MySQL Management and Administration with Navicat
MySQL Management and Administration with Navicat
Copyright © 2012 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: September 2012
Production Reference: 1060912
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 9781849687-46-1
www.packtpub.com
Cover Image by Artie Ng (<artherng@yahoo.com.au>)
Credits
Author
Gökhan Ozar
Reviewers
Nick Au
Matthew Yau
Acquisition Editor
Alex Newbury
Lead Technical Editor
Alex Newbury
Technical Editor
Kaustubh S. Mayekar
Copy Editor
Insiya Morbiwala
Project Coordinator
Abhishek Kori
Proofreader
Maria Gould
Indexer
Monica Ajmera Mehta
Production Coordinator
Nitesh Thakur
Cover Work
Nitesh Thakur
About the Author
Gökhan Ozar is an IT professional with both hands-on and outsourcing expertise in the areas of application development, database design, data analysis, project management, systems integration, training, support, and delegation of support.
A graduate in 1999 of Bilkent University in Ankara, Turkey, he started his career as a Web Designer and Developer, making database-driven web applications on a variety of platforms.
During his high school years at the age of 16, he was known within the Mac user communities in Turkey as the maker of an adventure game called The Journey, made exclusively for older Macs running on Mac OS versions prior to OS X.
He has had experience in various domains of IT, such as business intelligence, data warehousing, and quality assurance, besides software development mainly on Java EE and .NET platforms. He went on to build his career working with the Business Process Management/Electronic Document Workflow software.
He also runs several blogs, which are accessible from his personal website at http://gokhan.ozar.net, and also welcomes new followers on Twitter (twitter.com/skyhan).
About the Reviewers
Nick Au, who graduated from the Hong Kong University of Science and Technology, has been working as a Software Developer at PremiumSoft for over 10 years. Now he is the lead developer for the Windows version of Navicat, leading a team of over 10 programmers.
Matthew Yau joined PremiumSoft after he graduated from the Hong Kong Polytechnic University in 2000. After taking up a position in web programming for the first 2 years, he has focused on developing the Navicat series since 2002. Now, he is working at the managerial level for the development of Navicat and other softwares for the Company.
www.PacktPub.com
Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?
Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.
Preface
Navicat is a GUI tool used for managing every aspect of a MySQL Server, such as managing visual tools as well as an intelligent code editor for handcoding SQL and stored procedures. While some of its features are fairly intuitive, some of them require guidance to be discovered and learned.
The book starts with creating basic server connection setups, designing databases from scratch, or importing existing data. Then it continues with using advanced features, such as designing functions and stored procedures, creating event triggers, and creating and scheduling batch jobs.
The chapters are ordered in a logical progression, where the user starts from simple structures to complex design, and is gradually introduced to advanced features. By the end of the last chapter, the reader should be able to handle every aspect of database administration as well as how to master the intelligent code editor, in the case of a development need, such as functions and procedures.
For intermediate and advanced level MySQL users and administrators, the book could be used as a reference guide, and chapters need not be followed in any order.
What this book covers
Chapter 1, Getting Started, gives an introduction to the Navicat Database Administration tool with a GUI and describes how to set up different kinds of connections, from basic settings to advanced configurations.
Chapter 2, Working with Databases, discusses the fundamentals of working with database objects, such as tables, views, functions, and events, along with designing queries using Navicat's visual tools.
Chapter 3, Data Management with Navicat, takes you through the process of data management. The topics covered are import and export of data in a variety of formats, direct data transfer between different databases, data and structure synchronization, backup/restore operations, and creating and scheduling of batch jobs.
Chapter 4, Data Modeling with Navicat, guides you through the steps involved in visual data modeling, so as to help us learn how to design data models using GUI tools; create, edit, and manipulate table structures from within the visual editor; forward-engineer a data model into a .sql file; and reverse-engineer an existing database into visual representations.
Chapter 5 , Database Maintenance and Security Management, discusses the essentials of basic DBA functions regarding the security and maintenance of MySQL using Navicat. It walks you through the necessary steps to create and edit MySQL users, manage the access privileges, and perform maintenance tasks, such as database analysis, optimization, and repairs.
Chapter 6, Designing Reports with Navicat, discusses report design and provides instructions on the various steps involved in conceiving, creating, and customizing reports based on your MySQL database objects.
Appendix, Additional Tips and Tricks, provides some additional tips and tricks to make the most of Navicat, with guided instructions on how to copy your settings to another Navicat user or computer, monitor the MySQL server, intervene the running processes, power search databases, and discover a new way of designing queries.
What you need for this book
To run the examples in the book, the following software will be required:
Who this book is for
This book is especially for:
Non-IT people who just want to extract sensible data from a MySQL database (both novice and expert), and people who need to have at least some basic knowledge of databases in a client/server architecture will find this book useful.
Beginners can learn from scratch the fundamentals of database design and administration (and even some development), especially, thanks to the tutorials featured in this book.
Experts can unlock certain mysteries of Navicat, which consist of useful, but seemingly hidden or unobvious features.
Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "If you're using a Mac, Navicat should simply be in your Applications folder unless you dragged and dropped it elsewhere from the installer window."
A block of code is set as follows:
BEGIN
INSERT INTO emp_log SET emp_id = NEW.id, date_created = NOW();
END
Any command-line input or output is written as follows:
CREATE TABLE if not exists emp_log (
id int auto_increment primary key,
emp_id int,
date_created datetime
);
New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "To launch Navicat in Windows 7 and earlier, go to Start menu | All Programs | PremiumSoft and click on the version of Navicat you have installed on your PC."
Warnings or important notes appear in a box like this.
Tips and tricks appear like this.
Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title through the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.
Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website, or added to any list of existing errata, under the Errata section of that title.
Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.
Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.
Chapter 1. Getting Started
This chapter is intended as an introduction to the Navicat Database Administration tool with a graphical user interface (GUI), and describes how to set up different kinds of connections and basic settings to advanced configurations, such as SSH, to an installed MySQL server. In this chapter, you will learn about the following:
Enter Navicat
Navicat is not only a powerful, sophisticated, and easy-to-use database administration tool with a GUI , but also a very useful aide for developers who work on database-driven applications. It is available for Windows, Mac, and Linux.
Navicat for MySQL is the first member of the Navicat family with advanced features allowing you to import/export data, back up, or transfer an entire database to another server and design queries in a GUI with point-and-click and drag-and-drop features.
Navicat Premium is the ultimate member of the family, an all-in-one database administration, and migration tool combining all Navicat versions enabling the user to connect to MySQL, SQL Server, SQLite, Oracle, and PostgreSQL databases simultaneously within a single application, making database administration of multiple brands of databases substantially easier.
While databases other than MySQL are outside the scope of this book, you may want to check out other titles from Packt, such as those on Oracle database (www.packtpub.com/books/oracle-database) and Microsoft SQL Server (www.packtpub.com/books/microsoft-sql-server).
Navicat is not a free product, but you can easily obtain a 30-day evaluation from the website of PremiumSoft, the company that created the product and brought it to the market.
Throughout the book, the examples will be shown using Navicat Premium version 10.0.9, although you can follow every example and exercise using Navicat for MySQL 10.0.9. Even if you have a version of Navicat as old as v.8.0, you should be able to keep up with the book for most of the examples.
To download Navicat, you can go to www.navicat.com/download/download.html and get either Navicat for MySQL or Navicat Premium. The most up-to-date version was 10.0.9 at the time of this writing.
Setting up a connection to the database
At this point, I assume you already have your MySQL server installed, set up, and running as well as Navicat, so that we can get our hands dirty with Navicat right away.
To launch Navicat in Windows 7 and earlier, go to Start menu | All Programs | PremiumSoft and click on the version of Navicat you have installed on your PC.
If you're using a Mac, Navicat should simply be in your Applications folder unless you dragged and dropped it elsewhere from the installer window.
In order to define a new connection, go to the File menu or the Connection button, which is the first icon in the Navicat's main toolbar (or ribbon, as we might call it) and select File | New Connection | MySQL to open up the connection profile window titled MySQL - New Connection, where we can specify the settings for the connection we want to establish.
You can refer to the following screenshot:
As you can see in the second part of the screenshot, the MySQL - New Connection window is where you can specify the settings to define a connection. It has five tabs; the first of which is where you set the basic connection properties and it is sufficient in most cases, which are as follows:
If you are connecting to a remote MySQL server, you must make sure that remote access privileges are granted for the username you will be using. In some cases where the MySQL service provider does not provide direct access to the server remotely, connecting via Secure Shell (SSH) or an HTTP tunnel might be an alternative solution. We'll see how to set up these kinds of connections respectively in the following sections.
Connecting via Secure Shell (SSH)
SSH is a command line tool to log into a server or another computer over a network in a secure manner to run commands on the remote machine or to transfer data. For increased security, SSH provides a strong authentication mechanism either by using a password or a public/private key pair also known simply as a public key.
In order to set up your connection to the MySQL server via SSH, first enter the basic connection settings as described in the previous section, then go to the SSH tab in the connection settings window, click on the checkbox labeled Use SSH Tunnel,and then enter the following information:
Connecting via an HTTP tunnel
In some cases, it is not possible to connect to a server through any protocol but HTTP, especially when one party is behind a firewall. Some companies, for example, want to limit the Internet access of its users so that they are only able to browse the web, and do nothing else; no FTP, no instant messaging, and so on. This is where the HTTP tunneling comes in handy. It allows you to connect to a server (in this case MySQL) through the port 80 (the HTTP default) instead of 3306 or any other port.
To set up an HTTP connection, go through the following steps:
Please note that HTTP tunneling tab and SSH tunneling tab cannot be used at the same time. You need to choose one or the other.
Setting up Secure Sockets Layer (SSL)
Secure Socket Layer (SSL) is a security protocol for establishing an encrypted link between a server and its clients, which ensures the privacy and integrity of all data transmission between the two parties.
To use SSL in Navicat, you need to have an SSL certificate; you can obtain a free solution such as OpenSSL from www.openssl.org and install it on your local server, and configure your MySQL server for SSL and set up the server-side certificate for it. Finally, you can set up the client certificate, which you will then be able to obtain from your SSL server. Complete instructions on how to install and set up OpenSSL for MySQL and the certificate for Navicat is explained in the Navicat manual.
Advanced settings
Navicat provides an option for setting advanced database properties which you can control by clicking on the Advanced tab in the MySQL - New Connection window.
The first field labeled, Setting Save Path, allows you to save your settings at a location of your local drive, which you specify. You can tweak some other settings, such as overriding the character encoding, pinging intervals to the database server, auto-connections, using sockets file, that is, mysql.sock, and so on.
The most useful feature here is the ability to hide and show certain databases on the left pane of Navicat's main window where all your connection profiles and databases that belong to them are listed in a tree view. This feature is activated as soon as you check the Use advanced connections checkbox.
The list box titled Databases becomes active and every item in the list has a slightly smaller checkbox next to it. The databases whose checkboxes you highlight will be the ones that will appear next time you open the connection. You can also individually specify a username and password for each database. This is especially useful if you have more than one account with different privileges for a given database.
You can also add or remove items to the list by using the buttons on the right-hand side.
Testing and saving your settings
Now that we're done configuring the connection, all we need to do is to test the connection and click on OK. We can modify these settings at any time by right- clicking on the name of connection profile listed on the left pane and selecting Connection Properties... to bring back our connection profile window.
Summary
In this chapter, we have laid the groundwork for the rest of the book, by learning how to set up connections from within Navicat to a MySQL server in a variety of ways—from using simple customary parameters to secure configurations, such as SSH or HTTP tunneling to overcome limited Internet access situations.
In the next chapter, we will start working with databases, and I will guide you step-by-step in dealing with database objects, such as tables, views, functions, procedures, and designing queries using Navicat's sophisticated yet easy-to-use and addictive tools. The fun is just beginning.
Chapter 2. Working with Databases
In the previous chapter, we saw how to set up different types of connections to a MySQL server from Navicat. Now that we’re ready to get connected to a server, it’s time to work with databases. In this chapter you’ll learn how to:
Managing database objects with Navicat
What do we mean by database objects? Basically tables, views, functions, and events are what we refer to as objects. For each of them, there is a toolbar icon in Navicat’s main window and they also appear on the tree view list on the left-hand side of the navigation pane. It’s possible to hide the object hierarchy from Tools | Options by unchecking the Show objects in connection tree option, but this would probably be trivial, especially for novice users.
