Tcl/Tk in a Nutshell
Paul Raines
Jeff Tranter
Published by O’Reilly Media
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo
Preface
This book is about Tcl, the scripting language developed by John Ousterhout. Tcl stands for tool command language and was originally designed as a simple scripting language interpreter that could be embedded inside applications written in the C language. With the addition of the Tk graphical toolkit and a host of other language extensions supporting such features as graphics, relational databases, and object-oriented programming, Tcl has become a popular programming language for developing applications in its own right. The freely available Tcl language interpreter runs on many computer platforms, including most Unix-compatible systems, Microsoft Windows, and Apple Macintosh.
Tcl/Tk in a Nutshell is a quick reference for the basic commands of Tcl, Tk, and several other popular Tcl language extensions. As with other books in O'Reilly's "In a Nutshell" series, this book is geared toward users who know what they want to do but just can't remember the right command or option. For subtle details, you will sometimes want to consult the official Tcl reference documentation, but for most tasks you should find the answer you need in this volume. We hope that this guide will become an invaluable desktop reference for the Tcl user.
Conventions
This desktop quick reference uses the following typographic conventions:
Italic
Used for commands, methods, functions, programs, and options. All terms shown in italic are typed literally. Italic is also used for filenames and URLs, and to highlight terms under discussion.
Constant width
Used for code in program listings and for data structures and values to be entered exactly as shown. Also used for special variables, global variables, options showing resource and class names, and subwidget names.
Constant width italic
Used to show arguments, options, and variables that should be replaced with user-supplied values.
[]
Surround optional elements in a description of syntax. Note that square braces are also a commonly used Tcl language construct and appear in some Tcl program examples, in which case they are part of the Tcl code.
|
Used in syntax descriptions to separate items for which only one alternative may be chosen at a time.
...
Indicates that the preceding item may be repeated as many times as desired.
NOTE
The owl symbol is used to designate a note.
WARNING
The turkey symbol is used to designate a warning.
Contact O'Reilly & Associates
We have tested and verified all of the information in this book to the best of our ability, but you may find that features have changed (or even that we have made mistakes!). Please let us know about any errors you find, as well as your suggestions for future editions, by writing to us at the following address:
O'Reilly & Associates, Inc. |
101 Morris Street |
Sebastopol, CA 95472 |
1-800-998-9938 (in the U.S. or Canada) |
1-707-829-0515 (international/local) |
1-707-829-0104 (FAX) |
You can also send us messages electronically. To be put on a mailing list or request a catalog, send email to:
info@oreilly.com |
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com |
About This Book
When Jeff Tranter first started with Tcl sometime around 1992, he felt the need for a simple language quick-reference card to help jog his memory when programming. He created a simple one-page cheat sheet that listed all of the Tcl language commands. In the spirit of freely sharing with other users, he uploaded his quick reference to one of the Tcl archive sites.
Some time later, Paul Raines created a nice quick reference for the commands provided by the Tk toolkit. Again, initially this was one double-sized page in length.
Inspired by the excellent Perl 5 Pocket Reference by Johan Vromans (published by O'Reilly & Associates), Paul combined the Tcl and Tk references into a small booklet of about 40 half-size pages, and made it freely available on the Internet. The current version is now over 80 pages in length and can also be purchased from O'Reilly as the Tcl/Tk Pocket Reference.
After finishing O'Reilly's first book on Tcl/Tk, Tcl/Tk Tools (by Mark Harrison et al.), O'Reilly editor Andy Oram thought about doing a Tcl reference book. So he approached us about expanding our work into a full-blown reference on Tcl, Tk, and all of the popular language extensions. Thus, the one-page Tcl cheat sheet that Jeff created for his own use has now grown into a 450-page book. We hope that you are happy with the result and find it a useful reference.
Acknowledgments
A motivational speaker once said that the formula for a successful manager was to give your people the tools they need to do the job and stay out of their way. Our editor, Andy Oram, did a great job of keeping us on track but generally staying out of our way. As the first Nutshell book to use SGML text-processing tools developed in-house, Tcl/Tk in a Nutshell had some teething pains but we were able to get the job done with help from the O'Reilly tools group.
Special thanks go to the reviewers of the first draft of this book: Allan Brighton, De Clarke, Robert Gray, Cameron Laird, Don Libes, Michael McLennan, Wayne Miller, Tom Poindexter, and Mark Roseman. Their many useful comments helped make this a better book.
One of the reviewers, Tom Poindexter, went beyond the call of duty. He suggested that we add a chapter on Tcl programming hints, and even volunteered to write it for us.
Paul would like to thank his wife, Deborah, for her understanding and patience when he disappeared into "computerland."
Jeff would like to thank his family—Veronica, Jennifer, and Jason—for bearing with him while he wrote yet another book, taking more than his share of time on the computer.
Chapter 1. Introduction
This chapter presents a brief history of and an introduction to the Tcl language and describes how this book is organized.
What Is Tcl?
In the early 1980s John Ousterhout, then at the University of California at Berkeley, was working with a group that developed hardware design tools. They found that they kept inventing a new scripting language with each new tool they developed. It was always added as an afterthought and poorly implemented. John decided to create a general-purpose scripting language that could be reused when developing new tools. He called the language Tcl, for tool command language, made it freely available for download, and presented it at the Winter 1990 USENIX conference. It soon became popular, with an estimated 50 Tcl applications written or in development one year later.
One of the attendees at Ousterhout's presentation, Don Libes, saw the applicability of Tcl to a problem he was working on. Within a few weeks he developed the first version of Expect, which became the first killer application for Tcl, driving many people to install Tcl who might have otherwise ignored it.
Ousterhout's philosophy is to embed a scripting language inside applications. Combining the advantages of a compiled language like C (portability, speed, access to operating system functions) with those of a scripting language (ease of learning, runtime evaluation, no compilation) gives an overall reduction in development time and opportunities for creating small, reliable, and reusable software components. An application with an embedded Tcl interpreter can be extended and customized by the end user in countless ways.
The Tcl interpreter has a well-defined interface and is typically built as an object library, making it easy to extend the basic language with new commands. Tcl can also be used as a prototyping language. An application can be written entirely in Tcl, and once the design is proven, critical portions can be rewritten in C for performance reasons.
A year later, at the Winter USENIX conference, Ousterhout presented Tk, a graphical toolkit for Tcl that made it easy to write applications for the X11 windowing system. It also supported the send command, a simple yet powerful way to allow Tk applications to communicate with each other.
Since then, with dozens of Tcl extensions, many of them designed to solve problems related to specific domains such as graphics and relational databases, the Tcl programming environment has become even more powerful. Today, Tcl runs on Unix, Macintosh, and Windows platforms, and even inside a web browser. It has a huge installed base of users and applications, both free and commercial. As Tcl approaches its tenth anniversary, it is poised to continue its growth in popularity.
Structure of This Book
Following this brief introduction, Chapter 2 covers the core features of the Tcl language itself. Chapter 3 covers Tk, the graphical user interface (GUI) toolkit that is probably the most popular Tcl extension. Chapter 4 covers the C-language application programming interface for Tcl, and Chapter 5 does the same for Tk.
Each language extension chapter follows a similar format: after a brief introduction, any special global and environment variables are described, followed by a logically grouped summary of the commands. The heart of each chapter is an alphabetical summary of each command that lists the options in detail. Short programming examples are provided for the more complex commands.
Chapter 6 covers Expect, the first popular application to be built using Tcl. Chapter 7 is on [incr Tcl], which adds object-oriented programming features to Tcl. Chapter 8 covers [incr Tk], a framework for object-oriented graphical widgets built using [incr Tcl].
Chapter 9 covers Tix, a Tk extension that adds powerful graphical widgets. Chapter 10 is on TclX, also known as Extended Tcl, a number of extensions that make Tcl more suited to general-purpose programming. Chapter 11 is on BLT, which provides a number of useful new commands for producing graphs, managing data, and performing other graphics-related functions.
Tcl has good support for relational databases. Chapter 12 and Chapter 13 cover the Tcl extensions for the popular Oracle and Sybase relational databases, and Chapter 14 describes Tclodbc, which supports the Microsoft Windows ODBC database protocol.
Chapter 15, Hints and Tips for the Tcl Programmer, by Tom Poindexter, departs from the style of the rest of the book somewhat by presenting a collection of tips for using Tcl effectively, commonly made errors, and suggestions on programming style.
The Appendix, Tcl Resources, lists further resources on Tcl, both in print and on the Internet. The index cross-references the material in the book, including every Tcl command described in the text.
Chapter 2. Tcl Core Commands
This chapter summarizes the features and commands of the core Tcl language, which was developed by John Ousterhout. The chapter is based on Tcl Version 8.0; a few features are not part of Tcl per se, but are included in the Tcl shell and most Tcl applications, so are included here and noted with (tclsh).
Overview
The Tcl interpreter has a simple syntax, making it suitable as an interactive command language and allowing it to be reasonably small and fast.
Tcl programs consist of commands. Commands consist of a command name, optionally followed by arguments separated by whitespace. Commands are separated by newline or semicolon characters. All commands return a value. The user can create new commands (usually called procs), which operate just like built-in commands.
Within commands, the language supports several additional language constructs. Double quotation marks are used to group characters, possibly containing whitespace, into one word. Curly braces group arguments. They can cross lines and be nested, and no further substitutions are performed within them. Square brackets perform command substitution. The text within the brackets is evaluated as a Tcl command and replaced with the result. The dollar sign is used to perform variable substitution and supports both scalar and array variables. C language–style backslash escape codes support special characters, such as newline. The pound sign or hash mark (#) is the null command, acting as a comment.
In Tcl, all data is represented as strings. Strings often take one of three forms. Lists are strings consisting of whitespace-separated values. Using curly braces, list elements can in turn be other lists. Tcl provides several utility commands for manipulating lists. Numeric expressions support variables and essentially the same operators and precedence rules as the C language. Strings often represent commands, the most common use being as arguments to control structure commands such as if and proc.
Basic Language Features
; or newline
Statement separator
\
Statement continuation if last character in line
#
Comment (null command)
var
Simple variable
var(index)
Associative array variable
var(i,j,...)
Multidimensional array variable
$var
Variable substitution (also ${var})
[command]
Command substitution
\char
Backslash substitution (see "Backslash Substitutions," later in this chapter)
"string"
Quoting with variable substitution
{string}
Quoting with no substitution (deferred substitution)
The only data type in Tcl is a string. However, some commands interpret arguments as numbers or boolean values. Here are some examples:
Integer
123 0xff 0377
Floating point
2.1 3. 6e4 7.91e+16
Boolean
true false 0 1 yes no
Command-Line Options
The standard Tcl shell program tclsh accepts a command line of the form:
tclsh [fileName] [arg ...]
where filename is an optional file from which to read Tcl commands. With no filename argument, tclsh runs interactively using standard input and output.
The filename and any additional arguments are stored in the Tcl variables argc, argv, and argvO (see the section "Special Variables").
Environment Variables
The following environment variables are used by the Tcl interpreter:
HOME
Used by commands such as cd, filename, and glob to determine the user's home directory
PATH
Used by exec to find executable programs
TCLLIBPATH
A Tcl list of directories to search when autoloading Tcl commands
TCL_LIBRARY
The location of the directory containing Tcl library scripts
Special Variables
The following global variables have special meaning to the Tcl interpreter:
argc
Number of command-line arguments, not including the name of the script file (tclsh)
argv
List containing command-line arguments (tclsh)
argv0
Filename being interpreted, or name by which script was invoked (tclsh)
env
Array in which each element name is an environment variable
errorCode
Error code information from last Tcl error
errorInfo
Describes the stack trace of the last Tcl error
tcl_interactive
Set to 1 if running interactively, 0 otherwise (tclsh)
tcl_library
Location of standard Tcl libraries
tcl_pkgPath
List of directories where packages are normally installed
tcl_patchLevel
Current patch level of Tcl interpreter
tcl_platform
Array with elements byteOrder, machine, osVersion, platform, and os
tcl_precision
Number of significant digits to retain when converting floating-point numbers to strings (default 12)
tcl_prompt1
Primary prompt (tclsh)
tcl_prompt2
Secondary prompt for incomplete commands (tclsh)
tcl_rcFileName
The name of a user-specific startup file
tcl_traceCompile
Controls tracing of bytecode compilation; 0 for no output, 1 for summary, and 2 for detailed
tcl_traceExec
Controls tracing of bytecode execution; 0 for no output, 1 for summary, and 2 for detailed
tcl_version
Current version of Tcl interpreter
Backslash Substitutions
The following backslash substitutions are valid in words making up Tcl commands, except inside braces:
\a
Audible alert (0x07)
\b
Backspace (0x08)
\f
Form feed (0x0C)
\n
Newline (0x0A)
\r
Carriage return (0x0D)
\t
Horizontal tab (0x09)
\v
Vertical tab (0x0B)
\space
Space (0x20)
\newline
Newline (0x0A)
\ddd
Octal value (d = 0 −7)
\xd ...
Hexadecimal value (d = 0 −9, a−f)
\c
Replace \c with character c
\\
A backslash
Operators and Math Functions
The expr command recognizes the following operators, in decreasing order of precedence:
+ − ˜ !
Unary plus and minus, bitwise NOT, logical NOT
* / %
Multiply, divide, remainder
+ −
Add, subtract
<< >>
Bitwise shift left, bitwise shift right
< > <= >=
Boolean comparison for less than, greater than, less than or equal, greater than or equal
== !=
Boolean test for equality, inequality
&
Bitwise AND
^
Bitwise exclusive OR
|
Bitwise inclusive OR
&&
Logical AND
||
Logical OR
x?y:z
If x !=0, then y, else z
All operators support integers. All except ˜, %, <<, >>, &, ^, and | support floating-point values. Boolean operators can also be used for string operands, in which case string comparison will be used. This will occur if any of the operands are not valid numbers. The &&, ||, and ?: operators have lazy evaluation, as in C, in which evaluation stops if the outcome can be determined.
The expr command also recognizes the following math functions:
abs(arg)
Absolute value of arg
acos(arg)
Arc cosine of arg
asin(arg)
Arc sine of arg
atan(arg)
Arc tangent of arg
atan2(x, y)
Arc tangent of x/y
ceil(arg)
Rounds arg up to the nearest integer
cos(arg)
Cosine of arg
cosh(arg)
Hyperbolic cosine of arg
double(arg)
Floating-point value of arg
exp(arg)
e to the power of arg
floor(arg)
Round arg down to the nearest integer
fmod(x, y)
Remainder of x/y
hypot(x, y)
sqrt (x*x + y*y)
int(arg)
arg as integer by truncating
log(arg)
Natural logarithm of arg
log10(arg)
Base 10 logarithm of arg
pow(x, y)
x raised to the exponent y
rand()
Random floating-point number ≥ 0 and < 1
round(arg)
arg as integer by rounding
sin(arg)
Sine of arg
sinh(arg)
Hyperbolic sine of arg
sqrt(arg)
Square root of arg
srand(arg)
Seeds random number generator using integer value arg
tan(arg)
Tangent of arg
tanh(arg)
Hyperbolic tangent of arg
Regular Expressions
Several Tcl commands, including regexp, support the use of regular expressions:
regex | regex
Match either expression.
regex *
Match zero or more of regex.
regex +
Match one or more of regex.
regex ?
Match zero or one of regex.
.
Any single character except newline.
^
Match beginning of string.
$
Match end of string.
\c
Match character c.
c
Match character c.
[abc]
Match any character in set abc.
[^abc]
Match characters not in set abc.
[a-z]
Match range of characters a through z.
[^a-z]
Match characters not in range a through z.
(regex)
Group expressions.
Pattern Globbing
Many Tcl commands, most notably glob, support filename globbing using the following forms:
?
Match any single character.
*
Match zero or more characters.
[abc]
Match characters in set abc.
[a-z]
Match range of characters a through z.
\c
Match character c.
{a, b,...}
Match any of strings a, b, etc.
˜
Home directory (for glob command).
˜user
Match home directory of user (for glob command).
NOTE
For the glob command, a period at the beginning of a file's name or just after "/" must be matched explicitly and all "/" characters must be matched explicitly.
Predefined I/O Channel Identifiers
The following predefined I/O channel names can be used with commands that perform input or output over channels (e.g., gets):
stdin
Standard input
stdout
Standard output
stderr
Standard error output
Group Listing of Commands
This section briefly lists all Tcl commands, grouped logically by function.
Control Statements
break | Abort innermost containing loop command. |
case | Obsolete, see switch. |
continue | Skip to next iteration of innermost containing loop command. |
exit | Terminate process. |
for | Loop based on an expression. |
foreach | Loop over each element of a list. |
if | Conditional evaluation. |
return | Return from procedure. |
switch | Evaluation based on pattern match. |
while | Loop based on a condition being true. |
File Manipulation
Tcl Interpreter Information
Lists
Arrays
Strings
Input/Output
System Interaction
cd | Change working directory. |
clock | Time functions. |
exec | Invoke subprocesses. |
glob | Filename pattern matching. |
pid | Return process IDs. |
pwd | Return current working directory. |
Command History
history | Same as history info. |
history add | Add command to history list. |
history change | Change command in history list. |
history clear | Clear history list. |
history event | Return event. |
history info | Return formatted history list. |
history keep | Get or set size of history list. |
history nextid | Return next event number. |
history redo | Execute command from history list. |
The tclsh program also supports the following csh-style history commands:
!! | Repeat last command. |
! event | Repeat command, matching a number or name. |
^old ^new | Repeat command, substituting occurrences of regular expression old with new. |
Multiple Interpreters
Packages
Miscellaneous Commands
after | Execute a command after a time delay. |
auto_execok | Return path of executable. |
auto_load | Autoload Tcl command. |
auto_mkindex | Generate tclIndex file. |
auto_reset | Reset autoloading cache. |
bgerror | Process background errors. |
catch | Evaluate script and trap exceptional returns. |
error | Generate an error. |
eval | Evaluate a Tcl script. |
expr | Evaluate an expression. |
global | Access global variables. |
incr | Increment the value of a variable. |
load | Load machine code and initialize new commands. |
namespace | Create and manipulate contexts for commands and variables. |
proc | Create a Tcl procedure. |
rename | Rename or delete a command. |
set | Read and write variables. |
source | Evaluate a file or resource as a Tcl script. |
time | Time the execution of a script. |
trace | Trace variable access. |
unknown | Handle attempts to use nonexistent commands. |
unset | Delete variables. |
update | Process pending events and idle callbacks. |
uplevel | Execute a script in a different stack frame. |
upvar | Create link to variable in a different stack frame. |
variable | Create and initialize a namespace variable. |
vwait | Process events until a variable is written. |
Alphabetical Summary of Commands
This section describes all Tcl commands, listed in alphabetical order.
Name
after
after options...
Delay execution of the current program or schedule another command to be executed sometime in the future.
after ms
Delay execution of current program for ms milliseconds.
after ms script...
Return immediately but schedule the given list of command script arguments to be executed ms milliseconds in the future and return an identifier that can be used for after cancel.
after cancel id
Cancel a previous after command using the identifier id returned previously.
after cancel script...
Cancel a previously set after command by specifying the command script arguments originally used in the command.
after idle script...
Schedule a command script to be executed when the event loop is idle.
after info [id]
If no id is specified, return a list of currently scheduled after commands. With an id, return a list consisting of the command and the time of the specified idle or timer event.
Name
append
append varName [value...]
Append the specified values to variable varName The variable need not already exist.
Name
array
array option arrayName [arg...]
Provide functions to manipulate array variables.
array anymore arrayName searched
Return 1 if there are more elements left in an array search, or 0 if all elements have been returned. Accepts an array name and a search ID obtained from a previous call to array startsearch.
array donesearch arrayName searched
Terminate an array search. Accepts an array name and a search ID obtained from a previous call to array startsearch.
array exists arrayName
Return 1 if an array variable with the given name exists; otherwise, return 0.
array get arrayName [pattern]
Return a list containing pairs of elements consisting of array names and values. If pattern is specified, only the elements that match the glob pattern are included; otherwise, all are returned.
array names arrayName [pattern]
Return a list consisting of the names of array elements whose names match the glob pattern (or all elements if pattern is omitted).
array nextelement arrayName searched
Given an array name and a search ID from a previous call to array startsearch, return the name of the next element. Return an empty string if all elements have already been returned.
array set arrayName list
Set values of array elements. The list should consist of pairs of words specifying element names and values.
array size arrayName
Return the number of elements in the array, or 0 if arrayName is not the name of an array.
array startsearch arrayName
Starts an array search, returning an identifier that can be used for subsequent array nextelement, donesearch, and anymore commands.
Name
auto_execok
auto_execok execFile
If an executable file named execFile is found in the user's path, return the full pathname; otherwise, return 0.
Name
auto_load
auto_load command
Attempt to load a definition for command command by searching $auto_path and $env(TCLLIBPATH) for a tclIndex file that will inform the interpreter where it can find command's definition.
Name
auto_mkindex
auto_mkindex directory pattern...
Generate a tclIndex file from all files in directory that match the given glob patterns.
Name
auto_reset
auto_reset
Discard cached information used by auto_execok and auto_load.
Name
bgerror
bgerror message
A user-defined procedure that is called if an error occurs during background processing. Passed the error message string as its argument.
Name
binary
binary options...
Convert data between Tcl string format and machine-dependent binary representation.
binary format formatString [args...]
Return a binary string in a format defined by formatString with data taken from args. The format string consists of zero or more field codes, each followed by an optional integer count. The field codes are listed here:
a | Chars (null padding) | A | Chars (space padding) |
b | Binary (low-to-high) | B | Binary (high-to-low) |
h | Hex (low-to-high) | H | Hex (high-to-low) |
c | 8-bit int | s | 16-bit int (little-endian) |
S | 16-bit int (big-endian) | i | 32-bit int (little-endian) |
I | 32-bit int (big-endian) | f | Float |
d | Double | x | Nulls |
X | Backspace | @ | Absolute position |
binary scan string formatString [varName...]
Parse a binary string according to the format defined in formatString and place the results in the specified variable names. Return the number of variables that were set. The format string is the same as for binary format except for the following:
a | Chars (no stripping) |
A | Chars (stripping) |
x | Skip forward |
Example
set i 1234
set j 3.14
set s hello
set str [binary format ida5 $i $j $s]
binary scan $str ida5 i j s
Name
break
break
Cause a loop command, such as for, foreach, or while, to break out of the innermost loop and abort execution.
Name
case
Obsolete; see the switch command.
Name
catch
catch script [varName]
Evaluate script using the Tcl interpreter, suspending normal error handling if errors occur. Return a number indicating the Tcl interpreter error code, or 0 if there were no errors. If varName is specifid, store the return value of the script in the named variable.
Name
cd
cd [dirName]
Set the current working directory to dirname. If no directory name is specified, change to the home directory. Returns an empty string.
Name
clock
clock options...
Perform time-related functions.
clock clicks
Return system time as a high-resolution, system-dependent number.
clock format clockValue [-format string] [-gmt boolean]
Format time in human-readable format. ClockValue is a time value as returned by clock seconds, clock scan, or the -atime, -mtime, or -ctime options of the file command. The optional format string indicates how the string should be formatted, using the symbols described below. The optional -gmt argument takes a boolean argument: if true, the time is formatted using Greenwich Mean Time; otherwise, the local time zone is used.
%% | % | %a | Weekday (abbr.) |
%A | Weekday (full) | %b | Month (abbr.) |
%B | Month (full) | %c | Local date and time |
%d | Day (01–31) | %H | Hour (00–23) |
%h | Hour (00–12) | %j | Day (001–366) |
%m | Month (01–12) | %M | Minute (00–59) |
%p | A.M./P.M. | %S | Seconds (00–59) |
%U | Week (01–52) | %w | Weekday (0–6) |
%x | Local date | %X | Local time |
%y | Year (00–99) | %Y | Year (full) |
%Z | Time zone |
clock scan dateString [-base clockVal] [-gmt boolean]
Parse dateString as a date and time, returning an integer clock value (the reverse of clock format). If the optional -base argument is used, clockVal is used to specify the date to be used for the resulting time value. If the Boolean -gmt argument is true, assume that time is specified in Greenwich Mean Time.
clock seconds
Return the current time, in seconds, using a system-dependent format.
Name
close
close channelId
Close a previously opened I/O channel, specified by channel identifier channelId. Returns an empty string.
Name
concat
concat [arg...]
Treating each argument as a list, concatenate all arguments and return the resulting list.
Name
continue
continue
Cause a loop command, such as for, foreach, or while, to break out of the innermost loop and resume execution with the next iteration.
Name
eof
eof channelId
Return a boolean value indicating if an end-of-file condition occurred during the most recent input operation on channelId.
Name
error
error message [info] [code]
Generate a Tcl error. Return message as the optional error string to the calling application. Optional string info is stored in global variable errorInfo, and code is stored in errorCode.
Name
eval
eval arg...
Treating each argument as a list, concatenate arguments and evaluate the resulting list as a Tcl command, returning the result of the command.
Name
exec
exec [options] arg [tag...]
Execute arguments as one or more shell commands. Return standard output from the last command in the pipeline.
Options
-keepnewline
Keep trailing newline at end of command pipeline's output.
- -
Marks end of options (useful for commands that may start with a dash).
Command arguments can include these special symbols:
| | Separate commands in pipeline. |
|& | Pipe standard out and standard error. |
> filename | Use filename as standard input for command. |
<@ fileId | Use fileId (from open command) as standard input. |
<< value | Pass immediate value as standard input. |
> filename | Redirect standard output to file. |
2> filename | Redirect standard error to file. |
>& filename | Redirect standard error and standard output to file. |
>> filename | Append standard output to file. |
2>> filename | Append standard error to file. |
>>& filename | Append standard error and standard output to file. |
>@ fileId | Redirect standard output to fileId. |
2>@ fileId | Redirect standard error to fileId. |
>&@ fileId | Redirect standard error and standard output to fileId. |
Name
exit
exit [returnCode]
Terminate the application using the specified return code (default is 0).
Name
expr
expr arg...
Concatenate the command arguments, evaluate them as an expression, and return the result.
Name
fblocked
fblocked channelId
Return 1 if last input operation on channelId exhausted available input; otherwise, return 0.
Name
fconfigure
fconfigure options
Perform operations on an I/O channel.
fconfigure channelId
Return current settings for channelId as a list of name-value pairs.
fconfigure channelId name
Return current setting of name for channel channelId.
fconfigure channelId name value...
Set one or more channel options for channelId.
Options
The command accepts the following standard options (other options are specific to certain types of I/O channels):
-blocking boolean
Set blocking or nonblocking I/O.
-buffering mode
Set I/O buffering mode to full, line, or none.
-buffersize size
Set size of I/O buffer, in bytes.
-eofchar char
Set character to indicate end of file (disable with empty string).
-eofchar {inChar outChar}
Set input and output end-of-file characters.
-translation mode
Set end-of-line translation to auto, binary, cr, lf, or crlf.
-translation {inMode outMode}
Set input and output line translation mode.
Name
fcopy
fcopy inchan outchan [-size size] [-command callback]
Copy data from I/O channel inchan to channel outchan. Continue copying until end of file is reached on the input channel or the maximum number of bytes has been transferred. Return the number of bytes written to outchan.
Options
-size size
Specify maximum number of bytes to transfer (default is to copy until end of file is reached on the input channel).
-command callback
Change behavior of fcopy to run in the background. When copying is complete, the command callback will be invoked with an argument list consisting of the number of bytes written and an optional error string.
Name
file
file option name [arg...]
This command provides operations for reading and writing attributes of files. Option is one of the options described below. Name is a filename, which can use tilde (˜) expansion.
file atime name
Return time that file was last accessed, in POSIX format (seconds since the start of the epoch).
file attributes name
file attributes name [option]
file attributes name [option value...]
Set or get platform-dependent file attributes. The first form returns attributes as a list of name-value pairs. The second form returns the value of the named attribute. The third form sets one or more named attributes.
file copy [-force] [- -] source target
file copy [-force] [- -] source... targetDir
Make a copy of a file or copy files to a directory.
Options
-force
Overwrite existing files.
- -
Marks end of options.
file delete [-force] [- -] pathname...
Delete one or more files indicated by pathname.
Options
-force
Overwrite existing files.
- -
Marks end of options.
file dirname name
Return directory portion of path name.
file executable name
Return 1 if file name is executable by current user, 0 otherwise.
file exists name
Return 1 if file name exists and current user has search permissions for directories leading to it, 0 otherwise.
file extension name
Return characters after and including last period. If there is no period in name, return empty string.
file isdirectory name
Return 1 if file name is a directory, 0 otherwise.
file isfile name
Return 1 if file name is a regular file, 0 otherwise.
file join name...
Combine arguments using path separator to form a file pathname.
file lstat name varName
Same as stat, but return information for the target of a symbolic link rather than the link itself.
file mkdir dir...
Create one or more directories, creating full path if necessary.
file mtime name
Return time that file was last modified, in POSIX format (seconds since the start of the epoch).
file nativename name
Return platform-specific form of file name.
file owned name
Return 1 if file is owned by current user, 0 otherwise.
file pathtype name
Return type of file or directory name as one of absolute, relative, or volumerelative (e.g., C:filename).
file readable name
Return 1 if file is readable by the current user, 0 otherwise.
file readlink name
Return name of file to which symbolic link points, or an error if name is not a symbolic link.
file rename [-force] [- -] source target
file rename [-force] [- -] source [source...] targetDir
Rename one or more files. Target destination can be in a different directory.
file rootname name
Return characters before the last period in path name, or name if last component does not contain a period.
file size name
Return file size in bytes.
file split name
Split path name into a list of separate pathname elements, discarding path separators.
file stat name varName
Store file information in an array variable. The array element names are as shown below, with numeric values corresponding to the result from the stat system call. Returns an empty string.
atime | Time of last access |
ctime | Time of last change |
dev | Device number |
gid | Group ID of owner |
ino | Inode number |
mode | Protection |
mtime | Time of last modification |
nlink | Number of hard links |
size | Total size in bytes |
type | Device type |
uid | User ID of owner |
file tail name
Return characters in name after the last directory separator, or name if it contains no separators.
file type name
Return a string indicating the type of file name: file, directory, characterSpecial, blockSpecial, fifo, link, or socket.
file volume
Return a list of the currently mounted volumes or drive letters.
file writable name
Return 1 if file is writable by current user, 0 otherwise.
Name
fileevent
fileevent channelId readable [script]
fileevent channelId writable [script]
Set up an event handler to execute script when an I/O channel becomes readable or writable. ChannelId is an I/O channel identifier from a previous call to open or socket. If script is omitted, returns the current script for the channelId. If script is specified, returns an empty string.
Name
flush
flush channelId
Flush output that has been buffered for I/O channel channelId, which must have been opened for writing. Returns an empty string.
Name
for
for start test next body
Implement a loop construct, similar to the for loop in C.
start | Command string, executed once at beginning |
test | Expression string, for loop test |
next | Command string, executed at end of each iteration |
body | Command string, executed in each loop iteration |
The interpreter executes start once. Then it evaluates the expression test; if the result is zero, it returns an empty string. If non-zero, it executes body, then next, and repeats the loop starting with test again.
Example
for {set i 0} {$i < 100} {incr i} {
puts $i
}
Name
foreach
foreach varname list body
foreach varlist1 list1 [varlist2 list2...] body
Execute a loop that iterates over each element of a list. In the first form, variable varname is repeatedly assigned the value of each element in list list, and the expression body is evaluated. In the second form, there can be pairs of lists of loop variables (varlistN) and lists (listN). In each iteration of the loop the variables in varlistN are assigned to the next values of the corresponding list.
Example
foreach i {1 2 3 4 5 6 7 8 9 10} {
puts $i
}
Name
format
format formatString [arg...]
Format a string using ANSI sprintf() -style formatString and arguments. Returns the formatted string. The format string placeholders have the form:
%[argpos$] [flag] [width] [.prec] [h|l]char
where argpos, width, and prec are integers and possible values for char are as follows:
d | Signed integer | u | Unsigned integer |
i | Signed integer (n, 0n, or 0xn) | o | Unsigned octal |
x | Unsigned hex | X | Unsigned HEX |
c | Int to char | s | String |
f | Float (fixed) | e | Float (0e0) |
E | Float (0E0) | g | Auto float (f or e) |
G | Auto float (F or E) | % | Percent sign |
Possible values for flag are as follows:
- | Left justified | + | Always signed |
0 | Zero padding | space | Space padding |
| Alternate output format |
Example
set i 12
set j 1.2
puts [format "%4d %5.3f" $i $j]
12 1.200
puts [format "%04X %5.3e" $i $j]
000C 1.200e+00
Name
gets
gets channelId [varName]
Read characters from I/O channel channelId until end-of-line character or end of file is reached. Assign the resulting string (without end-of-line character) to variable varName and return the number of characters read. If varName is omitted, return the string that was read.
Name
glob
glob [options] pattern...
Return a list of files that match the given glob patterns.
Options
-nocomplain
Prevents an error from occurring if there are no matches; an empty string is returned instead.
- -
Marks the end of options.
Name
global
global varname...
Declare given names as global variables. Meaningful only inside a procedure.
Name
history
history [option] [arg...]
Perform operations using the history list, a list of recently executed commands. Command events can be indicated using a number or a string that matches the command itself.
history
The same as history info.
history add command [exec]
Add command to history list, optionally executing it.
history change newValue [event]
Change command in history list to newValue. If event is not specified, use current event.
history clear
Clear the history list and reset event numbers.
history event [event]
Return an event. Default is event −1.
history info [count]
Return formatted list of history commands and event numbers. Return the last count events, or all if count is not specified.
history keep [count]
Change the maximum size of the history list to count. If count is omitted, return the current history size limit.
history nextid
Return the next event number.
history redo [event]
Execute a command from the history list. If event not specified, uses event −1.
Name
if
if expr1 [then] body1 [elseif expr2 [then] body2...] [else] [bodyN]
Execute a conditional expression. If boolean expression expr1 is true, evaluate body1. Otherwise, test optional additional expressions and execute the matching body. The optional else keyword is followed by a command body that is executed if no previous conditional expressions were true. The keywords then and else are optional.
Example
if {$x < 0} {
set y 1
} elseif {$x == 0} {
set y 2
} else {
set y 3
}
Name
incr
incr varName [increment]
Increment the variable varName. The optional increment specifies the value to be added to the variable; it defaults to 1. The new value is returned.
Name
info
info option [arg...]
Return information about the Tcl interpreter.
info args procname
Return a list of the argument names to procedure procname.
info body procname
Return the body of procedure procname.
info cmdcount
Return total count of commands invoked by the interpreter.
info commands [pattern]
Return a list of Tcl commands (built-in and procedures) matching pattern. Return all commands if pattern is omitted.
info complete command
Return 1 if command is complete (i.e., no unmatched quotes, braces, etc.).
info default procname arg varname
Return 1 if argument arg of procedure procname has a default argument value, otherwise 0. If there is a default value, it is placed in variable varname.
info exists varName
Return 1 if local or global variable varName exists.
info globals [pattern]
Return a list of global variables matching pattern. Return all variable names if pattern is omitted.
info hostname
Return system hostname.
info level [number]
If number is not specified, return a number indicating the current procedure stack level, or 0 for global level. With number, return a list containing the name and arguments for the procedure at the specified stack level.
info library
Return the name of the standard Tcl library directory; the same as global variable tcl_library.
info loaded [interp]
Return a list of the currently loaded packages for interpreter interp (default is for all interpreters; use empty string for current interpreter).
info locals [pattern]
Return list of local variables, including procedure arguments, that match pattern (default is all).
info nameofexecutable
Return full name of file from which application was invoked.
info patchlevel
Return Tcl patch level; same as global variable tcl_patchLevel.
info procs [pattern]
Return list of Tcl procedures matching pattern, or all procedures if pattern is omitted.
info script
Return name of Tcl file being evaluated.
info sharedlibextension
Return the platform-dependent file extension used for shared libraries, or an empty string if shared libraries are not supported.
info tclversion
Return Tcl version; same as global variable tcl_version.
info vars [pattern]
Return a list of local and global variables matching pattern, or all variables if pattern is omitted.
Name
interp
interp option [arg...]
Manage Tcl interpreters. A master Tcl interpreter can create a new interpreter, called a slave, which coexists with the master. Each interpreter has its own namespace for commands, procedures, and global variables. Using aliases, a command in a slave interpreter can cause a command to be invoked in the master or another slave interpreter. Safe interpreters can be created that may be used for executing untrusted code because all potentially dangerous commands have been disabled by making them hidden.
interp alias srcPath srcCmd
Return a list containing the target command and arguments for the alias named srcCmd in interpreter specified by srcPath.
interp alias srcPath srcCmd {}
Delete the alias named srcCmd from the interpreter specified by srcPath.
interp alias srcPath srcCmd targetPath targetCmd [arg...]
Create an alias between two slave Tcl interpreters. The source command is named srcCmd in interpreter srcPath and is placed in interpreter target-Path as command targetCmd. Additional arguments to be appended to targetCmd can be specified.
interp aliases [path]
Return a list of the command aliases defined in interpreter path.
interp create [-safe] [- -] [path]
Create a slave interpreter using the specified path.
Options
-safe
Creates a safe interpreter.
- -
Marks the end of options.
interp delete [path...]
Delete slave interpreters specified using zero or more pathnames.
interp eval path arg...
Concatenate arguments and evaluate them as a command using the slave interpreter specified by path. Return result of command.
interp exists path
Return 1 if the slave interpreter with name path exists; otherwise, return 0.
interp expose path hiddenName [exposedCmdName]
Make the hidden command hiddenName visible to a slave interpreter path with name exposedCmdName.
interp hidden path
Return a list containing the hidden commands in interpreter path.
interp hide path exposedCmdName [hiddenCmdName]
Make the exposed command exposedCmdName a hidden command in interpreter path with name hiddenCmdName (default name is same as exposed name).
interp invokehidden path [-global hiddenCmdName [arg...]
Invoke the hidden command hiddenCmdName in interpreter path with specified arguments. With -global, invoke command at global level (default is current level).
interp issafe [path]
Return 1 if the interpreter specified by path is a safe interpreter.
interp marktrusted path
Mark the interpreter path as a trusted interpreter.
interp share srcPath channelId destPath
Share the I/O channel channelId between interpreters srcPath and destPath.
interp slaves [path]
Return a list of the slave interpreters associated with interpreter path (default is the invoking interpreter).
interp target path alias
Return a list describing the target interpreter for an alias.
interp transfer srcPath channelId destPath
Move the I/O channel channelId from srcPath to interpreter destPath.
Slave interpreter names are commands that also accept these options:
slave aliases
slave alias srcCmd
slave alias srcCmd {}
slave alias srcCmd targetCmd [arg...]
slave eval arg...
slave expose hiddenName
slave hide exposedCmdName
slave hidden
slave invokehidden [-global hiddenName] [arg...]
slave issafe
slave marktrusted
Name
join
join list [joinString]
Concatenate the elements of list list and return the resulting string. Optionally separate the elements using joinString, which defaults to a single space.
Name
lappend
lappend varName [value...]
Append the value arguments to the list contained in variable varName, interpreting each value as a list element. Works in place, making it relatively efficient. If varName does not exist, it is created.
Name
lindex
lindex list index
Return item number index from list list. Index starts at zero, and can be the string "end" to return the last item.
Name
linsert
linsert list index element...
Insert elements into list starting at the specified index. An index of 0 inserts at the beginning, and the string "end" inserts at the end. Returns the resulting list.
Name
list
list [arg...]
Return a list containing the given arguments.
Name
llength
llength list
Return the number of elements in list list.
Name
load
load fileName [packageName] [interp]
Loads a binary file containing new Tcl commands. filename is the filename to load (i.e., shared library or DLL), and packageName is the name of a package, used to compute the name of init procedure. interp is the pathname of the interpreter into which to load the file (default is invoking interpreter).
Name
lrange
lrange list first last
Return a list consisting of elements from list having indices first through last. Indices start at zero, and can also be the string "end".
Name
lreplace
lreplace list first last [element...]
Replace elements of list having indices first through last with the given elements and return the resulting list. If no new elements are supplied, list elements are deleted.
Name
lsearch
lsearch [mode] list pattern
Search list for an element that matches pattern. If found, return the index of the matching element; otherwise, return −1. The type of search is defined by one of the following mode options:
-exact | Use exact matching. |
-glob | Use glob pattern matching (default). |
-regexp | Use regular expression matching. |
Name
lsort
lsort [options] list
Sort the elements of list list and return the resulting list.
Options
-ascii
Sort by ASCII collation order (default).
-dictionary
Sort using dictionary order (case insensitive, compare numbers as integers).
-integer
Compare elements as integer numbers.
-real
Compare elements as floating-point numbers.
-command command
Compare using a command that must return <0, 0, or >0.
-increasing
Sort in increasing order (default).
-decreasing
Sort in decreasing order.
-index index
Sort a list of lists based on the values with index index in each sublist.
Name
namespace
namespace [option] [arg...]
Create and manipulate contexts for commands and variables.
namespace children [namespace] [pattern]
Return a list of child namespaces that belong to the namespace matching pattern. If pattern is omitted, return all namespaces. If namespace is omitted, return children of the current namespace.
namespace code script
Accept a command script and return it wrapped such that the resulting script can be evaluated from any namespace, but will execute in the current namespace in which the namespace code command was invoked.
namespace current
Return the fully qualified name of the current namespace.
namespace delete [namespace...]
Delete the given namespaces and all associated variables, procedures, and child namespaces.
namespace eval namespace arg...
Evaluate the arguments in the context of the specified namespace.
namespace export [-clear][pattern...]
Export commands matching one or more patterns from the current namespace. With the -clear option, first reset any previous exports. With no option or patterns, return the current export list.
namespace forget [pattern...]
Remove previously exported commands matching one or more patterns from a namespace.
namespace import [-force][pattern...]
Import commands matching one or more fully qualified patterns. Option -force allows imported commands to replace existing commands.
namespace inscope namespace arg...
Evaluate arguments in the context of namespace.
namespace origin command
Return the fully qualified name of the imported command command.
namespace parent[namespace]
Return the fully qualified name of the parent for namespace namespace. Return the parent of the current namespace if the argument is omitted.
namespace qualifiers string
Return the leading namespace qualifiers from string, which refers to a namespace name.
namespace tail string
Return the simple name at the end of string, which refers to a namespace name.
namespace which [-command[-variable] name
Return the fully qualified name of name. Option -command looks up name as a command (default), and option -variable looks up name as a variable.
Name
open
open fileName [access] [permissions]
Open the specified file, device, or command pipeline using an access specifier (described in the following list). Return a channel identifier that can be used in subsequent I/O commands. FileName can be a string corresponding to a regular file. If the first character is "|", open a command pipeline (can be open for read or write). FileName can also be a device name for a serial port (platform dependent). When creating a new file, optionally specify the access permissions to be given to the file in conjunction with the process's file creation mask (default is read and write access for all).
Access specifiers:
r | Open for reading; file must already exist (default). |
r+ | Open for read and write; file must already exist. |
w | Open for write; create new file if needed. |
w+ | Open for read and write; create new file if needed. |
a | Open existing file for write, appending to end. |
a+ | Open for read and write, appending to end. |
Alternate (POSIX) form for access (must specify one of the first three):
RDONLY | Open for reading. |
WRONLY | Open for writing. |
RDWR | Open for read and write. |
You can add one or more of the following (as a list):
APPEND | Open file for append. |
CREAT | Create file if it does not exist. |
EXCL | Report error if file does already exist. |
NOCTTY | For terminals, do not become controlling terminal for process. |
NONBLOCK | Open in nonblocking mode. |
TRUNC | Truncate file to zero length. |
Name
package
package[options]
Manage the loading and version control of Tcl packages.
package forget package
Remove package package from the current interpreter.
package ifneeded package version [script]
Indicate that version version of package package will be loaded when script is executed. If script is omitted, return the current script.
package names
Return a list of the names of packages that have been indicated using a package provide or package ifneeded command.
package provide package [version]
Indicate that version version of package package is present in interpreter. With no version argument, return the version of the package.
package require [-exact] package [version]
Load a package into the interpreter. Version indicates the version that is desired; any package with the same major number will be loaded. -exact indicates that exactly the specified version should be loaded.
package unknown [command]
Supply a command to be executed if the interpreter is unable to load a package. With no command argument, return the current package unknown command.
package vcompare version1 version2
Compare two package version numbers. Return −1 if version1 is earlier than version2, 0 if equal, or 1 if newer.
package versions package
Return a list of the versions of package that have been registered by package ifneeded commands.
package vsatisfies version1 version2
Return 1 if scripts written for version version2 work with version1.
Name
pid
pid [fileId]
Return a list of process IDs for the commands invoked by the command pipeline associated with fileId. With no fileId, return the current process's ID.
Name
pkg_mkIndex
pkg_mkIndex dir pattern...
Create an index file for autoloading packages. Dir is the directory containing the files. Supply one or more glob patterns to match the files in the directory to be indexed for autoloading.
Name
proc
proc name arglist body
Create a new Tcl procedure called name. The commands in body will be executed when the command is invoked. Arglist is a list describing the formal arguments. Each element can be a variable name, or a list containing a variable name and its default value. Returns an empty string.
If the last argument has the special variable name args, it is set to a list of the remaining arguments passed to the procedure, which can vary in number.
Example
proc myCommand { i j {k 0} } {
puts "This is my command"
return $k
}
Name
puts
puts [-nonewline] [channelId] string
Output a string of characters to the I/O channel specified using channelId. If channelId is omitted, uses standard output. Option -nonewline suppresses the newline character normally appended when printing.
Name
pwd
pwd
Return the pathname of the current working directory.
Name
read
read [-nonewline] channelId [numBytes]
Read characters from the I/O channel channelId. Read the number of bytes specified by numBytes, or if omitted, read all characters until end of file. With option -nonewline, discard the last character in the file if it is a newline. Returns the characters read.
Name
regexp
regexp [options] exp string [matchVar] [subMatchVar...]
Return 1 if regular expression exp matches string string; otherwise, return 0. If specified, matchVar will contain the portion of string that matched, whereas subMatchVar variables will contain strings matching parenthesized expressions in exp.
Options
-nocase
Ignore case in pattern matching.
-indices
Rather than storing strings in subMatchVar, store the indices of the first and last matching characters as a list.
- -
Marks the end of options.
Example
regexp {^[0-9]+$} 123
1
regexp {^[0-9]+$} abc
0
Name
regsub
regsub [options] exp string subSpec varName
Match regular expression exp against string string, making replacements defined by subSpec, and store the result in variable varName.
Options
-all
Replace all matching expressions in the string.
-nocase
Ignore case in pattern matching.
- -
Marks the end of options.
Example
regsub {[0-9]} a1b2c3 {#} result
set result
a#b2c3
regsub -all< {[0-9]} a1b2c3 {#} result
set result
a#b#c#
Name
rename
rename oldName newName
Rename the command oldName to have the new name newName. Delete oldName if newName is an empty string.
Name
return
return [-code code] [-errorinfo info] [-errorcode code] [string]
Return from a procedure, top-level command, or source command. Return string as the return value (default is an empty string).
Options
-code
Return an error code, one of the strings "ok", "error", "return", "break", or "continue", or an integer value.
-errorinfo
Return an initial stack trace for the errorInfo variable.
-errorcode
Return a value for the errorCode variable.
Name
scan
scan string format varName...
Parse fields from the string string according to the ANSI C scanf() -style format format and place results in the specified variables. Return the number of conversions, or −1 if unable to match any fields. Format placeholders have the form %[*] [width]char, where * discards the field, width is an integer, and possible values of char are as follows:
d | Decimal | o | Octal |
x | Hex | c | Char to int |
e | Float | f | Float |
g | Float | s | String (no whitespace) |
[chars] | Chars in given range | [^chars] | Chars not in given range |
Name
seek
seek channelId offset [origin]
Set position for random access to I/O channel channelId. Specify starting byte position using integer value offset relative to origin, which must be one of the following:
start | Offset bytes from start of the file (default). |
current | Offset bytes from the current position (positive or negative). |
end | Offset bytes relative to the end of file (positive or negative). |
Name
set
set varName [value]
Set the value of variable varName to value and return the value. If value is omitted, return the current value of varName.
Name
socket
socket [options] host port
Create a client-side connection to a socket using the specified host and port number. Return a channel identifier that can be used for subsequent I/O commands.
Options
-myaddr addr
Specify domain name or IP address of client interface.
-myport port
Specify port number to use for client side of connection.
-async
Connect asynchronously.
socket -server command [option] port
Create the server side of a socket using the specified port number. When a client connects, invoke command.
Option
-myaddr addr
Specify domain name or IP address of server interface.
Name
source
source fileName
Read file fileName and pass it to the current interpreter for evaluation. Return the return value of last command executed in file.
source -rsrc resourceName [fileName]
source -rsrcid resourceId [fileName]
On the Macintosh platform only, source the script using the text resource with the given name or resource identifier.
Name
split
split string [splitChars]
Split a string into a list. Elements are split if separated by any of the characters in list splitChars (default is whitespace). Returns the resulting list.
Name
string
string option arg...
Perform string operations on one or more strings, based on the value of option. String indices start at 0.
string compare string1 string2
Compare strings lexicographically. Return −1 if string1 is less than string2, 0 if equal, or 1 if greater.
string first string1 string2
Return the index of the first occurrence of string1 in string2, or −1 if no match.
string index string charIndex
Return the character in string that has index charIndex. Return empty string if charIndex is out of range.
string last string1 string2
Return the index of the last occurrence of string1 in string2, or −1 if no match.
string length string
Return the length of string in characters.
string match pattern string
Return 1 if string matches glob pattern pattern; otherwise, return 0.
string range string first last
Return substring of string consisting of characters from index first through last. Last can be the string "end".
string tolower string
Return string converted to lowercase.
string toupper string
Return string converted to uppercase.
string trim string [chars]
Return string with leading and trailing characters from the set chars removed (default is whitespace characters).
string trimleft string [chars]
Return string with leading characters from the set chars removed (default is whitespace characters).
string trimright string [chars]
Return string with trailing characters from the set chars removed (default is whitespace characters).
string wordend string index
Return index of first character after word in string that occurs at character position index.
string wordstart string index
Return index of first character of word in string that occurs at character position index.
Name
subst
subst [options] string
Perform variable, command, and backslash substitutions on string and return result.
Options
-nobackslashes
Do not perform backslash substitution.
-nocommands
Do not perform command substitution.
-novariables
Do not perform variable substitution.
Name
switch
switch [options] string pattern body [pattern body...]
switch [options] string {pattern body [pattern body...]}
Match string against each pattern argument. If a match is found, evaluate the corresponding body and return result. Pattern can be "default" to match anything. Body can be "-" to fall through to the next pattern.
Options
-exact
Use exact matching (default).
-glob
Use glob matching.
-regexp
Use regular expression matching.
- -
Marks the end of options.
Example
switch $tcl_platform(platform) {
windows {puts "Running on Windows"}
unix {puts "Running on Unix"}
macintosh {puts "Running on Macintosh"}
default {puts "Running on unknown platform"}
}
Name
tell
tell channelId
Return the current access position of I/O channel channeled as a decimal number, or −1 if the channel does not support random access.
Name
time
time script [count]
Execute the command script and return a string indicating the average elapsed time required. The command is run count times (default is 1) and the result is averaged.
Name
trace
trace option [arg...]
Trace variable accesses by executing a user-defined command whenever the variable is read, written, or unset.
trace variable name ops command
Trace operations on variable name. Operations are specified by one or more of the characters r (read), w (write), or u (unset). When the operation occurs, execute command.
trace vdelete name ops command.
Delete a trace previously set on a variable.
trace vinfo name
Return a list describing the traces currently set on variable name.
Name
unknown
unknown cmdName [arg...]
This command is invoked by the Tcl interpreter if a program attempts to perform a nonexistent command. The user can redefine the default implementation of unknown defined in the Tcl system startup file.
Name
unset
unset name...
Remove one or more variables specified by name.
Name
update
update [idletasks]
Call the event handler loop until all pending events have been processed. The idletasks option specifies only to update idle callbacks.
Name
uplevel
uplevel [level] arg...
Concatenate arguments and evaluate them in the stack frame context indicated by level, where level is either a number indicating the number of levels up the stack relative to the current level or a number preceded by "#", indicating an absolute level. The default level is 1.
Name
upvar
.sp −1p upvar [level] otherVar myVar...
Make local variable myVar become an alias for variable otherVar in the stack frame indicated by level, where level is either a number indicating the number of levels up the stack relative to the current level or a number preceded by "#", indicating an absolute level. The default level is 1.
Name
variable
.sp −1p variable [name value...] name [value]
Create one or more variables in the current namespace and assign them the given values.
Name
vwait
.sp −1p vwait varName
Call the event handler to process events and block until the value of variable varName changes.
Name
while
.sp −1p while test body
A loop construct that repeatedly evaluates expression test; if it returns a true value, it executes body.
Example
set i 1
while {$i <= 10} {
puts $i
incr i
}
Chapter 3. Tk Core Commands
Tk is the most popular extension to the Tcl language. John Ousterhout, the author of Tcl itself, wrote the Tk extension soon after releasing Tcl to the public. Tk is available at http://www.scriptics.com. This chapter covers Version 8.0.
Tk adds many new commands to the Tcl interpreter for writing graphical user interface (GUI) applications. Commands are available to create and lay out several different types of windows, called widgets, bind Tcl scripts to window system events, create and manipulate graphical images, and interact with the window manager and server.
Tk scripting provides an excellent tool for quickly prototyping GUI applications. Programs that take many hundreds of lines of Xlib or Motif C code can typically be done in less than a hundred lines of Tk. Also, no compilation is necessary and almost all aspects can be dynamically reconfigured during runtime. Using the powerful I/O commands of Tcl, it is also easy to add graphical interfaces on top of existing command-line applications.
The Tk extension can be loaded into a running Tcl interpreter by using the command:
package require Tk
on systems supporting dynamic loading. Typically, one runs the program wish, which starts a Tcl interpreter with the Tk extension already loaded.
Example
The following Tcl code demonstrates the use of most of the major widget commands and several of the non-widget commands. The resulting interface is shown in Figure 3-1.
wm withdraw .
set w [toplevel .t]
wm title .t {Tk Code Example}
set m [menu $w.menubar -tearoff 0]
$m add cascade -label File -menu [menu $m.file]
$m.file add command -label Quit -command exit
$m add cascade -label Help -menu [menu $m.help]
$m.help add command -label Index -command {puts Sorry}
$w configure -menu $m
set f [frame $w.f1]
pack [label $f.label -text {A label}] -side left
pack [entry $f.entry] -side left -fill x -expand true
$f.entry insert 0 {This is an entry}
pack $f -fill x -padx 2 -pady 2
set f [frame $w.f2]
pack [frame $f.rg -relief groove -bd 3] -side left -fill x -expand true
pack [label $f.rg.lbl -text Radiobuttons:] -side left
pack [radiobutton $f.rg.b1 -text Tea -variable choice -value 1]
-side left
pack [radiobutton $f.rg.b2 -text Coffee -variable choice -value 0]
-side left
pack [frame $f.cg -relief groove -bd 3] -side left -fill x -expand true
pack [label $f.cg.lbl -text Checkbuttons:] -side left
pack [checkbutton $f.cg.b1 -text Cream] -side left
pack [checkbutton $f.cg.b2 -text Sugar] -side left
pack $f -fill x -padx 2 -pady 2
set f [frame $w.f3]
pack [label $f.lbl -text Scale:] -side left
pack [label $f.val -textvariable scaleval -width 4] -side left
pack [scale $f.scl -variable scaleval -orient horizontal -from 0 \
-to 10 -showvalue false] -side left -fill x -expand true
pack $f -fill x -padx 2 -pady 2
set f [frame $w.f4 -relief groove -bd 3]
pack [frame $f.lf] -side left -fill both -padx 3 -pady 3
pack [listbox $f.lf.lb -yscrollcommand "$f.lf.sb set" -height 4] \
-side left -fill both -expand true
pack [scrollbar $f.lf.sb -command "$f.lf.lb yview"] \
-side left -fill y
$f.lf.lb insert end {Line 1 of listbox} {Line 2 of listbox}
pack [frame $f.tf] -side left -fill both -expand true -padx 3 -pady 3
grid columnconfigure $f.tf 0 -weight 1
grid rowconfigure $f.tf 0 -weight 1
grid [text $f.tf.tx -yscrollcommand "$f.tf.sy set" -height 4 -width 25 \
-xscrollcommand "$f.tf.sx set"] -column 0 -row 0 -sticky nsew
grid [scrollbar $f.tf.sy -command "$f.tf.tx yview"] \
-column 1 -row 0 -sticky ns
grid [scrollbar $f.tf.sx -command "$f.tf.tx xview" -orient horizontal] \
-column 0 -row 1 -sticky ew
$f.tf.tx insert end {This is a text widget}
pack $f -fill both -expand true -padx 2 -pady 2
set f [frame $w.f5]
button $f.b1 -text Apply -default active -command {puts $scaleval}
button $f.b2 -text Reset -default normal -command {set scaleval 0}
button $f.b3 -text Quit -default normal -command exit
pack $f.b1 $f.b2 $f.b3 -padx 10 -side left
pack $f -pady 2
Figure 3-1. Resulting interface from sample Tk code
Command-Line Options
The wish program has the following command-line format:
wish [cmdfile] [options] [- -] [arg arg...]]
Its behavior is identical to the tclsh program in the handling of the cmdfile and arg arguments. In addition, the following options are available:
-color map new
Specify that the root window should have a new colormap rather than the default colormap of the screen.
-display display
For the X Window System, the display (and screen) on which to display the root window.
-geometry geometry
Geometry to use for the root window in standard X Window System geometry format. It will be stored in the geometry global variable.
-name name
Specify the title for the root window and the name of the interpreter for send commands.
-sync
Execute all X Window System commands synchronously. This option makes sure that all errors are reported immediately, but slows down execution.
-use id
Instead of the root window being a top-level window, it is embedded in the window whose system identifier is id (as returned by winfo id command).
-visual visual
Visual class to use for the root window. Visual must be directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor.
- -
Denote end of wish options. Additional arguments are passed to the script's argv global variable. Normally, all arguments are scanned formatches to the above options.
Environment Variable
The following environment variable is used by Tk:
TK_LIBRARY
Directory containing Tk scripts and other files needed by Tk at runtime.
Special Variables
The following global variables are defined by the Tk extension:
tk_library | Directory containing the standard Tk script library. |
tk_patchLevel | Current patch level of Tk extension. |
tk_strictMotif | When non-zero, Tk tries to adhere to Motif look and feel. |
tk_version | Current version of Tk extension. |
Group Listing of Tk Commands
This section briefly lists all Tk commands, grouped logically by function.
Widgets
button | Create a button widget. |
canvas | Create a canvas widget. |
checkbutton | Create a checkbutton widget. |
entry | Create an entry widget. |
frame | Create a frame widget. |
label | Create a label widget. |
listbox | Create a listbox widget. |
menu | Create a menu widget. |
menubutton | Create a menubutton widget. |
message | Create a message widget. |
radiobutton | Create a radiobutton widget. |
scale | Create a scale widget. |
scrollbar | Create a scrollbar widget. |
text | Create a text widget. |
toplevel | Create a top-level widget. |
Geometry Management
grid | Lay out widgets on a grid. |
pack | Lay out widgets by packing them along borders. |
place | Lay out widgets using explicit placement. |
Event Handling
bind | Bind window events to Tcl scripts. |
bindtags | Control the precedence order of event bindings. |
event | Generate window events and define virtual events. |
Focus
Dialogs
tk_chooseColor | Pop up a dialog for choosing a color. |
tk_dialog | Pop up a message dialog with arbitrary buttons. |
tk_getOpenFile | Pop up a dialog for choosing an existing file. |
tk_getSaveFile | Pop up a dialog for choosing any filename. |
tk_messageBox | Pop up a message dialog with predefined buttons. |
Miscellaneous
Widget Overview
All Tk widgets are created by a Tcl command of the same name as the widget. These widget creation commands have the form:
widgetCmd pathName [option value...]
where widgetCmd is the name of the widget type desired (e.g., button or listbox) and pathName is the pathname for the new widget. The Return value for the command is pathName.
A widget's pathname consists of a child name appended to the pathname of its parent widget using a "." character. The child name is an arbitrary string that excludes the "." character and is unique among its siblings, the other widget children of its parent. The pathname for the Tk main (or root) window is simply a single dot (i.e., "."); its immediate children begin with a dot, and each additional level of a child widget appears after an additional dot. This scheme is analogous to file pathnames in the Unix file system, where the "/" character is used as a directory name separator. For example, the pathname of a frame widget named frame1 whose parent is the main window would have the pathname .frame1. A button widget named button1 who is a child of frame1 would have the pathname .frame1.button1. Almost all Tk commands require the full pathname for arguments that specify a widget.
When a new widget is created with the pathname pathName, a new Tcl command is also defined with the same name. Invoking this command allows one to manipulate the widget in various ways depending on the arguments passed. The first argument to the widget's command is referred to as the widget method and selects the action to be taken by the widget. Additional arguments to the widget's command may be allowed or required, depending on the method. The methods available to each widget type are described in the "Widget Commands" section, later in this chapter.
The optional option-value pair arguments to the widget creation command allow one to set the value of the widget's supported configuration options. All widgets support the conFigure and cget methods to change and query their configuration options after creation.
The configure method has the form:
pathName conFigure [option [value [option value ...]]]
If one or more option-value pairs are specified, the given options are set to the given values. If no option-value pairs are specified, the command returns a list with an element for each supported widget option. Each element itself is a list of five items describing an option. These items are the option itself, its database name, its class name, its default value, and its current value. For example, the list for -activebackground might look like this: {-activebackground activeBackground Foreground #ececec blue}. If only the first option argument is specified, just the five-item list describing that option is returned.
The cget command has the form:
pathName cget option
and simply returns the current setting of the option option.
The configuration options available differ depending on the widget type. Many options are supported by all or several of the widget types. These standard options are described in the next section. Which standard options a widget type supports and the options that are specific to a particular widget type are described in the "Widget Commands" section.
For distance and coordinate options that take values in screen units, the valid format is a floating-point number followed by an optional one-character suffix: c for centimeters, i for inches, m for millimeters, p for printer's points (1/72 inch), or no character for pixels. Commands that return values for screen distances and coordinates do so in pixels, unless otherwise stated.
Standard Widget Options
Each of the following entries lists the option or options used in Tk, the name in the window system's resource database for the option, the associated class name in the resource database, and a description of the option.
-activebackground color (activeBackground, Foreground)
Background color of widget when it is active.
-activeborderwidth width (activeBorderWidth, BorderWidth)
Width, in screen units, of widget's border when it is active.
-activeforeground color (activeForeground, Background)
Foreground color of widget when it is active.
-anchor anchorPos (anchor, Anchor)
How information is positioned inside widget. Valid anchorPos values are n, ne, e, se, s, sw, w, nw, and center.
-Background color (background, Background)
-bg color
Background color of widget in normal state.
-bitmap bitmap (bitmap, Bitmap)
A bitmap image to display in the widget in place of a textual label. Valid bitmap values are the special sequence @filename, specifying a file from which to read the bitmap data or one of the built-in bitmaps: error, gray12, gray25, gray50, gray75, hourglass, info, questhead, question, or warning. On the Macintosh, the following bitmaps are available: document, stationery, edition, application, accessory, folder, pfolder, trash, floppy, ramdisk, cdrom, preferences, querydoc, stop, note, and caution.
-borderwidth width (borderWidth, BorderWidth)
-bd width
Width, in screen units, of widget's border in its normal state.
-cursor cursor (cursor, Cursor)
Cursor to display when mouse pointer is inside the widget's borders. The cursor argument may take the following forms:
name [fgColor [bgColor]]
Name is the name of a cursor font as defined in the X Window System cursorfont.h include file (e.g., cross and left_ptr). If fgColor and bgColor are specified, they give the foreground and background colors for the cursor, respectively. If bgColor is omitted, the background will be transparent. If neither is specified, the defaults will be black and white, respectively.
@sourceName maskName fgColor bgColor
Sourcename and maskName are the names of files describing bitmaps for the cursor's source bits and mask. Fgcolor and bgColor indicate the foreground and background colors, respectively, for the cursor. This form is invalid on Macintosh and Windows platforms.
@sourceName fgColor
sourceName is the name of a file describing a bitmap for the cursor's source bits. fgColor is the foreground color for the cursor. This form is invalid on Macintosh and Windows platforms.
-disabledforeground color (disabledForeground, DisabledForeground)
Foreground color of widget when it is disabled.
-exportselection boolean (exportSelection, ExportSelection)
Whether a selection in the widget should also be made the X Window System selection.
-font font (font, Font)
Font to use when drawing text inside the widget.
-Foreground color (foreground, Foreground)
-fg color
Foreground color of widget in its normal state.
-highlightbackground color (highlightBackground, HighlightBackground)
Color of the rectangle drawn around the widget when it does not have the input focus.
-highlightcolor color (highlightColor, HighlightColor)
Color of the rectangle drawn around the widget when it has the input focus.
-highlightthickness width (highlightThickness, HighlightThickness)
Width, in screen units, of highlighted rectangle drawn around widget when it has the input focus.
-image imageName (image, Image)
Name of image to display in the widget in place of its textual label (see the image command).
-insertbackground color (insertBackground, Foreground)
Color to use for the background of the area covered by the insertion cursor.
-insertborderwidth width (insertBorderWidth, BorderWidth)
Width, in screen units, of the border to draw around the insertion cursor.
-insertofftime milliseconds (insertOffTime, OffTime)
Time the insertion cursor should remain "off " in each blink cycle.
-insertontime milliseconds (insertOnTime, OnTime)
Time the insertion cursor should remain "on" in each blink cycle.
-insertwidth width (insertWidth, InsertWidth)
Width, in screen units, of the insertion cursor.
-jump boolean (jump, Jump)
Whether to notify slider controls (e.g., scrollbars) connected to the widget to delay making updates until mouse button is released.
-justify alignment (justify, Justify)
How multiple lines of text are justified. Valid alignment values are left, center, or right.
-orient orientation (orient, Orient)
The orientation in which the widget should be laid out. Valid orientation values are vertical or horizontal.
-padx width (padX, Pad)
Extra space, in screen units, to request for padding the widget's top and bottom sides.
-pady height (padY, Pad)
Extra space, in screen units, to request for padding the widget's left and right sides.
-relief effect (relief, Relief)
3D effect desired for the widget's border. Valid effect values are flat, groove, raised, ridge, or sunken.
-repeatdelay milliseconds (repeatDelay, RepeatDelay)
Time a button or key must be held down before it begins to autorepeat.
-repeatinterval milliseconds (repeatInterval, RepeatInterval)
Time between autorepeats once action has begun.
-selectbackground color (selectBackground, Foreground)
Background color to use when displaying selected items or text.
-selectborderwidth width (selectBorderWidth, BorderWidth)
Width, in screen units, of border to draw around selected items or text.
-selectforeground color (selectForeground, Background)
Foreground color to use when displaying selected items or text.
-setgrid boolean (setGrid, SetGrid)
Whether the widget controls the resizing grid for its top-level window. See the wm grid command for details.
-takefocus focusType (takeFocus, TakeFocus)
If 0 or 1, signals that the widget should never or always take the focus. If empty, Tk decides. Otherwise, evaluates argument as script with widget name appended as argument. Returned value must be 0, 1, or empty.
-text string (text, Text)
Text string to be displayed inside the widget.
-textvariable variable (textVariable, Variable)
Variable whose value is a text string to be displayed inside the widget.
-troughcolor color (troughColor, Background)
Color to use for the rectangular trough areas in widget.
-underline index (underline, Underline)
Integer index of a character to underline in the widget.
-wraplength length (wrapLength, WrapLength)
Maximum line length, in screen units, for word wrapping.
-xscrollcommand cmdPrefix (xScrollCommand, ScrollCommand)
Prefix for a command used to communicate with an associated horizontal scrollbar. Typically scrollbar set, where scrollbar is the pathname of a horizontal scrollbar widget.
-yscrollcommand cmdPrefix (yScrollCommand, ScrollCommand)
Prefix for a command used to communicate with an associated vertical scrollbar. Typically scrollbar set, where scrollbar is the pathname of a vertical scrollbar widget.
Widget Commands
This section describes each Tk widget type and the options and methods the widget supports. Only the names of the standard options supported by the widget are listed. Refer to the "Standard Widget Options" section earlier in this chapter for option definitions.
Name
button
button pathName [option value...]
The button command creates a new button widget named pathname.
Standard Options
-activebackground | -activeforeground | -anchor |
-background | -bitmap | -borderwidth |
-cursor | -disabledforeground | -font |
-foreground | -highlightbackground | -highlightcolor |
-highlightthickness | -image | -justify |
-padx | -pady | -relief |
-takefocus | -text | -textvariable |
-underline | -wraplength |
Widget-Specific Options
-command tclCommand (command, Command)
Command to be evaluated when button is invoked.
-default state (default, Default)
State for the default ring, a platform-dependent border drawn around the button to indicate it is the default button. Must be normal (button is not the default), active (button is the default), or disabled (no ring is drawn).
-height height (height, Height)
Desired height, in lines for text content or in screen units for images and bitmaps.
-state state (state, State)
State of the button. State must be normal, active, or disabled.
-width width (width, Width)
Desired width, in characters, for text content, or in screen units, for images and bitmaps.
Methods
pathName flash
Flash button by alternating between active and normal colors.
pathName invoke
Invoke the Tcl command associated with the button and return its result. An empty string is returned if there is no command associated with the button. This command is ignored if the button's state is disabled.
Name
canvas
canvas pathName [option value...]
The canvas command creates a new canvas widget named pathName. The canvas widget provides a drawing area for displaying a number of graphic items, including arcs, bitmaps, images, lines, ovals, polygons, rectangles, text, and windows (other widgets). Methods exist to draw, manipulate, and bind events to items.
Standard Options
-background | -borderwidth | -cursor |
-highlightbackground | -highlightcolor | -highlightthickness |
-insertbackground | -insertborderwidth | -insertofftime |
-insertontime | -insertwidth | -relief |
-selectbackground | -selectborderwidth | -selectforeground |
-takefocus | -xscrollcommand | -yscrollcommand |
Widget-Specific Options
-closeenough float (closeEnough, CloseEnough)
How close the mouse cursor must be to an item to be considered inside it. Default is 1.0.
-confine boolean (confine, Confine)
Whether the view can be set outside the region defined by -scrollregion. Default is true.
-height height (height, Height)
Desired height, in screen units, that the canvas should request from its geometry manager.
-scrollregion region (scrollRegion, ScrollRegion)
Boundary for scrolling in the canvas as a list of four coordinates describing the left, top, right, and bottom coordinates of a rectangular region in screen units.
-width width (width, Width)
Width, in screen units, that the canvas should request from its geometry manager.
-xscrollincrement increment (xScrollIncrement, ScrollIncrement)
Increment, in screen units, for horizontal scrolling. If not set or equal to zero or less, defaults to one-tenth of the visible width of the canvas.
-yscrollincrement increment (yScrollIncrement, ScrollIncrement)
Increment, in screen units, for vertical scrolling. If not set or equal to zero or less, defaults to one-tenth of the visible height of the canvas.
Item IDs and Tags
An item in a canvas widget is identified either by its unique ID or by an associated tag. A unique ID (an integer number) is assigned to each item when it is created. The ID assigned to an item cannot be changed.
Multiple tags may be associated with an item. A tag is just a string of characters that can take any form except that of an integer. For instance, "squares" and "arc32" are valid, but "32" is not. The same tag can be associated with multiple items.
Two special tag names are reserved. The tag all is implicitly associated with every item in the canvas. The tag current is associated with the topmost item whose drawn area is underneath the mouse cursor. If the mouse cursor is not in the canvas widget or over an item, no item has the current tag.
The canvas appends the ID of each item when created to its display list. This list defines the stacking order, with items later in the display list obscuring those that are earlier in the display list. Canvas methods exist to manipulate the order of items in the display list. However, window items are always drawn on top of other items. The normal raise and lower Tk commands control the stacking order of overlapping window items.
Unless otherwise stated, the token tagOrId is used in the method descriptions below to indicate that either an item ID or tag is accepted. If a tag specifies multiple items and the method operates only on a single item, the first (lowest) item in the display list suitable for the operation is used.
Coordinates
Coordinates and distances are specified in screen units as described in the "Widget Overview" section. Larger y-coordinates refer to points lower on the screen; larger x-coordinates refer to points farther to the right.
Text Indices
Text items support the notion of an index for identifying particular character positions within the item. A decimal number indicates the position of the desired character within the item, with 0 referring to the first character. Special index values are as follows:
end | The character just after the last one in the item |
insert | The character just after the insertion cursor |
sel.first | The first selected character in the item |
sel.last | The last selected character in the item |
@x,y | The character closest to coordinates x,y |
Item Event Binding
Binding events to canvas items using the bind method works in a similar manner to binding events to widgets with the Tk bind command. However, only events related to the mouse and keyboard or virtual events can be bound to canvas items. Enter and Leave events for an item are triggered when it becomes the current item or ceases to be the current item. Other mouse-related events are directed to the current item, if any. Keyboard-related events are directed to the item that has the keyboard focus as set by the canvas focus method. If a virtual event is used in a binding, it can be triggered only if the underlying "real" event is mouse related or keyboard related.
When multiple bindings match a particular event, all of the matching bindings are invoked. This can happen when an item is associated with two tags and both tags have bindings for the same event. A binding associated with the all tag is invoked first, followed by only one binding for each of the item's tags, followed by any binding associated with the item's ID. If there are multiple matching bindings for a single tag, the most specific binding is invoked. A continue command in a binding script terminates just that binding. A break command terminates the script for that binding and skips any remaining bindings for the event. Any bindings made to the canvas widget using the bind command are invoked after any matching item bindings.
Methods
pathName addtag tag searchSpec [arg arg...]
