OpenStack Cloud Computing Cookbook
OpenStack Cloud Computing Cookbook
Copyright © 2012 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: September 2012
Production Reference: 1150912
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84951-732-4
www.packtpub.com
Cover Image by Faiz Fattohi (<faizfattohi@gmail.com>)
Credits
Author
Kevin Jackson
Reviewers
Thierry Carrez
Atul Kumar Jha
Acquisition Editor
Kartikey Pandey
Lead Technical Editor
Azharuddin Sheikh
Technical Editors
Veronica Fernandes
Azharuddin Sheikh
Prasad Dalvi
Joyslita D'Souza
Copy Editor
Brandt D'Mello
Project Coordinator
Yashodhan Dere
Proofreader
Kevin McGowan
Indexer
Tejal R. Soni
Production Coordinator
Nilesh R. Mohite
Cover Work
Nilesh R. Mohite
About the Author
Kevin Jackson is married, with three children. He is an experienced IT professional working with small businesses and online enterprises. He has extensive experience with various flavors of Linux and Unix. He specializes in web and cloud infrastructure technologies for Trader Media Group.
I'd like to thank my wife, Charlene, and the rest of my family for their time, patience, and encouragement throughout the book.
I'd also like to extend my thanks to the OpenStack community, which has helped a great deal during my journey with OpenStack. The talent and support is phenomenal. Without the OpenStack community, there would be no OpenStack.
A specific mention goes to all those who have made this book possible. Your comments, guidance, and motivation have made writing this book an enjoyable experience.
About the Reviewers
Thierry Carrez is an open source project management expert and has been working on OpenStack since 2010, as the project's Release Manager, sponsored by Rackspace.
An Ubuntu Core developer and Debian maintainer, he was previously the Technical Lead for Ubuntu Server edition at Canonical and an Operational Manager for the Gentoo Linux Security Team. He has also worked as an IT Manager for small and large companies.
Atul Kumar Jha has been an ardent Linux enthusiast and free software evangelist for more than eight years. He holds an engineering degree in IT and has been working for over four years on different job roles. He also happens to be one of the co-founders of the free software event series called mukt.in.
He currently works as an Evangelist for CSS Corp. Pvt. Ltd., Chennai, India, where most of his work involves free/open software technologies and cloud platforms.
He's been involved with OpenStack since the Bexar release and has been contributing to the project since then. Most of his contributions have been around documentation, bug reporting, and helping folks on IRC.
He can be seen lurking on Freenode, under the #ubuntu-server or #openstack channels, using the handle koolhead17. More information about him can be found at http://www.atuljha.com.
www.PacktPub.com
Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Preface
OpenStack is an open source software for building public and private clouds, born from Rackspace and NASA. It is now a global success and is developed and supported by scores of people around the globe and backed by some of the leading players in the cloud space today. This book is specifically designed to quickly help you get up to speed with OpenStack and give you the confidence and understanding to roll it out into your own datacenters. From test installations of OpenStack running under VirtualBox to recipes that help you move out to production environments, this book covers a wide range of topics that help you install and configure a private cloud. This book will show you:
OpenStack Cloud Computing Cookbook gives you clear, step-by-step instructions to install and run your own private cloud successfully. It is full of practical and applicable recipes that enable you to use the latest capabilities of OpenStack and implement them.
What this book covers
Chapter 1, Starting OpenStack Compute, teaches you how to set up and use OpenStack Compute running within a VirtualBox environment.
Chapter 2, Administering OpenStack Compute, teaches you how to manage user accounts and security groups as well as how to deal with cloud images to run in an OpenStack environment.
Chapter 3, Keystone OpenStack Identity Service, takes you through installation and configuration of Keystone, which underpins all of the other OpenStack services.
Chapter 4, Installing OpenStack Storage, teaches you how to configure and use OpenStack Storage running within a VirtualBox environment.
Chapter 5, Using OpenStack Storage, teaches you how to use the storage service for storing and retrieving files and objects.
Chapter 6, Administering OpenStack Storage, takes you through how to use tools and techniques that can be used for running OpenStack Storage within datacenters.
Chapter 7, Glance OpenStack Image Service, teaches you how to upload and modify images (templates) for use within an OpenStack environment.
Chapter 8, Nova Volumes, teaches you how to install and configure the persistent storage service for use by instances running in an OpenStack Compute environment.
Chapter 9, Horizon OpenStack Dashboard, teaches you how to install and use the web user interface to perform tasks such as creating users, modifying security groups, and launching instances.
Chapter 10, OpenStack Networking, helps you understand the networking options currently available as well as teaching you how to configure an OpenStack environment so that instances are accessible on the network.
Chapter 11, In the Datacenter, takes you through understanding how to do bare-metal provisioning, scale up OpenStack, and introduces you to adding resilience to our OpenStack installations for high availability.
Chapter 12, Monitoring, shows you how to install and configure various open source tools for monitoring an OpenStack installation.
Chapter 13, Troubleshooting, takes you through an understanding of the logs and where to get help when encountering issues while running an OpenStack environment.
What you need for this book
To use this book, you will need access to computers or servers that have hardware virtualization capabilities. To set up the lab environments you will need Oracle's VirtualBox installed. You will also need access to an Ubuntu 12.04 ISO image, as the methods presented detail steps for Ubuntu environments.
Who this book is for
This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments who are familiar with cloud computing platforms. Knowledge of virtualization and managing Linux environments is expected. Prior knowledge or experience of OpenStack is not required, although beneficial.
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "Similar information is presented by the nova list and nova show commands".
A block of code is set as follows:
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key
Any command-line input or output is written as follows:
sudo apt-get update
sudo apt-get -y install qemu-kvm cloud-utils
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "In the INSTANCE section, we get details of our running instance".
Warnings or important notes appear in a box like this.
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title through the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website, or added to any list of existing errata, under the Errata section of that title.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Starting OpenStack Compute
In this chapter, we will cover:
Introduction
OpenStack Compute, also known as Nova, is the compute component of the open source cloud operating system, OpenStack . It is the component that allows you to run multiple instances of virtual machines on any number of hosts running the OpenStack Compute service, allowing you to create a highly scalable and redundant cloud environment. The open source project strives to be hardware and hypervisor agnostic. Nova compute is analogous to Amazon's EC2 (Elastic Compute Cloud) environment and can be managed in a similar way, demonstrating the power and potential of this service.
This chapter gets you up to speed quickly by giving you the information you need to create a cloud environment running entirely from your desktop machine. At the end of this chapter, you will be able to create and access virtual machines using the same command line tools you would use to manage Amazon's own EC2 compute environment.
Creating a sandbox environment with VirtualBox
Creating a sandbox environment using VirtualBox allows us to discover and experiment with the OpenStack Compute service, known as Nova . VirtualBox gives us the ability to spin up virtual machines and networks without affecting the rest of our working environment and is freely available from http://www.virtualbox.org for Windows, Mac OSX, and Linux. This test environment can then be used for the rest of this chapter.
It is assumed the computer you will be using to run your test environment in has enough processing power and has hardware virtualization support (modern AMDs and Intel iX processors) with at least 4 GB RAM. Remember we're creating a virtual machine that itself will be used to spin up virtual machines, so the more RAM you have, the better.
Getting ready
To begin with, we must download VirtualBox from http://www.virtualbox.org/ and then follow the installation procedure once this has been downloaded.
We will also need to download the Ubuntu 12.04 LTS Server ISO CD-ROM image from http://www.ubuntu.com/.
How to do it...
To create our sandbox environment within VirtualBox, we will create a single virtual machine that allows us to run all of the OpenStack Compute services required to run cloud instances. This virtual machine will be configured with at least 2 GB RAM and 20 GB of hard drive space and have three network interfaces. The first will be a NAT interface that allows our virtual machine to connect to the network outside of VirtualBox to download packages, a second interface which will be the public interface of our OpenStack Compute host, and the third interface will be for our private network that OpenStack Compute uses for internal communication between different OpenStack Compute hosts.
Carry out the following steps to create the virtual machine that will be used to run OpenStack Compute services:
Public Network vboxnet0 (172.16.0.0/16)
VBoxManage hostonlyif create
VBoxManage hostonlyif ipconfig vboxnet0 --ip 172.16.0.254 --netmask 255.255.0.0
Private Network vboxnet1 (10.0.0.0/8)
VBoxManage hostonlyif create
VBoxManage hostonlyif ipconfig vboxnet1 --ip 10.0.0.254 --netmask 255.0.0.0
This can either be done using the VirtualBox New Virtual Machine Wizard or by running the following commands in a shell on our computer:
Create VirtualBox Machine
VboxManage createvm --name openstack1 --ostype Ubuntu_64 --register
VBoxManage modifyvm openstack1 --memory 2048 --nic1 nat --nic2 hostonly --hostonlyadapter2 vboxnet0 --nic3 hostonly --hostonlyadapter3 vboxnet1
Create CD-Drive and Attach ISO
VBoxManage storagectl openstack1 --name "IDE Controller" --add ide --controller PIIX4 --hostiocache on --bootable on
VBoxManage storageattach openstack1 --storagectl "IDE Controller" --type dvddrive --port 0 --device 0 --medium Downloads/ubuntu-12.04-server-amd64.iso
Create and attach SATA Interface and Hard Drive
VBoxManage storagectl openstack1 --name "SATA Controller" --add sata --controller IntelAHCI --hostiocache on --bootable on
VBoxManage createhd --filename openstack1.vdi --size 20480
VBoxManage storageattach openstack1 --storagectl "SATA Controller" --port 0 --device 0 --type hdd --medium openstack1.vdi
VBoxManage startvm openstack1 --type gui
The loopback network interface
auto lo
iface lo inet loopback
The primary network interface
auto eth0
iface eth0 inet dhcp
Public Interface
auto eth1
iface eth1 inet static
address 172.16.0.1
netmask 255.255.0.0
network 172.16.0.0
broadcast 172.16.255.255
Private Interface
auto eth2
iface eth2 inet manual
up ifconfig eth2 up
Remember to edit the /etc/network/interfaces file with root privileges.
sudo ifup eth1
sudo ifup eth2
Congratulations! We have successfully created the VirtualBox virtual machine running Ubuntu, which is able to run OpenStack Compute.
How it works...
What we have done is created a virtual machine that is the basis of our OpenStack Compute host. It has the necessary networking in place to allow us to access this virtual machine from our host personal computer.
There's more...
There are a number of virtualization products available that are suitable for trying OpenStack, for example, VMware Server and VMware Player are equally suitable. With VirtualBox, you can also script your installations using a tool named Vagrant . While outside the scope of this book, the steps provided here allow you to investigate this option at a later date.
Installing OpenStack Compute packages
Now that we have a machine for running OpenStack, we can install the appropriate packages for running OpenStack Compute, which will allow us to spawn its own virtual machine instances.
To do this, we will create a machine that runs all the appropriate services for running OpenStack Nova. The services are as follows:
Getting ready
Ensure that you are logged in to the openstack1 VirtualBox virtual machine as the openstack user.
How to do it...
Installation of OpenStack under Ubuntu 12.04 is simply achieved using the familiar apt-get tool due to the OpenStack packages being available from the official Ubuntu repositories.
sudo apt-get update
sudo apt-get -y install rabbitmq-server nova-api nova-objectstore nova-scheduler nova-network nova-compute nova-cert glance qemu unzip
sudo apt-get -y install ntp
Replace ntp.ubuntu.com with an NTP server on your network
server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10
sudo service ntp restart
How it works...
Installation of OpenStack Nova from the main Ubuntu package repository represents a very straightforward and well-understood way of getting OpenStack onto our Ubuntu server. This adds a greater level of certainty around stability and upgrade paths by not deviating away from the main archives.
There's more...
There are various ways to install OpenStack, from source code building to installation from packages, but this represents the easiest and most consistent method available. There are also alternative releases of OpenStack available. The ones available from Ubuntu 12.04 LTS repositories are known as Essex and represent the latest stable release at the time of writing.
Using an alternative release
Deviating from stable releases is appropriate when you are helping develop or debug OpenStack, or require functionality that is not available in the current release. To enable different releases, add different Personal Package Archives (PPA) to your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To use them we first install a pre-requisite tool that allows us to easily add PPAs to our system:
sudo apt-get update
sudo apt-get -y install python-software-properties
To use a particular release PPA we issue the following commands:
sudo add-apt-repository ppa:openstack-ppa/milestone
sudo apt-get update
sudo add-apt-repository ppa:openstack-ppa/bleeding-edge
sudo apt-get update
Once you have configured apt to look for an alternative place for packages, you can repeat the preceding process for installing packages if you are creating a new machine based on a different package set, or simply type:
sudo apt-get upgrade
This will make apt look in the new package archive areas for later releases of packages (which they will be as they are more recent revisions of code and development).
Configuring database services
OpenStack supports a number of database backends—an internal Sqlite database (the default), MySQL, and Postgres. Sqlite is used only for testing and is not supported or used in a production environment, whereas MySQL or Postgres is down to the experience of the database staff. For the remainder of this book we shall use MySQL.
Setting up MySQL is easy and allows for you to grow this environment as you progress through the chapters of this book.
Getting ready
Ensure that you are logged in to the openstack1 VirtualBox virtual machine as the openstack user.
How to do it...
cat <<MYSQL_PRESEED | debconf-set-selections
mysql-server-5.1 mysql-server/root_password password openstack
mysql-server-5.1 mysql-server/root_password_again password openstack
mysql-server-5.1 mysql-server/start_on_boot boolean true
MYSQL_PRESEED
The steps outlined previously allow for a non-interactive installation of MySQL. You can omit this step, but during installation, it will ask for the root password. If you do opt for an interactive install, set openstack as the password for the root user.
sudo apt-get update
sudo apt-get -y install mysql-server
sudo sed -i 's/127.0.0.1/0.0.0.0/g' /etc/mysql/my.cnf
sudo service mysql restart
MYSQL_PASS=openstack
mysql -uroot -p$MYSQL_PASS -e 'CREATE DATABASE nova;'
mysql -uroot -p$MYSQL_PASS -e "GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%'"
mysql -uroot -p$MYSQL_PASS -e "SET PASSWORD FOR 'nova'@'%' = PASSWORD('$MYSQL_PASS');"
--sql_connection=mysql://nova:openstack@172.16.0.1/nova
How it works...
MySQL is an essential service to OpenStack as a number of services rely on it. Configuring MySQL appropriately ensures your servers operate smoothly. We first configured the Ubuntu debconf utility to set some defaults for our installation so that when MySQL gets installed, it finds values for the root user's password and so skips the part where it asks you for this information during installation. We then added in a database called nova that will eventually be populated by tables and data from the OpenStack Compute services and granted all privileges to the nova database user so that user can use it.
Finally, we configured our OpenStack Compute installation to specify these details so they can use the nova database.
See also
Configuring OpenStack Compute
The /etc/nova/nova.conf file is a very important file and is referred to many times in this book. This file informs each OpenStack Compute service how to run and what to connect to in order to present OpenStack to our end users. This file will be replicated amongst our nodes as our environment grows.
How to do it...
To run our sandbox environment, we will configure OpenStack Compute so that it is accessible from our underlying host computer. We will have the API service (the service our client tools talk to) listen on our public interface and configure the rest of the services to run on the correct ports. The complete nova.conf file as used by the sandbox environment is laid out next and an explanation of each line (known as flags) follows.
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/var/lock/nova
--force_dhcp_release
--iscsi_helper=tgtadm
--libvirt_use_virtio_for_bridges
--connection_type=libvirt
--root_helper=sudo nova-rootwrap
--ec2_private_dns_show_ip
--sql_connection=mysql://nova:openstack@172.16.0.1/nova
--use_deprecated_auth
--s3_host=172.16.0.1
--rabbit_host=172.16.0.1
--ec2_host=172.16.0.1
--ec2_dmz_host=172.16.0.1
--public_interface=eth1
--image_service=nova.image.glance.GlanceImageService
--glance_api_servers=172.16.0.1:9292
--auto_assign_floating_ip=true
--scheduler_default_filters=AllHostsFilter
--libvirt_type=qemu
sudo nova-manage db sync
sudo nova-manage network create vmnet --fixed_range_v4=10.0.0.0/8 --network_size=64 --bridge_interface=eth2
sudo nova-manage floating create --ip_range=172.16.1.0/24
How it works...
The following are the flags that are present in our /etc/nova/nova.confconfiguration file--dhcpbridge_flatfile= is the location of the configuration (flag) file for the dhcpbridge service.
The networking is set up so that internally the guests are given an IP in the range 10.0.0.0/8. We specified that we would use only 64 addresses in this network range. Be mindful of how many you want. It is easy to create a large range of addresses but it will also take a longer time to create these in the database, as each address is a row in the nova.fixed_ips table where these ultimately get recorded and updated. Creating a small range now allows you to try OpenStack Compute and later on you can extend this range very easily.
The public range of IP addresses are created in the 172.16.1.0/24 address space. Remember we created our VirtualBox Host-Only adapter with access to 172.16.0.0/16 – this means we will have access to the running instances in that range.
There's more...
There are a wide variety of options that are available for configuring OpenStack Compute. These will be explored in more detail in later chapters as the nova.conf file underpins most of OpenStack Compute services.
Information online regarding flags
You can find a description of each flag at the OpenStack website at http://wiki.openstack.org/NovaConfigOptions.
Stopping and starting Nova services
Now that we have configured our OpenStack Compute installation, it's time to start our services so that they're running on our OpenStack1 Virtual Machine ready for us to launch our own private cloud instances.
Getting ready
If you haven't done so already, ssh to our virtual machine as the openstack user—either using a command-line tool or a client, such as PuTTY if you're using Windows.
ssh openstack@172.16.0.1
This ensures that we can access our virtual machine, as we will need access to spin up instances from your personal computer.
The services that run as part of our openstack1 setup are:
How to do it...
Carry out the following steps to stop the OpenStack Compute services:
sudo stop nova-compute
sudo stop nova-network
sudo stop nova-api
sudo stop nova-scheduler
sudo stop nova-objectstore
sudo stop nova-cert
To stop all of the OpenStack Compute services use the following command:
ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 | while read S; do sudo stop $S; done
sudo stop libvirt-bin
sudo stop glance-registry
sudo stop glance-api
Carry out the following steps to start the OpenStack Compute services:
sudo start nova-compute
sudo start nova-network
sudo start nova-api
sudo start nova-scheduler
sudo start nova-objectstore
sudo start nova-cert
To start all of the OpenStack Compute services use the following command:
ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 | while read S; do sudo start $S; done
sudo start libvirt-bin
sudo start glance-registry
sudo start glance-api
How it works...
Stopping and starting OpenStack Compute services under Ubuntu are controlled using upstart scripts. This allows us to simply control the running services by the start and stop commands followed by the service we wish to control.
Creating a cloudadmin account and project
As part of our installation we specified --use_deprecated_auth, which means that we are using a simple way of storing users, roles, and projects within our OpenStack Compute environment. This is an ideal way to start working with OpenStack within a small development environment such as our sandbox. For larger, production ready environments, Keystone is used, which is covered in Chapter 6, Administering OpenStack Storage.
The cloudadmin account group is the equivalent of the root user on a Unix/Linux host. It has access to all aspects of your Nova cloud environment and so the first account we need to create must have this credential.
Each user has a project—a tenancy in the cloud that has access to certain resources and network ranges. In order to spin up instances in your private cloud environment, a user is assigned to a project. This project can then be kept separate from other users' projects, and equally other users can belong to the same project.
Getting ready
The nova-manage command must be run with root privileges so we execute the nova-manage command prefixed with the sudo command.
How to do it...
sudo nova-manage user admin openstack
sudo nova-manage role add openstack cloudadmin
sudo nova-manage project create cookbook openstack
sudo nova-manage project zipfile cookbook openstack
How it works...
We first create the initial user, which is an administrator of the cloud project. This admin user is then assigned elevated privileges known as cloudadmin by use of the nova-manage command. The nova-manage command is used throughout this book and is instrumental in administering OpenStack Compute. The nova-manage command must be executed with root privileges so we always run this with sudo.
We then create a project for our user to operate in. This is a tenancy in our OpenStack Compute environment that has access to various resources such as disks and networks. As we are cloudadmin, we have access to all resources and this is sufficient for this section.
Once the project has been created, the details of the project are zipped up ready for transporting back to the client that will operate the cloud.
Installation of command line-tools
Management of OpenStack Compute from the command line is achieved by using euca2ools and Nova Client. Euca2ools is a suite of tools that work with the EC2-API presented by OpenStack. This is the same API that allows you to manage your AWS EC2 cloud instances, start them up and terminate them, create security groups, and troubleshoot your instances. The Nova Client tool uses the OpenStack Compute API, OS-API. This API allows greater control of our OpenStack environment. Understanding these tools is invaluable in understanding the flexibility and power of cloud environments, not least allowing you to create powerful scripts to manage your cloud.
Getting ready
The tools will be installed on your host computer and it is assumed that you are running a version of Ubuntu, which is the easiest way to get hold of the Nova Client and euca2ools packages ready to manage your cloud environment.
How to do it...
The euca2ools and Nova Client packages are conveniently available from the Ubuntu repositories. If the host PC isn't running Ubuntu, creating a Ubuntu virtual machine alongside our OpenStack Compute virtual machine is a convenient way to get access to these tools.
sudo apt-get update
sudo apt-get install euca2ools python-novaclient unzip
cd
mkdir openstack
cd openstack
scp openstack@172.16.0.1:nova.zip .
unzip nova.zip
. novarc
The following commands will create a keypair named openstack:
To create our keypair using euca2ools, use the following commands:
euca-add-keypair openstack > openstack.pem
chmod 0600 *.pem
nova keypair-add openstack > openstack.pem
chmod 0600.pem
How it works...
Using either euca2ools or Nova Client on Ubuntu is a very natural way of managing our OpenStack Cloud environment. We open up a shell and copy the created nova.zip file over from the previous section. When we unpack it, we can source in the contents of the novarc file—the file that contains the details on our Access Key, Secret Key (two vital pieces of information required to access our cloud environment using the EC2-API), Nova API Key and Nova Username (required for accessing the OS-API) as well as certificate files, which are used for uploading images to our environment and addresses to use when connecting to our environment.
When you look at your environment now with the env command you will see these details, for example:
By also adding a keypair at this point, we can be ready to launch our instance. The euca-add-keypair and nova add-keypair commands create a public and private key combination for you. It stores the public key in the database references by the name you gave it, in our case we matched our username, openstack, and output the details of the private key. We must keep the private key safe. If you lose it or delete it, the keypair will be invalid. A requirement to SSH, which we will use to connect to our instance later on, is to have the private key with permissions that are readable/writeable by the owner only, so we set this with the chmod command.
Uploading a sample machine image
Now that we have a running OpenStack Compute environment, it's time to upload an image for us to use. An image is a machine template, which is cloned when we spin up new cloud instances. Images used in Amazon, known as AMIs (or Amazon Machine Images) can often be used in OpenStack. For this next section, we will use an Ubuntu Enterprise Cloud image, which can be used in both Amazon and our OpenStack Compute cloud instance.
Getting ready
These steps are to be carried out on your Ubuntu machine under the user that has access to your OpenStack Compute environment credentials (as created in the Installation of command-line tools recipe).
Ensure you have sourced your OpenStack Compute environment credentials as follows:
cd ~/openstack
. novarc
How to do it...
To upload an image into our OpenStack Compute environment, we perform the following steps:
wget http://uec-images.ubuntu.com/releases/precise/release/ubuntu-12.04-server-cloudimg-i386.tar.gz
sudo apt-get update
sudo apt-get -y install cloud-utils
cloud-publish-tarball ubuntu-12.04-server-cloudimg-i386.tar.gz images i386
You should see output such as the following:
euca-describe-images
You should see output like the following:
nova image-list
You should see output like the following:
The key information from the output are the aki and ami (and optionally ari) IDs from the euca2ools output, and the ID string generated for the Nova Client output. We use this information to launch our cloud instances.
How it works...
We first downloaded a Ubuntu UEC image that has been created to run in our OpenStack environment. This tarball contained two components that were needed to run our instance: a kernel and a machine image. We used the command-line tool, cloud-publish-tarball from the cloud-utils package to upload this to our Glance service, which populated the Nova-Objectstore service with the machine images. Note that we specified an option here named images. This references a bucket in our objects tore, which is a place on the disk(s) where this image can be found by the OpenStack Compute service.
We can interrogate this image store at any point by issuing the euca-describe-images or nova image-list commands.
When we list the images, the information that gets used when spinning up cloud instances are the ami-, aki-, and eri- values for use with euca2ools and the image IDs for use with the Nova Client tools. Note that a RAM disk doesn't always need to be present for a cloud instance to work (as in the previous example) but sometimes you may come across cloud images that have these.
See also
Launching your first cloud instance
Now that we have a running OpenStack Compute environment and a machine image to use, its now time to spin up our first cloud instance! This section explains how to use the information from euca-describe-images or the nova image-list commands to reference this on the command line to launch the instance that we want.
Getting ready
These steps are to be carried out on our Ubuntu machine under the user that has access to our OpenStack Compute credentials (as created in the Installation of command-line tools recipe).
Before we spin up our first instance, we must create the default security settings that define the access rights. We do this only once (or when we need to adjust these) using either the euca-authorize command under euca2ools or the nova secgroup-add-rule command under Nova Client. The following set of commands gives us SSH access (Port 22) from any IP address and also allows us to ping the instance to help with troubleshooting. Note the default group and its rules are always applied if no security group is mentioned on the command line.
euca-authorize default -P tcp -p 22 -s 0.0.0.0/0
euca-authorize default -P icmp -t -1:-1
nova secgroup-add-rule default tcp 22 22 0.0.0.0/0
nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0
How to do it...
To launch an instance using euca2ools, we issue the following, specifying the machine image ID:
euca-run-instances ami-00000002 -t m1.small -k openstack
To launch an instance using Nova Client tools, we issue the following, using the ID of our image that is named precise-server-cloudimg-i386.img:
nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4 --flavor 2 --key_name openstack
euca-describe-instances
nova list
nova show f10fd940-dcaa-4d60-8eda-8ac0c777f69c
Note that you can use either command regardless of whether you launched the instance using euca2ools or Nova Client tools to view the status of instances running in our environment.
ssh -i openstack.pem ubuntu@172.16.1.1
The default user that ships with the Ubuntu cloud images is ubuntu.
Congratulations! We have successfully launched and connected to our first OpenStack cloud instance.
How it works...
After creating the default security settings, we made a note of our machine image identifier, the ami- or ID value, and then called a tool from euca2ools or Nova Client to launch our instance. Part of that command line refers to the keypair to use. We then connect to the instance using the private key as part of that keypair generated.
How does the cloud instance know what key to use? As part of the boot scripts for this image, it makes a call back to the meta-server which is a function of the nova-api service. The meta-server provides a go-between that bridges our instance and the real world that the cloud init boot process can call and, in this case, it downloaded a script to inject our private key into the Ubuntu user's .ssh/authorized_keys file. We can modify what scripts are called during this boot process, which is covered later on.
When a cloud instance is launched, it produces a number of useful details about that instance—the same details that are output from the commands, euca-describe-instances, and nova list. For euca2ools output there is a RESERVATION section and an INSTANCE section. In the INSTANCE section, we get details of our running instance.
Similar information is presented by the nova list and nova show commands. The nova list command shows a convenient short version listing the ID, name, status, and IP addresses of our instance. The nova show command provides more details similar to that of euca-describe-instances.
The type of instance we chose, with the -t option for euca-run-instances, was m1.small. This is an Amazon EC2 way of naming instance types. The same type was specified as an ID of 2 when using the nova boot command. The instance types supported can be listed by running the following command (there is no euca2ools equivalent):
nova flavor-list
These flavors (specs of instances) are summarized as follows:
Type of instance	Memory	VCPUS	Storage	Version
m1.tiny | 512 MB | 1 | 0 GB | 32 and 64-bit |
m1.small | 2048 MB | 1 | 20 GB | 32 and 64-bit |
m1.medium | 4096 MB | 2 | 40 GB | 64-bit only |
m1.large | 8192 MB | 4 | 80 GB | 64-bit only |
m1.xlarge | 16384 MB | 8 | 160 GB | 64-bit only |
Terminating your instance
Cloud environments are designed to be dynamic and this implies that cloud instances are being spun up and terminated as required. Terminating a cloud instance is easy to do, but equally it is important to understand some basic concepts of cloud instances.
Cloud instances such as the instance we have used are not persistent. This means that the data and work you do on that instance only exists for the time that it is running. A cloud instance can be rebooted, but once it has been terminated, all data is lost.
To ensure no loss of data, an OpenStack Compute service named nova-volume provides persistent data store functionality that allows you to attach a volume to it that doesn't get destroyed on termination but allows you to attach it to running instances. A volume is like a USB drive attached to your instance.
How to do it...
From our Ubuntu machine, first list the running instances to identify the instance you want to terminate.
We can terminate instances using either euca-terminate-instances or using nova delete regardless of whether we launched our instance using euca2ools or Nova Client tools.
euca-describe-instances
euca-terminate-instances i-00000001
nova list
nova delete myInstance
You can terminate any number of instances with a single command by listing the instance Ids one after the other. For example, euca-terminate-instances i-00000001 i-00000002 i-00000005.
How it works...
We simply identify the instance we wish to terminate by its ID, which is in the format i-00000000 when viewing instances using euca-describe-instances or by name (or ID) when using nova delete. Once identified, we can specify this as the instance to terminate. Once terminated, that instance no longer exists—it has been destroyed. So if you had any data on there it will have been deleted along with the instance.
Chapter 2. Administering OpenStack Compute
In this chapter, we will cover:
Introduction
Administration of OpenStack Compute should be seen as no different from managing a single Linux host. It requires appropriate users, tenants, and security configured, so that any user in a particular tenant doesn't have access to another tenant's environment. Of course, there's added complexity as we're dealing with a very dynamic environment, but the basics should remain.
Dealing with virtualization in a cloud world means we have to create appropriate images that can be used by OpenStack Compute. These should allow the user to run post-boot setup scripts to maintain a high level of flexibility to the end user. After all, our private cloud environment shouldn't limit the functionality required by the end user.
In this chapter, we will be running administrative commands on both our openstack1 host and our Ubuntu client, to manage our OpenStack Compute environment.
Creating and modifying user accounts
In our sandbox environment, we're running a very basic method of authentication, configured with the --use_deprecated_auth flag in our /etc/nova/nova.conf file. This method of authentication is appropriate for testing functionality. To add, remove, and modify accounts using this method of authentication, we use the nova-manage command directly on our OpenStack Compute host.
Getting ready
To begin with, ensure you're logged in to your OpenStack Compute host.
How to do it...
To add, remove, or modify user accounts, see the following sections.
Adding Users
In our environment, we currently have one user configured, openstack. This user had local administration rights to the project that allowed us to configure security groups and upload images as well as site-wide administration rights, courtesy of the cloudadmin role assigned.
Normal users are given roles that exist only within their project (tenant). To do this, we perform the following steps:
sudo nova-manage user create demoUser
sudo nova-manage project add --project=cookbook --user=demoUser
sudo nova-manage project zipfile cookbook demoUser demoUser.zip
A user can belong to any number of projects. Ensure the credential ZIP files are named separately for each project to allow you to swap between each.