The toolbar in Navicat’s main window has large buttons with icons for working with the database objects. Clicking on the Table button on the toolbar, for example, is the equivalent of selecting Tables in the tree view in the navigation pane titled Connections. The larger remaining portion on the right-hand side of the main window, under the toolbar, is called the object pane, which displays the objects of the selected type. The following screenshot shows the objects of Tables:
Creating a database from scratch
Navicat makes it extremely easy to create databases and objects, such as tables and views from scratch. As we have established a connection to a MySQL server in the previous chapter, it’s time to get started with a blank database of our own. The following steps describe how to create a database from scratch:
Now our_first_db should appear among the other databases under localhost. By right-clicking on it, you can see what actions you can perform on our new blank database from the contextual pop-up menu, such as opening it, viewing, and editing its properties like Character set, Collation, and deleting it. There’s also an item named Data Transfer...in the same pop-up menu, which in my opinion is one of the most powerful features of Navicat. It allows you to transfer data directly to and from another database, which we will cover in Chapter 3, Data Management with Navicat.
Due to limitations of MySQL 5.x, it is not possible to rename a database via GUI tools. The best way to do this is to dump the database to an SQL file, create a new database with the desired name, and execute the dump file to fill it with the contents of the previous database. You will also find details of such tasks in Chapter 3, Data Management with Navicat.
Creating tables
Now let’s create some tables for our_first_db by following these steps:
Navicat’s table designer window will appear. The controls here are pretty intuitive. We’ll create a department table for a simple employee database and we need three fields for it: id (int), name (varchar), and manager_id (int). To create the fields, follow these steps:
It is possible to interpose a newly-created field between previously created ones by clicking on the existing field and clicking on the Insert Field button on the toolbar. We can also change the order of the fields by selecting a field and using the buttons Move Up and Move Down on the toolbar as we please.
Now we’ll repeat the previous steps to create the employee table, but this time defining the fields with the following specifications. In the following table, false implies uncheck and true implies check:
Name | Type | Length | Decimals | Allow Null | Primary Key |
id | int | false | X (auto-incrementing) | ||
first_name | varchar | 50 | true | ||
last_name | varchar | 40 | false | ||
varchar | 60 | true | |||
title | varchar | 35 | true | ||
salary | decimal | 10 | 2 | true | |
perks | int | false | |||
department_id | int | true | |||
manager_id | int | true |
Next, we need to establish some relationships between the two tables by defining some foreign key constraints.
Defining foreign keys
First of all, I recommend saving the table and naming it employee (If you happen to close the table designer after that, right-click on the name of the table and choose Design Table from the pop-up menu.) While back in the table designer, perform the following steps:
For example, selecting the cascading option On Delete in this case means, when a department record is deleted, all employees in that department will also be deleted. Leaving On Delete and On Update blank will set them to restrict as default, which would mean that you can’t delete a department that has employees associated with it.
The above definition will be enforcing a referential integrity check for every employee to be assigned to an existing department via the department_id column. It means you can’t set a non-existent department ID for a given employee.
Now repeat the steps mentioned earlier to define a foreign key for the manager_id, name it fk_employee_4_manager_id, set the Referenced Table to employee, and the Referenced Fields to id, as shown in the following screenshot:
If you switch to the SQL Preview tab before saving your changes, you will be able to see a couple of automatically generated SQL commands for adding the designed foreign key constraint(s) to your table. In fact, every change you make on a table’s design has corresponding SQL commands, which Navicat performs behind the scenes and executes them on the database server. This can also be useful for learning SQL, or in the case of a server error, for analyzing what went wrong at the backstage. The screenshot of the SQL Preview tab is as follows:
Repeat the same steps for defining a foreign key constraint for the manager_id in the department table referencing the id field of the employee table, and name it fk_department_4_manager.
As for the table naming convention, I encourage the use of single nouns for table names particularly to make life easier for developers, who use object-relational mapping (ORM) APIs that have reverse-engineering tools for the development of database-driven applications.
Navicat’s Table Designer also features a tab called Indexes that makes creating indexes as easy as creating fields and defining foreign keys using similar methods. In fact, creating a foreign key requires a corresponding index also to be created, and Navicat does that automatically for us by creating an index for every foreign key we define and create.
You will also notice the Triggers tab, where you can easily define a trigger for a table. Let’s define a simple trigger, which will be activated every time a new row is added to the employee table. For this example, we will need an auxiliary table that I will call emp_log.
Defining triggers
You can either practice what you have learned in this section by creating the emp_log table using the table designer, by defining three basic fields: id (Type-int, check primary key auto-incrementing), emp_id (Type-int), and date_created (Type-datetime) or by going to the menu bar in Navicat’s main window, choosing Tools | Console... (alternatively press F6 as a shortcut) and entering the following command in the MySQL console window:
CREATE TABLE if not exists emp_log (
id int auto_increment primary key,
emp_id int,
date_created datetime
);
Once the emp_log table is created, we’re ready to define a trigger that will log every employee record we created in the employee table. Right-click on the employee table, select Design Table, and then perform the following steps in the table designer for the employee table:
BEGIN
INSERT INTO emp_log SET emp_id = NEW.id, date_created = NOW();
END
The screenshot of the Triggers tab is as follows:
The Options tab is another useful aide, which lets you modify certain settings of a MySQL table. A major pitfall for MySQL database designers is that when creating a MySQL table, they might accidentally end up with a MyISAM table, whereas they actually intended to use the InnoDB engine. Navicat makes it easy to change the engine to InnoDB. This kind of modification is not foolproof though. Due to MySQL’s internal mechanism, if there’s already some data entered in the table, this might make the conversion difficult, and sometimes even impossible. The other options here include Character set and Collation modification, setting or resetting the Auto Increment value for the next record, and maintaining a live checksum for all rows—a feature exclusive to MyISAM tables.
More advanced tweaks are possible on this screen, which is covered in detail in Navicat’s manual.
It is also possible to duplicate tables by just clicking on the table’s name and selecting Duplicate Table from the pop-up menu. Another related cool feature of Navicat is that you can copy a table in the same way and paste it to another database.
Entering data in tables
Now that we have built the basis for our database, we’d better enter some data in our tables. To open a table for data entry, simply double-click on it.
Navicat provides two ways of data entry in tables: one of them is using the Grid View, which is predictably the most common way of entering data just like you would do in a spreadsheet.
Just click on a cell to start entering the data, and when you’re done with it, you can press the Tab key to move on to the next cell or click on anywhere outside the active cell. Fields with foreign key constraints will contain a small square button for selecting data from a drop-down list, which will present data items from the field of the table to which it has reference(s). In our case, the department_id can be selected from the IDs of records entered in the department table as you can see in the following screenshot.
When you’re finished with editing the row, you can click on the tiny tick P button at the bottom of the window to save your changes, or the O button to discard them. Click on the (+) plus or minus (-) sign to delete a record if you need to, as shown in the following screenshot:
If you used Microsoft Access or Oracle Forms before, the form view will look familiar to you. Every table row or record will be displayed on a separate page with the fields aligned vertically in that view. Refer to the following screenshot:
Creating views
Database views are usually used to hide complex details of certain tables and in some cases, they’re used simply as a security mechanism by limiting the data that a user is allowed to retrieve. In this section, I’ll show you how to create a view, in a moment, using Navicat’s view designer. It has a powerful visual editing tool called the View Builder and it allows you to design views visually using point-and-click and drag-and-drop gestures.
To add a table to the view, simply click on its name on the left pane, and drag it to the graphical view area, or just double-click on its name in the tree view and click on View Builder tab and then follows these steps:
In the meantime, the SQL representation of the visual design will be updated accordingly in the lower-right pane, which is called the syntax view. The relationships will be created as INNER JOIN by default; however, you can change them to LEFT JOIN or RIGHT JOIN by clicking on its SQL syntax highlighted in blue, and selecting a different join type from the menu that pops up.
Alternatively you can switch to the Definition tab of the view designer to work with plain SQL. You can switch between the two any time, as it is possible to generate the SQL query from the visual design and vice versa. However, make sure you save your view definition at every step and even back up the SQL to an external file at every major step as it is possible that the SQL query gets mixed up when trying complex things in the visual editor.
For our example, enter the following SQL query in the Definition pane:
SELECT
employee.first_name AS `first name`,
employee.last_name AS `last name`,
employee.title AS title,
emp_log.date_created AS `date joined`,
department.`name` AS `department`
FROM
employee
LEFT JOIN department ON employee.department_id = department.id
LEFT JOIN emp_log ON emp_log.emp_id = employee.id
To preview the results of the generated SQL, click on the Preview button on the toolbar. You will see the data retrieved by the view in a tab called Result1, if your SQL statement had no errors.
The Explain button on the toolbar shows the query plan of the view.
For power users, there’s also a tab titled Advanced, where you can set advanced properties for the view. One of them is the Algorithm, and it gives you the ability to force MySQL to use a specific algorithm when executing the SQL.
The Security option lets you customize access privileges by choosing between the user who defined the view and the one who invoked it.
More details about these settings are available in Navicat’s manual.
When you double-click on a view you saved, you will get the results in a grid window, which is very similar to opening tables for viewing or entering data. From this window, it’s possible to export the data in a variety of formats. The details of this functionality are covered in Chapter 3, Data Management with Navicat.
The created View will look like the following screenshot:
Working with functions and procedures
MySQL has brought support for functions and stored procedures as of Version 5. A stored procedure is a set of SQL statements that can be stored on the server, so that they can be invoked later by a client, a trigger, or even another stored procedure.
Now, we will create a simple stored procedure that will select the employees with the lowest, highest, and average salaries in the company.
The default way of creating such a routine in Navicat is through the Function Wizard that is invoked by clicking on the New function button in the toolbar or by selecting the New Function command from the pop-up menu showing up with a right-click on the appropriate context.
In the Function Wizard window, select Procedure and click on Next.
Then enter the following parameters for the procedure before you click on Finish:
Mode | Name | Type |
OUT | lowest_salary | decimal(10,2) |
OUT | l_emp | varchar |
OUT | highest_salary | decimal(10,2) |
OUT | h_emp | varchar |
OUT | average_salary | decimal(10,2) |
After entering the parameters in the previous table, the screenshot will look like the following:
After clicking on Finish, the created Procedure will look like the following:
Finally, enter the following code in the routine’s Definition on the next screen and save the procedure as sp_salaries.
BEGIN
SELECT Min(salary) INTO lowest_salary FROM employee;
SELECT CONCAT_WS(‘’ ‘’, first_name, last_name) INTO l_emp FROM em ployee WHERE salary = lowest_salary;
SELECT Max(salary) INTO highest_salary FROM employee;
SELECT CONCAT_WS(‘’ ‘’, first_name, last_name) INTO h_emp FROM em ployee WHERE salary = highest_salary;
SELECT Avg(salary) INTO average_salary FROM employee;
END
While entering the previous code, you can enjoy the code editing capabilities of Navicat, such as the code highlighting, word wrapping, auto-completion, and code-folding.
Now, in order to test the procedure, go to the Queries node, create a New Query, and then enter the following statements in the Query Editor:
CALL sp_salaries(@lowestsalary, @low_emp, @highestsalary, @high_emp, @averagesalary);
SELECT @lowestsalary, @low_emp, @highestsalary, @high_emp, @averagesalary;
To see the results of the query, click on the Run button in the toolbar and there we are with the lowest and highest paid employee in the company, their salaries, and the average salary of all employees in the company.
Lastly, since we don’t have a single field for the full name of employees and instead have separate fields for first name, we will create a function that returns the full name of an employee by concatenating his/her first name and last name delimited with a single space character whose ID is taken as an input parameter.
To do this, we’ll follow almost the same steps from the beginning of this section, except that in the first screen of the Function Wizard, we’ll select Function instead of Procedure.