Associate tag with each item in the canvas selected by the contraints of searchSpec. Searchspec and args may take any of the following forms:
above tagOrId
Select the item just after (above) the one identified by tagOrId in the display list. If tagOrId denotes more than one item, the last (topmost) item is used.
all
Select all items in the canvas.
below tagOrId
Select the item just before (below) the one identified by tagOrId in the display list. If tagOrId denotes more than one item, the first (lowest) item is used.
closest x y [halo [start]]
Select the item closest to coordinates x, y. If more than one item is at the same closest distance, the last one (topmost) in the display list is selected. If halo is specified, any item closer than halo to the point is considered to be close enough. The start argument may be used to cycle through all the closest items. This form will select the topmost closest item that is below start (a tag or ID) in the display list; if no such item exists, the selection behaves as if the start argument were not given.
enclosed x1 y1 x2 y2
Select all the items completely inside the rectangular region given by x1, y1 on the top left and x2, y2 on the bottom right.
overlapping x1 y1 x2 y2
Select all the items that overlap or are fully enclosed within the rectangular region given by x1, y1 on the top-left corner and x2, y2 on the bottom-right corner.
withtag tagOrId
Select all the items identified by tagOrId.
pathName bbox tagOrId [tagOrId...]
Return a coordinate list of the form {x1 y1 x2 y2} giving an approximate bounding box enclosing all the items named by the tagOrId arguments.
pathName bind tagOrId [sequence [script]]
Associate script with all the items identified by tagOrId such that whenever the event sequence given by sequence occurs for one of the items, the script will be evaluated. If the script argument is not given, the current associated script is returned. If the sequence is also not given, a list of all the sequences for which bindings have been defined for tagName is returned. See the "Item Event Binding" section formore details.
pathName canvasx screenx [gridspacing]
Return the canvas x-coordinate that is displayed at the location of window x-coordinate screenx. If gridspacing is specified, the canvas coordinate is rounded to the nearest multiple of gridspacing units.
pathName canvasy screeny [gridspacing]
Return the canvas y-coordinate that is displayed at the location of window y-coordinate screeny. If gridspacing is specified, the canvas coordinate is rounded to the nearest multiple of gridspacing units.
pathName coords tagOrId [x0 y0...]
If no coordinates are specified, a list of the current coordinates for the item named by tagOrId is returned. If coordinates are specified, the item is moved to the specified coordinates. If tagOrId refers to multiple items, the first one in the display list is used.
pathName Create type x y [x y...] [option value...]
Create a new canvas item of type type and return the assigned ID. See the following subsections on individual item types for the exact syntax of this method.
pathName dchars tagOrId first [last]
For each item identified by tagOrId that supports text operations, delete the characters in the range first through last, inclusive.
pathName delete tagOrId [tagOrId...]
Delete each item named by tagOrId.
pathName dtag tagOrId [tagToDelete]
For each item identified by tagOrId, delete the tag tagToDelete from the list of those associated with the item. If tagToDelete is omitted, it defaults to tagOrId.
pathName find searchSpec [arg arg...]
Return a list of IDs for all items selected by the constraint searchSpec. See the addtag method for possible values for searchSpec.
pathName focus tagOrId
Set the keyboard focus for the canvas widget to the first item in the display list identified by tagOrId that supports the insertion cursor. If tagOrId is an empty string, the focus is cleared so that no item has it. If tagOrId is omitted, the method returns the ID for the item that currently has the focus, or an empty string if no item has the focus.
pathName gettags tagOrId
Return a list of tags associated with the first item in the display list identified by tagOrId.
pathName icursor tagOrId index
Set the position of the insertion cursor to just before the character at index for all items identified by tagOrId that support text operations.
pathName index tagOrId index
Return the numerical index position of index within the first item in the display list identified by tagOrId that supports text operations. This value is guaranteed to lie between 0 and the number of characters within the item.
pathName insert tagOrId beforeThis string
Insert string just before the character at index beforeThis in all items identified by tagOrId that support text operations.
pathName itemcget tagOrId option
Return the current value of option for the first item in the display list identified by tagOrId. Option may have any of the values accepted by the Create method when the item was created.
pathName itemconfigure tagOrId [option [value [option value...]]]
Query or modify the configuration options for the items identified by tagOrId in the same manner as the general widget conFigure method. For queries, only results for the first item in the display identified by tagOrId are returned. The options and values are the same as those accepted by the create method when the items were created.
pathName lower tagOrId [belowThis]
Move all of the items identified by tagOrId to a new position in the display list just before the first item in the display list identified by belowThis, maintaining relative order.
pathName move tagOrId xAmount yAmount
Move each of the items identified by tagOrId in the canvas by adding xAmount to the x-coordinate and yAmount to the y-coordinate of each point associated with the item.
pathName postscript [option value...]
Return a PostScript representation for printing all or part of the canvas. The following options are supported:
-channel channel
The generated PostScript will be written to the channel channel (already opened), and the method will return an empty string.
-colormap varName
VarName is an array in which each element maps a color name to PostScript code that sets a particular color value. If this option is not specified or no color entry is found, Tk uses the standard X11 RGB color intensities.
-colormode mode
How to output color information. Mode must be color for full color, gray for grayscale equivalents, or mono for black and white.
-file fileName
The generated PostScript will be written to file fileName and the method will return an empty string.
-fontmap varName
VarName is an array in which each element maps a Tk font name to a two-element list consisting of a PostScript font name and point size. If this option is not specified or no font entry is found, Tk makes its best guess.
-height size
Height of the area of the canvas to print. Defaults to the height of the canvas window. This is not the height of the printed page.
-pageanchor anchor
Anchor specifies which cardinal point of the printed area of the canvas should appear over the positioning point on the page (see -pagex and -pagey). Must be n, nw, w, sw, s, se, e, ne, or center (the default).
-pageheight size
Specifies that the PostScript should be scaled equally in both x and y so that the printed area is size high on the page.
-pagewidth size
Specifies that the PostScript should be scaled equally in both x and y so that the printed area is size wide on the page. Overrides -pageheight setting.
-pagex position
The x-coordinate of the positioning point on the PostScript page. Defaults to page center.
-pagey position
The y-coordinate of the positioning point on the PostScript page. Defaults to page center.
-rotate boolean
Whether the printed area is to be rotated 90 degrees (i.e., landscape).
-width size
Width of the area of the canvas to print. Defaults to the full width of the canvas. This is not the width of the printed page.
-x position
The x-coordinate of the left edge of the area in the canvas that is to be printed. Defaults to left edge set by the canvas -scrollregion option.
-y position
The y-coordinate of the top edge of the area in the canvas that is to be printed. Defaults to top edge set by the canvas -scrollregion option.
pathName raise tagOrId [aboveThis]
Move all of the items identified by tagOrId to a new position in the display list just after the last item in the display list identified by aboveThis, maintaining relative order.
pathName scale tagOrId xOrigin yOrigin xScale yScale
Rescale all of the items identified by tagOrId in canvas coordinate space. For each of the points defining each item, the x-coordinate is adjusted to change the distance from xOrigin by a factor of xScale. Similarly, each y-coordinate is adjusted to change the distance from yOrigin by a factor of yScale.
pathName scan dragto x y
Scroll the widget's view horizontally and vertically. The distance scrolled is equal to 10 times the difference between this command's x and y arguments and the x and y arguments to the last scan mark command for the widget.
pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.
pathName select adjust tagOrId index
If the selection is currently owned by an item identified by tagOrId, locate the end of the selection nearest to index, adjust that end to be at index, and make the other end of the selection the anchor point. If the selection is not currently owned by an item identified by tagOrId, this method behaves the same as the select to widget method.
pathName select clear
Clear the selection if it is owned by any non-window item in the canvas.
pathName select from tagOrId index
Set the selection anchor point to be just before the character given by index in the first item identified by tagOrId that supports selection.
pathName select item
Return the ID of the item, if any, that owns the selection in the canvas.
pathName select to tagOrId index
For the first item identified by tagOrId that supports selection, set the selection to consist of those characters between the anchor point and index. If no anchor point has been set, it defaults to index. The new selection will always include the character given by index; it will include the character given by the anchor point only if it exists and is less than or equal to index.
pathName type tagOrId
Return the item type of the first item in the display list identified by tagOrId.
pathName xview
Return a two-element list describing the currently visible horizontal region of the canvas. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget as described by the -scrollregion option.
pathName xview moveto fraction
Adjust the visible region of the canvas so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Shift the visible region of the canvas horizontally by number. If what is units, then number is in units of the -xscrollincrement option. If what is pages, then number is in units of nine-tenths the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the canvas. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget as described by the -scrollregion option.
pathName yview moveto fraction
Adjust the visible region of the canvas so that the point indicated by fraction along the canvas's vertical span appears at the region's top edge.
pathName yview scroll number what
Shift the visible region of the canvas vertically by number. If what is units, then number is in units of the -yscrollincrement option. If what is pages, then number is in units of nine-tenths the visible region's height.
Arc Items
An arc is a section of an oval delimited by two angles (see -start and -extent) and can be displayed in one of several ways (see -style). Arcs are created with a widget method of the following form:
pathName Create arc x1 y1 x2 y2 [option value option value...]
The arguments x1, y1 and x2, y2 define the top-left and bottom-right corners of a rectangular region enclosing the oval that defines the arc.
-extent degrees
Angle that the arc's range should extend, measured counterclockwise from the starting angle.
-fill color
Color used for filled region of the arc.
-outline color
Color used to draw the arc's outline.
-outlinestipple bitmap
Stipple pattern used to draw the arc's outline.
-start degrees
Starting angle of the arc, as measured counterclockwise from the three o'clock position.
-stipple bitmap
Stipple pattern used for filled region of the arc.
-style type
How to draw the arc. Type may be pieslice (the default), chord, or arc. A pieslice is a region defined by the arc with two lines connecting the ends to the center of the implied oval. A chord is a region defined by the arc with the two ends connected by a line. An arc is simply the curve of the arc alone.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-width outlineWidth
Width of the outline to be drawn around the arc's region.
Bitmap Items
Bitmap items display two-color images on the canvas. They are created with a widget method of the following form:
pathName create bitmap x y [option value option value...]
The arguments x and y give the coordinates of a point used to position the bitmap on the canvas (see -anchor).
-anchor anchorPos
Which cardinal point on the bitmap should line up over the positioning point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or center (the default).
-background color
Color to use for each of the bitmap pixels whose value is 0.
-bitmap bitmap
Bitmap to display in the item.
-foreground color
Color to use for each of the bitmap pixels whose value is 1. Default is black.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
Image Items
Image items are used to display Tk images in the canvas. They are created with a widget method of the following form:
pathName create image x y [option value option value...]
The arguments x and y give the coordinates of a point used to position the image on the canvas (see -anchor).
-anchor anchorPos
Which cardinal point on the image should line up over the positioning point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or center (the default).
-image imageName
Name of image to display in the item.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
Line Items
Line items display one or more connected line segments or curves on the canvas. They are created with a widget method of the following form:
pathName create line x1 y1... xn yn [option value option value...]
The arguments x1 through yn give the coordinates for a series of two or more points that describe a series of connected line segments.
-arrow where
Where to draw arrowheads. Where may be none (the default), first, last, or both.
-arrowshape shape
How to draw the arrowheads. Shape is a three-element list indicating the distance from neck to tip, from tip to trailing points, and from trailing points to nearest outside edge of the line.
-capstyle style
How caps are drawn at endpoints of line. Style may be butt (the default), projecting, or round.
-fill color
Color to use for drawing the line.
-joinstyle style
How joints are drawn. Style may be bevel, miter (the default), or round.
-smooth boolean
Whether the line should be drawn as a curve using parabolic splines.
-splinesteps number
Number of line segments with which to approximate each spline when smoothing.
-stipple bitmap
Stipple pattern to use when drawing the line.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-width lineWidth
Width of the line. Defaults to 1.0.
Oval Items
Oval items display circular or oval shapes on the canvas. They are created with a widget method of the following form:
pathName create oval x1 y1 x2 y2 [option value option value...]
The arguments x1, y1 and x2, y2 define the top-left and bottom-right corners of a rectangular region enclosing the oval. The oval will include the top and left edges of the rectangle but not the lower or right edges.
-fill color
Color used for filled region of the oval.
-outline color
Color used for drawing oval's outline.
-stipple bitmap
Stipple pattern used for filled region of oval.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-width outlineWidth
Width of the oval's outline. Defaults to 1.0.
Polygon Items
Polygon items display multisided or curved regions on the canvas. They are created with a widget method of the following form:
pathName create polygon x1 y1... xn yn [option value option value...]
The arguments x1 through yn specify the coordinates for three or more points that define a closed polygon. If the first and last points are not the same, a line is drawn between them.
-fill color
Color used to fill the area of the polygon.
-outline color
Color used to draw the polygon's outline.
-smooth boolean
Whether the polygon should be drawn with a curved perimeter using parabolic splines.
-splinesteps number
Number of line segments with which to approximate for each spline when smoothing.
-stipple bitmap
Stipple pattern used to fill the area of the polygon.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-width outlineWidth
Width of the polygon's outline. Defaults to 1.0.
Rectangle Items
Rectangle items display rectangular shapes on the canvas. They are created with a widget method of the following form:
pathName create rectangle x1 y1 x2 y2 [option value option value...]
The arguments x1, y1 and x2, y2 define the top-left and bottom-right corners of the rectangle (the region of the rectangle will include its upper and left edges but not its lower or right edges).
-fill color
Color used to fill the area of the rectangle.
-outline color
Color used to draw the rectangle's outline.
-stipple bitmap
Stipple pattern used to fill the area of the rectangle.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-width outlineWidth
Width of the rectangle's outline. Defaults to 1.0.
Text Items
Text items display one or more lines of characters on the canvas. They are created with a widget method of the following form:
pathName create text x y [option value option value...]
The arguments x and y specify the coordinates of a point used to position the text on the display.
-anchor anchorPos
Which cardinal point of the text bounding region should line up over the positioning point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or center (the default).
-fill color
Color to use for drawing the text characters.
-font fontName
Font for drawing text characters.
-justify how
How to justify the text within its bounding region. How may be left (the default), right, or center.
-stipple bitmap
Stipple pattern for drawing text characters.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-text string
Characters to be displayed in the text item.
-width lineLength
Maximum length (using coordinate units) for a line of text. If 0, text is broken only on newline characters. Otherwise, lines are broken on any whitespace.
Window Items
Window items display other windows (i.e., Tk widgets) on the canvas. They are created with a widget method of the following form:
pathName create window x y [option value option value...]
The arguments x and y specify the coordinates of a point used to position the window on the display. A window item always obscures any graphics that overlap it, regardless of their order in the display list.
-anchor anchorPos
Which cardinal point of the window should line up over the positioning point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or center (the default).
-height pixels
Height to assign to item's window.
-tags tagList
List of tags to associate with the item. Replaces any existing list.
-width pixels
Width to assign to item's window.
-window pathName
Window to associate with the item, which must be a descendant of the canvas widget.
Name
checkbutton
checkbutton pathName [option value...]
The checkbutton command creates a new checkbutton widget named path- Name.
Standard Options
- activebackground | - activeforeground | - anchor |
- background | - bitmap | - borderwidth |
- cursor | - disabledforeground | - font |
- foreground | - highlightbackground | - highlightcolor |
- highlightthickness | - image | - justify |
- padx | - pady | - relief |
- takefocus | - text | - textvariable |
- underline | - wraplength |
Widget-Specific Options
-command tclCommand (command, Command)
Command to be evaluated when button is invoked.
-height height (height, Height)
Desired height, in lines for text content or in screen units for images and bitmaps.
-indicatoron boolean (indicatorOn, IndicatorOn)
Whether the indicator should be drawn. If false, the -relief option is ignored, and the widget's relief is sunken if selected and raised if not.
-offvalue value (offValue, Value)
Value to store in associated variable when button is not selected.
-onvalue value (onValue, Value)
Value to store in associated variable when button is selected.
-selectcolor color (selectColor, Background)
Background color to use for indicator when button is selected (at all times for Windows). If -indicatoron is false, the color is used for the background of the entire widget when it is selected.
-selectimage image (selectImage, SelectImage)
Image to display instead of normal image when button is selected. This option is ignored if -image option has not been set.
-state state (state, State)
State of the checkbutton. State must be normal, active, or disabled.
-variable varName (variable, Variable)
Name of global variable (defaults to last element of pathName) to set to indicate whether the checkbutton is selected.
-width width (width, Width)
Desired width, in characters for text content or in screen units for images and bitmaps.
Methods
pathName deselect
Deselect the checkbutton and set its associated variable to the value of its -offvalue option.
pathName flash
Flash the button by alternating between active and normal colors.
pathName invoke
Toggle the selection state, invoke the Tcl command associated with the button, and return its result. An empty string is returned if there is no command associated with the button. This command is ignored if the button's state is disabled.
pathName select
Select the checkbutton and set its associated variable to the value of the -onvalue option.
pathName
Toggle the selection state of the checkbutton and set its associated variable appropriately.
Name
entry
entry pathName [option value...]
The entry command creates a new entry widget named pathName. An entry is a widget that displays a one-line text string that can be edited.
Standard Options
- background | - borderwidth | - cursor |
- exportselection | - font | - foreground |
- highlightBackground | - highlightcolor | - highlightthickness |
- insertBackground | - insertborderwidth | - insertofftime |
- insertontime | - insertwidth | - justify |
- relief | - selectbackground | - selectborderwidth |
- selectforeground | - setgrid | - takefocus |
- xscrollcommand |
Widget-Specific Options
-show char (show, Show)
Character to show instead of actual characters typed. Useful for password entries.
-state state (state, State)
State for the entry. State must be normal or disabled.
-width width (width, Width)
Desired width in characters. If zero or less, the width is made large enough to hold current text.
Text Indices
Several entry widget methods support the notion of an index for identifying particular positions within the line of text. Valid index values are as follows:
number | Character as a numerical index (starting from 0) |
anchor | Anchor point for the selection |
end | Character just after the last one in the entry's string |
insert | Character just after the insertion cursor |
sel.first | First character in the selection, if in entry |
sel.last | Character just after last one in selection, if in entry |
@x | Character at x-coordinate x in entry |
Methods
pathName bbox index
Return a list of four numbers giving coordinates of upper-left corner (relative to the widget) and width and height of character at index.
pathName delete first [last]
Delete range of characters starting at first up to, but not including, last. If last is omitted, only the character at first is deleted.
pathName get
Return the entry's current string.
pathName icursor index
Place the insertion cursor just before the character at index.
pathName index index
Return the numerical index corresponding to position index.
pathName insert index string
Insert string just before the position indicated by index.
pathName scan dragto x
Scroll the widget's view horizontally. The distance scrolled is equal to 10 times the difference between this command's x argument and the x argument to the last scan mark command for the widget.
pathName scan mark x
Record x as the anchor for a following scan dragto method call.
pathName selection adjust index
Locate the end of the selection nearest to index, adjust that end of the selection to be at index, and make the other end of the selection the selection anchor point. If no current selection exists, the selection is created to encompass the characters between index and the current anchor point, inclusive.
pathName selection clear
Clear the selection if it is owned by this widget.
pathName selection from index
Set the selection anchor point to just before the character at index.
pathName selection present
Return 1 if any characters in entry are currently selected, 0 otherwise.
pathName selection range start end
Set the selection to include characters starting at start up to, but not including, the character at end.
pathName selection to index
If index is before the anchor point, set the selection to the character range from index up to just before the anchor point. If index is after the anchor point, set the selection to the character range from the anchor point up to just before index.
pathName xview
Return a two-element list describing the currently visible horizontal region of the entry. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget.
pathName xview index
Adjust the visible region of the entry so the character at index is at the left edge of the view.
pathName xview moveto fraction
Adjust the visible region of the entry so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Shift the visible region of the entry horizontally by number. If what is units, then number is in units of the characters. If what is pages, then number is in units of the visible region's width.
Name
frame
frame pathName [option value...]
The frame command creates a new frame widget named pathName. The main purpose of a frame widget is to serve as a container for laying out other widgets using one of Tk's geometry managers.
Standard Options
- borderwidth | - cursor | - highlightbackground |
- highlightcolor | - highlightthickness | - relief |
- takefocus |
Widget-Specific Options
-background color (background, Background)
Same as standard option, but may be the empty string to display no background or border.
-class name (class, Class)
Class to use when querying the option database and for bindings. May not be changed with configure.
-colormap colormap (colormap, Colormap)
Color map to use for window. Colormap may be either new, in which case a new colormap is created, or the name of another window, in which case that window's colormap is used. The default is to use the colormap of its parent. May not be changed with configure.
-container boolean (container, Container)
Whether the window will be used as a container in which to embed some other application. May not be changed with configure.
-height height (height, Height)
Desired height, in screen units, for the window.
-visual visual (visual, Visual)
Visual class to use for the window. Visual must be directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor.
-width width (width, Width)
Desired width, in screen units, for the window.
Name
label
label pathName [option value...]
The label command creates a new label widget named pathName.
Standard Options
- anchor | - background | - bitmap |
- borderwidth | - cursor | - font |
- foreground | - highlightbackground | - highlightcolor |
- highlightthickness | - image | - justify |
- padx | - pady | - relief |
- takefocus | - text | - textvariable |
- underline | - wraplength |
Widget-Specific Options
-height height (height, Height)
Desired height, in lines, for text content or in screen units for images or bitmaps. If not set, widget is autosized.
-width width (width, Width)
Desired width, in characters, for text content or in screen units for images or bitmaps. If not set, widget is autosized.
Name
listbox
listbox pathName [option value...]
The listbox command creates a new listbox widget named pathName. A listbox is a widget that displays a list of strings, one per line. When first created, a new listbox has no elements. Elements can be added, deleted, and selected using methods described here.
Many listbox methods take index arguments to identify elements. Listbox indices are numbered starting at 0. Special index values are active, anchor, end, and @ x,y.
Standard Options
- background | - borderwidth | - cursor |
- exportselection | - font | - foreground |
- highlightbackground | - highlightcolor | - highlightthickness |
- relief | - selectbackground | - selectborderwidth |
- selectforeground | - setgrid | - takefocus |
- xscrollcommand | - yscrollcommand |
Widget-Specific Options
-height height (height, Height)
Desired height of listbox in lines. If zero or less, the height is made just large enough to hold all lines.
-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default listbox bindings for manipulation of the element selection. Supported styles are single, browse, multiple, and extended. Any arbitrary string is allowed, but the programmer must extend the bindings to support it.
-width width (width, Width)
Desired width of listbox in characters. If zero or less, the width is made just large enough to hold the longest element.
Methods
pathName active index
Set the active element to the one at index.
pathName bbox index
Return a list of numbers in the format {x y width height} describing the bounding box around the text of element at index.
pathName curselection
Return a list of indices of all elements currently selected.
pathName delete index1 [index2]
Delete range of elements from index1 to index2. If index2 is not given, only the element at index1 is deleted.
pathName get index1 [index2]
Return as a list the elements from index1 to index2. If index2 is not given, only the element at index1 is returned.
pathName index index
Return the numeric index of the element at index.
pathName insert index [string...]
Insert given strings as new elements just before element at index. If index is specified as end, the new elements are appended at the end of the list.
pathName nearest y
Return the index of the element nearest to y-coordinate y.
pathName scan dragto x y
Scroll the widget's view horizontally and vertically. The distance scrolled is equal to 10 times the difference between this command's x and y arguments and the x and y arguments to the last scan mark command for the widget.
pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.
pathName see index
Adjust the view in the listbox so that the element at index is visible.
pathName selection anchor index
Set the anchor for selection dragging to the element at index (or closest to it).
pathName selection clear first [last]
Deselect any selected elements between first and last, inclusive.
pathName selection includes index
Return 1 if the element at index is selected, 0 otherwise.
pathName selection set first [last]
Select all elements between first and last, inclusive.
pathName size
Return the total number of elements in the listbox.
pathName xview
Return a two-element list describing the currently visible horizontal region of the listbox. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget.
pathName xview index
Adjust the visible region of the listbox so that the character position index is at the left edge of the view.
pathName xview moveto fraction
Adjust the visible region of the listbox so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Shift the visible region of the listbox horizontally by number. If what is units, then number is in units of characters. If what is pages, then number is in units of the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the listbox. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget.
pathName yview index
Adjust the visible region of the listbox so that the element given by index is at the top of the view.
pathName yview moveto fraction
Adjust the visible region of the listbox so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Shift the visible region of the listbox vertically by number. If what is units, then number is in units of text lines. If what is pages, then number is in units of the visible region's height.
Selection Modes
The behavior of the default bindings for a listbox is determined by the value of the -selectmode option. If the selection mode is single or browse, only a single element in the list may be selected at one time. Clicking button 1 on an element selects it and deselects any other element. In browse mode, it is possible to drag the selection.
If the selection mode is multiple or extended, then multiple elements may be selected at once, including discontiguous ranges. In multiple mode, clicking button 1 on an element alternately selects and deselects it. In extended mode, pressing button 1 on an element selects it, makes that element the new anchor element, and deselects all other elements. Dragging the mouse button then extends the selection with respect to the anchor element.
Name
menu
menu pathName [option value...]
The menu command creates a new menu widget named pathName. A menu is a top-level window that displays a collection of one-line entries arranged in one or more columns. Several different types of menu entries exist and can be combined in a single menu.
Standard Options
- activebackground | - activeborderwidth | - activeforeground |
- background | - borderwidth | - cursor |
- disabledforeground | - font | - foreground |
- relief | - takefocus |
Widget-Specific Options
-postcommand command (postCommand, Command)
Command to evaluate each time the menu is posted.
-selectcolor color (selectColor, Background)
Color to display in the indicator when menu entries of type checkbutton or radiobutton are selected.
-tearoff boolean (tearOff, TearOff)
Whether the menu should include a tear-off entry at the top.
-tearoffcommand command (tearOffCommand, TearOffCommand)
Command to evaluate whenever menu is torn off. The menu widget's name and the name of the window for the torn-off menu are appended as the last two arguments.
-title string (title, Title)
String to use as a title for the window created when the menu is torn off.
-type type (type, Type)
Menu's type. Type must be menubar, tearoff, or normal. Can only be set at menu's creation.
Entry Indices
Several menu widget methods support the notion of an index for identifying a particular entry position within the menu. Indices have the following form:
number
The entry numerically, where 0 is the topmost entry.
active
The entry that is currently active.
end
The bottommost entry in the menu.
last
Same as end.
none
Indicates "no entry at all." Used mainly with activate method to make no entry active.
@y
The entry closest to y-coordinate y in the menu's window.
pattern
The first entry from the top with a label that matches pattern pattern (see Tcl command string match for rules).
Special Menubar Menus
Any menu can be made into a menubar for a top-level window (see the toplevel widget). Certain specially named menus that are children of a menubar will be treated in a system-specific manner. For a menubar named .menubar, on the Macintosh, the special menus would be .menubar.apple and .menubar.help; on Windows, the special menu would be .menubar.system; on X Window System, the special menu would be .menubar.help.
On the Macintosh, items in the .menubar.apple will make up the first items of the Apple menu, and items in the .menubar.help are appended to the standard Help menu on the right of the menubar whenever the window containing the menubar is in front. Under Windows, items in the .menubar.system menu are appended to the system menu for the window containing the menubar. On X Windows, when the last menu entry in .menubar is a cascade entry with submenu .menubar.help, it is rightjustified on the menubar.
Methods
pathName activate index
Redisplay the entry at index in its active colors. If index is none, the menu will end up with no active entry.
pathName add type [option value [option value...]]
Add a new entry of type type to the bottom of the menu, configured with the given options. The possible values for type are cascade, checkbutton, command, radiobutton, or separator. Possible options are:
-activebackground color
Background color for entry when active. Not available for separator or tear-off entries.
-activeforeground color
Foreground color for entry when active. Not available for separator or tear-off entries.
-accelerator string
String to display at right side of menu entry (usually to show accelerator keystroke). Not available for separator or tear-off entries.
-Background color
Background color for entry when it is in the normal state. Not available for separator or tear-off entries.
-bitmap bitmap
Bitmap to display in menu instead of textual label. Overrides -label. Not available for separator or tear-off entries.
-columnbreak boolean
Whether entry should start a new column in the menu.
-command tclCommand
Command to evaluate when menu entry is invoked. Not available for separator or tear-off entries.
-font font
Font to use when drawing label and accelerator for entry. Not available for separator or tear-off entries.
-Foreground color
Foreground color for entry when in the normal state. Not available for separator or tear-off entries.
-hidemargin boolean
Whether standard margins should be drawn for menu entry.
-image imageName
Name of image to display in menu instead of textual label. This option overrides -label and -bitmap. Not available for separator or tear-off entries.
-indicatoron boolean
Whether indicator should be displayed. Available only for checkbutton and radiobutton entries.
-label string
String to display as identifying label of entry. Not available for separator or tear-off entries.
-menu menuName
Pathname of submenu associated with entry. Available for cascade entries only.
-offvalue value
Value to store in entry's associated variable when it is deselected. Available only for checkbutton entries.
-onvalue value
Value to store in entry's associated variable when it is selected. Available only for checkbutton entries.
-selectcolor color
Color to display in the indicator when entry is selected. Available only for checkbutton and radiobutton entries.
-selectimage image
Image to display in entry when it is selected in place of the one specified with -image. Available only for checkbutton and radiobutton entries.
-state state
State of the menu entry. State must be normal, active, or disabled.
-underline integer
Integer index of character to underline in entry's label. Not available for separator or tear-off entries.
-value value
Value to store in the entry's associated variable when selected. Available only for radiobutton entries.
-variable varName
Global variable to associate with entry. Available only for checkbutton and radiobutton entries.
pathName clone newPathName [cloneType]
Make a clone of the menu with name newPathName. The clone will have type cloneType (one of normal, menubar, or tearoff). Changes in configuration of the original are automatically reflected in the clone. Any cascade menus pointed to are also cloned. Clones are destroyed when the original is destroyed.
pathName delete index1 [index2]
Delete all menu entries between index1 and index2, inclusive. If index2 is not given, only entry at index1 is deleted.
pathName entrycget index option
Return the current value of configuration option option for entry at index. See the add method for available options.
pathName entryconfigure index [option [value [option value...]]]
Query or modify the configuration options for the menu entry at index in the same manner as the general widget configure method. See the add method for available options.
pathName index index
Return the numerical index corresponding to index (or none if index is none).
pathName insert index type [option value [option value...]]
Same as add method except that it inserts the new entry just before the entry at index. It is not possible to insert new entries before the tear-off entry, if the menu has one.
pathName invoke index
Invoke the action appropriate to the entry type of the menu entry at index if it is not disabled.
pathName post x y
Arrange for the menu to be displayed at root-window coordinates x and y (possibly adjusted to make sure the entire menu is visible on the screen). If a script has been given to the -postcommand option, it is evaluated first and the results returned. If an error occurs in the script, the menu is not posted.
pathName postcascade index
If entry at index is a cascade entry, the submenu associated with it is posted. Any other currently posted submenu is unposted.
pathName type index
Return the type of menu entry at index.
pathName unpost
Unmap menu's window so it is no longer displayed. Does not work on Windows or Macintosh.
pathName yposition index
Return the y-coordinate of the topmost pixel of the entry at index within the menu window.
Name
menubutton
menubutton pathname [option value...]
The menubutton command creates a new menubutton widget named pathName.
Standard Options
- activebackground | - activeforeground | - anchor |
- background | - bitmap | - borderwidth |
- cursor | - disabledforeground | - font |
- foreground | - highlightbackground | - highlightcolor |
- highlightthickness | - image | - justify |
- padx | - pady | - relief |
- takefocus | - text | - textvariable |
- underline | - wraplength |
Widget-Specific Options
-direction direction (direction, Height)
Where menu should pop up in relation to button. Valid direction values are above, below, right, left, or flush (directly over button).
-height height (height, Height)
Desired height, in lines, for text content or in screen units for images and bitmaps.
-indicatoron Boolean (indicatorOn, IndicatorOn)
If true, a small indicator is drawn on the button's right side and the default bindings will treat the widget as an option menubutton.
-menu pathName (menu, menuName)
Name of menu widget to post when button is invoked.
-state state (state, State)
State of menubutton. State must be normal, active, or disabled.
-width width (width, Width)
Desired width, in characters for text content, or in screen units for images and bitmaps.
Name
message
message pathName [option value...]
The message command creates a new message widget named pathName.
Standard Options
- anchor | - background | - borderwidth |
- cursor | - font | - foreground |
- highlightbackground | - highlightcolor | - highlightthickness |
- justify | - padx | - pady |
- relief | - takefocus | - text |
- textvariable |
Widget-Specific Options
-aspect integer (aspect, Aspect)
Ratio of the text's width to its height on a scale from 0 to 100. The ratio is used to choose the line length for word wrapping.
-width width (width, Width)
Desired line length in characters. If greater than zero, overrides -aspect option.
Name
radiobutton
radiobutton pathName [option value...]
The radiobutton command creates a new radiobutton widget named pathName.
Standard Options
- activebackground | - activeforeground | - anchor |
- background | - bitmap | - borderwidth |
- cursor | - disabledforeground | - font |
- foreground | - highlightbackground | - highlightcolor |
- highlightthickness | - image | - justify |
- padx | - pady | - relief |
- takefocus | - text | - textvariable |
- underline | - wraplength |
Widget-Specific Options
-command tclCommand (command, Command)
Command to be evaluated when button is invoked.
-height height (height, Height)
Desired height, in lines for text content or in screen units for images and bitmaps.
-indicatoron Boolean (indicatorOn, IndicatorOn)
Whether the indicator should be drawn. If false, the -relief option is ignored and the widget's relief is sunken if selected and raised if not.
-selectcolor color (selectColor, Background)
Background color to use for indicator when button is selected (at all times for Windows). If indicatorOn is false, the color is used for the Background of the entire widget when it is selected.
-selectimage imageName (selectImage, SelectImage)
Name of image to display instead of normal image when button is selected. This option is ignored if the -image option has not been set.
-state state (state, State)
State of the radiobutton. State must be normal, active, or disabled.
-value value (value, Value)
Value to store in associated variable when button is selected.
-variable varName (variable, Variable)
Name of global variable (defaults to last element of pathName) to set to indicate whether the radiobutton is selected.
-width width (width, Width)
Desired width in characters for text content or screen units for image and bitmap.
Methods
pathName deselect
Deselect the radiobutton and set the value of its associated variable to an empty string.
pathName flash
Flash the button by alternating between active and normal colors.
pathName invoke
Select the button, invoke the Tcl command associated with the button, and return its result. An empty string is returned if there is no command associated with the button. This command is ignored if the button's state is disabled.
pathName select
Select the radiobutton and set its associated variable to the value of the -value option.
Name
scale
scale pathName [option value...]
The scale command creates a new scale widget named pathName. A scale is a widget that displays a rectangular trough and a small slider. The position of the slider selects a particular real value.
Standard Options
- activebackground | - background | - borderwidth |
- cursor | - font | - foreground |
- highlightbackground | - highlightcolor | - highlightthickness |
- orient | - relief | - repeatdelay |
- repeatinterval | - takefocus | - troughcolor |
Widget-Specific Options
-bigIncrement value (bigIncrement, BigIncrement)
Real number for "large" increments of the scale. Default (or if set to 0) is one-tenth the range of the scale.
-command tclCommand (command, Command)
Command to invoke whenever the scale's value is changed. The scale's new value will be appended as an argument.
-digits integer (digits, Digits)
How many significant digits should be retained when converting scale's value to a string. If integer is zero or less, Tk chooses the smallest value that guarantees each position is unique.
-from value (from, From)
Real value limit for the left or top end of the scale.
-label string (label, Label)
Text string to label the scale. Label is displayed just to the right of the top end of vertical scales and just to the left of horizontal scales.
-length size (length, Length)
Desired long dimension, in screen units, for the scale.
-resolution value (resolution, Resolution)
Real value specifying the resolution of the scale. Defaults to 1 (i.e., the scale's value will be integral).
-showvalue boolean (showValue, ShowValue)
Whether the current value of the scale is displayed.
-sliderlength size (sliderLength, SliderLength)
Size of the slider, in scr een units, along the long dimension.
-sliderrelief relief (sliderRelief, SliderRelief)
The relief to use for drawing the slider.
-state state (state, State)
State of the scale. State must be normal, active, or disabled.
-tickinterval value (tickInterval, TickInterval)
Real value specifying spacing between numerical tick marks displayed below or to the left of the slider. If 0, no tick marks will be displayed.
-to value (to, To)
Real value corresponding to the right or bottom end of the scale.
-variable varName (variable, Variable)
Name of global variable to associate with the scale. Changes to either the variable or the scale will automatically update the value of the other.
-width size (width, Width)
Desired narr ow dimension, in screen units, of the scale's trough.
Methods
pathName coords [value]
Return the x- and y-coordinates (as a two-element list) of the point along the centerline of the trough corresponding to value. If value is not given, the scale's current value is used.
pathName get [x y]
Return the current value of the scale if x and y are not given. Otherwise, Return the value corresponding to the point on the scale closest to coordinates x and y within the widget.
pathName identify x y
Return the name of the part of the scale that lies under the coordinates given by x and y. The name will be one of slider, trough1 (above or to the left of the slider), or trough2 (below or to the right of the slider). If the point is not within the widget, an empty string is returned.
pathName set value
Change the current value of the scale to value and update the slider's position.
Name
scrollbar
scrollbar pathName [option value...]
The scrollbar command creates a new scrollbar widget named pathName.
Standard Options
- activebackground | - background | - borderwidth |
- cursor | - highlightbackground | - highlightcolor |
- highlightthickness | - jump | - orient |
- relief | - repeatdelay | - repeatinterval |
- takefocus | - troughcolor |
Widget-Specific Options
-activerelief relief (activeRelief, ActiveRelief)
Relief type to use when scrollbar is active.
-command string (command, Command)
Prefix of Tcl command to invoke to change view in widget associated with the scrollbar. See "Scrolling Methods," later in this section.
-elementborderwidth width (elementBorderWidth, BorderWidth)
Width of borders drawn around internal elements of scrollbar.
-width width (width, Width)
Desired narr ow dimension, in screen units, for the scrollbar.
Scrollbarelements
arrow1 | Top (or left) arrow |
trough1 | Region between slider and arrow1 |
slider | Rectangle indicating visible region |
trough2 | Region between slider and arrow2 |
arrow2 | Bottom (or right) arrow |
Methods
pathName activate [element]
Mark element indicated by element as active. If not given, Return name of current element, or an empty string if no element is active.
pathName delta deltaX deltaY
Return a real number indicating the change in the scrollbar setting that will result if the slider moves deltaX pixels to the right and deltaY pixels to the left. The arguments may be zero or negative.
pathName fraction x y
Return real number between 0 and 1 indicating the fractional position of coordinates x y (in pixels relative to the widget) along the scrollbar.
pathName get
Return a list containing the most recent arguments to the set method.
pathName identify x y
Return the name of the element at point x y (in pixels relative to the widget) in the scrollbar. Return an empty string if the point is not inside the scrollbar.
pathName set first last
Usually invoked by associated widget to inform the scrollbar about its curr ent view. Arguments first and last are real numbers between 0 and 1 describing the viewable range in the widget within the widget.
Scrolling Methods
When the user interacts with the scrollbar, for example, by dragging the slider, the scrollbar notifies the associated widget that it must change its view. The scrollbar makes the notification by evaluating a Tcl command generated by appending action-specific arguments to the value of the scrollbar's -command option. The possible forms of the resulting command are described next. In each case, prefix is the value of the -command option, which usually has a form like pathName xview or pathName yview, where pathName is the associated widget pathname.
prefix moveto fraction
Tells associated widget to adjust its view so that the point indicated by fraction appears at the beginning of the widget's visible region. A value of 0.333 means the visible region should begin one-third of the way through the widget's span.
prefix Scroll number units
Tell associated widget to adjust its view by number units. The meaning of units is widget specific.
prefix Scroll number pages
Tell associated widget to adjust its view by number pages. The meaning of pages is widget specific.
Name
text
text pathName [option value...]
The text command creates a new text widget named pathName. A text widget displays one or more lines of text and allows that text to be edited. Several options exist to change the text's style (fonts, color, justification, etc.). Tags can be assigned to regions of text to allow different styles to be applied. The text widget also allows the embedding of images and other windows. Floating marks can be set to keep track of special points in the text.
Standard Options
- background | - borderwidth | - cursor |
- exportselection | - font | - foreground |
- highlightbackground | - highlightcolor | - highlightthickness |
- insertbackground | - insertborderwidth | - insertofftime |
- insertontime | - insertwidth | - padx |
- pady | - relief | - selectbackground |
- selectborderwidth | - selectforeground | - setgrid |
- takefocus | - xscrollcommand | - yscrollcommand |
Widget-Specific Options
-height (height, Height)
Desired height for the window, in characters.
-spacing1 (spacing1, Spacing1)
Space to add above each line of text. If the line wraps, the space is added above the first displayed line only.
-spacing2 (spacing2, Spacing2)
Space to add between the lines that display a long, wrapped line of text.
-spacing3 (spacing3, Spacing3)
Space to add below each line of text. If the line wraps, the space is added below the last displayed line only.
-state (state, State)
State of the text widget. State must be normal or disabled. If the text is disabled, no insertions or deletions are allowed.
-tabs (tabs, Tabs)
List of screen distances giving the positions for tab stops. Each position may optionally be followed in the next list element by one of left (the default), right, center, or numeric (align on decimal point), which specifies how to justify text relative to the tab stop. If a line contains more tabs than defined tab stops, the last tab stop is used for the additional tabs. Example: {2c left 4c 6c center}
-width (width, Width)
Desired width for window, in characters.
-wrap (wrap, Wrap)
How to handle lines of text longer than the window width. Allowed values are none for no wrapping, char for line breaking on any character, or word for breaking only on word boundaries.
Text Indices
Several text widget methods support the notion of an index for identifying particular positions within the text. Indices have the syntax:
base [modifier [modifier...]]
where the base gives the starting point and the optional modifiers adjust the index from the starting point. Possible values for base are as follows:
line.char
The char th character on line line. Lines are numbered starting at 1, characters starting at 0. If char is end, it refers to the newline character that ends the line.
@x, y
The character that covers the pixel whose coordinates within the text's window are x and y.
end
The end of the text (the character just after the last newline).
mark
The character just after the mark whose name is mark.
tag.first
The first character in the text range tagged with tag.
tag.last
The character just after the last one in the text range tagged with tag.
pathName
The position of the embedded window pathName.
imageName
The position of the embedded image imageName.
The modifier arguments may take the following form:
+ count chars
Adjust the index forward by count characters.
− count chars
Adjust the index backward by count characters.
+ count lines
Adjust the index forward by count lines, retaining the same character position within the line.
− count lines
Adjust the index backward by count lines, retaining the same character position within the line.
linestart
Adjust the index to refer to the first character on the line.
lineend
Adjust the index to refer to the last character on the line (the newline).
wordstart
Adjust the index to refer to the first character of the word containing the index. A word consists of any number of adjacent characters that are letters, digits, or underscores, or a single character that is not one of these and is not whitespace.
wordend
Adjust the index to refer to the character just after the last one of the word containing the index.
Several widget methods operate on a range of text defined by the arguments index1 and index2. This range includes all characters from index1 up to, but not including, the character at index2. If index2 is not given, the range consists only of the character at index1.
Tags
A tag is a textual string that is associated with one or more ranges of characters. Tags are used in methods to change the character's style (fonts, color, etc.), bind events to the characters, and manage the selection. Since an individual character may have any number of tags associated with it, a priority list of tags is maintained to resolve conflicts in style. When a tag is created, it is given highest priority. The tag raise and tag lower methods can be used to change a tag's priority.
The special tag sel exists when the -exportselection option for the text widget is true. This tag is used to manipulate the current selection. Whenever characters are tagged with sel, the text widget will claim ownership of the selection and Return those characters when the selection is retrieved. When the selection is claimed by another window or application, the sel tag is removed from all characters in the text.
Marks
A mark is a textual string associated with a single position (a gap between characters). If the characters around a mark are deleted, the mark will still remain; it will just have new neighbors. Each mark has a gravity, either left or right (the default). The gravity specifies what happens when new text is inserted at the mark. With left gravity, the mark will end up to the left of the new text. With right gravity, the mark will end up to the right of new text.
Two marks are defined automatically and cannot be deleted. The insert mark represents the position of the insertion cursor; the insertion cursor will automatically be drawn at this point whenever the text widget has the input focus. The current mark is associated with the character closest to the mouse and is adjusted automatically to track the mouse motion (except during dragging).
Tag Event Binding
Binding events to tagged characters using the tag bind method works in a manner similar to binding events to widgets with the Tk bind command. However, only events related to the mouse and keyboard or virtual events can be bound to text tags. If a virtual event is used in a binding, it can be triggered only if the underlying "real" event is mouse related or keyboard related.
When multiple bindings for a character match a particular event, all of the matching bindings are invoked. This can happen when a character is associated with two tags and both tags have bindings for the same event. One binding is invoked for each tag in order from lowest to highest priority. If there are multiple matching bindings for a single tag, only the most specific binding is invoked. A continue command in a binding script terminates just that binding. A break command terminates the script for that binding and skips any remaining bindings for the event. Any bindings made to the text widget using the bind command are invoked after any matching tag bindings.
Methods
pathName bbox index
Return a list of four numbers giving the x- and y-coordinates of the upper-left corner (relative to the widget) and the width and height of the visible area occupied by the character at index. If the character is not visible, an empty list is returned.
pathName compare index1 op index2
Compare the two indices with relational operator op and return 1 if the relationship is satisfied, 0 if it isn't. Op may be <, <=, ==, >=, >, or !=.
pathName debug [boolean]
Whether to turn on internal consistency checks in the B-tree code for all text widgets. Return current setting if boolean is not given.
pathName delete index1 index2
Delete all characters (including embedded windows and images) from the given text range. The final newline in the text cannot be deleted.
pathName dlineinfo index
Return a list of five numbers giving the x- and y-coordinates of the upper-left corner (relative to the widget) and the width and height of the area occupied by the line at index. The fifth element is the position of the baseline for the line as measured from the top of the area. If the line is not visible, an empty list is returned.
pathName dump [switches] index1 [index2]
Return detailed information on the text widget contents in the given text range. Information is returned in the following format:
key1 value1 index1 key2 value2 index2...
The possible key values are text, mark, tagon, tagoff, and window. The corresponding value is the text string, mark name, tag name, or window name. The index information is the index of the start of the text, the mark, the tag transition, or the window. One or more of the following switches are allowed:
-all
Include information for all element types. This is the default.
-command tclCommand
Instead of Returning information, invoke tclCommand on each element, appending the key, value, and index as arguments.
-mark
Include information on marks in the dump.
-tag
Include information on tags in the dump.
-text
Include information on text in the dump. Will not span newlines, marks, or tag transitions.
-window
Include information on windows in the dump.
pathName get index1 [index2]
Return characters from given text range.
pathName image cget index option
Return the value of configuration option option for the embedded image at index.
pathName image configure index [option [value [option value...]]]
Query or modify the configuration options for an embedded image in the same manner as the general widget configure method. Supported options are as follows:
-align where
How to align the image on the line in which it is displayed. Where may be top (align the top of the image with the top of the line), bottom (bottom with bottom), center (center the image on the line), or baseline (align the bottom of the image with the baseline of the line).
-image imageName
Name of image to display.
-name imageName
Name by which image can be referenced in the text widget (defaults to name of image set with -image).
-padx pixels
Amount of extra space to leave on each side of the image.
-pady pixels
Amount of extra space to leave on the top and bottom of the image.
pathName image create index [option value...]
Create an embedded image at position index configured with the given options and return a unique identifier that may be used as an index to refer to the image.
pathName image names
Return a list of the names of all embedded images in the text widget.
pathName index index
Return the position corresponding to index in the form line.char.
pathName insert index chars [tagList [chars [tagList...]]]
Insert the string chars just before the character at index. If tagList is given, it is a list of tags to be associated with the inserted text. Otherwise, any tags associated with both of the characters before and after index are associated with the inserted text. If multiple chars-tagList argument pairs are given, they are inserted in order as if by separate insert method calls.
pathName mark gravity markName [direction]
Set the gravity for mark markName to direction (either left or right). If direction is not specified, returns current setting for the mark.
pathName mark names
Return a list of the names of all marks currently set in the text widget.
pathName mark next index
Return the name of the next mark at or after index. If index is itself a mark name, that mark name is skipped as well as those marks at the same position that come before it in the dump list. Return an empty string if no marks appear after index.
pathName mark previous index
Return the name of the next mark at or before index. If index is itself a mark name, that mark name is skipped as well as those marks at the same position that come after it in the dump list. Return an empty string if no marks appear before index.
pathName mark set markName index
Set a mark named markName just before the character at index.
pathName mark unset markName [markName...]
Remove the marks corresponding to each of the markName arguments.
pathName scan dragto x y
Scroll the widget's view horizontally and vertically. The distance scrolled is equal to 10 times the difference between this command's x and y arguments and the x and y arguments to the last scan mark command for the widget.
pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.
pathName search [switches] pattern index [stopIndex]
Search the text for a range of characters that match pattern starting at position index. If a match is found, the index of the first character of the match is returned. Otherwise, an empty list is returned. If stopIndex is given, the search will not go past that index. Possible switches are:
-forward
Search forward through the text. This is the default.
-backward
Search backward through the text, finding matching text closest to index whose first character is before index.
-exact
The characters in the matching range must be identical to those in pattern.
-regexp
Treats pattern as a regular expression (see the regexp command).
-nocase
Ignore case differences in matching.
-count varName
Store number of characters in matching range in the variable varName.
- -
Terminate further processing of switches so that pattern may begin with a hyphen.
pathName see index
Adjust the view in the window if needed so that the character at index is completely visible.
pathName tag add tagName index1 [index2 [index1 [index2...]]]
Associate the tag tagName with the characters in each given text range.
pathName tag bind tagName [sequence [script]]
Associate script with tag tagName such that whenever the event sequence given by sequence occurs for a character tagged with tagName, the script will be evaluated. See "Tag Event Binding," earlier in this chapter. If the script argument is not given, the current associated script is returned. If the sequence is also not given, a list of all the sequences for which bindings have been defined for tagOrId is returned.
pathName tag cget tagName option
Return the value of configuration option option for the tag tagName.
pathName tag configure tagName [option [value [option value...]]]
Query or modify the configuration options for tag tagName in the same manner as the general widget configure method. Tag options are used to change the displayed style of characters marked with the tag. Options that change the line style (margins, spacing, justification) take effect only if the first character of the line is associated with the tag. The following options are available:
-background color
Background color for drawing characters.
-bgstipple bitmap
Bitmap to use as stipple pattern for character background.
-borderwidth pixels
Width of a 3D border to draw around background.
-fgstipple bitmap
Bitmap to use as stipple pattern for character foreground.
-font fontName
Font to use for drawing characters.
-foreground color
Foreground color for drawing characters.
-justify justify
How to align lines in the window when the first character of the line is associated with the tag. Must be left, right, or center.
-lmargin1 pixels
How much to indent lines. If the line wraps, this indent applies only to the first displayed line.
-lmargin2 pixels
How much to indent lines that follow the first one in a long, wrapped line.
-offset pixels
Amount to vertically offset the baseline of characters from the baseline. Useful for superscripts and subscripts.
-overstrike boolean
Whether to draw a horizontal line through the middle of the characters.
-relief relief
3D relief to use for drawing background border.
-rmargin pixels
How much to indent all displayed lines of a line of text from the right edge of the window.
-spacing1 pixels
Space to add above each line of text. If the line wraps, the space is added above the first displayed line only.
-spacing2 pixels
Space to add between the lines that display a long, wrapped line of text.
-spacing3 pixels
Space to add below each line of text. If the line wraps, the space is added below the last displayed line only.
-tabs tabList
Tab stops for a line of text (see the -tabs option in "Widget-Specific Options," earlier in this section).
-underline boolean
Whether to draw an underline beneath characters.
-wrap mode
How the line of text should be wrapped. Must be one of none, char, or word.
pathName tag delete tagName [tagName...]
Delete all tag information for each of the tags identified by the tagName arguments.
pathName tag lower tagName [belowThis]
Change the priority of tag tagName such that it is lower in priority than tag belowThis. If belowThis is not given, the tag is changed to have lowest priority.
pathName tag names [index]
Return a list of the names of all tags associated with the character at position index. If index is not given, a list of all tags that exist in the text is returned.
pathName tag nextrange tagName index1 [index2]
Return starting and ending index of the next range of characters associated with tag tagName in which the first character of the range is no earlier than position index1 and no later than just before position index2 (or end if not given).
pathName tag prevrange tagName index1 [index2]
Return starting and ending index of the next range of characters associated with tag tagName in which the first character of the range is before position index1 and no earlier than position index2 (or 1.0 if not given).
pathName tag raise tagName [aboveThis]
Change the priority of tag tagName such that it is higher in priority than tag aboveThis. If aboveThis is not given, the tag is changed to have highest priority.
pathName tag ranges tagName
Return a list of all ranges of text that have been tagged with tagName.
pathName tag remove tagName index1 [index2 [index1 [index2...]]]
Remove tag tagName from those tags associated with the characters in the given text ranges.
pathName window cget index option
Return the value of configuration option option for the window identified by index.
pathName window configure index [option [value [option value...]]]
Query or modify the configuration options for the window identified by index in the same manner as the general widget configure method. The following options are available:
-align where
How to align the window on the line in which it is displayed. Where may be top (align the top of the window with the top of the line), bottom (bottom with bottom), center (center the window on the line), or baseline (align the bottom of the window with the baseline of the line).
-create script
As an alternative to the -window option, specifies a script to evaluate when a window is first displayed on screen. Script must return the name of the window to display. If the window is ever destroyed, script will be evaluated again the next time the text widget requires the window to be displayed.
-padx pixels
Amount of extra space to leave on each side of the window.
-pady pixels
Amount of extra space to leave on the top and bottom of the window.
-stretch boolean
Whether window should be stretched vertically to fill the height of its line.
-window pathName
Pathname of the window to embed in the text widget.
pathName window create index [option value...]
Create an embedded window at position index configured with the given options.
pathName window names
Return a list of the names of all windows currently embedded in the text widget.
pathName xview
Return a two-element list describing the currently visible horizontal region of the widget. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget.
pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Shift the visible region of the widget horizontally by number. If what is units, then number is in units of characters. If what is pages, then number is in units of the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the widget. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget.
pathName yview -pickplace index
Adjust the visible region of the widget so position index is visible at the top edge of the view. If -pickplace is specified, the widget chooses where index appears in the view to cause the least possible screen movement necessary to make the position visible. This method is made obsolete by the see method.
pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Shift the visible region of the widget vertically by number. If what is units, then number is in units of text lines. If what is pages, then number is in units of the visible region's height.
Name
toplevel
toplevel pathname [option value...]
The toplevel command creates a new top-level widget named pathName. It is similar to a frame widget, but its actual window system parent is the root window of the screen rather than the hierarchical parent from its pathname.
Standard Options
- borderwidth | - cursor | - highlightbackground |
- highlightcolor | - highlightthickness | - relief |
- takefocus |
Widget-Specific Options
-background color (background, Background)
Same as standard option, but may be the empty string to display no background or border.
-class name (class, Class)
Class to use when querying the option database and for bindings. May not be changed with configure.
-colormap colormap (colormap, Colormap)
Colormap to use for window. Colormap may be either new, in which case a new colormap is created, or the name of another window, in which case that window's colormap is used. The default is to use the colormap of its screen. May not be changed with configure.
-container boolean (container, Container)
Whether the window will be used as a container in which to embed some other application. May not be changed with the configure method.
-height height (height, Height)
Desired height, in screen units, for the window.
-menu pathname (menu, Menu)
Menu widget to be used as a menubar.
-screen screen
Screen on which to place the new window. May not be changed with the configure method.
-use windowId (use, Use)
Used for embedding. WindowId is the ID of a window to be the parent of top-level widget instead of the root window. May not be changed with the configure method.
-visual visual (visual, Visual)
Visual class to use for the window. Visual must be directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor.
-width width (width, Width)
Desired width, in screen units, for the window.
Utility Commands
This section describes the commands in the Tk extension that do not create widgets. These commands include those needed to bind to window system events, control the layout of widgets, interact with the window manager, and several other miscellaneous GUI-related operations.
Name
bell
bell [-displayof window]
Ring the bell on the display of window. If window is not given, the bell is rung on the display of the main window.
Name
bind
bind tag [sequence [[+] script]]
Set or query event bindings. If all three arguments are specified, the Tcl script script will be evaluated whenever the event specified by the pattern sequence occurs in the windows identified by tag. If script is prefixed by the character "+", it is appended to any existing script bound to tag for sequence. Otherwise, any current script is replaced. If script is an empty string, any current binding to the event is destroyed.
If no script is specified, the script currently bound to tag for sequence is returned. If only tag is given, a list of all the sequences for which there exist bindings for tag is returned.
Binding Tags
The windows to which a binding applies are selected by the tag argument. If tag begins with the "." character, it must be a pathname for a window; otherwise, it can be an arbitrary string. Each window has an associated list of tags that can be manipulated with the bindtags command. The default tags for a newly created window, in priority order, are as follows:
The pathname of the window itself (e.g., .main.text). Binding to this tag will bind the sequence to that window only, unless the window is top-level.
The pathname of the top-level window containing the window (e.g., "."). Binding to this tag will bind the sequence to all windows contained by the top-level window.
The widget class of the window (e.g., Text). Binding to this tag will bind the sequence to all windows of that class. This is how the default bindings for all widgets are set up in the standard Tk script library.
The special value all. Binding to this tag will bind the sequence to all windows in the application.
Event Patterns
The sequence argument consists of a sequence of one or more event patterns. If multiple patterns are concatenated without whitespace, the binding requires the matched events to happen in the order of events given. When script is given, the sequence argument may also be a list of valid sequences, in which case each sequence is bound to the same script separately.
Event patterns in a sequence take one of three forms. The simplest form is a single printable ASCII character, such as a or [, with the exclusion of the space character and the character <. This form of an event pattern matches a KeyPress event for the given character.
The second form of pattern is used to specify a user-defined, named virtual event. It has the following syntax:
<<name>>
Name is an arbitrary string surrounded by double angle brackets. See the event command. Bindings on a virtual event can be created before the virtual event is defined. If the definition of a virtual event is later changed, all windows bound to that virtual event will respond immediately to the new definition.
The third form has the following syntax:
<modifier-modifier-type-detail>
Surrounded by a single pair of angle brackets is a pattern of zero or more modifiers, an event type, and an extra piece of information (the detail), which can identify a particular button or keysym. All the fields are optional, except that at least one of type and detail must be present. The fields can be separated by either whitespace or dashes.
Possible values for the modifier elements are as follows:
Control | Shift | Lock |
Button1 or B1 | Button2 or B2 | Button3 or B3 |
Button4 or B4 | Button5 or B5 | Mod1 or M1 |
Mod2 or M2 | Mod3 or M3 | Mod4 or M4 |
Mod5 or M5 | Meta or M | Alt |
Double | Triple |
Most of these indicate a key or mouse button that must be pressed in addition to the action specified by type and detail. The Double and Triple modifiers are a convenience for specifying repeated events with the addition of a time and space requirement on the sequence.
For a binding to match a given event, the modifiers in the event must include all of those specified in the event pattern. An event may also contain additional modifiers not specified in the binding. For example, if button 1 is pressed while the Shift and Control keys are down, the pattern <Control-Button-1> will match the event, but <Mod1-Button-1> will not. If no modifiers are specified, any combination of modifiers may be present in the event.
The type element may take any of the following values corresponding to the standard X Window System event types:
ButtonPress or Button | ButtonRelease | Circulate |
Colormap | Configure | Destroy |
Enter | Deactivate | Expose |
FocusIn | FocusOut | Gravity |
KeyPress or Key | KeyRelease | Leave |
Map | Motion | Property |
Reparent | Unmap | Visibility |
Activate |
The allowed values for the detail element depend on the preceding type element. For ButtonPress and ButtonRelease, the possible values are 1 through 5, identifying the number of the mouse button. For KeyPress and KeyRelease, the possible values are any valid X Window System keysym. This includes all alphanumeric ASCII characters (e.g., a and 8) and descriptions for other characters (e.g., comma for the comma character). The actual keysyms available will depend on your operating system and hardware. On most Unix systems, the keysyms are listed in the include file /usr/include/X11/keysymdef.h.
As a special shortcut, the type element may be omitted when a detail is specified. For detail values 1 through 5, the type defaults to Button-Press. For any other valid keysym value, the type defaults to KeyPress.
Binding Script and Substitutions
Whenever the given event sequence occurs, the script argument to bind will be evaluated at global scope in the same interpreter in which the bind was executed. If an error occurs in executing the script for a binding, the bgerror mechanism is used to report the error.
The script is passed through a substitution phase before being executed. Occurrences of the % character followed by a second character will be replaced by a value dependent on the second character, when valid. The substitution will always be properly escaped or surrounded with braces to maintain a valid Tcl command. The possible substitutions are as follows:
%%
Replaced with a single percent sign.
%#
The number of the last client request (the serial field from the event).
%a
The above field from the event as a hexadecimal number. Valid only for Configure events.
%b
The number of the button that was pressed or released. Valid only for ButtonPress and ButtonRelease events.
%c
The count field from the event. Valid only for Expose events.
%d
The detail field from the event. Valid only for Enter, Leave, FocusIn, and FocusOut events. Will be one of the following:
NotifyAncestor | NotifyDetailNone |
NotifyInferior | NotifyNonlinear |
NotifyNonlinearVirtual | NotifyPointer |
NotifyPointerRoot | NotifyVirtual |
%f
The focus field from the event (0 or 1). Valid only for Enter and Leave events.
%h
The height field from the event. Valid only for Configure and Expose events.
%k
The keycode field from the event. Valid only for KeyPress and KeyRelease events.
%m
The mode field from the event. Valid only for Enter, Leave, FocusIn, and FocusOut events. The value will be NotifyNormal, NotifyGrab, NotifyUngrab, or NotifyWhileGrabbed.
%o
The override_redirect field from the event. Valid only for Map, Reparent, and Configure events.
%p
The place field from the event. Valid only for Circulate events. The value will be PlaceOnTop or PlaceOnBottom.
%s
The state field from the event. For ButtonPress, ButtonRelease, Enter, Leave, KeyPress, KeyRelease, and Motion events, a decimal string is substituted. For Visibility, the value will be VisibilityUnobscured, VisibilityPartiallyObscured, or VisibilityFullyObscured.
%t
The time field from the event. Valid only for events that contain a time field.
%w
The width field from the event. Valid only for Configure and Expose events.
%x
The x field from the event. Valid only for events containing a x field.
%y
The y field from the event. Valid only for events containing a y field.
%A
Substitutes the ASCII character corresponding to the event (or the empty string if there is none). Valid only for KeyPress and KeyRelease events.
%B
The border_width field from the event. Valid only for Configure events.
%E
The send_event field from the event.
%K
The keysym corresponding to the event as a textual string. Valid only for KeyPress and KeyRelease events.
%N
The keysym corresponding to the event as a decimal number. Valid only for KeyPress and KeyRelease events.
%R
The root window identifier from the event. Valid only for events containing a root field.
%S
The subwindow window identifier from the event. Valid only for events containing a subwindow field.
%T
The type field from the event.
%W
The pathname of the window for which the event was reported.
%X
The x_root field from the event. This is the x-coordinate in the root (or virtual root) window. Valid only for ButtonPress, ButtonRelease, KeyPress, KeyRelease, and Motion events.
%Y
The y_root field from the event. This is the y-coordinate in the root (or virtual root) window. Valid only for ButtonPress, ButtonRelease, KeyPress, KeyRelease, and Motion events.
Multiple Matches
It is possible for an event to match several bindings. If the bindings are associated with different tags, each of them will be executed in the order of the tags as set by bindtags. The continue and break commands can be used inside a binding to control processing of the matching scripts. The continue command terminates the current script and continues on to the next tag's script. The break command terminates the current script and does not invoke the scripts for the following tags.
If more than one binding matches a particular event and each has the same tag, the script for the most specific binding is evaluated. The following tests are applied, in order, to determine which of several matching sequences is more specific:
An event pattern that specifies a specific button or key is more specific than one that doesn't.
A longer sequence (in terms of number of events matched) is more specific than a shorter sequence.
If the modifiers specified in one pattern are a subset of the modifiers in another pattern, the pattern with more modifiers is more specific.
A virtual event whose physical pattern matches the sequence is less specific than the same physical pattern that is not associated with a virtual event.
Given a sequence that matches two or more virtual events, one of the virtual events will be chosen, but the order is undefined.
If there are two (or more) virtual events bound to the same tag that are both triggered by the same sequence, only one of the virtual events will be triggered. Which one is chosen is undefined.
Multievent Sequences and Ignored Events
If a sequence contains multiple event patterns, its script is executed whenever the events leading up to and including the current event match the order of events given in the sequence. For example, if button 1 is clicked repeatedly, the sequence <Double-ButtonPress-1> will match each button press but the first. Extraneous events that occur in the middle of an event sequence will prevent a match only if they are KeyPress or ButtonPress events not in the sequence. Extraneous modifier key presses are ignored, however. When several Motion events occur in a row, only the last one is considered for matching binding sequences.
Name
bindtags
bindtags window [tagList]
With no tagList argument, the current list of binding tags associated with window window is returned. Otherwise, the current list is replaced with the list of tags given by tagList. If tagList is the empty list, the tag list is reset to the default as described in the "Binding Tags" section of the bind command.
Name
clipboard
clipboard operation [arg arg...]
Clear or append to the contents of the Tk clipboard for later retrieval using the selection command. The following operations are defined:
clipboard append [-displayof window] [-format format] [-type type] [--] data
Append data to the clipboard on window's display. type specifies the form in which the selection is to be returned as an atom name such as STRING or FILE_NAME (see the Inter-Client Communication Conventions Manual). The default is STRING.
When compatibility with a non-Tk clipboard requester is needed, the format argument can be used to specify the representation that should be used to transmit the selection. Format defaults to STRING, which transmits the selection as 8-bit ASCII characters.
clipboard clear [-displayof window]
Claim ownership of the clipboard on window's display (defaults to ''.'') and remove any previous contents.
Name
destroy
destroy window [window...]
Destroy the windows given by the window arguments as well as all their descendants. The windows are destr oyed in the order given. If an error occurs in destroying a window, the command aborts without destroying the remaining windows. It is not an error if window does not exist.
Name
event
event operation [arg arg...]
The event command provides several facilities for dealing with window system events, such as defining virtual events and synthesizing events. The following operations are defined:
event add <<virtual>> sequence [sequence...]
Add the given event sequences to those associated with the virtual event virtual. The virtual event will trigger whenever any one of the given sequences occurs. See the bind command for allowed sequence values.
event delete <<virtual>> [sequence [sequence...]]
Delete the given event sequences from those associated with the virtual event virtual. If no sequence is given, all sequences associated with the virtual event are removed.
event generate window sequence [option value...]
Generate an event for window window and arrange for it to be processed just as if it had come from the window system. Window may be a window pathname or an identifier (as returned by winfo id), as long as it is in the current application. The sequence argument describes the event to generate. It may have any of the forms allowed for the sequence argument to the bind command, except that it must consist of a single event pattern (e.g., <Shift-Button-2> or <<Paste>>).
The event generated can be further described with the optional optionvalue pairs. In the descriptions of these options that follow, the [%char] at the beginning identifies the corresponding bind command substitution. The available options are as follows:
-above window
[%a] The above field for the event, either as a window or integer window ID.
-borderwidth size
[%B] The border_width field for the event as a screen distance.
-button number
[%b] The detail field for a ButtonPress or ButtonRelease event.
-count integer
[%c] The count field for the event.
-detail detail
[%d] The detail field for the event.
-focus boolean
[%f] The focus field for the event.
-height size
[%h] The height field for the event as a screen distance.
-keycode integer
[%k] The keycode field for the event.
-keysym name
[%K] The keysym field for the event.
-mode notify
[%m] The mode field for the event.
-override boolean
[%o] The override_redirect field for the event.
-place where
[%p] The place field for the event.
-root window
[%R] The root field for the event as a window pathname or integer window ID.
-rootx coord
[%X] The x_root field for the event as a screen distance.
-rooty coord
[%Y] The y_root field for the event as a screen distance.
-sendevent boolean
[%E] The send_event field for the event.
-serial integer
[%#] The serial field for the event.
-state state
[%s] The state field for the event.
-subwindow window
[%S] The subwindow field for the event as a window pathname or an integer window ID.
-time integer
[%t] The time field for the event.
-width size
[%w] The width field for the event as a screen distance.
-when when
Determines when the event will be processed. When must have one of the following values:
now
Process the event immediately before the event command returns. This is the default.
tail
Place the event at the end of Tcl's event queue.
head
Place the event at the front of Tcl's event queue.
mark
Place the event at the front of Tcl's event queue but behind any other events already queued with -when mark.
-x coord
[%x] The x field for the event as a screen distance.
-y coord
[%y] The y field for the event as a screen distance.
event info [<<virtual>>]
If the <<virtual>> argument is omitted, a list of all currently defined virtual events is returned. Otherwise, the return value is the list of event sequences currently associated with virtual event virtual.
Name
focus
focus [[option] window]
tk_focusFollowsMouse
tk_focusNext window
tk_focusPrev window
Manage the Tk input focus. At any given time, one window on each display is given the focus so that key press and key release events for the display are sent to that window. Tk remembers the last window in each top-level window to receive the focus. When the window manager gives the focus to a top-level window, Tk automatically redirects it to the remembered window.
Focus within a Tk top-level window uses an explicit focus model by default (i.e., moving the mouse within a top-level window does not change the focus). The model can be changed to implicit (focus changes to a window whenever the mouse enters it) by calling the tk_focusFollowsMouse procedure.
The Tcl procedures tk_focusNext and tk_focusPrev implement a focus order among the windows of a top-level window. They return the next and previous windows after window in the focus order that accepts the focus (see the -takefocus widget configuration option). The focus order is determined by the structure of the window hierarchy and by the stacking order of the windows among siblings.
The focus command can take the following forms:
focus [-displayof window]
Return the pathname of the focus window on the display containing window. If not given, window defaults to the root window.
focus window
If the application currently has the input focus for window's display, the focus is given to window. Otherwise, window is made the remembered focus window for its top-level window.
focus -force window
Set the focus of window's display to window even if the application doesn't currently have the input focus for the display.
focus -lastfor window
Return the pathname of the window to most recently own the input focus among all windows in the same top-level window as window (i.e., the remembered window). If no window currently present in that top level has ever had the input focus, the name of the top-level window is returned.
Name
font
font operation [arg arg...]
The font command provides several facilities for defining named fonts and inspecting their attributes. If the window system does not have a font that matches the requested attributes, Tk makes a best guess. The following operations are supported:
font actual font [-displayof window] [option]
Return information on the actual attributes that are obtained when font is used on window's display. If option is specified, only the value of that attribute is returned. Otherwise, a list of all attributes and their values is returned.
font configure fontName [option [value[option value...]]]
Query or modify the desired attributes for the named font fontName in the same manner as the general widget configure method. The available attribute options are as follows:
-family name
The case-insensitive font family name. The families Courier, Times, and Helvetica are guaranteed to be supported on all platforms.
-size size
The desired size for the font in points (or pixels if size is negative).
-weight weight
The thickness of the characters in the font. Weight may be normal (the default) or bold.
-slant slant
How characters in the font are slanted away from the vertical. Slant may be roman (the default) or italic.
-underline boolean
Whether characters in font should be underlined. Default is false.
-overstrike boolean
Whether a horizontal line is drawn through the middle of the characters of the font. Default is false.
font create [fontName] [option value...]]]
Create a new named font. FontName specifies the name for the font; if it is omitted, Tk generates a unique name of the form fontx, where x is an integer. Either way, the name of the font is then returned. See the font configure command for options.
font delete fontName [fontName...]
Delete the specified named fonts. A named font will not actually be deleted until all widgets using the font release it. If a deleted named font is later recreated with another call to font create, the widgets will redisplay themselves using the new attributes of that font.
font families [-displayof window]
Return a list of all font families that exist on window's display.
font measure font [-displayof window] text
Return total width in pixels that the string text would use in the given font when displayed in window.
font metrics font [-displayof window] [option]
Return information about the metrics for font when it is used on window's display. If option is specified, returns only the value of that metric. Otherwise, returns a list of all metrics and their values. The available metrics are as follows:
-ascent
Amount in pixels that the tallest letter sticks above the baseline, plus any extra blank space added by the font's designer.
-descent
Amount in pixels that any letter sticks down below the baseline, plus any extra blank space added by the font's designer.
-linespace
How far apart vertically, in pixels, two lines of text using the font should be placed so there is no overlap.
-fixed
1 if this is a fixed-width font, or 0 if it is a proportionally spaced font.
font names
Return a list of all the named fonts currently defined.
Font Description
The following formats are allowed as a font description anywhere font is specified as an argument in the previous font commands and for the -font option to widgets:
fontName
A named font created with the font create command.
systemfont
The platform-specific name of a font as interpreted by the window system.
family [size] [style [style...]]
A Tcl list whose first element is the desired font family followed optionally by the desired size and zero or more of the following style arguments: normal or bold, roman or italic, underline, and overstrike.
X-font names (XLFD)
An X11-format font name of the form -foundry-family-weight slant-setwidth-addstyle-pixel-point-resx-resy-spacing-width-charset-encoding. The ''*'' character can be used to skip individual fields or at the end to skip remaining fields.
option value [option value...]
A Tcl list of option-value pairs as would be given to the font create command.
Name
grab
grab operation [arg arg...]
The grab command implements simple pointer and keyboard grabs. Tk restricts all pointer events to the grab window and its descendants (which may include top-level windows). Pointer events outside the grab window's tree are reported as events to the grab window. No window entry or window exit events are reported to the grab window. A grab applies only to the display of the grab window.
Two types of grabs are possible: local and global. A local grab, the default, affects only the grabbing application, so events are reported normally to other applications on the display. A global grab blocks events to all other applications on the display so that only the specified subtree of the grabbing application will receive pointer events.
The grab command can take the following forms:
grab [-global] window
Same as grab set.
grab current [window]
Return the name of the application's current grab window on window's display, or an empty string if there is no such window. If window is not given, a list of all windows grabbed by this application for all displays is returned.
grab release window
Release the grab on window if there is one.
grab set [-global] window
Set a grab on window. If -global is specified, the grab will be global. Any other grab by the application on window's display is released.
grab status window
Return none, local, or global to describe the grab currently set on window.
