<url-patterns/+</url-pattern>
</serviet-mapping>
< IRAb-ADDs

five.jpg

03fig07.jpg
engi's
HTTP sarver

Serviet
Application 1

Serviet
Application 2

Restlet
Application 1

Serviet engine

f0396-01.jpg
[R—

hitpifiocainost:8111/

GET() - xmi | json | htmi

accounts/

i

GET(): xmli | json | himi
POST(xml | json | form) :redirect

1

{accountia)

GET() i | json | il
PUT(ami | json | form) : xmi | json | htmi
DELETE) - redirect

four.jpg

09list05_alt.jpg
Handle
successful
response.

ContactsResourceProxy coutactaResource = <@ Create client proxy
G create (ContacteResourceproxy. class) |
contactsResource .getClientRescurce) . setReference secall
*/accounta/ chunkylovers: /contacta/) | properties

contactResource. retrieve (new Result<rraylist<ContactRepresentations>()(o
public void onsuccess (ArrayList<ContactRepresentations result) (
for (ContactRepresentation contact : result) {

addcontact (contact) ;
) Execute
) all

public void onFailure (Throwable causht) |
GHT . log ("Unable to retrieve the contacts list?): Handle error
M response

f0392-01.jpg
[————

hitpifocainost 8111/

GET

accounts/

GET
POST

o

{accountdy

GET
PUT
DELETE

f0255-01_alt.jpg
9 oy

public interface ContactsResourceProxy extends ClientProxy {

GET

i acet
public void retrieve (Result<ArrayList<ContactRepresentations> result);
method

apost
public void add(ContactRepresentation contact, Result<Voids result

) HTTP POST method

f0389-01.jpg

09fig09.jpg
tparty

web API

Gwr
user interface
Restlot
rediroctor

1 Thira.

09list08_alt.jpg
ol il
b Configure Restlet
<serviets application

<serviet-namesRestlet Contact resource</servlet-names
<serviet-classsorg. restlet.ext.serviet.Serverserviet</serviet-class>
<init-param>
<paran-namesorg. restlet .applications/paran-name>
<param-values
org.restlet.example.book. restlet . ContactApplication
</paran-values
</init-paran>
</serviets Configure GWT-
<serviets RPC servi
<servlet-name>RPC Contact services/serviet-names
<serviet-class>
org. restlet .example book. restlet . ContactsServiceInpl
</serviet-class>
</serviets

[
< futb-s00>

09list07_alt.jpg
it
public Representation getContent() {
i)
Seriescieader> responselieaders = (SeriescHeaders)
getResponseAttributes () .get (HeaderConstants. ATTRTBUTE_HEADERS) ;

if (responseHeaders == null) {
responseHeaders = new Series (Header.class) ;
getResponseAttributes () .put (HeaderConstants ATTRIBUTE_HEADERS,
responsereaders) ;

¥

responseiieaders..add (new Header ("Access-Control-Allow-Origin®, "+"));
frned

0 Set cross-domain head

.l

09fig08_alt.jpg
eV iagummom RGENT TUNSAGTON (S, 7 A 208 15108)

s [-
Enesn o ey e g m v s B
oot wagemacn s

bomows wpmgemecm etserrin

Enont augengacon et sy T

R e 24 0821727 8]

Lr—

o

o B B g o B SO 1 g oo KBS

e o oy ot bt e

P N o
i e

jehvrveny

G s gty T sy
G RATT e T T ot

04fig07.jpg
Channel
Representation

Roadable Writablo
Ropresentation Representation

04fig06.jpg
Stream

Representation
Input Output
Representation Representation

ByteArray. Object

Representation Representation

04fig08_alt.jpg
XML

______ - -
P ocoment

laccounts/chunkylovers3.
Imails/z3

" ldonis

04list01_alt.jpg
ATPOEE. JEVE. 20 . SDEECREELOn;
import java.io.OutputStreanriter;
import Java.io Writer;

smport junit.framework TestCase;

import. org.restlet.engine.io.BioUtils
import org.restlet.representation. AppendableRepresentation;

public class AppendabletestCase extends TestCase (o
pustic void testappendable () throms Tosxception (
Sopenasblenepresentation x - new AppendableRepresentation () s
s e appenaabea) N
L o appena (1224 i
otak 14 Sasertaquala (abcdig, s gecrext();
output. ar.append('\n' o new li r
p ppend(\n'); Append new line characte Copy content
stream ar wrice (systen. out) il
BioUtils.copy(ar.getStream(), System.out); ‘to console
Writer writer - new Outputstxeamciex (System. out iincasi
arrite turiter); iy
witer
B00ti1s copy (ax getReader (), weites); e i
)

reader to console

04fig10.jpg
<<XmiRepresentation>>
DomRepresentation

document : Document
indenting : boolean

DomRepresentation()
DomRepresentation(MediaType)
DomRepresentation(MediaType, Document)
DomRepresentation(Representation)

createTransformer() - Transformer
getDomSource() : DOMSource.
getinputSource) : InputSource

04fig09.jpg
<<WriterRepresentation>
XmiRepresentation

coalescing : boolean
enlityResolver : EntityResolver
‘expandingEniityRefs : boolean
ignoringComments : boolean
ignoringExtranitespaces : boolean
xincludeAware - boolean

XimiRepresentation(MediaType)
XmIRepresentaton(MediaType, long)

gelDomSource() : DOMSource
getSaxSource() : SAXSource
getSaxSource(Representation) : SAXSource (static)
getStreamSource() : StreamSource
gefTextContent(Node) : String|static)

04fig02.jpg
<<Representatoninfo>>
Representation

available : boolean
availableSize long
digest : Digest
disposition : Disposition
empty : boolean
expirationDate : Date.
range : Range

size - long

ransient : boolean

‘append(Appendable) : void
exhausl() - long

geiChannel() : ReadableByteChannel
getReader(): Reader

getStream() - InputStream

getText() : Sting

hasknownSize() : boolean

release() : void
selListener(ReadingListener) : vold
write(OutputStream) : void
wiite(WritableByteChannel) : void
write(Witer) : void

f0374-01.jpg
Roquirements
gathering

Implementation Requirements
testing analysis

Design Solution
implementation design

04fig01.jpg
[R——

characterSet : CharacterSet
encodings - List<Encoding>
dentifer : Reference
languages : List<Language>
mediaType : MediaType

createClientinfof) : Clentinio
equals(Object) boolean
Includes(Variant) - boolean
isCompatble(Variant) : boolean

Representationinfo

modificationDate : Dato
tag: Tag

f0373-01.jpg
Web Clionts

04fig04.jpg
Representation

Channel Stroam Character
Representation Representation Representation

Empty
Representation Representation

04fig03.jpg
Reprosentation

nputStream

Reader

ReadableChannel

WiitableChannel

OutputStrea

f0379-02.jpg
Manage
accounts

Administrator

RESTIU mal system

04fig05.jpg
Character

Representation
Reader String
Representation Representation

Appendable

Representation

writer
Representation

f0379-01.jpg
»
% « o
Sender

~

RESTHul mail system
SR

f0378-01.jpg
Rich
Mail Ciient

Unified

@ Mail Server

wail
WebAPI

Mobile

Mail Client

f0374-02.jpg

f0383-01_alt.jpg
~Create a domain model including major entites and relatonships.
+Use classic analysis methodology such as OOAID.

~Use the preferred ROAID architecture.
+Clearly separate the resource layer (REST) from the object layer (O0).

“lterate over the domain model.
Identfy and classify resources to expose via the web AP

+Each URI dentifies a particular rosourco.
“URIs identify things, not actions (nouns instead of verbs).
+The query is a first class URI element

“URls allow your system 10 become par of the web.

*Define supported method for each resource class and value provided.
+Use standard HTTP methods properly

+Prefer safe and idempotent methods.

+Consider each resource class.

6 Respons:

s

~Defining how method stalus is used.
+Use standard HTTP statuses properly.

S - Representation ciasses —

Listall supported variants exchanged with al supported clients.
*Define the structure as a st of properties
~Define the hyperlinks and forms.

ROA/D

Resource-Oriented
Analysis & Design

f0382-01_alt.jpg
Sending mail server

Receiving mail server

1: create draft mail

e
i 2 confir creation

3 edit draft mail

4 send draft mail

5 for each receiver

6. send mail in envelope

9 confirm recaption

7: analyze envelope

8 store mailn profie

f0380-02.jpg
s — *1 : | —

f0380-01.jpg
Account
owner

Compose
email

Manage
web foeds

Edit
draft omail

Sond
draft email

Manage
contacts

Manage

received emails

RESTHul mai systom

Read
received emails

Tag
received emalls

ch04list06-0.jpg
public class MailServerResource extends ServerResource {

Create
aget new SAX
public Representation toxml(){ representatior

SaxRepresentation result = new SaxRepresentation() {

public void write(org.restlet.ext.xml XmlWriter writer)
throws IOException {

Start
ey {
writer.startDocument () ; document
writer.startElement ("mail®);
Append
root node
writer.startElement ("status®)
! pend child nor

writer.endElement (*status®) ;

writer.startElement ("subject®) ;
writer.characters ("Nessage to self");
writer.endElement (*subject”

writer startElement ("content”) ;
writer.characters ("Doh!"
writer endElement (*content”) ;

writer startElement ("accountRef®) ;

writer.characters (new Reference (getReference(), *..")
.getTargetRef () .tostring()) ;

writer .endElement ("accountRet") ; Endroot

writer.endElenent (*nail®) node,
writer .endbocument () ;
} catch (sAXException e) { T End
throw new TOBxception (e.getMessage()) ; document
)

b
Y

return result;

04fig12.jpg
<<WriterRepresantation>>
XmiRepresentation

getBoolean(Siring) - Boolean
geiNode(String) : Node

getNum
gelText(S

ch04list06-1.jpg
@Put
public void store(SaxRepresentation mailRep) throws IOException {
mailRep.parse (new DefaultHandler () {

@Override
public void startElement (String uri, String localName,
string qiame, Attributes attributes) throws SAXException

it (tstatust .equals (localnane)) j OuputIiL

system.out .print (Status: * et
} else if ("subject".equals(localName)) { names
system.out .print (*Subject: *);
} else if ("content®.equals(localName)) {
System.out.print (*Content: ");
} else if ("accountRef".equals(localName)) {
system.out .print ("Account URI: ");
¥

¥

aoverride
public void characters(char(] ch, int start, int length)

throws SAXException {
System.out .print (new String(ch, start, length)); QT

! Output XML element values

@override
public void endElement (String uri, String locallame, String
qiame)
throws SAXException {

System.out .println(); Output
) new line
b

04fig13.jpg
<<WriterRepresentation>>
XmiRepresentation

namespaceAware : boolean
namespaces : Map<Siting, String

geiNamespaceURI(Sring) : String
gelPrefix(String) : String
getPrefixes(String) : erator<Sring>

04list07_alt.jpg
aput. Retrieve XML
public void store (DomRepresentation mailRep) { element using XPath
String status « mailRep.getText ("/mail/status"); expressions
String subject = mailRep.getText("/mail/subject”);
String content = mailRep.getText ("/mail/content");
String accountRef = mailRep.getText ("/mail/accountRef");
System.out.println("Status: * + status);
System.out.println("Content: " + content);

system

out.println("Account URT: * + accountRef);

ch04list08-1.jpg
]

- XML namespace

public void store (bouepresentation mailRep) (oaigision
String rmepNs = "http://www.rmep.org/namespaces/1.0";
natLRep.settanespacenrare (true)
oai1Rep. gecNanespaces () put (v, Tmepiis); o—
nat1Rep. ecNanespaces () bt (+rmep" Tmepe) e
String stacus = mailRep.gecText (*/:matl/satatust) ; XPath expresions
String subject = mailRep.getText ("/rmep:mail/:subject”);

string
string

system.
system.
system.

content = mailRep.getText ("/rmep:mail/rmep:content”) ;

accountRef = mailRep.getText (/:mail/rmep:accountRef"
out.println("Status: * + status); Output XML
out.printin("subject: " + subject); element values

out.printin("Content: " + content);

System.out .println("Account URI: * + accountRef) ;

ch04list08-0.jpg
i

public Representation toXml ()throws IOException {
DomRepresentation result = new DomRepresentation();
result.setIndenting (true)

result.setNamespaceAware (true) ; | XML namespace configuration
Document doc = result.getDocument () ; DO
Node mailElt = doc.createElementNs (document

"http://www.rmep.org/namespaces/1.0%, "mail") ;
doc.appendChild (mailElt) ;

Node statuselt = doc.createElement (*status®);
statusElt.setTextContent ("received) ;
mailElt.appendChild (statusglt) ;

Node subjectElt = doc.createElement ("subject") ;
subjectElt . setTextContent ("Message to self");
mailElt.appendChild (subjectElt)

Node contentElt = doc.createElement ("content");
contentElt.setTextContent ("Doh1") ;
mailElt.appendChild (contentElt) ;

Node accountRefElt = doc.createElement (*accountRef®) ;

accountRefElt . setTextContent (new Reference (getReference (),
.getTargetret () .tostring()) ;

mailElt.appendChild(accountRefElt) ;

return result;

05fig03_alt.jpg
HTTP Digest

Server resources.

end request with empty
DIGEST challange response

2:rotur a 401 response with

3 1send new challenge response

a challenge request inluding transientinfo |

4 sprocess authenticated

ilh complete digestinfo

6 cretum a 200 response with

request

5 relum a response

0 he authenticated requost

| wih200status 1

10fig04.jpg
Porson

img
©

name : String :

frstName : String 1

lastName String

mbox : List<URI> (cpomesase

skypelD : Sting %

status - String 1 sy

s am e

v

Image

ch04list04-0.jpg
POELIY NS MRS VETRESSUTCE SREES SELYeLRARORCON 1

acet empty DOM
public Representation to¥al ()throvs TOException |
DonRepresentation result - new DomRepresentation(); <
result. setIndenting true) ; &
Docunent doc = result.getDocunent () ; Raviso0n pretty
Node mailElt - doc.createElement (*mail®) printing
Ay doc.appendchild (mailElt) ;
Node statusBlt - doc.createElement (*statust); — "
StatusElt . setTextContent (*received®) ; by
mailElt.appendChild(statusklt) ; bty

Node subjectEt = doc.createElement (*subject®)
subjectELt . setTextContent (*Hessage to sel");
mailELt.appendChild (subjectElt) ;

Node contentE1t = doc.createElement (content®) ;
contentEit . setTextContent ("Dohi) :

mailELc. appendChild (contentELt) ;