Next, we’ll specify emp_id of type int as the input parameter and click on Finish. Finally, in the function’s Definition area, enter the following code:
BEGIN
DECLARE fullname VARCHAR(50);
SELECT CONCAT(first_name, ‘’ ‘’, last_name) INTO fullname
FROM employee WHERE id = emp_id;
RETURN fullname;
END
Save the function as fn_fullname and test it by clicking on Run on the toolbar. When prompted, enter id of an employee whose full name you want to display. Refer to the following screenshot:
Using Navicat’s event designer for MySQL
As of Version 5.1.6, the Event Scheduler feature of MySQL was introduced, which lets you design scheduled tasks. An event in MySQL is a scheduled task consisting of one or more SQL statements to be executed at certain intervals, beginning, and ending at specific dates and time.
In this section, I’ll show you how to create a scheduled event that will back up our employee table, which will recur at specific intervals. As a prerequisite, we need to make sure that MySQL’s global event scheduler is active (which is disabled by default).
For this, select Console from the Tools menu in Navicat’s main window to get a command-line access to the MySQL server, as shown in the following screenshot:
While in the localhost - Console prompt, type the following command:
mysql> SET GLOBAL EVENT_SCHEDULER=ON;
Secondly, we will need to create a new stored procedure that will contain a set of commands to back up the employee table and delete any existing backup.
Time to put into practice what you have learned in the previous section:
BEGIN
DROP TABLE IF EXISTS employee_backup;
CREATE TABLE employee_backup LIKE employee;
ALTER TABLE `employee_backup`
MODIFY COLUMN `id` int(11) NOT NULL FIRST;
INSERT employee_backup SELECT * FROM employee;
END
We want the backup process to run every month, so refer to the previous screenshot to adjust your settings so that the event will be triggered every month, STARTS at CURRENT_TIMESTAMP + 1 hour INTERVAL. Save this event as backup_employees and you’re done.
To test if the scheduled event is working, you can set a much sooner date and time and shorter interval for a start, and then once you verify it’s working, you can set the timing back to a reasonable frequency.
Working with queries in Navicat
Designing a query in Navicat is much like designing a view except that views are limited to SELECT statements whereas the queries can perform any CRUD (create, read, update, and delete) operation.
Just like the View Builder, Navicat’s visual query builder allows you to graphically represent tables and fields as well as relationships between them (JOINS) and by leaving the SQL generation to Navicat, however, this approach only works with SELECT queries. You still have to handcode the SQL for create, update, and delete queries.
In this section, we’ll go through an imaginary scenario regarding the fictional company Acme.com, where the CEO is unhappy with the financial results from the past fiscal year and believes that the company’s organization should be revised. Toward this end, he wants preliminarily analysis of who’s doing what and how much salary he or she gets in the company.
First, we will design a simple query to list all departments and their managers.
Designing the Query
Let’s go to the Queries view by either clicking on the large Query button on the toolbar or by selecting Queries from the navigation pane on the left-hand side, and then click on the smaller New Query button on the toolbar.
In the window that opens, the Query Editor tab is active by default. This is where you can handcode the SQL language to construct a query. What we want is the visual designer, so we’ll switch to the Query Builder tab.
In this view, we have a visual diagram pane where we can create graphical representations of tables and views by either double-clicking on their names on the left pane, or simply by moving them to the empty area using drag-and-drop gestures.
For this query, we need department and employee tables side-by-side; so after bringing them to the stage, start building a SELECT query by choosing the following fields by clicking on the tiny boxes next to their names: name of the department table, first_name, last_name, and title of the employee table.
Next, click on manager_id of the department table and move it onto the id field of the employee table. A line with round ends bonding the two fields should appear, and in the pane below an editable SQL code is previewed. You can click on the gray words in the SQL query to make additions to the syntax, such as aliases for fields and tables. This query is now almost ready except that I want a LEFT JOIN between department and employee instead of an INNER JOIN here. Click on the blue INNER JOIN expression to change it to a LEFT JOIN using a drop-down list that will show up automatically, as shown in the following screenshot:
Now let’s save this query and execute it to find out about the organization of the company. I named it qry_departments.
Click on the Run button on the window’s toolbar to execute the query. Invoking it will switch back to the query editor and retrieve the results in a data grid below the generated SQL code. At this stage, we have the option of exporting the resulting data to a variety of formats, such as text (csv), Excel spreadsheet, XML, MS Access database (Windows only), or even a DBase file. Details of importing/exporting data functionality of Navicat are covered in Chapter 3, Data Management with Navicat. Refer to the following screenshot:
Unlike other database objects, Navicat does not prompt you to save your query when you are closing the query designer window, so be sure to save your work to avoid losing your changes.
Building further queries
Having designed our first query in the previous section, I think that we could spice up what we have learned by adding some more to it.
Going back to our scenario, the boss wants a list of employees (specifically the managers) with a monthly salary amount of more than $15,000, which department they work in, and who they report to. That’s the specification of the next query we will design. If you are good at SQL programming, you could conceive such a query in a matter of minutes just by handcoding. Navicat’s code editor is very useful also for this kind of task, thanks to its code-completion aid, SQL formatting, code folding, and brace highlighting. However, I want to demonstrate a few more features of the visual builder for the sake of the ease-of-use it provides for setting filtering criteria. For this query, we’ll be working with the department table to retrieve the names of departments associated with the department ID of employees, and two instances of the employee table—one for the employees themselves and the second one to fetch the names of their managers.
Open a new query window and add two employee tables and one department table to the (graphical) diagram view area by dragging them from the left pane or double-clicking on their names. Name the second employee table as manager using an alias. You can do this either by double-clicking on the table’s title bar or by clicking on the slightly dimmed <Alias> in the syntax view, and entering manager. (The former method is similar to renaming a file by clicking on its name under or next to its icon in Windows Explorer or the Macintosh Finder.) Refer to the following screenshot:
Connect the department table to the employee table by associating id of the department table to department_id of the employee table, and then connect the employee table to the manager table by associating manager_id of the employee table to id of the manager table. Convert these associations to LEFT JOIN instances, so that we also retrieve the employees who are not assigned to any manager or a department.
Next, select the following fields: first_name of the employee table, last_name of the employee table, title of the employee table, salary of the employee table, perks of the employee table, and name of the department table for the query.
Now we need to specify two conditions: employee.salary must be greater than 15,000 or employee.perks must be greater than 1,500.
To add a condition in the visual editor, click on the symbol group <--> = <--> from the WHERE clause in the syntax view. Click on <--> to choose the field from the list of all the table fields, available in the query. To define your own criteria, you can type your values directly in the Edit tab. Click on the equals sign (=) to change the condition operator.
Now if we execute the query, we’ll get more or less of what we wanted; all the employees with salaries over $15,000 or perks over $1,500. But the CEO is also on the list. Besides, the result sheet is not very appealing to the eye with some of the bizarre column names and with the first names and last names appearing in different columns. While in the query editor, we shall manually edit the SQL to address these issues while enjoying the comfort of Navicat’s code editor.
I think it’s a good idea to concatenate the first and last names to show them in a single column, change the column title of department names to something sensible, exclude the CEO from the query results by adding another condition to the query, and sort the results by the amount of salaries in descending order.
To achieve these little goals, we’ll modify the SQL to resemble the following code listing and re-run the query:
SELECT
CONCAT_WS(‘’ ‘’,employee.first_name,employee.last_name) AS FullName,
employee.Title,
CONCAT(‘’$ ‘’,FORMAT(employee.salary,2)) AS Salary,
employee.Perks,
department.`name` AS Dept,
CONCAT_WS(‘’ ‘’,manager.first_name,manager.last_name) AS ManagerName
FROM employee
LEFT JOIN department ON department.id = employee.department_id
LEFT JOIN employee AS manager ON employee.manager_id = manager.id
WHERE
(employee.salary > 15000 OR
employee.perks > 1500) AND
employee.title <> ‘’CEO’’
ORDER BY employee.salary DESC, employee.perks DESC
Navicat also provides us with the ability to show the query profile and status, thanks to which we can monitor certain status parameters, such as table locks, system locks, and statistics under the Profile tab in the query results window. Refer to the following screen shot:
Summary
In this chapter, we have covered a great deal of database features from Navicat and we learned how to create and manage database objects using Navicat’s visual tools.
We now know how to make use of Navicat’s GUI tools to:
In the next chapter, we will see in detail Navicat’s data management tools and learn how to manipulate and transform databases easily using Navicat.
Chapter 3. Data Management with Navicat
In the past, some of us would work with a database and its contents the hard way, typing commands in a console window or using primitive GUI tools with limited functionality. When it came to migrating a database from one server to another or even a simple restore from a backup, such stunts could become tedious tasks. In this chapter, we will see how easy and less time-consuming it is to perform all these tasks with Navicat.
Also, we will manipulate big chunks of data using Navicat's sophisticated tools, and you will learn how to:
Working with an existing database
From this point on, we'll work with an existing sample database called Sakila. Apart from being the name of the dolphin in the MySQL logo, Sakila is an example of a movie database developed by Mike Hillyer—a former member of the MySQL AB documentation team—and is intended to provide a standard schema that can be used, for example in books, tutorials, and articles. It also serves to highlight the features introduced in MySQL 5.x, including views, stored procedures, and triggers. The default installation of MySQL 5.5 Community Edition includes a copy ofSakila along with another sample database named World. If you already have a version of the MySQL server (earlier than 5.5) installed on your computer and do not want to upgrade for specific reasons, we have included a copy of the dump file of the Sakila database in the example code for this book. You can also download it from http://dev.mysql.com/doc/index-other.html. Once you arrive at the page, select the Other Docs tab and look in the Example Databases section. There you can find other sample databases too, with which you can experiment and apply what you will have learned through this chapter, as shown in the following screenshot:
Once you have downloaded Sakila's compressed archive (either in .zip or .tgz format) and extracted its contents, you will find three files, which are called SQL dump files, in a folder called sakila-db. We need only two of them—sakila-schema.sql and sakila-data.sql. We'll use sakila-schema.sql in order to generate the Sakila database on our MySQL server; all the tables, views, functions, and stored procedures, which constitute the database structure, will be created. The other file, sakila-data.sql, will populate the data of the Sakila database.
Creating the database schema from a SQL dump file
Now, to generate the Sakila database on your server, I need you to right-click on localhost (or whatever server you defined a connection for) from the Connections pane of Navicat's main window and follow these steps:
Optionally, you could uncheck Continue on error to make sure your settings are correct before Sakila is generated on your machine as it's supposed to be; and if not, the operation will be broken and you will know in advance that you need to recheck the settings regarding your database server installation and connection properties. In other words, the operation should go just fine with the default settings, but in the event of any error during the execution of the queries—probably resulting from a possible misconfiguration—it's best to stop creating the database and revise the settings by referring to the previous chapter.
Alternatively, you can leave the Continue on error option checked and execute all the queries in the SQL file. In the case of any error, you can refer to the Message Log, which is under the second tab of this window. Refer to the following screenshot:
This is one of the most powerful features of Navicat. In just a few seconds, we executed a SQL dump file to recreate a database without having to type commands in a console window or having to go through complicated screens, as shown in the following screenshot:
All the Tables, Views, Functions, and stored procedures are now listed in the main window. Click on Tables to see what we've got. We have almost every element that we would find in a typical relational movie database such as film, actor, category, staff, and some association tables, which are also called junction tables, such as film_actor and film_category. Double-click on some of them to see what they look like in Navicat. There are some custom views as well, such as nicer_but_slower_film_list and sales_by_film_category.
The first thing you will notice, however, is that these Tables and Views are all empty, without data. It's because the .sql file we executed contains only the database structure. So we have only created the blank database schema, and we need to repeat the steps in the beginning of this section to execute the other SQL dump file called sakila-data.sql, which contains the data to populate the database.
Now that we have the full database, with a complete structure, at our disposal, it's time to fill it with some data.
Right-click on the sakila database from the tree view in the left pane, make sure it's connected by verifying if its little cylinder-like icon is green, and then select Execute SQL file from the pop-up menu. This time, choose sakila-data.sql and click on Start. The title of the auxiliary window should become something like Execute SQL file, and the Message Log tab should read [Msg] Finished - 56 queries executed successfully.
Importing and exporting data
In the previous section, we have actually imported the sakila database by using SQL dump files. In this section, we'll cover import/export capabilities of Navicat in more detail.