Deleting Users
The method for removing users in our environment, when basic authentication is used, is similar to that of creating a user.
To remove a user from our environment when basic authentication is used, we simply issue the following command:
sudo nova-manage user delete demoUser
Removing a user from a project
A user can belong to any number of projects, so adding and removing users from projects is an essential feature of a cloud environment.
To remove a user from a project we issue the following command:
sudo nova-manage project remove --project=cookbook --user=demoUser
How it works...
To manage users in OpenStack Compute when using basic authentication, as denoted by the --use_deprecated_auth flag in /etc/nova/nova.conf, we use the nova-manage command on our OpenStack Compute server directly, and we must run this with root privileges using sudo. We can add a user to a particular role in a particular project. This can be done in three steps:
sudo nova-manage user create username
sudo nova-manage project add –-project=projectname -–user=username
sudo nova-manage project zipfile projectname username username.zip
What this means is that we can now give our users their own appropriate OpenStack credentials, unpack them, and then source in their own details, which allows them to run the commands as their role dictates.
To modify accounts, we issue the following commands:
sudo nova-manage user delete --name=username
sudo nova-manage project remove --project=projectname --name=username
See also
Managing security groups
Security groups are firewalls for your instances, and they're mandatory in our cloud environment. The firewall actually exists on the nova-compute host that is running the instance and not in the instance itself. They allow us to protect our hosts by restricting and allowing access and also protect our instances from other users' instances running on the same hosts.
Getting ready
To begin with, ensure you're logged in to your Ubuntu client that has access to the euca2ools or Nova Client tools. These packages can be installed using the following commands:
sudo apt-get update
sudo apt-get install euca2ools python-novaclient
How to do it...
The following sections describe how to create and modify security groups in our OpenStack environment.
Creation of security groups
Recall that we have already created a default security group that opened up TCP port 22 from anywhere and allowed us to ping our instances. We have also added in a new group to allow us to access our Windows environment. To open up another port, we simply run our command again, assigning that port to a particular group.
For example, to open up TCP port 80 and port 443 on our instances using euca2ools, we can do the following:
euca-add-group webserver -d "Web Server Access"
euca-authorize webserver -P tcp -p 80 -s 0.0.0.0/0
euca-authorize webserver -P tcp -p 443 -s 0.0.0.0/0
And to open up TCP port 80 and port 443 on our instances using Nova Client we can do the following:
nova secgroup-create webserver "Web Server Access"
nova secgroup-add-rule webserver tcp 80 80 0.0.0.0/0
nova secgroup-add-rule webserver tcp 443 443 0.0.0.0/0
Note that we specified a different group, this time named webserver. The reason for this is that we might not want to open up our web server to everyone, by default, which would happen every time we spin up a new instance. Putting it into its own security group allows us to open up access to our instance to port 80 by simply specifying this security group when we launch an instance.
For example, when using euca2ools, we use the -g option.
euca-run-instances ami-00000002 -k openstack -t m1.tiny -g default -g webserver
Under Nova Client, we specify the --security_groups option
nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4 --flavor 2 --key_name openstack --security_groups default,webserver
To remove a rule from a security group
To remove a rule from a security group, we run the euca-revoke or nova secgroup-delete commands. For example, suppose we want to remove the HTTPS rule from our webserver group. To do this using euca2ools, we do the following:
euca-revoke webserver -P tcp -p 443 -s 0.0.0.0/0
Under Nova Client this would be:
nova secgroup-delete-rule webserver tcp 443 443 0.0.0.0/0
To delete a security group
To delete a security group, say webserver, we run the following under euca2ools:
euca-delete-group webserver
Under Nova Client this would be:
nova secgroup-delete webserver
How it works...
Creation of a security group is done in two steps as follows:
Defining groups and rules using euca2ools
The euca-add-group command has the following syntax:
euca-add-group group_name -d description
The euca-authorize command has the basic following syntax:
euca-authorize -P protocol -p port -s source
To view more advanced syntax, run euca-authorize -h.
Removing rules from a security group is done using the euca-revoke-access command, which is analogous to the euca-authorize command. Removing a security group altogether is done using the euca-delete-group command, which is analogous to the euca-add-group command.
Defining groups and rules using Nova Client
The nova secgroup-create command has the following syntax:
nova secgroup-create group_name "description"
The nova secgroup-add-rule command has the following basic syntax:
nova secgroup-add-rule group_name protocol port_from port_to source
Removing rules from a security group is done using the nova secgroup-delete-rule command and is analogous to the nova secgroup-add-rule command. Removing a security group altogether is done using the nova secgroup-delete command and is analogous to the nova secgroup-create command.
Creating and managing keypairs
Keypairs refers to SSH keypairs and consists of two elements—a public key and a private key. Only this specific combination of the public and private key will allow us access to our instances.
Getting ready
To begin with, ensure you're logged in to your Ubuntu client that has access to the euca2ools and Nova Client tools. These packages can be installed using the following commands:
sudo apt-get update
sudo apt-get install euca2ools python-novaclient
How to do it...
To create a keypair, we run the euca-add-keypair command when we're using euca2ools, or nova keypair-add when using Nova Client. We name the key accordingly, which we will subsequently refer to when launching instances. The output of the command is the SSH private key that we will use to access a shell on our instance.
euca-add-keypair myKey > myKey.pem
Or for Nova Client, this looks like:
nova keypair-add myKey > myKey.pem
chmod 0600 myKey.pem
This command has generated a keypair and stored the public portion within our database, at the heart of our OpenStack environment. The private portion has been written to a file on our client, which we then protect by making sure that only our user can access this file.
When we want to launch an instance using our newly created keypair under euca2ools, we specify this with the -k option on the euca-run-instances command line, as follows:
euca-run-instances ami-00000002 -k myKey -t m1.tiny
When we want to use this new key under Nova Client, this looks as follows, using the nova boot command:
nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4 --flavor 2 --key_name myKey
And when we want to SSH to this running instance, we specify the private key on the SSH command line with the -i option:
ssh
ubuntu@172.16.1.1 -i myKey.pem
As with most things Unix, the values and files specified are case-sensitive.
Listing and deleting keypairs using euca2ools
To list and delete keypairs using euca2ools, carry out the set of commands in the following sections:
List the keypairs
To list the keypairs in our project, we simply run the euca-describe-keypairs command, as follows:
euca-describe-keypairs
This brings back a list of keypairs in our project, such as the following:
KEYPAIR openstack bb:af:26:09:8a:c4:72:98:d9:1e:cd:e5:51:60:50:63
KEYPAIR myKey 3c:74:65:72:66:19:bd:a5:90:21:45:06:0e:4f:64:29
Delete the keypairs
To delete a keypair from our project, we simply specify the name of the key as an option to the euca-delete-keypair tool.
euca-delete-keypair myKey
euca-describe-keypairs
Listing and deleting keypairs using Nova Client
To list and delete keypairs using Nova Client, carry out the set of commands in the following sections.
List the keypairs
To list the keypairs in our project using Nova Client, we simply run the nova keypair-list command, as follows:
nova keypair-list
This brings back a list of keypairs in our project, such as the following:
Delete the keypairs
To delete a keypair from our project, we simply specify the name of the key as an option to the nova keypair-deletetool.
nova keypair-delete myKey
nova keypair-list
Deleting keypairs is an irreversible action. Deleting a keypair to a running instance will prevent you from accessing that instance.
How it works...
Creation of a keypair allows us SSH access to our instance and is carried out using the euca-add-keypair or nova keypair-add commands. This stores the public key in our backend database store that will be injected into the .ssh/authorized_keys file on our cloud instance, as part of the cloud instance's boot/cloud init script. We can then use the private key that gets generated to access the system by specifying this on the ssh command line with the -i option.
We can of course also remove keys from our project, and we do this to prevent further access by that particular keypair. The commands euca-delete-keypair and nova keypair-delete do this for us, and we can verify what keys are available to us in our project, by running the euca-describe-keypairs or nova keypair-list commands.
Using public cloud images
Images are the templates that get copied and spawned in our OpenStack Compute environment. There are a small handful of places where we can get ready-made images for our use. With these images, we are able to get off the ground very quickly, knowing that the community has tested the images.
For Ubuntu, download any of the releases at http://cloud-images.ubuntu.com/releases/.
For CentOS and Fedora images, download them at http://open.eucalyptus.com/wiki/EucalyptusUserImageCreatorGuide_v2.0.
We have already used a public Ubuntu image in Chapter 1, Starting OpenStack Compute, where we used the tool cloud-publish-tarball to upload this image to our cloud environment. We will recap that and look at an alternative method for images that aren't in the same format.
Getting ready
To begin with, ensure you're logged into your Ubuntu client and have your cloud credentials sourced into your environment.
The cloud-publish-tarball tool is provided by the cloud-utils package. This can be installed as follows:
sudo apt-get update
sudo apt-get -y install cloud-utils
How to do it...
There are a few locations from where images can be downloaded for use in our OpenStack environment. These images are usually packaged as tarballs, which allows us to use a convenient tool called cloud-publish-tarball, from the cloud-utils package, to upload them into our environment.
Ubuntu Cloud Images from ubuntu.com
wget http://cloud-images.ubuntu.com/precise/current/precise-server-cloudimg-i386.tar.gz
cloud-publish-tarball precise-server-cloudimg-i386.tar.gz images i386
euca-describe-images
nova image-list
CentOS/Fedora Images from eucalyptus.com
wget "http://open.eucalyptus.com/sites/all/modules/pubdlcnt/pubdlcnt.php?file=http://www.eucalyptussoftware.com/downloads/eucalyptus-images/euca-centos-5.3-i386.tar.gz&nid=4305" -O euca-centos-5.3-i386.tar.gz
cloud-publish-tarball euca-centos-5.3-i386.tar.gz images i386
euca-describe-images
nova image-list
How it works...
Cloud images that are publicly available and packaged as tarballs can conveniently be uploaded to our OpenStack Compute environment, with the cloud-publish-tarball command, using the following syntax:
cloud-publish-tarball tarball.tar.gz bucket architecture
architecture is optional but recommended, as cloud-publish-tarball does its best to work out the architecture from the filename given.
Alternative upload method using euca2ools
Using an alternative method to upload images to our environment offers us greater flexibility in what we can configure. By using the euca-bundle-image, euca-upload-bundle, and euca-register tools, we can upload each part of our machine image independently, allowing us to specify alternative kernel and ramdisk images.
Getting ready
To begin with, ensure you're logged in to your Ubuntu client and have your cloud credentials sourced into your environment.
The euca-bundle-image, euca-upload-bundle, and euca-register tools are provided by the euca2ools package. This can be installed as follows:
sudo apt-get update
sudo apt-get -y install euca2ools
How to do it...
To have the ability to have more control over how we upload images into our environment, we can use the tools provided by euca2ools. Carry out the following steps to use euca2ools to upload images into your OpenStack environment:
tar zxvf euca-centos-5.3-i386.tar.gz
cd euca-centos-5.3-i386
euca-bundle-image -i kvm-kernel/vmlinuz-2.6.28-11-generic --kernel true
The previous command will produce the following output:
euca-upload-bundle -b images -m /tmp/vmlinuz-2.6.28-11-server.manifest.xml
The previous command will produce the following output:
euca-register images/vmlinuz-2.6.28-11-server.manifest.xml
The previous command will produce the following output:
euca-bundle-image -i kvm-kernel/initrd.img-2.6.28-11-server --ramdisk true
The previous command will produce the following output:
The command to upload is as follows:
euca-upload-bundle -b images -m /tmp/initrd.img-2.6.28-11-server.manifest.xml
The previous command will produce the following output:
The command to register is as follows:
euca-register images/initrd.img-2.6.28-11-server.manifest.xml
The previous command will produce the following output:
euca-bundle-image -i centos.5-3.x86.img --kernel aki-00000003 --ramdisk ari-00000004
euca-upload-bundle -b images -m /tmp/centos.5-3.x86.img.manifest.xml
The previous command will produce the following output:
The command to register is as follows:
euca-register images/centos.5-3.x86.img.manifest.xml
The previous command will produce the following output:
euca-describe-images
euca-run-instances ami-00000005 -k openstack -t m1.tiny
ssh -i openstack.pem root@172.16.1.1
How it works...
Uploading images using the tools provided by euca2ools is quite straightforward and is made up of three steps: bundle, upload, and register. You then repeat these steps for each of the kernel, ramdisk, and image files.
euca-bundle-image -i kernel --kernel true
euca-upload-bundle -b bucket -m manifest.xmleuca-register bucket/manifest.xml
euca-bundle-image -i ramdisk --ramdisk true
euca-upload-bundle -b bucket -m manifest.xml
euca-register bucket/manifest.xml
euca-bundle-image -i image --kernel kernel_id –ramdisk ramdisk_id
euca-upload-bundle -b bucket -m manifest.xml
euca-register bucket/manifest.xml
Each command flows to the next: euca-bundle-image outputs the manifest XML file path that is used by euca-upload-bundle as the value for the parameter -m. euca-upload-bundle outputs the value to be used by euca-register. The last triplet of bundle, upload, and register is for the image itself, as you need to reference the assigned kernel and ramdisk IDs from the preceding steps.
These procedures can also be used to upload to other Cloud environments such as Amazon EC2.
Creating custom Windows images
If you want to run Windows in your OpenStack environment, you must create the images yourself. This ensures you're not breaching Microsoft's EULA—as you must first agree to this as part of an installation routine—as well as ensuring that your Windows image is suitable for your environment. To do this under OpenStack Compute, we create our image by booting the Windows ISO.
Getting ready
To begin with, ensure you're logged into your Ubuntu client and have your cloud credentials sourced into your environment. We need to install the qemu-kvm package to allow us to create the required images and ensure we have euca2ools and cloud-utils available to allow us to upload the resultant Windows image. This is achieved with the following command:
sudo apt-get update
sudo apt-get -y install qemu-kvm
You also need an ISO of the Windows server you are going to create. For this section, we will be using Windows 2003 SP2 i386.
If you are using Ubuntu as your client through VirtualBox and you don't have enough disk space, simply add in a new disk of at least 20 GB. We will need at least 20 GB to create our new OS cloud installs and temporary files, so that we can upload this to our Nova environment. You also need to use an alternative to kvm, named qemu.
Your client also needs a VNC client. If you don't have one installed, you can freely download the following:
How to do it...
Installation of a Windows image can be achieved by invoking kvm commands directly, as described in the following steps:
kvm-img create -f raw win2k3-i386.img 10G
wget http://www.linuxservices.co.uk/virtio-win-1.1.16.vfd
sudo kvm -m 768 -cdrom en_win_srv_2003_r2_standard_with_sp2_cd1.iso -drive file=win2k3-i386.img,if=virtio -fda virtio-win-1.1.16.vfd -boot d -nographic -vnc :0
If using a guest running under VirtualBox or VMware (or if your client simply doesn't support hardware virtualization) and you encounter a problem running kvm, add a -no-kvm parameter to the previous command.
You can check for hardware virtualization support by running the command kvm-ok under Ubuntu.
sudo kvm -m 768 -cdrom en_win_srv_2003_r2_standard_with_sp2_cd1.iso -drive file=win2k3-i386.img,if=virtio -fda virtio-win-1.1.16.vfd -boot c -nographic -vnc :0 -no-kvm
sudo kvm -m 768 -drive file=win2k3-i386.img,if=virtio -fda virtio-win-1.1.16.vfd -boot c -nographic -vnc :0 -no-kvm
euca-bundle-image -i win2k3-i386.img
euca-upload-bundle -b images -m /tmp/win2k3-i386.img.manifest.xml
euca-register images/win2k3-i386.img.manifest.xml
euca-describe-images
euca-add-group windows -d "Windows Group"
euca-authorize windows -P tcp -p 3389 -s 0.0.0.0/0
euca-run ami-00000006 -g default -g windows -k openstack -t m1.small
Under Mac OSX, you can download an RDP client at http://www.microsoft.com/mac/downloads, and for Linux you can download rdesktop using your distribution's package manager.
Having trouble accessing your Windows instance? Connect to your openstack1 host using VNC. The first instance runs on VNC port 5900 (equivalent to :0), the second on 5901 (equivalent to :1).
How it works...
Creating a suitable image running Windows in our Nova environment is simply done by running the installation routine through a kvm session with VNC enabled and then uploading the created disk image to our Nova environment. Creating a guest image in this way is done using the following steps:
Creating custom CentOS images
For most uses, downloading pre-made Ubuntu or CentOS images will be good enough, as they provide an OS with minimal packages installed and are able to invoke extra commands once booted. Sometimes though, the images need extra work; perhaps they need extra disk space as part of their instance storage, or maybe they need to work with a third party where they expect certain tools or scripts to be present. Creating custom OS images for your cloud allows you to install instances just the way you need to.
Creating custom Linux images is more complex, as we have greater flexibility on how to use these images in our OpenStack Compute environment.
For this next section, we will look at creating the popular CentOS distribution as an OpenStack Compute image. This section is applicable for most Red Hat-based clones in principle.
Getting ready
To begin with, ensure you're logged into your Ubuntu client and have your cloud credentials sourced into your environment. We need to install the qemu-kvm package to allow us to create the required images as well as ensure that we have the cloud-utils package available, to allow us to upload the image to our OpenStack environment once complete.
sudo apt-get update
sudo apt-get -y install qemu-kvm cloud-utils
If you are using Ubuntu as your client, through VirtualBox, and you don't have enough disk space, simply add in a new disk of at least 20 GB. We will need at least 20 GB to create our new OS cloud installs and temporary files, so that we can upload this to our OpenStack Compute environment. You also need to use an alternative to kvm, named qemu.
Your client also needs a VNC client. If you don't have one installed, you can freely download the following:
How to do it...
Creation of a CentOS image is very similar to that of a Windows image, but since Linux allows for the flexibility of being able to boot alternative kernels and ramdisks, our creation process has to cater to this. For this section, we will describe how to create an appropriate CentOS 6.1 image for use in our OpenStack Compute environment, by calling kvm (or qemu, where hardware virtualization isn't available) directly.
wget http://mirrors.manchester.icecolo.com/centos/6.2/isos/i386/CentOS-6.2-i386-minimal.iso
kvm-img create -f raw CentOS-6.2-i386-filesystem.img 5G
sudo kvm -m 1024 -cdrom CentOS-6.2-i386-minimal.iso -drive file=CentOS-6.2-i386-filesystem.img,if=scsi,index=0 -boot d -net nic -net user -vnc :0 -usbdevice tablet
Add -no-kvm, if running the kvm command under your VirtualBox, to enable qemu—software virtualization.
If you encounter a failure regarding an MP-BIOS bug launching kvm, stop the instance and start it again.
su
do kvm -m 1024 -drive file=CentOS-6.2-i386-filesystem.img,if=scsi,index=0,boot=on -boot c -net nic -net user -nographic -vnc :0 -no-acpi
dhclient eth0
yum -y update
rm
-rf /etc/udev/rules.d/70-persistent-net.rules
cat > /etc/sysconfig/network-scripts/ifcfg-eth0 << EOF
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
EOF
poweroff
chkconfig sshd on
poweroff
sudo losetup -f CentOS-6.2-i386-filesystem.img
sudo losetup -a
sudo fdisk -l /dev/loop0
sudo losetup -d /dev/loop0
sudo losetup -f -o 1048576 CentOS-6.2-i386-filesystem.img
sudo losetup -a
sudo dd if=/dev/loop0 of=CentOS-6.2-i386.img
sudo losetup -d /dev/loop0
sudo mount -o loop CentOS-6.2-i386.img /mnt
LABEL=uec-rootfs / ext4 defaults 0 1
Download the key from the meta server
mkdir –-mode=0700 -p /root/.ssh
echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key | grep 'ssh-rsa' >> /root/.ssh/authorized_keys
chmod 0600 /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"
sudo cp /mnt/boot/vmlinuz-2.6.32-220.7.1.el6.i686 CentOS-6.2-i386-vmlinuz
sudo cp /mnt/boot/initramfs-2.6.32-220.7.1.el6.i686.img CentOS-6.2-i386-loader
sudo umount /mnt
sudo tune2fs -L uec-rootfs CentOS-6.2-i386.img
cloud-publish-image -t image -K CentOS-6.2-i386-vmlinuz -R CentOS-6.1-i386-loader i386 CentOS-6.1-i386.img images
euca-describe-images
How it works...
Creating custom Linux images is more complex due to the greater flexibility we have to cater to in our OpenStack Compute environment. The steps are outlined as follows:
Chapter 3. Keystone OpenStack Identity Service
In this chapter, we will cover:
Introduction
OpenStack Identity Service, known as Keystone, provides services for authenticating and managing user, account, and role information for our OpenStack cloud environment. It is a crucial service that underpins the authentication and verification between all of our OpenStack cloud services. Authentication with OpenStack Identity Service sends back an authorization token that is passed between the services, once validated. This token is subsequently used as your authentication and verification that you can proceed to use that service, such as OpenStack Storage and Compute.
Installing OpenStack Identity Service
Installation and configuration of OpenStack Identity Service is straightforward from Ubuntu packages. Once configured, connecting to our OpenStack cloud environment will be performed through our new OpenStack Identity Service.
The backend datastore for our OpenStack Identity Service is a simple SQLite database.
Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host or an appropriate server on the network where OpenStack Identity Service will be installed, that the rest of the OpenStack hosts have access to.
How to do it...
Carry out the following instructions to install OpenStack Identity Service:
sudo apt-get update
sudo apt-get -y install keystone
MYSQL_PASS=openstack
mysql -uroot -p$MYSQL_PASS -e 'CREATE DATABASE keystone;'
mysql -uroot -p$MYSQL_PASS -e "GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%'"
mysql -uroot -p$MYSQL_PASS -e "SET PASSWORD FOR 'keystone'@'%' = PASSWORD('$MYSQL_PASS');"
sudo sed -i "s#^connection.*#connection =
mysql://keystone:$MYSQL_PASS@172.16.0.1/keystone#"
/etc/keystone/keystone.conf
sudo stop keystone
sudo start keystone
sudo keystone-manage db_sync
Congratulations! We now have OpenStack Identity Service installed for use in our OpenStack environment.
How it works...
A convenient way to install OpenStack Identity Service ready for use in our OpenStack environment is by using the Ubuntu packages. Once installed, we configure our MySQL database server with a keystone database and set up the keystone.conf configuration file to use this. After starting the Keystone service, running the keystone-manage db_sync command populates the keystone database with the appropriate tables ready for us to add in the required users, roles, and tenants required in our OpenStack environment.
Configuring roles
Roles are the permissions given to users within a tenant. Here we will configure two roles—an admin role that allows for administration of our environment and a Member role that is given to ordinary users who will be using the cloud environment.
Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host—where OpenStack Identity Service has been installed—or an appropriate Ubuntu client that has access to where OpenStack Identity Service is installed.
If the keystone client tool isn't available, this can be installed on an Ubuntu client to manage our OpenStack Identity Service by issuing the following commands:
sudo apt-get update
sudo apt-get -y install python-keystoneclient
Ensure that we have our environment set correctly to access our OpenStack environment:
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
How to do it...
To create the required roles in our OpenStack environment, perform the following steps:
admin role
keystone role-create --name admin
Member role
keystone role-create --name Member
How it works...
Creation of the roles is simply achieved by using the keystone client, specifying the role-create option with the following syntax:
keystone role-create --name role_name
The role_name attribute can't be arbitrary. The admin role has been set in /etc/keystone/policy.json as having administrative rights:
{
"admin_required": [["role:admin"], ["is_admin:1"]]
}
And when we configure the OpenStack Dashboard, Horizon, it has the Member role configured as the default when users are created in that interface.
On creation of the role, this returns an ID associated with it that we use when assigning roles to users. To see a list of roles and the associated IDs in our environment, we can issue the following command:
keystone role-list
Creating tenants
A tenant in OpenStack is a project. Users can't be created without having a tenant assigned to them so these must be created first. For this section, we will create a tenant for our users, called cookbook.
Getting ready
To begin with, ensure you're logged into our OpenStack Compute host—where OpenStack Identity Service has been installed—or an appropriate Ubuntu client that has access to where OpenStack Identity Service is installed.
If the keystone client tool isn't available, this can be installed on an Ubuntu client—to manage our OpenStack Identity Service—by issuing the following command:
sudo apt-get update
sudo apt-get -y install python-keystoneclient
Ensure that we have our environment set correctly to access our OpenStack environment:
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
How to do it...
To create a tenant in our OpenStack environment, perform the following step:
keystone tenant-create --name cookbook --description "Default Cookbook Tenant" --enabled true
How it works...
Creation of the roles is simply achieved by using the keystone client, specifying the tenant-create option with the following syntax:
keystone tenant-create --name tenant_name --description "Default Cookbook Tenant" --enabled true
The tenant_name is an arbitrary string and must not contain spaces. On creation of the tenant, this returns an ID associated with it that we use when adding users to this tenant. To see a list of tenants and the associated IDs in our environment, we can issue the following command:
keystone tenant-list
Adding users
Adding users to OpenStack Identity Service requires that the user have a tenant they can exist in, and have a role defined that can be assigned to them. For this section, we will create two users. The first user will be named admin and will have the admin role assigned to them in the cookbook tenant. The second user will be named demo and will have the Member role assigned to them in the same cookbook tenant.
Getting ready
To begin with, ensure you're logged into our OpenStack Compute host—where OpenStack Identity Service has been installed—or an appropriate Ubuntu client that has access to where OpenStack Identity Service is installed.
If the keystone client tool isn't available, this can be installed on an Ubuntu client—to manage our OpenStack Identity Service—by issuing the following commands:
sudo apt-get update
sudo apt-get -y install python-keystoneclient
Ensure that we have our environment set correctly to access our OpenStack environment:
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
How to do it...
To create the required users in our OpenStack environment, perform the following steps:
TENANT_ID=$(keystone tenant-list | awk '/\ cookbook\ / {print $2}')
PASSWORD=openstack
keystone user-create --name admin --tenant_id $TENANT_ID --pass $PASSWORD --email root@localhost --enabled true
ROLE_ID=$(keystone role-list | awk '/\ admin\ / {print $2}')
USER_ID=$(keystone user-list | awk '/\ admin\ / {print $2}')
keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $TENANT_ID
Get the cookbook tenant ID
TENANT_ID=$(keystone tenant-list | awk '/\ cookbook\ / {print $2}')
Create the user
PASSWORD=openstack
keystone user-create --name demo --tenant_id $TENANT_ID --pass $PASSWORD --email demo@localhost --enabled true
Get the Member role ID
ROLE_ID=$(keystone role-list | awk '/\ Member\ / {print $2}')
Get the demo user ID
USER_ID=$(keystone user-list | awk '/\ demo\ / {print $2}')
Assign the Member role to the demo user in cookbook
keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $TENANT_ID
How it works...
Adding users in OpenStack Identity Service requires that the tenant and roles for that user be created first. Once these are available, in order to use the keystone command-line client, we need the IDs of the tenants and IDs of the roles that are to be assigned to the user in that tenant. Note that a user can be a member of many tenants and can have different roles assigned in each.
To create a user with the user-create option, the syntax is as follows:
keystone user-create --name user_name --tenant_id TENANT_ID --pass password --email email_address --enabled true
The user_name attribute is an arbitrary name but cannot contain any spaces. A password attribute must be present. In the previous examples, these were set to openstack. The email_address attribute must also be present.
To assign a role to a user with the user-role-add option, the syntax is as follows:
keystone user-role-add --user USER_ID --role ROLE_ID --tenant_id TENANT_ID
This means we need to have the ID of the user, the ID of the role, and the ID of the tenant in order to assign roles to users. These IDs can be found using the following commands:
keystone tenant-list
keystone role-list
keystone user-list
Defining service endpoints
Each of the services in our cloud environment runs on a particular URL and port—these are the endpoint addresses for our services. When a client communicates with our OpenStack environment that runs OpenStack Identity Service, it is this service that returns the endpoint URLs, which the user can then use in an OpenStack environment. To enable this feature, we must define these endpoints. In a cloud environment, though, we can define multiple regions. Regions can be thought of as different datacenters, which would imply that they would have different URLs or IP addresses. Under OpenStack Identity Service, we can define these URL endpoints separately for each region. As we only have a single environment, we will reference this as RegionOne.
Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host—where OpenStack Identity Service has been installed—or an appropriate Ubuntu client that has access to where OpenStack Identity Service is installed.
If the keystone client tool isn't available, it can be installed on an Ubuntu client to manage our OpenStack Identity Service, by issuing the following commands:
sudo apt-get update
sudo apt-get -y install python-keystoneclient
How to do it...
Defining the services and service endpoints in OpenStack Identity Service involves running the keystone client command to specify the different services and the URLs that they run from. Although we might not have all services currently running in our environment, we will be configuring them within OpenStack Identity Service for future use.
To manage our OpenStack Identity Service, we have to authenticate with the service itself. Without any users configured though, we make use of an admin token to send directly back to the admin port of OpenStack Identity Service. These are also known as a service token and service port. These details are configured directly in /etc/keystone/keystone.conf, as follows:
admin_port = 35357
admin_token = ADMIN
To define endpoints for services in our OpenStack environment, carry out the following steps:
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
OpenStack Compute Nova API Endpoint
keystone service-create --name nova --type compute --description 'OpenStack Compute Service'
OpenStack Compute EC2 API Endpoint
keystone service-create --name ec2 --type ec2 --description 'EC2 Service'
Glance Image Service Endpoint
keystone service-create --name glance --type image --description 'OpenStack Image Service'
Keystone Identity Service Endpoint
keystone service-create --name keystone --type identity --description 'OpenStack Identity Service'
Nova Volume Endpoint
keystone service-create --name volume --type volume --description 'Volume Service'
Note that OpenStack Identity Service can be configured to service requests on three URLs: a public facing URL (that the end users use), an administration URL (that users with administrative access can use that might have a different URL), and an internal URL (that is appropriate when presenting the services on either side of a firewall to the public URL).
For the following services, we will configure the public and internal service URLs to be the same, which is appropriate for our environment.
OpenStack Compute Nova API
ID=$(keystone service-list | awk '/\ nova\ / {print $2}')
PUBLIC="http://$ENDPOINT:8774/v2/\$(tenant_id)s"
ADMIN=$PUBLIC
INTERNAL=$PUBLIC
keystone endpoint-create --region RegionOne --service_id $ID --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL
OpenStack Compute EC2 API
ID=$(keystone service-list | awk '/\ ec2\ / {print $2}')
PUBLIC="http://$ENDPOINT:8773/services/Cloud"
ADMIN="http://$ENDPOINT:8773/services/Admin"
INTERNAL=$PUBLIC
keystone endpoint-create --region RegionOne --service_id $ID --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL
Glance Image Service
ID=$(keystone service-list | awk '/\ glance\ / {print $2}')
PUBLIC="http://$ENDPOINT:9292/v1"
ADMIN=$PUBLIC
INTERNAL=$PUBLIC
keystone endpoint-create --region RegionOne --service_id $ID --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL
Keystone OpenStack Identity Service
ID=$(keystone service-list | awk '/\ keystone\ / {print $2}')
PUBLIC="http://$ENDPOINT:5000/v2.0"
ADMIN="http://$ENDPOINT:35357/v2.0"
INTERNAL=$PUBLIC
keystone endpoint-create --region RegionOne --service_id $ID --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL
Nova Volume
ID=$(keystone service-list | awk '/\ volume\ / {print $2}')
PUBLIC="http://$ENDPOINT:8776/v1/%(tenant_id)s"
ADMIN=$PUBLIC
INTERNAL=$PUBLIC
keystone endpoint-create --region RegionOne --service_id $ID --publicurl $PUBLIC --adminurl
$ADMIN --internalurl $INTERNAL
How it works...