Node accountRefElt = doc.createElenent (*accountRef”) ;

accountRefE1t . setTextContent (new Reference (getReference(), *..*)
-getTargetRet () .tostring())

mailELt . appendChild (accountRefELL) ; Compute the

parent URI
return result; including stah

04list03_alt.jpg
FNBELE C1ASS INIONTTITIRLIICArIn OXrees Mgplicecton § Launch
public static void main(String(] args) throws Exception { application with
Component mailServer = new Component(); HITE Server
mailserver.getServers () .add (Protocol HTTP, 8111);
mailServer . getbefaultHost () .attach (new Hailserverhpplication());

mailserver start();

}
eovesiing Create root Router
public Restlet createInboundRoot () { W digpaech clly
Router router = new Router (getContext ()) ;
router attach ("/accounts/{account1d} /mails/ (mailid}",
MailServerResource.class) ;
return router;

05fig02_alt.jpg
«(]

crodentios
Restlet cli i) Server
i — resources
radenis -
T Authenticator

Restlet server
application

10list01_alt.jpg
suport
impore.
import.

public

org.restlet.data.Reference;
org.restlet.ext.rdf .Graph;

org.restlet.ext.rdf.Literal; FOAF
ontology
Class Foafexample { constants

public static void main(String(] args) throws IOException {

String FORF_BASE = "http://xmlns.com/foaf/0.1/";
Reference firstName = new Reference (FOAF_BASE + "firsthame’);
Reference lastName = new Reference (FORF_BASE + "lastiame");
Reference mbox = new Reference (FORF_BASE + "mbox") ;

Reference homerRef = new Reference(Linked
"http: //waw. rmep. org/accounts/chunkylovers3/") ; Simpson

Reference margeRef = new Reference(Peseliness
"http: //waw . rmep.org/accounts/bretzels3s/") ;

Reference bartRef = new Reference(
"http: //www.rmep.org/accounts/j0jol0/") ;

Reference lisaRef = new Reference (
"hetp: //wiw. xmep. org/accounts/11sa1984/") ;

Graph example = new Graph(); Example
example.add (homerRef, firstName, new Literal (“Homer")): ROF
example.add (homerRef, lastName, new Literal ("Simpson)); graph
example.add (homerRef, mbox, new Literal(

"mailto:homeresimpson.oxg"))
example.add (homerRef, knows, margeRef);
example.add (homerRef, knows, bartRef);
exanple.add (homerRef, knows, lisaRef);

04fig11.jpg
<<XmiRepresentation>>
SaxRepresentation

source : SAXSou

ce

‘SaxRepresentation()
‘SaxRepresentation(MediaType)
‘SaxRepresentation(MediaType, Document)
‘SaxRepresentation(MediaType, InputSource)
‘SaxRepresentation(MediaType, SAXSource)
‘SaxRepresentation(Representation)

getinputSource) : InputSource
parse(ContentHandler) : void
write(XmiWriter) : void

05list02_alt.jpg
Client client = new Client(new Context(), Protocol .HTTPS): MUNITE
Series<parameter> parameters = client.getContext () .getParameters(); parameters
parameters.add ("truststorepath”,

"src/org/restlet/exanple/book/ restlet/chos/clientTrust . ks®)

parameters.add("truststorepassword”, "password") ; Set HTTPS
parameters.add ("truststoreType”, "JKS'); parameters
ClientResource clientResource = new ClientResource(

"https://localhost :8183/accounts/chunkylovers3/mails/123%) ; [+
clientResource. setNext (client) ;

MailResource mailClient = clientResource.urap (MailResource.class) ;
nailClient.store (mailClient.retrieve()) ; ‘Add HTTPS client connector
R I P

10fig03.jpg
“Homer"

"simpson"

“homer@simpson.org"

firstName knows,

lastName knows.

b knows

10fig02.jpg

ch04list04-1.jpg
H

eput
public void store (DouRepresentation mailRep) throws IOBxception

Document doc - mailRep.getDocument () ;

Element maillt = doc.getDocunentElenent () ; Parse and
Element statusElt = (Element) normalize DOM
mailELt getElementaByTagiane ("status®) .iten(0) ; document

Element subjectELt = (Element)
mailElt getElementabyTagiiame ("subject") . item(0) ;
Elenent contentEt - (Element)
mailElt getElementaByTagiane (*content) . iten (0) ;
Element accountRefElt - (Element) mailflt.getElementssyTaghiame (
“accounchet *).item(0);

System.out println("Status: * + statusElt.getTextContent());
System.out printin(*Subject: * + subjectzit.getTextContent ())
System.out printin(*Content: * + contentELc ,getTextContent ()
System.out printin(*Account URL: * + accountRefElt .

etTextContent ()) ;

05list05_alt.jpg
public Rastliet cruatelnboundioct ()i

Router router = new Router (getContext () ; S

router.attach (/accounts/ {accountid} /mails/{maild}", i
wailserverResource .class) ;

Digesthuthenticator authenticator = new Digesthuthenticator(
getContext (), "My Realm", "My Server Key"):

| Set credentials verifier
MapVerifier verifier « new MapVerifier(); <~
verifier.getlocalSecrets () .put (*chunkylovers3®, "pwd.toChararzay()):
authenticator. seturappedverifier (verifier) ;

Chain authenticator

authenticator. setNext (router) ; b

return authenticator;

10list03_alt.jpg
BBbic Tnperface ArcountRasourion | HTTP GET for

acet XML, JSON

public AccountRepresentation represent();

@Get (1rdf") HTTP GET for
public Graph getFoafProfile(); RDF variant

05list04_alt.jpg
public Restlet createlnboundRoot(){

Create
Router router = new Router (getContext () ; HTTP Basic
router.attach ("/accounts/ {accountid) /mails/{maild}", audhiiricator
wailserverResource.class) ;
Challengehuthenticator authenticator = new ChallengeAuthenticator(
getContext (), ChallengeScheme HTTR_BASIC, "My Realm") ;
Maperifier verifier = new MapVerifier(); <] Setcredentials verifier

verifier.getLocalSecrets () .put ("chunkylovers3", "pwd".toCharArray());
authenticator.setverifier (verifier);

authenticator. setNext (router) ; q_| Chain authenticator
with router

return authenticator;

ch10list02-1.jpg
Account bart = new Account () ; Bart user
bart.setFirstiane ("Bartholonew”) ; vl
bart . setLastName ("Simpson") ;

bart,setLogin ("jojor0") ;

bart.setNickNane ("Personal mailbox of Bart');

bart . setSenderNane ("Bart") ;

bart,setBnailaddress ("bartesinpson.org") ;

bart.getContacts () .add (new Contact (*/accounts/chunkylovers3/")) ;

bart.getContacts () .add (new Contact ("/accounts/bretzels3/")) ;

bart.getContacts () .add (new Contact (/accounts/1isal984/")) ;
getaccounts () .put ("jojo10", bart);

Account lisa = new Account () ; <— Lisauser

1lisa.setFirstName ("Lisa") ;

1lisa.setLastName ("Simpson®) ;
1lisa.setLogin("lisa1984") ;

1lisa.setNickName ("Personal mailbox of Lisa"):
1lisa.setSenderName ("Lisa') ;
1lisa.setEmailaddress ("lisaesimpson.org™) ;
1lisa.getContacts () .add (new Contact ("/accounts/chunkylovers3/")) :
1lisa.getContacts () .add (new Contact ("/accounts/bretzels34/"});
1lisa.getContacts () .add(new Contact ("/accounts/jojo10/"));
getAccounts () .put ("1isa1984", lisa);

account.

05fig04_alt.jpg
Authenticator

K

Enroler

GortfcatoAuthontcator ChallengeAuthenticator <>

K

AwsAuthenticator ‘CookloAuthenticator DigestAuthenticator

ch10list02-0.jpg
public Mallas:varAppllicacioni) §
setame ("RESTEul Mail API application®);
setDescription ("Example API for 'Restlet in Action' book’);
setOwner ("Restlet SAS");
sethuthor ("The Restlet Team');

Account homer = new Account (); <—‘ —
homer . setFirstNane ("Homer") ; actonnt
homer . setLastNane ("Simpson") ;
homer . setLogin (*chunkyloversit) ;
homer . setNickNane ("Personal mailbox of Homer®);
homer . setSenderNane ("Homer") ;
homer . setEnailAddress (*homeresimpson.org”) ;
homer .getContacts () .add (new Contact (*/accounts/bretzels3s/)) ;
homer .getContacts () .add (new Contact ("/accounts/j0j010/")) ;
homer .getContacts () .add (new Contact (*/accounts/1isa1984/")) ;
gethccounts () .put ("chunkylovers3", homer);

Account marge = new Account () ; Marge user
marge.setFirstName ("Marjorie") ; atcoont
marge . setLastName ("Simpson') ;
marge . setLogin ("bretzels3a”) ;
marge . setNickName ("Personal mailbox of Marge');
marge . setSenderName ("Marge") ;
marge . setEmailaddress ("homeresimpson.org") ;
marge .getContacts () .add (new Contact (" /accounts/chunkylovers3/")) ;
marge.getContacts () .add (new Contact (*/accounts/j03010/")) ;
marge .getContacts () .add (new Contact (*/accounts/1isa1984/")) ;
getAccounts () .put ("bretzels34”, marge):

05list03_alt.jpg
Create,
ClientResource clientResource = new ClientResource (—| Sonfigure
"https://localhost :8183 /accounts/chunkylovers3/mails/123") ; s
clientResource . setNext (client) ;
MailResource mailClient = clientResource.wrap(MailResource.class);

resource

ey {
naticient. retrievel);
} catch (ResourceBxception re) {

if (Status.CLIENT_ERROR_UNAUTHORIZED.equals(re.getStatus())) { | Retrieve
ChallengeRequest digestChallenge = null; sy
for (ChallengeRequest challengeRequest : clientResource <—| DECSt
-getChallengeRequests () {
if (ChallengeScheme HTT?_DIGEST .equals (challengeRequest
.getscheme ())) {
digestChallenge = challengeRequest; Configure
break; authentication
} credentials

}

ChallengeResponse authentication = new ChallengeResponse
digestchallenge, clientResource.getResponsel(),
“chunkylovers3®, "pwd®);

clientResource. setChallengeResponse (authentication) ;

) Communicate with
nailClient.store (mailClient retrieve()); <—1 ferioge;resodros

10fig05.jpg
Account

login : String
firstName : Sting
lastName : Siring
nickName : String
senderName - String
emailAddress : String

+

Contact

profiRe : String

05list07_alt.jpg
application ta
virtual host

public MailServerComponent ()throws Exception { J Attach

Mailserverapplication app = new MailServerApplication();
getDefaultHost () .attachDefault (app) ;

Configure security realm
WomoryReaia esin « new NeoryRoaln()s P el

User homer = new User("chunkylovers3", "pwd", "Homer", "Simpson",
“homerasinpson. org") ; X

realm.getUsers () .add (homer) ; Give Homer

realm.map (homer, app.getRole("CFO")); CFO, User roles

realm.map (homer, app.getRole("Usexr™));

User marge = new User("bretzels34", "pwd”, "Marge", "Simpson",
"margeasinpson.org") ;

realm.getUsers() .add (marge) ;

realm.map (narge, app.getRole("User"));

User bart = new User("jojol0", "pwd”, "Marge", "Simpson”,
"bartesimpson.org") ;

realm.getUsers () .add (bart) ;

realm.map (bart, app.getRole("User"));

User 1isa - new User ("1isal984", "pudt, "Waxger, "Simpson’,
"1isassinpaon org") ; -
realn.getvsers () .add (1isa); ik

realm.map(lisa, app.getRole("User")); enraléi,

app.getContext () .setbefaultEnroler (realm.getEnroler()); o Verifier
app.getContext () .setDefaultverifier (realm.getverifier() ;

05list06_alt.jpg
public Restlet createInboundRoot(){
Router router = new Router(getContext()) ;
router.attach (*/accounts/ {account1d} /mails/(mailld)",
vailserverresource.class) ;

Create
authenticator

Authenticator authenticator = new CertificateAuthenticator (
getContext () ;

authenticator . setNext (router) ; Ol sihiriticatss

return authenticator; itk router

ch10list04-1.jpg
for (Contact contact : account.getContacts()) {
result.getContactRefs () .add (contact .getProfileref () ;

}
)
return result;
) Build RDF
public Graph getFoafProfile() { graph

Graph result = null;

if (account 1= null) {

result = new Graph();
result.add (getReference (), FoafConstants.MBOX,

new Literal ("mailto:® + account.getEmailaddress()));
result.add (getReference (), FoafConstants.FIRST_NANE,

new Literal (account .getFirstNane ()
result.add (getReference (), FoafConstants.LAST_NAME,

new Literal (account .getLastNane ())) ;
result.add(getReference (), FoafConstants.NICK,

new Literal (account .getNickName ())) ;
result.add (getReference), FoafConstants.NAHE,

new Literal (account .getSenderNane ())) ;

for (Contact contact : account.getContacts()) {
result.add (getReference (), FoafConstants.KNOWS,
new Reference (getReference (),
contact .getProfileRet ()) .getTargetRes ()) ;

}

return result;

05fig05.jpg
Verifier

ULT_INVALID :int
TMISSING : int
TSTALE :int
T_UNSUPPORTED - int
ULT_UNKNOWN : int
RESULT_VALID int

verify(Request, Response) : it

Secretverifier JaasVerifier

<<emoryReaim>>
i Dofaultverifior

ch10list04-0.jpg
public class AccountServerResource extends ServerResource implements
AccountResource {
private Account account; The associatad
account
public Map<String, Account> getAccounts() {
Teturn ((MailServerapplication) getApplication()).getAccounts();
}

Goverride

protected void doInit() throws ResourceException {
String accountld = getAttribute("accountId");
this.account = gethccounts () .get (accountId) ;

}

public void remove() {
getAccounts () . remove (this.accountId) ;
i

public AccountRepresentation represent() {
AccountRepresentation result = null;

if (account t= mull) {
result = new AccountRepresentation();
result.setEnailaddress (account.getEnailaddress () ;
result.setFirstName (account .getFirstName ()) ;
result.setLastName (account .getLastName ()) ;
result.setLogin (account .getLogin()) ;
result. setNickName (account .getNickName ()) ;
result.setSenderName (account .getSenderName ()) ;

04list11_alt.jpg
<xsl:stylesheet version="1.0"
xmlng:xs1="http://waw.w3.0Tg/1999 /XSL/Transforn" >
<xslitemplate matche"/">
<email>
<head>
<subject>
<xsl:value-of selec
</subject>
<from>chunkylovers3armep. orge/froms
<tostestedomain.come /to>
</nead>
<body>
<xsl:value-of select="/mail/content” />
</boay>
</email>
</xsl:templates
skl inbuleahbets:

/mail/subject”