As our first exercise, we will export our_first_db, the database that we created in Chapter 2, Working with Databases, in a .sql file, so that it can be regenerated on another MySQL server or as another instance of the database on the same server. To export our_first_db, follow these steps:
The previous procedure is one step away from exporting an entire database, although there are other variants of data exporting methods in Navicat, which will be covered in a moment, in this chapter. The sakila database, for example, came in two, separate, .sql files—one for the schema and the other for the data. If you export sakila using the same method, which is, by running the Dump SQL file command, Navicat will export the entire database in a single dump file.
One thing to know about Navicat's way of exporting SQL dump files is that Navicat does not include a command to create the database, such as CREATE DATABASE db_name, in the file.
Therefore, before executing dump files created by Navicat, you should first select a database or create a new one, and then proceed with the execution to generate the schema and to populate the data, if any.
If you are going to use the exported .sql dump file in a different administration tool, such as phpMyAdmin or MySQL Workbench, you should manually add the SQL command that would create the database. For example, you could add a line with the code CREATE DATABASE our_first_db in the beginning of the file, using a text editor.
Another one of Navicat's most acclaimed features is its ability to export data to a variety of formats. Some of the major ones will be covered in a moment.
Exporting in detail
If you are a database administrator or some sort of an IT analyst, you might often receive business requests to provide your client with an output of a table or a query from a database on the company intranet, typically in the Microsoft Excel format. In such cases, Navicat comes extremely handy for exporting the needed data and in a wide range of exporting options.
You can open any Table, View, or Query, and then click on the Export Wizard button on the toolbar of the window. When you do that, Navicat asks you if you want to export all the data in the table (in the Windows version).
Now this part is a bit tricky. First of all, the table in the expression all the data in the table refers to what kind of database object you're dealing with. When you're exporting the results of a View or Query, then export all the data in the table means all the data in the result list of the View or the Query you have been working on. Secondly, all the data means all the records in the database table, even if you displayed a limited amount of data. Please note that Navicat displays, at most, a thousand rows by default, when displaying the contents of a Table, View, or Query, in order to prevent a heavy workload on the database server.
This limit can be changed or removed by clicking on a tiny toolset icon at the bottom-right of the results window, which is shown in the following screenshot:
To see this in action, follow these steps:
You will be presented with the Export Wizard window, where you will need to specify the export file format with options ranging from the Dbase file format to MS Access database or Excel spreadsheet to XML.
While the Windows version of Navicat provides a plethora of file format options to choose from, the Mac version presents fewer options for the export file format (which explains why the Mac version is slightly cheaper). To be specific, CSV, plain text, XML, Dbase file (.dbf), and Excel formats are the file formats. You can refer to the following screenshot, which contains screenshots from both the Mac and the Windows versions of Navicat. This screenshot compares the differences of the user interface elements, such as the toolbar and the icons as well as file exporting options:
Another point to be aware of when exporting to Excel is that the version of the spreadsheet that will be created depends on which version of Microsoft Excel is installed on your computer.
Even if you started the export operation on a single table output, this step lets you choose other tables in the database to export to separate files (unless you clicked No when prompted to export all the data, in the first place); that is, you can export each table to a separate file, as shown in the following screenshot:
What's more is you can even export more than one table (or all) to a single file. This is done simply by specifying the same filename (and path) for each source table in the corresponding field under the Export to column. This approach has different consequences depending on the file format you have chosen in the first place. For example, if you choose to export two or more tables to a single Excel file (.xlsx), each will be a separate spreadsheet in the same file.
To set the encoding of the file that will be exported, click on the Advanced button to display a little pop-up dialog window. The default Encoding is pertinently 65001 (UTF-8), which you can change from the drop-down list.
Under the Encoding selection box, there is also a checkbox to add a timestamp as a suffix to the exported filename. This is very useful to distinguish between the files in cases where you perform this task very often and end up accumulating a stack of exported files in a folder with identical names. You can even choose between different date patterns, such as YYYY-MM-DD-HHNNSS and MM-DD-YYYY for the time stamp, which will add a suffix to the output filename.
In the Windows version of Navicat, you have two options for exporting to Excel. One of them is Excel spreadsheet (*.xls), which is also the only available option in the Mac version. The second is Excel file (2007 or later) (*.xlsx). With the former option, you cannot successfully export more than one source table into a single destination file, whereas the latter lets you achieve this as it uses some component on your computer installed with Microsoft Office. The Excel files you export using this option are created more slowly, but their version exactly matches the version of Office installed on your PC.
If you are exporting more than one table and want to specify a different selection of columns for each, you will need to repeat this step for each table you are exporting, by choosing from the drop-down list labeled Source Table and then checking/unchecking the field names in the list below it, which updates itself as you switch between tables.
You could be presented with additional options if you were exporting some other file format such as in the case of XML or text files, for example, where you specify settings, such as row and field delimiters, text qualifiers, and the format for date, time, and numbers.
One of the best and foolproof ways to transfer or exchange data between MySQL and an Oracle or Microsoft SQL Database is by using the XML format when exporting data from a table.
Importing a file into a table
The same variety of file formats available for exporting a Table, View, or Query are also valid for importing data into a table. Excel spreadsheets, XML, and CSV files are among the most popular file formats used as data sources.
A business unit periodically sending an Excel spreadsheet to the IT department, with a request to update the corporate database with the information in its contents is one of the most common scenarios at work. And in some situations, the person who makes the spreadsheet often neglects to keep the column names consistent, for example, SALES_REP can become SALES_PERSON the next time and SALES_REP_NAME at another. Fortunately, Navicat prompts you to match the source columns with target fields, also giving you the flexibility to omit some or add additional ones.
When importing data from an Excel or CSV file, remember to correctly set field name row and first data row, which, typically, should not be the same.
In the example given in the screenshot, you can see the way additional actors are imported to the actor table from an Excel file, but some column names had to be manually matched for naming differences, such as actor_id–actor_no and first_name–name:
In addition to the popular data formats mentioned earlier, it is possible to import data from an ODBC data source in the Windows version of Navicat. This requires some knowledge of ODBC settings so as to be able to specify connection parameters. You can find detailed information for the ODBC import in Navicat's official manual.
Direct data transfer between two databases
Another flagship feature of Navicat is its capability to transfer database objects (Tables, Views, Functions, and Events) from one database to another, or to a SQL dump file. The target database can be on the same server or on another server. All you need to do is to have defined a connection to it as described in Chapter 1, Getting Started. The data transfer settings can also be saved as a profile for later retrieval or can be scheduled as a job.
You can start a data transfer process either by choosing Data Transfer... from Tools in the main menu bar, or by right-clicking on a database in the left navigation pane and selecting Data Transfer.... Once you initiate it, you can start specifying the settings in the Data Transfer window, as shown in the following screenshot:
Although the interface here is fairly intuitive, with two main areas under the General tab categorized as Source and Target simply letting you choose which objects to transfer where, there are a few points to know before you get started, unless you want to learn how to use it by the hard way of trial and error. First, you need to have the target database ready beforehand, which means you need to at least have created a blank database as the target to receive the database objects, as Navicat (at the time of writing this) does not create the database itself but rather copies the objects to the specified target. You can also choose to transfer to an existing database already containing some objects, but in this case, you might want to make sure that they don't have the same names as those in the source unless you wish them to be overwritten or skipped.
Secondly, you can prefer to export to a SQL dump file, which is, in a way, similar to what I showed in the beginning of the chapter, except that on this screen, you are able to specify the SQL format ranging from MySQL 3.23 to 6.0 through file encoding.
If the target server version is different from that of your source, the direct transfer might fail, and you might have to resort to exporting a SQL file in this way.
The Advanced tab is where you can specify some additional settings, such as continuing on error and dropping target objects before creating. This means that any existing ones with the same name from the source will have been overwritten.
As with all the other utility windows of Navicat, click on Start to begin the process when you're done configuring the settings. The process can last from seconds to minutes, or even hours, depending on the size of the database, the amount of data, the distance between two servers, and your connection speed. I personally do not usually have to wait for a long time to transfer my blog's database from the server of my web hosting company, which is on another continent, and my blog has some 2,860 posts including comments.
Data and structure synchronization
If you have multiple instances of your database across different servers, for example, one for development, one for testing, and one other for production, it can be challenging that, for consistency, sometimes making a change in one (most likely in development) requires applying the exact same changes to the others. We as humans often make the mistake of neglecting one or more changes on all of the servers and end up with unexpected errors after deployment.
Navicat comes to the rescue in this area as well, with its structure and data synchronization wizards accessible from the Tools menu.
Another situation where the synchronization tools could be useful is in cases where a previously performed data transfer operation is not successfully completed. The target database can be retouched using structure and data synchronization afterwards.
The usage of both tools is more or less identical to the Data Transfer interface, where you can thoroughly designate which source and target database objects you want to be compared and in what detail. For example, in Structure Synchronization, you can opt to compare tables along with primary keys, foreign keys, and indexes, but also choose to exclude triggers, character set, and the auto-increment value under the General (General Settings on the Mac) tab. As such, you can specify your choice of the type of SQL commands to be executed by clicking on the appropriate checkboxes, as you have CREATE, ALTER, and DROP to choose from. You can even check an option to compare again after execution of the process. In the Windows version of Navicat, there is a button labeled Compare at the lower-right corner of the window. On the Mac version, the button is on the upper left-hand side in the window's toolbar with a scales icon. Click on it to begin the comparison of the structure of the source and target databases. Refer to the following screenshot:
Next, we will need to go to the second tab named Comparison (Compare Result on the Mac), which will give us a sort of preview of what differences exist between the source and the target, and the SQL queries for synchronization will be listed as per the required modification in the second half of the window. You can individually select which queries are to be executed by clicking on their corresponding checkboxes, or click anywhere in the list to display a pop-up menu, which will allow you to select/unselect all, as well as copy the SQL syntax.
When you're done with it, click on Run Query to proceed. Then, you can watch the Message Log to see the results.
The Data Synchronization is slightly simpler where you simply select the source and target databases. Navicat automatically lists and matches the tables from both sides, so that you can verify if there's a correspondence for each table on both sides. Under the Advanced tab, you can specify whether or not you want to:
Lastly, you can click on Preview to see how data is going to get synchronized and then click on the Start button to let it actually happen, and see the executed commands in the Message Log.
Backup and restore
In case of a disaster, be it an electricity outage leading to a disk failure causing corruption of the database, or simply a user error of deletion of the wrong objects or data rows ending in data loss, it is crucial to back up your database. Navicat lets you back up all Tables (and their records), Views, Functions, and Events of your database for restoring later.
There's a big Backup button with a tape cassette icon on the toolbar of Navicat's main window, which will take you to a special view for managing backups, where a smaller toolbar appears under the main toolbar. This smaller toolbar has smaller buttons for creating a new backup, restoring a backup, or deleting it, plus a button for extracting SQL from the backups.
To create a new backup, follow these steps:
Navicat also provides some advanced options here, such as compression, table locking, and the ability to use a single transaction for InnoDB tables.
If you choose to use compression in the Advanced tab, a backup file with a .psc extension or with a .psb extension will be created.
Right-clicking on a backup and selecting Object Information from the pop-up menu will open an additional pane at the bottom of the window where you can see the size and full path of the file, as well as the last modification date. The backups are saved as single files in a hierarchy of subfolders under My Documents, by default. For example, my backups were stored in C:\Users\GO\Documents\Navicat\MySQL\servers\localhost\sakila\sakila_bu.psc. You can copy or move a backup file in the .psc or .psb format to another computer just like working with any other file on Windows Explorer or Macintosh Finder.
Restoring a backup is even simpler. You can right-click on a backup from the list of your backups, and click on Restore Backup from the pop-up menu. To restore a backup that is created on another machine and copied to the computer you're using, click on the Restore Backup button on the toolbar. Otherwise, right-click on an empty area of the object pane and select Restore Backup from the pop-up menu, and select the backup file using the open file dialog box. Make sure you have the necessary privileges for the create, drop, and insert operations unless you're connected to the database with the root user.
For deleting an unwanted backup, you can also right-click on it and select Delete.