Name
grid
grid operation [arg arg...]
Communicate with the grid geometry manager that arranges widgets in rows and columns inside of another window called the master window. The grid command can take the following forms:
grid slave [slave...] [options]
Same as grid configure.
grid bbox master [column row [column2 row2]]
With no arguments, the bounding box of grid is returned consisting of a list of four integers: the pixel offset within the master window of the top left corner of the grid (x and y) and the pixel width and height of the grid. If just column and row are specified, only the bounding box for that cell is returned. If column2 and row2 are also specified, the bounding box spanning the rows and columns indicated is returned.
grid columnconfigure master index [option value...]
Query or set the column properties of the index column in geometry master master. If options are provided, index may be a list of column positions. Valid options are as follows:
-minsize size
Minimum width, in screen units, permitted for column.
-pad amount
Number of screen units in padding to add to the left and right of the widest window in column.
-weight integer
Relative weight for apportioning any extra space among columns. A weight of 0 indicates that the column will not deviate from its requested size. A column whose weight is 2 will grow at twice the rate as a column of weight 1.
grid configure slave [slave...] [options]
Configure how given slave windows should be managed by their grid geometry master. Slave can be a pathname of a window to manage or one of the special relative-placement characters –, x, or ^. Supported options are as follows:
-column n
Insert the slave slave in the n th column (starting from 0). If not specified, the slave is placed in the column just to the right of the previously placed slave, or column 0 if it is the first slave. For each x that immediately precedes a slave, a column is skipped.
-columnspan n
Arrange for the slave to span n columns in the grid. The default is 1 unless the slave is followed by a ''–'' character in the slave list. The columnspan is incremented by one for each immediately following ''–'' character.
-in master
Insert the slaves in master window given by master. The master window must either be the slave's parent (the default) or a descendant of the slave's parent.
-ipadx amount
How much horizontal internal padding, in screen units, to add to the side of the slaves.
-ipady amount
How much vertical internal padding, in screen units, to add to the top and bottom of the slaves.
-padx amount
How much horizontal external padding, in screen units, to add to the side of the slaves.
-pady amount
How much vertical external padding, in screen units, to add to the top and bottom of the slaves.
-row n
Insert the slave in the n th row (starting from 0). If not specified, the slave is placed on the same row as the last placed slave, or the first unoccupied row for the first slave.
-rowspan n
Arrange for the slave to span n rows in the grid. The default is one row. If the next grid command contains ''^'' characters instead of window pathnames that line up with the columns of this slave, the rowspan of this slave is extended by one.
-sticky sides
How the slave should be positioned and stretched within its cell. Sides is a string containing zero or more of the characters n, s, e, or w. Each letter refers to a side to which the slave will stick. If both n and s (or e and w) are specified, the slave will be stretched to fill the cell's height (or width). The default is the empty string, which causes the slave to be centered within its cell at its requested size.
grid forget slave [slave...]
Remove each of the slaves from the grid of its master and unmap their windows. The grid configuration options for each slave are forgotten.
grid info slave
Return the current configuration state of the slave slave in the same option-value form given to grid configure. The first two elements will be -in master.
grid location master x y
Return the column and row numbers at locations x and y (in screen units) inside master's grid. For locations above or to the left of the grid, a −1 is returned.
grid propagate master [boolean]
Set or query whether propagation has been enabled for master. Propagation is enabled by default. If disabled, the master window will not be resized to adjust to the size of its slaves.
grid rowconfigure master index [option value...]
Query or set the row properties of the index row in geometry master master. If options are provided, index may be a list of row positions.
Valid options are as follows:
-minsize size
Minimum height, in screen units, permitted for row.
-pad amount
Number of screen units in padding to add to the top and bottom of the tallest window in row.
-weight integer
Relative weight for apportioning any extra space among rows. A weight of 0 indicates that the row will not deviate from its requested size. A row whose weight is 2 will grow twice as fast as a row of weight 1.
grid remove slave [slave...]
Remove each of the slaves from the grid of its master and unmap their windows. The grid configuration options for each slave are remembered as defaults for the next time they are managed by the same master.
grid size master
Return the size of the grid (in columns, then rows) for master.
grid slaves master [-row row] [-column column]
If no options are supplied, a list of all the slaves in master is returned. The options specify that the list should include only the slaves in row row and/or column column.
Name
image
image operation [arg arg...]
Create and manipulate image objects. The image command can take the following forms:
image create type [name] [option value...]
Create a new image of type type and return its name. The currently supported image types are bitmap and photo. The option-value pairs valid for these types are described in the individual sections that follow. The name returned will be name if given; otherwise, Tk picks a unique name of the form imageN. If an image already exists by the given name, it is replaced with the new image and any instances of that image will be redisplayed.
A new Tcl command is created with the image's name. This command supports the cget and configure operation for changing and querying the image's configuration options in the same manner as for widgets.
image delete image [image...]
Delete each of the given images. If a widget is using an instance of an image, it won't actually be deleted until all of the instances are released. Existing instances will redisplay as empty areas. If a deleted image is recreated, the existing instances will use the new image.
image height image
Return the height, in pixels, of the image image.
image names
Return a list of all existing images.
image type image
Return the type of the image image.
image types
Return a list of supported image types.
image width image
Return the width, in pixels, of image image.
Bitmap Images
A bitmap image is represented by a background color, a foreground color, and two X11-format bitmaps, called the source and the mask. Each of the bitmaps specifies a rectangular array of 0's and 1's representing a pixel in the image. The two bitmaps must have the same dimensions. For pixels for which the mask is 0, the image displays nothing, producing a transparent effect. For other pixels, the image displays the foreground color if the corresponding source pixel is 1 and the background color if the corresponding source pixel is 0. Bitmaps support the following options:
-background color
Background color for the image. An empty value will make the background pixels transparent.
-data string
Contents of the source bitmap as a string.
-file filename
Name of a file from which to read source bitmap contents.
-foreground color
Foreground color for the image.
-maskdata string
Contents of the mask bitmap as a string.
-maskfile filename
Name of a file from which to read mask bitmap contents.
Photo Images
A photo image can have pixels of any color. Only GIF and PPM/PGM (Portable Pixmap/Portable Graymap) formats are supported in standard Tk, but an interface exists to add additional image file formats easily. Pixels of a photo image are transparent in regions where no image data has been supplied. Photo images support the following options:
-data string
Contents of the image as a string.
-format format
The graphic format of the data. In standard Tk, format must be either GIF or PPM.
-file fileName
Name of a file from which to read the image data.
-gamma value
Specifies that the colors allocated should be corrected for a nonlinear display with the gamma exponent value.
-height size
Height of the image in pixels. A value of 0 (the default) allows the image to expand or shrink vertically.
-palette paletteSpec
Specifies number of colors to use from the colormap for the image. PaletteSpec may be either a single decimal number, specifying the number of shades of gray to use, or three decimal numbers separated by slashes, specifying the number of shades of red, green, and blue to use.
-width size
Width of the image in pixels. A value of 0 (the default) allows the image to expand or shrink horizontally.
In addition to the cget and configure operation, the command created with the image's name supports the following operations:
imageName blank
Set the entire image to have no data so it will be displayed as transparent.
imageName copy sourceImage [option value...]
Copy a region from the image sourceImage to the image imageName according to the following options:
-from x1 y1 [x2 y2]
The top-left and bottom-right coordinates of rectangular region to copy from the source image. If this option is not given, the default is the whole image. If x2 and y2 are omitted, they default to the bottom-right corner of the source image.
-shrink
Reduce the size of the destination image, if necessary, so the region being copied into it is at the bottom-right corner.
-subsample x [y]
Reduce the copied source region in size by using only every x th pixel in the x direction and every y th pixel in the y direction. If y is not given, it defaults to the value for x. If negative values are given, the image is flipped about that axis.
-to x1 y1 [x2 y2]
The top-left and bottom-right coordinates of the rectangular region in the destination image where the source region should be copied. If x2 and y2 are omitted, the default is (x1,y1) plus the size of the source region (after subsampling or zooming). If x2 and y2 are specified, the source region will be tiled as necessary to fill the region. If the -to option is not given, imageName's data is set to the source region.
-zoom x [y]
Magnify the copied source region by a factor of x in the x direction and y in the y direction. If y is not given, it defaults to the value of x.
imageName get x y
Return a list of three integers, ranging from 0 to 255, representing the RGB color of the pixel at coordinates (x,y).
imageName put data [-to x1 y1 [x2 y2]]
Set the pixels in imageName to the colors specified in data, a 2D array of colors. Each color may be specified by name (e.g., red) or in RGB hexadecimal form (e.g., #4576c0). The -to option specifies the region in imageName affected. If only x1 and y1 are given, the area affected has its top-left corner at (x1, y1) and is the same size as data. If x2 and y2 are given, they define the bottom-right corner of the region affected and the colors in data are tiled as necessary to fill the region.
imageName read [fileName [option value...]
Read image data from the file filename into the image according to the following options:
-format format
Graphic format of image data in fileName.
-from x1 y1 [x2 y2]
The top-left and bottom-right coordinates of rectangular region in image file data to be copied into imageName. If x2 and y2 are omitted, they default to the bottom right of the image in the file. If the -from option is not specified, the whole image in the file is copied.
-shrink
Reduce the size of imageName, if necessary, so the region into which the image file data is copied is at the bottom-right corner of imageName.
-to x y
The top-left coordinates of the region of imageName into which the data from fileName is to be copied. The default is (0,0).
imageName redither
Recalculate the dithered image in each window where imageName is displayed. Useful when the image data has been supplied in pieces.
imageName write [fileName [option value...]
Write image data from imageName to the file fileName according to the following options:
-format format
Graphic format to use in writing data to filename.
-from x1 y1 [x2 y2]
The top-left and bottom-right coordinates of rectangular region in imageName to write to fileName. If x2 and y2 are omitted, they default to the bottom right of the image. If the -from option is not specified, the whole image is written to the file.
Name
lower
lower window [belowThis]
Change the window's position in the stacking order. If belowThis is specified, it must be a sibling of window or a descendant of a sibling of window. In this case, window is placed in the stacking order just below belowThis (or its ancestor that is a sibling of window). If belowThis is not given, window is placed below all its siblings in the stacking order.
Name
option
option operation [arg arg...]
Add or retrieve window options to or from the Tk option database. The following forms of the option command are supported:
option add pattern value [priority]
Add a new option specified by pattern to the database with value value. Pattern consists of names and/or classes separated by asterisks or dots, in the usual X resource format. Priority, if given, indicates the priority level for the option (see "Option Priorities"). The default priority is interactive.
option clear
Clear all options from the database. The default options (from the RESOURCE_MANAGER property or the .Xdefaults file) will be reloaded into the database the next time the option database is modified.
option get window name class
Return the value of the option specified for window under name and class with the highest priority. If there are several matching entries at the same priority level, the most recently entered entry is returned. An empty string is returned if no match is found.
option readfile fileName [priority]
Add all the options specified in the file filename with the proper X resource format to the Tk option database. If priority is specified, it indicates the priority level for the options added (see "Option Priorities"). The default priority is interactive.
Option Priorities
The priority arguments to the option command can be either an integer between 0 (lowest priority) and 100 (highest priority), inclusive, or one of the following strings:
widgetDefault
Same as 20. Used for default values hardcoded into widgets.
startupFile
Same as 40. Used for options specified in application-specific startup files.
userDefault
Same as 60. Used for options specified in the resource database of the X server or user-specific startup files.
interactive
Same as 80. Used for options specified interactively after the application starts running.
Name
pack
pack operation [arg arg...]
Communicate with the packer, a geometry manager that arranges widgets around the edges of another window called the master window. The pack command can take the following forms:
pack slave [slave...] [options]
Same as pack configure.
pack configure slave [slave...] [options]
Pack the given slave windows into their master. Valid options are as follows:
-after other
Insert slaves into the window other's master just after other in the packing order.
-anchor anchorPos
Where to position each slave in its parcel. Valid anchorPos values are n, ne, e, se, s, sw, w, nw, and center (the default).
-before other
Insert slaves into the window other's master just before other in the packing order.
-expand boolean
Whether the slaves should be expanded to consume extra space in their master.
-fill direction
What direction the slaves should stretch if their parcel is larger than the slave's requested dimensions. Direction must be none (do not stretch slave), x (stretch the slave horizontally to fill parcel's width), y (stretch the slave vertically to fill parcel's height), or both (stretch the slave both horizontally and vertically).
-in master
Insert the slaves at the end of the packing order for master window master. A slave's master must either be the slave's parent (the default) or a descendant of the slave's parent.
-ipadx size
How much horizontal internal padding, in screen units, to leave on each side of the slaves.
-ipady size
How much vertical internal padding, in screen units, to leave on the top and bottom of the slaves.
-padx size
How much horizontal external padding, in screen units, to leave on each side of the slaves.
-pady size
How much vertical external padding, in screen units, to leave on the top and bottom of the slaves.
-side side
Which side of the master to pack the slaves against. Must be left, right, top (the default), or bottom.
If no -in, -after, or -before option is specified, each slave is appended to the end of the packing list for its parent unless already packed in another master. A previously packed slave retains the previous values for any unspecified options.
pack forget slave [slave...]
Remove each given slave from the packing order for its master and unmap its window.
pack info slave
Return the current configuration state of the slave slave in the same option-value form given to pack configure. The first two elements will be -in master.
pack propagate master [boolean]
Set or query whether propagation has been enabled for master. Propagation is enabled by default. If disabled, the master window will not be resized to adjust to the size of its slaves.
pack slaves master
Return a list of all slaves in the packing order for master.
Name
place
place operation [arg arg...]
Communicate with the placer, which provides simple fixed placement geometry management of slave windows inside another window called the master.
The place command can take the following forms:
place slave [slave...] [options]
Same as place configure.
place configure slave [slave...] [options]
Place the given slave windows into their master. Valid options are as follows:
-in master
Pathname of window relative to which slave is to be placed. Master must be either slave's parent (the default) or a descendant of slave's parent. Also, slave and master must be descendants of the same top-level window.
-x location
The x-coordinate within the master of the anchor point for slave in screen units.
-relx location
The x-coordinate within the master of the anchor point for slave as a relative distance along the master's width. A value of 0.0 corresponds to the left edge of the master and 1.0 to the right edge. Location need not be in the range 0.0–1.0. If both -x and -relx are specified, their values are summed.
-y location
The y-coordinate within the master of the anchor point for slave in screen units.
-rely location
The y-coordinate within the master of the anchor point for slave as a relative distance along the master's height. A value of 0.0 corresponds to the top edge of the master and 1.0 to the bottom edge. Location need not be in the range 0.0–1.0. If both -y and -rely are specified, their values are summed.
-anchor anchorPos
Which point of slave is to be positioned at the location selected by the -x, -y, -relx, and -rely options. Valid anchorPos values are n, ne, e, se, s, sw, w, nw, and center. The default is nw.
-width size
Width for slave in screen units.
-relwidth size
Width for slave as a ratio to the width of the master. For instance, a size of 0.5 means slave will be half as wide as the master. If both -width and -relwidth are specified, their values are summed.
-height size
Height for slave in screen units.
-relheight size
Height for slave as a ratio to the height of the master. A size of 0.5 means slave will be half as high as the master. If both -height and -relheight are specified, their values are summed.
-bordermode mode
How the master's borders are treated in placement. A value of inside (the default) means that only the area inside the master's border is considered for placement, a value of outside causes the placer to include the area of the borders for placement, and a value of ignore means that only the official X area (includes internal border but no external border) will be used for placement.
place forget slave
Stop the placer from managing the placement of slave and unmap slave from the display.
place info slave
Return the current configuration state of the slave slave in the same option-value form given to place configure.
place slaves master
Return a list of all slave windows placed in master.
Name
raise
raise window [aboveThis]
Change the window's position in the stacking order. If aboveThis is specified, it must be a sibling of window or a descendant of a sibling of window. In this case, window is placed in the stacking order just above aboveThis (or the ancestor if this is a sibling of window). If aboveThis is not given, window is placed above all its siblings in the stacking order.
Name
selection
selection operation [arg arg...]
The selection command provides a Tcl interface to the X selection mechanism as described in the X Inter-Client Communication Conventions Manual(ICCCM). For the commands that follow, selection specifies the X selection and should be an atom name such as PRIMARY (the default) or CLIPBOARD. A selection is display specific. If the display is not specified with the -displayof option, it defaults to the display of the ''.'' window. The selection command can take the following forms:
selection clear [-displayof window] [selection selection]
If selection exists anywhere on the display of window, clear it so that no window owns the selection.
selection get [-displayof window] [-selection selection] [-type type]
Retrieve the value of selection from the display of window and return it in the form specified by type. Type must be a valid atom name as described in the ICCCM and defaults to STRING.
selection handle [-displayof window] [-type type] [-format format] window command
Arrange for command to be evaluated whenever selection is owned by window and an attempt is made to retrieve it in the form given by type (defaults to STRING).
Command will be executed as a Tcl command with two additional numbers appended as arguments: offset and maxBytes. The command should return a value consisting of at most maxBytes of the selection starting at position offset. If exactly maxBytes is returned, command will be invoked again until it eventually returns a result shorter than maxBytes.
The format argument is for compatibility with non-Tk selection requesters and specifies the representation that should be used to transmit the selection. The default is STRING.
selection own [-displayof window] [-selection selection]
Return the pathname of the window in the application that owns selection on window's display.
selection own [-command command] [-selection selection] window
Make window the new owner of selection on window's display. If command is specified, it is a Tcl script that will be evaluated when ownership of selection is taken away from window.
Name
send
send [options] app command [arg arg...]
Arrange for command (concatenated with any given args) to be evaluated in the application named by app and return the result or error from the evaluation. App may be the name of any application (as returned by the tk appname command) whose main window is on the same display as the sender's main window (unless the -displayof option is given). This command is not supported under Windows or Macintosh platforms. Possible options are:
-async
Forces the send command to complete immediately without waiting for command to complete in target application. This option is ignored if the target is in the same process as the sender.
-displayof window
Specifies that the target application's main window is on window's display.
--
Terminates option processing in case app starts with a ''-'' character.
Security
For security reasons, the send mechanism will work only if the control mechanism being used by the X server has xhost-style access control enabled and the list of enabled hosts is empty. This means applications cannot connect to the server unless they use some more secure form of authorization, such as xauth. The send mechanism can be turned off (both sending and receiving) by removing the send command using rename send {}. Communication can be reenabled by invoking the tk appname command.
Name
tk
tk operation [arg arg...]
The tk command provides access to miscellaneous elements of Tk's internal state. The following operations are defined:
tk appname newName
Change the name of the application to newName. If the name newName is already in use, a suffix of the form #2 or #3 is appended to make the name unique. If newName is not given, the application's current name is returned. As a general rule, the application name should not begin with a capital letter, as that form is reserved for class names. If sends have been disabled by deleting the send command, this command will reenable them and recreate the send command.
tk scaling [-displayof window] [number]
Set the scaling factor for conversion between physical units (e.g., points or inches) and pixels. Number is a floating-point value that specifies the number of pixels per point (1/72 inch) on window's display. If window is not given, it defaults to the main window. If number is omitted, the current scaling factor is returned.
Name
tkwait
tkwait operation name
Wait for a variable to change, a window to be destroyed, or a window's visibility state to change. While waiting, events are processed in the normal fashion. If an event handler invokes tkwait again, the nested call to tkwait must complete before the outer call can complete. Possible forms of the tkwait command are as follows:
tkwait variable varName
Wait for the global variable varName to be modified.
tkwait visibility window
Wait for a change in the visibility state of window window.
tkwait window window
Wait for window window to be destroyed.
Name
tk_
tk_bisque
tk_chooseColor [option value...]
tk_dialog topw title text bitmap default string [string...]
tk_focusNext window
tk_focusPrev window
tk_focusFollowsMouse window
tk_getOpenFile [option value...]
tk_getSaveFile [option value...]
tk_messageBox [option value...]
tk_optionMenu window varName value [value...]
tk_ popup menu x y [entry]
tk_setPalette color
tk_setPalette name color [name color...]
Each of these commands is a Tcl procedure defined at runtime in the Tk script library. The tk_bisque procedure sets the default color scheme to the light brown (''bisque'') scheme used by Tk 3.6 and earlier versions. The tk_setPalette procedure called with a single argument color sets the default color scheme to a computed one based on color as the default background color. The tk_setPalette can be called with one or more name-color pairs to set specific colors for the default color scheme. The possible values for name are:
activeBackground | activeForeground |
background | disabledForeground |
foreground | highlightBackground |
highlightColor | insertBackground |
selectColor | selectBackground |
selectForeground | troughColor |
The tk_getOpenFile procedure posts a modal dialog for choosing an existing filename. The tk_getSaveFile procedure does the same but does not require the chosen file to exist. In fact, if an existing file is chosen, a separate dialog box prompts for confirmation. Both procedures return the full pathname of the chosen file, or the empty string if the user cancels the operation. The available options for these procedures are as follows:
-defaultextension extension
A string that will be appended to the chosen file if it lacks an extension. The default is an empty string. This option is ignored on the Macintosh.
-filetypes filePatternList
The possible file types for the File types listbox in the dialog (if it exists). FilePatternList is a list of file patterns; each pattern is a two- or three-element list. The first element is a string describing the type (e.g., {Text files}), and the second element is a list of extensions that match this type (e.g., {.txt .log} or the special asterisk character to match all extensions. The empty string is a valid extension that means files with no extension. The third element is required only on the Macintosh and is the appropriate Macintosh file type identifier (e.g., TEXT). This element is ignored on Windows and Unix. Any file patterns with the same first element are merged in the File types listbox.
-initialdir directory
The files in directory should be displayed when the dialog pops up. The default is the current working directory.
-initialfile filename
Filename to be displayed in the dialog as a default choice when it pops up.
-parent window
Make window the logical parent of the dialog and position the dialog on top of it.
-title title
Text to appear in window manager's titlebar for the dialog.
The tk_messageBox procedure pops up a message dialog window with buttons and waits for a user response. The symbolic name of the selected button is returned. The following options are supported:
-default name
Make the button with symbolic name name the default button. See -type for valid names. If the dialog has only one button, it is made the default automatically. Otherwise, if this option is not specified, no button is made the default.
-icon iconImage
Icon to display in the dialog. IconImage must be error, info, question, or warning. The default is to display no icon.
-message string
Message to display in this dialog.
-parent window
Make window the logical parent of the dialog and position the dialog on top of it.
-title title
Text to appear in window manager's titlebar for the dialog.
-type type
The set of buttons to be displayed. The following values are possible for type:
abortretryignore
Display three buttons with names Abort, Retry, and Ignore.
ok
Display one button with the name OK.
okcancel
Display two buttons with names OK and Cancel.
retrycancel
Display two buttons with names Retry and Cancel.
yesno
Display two buttons with names Yes and No.
yesnocancel
Display three buttons with names Yes, No, and Cancel.
The tk_dialog is an older, more configurable version of a message box dialog. A message and a row of buttons are presented to the user. The numerical index of the button chosen is returned. The arguments are as follows:
topw
Name of top-level window for dialog to use. Any existing window by this name is destroyed.
title
Text to appear in window manager's titlebar for the dialog.
text
Message to appear in top portion of the dialog.
bitmap
If nonempty, a bitmap to display to the left of message text.
default
Index of button that is to be the default button. The default is 0, which is the first, leftmost button. If default is less than zero, there will be no default button.
string
There will be one button for each string argument, where string specifies the text for the button.
The tk_optionMenu procedure creates an option menubutton whose name is window, along with an associated menu. Invoking the menubutton will pop up the associated menu with an entry for each of the value arguments. The current choice will be stored in the global variable varName and be displayed as the label of the menubutton. The procedure returns immediately with a value of the name of the associated menu.
The tk_ popup procedure posts pop-up menu menu at the root coordinate position x,y. If entry is omitted, the menu's upper-left corner is positioned at the given point. Otherwise, entry gives the index of a menu entry in menu to position over the given point.
The tk_focusNext, tk_focusPrev, and tk_focusFollowsMouse procedures are described in the listing for the focus command earlier in this chapter.
Name
winfo
winfo operation [arg arg...]
The winfo command provides information about the windows managed by Tk. The following operations are supported:
winfo atom [-displayof window name]
Return as a decimal string the identifier for the atom named name on window's display.
winfo atomname [-displayof window id]
Return the textual name of the atom on window's display whose integer identifier is id.
winfo cells window
Return the number of cells in the colormap of window.
winfo children window
Return a list of the pathnames of all children of window, in stacking order.
winfo class window
Return the class name for window.
winfo colormapfull window
Return 1 if the colormap for window is known to be full (the last attempt to allocate a new color failed and this application has not freed any), 0 otherwise.
winfo containing [-displayof window] rootX rootY
Return the pathname of the window containing the point rootX and rootY in the root window of window's display. If multiple windows contain the point, children are given higher priority than parents. Among siblings, the highest one in the stacking order has priority.
winfo depth window
Return the depth of window (number of bits per pixel).
winfo exists window
Return 1 if a window named window exists, 0 otherwise.
winfo fpixels window size
Return as a floating-point value the number of pixels in window corresponding to the distance size in screen units.
winfo geometry window
Return the geometry for window in the X geometry specification form widthxheight+x+y, where dimensions are in pixels.
winfo height window
Return window's height in pixels. A new window's height is 1 pixel until it is actually mapped.
winfo id window
Return the hexadecimal, platform-specific identifier for window.
winfo interps [-displayof window]
Return a list of the names of all Tk-based applications currently registered on window's display.
winfo ismapped window
Return 1 if window is currently mapped, 0 otherwise.
winfo manager window
Return the name of the geometry manager currently responsible for window (e.g., pack, place, or canvas).
winfo name window
Return window's name within its parent. The command winfo name will return the name of the application.
winfo parent window
Return the pathname of window's parent, or an empty string if window is the main window.
winfo pathname [-displayof window] id
Return the pathname of the window whose X identifier on window's display is id.
winfo pixels window size
Return the number of pixels (rounded to the nearest integer) in window corresponding to the distance size in screen units.
winfo pointerx window
Return the pointer's x-coordinate measured in pixels on the screen's root window. If the mouse pointer is not on the same screen as window, return −1.
winfo pointerxy window
Return the pointer's y-coordinate measured in pixels on the screen's root window. If the mouse pointer is not on the same screen as window, return −1.
winfo pointery window
Return the pointer's y-coordinate measured in pixels on the screen's root window. If the mouse pointer is not on the same screen as window,return −1.
winfo reqheight window
Return window's requested height in pixels.
winfo reqwidth window
Return window's requested width in pixels.
winfo rgb window color
Return a three-element list of the red, green, and blue intensities corresponding to color in window.
winfo rootx window
Return the x-coordinate of the upper-left corner of window (including its border) in the root window of its screen.
winfo rooty window
Return the y-coordinate of the upper-left corner of window (including its border) in the root window of its screen.
winfo screen window
Return the name of the screen associated with window in the form displayName.screenIndex.
winfo screencells window
Return number of cells in the default colormap for window's screen.
winfo screendepth window
Return the depth (bits per pixel) of the root window of window's screen.
winfo screenheight window
Return the height of window's screen in pixels.
winfo screenmmheight window
Return the height of window's screen in millimeters.
winfo screenmmwidth window
Return the width of window's screen in millimeters.
winfo screenvisual window
Return the default visual class for window's screen. The result will be directcolor, grayscale, pseudocolor, staticcolor, staticgray,or truecolor.
winfo screenwidth window
Return the width of window's screen in pixels.
winfo server window
Return information about the server for window's display. For X servers, the string has the form XmajorRminor vendor vendorVersion.
winfo toplevel window
Return the pathname of the top-level window containing window.
winfo viewable window
Return 1 if window and all its ancestors up through the nearest top-level window are mapped, 0 otherwise.
winfo visual window
Return the visual class for window. The result will be directcolor, grayscale, pseudocolor, staticcolor, staticgray, or truecolor.
winfo visualid window
Return the X identifier for the visual of window.
winfo visualsavailable window[includeids]
Return the list of visuals available for window's screen. Each element consists of a visual class (see winfo visual for possible values) and an integer depth. If includeids is specified, the X identifier for each visual is also provided.
winfo vrootheight window
Return the height of the virtual root window associated with window. If there is no virtual root, the height of window's screen is returned.
winfo vrootwidth window
Return the width of the virtual root window associated with window. If there is no virtual root, the width of window's screen is returned.
winfo vrootx window
Return the x-offset of the virtual root window relative to the root window of window's screen.
winfo vrooty window
Return the y-offset of the virtual root window relative to the root window of window's screen.
winfo width window
Return window's height in pixels. A new window's width is 1 pixel until it is actually mapped.
winfo x window
Return the x-coordinate of the upper-left corner of window (including any border) in its parent.
winfo y window
Return the y-coordinate of the upper-left corner of window (including any border) in its parent.
Name
wm
wm operation window [arg arg...]
The wm command communicates with the window manager to control such things as window titles, geometry, and state. All window managers are different and may not honor all of Tk's requests. The possible operations are:
wm aspect window [minNumber minDenom maxNumer maxDenom]
Request that the window manager enforce a range of acceptable aspect ratios for window. The aspect ratio of window (width/length) must lie between minNumber/minDenom and maxNumer/maxDenom. If all the aspect arguments are specified as empty strings, any existing constraint is removed. If the aspect arguments are omitted, the current values are returned as a Tcl list, which will be empty if there is no constraint.
wm client window [name]
Store in window's WM_CLIENT_MACHINE property the value name, which should be the name of the host on which the application is running. If name is not given, the last name set for window is returned. If name is the empty string, the WM_CLIENT_MACHINE property for window is deleted.
wm colormapwindows window [windowList]
Store in window's WM_COLORMAP_WINDOWS property the value windowList, which should be a complete list of the internal window pathnames within window whose colormaps differ from their parents. If windowList is not given, the current setting is returned.
wm command window [cmdLine]
Store in window's WM_COMMAND property the value cmdLine, which should be a proper list containing the words of the command used to invoke the application. If cmdLine is not given, the last value set for window is returned. If cmdLine is the empty string, the WM_COMMAND property for window is deleted.
wm deiconifiy window
Request that the window manager display window in normal (non-iconified) form.
wm focusmodel window [model]
Set the focus model for window to model, which must be active or passive (the default). If model is omitted, the current model is returned. An active focus model means that the window will claim the input focus for itself or its descendants, even at times when the focus is currently in some other application. A passive model means that window will never explicitly claim the focus for itself but will let the window manager give it focus at appropriate times. Tk's focus command assumes a passive model.
wm frame window
If window has been reparented by the window manager into a decorative frame, return the platform-specific window identifier for the outermost frame that contains window. Otherwise, return the identifier for window.
wm geometry window [newGeometry]
Set the geometry for window to newGeometry, an X geometry specification in the form widthxheight+x+y. If window is gridded, units for width and height are in grid units; otherwise, they are specified in pixels. If newGeometry is the empty string, the window will revert to the size requested internally by its widgets. If newGeometry is omitted, window's current geometry is returned.
wm grid window [baseWidth baseHeight widthInc heightInc]
Request that window be managed as a gridded window. BaseWidth and baseHeight specify the number of grid units that the current requested size of window represents. WidthInc and heightInc specify the number of pixels in each horizontal and vertical grid unit. Specifying all values as empty strings turns off gridded management for window. If the arguments are omitted, their current values are returned (or an empty string if window is not gridded).
wm group window [pathName]
Add window to the group of related windows led by window pathname. The window manager may use this information to unmap the entire group of windows when the leader window is iconified. If pathname is the empty string, window is removed from any group with which it is associated. If it is omitted, window's group leader is returned (or the empty string if window is not part of a group).
wm iconbitmap window [bitmap]
Request that the window manager display bitmap in window's icon. If bitmap is the empty string, any current bitmap registered is canceled. If it is omitted, the current bitmap registered, if any, is returned.
wm iconify window
Arrange for window to be iconified.
wm iconmask window [bitmap]
Request that the window manager use bitmap as a mask in window's icon in conjunction with the bitmap set with the iconbitmap operation. If bitmap is the empty string, any current bitmap mask is canceled. If it is omitted, the current bitmap mask, if any, is returned.
wm iconname window [newName]
Request that the window manger use newName for the title of window's icon. If newName is omitted, the current setting, if any, is returned.
wm iconposition window [x y]
Request that the window manager use coordinates x y on the root window as the location to place window's icon. If the coordinates are specified as empty strings, any current request is canceled. If they are not given, the current setting, if any, is returned.
wm iconwindow window [pathName]
Request that the window manager use window pathname as window's icon. If pathname is the empty string, any current icon window request is canceled. If it is omitted, the current icon window, if any, is returned. Button press events are disabled for pathname while it is an icon window so that the window manager can own those events.
wm maxsize window [width height]
Request that the window manager restrict window's dimensions to be less than or equal to width and height. If window is gridded, the dimensions are in grid units; otherwise, they are in pixels. If the width and height are not given, the current setting is returned. The default setting is the dimensions of the screen.
wm minsize window [width height]
Request that the window manager restrict window's dimensions to be greater than or equal to width and height. If window is gridded, the dimensions are in grid units; otherwise, they are in pixels. If the width and height are not given, the current setting is returned.
wm overrideredirect window [boolean]
Set the override-redirect flag for window if boolean is true; unset it otherwise. Setting the override-redirect flag causes the window to be ignored by the window manager. If boolean is not given, the current setting is returned.
wm positionfrom window [who]
Set the position source of window to who, either program or user, which tells the window manager whether window's position was set by the program or user, respectively. If who is the empty string, the current position source is canceled. If who is not given, the current setting is returned. Tk will automatically set the position source to user when a wm geometry command is invoked, unless the source has been explicitly set to program.
wm protocol window [name[command]]
Set or query window manager protocols for window. Name is the name of an atom for a window manager protocol, such as WM_DELETE_WINDOW or WM_SAVE_YOURSELF. If command is specified, it is made the handler for the given protocol and will be invoked whenever the window manager sends a message to the application for that protocol on window. If command is the empty string, any current handler is canceled. If command is not given, the current associated command for name is returned. If name is not given, a list of all protocols for which handlers are currently defined for window is returned. Tk always sets up a default handler for the WM_DELETE_WINDOW protocol, which simply destroys the window.
wm resizeable window [widthBool heightBool]
Whether window should be resizeable along its width and height according to the boolean values widthBool and heightBool. By default, windows are resizeable in both dimensions. If the boolean arguments are omitted, the current setting is returned.
wm sizefrom window [who]
Set the size source of window to who, either program or user, which tells the window manager whether window's size was set by the program or user, respectively. If who is the empty string, the current size source is canceled. If who is not given, the current setting is returned.
wm state window
Return the current state of window: one of normal, iconic, withdrawn, or icon. The value icon refers to a window that is being displayed as an icon (using the wm iconwindow command).
wm title window [string]
Request that the window manager use string as the title for window if it has a titlebar. If string is not given, the current setting is returned.
wm transient window [master]
Request that the window manager treat window as a transient window (e.g a pull-down menu) belonging to the window master. If master is an empty string, window is treated as no longer transient. If it is omitted, the command returns window's current master, or an empty string if window is not transient.
wm withdraw window
Withdraw window from the screen. The window is unmapped and forgotten about by the window manager.
Chapter 4. The Tcl C Interface
This chapter presents a summary of the Tcl C-language interface. Everything described here is defined in the header file tcl.h, part of the Tcl distribution. For clarity, ANSI C function prototypes are shown here, although the actual header file supports non-ANSI compilers.
To avoid name conflicts, all functions are prefixed with Tcl_ and constants are prefixed with TCL_.
See the full Tcl reference documentation for the most detailed and up-to-date information. C interfaces are typically found in Section 3 of the Tcl manpages.
Constants
The following constants contain Tcl interpreter version information:
TCL_MAJOR_VERSION
Tcl major version number (e.g., 8)
TCL_MINOR_VERSION
Tcl minor version number (e.g., 0)
TCL_RELEASE_LEVEL
Release level: 0 for alpha, 1 for beta, 2 for final/patch
TCL_RELEASE_SERIAL
Version number that changes with each patch (e.g., 2)
TCL_VERSION
Tcl version as a string (e.g., "8.0")
TCL_PATCH_LEVEL
Tcl version and patch level as a string (e.g., "8.0p2")
The following constants contain completion codes for Tcl command procedures:
TCL_OK
Normal command completion
TCL_ERROR
Unrecoverable error occurred
TCL_RETURN
return command invoked
TCL_BREAK
break command invoked
TCL_CONTINUE
continue command invoked
Data Types
The more commonly used Tcl data structures are listed here:
ClientData
Application-defined data that can be stored by interpreter
Tcl_AsyncHandler
Token used to refer to asynchronous event handlers
Tcl_Channel
A Tcl I/O channel
Tcl_ChannelProc
Function implementing operations on an I/O channel
Tcl_ChannelType
Pointers to functions implementing operations on an I/O channel
Tcl_CloseProc
Type of procedure used by close and delete handlers
Tcl_CmdDeleteProc
Type of procedure called when Tcl command is deleted
Tcl_CmdInfo
Structure containing information about a Tcl command
Tcl_CmdProc
Type of procedure used to implement a Tcl command
Tcl_Command
Token used to refer to Tcl command procedures
Tcl_DString
Structure used for Tcl dynamic strings
Tcl_Event
Data structure used by Tcl event queue
Tcl_EventCheckProc
Type of procedure for checking event queue
Tcl_EventDeleteProc
Type of procedure to invoke for delete events
Tcl_EventSetupProc
Type of procedure to invoke for prepare events
Tcl_ExitProc
Type of procedure to invoke before exiting application
Tcl_FileProc
Type of procedure to invoke for file handler
Tcl_FreeProc
Type of procedure for freeing storage
Tcl_HashEntry
Tcl hash table entry
Tcl_HashTable
Structure for Tcl hash table
Tcl_Interp
Structure defining a Tcl interpreter
Tcl_InterpDeleteProc
Procedure to call when interpreter is deleted
Tcl_Obj
Dual-ported object type for Tcl values
Tcl_ObjCmdProc
Type of procedure used to implement a Tcl command
Tcl_ObjType
Structure for representing type of Tcl object
Tcl_RegExp
Compiled regular expression
Tcl_Time
Data structure to represent time intervals
Tcl_Trace
Token for command trace
Tcl_VarTraceProc
Type of procedure to call for command tracing
Group Listing of Functions
Note that a few of these routines are implemented as macros for the sake of efficiency, but logically they behave the same as functions.
Tcl Objects
Tcl_Obj *Tcl_NewObj()
Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)
void Tcl_IncrRefCount(Tcl_Obj *objPtr)
void Tcl_DecrRefCount(Tcl_Obj *objPtr)
int Tcl_IsShared(Tcl_Obj *objPtr)
void Tcl_InvalidateStringRep(Tcl_Obj *objPtr)
Tcl_Obj *Tcl_NewBooleanObj(int boolValue)
void Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)
int Tcl_GetBooleanFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *boolPtr)
Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)
void Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)
int Tcl_GetDoubleFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *doublePtr)
Tcl_Obj *Tcl_NewIntObj(int intValue)
Tcl_Obj *Tcl_NewLongObj(long longValue)
void Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)
void Tcl_SetLongObj(Tcl_Obj *objPtr, long longValue)
int Tcl_GetIntFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *intPtr)
int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *longPtr)
int Tcl_ListObjAppendList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)
int Tcl_ListObjAppendElement(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *objPtr)
Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *cont objv[])
void Tcl_SetListObj(Tcl_Obj *objPtr, int objc, Tcl_Obj *const objv[])
int Tcl_ListObjGetElements(Tcl_Interp *interp, Tcl_Obj *listPtr, int *objcPtr,
Tcl_Obj ***objvPtr)
int Tcl_ListObjIndex(Tcl_Interp *interp, Tcl_Obj *listPtr, int index,
Tcl_Obj **objPtrPtr)
int Tcl_ListObjLength(Tcl_Interp *interp, Tcl_Obj *listPtr, int *intPtr)
int Tcl_ListObjReplace(Tcl_Interp *interp, Tcl_Obj *listPtr, int first, int count,
int objc, Tcl_Obj *const objv[])
void Tcl_RegisterObjType(Tcl_ObjType *typePtr)
Tcl_ObjType *Tcl_GetObjType(char *typeName)
int Tcl_AppendAllObjTypes(Tcl_Interp *interp, Tcl_Obj *objPtr)
int Tcl_ConvertToT ype(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_ObjType *typePtr)
Tcl_Obj *Tcl_NewStringObj(char *bytes, int length)
void Tcl_SetStringObj(Tcl_Obj *objPtr, char *bytes, int length)
char *Tcl_GetStringFromObj(Tcl_Obj *objPtr, int *lengthPtr)
void Tcl_AppendToObj(Tcl_Obj *objPtr, char *bytes, int length)
void Tcl_AppendStringsToObj(Tcl_Obj *interp, ...)
void Tcl_SetObjLength(Tcl_Obj *objPtr, int length)
Tcl_Obj *Tcl_ConcatObj(int objc, Tcl_Obj *const objv[])
Interpreters and Script Evaluation
Tcl_Interp *Tcl_CreateInterp(void)
void Tcl_DeleteInterp(Tcl_Interp *interp)
int Tcl_InterpDeleted(Tcl_Interp *interp)
int Tcl_Eval(Tcl_Interp *interp, char *string)
int Tcl_EvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)
int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)
int Tcl_GlobalEval(Tcl_Interp *interp, char *command)
int Tcl_GlobalEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)
int Tcl_VarEval(Tcl_Interp *interp, ...)
int Tcl_RecordAndEval(Tcl_Interp *interp, char *cmd, int flags)
int Tcl_RecordAndEvalObj(Tcl_Interp *interp, Tcl_Obj *cmdPtr, int flags)
void Tcl_AllowExceptions(Tcl_Interp *interp)
Tcl_AsyncHandler Tcl_AsyncCreate(Tcl_AsyncProc *proc, ClientData clientData)
void Tcl_AsyncMark(Tcl_AsyncHandler async)
int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)
void Tcl_AsyncDelete(Tcl_AsyncHandler async)
int Tcl_AsyncReady(void)
void Tcl_CallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)
void Tcl_DontCallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)
int Tcl_IsSafe(Tcl_Interp *interp)
int Tcl_MakeSafe(Tcl_Interp *interp)
Tcl_Interp *Tcl_CreateSlave(Tcl_Interp *interp, char *slaveName, int isSafe)
Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp, char *slaveName)
Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)
int Tcl_GetInterpPath(Tcl_Interp *askInterp, Tcl_Interp *slaveInterp)
int Tcl_CreateAlias(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int argc, char **argv)
int Tcl_CreateAliasObj(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int objc, Tcl_Obj *const objv[])
int Tcl_GetAlias(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *argcPtr, char ***argvPtr)
int Tcl_GetAliasObj(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *objcPtr, Tcl_Obj ***objv)
int Tcl_ExposeCommand(Tcl_Interp *interp, char *hiddenCmdToken,
char *cmdName)
int Tcl_HideCommand(Tcl_Interp *interp, char *cmdName,
char *hiddenCmdToken)
int Tcl_DoOneEvent(int flags)
void Tcl_DoWhenIdle(Tcl_IdleProc *proc, ClientData clientData)
void Tcl_CancelIdleCall(Tcl_IdleProc *idleProc, ClientData clientData)
void Tcl_Exit(int status)
void Tcl_Finalize(void)
void Tcl_CreateExitHandler(Tcl_ExitProc *proc, ClientData clientData)
void Tcl_DeleteExitHandler(Tcl_ExitProc *proc, ClientData clientData)
int Tcl_SetRecursionLimit(Tcl_Interp *interp, int depth)
void Tcl_StaticPackage(Tcl_Interp *interp, char *pkgName,
Tcl_PackageInitProc *initProc, Tcl_PackageInitProc *safeInitProc)
Creating New Tcl Commands
Tcl_Command Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdPrc *proc, ClientData clientData, Tcl_CmdDeleteProc *deleteProc)
Tcl_Command Tcl_CreateObjCommand(Tcl_Interp *interp, char *cmdName,
Tcl_ObjCmdProc *proc, ClientData clientData,
Tcl_CmdDeleteProc *deleteProc)
int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)
int Tcl_DeleteCommandFromToken(Tcl_Interp *interp, Tcl_Command command)
void Tcl_SetResult(Tcl_Interp *interp, char *string, Tcl_Fr eeProc *freeProc)
void Tcl_AppendResult(Tcl_Interp *interp, ...)
void Tcl_AppendElement(Tcl_Interp *interp, char *string)
void Tcl_ResetResult(Tcl_Interp *interp)
int Tcl_GetCommandInfo(Tcl_Interp *interp, char *cmdName,
Tcl_CmdInfo *infoPtr)
int Tcl_SetCommandInfo(Tcl_Interp *interp, char *cmdName, Tcl_CmdInfo *infoPtr)
char *Tcl_GetCommandName(Tcl_Interp *interp, Tcl_Command command)
void Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *resultObjPtr)
Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)
void Tcl_FreeResult(Tcl_Interp *interp)
char *Tcl_GetStringResult(Tcl_Interp *interp)
Initialization and Packages
int Tcl_AppInit(Tcl_Interp *interp)
int Tcl_Init(Tcl_Interp *interp)
Parsing
int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)
int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *doublePtr)
int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *boolPtr)
int Tcl_ExprString(Tcl_Interp *interp, char *string)
int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *ptr)
int Tcl_ExprDouble(Tcl_Interp *interp, char *string, double *ptr)
int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int *ptr)
int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr, char ***argvPtr)
char *Tcl_Merge(int argc, char **argv)
char Tcl_Backslash(const char *src, int *readPtr)
void Tcl_CreateMathFunc(Tcl_Interp *interp, char *name, int numArgs,
Tcl_ValueType *argTypes, Tcl_MathProc *proc,
ClientData clientData)
int Tcl_ExprLongObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *ptr)
int Tcl_ExprDoubleObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *ptr)
int Tcl_ExprBooleanObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *ptr)
int Tcl_ExprObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_Obj **resultPtrPtr)
int Tcl_GetIndexFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, char **tablePtr,
char *msg, int flags, int *indexPtr)
void Tcl_PrintDouble(Tcl_Interp *interp, double value, char *dst)
int Tcl_ScanCountedElement(const char *string, int length, int *flagPtr)
int Tcl_ScanElement(const char *string, int *flagPtr)
int Tcl_ConvertCountedElement(const char *src, int length, char *dst, int flags)
int Tcl_ConvertElement(const char *src, char *dst, int flags)
Exceptions
void Tcl_AddErrorInfo (Tcl_Interp *interp, char *message)
void Tcl_AddObjErrorInfo(Tcl_Interp *interp, char *message, int length)
void Tcl_SetErrorCode(Tcl_Interp *arg1, ...)
void Tcl_SetObjErrorCode(Tcl_Interp *interp, Tcl_Obj *errorObjPtr)
void Tcl_BackgroundError(Tcl_Interp *interp)
void Tcl_WrongNumArgs(Tcl_Interp *interp, int objc, Tcl_Obj *const objv[],
char *message)
Accessing Tcl Variables
char *Tcl_SetVar(Tcl_Interp *interp, char *varName, char *newValue, int flags)
char *Tcl_SetVar2(Tcl_Interp *interp, char *part1, char *part2, char *newValue,
int flags)
char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)
char *Tcl_GetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)
int Tcl_UnsetVar(Tcl_Interp *interp, char *varName, int flags)
int Tcl_UnsetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)
int Tcl_LinkVar(Tcl_Interp *interp, char *varName, char *addr, int type)
void Tcl_UnlinkVar(Tcl_Interp *interp, char *varName)
void Tcl_UpdateLinkedVar(Tcl_Interp *interp, char *varName)
int Tcl_TraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)
int Tcl_TraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)
void Tcl_UntraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)
void Tcl_UntraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)
ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *procPtr, ClientData prevClientData)
ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTraceProc *procPtr, ClientData prevClientData)
Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags)
Tcl_Obj *Tcl_ObjSetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
Tcl_Obj *newValuePtr, int flags)
int Tcl_UpVar(Tcl_Interp *interp, char *frameName, char *varName,
char *localName, int flags)
int Tcl_UpVar2(Tcl_Interp *interp, char *frameName, char *part1, char *part2,
char *localName, int flags)
Hash Tables
void Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)
void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_hashTable *tablePtr, char *key,
int *newPtr)
Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char *key)
void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)
void Tcl_SetHashValue(Tcl_HashEntry *entryPtr, Clientdata value)
char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)
Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)
Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
char *Tcl_HashStats(Tcl_HashTable *tablePtr)
ClientData Tcl_GetAssocData(Tcl_Interp *interp, char *name,
Tcl_InterpDeleteProc **procPtr)
void Tcl_SetAssocData(Tcl_Interp *interp, char *name, Tcl_InterpDeleteProc *proc,
ClientData clientData)
void Tcl_DeleteAssocData(Tcl_Interp *interp, char *name)
String Utilities
void Tcl_DStringInit(Tcl_DString *dsPtr)
char *Tcl_DStringAppend(Tcl_DString *dsPtr, const char *string, int length)
char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, const char *string)
void Tcl_DStringStartSublist(Tcl_DString *dsPtr)
void Tcl_DStringEndSublist(Tcl_DString *dsPtr)
int Tcl_DStringLength(Tcl_DString *dsPtr)
char *Tcl_DStringValue(Tcl_DString *dsPtr)
void Tcl_DStringSetLength(Tcl_DString *dsPtr, int length)
void Tcl_DStringFree(Tcl_DString *dsPtr)
void Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
void Tcl_DStringGetResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
int Tcl_CommandComplete(char *cmd)
int Tcl_StringMatch(char *string, char *pattern)
int Tcl_RegExpMatch(Tcl_Interp *interp, char *string, char *pattern)
Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp, char *string)
int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp, char *string, char *start)
void Tcl_RegExpRange(Tcl_RegExp regexp, int index, char **startPtr, char **endPtr)
char *Tcl_Concat(int argc, char **argv)
POSIX Utilities
char *Tcl_TildeSubst(Tcl_Interp *interp, char *name, Tcl_DString *resultPtr)
char *Tcl_PosixError(Tcl_Interp *interp)
char *Tcl_ErrnoId(void)
char *Tcl_SignalId(int sig)
char *Tcl_SignalMsg(int sig)
void Tcl_DetachPids(int numPids, Tcl_Pid *pidPtr)
void Tcl_ReapDetachedProcs(void)
void Tcl_SetErrno(int err)
int Tcl_GetErrno(void)
Input/Output
Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp, int argc, char **argv,
int flags)
Tcl_Channel Tcl_CreateChannel(Tcl_ChannelT ype *typePtr, char *chanName,
ClientData instanceData, int mask)
ClientData Tcl_GetChannelInstanceData(Tcl_Channel chan)
Tcl_ChannelType *Tcl_GetChannelType(Tcl_Channel chan)
char *Tcl_GetChannelName(Tcl_Channel chan)
int Tcl_GetChannelHandle(Tcl_Channel chan, int direction, ClientData *handlePtr)
int Tcl_GetChannelFlags(Tcl_Channel channel)
void Tcl_SetDefaultTranslation(TclChannel channel, Tcl_EolTranslation transMode)
int Tcl_GetChannelBufferSize(Tcl_Channel chan)
void Tcl_SetChannelBufferSize(Tcl_Channel chan, int sz)
void Tcl_NotifyChannel(Tcl_Channel channel, int mask)
int Tcl_BadChannelOption(Tcl_Interp *interp, char *optionName, char *optionList)
void Tcl_CreateChannelHandler(Tcl_Channel chan, int mask,
Tcl_ChannelProc *proc, ClientData clientData)
void Tcl_DeleteChannelHandler(Tcl_Channel chan, Tcl_ChannelProc *proc,
ClientData clientData)
void Tcl_CreateCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)
void Tcl_DeleteCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)
int Tcl_GetOpenFile(Tcl_Interp *interp, char *string, int write, int checkUsage,
ClientData *filePtr)
Tcl_Channel Tcl_GetStdChannel(int type)
void Tcl_SetStdChannel(Tcl_Channel channel, int type)
Tcl_Channel Tcl_OpenFileChannel(Tcl_Interp *interp, char *fileName,
char *modeString, int permissions)
Tcl_Channel Tcl_MakeFileChannel(ClientData handle, int mode)
Tcl_Channel Tcl_GetChannel(Tcl_Interp *interp, char *chanName, int *modePtr)
void Tcl_RegisterChannel(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_UnregisterChannel(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_Close(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_Read(Tcl_Channel chan, char *bufPtr, int toRead)
int Tcl_Gets(Tcl_Channel chan, Tcl_DString *dsPtr)
int Tcl_GetsObj(Tcl_Channel chan, Tcl_Obj *objPtr)
int Tcl_Write(Tcl_Channel chan, char *s, int slen)
int Tcl_Flush(Tcl_Channel chan)
int Tcl_Seek(Tcl_Channel chan, int offset, int mode)
int Tcl_Tell(Tcl_Channel chan)
int Tcl_GetChannelOption(Tcl_Interp *interp, Tcl_Channel chan,
char *optionName, Tcl_DString *dsPtr)
int Tcl_SetChannelOption(Tcl_Interp *interp, Tcl_Channel chan, char *optionName,
char *newValue)
int Tcl_Eof(Tcl_Channel chan)
int Tcl_InputBlocked(Tcl_Channel chan)
int Tcl_InputBuffered(Tcl_Channel chan)
Tcl_Channel Tcl_OpenTcpClient(Tcl_Interp *interp, int port, char *address,
char *myaddr, int myport, int async)
Tcl_Channel Tcl_MakeTcpClientChannel(ClientData tcpSocket)
Tcl_Channel Tcl_OpenTcpServer(Tcl_Interp *interp, int port, char *host,
Tcl_TcpAcceptProc *acceptProc, ClientData callbackData)
int Tcl_Ungets(Tcl_Channel chan, char *str, int len, int atHead)
int Tcl_GetChannelMode(Tcl_Channel chan)
Notifier and Events
void Tcl_CreateEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckProc *checkProc, ClientData clientData)
void Tcl_DeleteEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckProc *checkProc, ClientData clientData)
void Tcl_SetMaxBlockTime(Tcl_Time *timePtr)
void Tcl_QueueEvent(Tcl_Event *evPtr, Tcl_QueuePosition position)
void Tcl_DeleteEvents(Tcl_EventDeleteProc *proc, ClientData clientData)
int Tcl_WaitForEvent(Tcl_Time *timePtr)
void Tcl_SetTimer(Tcl_Time *timePtr)
int Tcl_ServiceAll(void)
int Tcl_ServiceEvent(int flags)
int Tcl_GetServiceMode(void)
int Tcl_SetServiceMode(int mode)
Miscellaneous
char *Tcl_Alloc(int size)
void Tcl_Free(char *ptr)
char *Tcl_Realloc(char *ptr, int size)
void Tcl_CreateFileHandler(int fd, int mask, Tcl_FileProc *proc,
ClientData clientData)
void Tcl_DeleteFileHandler(int fd)
Tcl_TimerToken Tcl_CreateTimerHandler(int milliseconds, Tcl_TimerProc *proc,
ClientData clientData)
void Tcl_DeleteTimerHandler(Tcl_TimerToken token)
Tcl_Trace Tcl_CreateTrace(Tcl_Interp *interp, int level, Tcl_CmdTraceProc *proc,
ClientData clientData)
void Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)
void Tcl_FindExecutable(char *argv0)
int Tcl_PkgProvide(Tcl_Interp *interp, char *name, char *version)
char *Tcl_PkgRequire(Tcl_Interp *interp, char *name, char *version, int exact)
void Tcl_Preserve(ClientData data)
void Tcl_Release(ClientData clientData)
void Tcl_EventuallyFree(ClientData clientData, Tcl_FreeProc *freeProc)
void Tcl_Sleep(int ms)
void Tcl_SplitPath(char *path, int *argcPtr, char ***argvPtr)
char *Tcl_JoinPath(int argc, char **argv, Tcl_DString *resultPtr)
Tcl_PathT ype Tcl_GetPathType(char *path)
void Tcl_Main(int argc, char **argv, Tcl_AppInitProc *appInitProc
char *Tcl_TranslateFileName(Tcl_Interp *interp, char *name, Tcl_DString *bufferPtr)
Alphabetical Summary of Functions
void Tcl_AddErrorInfo (Tcl_Interp *interp, char *message)
void Tcl_AddObjErrorInfo(Tcl_Interp *interp, char *message, int length)
char *Tcl_Alloc(int size)
void Tcl_AllowExceptions(Tcl_Interp *interp)
int Tcl_AppInit(Tcl_Interp *interp)
int Tcl_AppendAllObjTypes(Tcl_Interp *interp, Tcl_Obj *objPtr)
void Tcl_AppendElement(Tcl_Interp *interp, char *string)
void Tcl_AppendResult(Tcl_Interp *interp, ...)
void Tcl_AppendStringsToObj(Tcl_Obj *interp, ...)
void Tcl_AppendToObj(Tcl_Obj *objPtr, char *bytes, int length)
Tcl_AsyncHandler Tcl_AsyncCreate(Tcl_AsyncProc *proc, ClientData clientData)
void Tcl_AsyncDelete(Tcl_AsyncHandler async)
int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)
void Tcl_AsyncMark(Tcl_AsyncHandler async)
int Tcl_AsyncReady(void)
void Tcl_BackgroundError(Tcl_Interp *interp)
char Tcl_Backslash(const char *src, int *readPtr)
int Tcl_BadChannelOption(Tcl_Interp *interp, char *optionName, char *optionList)
void Tcl_CallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)
void Tcl_CancelIdleCall(Tcl_IdleProc *idleProc, ClientData clientData)
int Tcl_Close(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_CommandComplete(char *cmd)
Tcl_Obj *Tcl_ConcatObj(int objc, Tcl_Obj *const objv[])
char *Tcl_Concat(int argc, char **argv)
int Tcl_ConvertCountedElement(const char *src, int length, char *dst, int flags)
int Tcl_ConvertElement(const char *src, char *dst, int flags)
int Tcl_ConvertToType(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_ObjType *typePtr)
int Tcl_CreateAliasObj(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int objc, Tcl_Obj *const objv[])
int Tcl_CreateAlias(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int argc, char **argv)
void Tcl_CreateChannelHandler(Tcl_Channel chan, int mask,
Tcl_ChannelProc *proc, ClientData clientData)
Tcl_Channel Tcl_CreateChannel(Tcl_ChannelType *typePtr, char *chanName,
ClientData instanceData, int mask)
void Tcl_CreateCloseHandler(Tcl_Channel chan, Tcl_Closeproc *proc,
ClientData clientData)
Tcl_Command Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdProc *proc, ClientData clientData, Tcl_CmdDeleteproc *deleteProc)
void Tcl_CreateEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckproc *checkproc, ClientData clientData)
void Tcl_CreateExitHandler(Tcl_Exitproc *proc, ClientData clientData)
void Tcl_CreateFileHandler(int fd, int mask, Tcl_Fileproc *proc,
ClientData clientData)
Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_hashTable *tablePtr, char *key,
int *newPtr)
Tcl_Interp *Tcl_CreateInterp(void)
void Tcl_CreateMathFunc(Tcl_Interp *interp, char *name, int numArgs,
Tcl_ValueType *argTypes, Tcl_Mathproc *proc, ClientData clientData)
Tcl_Command Tcl_CreateObjCommand(Tcl_Interp *interp, char *cmdName,
Tcl_ObjCmdProc *proc, ClientData clientData,
Tcl_CmdDeleteProc *deleteProc)
Tcl_Interp *Tcl_CreateSlave(Tcl_Interp *interp, char *slaveName, int isSafe)
Tcl_TimerToken Tcl_CreateTimerHandler(int milliseconds, Tcl_TimerProc *proc,
ClientData clientData)
Tcl_Trace Tcl_CreateTrace(Tcl_Interp *interp, int level, Tcl_CmdTraceProc *proc,
ClientData clientData)
char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, const char *string)
char *Tcl_DStringAppend(Tcl_DString *dsPtr, const char *string, int length)
void Tcl_DStringEndSublist(Tcl_DString *dsPtr)
void Tcl_DStringFree(Tcl_DString *dsPtr)
void Tcl_DStringGetResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
void Tcl_DStringInit(Tcl_DString *dsPtr)
int Tcl_DStringLength(Tcl_DString *dsPtr)
void Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
void Tcl_DStringSetLength(Tcl_DString *dsPtr, int length)
void Tcl_DStringStartSublist(Tcl_DString *dsPtr)
char *Tcl_DStringValue(Tcl_DString *dsPtr)
void Tcl_DecrRefCount(Tcl_Obj *objPtr)
void Tcl_DeleteAssocData(Tcl_Interp *interp, char *name)
void Tcl_DeleteChannelHandler(Tcl_Channel chan, Tcl_ChannelProc *proc,
ClientData clientData)
void Tcl_DeleteCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)
int Tcl_DeleteCommandFromToken(Tcl_Interp *interp, Tcl_Command command)
int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)
void Tcl_DeleteEventSource(Tcl_EventSetupproc *setupProc,
Tcl_EventCheckproc *checkproc, ClientData clientData)
void Tcl_DeleteEvents(Tcl_EventDeleteproc *proc, ClientData clientData)
void Tcl_DeleteExitHandler(Tcl_Exitproc *proc, ClientData clientData)
void Tcl_DeleteFileHandler(int fd)
void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
void Tcl_DeleteInterp(Tcl_Interp *interp)
void Tcl_DeleteTimerHandler(Tcl_TimerToken token)
void Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)
void Tcl_DetachPids(int numPids, Tcl_Pid *pidPtr)
int Tcl_DoOneEvent(int flags)
void Tcl_DoWhenIdle(Tcl_Idleproc *proc, ClientData clientData)
void Tcl_DontCallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)
Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)
int Tcl_Eof(Tcl_Channel chan)
char *Tcl_ErrnoId(void)
int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)
int Tcl_EvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)
int Tcl_Eval(Tcl_Interp *interp, char *string)
void Tcl_EventuallyFree(ClientData clientData, Tcl_FreeProc *freeproc)
void Tcl_Exit(int status)
int Tcl_ExposeCommand(Tcl_Interp *interp, char *hiddenCmdToken,
char *cmdName)
int Tcl_ExprBooleanObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *ptr)
int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int *ptr)
int Tcl_ExprDoubleObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *ptr)
int Tcl_ExprDouble(Tcl_Interp *interp, char *string, double *ptr)
int Tcl_ExprLongObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *ptr)
int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *ptr)
int Tcl_ExprObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_Obj **resultPtrPtr)
int Tcl_ExprString(Tcl_Interp *interp, char *string)
void Tcl_Finalize(void)
void Tcl_FindExecutable(char *argv0)
Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char *key)
Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)
int Tcl_Flush(Tcl_Channel chan)
void Tcl_FreeResult(Tcl_Interp *interp)
void Tcl_Free(char *ptr)
int Tcl_GetAliasObj(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *objcPtr, Tcl_Obj ***objv)
int Tcl_GetAlias(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *argcPtr, char ***argvPtr)
ClientData Tcl_GetAssocData(Tcl_Interp *interp, char *name,
Tcl_InterpDeleteproc **procPtr)
int Tcl_GetBooleanFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *boolPtr)
int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *boolPtr)
int Tcl_GetChannelBufferSize(Tcl_Channel chan)
int Tcl_GetChannelFlags(Tcl_Channel channel)
int Tcl_GetChannelHandle(Tcl_Channel chan, int direction, ClientData *handlePtr)
ClientData Tcl_GetChannelInstanceData(Tcl_Channel chan)
int Tcl_GetChannelMode(Tcl_Channel chan)
char *Tcl_GetChannelName(Tcl_Channel chan)
int Tcl_GetChannelOption(Tcl_Interp *interp, Tcl_Channel chan,
char *optionName, Tcl_DString *dsPtr)
Tcl_Channel Tcl_GetChannel(Tcl_Interp *interp, char *chanName, int *modePtr)
Tcl_ChannelType *Tcl_GetChannelType(Tcl_Channel chan)
int Tcl_GetCommandInfo(Tcl_Interp *interp, char *cmdName,
Tcl_CmdInfo *infoPtr)
char *Tcl_GetCommandName(Tcl_Interp *interp, Tcl_Command command)
int Tcl_GetDoubleFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *doublePtr)
int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *doublePtr)
int Tcl_GetErrno(void)
char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)
ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)
int Tcl_GetIndexFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, char **tablePtr,
char *msg, int flags, int *indexPtr)
int Tcl_GetIntFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *intPtr)
int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)
int Tcl_GetInterpPath(Tcl_Interp *askInterp, Tcl_Interp *slaveInterp)
int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *longPtr)
Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)
Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)
Tcl_ObjType *Tcl_GetObjType(char *typeName)
int Tcl_GetOpenFile(Tcl_Interp *interp, char *string, int write, int checkUsage,
ClientData *filePtr)
Tcl_PathType Tcl_GetPathType(char *path)
int Tcl_GetServiceMode(void)
Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp, char *slaveName)
Tcl_Channel Tcl_GetStdChannel(int type)
char *Tcl_GetStringFr omObj(Tcl_Obj *objPtr, int *lengthPtr)
char *Tcl_GetStringResult(Tcl_Interp *interp)
char *Tcl_GetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)
char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)
int Tcl_GetsObj(Tcl_Channel chan, Tcl_Obj *objPtr)
int Tcl_Gets(Tcl_Channel chan, Tcl_DString *dsPtr)
int Tcl_GlobalEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)
int Tcl_GlobalEval(Tcl_Interp *interp, char *command)
char *Tcl_HashStats(Tcl_HashTable *tablePtr)
int Tcl_HideCommand(Tcl_Interp *interp, char *cmdName,
char *hiddenCmdToken)
void Tcl_IncrRefCount(Tcl_Obj *objPtr)
void Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)
int Tcl_Init(Tcl_Interp *interp)
int Tcl_InputBlocked(Tcl_Channel chan)
int Tcl_InputBuffered(Tcl_Channel chan)
int Tcl_InterpDeleted(Tcl_Interp *interp)
void Tcl_InvalidateStringRep(Tcl_Obj *objPtr)
int Tcl_IsSafe(Tcl_Interp *interp)
int Tcl_IsShar ed(Tcl_Obj *objPtr)
char *Tcl_JoinPath(int argc, char **argv, Tcl_DString *resultPtr)
int Tcl_LinkVar(Tcl_Interp *interp, char *varName, char *addr, int type)
int Tcl_ListObjAppendElement(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *objPtr)
int Tcl_ListObjAppendList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)
int Tcl_ListObjGetElements(Tcl_Interp *interp, Tcl_Obj *listPtr, int *objcPtr,
Tcl_Obj ***objvPtr)
int Tcl_ListObjIndex(Tcl_Interp *interp, Tcl_Obj *listPtr, int index,
Tcl_Obj **objPtrPtr)
int Tcl_ListObjLength(Tcl_Interp *interp, Tcl_Obj *listPtr, int *intPtr)
int Tcl_ListObjReplace(Tcl_Interp *interp, Tcl_Obj *listPtr, int first, int count,
int objc, Tcl_Obj *const objv[])
void Tcl_Main(int argc, char **argv, Tcl_AppInitproc *appInitProc
Tcl_Channel Tcl_MakeFileChannel(ClientData handle, int mode)
int Tcl_MakeSafe(Tcl_Interp *interp)
Tcl_Channel Tcl_MakeTcpClientChannel(ClientData tcpSocket)
char *Tcl_Merge(int argc, char **argv)
Tcl_Obj *Tcl_NewBooleanObj(int boolValue)
Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)
Tcl_Obj *Tcl_NewIntObj(int intValue)
Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *cont objv[])
Tcl_Obj *Tcl_NewLongObj(long longValue)
Tcl_Obj *Tcl_NewObj()
Tcl_Obj *Tcl_NewStringObj(char *bytes, int length)
Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
void Tcl_NotifyChannel(Tcl_Channel channel, int mask)
Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags)
Tcl_Obj *Tcl_ObjSetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
Tcl_Obj *newValuePtr, int flags)
Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp, int argc,
char **argv, int flags)
Tcl_Channel Tcl_OpenFileChannel(Tcl_Interp *interp, char *fileName,
char *modeString, int permissions)
Tcl_Channel Tcl_OpenTcpClient(Tcl_Interp *interp, int port, char *address,
char *myaddr, int myport, int async)
Tcl_Channel Tcl_OpenTcpServer(Tcl_Interp *interp, int port, char *host,
Tcl_TcpAcceptproc *acceptproc, ClientData callbackData)
int Tcl_PkgPr ovide(Tcl_Interp *interp, char *name, char *version)
char *Tcl_PkgRequir e(Tcl_Interp *interp, char *name, char *version, int exact)
char *Tcl_PosixError(Tcl_Interp *interp)
void Tcl_Pr eserve(ClientData data)
void Tcl_PrintDouble(Tcl_Interp *interp, double value, char *dst)
void Tcl_QueueEvent(Tcl_Event *evPtr, Tcl_QueuePosition position)
int Tcl_Read(Tcl_Channel chan, char *bufPtr, int toRead)
char *Tcl_Realloc(char *ptr, int size)
void Tcl_ReapDetachedprocs(void)
int Tcl_RecordAndEvalObj(Tcl_Interp *interp, Tcl_Obj *cmdPtr, int flags)
int Tcl_RecordAndEval(Tcl_Interp *interp, char *cmd, int flags)
Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp, char *string)
int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp, char *string, char *start)
int Tcl_RegExpMatch(Tcl_Interp *interp, char *string, char *pattern)
void Tcl_RegExpRange(Tcl_RegExp regexp, int index, char **startPtr, char **endPtr)
void Tcl_RegisterChannel(Tcl_Interp *interp, Tcl_Channel chan)
void Tcl_RegisterObjType(Tcl_ObjType *typePtr)
void Tcl_Release(ClientData clientData)
void Tcl_ResetResult(Tcl_Interp *interp)
int Tcl_ScanCountedElement(const char *string, int length, int *flagPtr)
int Tcl_ScanElement(const char *string, int *flagPtr)
int Tcl_Seek(Tcl_Channel chan, int offset, int mode)
int Tcl_ServiceAll(void)
int Tcl_ServiceEvent(int flags)
void Tcl_SetAssocData(Tcl_Interp *interp, char *name, Tcl_InterpDeleteProc *proc,
ClientData clientData)
void Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)
void Tcl_SetChannelBuf ferSize(Tcl_Channel chan, int sz)
int Tcl_SetChannelOption(Tcl_Interp *interp, Tcl_Channel chan, char *optionName,
char *newValue)
int Tcl_SetCommandInfo(Tcl_Interp *interp, char *cmdName, Tcl_CmdInfo *infoPtr)
void Tcl_SetDefaultTranslation(TclChannel channel, Tcl_EolTranslation transMode)
void Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)
void Tcl_SetErrno(int err)
void Tcl_SetErrorCode(Tcl_Interp *arg1, ...)
void Tcl_SetHashValue(Tcl_HashEntry *entryPtr, Clientdata value)
void Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)
void Tcl_SetListObj(Tcl_Obj *objPtr, int objc, Tcl_Obj *const objv[])
void Tcl_SetLongObj(Tcl_Obj *objPtr, long longValue)
void Tcl_SetMaxBlockTime(Tcl_Time *timePtr)
void Tcl_SetObjErrorCode(Tcl_Interp *interp, Tcl_Obj *errorObjPtr)
void Tcl_SetObjLength(Tcl_Obj *objPtr, int length)
void Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *resultObjPtr)
int Tcl_SetRecursionLimit(Tcl_Interp *interp, int depth)
void Tcl_SetResult(Tcl_Interp *interp, char *string, Tcl_FreeProc *freeProc)
int Tcl_SetServiceMode(int mode)
void Tcl_SetStdChannel(Tcl_Channel channel, int type)
void Tcl_SetStringObj(Tcl_Obj *objPtr, char *bytes, int length)
void Tcl_SetTimer(Tcl_Time *timePtr)
char *Tcl_SetVar2(Tcl_Interp *interp, char *part1, char *part2, char *newValue,
int flags)
char *Tcl_SetVar(Tcl_Interp *interp, char *varName, char *newValue, int flags)
char *Tcl_SignalId(int sig)
char *Tcl_SignalMsg(int sig)
void Tcl_Sleep(int ms)
int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr, char ***argvPtr)
void Tcl_SplitPath(char *path, int *argcPtr, char ***argvPtr)
void Tcl_StaticPackage(Tcl_Interp *interp, char
*pkgName, Tcl_PackageInitproc *initproc,
Tcl_PackageInitproc *safeInitproc)
int Tcl_StringMatch(char *string, char *pattern)
int Tcl_Tell(Tcl_Channel chan)
char *Tcl_T ildeSubst(Tcl_Interp *interp, char *name, Tcl_DString *resultPtr)
int Tcl_TraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTraceproc *proc, ClientData clientData)
int Tcl_TraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceproc *proc, ClientData clientData)
char *Tcl_TranslateFileName(Tcl_Interp *interp, char *name, Tcl_DString *bufferPtr)
int Tcl_Ungets(Tcl_Channel chan, char *str, int len, int atHead)
void Tcl_UnlinkVar(Tcl_Interp *interp, char *varName)
int Tcl_Unr egisterChannel(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_UnsetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)
int Tcl_UnsetVar(Tcl_Interp *interp, char *varName, int flags)
void Tcl_UntraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTraceproc *proc, ClientData clientData)
void Tcl_UntraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceproc *proc, ClientData clientData)
int Tcl_UpVar2(Tcl_Interp *interp, char *frameName, char *part1, char *part2,
char *localName, int flags)
int Tcl_UpVar(Tcl_Interp *interp, char *frameName, char *varName,
char *localName, int flags)
void Tcl_UpdateLinkedVar(Tcl_Interp *interp, char *varName)
int Tcl_VarEval(Tcl_Interp *interp, ...)
ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTraceproc *procPtr, ClientData prevClientData)
ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceproc *procPtr, ClientData prevClientData)
int Tcl_WaitForEvent(Tcl_Time *timePtr)
int Tcl_Write(Tcl_Channel chan, char *s, int slen)
void Tcl_WrongNumArgs(Tcl_Interp *interp, int objc, Tcl_Obj *const objv[],
char *message)
Chapter 5. The Tk C Interface
This chapter presents a summary of the Tk C-language interface. Everything described here is defined in the header file tk.h, part of the Tk distribution. For clarity, ANSI C function prototypes are shown here, although the actual header file supports non-ANSI compilers.