/s

J

Email addresses
hard-coded for
simplicity

04fig15.jpg
<<WriterRepresentation>>
TransformReprosentation

outputProperties ; Map<String, String>
parameters : Map<String, Object>
sourceRepresentation : Representation
templates : Templates

ransformShee : Representation
uriResolver : URIReSolver

TransformRepresentation(Context, Representation, Representdion)
TransformRepresentation(Representation, Representation)

toSaxSource(Representation) : SAXSource (statc)
getSaxSource() : SAXSource

gefTransformer() : Transformer
gefTransformerHandier() : TransformerHandier
‘getXmiFilter() : XMLFilter

transform(Source, Rosu) : void

write(Result) : void

04fig16.jpg
<<WiiterRepresentation>>
JaxbRepresentation <T>

contextPath : String

formattedOutput : boolean

fragment : boolean
noNamespaceSchemal ocation : String

object : T

schemaLocation : String
validationEventHandler : ValidationEventHandler

JaxbRepresentation(MediaType. T)
JaxbRepresentation(Representation, Class<T>)
JaxbRepresentation(Representation, String)

getContext() : JAXBContext
getJaxbSource() : JAXBSource

04list12_alt.jpg
P
public Representation toXml () throws ToBxception (Transform to
DonRepresentation rmepiail = new DomRepresentation() ; aootur XML
format using

XSLT

=] lar to subsection 4.2.2 and 424

Representation transfornSheet = new ClientResource(
LocalReference createClapreference (getClass () .getPackage ())
+ "/Mail.xslen) .gec();
TransfornRepresentation result = new TransfornRepresentation(rmepMail,
transformsheet) ;
result.getOutputProperties () .put (OutputKeys. INDENT, "yes");
return result;

Content si

) Retrieve XML
- clement
public void store (DomRepresentation mailRep) (using XPath
String subject = mailRep.getText (/enail/head/subject) ; expressions
String content = mailRep.getText (*/email/body") ;
System.out .printin("Subject: * + subject); Output L

System.out.println("Content: " + content); element values

04fig17_alt.jpg
laccounts/chunkylovers3
Imaits/123

04list14_alt.jpg
.y
public Representation toxml () { Cristanail
Mail mail = new Maill); bia

mail.setstatus (“received®) ;

mail setsubject ("Wessage to self');

mail.setContent (*Don!") ;

mail. sethccountRef (new Reference (getReference(), *..%)
getTargetret () .tostring()) ;

susbRepresentationstiails resulc = new S
% 3 an with JAXB

seximepresimationdtetis tmaiL Winpbesn i 46
e saxrormatsadoutpu (k)

)

@Put Parse XML

public void store (Representation rep) throws IOBxception { representaton
Jaxbrepresentat ionciail> mailRep = new toget mail bean

TaxbRepresentation<iail>(rep, Mail.class);
Mail mail = mailRep.getObject (

system.out .printin("Status: * + mail.getstatus()); OQutput XML
System.out .println("Subject: " + mail.getSubject()); lement
System.out .println("Content: " + mail.getContent(); values

System.out .println("Account URI: * + mail.getAccountRef());

04fig18.jpg
<<WiterRepresentafion>>
JsonReprosentation

indenting : boolean
indentingSize : int

JsonRepresentation(JSONAray)
JsonRepresentation(JSONObject)
JsonRepresentation(JSONSringer)
JsonRepresentation(JSONTokener)
JsonRepresentation(Map<Object, Object>)
JsonRepresentation(Object)
JsonRepresentation(Representation)
JsonRepresentation(String)

gotssonAray() - JSONATay
getlsonObject() : JSONObject
getlsonTokener() : JSONTokener

04list16_alt.jpg
Output

clement
values

aGet Crentz 0N
public Representation toJson() throws JSONException (J object structure:
JSONObject mailEle = new JSONObject () ; similar t02 map
mailBlc.put ("status®, "received’);
maillt put ("subject®, “Message to self®);
mailElc put ("content®, *Doh!");
mailElt put ("accountRet?, new Reference (getReference(), °..")
-getTargetRef () .ostring()) ;

return new JsonRepresentation (mailklt); Parse JSON
) representation to
get mail properties

rut

public void store(JsonRepresentation mailRep) throws JSONException {
JSoNObject mailElt = mailRep.getdsonObject ();

System.out.println("Status: " + mailElt.getstring("status")
System.out.printin("Subject: " + mailElt getstring(*subject”));
System.out.println("Content: * + mailElt.getstring(*content”));

System.out.printin("Account URT: * + mailELt.getString(*accountRef®));

09fig12_alt.jpg
8 Aedroid Vsl Dot oo

Took

List of isting Andrid Vieul Devices located 2t CAUsers\iromeandrid\avd

AVD Nome Torget Name. Do APllel CPUABL New.
= o AVD svaitle: -

ear.

Delete

CPUABL [ARM (armesbic s

e
o =)
ok [[Brome
‘
oy
] Enabled
a5
st ==
Ao e © Reluion: x |
i
o

Property Value [New=]

Avstacted LCD densty 240]
Max VM sppiction hes.. 46
Desiceramsize s

Overide the existing AVD with the same name.

(i) (oma]

ch04list10-0.jpg
.
public void store(DomRepresentation mailRep) throws IOException {

Representation mailXsd = new ClientResource(

LocalReference .createClapReference (getClass) .getPackage))
+ /Mail.xsd") .get();
g e A, S S XL
nailRep, setErrorfiandler (new Errordandler ()
public void error (SAXParseException exception) throws SAXException

{
}

public void fatalError (SRXParseException exception)
throws SaxException (
throw new ResourceException (exception) ;

throw new ResourceException (exception) ;

04fig14.jpg
<<WriterRepresentation>>
XmiRepresentation

errorHandler : ErrorHandler
schema : Schema
validatingDId - boolean

validate(Schema) : void
validate(Schema, Resull) - vold
validate(Representation) : void
valdate(Representation, Result) - void

09fig11_alt.jpg
1 Androa1s w13
+ O b

18 Arid S sy

1 Ggie it A6 SOK

18 Gogle i DK

18 Gogle Clod Mesogingfor Ansd Lirry

518 Gogl ey APK Expnin Ly

18 Gogle iy Bt Livory.

518 Ggi iy Lo Lbvry

218 Gogle 58 Driver

18 Gogle e Drver

8 il Hordware Aceeaed Bection e

Show 7 Upduesew 7 bstted [Obsoete Seect i orUsss
Sony: @ Wlled © Repory Dt

=

D ong pctages.

09fig10.jpg
Application
framework

ch04list10-1.jpg
public void warning (SAXParseException exception)
throws SAXException {
throw new ResourceException(exception) ;
) XMLnamespace
b configuration

String rmepNs = "http://www.rmep.org/namespaces/1.0";
mailRep. setNamespaceAware (true) ;

mailRep.getNamespaces () .put (*", rmepNs) ; Retrieve

mailRep.getNamespaces () .put (*rmep", rmepNs); XML element
. . using XPath

String status = mailRep.getText(*/:mail/:status®); Expressions

String subject = mailRep.getText ("/rmep:mail/:subject”);
String content = mailRep.getText ("/rmep:mail/rmep:content”)
string accountRef = mailRep.getText ("/:mail/rmep:accountRef”);

System.out.println("Status: " + status);

System.out.println("Subject: " + subject); Output XML
System.out.println("Content: " + content); element values
System.out .println(*Account URI: " + accountRef);

ch09list09-1.jpg
SHE EEEANGLL SERAAGRS =

Comert new String(enails.getEnails().size()];
to text for (int i = 0; i < emails.getBmails().size(); is+) {
system.out printin(enails.getEmails () .get (1))
subjects (1] = emails.getEmails().get (i) .getsubject ();
}
runonviThread (new Runnable() { <— Display emails using Ul thread
public void run() {
setListAdapter (new Arrayhdapter<Strings (
HobileMallClientMainActivity. this,
R.layout .activity_mobile_mail_client_main,
R.id.list_item, subjects));
}
b
return null;
}
i Launch
task.execute(null, null, null); asynchronous task
¥
Goverride
public boolean onCreateOptionsMenu(Menu menu) {
getMenuIntlater ()

.inflate (R.menu.activity_mobile_mail_client_main, menu);
return true;

ch09list09-0.jpg
public class MobileMailClientMainActivity extends ListActivity {

override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedinstancestate) ;
setContentView (R.layout.activity mobile_mail_client_main);
ListView emailList = getListview();
emailList.setTextFilterEnabled (true) ;
Engine.getInstance () .getRegisteredClients () .clear () ;

Engine .get Instance () .getRegisteredClients () e
2d (new HEEPClientielper (new Client (Protocol.HTTP))); | Eagine
Engine.get Instance () .getRegisteredConverters ()
add (new Jacksonconverter () ; Reynclask doesn't
AsyncTask<Void, Void, Void> task = o—, block Ul thread
new AsyncTask<void, Void, Void>() {
soverride back end
protected Void doInBackground (Void. .. params) { deployed
ClientResource clientResource - new ClientResource (onGAE
http: //reia-ch09.appapot .con/accounts/chunkylovers3/mails/) ;
MailsResource mailsResource = clientResource
wrap (MailsResource.class) ; m

MailsRepresentation emails = mailsResource.retrieve();

09fig14_alt.jpg
it || 1o ot e

et
e [y
b o)
pere P bl
T 5 Accem s M st
o i e v
o
=l i
ot :
S
== = 3

09fig13_alt.jpg
Available Sofware.
Checkthe tems that you wish o istall,

Mokt Androd - Wipe//-sgoogecomiandrodiedipisl .
Find more software by working with the “Availble Software Stes” preferences.

tpeitertot

Name Verson
+ 19158 DeveoperTools
91 Andoid0OMS no0.on62000 31819
2145 Andoid Development Tols D00.062000 1819
12164 Android Hierarchy Viewer 2000,201206202043- 391819
6 Android Taceview D000 1819
91 Tcerfor OpenGLE5 FTere——y
+ 66 NOK Plgins

fr—
=

7 Show onlythe et verions of bl e [R———
7] Group items by category Whatis aiready ingtalied?
2 Gontct et e dring oo i s st

==

10fig01.jpg

09list10_alt.jpg
pilic vaid cafoaats (ndls SEveRtetanosGraka) §
super.onCreate (savedInstancestate) ;
Component. component = new Component () ;
component .getServers () .add (Protocol .HTTP, 8182);
component. . getDefaulthost () .attachDefault (new Mailapplication()) ;

ey {

conponent .start () ;
) ot tmeeestion) {0 } Component

09fig15.jpg
@ WobileMailClientMainActivity
Message to self
o000

& (o
ana

XN X2)

logo.jpg
/I MANNING PUBLICATIONS

01fig05.jpg
S
[\

05Gi Environments.

Goagle App Engine

®]

‘Google Web Toolkit Ancold

09fig03.jpg
TP

Gwr
user interface

GWT-RPC
client proxies

GWT-RPC
serviets stubs.

Application
serverlogic

GWT object
seriaizaton

Browser

container

09fig02_alt.jpg
Available Sofware.
Check the tems that you wish to stall,

Mokt Googie- g dhgsoie conielpre g 28 g
v sftves by wekin wh the e St S e

peiieriot

e Veon

 [90 Developer Tools

» [E390 Google App Engine Tools for Android (requires ADT)

& [0 Google Plugin for Eclipse (required)

[7)4 Google Plugin for Ecipse 36

3012012050133 163
10 G Designesor GPE recommended)
+ 9 NOK Pigins
- s
71 Goagie App ngine v SOK17 170
41 Google Web Toolkt SOK240

240:201206280133 1¢%

2hams sacted
oe

71Show only the atest vesionsof avalabe seftware 1 e tems that areaveady installed
91 Group tems by category Whatis acady nsaled?
Contactll pdate stes during st o ind reqiredscftware

@

09fig01_alt.jpg
Browser-side application
(Java source code)

Server-side application
(Java source code)

Browser-side application
(optimized JavaScript)

Static content
(HTML, CSS, JavaScript)

Server-side application
(Java byte code)

f0240-01_alt.jpg
UL wrl « Do TRL;YREER 1/ /[N TeRCLAt 00gh) ¢
HEEBURLConnection connection .

= (HttpURLConnection) url.openConnection() ; Setuse-intranet
SERAELON SALEATRIER B ALEY ERdi IntIEatY, TEasiY; ‘header

09fig06.jpg
owr

worintorace |
| Browser
[[
Clientprony | |ClienRosource| |
W oot ason, .
seriaiization | HTTP HTTP | LML form posts

Application
serverlogic

09fig05.jpg
user interface

Browser

JSON, XML, HTML form posts
GWT objoct sarialzation

02list03_alt.jpg
public class Blocker extends org.restlet.routing.Pilter { List of blocked

private final Set<String> blockedAddresses; < R addresses

public Blocker (Context context) { "
super (context) ; Pl 4
this.blockedaddresses = new CopyOnWriteArraySet<Strings(); Gggmts

k

aoverride

protected int beforeHandle (Request request, Response response) {
int result = STOP;

if (getBlockedrddresses ()
.contains (request .getClientInto() .getaddress())) {
response . setStatus (Status. CLTENT_ERROR_FORBIDDEN,

"Your Ip address was blocked®) ;
} else {

result = CONTINUE;
i

return result;

}

public Set<string> getBlockedhddresses() {
return blockedaddresses;
}

09list01_alt.jpg
REUERRPRYINRE FOREORRNRLERET
= new RequestBuilder (RequestBuilder.GET, "/accounts/10%);

requestBuilder.setHeader ("Accept”, "application/json’);

requestBuilder . sendRequest (null, new RequestCallback() { 49 Handle successful
public void onResponseReceived(response
com.google.gut .http. client . Request request,
com.google gut http.client Response response) {

Initalize,
) © Handle execute HTTP
error request

public void onBrror(Pl
com.google .gut http.client.Request request,
Throwable exception) {

02fig07.jpg
. N
Qe Q y -0
N Next Resle

Filter

09fig04.jpg
owr

user interface

HTTP roquest
builder

Application
server logic

02fig02.jpg
user
routing

Inbound - Resource Outbound
server calls handiing clent call

02fig01.jpg
Client
X

Server. Client
resource: resource
B 2

Restlet application

02fig04.jpg
Client
X

Outbound
resource service fitering
Resource User Service

handling routing filtering

09list02_alt.jpg
ClientResource clientResource =
new ClientResource ("/accounts/chunkylovers3/contacts/") ;

clientResource . setOnResponse (new Uniform() { @ Asynchronously
oublic void handle (Request request, Response response) (<— handie response
ey {

JsonRepresentation representation
= new JsonRepresentation (response.getEntity());
JsONArray jsonContacts = (JSONArray) representation.getJsonObject () ;
o)
} catch (Exception ex) {
GWT.log("Unable to parse JSON', ex);

}

) Launch GET
P request
-1ientResource.get (MediaType . APPLICATION JSON);

02fig03.jpg
Server
A

Server

B

Inbound Inbound
service fitering routers and filers
Server.
resource
c
Service User Resource

filtering routing handling

09fig07.jpg
Gwr
user intorface

Rostlot
esource

GWT objoct
seraization

TP TR

GWT-RPC Restlot
client proxies | | ClientProxy | |ClientRs

GWT object
serialzation

HrTe

Application
server logic

Third-party |
web API

Browser

JavaEE
web container

ch02list01-1.jpg
@Override (Create root Restiet
public Restlet createlnboundRoot () { to trace requests
return new Restlet () {
Goverride
public void handle(Request request, Response response) {
String entity = "Method * + request.getMethod ()
+ "\nResource URT : "

request .getResourceRef ()
"\nIP address : "
request.getClientInfol) .getaddress ()
"\nAgent name : "
request.getClientInfol() .getAgentNane ()
"\nagent version: "
request.getClientInfo() .getAgentversion() ;
response.setEntity (entity, MediaType.TEXT_PLAIN) ;

Y

ch02list01-0.jpg
anpozt
import.
import.
import.
import.
import.
import.

public

org..

org.
org

org.

org.
org
org

class MailServerApplication extends Application {

Testiet..
restlet
restlet
restlet.
restlet
restlet.
restlet.