Backups can also be created from the command-line interface running the following commands:
Navicat Object	Command and parameter	File Extension
Backup | Navicat.exe /backup ConnectionName DatabaseName | .psc (compressed)/.psb (uncompressed) |
Backup Server | Navicat.exe /backupserver ConnectionName | |
Backup Database | Navicat.exe /backupdatabase ConnectionName DatabaseName |
Creating and scheduling batch jobs
The execution of a series of tasks on a computer or server without manual intervention is known as batch processing, and it is something that most DBAs do daily if not all the time. These tasks are called jobs , which are set up so that they run in the background unattended, with all the input data preselected through scripts or command-line parameters.
Navicat provides a similar functionality allowing you to create batch jobs and set schedules, which can be executed at defined intervals or at a specific date and time, or both.
Batch jobs can be created for query, report printing, backup, data transfer, data synchronization, and data import and export. You can define a list of actions to be executed within a single batch job, which can be run manually at will, or scheduled to run at a specified time or even periodically.
You can switch to the view related with batch jobs and schedules by choosing View | Schedule from the menu bar or pressing the button with the calendar icon in the main toolbar.
To create a new batch job, follow these steps:
You can set the timing of the execution of this job by pressing the Set Task Schedule button on the toolbar. This brings in another pop-up window, where you can set the periods or frequency of the job under the Schedule tab, or specify the start date and the optional end date as well as the number of repetitions.
The Advanced tab lets you configure e-mail so that a user or a group of users can be notified of the results after the batch job is automatically run. It is even possible to attach a file output from Export Wizard or Data Transfer with the e-mail automatically generated and sent.
To create a batch job based on an existing one, select a job and then click on Design Batch Job, either on the object pane toolbar, or select it from the pop-up menu triggered by right-clicking on the job. After you finish your modifications, you can click on the Save As button on the toolbar of the editor window or Select File | Save as... from the menu bar.
Another quick and easy way of achieving the same result is by simply copying and pasting the job after selecting it and then performing the desired modifications on the duplicated job.
Summary
In this chapter, we have dealt with different techniques of data manipulation, transferring data from one database to another, and converting it to and from various file formats.
You have also learned to synchronize two instances of a database by means of both structure and data.
Backup and restore operations, as well as batch job creation and scheduling, are also essential in the lifecycle of a database (and in the life of a DBA) and you have learned how to use the fast and easy tools Navicat provides to accomplish these kinds of tasks.
In the next chapter, you will step into data modeling with Navicat.
Chapter 4. Data Modeling with Navicat
As of version 10 of Navicat, a data modeler feature has been added to the application, which allows the user to create and edit database objects, such as tables, fields, and relationships in a visual editor.
PremiumSoft (the makers of Navicat) also released this feature as a separate application software product with the name Navicat Data Modeler, and it is available for Windows, Mac OS X, and Linux. For those who exclusively require a visual tool for data modeling and do not require the other administration and data management tools, which were covered in the previous chapters, Navicat Data Modeler could be a pertinent choice.
While Oracle's MySQL Workbench (a GUI administration and database modeling tool for MySQL) could be considered a free alternative, Navicat Data Modeler provides means for easier manipulation of model objects and also presents some advanced features, such as history tracking and database synchronization; thanks to this, you can asynchronously work with data diagrams for later synchronization with actual database structure(s). For a better understanding of the functionalities of Navicat modeling tools, we will begin the chapter by following a tutorial to design our first data model, in order to aid you in learning each feature step by step.
In this chapter, we will learn how to master Navicat's visual data modeling tool, which makes it easy to:
Working with Navicat's model designer
Before we begin designing our first data model, it is a good idea to get acquainted with the tools that Navicat Data Modeler provides, which we have at our disposal.
The last button on the main toolbar in Navicat's main window is the Model button. Clicking on this button will take you to the model view. An alternative way is to select Model from the View menu (on the Mac, you can press the + key and the 8 key simultaneously as a shortcut). Then you can create a new blank model by right-clicking anywhere in the object pane of the main window and selecting New model.
On the Mac, press the + key and the N key simultaneously as a shortcut or click on the + button at the bottom-left side frame in the main window. On a Windows PC, simply click on the New Model button on the secondary toolbar, located under the main toolbar in the main window.
The screenshot of Navicat's toolbar on Mac and Windows is as follows:
This action also brings up a new window called model designer , where you can edit the data model. The left side pane of the model designer window contains the diagram of a tree palette that aids you to toggle its counterpart; a model tree palette is obtained by clicking on the tiny icons just above it. The diagram tree palette lists the model objects, such as tables, relationships, notes, and images (pictures) of the active diagram in alphabetical order. The model tree palette lists only the table objects of all the diagrams in the model. Now these metaphors can be extremely confusing, so I will describe briefly what each metaphor means and also explain their hierarchy.
Each model can contain one or more diagram that could also be called entity-relationship diagrams (ER diagrams) among database administrators. A database design can be split across the multiple diagrams within a model. There is also the concept of layers, but unlike graphics and image processing applications, layers in Navicat's Data Modeler are not containers or placeholders. Just like other objects, they are drawn on the canvas, but with a slight difference so that they are opaque and can be overlaid on other objects. Layers can be useful to organize certain objects by grouping the related ones and separating them according to different concerns. For example, when designing an ERP database, you may want to gather tables related with accounting and finance in one layer, and those related with sales and marketing in another.
Aligned to the right-hand side of it is a vertical toolbar also called the model diagram palette, from which you can select the type of database object you want to place in the diagram. The available objects in this context are tables, notes (labels), pictures (images), layers, and relationships. The right side of the window contains the Properties palette (on the lower left-hand side in Windows), and it is used to display and edit the properties of the active diagram and the objects it contains. Here you can manage every setting, pertaining to the selected item in the canvas, with options to rename the diagram, adjust the number of pages (significant when printing), adjust the font and color of the labels of the objects, and the notation of the diagram. There are five notations available—Default, Simple, IDEF1X, UML, and Crow's Foot, respectively.
Below the Properties palette is History Palette (in the Mac version) that lists every action you performed step by step, allowing you to take these actions back by as many steps as you wish. There's also a preview pane on the opposite side, almost placed symmetrically, that you can use for a map-like navigation. In the Windows version, these two palettes are placed at each other's exact opposite location. Refer to the following screenshot of Navicat in the Mac version:
Creating our first model
This section features a tutorial in which we will create the model of a fairly Simple To Do application for the database. Our new database will consist of three tables—tasks, categories, and users. Using the model designer, we will design these tables and also define the field types, primary keys, and relationships. All of these three tables will be interrelated to each other using foreign keys. We will then annotate the model and finally generate the actual database, forward-engineering the model we will have created. To start working on the model, switch to the model view window(if you haven't already done so) by clicking on the large Model icon on the main toolbar of Navicat's main window; or select Model from the View menu, and then to create a new model, right-click on the empty area in the object pane and select New Model from the pop-up menu. In the Windows version of Navicat, you can also simply click on the New Model button from the smaller secondary toolbar,right under the main toolbar of Navicat's main window. In the Mac version, there is no secondary toolbar. Instead, on the lower frame, which is thick enough to fit a small button, there is a + sign. This + sign intuitively indicates the function of adding an object in the chosen context. In this case, a model is accompanied by two more buttons; one is with a - sign that means delete, the other with a pencil icon that means edit. (The Windows version has equivalent buttons explicitly labeled as Design Model and Delete Model respectively.) After you perform this step, a new model designer window named Untitled–Model will pop up, presenting you with a blank diagram named Diagram 1. Now, let's get ready to start editing the model by creating our first table in the diagram. Click on the Table button (a tiny button with a table-shaped icon) from the vertical model diagram toolbar, and then click on an empty area of the canvas. You could also right-click on the canvas and select New | Table from the pop-up menu. A new, square-like box with rounded corners will be drawn in the canvas right where you last clicked, with a blue title bar labeled as Table 1 also highlighted, indicating that it's ready to be renamed for your convenience. In order to rename it, type category and press the Enter key. Next, right-click inside the box and select Add Field from the pop-up menu. (An alternative shortcut is to press the down arrow or the Tab key from your keyboard when editing a table or a field name.) You will notice a text cursor blinking inside the box representing the table.
Type id and press Enter. While Navicat is creating the field, it also senses what this field is meant for by the name you entered, and it automatically defines the field as a primary key of the INTEGER type. Now go on and repeat the previous step, this time typing name as the field name, and press Enter. Eureka! Navicat perceived this one correctly as well, and it created the field as a varchar type of 255 characters in length. The 255-character length is perhaps outrageous, but we'll see how to cut it down to size in a little bit. The ID and name fields are sufficient for the category table, so we are now moving onto the second table. Refer to the following screenshot to see how the tables, category and task, are created:
Now, we need to fine-tune some of these fields. For example, we will trim the length of those varchar fields from a 255-character length to some more reasonable length. To do this, right-click on task and select Design Table from the pop-up menu. This will make a table designer interface very identical to the tables you saw in Chapter 2, Working with Databases. In Mac, the table will look similar to the following screenshot:
On this screen, you can add or remove fields, or rename them, change their data types, change the data length, assign or remove primary keys, define default values for fields, add indexes, and even add constraints such as foreign keys or uniqueness definitions.
You can even reorder the fields by gesturing the mouse to drag-and-drop the fields in this interface.
For this example, we will just reduce the length of the title to 50 and the description to 200.
You can refer to Chapter 2, Working with Databases, for more details on the table designer interface and the functionalities it provides, for editing and tweaking table structures.
Defining the relationships
Now that we have our three related tables, it is time to define the relationships between them. This model is intended for a Simple To Do database, where our main data would be stored in the task table. Every task to be entered here will have a title, description, entry date, due date, category, and user. Here we are storing the categories and users on separate tables, so we need to refer to the related category and user from the task table, using the ID columns. There is a many-to-one relationship between the category table and the task table. In our case, a task can have one category associated with it, but a category can have many tasks under it. As such, a task can be assigned to one user, but a user can have many tasks.
To establish a join between two tables, first select the relationship tool from the vertical palette, then move your pointer to the task table and click-and-drag the category_id field, dragging it onto the id field of the category table. This should establish the join between the two tables, and a line joining them on the canvas should appear.
But that's not all. What we have done so far is to establish a basic one-to-one relationship with no further information on the cardinality between the two objects, as shown in the following screenshot:
Now, to right-click on the adjoining line and then select Cardinality on category | One or Many from the pop-up menu. Now that a one-to-many relationship between the two tables is established, a foreign-key from category to task is automatically created; also, the category end of the joining line will have a fork-like joint in the diagram. One shortcoming of the diagram editor (directly editing on the canvas) is that when relationships are visually defined by point-and-click and drag-and-drop gestures, the joints of the lines may not be placed at the beginning or the end of referencing and the referenced fields. So, you will need to manually adjust them by clicking and dragging the joints to the correct location on the diagram object (of course, if you want more precision in the visual representation of these relationships).
We could have also used the Design Relation... command from the pop-up menu that is the equivalent of double-clicking on the joining line, which would bring us back to the table designer that has the Foreign Keys tab active. This is where you can fine-tune the foreign key definition of the adjoining table-field pairs; furthermore, it gives you the flexibility to reference more than one field in the join.
As you have seen, it is best to use on-canvas editing and the table designer in conjunction with one another, rather than as alternatives, to make the best of two worlds, and for maximum flexibility in data modeling. Refer to the following screenshot to see how Foreign Keys are created:
As many DBAs and software project managers would suggest (if not required), it is a good idea to conform to certain naming conventions when creating database objects, especially constraints such as Foreign Keys. I prefer to name Foreign Keys as starting with the prefix fk_ concatenated by the table name, and then with _4_ proceeded by the referenced table name, followed by the name of its primary key field. For example, in the case of the task-category relation, I used fk_task_4_category_id as the foreign key name, which means that this constraint is a foreign key defined for the task table that references the id field of the category table from the category_id field of the task table itself.
While Navicat provides a lot of ergonomie for database object management, especially for constraint and index management, many other tools do not. In case of a need for modification, it can become cumbersome for someone who is not using a sophisticated GUI tool to manage a database, to locate a foreign key or some other constraint in the database unless a certain naming standard is respected from beginning to end, and by everyone involved.
When you're finished editing, click on the OK button on the lower right-hand side of the screen to save your changes, or click on Cancel to discard them.