Configuring the services and endpoints within OpenStack Identity Service is done with the keystone client command.
We first add the service definitions, by using the keystone client and the service-create option with the following syntax:
keystone service-create --name service_name --type service_type --description 'description'
service_name is an arbitrary name or label defining a service of a particular type. We refer to the name when defining the endpoint to fetch the ID of the service.
The type option can be one of the following: compute, object-store, image-service, and identity-service. Note that we haven't configured the OpenStack Storage service (type object-store) at this stage.
The description field is again an arbitrary field describing the service.
Once we have added in our service definitions, we can tell OpenStack Identity Service where those services run from, by defining the endpoints using the keystone client and the endpoint-create option, with the following syntax:
keystone endpoint-create --region region_name --service_id service_id --publicurl public_url --adminurl admin_url --internalurl internal_url
Where service_id is the ID of the service when we created the service definitions in the first step. The list of our services and IDs can be obtained by running the following command:
keystone service-list
As OpenStack is designed for global deployments, a region defines a physical datacenter or a geographical area that comprises of multiple connected datacenters. For our purpose, we define just a single region—RegionOne. This is an arbitrary name that we can reference when specifying what runs in what datacenter/area and we carry this through to when we configure our client for use with these regions. All of our services can be configured to run on three different URLs, as follows, depending on how we want to configure our OpenStack cloud environment:
Once the initial keystone database has been set up, after running the initial keystone-manage db_sync command on the OpenStack Identity Service server, administration can be done remotely using the keystone client.
Configuring the service tenant and service users
With the service endpoints created, we can now configure them so that our OpenStack services can utilize them. To do this, each service is configured with a username and password within a special service tenant. For each service that uses OpenStack Identity Service for authentication and authorization, we then specify these details in their relevant configuration file, when setting up that service.
Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host—where OpenStack Identity Service has been installed—or an appropriate Ubuntu client that has access to where OpenStack Identity Service is installed.
If the keystone client tool isn't available, this can be installed on an Ubuntu client to manage our OpenStack Identity Service, by issuing the following command:
sudo apt-get update
sudo apt-get -y install python-keystoneclient
Ensure that we have our environment set correctly to access our OpenStack environment:
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
How to do it...
To configure an appropriate service tenant, carry out the following steps:
keystone tenant-create --name service --description "Service Tenant" --enabled true
SERVICE_TENANT_ID=$(keystone tenant-list | awk '/\ service\ / {print $2}')
keystone user-create --name nova --pass nova --tenant_id $SERVICE_TENANT_ID --email nova@localhost --enabled true
keystone user-create --name glance --pass glance --tenant_id $SERVICE_TENANT_ID --email glance@localhost --enabled true
keystone user-create --name keystone --pass keystone --tenant_id $SERVICE_TENANT_ID --email keystone@localhost --enabled true
Get the nova user id
USER_ID=$(keystone user-list | awk '/\ nova\ / {print $2}')
Get the admin role id
ROLE_ID=$(keystone role-list | awk '/\ admin\ / {print $2}')
Assign the nova user the admin role in service tenant
keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $SERVICE_TENANT_ID
Get the glance user id
USER_ID=$(keystone user-list | awk '/\ glance\ / {print $2}')
Assign the glance user the admin role in service tenant
keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $SERVICE_TENANT_ID
Get the keystone user id
USER_ID=$(keystone user-list | awk '/\ keystone\ / {print $2}')
Assign the glance user the admin role in service tenant
keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $SERVICE_TENANT_ID
How it works...
Creation of the service tenant, populated with the services required to run OpenStack, is no different from creating any other users on our system that require the admin role. We create the usernames and passwords and ensure they exist in the service tenant.
The reason for the service tenant is that each service itself has to authenticate with keystone in order for it to be available within OpenStack. Configuration of that service is then done using these credentials. For example, for glance we specify the following in /etc/glance/glance-registry-api.ini, when used with OpenStack Identity Service, which matches what we created previously:
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_factory
service_protocol = http
service_host = 172.16.0.1
service_port = 5000
auth_host = 172.16.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://172.16.0.1:5000/
admin_tenant_name = service
admin_user = glance
admin_password = glance
Configuring OpenStack Image Service to use OpenStack Identity Service
Configuring OpenStack Image Service to use OpenStack Identity Service is required to allow our OpenStack Compute to operate correctly. OpenStack Image Service is covered in more detail in Chapter 7, Glance OpenStack Image Service.
Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host or the host that is running OpenStack Image Service.
If the OpenStack Image Service host isn't running on the same server as OpenStack Identity Service, you will need to install the python-keystone package, as follows:
sudo apt-get update
sudo apt-get -y python-keystone
How to do it...
To configure OpenStack Image Service to use OpenStack Identity Service, carry out the following steps:
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_factory
service_protocol = http
service_host = 172.16.0.1
service_port = 5000
auth_host = 172.16.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://172.16.0.1:5000/
admin_tenant_name = service
admin_user = glance
admin_password = glance
[paste_deploy]
flavor = keystone
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_factory
service_protocol = http
service_host = 172.16.0.1
service_port = 5000
auth_host = 172.16.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://172.16.0.1:5000/
admin_tenant_name = service
admin_user = glance
admin_password = glance
[paste_deploy]
flavor = keystone
sudo restart glance-api
sudo restart glance-registry
How it works...
OpenStack Image Service runs two processes. These are the glance-api, which is the service that our clients and services talk to, and the glance-registry process that manages the objects on the disk and in the database registry. Both of these services need to have matching credentials that were defined previously in OpenStack Identity Service in their configuration files, in order for these services to allow a user to authenticate with the service successfully.
Refer to the Managing images with OpenStack Image Service recipe in Chapter 7, Glance OpenStack Image Service, to upload a new image in our OpenStack Identity Service managed environment, as our test images uploaded under deprecated_auth will not be accessible.
Configuring OpenStack Compute to use OpenStack Identity Service
In our configuration of OpenStack Compute, we are using deprecated_auth, which stores user and project information within the nova database, managed by the nova-manage command directly on the OpenStack Compute host. This authentication method is limited in its use and will likely be dropped from future versions of OpenStack.
With OpenStack Identity Service installed and configured, we now need to tell our OpenStack Compute service that it can be used instead of the deprecated_auth mechanism.
Note that any existing users and projects created in deprecated_auth are not moved over to OpenStack Identity Service automatically and will need recreating again under this new service.
Getting ready
To begin with, ensure you're logged into our OpenStack Compute host.
How to do it...
Replacing the authentication mechanism in our OpenStack Compute sandbox environment is simply achieved with the following steps:
sudo apt-get update
sudo apt-get -y install python-keystone
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_factory
service_protocol = http
service_host = 172.16.0.1
service_port = 5000
auth_host = 172.16.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://172.16.0.1:5000/
admin_tenant_name = service
admin_user = nova
admin_password = nova
--api-paste_config=/etc/nova/api-paste.ini
--keystone_ec2_url=http://172.16.0.1:5000/v2.0/ec2tokens
--auth_strategy=keystone
--use_deprecated_auth
sudo restart nova-api
How it works...
Configuration of OpenStack Compute to use OpenStack Identity Service first involves editing the /etc/nova/api-paste.ini file and filling in the [filter:authtoken] part of the file with details of the nova service user we created in the previous section.
We then configure the /etc/nova/nova.conf file, which is directed at this paste file, as well as specifying that the auth_strategy option is set to keystone.
Using OpenStack Compute with OpenStack Identity Service
OpenStack Identity Service underpins all of the OpenStack services. With OpenStack Image Service configured to also use OpenStack Identity Service, the OpenStack Compute environment can now be used.
Getting ready
To begin with, log in to an Ubuntu client and ensure that euca2ools and Nova Client are available. If they aren't, they can be installed as follows:
sudo apt-get update
sudo apt-get -y euca2ools python-novaclient
How to do it...
To use OpenStack Identity Service as the authentication mechanism in our OpenStack environment, we need to set our environment variables accordingly. This is achieved as follows, for our demo user:
NOVA_API_HOST=172.16.0.1
KEYSTONE_API_HOST=172.16.0.1
KEYSTONE_TENANT="cookbook"
KEYSTONE_USERNAME="demo"
KEYSTONE_PASSWORD="openstack"
NOVA_REGION="RegionOne"
export NOVA_USERNAME=$KEYSTONE_USERNAME
export NOVA_PROJECT_ID=$KEYSTONE_TENANT
export NOVA_PASSWORD=$KEYSTONE_PASSWORD
export NOVA_API_KEY=$KEYSTONE_PASSWORD
export NOVA_REGION_NAME=$NOVA_REGION
export NOVA_URL="http://${NOVA_API_HOST}:5000/v2.0/"
export NOVA_VERSION="1.1"
export OS_AUTH_USER=$KEYSTONE_USERNAME
export OS_AUTH_KEY=$KEYSTONE_PASSWORD
export OS_AUTH_TENANT=$KEYSTONE_TENANT
export OS_AUTH_URL="http://${KEYSTONE_API_HOST}:5000/v2.0/"
export OS_AUTH_STRATEGY="keystone"
. keystonerc
nova list
nova credentials
nova x509-get-root-cert
nova x509-create-cert
Note that if the environment resource file (for example, /home/user/keystonerc) has been sourced into the environment, this will conflict with the SERVICE_TOKEN and SERVICE_ENDPOINT environment variables as user/password authentication takes precedence.
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
Get the demo user ID
USER_ID=$(keystone user-list | awk '/\ demo\ / {print $2}')
Get the cookbook tenant ID
TENANT_ID=$(keystone tenant-list | awk '/\ cookbook\ / {print $2}')
Create the EC2 Credentials
keystone ec2-credentials-create --user $USER_ID --tenant_id $TENANT_ID
NOVA_API_HOST=172.16.01
NOVARC=$(readlink -f "${BASH_SOURCE:-${0}}" 2>/dev/null) || NOVARC=$(python -c 'import os,sys; print os.path.abspath(os.path.realpath(sys.argv[1]))' "${BASH_SOURCE:-${0}}")
NOVA_KEY_DIR=${NOVARC%/*}
export EC2_ACCESS_KEY=f2aed2792f3a4112bcdf608e6b81ae6f
export EC2_SECRET_KEY=ae3c637e7db94601b98e6729c0c2a0f7
export EC2_URL=http://$NOVA_API_HOST:8773/services/Cloud
export EC2_USER_ID=42 # nova does not use user id, but bundling requires it
export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/demo.pem
export EC2_CERT=${NOVA_KEY_DIR}/cert.pem
export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem
export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image requires this set
export S3_URL=http://$NOVA_API_HOST:3333
alias ec2-bundle-image="ec2-bundle-image --cert ${EC2_CERT} --privatekey ${EC2_PRIVATE_KEY} --user 42 --ec2cert ${NOVA_CERT}"
alias ec2-upload-bundle="ec2-upload-bundle -a ${EC2_ACCESS_KEY} -s ${EC2_SECRET_KEY} --url ${S3_URL} --ec2cert ${NOVA_CERT}"
. ec2rc
euca-describe-instances
How it works...
Configuring our environment to use OpenStack Identity Service for authentication for Nova Client and euca2ools so that we can launch our instances involves manually creating an environment resource file with the appropriate environment variables.
To configure our environment to use euca2ools, we run an extra option that creates the appropriate EC2_ACCESS_KEY and EC2_SECRET_KEY environment variables within OpenStack Identity Service as well as extracting the root cert and creating a cert for our user to allow us to use the cloud-util tools to upload images.
Our environment passes on our username, password, and tenant to OpenStack Identity Service for authentication and passes back, behind the scenes, an appropriate token, which validates our user. This then allows us to seamlessly spin up instances within our tenancy (project) of cookbook.
Chapter 4. Installing OpenStack Storage
In this chapter, we will cover:
Introduction
OpenStack Object Storage, also known as Swift, is the service that allows for massively scalable and highly redundant storage on commodity hardware. This service is analogous to Amazon's S3 storage service and is managed in a similar way under OpenStack. With OpenStack Storage, we can store many objects of virtually unlimited size—restricted by the available hardware—and grow our environment as needed, to accommodate our storage. The highly redundant nature of OpenStack Storage is ideal for archiving data (such as logs) as well as providing a storage system that OpenStack Compute can use for virtual machine instance templates.
In this chapter, we will set up a single virtual machine that will represent a multi-node test environment for OpenStack Storage. Although we are operating on a single host, the steps involved mimic a four-device setup, so we see a lot of duplication and replication of our configuration files.
Creating an OpenStack Storage sandbox environment
Creating a sandbox environment allows us to discover and experiment with the OpenStack Storage service. This service gives us the ability to store objects such as images or archives of logs.
To do this, we will use an Open Source virtual server program from Oracle, named VirtualBox, which is freely available from http://www.virtualbox.org for Windows, Mac OS X, and Linux. The result of this environment will be a virtual machine (with connectivity to any other OpenStack hosts in our sandbox environment) with two disks installed. It will act as the OpenStack Storage host used in the rest of this chapter.
It is assumed the computer you will be using to run your test environment in has enough processing power, with hardware virtualization support (modern AMDs and Intel iX processors) and at least 4 GB of RAM. The virtual machine we will be creating will have all components installed to get you familiar with the OpenStack Storage services.
In this section, we will have created the following specification for a virtual machine:
We will install this virtual machine with Ubuntu 12.04 LTS Server 64-bit and assign the name openstack2. We will assign 172.16.0.2 as the IP address on eth1 (the host-only interface that is presented by VirtualBox).
Getting ready
To begin with, we must download VirtualBox from http://www.virtualbox.org/ and then follow the installation procedure, once it has been downloaded.
We will also need to download the Ubuntu 12.04 LTS Server ISO CD-ROM image from http://www.ubuntu.com/.
If a vboxnet0 host-only adapter doesn't exist in the Virtual Box environment (as created in Chapter 1, Starting OpenStack Compute), run the following commands in a shell to create a 172.16.0.0/16 network that our OpenStack Storage virtual machine can use to connect to other virtual machines:
Public Network vboxnet0 (172.16.0.0/16)
VBoxManage hostonlyif create
VBoxManage hostonlyif ipconfig vboxnet0 --ip 172.16.0.254 --netmask 255.255.0.0
How to do it...
To create our sandbox environment within VirtualBox, we will create a single virtual machine that allows us to run all of the OpenStack Storage services. This virtual machine will be configured with at least 2 GB of RAM and two 20 GB hard drives with two network interfaces. The first will be a NAT interface that allows our virtual machine to connect to the network outside of VirtualBox to download packages, and the second interface will be the public interface of our OpenStack Storage host.
Carry out the following steps to create the virtual machine that will be used to run OpenStack Storage services:
This can either be done using the VirtualBox New Virtual Machine Wizard or by running the following commands in a shell on our computer:
Create VirtualBox Machine
VBoxManage createvm --name openstack2 --ostype Ubuntu_64 --register
VBoxManage modifyvm openstack2 --memory 1024 --nic1 nat --nic2 hostonly --hostonlyadapter2 vboxnet0
Create CD-Drive and Attach ISO
VBoxManage storagectl openstack2 --name "IDE Controller" --add ide --controller PIIX4 --hostiocache on --bootable on
VBoxManage storageattach openstack2 --storagectl "IDE Controller" --type dvddrive --port 0 --device 0 --medium Downloads/ubuntu-12.04-server-amd64.iso
Create and attach SATA Interface and Hard Drive
VBoxManage storagectl openstack2 --name "SATA Controller" --add sata --controller IntelAHCI --hostiocache on --bootable on
VBoxManage createhd --filename openstack2.vdi --size 20480
VBoxManage storageattach openstack2 --storagectl "SATA Controller" --port 0 --device 0 --type hdd --medium openstack2.vdi
Create and attach second Hard Drive
VBoxManage createhd --filename openstack2-disk2.vdi --size 20480
VBoxManage storageattach openstack2 --storagectl "SATA Controller" --port 1 --device 0 --type hdd --medium openstack2-disk2.vdi
VBoxManage startvm openstack2 --type gui
The loopback network interface
auto lo
iface lo inet loopback
The primary network interface
auto eth0
iface eth0 inet dhcp
Public Interface
auto eth1
iface eth1 inet static
address 172.16.0.2
netmask 255.255.0.0
network 172.16.0.0
broadcast 172.16.255.255
sudo ifup eth1
Congratulations! We have successfully created the VirtualBox virtual machine running Ubuntu, which is able to run OpenStack Storage.
How it works...
What we have done is create a virtual machine that will become the basis of our OpenStack Storage host. It has the necessary disk space and networking in place to allow you to access this virtual machine from your host personal computer and any other virtual machines in our OpenStack sandbox environment.
There's more...
There are a number of virtualization products available that are suitable for trying OpenStack, for example, VMware Server and VMware Player . With VirtualBox, you can also script your installations by using a tool named Vagrant. While Vagrant is outside the scope of this book, the steps provided here allow you to investigate this option at a later date.
See also
Installing the OpenStack Storage services
Now that we have a machine to run our OpenStack Storage service, we can install the packages required to run this service.
To do this, we will create a machine that runs all the appropriate services for running OpenStack Storage:
Getting ready
Ensure that you are logged in to your openstack2 virtual machine.
How to do it...
Installation of OpenStack in Ubuntu 12.04 is simply achieved using the familiar apt-get tool as the OpenStack packages are available from the official Ubuntu repositories.
sudo apt-get update
sudo apt-get install -y swift swift-proxy swift-account swift-container swift-object memcached xfsprogs curl
sudo apt-get -y install ntp
Replace ntp.ubuntu.com with an NTP server on your network
server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10
sudo service ntp restart
How it works...
Installation of OpenStack Storage from the main Ubuntu package repository represents a very straightforward and well-understood way of getting OpenStack onto our Ubuntu server. This adds a greater level of certainty around stability and upgrade paths by not deviating away from the main archives.
There's more...
There are various ways to install OpenStack, from source code building to installation from packages, but this represents the easiest and most consistent method available. There are also alternative releases of OpenStack available. The ones available from Ubuntu 12.04 LTS repositories are known as Essex and represent the latest stable release at the time of writing.
Using an alternative release
Deviating from stable releases is appropriate when you are helping develop or debug OpenStack or require functionality that is not available in the current release. To enable different releases, you added different Personal Package Archives (PPAs) to your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To use them, we first install a tool that allows us to easily add PPAs to our system:
sudo apt-get update
sudo apt-get -y install python-software-properties
To use a particular release PPA, we issue the following commands:
sudo add-apt-repository ppa:openstack-ppa/milestone
sudo apt-get update
sudo add-apt-repository ppa:openstack-ppa/bleeding-edge
sudo apt-get update
Once you have configured apt to look for an alternative place for packages, you can repeat the preceding process for installing packages—if you are creating a new machine based on a different package set—or simply type:
sudo apt-get upgrade
This will make apt look in the new package archive areas for later releases of packages (which they will be as they are more recent revisions of code and development).
Configuring storage
Now that we have our Openstack Storage services installed, we can configure our extra disk, which will form our object storage. As OpenStack Storage is designed to be highly scalable and highly redundant, it is usually installed across multiple nodes. Our test environment will consist of only one node, but OpenStack Storage still expects multiple destinations on our storage to replicate its data to, so we need to configure this appropriately for our test setup.
We will end up with four directories on our OpenStack Storage server specified as /srv/1, /srv/2, /srv/3, and /srv/4, which point to directories on our new disk. The result is an OpenStack Storage setup that looks like it has four other OpenStack Storage nodes to replicate data to.
Getting ready
To begin with, log in to our openstack2 virtual machine.
How to do it...
To configure our OpenStack Storage host, carry out the following steps:
sudo fdisk /dev/sdb
sudo partprobe
sudo mkfs.xfs -i size=1024 /dev/sdb1
sudo mkdir /mnt/sdb1
/dev/sdb1 /mnt/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 0
sudo mount /dev/sdb1
sudo mkdir /mnt/sdb1/{1..4}
sudo chown swift:swift /mnt/sdb1/*
sudo ln -s /mnt/sdb1/{1..4} /srv
sudo mkdir -p /etc/swift/{object-server,container-server,account-server}
for S in {1..4}; do sudo mkdir -p /srv/${S}/node/sdb${S}; done
sudo mkdir -p /var/run/swift
sudo chown -R swift:swift /etc/swift /srv/{1..4}/
mkdir -p /var/run/swiftchown swift:swift /var/run/swift
How it works...
We first created a new partition on our extra disk and formatted this with the XFS filesystem. XFS is very good at handling large objects and has the necessary extended attributes (xattr) required for the objects in this filesystem.
Once created, we mounted this area, and then began to create the directory structure. The commands to create the directories and required symbolic links included a lot of bash shorthand, such as {1..4}. This shorthand essentially prints out 1 2 3 4when expanded, but repeats the preceding attached text when it does so. Take for example the following piece of code:
mkdir /mnt/sdb1/{1..4}
It is the equivalent of:
mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4
The effect of that short piece of code is the following directory structure:
/etc/swift
/object-server
/container-server
/account-server
/mnt/sdb1
/1 -> /srv/1
/2 -> /srv/2
/3 -> /srv/3
/4 -> /srv/4
/srv/1/node/sdb1
/srv/2/node/sdb2
/srv/3/node/sdb3
/srv/4/node/sdb4
/var/run/swift
What we have done is set up a filesystem that will see data replicated into the different device directories to mimic the actions and features OpenStack Storage requires. In production, these device directories would actually be physical servers and physical devices on the servers and won't necessarily have this directory structure.
Configuring replication
As required by a highly redundant and scalable object storage system, replication is a key requirement. The reason we went to great lengths to create multiple directories—named in a particular way so as to mimic actual devices—is that we want to set up replication between these "devices" using rsync.
Rsync is responsible for performing the replication of the objects stored in our OpenStack Storage environment.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
Configuring replication in OpenStack Storage means configuring the Rsync service. The following steps set up synchronization modules configured to represent the different ports that we will eventually configure our OpenStack Storage service to run on. As we're configuring a single server, we use different paths and different ports to mimic the multiple servers that would normally be involved.
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 127.0.0.1
[account6012]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6012.lock
[account6022]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6022.lock
[account6032]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6032.lock
[account6042]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6042.lock
[container6011]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6011.lock
[container6021]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/container6021.lock
[container6031]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6031.lock
[container6041]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6041.lock
[object6010]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6010.lock
[object6020]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6020.lock
[object6030]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6030.lock
[object6040]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6040.lock
sudo sed -i 's/=false/=true/' /etc/default/rsync
sudo service rsync start
How it works...
The vast majority of this section was configuring rsyncd.conf appropriately. What we have done is configure various rsync modules that become targets on our rsync server.
For example, the object6020 module would be accessible using the following command:
rsync localhost::object6020
It would have the contents of /srv/node/3/.
Configuring OpenStack Storage Service
Configuring our OpenStack Storage environment is quick and simple, as it involves just adding in a uniquely generated random alpha numeric string to the /etc/swift/swift.conf file. This random string will be included in all nodes as we scale out our environment, so keep it safe.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
Configuring the main OpenStack Storage configuration file for our sandbox environment is simply done with the following steps:
< /dev/urandom tr -dc A-Za-z0-9_ | head -c16; echo
[swift-hash]# Random unique string used on all nodesswift_hash_path_suffix = QAxxUPkzb7lP29OJ
How it works...
We first generated a random string by outputting characters from the /dev/urandom device. We then added this string to our swift.conf file, as the swift_has_path_suffix parameter. This random string is used as we scale out our OpenStack Storage environment—when creating extra nodes we do not generate a new random string.
Configuring the OpenStack Storage proxy server
Clients connect to OpenStack Storage via a proxy server. This allows us to scale out our OpenStack Storage environment as needed, without affecting the frontend to which the clients connect. Configuration of the proxy service is simply done by editing the /etc/swift/proxy-server.conf file.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
To configure the OpenStack Storage proxy server, we simply create the file /etc/swift/proxy-server.conf, with the following contents:
[DEFAULT]
bind_port = 8080
user = swift
log_facility = LOG_LOCAL1
[pipeline:main]
pipeline = healthcheck cache tempauth proxy-server
[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true
[filter:tempauth]
use = egg:swift#tempauth
user_admin_admin = admin .admin .reseller_admin
user_test_tester = testing .admin
[filter:healthcheck]
use = egg:swift#healthcheck
[filter:cache]
use = egg:swift#memcache
How it works...
The contents of the proxy-server.conf file define how the OpenStack Storage proxy server is configured.
For our purposes, we will run our proxy on port 8080, as the user swift, and it will log to syslog, using the log level of LOCAL1 (this allows us to filter against these messages).
We configure our swift proxy server healthcheck behavior to handle caching (by use of memcached) and TempAuth (local authentication meaning our proxy server will handle basic authentication).
The [filter:tempauth] section defines two users and roles in their own accounts—one called admin (with the password admin) in the admin account and another called tester (with the password testing) in the test account. The admin user has the admin and reseller_admin roles. The tester user has admin privileges. The .admin role is a local administrator role, whereas the .reseller_admin role has full access to the whole OpenStack Storage environment. The format of the TempAuth user lines is as follows:
user_account_username = password {.role} {.role ...} {endpoint_url}
For example, if we wanted another user in the tester account, called myUser, as a normal user with the password myPassword, we would add the following line:
user_test_myUser = myPassword
The endpoint_URL option is useful when there is a requirement for a specific URL to be returned that differs from the default. This is used in scenarios where the endpoint URL comes back on an address that is inaccessible on the network or you want to present this differently to the end user, to fit your network.
See also
Configuring Account Server
Account Server lists the available containers on our node. As we are creating a setup where we have four virtual devices available under the one hood, they each have their own list of available containers, but they run on different ports. These represent the rsync account numbers seen previously, for example, port 6012 is represented by [account6012]within rsync.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
For this section, we're creating four different Account Server configuration files that differ only in the port that the service will run on and the path on our single disk that corresponds to that service on that particular port.
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6012
user = swift
log_facility = LOG_LOCAL2
[pipeline:main]
pipeline = account-server
[app:account-server]
use = egg:swift#account
[account-replicator]
vm_test_mode = yes
[account-auditor]
[account-reaper]
cd /etc/swift/account-server
sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf
sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf
sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf
How it works...
What we have accomplished is to create the first Account Server device node, which we named 1.conf, under the /etc/swift/swift-account directory. This defined our Account Server for node 1, which will run on port 6012.
We then took this file and made the subsequent Account Servers run on their respective ports, with a search and replace, using sed.
We ended up with four files, under our swift-account configuration directory, which defined the following services:
account-server 1: Port 6012, device /srv/1/node, Log Level LOCAL2
account-server 2: Port 6022, device /srv/2/node, Log Level LOCAL3
account-server 3: Port 6032, device /srv/3/node, Log Level LOCAL4
account-server 4: Port 6042, device /srv/4/node, Log Level LOCAL5
Configuring Container Server
Container Servers contains Object Servers seen in our OpenStack Storage environment. The configuration of this is similar to configuring Account Server.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
As with configuring the Account Server, we follow a similar procedure for Container Server, creating the four different configuration files that correspond to a particular port and area on our disk.
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6011
user = swift
log_facility = LOG_LOCAL2
[pipeline:main]
pipeline = container-server
[app:container-server]
use = egg:swift#container
[account-replicator]
vm_test_mode = yes
[account-updater]
[account-auditor]
[account-sync]
cd /etc/swift/container-server
sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf
sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf
sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf
How it works...
What we have accomplished is to create the first Container Server node configuration file, which we named 1.conf, under the /etc/swift/swift-container directory. This defined our Container Server for node 1, which will run on port 6011.
We then took this file and made subsequent Container Servers run on their respective ports, with a search and replace, using sed.
We ended up with four files, under our swift-container configuration directory, which defined the following:
container-server 1: Port 6011, device /srv/1/node, Log Level LOCAL2
container-server 2: Port 6021, device /srv/2/node, Log Level LOCAL3
container-server 3: Port 6031, device /srv/3/node, Log Level LOCAL4
container-server 4: Port 6041, device /srv/4/node, Log Level LOCAL5
Configuring Object Server
Object Server contains the actual objects seen in our OpenStack Storage environment and the configuration of this is similar to configuring the Account Server and Container Server.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
As with configuring the Container Server, we follow a similar procedure for Object Server, creating the four different configuration files that correspond to a particular port and area on our disk.
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6010
user = swift
log_facility = LOG_LOCAL2
[pipeline:main]
pipeline = object-server
[app:object-server]
use = egg:swift#object
[object-replicator]
vm_test_mode = yes
[object-updater]
[object-auditor]
cd /etc/swift/object-server
sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf
sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf
sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf
How it works...
What we have accomplished is to create the first Object Server node configuration file, which we named 1.conf, under the /etc/swift/swift-container directory. This defined our Object Server for node 1, which will run on port 6010.
We then took this file and made subsequent Object Servers run on their respective ports, with a search and replace, using sed.
We end up with four files, under our swift-object configuration directory, which defined the following:
object-server 1: Port 6010, device /srv/1/node, Log Level LOCAL2
object-server 2: Port 6020, device /srv/2/node, Log Level LOCAL3
object-server 3: Port 6030, device /srv/3/node, Log Level LOCAL4
object-server 4: Port 6040, device /srv/4/node, Log Level LOCAL5
The three preceding sections have seen us configure Account Servers, Object Servers, and Container Servers, each running on their respective ports. These sections all tie up to the modules configured in our rsyncd.conf file.
Making the Object, Account, and Container rings
The final step is to create the Object ring, Account ring, and Container ring that each of our virtual nodes exist in.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
The OpenStack Storage ring keeps track of where our data exists in our cluster. There are three rings that OpenStack Storage understands, and they are the Account, Container, and Object rings. To facilitate quick rebuilding of the rings in our cluster, we will create a script that performs the necessary steps.
#!/bin/bash
cd /etc/swift
rm -f *.builder *.ring.gz backups/*.builder backups/*.ring.gz
Object Ringswift-ring-builder object.builder create 18 3 1
swift-ring-builder object.builder add z1-127.0.0.1:6010/sdb1 1
swift-ring-builder object.builder add z2-127.0.0.1:6020/sdb2 1
swift-ring-builder object.builder add z3-127.0.0.1:6030/sdb3 1
swift-ring-builder object.builder add z4-127.0.0.1:6040/sdb4 1
swift-ring-builder object.builder rebalance
Container Ring
swift-ring-builder container.builder create 18 3 1
swift-ring-builder container.builder add z1-127.0.0.1:6011/sdb1 1
swift-ring-builder container.builder add z2-127.0.0.1:6021/sdb2 1
swift-ring-builder container.builder add z3-127.0.0.1:6031/sdb3 1
swift-ring-builder container.builder add z4-127.0.0.1:6041/sdb4 1
swift-ring-builder container.builder rebalance
Account Ring
swift-ring-builder account.builder create 18 3 1
swift-ring-builder account.builder add z1-127.0.0.1:6012/sdb1 1
swift-ring-builder account.builder add z2-127.0.0.1:6022/sdb2 1
swift-ring-builder account.builder add z3-127.0.0.1:6032/sdb3 1
swift-ring-builder account.builder add z4-127.0.0.1:6042/sdb4 1
swift-ring-builder account.builder rebalance
sudo chmod +x /usr/local/bin/remakerings
sudo /usr/local/bin/remakerings
Device z1-127.0.0.1:6010/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6020/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6030/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6040/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now 0.00.