To avoid name conflicts, all functions are prefixed with Tk_ and constants are pre-fixed with TK_. See the full Tk reference documentation for the most detailed and up-to-date information. C interfaces are typically found in Section 3 of the Tk manpages.
Constants
The following constants contain Tk toolkit version information:
TK_MAJOR_VERSION
Tk major version number (e.g., 8)
TK_MINOR_VERSION
Tk minor version number (e.g., 0)
TK_RELEASE_LEVEL
Release level: 0 for alpha, 1 for beta, 2 for final/patch
TK_RELEASE_SERIAL
Version number that changes with each patch (e.g., 2)
TK_VERSION
Tk version as a string (e.g., "8.0")
TK_PATCH_LEVEL
Tk version and patch level as a string (e.g., "8.0p2")
Data Types
The more commonly used Tk data structures are listed here:
Tk_3DBorder
Token for a three-dimensional window border
Tk_Anchor
Enumerated type describing point by which to anchor an object
Tk_ArgvInfo
Structure used to specify how to handle argv options
Tk_BindingTable
Token for a binding table
Tk_Canvas
Token for a canvas object
Tk_CanvasTextInfo
Structure providing information about the selection and insertion cursors
Tk_ConfigSpec
Structure used to specify information for configuring a widget
Tk_Cursor
Token for a cursor
Tk_ErrorHandler
Token for an X protocol error handler
Tk_ErrorProc
Type of procedure used to handle X protocol errors
Tk_EventProc
Type of procedure used to handle events
Tk_Font
Token for a font
Tk_FontMetrics
Data structure describing properties of a font
Tk_GenericProc
Type of procedure used to handle generic X events
Tk_GeomMgr
Structure describing a geometry manager
Tk_GetSelProc
Type of procedure to process the selection
Tk_Image
Token for an image
Tk_ImageChangedProc
Type of procedure to invoke when an image changes
Tk_ImageMaster
Token for an image master
Tk_ImageType
Token for an image instance
Tk_ItemType
Structure defining a type of canvas item
Tk_Justify
Enumerated type describing a style of justification
Tk_LostSelProc
Type of procedure invoked when window loses selection
Tk_PhotoHandle
Token for a photo image
Tk_PhotoImageBlock
Structure describing a block of pixels in memory
Tk_PhotoImageFormat
Structure representing a particular file format for storing images
Tk_RestrictProc
Type of procedure used to filter incoming events
Tk_SelectionProc
Type of procedure used to return selection
Tk_TextLayout
Token for a text layout
Tk_Uid
Type used as unique identifiers for strings
Tk_Window
Token for a window
Group Listing of Functions
Note that a few of these routines are implemented as macros for the sake of efficiency, but logically they behave the same as functions.
Windows
XSetWindowAttributes *Tk_Attributes(Tk_Window tkwin)
void Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned long valueMask,
XSetWindowAttributes *attsPtr)
XWindowChanges *Tk_Changes(Tk_Window tkwin)
Tk_Uid Tk_Class(Tk_Window tkwin)
void Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)
Tk_Window Tk_CoordsToWindow(int rootX, int rootY, Tk_Window tkwin)
Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp, Tk_Window tkwin,
char *pathName, char *screenName)
Tk_Window Tk_CreateWindow(Tcl_Interp *interp, Tk_Window parent,
char *name, char *screenName)
int Tk_Depth(Tk_Window tkwin)
void Tk_DestroyWindow(Tk_Window tkwin)
char *Tk_DisplayName(Tk_Window tkwin)
Display Tk_Display(Tk_Window tkwin)
void Tk_DrawFocusHighlight(Tk_Window tkwin, GC gc, int width,
Drawable drawable)
char *Tk_GetAtomName(Tk_Window tkwin, Atom atom)
GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask, XGCValues *valuePtr)
int Tk_GetNumMainWindows(void)
Tk_Uid Tk_GetOption(Tk_Window tkwin, char *name, char *className)
void Tk_GetRootCoords(Tk_Window tkwin, int *xPtr, int *yPtr)
void Tk_GetVRootGeometry(Tk_Window tkwin, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)
int Tk_Height(Tk_Window tkwin)
Tk_Window Tk_IdToWindow(Display *display, Window window)
Atom Tk_InternAtom(Tk_Window tkwin, char *name)
int Tk_IsContainer(Tk_Window tkwin)
int Tk_IsEmbedded(Tk_Window tkwin)
int Tk_IsMapped(Tk_Window tkwin)
int Tk_IsTopLevel(Tk_Window tkwin)
Tk_Window Tk_MainWindow(Tcl_Interp *interp)
void Tk_MaintainGeometry(Tk_Window slave, Tk_Window master, int x, int y,
int width, int height)
void Tk_MakeWindowExist(Tk_Window tkwin)
void Tk_MoveToplevelWindow(Tk_Window tkwin, int x, int y)
Tk_Uid Tk_Name(Tk_Window tkwin)
Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)
Tk_Window Tk_Parent(Tk_Window tkwin)
char *Tk_PathName(Tk_Window tkwin)
int Tk_RestackWindow(Tk_Window tkwin, int aboveBelow, Tk_Window other)
int Tk_ScreenNumber(Tk_Window tkwin)
Scr een *Tk_Screen(Tk_Window tkwin)
void Tk_SetClass(Tk_Window tkwin, char *className)
void Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)
void Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)
void Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)
void Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)
int Tk_StrictMotif(Tk_Window tkwin)
void Tk_Ungrab(Tk_Window tkwin)
void Tk_UnmaintainGeometry(Tk_Window slave, Tk_Window master)
void Tk_UnsetGrid(Tk_Window tkwin)
void Tk_UpdatePointer(Tk_Window tkwin, int x, int y, int state)
Visual *Tk_Visual(Tk_Window tkwin)
int Tk_Width(Tk_Window tkwin)
Window Tk_WindowId(Tk_Window tkwin)
int Tk_X(Tk_Window tkwin)
int Tk_Y(Tk_Window tkwin)
Configuring Widgets
int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin, Tk_ConfigSpec *specs,
char *widgRec, char *argvName, int flags)
int Tk_ConfigureValue(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)
int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char **argv, char *widgRec, int flags)
void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec, Display *display,
int needFlags)
int Tk_Offset(type, field)
Bitmaps and Photo Images
void Tk_CreateImageType(Tk_ImageType *typePtr)
void Tk_CreatePhotoImageFormat(Tk_PhotoImageFormat *formatPtr)
int Tk_DefineBitmap(Tcl_Interp *interp, Tk_Uid name, char *source, int width,
int height)
void Tk_DeleteImage(Tcl_Interp *interp, char *name)
Tk_PhotoHandle Tk_FindPhoto(Tcl_Interp *interp, char *imageName)
void Tk_FreeBitmap(Display *display, Pixmap bitmap)
void Tk_FreeImage(Tk_Image image)
void Tk_FreePixmap(Display *display, Pixmap pixmap)
Pixmap Tk_GetBitmapFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, int width, int height)
Pixmap Tk_GetBitmap(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)
ClientData Tk_GetImageMasterData(Tcl_Interp *interp, char *name,
Tk_ImageType **typePtrPtr)
Tk_Image Tk_GetImage(Tcl_Interp *interp, Tk_Window tkwin, char *name,
Tk_ImageChangedProc *changeProc, ClientData clientData)
void Tk_ImageChanged(Tk_ImageMaster master, int x, int y, int width, int height,
int imageWidth, int imageHeight)
char *Tk_NameOfBitmap(Display *display, Pixmap bitmap)
char *Tk_NameOfImage(Tk_ImageMaster imageMaster)
void Tk_PhotoBlank(Tk_PhotoHandle handle)
void Tk_PhotoExpand(Tk_PhotoHandle handle, int width, int height)
int Tk_PhotoGetImage(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr)
void Tk_PhotoGetSize(Tk_PhotoHandle handle, int *widthPtr, int *heightPtr)
void Tk_PhotoPutBlock(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr,
int x, int y, int width, int height)
void Tk_PhotoPutZoomedBlock(Tk_PhotoHandle handle,
Tk_PhotoImageBlock *blockPtr, int x, int y, int width, int height, int zoomX,
int zoomY, int subsampleX, int subsampleY)
void Tk_PhotoSetSize(Tk_PhotoHandle handle, int width, int height)
void Tk_RedrawImage(Tk_Image image, int imageX, int imageY, int width,
int height, Drawable drawable, int drawableX, int drawableY)
void Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)
void Tk_SizeOfBitmap(Display *display, Pixmap bitmap, int *widthPtr,
int *heightPtr)
void Tk_SizeOfImage(Tk_Image image, int *widthPtr, int *heightPtr)
Events
void Tk_BindEvent(Tk_BindingTable bindingTable, XEvent *eventPtr,
Tk_Window tkwin, int numObjects, ClientData *objectPtr)
Tk_BindingTable Tk_CreateBindingTable(Tcl_Interp *interp)
unsigned long Tk_CreateBinding(Tcl_Interp *interp,
Tk_BindingTable bindingTable, ClientData object, *eventString,
char *command, int append)
void Tk_CreateEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)
void Tk_CreateGenericHandler(Tk_GenericProc *proc, ClientData clientData)
void Tk_DeleteAllBindings(Tk_BindingTable bindingTable, ClientData object)
void Tk_DeleteBindingTable(Tk_BindingTable bindingTable)
int Tk_DeleteBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)
void Tk_DeleteEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)
void Tk_DeleteGenericHandler(Tk_GenericProc *proc, ClientData clientData)
void Tk_GetAllBindings(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object)
char *Tk_GetBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)
void Tk_HandleEvent(XEvent *eventPtr)
void Tk_MainLoop(void)
void Tk_QueueWindowEvent(XEvent *eventPtr, Tcl_QueuePosition position)
Tk_RestrictProc *Tk_RestrictEvents(Tk_RestrictProc *proc, ClientData arg,
ClientData *prevArgPtr)
Displaying Widgets
GC Tk_3DBorderGC(Tk_Window tkwin, Tk_3DBorder border, int which)
void Tk_3DHorizontalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftIn, int rightIn,
int topBevel, int relief)
void Tk_3DVerticalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int leftBevel, int relief)
void Tk_Draw3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)
void Tk_Draw3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)
void Tk_Fill3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)
void Tk_Fill3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)
void Tk_Free3DBorder(Tk_3DBorder border)
Tk_3DBorder Tk_Get3DBorder(Tcl_Interp *interp, Tk_Window tkwin,
Tk_Uid colorName)
char *Tk_NameOf3DBorder(Tk_3DBorder border)
void Tk_SetBackgroundFromBorder(Tk_Window tkwin,
Tk_3DBorder border)
Canvases
void Tk_CanvasDrawableCoords(Tk_Canvas canvas, double x, double y,
short *drawableXPtr, short *drawableYPtr)
void Tk_CanvasEventuallyRedraw(Tk_Canvas canvas, int x1, int y1, int x2, int y2)
int Tk_CanvasGetCoord(Tcl_Interp *interp, Tk_Canvas canvas, char *string,
double *doublePtr)
Tk_CanvasTextInfo *Tk_CanvasGetTextInfo(Tk_Canvas canvas)
int Tk_CanvasPsBitmap(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap,
int x, int y, int width, int height)
int Tk_CanvasPsColor(Tcl_Interp *interp, Tk_Canvas canvas, XColor *colorPtr)
int Tk_CanvasPsFont(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Font font)
void Tk_CanvasPsPath(Tcl_Interp *interp, Tk_Canvas canvas, double *coordPtr,
int numPoints)
int Tk_CanvasPsStipple(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap)
double Tk_CanvasPsY(Tk_Canvas canvas, double y)
void Tk_CanvasSetStippleOrigin(Tk_Canvas canvas, GC gc)
int Tk_CanvasTagsParseProc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, char *value, char *widgRec, int offset)
char *Tk_CanvasTagsPrintProc(ClientData clientData, Tk_Window tkwin,
char *widgRec, int offset, Tcl_Fr eeProc **freeProcPtr)
Tk_Window Tk_CanvasTkwin(Tk_Canvas canvas)
void Tk_CanvasWindowCoords(Tk_Canvas canvas, double x, double y,
short *screenXPtr, short *screenYPtr)
void Tk_CreateItemT ype(Tk_ItemType *typePtr)
Pixmap Tk_GetPixmap(Display *display, Drawable d, int width, int height,
int depth)
Text
int Tk_CharBbox(Tk_TextLayout layout, int index, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)
Tk_TextLayout Tk_ComputeTextLayout(Tk_Font font, const char *string,
int numChars, int wrapLength, Tk_Justify justify, int flags, int *widthPtr,
int *heightPtr)
int Tk_DistanceToTextLayout(Tk_TextLayout layout, int x, int y)
void Tk_DrawChars(Display *display, Drawable drawable, GC gc, Tk_Font tkfont,
const char *source, int numChars, int x, int y)
void Tk_DrawTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int firstChar, int lastChar)
Font Tk_FontId(Tk_Font font)
void Tk_FreeFont(Tk_Font)
void Tk_FreeTextLayout(Tk_TextLayout textLayout)
Tk_Font Tk_GetFontFromObj(Tcl_Interp *interp, Tk_Window tkwin,
Tcl_Obj *objPtr)
void Tk_GetFontMetrics(Tk_Font font, Tk_FontMetrics *fmPtr)
Tk_Font Tk_GetFont(Tcl_Interp *interp, Tk_Window tkwin, const char *string)
int Tk_GetJustify(Tcl_Interp *interp, char *string, Tk_Justify *justifyPtr)
int Tk_IntersectTextLayout(Tk_TextLayout layout, int x, int y, int width, int height)
int Tk_MeasureChars(Tk_Font tkfont, const char *source, int maxChars,
int maxPixels, int flags, int *lengthPtr)
char *Tk_NameOfFont(Tk_Font font)
char *Tk_NameOfJustify(Tk_Justify justify)
int Tk_PointToChar(Tk_TextLayout layout, int x, int y)
int Tk_PostscriptFontName(Tk_Font tkfont, Tcl_DString *dsPtr)
void Tk_TextLayoutToPostscript(Tcl_Interp *interp, Tk_TextLayout layout)
int Tk_TextWidth(Tk_Font font, const char *string, int numChars)
void Tk_UnderlineChars(Display *display, Drawable drawable, GC gc,
Tk_Font tkfont, const char *source, int x, int y, int firstChar, int lastChar)
void Tk_UnderlineTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int underline)
The Selection
void Tk_ClearSelection(Tk_Window tkwin, Atom selection)
int Tk_ClipboardAppend(Tcl_Interp *interp, Tk_Window tkwin, Atom target,
Atom format, char *buffer)
int Tk_ClipboardClear(Tcl_Interp *interp, Tk_Window tkwin)
void Tk_CreateSelHandler(Tk_Window tkwin, Atom selection, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)
void Tk_DeleteSelHandler(Tk_Window tkwin, Atom selection, Atom target)
int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin, Atom selection,
Atom target, Tk_GetSelProc *proc, ClientData clientData)
void Tk_OwnSelection(Tk_Window tkwin, Atom selection, Tk_LostSelProc *proc,
ClientData clientData)
Geometry Management
void Tk_GeometryRequest(Tk_Window tkwin, int reqWidth, int reqHeight)
int Tk_InternalBorderWidth(Tk_Window tkwin)
void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeomMgr *mgrPtr,
ClientData clientData)
void Tk_MapWindow(Tk_Window tkwin)
void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y, int width, int height)
void Tk_MoveWindow(Tk_Window tkwin, int x, int y)
int Tk_ReqHeight(Tk_Window tkwin)
int Tk_ReqWidth(Tk_Window tkwin)
void Tk_ResizeWindow(Tk_Window tkwin, int width, int height)
void Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight,
int gridWidth, int gridHeight)
void Tk_SetInternalBorder(Tk_Window tkwin, int width)
void Tk_UnmapWindow(Tk_Window tkwin)
Application Startup and Initialization
int Tk_Init(Tcl_Interp *interp)
void Tk_Main(int argc, char **argv, Tcl_AppInitProc *appInitProc)
int Tk_ParseArgv(Tcl_Interp *interp, Tk_Window tkwin, int *argcPtr, char **argv,
Tk_ArgvInfo *argTable, int flags)
int Tk_SafeInit(Tcl_Interp *interp)
char *Tk_SetAppName(Tk_Window tkwin, char *name)
Error Handling
void Tk_DeleteErrorHandler(Tk_ErrorHandler handler)
Tk_ErrorHandler Tk_Cr eateErrorHandler(Display *display, int errNum, int request,
int minorCode, Tk_ErrorProc *errorProc, ClientData clientData)
Color
XColor *Tk_3DBorderColor(Tk_3DBorder border)
Colormap Tk_Color map(Tk_Window tkwin)
void Tk_FreeColor(XColor *colorPtr)
void Tk_FreeColor map(Display *display, Colormap colormap)
GC Tk_GCForColor(XColor *colorPtr, Drawable drawable)
XColor *Tk_GetColorByValue(Tk_Window tkwin, XColor *colorPtr)
XColor *Tk_GetColor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid name)
Color map Tk_GetColor map(Tcl_Interp *interp, Tk_Window tkwin, char *string)
char *Tk_NameOfColor(XColor *colorPtr)
void Tk_PreserveColormap(Display *display, Colormap colormap)
void Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)
int Tk_SetWindowVisual(Tk_Window tkwin, Visual *visual, int depth,
Colormap colormap)
Cursors
void Tk_DefineCursor(Tk_Window window, Tk_Cursor cursor)
void Tk_FreeCursor(Display *display, Tk_Cursor cursor)
Tk_Cursor Tk_GetCursor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)
Tk_Cursor Tk_GetCursorFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, char *mask, int width, int height, int xHot, int yHot, Tk_Uid fg,
Tk_Uid bg)
char *Tk_NameOfCursor(Display *display, Tk_Cursor cursor)
void Tk_UndefineCursor(Tk_Window window)
Miscellaneous
void Tk_FreeGC(Display *display, GC gc)
void Tk_FreeXId(Display *display, XID xid)
int Tk_GetAnchor(Tcl_Interp *interp, char *string, Tk_Anchor *anchorPtr)
int Tk_GetCapStyle(Tcl_Interp *interp, char *string, int *capPtr)
Tk_ItemType *Tk_GetItemTypes(void)
int Tk_GetJoinStyle(Tcl_Interp *interp, char *string, int *joinPtr)
int Tk_GetPixels(Tcl_Interp *interp, Tk_Window tkwin, char *string, int *intPtr)
int Tk_GetRelief(Tcl_Interp *interp, char *name, int *reliefPtr)
int Tk_GetScreenMM(Tcl_Interp *interp, Tk_Window tkwin, char *string,
double *doublePtr)
int Tk_GetScrollInfo(Tcl_Interp *interp, int argc, char **argv, double *dblPtr,
int *intPtr)
Tk_Uid Tk_GetUid(const char *string)
Visual *Tk_GetVisual(Tcl_Interp *interp, Tk_Window tkwin, char *string,
int *depthPtr, Color map *colormapPtr)
int Tk_Grab(Tcl_Interp *interp, Tk_Window tkwin, int grabGlobal)
char *Tk_NameOfAnchor(Tk_Anchor anchor)
char *Tk_NameOfCapStyle(int cap)
char *Tk_NameOfJoinStyle(int join)
char *Tk_NameOfRelief(int relief)
Alphabetical Summary of Functions
XColor *Tk_3DBorderColor(Tk_3DBorder border)
GC Tk_3DBorderGC(Tk_Window tkwin, Tk_3DBorder border, int which)
void Tk_3DHorizontalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftIn, int rightIn,
int topBevel, int relief)
void Tk_3DVerticalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height,
int leftBevel, int relief)
XSetWindowAttributes *Tk_Attributes(Tk_Window tkwin)
void Tk_BindEvent(Tk_BindingTable bindingTable, XEvent *eventPtr,
Tk_Window tkwin, int numObjects, ClientData *objectPtr)
void Tk_CanvasDrawableCoords(Tk_Canvas canvas, double x, double y,
short *drawableXPtr, short *drawableYPtr)
void Tk_CanvasEventuallyRedraw(Tk_Canvas canvas, int x1, int y1, int x2, int y2)
int Tk_CanvasGetCoord(Tcl_Interp *interp, Tk_Canvas canvas, char *string,
double *doublePtr)
Tk_CanvasTextInfo *Tk_CanvasGetTextInfo(Tk_Canvas canvas)
int Tk_CanvasPsBitmap(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap,
int x, int y, int width, int height)
int Tk_CanvasPsColor(Tcl_Interp *interp, Tk_Canvas canvas, XColor *colorPtr)
int Tk_CanvasPsFont(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Font font)
void Tk_CanvasPsPath(Tcl_Interp *interp, Tk_Canvas canvas, double *coordPtr,
int numPoints)
int Tk_CanvasPsStipple(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap)
double Tk_CanvasPsY(Tk_Canvas canvas, double y)
void Tk_CanvasSetStippleOrigin(Tk_Canvas canvas, GC gc)
int Tk_CanvasTagsParseProc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, char *value, char *widgRec, int offset)
char *Tk_CanvasTagsPrintProc(ClientData clientData, Tk_Window tkwin,
char *widgRec, int offset, Tcl_FreeProc **freeProcPtr)
Tk_Window Tk_CanvasTkwin(Tk_Canvas canvas)
void Tk_CanvasWindowCoords(Tk_Canvas canvas, double x, double y,
short *screenXPtr, short *screenYPtr)
void Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned long valueMask,
XSetWindowAttributes *attsPtr)
XWindowChanges *Tk_Changes(Tk_Window tkwin)
int Tk_CharBbox(Tk_TextLayout layout, int index, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)
Tk_Uid Tk_Class(Tk_Window tkwin)
void Tk_ClearSelection(Tk_Window tkwin, Atom selection)
int Tk_ClipboardAppend(Tcl_Interp *interp, Tk_Window tkwin, Atom target,
Atom format, char *buffer)
int Tk_ClipboardClear(Tcl_Interp *interp, Tk_Window tkwin)
Colormap Tk_Colormap(Tk_Window tkwin)
Tk_TextLayout Tk_ComputeTextLayout(Tk_Font font, const char *string,
int numChars, int wrapLength, Tk_Justify justify, int flags, int *widthPtr,
int *heightPtr)
int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)
int Tk_ConfigureValue(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)
int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char **argv, char *widgRec, int flags)
void Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)
Tk_Window Tk_CoordsToWindow(int rootX, int rootY, Tk_Window tkwin)
unsigned long Tk_CreateBinding(Tcl_Interp *interp,
Tk_BindingTable bindingTable, ClientData object, *eventString,
char *command, int append)
Tk_BindingTable Tk_CreateBindingTable(Tcl_Interp *interp)
Tk_ErrorHandler Tk_CreateErrorHandler(Display *display, int errNum, int request,
int minorCode, Tk_ErrorProc *errorProc, ClientData clientData)
void Tk_CreateEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)
void Tk_CreateGenericHandler(Tk_GenericProc *proc, ClientData clientData)
void Tk_CreateImageType(Tk_ImageT ype *typePtr)
void Tk_CreateItemType(Tk_ItemT ype *typePtr)
void Tk_CreatePhotoImageFor mat(Tk_PhotoImageFormat *formatPtr)
void Tk_CreateSelHandler(Tk_Window tkwin, Atom selection, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)
Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp, Tk_Window tkwin,
char *pathName, char *screenName)
Tk_Window Tk_CreateWindow(Tcl_Interp *interp, Tk_Window parent,
char *name, char *screenName)
int Tk_DefineBitmap(Tcl_Interp *interp, Tk_Uid name, char *source, int width,
int height)
void Tk_DefineCursor(Tk_Window window, Tk_Cursor cursor)
void Tk_DeleteAllBindings(Tk_BindingTable bindingTable, ClientData object)
void Tk_DeleteBindingTable(Tk_BindingTable bindingTable)
int Tk_DeleteBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)
void Tk_DeleteErrorHandler(Tk_ErrorHandler handler)
void Tk_DeleteEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)
void Tk_DeleteGenericHandler(Tk_GenericProc *proc, ClientData clientData)
void Tk_DeleteImage(Tcl_Interp *interp, char *name)
void Tk_DeleteSelHandler(Tk_Window tkwin, Atom selection, Atom target)
int Tk_Depth(Tk_Window tkwin)
void Tk_DestroyWindow(Tk_Window tkwin)
char *Tk_DisplayName(Tk_Window tkwin)
Display Tk_Display(Tk_Window tkwin)
int Tk_DistanceToTextLayout(Tk_TextLayout layout, int x, int y)
void Tk_Draw3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)
void Tk_Draw3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)
void Tk_DrawChars(Display *display, Drawable drawable, GC gc, Tk_Font tkfont,
const char *source, int numChars, int x, int y)
void Tk_DrawFocusHighlight(Tk_Window tkwin, GC gc, int width,
Drawable drawable)
void Tk_DrawTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int firstChar, int lastChar)
void Tk_Fill3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)
void Tk_Fill3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)
Tk_PhotoHandle Tk_FindPhoto(Tcl_Interp *interp, char *imageName)
Font Tk_FontId(Tk_Font font)
void Tk_Free3DBorder(Tk_3DBorder border)
void Tk_FreeBitmap(Display *display, Pixmap bitmap)
void Tk_FreeColor(XColor *colorPtr)
void Tk_FreeColormap(Display *display, Colormap colormap)
void Tk_FreeCursor(Display *display, Tk_Cursor cursor)
void Tk_FreeFont(Tk_Font)
void Tk_FreeGC(Display *display, GC gc)
void Tk_FreeImage(Tk_Image image)
void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec, Display *display,
int needFlags)
void Tk_FreePixmap(Display *display, Pixmap pixmap)
void Tk_FreeTextLayout(Tk_TextLayout textLayout)
void Tk_FreeXId(Display *display, XID xid)
GC Tk_GCForColor(XColor *colorPtr, Drawable drawable)
void Tk_GeometryRequest(Tk_Window tkwin, int reqWidth, int reqHeight)
Tk_3DBorder Tk_Get3DBorder(Tcl_Interp *interp, Tk_Window tkwin,
Tk_Uid colorName)
void Tk_GetAllBindings(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object)
int Tk_GetAnchor(Tcl_Interp *interp, char *string, Tk_Anchor *anchorPtr)
char *Tk_GetAtomName(Tk_Window tkwin, Atom atom)
char *Tk_GetBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)
Pixmap Tk_GetBitmapFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, int width, int height)
Pixmap Tk_GetBitmap(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)
int Tk_GetCapStyle(Tcl_Interp *interp, char *string, int *capPtr)
XColor *Tk_GetColorByValue(Tk_Window tkwin, XColor *colorPtr)
XColor *Tk_GetColor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid name)
Colormap Tk_GetColor map(Tcl_Interp *interp, Tk_Window tkwin, char *string)
Tk_Cursor Tk_GetCursorFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, char *mask, int width, int height, int xHot, int yHot, Tk_Uid fg,
Tk_Uid bg)
Tk_Cursor Tk_GetCursor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)
Tk_Font Tk_GetFontFromObj(Tcl_Interp *interp, Tk_Window tkwin,
Tcl_Obj *objPtr)
void Tk_GetFontMetrics(Tk_Font font, Tk_FontMetrics *fmPtr)
Tk_Font Tk_GetFont(Tcl_Interp *interp, Tk_Window tkwin, const char *string)
GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask, XGCValues *valuePtr)
ClientData Tk_GetImageMasterData(Tcl_Interp *interp, char *name,
Tk_ImageT ype **typePtrPtr)
Tk_Image Tk_GetImage(Tcl_Interp *interp, Tk_Window tkwin, char *name,
Tk_ImageChangedProc *changeProc, ClientData clientData)
Tk_ItemType *Tk_GetItemTypes(void)
int Tk_GetJoinStyle(Tcl_Interp *interp, char *string, int *joinPtr)
int Tk_GetJustify(Tcl_Interp *interp, char *string, Tk_Justify *justifyPtr)
int Tk_GetNumMainWindows(void)
Tk_Uid Tk_GetOption(Tk_Window tkwin, char *name, char *className)
int Tk_GetPixels(Tcl_Interp *interp, Tk_Window tkwin, char *string, int *intPtr)
Pixmap Tk_GetPixmap(Display *display, Drawable d, int width, int height,
int depth)
int Tk_GetRelief(Tcl_Interp *interp, char *name, int *reliefPtr)
void Tk_GetRootCoords(Tk_Window tkwin, int *xPtr, int *yPtr)
int Tk_GetScreenMM(Tcl_Interp *interp, Tk_Window tkwin, char *string,
double *doublePtr)
int Tk_GetScrollInfo(Tcl_Interp *interp, int argc, char **argv, double *dblPtr,
int *intPtr)
int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin, Atom selection,
Atom target, Tk_GetSelProc *proc, ClientData clientData)
Tk_Uid Tk_GetUid(const char *string)
void Tk_GetVRootGeometry(Tk_Window tkwin, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)
Visual *Tk_GetVisual(Tcl_Interp *interp, Tk_Window tkwin, char *string,
int *depthPtr, Colormap *colormapPtr)
int Tk_Grab(Tcl_Interp *interp, Tk_Window tkwin, int grabGlobal)
void Tk_HandleEvent(XEvent *eventPtr)
int Tk_Height(Tk_Window tkwin)
Tk_Window Tk_IdToWindow(Display *display, Window window)
void Tk_ImageChanged(Tk_ImageMaster master, int x, int y, int width, int height,
int imageWidth, int imageHeight)
int Tk_Init(Tcl_Interp *interp)
Atom Tk_InternAtom(Tk_Window tkwin, char *name)
int Tk_InternalBorderWidth(Tk_Window tkwin)
int Tk_IntersectTextLayout(Tk_TextLayout layout, int x, int y, int width, int height)
int Tk_IsContainer(Tk_Window tkwin)
int Tk_IsEmbedded(Tk_Window tkwin)
int Tk_IsMapped(Tk_Window tkwin)
int Tk_IsTopLevel(Tk_Window tkwin)
void Tk_MainLoop(void)
Tk_Window Tk_MainWindow(Tcl_Interp *interp)
void Tk_Main(int argc, char **argv, Tcl_AppInitProc *appInitProc)
void Tk_MaintainGeometry(Tk_Window slave, Tk_Window master, int x, int y,
int width, int height)
void Tk_MakeWindowExist(Tk_Window tkwin)
void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeomMgr *mgrPtr,
ClientData clientData)
void Tk_MapWindow(Tk_Window tkwin)
int Tk_MeasureChars(Tk_Font tkfont, const char *source, int maxChars,
int maxPixels, int flags, int *lengthPtr)
void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y, int width, int height)
void Tk_MoveToplevelWindow(Tk_Window tkwin, int x, int y)
void Tk_MoveWindow(Tk_Window tkwin, int x, int y)
char *Tk_NameOf3DBorder(Tk_3DBorder border)
char *Tk_NameOfAnchor(Tk_Anchor anchor)
char *Tk_NameOfBitmap(Display *display, Pixmap bitmap)
char *Tk_NameOfCapStyle(int cap)
char *Tk_NameOfColor(XColor *colorPtr)
char *Tk_NameOfCursor(Display *display, Tk_Cursor cursor)
char *Tk_NameOfFont(Tk_Font font)
char *Tk_NameOfImage(Tk_ImageMaster imageMaster)
char *Tk_NameOfJoinStyle(int join)
char *Tk_NameOfJustify(Tk_Justify justify)
char *Tk_NameOfRelief(int relief)
Tk_Uid Tk_Name(Tk_Window tkwin)
Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)
int Tk_Offset(type, field)
void Tk_OwnSelection(Tk_Window tkwin, Atom selection, Tk_LostSelProc *proc,
ClientData clientData)
Tk_Window Tk_Parent(Tk_Window tkwin)
int Tk_ParseArgv(Tcl_Interp *interp, Tk_Window tkwin, int *argcPtr, char **argv,
Tk_ArgvInfo *argTable, int flags)
char *Tk_PathName(Tk_Window tkwin)
void Tk_PhotoBlank(Tk_PhotoHandle handle)
void Tk_PhotoExpand(Tk_PhotoHandle handle, int width, int height)
int Tk_PhotoGetImage(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr)
void Tk_PhotoGetSize(Tk_PhotoHandle handle, int *widthPtr, int *heightPtr)
void Tk_PhotoPutBlock(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr,
int x, int y, int width, int height)
void Tk_PhotoPutZoomedBlock(Tk_PhotoHandle handle,
Tk_PhotoImageBlock *blockPtr, int x, int y, int width, int height, int zoomX,
int zoomY, int subsampleX, int subsampleY)
void Tk_PhotoSetSize(Tk_PhotoHandle handle, int width, int height)
int Tk_PointToChar(Tk_TextLayout layout, int x, int y)
int Tk_PostscriptFontName(Tk_Font tkfont, Tcl_DString *dsPtr)
void Tk_PreserveColormap(Display *display, Colormap colormap)
void Tk_QueueWindowEvent(XEvent *eventPtr, Tcl_QueuePosition position)
void Tk_RedrawImage(Tk_Image image, int imageX, int imageY, int width,
int height, Drawable drawable, int drawableX, int drawableY)
int Tk_ReqHeight(Tk_Window tkwin)
int Tk_ReqWidth(Tk_Window tkwin)
void Tk_ResizeWindow(Tk_Window tkwin, int width, int height)
int Tk_RestackWindow(Tk_Window tkwin, int aboveBelow, Tk_Window other)
Tk_RestrictProc *Tk_RestrictEvents(Tk_RestrictProc *proc, ClientData arg,
ClientData *prevArgPtr)
int Tk_SafeInit(Tcl_Interp *interp)
int Tk_ScreenNumber(Tk_Window tkwin)
Scr een *Tk_Scr een(Tk_Window tkwin)
char *Tk_SetAppName(Tk_Window tkwin, char *name)
void Tk_SetBackgroundFromBorder(Tk_Window tkwin, Tk_3DBorder border)
void Tk_SetClass(Tk_Window tkwin, char *className)
void Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight, int gridWidth,
int gridHeight)
void Tk_SetInternalBorder(Tk_Window tkwin, int width)
void Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)
void Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)
void Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)
void Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)
void Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)
void Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)
int Tk_SetWindowVisual(Tk_Window tkwin, Visual *visual, int depth,
Colormap colormap)
void Tk_SizeOfBitmap(Display *display, Pixmap bitmap, int *widthPtr,
int *heightPtr)
void Tk_SizeOfImage(Tk_Image image, int *widthPtr, int *heightPtr)
int Tk_StrictMotif(Tk_Window tkwin)
void Tk_TextLayoutToPostscript(Tcl_Interp *interp, Tk_TextLayout layout)
int Tk_TextWidth(Tk_Font font, const char *string, int numChars)
void Tk_UndefineCursor(Tk_Window window)
void Tk_UnderlineChars(Display *display, Drawable drawable, GC gc,
Tk_Font tkfont, const char *source, int x, int y, int firstChar, int lastChar)
void Tk_UnderlineTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int underline)
void Tk_Ungrab(Tk_Window tkwin)
void Tk_UnmaintainGeometry(Tk_Window slave, Tk_Window master)
void Tk_UnmapWindow(Tk_Window tkwin)
void Tk_UnsetGrid(Tk_Window tkwin)
void Tk_UpdatePointer(Tk_Window tkwin, int x, int y, int state)
Visual *Tk_Visual(Tk_Window tkwin)
int Tk_Width(Tk_Window tkwin)
Window Tk_WindowId(Tk_Window tkwin)
int Tk_X(Tk_Window tkwin)
int Tk_Y(Tk_Window tkwin)
Chapter 6. Expect
Expect, written by Don Libes, is a tool for communicating with interactive programs. Expect is not part of the core Tcl/Tk package, but can be obtained for free at http://expect.nist.gov. This chapter covers Version 5.25.0.
Expect can automate tasks that would normally require a user to interactively communicate with a program. Expect is a Tcl interpreter extended with additional commands. It can be run as the standalone programs expect and expectk or used with other Tcl language extensions.
Expect was the first major Tcl-based application. This chapter describes the features that Expect adds to the Tcl language.
Overview
You normally run Expect by invoking the program expect (or expectk if you also want Tk). Expect is a Tcl interpreter with about 40 additional commands. This section briefly describes the most common commands.
The spawn command creates a new process that executes a specified program. It creates a connection to that process so that it is accessible by using other Expect commands.
The send command passes commands to a process started by spawn. It sends strings, just as a user would type if interactively running the spawned program.
The expect command is the heart of the Expect program. It compares the output from one or more spawned processes, looking for a match against a string or pattern. If a match is found, it executes Tcl code associated with the pattern. The patterns can be simple strings, glob-style patterns, or regular expressions. Multiple patterns and actions can be specified.
The interact command passes control of a spawned process back to the user. This allows the user to connect to the process interactively. For example, an Expect script could log a user on to a remote system, start a text editor, then pass control back to the user. Like expect, it per forms pattern matching that allows actions to be performed. In our editor example, the script could watch for a pattern that indicated that the text editor program had exited, then pass control back to the Expect script to automatically perform cleanup and log out the user.
The close command closes the connection to a spawned process. This is not always needed, as Expect closes all open connections when it exits.
Example
This simple example illustrates logging in to a host using anonymous FTP and then passing control back to the user:
set host localhost
set name myname@myhost
spawn ftp $host
expect "Name (*):"
send "anonymous\r"
expect "Password:"
send "$name\r"
expect {
"ftp>" {
interact
}
"Login failed." {
exit 1
}
timeout {
exit 1
}
}
Command-Line Options
The expect program accepts the following command-line options:
expect [-v] [-d] [-D n] [-i] [-n] [-N] [-c cmds] [[-f|-b] cmdfile] [--] [args]
-v
Display version number and exit.
-d
Enable diagnostic output.
-D n
Enable interactive debugger if numeric argument n is non-zero.
-i
Run in interactive mode.
-n
Do not read the user's startup file (˜/.expect.rc).
-N
Do not read the global startup file ($exp_library/expect.rc).
-c cmds
Specify commands to be executed before starting script. The commands can be separated by semicolons. Multiple -c options can be specified.
-f
Specify the file from which to read commands.
-b
Same as -f, but read the input file one line at a time rather than in its entirety.
cmdfile
The file containing Tcl commands to execute. For standard input use "-".
--
Denote the end of Expect options.
args
Additional arguments to pass to the Tcl program.
The expectk program accepts the following command-line options:
expectk [options] [cmdfile] [args]
-version
Display version number and exit.
-Debug n
Enable interactive debugger if numeric argument n is non-zero.
-interactive
Run in interactive mode.
-command cmds
Specify commands to be executed before starting script. The commands can be separated by semicolons. Multiple -command options can be specified.
-diag
Enable diagnostic output.
-norc
Do not read the user's startup file (˜/.expect.rc).
-NORC
Do not read the global startup file ($exp_library/expect.rc).
-file
Specify the file from which to read commands.
-buffer
Same as -file, but read the input file one line at a time rather than in its entirety.
cmdfile
The file containing Tcl commands to execute. For standard input use "-".
--
Denote the end of Expect options.
args
Additional arguments to pass to the Tcl program.
Expectk also accepts any of the options supported by the wish program.
Environment Variables
The following environment variables are used by the Expect program:
DOTDIR
Directory in which to look for the user-specific startup file .expect.rc. The default is the user's home directory.
EXPECT_DEBUG_INIT
Initialization command to be executed by the debugger on startup.
EXPECT_PROMPT
By convention, used by some applications to specify a regular expression that matches the end of the user's login prompt.
Special Variables
The following variables have special meaning to the Expect program.
spawn_id
Spawn descriptor for the current spawned process (can be set).
user_spawn_id
Spawn descriptor for user input.
tty_spawn_id
Spawn descriptor for /dev/tty.
any_spawn_id
Used in expect command to match input on any active spawn descriptor.
error_spawn_id
Spawn descriptor for standard error output.
argv
List containing the command-line arguments.
argc
The number of elements in argv.
argv0
The name of the script or program being run.
exp_exec_library
Directory containing architecture-dependent library files.
exp_library
Directory containing architecture-independent library files.
expect_out
Array containing output strings collected by the expect command (see the description of expect, later in this chapter).
expect_out(buffer)
Matching any previously unmatched output.
expect_out(n, string)
Substring that matched regular expression n, where n is 1 through 9.
expect_out(0, string)
String that matched entire pattern.
expect_out(n, start)
Starting index in buffer of regular expression n.
expect_out(n, end)
Ending index in buffer of regular expression n.
expect_out(spawn_id)
Spawn ID associated with matching output.
spawn_out(slave, name)
Name of the pty slave device.
interact_out
Array containing output strings collected by interact command, in the same format as expect_out.
send_human
Controls behavior of send with the -h option. A list of five numeric elements: (1) interarrival time of characters, (2) interarrival time of word endings, (3) variability parameter, (4) minimum interarrival time, and (5) maximum interarrival time. All times are in decimal seconds.
send_slow
Controls behavior of send with the -s option. A list of two numeric elements: (1) number of bytes to send atomically, and (2) number of seconds between sending.
stty_init
Holds stty command settings to be used when initializing a pty for a spawned process.
timeout
Time, in seconds, before expect command will time out. A value of −1 specifies no timeout.
Grouped Summary of Commands
Process Interaction
Utility Commands
debug | Start, stop, or return status of the debugger. |
exit | Cause Expect to exit. |
exp_getpid | Return current process ID. |
exp_internal | Enable, disable, or log diagnostic output. |
exp_open | Convert spawn ID to Tcl file descriptor. |
exp_pid | Return process ID for spawned process. |
expect_version | Return, generate an error, or exit based on Expect version. |
fork | Create a new process. |
log_file | Start or stop logging of session to a file. |
log_user | Start or stop logging of spawned process to standard output. |
match_max | Set or return size of expect buffer. |
parity | Set or return parity generation setting. |
remove_nulls | Set or return null character setting. |
sleep | Delay execution. |
strace | Trace statement execution. |
stty | Change terminal mode. |
system | Execute shell command. |
timestamp | Return a timestamp. |
trap | Set or return commands to be executed on receipt of a signal. |
Synonyms
To reduce the likelihood of name conflicts with other Tcl extensions, most Expect commands have synonyms that are prefixed with exp_.
exp_close | Synonym for close |
exp_debug | Synonym for debug |
exp_disconnect | Synonym for disconnect |
exp_exit | Synonym for exit |
exp_fork | Synonym for fork |
exp_inter_return | Synonym for inter_return |
exp_interact | Synonym for interact |
exp_interpreter | Synonym for interpreter |
exp_log_file | Synonym for log_file |
exp_log_user | Synonym for log_user |
exp_match_max | Synonym for match_max |
exp_overlay | Synonym for overlay |
exp_ parity | Synonym for parity |
exp_remove_nulls | Synonym for remove_nulls |
exp_send | Synonym for send |
exp_send_error | Synonym for send_error |
exp_send_log | Synonym for send_log |
exp_send_tty | Synonym for send_tty |
exp_send_user | Synonym for send_user |
exp_sleep | Synonym for sleep |
exp_spawn | Synonym for spawn |
exp_strace | Synonym for strace |
exp_stty | Synonym for stty |
exp_system | Synonym for system |
exp_timestamp | Synonym for timestamp |
exp_trap | Synonym for trap |
exp_version | Synonym for expect_version |
exp_wait | Synonym for wait |
Alphabetical Summary of Commands
In addition to the following commands, a number of synonyms are provided to prevent name conflicts with other libraries. See the preceding "Synonyms" section.
Name
close
close [-slave] [-onexec 0|1] [-i spawn_id]
Close the connection to a spawned process, by default the current process.
Options
-slave
Close the slave pty associated with the spawn ID.
-onexec 0|1
With a 0 argument, the spawn ID will be left open in any new processes. If 1, the ID will be closed (the default).
-i spawn_id
Specify the spawn ID of the process to close.
Name
debug
debug [[-now] 0|1]
Control the Tcl debugger. With no arguments, return 1 if the debugger is running; otherwise, return 0.
An argument of 1 starts the debugger at execution of the next statement. An argument of 0 stops the debugger.
The -now option starts the debugger immediately, rather than at the next statement.
Name
disconnect
disconnect
Disconnect a forked process from the terminal. The process continues running in the background with its standard input and output redirected to /dev/null.
Name
exit
exit [-onexit [handler]] [-noexit] [status]
Cause the Expect program to exit. Return the numeric exit status status(default is 0).
The -onexit option specifies a command to use as the exit handler. By default the current exit handler is used.
The -noexit option causes Expect to prepare to exit, calling user-defined and internal exit handlers, but not actually returning control to the operating system.
When the end of a script is reached, an exit command is automatically executed.
Name
exp_continue
exp_continue
Within an expect command, continues execution rather than returning.
Name
exp_getpid
exp_getpid
Return the process ID of the current process.
Name
exp_internal
exp_internal [-info] [-f file] value
Control output of diagnostic information about data received and pattern matching. Display to standard output is enabled if the numeric value parameter is non-zero, and disabled if it is zero.
Output can be sent to a file using the -f option and a filename argument.
The -info option causes the current status of diagnostic output to be displayed.
Name
exp_open
exp_open [-leaveopen] [-i spawn_id]
Return a Tcl file identifier corresponding to the process opened with spawn ID spawn_id (or the current spawn ID, if the -i option is not used).
Normally the spawn ID should no longer be used. With the -leaveopen option, it is left open for access using Expect commands.
Name
exp_pid
exp_pid [-i spawn_id]
Return the process ID corresponding to the given spawn ID (by default the current spawn ID).
Name
expect
expect [[options] pat1 body1] ... [options] patn [bodyn]
Compare output from one or more spawned processes against patterns. If a match is found, execute the associated code body and return.
The exp_continue command inside a body causes the expect statement to continue execution rather than returning.
Patterns
The pattern can be a string. By default, shell globbing is used, but this can be changed using options listed in the next section. A pattern can also be one of the following special names:
eof
Matches end of file.
full_buffer
Matches when maximum number of bytes has been received with no pattern match.
null
Matches a single ASCII NUL (0) character.
timeout
Matches when timeout occurs with no pattern matched.
default
Matches if timeout or eof occur.
Options
-timeout seconds
Specify amount to wait before timing out.
-i spawn_id_list
Match against the listed spawn IDs; either a literal list or a global variable name containing the list.
-gl
Use glob-style pattern matching (default).
-re
Use regular expression pattern matching.
-ex
Use exact string pattern matching.
-nocase
Make matching case-insensitive.
Name
expect_after
expect_after options
Accept the same options as the expect command, but return immediately. Patterns and actions are implicitly added to the next expect command having the same spawn ID. Matching patterns are executed after those in the expect command, in the same context.
Expect tests expect_before patterns first, expect patterns next, and expect_after last. The first successful match gets its action executed. Patterns are tested in the order listed.
Name
expect_background
expect_background options
Accept the same options as the expect command, but return immediately. Patterns and actions are tested whenever input arrives. Must be used outside of an expect command.
Name
expect_before
expect_before options
Accept the same options as the expect command, but return immediately. Patterns and actions are implicitly added to the next expect command having the same spawn ID. Matching patterns are executed before those in the expect command, in the same context.
Expect tests expect_before patterns first, expect patterns next, and expect_after last. The first successful match gets its action executed. Patterns are tested in the order listed.
Name
expect_tty
expect_tty options
Accept the same options as the expect command, but read input from the user using /dev/tty.
Name
expect_user
expect_user options
Accept the same options as the expect command, but read input from the user using standard input.
Name
expect_version
expect_version [[-exit] version]
Test version of Expect for compatibility. With no arguments, return the version of Expect. With an argument, generate an error if the version of Expect is different from the one specified.
The version parameter is a string in the form major-number.Minor-number.patch-level (e.g., 5.24.1). With the -exit option, the command also exits if the version of Expect is not the same as specified.
Name
fork
fork
Create a new process that is an exact copy of the current one. Returns 0 to the new process and the new process ID to the parent process. Returns −1 if the new process could not be created.
Name
inter_return
inter_return
Cause a currently active interact or interpreter command to perform a return in its caller. This differs from return. For example, if a procedure called interact which then executed the action inter_return, the procedure would return to its caller.
Name
interact
interact [[options] string1 body1] ... [[options] stringn [bodyn]]
Pass control of a spawned process to the user. Checks user input against zero or more strings. If a match occurs, the corresponding body is executed.
Patterns
The pattern can be a string. By default, exact string matching is used but can be changed using options listed in the next section. A pattern can also be one of the following special names:
eof
Matches end of file.
null
Matches a single ASCII NUL (0) character.
timeout seconds
Matches when timeout occurs since the last pattern was matched.
Options
-re
Use regular expression pattern matching.
-ex
Use exact string pattern matching (default).
-indices
Used in conjunction with -re to store indices of matching patterns in the interact_out array.
-output spawn_id_list
Specify a list of spawn IDs to be used for output.
-input spawn_id_list
Specify a list of spawn IDs to be used for input.
-iwrite
Cause all matches to set the variable interact_out (spawn_id) before per forming their associated action.
-reset
Reset the terminal mode to the settings it had before interact was executed.
-echo
Send the characters that match the following pattern back to the process that generated them.
-nobuffer
Send characters that match the pattern to the output process immediately as they are read.
-o
Apply any following pattern body pairs against the output of the current process.
-i
Introduce a replacement for the current spawn ID when no other -input or -output flags are used.
-u spawn_id
Cause the currently spawned process to interact with the named process rather than the user.
Name
interpreter
interpreter
Cause the user to be interactively prompted for Tcl commands. The return and inter_return commands can be used to return to the Expect script.
Name
log_file
log_file [options] [[-a] file]
Record a transcript of the session to file file. With no file argument, stop recording.
Options
-open
The file parameter is an open Tcl file identifier. The identifier should no longer be used.
-leaveopen
The file parameter is an open Tcl file identifier. The identifier can continue to be used.
-a
Log all output, including that suppressed by the log_user command.
-noappend
Truncate existing output file (default is to append).
-info
Display the current status of transcript recording.
Name
log_user
log_user -info|0|1
Control the logging of send/expect dialog to standard output. An argument of 1 enables logging, and 0 disables it. With no arguments or the -info option, displays the current setting.
Name
match_max
match_max [-d] [-i spawn_id] [size]
Set the size of the internal expect buffer to size bytes. With no size parameter, returns the current size. The -d option makes the specified size become the default value (the initial default is 2000). The -i option allows setting the buffer size for the given spawn ID rather than the current process.
Name
overlay
overlay [-# spawn_id...] program [args]
Execute program program and optional arguments in place of the current Expect program. Spawn IDs can be mapped to file identifiers for the new process by specifying file number and spawn ID pairs.
Example
overlay −0 $spawn_id −1 $spawn_id −2 $spawn_id emacs
Name
parity
parity [-d] [-i spawn_id] [value]
Control handling of parity bits from the output of the current spawned process. A value of 0 causes parity to be stripped; non-zero values retain parity. With the -d option, makes the specified setting the default parity (the initial default is 1). With no value parameter, returns the current setting. The -i option allows specifying another spawn ID to be used.
Name
remove_nulls
remove_nulls [-d] [-i spawn_id] [value]
Control handling of nulls from the output of the current spawned process. A value of 1 causes null characters to be removed; non-zero values retain null characters. With the -d option, makes the specified setting the default value (the initial default is 1). With no value parameter, returns the current setting. The -i option lets you specify another spawn ID to be used.
Name
send
send [options] string
Send a string to a spawned process.
Options
--
Indicate the end of options.
-i spawn_id
Send the string to the specified spawn ID.
-raw
Disable the translation of newline to return-newline when sending to the user terminal.
-null num
Send num null characters (one if num is omitted).
-break
Send a break character (applicable only for terminal devices).
-s
Send output slowly using the settings of the send_slow variable.
-h
Send output, like a human typing, using the settings of the send_human variable.
Note that send conflicts with the Tk command of the same name. Use exp_send instead.
Name
send_error
send_error [options] string
Like the send command, except output is sent to standard error.
Name
send_log
send_log [--] string
Like the send command, except output is sent to the log file opened using the log_file command.
Name
send_tty
send_tty [options] string
Like the send command, except output is sent to /dev/tty.
Name
send_user
send_user [options] string
Like the send command, except output is sent to standard output.
Name
sleep
sleep seconds
Delay execution of the current program for seconds seconds. The parameter is a floating-point number.
Name
spawn
spawn [args] program [args]
Create a new process executing program and optional arguments args. Sets the variable spawn_id to the spawn ID for the new process and makes it the default spawn ID. Returns the Unix process ID of the new process, or 0 if the process could not be spawned.
Options
-noecho
Disable echo of command name and arguments.
-console
Redirect console output to the spawned process.
-nottycopy
Skip initialization of spawned process pty to user's tty settings.
-nottyinit
Skip initialization of spawned process pty to sane values.
-open fileid
Open an existing Tcl file identifier rather than a process. The identifier should no longer be used.
-leaveopen fileid
Open an existing Tcl file identifier rather than a process. The identifier can continue to be used.
-pty
Open a pty but do not spawn a process.
-ignore signal
Ignore the named signal in the spawned process. More than one -ignore option can be specified.
Name
strace
strace [-info] [level]
Display statements before being executed. Statements are traced as deep as stack level level. The -info option displays the current trace setting.
Name
stty
stty args
Set terminal settings. The arguments take the same form as the stty shell command.
Name
system
system args
Execute args as a shell command, with no redirection and waiting until the command completes.
Name
timestamp
timestamp [options]
Return a timestamp. With no arguments, returns the number of seconds since the start of the epoch.
Options
-format format-string
Return time formatted using a format string. The string follows the format of the POSIX strftime function, as described below. This command is deprecated; use the Tcl clock command instead.
-seconds source
Return a timestamp based on the time source, expressed as a number of seconds since the start of the epoch.
-gmt
Use Greenwitch Mean Time (UTC) rather than the local time zone.
Format Strings
%a | Abbreviated weekday name |
%A | Full weekday name |
%b | Abbreviated month name |
%B | Full month name |
%c | Date and time, as in Wed Oct 6 11:45:56 1993 |
%d | Day of the month (01–31) |
%H | Hour (00–23) |
%I | Hour (01–12) |
%j | Day (001–366) |
%m | Month (01–12) |
%M | Minute (00–59) |
%p | A.M. or P.M. |
%S | Second (00–61) |
%u | Day (1–7, Monday is first day of week) |
%U | Week (00–53, first Sunday is first day of week one) |
%V | Week (01–53, ISO 8601 style) |
%w | Day (0–6) |
%W | Week (00–53, first Monday is first day of week one) |
%x | Date and time, as in Wed Oct 6 1993 |
%X | Time, as in 23:59:59 |
%y | Year (00–99) |
%Y | Year, as in 1993 |
%Z | Time zone (or nothing if not determinable) |
%% | A bare percent sign |
Name
trap
trap [options] [[command] signal-list]
Set exception handling behavior. The command command will be executed when any of the signals in the list signal-list occurs.
The command can be a Tcl command or the special values SIG_IGN (ignore) or SIG_DFL (use default action). The signals can be specified by number or name.
Options
-code
Use return code of the handler command.
-interp
Evaluate command using the context active at the time of exception.
-name
Return signal name of the trap command currently being executed.
-max
Return highest available signal number.
Example
trap {send_user "Control-C pressed"} SIGINT
Name
wait
wait [-i spawn_id] [-nowait] [args]
Wait until a spawned process terminates. By default the current process is waited for; the -i option can specify another spawn ID.
The command returns a list of four numbers: (1) the process ID for which to wait, (2) the spawn ID of the process for which to wait, (3) 0 for success or −1 if error occurred, and (4) the return status or error status of the terminating process. Additional optional information may be returned, indicating the reason for termination.
The -nowait option causes an immediate return. The process can then terminate later without an explicit wait command.
Chapter 7. [incr Tcl]
[incr Tcl], written by Michael McLennan, is a Tcl extension that adds support for object-oriented programming. Loosely based on the syntax of C++, it provides support for encapsulating Tcl code into classes that can be instantiated as objects.
[incr Tcl] is not part of the core Tcl/Tk package, but can be obtained for free at http://www.tcltk.com/itcl. This chapter covers Version 3.0. [incr Tcl] provides the foundation for [incr Tk], which is discussed in Chapter 8, [incr Tk].
In general, [incr Tcl] is intended to make it easier to develop and maintain large programs written in Tcl and to support Tcl extensions.
Basic Class Definition
An [incr Tcl] class definition takes the form shown here. Each of the commands within the class definition are optional and can be listed in any order. The parameters args, init, body, and config are Tcl lists.
class className {
inherit baseClass....
constructor args [init] body
destructor body
method name [args] [body]
proc name [args] [body]
variable varName [init] [config]
common varName [init]
public command [arg ...]
protected command [arg...]
private command [arg...]
set varName [value]
array option [arg ...]
}
Special Variables
itcl::library
Name of directory containing library of [incr Tcl] scripts; can be set using ITCL_LIBRARY environment variable
itcl::patchLevel
Current patch level of [incr Tcl]
itcl::purist
When 0, enables backward-compatibility mode for Tk widget access
itcl::version
Current revision level of [incr Tcl]
Group Listing of Commands
Classes
body | Change the body of a class method or procedure. |
class | Create a class of objects. |
configbody | Change the configuration code for a public variable. |
itcl_class | Obsolete; see class. |
Objects
className | Create an object belonging to class className. |
objName | Invoke a method to manipulate object objName. |
delete | Delete an object, class, or namespace. |
Miscellaneous
code | Capture the namespace context for a code fragment. |
ensemble | Create or modify a composite command. |
find | Search for classes and objects. |
itcl_info | Obsolete; see find. |
local | Create an object local to a procedure. |
scope | Capture the namespace context for a variable. |
Example
The following example illustrates a small class with several methods and some code to exercise it:
class Toaster {
private variable toastTime 10
constructor {} {
puts "Toaster created"
}
destructor {
puts "Toaster destroyed"
}
method getToastTime {} {
return $toastTime
}
method setToastTime {newToastTime} {
set toastTime $newToastTime
}
method toast {} {
puts "Toaster is toasting..."
after [expr $toastTime*1000]
puts "\aToast is ready!"
}
method clean {} {
puts "Cleaning toaster..."
after 2000
puts "Toaster is clean"
}
}
puts "Starting test program"
Toaster machine
machine clean
machine setToastTime 5
puts "Toast time set to [machine getToastTime]"
machine toast
delete object machine
Alphabetical Summary of Commands
Name
className
className objName [arg...]
Create an object of class className with name objName. Any arguments are passed to the constructor. The string #auto inside an objName is replaced with a unique automatically generated name.
Name
objName
objName method [arg...]
Invoke method method on object objName. Any arguments are passed as the argument list of the method. The method can be constructor, destructor, a method appearing in the class definition, or one of the built-in methods listed below.
objName cget -varName
Return the current value of public variable varName.
objName configure [-varname] [value]...
Provide access to public variables. With no arguments, return a list describing all public variables. Each element contains a variable name, its initial value, and its current value. With a single -varname option, return the same information for one variable. With one or more -varname -value pairs, set public variable varname to value value. Any configbody code associated with the variable is also executed.
objName isa className
Return true if className can be found in the object's heritage; otherwise, return false.
objName info option [args...]
Return information about objName or its class definition. Accepts any of the arguments for the Tcl info command, as well as the following:
objName info class
Return the name of the most specific class for object objName.
objName info inherit
Return the list of base classes as they were defined in the inherit command, or an empty string if this class has no base classes.
objName info heritage
Return the current class name and the entire list of base classes in the order that they are traversed for member lookup and object destruction.
objName info function [cmdName] [-protection] [-type] [-name] [-args] [-body]
With no arguments, return a list of all class methods and procedures. If cmd-Name is specified, return information for a specific method or procedure. If no flags are specified, return a list with the following elements: the protection level, the type (method/proc), the qualified name, the argument list, and the body. Flags can be used to request specific elements from this list.
objName info variable [varName] [-protection] [-type] [-name] [-init] [-value] [-config]
With no arguments, return a list of all object-specific variables and common data members. If varName is specified, return information for a specific data member. If no flags are specified, return a list with the following elements: the protection level, the type (variable/common), the qualified name, the initial value, and the current value. If varName is a public variable, the config-body code is included in this list. Flags can be used to request specific elements from this list.
Name
body
body className::function args body
Define or redefine a class method or procedure that was declared in a class command. The name of the method or procedure is specified by class-Name::function; the arguments are specified using the list args, followed by the Tcl command script body.
Name
class
class className definition
Define a new class named className. The properties of the class are described by definition, a list containing any of the following Tcl statements:
inherit [baseClass...]
Cause class to inherit characteristics from one or more existing base classes.
constructor args [init] body
Define the argument list and body for the constructor method called when an object is created. Can optionally specify init statement to pass parameters to base class constructors. Constructor always returns the class name.
destructor body
Define the code body for the destructor method called when an object is deleted.
method name [args] [body]
Declare a method named name. Can define the argument list args and code body body. The body command can define or redefine the method body outside of the class definition.
proc name [args] [body]
Declare a procedure named name. Can define the argument list args and code body body. The body command can define or redefine the body outside of the class definition.
variable varName [init] [config]
Define an object-specific variable named varName. Optional string init supplies an initial value for the variable when the object is created. Optional script config specifies code to be executed whenever a public variable is modified using the configure command.
common varName [init]
Declare a common variable (shared by all class objects) named varName. Optional string init supplies a value for the variable to be initialized with whenever a new object is created.
public command [arg...]
Declares that the element defined by command is to be publicly accessible (i.e., accessible from any namespace). The parameter command can be any of the subcommands method, proc, variable, common, or a script containing several member definitions.
protected command [arg...]
Declares that the element defined by command is to have protected access (i.e., accessible from the same class namespace and any namespaces nested within it).
private command [arg...]
Declares that the element defined by command is to have private access (i.e., accessible only from the same class namespace).
set varName [value]
Set the initial value of a variable or common variable.
array option [arg...]
A standard Tcl array command can be used within a class definition, typically to initialize variables.
Name
code
code [-namespace name] command [arg...]
Create a scoped value for a command and its associated arguments. The scoped value is a list with three elements: the @scope keyword, a namespace context, and a value string.
Name
configbody
configbody className::varName body
Allows you to change the configuration code associated with a public variable. The name className::varName identifies the public variable being updated. The configuration code is automatically executed when a variable is modified using an object's configure command.
Name
delete
delete option [arg...]
Used to delete various things in the interpreter. Accepts the following options:
delete class name...
Delete one or more classes, as well as objects in the class and derived classes.
delete object name...
Delete one or more objects. Destructors in the class hierarchy are called, and the object is removed as a command from the interpreter.
delete namespace name...
Delete one or more namespaces, including commands, variables, and child namespaces.
Name
ensemble
ensemble name command args...
Create or modify an ensemble command (i.e., a command such as info, which is a composite of many different functions). If an ensemble command name already exists, then it is updated; otherwise, a new command is created.
The command accepts zero or more command arguments that take one of two forms. The part command defines a new part for the ensemble, adding it as a new option to the command. The argument list and body are defined as for the proc command. The command parameter can also be ensemble, allowing another subensemble to be nested.
Example
ensemble wait {
part variable {name} {
uplevel vwait $name
}
part visibility {name} {
tkwait visibility $name
}
part window {name} {
tkwait window $name
}
}
Name
find
find option [arg...]
Return information about classes or objects. The command takes one of two forms:
find classes [pattern]
Return a list of classes available in the current namespace context matching glob pattern pattern, or all classes if pattern is omitted.
find objects [pattern] [-class className] [-isa className]
Return a list of objects available in the current namespace context matching glob pattern pattern, or all objects if pattern is omitted. Can use the -class option to restrict list to objects whose most specific class is class- Name. Can also restrict list to objects having the given class name anywhere in their heritage, using the -isa option.
Name
itcl_class
Obsolete; see the class command.
Name
itcl_info
Obsolete; see the find command.
Name
local
local className objName [arg...]
Create an object that is local to the current stack frame. Object is automatically deleted when stack frame goes away.
Name
Scope
scope string
Create a scoped value for a string. The scoped value is a list with three elements: the @scope keyword, a namespace context, and a value string.
Chapter 8. [incr Tk]
[incr Tk] is not part of the core Tcl/Tk package, but can be obtained for free at http://www.tcltk.com/itk. This chapter covers Version 3.0.[1]
[incr Tk] provides an object-oriented framework for creating new graphical widgets, known as mega-widgets. Mega-widgets are made up of standard Tk widgets, and one mega-widget can contain nested mega-widgets. The widgets and mega-widgets that go into a mega-widget are called components.
Using the basic widgets provided by the Tk toolkit and the object-oriented programming capabilities of [incr Tcl], [incr Tk] allows the user to write new widgets in Tcl that look and act just like the ordinary Tk widgets.
The [incr Tk] distribution also comes with more than 30 predefined mega-widgets.
[1] This chapter is based on the quick reference in Michael McLennan's Chapter 3 of Tcl/Tk Tools (O'Reilly & Associates).
Basic Structure of a Mega-widget
The following code fragment shows the general structure of a mega-widget.
class className {
inherit itk::Widget # or itk::Toplevel
constructor {args} {
itk_option define optName {...}
itk_component add compName {...}
pack $itk_component(compName) ...
eval itk_initialize $args
}
public method methodName ...
protected method methodName ...
private variable varName ...
}
usual className {
...
}
Special Variable
itcl::library
Name of directory containing library of [incr Tk] scripts; can be set using ITK_LIBRARY environment variable.
Methods and Variables
New mega-widgets built using [incr Tk] should be derived from either itk::Widget or itk::Toplevel. Both classes are subclasses of itk::Archetype.
Public Methods
The following methods are built into all mega-widgets. For a mega-widget having the Tk name pathName, the following methods are supported:
pathname cget -option
Return the current value of option option.
pathname component
Return a list of the well-known components.
pathname component name command [arg...]
Invoke the given command command as a method on the component called name, optionally with additional arguments.
pathname configure
Return a list describing all of the available options.
pathname configure -option
Return the current value of option option.
pathname configure -option value...
Set the value of option option to value. Multiple option-value pairs can be supplied.
The cget and configure commands work just like the corresponding Tk widget commands.
Protected Methods
These methods are used in the implementation of a mega-widget:
itk_component add
[-protected] [-private] [--]
symbolicName {
widget pathName [arg...]
} [{
ignore -option...
keep -option...
rename -option -newName resourceClass resourceClass
usual [tag]
}]
Commands in this format create a widget and register it as a mega-widget component. The optional block containing ignore, keep, rename, and usual commands controls how the configuration options for this component are merged into the master option list for the mega-widget.
Ignore removes one or more configuration options from the composite list (the default behavior). Keep integrates one or more configuration options into the composite list, keeping them the same. Rename integrates the configuration option into the composite list with a different name. Usual finds the usual option handling commands for the specified tag name and executes them.
itk_option add optName...
Add an option that was previously ignored back into the master option list.
itk_option remove name...
Remove an option that was previously merged into the master option list.
itk_option define -option resourceName resourceClass init [configBody]
Define a new configuration option for a mega-widget class.
itk_initialize [-option value ...]
Called when a mega-widget is constructed to initialize the master option list.
Protected Variables
The following variables can be accessed within a mega-widget class:
itk_option(symbolicName)
An array element containing the Tk window pathname for the component named symbolicName.
itk_interior
Contains the name of the top-level widget or frame within a mega-widget that acts as a container for new components.
itk_option(-option)
An array element containing the current value of the configuration option named option.
Alphabetical Summary of Commands
Name
usual
usual tag [commands]
Query or set "usual" option-handling commands for a widget in class tag.
Chapter 9. Tix
Tix, written by Ioi Lam, is not part of the core Tcl/Tk package, but can be obtained for free at http://www.neosoft.com/tcl/. This chapter covers Version 4.1.0.[2]
[2] At the time of writing, the Tix web site at http://www.xpi.com/tix was down due to lack of funding.
Tix Overview
Tix, which stands for the Tk interface extension, adds an object-oriented framework for defining new widget types from existing widget types. Instances of these new widget types are called mega-widgets. Tix includes over 40 predefined megawidget classes and several commands for designing new ones. Figure 9-1 shows some examples of the mega-widgets added by Tix.
Tix also adds a few new standard widgets, commands for communicating with the Motif window manager, a form-based geometry manager, and two new image types: compound and pixmap.
Tix scripts are usually run using the supplied tixwish command interpreter. The command-line arguments for tixwish are the same as for Tk's wish. Tix can also be dynamically loaded into a running Tcl interpreter using the command:
package require Tix
if the system is properly configured for dynamic loading.
Special Variables
The following global variables are defined by Tix:
tix_library | Directory containing the Tix script library |
tix_patchLevel | Current patch level of Tix extension |
tix_release | Release level of the Tix extension |
tix_version | Current version of Tix extension |
Figure 9-1. Examples of some of the Tix mega-widgets
Group Listing of Tix Commands
This section briefly lists all Tix commands, grouped logically by function.
Mega-widgets
tixBalloon | Create a tixBalloon mega-widget. |
tixButtonBox | Create a tixButtonBox mega-widget. |
tixCheckList | Create a tixCheckList mega-widget. |
tixComboBox | Create a tixComboBox mega-widget. |
tixControl | Create a tixControl mega-widget. |
tixDialogShell | Create a tixDialogShell mega-widget. |
tixDirList | Create a tixDirList mega-widget. |
tixDirSelectBox | Create a tixDirSelectBox mega-widget. |
tixDirSelectDialog | Create a tixDirSelectDialog mega-widget. |
tixDirTree | Create a tixDirTree mega-widget. |
tixExFileSelectBox | Create a tixExFileSelectBox mega-widget. |
tixExFileSelectDialog | Create a tixExFileSelectDialog mega-widget. |
tixFileComboBox | Create a tixFileComboBox mega-widget. |
tixFileEntry | Create a tixFileEntry mega-widget. |
tixFileSelectBox | Create a tixFileSelectBox mega-widget. |
tixFileSelectDialog | Create a tixFileSelectDialog mega-widget. |
tixLabelEntry | Create a tixLabelEntry mega-widget. |
tixLabelFrame | Create a tixLabelFrame mega-widget. |
tixLabelWidget | Create a tixLabelWidget mega-widget. |
tixListNoteBook | Create a tixListNoteBook mega-widget. |
tixMeter | Create a tixMeter mega-widget. |
tixNoteBook | Create a tixNoteBook mega-widget. |
tixOptionMenu | Create a tixOptionMenu mega-widget. |
tixPanedWindow | Create a tixPanedWindow mega-widget. |
tixPopupMenu | Create a tixPopupMenu mega-widget. |
tixPrimitive | Create a tixPrimitive mega-widget. |
tixScrolledGrid | Create a tixScrolledGrid mega-widget. |
tixScrolledHList | Create a tixScrolledHList mega-widget. |
tixScrolledListBox | Create a tixScrolledListBox mega-widget. |
tixScrolledTList | Create a tixScrolledTList mega-widget. |
tixScrolledText | Create a tixScrolledText mega-widget. |
tixScrolledWidget | Create a tixScrolledWidget mega-widget. |
tixScrolledWindow | Create a tixScrolledWindow mega-widget. |
tixSelect | Create a tixSelect mega-widget. |
tixShell | Create a tixShell mega-widget. |
tixStackWindow | Create a tixStackWindow mega-widget. |
tixStdButtonBox | Create a tixStdButtonBox mega-widget. |
tixStdDialogShell | Create a tixStdDialogShell mega-widget. |
tixTree | Create a tixTree mega-widget. |
tixVStack | Create a tixVStack mega-widget. |
tixVTree | Create a tixVTree mega-widget. |
Standard Widgets
tixGrid | Create a tixGrid widget. |
tixHList | Create a tixHList widget. |
tixInputOnly | Create a tixInputOnly widget. |
tixNBFrame | Create a tixNBFrame widget. |
tixTList | Create a tixTList widget. |
Core Commands
Tix Mega-widget Overview
Tix mega-widgets are created and manipulated in the same manner as standard Tk widgets. Options can be set both at creation or with the widget's configure method. All mega-widgets let you specify option values using the Tk options database and query option values with the cget method.
The widgets that are used to compose a mega-widget can be standard widgets or other mega-widgets. Each of these subwidgets is identified by a unique name defined in the mega-widget's API. All mega-widgets support the subwidget method to directly access their subwidgets. This method has the form:
pathName subwidget subwidget [method [args ...]]
where subwidget is the unique name given to the subwidget by the mega-widget. When the method argument is omitted, the widget pathname of the subwidget is Returned. Otherwise, the method method of the subwidget is called with any optional arguments and the results Returned. For example, to change the background color of the entry widget contained in the tixControl mega-widget .c, one would use this code:
.c subwidget entry configure -bg white
The subwidget root is present in all mega-widgets and is the equivalent to the name of the created mega-widget (i.e., the pathName argument to the mega-widget creation command). It is the base container upon which each mega-widget is built and is almost always either a frame or top-level widget.
The object-oriented framework for defining a mega-widget class supports inheritance from another mega-widget class. The class being inherited from is called the superclass of the class being defined. The mega-widget class tixPrimitive is at the top of the mega-widget class hierarchy for the classes supplied with Tix. All other classes are descendants of tixPrimitive. A mega-widget inherits all the commands, options, and subwidgets of its superclass.
Tix Mega-widgets
This section describes the predefined mega-widget classes that are present in the Tix extension. For options that are equivalent to the standard Tk widget options, only the names are listed. Refer to the "Standard Widget Options" section of Chapter 3, Tk Core Commands, for the full definition of these options. Since almost all mega-widget classes are derived from another mega-widget class, it is important to refer to the description of the superclass to see the full API of a mega-widget class. Inherited commands, options, and subwidgets are sometimes listed for a megawidget class when they are overridden or are an integral part of the mega-widget's function.
Name
Balloon
tixBalloon pathName [option value...]
The tixBalloon command creates a new tixBalloon mega-widget named pathName. The tixBalloon class is derived from the tixShell class. A tixBalloon widget can be bound to one or more widgets so that when the mouse cursor is inside the target widget, a window pops up with a descriptive message. In addition, a message can be displayed in a connected status bar.
Widget-Specific Options
-initwait milliseconds (initWait, InitWait)
How long the balloon should wait after the mouse cursor enters an associated widget before popping up the balloon message. If the mouse cursor leaves the widget before this time has elapsed, no message is popped up.