Adding some pizzazz to the model with notes and images
Imagine a case where you are designing a database model as part of a project proposal and you want your model to look pretty and appealing. Well, it could take more than a well-designed ER diagram to make your model seductive. The additional objects on the vertical model diagram palette, what I call annotation tools, can help you achieve just that.
Click on the tiny button with a yellow icon resembling a post-it note, on the vertical model diagram palette, to activate the note tool, and then click on an empty area of the canvas to drop in a sticky note. You can double-click on it to edit its text, as shown in the following screenshot:
The note we have just added looks indeed like a post-it sticky, and it looks pretty good to me, in my humble opinion. But if you wish to change the appearance of the note (such as the color and text style), you can go to the properties pane and experiment with the different settings. The properties editor lets you tweak the note color, (rectangle) size, location, and even the font size and style.
If you prefer not to have a piece of sticky note on your model, but rather something more contemporary, you can choose to make the paper-like graphic completely disappear and leave only the text. To do this, simply click on the note with the arrow tool so it remains highlighted (or selected), and then in the properties pane select Label from the drop-down list named Note style. In Windows, right-click on the note and then go to Style | Note.
Right below the notes icon, there is the image tool with a tiny picture icon. You can add any picture or image to the diagram by first activating this tool by clicking on it, and by secondly clicking anywhere on the canvas. This will prompt you with your operating system's standard Open file dialog box, to select an image file or photo from your disk. Upon doing so, the image you have selected will be placed where you had clicked on the canvas. You could, for example, place your company logo in a corner to make the look and feel a little more corporate.
Working with layers
As mentioned earlier, the layers in Navicat's Model Designer are only for colorizing certain areas of the canvas for some kind of annotation, and can be used for marking a certain area of the canvas to gather some tables of a certain type of business logic. For example, you would want to separate the tables related with HR and put them within the boundaries of a certain layer, and put the tables related with manufacturing and logistics in another layer, for example, in a different area distinguished by a different layer, preferably in a different color, in the same diagram.
To create a layer, simply click on the icon above the relationship tool (and below the image tool) on the vertical palette, then click-and-drag a rectangular area ofyour choice on the canvas that you want your layer to be placed across.
Please remember that layers are neither containers nor placeholders, and they serve no other purpose than being a visual aid.
Deleting unwanted objects
When you create a table in the model designer, it begins to exist both in the diagram and the model. Deleting a table from the diagram thereafter does not necessarily mean it will be deleted from the model, but the good news is that you are asked from what context you want to delete a table, provided that you right-click on the table and select Delete | from Diagram or Delete | from Diagram and Model.
What's the difference? Well, the decision affects the objects that will be created when you generate a database from a model design. At the end of this section, you will learn how to forward-engineer a database by generating SQL from the model design.
Objects other than tables and relationships have no impact on the database structure, so deleting them from a diagram also removes them from the model.
Working with multiple diagrams
As discussed in the beginning of the chapter, a model can contain multiple diagrams. Working with more than one diagram within a model can become necessary if you're working with very large databases, whose model would be too large to be managed, leaving you no choice but to divide them into subgroups and place them in separate diagrams.
We will not go into detail about working with more than one diagram within the same model. However, I want to mention a few points here. Also, the user interface of Navicat for Windows differs in some aspects from that of the Mac version, so I'll try to briefly explain the differences between the two user interfaces.
On both the Windows and Mac platforms, you can create a new diagram simply by clicking on the New Diagram button on the toolbar of the Model Designer window. When you do this on Windows, the new diagram comes up under a new tab right above the canvas area. You can switch between the diagrams simply by clicking on their tabs.
In the Mac version, instead of a tab bar on the top left side of the canvas, there's a drop-down menu labeled with the name of the active diagram. Also in the Mac version, at the bottom left side of every window, there is a small, black icon in the shape of toothed gear wheels. When clicked, it pops up a menu for you to add objects to, relevant to the context you're currently in. To switch between diagrams on the Mac, just click on its name and then select the name of the diagram from the drop-down menu that opens, which you want to toggle.
Exporting the model diagram to SQL
We have completed the design of a simple, yet functional, database model design. Now, it's time to put it to some use.
I mentioned earlier, the possibility of generating a database from a model. To achieve this with a model we designed from scratch, we first need to export our design to a .sql file.
On the Mac, there's a button labeled Export SQL on the toolbar of the Model Designer window. When you press it, the canvas is masked with an export settings form, where you must indicate which tables to export and optionally specify some advanced settings, such as excluding DROP statements, primary keys, indexes, and foreign keys from the generated SQL. You can leave these untouched if you don't want to omit anything.
In the Windows version, however, there's no export button on the toolbar; rather, you must select Tools | Export SQL... from the menu bar.
I suggest you uncheck the option of DROP statements, which could cause SQL errors, as this is the first time we'll be creating the Simple To Do database.
You can name the file to be exported something like simple-todo.sql and proceed with the exporting process.
Importing and exporting data was discussed in detail in Chapter 3, Data Management with Navicat.
The source code of the exported file should resemble the following:
CREATE TABLE category (
id INTEGER NULL,
name VARCHAR(31) NULL,
PRIMARY KEY (id)
);
CREATE TABLE task (
id INTEGER NULL,
date_created DATE NULL,
title VARCHAR(50) NULL,
description VARCHAR(200) NULL,
due_date DATE NULL,
category_id INTEGER NULL,
user_id INTEGER NULL,
PRIMARY KEY (id)
);
CREATE TABLE user (
id INTEGER NULL,
login_name VARCHAR(12) NULL,
password VARCHAR(12) NULL,
email VARCHAR(40) NULL,
role INT NULL,
PRIMARY KEY (id)
);
ALTER TABLE task ADD CONSTRAINT fk_task_4_category FOREIGN KEY (category_id) REFERENCES category (id);
ALTER TABLE task ADD CONSTRAINT fk_task_4_user FOREIGN KEY (user_id) REFERENCES user (id);
Finally, by applying what you have learned in Chapter 2, Working with Databases and Chapter 3, Data Management with Navicat, you can create a new database called simple_todo or just todo, and Execute SQL file... to generate the database from our exported model.
You can also paste the following code in a query window and execute the query to achieve the same result, provided that you have created the blank database.
Reverse-engineering a database into a model
In the previous sections, we learnt how to design data models from scratch. Now that you're acquainted with the data modeling tools and diagram structures, we can move onto generating a model from an existing database.
For this part I have chosen the Sakila example database, which I introduced in Chapter 3, Data Management with Navicat. If you already followed the tutorials in the previous chapter, you must have a working copy of the sakila database available to be reverse-engineered into a data model. If not, now is a good time to take a look into it and at least follow the steps to get the sakila database imported into your MySQL server.
Go to Navicat's main window and locate the sakila database in the connections pane; right-click on its name and select Reverse Database to Model... from the pop-up menu.
A new model design window should instantly show up featuring all the tables and relationships of the Sakila database in a visual diagram, as shown in the following screenshot:
You could experiment with applying what you have learned in this chapter, for example, by adding notes and layers, and fine-tuning joining lines.
If you end up modifying the model with added tables, fields, and relationships, you can synchronize these changes back to the sakila database without having to regenerate the entire database from a SQL file.
To do this, simply hit the Synchronize button on the toolbar (on the Mac) or select Tools | Synchronize to Database... from the menu bar (on Windows).
Details on the data synchronization process and its settings were covered in detail in Chapter 3, Data Management with Navicat.
Summary
We started the chapter by getting you acquainted with the visual data modeler of Navicat, the metaphors it introduces, and how to design tables, fields, constraints, and relationships between these objects. These are both visual and form-based tools, which resemble other tools of Navicat covered in the previous chapters.
Using these tools, you learned how to design a database model from scratch and then actually generated that database from the model.
Finally, we reverse-engineered a larger, existing database and automatically generated its visual model with a one-click wizard, and you have learned how you can synchronize your changes back to the database as you progress on the model.
Chapter 5. Database Maintenance and Security Management
MySQL is one of the most popular database platforms, very widely used for powering database-driven websites on the Internet and often used by web applications programmed in PHP. MySQL offers features, such as high performance, ease-of-use, and easy installation, yet a very efficient security mechanism. However, prior to Version 5.5, the fact that the default installation of MySQL came with a user named root with no password, presents a rather worrying security vulnerability.
While MySQL 5.5 and later versions require some basic configuration that includes certain security measures with no limitation to setting a password for the root user right after installation, a preliminary action must be taken after a fresh installation of MySQL 5.1, by setting a password for the root user as early as possible. Navicat does not only make it very easy to make such configurations easy to manage, but it also provides a few useful tools for security management and database maintenance.
This chapter focuses on basic database administrator (DBA) functions regarding the security and maintenance of MySQL using Navicat. By the end of this chapter, you should be able to master how to do the following in Navicat, for MySQL:
User and privilege management with Navicat
The first topic in MySQL database security is user and privilege management. The second button on the toolbar with icons in Navicat's main window is the User button. Activating it will display a list of users in the object pane. All the users that belong to the selected MySQL server in the connections pane are on the left-hand side of the screen.
Adding, editing, duplicating, and deleting users is the same as managing any other database object in Navicat, so have a quick look back if you find yourself lost. The following screenshot shows all the users that belong to the selected MySQL server:
The secondary toolbar related to the user management context, in the Windows version of Navicat, explicitly showcases the utility buttons for editing an existing user, adding a new one, and deleting an existing one, besides which you will also notice a different button with a lock icon titled Privilege Manager. The Privilege Manager button was introduced in Navicat as of Version 10, and it is like a command central, where you can manage all users for all schemas, and a matrix of all privileges for an entire server, or for specific catalogs (databases) from within a single window.
On the Mac version of Navicat, the interface is quite different as there's no secondary toolbar under the main one; instead, you can use the small icons (with plus, minus, and pencil-shaped icons) at the bottom side of the window to create, edit, and delete users. As for the Privilege Manager button, you need to select the command Set Privileges... from either the Connection menu (when a server is selected in the connections pane) or the Database menu (which replaces the Connection menu when a database under a server is selected) from the menu bar. The following screenshot shows the list of users in the Mac platform:
The Privilege Manager button gives an under-the-hood view of all the connections to the defined servers, all the databases that they have, and all kinds of privileges that are defined and set for all of the users that exist in them.
It might seem a bit complicated at first, as it is meant to control everything related to a privilege from one place. However, it is not necessarily the only means for managing the privileges. In the later section, you will see how to set them up step by step for a given user. In fact, the Privilege Manager button capitulates in a single interface what you will see about editing object privileges in the later section.
In Chapter 1, Getting Started, when setting up your first connection to a MySQL server, you also defined the settings for the root user. The root user is always listed in the object pane when you switch to the User view (unless deleted for a specific reason of course, and which should be a good one, I might add). An @ symbol is added as a suffix to the username, which is proceeded by the name of the server that the user is permitted to connect from; in this case, the server name is localhost. If you want the root user to connect from remote machines, then you must add another user with the same name; in this case the username is root, but specify the domain name or the IP address of that remote machine in the field labeled Host Name. For example, you could see myuser@workpc.
How MySQL deals with access privileges
The following pieces of information are supplied in Navicat's online manual for MySQL:
Diving deep into creating and editing a user in Navicat
Navicat's user designer provides the flexibility to grant or revoke server privileges to and from any user, as well as adopting a selective approach, so as to manage privileges individually on specific databases, tables, views (even individual fields), functions, and procedures.
As with any other object, in order to create and edit a user in Navicat, you can use the related toolbar buttons (described in the previous section) or right-click on the user list to select the necessary action, Add User, Edit User, or Delete User, from a pop-up menu.
In the user editor window that opens, it's perhaps needless to say that you have to fill in the basic user properties like the User Name, Host, and Password under the General tab.
When done, you can switch to the Advanced tab, where you can specify the number (limit) of queries and connections allocated to the user per hour. All the values are set to 0(default), which in this case means unlimited.