Device z1-127.0.0.1:6011/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6021/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6031/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6041/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now 0.00.
Device z1-127.0.0.1:6012/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6022/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6032/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6042/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now 0.00.
How it works...
Creation of the rings is done using the swift-ring-builder command and involves the following steps, repeated for each ring type (Object, Container, and Account):
Creating the ring
To create the ring, we use the following syntax:
swift-ring-builder builder_file create part_power replicas min_part_hours
Creation of the ring specifies a builder file to create three parameters: part_power, replicas, and min_part_hours. This means 2^part_power(18 is used in this instance) is the number of partitions to create, replicas are the number of replicas (3 is used in this case) of the data within the ring, and min_part_hours(1 is specified in this case) is the time in hours before a specific partition can be moved in succession.
Assigning a device to the ring
To assign a device to a ring, we use the following syntax:
swift-ring-builder builder_file add zzone-ip:port/device_name weight
Adding a node to the ring specifies the same builder_file created in the first step. We then specify a zone (for example, 1, prefixed with z) that the device will be in, ip (127.0.0.1) is the IP address of the server that the device is in, port (for example, 6010) is the port number that the server is running on, and device_name is the name of the device on the server (for example, sdb1). The weight is a float weight that determines how many partitions are put on the device, relative to the rest of the devices in the cluster.
Rebalancing the ring
To rebalance the ring, we use the following syntax within the /etc/swift directory:
swift-ring-builder builder_file rebalance
This command will distribute the partitions across the drives in the ring.
The previous process is run for each of the rings: object, container, and account.
Stopping and starting OpenStack Storage
Now that we have configured our OpenStack Storage installation, it's time to start our services, so that they're running on our openstack2 virtual machine, ready for us to use for storing objects and images in our OpenStack environment.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
Controlling OpenStack Storage services is achieved using SysV Init scripts, utilizing the service command.
Since the OpenStack Storage services may have started following installation of the packages, we will restart the needed services to ensure the services have the correct configuration and are running as expected.
sudo service swift-account restart
sudo service swift-object restart
sudo service swift-container restart
sudo service swift-proxy restart
How it works...
The OpenStack Storage services are simply started, stopped, and restarted, using the following syntax:
service swift-account { start | stop | restart }
service swift-object { start | stop | restart }
service swift-container { start | stop | restart }
service swift-proxy { start | stop | restart }
Testing OpenStack Storage
We are now ready to test our installation of OpenStack Storage, and we can achieve this in a couple of ways—by using curl and using the swift command-line utility.
Getting ready
For this section, we will log in to our swift1 host.
How to do it...
As OpenStack Storage is a web service, we will use curl to do some basic tests to ensure our services are running as they should. We will perform some basic authentication and connect to our web service using these details.
Using curl to test OpenStack Storage
curl -v -H 'X-Storage-User: test:tester' -H 'X-Storage-Pass: testing' http://127.0.0.1:8080/auth/v1.0
* About to connect() to 127.0.0.1 port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /auth/v1.0 HTTP/1.1
> User-Agent: curl/7.21.6 (x86_64-pc-linux-gnu) libcurl/7.21.6 OpenSSL/1.0.0e zlib/1.2.3.4 libidn/1.22 librtmp/2.3
> Host: 127.0.0.1:8080
> Accept: */*
> X-Storage-User: test:tester
> X-Storage-Pass: testing
>
< HTTP/1.1 200 OK
< X-Storage-Url: http://127.0.0.1:8080/v1/AUTH_test
< X-Storage-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824
< X-Auth-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824
< Content-Length: 0
< Date: Mon, 02 Jan 2012 20:28:57 GMT
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
curl -v -H 'X-Auth-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824' http://127.0.0.1:8080/v1/AUTH_test
* About to connect() to 127.0.0.1 port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /v1/AUTH_test HTTP/1.1
> User-Agent: curl/7.21.6 (x86_64-pc-linux-gnu) libcurl/7.21.6 OpenSSL/1.0.0e zlib/1.2.3.4 libidn/1.22 librtmp/2.3
> Host: 127.0.0.1:8080
> Accept: */*
> X-Auth-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824
>
< HTTP/1.1 204 No Content
< X-Account-Object-Count: 0
< X-Account-Bytes-Used: 0
< X-Account-Container-Count: 0
< Accept-Ranges: bytes
< Content-Length: 0
< Date: Mon, 02 Jan 2012 20:30:04 GMT
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0
Using a swift command to test OpenStack Storage
Rather than seeing the web service output, we can use the command-line tool swift (previously known as st) to ensure we have a working setup. Note the output matches the reply headers seen when queried using curl.
swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing stat
You should see the following output:
Account: AUTH_test
Containers: 0
Objects: 0
Bytes: 0
Accept-Ranges: bytes
How it works...
OpenStack Storage is a web service so we can use traditional command-line web clients to troubleshoot and verify our OpenStack Storage installation. This becomes very useful for debugging OpenStack Storage at this low level, just as you would debug any web service.
Using curl allows us to get a glimpse of how authentication and service discovery works. We first send through our authentication details (that we specified in our /etc/swift/proxy-server.conf file, as we're using the proxy server to provide our authentication) and in return, we're presented with some reply headers that we can then use to find the objects we have access to via the URL returned to us.
The swift command wraps this process into a single line, but the result is the same. Behind the scenes, the authentication returns a URL after successful authentication, and then lists the statistics of that container.
Setting up SSL access
Setting up SSL access provides secure access between the client and our OpenStack Storage environment in exactly the same way SSL provides secure access to any other web service. To do this, we configure our proxy server with SSL certificates.
Getting ready
To begin with, log in to our openstack2 server.
How to do it...
Configuration of OpenStack Storage to secure communication between the client and the proxy server is done as follows:
cd /etc/swift
sudo openssl req -new -x509 -nodes -out cert.crt -keyout cert.key
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key
sudo swift-init proxy-server restart
How it works...
Configuring OpenStack Storage to use SSL involves configuring the proxy server to use SSL. We first configure a self-signed certificate using the openssl command, which asks for various fields to be filled in. An important field is the Common Name field. Put in the fully qualified domain name (FQDN) hostname or IP address that you would use to connect to the Swift server.
Once that has been done, we specify the port that we want our proxy server to listen on. As we are configuring an SSL HTTPS connection, we will use the standard TCP port 443 that HTTPS defaults to. We also specify the certificate and key that we created in the first step, so when a request is made, this information is presented to the end user to allow secure data transfer.
With this in place, we then restart our proxy server to listen on port 443.
Configuring OpenStack Storage with OpenStack Identity Service
The OpenStack Storage service configured in the previous sections uses the inbuilt TempAuth mechanism to manage accounts. This is analogous to the deprecated_auth mechanism we can configure with the OpenStack Compute service. This section shows you how to move from TempAuth to OpenStack Identity Service to manage accounts.
Getting ready
For this section, we will log in to our openstack2 host for configuration of OpenStack Storage Service as well as to a client that has access to the keystone client, to manage OpenStack Identity Service.
How to do it...
Configuring OpenStack Storage to use OpenStack Identity Service is carried out as follows:
Set up environment
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
Swift Proxy Address
export SWIFT_PROXY_SERVER=172.16.0.2
Configure the OpenStack Storage Endpoint
keystone --token $SERVICE_TOKEN --endpoint $SERVICE_ENDPOINT service-create --name swift --type object-store --description 'OpenStack Storage Service'
Service Endpoint URLs
ID=$(keystone service-list | awk '/\ swift\ / {print $2}')
Note we're using SSL
PUBLIC_URL="https://$SWIFT_PROXY_SERVER:443/v1/AUTH_\$(tenant_id)s"
ADMIN_URL="https://$SWIFT_PROXY_SERVER:443/v1"
INTERNAL_URL=$PUBLIC_URL
keystone endpoint-create --region RegionOne --service_id $ID --publicurl $PUBLIC_URL --adminurl $ADMIN_URL --internalurl $INTERNAL_URL
Get the service tenant ID
SERVICE_TENANT_ID=$(keystone tenant-list | awk '/\ service\ / {print $2}')
Create the swift user
keystone user-create --name swift --pass swift --tenant_id $SERVICE_TENANT_ID --email swift@localhost --enabled true
Get the swift user id
USER_ID=$(keystone user-list | awk '/\ swift\ / {print $2}')
Get the admin role id
ROLE_ID=$(keystone role-list | awk '/\ admin\ / {print $2}')
Assign the swift user admin role in service tenant
keystone user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $SERVICE_TENANT_ID
sudo apt-get update
sudo apt-get install python-keystone
[DEFAULT]
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key
user = swift
log_facility = LOG_LOCAL1
[pipeline:main]
pipeline = catch_errors healthcheck cache authtoken keystone proxy-server
[app:proxy-server]
use = egg:swift#proxy
account_autocreate = true
[filter:healthcheck]
use = egg:swift#healthcheck
[filter:cache]
use = egg:swift#memcache
[filter:keystone]
paste.filter_factory = keystone.middleware.swift_auth:filter_factory
operator_roles = Member,admin
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_factory
service_port = 5000
service_host = 172.16.0.1
auth_port = 35357
auth_host = 172.16.0.1
auth_protocol = http
auth_token = ADMIN
admin_token = ADMIN
admin_tenant_name = service
admin_user = swift
admin_password = swift
cache = swift.cache
[filter:catch_errors]
use = egg:swift#catch_errors
[filter:swift3]
use = egg:swift#swift3
sudo swift-init proxy-server restart
How it works...
Configuring OpenStack Storage to use OpenStack Identity Service involves altering the pipeline so that keystone is used as the authentication.
After setting the relevant endpoint within the OpenStack Identity Service to be an SSL endpoint, we can configure our OpenStack Storage proxy server.
To do this, we first define the pipeline to include keystone and authtoken, and then configure these further down the file in the [filter:keystone] and [filter:authtoken] sections. In the [filter:keystone]section, we set someone with admin and Member roles assigned to be an operator of our OpenStack Storage. This allows those of our users who have one of those roles to have write permissions in our OpenStack Storage environment.
In the [filter:authtoken] section, we tell our proxy server where to find the OpenStack Identity Service. Here, we also set the service username and password for this service that we have configured within OpenStack Identity Service.
Chapter 5. Using OpenStack Storage
In this chapter, we will cover:
Introduction
Now that we have an OpenStack Storage environment running, we can use it to store our files. To do this, we can use a tool provided, named swift. This allows us to operate our OpenStack Storage environment by allowing us to create containers, upload files, retrieve them, and set required permissions on them, as appropriate.
Installing the swift client tool
In order to operate our OpenStack Storage environment, we need to install an appropriate tool on our client. Swift ships with the swift tool, which allows us to upload, download, and modify files in our OpenStack Storage environment.
Getting ready
To begin with, ensure you are logged into your Ubuntu client, where we can install the swift client.
We will be using OpenStack Storage, authenticating against the OpenStack Identity Service, Keystone.
How to do it...
Installation of the swift client can be done on any appropriate machine on the network; it can conveniently be downloaded from the Ubuntu repositories using the familiar apt-get utility.
sudo apt-get update
sudo apt-get -y swift python-keystone
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack stat
How it works...
The swift client package is easily installed under Ubuntu and requires no further configuration after downloading, as all parameters needed to communicate with OpenStack Storage using the command line are installed.
When confi rming that OpenStack Storage uses the OpenStack Identity Service authentication, you configure your client to communicate to OpenStack Identity Server, not OpenStack Storage Proxy Server.
Creating containers
A container can be thought of as a root folder under OpenStack Storage. They allow for objects to be stored within them. Under S3, they are known as buckets. Creating objects and containers can be achieved in a number of ways. A simple way is by using the swift client tool. We run this client tool against OpenStack Identity Service, which in turn has been configured to communicate to our OpenStack Storage proxy server and allows us to create, delete, and modify containers and objects in our OpenStack Storage environment.
Getting ready
Log in to a computer or a server that has the swift client package installed.
How to do it...
Carry out the following steps to create a container under OpenStack Storage:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack post test
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U demo:cookbook -K openstack list
This will simply list the containers in our OpenStack Storage environment.
How it works...
Creation of containers using the supplied swift tool is very simple. The syntax is as follows:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password post container
This authenticates our user through OpenStack Identity Service using Version 2.0 authentication, which in turn connects to the OpenStack Storage endpoint configured for this tenant and executes the required command to create the container.
Uploading objects
Objects are the files or directories that are stored within a container. Uploading objects can be achieved in a number of ways. A simple way is by using the swift client tool. We run this client tool against our OpenStack Identity Service, which in turn has been configured to communicate to our OpenStack Storage proxy server and allow us to create, delete, and modify containers and objects in our OpenStack Storage environment.
Getting ready
Log in to a computer or server that has the swift client package installed.
How to do it...
Carry out the following steps to upload objects into our OpenStack Storage environment:
Uploading objects
dd if=/dev/zero of=/tmp/example-500Mb bs=1M count=500
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack upload test /tmp/example-500Mb
When using OpenStack Storage, objects uploaded will be stored with the full path of that object under our container. Although the objects appear to be a regular file system, with a notion of a path structure, OpenStack Storage is not a regular filesystem.
Uploading directories
Create a directory and two files to upload to our OpenStack Storage environment, as follows:
mkdir /tmp/test
dd if=/dev/zero of=/tmp/test/test1 bs=1M count=20
dd if=/dev/zero of=/tmp/test/test2 bs=1M count=20
To upload directories and their contents, we issue the same command, but just specify the directory. The files within the directory are recursively uploaded. We do this as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack upload test /tmp/test
Uploading multiple objects
We are able to upload a number of objects at once. To do this, we simply specify each of them on our command line. To upload our test1 and test2 files, we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack upload test /tmp/test/test1 /tmp/test/test2
How it works...
Uploading files to our OpenStack Storage environment is simple to achieve with the swift client tool. We can upload individual files or complete directories. The syntax is as follows:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password upload container file|directory {file|directory ... }
Note that when uploading files, the objects that are created are of the form that we specify to the swift client, including the full paths. For example, uploading /tmp/example-500Mb uploads that object as tmp/example-500Mb. This is because OpenStack Storage is not a traditional tree-based hierarchical file system that our computers and desktops usually employ, where paths are delimited by a single slash (/ or \). OpenStack Storage consists of a flat set of objects that exist in containers where that slash forms the object name itself.
Uploading large objects
Individual objects up to 5 GB in size can be uploaded to OpenStack Storage. However, by splitting the objects into segments, the download size of a single object is virtually unlimited. Segments of the larger object are uploaded and a special manifest file is created that, when downloaded, sends all the segments concatenated as a single object. By splitting objects into smaller chunks, you also gain efficiency by allowing parallel uploads.
Getting ready
Log in to a computer or server that has the swift client package installed.
How to do it...
Carry out the following steps to upload large objects, split into smaller segments:
Uploading objects
dd if=/dev/zero of=/tmp/example-1Gb bs=1M count=1024
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack upload test -S 102400000 /tmp/example-1Gb
You will see output similar to the following, showing the status of each upload:
How it works...
OpenStack Storage is very good at storing and retrieving large objects. To efficiently do this in our OpenStack Storage environment, we have the ability to split large objects into smaller objects with OpenStack Storage, maintaining this relationship between the segments and the objects that appear as a single file. This allows us to upload large objects in parallel, rather than stream a single large file. To achieve this, we use the following syntax:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password upload container -S bytes large_file
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack list
Now, when we list our containers under our account, we have an extra container, named test_segments created, holding the actual segmented data fragments for our file. Our test container holds the view that our large object is a single object. Behind the scenes, the metadata within this single object will pull back the individual objects from the test_segments container, to reconstruct the large object.
When the preceding command is executed, we get the following output:
testtest_segments
Now, execute the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack list test
The following output is generated:
tmp/example-1Gb
Execute:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack list test_segments
The following output is generated:
Listing containers and objects
The swift client tool allows you to easily list containers and objects within your OpenStack Storage account.
Getting ready
Log in to a computer or server that has the swift client package installed.
How to do it...
Carry out the following to list objects within the OpenStack Storage environment:
Listing all objects in a container
In the preceding recipes, we uploaded a small number of files. To simply list the objects within our test container, we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack list test
This will show output similar to the following:
Listing specific object paths within a container
To list just the files within the tmp/test path, we specify this with the -p parameter, as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack list -p tmp/test test
This will list our two files, as follows:
tmp/test/test1tmp/test/test2
We can put partial matches in the -p parameter too. For example, to list all files starting with tmp/ex we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack list -p tmp/ex test
This will list files that match that string:
tmp/example-500Mb
How it works...
The tool swift is a basic but versatile utility that allows us to do many of the things we want to do with files. Listing them in a way that suits the user is also possible. To simply list the contents of our container, the syntax is as follows:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password list container
To list a file in a particular path within the container, we add in the -p parameter to the syntax:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password list -p path container
Downloading objects
Now that we have a usable OpenStack Storage environment with containers and objects, there comes a time when we want to retrieve the objects. The swift client tool allows us to do this.
Getting ready
Log in to a computer or server that has the swift client package installed.
How to do it...
Carry out the following to download objects from our OpenStack Storage environment:
Downloading objects
To download the object tmp/test/test1, we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack download test tmp/test/test1
This downloads the object to our file system. As we downloaded a file with the full path, this directory structure is preserved, so we end up with a new directory structure of tmp/test with a file in it called test1.
Downloading objects with the -o parameter
To download the file without preserving the file structure, or to simply rename it to something else, we specify the -o parameter, as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack download test tmp/test/test1 -o test1
Downloading all objects from a container
We are also able to download complete containers to our local filesystem. To do this, we simply specify the container we want to download, as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack download test
This will download all objects found under the test container.
Downloading all objects from our OpenStack Storage account
We can download all objects that reside under our OpenStack Storage account. If we have multiple containers, all objects from all containers will be downloaded. We do this with the --all parameter, as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack download --all
This will download all objects with full paths preceded by the container name, for example:
How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want to do with files. Downloading objects and containers is achieved using the following syntax:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password download container {object ... }
To download all objects from our account (for example, from all containers), we specify the following syntax:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password download --all
Deleting containers and objects
The swift client tool allows us to directly delete containers and objects within our OpenStack Storage environment.
Getting ready
Log in to a computer or server that has the swift client package installed.
How to do it...
Carry out the following to delete objects in our OpenStack Storage environment:
Deleting objects
To delete the object tmp/test/test1, we issue the following:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack delete test tmp/test/test1
This deletes the object tmp/test/test1 from the container test.
Deleting multiple objects
To delete the objects tmp/test/test2 and tmp/example-500Mb, we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack delete test tmp/test/test2 tmp/example-500Mb
This deletes the objects tmp/test/test2 and tmp/example-500Mb from the container test.
Deleting containers
To delete our test container we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack delete test
This will delete the container and any objects under this container.
Deleting everything from our account
To delete all containers and objects in our account, we issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack delete --all
This will delete all containers and any objects unde these containers.
How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want to do with files. Deleting objects and containers is achieved using the following syntax:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password delete container {object ... }
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password delete –all
To download all objects from our account (for example, from all containers), we specify the following syntax:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password delete –all
Using OpenStack Storage ACLs
ACLs allow us to have greater control over individual objects and containers without requiring full read/write access to a particular container.
Getting ready
Log in to a computer that has the keystone and swift clients available.
How to do it...
Carry out the following steps:
We will first create an account in our OpenStack Identity Server that is only a Member in the cookbook tenant. We will call this user, user.
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
First get TENANT_ID related to our 'cookbook' tenant
TENANT_ID=$(tenant-list | awk ' / cookbook / {print $2}')
We then create the user specifying the TENANT_ID
keystone user-create --name user --tenant_id $TENANT_ID --pass openstack --email user@localhost --enabled true
We get this new user's ID
USER_ID=$(keystone user-list | awk ' / user / {print $2}')
We get the ID of the 'Member' role
ROLE_ID=$(keystone role-list | awk ' / Member / {print $2}')
Finally add the user to the 'Member' role in cookbook
keystone --token 999888777666 --endpoint http://172.16.0.1:35357/v2.0/ user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $TENANT_ID
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack post testACL
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:user -K openstack upload testACL /tmp/test/test1
This brings back an HTTP 403 Forbidden message similar to the following:
Object HEAD failed: https://172.16.0.2:443/v1/AUTH_53d87d9b66794904aa2c84c17274392b/testACL/tmp/test/test1 403 Forbidden
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K openstack post testACL -w Member -r Member
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:user -K openstack upload testACL /tmp/test/test1
How it works...
Granting access control is done on a container basis and is achieved at the role level. When a user creates a container by using the role they are in, other users can be granted that access by adding other roles to the container. The users in the new role will then be granted read and write access to containers, for example:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password post container -w role -r role
[filter:keystone]
paste.filter_factory = keystone.middleware.swift_auth:filter_factory
operator_roles = Member,admin
Note that the roles that are allowed to use our OpenStack Storage environment are defined in the proxy server, as follows:
[filter:keystone]
paste.filter_factory = keystone.middleware.swift_auth:filter_factory
operator_roles = Member,admin
Chapter 6. Administering OpenStack Storage
In this chapter, we will cover:
Introduction
Day to day administration of our OpenStack Storage cluster involves ensuring the files within the cluster are replicated to the right number of nodes, reporting on usage within the cluster, and dealing with failure of the cluster. This section introduces the tools and processes required to administer OpenStack Storage.
Preparing drives for OpenStack Storage
OpenStack Storage doesn't have any dependencies on any particular filesystem, as long as that filesystem supports extended attributes (xattr). But, it has been generally acknowledged that the XFS filesystem yields the best all-round performance and resilience.
Getting ready
Log in to a swift node that has a disk ready to be formatted for use with OpenStack Storage.
How to do it...
Carry out the following steps to prepare a hard drive for use within an OpenStack Storage node:
sudo mkfs.xfs -i size=1024 /dev/sdb1
/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbufs=8 0 0
mkdir -p /srv/node/sdb1
mount /srv/node/sdb1
How it works...
While it is recommended you do thorough testing of OpenStack Storage for your own environments, it is generally recommended that you use the XFS filesystem. OpenStack Storage requires a filesystem that supports extended attributes (xattr) and it has been shown that XFS offers good all-round performance in all areas.
In order to accommodate the metadata used by OpenStack Storage, we increase the inode size to 1024. This is set at the time of the format with the -i size=1024 parameter.
Further performance considerations are set at mount time. We don't need to record file access times (noatime) and directory access times (nodiratime). Barrier support flushes the write-back cache to disk at an appropriate time. Disabling this yields a performance boost, as the highly available nature of OpenStack Storage allows for failure of a drive (and therefore, write of data), so this safety net in our filesystem can be disabled (with the nobarrier option), to increase speed.
Managing the OpenStack Storage cluster with swift-init
Services in our OpenStack Storage environment can be managed using the swift-init tool. This tool allows us to control all the daemons in OpenStack Storage in a convenient way.
Getting ready
Log in to any OpenStack Storage node.
How to do it...
The swift-init tool can be used to control any of the running daemons in our OpenStack Storage cluster, which makes it a convenient tool, rather than calling individual init scripts.
Each command can be succeeded with the following:
Controlling OpenStack Storage proxy
swift-init proxy-server { command }
Controlling OpenStack Storage object daemons
swift-init object { command }
swift-init object-replicator {command }
swift-init object-auditor { command }
swift-init object-updater { command }
Controlling OpenStack Storage container daemons
swift-init container { command }
swift-init container-update { command }
swift-init container-replicator { command }
swift-init container-auditor { command }
Controlling OpenStack Storage account daemons
swift-init account { command }
swift-init account-auditor { command }
swift-init account-reaper { command }
swift-init account-replicator { command }
Controlling all daemons
swift-init all { command }
{ command } can be one of the following:
Command	Description
stop , start , and restart | As stated |
force - reload and reload | These mean the same thing—graceful shutdown and restart |
shutdown | Shutdown after waiting for current processes to finish |
no-daemon | Start a server within the current shell |
no-wait | Spawn server and return immediately |
once | Start server and run one pass |
status | Display the status of the processes for the server |
How it works...
The swift-init tool is a single tool that can be used to manage any of the running OpenStack Storage daemons. This allows for consistency in managing our cluster.
Checking cluster health
We are able to measure the health of our cluster by using the swift-dispersion-report tool. This is done by checking the set of our distributed containers, to ensure that the objects are in their proper places within the cluster.
Getting ready
Log in to the OpenStack Storage Proxy Server.
How to do it...
Carry out the following steps to set up the swift-dispersion tools to report on cluster health:
[dispersion]
auth_url = http://172.16.0.1:5000/auth/v2.0
auth_user = cookbook:admin
auth_key = openstack
sudo swift-dispersion-populate
sudo swift-dispersion-report
This produces the following result:
echo "/usr/bin/swift-dispersion-report" | sudo tee -a /etc/cron.hourly/swift-dispersion-report
How it works...
The health of objects can be measured by checking whether the replicas are correct. If our OpenStack Storage cluster replicates an object 3 times and 2 of the 3 are in the correct place, the object would be 66.66% healthy.
To ensure we have enough replicated objects in our cluster, we populate it with the swift-dispersion-populate tool, which creates 2,621 containers and objects, thereby increasing our cluster size. Once in place, we can then set up a cron job that will run hourly to ensure our cluster is consistent and therefore giving a good indication that our cluster is healthy.
By setting up a cron job on our proxy node (which has access to all our nodes), we can constantly measure the health of our entire cluster. The cron job runs hourly, executing the swift-dispersion-report tool.
OpenStack Storage benchmarking
Understanding the capabilities of your OpenStack Storage environment is crucial to determining limits for capacity planning and areas for performance tuning. OpenStack Storage provides a tool named swift-bench that helps you understand these capabilities.
Getting ready
Log in to the swift-proxy node as the root user.
How to do it...
Carry out the following to benchmark an OpenStack Storage cluster:
[bench]
auth = http://172.16.0.1:5000/v2.0
user = cookbook:admin
key = openstack
concurrency = 10
object_size = 1
num_objects = 1000
num_gets = 10000
delete = yes
swift-bench /etc/swift/swift-bench.conf
How it works...
OpenStack Storage comes with a benchmarking tool named swift-bench. This runs through a series of puts, gets, and deletions, calculating the throughput and reporting of any failures in our OpenStack Storage environment. The configuration file is as follows:
[bench]
auth = Keystone authentication URL or OpenStack Storage Proxy
Tempauth Address
user = tenant:username
key = key/password
concurrency = number of concurrent operations
object_size = the size of the object in Bytes
num_objects = number of objects to upload
num_gets = number of objects to download
delete = whether to perform deletions
The user specified must be capable of performing the required operations in our environment, including the creation of containers.
Managing capacity
A zone is a group of nodes that is as isolated as possible from other nodes (separate servers, network, power, even geography). The ring guarantees that every replica is stored in a separate zone. To increase capacity in our environment, we can add an extra zone, to which data will then replicate. In this example, we will add an extra storage node, with its second disk, /dev/sdb, used for our OpenStack Storage. This node makes up the only node in this zone.
To add additional capacity to existing zones, we repeat the instructions for each existing zone in our cluster. For example, the following steps assume zone 5 (z5) doesn't exist, so this gets created when we build the rings. To simply add additional capacity to existing zones, we specify the new servers in the existing zones (zones 1-4). The instructions remain the same throughout.
Getting ready
Log in to the OpenStack Storage proxy server node as well as a new storage node (that will form the basis of our new zone).
How to do it...
To add an extra zone to our OpenStack Storage cluster, carry out the following:
Proxy Server
cd /etc/swift
ZONE=5
STORAGE_LOCAL_NET_IP=172.16.0.4
WEIGHT=100
DEVICE=sdb1
swift-ring-builder account.builder add z$ZONE-$STORAGE_LOCAL_NET_IP:6002/$DEVICE $WEIGHT
swift-ring-builder container.builder add z$ZONE-$STORAGE_LOCAL_NET_IP:6001/$DEVICE $WEIGHT
swift-ring-builder object.builder add z$ZONE-$STORAGE_LOCAL_NET_IP:6000/$DEVICE $WEIGHT
swift-ring-builder account.builder
swift-ring-builder container.builder
swift-ring-builder object.builder
Ensure you run these commands while in the /etc/swift directory.
swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance
scp *.ring.gz $STORAGE_LOCAL_NET_IP:/tmp
And scp to other storage nodes
Storage Node
sudo mv /tmp/*.ring.gz /etc/swift
sudo chown swift:swift /etc/swift/*.ring.gz
[swift-hash]# Random unique string used on all nodesswift_hash_path_suffix = QAxxUPkzb7lP29OJ
uid = swiftgid = swiftlog file = /var/log/rsyncd.logpid file = /var/run/rsyncd.pidaddress = 172.16.0.4[account]max connections = 2path = /srv/node/read only = falselock file = /var/lock/account.lock[container]max connections = 2path = /srv/node/read only = falselock file = /var/lock/container.lock[object]max connections = 2path = /srv/node/read only = falselock file = /var/lock/object.lock
sudo sed -i 's/=false/=true/' /etc/default/rsync
sudo service rsync start
[DEFAULT]bind_ip = 172.16.0.4workers = 2[pipeline:main]pipeline = account-server[app:account-server]use = egg:swift#account[account-replicator][account-auditor][account-reaper]
[DEFAULT]bind_ip = 172.16.0.4workers = 2[pipeline:main]pipeline = container-server[app:container-server]use = egg:swift#container[container-replicator][container-updater][container-auditor]
[DEFAULT]bind_ip = 172.16.0.4workers = 2[pipeline:main]pipeline = object-server[app:object-server]use = egg:swift#object[object-replicator][object-updater][object-auditor]
sudo swift-init all start
How it works...
Adding extra capacity by adding additional nodes or zones is done with the following two steps:
For each storage node, and the devices on those storage nodes, we run the following command, which adds the storage node and device to our new zone:
swift-ring-builder account.builder add zzone-storage_ip:6002/device weight
swift-ring-builder container.builder add zzone-storage_ip:6001/device weight
swift-ring-builder object.builder add zzone-storage_ip
:6000/device weight
Once this has been configured on our proxy node, we rebalance the rings. This updates the object, account, and container rings. We copy the updated gzipped files as well as the swift hash key used within our environment, to all our storage node(s).
On the storage node, we simply run through the following steps:
Data is then redistributed within our OpenStack Storage environment onto this new zone's node.
Removing nodes from a cluster
Converse to adding capacity to our OpenStack Storage cluster, there may be times where we need to scale back. We can do this by removing nodes from the zones in our cluster. In the following example, we will remove the node 172.16.0.4 in z5, which only has one storage device attached, /dev/sdb1.
Getting ready
Log in to the OpenStack Storage proxy server node.