-state state (state, State)
Which help messages should be displayed. Valid values for state are both (balloon and status bar), balloon (balloon only), status (status bar only), and none (display no message).
-statusbar pathName (statusBar, StatusBar)
Which widget to use as the status bar of the balloon. Any widget that supports a -text configuration option can be a status bar.
Subwidgets
label
The label widget containing the arrow bitmap in the pop-up window.
message
The message widget that shows the descriptive message in the pop-up window.
Methods
pathName bind window [option value...]
Arrange for the tixBalloon widget to be invoked when the mouse pointer enters the widget window. The available options are as follows:
-balloonmsg string
String to show in the pop-up window.
-statusmsg string
String to show on the status bar.
-msg string
String to show in both the pop-up window and status bar. This option has the lowest precedence.
pathName unbind window
Cancel the tixBalloon widget's binding to window.
Example
label .status -relief sunken -bd 1 -width 40
button .btn1 -text Exit -command exit
tixBalloon .balloon1 -statusbar .status
.balloon1 bind .btn1 -balloonmsg "Exit Application" \
-statusmsg {Press this button to exit the applications}
pack .btn1 .status
Name
ButtonBox
tixButtonBox pathName [option value...]
The tixButtonBox command creates a new tixButtonBox mega-widget named pathName. The tixButtonBox class is derived from the tixPrimitive class. It serves as a container widget for button widgets, most commonly in dialogs.
Widget-Specific Options
-orientation orientation (orientation, Orientation)
Orientation of the button subwidgets, either horizontal (the default) or vertical.
-padx size (padX, Pad)
Horizontal padding between two neighboring button subwidgets.
-pady size (padY, Pad)
Vertical padding between two neighboring button subwidgets.
-state state (state, State)
State of all the button subwidgets, either normal or disabled.
Methods
pathName add buttonName [option value...]
Add a new button subwidget with name buttonName into the box. Options are those valid for a normal button widget.
pathName invoke buttonName
Invoke the button subwidget buttonName.
Name
CheckList
tixCheckList pathName [option value...]
The tixCheckList command creates a new tixCheckList mega-widget named pathName. The tixCheckList class is derived from the tixTree class. It displays a hierarchical list of items that can be selected by the user. The status of an item can be one of four possible values: on (indicated by a check bitmap), off (indicated by a cross bitmap), default (indicated by a gray box bitmap), or none (no bitmap). Items with on, off, and default status may be selected. The default status for an item is none.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a single click). The pathname of the entry is appended as an argument.
-command tclCommand (command, Command)
Command to call whenever the user invokes an entry (usually by a double click). The pathname of the entry is appended as an argument.
-radio boolean (radio, Radio)
Whether only one item at a time can be selected.
Subwidgets
hlist
The tixHList mega-widget that displays the tixCheckList. Entries to the tix- CheckList are added directly to the hlist subwidget. Entries must be display items of type imagetext. Once an entry is added, the tixCheckList setstatus command should be called to set the entry's status:
tixCheckList .c
.c subwidget hlist add choice1 -itemtype imagetext
-text "Choice 1"
.c setstatus choice1 on
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Methods
pathName getselection [status]
Return a list of items whose status is status (default is on).
pathName getstatus entryPath
Return the current status of entryPath.
pathName setstatus entryPath status
Set the status of entryPath to be status.
Example
tixCheckList .clist -scrollbar auto
set hlist [.clist subwidget hlist]
foreach attr {Bold Italic Underline} {
$hlist add $attr -itemtype imagetext -text $attr
.clist setstatus $attr off
}
.clist setstatus Bold on
pack .clist
Name
ComboBox
tixComboBox pathName [option value...]
The tixComboBox command creates a new tixComboBox mega-widget named pathName. The tixComboBox class is derived from the tixLabelWidget class. It provides an entry widget whose value is connected to the selected item of a listbox widget.
The tixComboBox supports two selection modes with the -selectmode option. When the mode is immediate, the current value is changed immediately when the user enters a keystroke in the entry subwidgets or clicks (or drags over) an item in the listbox. When the mode is browse, the current value is not changed until the user presses the Return key or double-clicks an item in the listbox. The selected item in the listbox or what the user has typed so far is made the temporary value (see the -selection option). If the user presses the Escape key, the string displayed in the entry is changed back to the current value.
Widget-Specific Options
-anchor anchorPos (anchor, Anchor)
How the string in the entry subwidget should be aligned.
-arrowbitmap bitmap (arrowBitmap, ArrowBitmap)
Bitmap to use for arrow button beside the entry subwidget.
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to be called when the selection mode is browse and the temporary value has changed.
-command tclCommand (command, Command)
Command to be called when tixComboBox is invoked or when its current value is changed.
-crossbitmap bitmap (crossBitmap, CrossBitmap)
Bitmap to use in cross button to the left of the entry subwidget.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (specified by the -command option) are disabled.
-dropdown boolean (dropDown, DropDown)
Whether the listbox should be in a drop-down window.
-editable boolean (editable, Editable)
Whether user is allowed to type into the entry subwidget.
-fancy boolean (fancy, Fancy)
Whether cross and tick button subwidgets should be shown.
-grab grabPolicy (grab, Grab)
Grab policy for listbox when in a drop-down window. Valid values are global (default), local, or none.
-historylimit integer (historyLimit, HistoryLimit)
How many previous user inputs are remembered in history list.
-history boolean (history, History)
Whether to store previous user inputs in a history list.
-label string (label, Label)
String to use as label for the tixComboBox.
-labelside position (labelSide, LabelSide)
Where to position the tixComboBox label. Valid values are top, left, right, bottom, none, or acrosstop.
-listcmd tclCommand (listCmd, ListCmd)
Command to call whenever the listbox is dropped down.
-listwidth tclCommand (listWidth, ListWidth)
Width for listbox subwidget.
-prunehistory boolean (pruneHistory, PruneHistory)
Whether previous duplicate user inputs should be pruned from history list.
-selection tclCommand (selection, Selection)
The temporary value of the tixComboBox when the selection mode is browse.
-selectmode mode (selectMode, SelectMode)
The selection mode of the tixComboBox. Valid values are browse and immediate.
-state state (state, State)
Current state of the tixComboBox. Valid values are normal and disabled.
-tickbitmap bitmap (tickBitmap, TickBitmap)
Bitmap to display in tick button to the left of the entry subwidget.
-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixComboBox is about to change. The candidate new value is appended as an argument. The command should Return the value it deems valid.
-value string (value, Value)
The current value of the tixComboBox.
-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixComboBox. Dir ect changes to the variable will also change the value of the tix-ComboBox.
Subwidgets
arrow
The down arrow button widget.
cross
The cross button widget (when -fancy is set).
entry
The entry widget that shows the current value.
label
The label widget.
listbox
The listbox widget that holds the list of possible values.
slistbox
The tixScrolledListBox widget.
tick
The tick button widget (when -fancy is set).
Methods
pathName addhistory string
Add string to the beginning of the listbox.
pathName appendhistory
Append string to the end of the listbox.
pathName flash
Flash the tixComboBox by alternating between active and normal colors.
pathName insert index string
Insert string into the listbox at specified index.
pathName pick index
Change the current value to that of the item at index in the listbox.
Example
tixComboBox .cb -label Encoding: -dropdown true -editable false \
-options { listbox.height 4 label.width 10 label.anchor w }
foreach type { Latin1 Latin2 Latin3 Latin4 Cyrillic Arabic Greek } {
.cb insert end $type
}
tixSetSilent .cb Latin1
pack .cb
Name
Control
tixControl pathName [option value...]
The tixControl command creates a new tixControl mega-widget named pathName. The tixControl class is derived from the tixPrimitive class. The tixControl widget, also known as a spinbox, is generally used to Control a denumerable value. The user can adjust the value by pressing the two arrow buttons or by entering the value directly into the entry.
The tixControl supports two selection modes with the -selectmode option. When the mode is immediate, the current value is changed immediately when the user enters a keystroke. When the mode is normal, the current value is not changed until the user presses the Return key. If the user presses the Escape key, the string displayed in the entry is changed back to the current value.
Widget-Specific Options
-allowempty boolean (allowEmpty, AllowEmpty)
Whether an empty string is a valid input value.
-autorepeat boolean (autoRepeat, AutoRepeat)
Whether increment and decrement buttons should autorepeat when held down.
-command tclCommand (command, Command)
Command to call when the current value is changed. The value is appended as an argument.
-decrcmd tclCommand (decrCmd, DecrCmd)
Command to call when the user presses the decrement button. The current value is appended as an argument. The Return value is made the new current value.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (specified by the -command option) are disabled.
-disabledforeground color (disabledForeground, DisabledForeground)
Color to use for the foreground of the entry subwidget when the tixControl widget is disabled.
-incrcmd tclCommand (incrCmd, IncrCmd)
Command to call when the user presses the increment button. The current value is appended as an argument. The Return value is made the new current value.
-initwait milliseconds (initWait, InitWait)
How long to wait before entering autorepeat mode.
-integer boolean (integer, Integer)
Whether only integer values are allowed.
-label string (label, Label)
String to display as the label of the tixControl widget.
-labelside position (labelSide, LabelSide)
Where to position the tixControl label. Valid values are top, left, right, bottom, none, or acrosstop.
-max value (max, Max)
Upper-limit value of the tixControl. If set to the empty string, there is no limit.
-min value (min, Min)
Lower-limit value of the tixControl. If set to the empty string, there is no limit.
-repeatrate milliseconds (repeatRate, RepeatRate)
Time between increments or decrements when in autorepeat mode.
-selectmode mode (selectMode, SelectMode)
The selection mode of the tixControl. Valid values are normal and immediate.
-state state (state, State)
Current state of the tixControl. Valid values are normal and disabled.
-step value (step, Step)
How much the value should be incremented or decremented when the user presses the increment or decrement buttons.
-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixControl is about to change. The candidate new value is appended as an argument. The command should Return the value it deems valid.
-value value (value, Value)
The current value of the tixControl.
-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixControl. Dir ect changes to the variable will also change the value of the tix-Control.
Subwidgets
decr
The decrement button widget.
entry
The entry widget that shows the current value.
incr
The increment button widget.
label
The label widget.
Methods
pathName decr
Decrement the current value of the tixControl.
pathName incr
Increment the current value of the tixControl.
pathName invoke
Flash the tixControl by alternating between active and normal colors.
pathName update
Update the current value to whatever the user has typed in the entry subwidget.
Example
tixControl .ctl -label "Point Size:" -integer true \
-variable fontsize -min 1 -max 30
pack .ctl
Name
DialogShell
tixDialogShell pathName [option value...]
The tixDialogShell command creates a new tixDialogShell mega-widget named pathName. The tixDialogShell class is derived from the tixShell class. It is used as a superclass Formore functional dialog megawidgets.
Widget-Specific Options
-minheight tclCommand (minHeight, MinHeight)
The minimum height of the dialog for resizing.
-minwidth tclCommand (minWidth, MinWidth)
The minimum width of the dialog for resizing.
-transient tclCommand (transient, Transient)
Whether dialog window should be a transient window.
Methods
pathName center [window]
Arrange for the dialog's position on the screen to be centered over window (defaults to dialog's parent). The position is adjusted to make sure the dialog is fully visible.
pathName popdown
Withdraw the dialog from the screen.
pathName popup [window]
Pop up the dialog on the screen, centered on window (defaults to dialog's parent)
Name
DirList
tixDirList pathName [option value...]
The tixDirList command creates a new tixDirList mega-widget named path-Name. The tixDirList class is derived from the tixScrolledHList class. It displays a list of the subdirectories and parent directory of a target directory. The user can choose one of the directories or change to another directory.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a directory (usually by a single click). The directory is appended as an argument.
-command tclCommand (command, Command)
Command to call whenever the user activates a directory (usually by a double click). The directory is appended as an argument.
-dircmd tclCommand (dirCmd, DirCmd)
Command to call when a directory listing is needed. Two arguments are appended: the name of the directory to be listed and a boolean that signifies whether hidden subdirectories should be listed. The Return values should be the list of subdirectories in the given directory. If this option is not specified, the default is to read the directory as a Unix directory.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-showhidden boolean (showHidden, ShowHidden)
Whether hidden directories should be shown.
-root directory (root, Root)
Name of the root directory.
-rootname string (rootName, RootName)
Text string to display as the root directory. Default is same as -root option.
-value directory (value, Value)
Name of the current directory displayed.
Subwidgets
hlist
The tixHList mega-widget that displays the directory list.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Methods
pathName chdir directory
Change the current directory to directory.
Name
DirSelectBox
tixDirSelectBox pathName [option value...]
The tixDirSelectBox command creates a new tixDirSelectBox mega-widget named pathName. The tixDirSelectBox class is derived from the tix-Primitive class. It combines a tixFileComboBox with a tixDirList to provide a method for a user to select a directory by both keyboard entry and listbox selection.
Widget-Specific Options
-command tclCommand (command, Command)
Command to call when the current directory value is changed. The value is appended as an argument.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-value directory (value, Value)
Name of the current directory displayed.
Subwidgets
dircbx
The tixFileComboBox mega-widget.
dirlist
The tixDirList mega-widget.
Name
DirSelectDialog
tixDirSelectDialog pathname [option value...]
The tixDirSelectDialog command creates a new tixDirSelectDialog megawidget named pathName. The tixDirSelectDialog class is derived from the tixDialogShell class. It presents a tixDirSelectBox in a pop-up dialog window.
Widget-Specific Options
-command tclCommand (command, Command)
Command to call when the user chooses a directory in the dialog box. The complete pathname of the directory is appended as an argument.
Subwidgets
dirbox
The tixDirSelectBox mega-widget.
cancel
The Cancel button widget. Invoking this button pops down the dialog with no choice being made.
ok
The OK button widget. Invoking this button pops down the dialog and makes the current selected directory the user's choice.
Name
DirTree
tixDirTree pathName [option value...]
The tixDirTree command creates a new tixDirTree mega-widget named pathName. The tixDirTree class is derived from the tixVTree class. It displays a tree-style list of directories and their subdirectories for the user to choose from.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a directory (usually by a single click). The directory is appended as an argument.
-command tclCommand (command, Command)
Command to call whenever the user activates a directory (usually by a double click). The directory is appended as an argument.
-dircmd tclCommand (dirCmd, DirCmd)
Command to call when a directory listing is needed. Two arguments are appended: the name of the directory to be listed and a boolean that signifies whether hidden subdirectories should be listed. The Return values should be the list of subdirectories in the given directory. If this option is not specified, the default is to read the directory as a Unix directory.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-showhidden boolean (showHidden, ShowHidden)
Whether hidden directories should be shown.
-value directory (value, Value)
Name of the current directory displayed.
Subwidgets
hlist
The tixHList mega-widget that displays the directory list.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Methods
pathName chdir directory
Change the current directory to directory.
Name
ExFileSelectBox
tixExFileSelectBox pathname [option value...]
The tixExFileSelectBox command creates a new tixExFileSelectBox megawidget named pathName. The tixExFileSelectBox class is derived from the tixPrimitive class. It provides a method for a user to select a file similar to the style used in Microsoft Windows.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a file (usually by a single click). The filename is appended as an argument.
-command tclCommand (command, Command)
Command to call whenever the user activates a file (usually by a double click). The filename is appended as an argument.
-dialog dialog (dialog, Dialog)
Dialog box that contains this tixExFileSelectBox widget (internal use only).
-dircmd tclCommand (dirCmd, DirCmd)
Command to call when a file listing is needed. Three arguments are appended: the name of the directory to be listed, a list of file patterns, and a boolean that signifies whether hidden files should be listed. The Return value should be a list of files in the given directory. If this option is not specified, the default is to read the directory as a Unix directory.
-directory directory (directory, Directory)
The current directory whose files and subdirectories are displayed.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-filetypes fileTypes (fileTypes, FileTypes)
List of file types that can be selected from the "List Files of Type" tix-ComboBox subwidget. Each item is a list of two items: a list of file patterns and a description (e.g., {{*.c *.h} {C source files}}).
-showhidden boolean (showHidden, ShowHidden)
Whether hidden files and subdirectories should be shown.
-pattern pattern (pattern, Pattern)
List of file patterns to match with the files in the current directory.
-value fileName (value, Value)
Name of the currently selected file.
Subwidgets
cancel
The Cancel button widget.
dir
The tixComboBox mega-widget for the current directory.
dirlist
The tixDirList mega-widget for listing directories.
file
The tixComboBox mega-widget for the current file.
filelist
The tixScrolledListBox mega-widget for listing files.
hidden
The checkbutton widget for toggling display of hidden files.
ok
The OK button widget.
types
The tixComboBox mega-widget for selecting file filter types.
Methods
pathName filter
Force refiltering of listed filenames according to the -pattern option.
pathName invoke
Force the widget to perform actions as if the user had pressed the OK button.
Name
ExFileSelectDialog
tixExFileSelectDialog pathname [option value...]
The tixExFileSelectDialog command creates a new tixExFileSelectDialog megawidget named pathName. The tixExFileSelectDialog class is derived from the tixDialogShell class. It simply presents a tixExFileSelectBox mega-widget in a dialog.
Widget-Specific Options
-command tclCommand (command, Command)
Command to call when the user chooses a file (clicks the OK button). The name of the chosen file is appended as an argument.
Subwidgets
fsbox
The tixExFileSelectBox mega-widget.
Name
FileComboBox
tixFileComboBox pathName [option value...]
The tixFileComboBox command creates a new tixFileComboBox mega-widget named pathName. The tixFileComboBox class is derived from the tix-Primitive class. It provides a combo box for entering file and directory names.
Widget-Specific Options
-command tclCommand (command, Command)
Command to be called when tixFileComboBox is invoked or when its current value is changed. A list describing the file is appended as an argument. The first element of the list is the absolute pathname to the file, the second element is the directory part file's pathname, and the third element is the base filename.
-defaultfile fileName (defaultFile, DefaultFile)
If the value entered into the tixFileComboBox is a directory, fileName is appended to the value before calling the associated command.
-directory directory (directory, Directory)
Set the current working directory for the tixFileComboBox to directory.
-text fileName (text, Text)
Change the value of the tixFileComboBox to fileName. The associated command is not invoked.
Subwidgets
combo
The tixComboBox mega-widget.
Methods
pathName invoke
Invoke the tixFileComboBox.
Name
FileEntry
tixFileEntry pathName [option value...]
The tixFileEntry command creates a new tixFileEntry mega-widget named pathName. The tixFileEntry class is derived from the tixLabel-Widget class. It provides an entry box for a user to enter a filename, along with a button that will pop up a file selection dialog.
The tixFileEntry supports two selection modes with the -selectmode option. When the mode is immediate, the current value is changed immediately when the user enters a keystroke. When the mode is normal, the current value is not changed until the user presses the Return key.
Widget-Specific Options
-activatecmd tclCommand (activateCmd, ActivateCmd)
Command to call when user activates the button subwidget. This command is called before the file dialog is popped up.
-command tclCommand (command, Command)
Command to call when the current value of the tixFileEntry is changed. The filename is appended as an argument.
-dialogtype dialogClass (dialogType, DialogType)
The type of file selection dialog that should be popped up when the user invokes the button subwidget. Valid values are tixFileSelectDialog and tixExFileSelectDialog.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-disabledforeground color (disabledForeground, DisabledForeground)
Foreground color for entry subwidget when the tixFileEntry is disabled.
-filebitmap bitmap (fileBitmap, FileBitmap)
Bitmap to display in the button subwidget.
-label string (label, Label)
String to display as the label of the tixFileEntry.
-labelside position (labelSide, LabelSide)
Where to position the tixFileEntry label. Valid values are top, left, right, bottom, none, or acrosstop.
-selectmode mode (selectMode, SelectMode)
The selection mode of the tixFileEntry. Valid values are normal and immediate.
-state state (state, State)
Current state of the tixFileEntry. Valid values are normal and disabled.
-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixFileEntry is about to change. The candidate new value is appended as an argument. The command should Return the value it deems valid.
-value value
The current value of the tixFileEntry.
-variable varName
Global variable that should be set to track the value of the tixFileEntry. Dir ect changes to the variable will also change the value of the tixFile-Entry.
Subwidgets
button
The button widget for popping up a file selection dialog.
entry
The entry widget for entering a filename.
Methods
pathName invoke
Force the tixFileEntry to act as if the user has pressed the Return key inside the entry subwidget.
pathName filedialog [method [args]]
If no additional arguments are given, the pathname of the file selection dialog associated with the tixFileEntry is Returned. When additional arguments are given, they translate to a method call on the file selection dialog.
pathName update
Update the current value of the tixFileEntry to the current contents of the entry subwidget. Useful only in normal selection mode.
Name
FileSelectBox
tixFileSelectBox pathname [option value...]
The tixFileSelectBox command creates a new tixFileSelectBox mega-widget named pathName. The tixFileSelectBox class is derived from the tix-Primitive class. It provides a method for a user to select a file similar to the style used in Motif.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses a file (usually by a single click). The filename is appended as an argument.
-command tclCommand (command, Command)
Command to call whenever the user activates a file (usually by a doubleclick). The absolute path of the filename is appended as an argument.
-directory directory (directory, Directory)
The current directory whose files and subdirectories are displayed.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command)are disabled.
-pattern pattern (pattern, Pattern)
List of file patterns to match with the files in the current directory.
-value fileName (value, Value)
Name of the currently selected file.
Subwidgets
dirlist
The tixScrolledListBox mega-widget for listing directories.
filelist
The tixScrolledListBox mega-widget for listing files.
filter
The tixComboBox mega-widget for the filter string.
selection
The tixComboBox mega-widget for the selected file.
Methods
pathName filter
Force refiltering of listed filenames according to the -pattern option.
pathName invoke
Call the command given by -command with the current filename.
Name
FileSelectDialog
tixFileSelectDialog pathName [option value...]
The tixFileSelectDialog command creates a new tixFileSelectDialog megawidget named pathName. The tixFileSelectDialog class is derived from the tixStdDialogShell class. It simply presents a tixFileSelectBox mega-widget in a dialog.
Widget-Specific Options
-command tclCommand (command, Command)
Command to call when the user chooses a file (clicks the OK button). The name of the chosen file is appended as an argument.
Subwidgets
btns
The tixStdButtonBox mega-widget containing the OK, Filter, Cancel, and Help button widgets.
fsbox
The tixFileSelectBox mega-widget.
Name
LabelEntry
tixLabelEntry pathname [option value...]
The tixLabelEntry command creates a new tixLabelEntry mega-widget named pathName. The tixLabelEntry class is derived from the tixLabel-Widget class. It provides an entry box with an attached label.
Widget-Specific Options
-disabledforeground color (disabledForeground, DisabledForeground)
Color to use for the foreground of the entry subwidget when the tix-LabelEntry widget is disabled.
-label string (label, Label)
String to display as the label of the tixLabelEntry widget.
-labelside position (labelSide, LabelSide)
Where to position the tixLabelEntry label. Valid values are top, left, right, bottom, none, or acrosstop.
-state state (state, State)
Current state of the tixLabelEntry. Valid values are normal and disabled.
Subwidgets
entry
The entry subwidget.
label
The label subwidget.
Name
LabelFrame
tixLabelFrame pathName [option value...]
The tixLabelFrame command creates a new tixLabelFrame mega-widget named pathName. The tixLabelFrame class is derived from the tix-LabelWidget class. It provides a labeled frame for containing other widgets, which should be children of the frame subwidget.
Widget-Specific Options
-label string (label, Label)
String to display as the label of the tixLabelFrame widget.
-labelside position (labelSide, LabelSide)
Where to position the tixLabelFrame label. Valid values are top, left, right, bottom, none, or acrosstop.
-padx amount (padX, PadX)
Amount of horizontal padding around the frame subwidget.
-pady amount (padY, PadY)
Amount of vertical padding around the frame subwidget.
Subwidgets
frame
The frame subwidget, which should be the parent of any widget to be contained.
label
The label subwidget.
Methods
pathName frame [method [args]]
Shortcut to subwidget frame.
Name
LabelWidget
tixLabelWidget pathName [option value...]
The tixLabelWidget command creates a new tixLabelWidget mega-widget named pathName. The tixLabelWidget class is derived from the tixPrimitive class. Its main purpose is to provide a base class for labeled mega-widgets.
Widget-Specific Options
-label string (label, Label)
String to display as the label of the tixLabelWidget widget.
-labelside position (labelSide, LabelSide)
Where to position the tixLabelWidget label. Valid values are top, left, right, bottom, none, or acrosstop.
-padx amount (padX, PadX)
Amount of horizontal padding around the frame subwidget.
-pady amount (padY, PadY)
Amount of vertical padding around the frame subwidget.
Subwidgets
frame
The frame subwidget upon which derived mega-widget classes should build.
label
The label subwidget.
Name
ListNoteBook
tixListNoteBook pathName [option value...]
The tixListNoteBook command creates a new tixListNoteBook mega-widget named pathName. The tixListNoteBook class is derived from the tixVStack class. Similar to the tixNoteBook, it allows the user to select one of several pages (windows) to be displayed at one time. The user chooses the page to display by selecting its name from an hlist subwidget.
Widget-Specific Options
-dynamicgeometry boolean (dynamicGeometry, DynamicGeometry)
Whether the tixListNoteBook should dynamically resize to match the size of the current page. The default is false, in which case the size of the tixListNoteBook will match the size of the largest page.
-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page subwidgets.
-ipady amount (ipady, Pad)
Amount of internal vertical padding around the sides of page subwidgets.
Subwidgets
hlist
The tixHList mega-widget that displays the names of the pages.
pageName
The frame widget of a notebook page as Returned by the add method.
Methods
pathName add pageName [option value...]
Add a new page to the tixListNoteBook. The pageName option must be the name of an existing entry in the hlist subwidget. The pathname of the page's master frame widget is Returned. Available options are:
-Createcmd tclCommand
Command to be called the first time a page is to be displayed.
-raisecmd tclCommand
Command to be called whenever the page is raised by the user.
pathName delete pageName
Delete the given page from the tixListNoteBook.
pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.Option may have any of the values accepted by the add method.
pathName pageconfigure pageName [option value...]
Similar to the configure method, but operates on the page pageName.Option may have any of the values accepted by the add method.
pathName pages
Return a list of the names of all the pages.
pathName raise pageName
Raise the page pageName.
pathName raised
Return the name of the currently raised page.
Name
Meter
.XET N .XE1 meter mega-widgets" ./XET tixMeter pathName [option value...]"
The tixMeter command creates a new tixMeter mega-widget named path-Name. The tixMeter class is derived from the tixPrimitive class. It provides a way to show the progress of a time-consuming background job.
Widget-Specific Options
-fillcolor color (fillColor, FillColor)
Color of the progress bar.
-text string (text, Text)
Text to place inside the progress bar. Defaults to percentage value speci-fied by the -value option.
-value value (value, Value)
A real value between 0.0 and 1.0 that specifies the amount of progress.
Name
NoteBook
tixNoteBook pathName [option value...]
The tixNoteBook command creates a new tixNoteBook mega-widget named pathName. The tixNoteBook class is derived from the tixVStack class. It allows the user to select one of several pages (windows) to be displayed at one time. The user chooses the page to display by selecting a tab at the top of the tixNoteBook widget.
Widget-Specific Options
-dynamicgeometry boolean (dynamicGeometry, DynamicGeometry)
Whether the tixNoteBook should dynamically resize to match the size of the current page. The default is false, in which case the size of the tixNoteBook will match the size of the largest page.
-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page subwidgets.
-ipady amount (ipadY, Pad)
Amount of internal vertical padding around the sides of the page subwidgets.
Subwidgets
nbframe
The tixNoteBookFrame that displays the tabs of the notebook. Most of the display options of the page tabs are Controlled by this subwidget.
pageName
The frame widget of a notebook page as Returned by the add method.
Methods
pathName add pageName [option value...]
Add a new page to the tixNoteBook. The pageName option must be the name of an existing entry in the hlist subwidget. The pathname of the page's master frame widget is Returned. Available options are as follows:
-anchor anchorPos
Specifies how the information in a page's tab (e.g., text or bitmap) should be anchored. Must be one of n, nw, w, sw, s, se, e, ne, or center.
-bitmap bitmap
Bitmap to display in tab.
-Createcmd tclCommand
Command to be called the first time a page is to be displayed.
-image imageName
Name of image to display in tab.
-justify position
How multiple lines of text in a tab should be justified. Must be one of left, right, or center.
-label string
Text to display in the tab. Overrides -image and -bitmap.
-raisecmd tclCommand
Command to be called whenever the page is raised by the user.
-state state
Whether page can be raised by the user. Must be either normal or disabled.
-underline index
Integer index (starting from 0) of character in text label to underline in the tab. Used by default bindings to set up keyboard traversal of tabs.
-wraplength chars
Maximum line length of text in the tab. If value is 0 or less, no wrapping is done.
pathName delete pageName
Delete the given page from the tixNoteBook.
pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.Option may have any of the values accepted by the add method.
pathName pageconfigure pageName [option value...]
Similar to the configure method, but operates on the page pageName.Option may have any of the values accepted by the add method.
pathName pages
Return a list of the names of all the pages.
pathName raise pageName
Raise the page pageName.
pathName raised
Return the name of the currently raised page.
Example
tixNoteBook .nb -ipadx 6 -ipady 6 -options
{ nbframe.backpagecolor gray }
.nb add fonts -label "Fonts" -underline 0
set f1 [frame [.nb subwidget fonts].f]
pack [listbox $f1.lb]
$f1.lb insert end Courier Helvetica Utopia
.nb add colors -label "Colors" -underline 0
set f2 [frame [.nb subwidget colors].f]
pack [listbox $f2.lb]
$f2.lb insert end Red Green Blue
pack .nb $f1 $f2 -expand true -fill both
Name
OptionMenu
tixOptionMenu pathName [option value...]
The tixOptionMenu command creates a new tixOptionMenu mega-widget named pathName. The tixOptionMenu class is derived from the tix-LabelWidget class. It provides a method for the user to select an option from a pop-up menu.
Widget-Specific Options
-command tclCommand (command, Command)
Command to call when the current value of the tixOptionMenu is changed. The filename is appended as an argument.
-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-dynamicgeometry boolean (dynamicGeometry, DynamicGeometry)
Whether the size of the menubutton subwidget should change dynamically to match the width of the currently selected menu entry. If false, its width is wide enough to contain the largest entry.
-label string (label, Label)
String to display as the label of the tixOptionMenu.
-labelside position (labelSide, LabelSide)
Where to position the tixOptionMenu label. Valid values are top, left, right, bottom, none, or acrosstop.
-state state (state, State)
Current state of the tixOptionMenu. Valid values are normal and disabled.
-value value (value, Value)
The current value of the tixOptionMenu, which is the name of the menu entry currently displayed in the menubutton subwidget.
-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixOption-Menu. Direct changes to the variable will also change the value of the tixOptionMenu.
Subwidgets
menu
The menu widget that is popped up when the user presses the menubutton widget.
menubutton
The menubutton widget that displays the current selection.
Methods
pathName add type entryName [option value...]
Add a new entry to the tixOptionMenu named entryName.Type must be either command or separator. The options are any of the valid options for a menu entry of the given type, except -command
pathName delete entryName
Delete the entry entryName from the tixOptionMenu.
pathName disable entryName
Disable the entry entryName.
pathName enable entryName
Enable the entry entryName.
pathName entrycget entryName option
Similar to the cget method, but operates on the entry entryName.Option may have any of the values accepted by the add method.
pathName entryconfigure entryName [option value...]
Similar to the configure method, but operates on the entry entryName.Option may have any of the values accepted by the add method.
pathName entries
Return a list of the names of all entries in the tixOptionMenu.
Name
PanedWindow
tixPanedWindow pathName [option value...]
The tixPanedWindow command creates a new tixPanedWindow mega-widget named pathName. The tixPanedWindow class is derived from the tixPrimitive class.
Widget-Specific Options
-command tclCommand (command, Command)
Command to call when the panes change their sizes. A list of the new sizes in the order of each pane's creation is appended as an argument.
-dynamicgeometry boolean (dynamicGeometry, DynamicGeometry)
Whether the size of the tixPanedWindow will dynamically change if the size of any of its panes is changed. If false, the size of the tixPaned-Window will increase but not decrease.
-handleactivebg color (handleActiveBg, HandleActiveBg)
Active background color for the resize handles.
-handlebg color (handleBg, HandleBg)
Background color for the resize handles.
-height amount (height, Height)
Desired height for the tixPanedWindow.
-orientation orientation (orientation, Orientation)
Orientation of the panes. Must be either vertical or horizontal.
-paneborderwidth amount (paneBorderWidth, PaneBorderWidth)
Border width of the panes.
-panerelief relief (paneRelief, PaneRelief)
Border relief of the panes.
-separatoractivebg color (separatorActiveBg, SeparatorActiveBg)
Active background color of the separators.
-separatorbg color (separatorBg, SeparatorBg)
Background color of the separators.
-width amount (width, Width)
Desired width of the tixPanedWindow.
Subwidgets
paneName
The frame widget of pane paneName as Returned by the add method.
Methods
pathName add paneName [option value...]
Add a new pane named paneName. The frame widget to serve as the master container for the pane is Returned. Available options are:
-after paneName
Place the pane after the pane named paneName.
-before paneName
Place the pane before the pane named paneName.
-expand factor
The weighting factor by which the pane should grow or shrink when the tixPanedWindow is resized. The default is 0.0. If all panes have a 0.0 factor, only the last visible pane is resized.
-max amount
The maximum size, in pixels, for the pane.
-min amount
The minimum size, in pixels, for the pane.
-size amount
Desired size of the pane along the tixPanedWindow's orientation. If not given, the pane's natural default size is used.
pathName delete paneName
Remove the pane paneName and delete its contents.
pathName forget paneName
Remove the pane paneName but do not delete its contents, so that it may be added back using the manage method.
pathName manage paneName [option value...]
Add the pane paneName back to those currently managed by the tix-PanedWindow. Available options are the same as for the add method.
pathName panecget paneName option
Similar to the cget method, but operates on the pane paneName. Option may have any of the values accepted by the add method.
pathName paneconfigure paneName [option value...]
Similar to the configure method, but operates on the pane paneName. Option may have any of the values accepted by the add method.
pathName panes
Return a list of the names of all panes in the tixPanedWindow.
pathName setsize paneName newSize [direction]
Set the size of pane paneName to newSize. Direction may be next (the default) or prev and directs the pane to grow or shrink by moving the boundary between itself and the pane to its right or bottom (next) or by moving the pane to its left or top (prev).
Name
PopupMenu
.XET N .XE1 popup menus" ./XET tixPopupMenu pathName [option value...]"
The tixPopupMenu command creates a new tixPopupMenu mega-widget named pathName. The tixPopupMenu class is derived from the tixShell class. It provides a replacement for the tk_popup command with easier configuration and a menu title.
Widget-Specific Options
-buttons buttonList (buttons, Buttons)
A list that specifies the mouse buttons and key modifiers that pop up the menu. Each item is a list with two elements: the button number and a list of key modifiers. For example, {{1 {Control Meta}} {3 {Any}}}. The default is {3 {Any}}.
-postcmd tclCommand (postCmd, PostCmd)
Command to call just before the menu is popped up. The x- and y-coordinates of the button event are appended as the final two arguments. The command must Return a boolean value to indicate whether the menu should be posted.
-spring boolean (spring, Spring)
Whether the menu should automatically pop down when the user releases the mouse button outside the menu without invoking any menu commands. The default is true. If false, the user must press the Escape key to cancel the menu.
-state state (state, State)
Current state of the tixPopupMenu. Valid values are normal and disabled. When disabled, the menu will not pop up.
-title string (title, Title)
Text for the title of the tixPopupMenu.
Subwidgets
menu
The menu widget that pops up.
menubutton
The menubutton widget used for the title.
Methods
pathName bind window [window...]
Arrange for the tixPopupMenu to be bound to the configured button events over the given windows.
pathName post window x y
Post the tixPopupMenu inside window at the coordinates x, y.
pathName unbind window [window...]
Cancel the tixPopupMenu's binding to the given windows.
Name
Primitive
tixPrimitive pathname [option value...]
The tixPrimitive command creates a new tixPrimitive mega-widget named pathName. The tixPrimitive is a virtual base class that provides a root widget that derived mega-widgets use as a base container upon which to build. In fact, pathName is used as the pathName of the base widget. Unless overridden by a derived class, this base widget is a frame widget. The only class in the Tix core mega-widgets that overrides this is the tixShell class, which uses a top-level widget for its root.
Widget-Specific Options
The tixPrimitive mega-widget supports the following options, which are simply passed to the underlying root widget. See the frame widget command in Chapter 3.
- background | - borderwidth | - cursor |
- height | - highlightbackground | - highlightcolor |
- highlightthickness | - relief | - takefocus |
- width |
The tixPrimitive mega-widget supports the following special option to make it easy for descendant classes to pass options to subwidgets:
-options optionList (options, Options)
List of resource options and values to apply to mega-widget. Each odd element is the resource specification relative to the mega-widget. Each following even element is its value. This option is mainly used to configure a mega-widget's subwidgets at creation time. For example:
tixComboBox .cb -label Color: -dropdown true \
-options { listbox.height 4 label.width 10 label.anchor e }
Subwidgets
root
The base frame widget in which derived mega-widgets should be built. This will equal the pathName argument of the mega-widget creation command (e.g., tixPrimitive) and therefor e is almost never needed.
Name
ScrolledGrid
tixScrolledGrid pathName [option value...]
The tixScrolledGrid command creates a new tixScrolledGrid mega-widget named pathName. The tixScrolledGrid class is derived from the tixScrolledWidget class. It provides a scrollable tixGrid widget.
Subwidgets
grid
The tixGrid widget that will be scrolled.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
ScrolledHList
tixScrolledHList pathName [option value...]
The tixScrolledHList command creates a new tixScrolledHList mega-widget named pathName. The tixScrolledHList class is derived from the tixScrolledWidget class. It provides a scrollable tixHList mega-widget.
Subwidgets
hlist
The tixHList mega-widget that will be scrolled.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
ScrolledListBox
tixScrolledListBox pathName [option value...]
The tixScrolledListBox command creates a new tixScrolledListBox megawidget named pathName. The tixScrolledListBox class is derived from the tixScrolledWidget class. It provides a scrollable listbox widget.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a single click).
-command tclCommand (command, Command)
Command to call whenever the user activates an entry (usually by a double click).
-state state (state, State)
Current state of the listbox subwidget. Valid values are normal and disabled.
Subwidgets
listbox
The listbox widget that will be scrolled.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
ScrolledText
tixScrolledText pathName [option value...]
The tixScrolledText command creates a new tixScrolledText mega-widget named pathName. The tixScrolledText class is derived from the tixScrolledWidget class. It provides a scrollable text widget.
Subwidgets
text
The text widget that will be scrolled.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
ScrolledTList
tixScrolledTList pathName [option value...]
The tixScrolledTList command creates a new tixScrolledTList mega-widget named pathName. The tixScrolledTList class is derived from the tixScrolledWidget class. It provides a scrollable tixTList mega-widget.
Subwidgets
tlist
The tixTList mega-widget that will be scrolled.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
ScrolledWidget
tixScrolledWidget pathName [option value...]
The tixScrolledWidget command creates a new tixScrolledWidget mega-widget named pathName. The tixScrolledWidget class provides a virtual base class for deriving mega-widgets that wrap scrollbars around a contained widget.
Widget-Specific Options
-scrollbar policy (scrollbar, Scrollbar)
The display policy for the scrollbars. Valid values for policy are:
auto [xPolicy] [yPolicy]
Scrollbars are shown when needed. XPolicy may be +x or −x, which state that the tixScrolledWidget should always or never show the horizontal scrollbar, respectively. Similarly, yPolicy may be +y or −y for the vertical scrollbar.
both
Always show both scrollbars.
none
Never show either scrollbar.
x
At all times, show only the horizontal scrollbar.
y
At all times, show only the vertical scrollbar.
Subwidgets
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
ScrolledWindow
tixScrolledWindow pathName [option value...]
The tixScrolledWindow command creates a new tixScrolledWindow megawidget named pathname. The tixScrolledWindow class is derived from the tixScrolledWidget class. It provides a scrollable frame widget in which any arbitrary windows may be placed.
Widget-Specific Options
-expandmode mode (expandMode, ExpandMode)
If mode is expand (the default), the size of the scrolled window will be expanded to fill its containing frame. The size of the scrolled window will not be expanded if mode is the empty string.
-shrink mode (shrink, Shrink)
If mode is x, the width of the scrolled window will be reduced to fit its containing frame. The width of the scrolled window will not be reduced if mode is the empty string (the default).
Subwidgets
window
The frame widget that will be scrolled and that will serve as the container for other widgets.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Name
Select
tixSelect pathName [option value...]
The tixSelect command creates a new tixSelect mega-widget named pathName. The tixSelect class is derived from the tixLabelWidget class. It provides a set of button subwidgets that provide a radiobox or checkbox style of selection options for the user.
Widget-Specific Options
-allowzero boolean (allowZero, AllowZero)
Whether the selection can be empty. When false, at least one button subwidget must be selected at any time. At creation time, the selection is alway empty no matter what the value of -allowzero.
-buttontype type (buttonType, ButtonType)
Type of buttons to be used as subwidgets inside the tixSelect megawidget. The default is the standard Tk button widget.
-command tclCommand (command, Command)
Command to call when the current value of the tixSelect mega-widget is changed. Two arguments will be appended: the name of the button subwidget toggled and a boolean value indicating whether that button is selected.
-disablecallback Boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.
-label string (label, Label)
String to display as the label of the tixSelect mega-widget.
-labelside position (labelside, Labelside)
Where to position the label. Valid values are top, left, right, bottom, none, or acrosstop.
-orientation orientation (orientation, Orientation)
Orientation of the button subwidgets. Must be either horizontal or vertical. This option can only be set at creation.
-padx amount (padX, Pad)
Horizontal padding to add between button subwidgets.
-pady amount (padY, Pad)
Vertical padding to add between button subwidgets.
-radio boolean (radio, Radio)
Whether only one button subwidget can be selected at any time. This option can only be set at creation.
-selectedbg color (selectedBg, SelectedBg)
Background color for all the selected button subwidgets.
-state state (state, State)
Current state of the tixSelect mega-widget. Valid values are normal and disabled.
-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixSelect mega-widget is about to change. The candidate new value is appended as an argument. The command should Return the value it deems valid.
-value value (value, Value)
The current value of the tixSelect mega-widget, which is a list of names of the selected button subwidgets.
-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixSelect mega-widget. Changes directly to the variable will also change the value of the tixSelect mega-widget.
Subwidgets
label
The label widget.
buttonName
The button widget identified by the name buttonName as created by the add method.
Methods
pathName add buttonName [option value...]
Add a new button subwidget named buttonName. Available options are those valid for the type of button selected by -buttontype, with the exclusion of -command and -takefocus.
pathName invoke buttonName
Invoke the button subwidget named buttonName.
Name
Shell
tixShell pathName [option value...]
The tixShell command creates a new tixShell mega-widget named pathName. The tixShell class is derived from the tixPrimitive class. It provides a base class Formega-widgets that need a top-level root window.
Widget-Specific Options
The tixShell mega-widget supports the following options of the top-level widget. See the toplevel command in Chapter 3.
- background | - borderwidth | - colormap |
- container | - cursor | - height |
- highlightbackground | - highlightcolor | - highlightthickness |
- relief | - takefocus | - use |
- screen | - visual | - width |
The tixShell mega-widget also supports the following option:
-title string (title, Title)
Text to display in the titlebar (if any) of the top-level window.
Subwidgets
root
The top-level widget.
Name
StackWindow
tixStackWindow pathname [option value...]
The tixStackWindow command creates a new tixStackWindow mega-widget named pathName. The tixStackWindow class is derived from the tix-VStack class. Similar to the tixNoteBook, it allows the user to select one of several pages (windows) to be displayed at one time. The user chooses the page to display by selecting its name from a tixSelect mega-widget.
Widget-Specific Options
-dynamicgeometry boolean (dynamicGeometry, DynamicGeometry)
Whether the tixStackWindow should dynamically resize to match the size of the current page. The default is false, in which case the size of the tixStackWindow will match the size of the largest page.
-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page subwidgets.
-ipady amount (ipadY, Pad)
Amount of internal vertical padding around the sides of the page subwidgets.
Subwidgets
tabs
The Stack mega-widget that displays a button for each page.
pageName
The frame widget of a page as Returned by the add method.
Methods
pathName add pageName [option value...]
Add a new page to the tixStackWindow and a button to select it in the Select subwidget. The pageName option will be the name of the page and the button in the Select subwidget. The pathName of the page's master frame widget is Returned. Available options are as follows:
-Createcmd tclCommand
Command to be called the first time a page is to be displayed.
-label tclCommand
Text label for the button in the Select subwidget.
-raisecmd tclCommand
Command to be called whenever the page is raised by the user.
pathName delete pageName
Delete the given page from the tixStackWindow.
pathname pagecget pageName option
Similar to the cget method, but operates on the page pageName. Option may have any of the values accepted by the add method.
pathName pageconfigure pageName [option value...]
Similar to the configure method, but operates on the page pageName. Option may have any of the values accepted by the add method.
pathName pages
Return a list of the names of all the pages.
pathName raise pageName
Raise the page pageName.
pathName raised
Return the name of the currently raised page.
Name
StdButtonBox
tixStdButtonBox pathName [option value...]
The tixStdButtonBox command creates a new tixStdButtonBox mega-widget named pathname. The tixStdButtonBox class is derived from the tixButtonBox class. It adds four predefined buttons (OK, Apply, Cancel, Help) For motif-like dialog boxes.
Widget-Specific Options
-applycmd tclCommand (applyCmd, ApplyCmd)
Command to call when the Apply button is pressed.
-cancelcmd tclCommand (cancelCmd, CancelCmd)
Command to call when the Cancel button is pressed.
-helpcmd tclCommand (helpCmd, HelpCmd)
Command to call when the Help button is pressed.
-okcmd tclCommand (okCmd, OkCmd)
Command to call when the OK button is pressed.
Subwidgets
apply
The Apply button widget.
cancel
The Cancel button widget.
help
The Help button widget.
ok
The OK button widget.
Name
StdDialogShell
tixStdDialogShell pathname [option value...]
The tixStdDialogShell command creates a new tixStdDialogShell mega-widget named pathName. The tixStdDialogShell class is derived from the tixDialogShell class. It provides a base class for dialog mega-widgets that need a tixStdButtonBox.
Subwidgets
btns
The tixStdButtonBox mega-widget.
Name
Tree
tixTree pathname [option value...]
The tixTree command creates a new tixTree mega-widget named pathName. The tixTree class is derived from the tixVTree class. It provides a display of hierarchical data in a tree form. The user can adjust the view of the tree by opening (expanding) or closing (collapsing) parts of the tree.
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a single click). The pathName of the entry is appended as an argument.
-closecmd tclCommand (closeCmd, CloseCmd)
Command to call whenever an expanded entry needs to be closed. The pathName of the entry is appended as an argument. The default action is to hide all child entries of the specified entry.
-command tclCommand (command, Command)
Command to call whenever the user activates an entry (usually by a double click). The pathName of the entry is appended as an argument.
-ignoreinvoke Boolean (ignoreInvoke, IgnoreInvoke)
If true, an entry is not expanded or collapsed when the entry is activated. The default is false.
-opencmd tclCommand (openCmd, OpenCmd)
Command to call whenever an expanded entry needs to be opened. The pathName of the entry is appended as an argument. The default action is to show all child entries of the specified entry.
Subwidgets
hlist
The tixHList mega-widget that displays the tree. Entries to the tree are added directly to the hlist subwidget using its add method.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Methods
pathName autosetmode
Call the setmode method for all entries. If an entry has no children, its mode is set to none. If an entry has any hidden children, its mode is set to open. Otherwise, the entry's mode is set to close.
pathName close entryPath
Close the entry given by entryPath if its mode is close.
pathName getmode entryPath
Return the current mode of the entry given by entryPath.
pathName open entryPath
Open the entry given by entryPath if its mode is open.
pathName setmode entryPath mode
Set the mode of the entry given by entryPath to mode. If mode is open, a (+) indicator is drawn next to the entry. If mode is close, a (−) indicator is drawn next to the entry. If mode is none (the default), no indicator is drawn.
Example
tixTree .tree -options { separator "/" }
set hlist [.tree subwidget hlist]
foreach d { Adobe Adobe/Courier Adobe/Helvetica Adobe/Times \
Bitstream Bitstream/Charter Bitstream/Courier } {
$hlist add $d -itemtype imagetext -text [file tail $d] \
-image [tix getimage folder]
}
.tree autosetmode
pack .tree
Name
VStack
tixVStack pathname [option value...]
The tixVStack command creates a new tixVStack mega-widget named path-Name. The tixVStack class is derived from the tixPrimitive class. It serves as a virtual base class for tixNoteBook-style mega-widgets.
Widget-Specific Options
-dynamicgeometry boolean (dynamicGeometry, DynamicGeometry)
Whether the tixVStack should dynamically resize to match the size of the current page. The default is false, in which case the size of the tix-VStack will match the size of the largest page.
-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page subwidgets.
-ipady amount (ipadY, Pad)
Amount of internal vertical padding around the sides of the page subwidgets.
Subwidgets
pageName
The frame widget of a notebook page as returned by the add method.
Methods
pathName add pageName [option value...]
Add a new page to the tixVStack named pageName. The pathName of the page's master frame widget is Returned. Available options are:
-createcmd tclCommand
Command to be called the first time a page is to be displayed.
-raisecmd tclCommand
Command to be called whenever the page is raised by the user.
pathName delete pageName
Delete the given page from the tixVStack.
pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName. Option may have any of the values accepted by the add method.
pathName pageconfigure pageName [option value...]
Similar to the configure method, but operates on the page pageName. Option may have any of the values accepted by the add method.
pathName pages
Return a list of the names of all the pages.
pathName raise pageName
Raise the page pageName.
pathName raised
Return the name of the currently raised page.
Name
VTree
tixVTree pathname [option value...]
The tixVTree command creates a new tixVTree mega-widget named pathName. The tixVTree class is derived from the tixScrolledHList class. It serves as a virtual base class for tree-style mega-widgets.
Widget-Specific Options
-ignoreinvoke boolean (ignoreInvoke, IgnoreInvoke)
If true, an entry is not expanded or collapsed when the entry is activated. The default is false.
Subwidgets
hlist
The tixHList mega-widget that displays the tree.
hsb
The horizontal scrollbar widget.
vsb
The vertical scrollbar widget.
Tix Standard Widgets Overview
Tix adds five new standard widgets to Tk: tixGrid, tixHList, tixInputOnly, tixNote-BookFrame, and tixTList. These widgets add new features to Tk that could not be constructed from the standard Tk widgets.
Display Items
Three of the standard widgets added to Tk by Tix are designed to arrange and display items in a list or grid without regard to how each item is actually drawn. They simply treat the items as rectangular boxes and leave the drawing part to the item itself. To this end, all three widgets, called host widgets, support a set of items with a common interface, called display items.
Tix currently has four types of display items: image, text, imagetext, and window. A C API exists for the programmer to add more item types. The appearance of each item is controlled by option-value pairs specified at creation in a manner similar to how items of the canvas widget are configured. Each host widget also supports an entryconfigure method for changing options for existing items.
Since several or all items in a host widget will share common display attributes, Tix supports the concept of display styles. Each display item supports the -style option, which accepts as a value a display style as Returned by the tixDisplayStyle command. The tixDisplayStyle command is described in detail in the "Tix Core Commands" section, later in this chapter. In short, it defines a style by defining values for a subset of the style options a display item type supports. Display items are configured to use the style using the -style option. Changes to the style at a later time will be reflected in all display items connected to the style.
Image Items
Display items of the type image are used to display Tk images. Image items support the following options:
-image imageName (image, Image)
Image to display in the item.
-style displayStyle (imageStyle, ImageStyle)
Display style to which to connect the item.
Image items support the following standard widget options as style options:
- activebackground | - activeforeground | - anchor |
- background | - disabledbackground | - disabledforeground |
- foreground | - padx | - pady |
- selectbackground | - selectforeground |
Imagetext Items
Display items of the type imagetext are used to display an image and a text string together. Imagetext items support the following options:
-bitmap bitmap (bitmap, Bitmap)
Bitmap to display in the item.
-image imageName (image, Image)
Image to display in the item. Overrides the -bitmap option.
-style displayStyle (imageTextStyle, ImageTextStyle)
Display style to which to connect the item.
-showimage boolean (showImage, ShowImage)
Whether image/bitmap should be displayed.
-showtext boolean (showText, ShowText)
Whether text string should be displayed.
-text string (text, Text)
Text string to display in the item.
-underline string (underline, Underline)
Text string to display in the item.
Imagetext items support the following standard widget options as style options:
- activebackground | - activeforeground | - anchor |
- background | - disabledbackground | - disabledforeground |
- font | - foreground | - justify |
- padx | - pady | - selectbackground |
- selectforeground | - wraplength |
Imagetext items support the following special style option:
-gap amount (gap, Gap)
Distance in pixels between the bitmap/image and the text string.
Text Items
Display items of the type text are used to display a simple text string. Text items support the following options:
-style displayStyle (textStyle, TextStyle)
Display style to which to connect the item.
-text string (text, Text)
Text string to display in the item.
-underline string (underline, Underline)
Text string to display in the item.
Text items support the following standard widget options as style options:
- activebackground | - activeforeground | - anchor |
- background | - disabledbackground | - disabledforeground |
- font | - foreground | - justify |
- padx | - pady | - selectbackground |
- selectforeground | - wraplength |
Window Items
Display items of the type window are used to display a subwindow in a host widget. Window items support the following options:
-style displayStyle (windowStyle, WindowStyle)
Display style to which to connect the item.
-window pathName (window, Window)
pathName of widget to display as a subwindow in the item.
Window items support the following standard widget options as style options:
- anchor | - padx | - pady |
Tix Standard Widgets
Name
Grid
tixGrid pathname [option value...]
The tixGrid command creates a new tixGrid widget named pathName. A tix-Grid widget presents a 2D grid of cells. Each cell may contain one Tix display item and can be formatted with a wide range of attributes.
Standard Options
- background | - borderwidth | - cursor |
- font | - foreground | - highlightbackground |
- highlightcolor | - highlightthickness | - padx |
- pady | - relief | - selectbackground |
- selectborderwidth | - selectforeground | - takefocus |
- xscrollcommand | - yscrollcommand |
Widget-Specific Options
-editdonecmd tclCommand (editDoneCmd, EditDoneCmd)
Command to call when the user has edited a grid cell. The column and row numbers of the cell are appended as arguments.
-editnotifycmd tclCommand (editNotifyCmd, EditNotifyCmd)
Command to call when the user tries to edit a grid cell. The column and row numbers of the cell are appended as arguments. The command should Return a boolean value to indicate whether the cell is editable.
-formatcmd tclCommand (formatCmd, FormatCmd)
Command to call when the grid cells need to be formatted on the screen. Five arguments are appended: Type x1 y1 x2 y2. type is the logical type of the region. It may be one of x-region (the horizontal margin), y-region (the vertical margin), s-region (area where margins are joined), or main (any other region). The last four arguments give the column and row numbers of the top left cell and bottom right cell of the af fected region.
-height integer (height, Height)
Number of rows in the grid. The default is 10.
-itemtype tclCommand (itemType, ItemType)
The default item type for a cell when set with the set method. The default is text.
-leftmargin integer (leftMargin, LeftMargin)
Number of cell columns, starting at column 0, that make up the vertical margin. The default is 1. Left margin columns are not scrolled.
-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for manipulation of the selection. Supported styles are single, browse, multiple, and extended. Any arbitrary string is allowed, but the programmer must extend the bindings to support it.
-selectunit tclCommand (selectUnit, SelectUnit)
The unit of selection. Valid values are cell, column, or row.
-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the grid is resized or the size of a row or column is changed with the size method.
-state tclCommand (state, State)
Current state of the grid. Valid values are normal and disabled.
-topmargin tclCommand (topMargin, TopMargin)
Number of cell rows, starting from row 0, that make up the horizontal margin. The default is 1. Rows in the top margin are not scrolled.
-width integer (width, Width)
Number of columns in the grid. The default is 4.
Methods
pathName anchor operation [args...]
Manipulate the anchor cell of the grid. Available operations are:
clear
Make no cell the anchor cell.
get
Return the column and row of the anchor cell as a two-item list. A result of {−1 −1} indicates there is no anchor cell.
set x y
Set the anchor cell to the cell at column x and row y.
pathName delete what from [to]
Delete specified rows or columns. What may be row or column. If to is omitted, only the row (or column) at from is deleted. Otherwise, all rows (or columns) from position from through to, inclusive, are deleted.
pathName edit apply
Un-highlight any cell currently being edited and apply the changes.
pathName edit set x y
Highlight the cell at column x, row y for editing.
pathName entrycget x y option
Similar to the cget method, but operates on the cell at x y. Option may have any of the values accepted by the set method used for that cell.
pathName entryconfigure x y [option value...]
Similar to the configure method, but operates on the cell at x y. Option may have any of the values accepted by the set method for that cell.
pathName format borderType x1 y1 x2 y2 [option value...]
Format the grid cells contained in the rectangular region with its top left cell at x1,y1 and bottom right cell at x2,y2. This command can only be called from the format command handler set with the -formatcmd option. The borderType argument may be either border or grid. The following options are supported by both border types:
-background color (background, Background)
Background color for 3D borders when border type is border. When -filled is true, the background of the cell is also drawn in this color for both types. Otherwise, the tixGrid widget's background color is used.
-borderwidth amount (borderWidth, BorderWidth)
Width of the border.
-filled boolean (filled, Filled)
Whether the -background and -selectbackground options should override the tixGrid widget's options. The default is false.
-selectbackground color (selectBackground, Foreground)
The background color of the cell when it is selected. Used only when -filled is true.
-xon xon (xon, Xon)
Using the -xon, -xoff, -yon, and -yoff options, borders can be drawn around groups of cells. The given region is divided into subregions, starting from the top left cell, that are xon +xoff cells wide by yon +yoff cells high. Within this subregion, the border is drawn only around the rectangular regions in the top left corner that are xon cells wide and yon cells high. The default values are 1 for -xon and -yon and 0 for -xoff and -yoff, which results in borders being drawn around each individual cell.
-xoff xoff (xoff, Xoff)
See -xon.
-yon yon (yon, Yon)
See -xon.
-yoff yoff (yoff, Yoff)
See -xon.
When borderType is border, cell borders are standard Tk 3D borders. Available options are as follows:
-relief relief (relief, Relief)
3D effect for border.
When borderType is grid, cell borders are plain grid lines. Available options are as follows:
-anchor anchorPos (anchor, Anchor)
For grid lines, only one or two of the border's sides are actually drawn. AnchorPos identifies on which sides of the rectangular region the grid lines are drawn. For example, ne states that grid lines are drawn on the top and right sides, whereas e states that a grid line is drawn only on the right side.
-bordercolor color (borderColor, BorderColor)
Color of the grid lines.
pathName info exists x y
Return a 1 if the cell at row x, column y contains a display item. Otherwise, return 0.
pathName move what from to offset
Move the specified rows or columns. What may be row or column. Move rows (or columns) from position from through to, inclusive, by the distance offset.
pathName nearest x y
Return the row and column of the cell nearest to coordinates x y inside the grid.
pathName set x y [-itemtype type] [option value. . .]
Create a new display item at row x, column y. If given, type specifies the type of the display item. Valid options are those allowed for the selected display item type. If a display item already exists in the cell, it will be deleted automatically.
pathName size what index [option value. . .]
Query or set the size of the row or column. What may be row or column. Index may be the integer position of the row (or column) or the string default, which sets the default size for all rows (or columns). Available options are as follows:
-pad0 pixels
Padding to the left of a column or the top of a row.
-pad1 pixels
Padding to the right of a column or the bottom of a row.
-size amount
Width of a column or height of a row. Amount may be a real number in screen units or one of the following:
auto
Autosize to largest cell in column or row.
default
Use the default size (10 times the average character widths for columns and 1.2 times the average character height for rows).
nchar
Set the size to n times the average character width for columns and n times the average character height for rows.
pathName unset x y
Remove the display item from the cell at row x, column y.
pathName xview
Return a two-element list describing the currently visible horizontal region of the widget. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget. Columns in the left margin are not part of the scr ollable region.
pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Horizontally scroll the visible columns outside the left margin by number. If what is units, then number is in units of columns. If what is pages, then number isi in units of the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the widget. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget. Rows in the top margin are not part of the scrollable region.
pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Vertically scroll the visible rows outside the top margin by number. If what is units, then number is in units of rows. If what is pages, then number is in units of the visible region's height.
Example
proc SimpleFormat {w area x1 y1 x2 y2} {
array set bg {s-margin gray65 x-margin gray65 \
y-margin gray65 main gray20 }
case $area {
main { $w format grid $x1 $y1 $x2 $y2 -anchor se -fill 0 \
-relief raised -bd 1 -bordercolor $bg($area)
}
{x-margin y-margin s-margin} {
$w format border $x1 $y1 $x2 $y2 \
-fill 1 -relief raised -bd 1 -bg $bg($area)
}
}
}
set grid [[tixScrolledGrid .sg -bd 0] subwidget grid]
$grid configure -formatcmd "SimpleFormat $grid"
for {set x 0} {$x < 10} {incr x} {
$grid size col $x -size auto
for {set y 0} {$y < 10} {incr y} {
$grid set $x $y -itemtype text -text ($x,$y)
}
}
$grid size col 0 -size 10char
pack .sg -expand true -fill both
Name
HList
tixHList pathName [option value...]
The tixHList command creates a new tixHList widget named pathName. A tixHList is used to display any data that has a hierarchical structure (e.g., filesystem directory trees)
Standard Options
- background | - borderwidth | - cursor |
- font | - foreground | - highlightbackground |
- highlightcolor | - highlightthickness | - padx |
- pady | - relief | - selectbackground |
- selectborderwidth | - selectfor eground | - takefocus |
- xscrollcommand | - yscr ollcommand |
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a single click) The pathName of the entry is appended as an argument.
-columns integer (columns, Columns)
Number of columns in the tixHList. Can be set at creation only. Column numbering begins at 0. List entries alway appear in column 0. Arbitrary display items can be placed in the columns to the right of an entry (e.g., file sizes and owner's name).
-command tclCommand (command, Command)
Command to call whenever the user browses an entry (usually by a single click). The pathName of the entry is appended as an argument.
-drawbranch boolean (drawBranch, DrawBranch)
Whether branch lines should be drawn to connect list entries to their parents.
-header boolean (header, Header)
Whether headers should be displayed at the top of each column.
-height amount (height, Height)
Height for the window in lines of characters.
-indent amount (indent, Indent)
Horizontal indentation between a list entry and its children.
-indicator boolean (indicator, Indicator)
Whether indicators should be displayed.
-indicatorcmd tclCommand (indicatorCmd, IndicatorCmd)
Command to call when an entry's indicator is activated. The entryPath of the entry is appended as an argument.
-itemtype type (itemType, ItemType)
The default item type for a new entry. The default is text.
-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for manipulation of the selection. Supported styles are single, browse, multiple, and extended. Any arbitrary string is allowed, but the programmer must extend the bindings to support it.
-separator char (separator, Separator)
Character that serves as path separator for entry pathNames. The default is the "." character.
-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the tixHList changes its size.
-wideselection boolean (wideSelection, WideSelection)
Whether selection highlight extends the entire width of the tixHList or just fits the selected entry. Default is true.
-width amount (width, Width)
Width of the tixHList in characters.
Methods
pathName add entryPath [option value...]
Add a new top-level list entry with pathName entryPath. This pathname is also the method's Return value. Available options are those appropriate to the selected display item type, with these additions:
-at index
Insert the new entry at position index, an integer starting from 0.
-after afterWhich
Insert the new entry after the entry afterWhich.
-before beforeWhich
Insert the new entry before the entry beforeWhich.
-data string
String to associate with the new entry that will be Returned by the info method.
-itemtype type
Display item type for the new entry. Otherwise, the type is taken from the tixHList's -itemtype option.
-state state
Whether entry can be selected and invoked. State must be either normal or disabled.
pathName addchild parentPath
Add a new child entry underneath entry parentPath. If parentPath is the empty string, a top-level entry is created. The pathname of the new entry is returned. Available options are the same as for the add method.
pathName anchor set entryPath
Set the selection anchor to the entry entryPath.
pathName anchor clear
Make it so no entry is the selection anchor.
pathName column width col [[-char] width]
Set the width of column col to width, which is in screen units. If -char is specified, the width is in characters. If width is the empty string, the column is autosized to the widest element. If the only argument given is col, the current width of column col is returned in pixels.
pathName delete what [entryPath]
Delete one or more entries. What may be one of the following:
all
Delete all of the entries in the tixHList.
entry
Delete the entry entryPath and all of its children.
offsprings
Delete all the children of entry entryPath.
siblings
Delete all entries that share the same parent as the entry entryPath (which is not deleted).
pathName entrycget entryPath option
Similar to the cget method, but operates on the entry entryPath. Option may have any of the values accepted by the entry's display item type.
pathName entryconfigure entryPath [option value...]
Similar to the configure method, but operates on the entry entryPath. Option may have any of the values accepted by the entry's display item type.
pathName header cget col option
Similar to the cget method, but operates on the header for column col. Option may have any of the values accepted by the header create method.
pathName header configure col [option value...]
Similar to the configure method, but operates on the header for column col. Option may have any of the values accepted by the header create method.
pathName header create col [-itemtype type] [option value...]
Create a new display item to serve as the header for column col. If type is not given, the default is that of the tixHList's -itemtype option. Available options are those appropriate to the selected display item type, with the following additions:
-borderwidth amount (borderWidth, BorderWidth)
Border width for header item.
-headerbackground color (headerBackground, Background)
Background color for header item.
-relief relief (relief, Relief)
Relief for header item.
pathName header delete col
Delete the header item for column col.
pathName header exists col
Return 1 if a header item exists for column col, 0 otherwise.
pathName header size col
Return the size of the header in column col as a two-item list of its width and height, or an empty list if no header item exists.
pathName hide entry entryPath
Hide the list entry entryPath.
pathName indicator cget entryPath option
Similar to the cget method, but operates on the indicator for entry entryPath. Option may have any of the values valid for the display item type of the indicator.
pathName indicator configure entryPath [option value...]
Similar to the configure method, but operates on the indicator for entry entryPath. Option may have any of the values valid for the display item type of the indicator.
pathName indicator create entryPath [-itemtype type] [option value...]
Create a new display item to be the indicator for the entry entryPath. If type is not given, the default is that of the tixHList's -itemtype option. Available options are those appropriate to the selected display item type.
pathName indicator delete entryPath
Delete the indicator display item for the entry entryPath.
pathName indicator exists entryPath
Return 1 if entry entryPath has an indicator, 0 otherwise.
pathName indicator size entryPath
Return the size of the indicator for the entry entryPath as a two-item list of its width and height (or an empty list if no indicator exists).
pathName info anchor
Return the pathname of the entry that is the current anchor.
pathName info bbox entryPath
Return a coordinate list of the form {x1 y1 x2 y2} giving an approximate bounding box for the currently visible area of entry entryPath.
pathName info children [entryPath]
If entryPath is given, return a list of that entry's children. Otherwise, return a list of the top-level entries.
pathName info data entryPath
Return the associated data string for entry entryPath.
pathName info exists entryPath
Return 1 if an entry with pathname entryPath exists, 0 otherwise.
pathName info hidden entryPath
Return 1 if the entry entryPath is hidden, 0 otherwise.
pathName info next entryPath
Return the pathname of the entry immediately below entry entryPath in the list. An empty string is returned if entryPath is the last entry.
pathName info parent entryPath
Return the pathname of the entry that is the parent of entry entryPath. An empty string is returned if entryPath is a top-level entry.
pathName info pref entryPath
Return the pathname of the entry immediately above entry entryPath in the list. An empty string is returned if entryPath is the first entry.
pathName info selection
Return a list of the selected entries in the tixHList.
pathName item cget entryPath option
Similar to the cget method, but operates on the display item in column col on the same line as entry entryPath. Option may have any of the values valid for the display item's type.
pathName item configure entryPath col [option value...]
Similar to the configure method, but operates on the display item in column col on the same line as entry entryPath. Option may have any of the values valid for the display item's type.
pathName item create entryPath col [-itemtype type] [option value...]
Create a new display item in column col on the same line as entry entryPath. If type is not given, the default is that of the tixHList's -itemtype option. Available options are those appropriate to the selected display item type. If col is 0, the display item of entry entryPath is replaced with the new item.
pathName item delete entryPath col
Delete the display item in column col that is on the same line as entry entryPath. col must be greater than 0. Use the delete entry method to delete the entry.
pathName item exists entryPath col
Return 1 if a display item in column col exists on the same line as entry entryPath, 0 otherwise.
pathName nearest y
Return the pathname of the entry nearest to the y-coordinate y.
pathName see entryPath
Adjust the view in the tixHList so the entry entryPath is visible.
pathName selection clear [from [to]]
With no arguments, all entries are deselected. If only from is given, just the entry with pathname from is deselected. If to is also given, all entries from the entry from up to and including the entry to are deselected.
pathName selection get
Return a list of the selected entries in the tixHList.
pathName selection includes entryPath
Return 1 if entry entryPath is selected, 0 otherwise.
pathName selection set from [to]
If only from is given, just the entry with pathname from is selected. If to is also given, all entries from the entry from up to and including the entry to are selected.
pathName show entry entryPath
If entry entryPath is hidden, unhide it.
pathName xview
Return a two-element list describing the currently visible horizontal region of the widget. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget. Columns in the left margin are not part of the scrollable region.
pathName xview entryPath
Adjust the view so that the entry entryPath is aligned at the left edge of the window.
pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Scroll the view horizontally in the window by number. If what is units, then number is in units of characters. If what is pages, then number is in units of the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the widget. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget. Rows in the top margin are not part of the scrollable region.
pathName yview entryPath
Adjust the view so that the entry entryPath is aligned at the top edge of the window.
pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Scroll the view vertically in the window by number. If what is units, then number is in units of characters. If what is pages, then number is in units of the visible region's height.
Name
InputOnly
tixInputOnly pathName [option value...]
The tixInputOnly command creates a new tixInputOnly widget named path-Name. TixInputOnly widgets are not visible to the user. The only purpose of a tixInputOnly widget is to accept input from the user. It is useful for intercepting events to other widgets when mapped invisibly on top of them.
Standard Options
- cursor | - width | - height |
Name
NoteBookFrame
tixNoteBookFrame pathName [option value...]
The tixNoteBookFrame command creates a new tixNoteBookFrame widget named pathName. It provides page tabs for use in tixNoteBook-style megawidgets and serves as the container for any page frames to be controlled. It is up to the programmer to set up event bindings to properly connect page tabs and frames.
Standard Options
- background | - borderwidth | - cursor |
- disabledforeground | - font | - foreground |
- height | - relief | - takefocus |
- width |
Widget-Specific Options
-backpagecolor color (backPageColor, BackPageColor)
Color for the background behind the page tabs.
-focuscolor color (focusColor, FocusColor)
Color for the tab focus highlight.
-inactivebackground color (inactiveBackground, Background)
Background color for inactive tabs. The active tab always has the same background color as the tixNoteBookFrame.
-slave boolean (slave, Slave)
Whether the tixNoteBookFrame is a slave and therefore should not make its own geometry requests.
-tabpadx amount (tabPadX, Pad)
Horizontal padding around the text labels on the page tabs.
-tabpady amount (tabPadY, Pad)
Vertical padding around the text labels on the page tabs.
Methods
pathName activate tabName
Make the page tab tabName the active tab and also give it the tab focus. Note that this does not raise the page frame associated with the tab. If tabName is the empty string, no tab will be active or have the tab focus.
pathName add tabName [option value...]
Add a new page tab named tabName to the tixNoteBookFrame. It is up to the programmer to create a new frame widget to associate with the page tab. The frame must be a descendant of the tixNoteBookFrame. Available options are as follows:
-anchor anchorPos
Specifies how the information in a page's tab (e.g., text or bitmap) should be anchored. Must be one of n, nw, w, sw, s, se, e, ne, or center.
-bitmap bitmap
Bitmap to display in tab.
-image imageName
Name of image to display in tab.
-justify position
How multiple lines of text in the tab should be justified. Must be left, right, or center.
-label string
Text to display in the tab. Overrides -image and -bitmap.
-state state
Whether page tab can be made active. Must be either normal or disabled.
-underline index
Integer index (starting from 0) of character in text label to underline in the tab. Used by default bindings to set up keyboard traversal of tabs.
-wraplength chars
Maximum line length of text in the tab. If value is 0 or less, no wrapping is done.
pathName delete tabName
Delete the page tab tabName.
pathName focus tabName
Give the page tab tabName the tab focus. If tabName is the empty string, no tab will have the focus.
pathName geometryinfo
Return a two-item list of the form {width height} describing the size of the area containing the page tabs.
pathName identify x y
Return the name of the page tab that contains the coordinates x y. Returns an empty string if the coordinates are outside the tab area.
pathName info what
Return information about what in the tixNoteBookFrame. Valid values for what are as follows:
pages
Return a list of the page tab names in the tixNoteBookFrame.
active
Return the name of the currently active page tab.
focus
Return the name of the page tab that currently has the focus.
focusnext
Return the name of the page tab that lies in the focus ring after the current page tab with the focus.
focusprev
Return the name of the page tab that lies in the focus ring before the current page tab with the focus.
pathName pagecget tabName option
Similar to the cget method, but operates on the page tab tabName. Option may have any of the values accepted by the add method.
pathName pageconfigure tabName [option value...]
Similar to the configure method, but operates on the page tab tabName. Option may have any of the values accepted by the add method.
Name
TList
tixTList pathName [option value...]
The tixTList command creates a new tixTList widget named pathName.
Standard Options
- background | - borderwidth | - cursor |
- font | - foreground | - highlightcolor |
- highlightthickness | - padx | - pady |
- relief | - selectbackground | - selectborderwidth |
- selectforeground | - takefocus | - xscrollcommand |
- yscrollcommand |
Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a single click). The pathname of the entry is appended as an argument.