You want to check the Use OLD_PASSWORD encryption option to set passwords for any pre-4.1 clients for MySQL that need to connect to the MySQL server(s) of Version 4.1 or later. Otherwise, the server will generate long password hashes. The option does not affect authentication (MySQL 4.1 and later can still use accounts that have long password hashes), but it does prevent creation of a long password hash in the user table as the result of a password-changing operation. The following is the screenshot of the Advanced tab:
The SSL pane lets you specify SSL-related options, such as the authentication type and the certificate attributes. For more information on configuring SSL options, you can refer to the online manual of Navicat. The related section is under Server Security Management | MySQL Security Management | MySQL User Designer | Setting Advanced MySQL Properties.
The Server Privileges tab is where you can grant server-wide privileges to the user, who then applies to all the databases on that server. Once granted, the user will have the same defined permissions on all of the databases on the server. As the privileges list is in alphabetical order, all you need to do is to check or uncheck the tiny box corresponding to the list item in the second column. When you edit the root user, you will notice that all the privileges will appear as checked. To select (or unselect) all items from the list, right-click anywhere on the list where a pop-up menu presents the Grant All and Revoke All commands.
In Mac, under the Object Privileges tab, you can add individual privileges for any selected database object, be it the entire database itself, or a specific table, field, view, or procedure, as shown in the following screenshot:
In Windows, click on the Privileges tab to add privileges.
To edit the specific object privileges of the user, click on Add Privilege to open a secondary model window, and follow these steps:
The SQL Preview tab generates the SQL commands, which need to be run on the server to grant or revoke the privileges, since last time that the permission settings were saved. So, these SQL commands are executed automatically after the Save button is hit.
Here's some example of SQL commands generated by editing the privileges:
GRANT Alter, Create View, Grant Option, Create ON `sakila`.* TO `producer`@`localhost`;
GRANT Alter, Create View, Grant Option, Create ON TABLE `sakila`.`actor` TO `producer`@`localhost`;
GRANT Alter, Create View, Grant Option, Create ON TABLE `sakila`.`address` TO `producer`@`localhost`;
GRANT Alter, Create View, Grant Option, Create ON TABLE `sakila`.`city` TO `producer`@`localhost`;
GRANT Alter, Create View, Grant Option, Create ON TABLE `sakila`.`country` TO `producer`@`localhost`;
GRANT Create View, Select, Show View ON TABLE `sakila`.`customer` TO `producer`@`localhost`;
Performing maintenance tasks with Navicat
Navicat provides a set of graphical tools for database and table maintenance tasks, which are in fact native MySQL services. Toward this end, Navicat supports four major tasks, which can be performed on MySQL database tables:
When this book was being authored, Navicat did not have a special menu (in the menu bar) or a button for triggering these tasks. Basically, you need to have switched to Table or View in Navicat's main window and right-clicked on a table or view on which you want to perform one of these tasks. Then, from the pop-up menu select Maintain, and then select the related task as the sub-menu item. Now, let's take a closer look at what these tasks are and what they are good for, as shown in the following screenshot:
Analyzing a MySQL table or view with Navicat
The Analyze Table command analyzes and stores the key distribution for the selected table. MySQL uses the stored key distribution to decide in which order the tables should be joined.
When an analysis is started, the table is locked with a read lock if the table has MyISAM or BDB as the underlying database engine. In the case of InnoDB, the table is locked with a write lock. Currently, MySQL supports analysis only for MyISAM, BDB, and InnoDB tables. For MyISAM tables, this action is the equivalent of running the command myisamchk --analyze.
Checking a table or view
This maintenance task checks a table for errors. When this book was being written, MySQL supported the checking of only MyISAM, InnoDB, and ARCHIVE tables. When MyISAM tables are checked, their key statistics are also updated.
Additional options for checking are summarized in the table below:
Options | Functions |
---|---|
Quick | Does not scan the rows to check for incorrect links. This applies to InnoDB and MyISAM tables and views. |
Fast | Checks only those tables that have not been closed properly. This applies only to MyISAM tables and views. |
Changed | Checks only those tables that have been changed since the last check or that have not been closed properly. This applies only to MyISAM tables and views. |
Extended | Does a full key lookup for all the keys for each row. This ensures that the table is 100 percent consistent, but takes a long time. It applies only to MyISAM tables and views. |
Optimization made easy
The main reason for optimizing your table is to reclaim unused space and defragment the datafile associated with the table. You should optimize a table if you have deleted a considerable number of rows from that table or frequently updated a table with variable-length rows (tables with varchar, blob, or text fields). Thanks to the task of optimization, deleted records are maintained in a linked list, and subsequent INSERT operations reuse old row positions.
MySQL supported optimization only for MyISAM, InnoDB, and BDB tables when this book was being written.
For MyISAM tables, table optimization works as follows:
Repairing a table
The title means what it says. If you suspect a table is corrupt or just not exactly in good working order, you can do Repair Table, and it just solves all of the problems in most cases. Repairs can be performed in two modes—Quick or Extended. A Quick repair only attempts to fix the index tree of a table. In the extended mode, MySQL creates the index row by row, instead of creating one index at a time.
Summary
You have just made it to the end of this chapter. By now, you should be able to create, edit, and delete users in Navicat, assign them server-wide privileges, and even define individual privileges for specific database objects and assign them for a given user.
When it comes to troubleshooting, you also now know what it takes to analyze and check what the error is with a MySQL table or view, and to make sure they are running okay. You also learned how to optimize and repair a MySQL table with Navicat's one-click maintenance tool.
Chapter 6. Designing Reports with Navicat
A powerful Report Builder came with the Windows version of Navicat Version 10, and exclusively in its Enterprise Edition, when this book was being written. With Navicat's Report Builder, you can present data from your MySQL databases in various reports, such as invoices, sales figures, order summaries, even forms, and mailing labels (also known as mail merge). You can even set a scheduler (see Chapter 3, Data Management with Navicat) to have the reports automatically delivered at a specific time and/or at defined intervals.
As you will see in the next sections, the look and feel of Navicat's Report Designer resembles the Report Module of Microsoft Access in many ways.
To be able to follow the tutorial in this chapter, you need to have imported the Sakila example database introduced in Chapter 3, Data Management with Navicat.
As of Version 10 of Navicat Premium and Navicat for MySQL, a powerful Report Builder tool is included in the Enterprise Edition for Windows. This chapter will train you to develop skills, such as:
First contact with the tool(s)
In order to access Navicat's Report Manager, all you need to do is to select the server and the database from the left navigation pane, and then click on the big Report button from the toolbar of Navicat's main window. Alternatively, you may select View | Report from the main menu bar. Once in the context of Report (Manager), you can use the buttons on the secondary toolbar to create, edit, or delete reports, or right-click anywhere in the object pane to invoke a pop-up menu that will let you perform the same actions, as shown in the following screenshot:
Now let's go ahead and design a simple report based on the view named film_list from the sakila database.
Create a new report using one of the previously described methods. A new, larger Untitled window should appear, with its Design tab active by default. You will also notice that the user interface of this window is probably the most complex among all the other tools that Navicat features, as Navicat's Report Designer is a full-blown, report-building application as it is.
What we need to do first with a blank report is to select a dataset with which we will populate our report. Therefore, we need to switch to the Data tab of this window to specify the source of the report's data.
Preparing the data with Query Wizard
The Data tab presents us with a blank page when opening it for the first time. It is very difficult to figure out what the next step will be from here. Refer to the following screenshot:
To specify some data source at this point is a little frustrating, as right-clicking on the empty area yields nothing, and there's no toolbar under the Data tab either. Rather, you need to go to the File menu of the menu bar and select New.... This will bring up a small, modal dialog box asking you to run Query Wizard or Query Designer, as shown in the following screenshot:
We'll go with Query Wizard at this time, so make sure that its icon is highlighted, and then click on OK. The Query Wizard window displays two, scrollable listboxes (side by side) that some programmers also call shuttle lists. The list box on the left-hand side titled Available Tables contains the names of all Tables and Views from our sakila database, and the one on the right-hand side titled Selected Tables indicates the items we have picked from the available ones.
You will have to click and select one or more items from the list on the left, which will be transferred to the list on the right as soon as you press the > button.
For the sake of our simple tutorial, we only need the film_list view. Just select it by clicking on its name and move it to the list box titled Selected Tables, and then click on Next. The screenshot of the Query Wizard window is as follows:
You can skip the next screen simply by clicking on Next again, since we want all the fields from the database view we have chosen, and this option is already selected in this screen by default.
In the screen displaying if we want to Add calculated fields to the query, we will skip it again by clicking on No Calculations and clicking on Next one more time.
Now we are presented with the option of Group rows together based on common field values, which we also want to pass by clicking on No Grouping and clicking on Next once more.
As for the Limit the rows returned screen, we want no limit here, so leave All rows selected without changing anything else, and hit Next again. After clicking on Next, the window displayed will look similar to the following screenshot:
Here, we will be asked about the way the rows of the dataset we selected will be ordered. The default option is Natural Order , which should bring the results to the report in the same order as they would appear in the View (which would most probably sort the items by ID). However, I think it would be a good idea to sort them by both category and film title for our report. So select Set Order and then move film_list.category to the list box titled Selected Fields, and then do the same for the film_list.title, and finally click on Next for the last time.
The last step will ask us to give our query a name of our choice, and before we finally click on Finish, we can indicate our preference of whether to Return to the data workspace, Preview the query, or Modify the query's design. Go with the first option, which is the default anyway. So when we're done, our data workspace will now contain the film_list view, as shown in the following screenshot:
Now to get an idea of the dataset we just prepared, click on the first tiny button on the toolbar of the film_list window, which will bring up a pop-up window titled Preview Data – film_list displaying the film records from the query that we just created. You might need to enlarge the window and manually adjust the column lengths by hovering the mouse arrow over the column heading borders and then clicking-and-dragging the columns to the desired length, as shown in the following screenshot:
When you are done with previewing the query results, just click on OK at the bottom-right of this window.
The other seven buttons on the toolbar help us open up the Query Designer window for reports, and this window lets you modify the query by selecting the tables and fields, defining the filtering criteria, grouping the fields, and so on.
Now, you can click on the second button on the toolbar of the film_list table to invoke the Query Designer with its Tables tab active, to add more tables or views to the query by joining them. Similarly, the third button will help you open Query Designer with its Fields tab active, to modify the selected fields, which we specified using the Query Wizard in the first place, as shown in the following screenshot:
Query Designer has some advanced features, which will only be mentioned here briefly, but not be covered in detail.
The Calcs tab, for example, is where you can define some dynamic fields with aggregate functions, such as sum(), avg(), min(), max(), and count(), or any SQL expression you can use as a function that MySQL supports.
Another example is the Search tab, in which you can define some pre-filtering criteria, and which will be added to the SQL query as a WHERE condition.
For the sake of this simple report, we will leave the Query Designer for now, and switch to the Design tab of the Report Builder to finally start working on our report's layout. When we go back to the Design tab, we are reminded that the canvas that was divided into three areas, as Header, Detail, and Footer (also as indicated in the upper left pane titled Report Tree), is still blank. However, on the right-hand side of the window, we now see film_list under Data Tree and Fields for film_list below it.
Designing the report
While it is possible for us to design our report's layout by clicking-and-dragging the fields listed from the right-hand side onto the canvas and aligning them as desired, this is how a report is normally designed without wizards. This can get quite complex, so I will show you an easier way, which will help finish this report in no time.
Go to the File menu and select New.... A new dialog box titled New Items will pop up and will present us with four buttons as icons labeled Report Wizard, Report, Label Templates, and Cross Tab Wizard respectively. I promised the easier way, so we want the Report Wizard for this. It should be highlighted by default, but make sure it's selected. Then click on OK, as shown in the following screenshot:
Now, we should see a modal window titled Report Wizard , which is very similar to the wizards in other applications, such as Microsoft Access. The usage of this wizard is quite intuitive as each step includes understandable explanations and user interface elements. On the first screen of Report Wizard, you will be asked to select the dataset and its fields, which you require to appear on the report.
For this report, add FID, title, category, actors, rating, and price to the selected fields in this very order, and then click on Next.
The next screen of Report Wizard is where we can specify groups in which the selected data might be categorized. Click on category from Available Fields and move it to the Groups list box by pressing the corresponding down arrow located between the two list boxes. When you do that, you should also note that the report layout preview would be updated by reflecting this change, as shown in the following screenshot:
Click on Next to proceed to the screen, where we will pick a Layout style and choose the (default) page printing Orientation. Now because we have opted to group the report output according to category, we are presented with a total of six Layout style options here. In the other case, we would have had only two layouts to choose from—Vertical (print labels or cards style) or plain Tabular.