How to do it...
Carry out the following to remove a storage node from a zone:
Proxy Server
cd /etc/swift
swift-ring-builder account.builder set_weight z5-172.16.0.4:6002/sdb1 0
swift-ring-builder container.builder set_weight z5-172.16.0.4
:6001/sdb1 0
swift-ring-builder object.builder set_weight z5-172.16.0.4:6000/sdb1 0
swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance
swift-ring-builder account.builder remove z5-172.16.0.4:6002/sdb1
swift-ring-builder container.builder remove z5
-172.16.0.4:6001/sdb1
swift-ring-builder object.builder remove z5-172.16.0.4:6000/sdb1
How it works...
Manually removing a node from our OpenStack Storage cluster is done in three steps:
Once done, we are then free to decommission that node. We repeat this for each node (or device) in the zone.
Detecting and replacing failed hard drives
OpenStack Storage won't be of much use if it can't access the hard drives where our data is stored; so being able to detect and replace failed hard drives is essential.
Getting ready
Log in to an OpenStack Storage node as well as the proxy server.
How to do it...
To detect a failing hard drive, carry out the following:
Storage node
[drive-audit]log_facility=LOG_LOCAL0log_level=INFOdevice_dir=/srv/nodeminutes=60error_limit=1
echo '/usr/bin/swift-drive-audit /etc/swift/swift-drive-audit.conf' | sudo tee -a /etc/cron.hourly/swift-drive-audit
Without swift-drive-audit taking care of this automatically, should you need to act manually, ensure the disk has been unmounted and removed from the ring.
How it works...
Detection of failed hard drives can be picked up automatically by the swift-drive-audit tool, which we set up as a cron job to run hourly. With this in place, it detects failures, unmounts the drive so it can't be used, and updates the ring, so that data isn't being stored or replicated to it.
Once the drive has been removed from the rings, we can run maintenance on that device and replace the drive.
With a new drive in place, we can then put the device back in service on the storage node by adding it back into the rings. We can then rebalance the rings by running the swift-ring-builder commands.
Collecting usage statistics
OpenStack Storage can report on usage metrics by using the swift-recon middleware added to our object-server configuration. By using a tool, also named swift-recon, we can then query these collected metrics.
Getting ready
Log in to an OpenStack Storage node as well as the proxy server.
How to do it...
To collect usage statistics from our OpenStack Storage cluster, carry out the following:
[DEFAULT]bind_ip = 0.0.0.0workers = 2[pipeline:main]pipeline = recon object-server[app:object-server]use = egg:swift#object[object-replicator][object-updater][object-auditor]
[filter:recon]use = egg:swift#reconrecon_cache_path = /var/cache/swift
swift-init object-server restart
Now that the command is running, we can use the swift-recon tool on the proxy server to get usage statistics, as follows:
Disk usage
swift-recon -d
This will report on disk usage in our cluster.
swift-recon -d -z5
This will report on disk usage in zone 5.
Load average
swift-recon -l
This will report on the load average in our cluster.
swift-recon -l -z5
This will report on the load average of the nodes in zone 5.
Quarantined statistics
swift-recon -q
This will report on any quarantined containers, objects, and accounts in the cluster.
swift-recon -q -z5
This will report on this information just for zone 5.
Check for unmounted devices
swift-recon -u
This will check for any unmounted drives in our cluster.
swift-recon -z5 -u
This will do the same just for zone 5.
Check replication metrics
swift-recon -r
This will report on the replication status within our cluster.
swift-recon -r -z5
This will just perform this for nodes in zone 5.
We can perform all these actions with a single command to get all telemetry data back about our cluster, as follows:
swift-recon --all
We can just get this information for nodes within zone 5 by adding -z5 at the end, as follows:
swift-recon --all -z5
How it works...
To enable usage statistics within OpenStack Storage, we add in the swift-recon middleware, so metrics are collected. We add this to the object server by adding the following lines to /etc/swift/object-server.conf, on each of our storage nodes:
[pipeline:main]pipeline = recon object-server[filter:recon]use = egg:swift#reconrecon_cache_path = /var/cache/swift
With this in place and our object servers restarted, we can query this telemetry data by using the swift-recon tool. We can collect the statistics from the cluster as a whole, or from specific zones, with the -z parameter.
Note that we can also collect all or multiple statistics by specifying the --all flag or appending multiple flags to the command line. For example, to collect load average and replication statistics from our nodes in zone 5, we would execute the following command:
swift-recon -r -l -z5
Chapter 7. Glance OpenStack Image Service
In this chapter, we will cover:
Introduction
OpenStack Image Service, known as Glance, is the service that allows you to register, discover, and retrieve virtual machine images for use in our OpenStack environment. Images made available through OpenStack Image Service can be stored in a variety of backend locations, from local filesystem storage to distributed filesystems such as OpenStack Storage.
Installing OpenStack Image Service
Installation of OpenStack Image Service is simply achieved by using the packages provided from the Ubuntu repositories. If you followed the guide in Chapter 1, Starting OpenStack Compute, we already installed and configured OpenStack Image Service appropriately for our test setup, but as OpenStack has been designed so that the components and services can be deployed across multiple machines, we will go through the steps here to specifically set up the service.
Getting ready
To begin with, ensure you are logged in to the server on which you want to install OpenStack Image Service.
How to do it...
Installation of OpenStack Image Service is very simple, using apt. We do this as follows:
sudo apt-get update
sudo apt-get -y install glance
To install just the client that allows us to administer and use OpenStack Image Service without needing to log onto our server, we do the following:
sudo apt-get update
sudo apt-get -y install glance-client
How it works...
The Ubuntu stable repositories have an appropriate version of OpenStack Image Service for our environment.
There's more...
There are various ways to install OpenStack, from source code building to installation from packages, but this represents the easiest and most consistent method available. There are also alternative releases of OpenStack available. The ones available from Ubuntu 12.04 LTS repositories are known as Essex and represent the latest stable release, at the time of writing.
Using an alternative release
Deviating from stable releases is appropriate when you are helping develop or debug OpenStack, or require functionality that is not available in the current release. To enable different releases, add different Personal Package Archives (PPA) to your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To use them, we first install a tool that allows us to easily add PPAs to our system, as follows:
sudo apt-get update
sudo apt-get -y install python-software-properties
To use a particular release PPA we issue the following command:
sudo add-apt-repository ppa:openstack-ppa/milestone
sudo apt-get update
sudo add-apt-repository ppa:openstack-ppa/bleeding-edge
sudo apt-get update
Once you have configured apt to look for an alternative place for packages, you can repeat the preceding process for installing packages, if you are creating a new machine based on a different package set. Or, you can simply type:
sudo apt-get upgrade
This will make apt look in the new package archive areas for later releases of packages.
Configuring OpenStack Image Service with MySQL
In order to scale OpenStack effectively, we must move our local database store for OpenStack Image Service to a central, scalable, and more resilient database tier. For this, we will use our MySQL database.
Getting ready
To begin with, ensure you are logged into the server where OpenStack Image Service is installed, and become the root user.
How to do it...
Carry out the following steps:
PASSWORD=openstack
mysql -uroot -p$PASSWORD -e 'CREATE DATABASE glance;'
mysql -uroot -p$PASSWORD -e "GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%';"
mysql -u root -p$PASSWORD -e "SET PASSWORD FOR 'glance'@'%' = PASSWORD('openstack');"
sudo sed -i 's#^sql_connection.*#sql_connection = mysql://glance:openstack@172.16.0.1/glance#' /etc/glance/glance-registry.conf
sudo stop glance-registry
sudo start glance-registry
How it works...
OpenStack Image Service is split into two running services—glance-api and glance-registry—and it is the glance-registry service that connects to the database backend. The first step is to create our glance database and glance user, so it can perform operations on the glance database that we have created.
Once this is done, we modify the /etc/glance/glance-registry.conf file so that glance knows where to find and connect to our MySQL database. This is provided by the standard SQLAlchemy connection string that has the following syntax:
sql_connection = mysql://USER:PASSWORD@HOST/DBNAME
Configuring OpenStack Compute with OpenStack Image Service
Once we have OpenStack Image Service configured and running, in order for our OpenStack Compute environment to connect to this service for our images, we modify the --image_service and --glance_api_servers flags in our /etc/nova/nova.conf file.
Getting ready
To begin with, ensure you are logged in to the server where OpenStack Image Service is installed.
How to do it...
Carry out the following steps to configure OpenStack Compute to use OpenStack Image Service:
--image_service=nova.image.glance.GlanceImageService--glance_api_servers=172.16.0.1:9292
sudo restart nova-api
sudo restart nova-objectstore
How it works...
As we configure OpenStack Compute to use OpenStack Image Service, we modify the file /etc/nova/nova.conf, with the following flags:
Configuring OpenStack Image Service with OpenStack Storage
Configuring OpenStack Image Service to use OpenStack Storage allows us to keep our images on easily accessible storage.
Getting ready
To begin with, ensure you are logged in to the server where OpenStack Image Service is installed.
How to do it...
Carry out the following steps to configure OpenStack Image Service to use OpenStack Storage:
sudo apt-get update
sudo apt-get -y install python-swift
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U service:swift -K swift stat
sudo sed -i 's/^default_store.*/default_store = swift/' /etc/glance/glance-api.conf
swift_store_auth_address = http://172.16.0.1:5000/v2.0/
swift_store_user = service:swift
swift_store_key = swift
swift_store_container = glance
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U service:swift -K swift post glance
sudo restart glance-api
Warning: If you have previously uploaded images to OpenStack Image Service prior to changing over to OpenStack Storage, you will need to re-upload your images so that they exist in OpenStack Storage.
How it works...
Setting up OpenStack Image Service to use OpenStack Storage as its backing store is straightforward. Once you have created an appropriate account that OpenStack Image Service can use to store images in OpenStack Storage, you configure the glance-api.conf file appropriately to point to your OpenStack Storage proxy server with these account details. The key configuration lines are:
swift store auth address = http://KEYSTONE HOST:5000/v2.0
swift_store_user = service:USER
swift_store_key = PASSWORDswift_store_container = glance
You also must ensure that the target swift_store_container exists within the OpenStack Storage datastore, before you can use OpenStack Image Service.
See also
Managing images with OpenStack Image Service
Uploading and managing images within OpenStack Storage is achieved using the glance command-line tool. This tool allows us to upload, remove, and change information about the stored images for use within our OpenStack environment.
Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance tool. This can be installed using:
sudo apt-get update
sudo apt-get -y install glance-client
How to do it...
We can upload and view images in OpenStack Image Service in a number of ways. Carry out the following steps to upload and show details of our uploaded images:
Uploading Ubuntu images
To upload tarball cloud bundles using glance through the cloud-publish-tarball command, we can do the following, using the glance client:
wget http://cloud-images.ubuntu.com/releases/precise/release/ubuntu-12.04-server-cloudimg-i386.tar.gz
tar zvxf ubuntu-12.04-server-cloudimg-i386.tar.gz
Source in our OpenStack Credentials
. keystonerc
Upload the kernel (and store ID)
KERNEL=$(glance add name='Ubuntu 12.04 i386 Kernel' disk_format=aki container_format=aki distro='Ubuntu' is_public=true < precise-server-cloudimg-i386-vmlinuz-virtual | awk '/ ID/ { print $6 }')
Upload Machine Image
glance add name='Ubuntu 12.04 i386 Server' disk_format=ami container_format=ami distro='Ubuntu' kernel_id=$KERNEL is_public=true < precise-server-cloudimg-i386.img
You will see output similar to the following:
Uploading image 'Ubuntu 12.04 i386 Server'
========================[100%] 6.68M/s, ETA 0h 0m 0s
Added new image with ID: 469460b0-464d-43f8-810d-ce1c919b25e9
Listing images
To list the images in our OpenStack Image Service repository, we can use the familiar euca-describe-images or nova image-list commands from our client, as using OpenStack Image Service doesn't change how we access our cloud environment. However, to get detailed information, we use the glance tool.
To list the private images for our demo user and public contents of our glance registry, we need to send a valid user authorization token, as follows:
glance index
This produces the following result:
ID Name Disk Format Container Format Size 16 oneiric-server-i386 ami ami 1476395008
Viewing image details
We can view further details about our images in the repository. To show all the details for our images, we issue the following command:
glance details
This returns a detailed list of all our images, for example:
To see a specific image detail, we issue the following command:
glance show f4b75e07-38fa-482b-a9c5-e5dfcc977b02
Deleting images
There will be times when you will need to remove images from being able to be called within your OpenStack cloud environment. You can delete public and private images from the glance server.
glance delete f4b75e07-38fa-482b-a9c5-e5dfcc977b02
To remove all public images from OpenStack Image Service, we can issue the following command:
glance clear --verbose
Making private images public
When you upload an image using cloud/euca2ools commands, such as euca-upload-bundle and cloud-publish-tarball, they get entered into OpenStack Image Service and are only accessible by the user who uploaded them. This marks them as private. If an image is uploaded this way but you want to make it public, you do the following in OpenStack Image Service:
glance show f4b75e07-38fa-482b-a9c5-e5dfcc977b02
This produces results somewhat similar to the following:
glance update f4b75e07-38fa-482b-a9c5-e5dfcc977b02 is_public=True
glance details
We will now see this:
How it works...
OpenStack Image Service is a very flexible system for managing images in our private cloud environment. It allows us to modify many aspects of our OpenStack Image Service registry—from adding new images, deleting them, and updating information, such as the name that is used so end users can easily identify them, to making private images public and vice-versa.
To do all this, we use the glance tool from any connected client. To use the glance tool, we source in our OpenStack Identity Service credentials.
Registering a remotely stored image
OpenStack Image Service provides a mechanism to remotely add an image that is stored at an externally accessible location. This allows for a convenient method of adding images we might want to use for our private cloud that has been uploaded to an external third-party server.
Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance tool. This can be installed using the following command:
sudo apt-get update
sudo apt-get -y install glance-client
How to do it...
Carry out the following steps to remotely store an image into OpenStack Image Service:
glance add name="CentOS 5.3" is_public=true distro="CentOS" container_format=ovf disk_format=vhd location="http://a.webserver.com/images/centos-5.3.vhd"
How it works...
Using the glance tool to specify remote images directly provides a quick and convenient way to add images to our OpenStack Image Service repository. The way this happens is with the location parameter. We add in our usual meta information to accompany this, as we would with a locally specified image.
Chapter 8. Nova Volumes
In this chapter, we will cover:
Introduction
Data written to currently running instances on disks is not persistent—meaning that when you terminate such instances, any disk writes will be lost. Volumes are persistent storage that you can attach to your running OpenStack Compute instances; the best analogy is that of a USB drive that you can attach to an instance. Like USB drives, you can only attach instances to one computer at a time. Nova Volumes are very similar to Amazon EC2's Elastic Block Storage—the difference is how these are presented to the running instances. Under OpenStack Compute, these can easily be managed using an iSCSI exposed LVM volume group named nova-volumes, so this must be present on any host running the service nova-volume.
nova-volume is the running service.
nova-volumes is the name of the LVM Volume Group that is exposed by the nova-volume service.
Configuring nova-volume services
In this section, we will add a new disk to our VirtualBox VM, OpenStack1, and add the prerequisites that nova-volume requires to attach volumes to our instances.
Getting ready
To use Nova Volumes, we will make some changes to our OpenStack1 Virtual Machine. This is because we need to power it off and add a new volume to this VM, so that we have an LVM-managed volume named nova-volumes. We will then configure this drive under Ubuntu and make the volume available to nova-volume.
How to do it...
We first need to configure our storage for use by nova-volume. We can then set up LVM appropriately, by creating a volume group named nova-volumes, on that new storage. Following this, we install and configure prerequisites such as open-iscsi. Once complete, we simply set up nova-volume.
Adding a new disk to a VirtualBox Virtual Machine
Alternatively, using the command line:
We can use the VBoxManage command from our VirtualBox install and run the following in a shell on our computer, to add in a new disk:
VBoxManage createhd --filename Nova-Volumes-OpenStack1.vdi --size 20480
VBoxManage storageattach openstack1 --storagectl "SATA Controller" --port 1 --device 0 --type hdd --medium Nova-Volumes-OpenStack1.vdi
Configuring your new storage for use by nova-volume
sudo fdisk /dev/sdb
sudo partprobe
sudo pvcreate /dev/sdb1
sudo vgcreate nova-volumes /dev/sdb1
Installing and configuring nova-volume and prerequisite services
sudo apt-get -y install nova-volume tgt
sudo start tgt
sudo service nova-volume restart
How it works...
In order for us to use nova-volume, we need to prepare a suitable disk or partition that has been configured as an LVM volume and that is specifically named nova-volumes. For our virtual environment, we simply add a new disk that we can then set up to be part of this LVM volume group. In a physical installation, the steps are no different. We simply configure a partition to be of type 8e (Linux LVM) in fdisk and then add this partition to a volume group named nova-volumes.
Once done, we then install the required nova-volume packages and supporting services. As nova-volume uses iSCSI as the mechanism for attaching a volume to an instance, we install the appropriate packages that are required to run iSCSI targets.
Configuring OpenStack Compute for nova-volume
We now need to tell our OpenStack Compute service about our new nova-volume service.
Getting ready
Ensure you are logged in to your compute nodes, so we can install and configure the appropriate packages in order to use the nova-volume attached storage.
How to do it...
Configuring OpenStack Compute nodes to use nova-volume involves installing the appropriate package (that can communicate back to the iSCSI target) on our node.
sudo apt-get -y install open-iscsi
sudo service open-iscsi start
iscsi_ip_address=172.16.0.1
--iscsi_helper=tgtadm
sudo service nova-compute restart
sudo nova-manage service list
This should present us with an extra service line, now saying that nova-volume is happily running on openstack1.
How it works...
The host running nova-volume is known as an iSCSI Target. The host running our compute service is known as the iSCSI Initiator. The iSCSI Initiator package is started, which our OpenStack Compute service then controls.
To make our OpenStack Compute host aware of our new nova-volume service, we add the following to /etc/nova/nova.conf:
--iscsi_ip_address=NOVA-VOLUME-ADDRESS
--iscsi_helper=tgtadm
These lines tell the OpenStack Compute where the iSCSI Target is (which is the address of our nova-volume server), and the service to use to locate the iSCSI services.
Creating volumes
Now that we have a usable nova-volume service, we can create volumes for use by our instances. We do this under our Ubuntu client using one of the euca2ools, euca-create-volumes, or the Nova Client tool, so we are creating volumes specific to our tenancy (project).
Getting ready
To begin with, ensure you are logged in to your Ubuntu client that has access to the euca2ools or Nova Client tools. These packages can be installed using the following command:
sudo apt-get update
sudo apt-get install euca2ools python-novaclient
How to do it...
Carry out the following steps to create a volume using euca2ools:
Source in our ec2 credentials
. ec2rc
euca-create-volume -s 5 -z nova
VOLUME vol-00000003 5 creating (cookbook, None, None, None) 2011-12-11T14:02:29Z
euca-describe-volumes
You should see output similar to the following:
VOLUME vol-00000003 5 nova available (cookbook, openstack1, None, None) 2011-12-11T14:02:29Z
Note that this project has been created in cookbook, in the zone nova.
Carry out the following to create a volume using Nova Client :
Source in our OpenStack Nova credentials
. keystonerc
nova volume-create --display_name volume1 5
nova volume-list
+----+-----------+--------------+------+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type | Attached to |
+----+-----------+--------------+------+-------------+-------------+
| 1 | available | None | 5 | None | |
| 2 | available | volume1 | 5 | None | |
+----+-----------+--------------+------+-------------+-------------+
How it works...
Creating nova-volumes for use within our project, cookbook, is very straightforward. Using euca2ools, we use the euca-create-volume tool, which takes the following syntax:
euca-create-volume -s size_Gb -z zone
This then creates the volume to be used in our environment with an ID in the form vol-00000000, on our nova-volume host.
With Nova Client, we use the create-volume option with the following syntax:
nova create-volume --display_name volume_name size_Gb
Here, volume_name can be any arbitrary name with no spaces.
We can see the actual LVM volumes on nova-volumes, using the usual LVM tools as follows:
sudo lvdisplay nova-volumes
--- Logical volume ---
LV Name /dev/nova-volumes/volume-00000001
VG Name nova-volumes
LV UUID G62e3s-gXcX-v8F8-jmGI-DgcY-O0Ny-i0GSNl
LV Write Access read/write
LV Status available
open 0
LV Size 5.00 GiB
Current LE 1280
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 252:0
Attaching volumes to instances
Now that we have a usable volume, we can attach this to any instance. We do this by using the euca-attach-volume command from euca2ools or the nova volume-attach command in Nova Client.
Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to euca2ools or Nova Client tools. These packages can be installed using the following command:
sudo apt-get update
sudo apt-get-y install euca2ools python-novaclient
How to do it...
Carry out the following steps to attach a volume to an instance by using euca2ools:
Source in our EC2 credentials
. ec2rc
euca-describe-instances
The following output will be displayed
RESERVATION r-7r0wjd2o cookbook defaultINSTANCE i-00000009 ami-00000002 172.16.1.1 10.0.0.3 running openstack (cookbook, openstack1) 0 m1.tiny 2011-12-11T15:33:43Z nova aki-00000001 ami-00000000
euca-attach-volume -i i-00000009 -d /dev/vdb vol-00000003
sudo fdisk -l /dev/vdb
sudo mkfs.ext4 /dev/vdb
sudo mount /dev/vdb /mnt
df -h
We should now see the newly attached disk available at /mnt:
Filesystem Size Used Avail Use% Mounted on/dev/vda 1.4G 602M 733M 46% /devtmpfs 248M 12K 248M 1% /devnone 50M 216K 50M 1% /runnone 5.0M 0 5.0M 0% /run/locknone 248M 0 248M 0% /run/shm/dev/vdb 5.0G 204M 4.6G 5% /mnt
Only format the volume if this is the first time you have used it.
Carry out the following steps to attach a volume to an instance using Nova Client:
Source in credentials
. keystonerc
nova list
The following output is generated:
nova volume-attach ccd477d6-e65d-4f8d-9415-c150672c52bb 4 /dev/vdc
/dev/vdc is specified here so as not to conflict with /dev/vdb, as the former refers to the same instance described previously.
sudo fdisk -l /dev/vdc
sudo mkfs.ext4 /dev/vdc
sudo mkdir /mnt1
sudo mount /dev/vdc /mnt1
df -h
We should now see the newly attached disk available at /mnt1:
Filesystem Size Used Avail Use% Mounted on/dev/vda 1.4G 602M 733M 46% /devtmpfs 248M 12K 248M 1% /devnone 50M 216K 50M 1% /runnone 5.0M 0 5.0M 0% /run/locknone 248M 0 248M 0% /run/shm/dev/vdb 5.0G 204M 4.6G 5% /mnt/dev/vdc 5.0G 204M 4.6G 5% /mnt1
How it works...
Attaching a nova-volume is no different from plugging in a USB stick on your own computer—we attach it, (optionally) format it, and mount it.
Under euca2ools, the command euca-attach-volume takes the following syntax:
euca-attach-volume -i instance_id -d device volume_id
instance_id is the ID returned from euca-describe-instances for the instance we want to attach the volume to. device is the name of the device within the instance that we will use to mount the volume. volume_id is the ID returned from euca-describe-volumes for the volume we want to use to attach.
Under Nova Client, the option volume-attach takes the following syntax:
nova volume-attach instance_id volume_id device
instance_id is the ID returned from nova list for the instance that we want to attach the volume to. volume_id is the name of the device within the instance that we will use to mount the volume that can be retrieved using nova volume-list. device is the device that will be created on our instance that we use to mount the volume.
Detaching volumes from an instance
As Nova Volumes are persistent storage and the best way of thinking of them is as a USB drive, this means you can only attach them to a single computer at a time. When you remove it from the computer, you can then move it to another one and attach it. The same principle works with Nova Volumes. To detach a volume, we use another euca2ools aptly named euca-detach-volume, or from Nova Client, the option volume-detach.
Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to euca2ools or Nova Client tools. These packages can be installed using the following command:
sudo apt-get update
sudo apt-get-y install euca2ools python-novaclient
How to do it...
Carry out the following steps to detach a volume by using euca2ools:
euca-describe-volumes
VOLUME vol-00000003 5 nova in-use 2012-07-06T11:09:23.000ZATTACHMENT vol-00000003 i-00000009 /dev/vdb attached |VOLUME vol-00000004 5 nova in-use 2012-07-06T11:20:50.000ZATTACHMENT vol-00000004 i-00000009 /dev/vdc attached
sudo umount /mnt
euca-detach-volume -i i-00000009 vol-00000003
Carry out the following steps to detach a volume using Nova Client:
nova volume-list
sudo umount /mnt1
nova volume-detach ccd477d6-e65d-4f8d-9415-c150672c52bb 4
How it works...
Detaching nova-volume is no different to removing a USB stick from a computer. We first unmount the volume from our running instance. Then, we detach the volume from the running instance using euca-detach-volume from euca2ools or nova volume-detach from Nova Client.
euca-detach-volume has the following syntax:
euca-detach-volume -i instance_id volume_id
instance_id is the ID returned from euca-describe-instances for the instance we want to detach the volume from. volume_id is the ID returned from euca-describe-volumes for the volume we want to detach.
nova volume-detach has the following syntax:
nova volume-detach instance_id volume_id
instance_id is the ID from the Attached to column returned from nova volume-list for the instance we want to detach the volume from. volume_id is the ID returned from euca-describe-volumes for the volume we want to detach.
Deleting volumes
At some point, you will no longer need the volumes you have created. To remove the volumes from the system completely, so they are no longer available, we simply pull out another tool from euca2ools, euca-delete-volume, or invoke the volume-delete option from Nova Client.
Getting ready
Ensure you are logged in to the Ubuntu host where euca2ools is installed and have sourced in your OpenStack environment credentials.
How to do it...
To delete a volume using euca2ools, carry out the following steps:
euca-describe-volumes
euca-delete-volume vol-00000003
To delete a volume using Nova Client, carry out the following steps:
nova volume-list
nova volume-delete 4
How it works...
Deleting images removes the LVM volume from use within our system. To do this, we simply specify the name of the volume as a parameter to euca-delete-volume, if using euca2ools, or the ID as a parameter to nova volume-delete (when using Nova Client), first ensuring that the volume is not in use.
Chapter 9. Horizon OpenStack Dashboard
In this chapter we will cover:
Introduction
Managing our OpenStack environment through a command-line interface allows us complete control of our cloud environment, but having a GUI that operators and administrators can use to manage their environments and instances makes this process easier. OpenStack Dashboard, known as Horizon, provides this GUI and is a web service that runs from an Apache installation, using Python's Web Service Gateway Interface (WSGI) and Django, a rapid development web framework.
With OpenStack Dashboard installed, we can manage all the core components of our OpenStack environment.
Installation of OpenStack Dashboard under Ubuntu gives a slightly different look and feel than a stock installation of Dashboard. The functions remain the same, although Ubuntu adds an additional feature to allow the user to download environment settings for Juju.
Installing OpenStack Dashboard
Installation of OpenStack Dashboard is straightforward when using Ubuntu's package repository.
Getting ready
To begin with, ensure that you're logged in to our OpenStack Compute host or an appropriate server on the network that has access to our OpenStack environment.
How to do it...
To install OpenStack Dashboard, we simply install the required packages and dependencies by following the ensuing steps:
sudo apt-get update
sudo apt-get -y install openstack-dashboard novnc nova-consoleauth nova-console
OPENSTACK_HOST = "172.16.0.1"
OPENSTACK_KEYSTONE_URL = "http://%s:5000/v2.0" % OPENSTACK_HOST
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "Member"
sudo service apache2 restart
--novnc_enabled=true
--novncproxy_base_url=http://172.16.0.1:6080/vnc_auto.html
--vncserver_proxyclient_address=172.16.0.1
--vncserver_listen=172.16.0.1
sudo restart nova-api
sudo restart nova-compute
sudo service apache2 restart
How it works...
Installation of OpenStack Dashboard, Horizon, is simple when using Ubuntu's package repository. As it uses the Python RAD web environment, Django, and WSGI, OpenStack Dashboard can run under Apache. So, to pick up our changes, we restart our Apache 2 service.
We also include the VNC Proxy service. It provides us with a great feature to access our instances over the network, through the web interface.
Keypair management in OpenStack Dashboard
Keypairs allow users to connect SSH to our Linux instances, so users must have keypairs. Users have to manage keypairs through OpenStack Dashboard for their own setup. Usually, this is the first task a new user has to do when given access to our OpenStack environment.
Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the demo user with the password openstack.
How to do it...
Management of the logged-in user's keypairs is achieved with the steps discussed in the following sections.
Adding keypairs
Keypairs can be added by performing the following steps:
Deleting keypairs
Keypairs can be deleted by performing the following steps:
Importing Keypairs
To import keypairs, perform the following steps:
ssh-keygen -t rsa -N ""
How it works...
Keypair management is important, as it provides a consistent and secure approach for accessing our running instances. Allowing the user to create, delete, and import keypairs to use within his/her tenants allows them to create secure systems.
OpenStack Dashboard allows a user to create keypairs in a very simple way. The user must ensure, though, that the private key that he/she downloads is kept secure.
Deleting keypairs is very straightforward, but the user must remember that if he/she is deleting keypairs and there are running instances, the user will no longer be able to access the running system—every keypair created is unique, even if you name the keypairs the same.
Importing keypairs has the advantage that we can use our existing secure keypairs that we have been using outside of OpenStack within our new private cloud environment. This provides a consistent user experience when moving from one environment to another.
Security group management by using OpenStack Dashboard
Security groups are network rules that allow instances in one tenant (project) to be kept separate from other instances in another. Managing Security Group rules for our OpenStack instances is done as simply as possible with OpenStack Dashboard.
Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the demo user with the password openstack.
How to do it...
To administer security groups under OpenStack Dashboard, carry out the steps discussed in the following sections.
Creating a security group
To create a security group, perform the following steps:
Editing security groups to add and remove rules
To add and remove rules, security groups can be edited by performing the following steps:
Each time you add a rule, you will be sent back to the Security Group listing. Simply click on the Edit Rules button for the webserver group to add it again in both HTTP and HTTPS access.
Deleting security groups
Security groups can be deleted by performing the following steps:
You will not be able to remove a security group whilst an instance with that assigned security group is running.
How it works...
Security groups are important to our OpenStack environment, as they provide a consistent and secure approach for accessing our running instances. By allowing the users to create, delete, and amend security groups to use within their tenants allows them to create secure environments.
Security groups are associated with instances on creation, so we can't add a new security group to a running instance. We can, however, modify the rules assigned to a running instance. For example, suppose an instance was launched with only the Default security group. The default security group which we have set up, only has TCP port 22 and ability to ping the instance. If we require access to TCP port 80, we either have to add this rule to the default security group or relaunch the instance with a new security assigned to it, to allow TCP port 80.
Modifications to security groups come into effect immediately, and any instance assigned with that security group will have those new rules associated with it.
Launching instances by using OpenStack Dashboard
Launching instances becomes a simple process, using OpenStack Dashboard. We simply select our chosen image, choose the size of the instance, and then launch it.
Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the demo user with the password openstack (as created in the Adding users recipe in Chapter 3, Keystone OpenStack Identity Service):
How to do it...