-command tclCommand (command, Command)
Command to call whenever the user browses an entry (usually by a double click). The pathname of the entry is appended as an argument.
-height amount (height, Height)
Height for the window in lines of characters.
-itemtype type (itemType, ItemType)
The default item type for a new entry. The default is text.
-orient orient (orient, Orient)
Order for tabularizing the list entries. Orient may be vertical (entries are arranged from top to bottom in columns) or horizontal (entries are arranged from left to right in rows).
-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for manipulation of the selection. Supported styles are single, browse, multiple, and extended. Any arbitrary string is allowed, but the programmer must extend the bindings to support it.
-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the tixTList changes its size.
-state state (state, State)
Whether tixTList entries can be selected or activated. State must be either normal or disabled.
-width amount (width, Width)
Width of the tixTList in characters.
Methods
pathName anchor set index
Set the selection anchor to the entry at index.
pathName anchor clear
Make it so no entry is the selection anchor.
pathName delete from [to]
Delete all list entries between the indices from and to, inclusive. If to is omitted, only the entry at from is deleted.
pathName entrycget index option
Similar to the cget method, but operates on the entry at index. Option may have any of the values accepted by the insert method used to create the entry.
pathName entryconfigure index [option value...]
Similar to the configure method, but operates on the entry at index. Option may have any of the values accepted by the insert method used to create the entry.
pathName insert index [-itemtype type] [option value...]
Create a new entry at position index. If type is not given, the default is that of the tixTList's -itemtype option. Available options are those appropriate to the selected display item type, with the following addition:
-state state
State of the individual entry. Must be either normal or disabled.
pathName info anchor
Return the pathname of the entry that is the current anchor.
pathName info selection
Return a list of the selected entries in the tixTList.
pathName nearest x y
Return the index of the entry nearest to the coordinates x y.
pathName see index
Adjust the view in the tixTList so the entry at index is visible.
pathName selection clear [from [to]]
With no arguments, all entries are deselected. If only from is given, just the entry at index from is deselected. If to is also given, all entries from the entry at from up to and including the entry at to are deselected.
pathName selection includes index
Return 1 if the entry at index is selected, 0 otherwise.
pathName selection set from [to]
If only from is given, just the entry at index from is selected. If to is also given, all entries from the entry at from up to and including the entry at to are selected.
pathName xview
Return a two-element list describing the currently visible horizontal region of the widget. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget. Columns in the left margin are not part of the scrollable region.
pathName xview index
Adjust the view so that the entry at index is aligned at the left edge of the window.
pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Scroll the view horizontally in the window by number. If what is units, then number is in units of characters. If what is pages, then number is in units of the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the widget. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget. Rows in the top margin are not part of the scrollable region.
pathName yview index
Adjust the view so that the entry at index is aligned at the top edge of the window.
pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Scroll the view vertically in the window by number. If what is units, then number is in units of characters. If what is pages, then number is in units of the visible region's height.
Tix Core Commands
This section describes the commands added by the Tix extension that do not create widgets or mega-widgets. These commands cover new mega-widget class definition, method writing, and configuration of the Tix internal state.
Name
tix
tix operation [arg arg...]
Access aspects of Tix's internal state and the Tix application context.
Application- Context Options
Several of Tix's internal settings are manipulated using the cget and configure operations, which operate in the same manner as the identically named widget methods. The settings that can be set this way are as follows:
-debug boolean
Whether Tix widget should run in debug mode.
-fontset fontSet
The font set to use as defaults for Tix widgets. Valid values are TK (standard Tk fonts), 12Point, and 14Point (the default).
-scheme scheme
Color scheme to use for the Tix widgets. Valid values are TK (standard Tk colors), Gray, Blue, Bisque, SGIGray, and TixGray (the default).
-schemepriority priority
Priority level of the options set by the Tix schemes. See the Tk Option command for a discussion of priority levels. The default is 79.
Operations
tix addbitmapdir directory
Add directory to the list of directories searched by the getimage and getbitmap operations for bitmap and image files.
tix filedialog [class]
Returns the pathname of a file selection mega-widget that can be shared among different modules of the application. The mega-widget will be created when this operation is first called. The class argument may be used to specify the mega-widget class of the file selection dialog, either tixFileSelectDialog (the default) or tixExFileSelectDialog.
tix getbitmap name
Search the bitmap directories for a file with the name name.xbm or name. If found, return the full pathname to the file, prefixed with an @ character to make the result suitable for -bitmap options.
tix getimage name
Search the bitmap directories for a file with the name name.xpm, name.gif, name.ppm, name.xbm, or name. If found, the name of a newly created Tk image is returned, suitable for use with -image options.
tix option get option
Return the setting of a Tix scheme option. Available options are:
- active_bg | - active_fg | - bg |
- bold_font | - dark1_bg | - dark1_fg |
- dark2_bg | - dark2_fg | - disabled_fg |
- fg | - fixed_font | - font |
- inactive_bg | - inactive_fg | - input1_bg |
- input2_bg | - italic_font | - light1_bg |
- light1_fg | - light2_bg | - light2_fg |
- menu_font | - output1_bg | - output2_bg |
- select_bg | - select_fg | - selector |
tix resetoptions newScheme newFontSet [newSchemePriority]
Reset the scheme and font set of the Tix application context to newScheme and newFontSet. NewSchemePriority can be specified to change the priority level of the scheme options in the Tk options database. This command is preferred to using tix configure for the -scheme, -fontset, and -schemepriority settings.
Name
CallMethod
tixCallMethod pathName method [arg arg...]
Invoke method method of the mega-widget pathName with the given arguments. Most commonly used by a base class to call a method that a derived class may have overridden.
Name
ChainMethod
tixChainMethod pathName method [arg arg...]
Invoke the method method with the given arguments in the context of the superclass of mega-widget pathName. Most commonly used by a derived class to call a method of its superclass that it has overridden.
Name
Class
tixClass className { ... }
Define a new class in the Tix Intrinsics named className. TixClass is almost identical to the tixWidgetClass command, except that it is not associated with a widget. The new command that is created, named className, therefore lacks widget-related methods, such as subwidget. Also, there are no methods such as initWidgetRec that must be defined for the class.
There is one syntactical difference compared with the tixWidgetClass command. Each item in the -configspec list for tixClass is only a two- or threeelement list: the option, the default value, and an optional verification command. One example of a nonwidget Tix class is the tix command, which is defined at runtime using the tixClass command.
Name
Descendants
tixDescendants window
Return a list of all the descendants of the widget window.
Name
Destroy
tixDestroy objectName
Destroy the Tix object objectName, which must be an instance of class defined with tixClass or tixWidgetClass. The Destructor method of the object is called first, if defined.
Name
DisableAll
tixDisableAll window
Set the -state option of window and all its descendants that have a -state option to disabled.
Name
DisplayStyle
tixDisplayStyle itemType [-stylename styleName] [-refwindow refWindow] [option value...]
Create a new display item style of type itemType. The name of the new style will be styleName, if specified. Otherwise, a unique name is generated and returned. Valid Options are those defined for the chosen display item type.
If refWindow is specified, the default values for the style will be taken from the matching options of the window refWindow. Note that refWindow need not exist; however, any options specified for it in the Tk resource database will be used. If refWindow is omitted, the main window is used.
A new Tix object is created with the same name as the style (i.e., styleName). This object has the following methods:
styleName cget option
Return the current value of the configuration option Option for the display style.
styleName configure [Option [value [option value...]]]
Query or modify the configuration options of the display style in the same manner as the standard widget configure method.
styleName delete
Destroy the display style object.
Name
EnableAll
tixEnableAll window
Set the -state option of window and all its descendants that have a -state option to normal.
Name
Form
tixForm operation [arg arg...]
Communicate with the Tix Form geometry manager that arranges widgets inside their master according to various attachment rules. The tixForm command can take the following forms:
tixForm slave [slave...] [options]
Same as tixForm configure.
tixForm check master
Return 1 if there is a circular dependency in the attachments for masters slaves, 0 otherwise.
tixForm configure slave [slave...] [options]
Configure how the slave window slave should be managed by its Form geometry master. Supported options are as follows:
-bottom attachment
Attachment for bottom edge of the slave. (Abbreviation: -b)
-bottomspring weight
Weight of the spring at the bottom edge of the slave. (Abbreviation: -bs)
-fill fill
Direction slave should fill. Fill may be x, y, both, or none.
-in master
Insert the slave in master window master, which must either be the slave's parent (the default) or a descendant of the slave's parent.
-left attachment
Attachment for left edge of the slave. (Abbreviation: -l)
-leftspring weight
Weight of the spring at the left edge of the slave. (Abbreviation: -ls)
-padbottom amount
How much external padding to add to the bottom side of the slave. (Abbreviation: -bp)
-padleft amount
How much external padding to add to the left side of the slave. (Abbreviation: -lp)
-padright amount
How much external padding to add to the right side of the slave. (Abbreviation: -rp)
-padtop amount
How much external padding to add to the top side of the slave. (Abbreviation: -tp)
-padx amount
How much external padding to add to both the right and left sides of the slave.
-pady amount
How much external padding to add to both the top and bottom sides of the slave.
-right attachment
Attachment for right edge of the slave. (Abbreviation: -r)
-rightspring weight
Weight of the spring at the right edge of the slave. (Abbreviation: -rs)
-top attachment
Attachment for top edge of the slave. (Abbreviation: -t)
-topspring weight
Weight of the spring at the top edge of the slave. (Abbreviation: -ts)
tixForm forget slave [slave...]
Remove each given slave from the list of slaves managed by its master and unmap its window. The grid configuration options for each slave are forgotten.
tixForm grid master [xSize ySize]
Set the number of horizontal and vertical grid cells in the master window master to xSize and ySize, respectively. If the grid sizes are omitted, the current setting is returned as a list of the form {xSize ySize}.
tixForm info slave
Return the current configuration state of the slave slave in the same option-value form given to tixForm configure. The first two elements will be -in master.
tixForm slaves master
Return a list of all the slaves managed by the master window master.
Attachments
The attachment argument to the -right, -left, -top, and -bottom configuration options takes the general form {anchorPoint offset}. The second element, offset, is given in screen units. If positive, it indicates a shift in position to the right of or down from the anchor point. If negative, it indicates a shift in position to the left of or up from the anchor point.
The first element, anchorPoint, specifies where the slave will be positioned on the master. It may have the following forms:
%gridline
The slave's side is attached to an imaginary grid line. By default, the master window is divided into 100×100 grid cells. An anchor point of %0 specifies the first grid line (the left or top edge of the master), and an anchor point of %100 specifies the last grid line (the right or bottom edge of the master). The number of grid cells can be changed with the tix-Form grid method.
pathName
The slave's side is aligned to the opposite side of the window pathName, which must also be a slave. For example, a configuration option-value of -top {.a 0} will align the top side of the slave at the same vertical position as the bottom side of the slave .a.
&pathName
The slave's side is aligned with the same side of the window pathName, which must also be a slave. For example, a configuration option-value of -top {.a 0} will align the top side of the slave at the same vertical position as the top side of the slave .a.
none
The slave's side is attached to nothing. When none is the anchor point, the offset must be 0. The side is unconstrained and its position determined from the attachments for the other sides and the slave's natural size.
The value attachment can be abbreviated as a single element. If the value can be interpreted as an anchor point, the offset defaults to 0. If it can be interpreted as an offset, the anchor point defaults to %0 for positive offsets and to %100 (or whatever the maximum grid line is) for negative offsets.
Name
GetBoolean
tixGetBoolean [-nocomplain] string
Return 0 if the string is a valid Tcl boolean value for false. Return 1 if the string is a valid Tcl boolean value for true. Otherwise, an error is generated unless -nocomplain is specified, in which case a 0 is returned.
Name
GetInt
tixGetInt [-nocomplain] [-trunc] string
Convert string into an integer if it is a valid Tcl numerical value. Otherwise, an err or is generated unless -nocomplain is specified, in which case a 0 is returned. By default, the value is rounded to the nearest integer. If -trunc is specified, the value is truncated instead.
Name
Mwm
tixMwm operation [arg arg...]
Communicate with mwm, the Motif window manager. The tixMwm command can take the following forms:
tixMwm decoration pathName [Option [value [option value...]]]
Query or modify the Motif window decoration options for the top-level window pathName in the same manner as the standard widget configure method. Valid options are -border, -menu, -maximize, -minimize, -resizeh, and -title.
tixMwm ismwmrunning pathName
Return 1 if mwm is running on pathName's screen, 0 otherwise.
tixMwm protocol pathName
Return a list of all protocols associated with the top-level window pathName.
tixMwm protocol pathName activate protocol
Activate the given mwm protocol in mwm's menu.
tixMwm protocol pathName add protocol menuMsg
Add a new mwm protocol named protocol and add an item in mwm's menu according to menuMsg that will invoke the protocol. MenuMsg is a valid X resource for a mwm menu item. The protocol invocation can be caught using the Tk wm protocol command.
tixMwm protocol pathName deactivate protocol
Deactivate the given protocol in mwm's menu.
tixMwm protocol pathName delete protocol
Delete the given protocol from mwm's menu.
Name
PopGrab
tixPopGrab
Release the last grab set with the tixPushGrab command and pop it off the Tix grab stack.
Name
PushGrab
tixPushGrab [-global] window
Identical to the standard Tk grab set command, with the added feature that the grab is placed on Tix's internal grab stack. The tixPopGrab command must be used to release the grab.
Name
WidgetClass
tixWidgetClass className {option value ... }
Define a new mega-widget class named className. A Tcl command named className is also defined, which will create new instances of the class. Available options are as follows:
-alias aliasList
Aliases for the options defined by -flag. Each element of aliasList is a two-item list consisting of the alias followed by the full option to which it maps.
-classname classResName
Resource class name for the mega-widget for use by Tk resource database. By convention, classResName is the same as the className argument with the first letter capitalized.
-configspec configList
Configuration of each option that the new mega-widget supports (see-flag). Each element of configList is a four- or five-item list. The required four elements are the option name (including the hyphen), resource name, resource class, and default value. The optional fifth element is a Tcl command used to validate a value for the option. This command is called once the option is initialized at creation and whenever its value is set with the configure method. The candidate value is appended to the call as an argument. The command should return the value to actually be used or generate an error.
-default resList
List of Tk resource specifications to be applied for each instance of the mega-widget. These resources are most often used to set up configuration defaults for subwidgets of the mega-widget. Each element of resList is a two-item list giving the pattern and value, as for an option add command.
-flag optionList
List of options (also known as public variables) that the mega-widget class supports.
-forcecall optionList
List of options that should have their private configuration methods called during initialization of a mega-widget instance. Normally, an option's configuration method is called only when the option is set with the configure method.
-method methodList
List of public methods that the mega-widget class supports.
-readonly optionList
List of options that cannot be set or changed by the user.
-static optionList
List of options that can be set only at mega-widget creation (i.e., cannot be changed with the configure method).
-superclass superClass
Superclass of the class being defined. All the options and methods of the superclass are inherited. Note that superClass is the command name of the superclass, not the resource class name from the -classname option.
-virtual boolean
Whether the class is a virtual class. If true, then instances of the class cannot be created.
Example
Here is an example class definition for a scrolling banner mega-widget:
tixWidgetClass tixScrollingBanner {
-classname TixScrollingBanner
-superclass tixPrimitive
-method {
start stop
}
-flag {
-orientation -rate -text
}
-static {
-orientation
}
-configspec {
{-orientation orientation Orientation horizontal}
{-rate rate Rate 2}
{-text text Text {}}
}
-alias {
{-orient -orientation}
}
-default {
{*Label.anchor e}
{*Label.relief sunken}
}
}
Writing Methods
The methods for a class are defined using the Tcl proc command with three special requirements. First, the name of the procedure for a method must match the format className::method. For the example above, the programmer will need to define the Tcl procedures tixScr ollingBanner::start and tixScr ollingBanner::stop. Second, each procedur e must accept at least one argument, which must be named w, which will be set to the name of the class instance (i.e., mega-widget) for which the method was invoked. Additional arguments can be defined if the method accepts any arguments.
The third requirement is that the first command executed in the procedure be:
upvar #0 $w data
which sets up access to the instance's subwidgets and public and private variables through the Tcl array data. Public variables are available using the name of the option (with the leading hyphen) as the element name. The programmer is free to create other elements in the data array as private variables, with the exception of the following reserved elements: ClassName, className, context, and rootCmd. By convention, the names of subwidgets should be assigned to array elements with names beginning with the pre-fix w: followed by the name of the subwidget known to the user. Using this for mat will give the user access to the subwidget using the mega-widget subwidget method inherited from tixPrimitive. Private subwidgets should use the prefix pw:. For example, the stop method for our tixScrolling-Banner example may be defined as follows:
proc tixScrollingBanner::stop {w {ms 0}} {
upvar #0 $w data
after cancel $data(afterid)
if {$t > 0} {
set data(afterid) [after $ms
tixScrollingBanner::advance $w]
} else {
$data(w:label) configure -text {}
}
}
This method stops the scrolling of the banner by canceling the timeout set for the next banner advance. If an optional argument is given, it specifies that the scrolling will be paused only for the given number of milliseconds (if nonzero). Otherwise, the banner is cleared. Note the call to the procedure tixScrollingBanner::advance. This is a private method of the class, since advance is not in the list given to the -method option of the class definition.
Initialization Methods
When a new instance of a mega-widget is created, the private methods InitWidgetRec, ConstructWidget, and SetBindings ar e called, in that order. The purpose of the InitWidgetRec method is to initialize the private variables of the mega-widget instance. The ConstructWidget method is used to create and initialize its subwidgets, and the SetBindings method is used to create its initial event bindings.
The procedures to define the methods must follow the three rules outlined previously. When defined, the methods override the respective methods of their superclass. Therefore, the programmer should normally use the tix-ChainMethod command to call the superclass's version of the method as a first step. For example, the ConstructWidget method for the scrolling banner example might be defined as follows:
proc tixScrollingBanner::ContructWidget {w} {
upvar #0 $w data
tixChainMethod $w ConstructWidget
set data(w:label) [label $w.label]
pack $w.label -expand yes -fill x
}
Public Variables
When the configure mega-widget method is used to set the value of a public variable, Tix will attempt to call a method with the name config-option with the name of the mega-widget and the value as arguments. The programmer should define this method when he or she needs to know immediately when the value of a public variable changes. For example, the text option for the scrolling banner example could be handled as follows:
proc tixScrollingBanner::config-text {w value} {
upvar #0 $w data
$data(w:label) configure -text $value
}
An option's configuration method is called after any validation command specified in the -configspec entry for the option. During the call to the method, the element for the option in the data array will still be set to the old value in case it is needed. One may override the value passed by explicitly setting the public variable's element in the data array to the desired value and also returning the value from the method. A public variable's con-figuration method is not called when a mega-widget is created unless the option is listed in the -forcecall option of the class definition.
Tix Extensions to Tk image Command
Tix extends the standard Tk image command by adding support for two additional image types: compound and pixmap.
Name
image
image create compound imageName [option value...]
The compound image type allows a single image to be composed of multiple lines, each of which contains one or more text items, bitmaps, or other images. Available options are as follows:
-background color
Background color for the image and for bitmap items in the image.
-borderwidth amount
Width of 3D border drawn around the image.
-font font
Default font for text items in the image.
-foreground color
Foreground color for the bitmap and text items in the image.
-padx amount
Extra space to request for padding on the left and right side of the image.
-pady amount
Extra space to request for padding on the top and bottom side of the image.
-relief relief
3D effect for the border around the image.
-showbackground boolean
Whether the background and 3D border should be drawn or the image should have a transparent background. The default is false.
-window pathName
Window in which the compound image is to be drawn. When the window is destroyed, the image is also destroyed. This option must be specified when a compound image is created and cannot be changed.
When a compound image is created, a Tcl command with the same name as the image is created. This command supports the following operations:
imageName add line [-anchor anchorPos] [-padx amount]
Create a new line for items at the bottom of the image. If anchorPos is specified, it specifies how the line should be aligned horizontally. If amount is specified, it specifies the amount of padding to add to the left and right of the line in the image.
imageName add itemType [option value...]
Add a new item of the specified type to the end of the last line of the compound image. ItemType may be bitmap, image, space, or text. All item types support the following options:
-anchor anchorPos
How the item should be aligned on its line along the vertical axis.
-padx amount
Amount of padding to add to the left and right side of the item.
-pady amount
Amount of padding to add to the top and bottom side of the item.
Bitmap items support the following options:
-background color
Background color for the bitmap.
-bitmap bitmap
Bitmap to add to the compound image.
-foreground color
Foreground color for the bitmap.
Image items support the following option:
-image imageName
Name of an image to add to the compound image.
Space items reserve empty space in the image. Space items support the following options:
-height amount
Height of space to add to the compound image.
-width amount
Width of space to add to the compound image.
Text items support the following options:
-background color
Background color for the text.
-font font
Font to be used for the text.
-foreground color
Foreground color for the text.
-justify justify
How to justify multiple lines of text. Justify may be left, right, or center.
-text string
Text string to be added to the compound image.
-underline integer
Integer index of a character in the text that should be underlined.
-wraplength chars
Maximum line length in characters. If chars is less than or equal to 0, no wrapping is done.
imageName cget option
Return the current value of the configuration option Option for the compound image.
imageName configure [Option [value [option value...]
Query or modify the configuration options of the compound image in the same manner as the standard widget configure method.
Name
image
image create pixmap imageName [option value...]
Create a Tk image using XPM format. Supported options are as follows:
-data string
Source for the XPM image is specified in string. Takes precedence over the -file option.
-file fileName
Source for the XPM image is to be read from the file fileName.
When a pixmap image is created, a Tcl command with the same name as the image is created. This command supports the cget and configure operations for querying and changing the image options.
Chapter 10. TclX
TclX, also known as Extended Tcl, was developed by Karl Lehenbauer and Mark Diekhans. TclX is not part of the core Tcl/Tk package, but can be obtained for free at http://www.neosoft.com/TclX. This chapter covers TclX Version 8.0.2.
TclX enhances the Tcl language with a number of features designed to make it mor e suited to general-purpose programming. The TclX software includes a number of new Tcl commands, a new Tcl shell, a standalone help facility, and a library of handy Tcl procedures. Some features of TclX have proven so useful that, over time, they have been integrated into the core Tcl distribution.
This chapter describes only the commands in TclX that are not in standard Tcl. As noted in the text, some commands are not supported or have reduced functionality when running on the Windows 95, Windows 98, and Windows NT platforms. TclX does not support the Macintosh platform.
Special Variables
The following global variables have special meaning to the Extended Tcl interpreter (the programs tcl and wishx):
argc
Number of command-line arguments, not including the name of the script file
argv
List containing command-line arguments
argv0
Filename being interpreted, or name by which script was invoked
auto_path
Path to search to locate autoload libraries
tcl_interactive
1 if running interactively, 0 otherwise
tcl_prompt1
Primary prompt
tcl_prompt2
Secondary prompt for incomplete commands
tclx_library
Location of Extended Tcl libraries
tkx_library
Location of Extended Tcl Tk libraries
TCLXENV
Array containing information about Tcl procedures
Group Listing of Commands
This section briefly lists all Extended Tcl commands, grouped logically by function.
General Commands
commandloop | Create an interactive command loop. |
dirs | List directories in directory stack. |
echo | Write strings to standard output. |
for_array_keys | Loop over each key in an array. |
for_recursive_glob | Loop recursively over files matching a pattern. |
host_info | Return information about a network host. |
infox | Return information about Extended Tcl. |
loop | Loop over a range of values. |
mainloop | Call event loop handler. |
popd | Pop top entry from the directory stack. |
pushd | Push entry onto directory stack. |
recursive_glob | Return list of files recursively matching pattern. |
tclx_errorHandler | User-defined procedure to handle errors. |
try_eval | Evaluate code and trap errors. |
Debugging and Development Commands
cmdtrace | Trace command execution. |
edprocs | Edit source code for procedures. |
profile | Collect performance data. |
profrep | Generate report from performance data. |
saveprocs | Save procedure definitions to file. |
showproc | List definitions of procedures. |
Unix Access Commands
File Commands
bsearch | Search lines of file for a string. |
chgrp | Set group ID of files. |
chmod | Set file permissions. |
chown | Set owner of files. |
dup | Duplicate an open file identifier. |
fcntl | Set or get attributes of file identifier. |
flock | Apply lock on an open file. |
for_file | Loop over contents of a file. |
fstat | Return status information about an open file identifier. |
ftruncate | Truncate a file to a specified length. |
funlock | Remove lock from an open file. |
lgets | Read Tcl list from a file. |
pipe | Create a pipe. |
read_file | Read file contents into a string. |
select | Check file identifiers for change in status. |
write_file | Write strings to a file. |
File Scanning Commands
scancontext | Create, delete, or modify file scan contexts. |
scanfile | Perform file context scanning. |
scanmatch | Specify commands for file context scanning. |
Math Commands
These commands operate in the same fashion as their counterparts that are built into the expr command. They accept as arguments any expression accepted by the expr command. The trigonometric functions use values expressed in radians.
abs | Absolute value. |
acos | Arc cosine. |
asin | Arc sine. |
atan | Arc tangent. |
atan2 | Arc tangent (accepts two parameters). |
ceil | Round up to the nearest integer. |
cos | Cosine. |
cosh | Hyperbolic cosine. |
double | Convert numeric value to double-precision floating-point value. |
exp | e raised to the power of the argument. |
floor | Round down to the nearest integer. |
fmod | Floating-point remainder (accepts two arguments). |
hypot | Hypotenuse function (accepts two arguments). |
int | Convert to integer by truncating. |
log | Natural logarithm. |
log10 | Base 10 logarithm. |
max | Maximum value (accepts one or more arguments). |
min | Minimum value (accepts one or more arguments). |
pow | Exponentiation (accepts two parameters). |
random | Return random floating-point number. |
round | Convert to integer by rounding. |
sin | Sine. |
sinh | Hyperbolic sine. |
sqrt | Square root. |
tan | Tangent. |
tanh | Hyperbolic tangent. |
List Manipulation Commands
Keyed List Commands
keyldel | Delete entry from keyed list. |
keylget | Return value from keyed list. |
keylkeys | Return list of keys from keyed list. |
keylset | Set value in keyed list. |
String and Character Manipulation Commands
XPG/3 Message Catalog Commands
catclose | Close a message catalog. |
catgets | Retrieve message from a catalog. |
catopen | Open a message catalog. |
Help Commands
apropos | Locate help information based on a pattern. |
help | Online help system for Extended Tcl. |
helpcd | Change current location in tree of help subjects. |
helppwd | List current help subject location. |
Library and Package Commands
Alphabetical Summary of Commands
This section describes all Extended Tcl commands, listed in alphabetical order.
Name
abs
abs arg
Return the absolute value of expression arg. The argument may be in either integer or floating-point format and the result is returned in the same form.
Name
acos
acos arg
Return the arc cosine of expression arg.
Name
alarm
alarm seconds
Instruct the system to send an alarm signal (SIGALRM) to the command interpreter seconds seconds in the future. The time is specified as a floating-point value. A value of 0 cancels any previous alarm request. This command is not supported under Windows.
Name
apropos
apropos pattern
Search the online help system for entries that contain the regular expression pattern in their summaries.
Name
asin
asin arg
Return the arc sine of expression arg.
Name
atan
atan arg
Return the arc tangent of expression arg.
Name
atan2
atan2 x, y
Return the arc tangent of expression x divided by expression y, using the signs of the arguments to determine the quadrant of the result.
Name
auto_commands
auto_commands [-loaders]
List the names of all known loadable procedures. If the -loaders option is specified, the output also lists the commands that will be executed to load each command.
Name
auto_load_file
auto_load_file file
Load a file, as with the Tcl source command, but use the search path defined by auto_ path to locate the file.
Name
auto_packages
auto_ packages [-location]
Return a list of all defined package names. With the -location option, return a list of pairs of package name and the .tlib pathname, offset, and length of the package within the library.
Name
bsearch
bsearch fileId key [retvar] [compare_proc]
Search file opened with fileId for lines of text matching the string key. Return the line that was found, or an empty string if no match exists. If the variable name is specified with retvar, the matching line is stored in the variable and the command returns 1 if the key matched or 0 if there was no match. Can optionally specify a procedure compare_proc that will compare the key and each line, returning a value indicating the collation order (see ccollate).
Name
buildpackageindex
buildpackageindex libfilelist
Build index files for package libraries. Argument libfilelist is a list of package libraries. Each name must end with the suffix .tlib. A corresponding .tndx file will be built.
Name
catclose
catclose [-fail|-nofail cathandle
Close a previously opened message catalog.
Options
-fail
Return an error if the catalog cannot be closed.
-nofail
Ignore any errors when closing (default).
Name
catgets
catgets catHandle setnum msgnum defaultstr
Retrieve a message from a message catalog. The message catalog handle returned by catopen should be contained in catHandle. The message set number and message number are specified using setnum and msgnum. If the message catalog was not opened or the message set or message number cannot be found, then the default string, defaultstr, is returned.
Name
catopen
catopen [-fail|-nofail] catname
Open a message catalog using catname, which can be an absolute or relative pathname. Return a handle that can be used for subsequent catgets and catclose commands.
Options
-fail
Return an error if the catalog cannot be opened.
-nofail
Ignore any errors when opening (default).
Name
ccollate
ccollate [-local] string1 string2
Compare two strings and return their collation ordering. Return −1 if string1 is less than string2, 0 if they are equal, and 1 if string1 is greater than string2. With the option -local, compares according to current locale.
Name
cconcat
cconcat [string...]
Concatenate the strings passed as arguments and return the resulting string.
Name
ceil
ceil arg
Return the value of expression arg, rounded up to the nearest integer.
Name
cequal
cequal string1 string2
Compare two strings, returning 1 if they are identical, 0 if not.
Name
chgrp
chgrp [-fileId] group filelist
Set the group ID of files in the list filelist to group, which can be either a group name or a group ID number.
With option -fileId, the file list consists of open file identifiers rather than filenames. This command is not supported under Windows.
Name
chmod
chmod [-fileId] mode filelist
Set permissions on the files specified in list filelist to mode, which can be a numeric mode or symbolic permissions as accepted by the Unix chmod command.
With option -fileId, the file list consists of open file identifiers rather than filenames. This command is not supported under Windows.
Name
chown
chown [-fileId] owner filelist
chown [-fileId] {owner group} filelist
Set the ownership of each file in list filelist to owner, which can be a user name or numeric user ID. In the second form, a list consisting of the owner and group names can be specified.
With option -fileId, the file list consists of open file identifiers rather than filenames. This command is not supported under Windows.
Name
chroot
chroot dirname
Set the process root directory to dirname. Can be run only by the superuser.
Name
cindex
cindex string indexExpr
Return the character with index indexExpr in string string. Indices start at 0; the words end and len can be used at the beginning of the expression to indicate the index of the last character and length of the string, respectively.
Name
clength
clength string
Return the length of string in characters.
Name
cmdtrace
cmdtrace level [noeval] [notruncate] [procs] [fileId] [command cmd]
Print a trace statement when commands are executed at depth level (1 being the top level) or at all levels if the level is specified as on.
Options
noeval
Cause arguments to be printed before being evaluated.
notruncate
Turn off truncation of output, which normally occurs when a command line is longer than 60 characters.
procs
Enable tracing of procedure calls only.
fileId
Cause output to be written to an open file identifier.
command
Rather than producing normal output, the given command is executed during tracing.
cmdtrace off
Turn off all tracing.
cmdtrace depth
Return the current trace depth level, or 0 if tracing is not enabled.
Name
commandloop
commandloop [-async] [-interactive on|off|tty] [-prompt1 cmd] [-prompt2 cmd] [-endcommand cmd]
Enter a command loop, reading from standard input and writing to standard output.
Options
-async
Interpret commands on standard input.
-interactive
Controls interactive command mode (prompting of commands and display of results). If the argument is on, interactive mode is enabled; if off, it is disabled; if tty, it is enabled if standard input is associated with a terminal.
-prompt1
The argument supplies a command that is executed and the result used as the primary command prompt.
-prompt2
The argument supplies a command that is executed and the result used as the secondary command prompt.
-endcommand
The argument supplies a command that is executed when the command loop terminates.
Name
convert_lib
convert_lib tclIndex packagelib [ignore]
Convert a Tcl index file tclIndex and its associated source files into an Extended Tcl package library packagelib. The list ignore can specify files that should not be included in the library.
Name
cos
cos arg
Return the cosine of expression arg.
Name
cosh
cosh arg
Return the hyperbolic cosine of expression arg.
Name
crange
crange string firstExpr lastExpr
Return a range of characters from string string, from index firstExpr through lastExpr.
Indices start at 0, and the words end and len can be used at the beginning of an expression to indicate the index of the last character and length of the string, respectively.
Name
csubstr
csubstr string firstExpr lengthExpr
Return a range of characters from string string from index firstExpr for a range of lengthExpr characters.
Indices start at 0, and the words end and len can be used at the beginning of an expression to indicate the index of the last character and length of the string, respectively.
Name
ctoken
ctoken strvar separators
Parse the next token from the string contained in variable strvar. Tokens are separated by the characters specified in the string separators. Returns the next token and removes it from the string.
Name
ctype
ctype [-failindex var] class string
Examine the characters in string and determine if they conform to the specified class. Return 1 if they conform, 0 if they do not or the string is empty. The class option takes one of the following forms:
alnum
All characters are alphabetic or numeric.
alpha
All characters are alphabetic.
ascii
All characters are ASCII characters.
char
Converts the string, which must be a number from 0 through 255, to an ASCII character.
cntrl
All characters are control characters
digit
All characters are decimal digits.
graph
All characters are printable and nonspace.
lower
All characters are lowercase.
ord
Converts the first character in the string to its decimal numeric value.
space
All characters are whitespace.
All characters are printable (including space).
punct
All characters are punctuation.
upper
All characters are uppercase.
xdigit
All characters are valid hexadecimal digits.
With the option -failindex, the index of the first character in the string that did not conform to the class is placed in the variable named var.
Name
dirs
dirs
List the directories in the directory stack.
Name
double
double arg
Evaluate the expression arg, convert the result to floating-point, and return the converted value.
Name
dup
dup fileId [targetFileId]
Create a new file identifier that refers to the same device as the open file identifier fileId. The new file identifier is returned.
Can optionally specify the name of an existing file identifier targetFileId (normally stdin, stdout, or stderr). In this case the targetFileId device is closed if necessary, and then becomes a duplicate that refers to the same device as fileId.
On Windows, only stdin, stdout, stderr, or a nonsocket file handle number may be specified for targetFileId.
Name
echo
echo [string...]
Write zero or more strings to standard output, followed by newline character.
Name
edprocs
edprocs [proc...]
Write the definitions for the named procedures (by default, all currently defined procedures) to a temporary file, invoke an editor, then reload the definitions if they were changed. Uses the editor specified by the EDITOR environment variable, or vi if none is specified.
Name
execl
execl [-argv0 argv0] prog [arglist]
Per form an execl system call, replacing the current process with program prog and the arguments specified in the list arglist. The command does not return unless the system call fails.
The -argv0 option specifies the value to be passed as argv[0] of the new program.
Under Windows, the execl command starts a new process and returns the process ID.
Name
exp
exp arg
Return the value of the constant e raised to the power of the expression arg.
Name
fcntl
fcntl fileId attribute [value]
Modify or return the current value of a file option associated with an open file identifier. If only attribute is specified, its current value is returned. If a boolean value is specified, the attribute is set. Some values are read only. The following attributes may be specified:
RDONLY
File is opened for reading (read only).
WRONLY
File is opened for writing (read only).
RDWR
File is opened for reading and writing (read only).
READ
File is readable (read only).
WRITE
File is writable (read only).
APPEND
File is opened for appending.
NONBLOCK
File uses nonblocking I/O.
CLOEXEC
Close the file upon execution of a new process.
NOBUF
File is not buffered.
LINEBUF
File is line buffered.
KEEPALIVE
Keep-alive option is enabled for a socket.
The APPEND and CLOEXEC attributes are not available on Windows.
Name
flock
flock options fileId [start] [length] [origin]
Place a lock on all or part of the file open with identifier fileId. The file data is locked from the beginning of byte offset start for a length of length bytes. The default start position is the start of file, and the default length is to the end of file. If the file is currently locked, the command waits until it is unlocked before returning.
The value of origin indicates the offset for the data locked and is one of the strings start (relative to start of file, the default), current (relative to the current access position), or end (relative to end of file, extending backward).
This command is not supported on Windows 95/98. Also see funlock.
Options
-read
Place a read lock on the file.
-write
Place a write lock on the file.
-nowait
Do not block if lock cannot be obtained. Return 1 if the file could be locked, or 0 if it could not.
Name
floor
floor arg
Return the value of expression arg rounded down to the nearest integer.
Name
fmod
fmod x y
Return the remainder after dividing expression x by expression y.
Name
for_array_keys
for_array_keys var array_name code
Perform a foreach -style loop for each key in the array array_name.
Example
for_array_keys key tcl_platform {
echo $key => $tcl_platform($key)
}
Name
for_file
for_file var filename code
Loop over the file filename, setting var to the line and executing code for each line in the file.
Example
for_file line /etc/passwd {
echo $line
}
Name
for_recursive_glob
for_recursive_glob var dirlist globlist code
Perform a foreach -style loop over files that match patterns. All directories in the list dirlist are recursively searched for files that match the glob patterns in list globlist. For each matching file the variable var is set to the file path and code code is evaluated.
Example
for_recursive_glob file {˜ /tmp} {*.tcl *.c *.h} {
echo $file
}
Name
fork
fork
Call the fork system call to duplicate the current process. Returns 0 to the child process, and the process number of the child to the parent process. This command is not supported under Windows.
Name
fstat
fstat fileId [item] | [stat arrayvar]
Return status information about the file opened with identifier fileId. If one of the keys listed below is specified, the data for that item is returned. If stat arrayvar is specified, the information is written into array arrayvar using the listed keys. If only a file identifier is specified, the data is returned as a keyed list.
The following keys are used:
atime
Time of last access.
ctime
Time of last file status change.
dev
Device containing a directory for the file.
gid
Group ID of the file's group.
ino
Inode number.
mode
Mode of the file.
mtime
Time of last file modification.
nlink
Number of links to the file.
size
Size of file in bytes.
tty
1 if the file is associated with a terminal, otherwise 0.
type
Type of the file, which can be file, directory, character-Special, blockSpecial, fifo, link, or socket.
uid
User ID of the file's owner.
The following additional keys may be specified, but are not returned with the array or keyed list forms:
remotehost
If fileId is a TCP/IP socket connection, a list is returned, with the first element being the remote host IP address. If the remote hostname can be found, it is returned as the second element of the list. The third element is the remote host IP port number.
localhost
If fileId is a TCP/IP socket connection, a list is returned, with the first element being the local host IP address. If the local hostname can be found, it is returned as the second element of the list. The third element is the local host IP port number.
Name
ftruncate
ftruncate [-fileId] file newsize
Truncate a file to a length of at most newsize bytes. With the -fileId option, the file argument is an open file identifier rather than a filename. The -fileId option is not available on Windows.
Name
funlock
funlock fileId [start] [length] [origin]
Remove a file lock that was previously set using an flock command on the file open with identifier fileId. The portion of the file data that is locked is from the beginning of byte offset start for a length of length bytes. The default start position is the start of file, and the default length is to the end of file.
The value of origin indicates the offset for the locked data and is one of the strings start (relative to start of file, the default), current (relative to the current access position), or end (relative to end of file).
This command is not supported on Windows 95/98. Also see flock.
Name
help
help [options]
Invoke the online Tcl help facility to provide information on all Tcl and Extended Tcl commands. Information is structured as a hierarchical tree of subjects with help pages at the leaf nodes. Without arguments, the command lists all of the help subjects and pages under the current help subject.
help subject
Display all help pages and lower-level subjects (if any) under the subject subject.
help subject/helppage
Display the specified help page.
help help|?
Display help on using the help facility itself. Valid at any directory level.
Name
helpcd
helpcd [subject]
Change the current subject in the hierarchical tree of help information. Without a subject, goes to the top level of the help tree.
Name
helppwd
helppwd
Display the current subject in the hierarchical documentation tree of online help information.
Name
host_info
host_info option host
Return information about a network host. The command takes one of the following three forms:
host_info addresses host
Return a list of the IP addresses for host.
host_info official_name host
Return the official name for host.
host_info aliases host
Return a list of aliases for host.
Name
hypot
hypot x y
Return the hypotenuse function, equivalent to sqrt (x*x + y*y). The arguments are expressions.
Name
id
id options
Provides various functions related to getting, setting, and converting user, group, and process identifiers. Some functions can be performed only by the superuser. Under Windows only the host and process options are implemented.
id user [name]
Without a name option, return the current username. With an option, sets the real and effective user to name.
id userid [uid]
Without a uid option, return the current numeric user ID. With an option, set the real and effective user to uid.
id convert userid uid
Return the username corresponding to numeric user ID uid.
id convert user name
Return the numeric user ID corresponding to user name.
id group [name]
Without a name option, return the current group ID name. With an option, set the real and effective group ID to name.
id groupid [gid]
Without a gid option, return the current numeric group ID. With an option, set the real and effective group ID to gid.
id groups
Return a list of group names for the current process.
id groupids
Return a list of numeric group IDs for the current process.
id convert groupid gid
Return the group name corresponding to numeric group ID gid.
id convert group name
Return the numeric group ID corresponding to group name.
id effective user
Return the effective username.
id effective userid
Return the effective user ID number.
id effective group
Return the effective group name.
id effective groupid
Return the effective group ID number.
id host
Return the hostname of the system on which the program is running.
id process
Return the process ID of the current process.
id process parent
Return the process ID of the parent of the current process.
id process group
Return the process group ID of the current process.
id process group set
Set the process group ID of the current process to its process ID.
Name
infox
infox option
Return information about the Extended Tcl interpreter or current application. The command can take the following forms:
infox version
Return the Extended Tcl version number.
infox patchlevel
Return the Extended Tcl patch level.
infox have_fchown
Return 1 if the fchown system call is available otherwise. If available, the -fileId option on the chown and chgrp commands is supported.
infox have_fchmod
Return 1 if the fchmod system call is available otherwise. If available, the -fileId option on the chmod command is supported.
infox have_flock
Return 1 if the flock command is defined, 0 if it is not available.
infox have_fsync
Return 1 if the fsync system call is available and the sync command will sync individual files, 0 if fsync is not available and the sync command will always sync all file buffers.
infox have_ftruncate
Return 1 if the ftruncate or chsize system call is available. If it is, the ftruncate command -fileId option may be used.
infox have_msgcats
Return 1 if XPG message catalogs are available, 0 if they are not. The catgets command is designed to continue to function without message catalogs, always returning the default string.
infox have_posix_signals
Return 1 if POSIX signals (block and unblock options for the signal command) are available.
infox have_truncate
Return 1 if the truncate system call is available. If it is, the ftruncate command may truncate by file path.
infox have_waitpid
Return 1 if the waitpid system call is available and the wait command has full functionality, 0 if the wait command has limited functionality.
infox appname
Return the symbolic name of the current application linked with the Extended Tcl library. The C variable tclAppName must be set by the application to return an application-specific value for this variable.
infox applongname
Return a natural language name for the current application. The C variable tclLongAppName must be set by the application to return an applicationspecific value for this variable.
infox appversion
Return the version number for the current application. The C variable tcl-AppVersion must be set by the application to return an application-specific value for this variable.
infox apppatchlevel
Return the patch level for the current application. The C variable tclApp-Patchlevel must be set by the application to return an application-specific value for this variable.
Name
int
int arg
Evaluate the expression arg, convert the result to an integer, and return the converted value.
Name
intersect
intersect list1 list2
Return the logical intersection of two lists, i.e., a list of all elements contained in both list1 and list2. The returned list is sorted alphabetically.
Name
intersect3
intersect3 list1 list2
Return a list containing three lists. The first consists of all elements of list1 that are not in list2. The second contains the intersection of the two lists. The third contains all elements of list2 that are not in list1. The returned lists are sorted alphabetically.
Name
keyldel
keyldel listvar key
Delete the field specified by key from the keyed list in variable listvar. Removes both the key and the value from the keyed list.
Name
keylget
keylget listvar [key] [retvar|{}]
Return the value associated with key from the keyed list in variable listvar. If retvar is not specified, the value will be returned as the result of the command. In this case, if key is not found in the list, an error will result.
If retvar is specified and key is in the list, the value is returned in the variable retvar and the command returns 1 if the key was present within the list. If key is not in the list, the command will return 0, and retvar will be left unchanged. If {} is specified for retvar, the value is not returned, allowing the programmer to determine if a key is present in a keyed list without setting a variable as a side effect.
If key is omitted, a list of all the keys in the keyed list is returned.
Name
keylkeys
keylkeys listvar [key]
Return a list of the keys in the keyed list contained in variable listvar. If key is specified, it is used as the name of a key field whose subfield keys are to be retrieved.
Name
keylset
keylset listvar key value...
Set the value associated with key to value in the keyed list contained in variable listvar. If listvar does not exist, it is created. If key is not currently in the list, it is added. If it already exists, value replaces the existing value. Multiple keywords and values may be specified if desired.
Name
kill
kill [-pgroup] [signal] idlist
Send a signal to each process in the list idlist, if permitted. Parameter signal, if present, is the signal number or symbolic name of the signal. The default is 15 (SIGTERM).
If -pgroup is specified, the numbers in idlist are taken as process group IDs and the signal is sent to all of the processes in that process group. A process group ID of 0 specifies the current process group. This command is not supported under Windows.
Name
lassign
lassign list var...
Assign successive elements of a list to specified variables. If there are more variable names than fields, the remaining variables are set to the empty string.
If there are more elements than variables, a list of the unassigned elements is returned.
Name
lcontain
lcontain list element
Return 1 if element is an element of list list; otherwise, return 0.
Name
lempty
lempty list
Return 1 if list is an empty list; otherwise, return 0.
Name
lgets
lgets fileId [varName]
Read a Tcl list from the file given by file identifier fileId, discarding the terminating newline. If varName is specified, the command writes the list to the variable and returns the number of characters read; otherwise, it returns the list.
Name
link
link [-sym] srcpath destpath
Create a link from existing pathname srcpath to destpath. With option -sym, creates a symbolic rather than hard link. This command is not supported under Windows.
Name
lmatch
lmatch [mode] list pattern
Return a new list, consisting of the elements of list that match pattern. The type of pattern matching is determined by the mode parameter:
-exact
Exact match
-glob
Glob-style matching (default)
-regexp
Regular expression matching
Name
loadlibindex
loadlibindex libfile.tlib
Load the package library index of the library file libfile.tlib.
Name
log
log arg
Return the natural logarithm of expression arg.
Name
log10
log10 arg
Return the base 10 logarithm of expression arg.
Name
loop
loop var first limit [increment] body
Loop construct in which the beginning and ending loop index variables and increment are fixed. The loop index is variable var, which is initialized to first. In each iteration of the loop, if the index is not equal to limit, the command body is evaluated and the index is increased by the value increment.
Example
count from ten down to one
loop i 10 0 −1 {
echo $i
}
Name
lrmdups
lrmdups list
Remove duplicate elements from list; return the result, sorted alphabetically.
Name
lvarcat
lvarcat var string...
Concatenate one or more string arguments to the end of the list contained in variable var, storing the result in var and returning the resulting list. String arguments that are lists are deconstructed into individual elements before being concatenated into the result list.
Name
lvarpop
lvarpop var [indexExpr] [string]
Remove the element of the list contained in var having index indexExpr (default 0). If string is given, the deleted element is replaced with the string. Returns the replaced or deleted item.
Indices start at 0, and the words end and len can be used at the beginning of the expression to indicate the index of the last element and length of the list, respectively.
Name
lvarpush
lvarpush var string [indexExpr]
Insert string as an element of the list stored in var before position index-Expr (default 0).
Indices start at 0, and the words end and len can be used at the beginning of the expression to indicate the index of the last element and length of the list, respectively.
Name
mainloop
mainloop
Start a top-level event handler. Process events until there are no more active event sources, then exit.
Name
max
max number...
Return the argument having the highest numeric value. The arguments can be any mixture of integer or floating-point values.
Name
min
min number...
Return the argument having the lowest numeric value. The arguments can be any mixture of integer or floating-point values.
Name
nice
nice [priorityIncr]
Without arguments, return the current process priority. With a numeric argument, add priorityIncr to the current process priority. A negative value increases the process priority (this will work only for the superuser). This command is not supported under Windows.
Name
pipe
pipe [fileId_var_r fileId_var_w]
Create a pipe. Without options, return a list containing the file identifiers for the read and write ends of the pipe. If passed two variable names, they are set to the file identifiers for the opened pipe.
Name
popd
popd
Remove the top entry from the directory stack; make it the current directory.
Name
pow
pow x y
Return the value of expression x raised to the power of expression y.
Name
profile
profile [-commands] [-eval] on
Start collection of data for performance profiling of procedures. With the -commands option, also profiles commands within a procedure. With the -eval option, uses the procedure call stack rather than the procedure scope stack when reporting usage.
profile off arrayVar
Turn off profiling and store the results in variable arrayVar for later analysis by the profrep command.
Name
profrep
profrep profDataVar sortKey [outFile] [userTitle]
Generate a report using profile data generated by the profile command. Data must have been previously stored in variable profDataVar. The parameter sortKey has one of the values calls, cpu, or real, indicating how to sort the output. The output can optionally be written to file outFile (default is standard out) using an optional title userTitle.
Name
pushd
pushd [dir]
Push the current directory onto the directory stack and change to directory dir. If no dir ectory is specified, the current directory is pushed but remains unchanged.
Name
random
random limit
Return a pseudorandom integer greater than or equal to 0 and less than limit.
random seed [seedval]
Reset the random number generator using the number seedval, or if omitted, a seed based on the current date and time.
Name
read_file
read_file [-nonewline] fileName [numBytes]
Read the entire contents of file fileName and return it as a string. The -nonewline option discards any final newline character in the file. The num-Bytes option specifies the number of bytes to read.
Name
readdir
readdir [-hidden] dirPath
Return a list of the files contained in directory dirPath. The option -hidden causes hidden files to be included in the list (Windows platforms only).
Name
recursive_glob
recursive_glob dirlist globlist
Recursively search the directories in list dirlist for files that match any of the patterns in globlist. Returns a list of matching files.
Name
replicate
replicate string countExpr
Return string replicated the number of times indicated by integer expression countExpr.
Name
round
round arg
Evaluate the expression arg, convert the result to an integer by rounding, and return the converted value.
Name
saveprocs
saveprocs fileName [proc...]
Save the definitions of the listed Tcl procedures (by default, all procedures) to file fileName.
Name
scancontext
scancontext [option]
Create, delete, or modify file scan contexts.
scancontext create
Create a new scan context.
scancontext delete contexthandle
Delete the scan context identified by contexthandle.
scancontext copyfile contexthandle
Return the file handle to which unmatched lines are copied.
scancontext copyfile contexthandle [filehandle]
Set the file handle to which unmatched lines are copied. A file handle of {} removes any file copy specification.
Name
scanfile
scanfile [-copyfile copyFileId] contexthandle fileId
Scan the file specified by fileId starting from the current file position. Check all patterns in the scan context specified by contexthandle, executing the match commands corresponding to patterns matched.
If the optional -copyfile argument is specified, the next argument is a file ID to which all lines not matched by any pattern (excluding the default pattern) are to be written. If the copy file is specified with this flag, instead of using the scancontext copyfile command, the file is disassociated from the scan context at the end of the scan.
Name
scanmatch
scanmatch [-nocase] contexthandle [regexp] commands
Specify Tcl commands to be evaluated when regexp is matched by a scanfile command. The match is added to the scan context specified by context-handle. Any number of match statements may be specified for a given context. With option -nocase, the pattern matching is case insensitive.
Name
searchpath
searchpath pathList file
Search the directories in list pathList for file file. Return the full path if found; otherwise, return an empty string.
Name
select
select readfileIds [writefileIds] [exceptfileIds] [timeout]
Wait for a change of status in file identifiers. Up to three lists, containing file identifiers for files to be polled for read, write, or exceptions, can be specified. An optional parameter timeout indicates the maximum time, in seconds, to wait (it can be 0 for polling). The command returns three lists, corresponding to the file descriptors in each of the three categories that have a change in status.
On Windows, only sockets can be used with the select command.
Name
showproc
showproc [procname...]
List the definitions of the named Tcl procedures (by default, all procedures).
Name
signal
signal action siglist [command]
Set the action to take when a Unix signal is received. The siglist parameter lists one or more signal names or numbers. Parameter action indicates the action to take, as described in the following:
default
Take system default action.
ignore
Ignore the signal.
error
Generate a catchable Tcl error.
trap
Execute command indicated by command parameter.
get
Return current settings for the specified signals as a keyed list.
set
Set signals from a keyed list in the format returned by get.
block
Block signals from being received.
unblock
Allow the specified signal to be received.
Name
sin
sin arg
Return the sine of expression arg.
Name
sinh
sinh arg
Return the hyperbolic sine of expression arg.
Name
sleep
sleep seconds
Delay execution of the current process for seconds seconds, which must be an integer value.
Name
sqrt
sqrt arg
Return the square root of expression arg.
Name
sync
sync [fileId]
With no options, issue a sync system call to write pending data to disk. With a file identifier fileId corresponding to a file open for writing, schedule output for that file to disk. On platforms that do not support the fsync system call, the fileId parameter is ignored.
Name
system
system cmdstring...
Concatenate one or more command strings with space characters and execute the command using the system command interpreter (/bin/sh on Unix and command.com on Windows). Returns the numeric return code of the command.
Name
tan
tan arg
Return the tangent of expression arg.
Name
tanh
tanh arg
Return the hyperbolic tangent of expression arg.
Name
tclx_errorHandler
tclx_errorHandler message
A user-written procedure to handle errors. Called before returning to the toplevel command interpreter after an unhandled error.
Name
times
times
Return a list containing four process CPU usage time values, in the form utime stime cutime cstime.
Name
translit
translit inrange outrange string
Transliterate characters in string, replacing the characters occurring in inrange to the corresponding characters in outrange. The ranges may be lists of characters or a range in the form lower-upper.
Example
translit a-z A-Z "A string"
Name
try_eval
try_eval code catch [finally]
Evaluate the command string code. If an error occurs, evaluate code and return the result. Last, execute the command string finally.
Example
try_eval {
code
puts -nonewline stderr "Enter a number: "
set ans [gets stdin]
could fail, e.g. due to divide by zero
set res [expr 1.0 / $ans]
puts stderr "1 / $ans = $res"
} {
catch
set msg [lindex $errorCode end]
puts stderr "Error: $msg"
} {
finally
puts stderr "End of example"
}
Name
umask
umask [octalmask]
Set the file creation mode mask to octalmask, which must be an octal (base 8) number. With no parameters, return the current mask.
Name
union
union list1 list2
Return the logical union of two lists, i.e., a list of all elements contained in either list1 or list2. The returned list is sorted alphabetically and has no duplicate elements.
Name
wait
wait [-nohang] [-untraced] [-pgroup] [pid]
Wait for a child process with process ID pid to terminate (or any process if pid is omitted).
Options
-nohang
Don't block waiting on the process to terminate.
-untraced
Return status of other child processes.
-pgroup
Wait on any processes in process group.
The command returns a list with three elements: the process ID of the process that terminated, the reason code (EXIT, SIG, SIGSTP, or STOP), and the numeric exit code.
Name
write_file
write_file fileName string...
Write one or more strings to the file named fileName. Each string is terminated with a newline character.
Chapter 11. BLT
BLT, written by George A. Howlett, is not part of the core Tcl/Tk package, but can be obtained for free at http://www.tcltk.com/blt. At the time of this writing, the final 2.4 version of BLT had not been released. However, because of the addition of the tabset and hierbox widgets, it is bound to quickly become a popular version. Therefore, this chapter documents prerelease 2.4f, which should be extremely close to the final version. Footnotes in the description denote where changes may be expected.
BLT is an extension to Tcl/Tk designed to simplify a number of tasks that would normally require considerable coding. It provides commands for producing graphs and managing numerical data, a table-based geometry manager, a drag-and-drop facility, and several other graphical and utility commands. Several of BLT's commands have been partially incorporated into the standard Tcl/Tk distribution. It works with Unix under the X Window System and with Windows.
BLT can be loaded from existing Tcl applications or one can use the supplied bltwish command interpreter. In the former case, BLT can be loaded using the command:
package require BLT
on a properly configured system. The BLT commands will be defined in the blt:: namespace. To make the BLT commands globally accessible, issue the command:
namespace import blt::*
Figure 11-1 shows some examples of BLT widgets.
Figure 11-1. Examples of some of the BLT widgets
Environment Variable
The following environment variable is used by the BLT toolkit:
BLT_LIBRARY
Directory containing Tcl scripts and other files needed by BLT at runtime
Special Variables
The following global variables have special meaning to the BLT toolkit:
blt_library
Directory containing Tcl scripts and other files related to BLT. Uses the BLT_LIBRARY environment variable if set; otherwise uses a compiled-in library.
blt_version
The current version of BLT in the form major-number. minornumber.
Group Listing of Commands
This section briefly lists all BLT commands, grouped logically by function.
Graphical Commands
barchart | Plot two-dimensional bar chart of data in a window. |
bitmap | Read and write bitmaps using inline Tcl code. |
busy | Prevent user interaction when a graphical application is busy. |
container | Container for a window from another application. |
drag&drop | Provide a drag-and-drop facility for Tk applications. |
graph | Plot two-dimensional graphics of data in a window. |
hierbox | Hierarchical listbox for displaying ordered trees. |
htext | A simple hypertext widget. |
stripchart | Plot strip charts of data in a window. |
table | A table-based geometry manager. |
tabset | A tab notebook or simple tabset. |
winop | Raise, lower, map, or unmap a window. |
Numerical Data Commands
spline | Compute a spline curve fitted to a set of data points. |
vector | A data structure for manipulating floating-point data values. |
Tile Widget Commands
tilebutton | Version of Tk button supporting background tiles. |
tilecheckbutton | Version of Tk checkbutton supporting background tiles. |
tileframe | Version of Tk frame supporting background tiles. |
tilelabel | Version of Tk label supporting background tiles. |
tileradiobutton | Version of Tk radiobutton supporting background tiles. |
tilescrollbar | Version of Tk scrollbar supporting background tiles. |
tiletoplevel | Version of Tk toplevel supporting background tiles. |
Utility Commands
beep | Ring the keyboard bell. |
bgexec | Similar to the Tcl exec command, but allows Tk to handle events while a process is executing. |
bltdebug | Simple Tcl command tracing facility. |
cutbuffer | Manipulate the eight X Window System cut buffers. |
watch | Call user-defined procedures before or after execution of Tcl commands. |
Alphabetical Summary of Commands
This section describes all BLT commands, listed in alphabetical order.
Name
barchart
barchart pathName [option value...]
See the graph command.
Name
beep
beep percent
Ring the keyboard bell. Percent is relative to the base volume of the bell and can range from −100 to 100 inclusive, such that the actual volume will be between 0 and 100. The default percent is 50.
Name
bgexec
bgexec varName [options...] command [arg arg...]
Run an external program, like the Tcl exec command, but allow Tk to process events while the program is running.
Parameter varName is a global variable that will be set to the program's exit status when the command is completed. Setting the variable will cause the pr ogram to be terminated with a signal.
Parameters command and args specify an external command with optional arguments in the same form as accepted by the Tcl exec command.
Normally, bgexec returns the results of the program. However, if the last argument is the ampersand (&), bgexec immediately returns a list of the spawned pr ocess IDs. The variable varName can be used with the tkwait command to wait for the program to finish.
Options
-error varName
Cause varName to be set to the contents of standard error when the command has completed.
-update varName
Cause varName to be set whenever data is written to standard output by the command.
-keepnewline boolean
Enable or disable truncation of newline from last line of output.
-killsignal signal
Specify (by name or number) the signal to be sent to the command when terminating. The default signal is SIGKILL.
-lasterror varName
Same as the -error option, except varName is updated as soon as new data is available.
-lastoutput varName
Same as the -output option, except varName is updated as soon as new data is available.
-onerror cmdPrefix
When new data from standard error is available, evaluate the command cmdPrefix with the new data appended as an argument.
-onoutput cmdPrefix
When new data from standard output is available, evaluate the command cmdPrefix with the new data appended as an argument.
-output varName
Cause varName to be set to the contents of standard output when the command has completed.
-update varName
Deprecated. Same as the -lastoutput option.
--
Mark the end of options (useful for commands that may start with a dash).
Example
global myStatus myOutput
set dir /tmp
bgexec myStatus -output myOutput du -s $dir
puts "Disk usage for $dir is $myOutput"
Name
bitmap
bitmap operation bitmapName [arg arg...]
Create or return information about a bitmap created using inline Tcl code. The following operations are defined:
bitmap compose bitmapName text [option value...]
Create a new bitmap from a text string and associate it with the name bitmapName. The bitmap is defined by the text in the parameter text. The following options are available:
-font fontName
Specify the font to use when drawing text in the bitmap.
-rotate theta
Rotate the bitmap by theta degrees.
-scale value
Scale the bitmap by the factor of floating-point number value.
bitmap data bitmapName
Return a list of the bitmap data. The first element is a list of the height and width, the second is a list of the source data.
bitmap define bitmapName data [option value...]
Create a new bitmap and associate it with the name bitmapName. The bitmap is defined by parameter data, which is a list containing two elements. The first element is a list defining the height and width. The second element is a list of the source data.
The following options are available:
-rotate theta
Rotate the bitmap by theta degrees.
-scale value
Scale the bitmap by the factor of floating-point number value.
bitmap exists bitmapName
Return 1 if a bitmap named bitmapName exists; otherwise, return 0.
bitmap height bitmapName
Return the height of a bitmap in pixels.
bitmap source bitmapName
Return the source data for a bitmap as a list of hexadecimal values.
bitmap width bitmapName
Return the width of a bitmap in pixels.
Example
bitmap define crosshatch {{8 8} {0xaa 0x55 0xaa 0x55 0xaa 0x55 0xaa
0x55}}
toplevel .t
tk_dialog .t title "<- Sample Bitmap" crosshatch 0 Continue
bitmap compose text "Some\nText" -rotate 90 -scale 2
toplevel .t
tk_dialog .t title "<- Sample Bitmap" text 0 Continue
Name
bltdebug
bltdebug [level]
Trace Tcl commands by printing each command before it is executed. The command is shown both before and after substitutions. The integer value level indicates the number of stack levels to trace. A level of 0 disables all tracing. If level is omitted, the current level is returned.
Name
busy
busy operation [arg arg...]
Make Tk widgets busy, temporarily blocking user interaction. In many cases, the busy command provides a more flexible alternative to the Tk grab command. The following operations are defined:
busy hold window [-cursor cursor]
Make the widget window and all of its descendants busy. The -cursor option specifies the cursor to be displayed when busy. It accepts any of the standard Tk cursors; the default is watch. It can also be defined in the Tk resource database using resource and class names busyCursor and BusyCursor, respectively.
busy configure window [option [value [option value...]]]
Query or modify the configuration parameters for a window previously made busy in the same manner as the general widget configure method. Available options are the same as for the hold operation.
busy forget window...
Restore user interaction to the given windows. The input-only window used by busy is destroyed.
busy isbusy [pattern]
Return the pathnames of all windows that are currently busy. With an optional pattern, return the names of busy widgets matching the pattern.
busy release window...
Restore user interaction to the given windows. The input-only window used by busy is not destroyed.
busy status window
Return the status of a window previously made busy. Return 1 if the window is busy, 0 otherwise.
busy windows [pattern]
Return the pathnames of all windows that have previously been made busy or are currently busy. With an optional pattern, return the names of busy windows matching the pattern.
Example
frame .f
button .f.b -text "BUTTON"
pack .f.b
pack .f
busy hold .f.b
update
after 5000
busy release .f.b
Name
container
container pathName [option value...]
The container command creates a new container widget named pathName. A container widget is similar to a frame widget but is intended to contain a window belonging to another application. Although the frame widget can do this between other Tk applications, container works with non-Tk applications. This command is not supported under Windows.
Standard Options
- background | - borderwidth | - cursor |
- highlightbackground | - highlightcolor | - highlightthickness |
- relief | - takefocus |
Widget-Specific Options
-height amount (height, Height)
Desired height, in screen units, for the window.
-width amount (width, Width)
Desired width, in screen units, for the window.
-window windowID (window, Window)
The hexadecimal, platform-specific identifier for a window to be contained in the widget.
Example
container .c -window 0x3c00009
pack .c
Name
cutbuffer
cutbuffer operation [arg...]
Read or modify the eight X Window System cut buffer properties. This command is not supported under Windows. The following operations are defined:
cutbuffer get [number]
Return the contents of cut buffer number, a number between 0 (the default) and 7. Any NULL bytes are converted to the @ character.
cutbuffer rotate [count]
Rotate the cut buffers by count, a number between −7 and 7. The default is 1.
cutbuffer set value [number]
Set the contents of cut buffer number to value. The default is 1.
Name
drag&drop
drag&drop operation [arg arg...]
Provide a drag-and-drop facility for Tk applications. Widgets registered as a drag-and-drop source can export data to other widgets registered as targets. The following operations are defined:
drag&drop active
Return 1 if a drag-and-drop operation is in progress, 0 otherwise. A drag-and-drop operation officially starts after the package command has been executed successfully, and ends after the send handler has been executed (successfully or otherwise).
drag&drop drag window x y
Handle dragging of the token window for source window during a drag-and-drop operation. If the token window is unmapped, the -packagecmd for the source window is executed. If this command is successful and returns a non-null string, the token window is mapped. On subsequent calls, the token window is moved to the given x y location.
drag&drop drop window x y
Handle the end of a drag-and-drop operation. If the location x y is over a compatible target window, the appropriate source handler for the first compatible data type is invoked. If the data transfer is successful, the token window is unmapped. Otherwise, a rejection symbol is drawn on the token window, and the window is unmapped after a small delay.
drag&drop errors [proc]
Specify that the Tcl procedure proc be used to handle errors that occur during drag-and-drop operations. If proc is not specified, the current error handler is returned. By default, all errors are sent to the usual tkerr or command and therefore appear in a dialog box to the user.
drag&drop location [x y]
Set the pointer location during a drag-and-drop operation to location x y. If the coordinates are not given, then the last reported location is returned as a two-element list.
drag&drop source
Return a list of the pathnames of widgets registered as drag-and-drop sources.
drag&drop source window [option [value [option value...]]]
Register window as a drag-and-drop source with the given options, or modify the options for an existing source. The available options are as follows:
-button n (buttonBinding, ButtonBinding)
Specify the mouse button (1–5) for invoking the drag-and-drop operation. The default is button 3. ButtonPress and Motion events for this button will be bound to the drag operation, and Button-Release events will be bound to the drop operation. If n is 0, then no binding is made.
-packagecmd command (packageCommand, PackageCommand)
Specify a Tcl command used to establish the appearance of the token window at the start of each drag-and-drop operation.
The following substitutions are made in the command string before it is executed: %t is replaced with the window pathname for the token that represents the data being dragged; %W is replaced with the window pathname for the drag-and-drop source.
The return value of the command is remembered by the drag-and-drop manager and made available to the appropriate source handler command through the %v substitution. If no source handler command is defined, the value is used for the %v substitution for the target handler.
-rejectbg color (rejectBackground, Background)
Specify the color used to draw the background of the rejection symbol on the token window. This appears whenever communication fails.
-rejectfg color (rejectForeground, Foreground)
Specify the color used to draw the foreground of the rejection symbol on the token window.
-rejectstipple pattern (rejectStipple, Stipple)
Specify the stipple pattern used to draw the rejection symbol on the token window.
-selftarget boolean (selfTarget, SelfTarget)
Whether a widget defined as a drag-and-drop source and target will be permitted to transmit to itself. The default is false.
-send list (send, Send)
Specify a list of the data types enabled for communication. Only data types defined with the source window handler operation are allowed. The order of data types in the list defines their priority for targets that handle multiple types. The default is all, which enables all data types in the order they were defined.
-sitecmd command (siteCommand, Command)
Specify a Tcl command used to update the appearance of the token window while being dragged.
The following substitutions are made in the command string before it is executed: %s is replaced with 1 if the token window is over a compatible target, and 0 otherwise; %t is replaced with the window pathname for the token that represents the data being dragged.
-tokenactivebackground color (tokenActiveBackground, ActiveBackground)
Specify the color used to draw the background of the token window when it is active.
-tokenanchor anchor (tokenAnchor, Anchor)
Specify how the token window is positioned relative to the mouse pointer coordinates passed to the drag&drop drag operation. The default is center.
-tokenbg color (tokenBackground, Background)
Specify the color used to draw the background of the token window.
-tokenborderwidth size (tokenBorderWidth, BorderWidth)
Specify the width, in pixels, of the border around the token window. The default is 3.
-tokencursor cursor (tokenCursor, Cursor)
Specify the cursor used when a token window is active. The default is center_ptr.
-tokenoutline color (tokenOutline, Outline)
Specify the color for the outline drawn around the token window.
drag&drop source window handler [dataType [command arg arg...]]
Define dataType as a data type for which window is a drag-and-drop source. If command is given, it is concatenated with any args and evaluated whenever a target requests data of type dataType from the source window. If only dataType is given, it is defined if necessary and any command associated with it is returned.
The following substitutions are made in the command string before it is executed: %i is replaced with the name of the interpreter for the target application; %v is replaced with the value returned from the -packagecmd command, and %w is replaced with the window pathname for the target window. The return value of the command is made available to the target handler's command through its %v substitution.
drag&drop target
Return a list of pathnames for widgets registered as drag-and-drop targets.
drag&drop target window handler [dataType command arg...]
Register window as a drag-and-drop target capable of handling source data of type dataType. Command is concatenated with any args and evaluated whenever data of type dataType is dropped on the target.
The following substitutions are made in the command string before it is executed: %v is replaced with the value returned from the source's handler command (or the source's -packagecmd command if there is no handler); %W is replaced with the window pathname for the target window.
drag&drop target window handle dataType
Search for data type dataType among the handlers registered for the target window and invoke the appropriate command. An error is generated if no handler is found.
drag&drop token window [option value...]]]
With no options, return the pathname of the token window associated with drag-and-drop source window. The token window is used to represent data as it is being dragged from the source to a target. When a source is first established, its token window must be filled with widgets to display the source data.
If options are specified, they specify configuration options for the token. Available options are as follows:
-activebackground color (activeBackground, ActiveBackground)
Specify the color used to draw the background of the token window when it is active.
-activerelief relief (activeBackground, ActiveBackground)
3D effect for border of the token window when it is active.
-anchor anchor (anchor, Anchor)
Specify how the token window is positioned relative to the mouse pointer coordinates passed to the drag&drop drag operation. The default is center.
-background color (background, Background)
Specify the color used to draw the background of the token window.
-borderwidth size (borderWidth, BorderWidth)
Specify the width, in pixels, of the border around the token window. The default is 3.
-cursor cursor (cursor, Cursor)
Specify the cursor used when a token window is active. The default is center_ptr.
-outline color (outline, Outline)
Specify the color for the outline drawn around the token window.
-rejectbg color (rejectBackground, Background)
Specify the color used to draw the background of the rejection symbol on the token window. This appears whenever communication fails.
-rejectfg color (rejectForeground, Foreground)
Specify the color used to draw the foreground of the rejection symbol on the token window.
-rejectstipple pattern (rejectStipple, Stipple)
Specify the stipple pattern used to draw the rejection symbol on the token window.
-relief relief (relief, Relief)
3D effect for border of the token window.
Example
For a complete example of using this command, see the demo programs included with the BLT distribution.
Name
graph
graph pathName [option value...]
stripchart pathName [option value...]
barchart pathName [option value...]
BLT supports three types of charts with the graph, stripchart, and barchart commands. The methods and options for each of these widgets are nearly identical; therefore, all three are described here with the differences noted as appropriate.
The graph command creates a new graph widget named pathName for plotting two-dimensional data (x- and y-coordinates) using symbols and/or connecting lines. A graph widget is composed of several components: coordinate axes, data elements, a legend, a grid, crosshairs, pens, a PostScript generator, and annotation markers. Methods exist for creating (if necessary) and manipulating each of these components.
The stripchart command creates a new strip chart widget named pathName. A strip chart widget is almost exactly the same as a graph widget except that the x-axis typically refers to time points and has better support for maintaining a view of recent data. The primary difference is support for the -autorange and -shiftby axis options.
The barchart command creates a new bar chart widget named pathName. A bar chart widget is essentially the same as a graph widget except that vertical bars are used to represent the data rather than symbols and lines. Therefore the bar chart has very different element and pen configuration options. It also supports the additions to the axis configuration used by the strip chart to handle dynamic data.
Any number of independent coordinate axes can be created and used to map data points. Axes consist of the axis line, title, major and minor ticks, and tick labels. Only four axes can be displayed at one time. They are drawn along the four borders of the plotting area. Four axes are automatically created for each graph. These are named x, x2, y, and y2, which are associated with the bottom, top, left, and right boundaries, respectively. Only x and y are shown by default.
Grid lines can be drawn to extend the major and minor ticks from axes. Crosshairs can be displayed to track the position of the mouse on the plotting area.
A set of data values plotted on the chart is called an element. Each element can be drawn with connecting lines, symbols, or both. Pens can be defined for controlling the display attributes of both lines and symbols. Each element may use multiple pens. A legend can be displayed anywhere on the chart to identify the plotted elements.
Six types of annotations, called markers, are supported: text, line, image, bitmap, polygon, and window. A marker is created and manipulated with the marker methods and can be placed at an arbitrary position on the chart. Markers are similar in operation to canvas items.
Standard Options
- background | - borderwidth | - cursor |
- font | - foreground | - relief |
- takefocus |
Widget-Specific Options
-aspect ratio (aspect, Aspect)
The height or width of the plotting area will be shrunk to maintain a ratio of width to height of ratio.
-barmode mode (barMode, BarMode)
[bar chart only] How bars with the same x-coordinate should be displayed. Valid values for mode are as follows:
normal
No effort is made to keep bars from obscuring each other.
aligned
Bars are reduced in width and drawn side by side in display order so they do not overlap.
overlap
Bars are slightly offset and reduced in width so all bars are visible but overlap each other in display order.
stacked
Bars are stacked on top of each other in display order.