Application;
Request
Response;
Restlet;
Server;
data.MediaType;
data. Protocol ;

Launch
applicatior
with HTTP

public static void main(string(] args) throws Exception { server

Server mailServer = new Server (Protocol .HTTE,
mailserver.setlext (new MailServerapplication) ;

mailserver.start () ;

8111);

02list02_alt.jpg
public MailServerApplication(){ =
setName ("RESTful Mail Server'); S
setDescription ("Example for 'Restlet in Action' book”);
setOwner ("Restlet SAS");
setAuthor ("The Restlet Team");

02fig05.jpg
<<org restlet Uniform>>
org restlet Restlet

author: String
description String
name String
ouner:String

application: Appiication
context:Context
logger Logger

started - boolean
stopped; boolean

handle(Request, Response) : void
start() : void
stop() : void

org restlet Application

inboundRoot : Restlet
outboundRoot Restlet

finderClass : Class<? extends Finder>
roles : List<Role>

services :ServiceList

current : Application (static)

connectorService : ConnectorService
connegService : ConnegService
converterService : ConverterService
decoderSarvice: DecoderService
encoderSorvice: EncoderService
metadataService: MetadataService
rangeService : RangeService.
stalusService: StatusService
taskService | TaskService
tunnelService : TunnelService

02fig06.jpg
org.restlet.Context

attibutes : ConcurrentMap<String, Obiject>
parameters : Serles<Parameter>

clientDispatcher : Restiet
senverDispatcher : Restlet

defauliEnoler : Enroler
defaulVerifier : Verifier
logger : Logger

current : Context (static)
currentLogger : Logger (static)

createCHildContext() : Context

02list15_alt.jpg
public interface RootResource { 4
aGet (rext?) Retrieve welcome
public String represent () ; representation

}

public interface AccountsResource { Seve s
aGet (vexe) Retrieve list
public String represent(); of accounts

@post ("txt")
public String add(String account) ;

Addaccount
L and return
public interface AccountResource { .

aget (vextr) Retrieve account

public String represent(); representation

@put (vext")

public void store(String account); Store updated
P Delete identified account

public void remove(); < AUt

ch02list16-1.jpg
public gtring add(String account) {
gethccounts () .add (account)
return Integer.tostring (getAccounts () . indexof (
account)) ;

' | Mail account resource

public class AccountServerResource < implementation
extends ServerResource
implements AccountResource {

Retrieve account
private int accountI identifier based
on URI variable
coverride
protected void doInit () throws ResourceException {
this.accountld - Integer.parselnt (getAttribute(*accountId"));
}

public String represent() {
return AccountsServerResource. getAccounts () .get (
this.account1d) ;

}

public void store(string account) {
AccountsServerResource .getAccounts () .set (
this.account1d, account);

}

public void remove(){
AccountsServerResource .getAccounts () . remove (this.accountId) ;
}

ch02list16-0.jpg
Pt e e Root resource
extends ServerResource implementation
implements RootResource {

public String represent () {
Teturn “Welcome to the * + getApplication().getName() + * 1*

¥
}
public clase Accountaservermssource P
extends ServerResource implementation
implements AccountsResource {

private static final List<String> accounts =
new CopyoniriteArrayList<string>();

public static List<string> getAccounts(){ . I
return accounts; brmbharmpitne A
) in memory
public String represent () {
StringBuilder result = new StringBuilder();

for (string account : getaccounts()) {

result.append((account == null) ? ** : account).append('\n');
}

return result.tostring();

02fig09.jpg
0o—

Router

/. == 1)

—>
3 Route 2
‘. et

f0357-01_alt.jpg
o =y
BriGe $-0-0 86r 867 PBeWT U-wor

S arssacis f e st
et (o restiat enaine. bendar endesConstan ATTRIBUTE NEASERS))

ueer Rea, 31 30 301 9120131 05}
Ciaeeepepasse: St

et ——
R e piases enacsecer

02fig08_alt.jpg
Extractor Authenticator Authorizer

02fig11.jpg
! 1 new instance
e thewisshes

H 2 instance created l

3 init{Context, Roquest, Response)
|3 initiContext, Request Response) _,, |

4: dolnit)

H 5 instance intalzed

6 handle)
e —

7 request handing
8 request handied

i | 10: doReleasel)

- 9 releasel

11 instance released

02fig10.jpg

ch02list08-1.jpg
@override

protected Representation get()throws ResourceException (
System.out.println("The GET method of root resource was invoked.
return new StringRepresentation(*This is the root resource);

)
A Handle OPTIONS showing impact of throwing exception
protected Representation options()throws ResourceException {

System.out.println("The OPTIONS method oOf oot resource was
invoked.") ;

throw new RuntimeException(*Not yet implementeds);

f0362-02_alt.jpg
Roprosentation
aanes s eprosaniaaty

ch02list08-0.jpg
i0port org.restlet.representation.Representation;
import org.restlet.representation.StringRepresentation;
import org.restlet.resource.ResourceException;

import org.restlet.resource.ServerResource;

public class RootServerResource extends ServerResource {

public RootServerResource (){ e
setNegotiated (false) ; S Sonesat
/1 setExisting(talse) ; st

)

soverride
protected void dolnit()throws ResourceException {
System.out.println("The root resource was initialized."

}

aoverride
protected void doCatch (Throwable throwable) (
System.out .println("An exception was thrown in the root resource.”)

} Handle GET
Goverride returning textual
protected void doRelease () throws ResourceException { representation

System.out.printin("The root resource was released.\n");

}

f0362-01.jpg

02list14_alt.jpg
public MailServerApplication(){ < Set basic properties
setName ("RESTEul Mail Server application);
setDescription ("Exanple application for 'Restlet in Action' book");
setOwner ("Restlet SAS");
sethuthor ("The Restlet Team');

}

soverride Dispatch calls to
public Restlet createInboundRoot (){ 4_1 server resources

Router router = new Router (getContext());
router.attach("/", RootServerResource.class) ;
router.attach(/accounts/", AccountsServerResource.class);
router.attach("/accounts/{accountId}", AccountServerResource.class);
return router;

f0361-01.jpg

02fig12.jpg
Sorver-side

ServerResource.

ClientResource
subclass

dynamic proxy

nterface

f0358-01_alt.jpg
BSOS - SNCLOGERENYL \UVEE - RN) £ <& Tum off log traces for all loggers
Engine . setRestletLogLevel (Level .ALL) ;
Spacifiy log for orgrestiet® logaers

f0365-01.jpg
| Roprosontation 1.1 SN}

User Agent Origin Server

f0364-02.jpg
>
ot server

CamnnmmAD { components
comector «] comector

f0364-01.jpg
==
p—

f0363-01_alt.jpg
Metadata on the.
giadainga the

of current state

 Representation Entity to be accepted
of current stato. for processing

f0367-01_alt.jpg

03list06_alt.jpg
PHECLSMEN LY SRS PERCOROR < PRl 4—‘ Client to get log properties
£l from classpath

getLogService () .setLoggerNane (*Mailserver AccessLog) ;
getLogSexvice () .setLogPropertiesref (
"clap: //systen/org/restlet /example/book/restlet/
hos et bervers iog DroBeit isst) o

Configure log
service properties

03list05_alt.jpg
AUPOTE.

Jjunit.framework.TestCase;

import org.restlet.Request;

import org.restiet Response;

import org.restlet data.Wethod;

import oxg.restlet exanple.book. restlet.cho3 .sec. sexver. .

MailServerComponent ; Instantiate
Restlet

public class MailClientTestCase extends TestCase (component

public void testVirtualHost() {

MailServerComponent component = new MailServerComponent () ;

Request request = new Request () ; e
Tequest . setHethod (ethod .GET) ; Frepre fest {TTF ol

request .setResourceRef ("http: //www. rmep.org/accounts/") ;
request .setHostRef ("http: //www.xmep.org") ;

Response response = new Response (request) ;

response .getServerInfol() . setAddress (*1.2.3.10") ;

response .getServerInfo() .setport (80) ;

component . handle (request, response) ; Test i response

assertTrue (response .getstatus () . isSuccess () ; was successful

ch03list08-0.jpg
<?xml version="1.0"?> o —
Zbeans malnenhttp: //wes. springtrameworarg/schama/basna® with namespaces
xmlns:xsi=*http://www.w3.org/2001/XMLSChena- instance® declarations
s, Ut 1" kp: / . apr Angf ramework ora/ achama/ut 1"
a1 achenatocat one heLp:/ /. SpringE anevork ora/schena/beans
Hetps//wew. pEingf ranework oro) schema/beans, apring- beans-3.0.x8d
B+ /e, ¥ gt ramevork ora/echana/uti1

Gimpoosst Beep: / /v springframework .org/schena/uti1/spring-util-3.0.xsd">
properties |, _pean iduscomponent®
st by value/ | iz

Classarorg. restlet.ext.spring.SpringConponent™>
<property name-"name’ value-"RESTful Mail Server component’ />
<property name-"description®

value"Exanple for 'Restlet in Action' book" />
<property names"owner® values"Restlet SAS />
<property names"author’ value'The Restlet Tean® />
<property name="client* valuestclap® />
<property names"server' ref=iserver® />
<property names"defaultliost® ref="defaulthiost® />

reference |

</bean> & i
<besn id-*component .context* component's
lasss"org.springtranework .beans. factory. ot focriues

= _config. PropertypathFactoryBean® />

<bean ids"servert class"org.restlet.ext.spring.Springserver's
<constructor-arg values"http® />
<constructor-arg value=*8111" /> TP srver with
<property nanes"parameters’> phldod o]
<prope>

03list07_alt.jpg
ekt LTl TR B o
<component xmlns="http: //wwu.restlet .org/schemas/2.0/Component™ Sibtadc
name="RESTful Mail Server component® propertis
description="Example for 'Restlet in Action' book"
owner="Restlet SAS"
authors"The Restlet Team">

<client protocols"CLAP" /> 4—\ bidkire
<server protocols"HTTP"> ‘connectors.

<parameter name='tracing" value="true" />
</server> e
<re- virtual hosts
<defaultHost <

hostDomains"ww\\ . rmep\\ .com|mnw\\ . rep\\ .net [\ \ . rmep\\ .org"
serveraddress="1\1.2\1.3\\.10[1\\.2\1.3\\.20" serverPort ="80">
<attachbefault
targetClass="org. restlet .exanple. book . restlet
= .cho3.sec3.server.MailServerapplication® />
</defaultHost>

<defaulesost>
<attachbefaule
targetClass="org. restlet .example.book restlet
= .cho3.sec3.server MailServerApplication” />
</detaultiosts Confgure
<logservice loggerName="NailServer. AccessLog” log service
logpropextiesRet="clap: //systen/org/restlet /exanple/
W book/restlet/ch03/sec3/server/log.properties" />

IR SEREES

03fig02_alt.jpg
/ = \
\
/
[
.

Applioation #
handiing

| cientcats

03fig01_alt.jpg
Application 1

Restlet component

03list01_alt.jpg
SUPCES. G- PRNEANE SNMPORNGE]

: RESTful component
imprt org.zestlet data. Protocol; S cumpoe
public class Wailservexcomponent. extends Componsnt. (aplication
public static void main(string() args) throws Exception { o
new MailServerComponent () .start () ; sl
) component
public MailServercomponent () {
sechane (RESTEUL Hail Sexver components);
Setbescription(+Exanple for Resties in Action! books):
Tetowmer Chectier ot e
Sethuthor (+The Restler Tesmt); i
getServers () .add (Protocol .HTTP, 8111); < connector
aethetauitiost () attacknetault (new Net1Serverspplication(})
) Q—‘
Attach application to default host

03fig03_alt.jpg
HTTP sarver
‘connector

Application 1

Virtual

e Application 2

)

Application 3

Restlet Component

03fig05_alt.jpg
HITP sarver

ey (R
\
HITP soer /
pasies. 13350

MailServerApplication

MailServerComponent

03fig04_alt.jpg
protocs : List<Protocol>
avaiable ‘bocloan

—_—

W—cnﬁi*

‘connectTimeout : int ‘address : String
eonemarabon
Cieni(Content, List<Proocol) LR
ChoniConten Lot Stig holperCas)
GleniConon Provce) SovertPatoos)
Cloniswbrtocasy Severirato o)
Cleniprooco) St Siog)
ClontSing) Severiraaca, Sing)

handio(Requos) - Responso.

03list04_alt.jpg
Configure
default
virtual host

S e A O A - it Q1)

host
hoat
host

N

setserverport (1607 ;

-

~setHostDomain ("www\\ . Tmep\\ .com|wew\\. Tnep\\ et [\ . rmep\\ .oxg") ;
“setServeraddress(*1\\.2\\.3\\.10[1\\.2\\.3\\.20) ;

Attach application
to default host.

08fig10_alt.jpg
Cresed on: 20120626 V52007
6t opkcaton Descrptin | Dot T it

rela Environments

O e e o 43¢ 10 it (ot v o et o e i)

f0346-02_alt.jpg
p=rr

(o e
Qss@essiane

T st el

oo isashecnie 2L R L) s s s

- DEDEED

f0346-01_alt.jpg
ot e e s, G, e e T, e e

HEHES DE s -JT'iiBG

EEEEE, B

e e tiooris | J
e —

el

[

sy

e

o s

e s

b s 1
bagiecnaten

08list03_alt.jpg
S e ouR
cseript "util\unzip.vbs - N
"jre\jres.zip" "YROLEROOTY\approot” Unzips
@REM unzip Tomcat JREand
cscript "util\unzip.vbs" ot
“tomcat \apache-tomcat-7.0.12-windows-x64.zip" "¥ROLEROOT$\approot™

GREW copy project files to server Copiesweb
e ARoLAROT OB RoOR\apacha-Lamcat-7.0. 12\webappahceiat] o
7 +AROLERGOT \appront \apeche-fomcat 7.0 12\ sebappe\rete\WER- Pt @) 0B
e “AROLEROOTY\approot\apache-Concat-7.0. 12\webeppe\reLa\HETA THF*
Ceoos /5 e TnE-

\ROLERGOT\approot\spache- oucat-7.0. 17\webapps\reia\WES: TE*
ccopy /5. VA D6+

A AROLERGOT\avpook \spach-Eomcat -7, 0. 17\ wabeppe\reLa\WETA-E*

GREM start the server

Ca “ROLEROOTY\upprost\apache-Concat 7.0, 12\bin" |’° —

set "JRE_HOME=..\..\jres" Tomeat

startup.bat

f0348-02_alt.jpg
Plese speciy a irectory where Jav sourc s for your project can befound.
This path should correspond o defau (1ot unnamed) package.
Note the program i recognie oy thoseJava sourc s, tht e lccated nder this diectry.
® Crestesourcedirectory.