To launch an instance by using the OpenStack Dashboard interface, carry out the following steps:
If the display hasn't refreshed, click on the Images & Volumes tab to refresh the information manually.
How it works...
Launching instances from Horizon—OpenStack Dashboard—is done in two stages:
The Instances tab shows the running instances under our cookbook project.
You can also see an overview of what is running in our environment by clicking on the Overview tab.
Terminating instances by using OpenStack Dashboard
Terminating instances is very simple when using OpenStack Dashboard.
Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the demo user with the password openstack.
How to do it...
To terminate instances by using OpenStack Dashboard, carry out the following steps:
How it works...
Terminating instances by using OpenStack Dashboard is easy. We simply select our running instance and click on the Terminate Instances button, which is highlighted when an instance is selected. After clicking on the Terminate Instances button, we will be asked to confirm this action to minimize the risk of accidentally terminating an instance.
Connecting to instances by using OpenStack Dashboard and VNC
OpenStack Dashboard has a very handy feature that allows a user to connect to our running instances through a VNC session within our web browser. This gives us the ability to manage our instance without invoking an SSH session separately.
Getting ready
Load up a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the demo user with the password openstack.
How to do it...
To connect to a running instance by using VNC through the web browser, carry out the following steps:
Your instance must support local logins. Many Linux cloud images expect a user to authenticate by using SSH Keys.
How it works...
Connecting through our web browser uses a VNC proxy session, which was configured by using the nonce, nova-consoleauth, and nova-console packages, as described in the installation section. Only browsers that support WebSocket connections are supported. Generally, this can be any modern browser with HTML5 support.
Adding new tenants by using OpenStack Dashboard
OpenStack Dashboard is a lot more than just an interface to our instances. It allows an administrator to configure environments, users, and tenants.
Adding new tenants (projects) that users can be members of is achieved quite simply in OpenStack Dashboard. For a VLAN-managed environment, it also involves assigning an appropriate private network to that new tenant by using the console. To do this, we must log in to OpenStack Dashboard as a user with admin privileges and also log in to Shell on our OpenStack Controller API server.
Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the admin user with the password openstack. Log in to the same box, over SSH, where we can run the nova-manage command.
How to do it...
To add a new tenant to our OpenStack environment, carry out the following steps:
Only for a VLAN-managed network
If our OpenStack environment has been set up by using VlanManager in /etc/nova/nova.conf (the default when nothing is specified), run the following command in Shell on our OpenStack Controller API server:
sudo nova-manage network create --label=horizon --num_networks=1 --network_size=64 --vlan=101 --bridge_interface=eth2 --project_id=900dae01996343fb946b42a3c13a4140 --fixed_range_v4=10.2.0.0/8
This creates an IP range on a specific VLAN that we have associated with our horizon tenant. Once successful, our new tenant is available to use.
How it works...
OpenStack Dashboard is a feature-rich interface that complements the command-line options available to you when managing our OpenStack environment. This means we can simply create a tenant (Ubuntu's interface refers to this as a project) which users can belong to, within OpenStack Dashboard.
When creating new tenants under a VlanManager-configured OpenStack network, we assign an IP address range and specific VLAN ID to this tenant. If we assign a new VLAN, ensure you configure your switches accordingly, so that the private network can communicate by using this new VLAN ID. Note that we use the following parameters with the nova-manage command when configuring a network to match our new tenant:
What we have done is name this private network appropriately, matching our tenancy. We have created a new VLAN so that traffic is encapsulated in a new VLAN, separating this traffic from other tenants. We finally specified the ID of the tenancy that was returned when we created the tenant through OpenStack Dashboard.
User management by using OpenStack Dashboard
OpenStack Dashboard gives us the ability to conduct user management through the web interface. This allows an administrator to easily create and amend users within an OpenStack environment. To manage users, you must log in as a user that is a member of the admin role.
Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/, and log in as the admin user with the password openstack.
How to do it...
User management under OpenStack Dashboard is achieved by carrying out the steps discussed in the following sections.
Adding Users
To add users, perform the following steps:
Deleting users
To delete users, perform the following steps:
Updating user details and passwords
To update user details and passwords, perform the following steps:
Adding users to tenants
To add users to tenants, perform the following steps:
Removing users from tenants
To remove users from tenants, perform the following steps:
How it works...
OpenStack Dashboard is a feature-rich interface that complements the command-line options available to us when managing our cloud environment. The interface has been designed so that the functions available are as intuitive as possible to the administrator. This means that we can easily create users, modify their membership within tenants, update passwords, and remove them from the system altogether.
Chapter 10. OpenStack Networking
In this chapter, we will cover:
Introduction
OpenStack supports three modes of networking in the current Essex release. These are Flat networking, Flat networking with DHCP, and VLAN Manager. The latter, VLAN Manager, is the default in OpenStack and allows for a multi-tenant environment where each of those separate tenants is assigned an IP address range and VLAN tag that ensures project separation. In the Flat networking modes, isolation between tenants is done at the Security Group level. In all of the available modes, OpenStack presents two networks associated with an instance: a private address range and a public address range. The private address, also referred to as the fixed IP address, is the address an instance gets assigned for the lifetime of that instance. The public address, also referred to as the floating IP address, is an address an instance gets that makes that instance available to the public, (or in many private cloud installations, routed to the rest of your network). This public (floating) address can be associated with or disassociated from an instance at any time, meaning that you can assign any particular IP on your public (floating) range to any instance. Network Address Translation (NAT) handles the communication flow of traffic to and from the instances, as it traverses the public and private network spaces.
Configuring Flat networking
In Flat networking, the IP addresses for our instances are injected from a defined subnet of IP addresses at launch. To make this work, a network bridge is configured the same on each compute and network host in our cloud environment.
Only Linux distributions that keep their network information under /etc/network/interfaces support Flat networking.
Getting ready
To begin with, ensure you're logged into the OpenStack API server.
If using the openstack1 host created in Chapter 1, Starting OpenStack Compute, we will have three interfaces in our virtual instance:
In a physical production environment, that first interface wouldn't be present and references to this NATed eth0 in the following section can be ignored.
How to do it...
To configure our OpenStack environment to use Flat networking, carry out the following steps:
sudo apt-get update
sudo apt-get -y install bridge-utils
The primary network interface
auto eth0
iface eth0 inet dhcp
eth1 public
auto eth1
iface eth1 inet static
address 172.16.0.1
netmask 255.255.0.0
network 172.16.0.0
broadcast 172.16.255.255
eth2 private
auto br100
iface br100 inet manual
bridge_ports eth2
bridge_stp off
bridge_maxwait 0
bridge_fd 0
up ifconfig eth2 up
sudo /etc/init.d/networking restart
--network_manager=nova.network.manager.FlatManager
--flat_network_bridge=br100
--flat_interface=eth2
--public_interface=eth1
sudo restart nova-compute
sudo restart nova-network
sudo nova-manage network create --fixed_range_v4=10.0.1.0/24 --label flat --bridge br100
sudo sysctl -w net.ipv4.ip_forward=1
sudo nova-manage floating create --ip_range=172.16.1.0/24
How it works...
FlatManager networking is useful for small proof-of-concept environments. They only work for Linux systems that support networking set in /etc/network/interfaces and are limited to a single network and project.
In order to make FlatManager work, we must manually configure our hosts with the same bridging, which is set to br100, as specified in /etc/nova/nova.conf:
--flat_network_bridge=br100
When our instance spawns, it will be given an address in the range that we have specified: 10.0.1.0 - 10.0.1.254, which we specified with the following command:
nova-manage network create --fixed_range_v4=ip_range --label label --bridge bridge
Note that we also don't assign an IP address to the interface that acts as our bridge—in our case, eth2.
Configuring Flat networking with DHCP
In Flat networking with DHCP, the IP addresses for our instances are assigned from a running DHCP service on the OpenStack Compute host. This service is provided by dnsmasq. As with Flat networking, a bridge must be configured manually in order for this to function.
Getting ready
To begin with, ensure you're logged in to the OpenStack API server.
If using the openstack1 host created in Chapter 1, Starting OpenStack Compute, we will have three interfaces in our virtual instance:
In a physical production environment, that first interface wouldn't be present, and references to this NATed eth0 in the following section can be ignored.
How to do it...
To configure our OpenStack environment to use Flat networking with DHCP, carry out the following steps:
sudo apt-get update
sudo apt-get -y install bridge-utils
The primary network interface
auto eth0
iface eth0 inet dhcp
eth1 public
auto eth1
iface eth1 inet static
address 172.16.0.1
netmask 255.255.0.0
network 172.16.0.0
broadcast 172.16.255.255
eth2 private
auto br100
iface br100 inet manual
bridge_ports eth2
bridge_stp off
bridge_maxwait 0
bridge_fd 0
up ifconfig eth2 up
sudo /etc/init.d/networking restart
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--network_manager=nova.network.manager.FlatDHCPManager
--flat_network_dhcp_start=10.0.1.2
--flat_network_bridge=br100
--flat_interface=eth2
--flat_injected=False
--public_interface=eth1
sudo restart nova-compute
sudo restart nova-network
keystone tenant-list
sudo nova-manage network create --fixed_range_v4=10.0.1.0/24 --label cookbook --bridge br100 --project 950534b6b9d740ad887cce62011de77a
sudo nova-manage floating create --ip_range=172.16.1.0/24
sudo sysctl -w net.ipv4.ip_forward=1
How it works...
FlatDHCPManager networking is a common option for networking, as it provides a flat network that is only limited by the IP address range assigned. It doesn't require a Linux operating system and the /etc/network/interfaces file in order to operate correctly through the use of standard DHCP for assigning addresses.
In order to make FlatDHCPManager work, we manually configure our hosts with the same bridging, which is set to br100, as specified in /etc/nova/nova.conf:
--flat_network_bridge=br100
Once set up, we configure our network range, where we can specify in our /etc/nova/nova.conf configuration file the start of this range that our instances get when they start:
--flat_network_dhcp_start=10.0.1.2
When creating the fixed (private) range using nova-manage network create, we assign this fixed range to a particular tenant (project). This allows us to have specific IP ranges that are isolated from different projects in a multi-tenant environment.
When our instance boots up, our dnsmasq service that is running on our nova-network host assigns an address from its dhcp pool to the instance.
Also note that we don't assign an IP address to the interface that we connect to our bridge, in our case eth2. We simply bring this interface up so we can bridge to it (and therefore forward traffic to the instance interfaces that are bridged to it).
Configuring VLAN Manager networking
VLAN Manager networking is the default networking mode in OpenStack. When VLAN mode is configured, each project (or tenancy) has its own VLAN and network assigned to it. Any intermediary physical switches must however support 802.1q VLAN tagging, for this to operate.
Virtual switches in our sandbox environment support VLAN tagging.
Getting ready
To begin with, ensure you're logged in to the OpenStack API server.
If using the openstack1 host created in Chapter 1, Starting OpenStack Compute, we will have three interfaces in our virtual instance:
In a physical production environment, that first interface wouldn't be present, and references to this NATed eth0 in the following section can be ignored.
How to do it...
sudo apt-get update
sudo apt-get -y install bridge-utils vlan
The primary network interface
auto eth0
iface eth0 inet dhcp
eth1 public
auto eth1
iface eth1 inet static
address 172.16.0.1
netmask 255.255.0.0
network 172.16.0.0
broadcast 172.16.255.255
eth2 private
auto eth2
iface eth2 inet manual
up ifconfig eth2 up
sudo /etc/init.d/networking restart
--network_manager=nova.network.manager.VlanManager
--vlan_start=100
--vlan_interface=eth2
--public_interface=eth1
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
sudo restart nova-compute
sudo restart nova-network
. keystonerc
keystone project-list
sudo nova-manage network create --fixed_range_v4=10.0.3.0/24 --label cookbook --vlan=100 --project 950534b6b9d740ad887cce62011de77a
sudo nova-manage floating create --ip_range=172.16.1.0/24
How it works...
VLAN Manager networking is the default and, for a private cloud environment in networks accustomed to VLANs, this option is the most flexible. It allows for per-project and secure networking by using VLANs. If you do not have a --network_manager flag in your /etc/nova/nova.conffile, OpenStack Compute will default to VlanManager.
Creating the network is no different in any of the managers; in this instance, with VlanManager, the private network is assigned to a VLAN that is specified in the --vlan=100 option. We then associate this network and VLAN with our cookbook project, by specifying the ID of that tenant, using the --project option.
On our OpenStack Compute host, this creates an interface named vlan100, which is the tagged interface to eth2, as specified in --vlan_interface from /etc/nova/nova.conf.
Configuring per-project (tenant) IP ranges
Projects in Nova are a way of keeping user's cloud resources separate. In a project, there are a number of images, instances, and its own network resources assigned to it. When we create a project, we assign it its own VLAN with its own private and public ranges. For example, we may wish to create a development tenancy that is separate from the performance testing tenancy and live tenancies.
Getting ready
To begin with, ensure you're logged in to the OpenStack API server (our OpenStack VirtualBox Virtual Machine, openstack1, created in Chapter 1, Starting OpenStack Compute).
How to do it...
In order to configure per-project (tenant) IP ranges, carry out the following steps:
Use the admin token
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
keystone tenant-list
This returns a list of projects in our example.
keystone tenant-create --name=development
An example of running the previous command is shown as follows:
sudo nova-manage network create --label=development --fixed_range_v4=10.0.4.0/24 --project_id=bfe40200d6ee413aa8062891a8270edb --vlan=101
How it works...
Creating IP address ranges for projects is done as part of creating new projects (tenants). We first create the project, which returns an ID that we use when creating that network, using the following syntax:
sudo nova-manage network create --label=project_name --fixed_range_v4=ip_range --bridge_interface=interface --project_id=id --vlan=vlan_id
Automatically assigning fixed networks to tenants
When using VlanManager to separate tenants, we can manually assign VLANs and network ranges to them by creating a secure multi-tenant environment. We can, however, have OpenStack manage this association for us, so that when we create a project it automatically gets assigned these details.
Getting ready
To begin with, ensure you are logged in to the OpenStack API server as well as a client that can access the keystone environment.
How to do it...
--vlan_start=100
sudo nova-manage network create --num_networks=10 --network_size=256 --fixed_range_v4=10.0.0.0/8 --label=auto
You can specify an alternative VLAN start ID on the command line by adding in the --vlan=id option, where id is a number.
How it works...
By specifying the --num_networks option and specifying the --network_size option (the number of IPs in each of the created networks), we can tell our OpenStack environment to create multiple networks within the range specified by --fixed_range_v4. When projects are created now, rather than having to manually associate an address range with a tenant, they are automatically assigned a VLAN, starting from the --vlan_start ID, as specified in /etc/nova/nova.conf.
Modifying a tenant's fixed network
To ensure that our OpenStack environment is able to separate traffic from one tenant to another, we assign different fixed ranges to each. When a fixed network is no longer required, or we want to assign a particular tenant to a specific network, we can use the nova-manage command to modify these details.
Getting ready
To begin with, ensure you're logged in to the OpenStack API server as well as to a client that can access the keystone environment.
How to do it...
To assign a particular network to a tenant, carry out the following steps:
Use the admin token
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0
keystone tenant-list
An example of running the previous commands is as follows:
sudo nova-manage network list
An example of running the previous commands is as follows:
sudo nova-manage network modify --project=bfe40200d6ee413aa8062891a8270edb --fixed_range=10.0.3.0/24
How it works...
When configuring tenants in our OpenStack environment, it is recommended (although not a requirement) to have their own private (fixed) range assigned to them. This allows for those instances in a particular tenant to be kept separated through their different ranges along with appropriately set security group rules.
The syntax to modify a network is as follows:
nova-manage network modify --project=project_id --fixed_range=ip_range
Manually associating floating IPs to instances
When an instance boots, it is assigned a private IP address. This IP range is only accessible within our virtual environment's network. To access this instance to serve the rest of the network or the public, we need to assign it a floating IP, which is the range we configure when we set up public IP ranges.
There are two ways to allocate floating IPs to instances: either automatically, as the instance is spawned, or manually through our client tools. In both cases, our tenancy must have a range of floating IPs assigned to it so they can be allocated.
Getting ready
While on the OpenStack API host, for example, openstack1, run the following command to list any floating ranges we have assigned:
sudo nova-manage floating list
This should list the IP range we originally set up when we first installed our openstack1 server.
None 172.16.1.1 None nova eth1
None 172.16.1.2 None nova eth1
...
To allocate a floating IP to an instance, ensure you're logged in to a client that is running euca2ools or Nova Client.
How to do it...
To assign a floating (public) IP address to an instance using euca2ools, carry out the following steps:
euca-allocate-address
euca-associate-address -i i-00000002 172.16.1.1
To assign a floating (public) IP address to an instance using Nova Client, carry out the following steps:
nova floating-ip-create
nova add-floating-ip 6c79552c-7006-4b74-a037-ebe9707cc9ce 172.16.1.1
We are now able to communicate with that instance using this assigned floating IP address.
How it works...
Instances are not instantly accessible outside of the OpenStack host unless a public IP address is attached to it. Manually associating an address consists of the following two steps:
This is an important concept, as it allows you to control the allocation of IP addresses as well as allocating specific addresses to specific instances, which is very much like Amazon's Elastic IP feature.
Manually disassociating floating IPs from instances
In our cloud environment, we have the ability to add and remove access to and from the instance publicly by adding or removing a floating IP address to or from it. This flexibility allows us to move services seamlessly between instances. To the outside world it would appear to be the same instance, as their access to it via that IP has not changed to them.
Getting ready
To begin with, ensure you are logged in to a client machine running euca2ools or Nova Client.
How to do it...
To disassociate a public (floating) address from an instance using euca2ools, carry out the following steps:
euca-describe-instances
euca-disassociate-address 172.16.1.1
If we no longer require that floating IP address for our project, we can remove it from our project's pool by issuing the following command:
euca-release-address 172.16.1.1.
To disassociate a public (floating) address from an instance using Nova Client, carry out the following:
nova list
nova remove-floating-ip 2abf8d8d-6f45-42a5-9f9f-63b6a956b74f 172.16.1.1
If we no longer require that floating IP address for our project, we can remove it from our project's pool by issuing the following command:
nova floating-ip-delete 172.16.1.1
How it works...
Removing a floating IP address is very straightforward. When using euca2ools, we use the euca-disassociate-address command or, when using Nova Client, we use the remove-floating-ip option to the nova command.
Automatically assigning floating IPs
When an instance boots, it is assigned a private IP address. This private IP address is only accessible within our virtual environment's network. To access this instance to serve the rest of the network or the public, we need to assign it a floating IP, which is the range we configure when we set up public IP ranges.
Automatically assigning floating IPs to instances gives us the ability, in our environment, to have access to all instances on our network. Although there are times when we might want to manually assign addresses (for example, where we have a limited number of IPs assigned to a tenancy), the convenience of having this done for you is very beneficial and makes our OpenStack environment operate much closer to how Amazon EC2 operates.
Getting ready
To begin with, ensure you are logged in to the OpenStack API server. We will also be using the client machine, so log in to your client that is running euca2ools or Nova Client.
How to do it...
To ensure each of the instances gets a public (floating) IP address assigned to it when it is launched, carry out the following steps:
sudo nova-manage floating list
An example of the output when listing the floating IPs is shown as follows, truncated for brevity:
None 172.16.1.1 None nova eth1
None 172.16.1.2 None nova eth1
...
--auto_assign_floating_ip
sudo restart nova-network
sudo restart nova-network
How it works...
Instances aren't instantly accessible outside of the OpenStack host unless a public IP address is assigned to them. Configuring our OpenStack environment so that each instance is assigned an address on launch makes the instances instantly accessible.
Chapter 11. In the Datacenter
In this chapter, we will cover:
Introduction
OpenStack is a suite of software designed to offer scale-out cloud environments deployed in datacenters around the world. Managing installation of software in a remote location is different (and sometimes challenging), compared to being able to install software locally, and so tools and techniques have been developed to ease this task. Design considerations of how to deal with hardware and software failure must also be taken into consideration in operational environments. Identifying single points of failure (SPOF) and adding ways of making them resilient ensures our OpenStack environment remains available when something goes wrong.
This chapter introduces some methods and software to help manage OpenStack in production datacenters.
Installing MAAS for bare-metal provisioning
There are a number of ways, such as Cobbler and Kickstart, to provision an operating system such as Ubuntu to bare-metal. Ubuntu provides a convenient tool for bare-metal provisioning of servers in our datacenter that they call MAAS , which stands for Metal-as-a-Service. This tool allows us to simply set up a network boot environment that then allows us to allocate services to it, for example, OpenStack services, such as Compute or Dashboard.
Getting ready
We need to identify a server on the network that will be running the MAAS services, such as PXE Boot and TFTP Daemon services. Log in to this server to install the MAAS services. This server will need Internet access to pull in the required Ubuntu packages.
How to do it...
To install MAAS for the installation of Ubuntu on servers on our network, carry out the following steps:
sudo apt-get update
sudo apt-get -y install maas
sudo maas createsuperuser
An example of running the previous command is as follows:
Username (Leave blank to use 'root'): admin
E-mail address: root@mycloudnetwork.com
Password:
Password (again):
Superuser created successfully.
sudo apt-get -y install maas-dhcp
Set the network range for DHCP Clients:
172.16.0.11,172.16.0.200
Set Default Gateway for DHCP Clients:
172.16.0.250
internal.mycloudnetwork.com
sudo maas-import-isos
How it works...
MAAS provides PXE boot services that reduce the complexity with network boot bare-metal environments. Installation is very easy with these packages, with the appropriate configuration done at installation time.
The main command-line tool used is called maas, and we use this to create an administrator user that is used to create further accounts if required.
With everything configured, we then perform a pull of the ISOs from ubuntu.com. This job is run weekly, but we must first kick this off manually, once installed.
Using MAAS for bare-metal provisioning of hosts
MAAS allows us to provision hosts on our network from bare-metal, meaning from power-on, the hosts are installed appropriately for our use.
Getting ready
The MAAS server has a web interface that we use to set up our hosts. Identify the server that has MAAS installed.
How to do it...
Once MAAS is installed, we can use it to provision servers on our network by carrying out the following steps:
How it works...
Using MAAS is done in a few stages. The first is to notify MAAS of the node that will be installed using MAAS, by enlisting it with the service. This sends some information over to MAAS, which will identify it (specifically the MAC addresses of the interfaces on the node). Once MAAS is aware of the node, we can start the node—which MAAS can boot automatically using Wake-On-Lan (WOL)—which will then bootstrap the node that is ready for an OS installation. Once bootstrapped, we can perform a final PXE boot that will then install the operating system for us, ready for further work—particularly Juju.
Installing and configuring Juju
Ubuntu provides a tool named Juju that allows us to not only install packages, but to also install and configure the services by way of charms. Charms are a collection of scripts and descriptions on how to install and configure that service. For example, a charm for, say Wordpress, will install the Wordpress PHP files, as well as allow us to attach the Wordpress installation to a MySQL backend, or attach to a load balancer through relationships with those other services.
Getting ready
Log in to a shell on the MAAS server.
How to do it...
Carry out the following steps to install and configure Juju on our MAAS host:
sudo apt-get update
sudo apt-get -y install juju
environments:
maas:
type: maas
maas-server: 'http://172.16.0.250:80/MAAS'
maas-oauth: 'tcWxFpwbWqyeBFDd4P:HTCSqrsw7XQKBcvm8n:bp67u5TkSLu2wf2b7wUS2ckLjwELCZED'
admin-secret: 'nothing'
default-series: precise
ssh-keygen -t rsa -N ""
How it works...
Juju is a very powerful tool to allow you to manage your environments very easily using simple commands. Since Ubuntu 12.04, Juju is part of the distribution and works in tandem with MAAS to allow us to provision bare-metal services using Juju commands.
By configuring Juju to work with MAAS in this way, we can launch new machines with configured services by instructing MAAS to power on servers and to install that service once the relevant operating system has been installed. This, in our case, will be Ubuntu 12.04, precisely as dictated by the default-series configuration option.
Ensure that we have the correct MAAS API key, where it is states maas-oauth.
Finally, putting in our public SSH key into MAAS allows us to use our Juju environment using SSH keys.
Installing OpenStack services using Juju
With Juju installed and configured to work with MAAS, we're ready to configure Juju to install our OpenStack environment.
At this point, it is assumed you have at least nine servers available, with two separate network cards in each to deploy OpenStack to, in order to provision an OpenStack environment using Juju and MAAS. This is because Juju installs each service to a new server.
Getting ready
Log in to a shell on the MAAS server.
How to do it...
To install OpenStack using Juju, carry out the following steps:
keystone:
admin-password: "openstack"
nova-cloud-controller:
network-manager: "FlatDHCPManager"
nova-volume:
This must be a free block device that is writable on the # nova-volume host.
block-device: "xvdb"
overwrite: "true"
juju bootstrap
It might take a while for a node to fully bootstrap as it installs and pulls down required packages. Check with juju status -v, for an update on whether the bootstrap node has finished installing.
juju deploy mysql
juju deploy rabbitmq-server
juju deploy --config=.juju/openstack.cfg keystone
juju deploy --config=.juju/openstack.cfg nova-cloud-controller
juju deploy --config=.juju/openstack.cfg nova-volume
juju deploy nova-compute
juju deploy glance
juju deploy openstack-dashboard
juju add-relation keystone mysql
ju
ju add-relation nova-cloud-controller mysql
juju
add-relation nova-cloud-controller rabbitmq
juj
u add-relation nova-cloud-controller glance
juju add-relation nova-cloud-controller keystone
juju add-relation nova-volume mysql
juju add-relation nova-volume rabbitmq
juju add-relation nova-compute my
sql
juju add-relation nova-compute rab
bitmq
juju add-relation nova-compute gla
nce
juju add-relation nova-compute keystone
juju add-relation nova-compute:network-manager nova-cloud-controller:network-manager
juju add-relation glance mysql
juju add-relation glance keystone
juju add-relation openstack-dashboard keystone
juju status openstack-dashboard
How it works...
Juju is a powerful tool for deploying environments and services. With Juju, we're able to utilize the power of apt with the ability to link services together known as "relations" in Juju terminology.
We first set up a configuration file that we can refer to when installing some components of OpenStack. This adds an important level of flexibility to our Juju use.
With the configuration of OpenStack ready, we are now ready to begin using Juju. The first step is to bootstrap the environment. This sets up a server that is used to provision our environment. Following this, we install the services one by one. Currently, Juju only supports installation of services onto their own nodes—so every Juju deployment step utilizes a new node.
With the services deployed, we simply define the relationships between the services—which is another term for connecting the services together. For example, we connect our keystone server with the MySQL server. We also connect keystone to compute, glance, and so on, as they all rely on OpenStack Identity Service. Similarly, the services that rely on mysql are all connected together. This continues until all relationships have been set up.
Once completed, given that Juju decides where to install the services, we need to discover which node has the OpenStack Dashboard installed. To do this, we simply ask for status information about openstack-dashboard, which returns the URL for us to use.
Increasing OpenStack Compute capacity
Adding extra Compute capacity is very simple with OpenStack. You essentially add in as many compute nodes as required, each having the same configuration file that tells OpenStack of its existence.
Adding Compute capacity using Juju is simply achieved by enlisting a new server into MAAS, and then running the following commands:
juju deploy nova-compute
juju add-relation nova-compute mysql
juju add-relation nova-compute rabbitmq
juju add-relation nova-compute glance
juju add-relation nova-compute keystone
juju add-relation nova-compute:network-manager nova-cloud-controller:network-manager
If Juju is not configured, add Compute hosts manually using the package manager, apt, and carry out the steps in the following section.
Getting ready
Ensure that Ubuntu is installed on the new node and networking has been configured appropriately. Log in to a shell on this new node that will become the extra Compute resource that we are adding to our OpenStack Compute cluster.
How to do it...
To increase OpenStack Compute capacity, carry out the following steps:
sudo apt-get update
sudo apt-get -y install nova-compute nova-network nova-api
sudo apt-get -y install ntp
configure
sudo service ntpd start
On an existing host, copy /etc/nova to new host (openstackX)
cd /etc
sudo scp -r nova/ openstackX:/tmp
On new host (openstackX) host
sudo mv /tmp/nova /etc
sudo chown -R nova:nova /etc/nova
sudo start nova-compute
sudo start nova-api
sudo start nova-network
sudo nova-manage service list
How it works...
Scaling out OpenStack Compute using Juju is a very simple process. Manually adding in hosts is equally as straightforward, as each OpenStack host is configured with the same nova.conf configuration files. We simply install the services, configure the service (by copying over existing configuration files, as they reference the same RabbitMQ, MySQL, Keystone services, and so on), and ensure that the servers are time-synced. When we start up the services (for example, adding a row into the relevant table), they contact the supporting services, which in turn makes the other services aware of their existence. The scheduler will then take advantage of this new node to launch instances.
MySQL clustering using Galera
OpenStack can be backed by a number of database backends, and one of the most common options is MySQL. There are a number of ways to make MySQL more resilient and available. The following approach uses a load balancer to front a multi-read/write master with Galera, taking care of the synchronous replication required in such a setup. The advantage of this is that we are adding resilience in the event of a database node failure, as each node is getting ready.
We'll be using a free online configuration tool from SeveralNines.com to configure a 3-node, multi-master MySQL setup with Galera, monitored using the free cluster management interface, cmon, using a fourth node. This implies we have four servers available, running Ubuntu (other platforms are supported) with enough memory and disk space for our environment and at least two CPUs available.
How to do it...
To cluster MySQL using Galera, carry out the following steps:
MySQL and Galera configuration
This is a third-party service asking for details pertinent to our environment. Do not include passwords for the environment that this will be deployed to. The process downloads scripts and configuration files that should be edited to suit before execution with real settings.
Cloud Provider: none/on-premise
Operating System: Ubuntu/Debian
Platform: Linux 64-bit (x86_64)
Number of Galera Servers: 3+1
MySQL Server password (root user): openstack
Port Number: 3306
Config directory: /etc/
OS User: galera
CMON DB password (cmon user): cmon
System Memory (MySQL Servers): (at least 512Mb)
WAN: no
Skip DNS Resolve: yes
Database Size < 8Gb
MySQL Usage: Medium write/high read
Number of cores: 2
Innodb_buffer_pool_size: (at least 358) Mb
Innodb_file_per_table: checked
ClusterControl Server: 172.16.0.20
System Memory: (at least 512Mb)
Datadir: <same as for mysql>
Installdir: /usr/local
Web server(apache) settings
Apache User: www-data
WWWROOT: /var/www/
Galera Servers
The following table lists the IP address, data directory, and installation directory for the servers:
Server-id	IP-address	Datadir	Installdir
1 | 172.16.0.21 | /var/lib/mysql/ | /usr/local/ |
2 | 172.16.0.22 | same as mentioned earlier | same as mentioned earlier |
3 | 172.16.0.23 | same as mentioned earlier | same as mentioned earlier |
Node preparation
ssh-keygen -t rsa -N ""
copy ssh key to 172.16.0.20, 172.16.0.21, 172.16.0.22
and 172.16.0.23
for a in {20..23}
do
ssh-copy-id -i .ssh/id_rsa.pub galera@172.16.0.${a}
done
for a in {20..23}
do
ssh galera@172.16.0.${a} ls
done
echo "galera ALL=(ALL:ALL) NOPASSWD:ALL" | sudo tee -a /etc/sudoers.d/galera
Then fix the permissions to prevent future warnings
sudo chmod 0440 /etc/sudoers.d/galera
Installation
ssh galera@172.16.0.20
tar zxf s9s-galera-2.0.0.tar.gz
cd s9s-galera-2.0.0/mysql/scripts/install
bash ./deploy.sh 2>&1 |tee cc.log
Configuration of database cluster for OpenStack
Click on the Privileges button again to refresh the screen to see the user just created.
as shown in the following screenshot:
How it works...