-barwidth amount (barWidth, BarWidth)
[bar chart only] Width of bars in chart x-coordinates. The default is 1.0.
-baseline y (baseline, Baseline)
[bar chart only] Baseline along y-axis for bars. Bars for values greater than y are drawn upward, and bars for values less than y are drawn downward. The default is 0.0. For a log scale y-axis, the baseline is always 1.0.
-bottommargin amount (bottomMargin, Margin)
Size, in screen units, of the margin from x-coordinate axis to the bottom of the window. If amount is 0, the margin is autosized.
-bottomvariable varName (bottomVariable, BottomVariable)
Variable that will be automatically updated with the current size of the bottom margin.
-bufferelements boolean (bufferElements, BufferElements)
Whether to use a pixmap to cache the display elements. Useful if data points are frequently redrawn. The default is true.
-halo amount (halo, Halo)
Threshold distance when searching for the closest data point.
-height amount (height, Height)
Desired height, in screen units, for the window.
-invertxy boolean (invertXY, InvertXY)
Whether placement of the x- and y-axis should be inverted.
-justify justify (justify, Justify)
How the title should be aligned on the chart. Parameter justify may be left, right, or center (the default).
-leftmargin amount (leftMargin, Margin)
Size, in screen units, of the margin from the left edge of the window to the y-coordinate axis. If amount is 0, the margin is autosized.
-leftvariable varName (leftVariable, LeftVariable)
Variable that will be automatically updated with the current size of the left margin.
-plotbackground color (plotBackground, Background)
Background color for the plotting area.
-plotborderwidth amount (plotBorderWidth, BorderWidth)
Window of 3D border drawn around the plotting area.
-plotpadx amount (plotPadX, PlotPad)
Amount of padding, in screen units, to add to the left and right sides of the plotting area. Parameter amount may be a list of two screen distances to set the left and right padding separately.
-plotpady amount (plotPadY, PlotPad)
Amount of padding, in screen units, to add to the top and bottom sides of the plotting area. Parameter amount may be a list of two screen distances to set the top and bottom padding separately.
-plotrelief relief (plotRelief, Relief)
3D relief for border drawn around the plotting area.
-rightmargin amount (rightMargin, Margin)
Size, in screen units, of the margin from the plotting area to the right edge of the window.
-rightvariable varName (rightVariable, RightVariable)
Variable that will be automatically updated with the current size of the right margin.
-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the title text. The default is the empty string (i.e., transparent).
-tile image (tile, Tile)
Image to use for a tiled background for the chart. If image is the empty string (the default), no tiling is done.
-title string (title, Title)
Title for the chart. If string is the empty string (the default), no title is displayed.
-topmargin amount (topMargin, Margin)
Size, in screen units, of the margin from the top edge of the window to the plotting area.
-topvariable varName (topVariable, TopVariable)
Variable that will be automatically updated with the current size of the top margin.
-width amount (width, Width)
Desired width, in screen units, for the window.
Methods
pathName axis cget axisName option
Return the current value of the option option for the axis axisName in the same manner as the general widget cget method. Supported options are those available to the axis create method used to create the axis.
pathName axis configure axisName [axisName...] [option value...]
Query or modify the configuration options for the axes axisNames in the same manner as the general widget configure method. Supported options are those available for the axis create method.
pathName axis create axisName [option value...]
Create a new axis in the chart named axisName configured with the given options. Supported options are as follows:
-autorange range (autoRange, AutoRange)
[bar chart and strip chart only] Set the allowed range (difference between the maximum and minimum limit values) for the axis to range. If range is 0.0 (the default), the range is determined from the limits of the data. The option is overridden by the -min and -max options.
-color color (color, Color)
Foreground color for the axis and its labels.
-command tclCommand (command, Command)
Command to call when formatting the axis labels. The pathname of the chart and the numeric value of the axis label are appended as arguments. The return value of the command is used as the final label.
-descending boolean (descending, Descending)
Whether coordinate values should decrease along the axis. The default is false.
-hide boolean (hide, Hide)
Whether axis should be hidden (not drawn).
-justify justify (justify, Justify)
How multiple lines in the axis title should be aligned. Justify must be left, right, or center (the default).
-limitcolor color (limitColor, Color)
Color used to draw axis limits.
-limitfont font (limitFont, Font)
Font used to draw axis limits.
-limits formatStr (limits, Limits)
A printf-like format string to format the minimum and maximum limits. If formatStr is a list with two elements, the two elements are the format strings for the minimum and maximum limits. If formatStr is the empty string (the default), the limits are not displayed.
-limitshadow color (limitShadow, Shadow)
Color to use to draw the shadow for axis limits.
-linewidth amount (lineWidth, LineWidth)
Line width for the axis and its ticks. The default is 1.
-logscale boolean (logScale, LogScale)
Whether the scale of the axis should be logarithmic. The default is false.
-loose boolean (loose, Loose)
Whether the axis range, when autoscaling, should fit loosely around the data points at the outer tick intervals. The default is false.
-majorticks majorList (majorTicks, MajorTicks)
Where to display major axis ticks. Parameter majorList is a list of axis coordinates designating the location of major ticks. No minor ticks are drawn. If the list is empty, major ticks are automatically computed.
-max value (max, Max)
The maximum limit of the axis. Data points above this limit are clipped. If value is the empty string, the maximum value of the axis is autoscaled.
-min value (min, Min)
The minimum limit of the axis. Data points below this limit are clipped. If value is the empty string, the minimum value of the axis is autoscaled.
-minorticks minorList (minorTicks, MinorTicks)
Where to display minor axis ticks. Parameter minorList is a list of real values between 0.0 and 1.0 designating the location of minor ticks between each pair of major ticks. If the list is empty, minor ticks are automatically computed.
-rotate theta (rotate, Rotate)
Angle, in degrees, to rotate the axis labels. The default is 0.0.
-shiftby value (shiftBy, ShiftBy)
[bar chart and strip chart only] How much to automatically shift the range of the axis when new data exceeds the current axis maximum limit. The limit is increased in increments of value. If value is 0.0 (the default), no automatic shifting is done.
-showticks boolean (showTicks, ShowTicks)
Whether axis ticks should be drawn. The default is true.
-stepsize value (stepSize, StepSize)
The step size between major axis ticks. If the value is not greater than zero or is greater than the full range of the axis, the step size is automatically calculated.
-subdivisions number (subdivisions, Subdivisions)
Number of minor axis tick intervals between major ticks. The default is 2, corresponding to one minor tick being drawn.
-tickfont fontName (tickFont, Font)
Font to use for drawing the axis tick labels.
-ticklength amount (tickLength, TickLength)
Length of the major ticks. Minor ticks are set to half this length. If amount is negative, tick will point away from the plotting area.
-tickshadow color (tickShadow, Shadow)
Color to use for drawing the shadow for the axis tick labels.
-title string (title, Title)
Title for the axis.
-titlecolor color (titleColor, Color)
Foreground color to use for drawing the axis title.
-titlefont fontName (titleFont, Font)
Font to use for drawing the axis title.
-titleshadow color (titleShadow, Shadow)
Foreground color to use for drawing the axis title.
pathName axis delete axisName...
Delete the given axes. An axis is not really deleted until all elements and markers mapped to it are deleted.
pathName axis invtransform axisName coord
Perform an inverse coordinate transformation, mapping the screen coordinate coord to its corresponding chart coordinate on the axis axis-Name. The calculated chart coordinate is returned.
pathName axis limits axisName
Return a list of two coordinates representing the minimum and maximum limits of the axis.
pathName axis names [pattern...]
Return a list of axes with names that match any of the given patterns. If no pattern is specified, the names of all axes are returned.
pathName axis transform axisName coord
Transform the chart coordinate coord on the axis axisName to its corresponding screen coordinate. The calculated screen coordinate is returned.
pathName bar operation arg...
The bar method is identical to the element method in bar chart widgets. In a future version of BLT, the bar method will be supported by graph widgets in order to mix line- and bar-type elements.
pathName crosshairs cget option
Return the current value of the option option for the crosshairs in the same manner as the general widget cget method. Supported options are those available to the crosshairs configure method.
pathName crosshairs configure [option value...]
Query or modify the configuration options for the chart's crosshairs in the same manner as the general widget configure method. Supported options are as follows:
-color color (color, Color)
Color for the crosshair lines.
-dashes dashStyle (dashes, Dashes)
Dash style for the crosshair lines. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-hide boolean (hide, Hide)
Whether crosshairs should be hidden (not drawn). The default is true.
-linewidth amount (lineWidth, LineWidth)
Line width for the crosshairs.
-position @x, y (position, Position)
The chart x- and y- coordinates of the crosshairs.
pathName crosshairs off
Turn off the drawing of the crosshairs.
pathName crosshairs on
Turn on the drawing of the crosshairs.
pathName crosshairs toggle
Toggle drawing of the crosshairs.
pathName element activate elemName [index...]
Make the data points in element elemName at the given indices active. If no indices are specified, all data points in the element are made active.
pathName element bind tagName [sequence [command]]
Bind command to all elements with tag tagName so it is invoked when the given event sequence occurs for the element. The syntax for this method is the same as for the standard Tk bind command except that it operates on graph elements. TagName may be the name of a single element, the special tag all (bind to all elements), or an arbitrary string. Only keyboard and mouse events can be bound.
pathName element cget elemName option
Return the current value of the option option for the element elemName in the same manner as the general widget cget method. Supported options are those available to the element create method used to create the axis.
pathName element closest winX winY varName [option value...] [elemName...]
Find the data point closest to window coordinates winX and winY. If found, a 1 is returned and the variable varName is set equal to a list containing the name of the closest element, the index of the closest point, and the chart xy-coordinates of the point. If no data point is found within the threshold distance given by the -halo option, a 0 is returned. The optional elemName arguments restrict the search to the given elements. The following options can be specified to further modify the search:
-halo amount
Threshold distance outside of which points are ignored in search. Overrides the chart -halo option.
-interpolate boolean
Whether interpolated points should also be considered in the search. Useful for graph widgets only.
pathName element configure elemName [elemName...] [option value...]
Query or modify the configuration options for the elements elemNames in the same manner as the general widget configure method. Supported options are those available for the element create method.
pathName element create elemName [option value...]
Create a new element in the chart named elemName configured with the given options. Options supported by all three chart widgets are:
-activepen penName (activePen, ActivePen)
Name of pen to use to draw element when it is active.
-bindtags tagList (bindTags, BindTags)
The binding tag list for the element, which determines the order of evaluation of the commands for matching event bindings. Implicitly, the name of the element itself is always the first tag in the list. The default value is all.
-data coordList (data, Data)
Chart coordinates for the data points to be plotted. Parameter coordList is a list of real numbers representing x- and y-coordinate pairs.
-hide boolean (hide, Hide)
Whether element is hidden (not drawn).
-label string (label, Label)
Label for the element in the legend.
-labelrelief relief (labelRelief, LabelRelief)
3D effect of border around label for the element in the legend.
-mapx xaxis (mapX, MapX)
Name of x-axis onto which to map element's data. The default is x.
-mapy yaxis (mapY, MapY)
Name of y-axis onto which to map element's data. The default is y.
-pen penName (pen, Pen)
Name of pen to use to draw element when it is not active. The pen's options override those explicitly set with element configure.
-styles styleList (styles, Styles)
Styles used to draw the data point symbols or bars. Each element of styleList is a list consisting of a pen name and, optionally, two numbers defining a minimum and maximum range. Data points whose weights fall inside this range are drawn with this pen. If no range is specified, the default range is a single value equal to the index of the pen in the list.
-weights wVec (weights, Weights)
Weights of the individual data points. Parameter wVec is a BLT vector or list.
-xdata xvec (xData, XData)
The x-coordinates of the data points for the element. Overrides -data option. Parameter xvec is a BLT vector or list.
-ydata yvec (yData, YData)
The y-coordinates of the data points for the element. Overrides -data option. Parameter yvec is a BLT vector or list.
Options supported by only the graph and strip chart widgets are as follows:
-color color (color, Color)
Color for traces connecting the data points.
-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-fill color (fill, Fill)
Interior color for the data point symbols. If color is the empty string, the color is transparent. If color is defcolor (the default), the color is the same as the value for the -color option.
-linewidth amount (lineWidth, LineWidth)
Width of connecting lines between data points.
-offdash color (offDash, OffDash)
Color for stripes when traces are dashed. If color is the empty string, the color is transparent. If color is defcolor (the default), the color is the same as the value for the -color option.
-outline color (outline, Outline)
Color for outline drawn around each symbol. If color is the empty string, the color is transparent. If color is defcolor (the default), the color is the same as the value for the -color option.
-outlinewidth amount (outlineWidth, OutlineWidth)
Width of the outline drawn around each symbol. The default is 1.0.
-pixels amount (pixels, Pixels)
Size of the symbols. If amount is zero, no symbol is drawn. The default is 0.125i.
-scalesymbols boolean (scaleSymbols, ScaleSymbols)
Whether the size of the symbols should change to scale with future changes to the scale of the axes.
-smooth type (smooth, Smooth)
How connecting lines are drawn between the data points. If type is linear, a single line segment is drawn. If type is step, first a horizontal line is drawn to the next x-coordinate and then a vertical line to the next y-coordinate. If type is natural or quadratic, multiple segments are drawn between the data points using a cubic or quadratic spline, respectively. The default is linear.
-symbol symbol (symbol, Symbol)
Type of symbol to use for data points. Parameter symbol may be square, circle, diamond, plus, cross, splus, scross, triangle, or a bitmap. Bitmaps are represented as a list specifying the bitmap and an optional mask. If symbol is the empty string, no symbol is drawn. The default is circle.
-trace type (trace, Trace)
[graph only] How to draw lines between data. If type is increasing, lines are drawn only between monotonically increasing points. If type is decreasing, lines are drawn only between monotonically decreasing points. If type is both, lines between points are always drawn. The default is both.
Options supported by only the bar chart widget are as follows:
-background color (background, Background)
Color of border around each bar.
-barwidth amount (barWidth, BarWidth)
Width of the bar in x-coordinate values. Overrides the widget's -barwidth option.
-borderwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around each bar.
-foreground color (foreground, Foreground)
Color of the interior of each bar.
-relief relief (relief, Relief)
3D relief for border drawn around each bar.
-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw each bar. If bitmap is the empty string (the default), the bar is drawn in solid color.
pathName element deactivate pattern...
Deactivate all elements whose names match any of the given patterns.
pathName element delete elemName...
Delete all the given elements from the chart.
pathName element exists elemName
Return 1 if an element named elemName exists, 0 otherwise.
pathName element names [pattern...]
Return a list of the names of all the elements that match the given patterns. If no patterns are specified, the names of all elements in the chart are returned.
pathName element show [nameList]
If nameList is specified, it is a list of elements that should be displayed on the chart and in what order. Otherwise, the current display list is returned. Elements not in the list are not drawn.
pathName element type elemName
Return the type of element elemName, either bar for bar charts or line for graphs and strip charts.
pathName extents Item
Return the size of an item in the chart. Item must be leftmargin, rightmargin, topmargin, bottommargin, plotwidth, or plotheight.
pathName grid cget option
Return the current value of the option option for the grid in the same manner as the general widget cget method. Supported options are those available to the grid configure method.
pathName grid configure [option value...]
Query or modify the configuration options for the chart's grid in the same manner as the general widget configure method. By default, the grid is hidden for the graph and strip chart widgets, and only horizontal grid lines are shown for the bar chart widget. Supported options are as follows:
-color color (color, Color)
Color for the grid lines.
-dashes dashStyle (dashes, Dashes)
Dash style for grid lines. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-hide boolean (hide, Hide)
Whether the grid lines should be hidden (not drawn). The default is true.
-linewidth amount (lineWidth, LineWidth)
Line width for the grid lines.
-mapx xaxis (mapX, MapX)
Name of x-axis onto which to map vertical grid lines. If xaxis is the empty string, no vertical grid lines are drawn. The default is the empty string for bar charts and x for graphs and strip charts.
-mapy yaxis (mapY, MapY)
Name of y-axis onto which to map horizontal grid lines. If yaxis is the empty string, no horizontal grid lines are drawn. The default is y.
-minor boolean (minor, Minor)
Whether grid lines should be drawn for minor ticks. The default is true.
pathName grid off
Turn off the drawing of the grid lines.
pathName grid on
Turn on the drawing of the grid lines.
pathName grid toggle
Toggle drawing of the grid lines.
pathName invtransform winX winY
Perform an inverse coordinate transformation, mapping the given window coordinates to chart coordinates. The calculated x- and y- chart coordinates are returned.
pathName inside x y
Return 1 if the given screen coordinates x y are inside the plotting area, 0 otherwise.
pathName legend activate pattern...
Activate all legend entries whose names match the given patterns.
pathName legend bind elemName [sequence[command]]
Bind command to the legend entry associated with element elemName so it is invoked when the given event sequence occurs for the entry. The syntax for this method is the same as for the standard Tk bind command except that it operates on legend entries. If elemName is all, the binding applies to all entries. Only keyboard and mouse events can be bound.
pathName legend cget option
Return the current value of the option option for the legend in the same manner as the general widget cget method. Supported options are those available to the legend configure method.
pathName legend configure [option value...]
Query or modify the configuration options for the chart's legend in the same manner as the general widget configure method. Supported options are as follows:
-activebackground color (activeBackground, ActiveBackground)
Background color for active legend entries.
-activeborderwidth amount (activeBorderWidth, ActiveBorderWidth)
Width of 3D border around active legend entries.
-activeforeground color (activeForeground, ActiveForeground)
Foreground color for active legend entries.
-activerelief relief (activeRelief, ActiveRelief)
Relief of border around active legend entries.
-anchor anchorPos (anchor, Anchor)
How legend should be positioned relative to its positioning point. The default is center. How anchorPos is interpreted depends on the value of the positioning point (see the -position option).
-background color (background, Background)
Background color for the legend. The default is an empty string (transparent).
-borderwidth amount (borderWidth, BorderWidth)
Width of the 3D border around the legend.
-font fontName (font, Font)
Font to use for the labels of legend entries.
-foreground color (foreground, Foreground)
Foreground color for the legend.
-hide boolean (hide, Hide)
Whether the legend should be hidden (not drawn).
-ipadx amount (iPadX, Pad)
Internal horizontal padding between the legend border and entries. If amount has two elements, it specifies the padding for the left and right sides, in that order.
-ipady amount (iPadY, Pad)
Internal vertical padding between the legend border and entries. If amount has two elements, it specifies the padding for the top and bottom, in that order.
-padx amount (padX, Pad)
Extra padding on the left and right side of the legend. If amount has two elements, it specifies the padding for the left and right sides, in that order.
-pady amount (padY, Pad)
Extra padding on the top and bottom side of the legend. If amount has two elements, it specifies the padding for the top and bottom, in that order.
-position position (position, Position)
Positioning point for the legend in window coordinates. Valid values for position (the default is right) are as follows:
@x, y
Legend is placed so its anchor point is at the given window coordinates.
left or right
Legend is drawn in left or right margin. The anchor point affects only the vertical position.
top or bottom
Legend is drawn in the top or bottom margin. The anchor point affects only the horizontal position.
plotarea
Legend is placed inside the plotting area. The anchor point of the legend is placed at the same cardinal point of the plotting area. For example, if the anchor is ne, the legend will occupy the upper-right corner of the plotting area.
-raised boolean (raised, Raised)
Whether legend should be drawn above data elements when in the plotting area. The default is false.
-relief relief (relief, Relief)
Relief of the border around the legend.
-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the entry labels. The default is the empty string (i.e., transparent).
pathName legend deactivate pattern...
Deactivate the legend entries whose names match the given patterns.
pathName legend get @x, y
Return the name of the element with a legend entry at window coordinates x, y in the legend.
pathName line operation arg...
The line method is identical to the element method in graph and strip chart widgets. In a future version of BLT, the line method will be supported by bar chart widgets in order to mix line- and bar-type elements.
pathName marker after markerId [markerId]
Reorder the marker display list, placing the first specified marker after the second. If the second markerId is omitted, the marker is placed at the end of the list. Markers are drawn in order from this list.
pathName marker before markerId [markerId]
Reorder the marker display list, placing the first specified marker before the second. If the second markerId is omitted, the marker is placed at the beginning of the list. Markers are drawn in order from this list.
pathName marker bind tagName [sequence [command]]
Bind command to all markers with tag tagName so it is invoked when the given event sequence occurs for the marker. The syntax for this method is the same as for the standard Tk bind command except that it operates on graph markers. tagName may be the name of a single marker, a capitalized marker type (e.g., Line, for all line markers), the special tag all (bind to all markers), or an arbitrary string. Only keyboard and mouse events can be bound.
pathName marker cget markerId option
Return the current value of the option option for the marker markerId in the same manner as the general widget cget method. Supported options are those available to the marker create method used to create the marker.
pathName marker configure markerId [option value...]
Query or modify the configuration options for the marker markerId in the same manner as the general widget configure method. Supported options are those available to the marker create method used to create the marker.
pathName marker create type [option value...]
Create a new marker in the chart of the selected type configured with the given options. Type may be text, bitmap, image, line, polygon, or window. A unique marker identifier for the newly created marker is returned (see the -name option). Options that are specific to each marker type are described in the following sections. Options that are supported by all marker types are as follows:
-bindtags tagList (bindtags, bindTags)
The binding tag list for the marker, which determines the order of evaluation of the commands for matching event bindings. Implicitly, the name of the marker itself is always the the first tag in the list. The default value is all.
-coords coordList (coords, Coords)
A list of real numbers that repr esent the appropriate x- and y-coordinate pairs for the marker. For text and window markers, only two coordinates are needed, which give the position point of the marker. Bitmap and image markers can take two or four coordinates. Line markers require at least four coordinates (two pairs), and polygon markers requir e at least six (three pairs).
-element elemName (element, Element)
Indicates that the marker should be drawn only if element elemName is currently displayed.
-hide boolean (hide, Hide)
Whether markers should be hidden (not drawn).
-mapx xaxis (mapX, MapX)
The x-axis onto which to map the marker's x-coordinates. Parameter xaxis must be the name of an axis. The default is x.
-mapy xaxis (mapY, MapY)
The y-axis onto which to map the marker's y-coordinates. Parameter xaxis must be the name of an axis. The default is y.
-name markerId
ID to use to identify the marker. Parameter markerId must not be used by another marker. If this option is not specified at creation, a unique ID is generated.
-under boolean (under, Under)
Whether marker is drawn below the data elements so as not to obscure them.
-xoffset amount (xOffset, XOffset)
Screen distance by which to offset the marker horizontally.
-yoffset amount (yOffset, YOffset)
Screen distance by which to offset the marker vertically.
pathName marker delete markerId...
Delete all markers from the chart with the given IDs.
pathName marker exists markerId
Return 1 if a marker with ID markerId exists, 0 otherwise.
pathName marker names [pattern]
Return a list of marker IDs defined in the chart. If pattern is given, only those IDs that match it are returned.
pathName marker type markerId
Return the type of the marker markerId.
pathName pen cget penName option
Return the current value of the option option for the pen penName in the same manner as the general widget cget method. Supported options are those available to the pen create method used to create the axis.
pathName pen configure penName [penName...] [option value...]
Query or modify the configuration options for the pens penNames in the same manner as the general widget configure method. Supported options are those available for the pen create method.
pathName pen create penName [-type type] [option value...]
Create a new pen of the specified type in the chart named penName configured with the given options. Type may be line or bar. If Type is not given, it defaults to line for graph and strip chart widgets and to bar for bar chart widgets.
Supported options for pens of type line are as follows:
-color color (color, Color)
Color of the traces connecting the data points.
-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-fill color (fill, Fill)
Interior color for the data point symbols. If color is the empty string, the color is transparent. If color is defcolor (the default), the color is the same as the value for the -color option.
-linewidth amount (lineWidth, LineWidth)
Width of connecting lines between data points. The default is 0.
-offdash color (offDash, OffDash)
Color for stripes when traces are dashed. If color is the empty string, the color is transparent. If color is defcolor (the default), the color is the same as the value for the -color option.
-outline color (outline, Outline)
Color for outline drawn around each symbol. If color is the empty string, the color is transparent. If color is defcolor (the default), the color is the same as the value for the -color option.
-outlinewidth amount (outlineWidth, OutlineWidth)
Width of the outline drawn around each symbol. The default is 1.0.
-pixels amount (pixels, Pixels)
Size of the symbols. If amount is 0, no symbol is drawn. The default is 0.125i.
-symbol symbol (symbol, Symbol)
Type of symbol to use for data points. Parameter symbol may be square, circle, diamond, plus, cross, splus, scross, triangle, or a bitmap. Bitmaps are represented as a list specifying the bitmap and an optional mask. If symbol is the empty string, no symbol is drawn. The default is circle.
Supported options for pens of type bar are as follows:
-background color (background, Background)
Color of border around each bar.
-borderwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around each bar.
-foreground color (foreground, Foreground)
Color of the interior of each bar.
-relief relief (relief, Relief)
3D relief for border drawn around each bar.
-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw each bar. If bitmap is the empty string (the default), the bar is drawn in solid color.
pathName pen delete penName...
Delete the given pens. A pen is not really deleted until all elements using it are deleted.
pathName pen names [pattern...]
Return a list of the names of all pens that match the given patterns. If no patterns are specified, the names of all pens in the chart are returned.
pathName postscript cget option
Return the current value of the PostScript option option in the same manner as the general widget cget method. Supported options are those available to the postscript configure method used to create the axis.
pathName postscript configure [option value...]
Query or modify the configuration options for PostScript generation in the same manner as the general widget configure method. Supported options are as follows:
-center boolean (psCenter, PsCenter)
Whether plot should be centered on the PostScript page. The default is true.
-colormap varName (psColorMap, PsColorMap)
A global array variable that specifies the color mapping from the X color to PostScript code to set that color. If no element of the array is found for a color, default code is generated using RGB intensities.
-colormode mode (psColorMode, PsColorMode)
How to output color information. Parameter mode may be color, gray, or mono. The default is color.
-decorations boolean (psDecorations, PsDecorations)
Whether PostScript commands generate color backgrounds and 3D borders in the output. The default is true.
-fontmap varName (psFontMap, PsFontMap)
A global array variable that specifies the font mapping from X font name to a two-element list specifying a PostScript font and point size. If no mapping exits, BLT makes a best guess for Adobe X fonts and uses Helvetica Bold for others.
-height amount (psHeight, PsHeight)
Height of the plot. If amount is 0, then the height is the same as the widget height.
-landscape boolean (psLandscape, PsLandscape)
Whether the printed area is to be rotated 90 degrees.
-maxpect boolean (psMaxpect, PsMaxpect)
Scale the plot so it fills the PostScript page. The aspect ratio is retained. The default is false.
-padx amount (psPadX, PsPadX)
Padding on the left and right page borders. If amount has two elements, it specifies the padding for the left and right sides, in that order. The default is 1i.
-pady amount (psPadY, PsPadY)
Padding on the top and bottom page borders. If amount has two elements, it specifies the padding for the top and bottom, in that order. The default is 1i.
-paperheight amount (psPaperHeight, PsPaperHeight)
Set the height of the PostScript page. The default is 11.0i.
-paperwidth amount (psPaperWidth, PsPaperWidth)
Set the width of the PostScript page. The default is 8.5i.
-preview boolean (psPreview, PsPreview)
Whether an EPSI thumbnail preview image should be inserted into the generated PostScript.
-width amount (psWidth, PsWidth)
Width of the plot. If amount is 0, the the width is the same as the widget width.
pathName postscript output [filename] [option value...]
Output the chart as encapsulated PostScript. The output is written to the file filename, if specified. Otherwise, the output is Returned as the method's results.
pathName print
Prompt for a printer and print the image to the printer selected. This is supported on Windows only.[3]
pathName snap photoName
Take a snapshot of the chart and store it in the contents of Tk photo image photoName (which must already exist).
pathName transform x y
Transform the chart coordinates x and y into window coordinates. The x and y window coordinates are Returned. Results for chart coordinates outside the axes' region are not guaranteed to be accurate.
pathName xaxis cget option
Same as the axis cget method for whichever axis is used along the bottom boundary.
pathName xaxis configure [option value...]
Same as the axis configure method for whichever axis is used along the bottom boundary.
pathName xaxis invtransform coord
Same as the axis invtransform method for whichever axis is used along the bottom boundary.
pathName xaxis limits
Same as the axis limits method for whichever axis is used along the bottom boundary.
pathName xaxis transform coord
Same as the axis transform method for whichever axis is used along the bottom boundary.
pathName xaxis use [axisName]
Designate that axis axisName is to be used as the bottom boundary axis. Parameter axisName cannot be already in use at another location. If axisName is omitted, the name of the axis currently used for the bottom axis is returned.
pathName x2axis cget option
Same as the axis cget method for whichever axis is used along the top boundary.
pathName x2axis configure [option value...]
Same as the axis configure method for whichever axis is used along the top boundary.
pathName x2axis invtransform coord
Same as the axis invtransform method for whichever axis is used along the top boundary.
pathName x2axis limits
Same as the axis limits method for whichever axis is used along the top boundary.
pathName x2axis transform coord
Same as the axis transform method for whichever axis is used along the top boundary.
pathName x2axis use [axisName]
Designate that axis axisName is to be used as the top boundary axis. Parameter axisName cannot be already in use at another location. If axisName is omitted, the name of the axis currently used for the top axis is returned.
pathName yaxis cget option
Same as the axis cget method for whichever axis is used along the left boundary.
pathName yaxis configure [option value...]
Same as the axis configure method for whichever axis is used along the left boundary.
pathName yaxis invtransform coord
Same as the axis invtransform method for whichever axis is used along the left boundary.
pathName yaxis limits
Same as the axis limits method for whichever axis is used along the left boundary.
pathName yaxis transform coord
Same as the axis transform method for whichever axis is used along the left boundary.
pathName yaxis use [axisName]
Designate that axis axisName is to be used as the left boundary axis. Parameter axisName cannot be already in use at another location. If axisName is omitted, the name of the axis currently used for the left axis is Returned.
pathName y2axis cget option
Same as the axis cget method for whichever axis is used along the right boundary.
pathName y2axis configure [option value...]
Same as the axis configure method for whichever axis is used along the right boundary.
pathName y2axis invtransform coord
Same as the axis invtransform method for whichever axis is used along the right boundary.
pathName y2axis limits
Same as the axis limits method for whichever axis is used along the right boundary.
pathName y2axis transform coord
Same as the axis transform method for whichever axis is used along the right boundary.
pathName y2axis use [axisName]
Designate that axis axisName is to be used as the right boundary axis. Parameter axisName cannot be already in use at another location. If axisName is omitted, the name of the axis currently used for the right axis is returned.
Bitmap Markers
A bitmap marker displays a bitmap image. If two coordinates are specified for the -coords option, they specify the position of the top-left corner of the bitmap and the bitmap retains its normal width and height. If four coordinates ar e specified, the last pair of coordinates represents the bottom-right corner for the bitmap. The bitmap will be stretched or reduced as necessary to fit into the bounding rectangle. Options specific to bitmap markers are:
-anchor anchorPos (anchor, Anchor)
How to position the bitmap relative to the position point for the bitmap. The default is center.
-background color (background, Background)
Same as the -fill option.
-bitmap bitmap (bitmap, Bitmap)
The bitmap to display.
-fill color (fill, Fill)
Background color for the bitmap. The default is the empty string (i.e., transparent).
-foreground color (foreground, Foreground)
Same as the -outline option.
-outline color (outline, Outline)
Foreground color for the bitmap. The default is black.
-rotate theta (rotate, Rotate)
Angle in degrees to rotate the bitmap.
Image Markers
An image marker displays a Tk named image. Options specific to image markers are as follows:
-anchor anchorPos (anchor, Anchor)
How to position the image relative to the position point for the image. The default is center.
-image imageName (image, Image)
Name of the Tk image to display.
Line Markers
A line marker displays one or more connected line segments on the chart. Options specific to line markers are as follows:
-cap style (cap, Cap)
How caps are drawn at endpoints of lines. Style may be butt (the default), projecting, or round.
-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-fill color (fill, Fill)
Background color for the line when dashed or stippled. The default is the empty string (i.e., transparent).
-join style (join, Join)
How line joints are drawn. Style may be bevel, miter (the default), or round.
-linewidth amount (lineWidth, LineWidth)
Width of the line. The default is 0.
-outline color (outline, Outline)
Foreground color for the line. The default is black.
-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw the line.
-xor boolean (xor, Xor)
Whether outline and fill color should be determined from a logical XOR of the colors on the plot underneath the marker. Overrides the -fill and -outline options.
Polygon Markers
A polygon marker displays a closed region of two or more connected line segments on the chart. Options specific to polygon markers are as follows:
-cap style (cap, Cap)
How caps are drawn at endpoints of lines. Style may be butt (the default), projecting, or round.
-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-fill color (fill, Fill)
Fill color for the polygon. If color is the empty string, the interior of the polygon is transparent.
-join style (join, Join)
How line joints are drawn. Style may be bevel, miter (the default), or round.
-linewidth amount (lineWidth, LineWidth)
Width of the outline. The default is 0.
-outline color (outline, Outline)
Color for the outline of the polygon.
-stipple bitmap (stipple, Stipple)
Bitmap to use as a stipple pattern for drawing the fill color.
-xor boolean (xor, Xor)
Whether outline and fill color should be determined from a logical XOR of the colors on the plot underneath the marker. Overrides the -fill and -outline options.
Text Markers
A text marker displays a string of characters at an arbitrary position inside the chart. Embedded newlines cause line breaks. Options specific to text markers ar e as follows:
-anchor anchorPos (anchor, Anchor)
How to position the text relative to the position point for the marker. The default is center.
-background color (background, Background)
Same as the -fill option.
-fill color (fill, Fill)
Background color for the text. The default is the empty string (i.e., transparent).
-font font (font, Font)
Font to use for the text.
-foreground color (foreground, Foreground)
Same as the -outline option.
-justify justify (justify, Justify)
How multiple lines of text should be justified. Parameter justify may be left, right, or center (the default).
-outline color (outline, Outline)
Foreground color for the text. The default is black.
-padx amount (padX, PadX)
Amount of padding to add to the left and right sides of the text. Parameter amount may be a list of two screen distances to set the left and right padding separately.
-pady amount (padY, PadY)
Amount of padding to add to the top and bottom sides of the text. Parameter amount may be a list of two screen distances to set the top and bottom padding separately.
-rotate theta (rotate, Rotate)
Angle, in degrees, to rotate the text.
-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the text. The default is the empty string (i.e., transparent).
-text string (text, Text)
The text string to display.
Window Markers
A window marker displays the window of a Tk widget at an arbitrary position inside the chart. Options specific to window markers are as follows:
-anchor anchorPos (anchor, Anchor)
How to position the window relative to the position point for the marker. The default is center.
-height amount (height, Height)
Height to assign to the window. If not specified, the height will be whatever the window requests.
-width amount (width, Width)
Width to assign to the window. If not specified, the width will be whatever the window requests.
-window pathName (window, Window)
Pathname of window to use for the marker. The window must be a descendant of the chart widget.
Example
set x {0.0 1.0 2.0 3.0 4.0 5.0 6.0}
set y {0.0 0.1 2.3 4.5 1.2 5.4 9.6}
graph .g -title "Example Graph"
.g element create x -label "Data Points" -xdata $x -ydata $y
pack .g
[3] The format of this command may change for the final Version 2.4 to require a specific printer ID.
Name
hierbox
hierbox pathName [option value...]
The hierbox command creates a new hierbox widget named pathName. A hierbox widget displays a hierarchy tree of entries for navigation and selection. Each entry consists of an icon image, a text label, and an optional text or image data field. Also, an entry can contain a list of subentries, which in turn can have their own subentries. Entries with subentries can be expanded or collapsed using an optional open/close button drawn to the entry's left side.
Standard Options
- activebackground | - activeforeground | - background |
- borderwidth | - cursor | - exportselection |
- font | - foreground | - highlightbackground |
- highlightcolor | - highlightthickness | - relief |
- selectbackground | - selectborderwidth | - selectForeground |
- takefocus | - xscrollcommand | - yscrollcommand |
Widget-Specific Options
-activerelief relief (activeRelief, Relief)
3D effect for the active entry.
-allowduplicates boolean (allowDuplicates, AllowDuplicates)
Whether entries with identical names are allowed. The default is true.
-autocreate boolean (autoCreate, AutoCreate)
Whether an entry's ancestors should automatically be created and inserted if they do not exist when the entry is inserted. The default is false.
-closecommand command (closeCommand, CloseCommand)
Tcl command to evaluate when an entry is closed. The following percent sign substitutions are done on command:
%% | Replaced with a single percent sign |
%n | Entry ID number of affected entry |
%P | Full pathname of affected entry |
%p | Tail part of the pathname of affected entry |
%W | Pathname of hierbox widget |
-closerelief relief (closeRelief, Relief)
3D effect for buttons of closed entries.
-dashes number (dashes, Dashes)
Dash style for lines connecting entries. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string (the default), a solid line is drawn.
-height amount (height, Height)
Requested height of the hierbox widget window.
-hideroot boolean (hideRoot, HideRoot)
Whether root entry should be hidden. The default is false.
-linecolor color (lineColor, LineColor)
Color of the lines connecting entries.
-linespacing pixels (lineSpacing, LineSpacing)
Set the vertical spacing between entries. The default is 0.
-linewidth pixels (lineWidth, LineWidth)
Width of the lines connecting entries. The default is 1.
-opencommand command (openCommand, OpenCommand)
Tcl command to be evaluated when an entry is opened. The same percent sign substitutions are made as for the widget -closecommand.
-openrelief relief (openRelief, Relief)
3D effect for buttons of open entries.
-scrollmode mode (scrollMode, ScrollMode)
Whether scrolling should follow the model of the Tk listbox widget or the Tk canvas widget. Mode must be either listbox (the default) or canvas.
-scrolltile boolean (scrollTile, ScrollTile)
Whether tile should appear to scroll when the widget is scrolled.
-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default hierbox bindings for manipulation of the entry selection. Supported styles are single, active, and multiple. Any arbitrary string is allowed, but the programmer must extend the bindings to support it. Default is multiple.
-separator string (separator, Separator)
Path separator string of components of entries. The default is the empty string, which implies no sublevels.
-tile imageName (tile, Tile)
Image to use as a tiled background for the widget.
-trimleft string (trimLeft, Trim)
Leading characters to trim from entry pathnames.
-width amount (width, Width)
Requested width of the hierbox widget window.
-xscrollincrement amount (xScrollIncrement, ScrollIncrement)
Increment, in pixels, for horizontal scrolling by units (see view method).
-yscrollincrement amount (yScrollIncrement, ScrollIncrement)
Increment, in pixels, for vertical scrolling by units (see view method).
Entry Indices
The following special indices can be used to identify entries in the hierbox:
number
Integer ID number of the entry. This number does not indicate the location of the entry in the hierbox. However, the root entry will always be number 0.
current
Entry that is currently active, usually the one under the mouse pointer.
anchor
Entry that is the anchor point for selection.
focus
Entry that currently has the focus.
root
The root entry of the hierarchy.
end
Last entry currently displayed (i.e., not hidden by closing) in the hierbox.
up
Entry immediately above the one that currently has the focus.
down
Entry immediately below the one that currently has the focus.
prev
Entry above the one that currently has the focus. Unlike up, wraps around to last entry.
next
Entry below the one that currently has the focus. Unlike down, wraps around to top entry.
parent
Entry that is the parent of the one that currently has the focus.
nextsibling
Next sibling of the entry that currently has the focus.
Prevsibling
Previous sibling of the entry that currently has the focus.
view.top
First partially visible entry in the hierbox.
view.bottom
Last partially visible entry in the hierbox.
path
Absolute pathname of the entry.
@x, y
The entry that covers the pixel with window coordinates x and y.
Methods
pathName bind tagName [sequence [command]]
Bind command to all entries with tag tagName so it is invoked when the given event sequence occurs for the entry. The syntax for this method is the same as for the standard Tk bind command except that it operates on entries. tagName may be the pathname of an entry, the special tag all (bind to all entries), or an arbitrary string. Only keyboard and mouse events can be bound.
pathName bbox [-screen] entryIndex [entryIndex...]
Return a coordinate list of the form {x1 y1 x2 y2} giving an approximate bounding box enclosing all the given entries. If the -screen switch is given, the coordinates are for the screen rather than the widget.
pathName button activate entryIndex
If entry entryIndex has a button, make it the active button. Only one button in the hierbox may be active at a given time.
pathName button bind tagName [sequence [command]]
Bind command to all buttons with tag tagName so it is invoked when the given event sequence occurs for the button. The syntax for this method is the same as for the standard Tk bind command except that it operates on hierbox buttons. tagName may be the name of a button's entry, the special tag all (bind to all buttons), or an arbitrary string. Only keyboard and mouse events can be bound.
pathName button cget option
Return the current value of the hierbox button option option in the same manner as the general widget cget method. Supported options are those available to the button configure method.
pathName button configure [option [value [option value...]]]
Query or modify the configuration options for the hierbox's buttons in the same manner as the general widget configure method. Supported options are as follows:
-activebackground color (activeBackground, Background)
Background color for non-image buttons when active.
-activeforeground color (activeForeground, Foreground)
Foreground color for non-image buttons when active.
-background color (background, Background)
Background color for buttons.
-borderwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around buttons.
-foreground color (foreground, Foreground)
Foreground color for buttons.
-images imageList (images, Images)
The images to use for closed and open buttons. If imageList contains two images, the first is used as the button for closed entries and the second for open entries. If imageList contains one image, it is used for both. If imageList is empty (the default), the default (+/−) symbols are used.
pathName close [-recurse] entryIndex [entryIndex...]
Close (do not display the subentries) each specified entry. If the -recurse option is given, then each subentry is recursively closed.
pathName curselection
Return a list containing the entry IDs of all entries in the hierbox currently selected.
pathName delete entryIndex [first [last]]
Delete the entry at entryIndex and all its subentries. If first and last are specified, they designate a range of subentries to delete by position within their parent. If last is the string end, it signifies the last subentry. If last is omitted, only the subentry at first is deleted. The root entry cannot be deleted.
pathName entry activate entryIndex
Make the entry at entryIndex the active entry.
pathName entry cget entryIndex option
Return the current value of the hierbox entry option option in the same manner as the general widget cget method. Supported options are those available to the insert method.
pathName entry children entryIndex [first last]
Return the entry IDs of the subentries belonging to the entry at entryIndex within the given range of positions, inclusive. The positions first and last are either integers or the string end. An integer position is the index of the subentry among its siblings. For example, the range 0 end would identify all the subentries, which is the default if a range is not specified.
pathName entry configure entryIndex [option [value [option value...]]]
Query or modify the configuration options for the hierbox's buttons in the same manner as the general widget configure method. Supported options are those available to the insert method.
pathName entry hidden entryIndex
Return 1 if the entry at entryIndex is not currently displayed, either by being explicitly hidden or in a closed hierarchy. Return 0 otherwise.
pathName entry open entryIndex
Return 1 if the entry at entryIndex has subentries and is currently open, 0 otherwise.
pathName entry size [-recurse] entryIndex
Return the number of subentries belonging to the entry at entryIndex. If the -recurse switch is given, the count will include the number of subentries at all levels below the entry.
pathName find [switches] [firstIndex [lastIndex]]
Return as a list the entry IDs of entries matching the search specification provided. The entries searched are restricted to those between the entries firstIndex and lastIndex, inclusive. If lastIndex is omitted, it defaults to the last entry in the hierbox. Also, any use of the special index end specifies the last entry in the hierbox rather than the last displayed one. If firstIndex is also not given, it defaults to the root entry.
The search specification is defined using the following switches:
option pattern
option must be a valid entry configuration option (see the insert method). The value of the option for each searched entry is matched against pattern.
-count max
Specifies maximum matches before search is finished. If max is 0 (the default), there is no limit.
-exact
The search patterns must be matched exactly (i.e., no special interpretation of characters in the pattern). This is the default.
-exec command
The Tcl command command is evaluated for each matching entry. The same percent sign substitutions as for the -closecommand widget are done.
-full pattern
The full pathname of each entry is matched against pattern.
-glob
Patter ns are treated as glob patterns, as for the Tcl glob command.
-name pattern
The tail part of the full pathname is matched against pattern.
-nonmatching
Invert search so that the indices for those entries that do not match the given patterns are Returned.
-regexp
Patter ns are treated as regular expressions, as for the Tcl regexp command.
- -
Marks the end of switches.
pathName focus entryIndex
Make the entry at entryIndex the entry with the keyboard focus.
pathName get [-full] entryIndex [entryIndex...]
If -full is given, a list of the full pathnames for the given entries is Returned. Otherwise, the list contains only the tail part of the pathnames.
pathName hide [switches] entryIndex [entryIndex...]
Hide the given entries. The entries to hide are specified using switches to define a search specification, by explicit entry index, or both. Valid switches for the search specification are as follows:
option value
option must be a valid entry configuration option (see the insert method). The value of the option for each searched entry is matched against pattern.
-exact
The search patterns must be matched exactly (i.e., no special interpretation of characters in the pattern). This is the default.
-full pattern
The full pathname of each entry is matched against pattern.
-glob
Patter ns are treated as glob patterns, as for the Tcl glob command.
-name pattern
The tail part of the full pathname is matched against pattern.
-nonmatching
Invert search so it applies to those entries that do not match the given patterns.
-regexp
Patter ns are treated as regular expressions, as for the Tcl regexp command.
- -
Marks the end of switches.
pathName index [-at focusIndex] entryIndex
Return the ID number of the entry specified by the non-numerical index entryIndex. If focusIndex is given, it identifies the entry to be considered the focus entry in the evaluation. Note that, if entryIndex is an integer, it is treated as an entry name rather than an ID. All other methods will treat an integer for entryIndex as an entry ID number.
pathName insert [-at parentIndex] position name [name...] [option value...]
Insert one or more new entries with the given names into the hierbox just before the subentry at position belonging to parentIndex. The position argument may be an integer position (e.g., 0 is the first subentry) or the string end (position after the last subentry). [4] If parent-Index is not given, it defaults to root. The following entry configuration options are available:
-bindtags tagList (bindTags, BindTags)
The binding tag list for the entry, which determines the order of evaluation of the commands for matching event bindings. Implicitly, the name of the entry itself is always the first tag in the list. The default value is all.
-closecommand command (entryCloseCommand, EntryCloseCommand)
Tcl command to evaluate when the entry is closed. Overrides default widget -closecommand option.
-data string (data, Data)
Arbitrary data string to associate with the entry.
-button mode (button, Button)
Whether an open/close button should be displayed for the entry. Mode may be a boolean value or auto (the default), which will display a button for an entry automatically if it has subentries.
-icons imageList (icons, Icons)
The images to use for the entry's icons. If imageList contains two images, the first is used as the icon when the entry does not have the focus and the second when it does. If imageList contains one image, it is used for both. If imageList is empty (the default), a simple miniature folder icon is used for both.
-images imageList (images, Images)
ImageList is a list of zero or more images to be drawn in the data field for the entry. If not empty, this overrides the -text option.
-label string (label, Label)
Text string for the entry's label. The default is the tail of the full pathname of the entry.
-labelcolor color (labelColor, LabelColor)
Foreground color for drawing the entry's label.
-labelfont font (labelFont, LabelFont)
Font for drawing the entry's label.
-labelshadow color (labelShadow, LabelShadow)
Color of shadow for entry's label. The default is the empty string (i.e., transparent).
-opencommand command (entryOpenCommand, EntryOpenCommand)
Tcl command to evaluate when the entry is opened. Overrides default widget -opencommand option.
-text text (text, Text)
Text string to be drawn in the entry's data field.
-textcolor color (textColor, TextColor)
Foreground color for text string in data field.
-textfont font (textFont, TextFont)
Font for text string in data field.
-textshadow color (textShadow, Shadow)
Shadow color for text string in data field. The default is the empty string (i.e., transparent).
pathName move fromIndex where toIndex
Move the entry at fromIndex to a position relative to toIndex according to where. Where can be after, before, or into (append to end of toIndex's children). It is an error if fromIndex is an ancestor of toIndex.
pathName nearest x y
Return the entry ID of the entry nearest to screen coordinates x y.
pathName open [-recurse] entryIndex [entryIndex...]
Open (display the subentries) of each specified entry. If the -recurse option is given, each subentry is recursively opened.
pathName range [-open] firstIndex [lastIndex]
Return a list of the entry IDs of the entries between entry indices firstIndex and lastIndex, inclusive. If the switch -open is specified, only the indices of entries currently displayed (i.e., not closed) are returned.
pathName scan dragto x y
Scroll the widget's view horizontally and vertically. The distance scrolled is equal to 10 times the differ ence between this command's x and y arguments and the x and y arguments to the last scan mark command for the widget.
pathName scan mark x y
Record the screen coordinates x y as anchors for a following scan dragto method call.
pathName see [-anchor anchorPos] entryIndex
Adjust the current view in the hierbox, if necessary, so that entry entryIndex is visible. If anchorPos is given, it specifies a cardinal point of the entry that should be made visible at the same cardinal point of the view. For example, if anchorPos is nw, then the top left corner of the entry will be visible at the top left corner of the view.
pathName selection anchor entryIndex
Set the anchor for selection dragging to the element at entryIndex.
pathName selection cancel
Cancel temporary selection operation started with a previous call to the selection dragto method without changing the real selections.
pathName selection clear firstIndex [lastIndex]
Deselect any selected entries between firstIndex and lastIndex, inclusive.
pathName selection dragto entryIndex action
Perform a temporary selection action on the entries between the selection anchor and entryIndex, inclusive. Action can be clear, set, or toggle, corresponding to the identically named selection methods. The selection changes are temporary in that the hierbox is redrawn to make it look as if the selection has changed on the affected entries. However, the internal selection flags of the entries are not changed. This temporary state is canceled by making a call to any other selection method except selection includes.
pathName selection includes entryIndex
Return 1 if the entry at entryIndex is selected, 0 otherwise.
pathName selection set firstIndex [lastIndex]
Select all entries between firstIndex and lastIndex, inclusive.
pathName selection toggle firstIndex [lastIndex]
Toggle the selection state of all entries between firstIndex and lastIndex, inclusive.
pathName show [switches] entryIndex [entryIndex...]
Show the given entries if they are hidden. The entries to show are speci- fied using switches to define a search specification, by explicit entry index, or both. Valid switches for the search specification are the same as for the hide method.
pathName sort [-recurse] [-command command] entryIndex [entryIndex...]
Sort the subentries of the given entries. If the -recurse switch is specified, then the sort routine will recursively sort subentries of subentries, and so on. The sort will be in ascending order unless a sorting command is passed with -command. command is a Tcl command, which must take three arguments: the pathname of the hierbox widget and the tail of the pathnames of two entries. It should Return a integer less than, equal to, or gr eater than zero to signify the order of the entries.
pathName toggle entryIndex
Open the entry at entryIndex if it is closed, or close it if it is open.
pathName xview
Return a two-element list describing the currently visible horizontal region of the hierbox. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget.
pathName xview moveto fraction
Adjust the visible region of the hierbox so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Shift the visible region of the hierbox horizontally by number. If what is units, then number is in units of the -xscrollincrement option. If what is pages, then number is in units of nine-tenths the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the hierbox. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget.
pathName yview moveto fraction
Adjust the visible region of the hierbox so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Shift the visible region of the hierbox vertically by number. If what is units, then number is in units of the -yscrollincrement option. If what is pages, then number is in units of nine-tenths the visible region's height.
Example
hierbox .h -separator "/" -trimleft "."
.h entry configure root -label [file tail [pwd]]
catch { exec find . } files
eval .h insert end [lsort [split $files \n]]
.h find -glob -name *.gif -exec {
%W entry configure %n -labelcolor red
}
pack .h
[4] The format of this command may change in the final Version 2.4 to use normal entry indices for positioning.
Name
htext
htext pathName [option value...]
Create a hypertext widget window named pathName. Options may be specified on the command line or in the option database.
The contents of the hypertext widget are defined by a text string or file. Any text surrounded by two special characters (by default, %%) is interpreted as Tcl commands.
Standard Options
- background | - cursor | - exportselection |
- font | - foreground | - selectbackground |
- selectborderwidth | - selectForeground | - takefocus |
- xscrollcommand | - yscrollcommand |
Widget-Specific Options
-file fileName (file, File)
Specify the file containing the htext text to be displayed. See "Text Format," later in this section.
-height amount (height, Height)
Requested height of the htext widget window.
-linespacing pixels (lineSpacing, LineSpacing)
Set the spacing between each line of text. The default is 1 pixel.
-maxheight pixels (maxHeight, MaxHeight)
Maximum height allowed for the htext widget window.
-maxwidth amount (maxWidth, MaxWidth)
Maximum width allowed for the htext widget window.
-specialchar number (specialChar, SpecialChar)
Specify the ASCII code of the character used to delimit embedded Tcl commands in htext's text. The default is 0×25 (percent sign).
-text text (text, Text)
Specify the text to be displayed in the htext widget. See the "Text Format" section later in this chapter.
-tile imageName (tile, Tile)
Image to use as a tiled background for the widget.
-tileoffset boolean (tileOffset, TileOffset)
Whether the background tile should scroll with the widget. The default is true.
-width amount (width, Width)
Requested width of the htext widget window.
-xscrollunits pixels (xScrollUnits, ScrollUnits)
Specify the horizontal scrolling distance. The default is 10 pixels.
-yscrollunits pixels (yScrollUnits, ScrollUnits)
Specify the vertical scrolling distance. The default is 10 pixels.
Text Indices
Several widget operations accept as arguments indices that define a location of a character (or embedded window) in the text. These can take the following forms:
number
Raw position of character in the text, starting at zero.
line.char
Character position char of line line. Both are numbers starting at zero. The character position can be omitted to indicate the first position.
@x, y
The character that covers the pixel with window coordinates x and y.
end
The end of the text.
anchor
The anchor point for the selection.
sel.first
The first character of the selection.
sel.last
The character immediately after the last one of the selection.
Text Format
The text to be displayed in the htext is set either using the value of the -text option or the contents of the file specified by the -file option. Whichever of the two options is set last takes precedence and resets the other to an empty string. If both are set at the same time, -file takes precedence.
The basic format for the text of the htext widget is plain ASCII. However, any text enclosed by double percent signs (or by another character chosen by the -specialchar option) is interpreted and evaluated as Tcl commands. Typically, these commands create and configure a widget that is finally embedded in the htext at the current location using the append method of the htext. The commands are evaluated in the global scope.
The following global variables are set when parsing an htext file for use by the embedded Tcl commands:
htext(widget)
The pathname of the htext widget.
htext(file)
The name of the htext file currently being parsed (empty if the -text option is used).
htext(line)
The current line number in the text.
Methods
pathName append window [options...]
Embed child widget window in the htext widget pathName at the current text location. The following options configure the appearance of the child window:
-anchor anchorPos
Specify how the child window will be positioned if there is extra space in the cavity surrounding the window. The default is center.
-fill style
Specify how the child window should be stretched to occupy the extra space in the cavity surrounding it. One of x, y, both, or none (the default).
-cavityheight amount
Requested height for the cavity surrounding the window. Overrides the -relcavityheight option. If the value of both this option and -relcavityheight is 0, the height of the cavity will be set to the height of the window plus the border width and any padding.
-cavitywidth amount
Requested width for the cavity surrounding the window. Overrides the -relcavitywidth option. If the value of both this option and -relcavitywidth is 0, the width of the cavity will be set to the width of the window plus the border width and any padding.
-height pixels
Requested height for the window. The default is 0, which will use the window's own requested height. Overrides the -relheight option.
-justify justify
Specify how to justify the window with respect to the line it is on. justify must be one of top, bottom, or center (the default).
-padx pad
Specify the padding on the left and right sides of the window. Can be a list of two numbers, specifying the padding for the left and right sides, or one number, specifying the padding to use for both sides. The default is 0.
-pady pad
Specify the padding on the top and bottom of the window. Can be a list of two numbers, specifying the padding for the top and bottom, or one number, specifying the padding to use for both. The default is 0.
-relcavityheight fraction
Specify the height of the cavity containing the child window as a fraction of the height of the htext widget. If the value of both this option and -cavityheight is 0, then the height of the cavity will be set to the height of the window plus the border width and any padding.
-relcavitywidth fraction
Specify the width of the cavity containing the child window as a fraction of the width of the htext widget. If the value of both this option and -cavitywidth is 0, then the width of the cavity will be set to the width of the window plus the border width and any padding.
-relheight fraction
Specify the height of the window containing the child window as a fraction of the height of the htext widget. If the value of both this option and -height is 0, then the height of the window will be set to the requested height of the window.
-relwidth fraction
Specify the width of the window containing the child window as a fraction of the width of the htext widget. If the value of both this option and -width is 0, then the width of the window will be set to the requested width of the window.
-width pixels
Requested width for the window. The default is 0, which will use the window's own requested width. Overrides the -relwidth option.
pathName configure window [option value...]
Query or modify the configuration options for the embedded child window window in the same manner as the standard widget configure method. Available options are those defined for the append method.
Note that when window is omitted, this method is the standard widget configure method for the htext itself.
pathName gotoline [index]
Set the top line of the text to index. With no index parameter, Returns the current line number.
pathName index index
Returns the raw character position of the character or window at index.
pathName linepos index
Return the position of the character or window at index in the form line.char.
pathName range [first [last]]
Return the text of the htext widget covering the range of characters from first to last, inclusive. If first or last are omitted, they default to sel.first and sel.last, respectively. If there is no selection, they default to the beginning and end of the text.
pathName scan dragto @x,y
Scroll the widget's view horizontally and vertically. The distance scrolled is equal to 10 times the difference between this command's x and y arguments and the given x and y arguments to the last scan mark command for the widget.[5]
pathName scan mark @x,y
Record the screen coordinates x y as anchors for a following scan dragto method call.
pathName search pattern [from [to]]
Return the number of the next line matching pattern. Parameter pattern is a string that obeys the matching rules of the Tcl string match command. Parameters from and to are text indices (inclusive) that bound the search. If no match for pattern can be found, −1 is returned.
pathName selection adjust index
Locate the end of the selection nearest to index, adjust that end to be at index, and make the other end of the selection the anchor point. If the selection isn't currently owned by the htext, this method behaves the same as the selectto widget method. pathName selection clear Clear the selection if it is owned by the htext.
pathName selection from index
Set the selection anchor point to be just before the character given by index.
pathName selection line index
Select the line containing the character at index.
pathName selection present
Return 1 if the htext currently owns the selection, 0 otherwise.
pathName selection range first last
Shortcut for doing a selection from first followed by a selection to last.
pathName selection to index
Set the selection to consist of those characters between the anchor point and index. If no anchor point has been set, it defaults to index. The new selection will always include the character given by index; it will include the character given by the anchor point only if it exists and is less than or equal to index.
pathName selection word index
Select the word containing the character at index.
pathName windows [pattern]
Return a list of the pathnames of all windows embedded in the htext. If pattern is specified, only names matching the pattern are returned.
pathName xview
Return a two-element list describing the currently visible horizontal region of the htext. The elements are real numbers representing the fractional distance that the view's left and right edges extend into the horizontal span of the widget.
pathName xview moveto fraction
Adjust the visible region of the htext so that the point indicated by fraction along the widget's horizontal span appears at the region's left edge.
pathName xview scroll number what
Shift the visible region of the htext horizontally by number. If what is units, then number is in units of the -xscrollunits option. If what is pages, then number is in units of nine-tenths the visible region's width.
pathName yview
Return a two-element list describing the currently visible vertical region of the htext. The elements are real numbers representing the fractional distance that the view's top and bottom edges extend into the vertical span of the widget.
pathName yview moveto fraction
Adjust the visible region of the htext so that the point indicated by fraction along the widget's vertical span appears at the region's top edge.
pathName yview scroll number what
Shift the visible region of the htext vertically by number. If what is units, then number is in units of the -yscrollunits option. If what is pages, then number is in units of nine-tenths the visible region's height.
Example
set text {
This will be displayed as normal text.
But this will become a %%
button .demo.button -text "button" -fg red
.demo append .demo.button %%
which can invoke a Tcl command.
}
htext .demo -text $text -foreground blue -background green
pack .demo
[5] The format of the scan commands may change to match the newer syntax, in which x and y are specified as separate arguments.
Name
spline
spline type x y sx sy
Compute a spline fitted to a set of data points. The Type argument is either natural or quadratic.
Parameters x and y are vectors representing points of data to be fitted to the spline. Values of x must be monotonically increasing.
Parameter sx is a vector containing the x-coordinates of the new points to be interpolated by the spline function. These must also be monotonically increasing and lie between the first and last values of x.
The spline command creates a new vector sy, which contains the y-coordinates corresponding to the x-coordinate values stored in sx calculated using the spline function.
Example
vector x y sx sy
xset {0.1 1.5 3.4 5.6}
y set {0.2 4.5 1.3 9.8}
xpopulate sx 10
spline natural x y sx sy
graph .graph
.graph element create original -x x -y y -color blue
.graph element create spline -x sx -y sy -color red
table . .graph
Name
stripchart
stripchart pathName [option value...]
See the graph command.
Name
table
table operation [arg arg...]
Arrange widgets in a table. The alignment of widgets is determined by their row and column positions and the number of rows or columns that they span. The following operations are defined:
table master [slave index option value ...]
Add the widget slave to the table at index. Parameter index is a position in the table in the form row, column, where row and column are the respective row and column numbers and 0,0 is the upper leftmost position. If a table doesn't exist for master, one is created. Parameter slave is the pathname of the window, which must already exist, to be arranged inside of master. Parameters option and value are described later in the "Slave Options" section.
table arrange master
Force the table to compute its layout immediately rather than waiting until the next idle point.
table cget master [item] option
Return the current value of the configuration option specific to item given by option, where item is either a row or column index or the pathname of a slave window. Parameter item can be in any form described for the configure method. If no item argument is provided, the configuration option is for the table itself. Parameter option may be any of the options described in the appropriate options section for the item.
table configure master [item...] [option [value [option value...]]]
Query or modify the configuration options specific to item in the same manner as the standard widget configure method. If the argument item is omitted, the specified configuration options are for the table itself, as specified in the "Table Options" section. If options are being modified, multiple item arguments of the same form are allowed. The item arguments must take one of the following forms:
Ci
Specifies the column of the master to be configured, where i is the index of the column. Valid options are specified in the "Column Options" section.
Ri
Specifies the row of the master to be configured, where i is the index of the row. Valid options are specified in the "Row Options" section.
slave
Specifies a slave window of the master to be queried, where slave is the pathname of a slave window packed in master. Valid options are specified in the "Slave Options" section.
table extents master index
Query the location and dimensions of rows and columns in the table. Parameter index can be either a row or column index or a table index in the form described for the configure method. Returns a list of the xycoordinates (upper-left corner) and dimensions (width and height) of the cell, row, or column.
table forget slave [slave...]
Request that slave no longer have its geometry managed. Parameter slave is the pathname of the window currently managed by some table. The window will be unmapped so that it no longer appears on the screen. If slave is not currently managed by any table, an error message is Returned; otherwise, the empty string is returned.
table info master [item [item...]]
Return a list of the current configuration options for the given items. The list returned is in exactly the form that might be specified for the table command. It can be used to save and reset table configurations. The item parameters must be one of the following:
Ci
Specifies the column of master to be queried, where i is the index of the column.
Ri
Specifies the row of master to be queried, where i is the index of the row.
slave
Specifies a slave window of the master to be queried, where slave is the pathname of a slave window packed in master.
No argument
Specifies that the table itself is to be queried.
table locate master x y
Return the table index (row, column) of the cell containing the given screen coordinates. The x and y arguments specify the coordinates of the sample point to be tested.
table masters [options]
Return a list of all master windows matching the criteria specified using the options. If no options are given, the names of all master windows (only those using the table command) are returned. The following are valid options (only one may be specified):
-pattern pattern
Return a list of pathnames of all master windows matching pattern.
-slave window
Return the name of the master window of the table managing window. The window parameter must be the pathname of a slave window. If window is not managed by any table, the empty string is returned.
table search master [options...]
Return the names of all the slave windows in master matching the criteria given by options. The master parameter is the name of the master window associated with the table to be searched. The name of the slave window is returned if any one option criterion matches. If no option arguments are given, the names of all slave windows managed by master are returned. The following options are available:
-pattern pattern
Return the names of the slave windows matching pattern.
-span index
Return the names of slave windows that span index. A slave window does not need to start at index to be included. Parameter index must be in the form row, column.
-start index
Return the names of slave windows that start at index. Parameter index must be in the form row, column.
Table Options
table configure master [option value...]
To configure the table itself, omit the item argument when invoking the configure operation. The following options are available for the table:
-columns number
Set the number of columns in the table. By default, the table creates new columns whenever they are needed. If the number of columns is less than currently in the master, any slave windows located in those columns are removed from the table.
-padx pad
Set how much padding to add to the left and right exteriors of the table. Parameter pad can be a list of one or two numbers. If it has two elements, the left side of the table is padded by the first value and the right side by the second value. If it has just one value, both the left and right sides are padded evenly by the value. The default is 0.
-pady pad
Set how much padding to add to the top and bottom exteriors of the table. Parameter pad can be a list of one or two numbers. If it has two elements, the area above the table is padded by the first value and the area below by the second value. If it is just one number, both the top and bottom areas are padded by the value. The default is 0.
-propagate boolean
Indicate if the table should override the requested width and height of the master window. If boolean is false, the master will not be resized, and will be its requested size. The default is true.
-rows number
Set the number of rows in the table. By default, the table creates new rows whenever they are needed. If the number of rows is less than currently in the master, any slave windows located in those rows will be unmapped.
Slave Options
table configure master slave [option value...]
Slave windows are configured by specifying the name of the slave when invoking the configure operation. Parameter slave must be the pathname of a window already packed in the table associated with master. The following options are available for slave windows:
-anchor anchor
Anchor slave to a particular edge of the cells in which it resides. This option takes effect only if the space of the spans surrounding the slave is larger than the slave. Parameter anchor specifies how the slave will be positioned in the space. The default is center.
-columnspan number
Set the number of columns the slave will span. The default is 1.
-columnweight weight
Specify how much weight the width slave should have when the table computes the sizes of the columns it spans. Weight is one of normal (the default), none, or full.
-fill fill
If the space in the span surrounding the slave is larger than the slave, fill indicates if slave should be stretched to occupy the extra space. Fill is one of none (the default), x, y, or both.
-ipadx pixels
Set how much horizontal padding to add internally on the left and right sides of the slave. Parameter pixels must be a valid screen distance, such as 2 or 0.3i. The default is 0.
-ipady pixels
Set how much vertical padding to add internally on the top and bottom of the slave. Parameter pixels must be a valid screen distance, such as 2 or 0.3i. The default is 0.
-padx pad
Set how much padding to add to the left and right exteriors of the slave. Parameter pad can be a list of one or two numbers. If it has two elements, the left side of the slave is padded by the first value and the right side by the second value. If it has just one value, both the left and right sides are padded evenly by the value. The default is 0.
-pady pad
Set how much padding to add to the top and bottom exteriors of the slave. Parameter pad can be a list of one or two numbers. If it has two elements, the area above the slave is padded by the first value and the area below by the second value. If it is just one number, both the top and bottom areas are padded by the value. The default is 0.
-reqheight height
Specify the limits of the requested height for the slave. Parameter height is a list of bounding values. See the "Bounding Sizes" section for a description of this list. By default, the height of the slave is its requested height with its internal padding (see the -ipady option). The bounds specified by height either override the height completely or bound the height between two sizes. The default is " ".
-reqwidth width
Specify the limits of the requested width for the slave. Parameter width is a list of bounding values. See the "Bounding Sizes" section for a description of this list. By default, the width of the slave is its requested width with its internal padding (see the -ipadx option). The bounds specified by width either override the width completely or bound the height between two sizes. The default is " ".
-rowspan number
Set the number of rows the slave will span. The default is 1.
-rowweight weight
Specify how much weight the height slave should have when the table computes the sizes of the rows it spans. Weight is one of normal (the default), none, or full.
Column Options
table configure master Ci [option value...]
To configure a column in the table, specify the column index as Ci, where i is the index of the column to be configured. If the index is specified as C*, all columns of the table will be configured. The following options are available:
-padx pad
Set the padding to the left and right of the column. Parameter pad can be a list of one or two numbers. If pad has two elements, the left side of the column is padded by the first value and the right side by the second value. If pad has just one value, both the left and right sides are padded evenly by the value. The default is 0.
-resize mode
Indicate that the column can expand or shrink from its normal width when the table is resized. Parameter mode must be one of the following: none, expand, shrink, or both. If mode is expand, the width of the column is expanded if there is extra space in the master window. If mode is shrink, its width may be reduced beyond its normal width if there is not enough space in the master. The default is none.
-width width
Specify the limits within which the width of the column may expand or shrink. Parameter width is a list of bounding values. See the section "Bounding Sizes" for a description of this list. By default, there are no constraints.
Row Options
table configure master Ri [option value...]
To configure a row in the table, specify the row index as Ri, where i is the index of the row to be configured. If the index is specified as R*, then all rows of the table will be configured. The following options are available for table rows:
-height height
Specifies the limits of the height to which the row may expand or shrink. Parameter height is a list of bounding values. See the section "Bounding Sizes" for a description of this list. By default, there are no constraints.
-pady pad
Sets the padding above and below the row. Parameter pad can be a list of one or two numbers. If pad has two elements, the area above the row is padded by the first value and the area below by the second value. If pad is just one number, both the top and bottom areas are padded by the value. The default is 0.
-resize mode
Indicates that the row can expand or shrink from its normal height when the table is resized. Parameter mode must be one of the following: none, expand, shrink, or both. If mode is expand, the height of the row is expanded if there is extra space in the master window. If mode is shrink, its height may be reduced if there is not enough space in the master. The default is none.
Bounding Sizes
You can bound the sizes of the master window, a slave window, a row, or a column. The -width, -height, -reqwidth, and -reqheight options take a list of one, two, or three values:
{}
With an empty list, no bounds are set. The default sizing is performed.
{ x }
Fixes the size at x. The window or partition cannot grow or shrink.
{ min max }
Set minimum and maximum limits for the size of the window or partition. The window or partition cannot be reduced less than min nor can it be stretched beyond max.
{min max nom}
Specify minimum and maximum size limits, but also specify a nominal size nom. This overrides the calculated size of the window or partition.
Example
label .title -text "Example Table"
button .ok -text "Ok"
button .cancel -text "Cancel"
table . .title 0, 0 -cspan 2 .ok 1, 0 .cancel 1, 1
Name
tabset
tabset pathName [option value...]
The tabset command creates a new tabset widget named pathName. A tabset widget displays a a series of overlapping widget layout folders. Only the contents of one folder, selected by using its tab, is displayed at one time. The tabset widget is similar to the notebook mega-widget in the Tix extension.
Standard Options
- activebackground | - activeforeground | - background |
- borderwidth | - cursor | - font |
- foreground | - highlightbackground | - highlightcolor |
- highlightthickness | - relief | - selectbackground |
- selectborderwidth | - selectforeground | - takefocus |
Widget-Specific Options
-dashes dashStyle (dashes, Dashes)
Dash style for focus outline around selected tab's label. Parameter dashStyle is a list of up to 11 numbers that alternately represent the lengths of the dashes and gaps. Each number must be between 1 and 255, inclusive. If dashStyle is the empty string, a solid line is drawn. The default is {5 2}.
-gap size (gap, Gap)
Gap, in pixels, between tabs. The default is 2.
-height height (height, Height)
Desired height, in screen units, for the window. If height is 0 (the default), the height is autosized.
-pageheight height (pageHeight, PageHeight)
Desired height, in screen units, for the area under the tabs for displaying the page contents. If height is 0 (the default), the height is autosized.
-pagewidth width (pageWidth, PageWidth)
Desired width, in screen units, for the area under the tabs for displaying the page contents. If width is 0 (the default), the width is autosized.
-rotate theta (rotate, Rotate)
Rotate the text in tab labels by theta degrees.
-samewidth boolean (sameWidth, SameWidth)
Whether each tab should be the same width. If true, each tab will be as wide as the widest tab. The default is false.
-scrollcommand cmdPrefix (scrollCommand, ScrollCommand)
Prefix for a command used to communicate with an associated scrollbar used to scroll through available tabs. Typically scrollbar set, where scrollbar is the pathname of a scrollbar widget.
-scrollincrement amount (scrollIncrement, ScrollIncrement)
Increment, in pixels, for scrolling by units (see view method).
-selectcommand command (selectCommand, SelectCommand)
Default command to be evaluated when a tab is invoked. See the invoke method.
-selectpad amount (selectPad, SelectPad)
Padding to be added around the selected tab. The default is 5.
-shadowcolor color (shadowColor, ShadowColor)
Color of shadow around pages.
-side side (side, Side)
The side of the tabset on which the tabs should be displayed. Side must be left, right, top (the default), or bottom.
-tabbackground color (tabBackground, Background)
Default background color for tabs.
-tabborderwidth amount (tabBorderWidth, BorderWidth)
Width of 3D border drawn around tabs.
-tabforeground color (tabForeground, Foreground)
Default foreground color for tabs.
-tabrelief relief (tabRelief, TabRelief)
3D effect desired for the border around tabs.
-textside side (textSide, TextSide)
Specify on which side of a tab its text label is placed if both images and text are displayed in a tab. Side must be left, right, top (the default), or bottom.
-tiers number (tiers, Tiers)
Maximum number of tiers to use for displaying tabs. Default is 1.
-tile imageName (tile, Tile)
Image to use as a tile for the background of the tabset.
-width amount (width, Width)
Desired width, in screen units, for the window. If amount is 0 (the default), the width is autosized.
Tab Indices
Several tabset widget methods support a tabIndex argument that identifies a specific tab in the tabset. This index can take one of the following forms:
number
The number th tab in the tabset.
tabName
The tab named tabName.