Enter relaive pth o modue content oot (example: oot

o et ceste source drectory

The folowing dnectory willbe marked z 3 ource diectoy:

CworispaceldesProject\testRestitsrc

<Breviows

08list02_alt.jpg
i o e L e S L
<ServiceDefinition name="WindowsAzureCloudServiceProject®
<WorkerRole name="WorkerRolel"s
<Startup>
<Task commandLine="util\startup.cmd"
executionContext="elevated" taskType="simple"/>

</startups
<Endpoints>
<InputEndpoint name-"HEEp" protocol-"tcp” < Specifes
</Endpoints> endpoint
</WorkerRole>

i/SarviceDafinftions

f0348-01.jpg
Intellij IDEA

<Brevious

reshester

-
T S
et i iy b~

Py

Modseetins

= =

Contrt ot Croompaceie

Moduie e locstion:

soeatpe
By o

% Pigia Module
@ i odue

By Moen o

oectitenReset

(Cverkspace ldesproects testieter
Descrption

Encapsulates core functionaity for
buiding JVM-based appications.

08fig12.jpg
4 & WhAStaterKitForlava.

i otemalToouiders
b templates

3 spproot
e

1 iusap

b verae

b tomeat.
1 apachetomeat70.12-vindows 6410

b wesn
U classes
Y

f0347-02.jpg
® Create projectfrom gratch
(Crestenew IDEA projectsructure

Create Jva project from isting sources
(Creste DEA pcject structur oves eisting sources

Import project from external model

Creste DEA poject structure over eisting eteral madel(Ecipse, Maven)

08fig11.jpg
user @ @

-
accounts M ‘A

Load Dev & Mgt
balancer tooling

f0347-01.jpg
Edt_Sewch Yiew GoTo Code Ana

New Modue
GpenProject..
 Openie

e

8 Settings CHleAReS

@ PrjctStcture oA
Other Setings s

s aues
‘Bpon setings.
Impon Setings...

08fig14.jpg
Name Tyee
18 Noehios - Infr: Subscription
 rea Hosted Serviee

Creia Deployment 8% uploaded Staging

f0350-02_alt.jpg
duke texRestiet

pe [tesRestier
2 Sources| & Pt @ Dependencies

I Citen (s]

st so: 5 prjc

or
e I v
E— (781 gty Mol Ly
1h 2 Library...

£33 ModuleDependency.
[
]

08fig13.jpg
‘Creste » New Hosted Service
Choose » subscription
| Nosios - nfasirucure
Enter a nome or your service

e

URL preixfor your service
[ren

Choose

jon o atay group
© (asBimon B O cross o chocs n sty e
Oeployment optons

 Oeployt tae eviment

O Dapo o ructonsmonmant

) o ot celoy
4]t s sl dogment
Deployment name

ackage location

[Windomshsurepackagecapko || Bromse Locly... || eromse stoa

Contiguration fe

| coudapn.net

[severconroumsen i | s ooty | orove s |

[

-

-

f0350-01.jpg
L |—
& = @
s
* T
W MAI e
Export Settings...
Import Settings...

EporttoEclpe..
. CuleAkeY.

f0218-01_alt.jpg
ANLINOVERS YR RRNS IS
sdkdir="${wasdkdir}"
packaget ilename- "WindowshzurePackage . cspkg”
packagedir = "${wapackagedir}" Sets package
packagetype="cloud" type to cloud
projectdir="${basedir}"
definitionfilename="ServiceDefinition.csdet"
configurationfilenanes"ServiceConfiguration.csctg"

f0349-02.jpg
Plesse seectthe desied techrcloges.
Thi il domnload s needed brries nd rst Focetsin projectconfigurtion.

0 @feoy
ety | o brry seeced] | | Gree.

@ Error by i ot speciied

Intellij IDEA

module

f0349-01_alt.jpg
Plese selct 1SDK o be et forthis modie.

Project IOK:
316 Gova verion 160.25)

Intelli) IDEA

three.jpg

08fig15.jpg
= D Status

* 8 Noskos - Infrastructure Subscrition e
‘ Fre Hosted Service Croated
3 Certificates.
‘Crea Deployment Intakzing.. St
© O Workerholer Role s

 WorkerRole1_IN_ Instance

Staging

f0341-02_alt.jpg
P
» Genens =

A clsspathvariable can be added o poject’ class path I can be used to define
thelocation of a JAR fle that ' part of the workspace. Non modifiable dasspath

I Mm-mw-nqunmm.mmww]
. Hep 1| s
» Intarvpdsie Oeinedsaputh varables:
a0 ' ECLIPSE_HOME (non modfisble) - CAProgram Fe\eclpses | Newe.
» Mppmsacy 8 JRE_LI (non modifable, deprecated) - C\Program Fles
24 RE_SRC (non modifble, deprected) - (empty) £

(G4IRE_SRCROOT (non meodifable, deprecated) - (empty)
25 JUNIT_HOME (non modifiabe, deprecated) - CProgram Fil
5 RESTLET_HOME - C:\Program Fies Restt Fameord Edtio]

o e)

08fig04.jpg
Googe @ @ @ Ot

accounts. A‘A accounts.

Load Dev & Mgt
balancer tooling.

Paas

Sandboxed Sandboxed
Serviet Serviet
P
laas BigTable BigTable
Replication

f0343-02_alt.jpg

08fig03_alt.jpg
¥ LB &

Amazon Web Services Google App Engine Microsoft Azuro

Backend Backend

Cloud | deployment

Restlet

c
oo o

Amazons3 OData-based RESTful
resources services web APIs

f0343-01.jpg
B v, |
| B NewFie. CuteN p—

B OpemPrject. CuleMije0
Open ecentProect i
e Project
Openfie.
penRecentFe .
PrjectGroup ,
PrjetPraperis
ImpetPriect .
Sme aues

& s Cuebjes
Pagese
P oA Maep
Pt HTML.

e

08fig02.jpg
RestlotijavaEE Restlo/GAE RestioiJavaSE RestetOSGI

f0342-02_alt.jpg
| T

T
[Vo PRE———
- i ciass messemeris |
st
Btz sl] pmise saie void i eron) sren o Exesion ¢

e ety 1L ek, BebLTe: TR PATR

(oo i e @ e & CELIY ' ELEeta)
et et o g e TS b SR
e s et e 3 e x g #08

g it el

3 [wawe [1

08fig01.jpg
saas

laas

f0342-01_alt.jpg
T e o Mg e e o Moo

®os vro-a- @
i

et

08fig07.jpg
[7S]
th -
accounts. A“

User

Load Dov & Mgt -
balancer tooling

f0345-01.jpg

08list01_alt.jpg
public Restlet createInboundRoot() {

1 Instantiate GAE mmemiumoj)
¢

Authenticator authenticator = new GaeAuthenticator (getContext (}) ;

Enroler enroler = new GaeEnroler(*admin', "Administrator");

authent icator. setEnroler (enroler) ;

authenticator. setNext (myRouter) ; Instantiate, configure

return authenticator; ‘GAE enroler

f0344-03.jpg

08fig06_alt.jpg
Y P

Feen

Cumentversion
REA Apptcaton

10
Crese Apptcation

i T ey)

f0344-02.jpg

08fig05_alt.jpg
]

1011
Apptcaton

REA Appcaton

11011

f0344-01_alt.jpg

08fig09.jpg
Create New Application Caneel X

v v v o
AUCATONDEIARS CHOWINIDEIALS COMGUATONDETAS BSVEW
Review the information below, then click Finish.

6abit Amazon Linux running Tomcat 7
Sample Application

: reiadev
http://reiadev.elasticbeanstak.com

: tmcro

: Mhealthcheck

08fig08_alt.jpg
Q Ve oerg veen | fees |

f0345-02.jpg

08fig21.jpg
Permissions Webste | Logging Nouficatons

Granie [FmswiRe | YLst o UposaDeiete ¥ x

© Add more permissions.

'© Remove selected permissions /] Add bucket

08list10_alt.jpg
String rootUri = "https://s3-eu-west-1.amazonaws.com/relabucket/";
ClientResource resource = new ClientResource (rootUri + "resource.txt");
resource. setChallengeResponse (

new ChallengeResponse (

Challengeschene. HTTe_AUS_S3, Configure,
"<AWSAccessKeyId>", "<AWSSecretKey")); exeq
creation
resource.put ("resource content”, MediaType.TEXT_PLAIN) ; request

o)
resource.delete() ; <—@) Configure, execute deletion request

08list09_alt.jpg
PLEsDg XQOLgEd e THECPRL//R0-SU-Ueat -1 ANAECnIwe . QON/TRIAbUCKETSM Y
ClientResource resource = new ClientResource(
TootUri + "louvel_cover150.ipg™) ;

resource. setChallengeResponse (T SetsAWS S3
new ChallengeResponse (Security hints
ChallengeScheme .HTTP_AWS_S3,
"<RiSAccessKeylds", "<AWSSecretKey>"));

Fileoutputstrean fos

new Fileoutputstrean

new File("picture.dpg®)) ; Execute request
resource.get () write (fos) % retrieve content
Sie, ARt

08fig23.jpg
A il

2a Goggle

Saas
application

GAE
application

Google SOC [
Tunnel server

Google SOC

‘Agent

08list12_alt.jpg
Retrieve
new table

s e e N T e L
Bntry encxy = new Entxy()
BUbLic void write(Xulkriter writer) throws IOException {
writer. forceNsbecl (
"http://schenas microsoft con/ado/2007/08/datasexvices" , "d") ;
writer. forceNsbecl (
"http://schenas microsoft .con/ado/2007/08/dataservices /metadata®,
an)
super write (uriter) ;

b
entry.setUpdated (new Date () ;

et ot inacen oaw Sediepeemstationt
enroropertieosca-Tamtatames bt/ 4 TobleNases </ prepereissst.
ool AT
concen sechomaeeds taioe oo
i andooink = Wtps/celatent table, cors.windowe.net/Tables
Chienthcscunce el eniasoures < s Chicochessures tondpotn’
Tosouressecchatienperemponest
o Erasensstesgonse
e copeeeaoas TTe_ R8s,
emtorapencoomior, F<Stersmetosomtieorettarst)
sopsesencacion representation Py
T tenthespurce poss (encry) B
sy xesponsetnery - aow By epeesomcecion
e

08list11_alt.jpg
SEEIng TOSLUNL & TREERIF(ERLA. CAULA .COTE. WINICWE Dak{ bl e)

ClientResource resource = new ClientResource (rootUri); Set Azure
resource. setChallengeResponse (security info
new ChallengeResponse (
ChallengeSchene . HTTP_AZURE_SHAREDKEY,
"<Storagenccounts", 7<StoragehccountSecretkeys®)) ;
Representation tableList = resource.get(); Ban
Feed feedTablenist - new Feed (tableList); s}

[t o e e O D S

08fig22_alt.jpg

08fig24.jpg
<&l /

Google App Engine

Amazon EC2 Wicrosoft Azure

Cloud server Cloud server Cloud server

Restlet SOC
Tunnel server

Google SO Restlol SDC
Tunnel server Tunnel server

Corporate
frowall

Intranet

08list14_alt.jpg
FEEAUMEGRIILLER &
<rule repeatable="true"s ¢
onfigure
<ruleNum>1</ruleNun>]’ bt
<agentIdsall</agentIds
<allowbomainViewers>true</allowbomainViewers>
<apps repeatable:

<servicesAppEngine</services
<allowhnyAppldstrue</allowhnyhpplds

truens

</apps> Specify

<urlshttp://waw. restlet org/</url> o D Feetun
<urlMatch>HOSTRORT</urlMatch>

</rules

B

08list13_alt.jpg
il i Specify SDC
<sdcservertost>localhost</sdcServertost> Server hints
<sdcServerPort>4433</sdcServerport>
<allowlnverifiedCertificatesstruec/allowbnverifiedCertificates>

<domain>exanple. cone/donain> e
<usersmyUser</user> @ Define agenc- i
<password>myPasswords/password> related
<agentId>myAgentl</agentld> properties

<socksServerPort>1080</socksServerPort>
<healthCheckGadgetusers>< /heal thCheckGadgetusers>
S/ enELEYs

08fig17_alt.jpg
e & &

mmm: WebSphere.
et

Sliarealil Server WCF Data Services Ot N iiars Tabie Bl

f0352-01_alt.jpg
+workepacerconnandline>Javac ~cp org.restlet.jar hollosHelloorld. java
Suorkepacerconnandline>dava cp org.restlot.fari. hello.Hellolorld
P the Soeernal HHIEA .13 s0rsen on port bidz

tarting the incernal ONT
110, "Vorlastopping the

“uorkspacerconnandline>

08fig16_alt.jpg

f0351-02_alt.jpg
“C\progeen Llen\Jeve\JAEL6.0_EIBLS\JAve" -Dide, Lauache,ort=153) Diden, Lamches. i, pSheC:\Poegeem Files
Seaceing the tseereal (ETB/1 3] servas sn gort £162

Scarcing the iscersal (BTIF1.3) chient

Scopping che incersal (SFTB/AL3] server

Frocess finisned vich exts cace 0

[
u

01
a8
2
=1

f0351-01_alt.jpg
prcell e

piblic class Besioteria (

9 btic statc void minisisal aco 1
o Piblic veta nunaie Gagsese ceqs
]

o hacbeeaio vt Moo

P

= v
pust o st otV
oMy
P
Fndiges e

> (ERICTET T
B Doy Hoowedsmun”

Loctpon

Compuewih ot

Roons UTE S cosesiein)
© Upde Copmahe

08fig18.jpg
.