Galera replication is a synchronous multi-master plugin for InnoDB. It has the advantage that any client can write to any node in the cluster and not suffer from write conflicts or a data replication lag. There are some caveats to a Galera-backed MySQL cluster that must be considered though. Any database write is only as fast as the slowest node, to maintain synchronicity. As the number of nodes in a Galera cluster increases, the time to write to the database can increase. And finally, given that each node maintains a copy of the database on its local storage, it isn't as space-efficient as using a cluster based on shared storage.
Setting up a highly available MySQL cluster with Galera for data replication is easily achieved using the freely available online configuration tool from SeveralNines. By following the process, we end up with four nodes, of which three are assigned to running MySQL with Galera and the fourth allows us to manage the cluster.
With the automatic routine installation complete, we can create our databases and users and can assign privileges using the ClusterControl interface, without needing to think about any replication issues. In fact, we can create these by attaching to any one of the three MySQL servers we would normally treat independently, and the data will automatically sync to the other nodes.
For OpenStack, we create three databases (nova, glance, and keystone) and assign appropriate users and privileges to these databases. We can then use this information to put into the appropriate configuration files for OpenStack.
Configuring HA Proxy for MySQL Galera load balancing
With our MySQL Galera cluster configured, each of the nodes is able to take traffic, and the writes are seamlessly replicated to other nodes in the cluster. We could use any of the MySQL node addresses and place them in our configuration files, but if that node failed, we would not have a database to attach to and our OpenStack environment would fail. A solution to this is to front the MySQL cluster using load balancing. Given that any of the nodes are able to take reads and writes, with data consistency, load balancing is a great solution.
The steps in the following section configure a highly available 2-node HA Proxy setup that we can use as a MySQL endpoint to place in our OpenStack configuration files. In production, if load balancing is desired, it is recommended that dedicated HA load balancers be used.
Getting ready
Configure two servers, both running Ubuntu 12.04, that are configured on the same network as our OpenStack environment and MySQL Galera cluster. In the following steps, the two nodes will be on IP addresses 172.16.0.20 and 172.16.0.21, with a floating IP address (that has been set up using keepalived) of 172.16.0.30. This address is used when we configure database connections in our OpenStack configuration files.
How to do it...
To configure HA Proxy for MySQL Galera load balancing, carry out the following steps:
Installation of HA Proxy for MySQL
sudo apt-get update
sudo apt-get -y install haproxy
global
log 127.0.0.1 local0
log 127.0.0.1 local1 notice
#log loghost local0 info
maxconn 4096
#chroot /usr/share/haproxy
user haproxy
group haproxy
daemon
#debug
#quiet
defaults
log global
mode http
option tcplog
option dontlognull
retries 3
option redispatch
maxconn 4096
timeout connect 50000ms
timeout client 50000ms
timeout server 50000ms
listen mysql 0.0.0.0:3306
mode tcp
balance roundrobin
option tcpka
option mysql-check user haproxy
server galera1 172.16.0.21:3306 weight 1
server galera2 172.16.0.22:3306 weight 1
server galera3 172.16.0.23:3306 weight 1
sudo sed -i 's/^ENABLED.*/ENABLED=1/' /etc/defaults/haproxy
sudo service haproxy start
sudo apt-get update
sudo apt-get -y install keepalived
net.ipv4.ip_nonlocal_bind=1
sudo sysctl -p
vrrp_script chk_haproxy {
script "killall -0 haproxy" # verify the pid exists or not
interval 2 # check every 2 seconds
weight 2 # add 2 points if OK
}
vrrp_instance VI_1 {
interface eth1 # interface to monitor
state MASTER
virtual_router_id 51 # Assign one ID for this route
priority 101 # 101 on master, 100 on backup
virtual_ipaddress {
172.16.0.30 # the virtual IP
}
track_script {
chk_haproxy
}
}
sudo service keepalived start
vrrp_script chk_haproxy {
script "killall -0 haproxy" # verify the pid exists or not
interval 2 # check every 2 seconds
weight 2 # add 2 points if OK
}
vrrp_instance VI_1 {
interface eth1 # interface to monitor
state BACKUP
virtual_router_id 51 # Assign one ID for this route
priority 100 # 101 on master, 100 on backup
virtual_ipaddress {
172.16.0.30 # the virtual IP
}
track_script {
chk_haproxy
}
}
OpenStack Configuration using a floating IP address
With both HA Proxy servers running the same HA Proxy configuration, and with both running keepalived, we can use the virtual_ipaddress address (our floating IP address) configured as the address that we would then connect to and use in our configuration files. In OpenStack, we would change the following to use our floating IP address of 172.16.0.30:
/etc/nova/nova.conf
--sql_connection=mysql://nova:openstack@172.16.0.30/nova
/etc/keystone/keystone.conf
[sql]
connection = mysql://keystone:openstack@172.16.0.30/keystone
/etc/glance/glance-registry.conf
sql_connection = mysql://glance:openstack@172.16.0.30/glance
How it works...
HA Proxy is a very popular and useful proxy and load balancer that makes it ideal for fronting a MySQL cluster to add load-balancing capabilities. It is simple to set up the service to front MySQL.
The first requirement is to listen on the appropriate port, which for MySQL is 3306. The listen line in the configuration files here also specifies it will listen on all addresses by using 0.0.0.0 as the address, but you can bind this to a particular address by specifying this to add an extra layer of control in our environment.
To use MySQL, the mode must be set to tcp and we set keepalived with the tcpka option, to ensure long-lived connections are not interrupted and closed when a client opens up a connection to our MySQL servers.
The load balance method used is roundrobin, which is perfectly suitable for a multi-master cluster where any node can perform reads and writes.
We add in a basic check to ensure our MySQL servers are marked off-line appropriately. Using the inbuilt mysql-check option (which requires a user to be set up in MySQL to log in to the MySQL nodes and quit), when a MySQL server fails, the server is ignored and traffic passes to a MySQL server that is alive. Note that it does not perform any checks for whether a particular table exists—though this can be achieved with more complex configurations using a check script running on each MySQL server and calling this as part of our checks.
The final configuration step for HA Proxy is listing the nodes and the addresses that they listen on, which forms the load balance pool of servers.
Having a single HA Proxy acting as a load balancer to a highly available multi-master cluster is not recommended, as the load balancer then becomes our single point of failure. To overcome this, we can simply install and configure keepalived, which gives us the ability to share a floating IP address between our HA Proxy servers. This allows us to use this floating IP address as the address to use for our OpenStack services.
Increasing resilience of OpenStack services
OpenStack has been designed for highly scalable environments where it is possible to avoid single point of failures (SPOFs), but you must build this into your own environment. For example, Keystone is a central service underpinning your entire OpenStack environment, so you would build multiple instances into your environment. Glance is another service that is a key to the running of your OpenStack environment. By setting up multiple instances running these services, controlled with Pacemaker and Corosync, we can enjoy an increase in resilience to failure of the nodes running these services.
This recipe represents two nodes running both Glance and Keystone, controlled by Pacemaker with Corosync in active/passive mode, that allows for a failure of a single node. In a production environment, it is recommended that a cluster consist of at least three nodes to ensure resiliency and consistency in the case of a single node failure.
Getting ready
We must first create two servers configured appropriately for use with OpenStack. As these two servers will just be running Keystone and Glance, only a single network interface and address on the network that our OpenStack services communicate on will be required. This interface can be bonded for added resilience.
How to do it...
To increase the resilience of OpenStack services, carry out the following steps:
First node (openstack1)
sudo apt-get update
sudo apt-get -y install pacemaker corosync
172.16.0.1 openstack1.cloud.test openstack1
172.16.0.2 openstack2.cloud.test openstack2
interface {
The following values need to be set based on your environment
ringnumber: 0
bindnetaddr: 172.16.0.0
mcastaddr: 226.94.1.1
mcastport: 5405
}
Corosync uses multi-cast. Ensure the values don't conflict with any other multi-cast-enabled services on your network.
sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync
sudo corosync-keygen
while /bin/true; do dd if=/dev/urandom of=/tmp/100 bs=1024 count=100000; for i in {1..10}; do cp /tmp/100 /tmp/tmp_$i_$RANDOM; done; rm -f /tmp/tmp_* /tmp/100; done
Second node (openstack2)
sudo apt-get update
sudo apt-get install pacemaker corosync
172.16.0.1 openstack1.cloud.test openstack1
172.16.0.2 openstack2.cloud.test openstack2
sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync
172.16.0.1 openstack1.cloud.test openstack1
172.16.0.2 openstack2.cloud.test openstack2
First node (openstack1)
With the /etc/corosync/corosync.conf file modified and the /etc/corosync/authkey file generated, we copy this to the other node (or nodes) in our cluster, as follows:
scp /etc/corosync/corosync.conf /etc/corosync/authkey openstack@172.16.0.2:
Second node (openstack2)
We can now put the same corosync.conf file as used by our first node, and the generated authkey file, into /etc/corosync:
sudo mv corosync.conf authkey /etc/corosync
Start the Pacemaker and Corosync services
sudo service pacemaker start
sudo service corosync start
sudo crm_mon -1
============
Last updated: Tue Jun 12 21:07:05 2012
Last change: Tue Jun 12 21:06:10 2012 via crmd on openstack1
Stack: openais
Current DC: openstack1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
0 Resources configured.
============
Online: [openstack1 openstack2]
First node (openstack1)
sudo crm_verify -L
sudo crm configure property stonith-enabled=false
sudo crm_verify -L
sudo crm configure property no-quorum-policy=ignore
sudo crm configure primitive FloatingIP ocf:heartbeat:IPaddr2 params ip=172.16.0.10 cidr_netmask=32 op monitor interval=30s
sudo crm_mon -1
============
Last updated: Tue Jun 12 21:23:07 2012
Last change: Tue Jun 12 21:06:10 2012 via crmd on openstack1
Stack: openais
Current DC: openstack1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
1 Resources configured.
============
Online: [openstack1 openstack2]
FloatingIP (ocf::heartbeat:IPaddr2): Started openstack1
Keystone across 2 nodes with FloatingIP
Assigned IP
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_TENANT_NAME=cookbook
export OS_AUTH_URL=http://172.16.0.1:5000/v2.0/
keystone user-list
FloatingIP
export OS_AUTH_URL=http://172.16.0.10:5000/v2.0/
keystone user-list
sudo apt-get update
sudo apt-get install keystone python-mysqldb
sudo stop keystone
sudo start keystone
Second Node
export OS_AUTH_URL=http://172.16.0.2:5000/v2.0/
keystone user-list
Glance across 2 nodes with FloatingIP
sudo apt-get install glance python-swift
sudo start glance-api
sudo start glance-registry
First node
glance -I admin -K openstack -T cookbook -N http://172.16.0.1:5000/v2.0 index
Second node
glance -I admin -K openstack -T cookbook -N http://172.16.0.2:5000/v2.0 index
FloatingIP
glance -I admin -K openstack -T cookbook -N http://172.16.0.10:5000/v2.0 index
Configuring Pacemaker for use with Glance and Keystone
wget https://raw.github.com/madkiss/keystone/ha/tools/ocf/keystone
wget https://raw.github.com/madkiss/glance/ha/tools/ocf/glance-api
wget https://raw.github.com/madkiss/glance/ha/tools/ocf/glance-registry
sudo mkdir -p /usr/lib/ocf/resource.d/openstack
sudo cp keystone glance-api glance-registry /usr/lib/ocf/resource.d/openstack
sudo chmod 755 /usr/lib/ocf/resource.d/openstack/*
sudo crm ra list ocf openstack
sudo crm cib new conf-keystone
sudo crm configure property stonith-enabled=false
sudo crm configure property no-quorum-policy=ignore
sudo crm configure primitive p_keystone ocf:openstack:keystone \
params config="/etc/keystone/keystone.conf" \
os_auth_url="http://localhost:5000/v2.0/" \
os_password="openstack" \
os_tenant_name="cookbook" \
os_username="admin" \
user="keystone" \
client_binary="/usr/bin/keystone" \
op monitor interval="30s" timeout="30s"
sudo crm cib use live
sudo crm cib commit conf-keystone
sudo crm cib new conf-glance-api
sudo crm configure property stonith-enabled=false
sudo crm configure property no-quorum-policy=ignore
sudo crm configure primitive p_glance_api ocf:openstack:glance-api \
params config="/etc/glance/glance-api.conf" \
os_auth_url="http://localhost:5000/v2.0/" \
os_password="openstack" \
os_tenant_name="cookbook" \
os_username="admin" \
user="glance" \
client_binary="/usr/bin/glance" \
op monitor interval="30s" timeout="30s"
sudo crm cib use live
sudo crm cib commit conf-glance-api
sudo crm cib new conf-glance-registry
sudo crm configure property stonith-enabled=false
sudo crm configure property no-quorum-policy=ignore
sudo crm configure primitive p_glance_registry ocf:openstack:glance-registry \
params config="/etc/glance/glance-registry.conf" \
os_auth_url="http://localhost:5000/v2.0/" \
os_password="openstack" \
os_tenant_name="cookbook" \
os_username="admin" \
user="glance" \
op monitor interval="30s" timeout="30s"
sudo crm cib use live
sudo crm cib commit conf-glance-registry
sudo crm_mon -1
Last updated: Tue Jun 12 22:55:25 2012
Last change: Tue Jun 12 21:06:10 2012 via crmd on openstack1
Stack: openais
Current DC: openstack1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
4 Resources configured.
============
Online: [openstack1 openstack2]
FloatingIP (ocf::heartbeat:IPaddr2): Started openstack1
p_keystone (ocf::openstack:keystone):Started openstack1
p_glance_api (ocf::openstack:glance_api):Started openstack1
p_glance_registry (ocf::openstack:glance_registry):Started openstack1
Here's what to do if you receive an error similar to the following:
Failed actions:
p_keystone_monitor_0 (node=ubuntu2, call=3, rc=5, status=complete): not installed
Issue the following to clear the status and then view the status again:
sudo crm_resource -P
sudo crm_mon -1
We now have Keystone and Glance running on two separate nodes, where a node can fail and the services will still be available.
How it works...
Making OpenStack services highly available is a complex subject, and there are a number of ways to achieve this. Using Pacemaker and Corosync is a very good solution to this problem. It allows us to configure a floating IP address assigned to the cluster that will attach itself to the appropriate node (using Corosync), as well as control services using agents, so the cluster manager can start and stop services as required, to provide a highly available experience to the end user.
By installing both Keystone and Glance on two separate nodes (each configured appropriately with a remote database backend such as MySQL and Glance), having the images available using a shared filesystem or cloud storage solution means we can configure these services with Pacemaker to allow Pacemaker to monitor them. If unavailable on the active node, Pacemaker can start those services on the passive node.
Configuration of Pacemaker is predominantly done with the crm tool. This allows us to script the configuration but, if invoked on its own, allows us to invoke an interactive shell that we can use to edit, add, and remove services as well as query the status of the cluster. This is a very powerful tool to control an equally powerful cluster manager.
With both nodes running Keystone and Glance, and with Pacemaker and Corosync running and accessible on the floating IP provided by Corosync, we configure Pacemaker to control the running of the Keystone and Glance services by using an OCF agent written specifically for this purpose. The OCF agent uses a number of parameters that will be familiar to us—whereby they require the same username, password, tenant, and endpoint URL that we would use in a client to access that service.
A timeout of 30 seconds was set up for both the agent and when the floating IP address moves to another host.
Bonding network interfaces for redundancy
Running multiple services across multiple machines and implementing appropriate HA methods ensures a high degree of tolerance to failure within our environment, but if it's the physical network that fails and not the service, outages will occur if traffic cannot flow to and from that service. Adding in NIC bonding (also known as teaming or link aggregation) can help alleviate these issues by ensuring traffic flows through diverse routes and switches as appropriate.
Getting ready
NIC bonding requires co-ordination between system administrators and the network administrators, who are responsible for the switches. There are various methods available for NIC bonding. The method presented here is the active-passive mode, which describes that traffic will normally flow through a single switch, leaving the other teamed NIC to take no traffic until it is required.
How to do it...
Setting up NIC bonding in Ubuntu 12.04 requires an extra package installation to allow for bonding.
sudo apt-get update
sudo apt-get -y install ifenslave
auto eth1
iface eth1 inet manual
bond-master bond0
bond-primary eth1 eth2
auto eth2
iface eth2 inet manual
bond-master bond0
bond-primary eth1 eth2
auto bond0
iface bond0 inet static
address 172.16.0.101
netmask 255.255.0.0
network 172.16.0.0
broadcast 172.16.255.255
bond-slaves none
bond-mode 1
bond-miimon 100
alias bond0 bonding
options bonding mode=1 miimon=100
sudo service networking restart
How it works...
Bonding network interfaces in Ubuntu to cater to switch failure is relatively straightforward, providing co-ordination with how the switches are set up and configured. With different paths to different switches configured, and each network interface going to separate switches, a high level of fault tolerance to network-level events such as a switch failure can be achieved.
To do this, we simply configure our bonding in the traditional /etc/network/interfaces file under Ubuntu, but we specify which NICs are teamed with which bonded interface. Each bonded interface configured has at least a unique pair of interfaces assigned to it, and then we configure that bonded interface, bond0, with the usual IP address, netmask, and so on. We tag a few options specifically to notify Ubuntu that this is a bonded interface of a particular mode.
To ensure the bonding module that gets loaded as part of the kernel has the right mode assigned to it, we configure the module in /etc/modprobe.d/bonding.conf. When the bonding module loads along with the network interface, we end up with a server that is able to withstand isolated switch failures.
See also
Chapter 12. Monitoring
In this chapter, we will cover:
Introduction
There are a number of ways to monitor computer systems and their services but the same principles remain. Adequate monitoring and alerting of services is the only way to ensure we know there's a problem before our customers. From SNMP traps to agents running on machines specific to the services running, configuration of monitoring is an essential step in production deployments of OpenStack. This chapter introduces some tools that can be used to monitor services within our OpenStack environment.
Monitoring Compute services with Munin
Munin is a network and system monitoring application that outputs graphs through a web interface. It comprises of a master server that gathers the output from the agents running on each of our hosts.
Getting ready
We will be configuring Munin on a server that has access to the OpenStack Compute environment hosts. Ensure this server has enough RAM, disk, and CPU capacity for the environment you are running. As a bare minimum in a test environment, it is possible to run this on a VM with 1vCPU, 1.5 GB of RAM, and 8 GB of disk space.
How to do it...
To set up Munin with OpenStack, carry out the following steps:
Munin Master Server
The Munin Master node is the server that provides us with the web interface to view the collected information about the nodes in our network and must be installed first, as follows:
sudo apt-get update
sudo apt-get -y install apache2
sudo apt-get -y install munin munin-plugins-extra
sudo service apache2 restart
Allow from 192.168.1.
sudo service apache2 reload
[openstack1.cloud.test]
address 172.16.0.1
use_node_name yes
[openstack2.cloud.test]
address 172.16.0.2
use_node_name yes
We can now proceed to configure the nodes openstack1 and openstack2.
Munin nodes
With the Munin Master server installed, we can now configure the Munin nodes. These have an agent on them, called munin-node, that the master uses to gather the information and present to the user.
sudo apt-get update
sudo apt-get -y install munin-node munin-plugins-extra
allow ^172\.16\.0\.253$
sudo restart munin-node
Monitoring OpenStack Compute services
With Munin Master installed, and having a couple of nodes with graphs showing up on the Master, we can add in plugins to pick up the OpenStack services and graph them. To do this, we check out some plugins from GitHub.
sudo apt-get update
sudo apt-get -y install git
git clone https://github.com/munin-monitoring/contrib.git
cd contrib/plugins
sudo cp nova/* /usr/share/munin/plugins/
sudo cp keystone/* /usr/share/munin/plugins
sudo cp glance/* /usr/share/munin/plugins
sudo munin-node-configure --suggest
sudo -i # get root shell
munin-node-configure --shell 2>&1 | egrep -v "^\#" | sh
cd /etc/munin/plugins
sudo ln -s /usr/share/munin/plugins/keystone_stats
sudo ln -s /usr/share/munin/plugins/glance_size
sudo ln -s /usr/share/munin/plugins/glance_status
[nova_*]
user nova
[keystone_*]
user keystone
[glance_*]
user glance
sudo restart munin-node
How it works...
Munin is an excellent, open source networked, resource-monitoring tool that can help analyze resource trends and identify problems with our OpenStack environment. Configuration is very straightforward, with out of the box configuration providing lots of very useful graphs from RRD (Round Robin Database) files. By adding in a few extra configuration options and plugins, we can extend Munin to monitor our OpenStack environment.
Once Munin has been installed, we have to do a few things to configure it to produce graphed statistics for our environment:
Monitoring instances using Munin and Collectd
The health of the underlying infrastructure operating our on-premise cloud solution is important, but of equal importance is to understand the metrics given by the Compute instances themselves. For this, we can get metrics sent from them by using a monitoring tool called Collectd, and we can leverage Munin for an overall view of our running virtual instances.
How to do it...
To set Munin and Collectd up, carry out the following steps:
Munin
We can configure Munin to look at more than just the CPU, memory, and disk space of the host, by invoking the libvirt plugin to query values within the running instances on our Compute hosts.
sudo apt-get update
sudo apt-get -y install munin-libvirt-plugins
cd /etc/munin/plugins
sudo ln -s /usr/share/munin/plugins/libvirt-blkstat
sudo ln -s /usr/share/munin/plugins/libvirt-ifstat
sudo ln -s /usr/share/munin/plugins/libvirt-cputime
sudo ln -s /usr/share/munin/plugins/libvirt-mem
[libvirt*]
user root
env.address qemu:///system
env.tmpfile /var/lib/munin/plugin-state/libvirt
Collectd
Collectd is set up in three parts. There is a collectd server that listens over UDP for data sent from clients. There is the client collectd service that sends the data to the collectd server. Finally, there is a web interface to Collectd, named collectd-web, that allows for easy viewing of the graphs sent from collectd.
Collectd server
sudo apt-get update
sudo apt-get -y install collectd libjson-perl
Hostname "servername"
Interval 10
ReadThreads 5
LoadPlugin network
<Plugin network>
Listen "*" "12345"
</Plugin>
LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin swap
LoadPlugin syslog
LoadPlugin users
LoadPlugin interface
<Plugin interface>
Interface "eth0"
</Plugin>
LoadPlugin tcpconns
LoadPlugin rrdtool
<Plugin "rrdtool">
CacheFlush 120
WritesPerSecond 50
</Plugin>
Include "/etc/collectd/filters.conf"
Include "/etc/collectd/thresholds.conf"
sudo service collectd restart
Collectd Client
sudo apt-get update
sudo apt-get -y install collectd libjson-perl
FQDNLookup true
Interval 10
ReadThreads 5
LoadPlugin network
<Plugin network>
Server "172.16.0.253" "12345"
</Plugin>
LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin swap
LoadPlugin syslog
LoadPlugin users
LoadPlugin interface
<Plugin interface>
Interface "eth0"
</Plugin>
sudo service collectd restart
Collectd-web
http://collectdweb.appspot.com/download/
tar zxvf collectd-web_0.4.0.tar.gz
sudo cp -a ./collectd-web /var/www
datadir: "/var/lib/collectd/"
libdir: "/usr/lib/collectd/"
cd /var/www/collectd-web
sudo nohup python runserver.py &
<Directory /var/www/>
Options Indexes FollowSymLinks MultiViews
AllowOverride all
Order allow,deny
allow from all
</Directory>
sudo service apache2 reload
How it works...
Munin has plugins for various monitoring activities, including libvirt. As libvirt is used to manage the running instances on our Compute nodes, they hold an array of information that we can send to Munin to allow us to get a better understanding of what is happening in and on our OpenStack Compute hosts and instances.
Collectd is regarded as one of the standard ways of collecting resource information from servers and instances. It can act as a server and a client and, as such, we use the same installation binaries on both our monitoring host and guests. The difference is in the configuration file, /etc/collectd/collectd.conf. For the server, we specify that we listen on a specific port using the following lines in the server's configuration file:
<Plugin network>
Listen "*" "12345"
</Plugin>
For the client configuration, we specify where we want the data sent to, using the following lines in the client's configuration file:
<Plugin network>
Server "172.16.0.253" "12345"
</Plugin>
To bring the two together in a convenient interface to collectd, we install the collectd-web interface that has a standalone service that is used in conjunction with Apache to provide us with the interface.
Monitoring the storage service using StatsD/Graphite
When monitoring the OpenStack Storage service, Swift, we are looking at gathering key metrics from within the storage cluster in order to make decisions on its health. For this, we can use a small piece of middleware named swift-informant, together with StatsD and Graphite, to produce near real-time stats of our cluster.
Getting ready
We will be configuring StatsD and Graphite on a server that has access to the OpenStack Storage proxy server. Ensure this server has enough RAM, disk, and CPU capacity for the environment you are running.
How to do it...
To install StatsD and Graphite, carry out the following steps:
Prerequisites
For this, we will be configuring a new Ubuntu 12.04 server. Once Ubuntu has been installed, we need to install some prerequisite packages.
sudo apt-get update
sudo apt-get -y install git python-pip gcc python2.7-dev apache2 libapache2-mod-python python-cairo python-django libapache2-mod-wsgi python-django-tagging
Graphite
sudo pip install carbon
sudo pip install whisper
sudo pip install graphite-web
cd /opt/graphite/conf
sudo mv carbon.conf.example carbon.conf
sudo mv storage-schemas.conf.example storage-schemas.conf
<VirtualHost *:80>
ServerName 172.16.0.253
DocumentRoot "/opt/graphite/webapp"
ErrorLog /opt/graphite/storage/log/webapp/error.log
CustomLog /opt/graphite/storage/log/webapp/access.log common
I've found that an equal number of processes & threads # tends
to show the best performance for Graphite (ymmv).
WSGIDaemonProcess graphite processes=5 threads=5 display-name='%{GROUP}' inactivity-timeout=120
WSGIProcessGroup graphite
WSGIApplicationGroup %{GLOBAL}
WSGIImportScript /opt/graphite/conf/graphite.wsgi process-group=graphite application-group=%{GLOBAL}
WSGIScriptAlias / /opt/graphite/conf/graphite.wsgi
Alias /content/ /opt/graphite/webapp/content/
<Location "/content/">
SetHandler None
</Location>
Alias /media/ "/usr/lib/python2.7/dist-packages/django/contrib/admin/media/"
<Location "/media/">
SetHandler None
</Location>
The graphite.wsgi file has to be accessible by apache. # It won't be visible to clients
because of the DocumentRoot though.
<Directory /opt/graphite/conf/>
Order deny,allow
Allow from all
</Directory>
</VirtualHost>
sudo a2ensite graphite
sudo mv graphite.wsgi.example graphite.wsgi
sudo chown -R www-data:www-data /opt/graphite/storage/log/
sudo touch /opt/graphite/storage/index
sudo chown www-data:www-data /opt/graphite/storage/index
sudo service apache2 restart
cd /opt/graphite/webapp/graphite
sudo python manage.py syncdb
You just installed Django's auth system, which means you don't have any superusers defined.
Would you like to create one now? (yes/no): yes
Username (Leave blank to use 'root'):
E-mail address: user@somedomain.com
Password:
Password (again):
Superuser created successfully.
Installing custom SQL ...
Installing indexes ...
No fixtures found.
sudo chown -R www-data:www-data /opt/graphite/storage
cd /opt/graphite
sudo bin/carbon-cache.py start
StatsD
sudo apt-get update
sudo apt-get -y install nodejs
git clone https://github.com/etsy/statsd.git
cd statsd
cp exampleConfig.js Config.js
{
graphitePort: 2003
, graphiteHost: "localhost"
, port: 8125
}
nohup node stats.js Config.js &
swift-informant
We are now ready to configure the OpenStack Swift proxy server to include the swift-informant middleware in the pipeline. This is done by configuring the /etc/swift/proxy-server.conf file.
git clone https://github.com/pandemicsyn/swift-informant.git
cd swift-informant
sudo python setup.py install
[pipeline:main]
pipeline = informant healthcheck cache swift3 s3token tokenauth keystone proxy-server
[filter:informant]
use = egg:informant#informant
statsd_host = 172.16.0.9
statsd_port = 8125
standard statsd sample rate 0.0 <= 1
statsd_sample_rate = 0.5
list of allowed methods, all others will generate a "BAD_METHOD" event
valid_http_methods = GET,HEAD,POST,PUT,DELETE,COPY
send multiple statsd events per packet as supported by statsdpy
combined_events = no
prepends name to metric collection output for easier recognition, e.g. company.swift.
metric_name_prepend =
sudo swift-init proxy-server restart
How it works...
Gaining insight into what our OpenStack Storage cluster is doing can be achieved by including a piece of middleware in the pipeline of our OpenStack Storage proxy server, named swift-informant, along with StatsD and Graphite. StatsD is a node.js service that listens for statistics sent to it in UDP packets. Graphite takes this data and gives us a real-time graph view of our running services.
Installation and configuration is done in stages. We first install and configure a server that will be used for StatsD and Graphite. Graphite can be installed using Python's Package Index (using the pip tool), and for this, we install three pieces of software: carbon (the collector), whisper (fixed-size RRD service), and the Django Web Interface, graphite-web. Using the pip tool installs these services to the /opt directory of our server.
Once the server for running Graphite and StatsD has been set up, we can configure the OpenStack Storage proxy service, so that statistics are then sent to the Graphite and StatsD server. With the appropriate configuration in place, the OpenStack Storage service will happily send events, via UDP, to the StatsD service.
Configuration of the Graphite interface is done in an Apache vhost file that we place in Ubuntu's Apache sites-available directory. We then enable this for our installation.
Note that vhost needs to be configured appropriately for our environment—specifically the path to the DJANGO_ROOT area—as part of our Python installation. For Ubuntu 12.04, this is /usr/lib/python2.7/dist-packages/django to give us the following in our vhost file:
Alias /media/ "/usr/lib/python2.7/dist-packages/django/contrib/admin/media/"
We then ensure that the Graphite WSGI (Web Service Gateway Interface) file is in place at the appropriate path, as specified by the WSGIScriptAlias directive at /opt/graphite/conf/graphite.wsgi.
Once in place, we ensure that our filesystem has the appropriate permissions to allow Graphite to write various logs and information as it's running.
When this has been done, we simply restart Apache to pick up the changes.
With the Graphite web interface configured, we initialize the database; for this installation we will make use of a SQLite database resource. This is achieved by running the syncdb option with the Graphite manage.py script in the /opt/graphite/webapp/graphite directory. This asks us to create a superuser called user for the system, to manage it later.