The Layout style options that we have, in this case, are:
As for the Orientation options, they simply consist of Portrait and Landscape, with which you should be exceedingly familiar from the printing options in other programs that you use every day.
For our report, I will urge you to choose Align Left 2 as the Layout style and the page (printing) Orientation option as Portrait, which is the default. And unless you are eager to later have the hassle of adjusting the column widths on the report layout manually, you should leave the option Adjust field widths so all fields fit on page checked.
Click on Next when you're done here. Refer to the following screenshot:
The Report Wizard window will ask you to pick a thematic style from a choice list of ready-made report designs or templates, for which you have the following options:
Although, in a left-hand side design preview when each option is clicked, it is dynamically updated to give you an idea about what your report will look like. It might be a good idea to experiment with this as many times as you can, so that you can get familiar with each style reflected on your reports.
My personal favorite here is Casual, which you will see in the screenshots of the report designs and previews from this point on in the chapter.
When you click on Next, you will be thankful that all the necessary information to create the report has been provided by now, and you will be presented with the choices of previewing your report right away or heading straight to modifying the report's design.
First, let's do some final retouches before we preview the report, so check the second option before you click on Finish.
As we get back to the Report Design, we will happily notice that the canvas is no longer blank. Also, Title, Header, Detail, and Footer are a bit weird, as they are all filled in with the labels and data placeholders that we defined in Report Wizard earlier, but still appear to be small.
In order to make the report look more "human", we can start by changing the title to something more natural such as Sakila Movie List, and modify the column header labels by giving them nicer names. For example, name it Item # instead of FID (which stands for film ID). Refer to the following screenshot:
You will also want to resize column widths to use the space efficiently. For example, you will especially notice that the rating, price, and category columns are unnecessarily wider than they should be. So, you can move them towards the right and reduce their width. Then, increase the width for actors and title. Remember to vertically align the column name and the data field (the placeholder for data), which are placed in the header and detail areas respectively.
Also, tweaking the appearance of the category field is highly recommended, which will substantially affect the look and feel of the report, so as to make it appear more pleasing to the eye.
Switching to the Preview tab
Now, it's about time we switched to the Preview tab to see what our report and its output looks like.
In the report preview, you can experiment with the buttons on the toolbar to adjust your viewing settings, such as choosing how to fit the report data to the page, printing options, as well as text search on the report's output. You can also navigate between the pages of the report using the tiny, arrow-shaped buttons. Refer to the following screenshot:
Now is a good time to save the report if you haven't already done so. Navicat has some specificity in saving reports, unlike how it treats other objects, such as Queries, Events, and Models. First of all, to save your report you need to go to the menu bar and choose File | Save. When you're saving the report for the first time, you will be prompted with a standard Save As dialog box. Then, specify a name for the report that will be suffixed with the file extension .rtm and a location in the filesystem, which suggests that you can store your reports anywhere on your drive. However, as soon as you click on the Save button of the dialog box, Navicat will prompt you with a confirmation alert warning you that if you save your report outside Navicat's default directory for reports, your report will not be visible in the Reports view within the program (in which case you will have to locate the report using an Open File dialog box every time you need to access it in Navicat). Refer to the following screenshot:
Even if you would like to have the report file in a specific folder in the file, it is probably a good idea to save to the default location, which you can access in Windows Explorer by going through the following path:
\Users\<user_name>\Documents\Navicat\MySQL\servers\localhost\sakila
After you save your report and exit Report Designer, you will need to right-click on its name in the Report view and select Design Report from the pop-up menu. Double-clicking on a saved report directly brings the report output window, (which is very similar to the Preview tab of the designer) from which you can print the report or just view its contents as it is on the screen.
You can not only print your reports on paper, but also produce output in a variety of formats including PDF, Excel, text, and HTML. You can specify this option, on the fly, in the Print dialog box.
If you are aiming at a text-based output, you may want to tweak some more settings by selecting File | Print to File Setup... and specifying some parameters, such as column delimiters and the fields to include in the output.
Navicat's report building and management can do more than what's discussed in this chapter and than what is outside the scope of this introductory book. But you can explore these features in depth, by experimenting yourself and also by referring to Navicat's own manual accessible from its website. There you can also find more step-by-step and screen-by-screen tutorials, which could teach you how to create more advanced reports, such as invoices, detailed order summaries, sales statistics, crosstab reports, mailing labels, and even photo albums.
Summary
Building a report in Navicat consists of two major phases—preparing the data and designing the report based on that data.
In this chapter, we have seen the report building and management tools of Navicat, and the basics of designing reports by following a simple tutorial, which also helps in getting acquainted with some of the tools that can be used for more advanced purposes.
We have also seen how the reports can be printed on a paper as well as exported to a variety of popular file formats.
Appendix A. Additional Tips and Tricks
Throughout this book, we've covered some of the most useful and most common tasks in Navicat, but not everything it has to offer. This appendix aims at giving you some additional tips and tricks about using some of the not-so-obvious features of Navicat, such as:
Transferring your settings from one computer to another
In cases where you work with more than one computer (where each computer has a copy of Navicat), you might want to have your settings, connection profiles, custom queries, data model diagrams, and even batch jobs copied across all the computers you use. Even if this is not the case, you can use the tips here to back up your Navicat settings for restoring the data later, in the event of resetting up your computer.
Transferring settings on the Mac
All of your settings, connection profiles, saved queries, and models in Navicat are stored in two folders on the Mac, which reside in /Users/<user_name>/Library/Application Support/. You can customize the Data Models Path from the Preferences window (simply select Preferences... from the application menu next to the Apple menu, and go to the File Paths tab in the opening window). One of the folders under Application Support is named PremiumSoft CyberTech, and the other is Navicat Premium or Navicat for MySQL, depending on the edition and version you're using.
In Finder, select Go | Go to Folder... from the menu bar (or just press the + and G keys simultaneously) and type /Users/<user_name>/Library/Application Support/, and then press the Go button to get there. And finally, copy these two folders to the same folder hierarchy on the target machine or the user.
This will copy all of your settings, connection profiles, and saved model diagrams to the target machine. The target machine or the user should not be running Navicat while this transfer is in progress. Refer to the following screenshot:
Transferring settings on Windows
Certain user data, such as queries and data model diagrams, as well as reports (exclusive to the Windows version) of Navicat are stored inside the Navicat directory, by default, in the user's Documents folder. Other settings and connection profiles are stored in the registry in the Windows version.
You can export the connection settings by going through File | Export Connections... in Navicat's main menu bar, or right-clicking on a connection definition (database server name) from the left pane and selecting the same menu item. Then on the target system (or the user account) you can repeat the same steps, except choosing Import Connections... this time and specifying the previously exported file (and its path) through an open file dialog box.
In Windows 7, the complete pathname to the user's documents folder would be something like C:\Users\<user_name>\Documents\Navicat.
It is possible, however, to customize the default directory (and paths) by going to Tools | Options | Miscellaneous.
You can transfer the queries and data model diagrams to another Windows PC by simply copying the entire Navicat folder to the target user's Documents folder. Make sure Navicat is not running on the target machine while you perform this transfer. Refer to the following screenshot:
Monitoring the MySQL Server
With Navicat, you can monitor your database server(s) to view the running processes, the server's current status, as well as the properties of the databases, such as the variables. It is possible to get this information in real time for all of your servers, in a single, under-the-hood view.
Server monitor is accessible directly from the Tools menu in Navicat's main menu bar, and it has three main views categorized by tabs in the Windows version and main toolbar buttons in the Mac version. Refer to the following screenshot:
The process list
This is where you see the running processes or tasks on all servers, selected in the checkbox list on the right-hand side pane of the window. The information you get on this screen can be listed as follows:
It is possible to forcibly end a process simply by clicking on it from the list to get it highlighted and hitting the End Process button.
You will also notice the other buttons on the toolbar that provide you with an option of refreshing the view automatically or manually. One not-so-obvious trick is that in the case of auto-refreshing, you can change the interval of the 1 second default to whatever you prefer, by choosing Set Refresh Rate... from the Edit menu.
Variables
Under this tab, you can get all the server variables, such as character_set_server and date_format, and the values set for these variables listed in alphabetical order. This information is normally gotten by executing the SHOW VARIABLES command in the MySQL server console.
It is possible to change the values on the fly, simply by selecting a row and clicking the square-shaped button at the right end of the cell containing the variable value. (A feature for advanced users who really know what they're doing.)
Status
The status tab lists the same standard information that would otherwise be retrieved from a MySQL server by issuing the SHOW STATUS command.
This outputs some long, read-only information understandable by advanced users and DBAs.
Revealing a hidden search feature of Navicat
You can use Navicat to locate one or more database table records matching a certain criteria. After you select a database or schema from the left-hand side pane of Navicat's main window and right-click on it, you will see the Find in database... command among the items of the opening pop-up menu. Issuing this command will reveal a pop-up window that will let you enter a search string and matching criteria (such as Exact or Contains, or even evaluate a Regular Expression).
For example, select our_first_db that we created in Chapter 2, Working with Databases, and right-click on it and choose Find in database.... Then, enter manager in the search box, leave the matching criterion as Contains, and click on the Find button.
The search should yield 12 matches and the results should be summarized below the search box. What's cool about this feature is that, when you double-click on one of the results, a new query window will open up with a generated SQL query that was translated from our search criteria, which is automatically executed once, with the results displayed below it. Refer to the following screenshot:
Summary
This appendix provided us with some additional tips and tricks, such as how to backup or transfer our Navicat settings. What's more? We have unraveled some more hidden features of Navicat (such as the Server Monitor), which not only give us detailed information about running processes, such as the client user information and command type run by the connected user, but full control to manually terminate processes as well. We also saw how to get other detailed information, such as server variables and server statuses, using this powerful tool.
Lastly, we have seen a search feature that enables us to retrieve specific records from any table containing the searched string and automatically generates a SQL query, which can be reused to perform the same search later as a standard Navicat query.
Table of Contents
MySQL Management and Administration with Navicat
MySQL Management and Administration with Navicat
Credits
About the Author
About the Reviewers
www.PacktPub.com
Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders
Instant Updates on New Packt Books
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support
Errata
Piracy
Questions
1. Getting Started
Enter Navicat
Setting up a connection to the database
Connecting via Secure Shell (SSH)
Connecting via an HTTP tunnel
Setting up Secure Sockets Layer (SSL)
Advanced settings
Testing and saving your settings
Summary
2. Working with Databases
Managing database objects with Navicat
Creating a database from scratch
Creating tables
Defining foreign keys
Defining triggers
Entering data in tables
Creating views
Working with functions and procedures
Using Navicat’s event designer for MySQL
Working with queries in Navicat
Designing the Query
Building further queries
Summary
3. Data Management with Navicat
Working with an existing database
Creating the database schema from a SQL dump file
Importing and exporting data
Exporting in detail
Importing a file into a table
Direct data transfer between two databases
Data and structure synchronization
Backup and restore
Creating and scheduling batch jobs
Summary
4. Data Modeling with Navicat
Working with Navicat's model designer
Creating our first model
Defining the relationships
Adding some pizzazz to the model with notes and images
Working with layers
Deleting unwanted objects
Working with multiple diagrams
Exporting the model diagram to SQL
Reverse-engineering a database into a model
Summary
5. Database Maintenance and Security Management
User and privilege management with Navicat
How MySQL deals with access privileges
Diving deep into creating and editing a user in Navicat
Performing maintenance tasks with Navicat
Analyzing a MySQL table or view with Navicat
Checking a table or view
Optimization made easy
Repairing a table
Summary
6. Designing Reports with Navicat
First contact with the tool(s)
Preparing the data with Query Wizard
Designing the report
Switching to the Preview tab
Summary
A. Additional Tips and Tricks
Transferring your settings from one computer to another
Transferring settings on the Mac
Transferring settings on Windows
Monitoring the MySQL Server
The process list
Variables
Status
Revealing a hidden search feature of Navicat
Summary