Service subass

"]| Enttos classes

app02list05-0.jpg
A

org.restlet.Request;

import org.restlet Response;
import org.restlet data.Method;
import org.restlet .example.book . restlet.cho3.sec3.server.
o ¥ailserverComponen
import org.testng.Assert;
import org.testng.annotations Aftersuite:
import org.testng.annotations . BeforeSuit:
import org.testng.annotations.Test;
public class MailComponentTestCase {
private final MailServerComponent component;
public MailComponentTestCase() throws Exception { Instantiate Restlet
component = new MailServerComponent () ; Composent
}
aBeforesuite
Start component's
public void beforesuite() throws Exception (HITP server

k

component . start () ;

08list06_alt.jpg
PRETT.1 201 Coaatad Status of add
Content-Length: 1072 request
Date: Sat, 27 Feb 2010 21:39:54 GMT

Location: http://services.odata.org/OData/OData.sve/Categories (10)

Content-Type: application/atomsxml;charset=utt-8 piirecs of created category
Pataserviceversion: 1.0; o
<?xml version="1.0" encoding="utf-8" standalone="yes"?> Content of
<Entry (...)> created category

<id>http://services.odata.org/Obata/OData. sve/Categories (10) </id>
<title type="text®></title> ="http://www.w3.org/2005/Atom">
<idshttp://services.odata.org/OData/0Data . sve/Categories (10) </id>
<title types"textt>c/titles
Gl

</Entrys

f0353-02_alt.jpg
oS

import
import
import
import

public

ARG T RO RRLLRaN

org.restlet Request;
org.restlet .Response;
org.restlet.data.Method;
org.restlet .example.book. restlet.

. ver MailServer: 5 G
choa.secé . server . MailServerComponent T i

class HailConponentTeatcase extends TestCase component

public void testComponent () throws Exception {

Prepare
test HTTP.
all

MailServerConponent component = new MailServerComponent ();
component..start () ;

Request request = new Request (Method GET, "http://localbost:8111/%);

Response response = new Response (request) ;

component .handle (request, response) : Test
response

assertTrue (response.getstatus () .issuccess()) ;

assertEquals ("Welcone to the RESTful Mail Server application 1",

response..getEntityhsText () ;
Test content of
component..stop () 1 response’s entity

08list05_alt.jpg
FOST /OData/OData.gSve/Categorias RITR/1.1 Uses HTTP POST
Host: services.odata.org st
DataServiceversion: 1.0

NaxDataServiceVersion: 2.0

Accept: application/atomexml

Content-type: application/atomsxnl 9 Specifies

Content-Length: 634 content type

<7xml version="1.0% encoding="utf-812> Provides element
<Entzy (...)> P Jrikery

<title type=rtext®s</titles
<updated>2010-02-27721:36:472</updateds
<author>
<name />
</author>
<category terms"DataServiceProviderDemo.Category”
scheme="http: //schemas.microsoft .con/ado/2007/08/dataservices/scheme” />
<content. type="application/xml">
<m:properties>
<d:1D>10</d: ID>
<d:Name>Clothinge/d:Name>
</m:properties>
</content>
</Entry>

f0353-01_alt.jpg
SPOTE JNNEE STUNNNOER TRELLANS]

import org.restlet.Request;

import org.restlet.Response;

import org.restlet.data.Method;

import org.restlet.example.book.restlet.

cho4.secé . server.MailServerapplication;
= Instantiate Restlet

public class MailkpplicationTestCase extends TestCase { component

public void testApplication() throws Exception {
MailserverApplication application = new MailserverApplication();

Request request - new Request (Method.GET,

"heep://localhost :8111/7) ; o] Prepare test HTTP cal
Response response = new Response (request) ;
application.handle (request, response); Test
response
assertTrue (response.getStatus() .issuccess());

assertEquals ("Welcome to the RESTful Mail Server application !",

response .getEntityhsText () ;
} Test content of
response’s entity

08list04_alt.jpg
BITS1.1 300 0% - Response

[Seats.
Content-Type: application/atomsxml;charset=utf-8

DataServiceVersion: 1.0

<2xml version="1.0" encoding="utf-8"
standalon

28 OData content
Tentez of response

<feed (...)>
<title type="text®>Products</titles
SAGsBLED{//Eeey] ces; BdATA org/ COALY, ODNEA L 6VG/ ReoMatax/ a5
<updated>2010-02-27720:03:262¢/updated>
<Link rel="self" title='Products® hre
<Entry>

(o

</Bntry>

clfeeds

Products” />

f0352-02_alt.jpg
AREE JURLE ST - TR).

import org.restlet.Context; Inséantiite
import org.restlet.Request; RovtServerRenource.
import org.restlet. Response;

import org.restlet.data.Method;

import org.restlet.example.book.restlet.chos.sece . server

- RootserverResource;

public class RootServerResourceTestCase extends TestCase (

public void testComponent () throws Exception {
RootServerResource resource = new RootServerResource() ;

Request request = new Request (Wethod .GET, */%); ———
Response response = new Response (request) ; HITP call

Tesource. init (new Context (), request, response) ;

Inidialize
s resource handle () ; Test
handle assertTrue (response.getstatus () . isSuccess()) ; Tiepenm:
all assertNotNull (response getEntityAsText ()) ; IR
i response’s entity

08fig20_alt.jpg
% Aceess Keys || (A x500 Centcates || ® ke Pairs

Use acces keys 1o make secure REST or Query roloclrequest 1 any AWS senvice APL Ve creae one ryou whe your
acounts created — see your access key below:

Createa Access Key

08fig19_alt.jpg

f0356-02.jpg
Ele Eot Tools Holp

HITP Rouest

WRL bmum. 8111/ » ||

[Wed, 21 509 2011 1383.11 GT
icceptRanges _ofles |
sener RestetFramewor72 16

(ContentLengih 48 |
(ContentType __exipiain; chars t=UTF-5

08list08_alt.jpg
Procuct
product
product
product
service

PERURGE & ROW: FEOMORLE ¥
setTa(n3n)

setName ("My product®) ;

setDescription("The description of my product®) ; @ s
addproduct (product) ; <" product

Query<Product> query = service.createproductQuery ("/Products('3')");

product

product.
product

AR

= query.iterator() .next();

setbescription ("Another name");

setDescription ("Another description®); Updates

updateProduct (produc roduct
pdate®roduct (product) ; < P Removes

deletebrodnct toroduct) product

f0356-01.jpg
Ele_Eot Tgois Hop

HITP Request

O T N 13 |
HTT emos

|
®ger Opost

Opur Opeere
OHes O opTIoNS
O TRAcE

HITP Response
saus:

(‘aaders | Body | TestResu |
T — T S —

08list07_alt.jpg
SRESINGC NAMIE"RANCISTODREA" L ANLLetaenRERte " Daaemapet T
fual Ant task for
<target name="generate’s generation

<java classname-rorg.restlet ext.odata.Generator”s
<arg value="http://services.odata.org/OData/OData.sve" />
<arg values"s{basedir}/out"/>
<classpath>
<fileset dire"${basedir}/1ib">
<include name="**/*.jar"/>
</tilesets
</classpath>
</3avas
</target>
cforeiects>

app02list05-1.jpg
@Test (threadPoolSize = 10, invocationCount = 100, timeOut = 5000)

public void makecall() {
Request request = new Request (Method GET, i
*http://localhost:8111/") ;
Response response = component .handle (request) ; concurrenc al

Assert.assertTrue (response .getStatus () .isSuccess()) ;

Rssert.assertEquals (
“Welcome to the RESTful Mail Server application 17,

response .getEntityAsText () ;
3

antrersuite
public void aftersuite() thows Bsception { oy

component .stop () ;

}

04fig20_alt.jpg
Jaccountsichunkylovers3.
Imals/123

04list22_alt.jpg
S

public Representation toXml() throws Exception { Create mail
Mail mail = new Mail(); bean
mail.setStatus ("receivedr) ;
mail.setsubject ("Message to self'); Prepare the data model
mail.setContent ("Doh!") ;
mail.setAccountRef (new Reference (getReference(), *..7) .getTargetRef ()

tostring();
MapcString, Object> dataliodel = new HashMap<String, Objects();
datavodel .put ("nail®, mail
| Load Veociytemplae
Representation mailvel - new ClientResource(
LocalReference .createClapReference (getClass () .getPackage)]
+ "/Mail.vtl") .get();

return new TemplateRepresentation (mailvel, datavodel,
MediaType . TEXT_HTHL) ; m’k,uw

} representation

04list20_alt.jpg
eed Createmail

public Representation toxml(){ eate mail
Mail mail new Mail(); M
mail.setStatus("received");

mail.setSubject (Hessage to self); Prepare the data model
mail.setContent ("Doh!") ;
mail.setAccountRef (new Reference (getReference(), *..") .getTargetRef ()

-tostring () ;

Map<string, Object> dataModel = new HashMap<String, Objects(); <
datavodel .put ("mail®, mail);
Load FreeMarker template

Representation mailFtl = new ClientResource(
LocalReference . createClapReference (getClass () .getPackage ()]
+ "/Mail.fe1") .get();

return new TemplateRepresentation(mailFtl, dataModel,

MediaType . TEXT_HTNL) ; ‘Wrap bean with

FreeMarker
bt ST

ch04list23-0.jpg
soverride Declare two

protected void dolInit() throws ResourceException { variants
getvariants () .add (new Variant (MediaType .APPLICATION_XML)) ; supported
getvariants () .add (new Variant (HediaType. APPLICATION_JSON)) ;

}

soverride

protected Representation get (Variant variant) throws ResourceException {
Representation result = null;

Create mail bean
Mail mail = new Mail(); R

mail.setstatus ("received") ;

mail setSubject ("Message to self"); Use this order to prevent NPEs

mail.setContent (*Dohi*) ;
mail.setAccountRef (new Reference (getReference(), "..") .getTargetRef ()
~tostring()) ;

if (MediaType APPLICATION_XML.isCompat ible (variant .getMediaType))) {
Yesult = new XstreanRepresentation<hail»(mail);

} else if (MediaType.APPLICATION JSON.isCompatible(variant | Wrapbean
.getMediaType ())) { *“"“""’."
result = new JacksonRepresentation<Mail>(mail FEprEIcIAtion
}
‘Wrap bean
return result; wich Jackson
}

04fig21_alt.jpg
HTML
Variant

Homer =

mail variant
resource

faccountsichunkylovers3
Imaits23

JSON
variant

04fig22_alt.jpg
Jaccounts/chunkylovers3
Imailsi23

1 idenifes

Homer mail
resource

s representd by

>

HTML

¥ variant
s serilizad as _ -

Representation
[

XML
variant

07fig01_alt.jpg
‘Subject Message to self

ot

11fig11_alt.jpg
@ Ao et | i | i | sk

e —

P e

Ouwnien gy Downds Mambes Mo Anais

P p— aer

[
oo ante & b o e

v

anson P

11fig10.jpg
Export

Peek “

ch04list23-1.jpg
eOverride
protected Representation put (Representation representation, Variant variant)
throws ResourceBxception {
Mail mail = nul

if (MediaType .APPLICATION XML.isCompatible (representation s
getmediaType (1)) { representation
mail - new XstreanRepresentationcHails (representation, o getmall
Mail.class) .getobject) ; bean

System.out .println (“XHL representation received®);
} else if (MediaType.APPLICATION_JSON.isCompatible (representation
.getiediaType ())) { <
mail = new JacksonRepresentationcMails (representation, Mail.class)
-getobject () ;

Syatem.out.printin(*JSON representation received®); Lictedand
representation
i ‘get mail bean
if (mail null) {
System.out.printin(Status: * + mail.getstatus());
System.out .printin("Subject: * + mail.getsubject()); Qutputmel

System.out.println("Content: " + mail.getContent()):
System.out println(*Account URT: * + mail.getAccountRef());
system.out.println();

}

return null;

05fig01_alt.jpg
HITPclient ~ ClientTLSlayor ~ SeverTLSlayer ~ HTIPserver

§ ot comecton !

e

4 clentveres
Sorvercon usied

5 procesd wih
handshake

—
s

7 retum connectionto the
HITP ayer

8 s0nd HTTP request

04list27_alt.jpg
i ot b ik b i et alog i Lok <] Create the
"http://localhost 8111 /accounts/chunkylovers3/mails /123", dynamic
MailResource.class) ;

clientresource.store (clientResource. retrieve());

04list17_alt.jpg
Output
JSON
clement.
values

S
public Representation todson(){

Mail mail = new Maill); & w Createmail

mail.setstatus("receivede) ; il

mail. setSubject (*Hessage to sel");
mail.setContent ("Doh!") ;
mail.sethccountRef (new Reference (getReference (), *..") .getTargetRef ()
tostring() ;
return new JacksonRepresentation<ail> (mail); ——
with Jackson
) representation
aput
public void store (Representation rep) throws IOException {
JacksonRepresentation<iail> mailRep = new JacksonRepresentation<hail>(
rep, Mail.class);

Mai mail = mailRep.getobject(); Parse JSON
representation

Systen.out println(*status: * + mail.getstatus()) o get mail

System.out printin(*Subject: " + mail.getsupject()); bean

System.out printin(*Content: " + mail.getContent ());
System,out .println(*Account URI: " + mail.getAccountRef ());

07fig02.jpg
Directory
‘comparator : Comparator<Reference>
desplyAccessible - boolean
indexName : String
istingAllowed : boolean
modifable : boolean

negotiatingContent - boolean
TooRef : Roference

gellndexRepresentation(Variant, Referencels) : Representatio
gellndexVarians(Referencels) - ist<Variant>
useAlphaComparalor()

useAlphaumComparator()

f0317-02.jpg
Message

Rogquest Response

WrappedRequest WrappedResponse

04fig19.jpg
<< WriterRepresentation >>
JacksonReprosentation <T>

object : T

ObjectMapper

J esentation(MediaTyp
JacksonRepreser
KsonRe

)
entation, Class<T>)

ObjectiMapper() : ObjectMapper

07list05_alt.jpg
public Restlet craateInboundRoot() {

Router router = new Router(getContext());
String rooturi = "file:///*

+ System.getProperty ("user.home") ;

Directory directory = new Directory(getContext (), rootUri);

directory.setListingAlloned (true) ; Expose files

router.attach(" /home", directory); aswebsite

router.attach("/hello", Attach hello
HelloserverResource .class) ; wibavice

return router;

f0317-01.jpg
Restlet

Application Connector Component

Client Sorver

ch07list02-1.jpg
@Override Suthenticate via
public void challenge (login page/status.