Once this has been done, we can start the collector service, carbon, which starts the appropriate services that will listen for data being sent to it.
With all that in place, we simply move our efforts to the OpenStack Storage proxy service, where we checkout the swift-informant middleware to be inserted into the pipeline of our proxy service.
Monitoring MySQL with Hyperic
Database monitoring can be quite complex, and, depending on your deployment or experience, monitoring may already be set up. For those that don't have existing monitoring of a MySQL service, Hyperic from SpringSource is an excellent tool to set up monitoring and alerting for MySQL. The software comes in two editions—an Open Source edition—suitable for smaller installations—and an Enterprise edition with paid for support. The steps in the following section are for the Open Source edition.
Hyperic can monitor many aspects of our OpenStack environment including system load, network statistics, Memcached, and RabbitMQ status.
Getting ready
We will be configuring Hyperic on an Ubuntu 12.04 server that has access to the MySQL server in our OpenStack environment. Ensure this server has enough RAM, disk, and CPU capacity for the environment you are running. Log in as a normal user to download and install the software.
How to do it...
To install Hyperic, carry out the following steps:
Hyperic server
http://www.springsource.com/landing/hyperic-open-source-download
tar zxvf hyperic-hq-installer-4.5-x86-64-linux.tar.gz
cd hyperic-hq-installer-4.5
sudo mkdir -p /home/hyperic
sudo chown openstack /home/hyperic
./setup.sh
/home/hyperic/server-4.5/bin/hq-server.sh start
Nodes
Each node that we want to monitor in Hyperic needs an agent installed, which then gets configured to talk back to the Hyperic server.
tar zxvf hyperic-hq-agent-4.5-x86-64.tar.gz
cd hyperic-hq-agent-4.5
bin/hq-agent.sh start
The output from running the previous command is as follows:
Monitoring MySQL
To monitor MySQL, carry out the following steps:
Name: openstack1 MySQL
Server Type: MySQL 5.x
Install Path: /usr
JDBC User: root
JDBC Password: openstack
These are the credentials for a user in MySQL that can see all databases. Check the Auto-Discover Tables option and leave the rest of the options at their default values, unless you need to change the address that the agent will connect to for MySQL.
How it works...
Hyperic uses agents to collect information and sends this back to the Hyperic server, where we can view statistics about the environment and configure alerting based on thresholds. The agent is very flexible and can be configured to monitor many more services than just MySQL.
Configuration of the agent is done through the Hyperic server's interface, where a running node's service is known as a "server". Here, we can configure usernames, ports, and passwords, to allow the agent to successfully communicate with that service. For MySQL, this is providing the agent with the correct username, password, and address for the familiar jdbc (Java Database Connector) connect string.
There's more...
In your datacenter, you may have a MySQL cluster rather than a single server, where a view of the cluster as a whole is of equal (if not more) importance to that of the individual nodes. An example cluster monitoring suite that has both free and enterprise options is named CMON and is available at SeveralNines (http://www.severalnines.com/resources/cmon-cluster-monitor-mysql-cluster).
Chapter 13. Troubleshooting
In this chapter, we will cover:
Introduction
OpenStack is a complex suite of software that can make tracking down issues and faults quite daunting to beginners and experienced system administrators alike. While there is no single approach to troubleshooting systems, understanding where OpenStack logs vital information or what tools are available to help track down bugs will help resolve issues we may encounter. It should also be expected that we won't be able to solve all issues without further help. Gathering the required information so that the OpenStack community can identify bugs and suggest fixes is important in ensuring those bugs or issues are dealt with quickly and efficiently.
Checking OpenStack Compute Services
OpenStack provides tools to check various parts of Compute Services, and we'll use common system commands to check whether our environment is running as expected.
Getting ready
To check our OpenStack Compute host we must log in to that server, so do this now before following the given steps.
How to do it...
To check that Nova is running the required services, we invoke the nova-manage tool and ask it various questions of the environment as follows:
sudo nova-manage service list
You will see the following output. The :-) icons are indicative that everything is fine.
If you see XXX where the :-) icon should be, then you have a problem.
Troubleshooting is covered at the end of the book, but if you do see XXX then the answer will be in the logs at /var/log/nova/.
If you get intermittent XXX and :-) icons for a service, first check if the clocks are in sync.
Glance doesn't have a tool to check, so we can use some system commands instead.
ps -ef | grep glance
netstat -ant | grep 9292.*LISTEN
These should return process information for Glance to show it is running and 9292 is the default port that should be open in the LISTEN mode on your server ready for use.
sudo rabbitmqctl status
ntpq -p
It should return output regarding contacting NTP servers, for example:
MYSQL_PASS=openstackmysqladmin -uroot –p$MYSQL_PASS status
This will return some statistics about MySQL, if it is running:
How it works...
We have used some basic commands that communicate with OpenStack Compute and other services to show they are running. This elementary level of troubleshooting ensures you have the system running as expected.
Understanding logging
Logging is important in all computer systems, but the more complex the system, the more you rely on being able to spot problems to cut down on troubleshooting time. Understanding logging in OpenStack is important to ensure your environment is healthy and is able to submit relevant log entries back to the community to help fix bugs.
Getting ready
Log in as the root user onto the appropriate servers where the OpenStack services are installed.
How to do it...
OpenStack produces a large number of logs that help troubleshoot our OpenStack installations. The following details outline where these services write their logs.
OpenStack Compute Services Logs
Logs for the OpenStack Compute services are written to /var/log/nova/, which is owned by the nova user, by default. To read these, log in as the root user. The following is a list of services and their corresponding logs:
Log entries regarding the spinning up and running of the instances
Log entries regarding network state, assignment, routing, and security groups
Log entries produced when running the nova-manage command
Log entries pertaining to the scheduler, its assignment of tasks to nodes, and messages from the queue
Log entries regarding the images
Log entries regarding user interaction with OpenStack as well as messages regarding interaction with other components of OpenStack
Entries regarding the nova-cert process
Details about the nova-console VNC service
Authentication details related to the nova-console service
Network information regarding the dhcpbridge service
OpenStack Dashboard logs
OpenStack Dashboard (Horizon) is a web application that runs through Apache by default, so any errors and access details will be in the Apache logs. These can be found in /var/log/apache2/*.log, which will help you understand who is accessing the service as well as the report on any errors seen with the service.
OpenStack Storage logs
OpenStack Storage (Swift) writes logs to syslog by default. On an Ubuntu system, these can be viewed in /var/log/syslog. On other systems, these might be available at /var/log/messages.
Logging can be adjusted to allow for these messages to be filtered in syslog using the log_level, log_facility, and log_message options. Each service allows you to set the following:
If you change any of these options, you will need to restart that service to pick up the change.
Log-level settings in OpenStack Compute services
Many OpenStack services allow you to control the chatter in the logs by setting different log output settings. Some services, though, tend to produce a lot of DEBUG noise by default.
This is controlled within the configuration files for that service. For example, the Glance Registry service has the following settings in its configuration files:
Moreover, many services are adopting this facility. In production, you would set debug to False and optionally keep a fairly high level of INFO requests being produced, which may help with the general health reports of your OpenStack environment.
How it works...
Logging is an important activity in any software, and OpenStack is no different. It allows an administrator to track down problematic activity that can be used in conjunction with the community to help provide a solution. Understanding where the services log, and managing those logs to allow someone to identify problems quickly and easily, are important.
Troubleshooting OpenStack Compute Services
OpenStack Compute services are complex, and being able to diagnose faults is an essential part of ensuring the smooth running of the services. Fortunately, OpenStack Compute provides some tools to help with this process, along with tools provided by Ubuntu to help identify issues.
How to do it...
Troubleshooting OpenStack Compute services can be a complex issue, but working through problems methodically and logically will help you reach a satisfactory outcome. Carry out the following steps when encountering the different problems presented.
Cannot ping or SSH to an instance
sysctl -A | grep ip_forward
net.ipv4.ip_forward=1
sudo sysctl -p
install ipv6 /bin/true
Viewing the Instance Console log
You can view the console information for an instance using a number of methods:
euca2ools
euca-get-console i-00000001
nova client
nova console-log 4b8776eb-77b5-48eb-9ec4-f4b6c6e3bdaa
The console logs are owned by root, so only an administrator can do this. They are placed at /var/lib/nova/instances/<instance_id>/console.log.
Instance fails to download meta information
If an instance fails to communicate to download the extra information that can be supplied to the instance meta-data, we can end up in a situation where the instance is up but you're unable to log in, as the SSH key information is injected using this method.
Viewing the console log will show output like in the following screenshot:
Ensure the following:
sudo iptables -L -n -t nat
We should see a line in the output like in the following screenshot:
ps -ef | grep dnsmasq
This will bring back two process entries, the parent dnsmasq process and a spawned child (verify by the PIDs). If there are any other instances of dnsmasq running, kill the dnsmasq processes. When killed, restart nova-network, which will spawn dnsmasq again without any conflicting processes.
Instance launches, stuck at "Booting" or "Pending"
Sometimes, a little patience is needed before assuming the instance has not booted, because the image is copied across the network to a node that has not seen the image before. At other times though, if the instance has been stuck in booting or a similar state for longer than normal, it indicates a problem. The first place to look will be for errors in the logs. A quick way of doing this is from the controller server and by issuing the following command:
sudo nova-manage logs error
A common error that is usually present is related to AMQP being unreachable. These can be ignored unless the errors are currently appearing.
This command brings back any log line with the ERROR as log level, but you will need to view the logs in more detail to get a clearer picture.
A key log file, when troubleshooting instances are not booting properly, will be available at /var/log/nova/nova-compute.log. Look here at the time you launch the instance and the ID.
Check /var/log/nova/nova-network.log for any reason why instances aren't being assigned IP addresses. It could be issues around DHCP preventing address allocation.
Error codes such as 401, 403, 500
The majority of the OpenStack services are web services, meaning the responses from the services are well defined.
40X refers to a service that is up but responding to an event that is produced by some user error. For example, a 401 is an authentication failure, so check the credentials used when accessing the service.
50X errors mean a connecting service is unavailable or has caused an error that has caused the service to interpret a response to cause a failure. Common problems here are services that have not started properly, so check for running services.
If all avenues have been exhausted when troubleshooting your environment, reach out to the community, using the mailing list or IRC, where there is a raft of people willing to offer their time and assistance.
Listing all instances across all hosts
From the OpenStack controller node, you can execute the following command to get a list of the running instances in the environment:
sudo nova-manage vm list
This is useful in identifying any failed instances and the host on which it is running. You can then investigate further.
How it works...
Troubleshooting OpenStack Compute problems can be quite complex, but looking in the right places can help solve some of the more common problems. Unfortunately, like troubleshooting any computer system, there isn't a single command that can help identify all the problems that you may encounter, but OpenStack provides some tools to help you identify some problems. Having an understanding of managing servers and networks will help troubleshoot a distributed cloud environment such as OpenStack.
There's more than one place where you can go to identify the issues, as they can stem from the environment to the instances themselves. Methodically working your way through the problems though will help lead you to a resolution.
Troubleshooting OpenStack Storage Service
OpenStack Storage Service (Swift) is built for highly available storage, but there will be times where something will go wrong, from authentication issues to failing hardware.
How to do it...
Carry out the following steps when encountering the problems presented.
Authentication issues
Authentication issues in Swift occur when a user or a system has been configured with the wrong credentials. A Swift system that has been supported by OpenStack Authentication Service (Keystone) will require you to perform authentication steps against Keystone manually as well as view logs during the transactions. Check the Keystone logs for evidence of user authentication issues for Swift.
The user will see the following message with authentication issues:
If Swift is working correctly but Keystone isn't, skip to the Troubleshooting OpenStack Authentication recipe.
Swift can add complexity to authentication issues when ACLs have been applied to containers. For example, a user might not have been placed in an appropriate group that is allowed to perform that function on that container. To view a container's ACL, issue the following command on a client that has the Swift tool installed:
swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K password stat container
The Read ACL: and Write ACL: information will show which roles are allowed to perform those actions.
To check a user's roles, run the following set of commands on the Keystone server:
Administrator Credentialsexport OS_USERNAME=adminexport OS_PASSWORD=openstack
export OS_AUTH_URL=http://172.16.0.1:5000/v2.0
export OS_TENANT_NAME=cookbook
Get User ID
keystone user-list
Get Tenant ID
keystone tenant-list
Use the user-id and tenant-id to get the roles for # that user in that tenant
keystone -I admin -K openstack -N http://172.16.0.1:5000/v2.0/ -T cookbook role-list --user user-id --tenant tenant-id
Now compare with the ACL roles assigned to the container.
Handling drive failure
When a drive fails in an OpenStack Storage environment, you must first ensure the drive is unmounted so Swift isn't attempting to write data to it. Replace the drive and rebalance the rings. This is covered in more detail in the Detecting and replacing failed hard drives recipe in Chapter 6, Administering OpenStack Storage.
Handling server failure and reboots
The OpenStack Storage service is very resilient. If a server is out of action for a couple of hours, Swift can happily work around this server being missing from the ring. Any longer than a couple of hours though, and the server will need removing from the ring. To do this, follow the steps mentioned in the Removing nodes from a cluster recipe in Chapter 6, Administering OpenStack Storage.
How it works...
The OpenStack Storage service, Swift, is a robust object storage environment, and as such, handles a relatively large number of failures within this environment. Troubleshooting Swift involves running client tests, viewing logs, and in the event of failure, identifying what the best course of action is.
Troubleshooting OpenStack Authentication
OpenStack Authentication Service (Keystone) is a complex service, as it has to deal with underpinning the authentication and authorization for the complete cloud environment. Common problems include misconfigured endpoints, incorrect parameters being stored, and general user authentication issues, which involve resetting passwords or providing further details to the end user.
Getting ready
Administrator access is required to troubleshoot Keystone, so we first configure our environment, so that we can simply execute the relevant Keystone commands.
Administrator Credentialsexport OS_USERNAME=adminexport OS_PASSWORD=openstack
export OS_AUTH_URL=http://172.16.0.1:5000/v2.0
export OS_TENANT_NAME=cookbook
How to do it...
Carry out the following steps when encountering the problems presented.
Misconfigured endpoints
Keystone is the central service that directs authenticated users to the correct service, so it's vital that the users be sent to the correct location. Symptoms include HTTP 500 error messages in various logs regarding the services that are being accessed, and clients timing out trying to connect to network services that don't exist. To verify your endpoints in each region, perform the following command:
keystone endpoint-list
We can drill down into specific service types with the following command. For example, to show adminURL for the compute service type in all regions.
keystone endpoint-get --service compute --endpoint_type adminURL
An alternative to listing the endpoints in this format is to list the catalog, which outputs the details in a more human-readable way:
keystone catalog
This provides a convenient way of seeing the endpoints configured.
Authentication issues
From time to time, users will have trouble authenticating against Keystone due to forgotten or expired details or unexpected failure within the authentication system. Being able to identify such issues will allow you to restore the service or allow the user to continue using the environment.
The first place to look will be the relevant logs. This includes the /var/log/nova logs, the /var/log/glance logs (if related to images), as well as the /var/log/keystone logs.
Troubleshooting accounts might include missing accounts, so view the users on the system using the following command:
keystone user-list
After displaying the user list to ensure an account exists for the user, we can get further information on a particular user by issuing, for example, the following command, after retrieving the user ID of a particular user:
keystone user-get 68ba544e500c40668435aa6201e557e4
This will display output similar to the following screenshot:
This allows us to verify that the user has a valid account in a particular tenant.
If a user's password needs resetting, we can execute the following command after getting the user ID, to set a user's password to (for example) openstack:
keystone user-password-update --pass openstack 68ba544e500c40668435aa6201e557e4
If it turns out a user has been set to disabled, we can simply re-enable the account with the following command:
keystone user-update --enabled true 68ba544e500c40668435aa6201e557e4
There could be times when the account is working but problems exist on the client side. Before looking at Keystone for the issue, ensure your environment is set up correctly, in other words, set the following environment variables:
export OS_USERNAME=kevinjexport OS_PASSWORD=openstack
export OS_AUTH_URL=http://172.16.0.1:5000/v2.0
export OS_TENANT_NAME=cookbook
How it works...
User authentication issues can be client- or server-side, and when some basic troubleshooting has been performed on the client, we can use Keystone commands to find out why someone's user journey has been interrupted. With this, we are able to view and update user details, set passwords, set them into the appropriate tenants, and disable or enable them, as required.
Submitting bug reports
OpenStack is a hugely successful open source, public and private cloud framework. It has gained this momentum by individuals and organizations downloading and contributing to it. By using the software in a vast array of environments and scenarios, and running the software on a myriad of hardware configurations, you will invariably encounter bugs. In an open source project, the best thing we can now do is tell the developers about it so they can develop or suggest a solution for us.
How to do it...
The OpenStack project is available through LaunchPad. LaunchPad is an open source suite of tools that helps people and teams to work together on software projects and is accessible at http://launchpad.net/, so the first step is to create an account.
Creating an account on LaunchPad
Submitting bug reports through LaunchPad
Now that we have an account on LaunchPad, we can submit bug reports. The following links take us directly to the bug report sections of those projects:
On submitting a short summary, a search is made to see if a similar bug exists. If it does, click on the bug and then ensure you click on the This bug affects X people. Does this bug affect you? link. If multiple people report that they are affected by a bug, its status changes from reported by a single person to confirmed, helping the Bug Triage team with their work. Please ensure you add any relevant additional information to the bug report, in support of the issues you are facing.
If the bug doesn't exist, we will be presented with a form that has a one-liner Summary field and a free-form textbox in which to put in the required information.
On submitting bugs, try to follow these rules:
Useful commands to help complete a bug report
The following is a list of useful commands that will help you in the completion of the bug report:
dpkg -l | grep name_of_package
dpkg -s name_of_package | grep Version
Pasting logs
Sometimes, there will be a need to submit logging information to support your bug report. This information can be quite lengthy, so rather than including the text from such logs, within the bug report, it is encouraged to use a text paste service, which will provide you with a unique URL that you can use to reference the information within your bug report. For this purpose, you can use the service at http://paste.openstack.org/.
Ensure you sanitize any data that you paste in public. This includes removing any sensitive data such as IPs, usernames, and passwords.
Once a bug is submitted, an e-mail will be sent to the e-mail address used to register with LaunchPad, and any subsequent updates in relation to the bug will be sent to this e-mail address, allowing us to track its progress all the way through to a fix being released.
How it works...
OpenStack is developed by a relatively small number of people, compared to the number of people in the community that end up downloading and using the software. This means the software gets used in scenarios that developers can't feasibly test or just didn't see as possible at the time. The net result is that bugs often come out during this time. Being able to report these bugs is vital, and this is why open source software development is so hugely successful in creating proven and reliable software.
OpenStack's development lives on LaunchPad, so all bug tracking and reporting is done using this service. This provides a central tool for the global community and allows end users to communicate with the relevant projects to submit bugs.
Submitting bugs is a vital element in an open source project. It allows you to shape the future of the project as well as be part of the ecosystem that is built around it.
It is important to give as much information as possible to the developers when submitting bugs. Be precise and ensure that the steps to recreate the bug are easy to follow and provide an explanation of the environment you are working in, to allow the bug to be recreated. If it can't be recreated, it can't be fixed.
See also
Getting help from the community
OpenStack would not be where it is today without the ever-growing community of businesses, sponsors, and individuals. As with many large OSS projects, support is fantastic, meaning round-the-clock attention to requests for help, which can sometimes exceed the best efforts of paid-for support.
How to do it...
There are a number of ways to reach out for support from the excellent OpenStack community. They are:
IRC Support
Internet Relay Chat has been the mainstay of the Internet since the beginning, and collaboration from developers and users can be found on the Freenode IRC network.
OpenStack has a channel (or a room) on the Freenode IRC network called #openstack.
There are two ways of accessing IRC, either through the web interface or by using an IRC client:
/j #openstack
Mailing list
Subscribing to the mailing list allows you to submit and respond to queries where an instant response might not be required and is useful if you need your question to reach more members than the relatively smaller number that is on IRC.
To subscribe to the mailing list, head over to https://launchpad.net/openstack, where you will see an option to subscribe to the mailing list.
You will need to create a LaunchPad ID and be a member of the OpenStack project (see the Submitting bug reports recipe on submitting bugs on how to do this).
Pasting logs
When asking for help, it usually involves copying logs from your environment and sharing them with the community. To help facilitate this, a web service has been created that allows you to paste the log entries that can be referred to in an IRC chat or in an e-mail without having to paste them directly. This can be found at http://paste.openstack.org/. When you create a new paste, you are given a unique URL that you can then refer to for the information instead.
Ensure you sanitize any data that you paste in public. This includes removing any sensitive data such as IPs, usernames, and passwords.
How it works...
The OpenStack community is what makes OpenStack what it is. It is made up of developers, users, testers, companies, and individuals with a vested interest in ensuring OpenStack's success. There are a number of useful places to ask for help when it comes to community support. This includes IRC and the mailing list.
You are encouraged to post and respond to requests in IRC and on the mailing list, as there are likely to be many people wanting the same questions answered. There will also be the development and project teams wanting to understand what is causing issues so they can help address them.
See also
Table of Contents
OpenStack Cloud Computing Cookbook
OpenStack Cloud Computing Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers and more
Why Subscribe?
Free Access for Packt account holders
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Starting OpenStack Compute
Introduction
Creating a sandbox environment with VirtualBox
Getting ready
How to do it...
How it works...
There's more...
Installing OpenStack Compute packages
Getting ready
How to do it...
How it works...
There's more...
Using an alternative release
Configuring database services
Getting ready
How to do it...
How it works...
See also
Configuring OpenStack Compute
How to do it...
How it works...
There's more...
Information online regarding flags
Stopping and starting Nova services
Getting ready
How to do it...
How it works...
Creating a cloudadmin account and project
Getting ready
How to do it...
How it works...
Installation of command line-tools
Getting ready
How to do it...
How it works...
Uploading a sample machine image
Getting ready
How to do it...
How it works...
See also
Launching your first cloud instance
Getting ready
How to do it...
How it works...
Terminating your instance
How to do it...
How it works...
2. Administering OpenStack Compute
Introduction
Creating and modifying user accounts
Getting ready
How to do it...
Adding Users
Deleting Users
Removing a user from a project
How it works...
See also
Managing security groups
Getting ready
How to do it...
Creation of security groups
To remove a rule from a security group
To delete a security group
How it works...
Defining groups and rules using euca2ools
Defining groups and rules using Nova Client
Creating and managing keypairs
Getting ready
How to do it...
Listing and deleting keypairs using euca2ools
List the keypairs
Delete the keypairs
Listing and deleting keypairs using Nova Client
List the keypairs
Delete the keypairs
How it works...
Using public cloud images
Getting ready
How to do it...
Ubuntu Cloud Images from ubuntu.com
CentOS/Fedora Images from eucalyptus.com
How it works...
Alternative upload method using euca2ools
Getting ready
How to do it...
How it works...
Creating custom Windows images
Getting ready
How to do it...
How it works...
Creating custom CentOS images
Getting ready
How to do it...
How it works...
3. Keystone OpenStack Identity Service
Introduction
Installing OpenStack Identity Service
Getting ready
How to do it...
How it works...
Configuring roles
Getting ready
How to do it...
How it works...
Creating tenants
Getting ready
How to do it...
How it works...
Adding users
Getting ready
How to do it...
How it works...
Defining service endpoints
Getting ready
How to do it...
How it works...
Configuring the service tenant and service users
Getting ready
How to do it...
How it works...
Configuring OpenStack Image Service to use OpenStack Identity Service
Getting ready
How to do it...
How it works...
Configuring OpenStack Compute to use OpenStack Identity Service
Getting ready
How to do it...
How it works...
Using OpenStack Compute with OpenStack Identity Service
Getting ready
How to do it...
How it works...
4. Installing OpenStack Storage
Introduction
Creating an OpenStack Storage sandbox environment
Getting ready
How to do it...
How it works...
There's more...
See also
Installing the OpenStack Storage services
Getting ready
How to do it...
How it works...
There's more...
Using an alternative release
Configuring storage
Getting ready
How to do it...
How it works...
Configuring replication
Getting ready
How to do it...
How it works...
Configuring OpenStack Storage Service
Getting ready
How to do it...
How it works...
Configuring the OpenStack Storage proxy server
Getting ready
How to do it...
How it works...
See also
Configuring Account Server
Getting ready
How to do it...
How it works...
Configuring Container Server
Getting ready
How to do it...
How it works...
Configuring Object Server
Getting ready
How to do it...
How it works...
Making the Object, Account, and Container rings
Getting ready
How to do it...
How it works...
Creating the ring
Assigning a device to the ring
Rebalancing the ring
Stopping and starting OpenStack Storage
Getting ready
How to do it...
How it works...
Testing OpenStack Storage
Getting ready
How to do it...
Using curl to test OpenStack Storage
Using a swift command to test OpenStack Storage
How it works...
Setting up SSL access
Getting ready
How to do it...
How it works...
Configuring OpenStack Storage with OpenStack Identity Service
Getting ready
How to do it...
How it works...
5. Using OpenStack Storage
Introduction
Installing the swift client tool
Getting ready
How to do it...
How it works...
Creating containers
Getting ready
How to do it...
How it works...
Uploading objects
Getting ready
How to do it...
How it works...
Uploading large objects
Getting ready
How to do it...
How it works...
Listing containers and objects
Getting ready
How to do it...
How it works...
Downloading objects
Getting ready
How to do it...
How it works...
Deleting containers and objects
Getting ready
How to do it...
How it works...
Using OpenStack Storage ACLs
Getting ready
How to do it...
How it works...
6. Administering OpenStack Storage
Introduction
Preparing drives for OpenStack Storage
Getting ready
How to do it...
How it works...
Managing the OpenStack Storage cluster with swift-init
Getting ready
How to do it...
How it works...
Checking cluster health
Getting ready
How to do it...
How it works...
OpenStack Storage benchmarking
Getting ready
How to do it...
How it works...
Managing capacity
Getting ready
How to do it...
How it works...
Removing nodes from a cluster
Getting ready
How to do it...
How it works...
Detecting and replacing failed hard drives
Getting ready
How to do it...
How it works...
Collecting usage statistics
Getting ready
How to do it...
How it works...
7. Glance OpenStack Image Service
Introduction
Installing OpenStack Image Service
Getting ready
How to do it...
How it works...
There's more...
Using an alternative release
Configuring OpenStack Image Service with MySQL
Getting ready
How to do it...
How it works...
Configuring OpenStack Compute with OpenStack Image Service
Getting ready
How to do it...
How it works...
Configuring OpenStack Image Service with OpenStack Storage
Getting ready
How to do it...
How it works...
See also
Managing images with OpenStack Image Service
Getting ready
How to do it...
How it works...
Registering a remotely stored image
Getting ready
How to do it...
How it works...
8. Nova Volumes
Introduction
Configuring nova-volume services
Getting ready
How to do it...
How it works...
Configuring OpenStack Compute for nova-volume
Getting ready
How to do it...
How it works...
Creating volumes
Getting ready
How to do it...
How it works...
Attaching volumes to instances
Getting ready
How to do it...
How it works...
Detaching volumes from an instance
Getting ready
How to do it...
How it works...
Deleting volumes
Getting ready
How to do it...
How it works...
9. Horizon OpenStack Dashboard
Introduction
Installing OpenStack Dashboard
Getting ready
How to do it...
How it works...
Keypair management in OpenStack Dashboard
Getting ready
How to do it...
Adding keypairs
Deleting keypairs
Importing Keypairs
How it works...
Security group management by using OpenStack Dashboard
Getting ready
How to do it...
Creating a security group
Editing security groups to add and remove rules
Deleting security groups
How it works...
Launching instances by using OpenStack Dashboard
Getting ready
How to do it...
How it works...
Terminating instances by using OpenStack Dashboard
Getting ready
How to do it...
How it works...
Connecting to instances by using OpenStack Dashboard and VNC
Getting ready
How to do it...
How it works...
Adding new tenants by using OpenStack Dashboard
Getting ready
How to do it...
How it works...
User management by using OpenStack Dashboard
Getting ready
How to do it...
Adding Users
Deleting users
Updating user details and passwords
Adding users to tenants
Removing users from tenants
How it works...
10. OpenStack Networking
Introduction
Configuring Flat networking
Getting ready
How to do it...
How it works...
Configuring Flat networking with DHCP
Getting ready
How to do it...
How it works...
Configuring VLAN Manager networking
Getting ready
How to do it...
How it works...
Configuring per-project (tenant) IP ranges
Getting ready
How to do it...
How it works...
Automatically assigning fixed networks to tenants
Getting ready
How to do it...
How it works...
Modifying a tenant's fixed network
Getting ready
How to do it...
How it works...
Manually associating floating IPs to instances
Getting ready
How to do it...
How it works...
Manually disassociating floating IPs from instances
Getting ready
How to do it...
How it works...
Automatically assigning floating IPs
Getting ready
How to do it...
How it works...
11. In the Datacenter
Introduction
Installing MAAS for bare-metal provisioning
Getting ready
How to do it...
How it works...
Using MAAS for bare-metal provisioning of hosts
Getting ready
How to do it...
How it works...
Installing and configuring Juju
Getting ready
How to do it...
How it works...
Installing OpenStack services using Juju
Getting ready
How to do it...
How it works...
Increasing OpenStack Compute capacity
Getting ready
How to do it...
How it works...
MySQL clustering using Galera
How to do it...
MySQL and Galera configuration
Node preparation
Installation
Configuration of database cluster for OpenStack
How it works...
Configuring HA Proxy for MySQL Galera load balancing
Getting ready
How to do it...
Installation of HA Proxy for MySQL
OpenStack Configuration using a floating IP address
How it works...
Increasing resilience of OpenStack services
Getting ready
How to do it...
First node (openstack1)
Second node (openstack2)
First node (openstack1)
Second node (openstack2)
Start the Pacemaker and Corosync services
First node (openstack1)
Keystone across 2 nodes with FloatingIP
Glance across 2 nodes with FloatingIP
Configuring Pacemaker for use with Glance and Keystone
How it works...
Bonding network interfaces for redundancy
Getting ready
How to do it...
How it works...
See also
12. Monitoring
Introduction
Monitoring Compute services with Munin
Getting ready
How to do it...
Munin Master Server
Munin nodes
Monitoring OpenStack Compute services
How it works...
Monitoring instances using Munin and Collectd
How to do it...
Munin
Collectd
Collectd server
Collectd Client
Collectd-web
How it works...
Monitoring the storage service using StatsD/Graphite
Getting ready
How to do it...
Prerequisites
Graphite
StatsD
swift-informant
How it works...
Monitoring MySQL with Hyperic
Getting ready
How to do it...
Hyperic server
Nodes
Monitoring MySQL
How it works...
There's more...
13. Troubleshooting
Introduction
Checking OpenStack Compute Services
Getting ready
How to do it...
How it works...
Understanding logging
Getting ready
How to do it...
How it works...
Troubleshooting OpenStack Compute Services
How to do it...
How it works...
Troubleshooting OpenStack Storage Service
How to do it...
How it works...
Troubleshooting OpenStack Authentication
Getting ready
How to do it...
How it works...
Submitting bug reports
How to do it...
How it works...
See also
Getting help from the community
How to do it...
How it works...
See also