Response response, boolean stale) {

Representation ftl = new ClientResource (

LocalReference . createClapReference (getClass () .getPackage))
+ */Login.£e1") .get();

response.setEntity (new TemplateRepresentation(ftl, response

~getrequs

() .getResourceRet (), MediaType TEXT_HTHL)) ;

response. setStatus (Status . CLIENT_ERROR UNAUTHORIZED) ;

}

aoverride
protected void afterHandle (Request request, Response response) {
super .afterHandle (request, response) ;

Cookie cookie

it

request .getCookies () .getFirst ("Credentials®) ;

(request .getClientInfo() .ishuthenticated() &&
(cookie == null)) {
string identifier
= request.getChallengeResponse () .getIdentifier () ;
String secret = new String(request.getChallengeResponse ()
~getsecret ()
Cookiesetting cookieSetting = new CookieSetting(
"Credentialar,
identifier + *=* + secret);
cookiesetting. setAccessRestricted (true) ;
cookiesetting.setpath(*/") ;
cookiesetting. setComment (
“Unsecured cookie-based authentication") ;
cookiesetting. setMaxhge (30) ;
response .getCookiesettings () .add (cookieSetting) ;

f0316-01.jpg
org restietdata

org.restlet resource

org restlet org restietrouting

orgrestiet security.

org restiet.util

11fig12_alt.jpg
“R mspark

PO oo

Aricate T oy -

aricas - Crrtnpe -

snrcatounson

[[T,

T R———

A Gesganeccgn-

ch07list02-0.jpg
public class NaiveCookieAuthenticator extends ChallengeAuthenticator {

public NaiveCookieAuthenticator (Context context, String realm) {
super (context, ChallengeScheme.HTTP_COOKIE, realm) ;

1 Full code
(... similarly for other constructors ...] Slable online:
override

protected int beforeHandle(Request request, Response response) {
Cookie cookie = request.getCookies () .getFirst ("Credentials®) ;

if (cookie 1= null) {
string(] credentials

cookie.getvalue () .split ("a", 2);

if (credentials.length == 2) (Extractresponse
String identifier = credentials(0); from cookie
String secret = credencials(il;
request. setChallengeResponse (new ChallengeResponse (
Chalengeschene . HTTP_COOKIE, identifier, secret)):
}
) else i€ (Method.70ST.equals (request .getMethod ()
ooy F 6. xequeat getResourceRet () geroueryAsForm ()
getrizat (logint) - null) (
Forn credentials = new Form(request.getantity())
String identifier - credentials.getFirstvalue (*identifiert);
String secret - credentiala getrizatvalus (“secret?);
request . setChallengeResponse (new Challengeresponse |
Chal1engeschene. HTTP_COOKIE, identifier, secret));

// Continue call processing to return the target
/1 representation if authentication is successful
// or a new login page

request .setMethod (Method GET) ;

}

return super.beforeHandle (request, response) ;

07fig04.jpg
s + -

An e was dtectedinthe RESTHul Mai erver spplction sppkcsion

ot Found: The seves bas ok e i sichin e request URI

Restlet

f0320-01.jpg
Filter

Authenticator Authorizer

f0175-01_alt.jpg
bl e Exilecvazippl eation (} §
setName ("RESTful Mail Server application");
setpescription ("Example application for 'Restlet in Action' book);
setOuner ("Restlet SAS");
sethuthor (*The Restlet Tean"); Configure status

setstatusService (new MailStatusService()); Service

f0319-02.jpg
Filter Redirector Router

07list06_alt.jpg
public class MailStatusService extends StatusService {

aoverride
public Representation getRepresentation(

Status status, Request request, Response response) { s
Map<string, Strings datalodel = new TreeMapString, Strings(); daa
datatiodel.pu (rapp1 icat iontiame” o] moddl

Application. gecCurrent () .getNans (1) ;
datakode] put ("atatusnae®, response.getStatus () .getvans ());

datatiodel put (statusDescription®, response.getstatus() Load
~getDescription() ; FreeMarker
template

Representation mailFtl = new ClientResource (
LocalReference . createClapReference (getClass () .getPackage ())

+ "/Mailstatus.fe1%) .get();

return new TemplateRepresentation(
mailFtl, datadodel, MediaType TEXT HTML); | yewirisy
] FreeMarker
representation

f0319-01.jpg
Resource

ClientResource. ServerResource

07fig03.jpg
prere JE7
Not Found

“The sver has notfound anying matching he request URI

You canget tectricaldetais ere
Prease continue your visit at ou home

f0318-01.jpg
Variant

Representationinfo

Representation

ch07list08-0.jpg
ROEmAE
<head>

ctitlesExample mail</titles Added multipart
</head> encoding
<body>
<form actions"7method=PUT" method="BOST" enctype="multipart/form-data">
<tables
<tbody>
<trs
<td>Status</td>
<ta>s{status}</tds
</ers
<trs
<td>Subjecte/td>
<td><input typeTtext” names"subject"
size="80" value="${subject}"></td>
</tr>
<trs

<td>Content</td>
<td><textarea name="content"

Towss"10% colss"80%>8{content)</textareas</tds

10list05_alt.jpg
public class FoafBrowser {

public static void main(String(] args) (Launch
displayFoafProfile ("http://localhost :8111/accounts/chunkylovers3/") ; FOAF
} browsing

public static void displayFoafProfile (string uri) {
aisplayFoafProfile (new RAEClientResource (uri), 1);

}

public static void displayFoaProfile (RAfClientResource foafProfile,
int maxDepth) {
Set<CouplecReference, Literals> literals = foafProfile.getLiterals();

if (literals 1= null)
for (Couple<Reference, Literal> literal : literals) {
System.out .printin(literal getFizst () .getLastSegnent () + *: *
+ literal.getSecond()) ;
5 } Recursive FOAF display

system.out .printin(®

-

if (maxDepen > 0) {
Set<RAfClientResources knows = foafProfile
getLinked (FoafConstants . KNOHS) ;

if (knows 1= null) {
for (RAfClientResource know : knows) (
displayFoatprofile (know, maxDepth - 1) ;
}

11fig04.jpg
Networ rest

ch06list01-0.jpg
SN TREN A A. 0 S AARLe T "
<application xmlns='http://wadl.dev.java.net/2009/02"> | WADL element car
<doc title="RESTful Mail Server application">) bedocursentad
Example application for 'Restlet in Action' book
</doc>
<resources base="http://localhost:8111/"> Colcciion of ves
<resource> et
<method names'GET">
<response>
<representation mediaTyp
</response>
</method>
</rescurces
<resource paths*accounts/*>
<method name="GET">
<response>
<representation mediaTypes"text/plain®/>
</response>
</method>
<method name="POST">
<request>
<representation mediaTyp
</request>
<responsss

text/plain®/>

text/plain®/>

05list01_alt.jpg
Component mailServer = new Component (); Add HTTPS server mnnannrj

Server server = mailServer.getServers () .add (Protocol HITPS, 8183);
SeriescParameter> parameters = server.getContext () .getParameters();
parameters.add (*keystorepath”,

i e R |
parameters.add (*keystorePassword", "password”) ; }» St TIPS

parameters add (keystoreType®, "JKS") bl
parameters.add ("keyPassword", "password"); L=t i

nailserver.getbefaultiost () .attach(new MailServerhpplication());
saL iaawer: Sbastti:

05list11_alt.jpg
public class VerifiedServerResource extends ServerResource {
aGet
public Representation represent ()throws Exception {
DigesterRepresentation result = new DigesterRepresentation(

new StringRepresentation("hello, world")); <— b
resule. exnaust (1 Repreenator
result.setDigest (result.computeDigest ()); o
return result; Compute

) representation’s.

1 digest.

11fig03.jpg
WebSocket HTTPA.A

Somantcs, otc. | Somantics payload, otc.

WebSocket HTTPAA
Messaging Messaging
Network

Socket &S

05list09_alt.jpg
public class FilesServerResource extends ServerResource {
aGet (vextn)
public Representation retrieve () throws ResourceException {
stringsuilder result = null;
Action requiring

Privilegediction<Stringduilders action « new
oy - CFO role to run

Privilegediction<StringBuilder>() {
public StringBuilder run() {
File dir = new File(System.getProperty (*user.hoe")) ;
Stringl] filenames = dir.list(new FilenameFilter(){
public boolean accept (File dir, String name) {
Teturn tname.startsWith(*.");
i

i

Stringbuilder sb = new StringBuilder(
"Piles in the home directory: \n\n®);
for (String filename : filenames) {
sb.append (£ilenane) ;
sb.append ("M\a") ;
)

return sb;

i
ey { Invoke privileged
result = Jaasttils.dohsriviledged(jaction
getRequest () .getClientInfol), action) ;
} catch (accessControlException ace] {

setStatus (Status.CLIENT_ERROR_FORBIDDEN) ; Return home

) dir files listing

return (result == null) ? null : new StringRepresentation(result) ;

}
}

11fig02.jpg
Cacl

Authentication

Conditional
requests

Ranged
requests

Payload

Semantics

Messaging

05fig06_alt.jpg
Authorizer

ConfidentialAuthori RoleAuthorizer

OAuthAuthorizer

11fig01.jpg
1991 HTTP/0.9 W3C Notes

1996 HTTP/1.0 RFC 1945

1999 HTTPA.A RFC 2616

2000 Dissertation

2013 2 IR LTARETER (ETF oraft

2 HTTPI2.0 IETF proposal

06list02_alt.jpg
PURLR CEAEN JDCOULEINE VRERASOUTON
extends WadlServerresource
implements AccountResource {

Dynamic
private int accountld; docunientation
aoverride easily provided
protected void doInit() throws ResourceException (

string accountIdAttribute = getAttribute (*accountId®) ;

if (accountidhteribute 1= mull) {
this.accountId - Integer.parselnt (accountIdattribute) ; <
setiame (*Resource for mail account °* + this.accountld + *%);
setDescription("The resource describing mail account ®
+ "number ‘" + this.accountId + "'");

} else {
setName ("Mail account resource");
setDescription("The resource describing a mail account);

}

public String represent() {
return AccountsServerResource.getAccounts () .get (
this.account1d) ;

}

public void store(String account) {
AccountsServerResource .getAccounts () .set
this.account1d, account);

}

public void remove() {
AccountsServerResource .getAccounts () . remove (this.accountd) ;
}

11fig08_alt.jpg

06fig02.jpg
_«-gmmM'*

WadiServerResource

autoDescribing: boolean
description : String
name : Sting

Wadlappication()
canDescribe(Method) : boolean
creatoHimiRepresentation(Applcationinfo) : Reprosentafon
creatoWadiRepresentation(Appiicationinfo) : Representation
descrbe() : Representation

descrbe(Applicationinfo)

describe(Metnodinfo, Class<?>, Varlan) : Representation
describe(Methodinfo, Requestinfo, Class<>, Varlant) : Representaton
describe(Methodinfo, Responselnfo, Class<7>, Varan!) : Representation
descrbe(Resourcelnfo)

descrbe(String, Resourcelnfo)

descrbe(Variant)

describeDelete(Methodinfo)

describeGel(Methodinfo)

describeMethod() : Methodinfo

describeMethod(Method, Methodinfo)

describeOplions(Methodinfo)

describeParameters() - List<Parameterinfo>
describePost{Methodinfo)

describePut(Methodinfo)

options() : Representation

11fig07.jpg
User projects

Apps.

Framework

06fig01.jpg
<<Application>>
WadiApplication

autoDescribed : boolean

WadlAppiication()
createWadRepresentation(Appiicationinfo) : Representator
createHimIRepresentation(Applicationinfo) : Representatian
gelApplicationinfo(Reques!, Response) : Applcationinfo
getPreferredWadlVariant(Clentinfo) - Variant
getWad\Variants) : List<Variant>

handie(Request, Response)

wadRepreseni(Request, Response) : Representation
wadiRepresent(Variant, Request, Response) : Representation

11fig06.jpg
Restiet main
code base

Code for
Android edition

Code for
GAE edition

Code for
1) Customization [V

Code for
Java SE edition

Code for
Java EE edition

Code for
0SGi edition

Code for
editi

11fig05.jpg
REST

ch06list01-1.jpg
<representation mediaType="text/plain®/>

«</response>
</method>
</resources Account resource
<resource paths"accounts/{accountId}*> and URI path
<method name="DELETE"/>
<method name="GET">
<response> Secponee
<representation mediaType="text/plain®/> textplain
</response> —
</mathod> tpe
<method name="PUT">
<request>
<representation mediaType-"text/plain®/>
</request>
</method>
</resources
</resources>

TR T PP

07list01_alt.jpg
ikl

chead>
<title>Example mail</titles
/nead>
body> Submit form content
<form action="?method=PUT" method="POST"> . on mail resource
<tables
<tbody>
<trs
<tdsstatuse/tds
<td>§{status}</td>
<fexs
<trs Text fild to edit mail subject
<tassubgecte/tas J
<tas<input type=text® names"subject" size="80"
values="${subject}"></td>
</tr> "
Text area to edit
<trs b
<td>Content</td> rallicom
<tdsctextarea name=tcontent® rows="10"
cols="807>5{content | </textareas</td>
</ers
<trs
<ta/s
e D RS i eoati/bs —
button
</tbody> POSTS
</tables o
</forms
</pody>

B

06fig03_alt.jpg
RES T'tul Mail Server applical

Exampl appicationfo Restet in Acton book

Resources

Root resource
The oot resource of e mai server sppicaton
Methads
cer
vatavie respanse regresentaons
* bak gpication Gean)

11fig09_alt.jpg
“ R apispark

WebAPI
users

07list17_alt.jpg
public class CachingServerResource extends ServerResource {

acet
public Representation represent() (
Calendar cal = new Gregoriancalendar (2012, 4, 17, 10, 10, 10);
Representation result = new StringRepresentation("ca hrefs"
+ getReference() + ">

+ System.currentTimeMillis() + "c/as®); Setlast
result . setiediaType (MediaType TEXT_HTML) ; modification
result.setModificationDate (cal.getTine () ; L
cal.roll (Calendar . HOUR, 3); Expires 3 hours
result.setExpirationDate (cal.getTine () ;
result.setTag (new Tag("xyz123"); oj SetETag
getResponse () getCacheDirect ives) add(secane | nidue vaue

CacheDirective.publicInfol)) ; ety
directive

return result;

f0338-01.jpg
Fle Et Souce Relactor Nigete Seoch Prject Run Window Help

N-HRE O®8s $-0-4- #6- d6 S H-T-

Lit

E%|e 7]
e
| New 5
Gobo
OpennienWindow
OpenType ey "
Showin Anstows
oy anc
2 Copy Quiidame
@ e v
X Ddee Do
Removerom Cotet oAt Do
Buiaran o[tnksource.
Souce Meshtess | 55 NewSouc o
Rt MBS o sttt
i npon. EpoT———
i Bpon R,
& nen 5 |8 Contguebuidpan.
Coseproec Pt ——

07list16_alt.jpg
public static void main(Stringl(] args) throws Exception {
ClientResource resource = new ClientResource (*http://localhost:8111/);

resource.getRanges () .add (new Range (0, 5));
resource.get () .write (System.out) ; Request first
5 characters

f0337-02.jpg
Create a Java Project
Crentes e project inthe workspace o inan temal location.

s [
e

Location: | CAworkspaceEclipseltestRestiet
.
[——
© Usea prject specic RE: i
AR e
Project layout.

€ Useprject folder s oot for sources and coss s
19 Gretesepuate foders for sources and cass s

Warkingsets
7] Add project o working sets

ki o

<[steat

@ BT

07list15_alt.jpg
public class DynamicContent3erverRescurce extends SexverResource i

acet Extend
public Representation getDynamicContent () { WiterRepresentation

Representation result = new WriterRepresentation (
WediaType. TEXT_PLAIN) {

aoverride
public void write (Writer writer) throws T0Exception [< Generate
for (int i = 0; i< 10000; ir) dynamic
writer append (10123456785\n") ; ontent

}
)

return result;

f0337-01.jpg
oSNy 03 maprosa

73 P

= ctow [@ puctage

Gt Ctesninow |@

Sove. e O mantece

Save As.. b

Save AN Cutoshifs @ Anmotation

e P
145 naverking st

paie o Folder

Rerame. el o

s
i
H

if
|
i

P culep

cuten

f0336-01_alt.jpg
PocERgR Belaws

import org.restlet.Request;

import org.restlet.Response;

import org.restlet.Restlet;

import org.restlet.Server;

import org.restlet.data.MediaType;

import org.restlet.data.Protocol; Crasts sever,
import org.restlet.resource.ClientResource; handling Restlet

public class HelloWorld {

public static void main(String(] args) throws Sxception (
Server server = new Server (Protocol HITP, 8182, new Restlet() {
Goverride
public void handle(Request request, Response response) {
Tesponse. setEntity (*hello, world", MediaType TEXT_PLAIN) ;
i
b

Start
server.start(); 4 server

new ClientResource ("http://localhost:8182") .get ()

write (System.out) ; Retrievemessage

server.stop() ; from server

07list20_alt.jpg
RODLEc CLAAS WIS TEEReNcUION SXRMAD SETVeIRISOEOr |

ocet
Representation retrieve() { Create
String accountld = getAttributes().get ("accountIa": APl mail
String mailld = getAttributes().get(*mailld"); URI
String matlnpiurt - getReference(getmostTdencifier) o)
Bt Taceouncar + aceountia + +/uatis/n » mailia
CltentResource cx = new Clienciesource (aat1apiUrd) i
pyamichTHL | WALIRepresaniacion mail - cr ger herARepresentet on.class)
representation Representation mailFtl = new ClientResource (

LocalReference .createClapReference (getClass) .getPackage)
+ */Mas1.ge1n) get(

return new TemplateRepresentation (mailFtl, mail,
NediaType . TEXT_HTHL) ;
N

f0340-01.jpg
G ECLPSE HOME - CProgam Fleecipr e indigo-in e
% IRE UIB (deprecated) - C:\Program Fies (686) ava\e6\it\rtjar
4R SRC (deprecated) - (empty)

24 RESRCROOT (eprected)- ety

25 UNIT HOME deprected - CProgram Flescipe je-ndigowindZcipsd
o RESTLETHOME - CProgam Fies st Famencr Gtion e SO21 Rl

 ———

07fig07.jpg
Port: 8111

MailSiteApplication

MailApiApplication

MailServerComponent

f0339-02.jpg

07list19_alt.jpg
public class ConditionalClient {

Get updated
representation
if tag changed

public static void main(String[) args) throws Exception {
ClientResource resource
= new ClientResource (*http://localnost:8111/");

Get.
R i
el e Soptumt
e e

systen.out .printin (resource.getstatus () ;

resource..getConditions () .sethodifiedSince (null) ;
resource .getConditions () .getlioneMatch () .add (new Tag("xyz123%)) ;
rep = resource.get();

Systen.out princin(resource.getstatus (1) ; Licas SRS

resource .getConditions () .getloneMatch() .clear(); < With sametag

resource .getConditions () .getMatch() .add (rep.getTag()) ;

resource put (rep) ; Put new

Systen.out printin(resource.getstatus (1) ; representation
with different tag

resource .getConditions () .getiatch() .clear () ;

resource .getConditions () .getMatch() .add (new Tag(*abcd7890%)) ;

resource.put (xep) ;
system.out .printin (resource.getstatus ()) ;

f0339-01.jpg
Selctyriablesto 36 to buld path:

T e ——————
88 LB derecats) - CProgram e 086\ ma et r
5 RE SRC (derecaed)- ety

2 JRE_SRCROOT (deprecated) - (empty)

]

(G IUNTHOME (depecated) - CProgram File\ecipseje-indigorwin32echpselo

'

[Confgure Varibies.

@

07list18_alt.jpg
public static void main(String(] args) throws Exceptiom {

ClientResource resource = new ClientResource ("http://localhost:8111/");
Representation rep = resource.get(); < Getarepresentation
System.out.println("Hodified: " + rep.getiodificationDate()); | Display
System.out .printin("Expires: * + rep.getExpirationDate()); caching

System.out.println("E-Tag: " + rep.getTag()); metadata

f0338-02.jpg
[domeiasrie

o J e)

07list22_alt.jpg
EURNE “TEER SO 1 0 SRROUINgN IR0~ I0RR LY T¥
Crequeats
eaders Configring the
<connection> IDBC connection
laaoa gy s naseeiags
<property name="user">chunkylover</property >
S ersy Samecipasieordtorvdforoperey 5
il il tak oy
rooeriy namact . istrasefprepeisy »
I stomitlin
“etereaioc oracts
<limit>20</limit>
<returnGeneratedKeys>true</returnGeneratedKeys> List of JDBC
SJhaases St
ooy
<statement >UPDATE myTable SET myFieldl="valuel" </statement>
CetatenentiSELECT maFieldl, myFieldz FROW myTablec/statenents
<loodys
ilbags il

07fig08.jpg
HTTP server
Port:ai1

MailSiteApplication

Intornal

MailApiApplication

router

MailServerComponent

f0341-01_alt.jpg
IovaBuidPath
IavaCodestyie
Iovs Compier

oo Edtr

Iovadoc Location
Prjec Facets
Prject Refeences
RunDebug Setings

Tosk Repository
TaskTags
Valdation
T

48 anddass fiders o the buld pth:

24 Uaries | &, Order nd Expot

RE Sytem ibrary ovaSE-L5]

® RESTLET_HOME/i/orgestietjr - C\Program Add s

07list21_alt.jpg
String accountId = getAttribute("accountId”); (Create APl mail URI
String mailld = getAttribute("mailld");

String mailApiUri = "riap://host/api/accounts/" + accountld + "/mails/" <
+ mailld;
ClientResource cr = new ClientResource (mailApiUri); Optimized

ternal call

NaliRosaasteating BalE o S GEENLInEranIREE] o abEidl

f0340-02.jpg

07list09_alt.jpg
@Put
public String store (Representation input) throws Exception { fileitems
RestletFileUpload fileUpload = new RestletFileUpload(factory
new DiskFileTtenFactory() ;
List<FileTtems fileTtens = fileUpload.parseRepresentation(input);

for (FileItem fileItem : fileItems) {
if (fileItem.isFormField()) {
System.out.printin(fileltem.getFieldvane () + "=t
+ fileltem.getstring());
} else {
Representation attachment - new InputRepresentation(
fileTten get Inputstrean()) ;
attachment .urite (system.out) ; —
) attachment
} on console

return "Mail updated!®;

f0332-01.jpg
erson .3, sanary 2012

oftare dsbuton, o e Restet 91" and e Restet Framework,
provided o youtder s the Apche ende verson 20 the LG ke
00r o LA b versan 2.1 th COOL e vrsn 10 e

1you st the e of the ayeement, ik Agre o contrue You ustacept he
apreenent o el Restt.

(e Citgee) [Come)

ch07list08-1.jpg
</tr>
<trs

<td>Attachment</td> ,J Added file
<td><input upload field
name="attachment” type="file"/>
<tr>
<td/>
<td>cinput type="submit" values"Save"s</td>
</tx>
</tbody>
</table>
</form>
</body>
Tt

f0331-01.jpg
R_Restit Framework - Edition Java SE - Version 2.1 Release Candidate 5

Leading Web AP
Framework
for Java

Welcome to the Restlet Setup
Wizard

T wzad il e you eough e stalation f Restet.
i recommended that you cose o oer spplcatios

Defore string Setp. o wl e e possoe to o
v sy e bt hoveg o 1ot 10
Computer

et to ot

f0321-01_alt.jpg
Authenticator
Helper

Converter
Helper.

Engine

Cliont Server
Helper Helper.

07list11_alt.jpg
public static wald mainistring(] sxge) fheoum Exosption |
ClientResource mailClient = new ClientResource(
"http: //localhost :8111 /accounts/chunkylovers3/feeds /xyz") ;

Feed atomFeed = mailClient.get (Feed.class);
System.out.println("\nAtom feed: " + atomFeed.getTitle() + "\n");

for (Entry entry : atomFeed.getEntries()) Use Atom

{ extension
System.out.println("Title : * + entry.getTitle()
System.out.println("Sunmary: " + entry.getSummary());

) Use ROME

SyndFeed rssFeed = mailClient.get (SyndFeed.class) ; Slon

System.out.printin("\nRSS feed: " + rssFeed.getTitle() + "\n");

@SuppressWarnings ("unchecked)
List<SyndEntrys entries = (List<SyndEntrys) rssFeed.getEntries(

for (SyndEntry entry : entries) {
System.out.println("Title : " + entry.getTitle());
System.out .println("Summary: * +
entry.getbescription() .getvalue () ;

f0334-01.jpg
Available Software.
Checkthe tems that you widh tointll.

Workwith: Rester 21 - htp/p2reste rg 2.1 -
Find more software by working with the “Aslable Softuare Ses” preferences.

peiteriod)
Name Version
+ 0 Pluggableconnecors]
1165 Restiet Etension - Apache HTTP Cient 2.0 snapshot-+20120324-2215
16 Reste tenion - Inabda 210 mapshot 01203242215
1 Resteetenion ety 210:mapshot 01203242215
210mapshot 01203242215
210smapshot 01203242215
210mapshot 20L20324-215

210 snapshot 2012032215

+ 190 RestrCore
15 Rt Coe - APLan Engine ITE————

+ 10 Sandods spport

1608 TiedPay tegations

oo) (oot] 2vemocns
=

Reste extensionsthat provid connectors. B

M
Show oy the et versons o bl software i e tht v seadyinstaed
igrouptems by category Wt sty sttt
7 Show onty ofvare splcale o trget emironment
Contct il pdteste duing il find reqied st

) e CEm)(e) o)

07fig05.jpg
L =

) Binars use Uve Bookemarks o subscrbeto feeds.

Homer's feed

Homers feed
Mai 21
Dok Ths is the content of mail 41

f0333-02.jpg
B Restet Framework - Editon Jav SE - Version 21 Release Candidate .

Completing the Restiet Setup
Wizard

.
=

ik i o dose the i,

Restlet’

Leading Web API
Framework
for Java

ch07list10-1.jpg
+ ROME
aGet (1rss") 5 extension

public SyndFeed toRss() throws ResourceException {
SyndFeed result = new SyndFeedInpl();
result.setTitle(*Homer's feed);
result.setDescription ("Homer's feed");
result.setLink (getReference () .tostring()) ;
List<SyndEntry> entries = new ArrayList<SyndEntrys();
result.setEntries (entries);

for (dmt i = 1; i < 11; ies) {
SyndEntry entry = new SyndsntryImpl();
entry.setTitle("Mail 4" + i);
SyndDescription description = new SyndContentImpl();
description.setValue ("Doh! This is the content of mail #7+i);
entry.setDescription (description) ;
entries.add(entry) ;

¥

return resule;

f0333-01.jpg

ch07list10-0.jpg
public class FeedServerResource extends ServerResource {

acet (vaton") Atom
public Feed tohtom() throws ResourceException { gt
Feed result = new Feed();
result.setTitle (new Text (*Homer's feed™));

for (int 1= 1; 1 < 11; des) {
Entxy entry = new Entry();
entry.setTitle (new Text ("Mail #* + §));
entry.setSumary ("Doh! This is the content of mail #" + i);
result.getEntries() .add(entry) ;

}

return result;

f0332-02.jpg
Seti vl el Restet the o folder, To rtal o et fidr, ik romse and
et st fer, Ok ext ot

Destratonroder
Ciprogran Fies (86)RestetFramencrVava SE0. . Bome.

Spacerequed: 8328
Space vaibi: 11568

07list14_alt.jpg
public class SearchRedirector extends Application {

public static void main(String(] args) throws Exception {
Component component = new Component () ;
component .getservers () .add (Protocol .HTTP, 8111):
Application application = new SearchRedirector();
component .getDefaultost () .attachDefault (application] ;
component . start () ;

¥

override
public Restlet createlnboundRoot() { Target URI
Router router = new Router (getContext ()); template

string target
"hetp: / fwaw.google .con/search?qmsite mysite .org+{keywords)";
Redirector redirector = new Redirector (getContext (), target,
Redirector . MODE_CLIENT_TEMEORARY) ;

Extractor extractor = new Extractor(getContext(), redirector);
extractor.extractPronQuery ("keywords", "kwd", true);

router.attach("/search?, extractor);
return router; Edtiact
) keywords
attribute

07fig06.jpg
e msters T —

Redirector

mode : int
targetTemplate : String

gelTargetRef(Request, Response) : Reference
InboundServerRedirect(Reference, Request, Response)
outboundServerRedirect(Reference, Request, Response)
rewrite(Representation) : Representation
serverRedrect(Reslet, Reference, Request, Response)

f0335-03.jpg
S Software Updates.

Vou willneed o estat Elipse forthe nstllation changes o take effect. You may try
0 9pply the changes withot restarting,but this may cause erors.

[RestotNow] [NotNow] [Apply Changes Now]

07list13_alt.jpg
public class RedirectingServer {

Launch new
public static void main(String(] args) throws Exception (resource on
new Server (Protocol .HTTP, 8111, port 81ll

HellogerverResource.class) .start () ;
new Server (Protocol HTTE, 8113, < Launch old
i Oldserverresource .class) .start () ; i

port 8II3
}

f0335-02.jpg
Warning: Vou sreinstaling software that cont’
orvalidity of tis software cannot b estabished. Do you want to continue with the

sallation?

07list12_alt.jpg
public class OldServerResource extends ServerResource {
Set response

e status to 301

public String redirect() {
redirectPermanent ("http://localhost:8111/") ;
System.out.println("Redirecting client to new location...");
return "Resource moved... \n";
) Add explanation
} entity

f0335-01.jpg
Install Details
Review thetems o be nstaled.

Name
5 Restt Core- P andEngine
Rt tnsion- rechbater

210smapshot- .. orgrestetfestuegiovp
210snapshot 2. orgestet ot freemarkes festure.group

© Resteetenion- SON
5 Restet Eenion - Sendet
S Unknown
et

210, .. orgreste group
210snapshoto2D.. orgrestiet ot senet festure goup