@x, y
The tab that covers the pixel whose coordinates within the tabset window are x and y.
tabSelect
Tab whose page is currently selected and displayed.
tabActive
Tab that is currently active. Typically, the tab with the mouse pointer over it.
tabFocus
Tab that currently has the widget's focus.
tabDown
Tab immediately below the tab that currently has the focus, if there is one.
tabLeft
Tab immediately left of the tab that currently has the focus, if there is one.
tabRight
Tab immediately right of the tab that currently has the focus, if there is one.
tabUp
Tab immediately above the tab that currently has the focus, if there is one.
tabEnd
Last tab in the tabset.
Methods
pathName activate tabIndex
Make the tab tabIndex the active tab. If tabIndex is the empty string, no tab will be active.
pathName bind tagName [sequence [command]]
Bind command to all tabs with tag tagName so it is invoked when the given event sequence occurs for the tab. The syntax for this method is the same as for the standard Tk bind command except that it operates on tabs. TagName may be the name of a tab, the special tag all (bind to all tabs), or an arbitrary string. Only keyboard and mouse events can be bound.
pathName delete first [last]
Delete the range of tabs from first to last, inclusive. If last is omitted, then only the tab first is deleted.
pathName focus tabIndex
Make tab tabIndex the current focus tab.
pathName get tabIndex
Return the numeric index of the tab identified by tabIndex.
pathName insert position tabName [option value...] [tabName [option value...]]...
Create one or more new tabs with names specified by the tabName arguments and configured with the following options. The tabs are inserted just before the tab position. If position is the special tag end, the tab is added to the end of the tab list. TabName should be chosen not to conflict with any of the special index strings. The following tab configuration options are available:
-activebackground color (activeBackground, ActiveBackground)
Background color for tab when it is active.
-activeforeground color (activeForeground, ActiveForeground)
Foreground color for tab when it is active.
-anchor anchorPos (anchor, Anchor)
Anchor point for placing the tab's embedded widget inside the tab's page. The default is center.
-background color (background, Background)
Background color for the tab. Overrides the -tabbackground option of the widget.
-bindtags tagList (bindTags, BindTags)
The binding tag list for the tab, which determines the order of evaluation of the commands for matching event bindings. Implicitly, the name of the tab itself is always the first tag in the list. The default value is all.
-command command (command, Command)
Command to be evaluated when the tab is invoked. Overrides the widget's -selectcommand option.
-data string (data, Data)
Arbitrary data string to associate with the tab.
-fill fill (fill, Fill)
How the tab's embedded widget should be stretched when its requested size is smaller than the size of tab's page. Fill must be one of x, y, both, or none (the default).
-font font (font, Font)
Font to use for the tab's text label.
-foreground color (foreground, Foreground)
Foreground color for the tab. Overrides the widget's -tabforeground option.
-image imageName (image, Image)
Image to be drawn in the tab's label.
-ipadx amount (iPadX, PadX)
Horizontal padding to the left and right of the tab's label. If amount has two elements, the first specifies the padding for the left side and the second for the right.
-ipady amount (iPadY, PadY)
Vertical padding to the top and bottom of the tab's label. If amount has two elements, the first specifies the padding for the left side and the second for the right.
-padx amount (padX, PadX)
Horizontal padding to the left and right of the tab's embedded widget. If amount has two elements, the first specifies the padding for the left side and the second for the right.
-pady amount (padY, PadY)
Vertical padding to the top and bottom of the tab's embedded widget. If amount has two elements, the first specifies the padding for the left side and the second for the right.
-selectbackground color (selectBackground, Background)
Background color for tab when it is selected. Overrides the widget's -selectbackground option.
-shadow color (shadow, Shadow)
Color for the shadow under the tab's text label. The default is the empty string (i.e., transparent).
-state state (state, State)
State for the tab. State must be normal or disabled.
-stipple bitmap (stipple, Stipple)
Stipple pattern to use for the background of the page window when tab's embedded window is torn off. The default is BLT.
-text string (text, Text)
Text for the tab's text label.
-window pathName (window, Window)
Name of widget to be embedded into tab's page. It must be a child of the tabset. The tabset will "pack" and manage the size and placement of the widget.
-windowheight height (windowHeight, WindowHeight)
Desired height, in screen units, for the tab's page. If height is 0 (the default), the height is set to the maximum height of all embedded tab widgets.
-windowwidth width (windowWidth, WindowWidth)
Desired width, in screen units, for the tab's page. If width is 0 (the default), the width is set to the maximum width of all embedded tab widgets.
pathName invoke tabIndex
Select the tab tabIndex, map the tab's embedded widget, and execute any associated command. The Return value will be the Return value of the command if there is one, an empty string otherwise. This command does nothing if the tab's state is disabled. The following substitutions are made to the command before it is evaluated:
%%
An actual percent sign
%W
Pathname of tabset widget
%i
Numeric index of invoked tab
%n
Name of invoked tab
pathName move tabIndex where position
Move the tab tabIndex to a position immediately before or after the tab position. Where must be either before or after.
pathName nearest x y
Return the name of the tab nearest to screen coordinates x y.
pathName scan dragto x y
Scroll the widget's view horizontally and vertically. The distance scrolled is equal to 10 times the difference between this command's x and y arguments and the x and y arguments to the last scan mark command for the widget.
pathName scan mark x y
Record the screen coordinates x y as anchors for a following scandragto method call.
pathName see tabIndex
Scroll the tabset so that tab tabIndex is visible.
pathName size
Return the number of tabs in the tabset.
pathName tab cget tabIndex option
Return the current value of configuration option option for tab tabIndex.
pathName tab configure tabIndex [tabIndex...] [option value...]
Query or modify the configuration options for the tabs identified by the tabIndex arguments in the same manner as the general widget configure method. Supported options are those available for the insert method.
pathName tab names [pattern]
Return the names of all tabs in the tabset. If pattern is given, only tab names matching the pattern are returned.
pathName tab tearoff tabIndex [newName]
Reparent the embedded widget belonging to tab tabIndex inside of newName. If newName is the pathname of the tabset widget itself, the embedded widget is put back into its page. Otherwise, the widget new-Name must not already exist. If no newName argument is given, the current parent of the embedded widget is Returned. An empty string is Returned if there is no embedded widget for tab tabIndex.
pathName view
Return a two-element list describing the currently visible region of the tabset. The elements are the fractional distances of the view's left and right (or bottom and top) edges into the span of the widget's width (or height).
pathName view moveto fraction
Adjust the visible region of the tabset so that the point indicated by fraction along the widget's span appears at the region's left (or top) edge.
pathName view scroll number what
Shift the visible region of the tabset by number. If what is units, then number is in units of the -scrollincrement option. If what is pages, then number is in number of tabs.
Example
image create photo stopImg -file images/stopsign.gif
image create photo rainImg -file images/rain.gif
tabset .t
.t insert end t0 -text Stop -window [label .t.l0 -image stopImg]
.t insert end t1 -text Rain -window [label .t.l1 -image rainImg]
pack .t
Name
tile
tilebutton pathName [option value...]
tilecheckbutton pathName [option value...]
tileframe pathName [option value...]
tilelabel pathName [option value...]
tileradiobutton pathName [option value...]
tilescrollbar pathName [option value...]
tiletoplevel pathName [option value...]
These commands are identical to their Tk counterparts without the "tile" prefix, with the addition of support for textured backgrounds using the following options:
-activetile imageName (activeTile, Tile)
Image to use as background tile for widget when the widget is active (i.e., it would normally be drawn with its -activeBackground color).
-tile imageName (tile, Tile)
Image to use as background tile for widget.
The tilescrollbar command is not supported under Windows.
Example
image create photo paper -file tan_paper.gif
tileframe .frame -tile paper
Name
vector
vector operation [arg arg...]
Create and manipulate vectors, that is, ordered sets of real numbers. BLT's vectors are mor e ef ficient than standard Tcl lists and arrays for accessing and manipulating large sets of real numbers. The following operations are defined:
vector vecSpec [vecSpec...] [option value...]
Same as vector create.
vector create [vecSpec...] [option value...]
Create one or more new vectors according to vecSpec and the following options. The name of the last vector created is Returned. The vecSpec argument specifies the vector's name and size according to these valid forms:
vecName
A vector named vecName with no components.
vecName (size)
A vector named vecName with size components, all initialized to 0.0 and with the index starting from 0.
vecName (first:last)
A vector named vecName with components indexed from first to last, inclusive, all initialized to 0.0.
The following options are available to the create operation:
-variable varName
Name of a Tcl array to be associated with the vector. By default, the variable is the same as the vector name (this may change in a future release of BLT). Any existing array by this name is deleted. If varName is an empty string, then no variable will be mapped. See the "Accessing Vectors as Arrays" section for how this array variable can be used.
-command cmdName
Name of a Tcl command to be mapped to the vector. A Tcl command by that name cannot already exist. If the command name is the empty string, then no command will be mapped and you will lose access to the vector's Tcl command interface. See the "Instance Operations" section for the syntax of the created command.
-watchunset boolean
Whether vector should automatically destroy itself if the variable associated with it is unset. The default is false. This should most likely be set to true for temporary vectors used in procedures.
vector destroy vecName [vecName...]
Destroy the vectors named by the vecName arguments. Any associated variable is unset and its instance command undefined.
vector expr expression
Return the result of evaluating expression for each component of the included vectors in the expression. Usually this is a list of the results of the expression for each component. However, if the expression includes specific statistical functions, the result may be a single value. If more than one vector appears in the expression, they must be of equal length or have only one component (i.e., a scalar value).
The syntax of expression is the same as for the general Tcl expr command. However, the operators and functions supported are slightly different. For results of boolean operations, the value 1.0 or 0.0 is returned. Supported operators in order of precedence are as follows:
- !
Unary minus and logical NOT.
^
Exponentiation.
* / %
Multiply, divide, remainder.
+ −
Add, subtract.
<< >>
Circularly shift vector values left and right (not implemented yet).
< > <= >=
Boolean comparison for less than, greater than, less than or equal, greater than or equal.
== !=
Boolean test for equality, inequality.
&&
Logical AND.
||
Logical OR.
x?y:z
If-then-else (not implemented yet).
The following functions are supported, which are identical to the Tcl expr functions of the same name:
abs | acos | asin | atan |
ceil | cos | cosh | exp |
floor | hypot | log | log10 |
random | round | sin | sinh |
sqrt | tan | tanh |
The following statistical functions are supported, which take a vector (or vector result) as their sole argument. All functions except nor m and sort return a single value:
adev | Average deviation |
kertosis | Degree of peakedness (fourth moment) |
length | Number of components |
max | Vector's maximum value |
mean | Vector's mean value |
median | Vector's median value |
min | Vector's minimum value |
norm | Scale vector to lie in range [0.0..1.0] |
q1 | First quartile |
q3 | Third quartile |
prod | Product of the components |
sdev | Standard deviation |
skew | Skewness (third moment) |
sort | Sorted components in ascending order |
sum | Sum of the components |
var | Variance |
vector names [pattern]
Return a list of defined vector names. If pattern is specified, return only those vectors whose names match the pattern.
Accessing Vectors as Arrays
A Tcl array is normally associated with each vector, having the same name as the vector unless overridden with the -variable option to the create operation. The data in the array can be accessed or set using indices that take the following forms:
vecName (index)
The index th component of vecName.
vecName (expression)
Same as the previous index, except that expression is a simple math expression that evaluates to an integer index.
vecName (first:last)
The whole range of components from the first to last, inclusive. You can omit first or last, in which case they default to the first and last elements, respectively.
The following special indices can be used:
min
The component with the minimum value.
max
The component with the maximum value.
end
The last component.
++end
Extends the vector by 1. Component access for setting value only.
Instance Operations
After a vector is created, a new Tcl command is defined having the same name unless overridden with the -command option to the create operation. This command supports the following operations:
vecName append item...
Append one or more items to a vector. Each item can be another vector or a list of numeric values.
vecName clear
Clear the index and value strings from the Tcl array associated with the vector. The components of the vector itself are not affected, and the array elements will be automatically recreated if accessed.
vecName delete index...
Remove from the vector one or more elements having the specified index values.
vecName dup destName
Create a duplicate vector destName that is a copy of the original vector. The new vector is created if necessary.
vecName expr expression
Reset the values of the vector to the results of evaluating expression. See the vector expr operation for details on vector expressions.
vecName length [newSize]
Change the size of a vector to be newSize elements, which can be larger or smaller than the original size. If newSize is omitted, the current size is returned.
vecName merge srcName...
Return a list consisting of the merged components of vecName and one or more srcName vectors.
vecName normalize [destName]
Nor malize the values of the vector to lie between 0.0 and 1.0. If a destName argument is provided, the resulting vector after normalizing is stored in the vector named destName. This command is deprecated in favor of using the norm function in the expr operation.
vecName notify when
Control how clients of the vector are notified of changes. The when parameter is one of always, never, whenidle, now, cancel, or pending.
vecName offset [value]
Shift the indices of the vector by integer number value. With no value parameter, the current offset is returned.
vecName populate destName density
Create a new vector destName that contains all of the elements of the original vector as well as density new values, evenly distributed between each of the original values. Useful for generating abscissas to be interpolated along a spline.
vecName range firstIndex lastIndex
Return a list of the values of the vector from index firstIndex through lastIndex.
vecName search value [value]
With one value argument, Return a list of the element indices that have the given value. With two arguments, Return a list of elements whose values range between the two values.
vecName set item
Set the vector to the elements specified by item, which can be either a list of numeric expressions or another vector.
vecName seq start finish [step]
Set the vector to the values generated by stepping from value start to finish, inclusive, with interval step. The default step is 1.0.
vecName sort [-reverse] [argName...]
Sort the elements of the vector. The -reverse option changes the sort order to decreasing. Optional argName arguments can specify the names of vectors to be rearranged in the same order when sorting. This is useful for sorting x- and y-coordinates stored as pairs of vectors.
vecName variable varName
Associate the Tcl variable varName with the vector, creating another means for accessing the vector. The variable cannot already exist. This overrides any previous variable mapping the vector may have had.
Example
vector create q(10)
q set {2 3 5 7 11 13 17 19 23}
set q(++end) 29
q dup x
x expr {2.0 * sqrt(q) + 3.0}
puts $x(:)
Name
watch
watch operation [arg arg...]
Execute Tcl procedures before and after the execution of each Tcl command. The following operations are defined:
watch activate watchName
Activate a previously created watch.
watch create watchName [option value...]
Create a new watch. Options are the same as those for the configure operation.
watch configure watchName [option value...]
Query or modify the configuration options for the watch watchName in the same manner as the standard widget configure method. The available options are as follows:
-active boolean
Specify if the watch should be made active. By default, watches are active when created.
-postcmd string
Specify the Tcl procedure and additional arguments to be called after executing each Tcl command. When the procedure is invoked, it is passed the specified arguments with the following appended: (1) the current level, (2) the current command line, (3) a list containing the command after substitutions and split into words, (4) the Return code of the command, and (5) the results of the command.
-precmd string
Specify the Tcl procedure and additional arguments to be called before executing each Tcl command. When the procedure is invoked, it is passed the specified arguments with the following appended: (1) the current level, (2) the current command line, and (3) a list containing the command after substitutions and split into words.
-maxlevel number
The maximum evaluation depth to watch Tcl commands. The default is 10000.
watch deactivate watchName
Deactivate a watch, causing its pre- and postcommand procedures to no longer be invoked. It can be reactivated.
watch delete watchName
Delete a watch. Its pre- and postcommand procedures will no longer be invoked.
watch info watchName
Return configuration information about a previously created watch.
watch names [state]
Return a list of watches defined for a given state, where state can be one of active, idle, or ignore. If state is omitted, all watches are listed.
Example
proc preCmd { level command argv } {
set name [lindex $argv 0]
puts stderr "$level $name → $command"
}
proc postCmd { level command argv retcode results } {
set name [lindex $argv 0]
puts stderr "$level $name → $argv ($retcode) $results"
}
watch create trace -postcmd postCmd -precmd preCmd
Name
winop
winop operation [[window] [arg arg...]]
Perform assorted window operations on Tk windows using Xlib functions. Also, some miscellaneous image operations are defined in preparation for a new image type in a later BLT release. The following operations are defined:
winop convolve srcPhoto destPhoto filter
Set the photo image destPhoto to the result of the convolution of photo image srcPhoto with the given filter. Filter is a list of N×N real numbers representing the square matrix for the mean filter.
winop lower [window...]
Lower given windows to the bottom of window stack.
winop map [window...]
Map given windows to scr een (ignored if already mapped).
winop move window x y
Move the window to the screen coordinates specified by x and y.
winop raise [window...]
Raise given window s to top of window stack.
winop readjpeg filename photoName
Read the JPEG image data from the file filename into the photo image photoName, which must already exist. Only available if BLT was compiled with JPEG image support.
winop resample srcPhoto destPhoto [horzFilter[vertFilter]]
Set the photo image destPhoto to the result of resampling the photo image srcPhoto with the given filters. Valid values for horzFilter and vertFilter are bell, box, bessel, bspline, catrom, default, dummy, gaussian, lanczos3, mitchell, none, sinc, and triangle.
winop snap window photoName [width height]
Take a snapshot of the window and store the contents in photo image photoName. The window must be totally visible and photoName must already exist. If width and height are specified, they constrain the size of the snapshot.
winop subsample srcPhoto destPhoto x y width height [horzFilter[vertFilter]]
Set the photo image destPhoto to the result of subsampling the photo image srcPhoto with the given filters. The region of the source image to subsample is given by x y width height. Valid values for horzFilter and vertFilter are the same as for the resample operation.
winop unmap [window...]
Unmap given windows from the screen.
winop warpto [window]
Move the mouse pointer to window. Window can also be specified in the form @x,y to indicate @x,y to indicate specific coordinates. If window is omitted, Returns the current x- and y-coordinates of the mouse pointer as a two-element list.
Example
set img [image create photo]
winop snap .h $img
winop warpto @100, 100
Chapter 12. Oratcl
The Oratcl extension is not part of the core Tcl/Tk package, but can be obtained for free at http://www.nyx.net/˜tpoindex. This chapter discusses Oratcl Version 2.5.
Oratcl provides access to Oracle, a commercial relational database from Oracle Corporation. Oratcl makes connecting to databases and manipulating relational data easy and convenient using the Tcl language.
Oratcl comes with sample applications and works with standard Tcl, Tk, and common extensions, including Extended Tcl.
Overview
You connect to a database using the oralogon command, which returns a logon handle. To perform queries and retrieve database rows you use the oraopen command, which returns a cursor. Multiple cursors can be open over a single login connection.
The orasql command sends an SQL query to the database server for execution. To retrieve data rows, the orafetch command is used.
When finished, use oraclose to close each cursor handle, and oralogoff to close a logon handle.
The global array variable oramsg stores information related to the current database operations.
These are the most basic commands used for Oratcl operations. Other commands support more advanced functions.
Example
tclsh> oralogon scott/tiger
oratcl0
tclsh> oraopen oratcl0
oratcl0.0
tclsh> orasql oratcl0.0 "select empno, ename from emp"
0
tclsh> orafetch oratcl0.0
7379 Smith
tclsh> orafetch oratcl0.0
7499 Allen
tclsh> oralogoff oratcl0
Environment Variables
Oratcl optionally uses two environment variables to determine the default Oracle server name and directory:
ORACLE_HOME
Base directory for Oracle files
ORACLE_SID
Default Oracle server system ID
Special Variables
Oratcl stores information related to its operation in the global variable oramsg. The variable is an array and contains the keys described in the following list:
collengths
A list of the column lengths returned by oracols.
colprecs
A list of the precision of the numeric columns returned by oracols.
colscales
A list of the scales of the numeric columns returned by oracols.
coltypes
A list of the types of the columns returned by oracols.
errortxt
The error message text associated with the last SQL command.
handle
The handle of the last Oratcl command.
maxlong
Set to limit the amount of data returned by an orafetch or orareadlong command; default is 32,768 bytes.
nullvalue
String value to return for null results. The default value default will return 0 for numeric types and a null string for others.
ocifunc
The numeric Oracle Call Interface (OCI) status code of the last OCI function performed.
ociinfo
List of features present in Oracle library when Oratcl was compiled.
peo
Parse error offset; index into SQL string that failed due to error.
rc
Numeric Oracle error number associated with the last SQL command (see the following list).
rowid
Row ID of the row affected by SQL insert, update, or delete command.
rows
The number of rows affected by an SQL insert, update, or delete command or number of rows fetched by orafetch.
sqlfunc
The numeric OCI status code of the last SQL function performed.
version
Version of Oratcl.
The following are typical error status values returned in the $oramsg(rc) variable. Refer to the Oracle documentation for an exhaustive set of codes and messages.
0
Normal command completion; no error.
900–999
Invalid SQL statements, keywords, column names, etc.
1000–1099
Program interface error.
1400–1499
Execution errors or feedback.
1403
End of data reached on orafetch command.
1406
Column fetched by orafetch command was truncated.
3123
Asynchronous execution is pending completion (not an error).
One or more of the following features can be returned in the $oramsg(ociinfo) variable:
version_6
Compiled under Oracle version 6
version_7
Compiled under Oracle version 7
non_blocking
Supports nonblocking SQL execution
cursor_variables
Supports PL/SQL cursor variables
Group Listing of Commands
Database Server Setup Commands
oralogon | Log on to Oracle server. |
oraopen | Open an SQL cursor to a server. |
oraclose | Close an SQL cursor to a server. |
oralogoff | Log off from Oracle server. |
Data Manipulation Commands
Alphabetical Summary of Commands
In the following command descriptions, arguments that are logon and cursor handles are shown as logon and cursor, respectively. Commands will raise a Tcl error if the arguments do not refer to valid handles.
Name
oraautocom
oraautocom logon on|off
Turn on or off automatic commit of SQL commands sent to the server opened using logon. By default autocommit is turned off. Affects all cursors opened with the logon handle.
Name
orabindexec
orabindexec cursor [-async] [:varname value...]
Execute a statement previously parsed using orasql -parseonly.
Option -async specifies that the command should run asynchronously, i.e., return immediately without waiting for the statement to complete.
Optional name-value pairs allow substitution on SQL bind variables before execution. Variable names must begin with a colon.
Returns a numeric return code, which is 0 for successful execution, 3123 when -async is specified, and non-zero for errors. Updates the oramsg array variable element rowid.
Name
orabreak
orabreak cursor
Cause the currently executing SQL statement to be interrupted.
Name
oracancel
oracancel cursor
Cancel any pending results from a prior orasql command sent using cursor.
Name
oraclose
oraclose cursor
Close the SQL cursor associated with cursor.
Name
oracols
oracols cursor
Return the names of the columns from the last orasql, orafetch, or oraplexec command as a list.
Updates the oramsg array variable elements collengths, coltypes, colprecs, and colscales.
Name
oracommit
oracommit logon
Commit pending transactions from prior orasql commands sent using logon. Affects all cursors opened with the logon handle.
Name
orafetch
orafetch cursor [commands] [substitution-character] tclvarname colnum...]
Return the next row of data from the SQL statements executed by the last orasql command. Returns a list with all columns converted to strings.
The optional commands parameter can specify a command string to repeatedly execute for each row until no more data is available. Command substitution is performed, where the strings @1, @2, @3, etc., are replaced with the results from the appropriate columns. The string @0 is replaced with the entire row, as a list.
An optional parameter substitution-character can specify a different substitution character to be used instead of @. A null string may be specified, in which case column substitutions are not performed.
Tcl variables may also be set for each row that is processed. One or more matching pairs of variable names and column numbers can be specified.
The command updates many of the elements of the oramsg array variable.
Name
oralogoff
oralogoff logon
Log off from the Oracle server connection associated with logon.
Name
oralogon
oralogon connect-str
Connect to an Oracle server. The connect string connect-str should be in one of the following forms:
name
name/password
name@dbname
name/password@dbname
name/password@(SQL*Net V2 string)
Returns a logon handle that can be used in subsequent Oratcl commands. Raises an error if the connection cannot be made. The environment variable ORACLE_SID is used as the server if the connect string does not specify a database.
Name
oraopen
oraopen logon
Open an SQL cursor to the server and return a cursor handle that can be used for subsequent Oratcl commands. Multiple cursors can be opened against the same logon handle.
Name
oraplexec
oraplexec cursor pl-block [:varname value...]
Execute an anonymous PL block. Parameter pl-block can be a complete PL/SQL procedure or a call to a stored procedure coded as an anonymous PL/SQL block.
Optional name-value pairs may be specified that match the substitution bind names in the procedure. Variable names must begin with a colon.
The command returns the contents of each variable name, after execution, as a list.
Name
orapoll
orapoll cursor [-all]
Return a list of cursor handles that have results available, or a null string if no results are available. The cursor parameter must be a valid open cursor handle.
The optional parameter -all indicates to return a list of all cursor handles that have asynchronous requests pending.
Name
orareadlong
orareadlong cursor rowid table column filename
Read the contents of a LONG or LONG RAW column and write the results to a file. The row ID, table name, column name, and file to be written to must be specified. Returns the number of bytes written as a decimal number.
Raises an error if rowid, table, or column are invalid or the row does not exist.
Name
oraroll
oraroll logon
Roll back any pending transactions from prior orasql commands sent using logon. Affects all cursors opened with the logon handle.
Name
orasql
orasql cursor sql-statement [-parseonly] [-async]
Send an SQL statement to the server using cursor handle cursor. Returns a numeric return code, which is 0 for successful execution, 3123 when -async is specified, and non-zero for errors. Updates the oramsg array variable elements rc, rows, and rowid.
Options
-parseonly
Parse, but do not execute, SQL statement (used with orabindexec).
-async
Execute asynchronously, i.e., without waiting for command to complete.
Raises an error if there is a syntax error in the SQL statement.
Name
orawritelong
orawritelong cursor rowid table column filename
Write the contents of a file to a LONG or LONG RAW column. The row ID, table name, column name, and file containing the data must be specified. Returns the number of bytes written as a decimal number.
Raises an error if rowid, table, or column are invalid or the row does not exist.
Chapter 13. Sybtcl
Sybtcl, a Tcl extension developed by Tom Poindexter, is not part of the core Tcl/Tk package, but can be obtained for free at http://www.nyx.net/˜tpoindex. This chapter covers Version 2.5.
Sybtcl provides access to Sybase, a commercial relational database from Sybase, Inc. Sybtcl makes connecting to databases and manipulating relational data easy and convenient, using the Tcl language. The Sybtcl extension comes with sample applications and works with standard Tcl, Tk, and common extensions, including Extended Tcl.
Overview
You connect to a Sybase server using the sybconnect command, which returns a connection handle. To select which database on the server to access, you use the sybuse command.
The sybsql command sends an SQL query to the database server for execution. To retrieve data rows, the sybnext command is used.
When finished, use sybclose to close the connection handle to the database server.
The global array variable sybmsg stores information related to the current database operations.
These are the most basic commands used for Sybtcl operations. Other commands support more advanced functions.
Example
tclsh> sybconnect mysybaseuserid mypassword MYSERVER
sybtcl0
tclsh> sybuse sybtcl0 pubs2
tclsh> sybsql sybtcl0 "select au_fname, au_lname from authors"
REG_ROW
tclsh> sybnext sybtcl0
Abraham Bennet
tclsh> sybnext sybtcl0
Reginald Blotchet-Halls
tclsh> sybclose sybtcl0
Environment Variables
Sybtcl optionally uses two environment variables to control the default Sybase server name and directory:
DSQUERY
Default Sybase server name
SYBASE
Base directory for Sybase files
Special Variables
The global variable sybmsg is used by Sybtcl to store information related to its operation. The variable is an array and contains the keys described in the following list:
collengths
A list of the column lengths of the columns returned by sybcols.
coltypes
A list of the types of the columns returned by sybcols.
dateformat
Controls formatting of dates. Can be set to a string containing substitution strings, described at the end of this section.
dberr
Error number generated by the last DB-Library routine.
dberrstr
Error text associated with dberr.
fixedchar
Normally, trailing spaces are trimmed from character data. If set to yes, trailing spaces are retained.
floatprec
Number of decimal places to use for floating-point values. Default is 17.
handle
The handle of the last Sybtcl command.
line
Line number of the SQL command or stored procedure that generated the last message.
maxtext
Sets maximum amount of data returned by sybnext and sybreadtext commands. Default is 32,768 bytes.
msgno
Message number from the last Sybase server message.
msgtext
Message text associated with msgno.
nextrow
Indicates result of last SQL command. Possible values are described in the next list.
nullvalue
String value to return for null results. The default value default will return 0 for numeric types and a null string for others.
oserr
Operating system error number associated with the last DB-Library error.
oserrstr
Error text associated with oserr.
procname
Name of stored procedure that generated the last message.
retstatus
Return code of the last stored procedure that was executed.
Severity
Severity level of the last Sybase server message.
svrname
Name of the Sybase server that generated the last message.
The element $sybmsg(nextrow) can take the following values (which are also returned by the sybsql command):
FAIL
A server error has occurred.
NO_MORE_RESULTS
The final set of results has been processed.
NO_MORE_ROWS
All rows from the current result set have been processed, or the SQL command executed successfully but no rows are available.
PENDING
Asynchronous execution of command is still in progress.
REG_ROW
At least one row is available.
num
The last row retrieved was a compute row having compute ID number num.
The $sybmsg(dateformat) variable, described earlier, can contain the following format strings:
YYYY | Four-digit year (e.g., 1900) |
YY | Two-digit year (00–99) |
MM | Two-digit month (1–12) |
MONTH | Name of month (January–December) |
MON | Abbreviated name of month (Jan–Dec) |
DD | Two-digit day (1–31) |
hh | Two-digit hour (0–23) |
mm | Two-digit minute (0–59) |
ss | Two-digit second (0–59) |
ms | Three-digit millisecond (0–999) |
dy | Three-digit day of year (0–365) |
dw | One-digit day of week (1–7, for Monday–Sunday) |
Group Listing of Commands
Database Server Setup Commands
sybconnect | Connect to a Sybase server. |
sybuse | Set or get active database. |
sybclose | Close connection to a server. |
Data Manipulation Commands
Alphabetical Summary of Commands
In the following command descriptions, an argument that refers to a database handle is shown as handle. Commands will raise a Tcl error if the argument does not refer to a valid handle.
Name
sybcancel
sybcancel handle
Cancel pending results from last Sybtcl command. May be used before all results are obtained using sybnext.
Name
sybclose
sybclose handle
Close a server connection.
Name
sybcols
sybcols handle
Return a list of names of the columns associated with the last sybnext or sybretval command.
Name
sybconnect
sybconnect loginName password [server] [appName] [iFile]
Connect to a Sybase server using loginName and password.
A server can be specified. If omitted, will use value of environment variable DSQUERY, and failing that, a server named SYBASE.
The command can optionally specify an application name appName.
A file iFile can be specified to resolve server addresses. Otherwise, the command uses the file $SYBASE /interfaces.
Returns a Sybase handle that can be used as a parameter to other Sybtcl commands to identify the database connection.
Name
sybnext
sybnext handle [commands] [substitutionCharacter] [tclvarname colnum...]
Return the next row of data from the SQL statements executed by the last sybsql command. Returns a list with all columns converted to strings.
The optional commands parameter can specify a command string to repeatedly execute for each row until no more data is available. Command substitution is performed, where the strings @1, @2, @3, etc., are replaced with the results from the appropriate columns. The string @0 is replaced with the entire row, as a list.
An optional parameter substitutionCharacter can specify a different substitution character to be used instead of @. A null string may be specified, in which case column substitutions are not performed.
Tcl variables may also be set for each row that is processed. One or more matching pairs of variable names and column numbers can be specified.
Name
sybpoll
sybpoll handle [timeout] [-all]
Return a list of handles that have results available, or a null string if no results are available. The handle parameter must be a valid Sybtcl handle.
An optional timeout parameter indicates how long to Wait, in milliseconds, before returning. The timeout value can be 0 for polling (the default) or −1 to wait indefinitely until results are available.
The optional parameter -all indicates to check all Sybtcl handles that have asynchronous requests pending.
Name
sybreadtext
sybreadtext handle filename
Read the contents of a text or image column and write the results to a file. The parameter handle must be an open Sybtcl handle and filename a writable file.
A single text or image column should have been previously selected using a sybsql command. Returns number of bytes read from the database column.
Name
sybretval
sybretval handle
Return a list of the return values from a stored procedure.
Name
sybsql
sybsql handle sqlCommand [-async]
Send one or more SQL statements to the Sybase server associated with handle handle.
Normally returns when a response is available. With the -async option, the command returns immediately. Returns one of the values described in the previous section under values for the variable $sybmsg (nextrow).
Name
sybuse
sybuse handle [dbName]
Return the name of the database currently in use. Attempts to use the database named dbName, if specified.
Raises an error if dbName is not a valid database name.
Name
sybwritetext
sybwritetext handle object columnNumber filename [-nolog]
Write the contents of a file to a text or image column. The table and column name are specified using object in the format table.column. The relative position in the column is columnNumber. The name of the file containing text or image data is filename.
The option -nolog disables the logging of text and image writes that normally occurs.
Chapter 14. Tclodbc
The Tclodbc extension, created by Roy Nurmi, is not part of the core Tcl/Tk package, but can be obtained for free at http://www.megalos.fi/˜rnurmi. This chapter covers Version 2.0.
Tclodbc is a Tcl interface to ODBC, the database protocol used by Microsoft Windows. It works with any database that has an ODBC driver. The distribution includes precompiled DLLs for Tcl versions 7.6, 8.0, and 8.1. Once installed using the supplied Tcl install program, the package can be loaded using the command package require tclodbc. The package adds one new command to the Tcl interpreter: database.
Overview
Tclodbc uses an object-based design. You first create a database connection with the database connect command. This returns a database object ID that is also a new Tcl command. SQL statements can then be passed to the database object ID command.
The database ID statement command creates a compiled SQL query, which can then be efficiently executed many times. The command returns a statement ID and creates a new Tcl command that accepts statement ID commands.
Multiple database IDs and statement IDs can be created and active at the same time.
Group Listing of Commands
Connection and Configuration Commands
database connect | Connect to an ODBC database. |
database configure | Configure ODBC datasources. |
database datasources | Return a list of ODBC datasources. |
database drivers | Return a list of ODBC drivers. |
Data Manipulation Commands
In the following commands, database-id is the database identifier for a database connection created using the database connect command:
database-id SQL-clause | Execute an SQL statement. |
database-id disconnect | Disconnect from the database. |
database-id set | Set connection-specific attributes. |
database-id get | Get connection-specific attributes. |
database-id commit | Commit current transaction. |
database-id rollback | Cancel current transaction. |
database-id tables | Return a list of database tables. |
database-id columns | Return a list of database columns. |
database-id indexes | Return a list of database indexes. |
database-id statement | Create a statement object. |
Statement Commands
In the following commands, statement-id is a statement identifier created using the database-id statement command:
statement-id run
Execute the statement and return results.
statement-id execute [args]
Execute the statement without returning results.
statement-id fetch [arrayName] [columnNames]
With no parameters, read one row, returning the results or an empty string when there are no more results to be read. With an array name, read the results into an array. Column names can optionally be specified.
statement-id columns
Return a list of statement column attributes.
statement-id set
Set statement-specific attributes.
statement-id get
Get statement-specific attributes.
statement-id drop
Destroy the statement command.
Summary of Commands
This section describes the database command, followed by a list of commands that can be issued to a database (identified by database-id) and to a statement (identified by statement-id).
Name
database
database options
This command is used to connect to a database and to query and change information related to database sources
database [connect] id datasource [userid] [password]
Open a connection to a database, creating a database object named id (a new Tcl command) used to access the database. Accepts the datasource name (DSN) and optionally a user ID and password, returning the database ID. The connect keyword is optional.
Example
database db employeebase sysadm xxxxxx
database [connect] id connectionstring
An alternate form of the connect command that accepts a string of attribute-value pairs in the form Attribute1=Value1 Attribute2=Value2.
Example
database db "DRIVER=Microsoft Paradox Driver (*.db);DBQ=C:\\db"
database configure operation driver attributes
Configure an ODBC datasource. The operation parameter is one of the values in the following list. The driver parameter is the name of the ODBC driver to be used. The attributes argument is a driver-specific list of name and value pairs. Does not open a connection to the database.
Operations
add_dsn
Add a datasource for the current user.
config_dsn
Configure a datasource.
remove_dsn
Remove the datasource.
add_sys_dsn
Add a system datasource, visible to all users.
config_sys_dsn
Configure a system datasource.
remove_sys_dsn
Remove a system datasource.
database datasources
Return a list of configured ODBC datasources. Each element is a list consisting of the datasource name and the driver name.
database drivers
Return a list of configured ODBC drivers. Each element is a list consisting of the driver name and a list of driver attributes.
Example
set driver "Microsoft Access Driver (*.mdb)"
set attributes [list "DSN=mydsn" "DBQ=c:\mydb.mdb" "FIL=MS Access"]
database configure add_dsn $driver $attributes
Name
database-id
database-id options
This command performs operations on the database associated with the database-id created using a previous database connect command.
database-id SQL-clause [argtypedefs] [args]
Execute the SQL statement SQL-clause, returning the result as a list. If the statement returns a single-column result set, the returned string is a simple list, or an empty string if nothing is found. If the command returns a multiple column result set, a list is returned in which each element is a list representing a single row of the result. If the statement does not return a result set, the command returns OK.
SQL arguments may be given after SQL-clause, where the argument positions are marked with ? in the clause. This is usually used with precompiled statements; see the description in the statement-id command.
Example
db "select firstname, surname from employees, where id = $id"
database-id disconnect
Disconnect the database object from the datasource, removing the command from the interpreter.
database-id set option value
Set a connection-specific option to a value. The supported options and value are listed here:
autocommit boolean
Turns autocommit on or off.
concurrency mode
Set concurrency mode to one of readonly, lock, values, or rowver.
maxrows number
Set the maximum number of rows.
timeout number
Set timeout in seconds.
maxlength number
Set the maximum length of data returned.
rowsetsize number
Set the row set size.
cursortype type
Set the cursor type to type, which must be one of static, dynamic, forwardonly, or keysetdriven.
Example
db set autocommit off
database-id get option
Return the value of a connection-specific option. The supported options are the same as those listed previously for the get command.
database-id commit
When autocommit mode is enabled, causes the current transaction to be committed.
database-id rollback
When autocommit mode is enabled, cancels the current transaction.
database-id tables
Return a list of all tables in the database. Each element is a list containing values for TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, TABLE_TYPE, and REMARKS.
database-id columns [tablename]
Return a list of the columns in the database, or the columns in the specified table, if tablename is specified. Each element is a list containing values for TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME, DATA_TYPE, TYPE_NAME, PRECISION, LENGTH, SCALE, RADIX, NULLABLE, and REMARKS.
database-id indexes tablename
Return a list of the indexes of table tablename. Each element is a list containing values for TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME, TYPE, SEQ_IN_INDEX, COLUMN_NAME, COLLATION, CARDINALITY, PAGES, and FILTER_CONDITION.
database-id statement id SQL-clause | tables | columns [argtypedefs]
Create a new statement-id object of one of the following types: SQL query, table query, or column query. The statement ID id, which is returned, becomes a new Tcl command which accepts any of the options described for a statement-id. The SQL-clause argument is an SQL statement which is compiled for later execution when the statement-id command is invoked.
Tclodbc tries to automatically determine the argument types for each argument. For drivers that do not support this function, the types can be explicitly defined using argtypedefs, which takes the form [type] [scale] [precision]. The supported types are the standard SQL types CHAR, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE, VARCHAR, and the extended types DATE, TIME, TIMESTAMP, LONGVARCHAR, BINARY, VARBINARY, LONGVARBINARY, BIGINT, TINYINT, and BIT.
database-id eval proc SQL-clause [argtypedefs] [args]
First execute the given SQL clause and then evaluate the given Tcl procedure proc for each row in the result set. The argument count of the procedure must match the column count in the query. Only a single row is read into memory at one time, so very large tables can be accommodated.
database-id read arrayspec SQL-clause [argtypedefs] [args]
Read data from the database into one or more Tcl arrays. The first data column is used as the index for the array, and the remainder are stored into the array. The arrays may be specified as a list of names, which are used for the array names for each data column. Alternatively, one can specify only a single array name, which is used as a two-dimensional array. This command is not suitable for very large tables because the entire table is read into memory at one time.
Example
db statement s1 "select fullname from article where id=132"
db statement s2 "select fullname from article where id1=?" INTEGER
Name
statement-id
statement-id options
This command performs operations on a precompiled SQL statement associated with the statement-id created using a previous database-id statement command.
statement-id [run] [args]
Execute the precompiled statement and return the result set immediately. If the command was defined with arguments, they should be specified using args, in the form of a list. The keyword [run] is optional.
Example
db statement s1 "select fullname from article where id=132"
s1
db statement s2 "select fullname from article where id1=?" INTEGER
s2 132
statement-id execute
Execute the precompiled statement but do not return the result set immediately. The results can be read one row at a time using the fetcb command.
statement-id fetch [arrayName] [columnNames]
Return the next row of a result set from a statement previously executed using the execute command.
statement-id columns [attribute...]
Return a list of ODBC statement column attributes. The attribute parameter is a list specifying which attributes to return. The attributes are listed below. The default is label.
label
Column label.
name
Column name in the original table, if available.
displaysize
The maximum string length of the column data.
type
Standard numeric SQL type.
typename
Database-specific type name string.
precision
The precision of the column, if applicable.
scale
The scale of the column, if applicable.
nullable
1 if the column is nullable.
updatable
1 if the column is updatable.
tablename
Source table of the column, if available.
qualifiername
Qualifier name of the table, if available.
owner
Owner name of the table, if available.
statement-id set option value
Set a statement-specific option to a value. The supported options and values are listed here:
concurrency mode
Set concurrency mode to one of readonly, lock, values, or rowver.
maxrows number
Set the maximum number of rows.
timeout number
Set timeout in seconds.
maxlength number
Set the maximum length of data returned.
statement-id get option
Return the value of a statement-specific option. The supported options are the same as those listed previously for the get command.
statement-id drop
Clear the statement ID from memory and remove the command from the Tcl interpreter.
statement-id eval proc [args]
See the database-id eval command.
statement-id read arrayspec [args]
See the database-id read command.
Chapter 15. Hints and Tips for the Tcl Programmer
by Tom Poindexter
Tcl is simple compared with other computer languages. The Tcl(n) manual page, in just two pages, describes the syntax and semantics of the language with 11 concise rules. It's useful to review this document.
Programmers familiar with other languages, especially shell languages and C, usually feel comfortable with Tcl quickly. Browsing programs written in Tcl helps new programmers understand the language. What may not be obvious in reviewing Tcl programs is the best way to get your programming tasks accomplished within the bounds of those 11 rules.
This chapter is designed to help new Tcl programmers better understand the Tcl language, especially when written code does not perform as expected or produces errors. Much of the material in this chapter was selected from postings to the Usenet newsgroup comp.lang.tcl. Beginning programmers often seek help with coding problems, and suggested answers are given. These postings, along with the author's personal experiences, are presented here.
NOTE
Web addresses change over time. Use web search engines such as Yahoo!, AltaVista, Infoseek, and HotBot to help locate the Tcl FAQs if the links noted are out of date.
Other excellent sources of "how to" material available on the Web include these:
The Tcl Frequently Asked Questions (FAQ), by Larry Virden
This is an up-to-date, comprehensive list of frequently asked questions and answers—well worth reading. See http://www.teraform.com/˜lvirden/tcl-faq/.
Tcl Usage FAQ, by Joe Moss
This covers specific Tcl language usage questions and answers. See http://www.psg.com/˜joem/tcl/faq.html.
Tk Usage FAQ, by Jeffery Hobbs
This document compiles questions and answers specific to the Tk toolkit. See http://www.cs.uoregon.edu/research/tcl/faqs/tk/.
Tcl Reference Pages, by Cameron Laird
This is a collection of Tcl issues and explanations on a wide variety of topics. See http://starbase.neosoft.com/˜claird/comp.lang.tcl/tcl.html.
Tcl Frequently Made Mistakes
Cameron Laird has also compiled this list of frequent mistakes in Tcl. See http://starbase.neosoft.com/˜claird/comp.lang.tcl/fmm.html.
Tcl WWW Information Pages, by Mike Hopkirk
This is a comprehensive index to many Tcl resources, information, and source code. See http://www.sco.com/Technology/tcl/Tcl.html.
Scriptics Corporation Tcl Resource Center
This is the home of Tcl's creator, John Ousterhout, and a focal point for Tcl development. Current and alpha/beta releases of new versions are available, as well as a comprehensive resource center. See http://www.scriptics.com.
The Tcl Consortium
This is the home page of a nonprofit consortium to promote Tcl and contains links to many Tcl resources. See http://www.tclconsortium.org.
Neosoft, Inc. Archive
This is a large archive of Tcl contributed software, including most extensions, applications, and utilities. See http://www.neosoft.com/tcl.
Usenet newsgroup comp.lang.tcl
Usenet has ongoing discussion forums about Tcl issues, announcements, and online support. The comp.lang.tcl newsgroup is unmoderated and friendly; everyone is welcome to participate. Depending on your news feed and location, you may have access to other Tcl newsgroups.
Think Commands, Not Statements
Tcl is a syntactically simple language. The first word is the name of the command to be executed, and the remaining words are arguments to that command. Words of a command are sequences of characters separated by whitespace, but quoting can cause whitespace to be included in a word. Each of the lines in the following example are complete words:
abc
941.32
Long's\ Peak
$result
"the quick brown fox jumped over the lazy dog"
"checking if $somevar exists: [info exists $somevar]"
[llength $list]
{set area [expr {$pi * pow($r,2)}]; puts "area = $area"}
Problems occur when programmers do not pay enough attention to the differences between Tcl and other languages with which they may be familiar. It is sometimes a trap to try using idioms from other languages. Languages such as C have compilers that understand syntax and generate machine code that provides execution and instruction branching. Tcl has only commands and arguments; commands enable program flow control.
A good example of this difference is the if command. If is a command whose arguments are a conditional expression and blocks of Tcl code to be executed depending on the result of the expression. Tcl sees this if command as if it were a single list of three words:
{if} {$salary < 0} {puts "oops, salary is negative"}
It is quite common to write if commands as one would in C, breaking up the command over several lines, as in this example:
if {$salary < 0} {
puts "oops, salary is negative"
}
Some programmers prefer a different for matting style, aligning the braces of the true condition block as follows:
if {$salary < 0}
{
puts "oops, salary is negative"
}
When this code is run, Tcl reports an error with the if command, saying that no script follows the expression. The reason is that the if command was terminated by the newline character. The opening brace on the second line is treated as the start of a new command list.
The use of braces in Tcl to quote strings includes all characters up to the matching ending brace, including newline characters. The first if code fragment fully satisfies Tcl, since the opening brace to the true condition code block begins on the same line; the last one fails because the true condition code block begins on a new line, and newlines are used as command terminators in Tcl. The same operation applies to other commands typically written across multiple lines—for, foreach, while, switch, proc, and so forth. Don't forget that if commands with else clauses also need to be coded on the same logical line, as in this example:
set salary 60000.0
if {$salary < 0} {
puts "oops, salary is negative"
} else {
set monthlySalary [expr $salary / 12]
puts "Monthly salary: $monthlySalary"
}
This code produces the following output:
Monthly salary: 5000.0
Whitespace is also required around the words of a command list. The code fragment in the following example fails because whitespace is missing between the expression and the true condition code block:
if {$salary < 0}{
puts "oops, salary is negative"
}
Some readers will note that the earlier example can be fixed by quoting the newline character of the first line with a backslash, causing the logical command line to be continued on the second line:
if {$salary < 0} \
{
puts "oops, salary is negative"
}
Although this is perfectly acceptable in Tcl, it adds noise characters to the code without much benefit. The best solution is to adopt the conventional Tcl coding style. In other cases, however, breaking up a long command with escaped newline characters (i.e., end of line quoted with "\") is useful to maintain readability in your code. This is especially true if you use a text editor that wraps lines instead of scrolling horizontally:
puts "At the sound of the tone, the time will be [clock format \
[clock seconds]-format %H:%M]"
This code produces the following output:
At the sound of the tone, the time will be 12:43
Comments Are Treated as Commands
Comments in Tcl can be another source of frustration if the Tcl syntax rules are misinterpreted. Comments look like those in shell-type languages, a line that begins with a "#". However, Tcl fully parses lines before deciding that they should be executed (in the case of a command) or ignored (in the case of a comment). You should think of a comment as a "do nothing" command, rather than as a comment as in other languages. Comments may appear where Tcl expects a command to appear.
Two common problems arise when comments are included in the arguments of a command or are used to temporarily remove sections of code during testing or development. The switch command illustrates the first problem. Switch arguments include a test string followed by one of more pairs of patterns and Tcl code blocks. The problem in the following example occurs when comments are inserted among the pattern-code pairs:
switch $code {
decode red, green, blue color codes
r {set color red}
g {set color green}
b {set color blue}
default {puts "oops, unknown color code"}
}
Since the switch command expects pairs of patterns and code blocks, the beginning "#" of the comment line is interpreted to be a pattern, followed by a code block (literally "decode"), another pattern ("r ed") with the code block "green," and so on. Tcl will announce "extra switch pattern with no body" if there is an odd number of words in the comment line, or perhaps yield an "invalid command name" if there is an even number of words in the comment line and a pattern was matched.
The solution is to either move comments out of the pattern-code pairs or include comments in the code blocks, where command lines are expected:
decode red, green, blue color codes
switch $code {
r {
the color is red
set color red
}
g {set color green}
b {set color blue}
default {puts "oops, unknown color code"}
}
Again, note that Tcl does not have much structure. Braces serve to quote a command's arguments, and nothing more. In the previous example, the comment for the pattern "r" is acceptable because the comment is actually part of code to be evaluated for the pattern and the comment character is found where a command is expected.
The second common problem with comments occurs when they are used to comment out parts of code. It is common during development to add extra code that is alternately commented and uncommented as development progresses. This example shows an extra if command that was used during testing but is now commented out:
proc scaleByTen {x y} {
if {$x > 9 && $y > 0} {
if {$x > 9} {
set x [expr $x * 10]
}
return $x
}
puts [scaleByTen 4 1]
puts [scaleByTen 15 1]
The Tcl parser finds comments only after an entire command line is assembled. The ending open brace at the end of the comment line causes every character to be included until the matching close brace, consuming the entire body of the procedure. Running this code fragment as part of a program will cause a "missing close-brace" error. If you type this code into an interactive Tcl interpreter, Tcl will keep prompting you to finish the command with a closing brace.
The best way to avoid this problem is to ensure that comments look like full commands themselves, accounting for all braces that are contained in the comment.
Sometimes a small comment on the same line as your Tcl code is desirable. Tcl lets you add comments in this fashion; just terminate the preceding command with a semicolon and add a comment. Semicolons are another way to separate commands, in addition to newline characters:
set n {[0--9]};# regular expression to match a digit
Without the semicolon before the comment character, the set command will fail because it would receive too many arguments. Tcl treats "#" as an ordinary character if it is not at the beginning of a command.
A Symbolic Gesture
Much of Tcl's strength as a programming languages lies in the manipulation of strings and lists. Compare the following two methods for printing each element of a list:
set cpu_types [list pentium sparc powerpc m88000 alpha mips hppa]
"C-like" method of iterative processing
for {set i 0} {$i < [llength $cpu_types]} {incr i} {
puts [lindex $cpu_types $i]
}
"The Tcl Way"-using string symbols
foreach cpu $cpu_types {
puts $cpu
}
The loop coded with for is similar to how a C program might be coded, iterating over the list by the use of an integer index value. The second loop, coded with foreach, is more natural for Tcl. The loop coded with foreach contains over 50% less characters, contributing to greater readability and less code to maintain. In addition, the second loop executes much more quickly.
As a general rule, if you find that your code contains many for commands and integer indexing, check whether you may be able to reimplement your algorithms with lists and foreach.
Lists Are Strings, but Not All Strings Are Lists
Tcl's only data type is the string, and each command can interpret strings in special ways.[6] A list is a special interpretation of a string—a list of words separated by whitespace. Lists are a very powerful feature of Tcl: they are easy to visualize and can be formed from simple strings. This example creates the variable name from a string and then causes the string to be interpreted as a list with lindex:
set names "bob carol ted alice"
puts [lindex $names 2]
This code produces the following output:
ted
Trouble begins when lists are assembled from arbitrary strings that may contain special Tcl characters. For example, suppose you are writing a program to count the number of words in each line of a file. You notice that Tcl has an llength command, which returns the number of words in a list, and decide to use it:
set fd [open $somefile]
gets $fd aLine
while {! [eof $fd]} {
puts "line has [llength $aLine] words"
gets $fd aLine
}
close $fd
You start running your program, and all is well until you read a file that contains:
Tcl has several quoting characters, which
include { to mark the beginning of a fully
quoted string, up to a matching }.
Your program then fails with "unmatched open brace in list." The opening brace in the second line is interpreted as the beginning of a quoted string, possibly a list itself.
The key is to not use list commands on arbitrary strings, and use only list commands to build lists. Tcl even includes a list command that builds properly quoted lists from various strings. The first example in this section can be built as follows:
set names [list bob carol ted alice]
The list command is also very useful for building Tcl commands to be executed at a later time, helping to ensure that a command contains the expected number of arguments (see "Common Tk Errors," later in this chapter, for an example).
To add to an existing list, use lappend. Like list, lappend ensures that strings are made into proper list elements as they are appended:
lappend names arnold beth
set newList [lreplace $names 2 3 george susan]
puts [lsort $newList]
This code produces the following output:
arnold beth bob carol george susan
Lists can be nested. Any list element that is itself a list is properly handled as one element during list processing on the outermost level. Extended Tcl (see Chapter 10, TclX) adds a data structure known as a keyed list, which mimics structures in C. A keyed list is a list made up of pairs of key identifiers followed by data. Ordinary Tcl list commands can pick apart keyed lists, but the keyed list commands in TclX make the job much easier and more efficient.
Strings are best manipulated with the Tcl commands string, regexp, regsub, scan, format, append, and subst. The split command can be used to make a string into a list while properly quoting any troublesome list elements.
[6] Beginning with Tcl 8.0, data types also have an internal representation as string, integer, float, and list, but to the programmer all data types are still strings.
Indirect References
A powerful programming construct is the use of common procedures that operate on a data structure of a particular type. In C, you might have a set of procedures to manipulate a struct; procedures are coded to accept pointers to the actual struct, so you pass a pointer to any number of structures to the procedures.
Tcl doesn't have a struct data type, but arrays indexed by elements are a close approximation. For example, you might have data on states of the United States and a procedure to calculate population density:
set mo(name) Missouri
set mo(pop) 5402058.0
set mo(area) 68945.0
set co(name) Colorado
set co(pop) 3892644.0
set co(area) 103598.0
How then to reference a specific state array based on the name of one of the arrays? The first instinct is to try to use two $ characters to deference the variable:
foreach aState [list mo co] {
puts "State Name: $$aState(name)"
}
Tcl's parsing rules state that variable substitution is performed exactly once for each command, so the command fails, leaving an invalid variable name $pmo(name), rather than mo(name).
The first way to deal with this situation is using a nested set command. Set without a third argument returns the current value of the variable. The variable $aState is first expanded by Tcl, leaving the correct variable name mo(name) for set to return its value:
set aState mo
puts "State Name: [set ${aState}(name)]"
This code produces the following output:
State Name: Missouri
Note that we must also use braces around aState; otherwise, the Tcl parser will think we are trying to reference an array element aState(name), which doesn't exist.
Tcl's upvar command is another answer to coding indirect variable references. Upvar allows one to reference a variable or array by some other name. Using a first argument of 0 allows variables in the current scope to be accessed.
foreach state_array_name [list mo co] {
upvar 0 $state_array_name aState
set p [expr $aState(pop) / $aState(area)]
puts "$aState(name) has a population density of $p"
}
This code produces the following output:
Missouri has a population density of 78.3531510624
Colorado has a population density of 37.5745091604
Upvar is also used when passing arrays to procedures, in which the default procedure scope frame (1) is used:
proc calc_pop_density {state_array_name} {
upvar $state_array_name aState
set p [expr $aState(pop) / $aState(area)]
puts "$aState(name) has a population density of $p"
}
calc_pop_density mo
This code produces the following output:
Missouri has a population density of 78.3531510624
Sometimes the solution is to rethink your particular implementation. Lists can be used in many places where arrays can be used, and Extended Tcl's keyed list commands also provide struct-like data types. Multidimensional arrays can also be simulated in Tcl.
Executing Other Programs
A common complaint from beginners trying to execute other programs from Tcl is "It works in the shell but not in Tcl." Let's suppose you write a small Bourne shell script to strip the first word of each line and return a count of unique words:
$ awk '{print $1}' somefile | sort-u | wc -l
This works fine when you execute it on your terminal. You then cut and paste the line into your Tcl program, setting a variable to the number of unique words:
set numWords [exec awk '{print $1}' somefile | sort -u | wc -l]
Tcl will report an error "can't read '1': no such variable." You might try to fix that error by quoting $1 as \$1, but that causes another error message, "awk: syntax error near line 1." You ask, "What gives? It worked as a shell command but fails under Tcl!"
Tcl's exec command executes other programs directly without the use of the shell. Tcl's exec goes about collecting arguments, building pipelines, and invoking another program, all according to Tcl syntax rules. A single quote character (') has no special significance, unlike in most user shells. Tcl applies its parsing rules and breaks up the command pipeline into Tcl words. Thus, the awk program in awk's first argument is passed as:
and not as the desired string:
{print $1}
as it is passed with a command-line user shell (Bourne shell, C shell, Korn shell, Bash, etc.).
The simple fix is to use Tcl quoting instead of shell quoting! Replace the single quotes (') with Tcl braces:
set numWords [exec awk {{print $1}} somefile | sort -u | wc -l]
Since Tcl strips off one layer of braces during parsing, the first argument to awk is now a Tcl quoted string whose value is the correct awk program.
Another difference between Tcl's exec and typical shell processing is dealing with filename expansion. Most shells expand the wildcard characters *, ?, and [], matching filenames. Each matched filename becomes a separate argument to the program being executed. Tcl's exec does not perform filename matching directly, but you can use the glob command to match filenames. The only trick to this method is that most programs still need to have each filename as a separate argument. Glob command expansion returns a single word, the list of filenames matched, as if the resulting value had been enclosed in quotes.
For example, trying to print all C source files might be attempted as:
set printRequest [exec lp [glob *.c]]
but this fails, complaining "file not found." The solution is to use the eval command, which adds one more round of Tcl command-line expansion. This effectively "unrolls" the filename list into separate word arguments:
set printRequest [eval exec lp [glob *.c]]
When Is a Number Not a Number?
Tcl's primary data type is the string, but commands are free to interpret numeric strings as integers and floating-point values. Expr and incr are such commands; the evaluation mechanism in expr is also used for conditional testing in if, while, and for commands.
Tcl has a few rules for interpreting numbers, some of which are obvious. A string of digits is a decimal integer; with a decimal point or scientific notation, it's a floating-point value. The two often overlooked number specifications are octal (base 8) and hexadecimal (base 16).
Tcl interprets a sequence of digits as an octal integer if it begins with a leading "0". Numbers that begin with a leading "0x" are interpreted as base 16. Thus, "012" is decimal 10 and "0x100" is decimal 256. Sometimes hexadecimal values are easy to spot, since they contain a non-numeric character. Octal numbers are harder to recognize, since the string is composed of all numeric characters.
Unexpected results often arise when octal numbers are used inadvertently in expressions. To illustrate, assume you are writing a procedure to calculate a future date. Tcl's clock command can return a date string in the same format as the Unix date program, and you begin by parsing out the day number of the month (we will ignore month and year rollover issues, as well as better possible implementations, for now), as in the following code:
set currentTime [clock seconds]
puts [clock format $currentTime]
produces the following output:
Mon Aug 03 10:05:50 1998
followed by:
set timedate [clock format $currentTime]
set day [lindex [split $timedate] 2]
puts $day
which outputs:
03
and finally:
proc one_week {timedate} {
return [expr [lindex [split $timedate] 2] + 7]
}
This procedure runs fine, but breaks a few days later with the message "syntax error in expression '08 + 7'" while executing the one_week procedure. Of course, "08" is an invalid octal representation (decimal 8 is 10 octal). Two solutions to this problem are to strip off the leading zero using string trimleft or scan commands:
set day [lindex [split "Sat Aug 08 10:05:50 1998"] 2]
set dec_day1 [string trimleft $day 0]
scan $day %d dec_day2
puts "$day $dec_day1 $dec_day2"
This code produces the following output:
08 8 8
Quoting and More Quoting
Tcl's quoting characters allow special interpretation of the characters they quote. There are also quoting characters for regular expressions used in the regexp and regsub commands. Most troublesome are the quoting characters that are special to both Tcl and regular expressions.
NOTE
Regular expression processing with regexp and regsub makes short work of parsing strings. However, regular expressions can be daunting to read and construct. Mastering Regular Expressions, by Jeffrey E.F. Friedl (O'Reilly & Associates) explains regular expressions in detail, including one chapter devoted to Tcl regular expressions.
Care must be taken when constructing regular expressions, keeping in mind that unquoted regular expression strings also make their normal trip through Tcl's parser. Since the backslash ("\") character quotes both Tcl and regular expression characters, it must be doubled for use in regular expressions. In order to match a single backslash character in a regular expression, four backslash characters are required.
The following table lists examples of matching certain characters, the regular expression, and the Tcl coding of regexp.
Character to Match	Regular Expression	Tcl with Unquoted Argument	Tcl with Quoted Argument
Single character \ | \\ | regexp \\\\ $s | regexp {\\} $s |
Single character [| \[| regexp \\\[$s | regexp {\[} $s |
single character $ | \$ | regexp \\\$ $s | regexp {\$} $s |
Additional quoting gymnastics occur when a Tcl variable is included in the regular expression. It's often useful to build up regular expressions in Tcl variables, then use the final variable as part of the regexp or regsub command:
find phone numbers 888-555-1212, 888.555.1212, (888) 555-1212
set n {[0-9]} ;# re to match a single digit
set n3 nn$n ;# a group of three digits
set n4 nnnn ;# and four digits
set phone1 "$n3-$n3-$n4"
set phone2 "$n3\\.$n3\\.$n4"
set phone3 "\\($n3\\) ?$n3-$n4"
set allPhones "$phone1|$phone2|$phone3"
regexp $allPhones $teststring
The key to remember is that each command makes one trip through Tcl's variable and command expansion prior to the command's execution. In the case of regexp and regsub, another round of command-specific string interpretation is performed.
Write Once, Run Where?
Tcl is a multiplatform language, running on various Unix systems, Microsoft Windows NT/95/98, and Apple Macintosh. Tcl provides a great deal of machine and operating system independence. If writing portable software is your goal, there are a few areas that still need special attention.
Filenames and Pathnames
Filenames and pathnames differ among Unix, Windows, and Macintosh. Fortunately, Tcl is happy to work with Unix-style filenames internally. The file command provides help for dealing with filenames when you need to convert between the canonical form and forms required by specific operating systems. You will likely need a native filename if you exec programs that require filenames.
On Unix, the file command takes two or more file pathname components and joins them with the Tcl canonical path delimiter "/":
file join /home tpoindex src tcl style.tcl
This code produces the following output:
/home/tpoindex/src/tcl/style.tcl
On Windows, the file command takes a pathname in canonical network form and returns the native pathname:
file nativename "/program files/tcl/bin/wish80.exe"
This code produces the following output:
\program files\tcl\bin\wish.exe
The file command has many other subcommands to delete, copy, and rename files in an operating system--independent fashion.
End of Line Conventions
Unix, Windows, and Macintosh each have different end of line conventions for text files. In the default state, Tcl is very forgiving in reading files created on a different platform. When writing files to be used on a different system, you should configure the output channel by using the fconfigure command.
For example, if you are creating a file on Unix to be used primarily on a Windows system, use the following code:
set fd [open outfile w]
fconfigure $fd -translation crlf
puts $fd "hello windows!"
Determining Platform Specifics
Tcl includes a preset array of platform-specific information named $tcl_platform. Elements are shown in the following table.
$tcl_platform(machine) | Name of the cpu of the machine |
$tcl_platform(byteOrder) | Machine word ordering, "bigEndian" or "littleEndian" |
$tcl_platform(os) | Name of the operating system |
$tcl_platform(osVersion) | Version of the operating system |
$tcl_platform(platform) | Platform name: "unix", "windows", or "macintosh" |
This information can be useful in deciding at runtime how to print a file, execute another program, and so forth.
Scanning and For matting Binary Data
Reading and writing binary data is always system dependent, especially native integer and floating-point values. The binary command provides character specifications to scan and format big- and little-endian 16- and 32-bit integers, machine- native single- and double-precision floating-point values, and other formats. The binary command uses format specifiers to determine what format data will be packed into, such as S to denote a 16-bit integer in big-endian[7] order. The format s denotes a 16-bit integer in little-endian order. See the documentation for a complete list of specifiers. Here is a sample use of binary:
set binaryMsg [binary format SI 3 129];# 16 & 32-bit big endian
ints
If you are scanning or formatting binary data for use by other programs on the same machine type, consult the endian order information in tcl_platform to choose the correct binary specification:
switch $tcl_platform(byteOrder) {
littleEndian { set int32 i ; set int16 s }
bigEndian { set int32 I ; set int16 S }
}
binary scan $binaryMsg $int16$int32 messageNum messageCode
Note that the binary command does not have a specification character to scan unsigned integers. Signed integers can be converted to unsigned quantities with a simple expression. Consult the binary command manpages for more information.
convert to 16 bit unsigned value
set messageNum [expr ($messageCode + 0x10000) % 0x10000]
[7] Endian refers to how a particular CPU actually stores integer values in memory. Big-endian processors store integers with the most significant bytes first; little-endian processors store integers with the least significant bytes first.
Common Tk Errors
The following problems are frequently reported by users writing Tcl/Tk programs and are easy to correct with a little guidance. This section is not meant to be a complete guide to writing Tcl/Tk, but serves to address a few common situations.
Global Scope for -variable and -textvariable
Many Tk widgets allow you to tie a widget to a Tcl variable so that changes to either the widget or variable are mirrored in the other. This handy feature makes widget data instantly available in Tcl code, without the need to access the widget command:
label .tot_rev-text 0-textvariable totalRevenue
set totalRevenue 263124 ;# updates widget also
The most common problem when using -variable and -textvariable options is forgetting that the variables the options name are referenced as global variables. If you create widgets inside of a procedure and then access the widget's variable, be sure to define the variable as global.
proc mk_totRev {} {
label .tot_rev -text 0 -textvariable totalRevenue
pack .tot_rev
global totalRevenue
set totalRevenue 23128
}
The -command String Must Be a Tcl List
Tk widgets (particularly buttons) often let you specify code to be run when the widget is selected. This code is known as a callback. You should put the code in braces, not quotes, to prevent variables from being interpreted until the user selects the widget. This is illustrated in the following example:
set count 0
button .b -text "Increment" -command {puts $count; incr count}
pack .b
Callback scripts can be of any length, but long scripts tend to get unwieldy when included in the -command argument. It is often easier to define your callback script as a procedure and call that procedure in the callback:
proc CallBack {} {
global count
puts "Current value is: $count"
incr count
}
set count 0
button .b -text "Increment" -command CallBack
pack .b
Use update to Refresh Widgets and for Event Processing
A Tk application runs as an event-driven program. When your program starts, your code builds widgets and defines callbacks until Tcl reaches the "end" of your code. At this point, Tcl has entered an event loop in which user events are processed, calling the callback scripts that you defined as -command options for widgets and bind commands. The interface is active during event processing, and updates screen widgets accordingly.
If any of your callback scripts perform a significant amount of processing, the inter face will appear to be frozen while scripts are executing. One way to prevent a frozen interface is to periodically execute the update command, which allows events to be processed. If your intent is to allow widgets to be updated without accepting new user events, use the idletasks option. In the following example, the update command allows the label widget to update the screen. Without update, the program will appear frozen.
label .l -text ""
proc count {} {
for {set c 1; .l configure -text 0} {$c <= 5} {incr c} {
update
after 1000
.l configure -text $c
}
}
button .b -text "count to five" -command count
pack .l .b
If your program reads and writes to sockets, or via pipes to another program, consider using file events to keep your interface active. Reading from any channel will cause the Tcl interpreter to wait until data is ready before returning. Tcl's fileevent command provides callback processing for files and sockets.
Use the Source, Luke!
It has been said many times before—don't reinvent the wheel. This is also true for Tcl. While Tcl was once called "A surprisingly well-kept secret," [8] it has always had a large group of enthusiasts writing and contributing software in the open source spirit. Many high-quality, freely available extensions and Tcl programs are available through the Internet Tcl Archive, currently located at Neosoft, Inc.
BLT, Tix, and [incr Widgets] provide many additional Tk widgets, including those to support charts, panned frames, tabbed notebook frames, and combo entry/selections. Sybtcl, Oratcl, and Tclodbc support commercial relational databases. Extended Tcl (TclX) provides access to many Unix system programming interfaces and supports additional commands to manipulate lists, perform file scanning, and provide a Tcl help facility. Expect automates interactions with other programs, and [incr Tcl] adds object-oriented programming features to Tcl.
Many applications written in Tcl/Tk are also available: mail user agents, HTML browsers and editors, calendar programs, and a selection of games are all available in source code for your use and review. Other sources for Tcl software include the Tcl/Tk CD-ROM available from the Tcl Consortium.
[8] Attributed to Brian Kernighan, 1997 Tcl Conference, Boston, MA.
Appendix A. Tcl Resources
You will find Tcl-related information at literally hundreds of sites on the Internet. This section lists a few of the major resources as well as some of the currently available Tcl books.
Web Sites
Here are some of the major Tcl-related web sites on the Internet. At these sites you’ll find the Tcl/Tk software distribution, language extensions, applications, and documentation (including several excellent FAQs). Many of these sites also provide FTP access to their software archives.
General
Scriptics site (John Ousterhout's company)
The Tcl Project at Sun Microsystems Laboratories
The Tcl/Tk Consortium
The Neosoft Archive of Tcl/Tk Contributed Software
WebNet Technologies Tcl/Tk site
Tcl/Tk Extensions
BLT home page | |
Expect home page | |
[incr Tcl] home page | |
[incr Tk] home page | |
Oratcl home page | |
Sybtcl home page | |
Tclodbc home page | |
TclX home page | |
Tix home page |
Usenet Newsgroups
Usenet is a good resource for keeping informed of Tcl-related announcements and for finding solutions to your problems from other Tcl users.
comp.lang.tcl.announce
Tcl-related announcements
comp.lang.tcl
General Tcl discussions
Books
Listed here are some published books on Tcl:
[bib-1] Effective Tcl/Tk Programming, by MichaelMcLennan and MarkHarrison (Addison-Wesley, 1997).
[bib-2] Exploring Expect, by DonLibes (O'Reilly & Associates, 1994).
[bib-3] Graphical Applications with Tcl and Tk, by EricFoster Johnson (M&T Books, 1997).
[bib-4] Practical Programming in Tcl and Tk, by BrentWelch (Prentice Hall, 1997).
[bib-5] Tcl and the Tk Toolkit, by JohnOusterhout (Addison-Wesley, 1994).
[bib-6] Tcl/Tk for Dummies, by TimWebster and AlexFrancis (IDG Books, 1997).
[bib-7] Tcl/Tk Tools, edited by Mark Harrison (O'Reilly & Associates, 1997).
Mailing Lists
Most of the popular Tcl extensions have electronic mailing lists set up, which are used to send out announcements of new software releases and to allow users and developers to share information. The specific details of how to join the lists are usually spelled out on the home page for the language extension.
Index
A NOTE ON THE DIGITAL INDEX
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.
Symbols
[incr Tcl], [incr Tcl], Special Variables,
commands, Special Variables,
[incr Tk], [incr Tk], Special Variable, Public Methods, Protected Variables, Protected Variables
methods, Public Methods
variables, Special Variable, Protected Variables
A
abs command (TclX), String and Character Manipulation Commands
absolute values, String and Character Manipulation Commands
acos command (TclX), Alphabetical Summary of Commands
after command (core Tcl), Alphabetical Summary of Commands
alarm command (TclX), Alphabetical Summary of Commands
aliases for variables, Alphabetical Summary of Commands
anchor position, Standard Widget Options
append command (core Tcl), Alphabetical Summary of Commands
apropos command (TclX), Alphabetical Summary of Commands
arc canvas items, Widget Commands, Widget Commands
arc sines, Alphabetical Summary of Commands
arc tangents, Alphabetical Summary of Commands
arccosines, Alphabetical Summary of Commands
arguments, , Options, ,
array command (core Tcl), Alphabetical Summary of Commands
array variables,
arrays, Arrays, Alphabetical Summary of Commands, Indirect References
accessing vectors as, Alphabetical Summary of Commands
asin command (TclX), Alphabetical Summary of Commands
atan command (TclX), Alphabetical Summary of Commands
atan2 command (TclX), Alphabetical Summary of Commands
automatic commit of SQL queries, Alphabetical Summary of Commands
auto_commands command (TclX), Alphabetical Summary of Commands
auto_execok command (core Tcl), Alphabetical Summary of Commands
auto_load command (core Tcl), Alphabetical Summary of Commands
auto_load_file command (TclX), Alphabetical Summary of Commands
auto_mkindex command (core Tcl), Alphabetical Summary of Commands
auto_package command (TclX), Alphabetical Summary of Commands
auto_reset command (core Tcl), Alphabetical Summary of Commands
B
background processing, Alphabetical Summary of Commands
errors during, Alphabetical Summary of Commands
\ (backslash), Overview, Basic Language Features, Write Once, Run Where?
backslash (\), Overview, Basic Language Features, Backslash Substitutions, Operators and Math Functions, , Write Once, Run Where?
substitutions, Backslash Substitutions, Operators and Math Functions,
balloon messages, Tix Mega-widgets
barchart command (BLT), Numerical Data Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
base 10 logarithm,
base containers, Tix Mega-widgets
beep command (BLT), Alphabetical Summary of Commands
bell command (Tk), Utility Commands
bgerror command (core Tcl), Alphabetical Summary of Commands
bgexec command (BLT), Alphabetical Summary of Commands
binary command (core Tcl), Alphabetical Summary of Commands, Scanning and For matting Binary Data
binary data, Scanning and For matting Binary Data
bind command (Tk), Utility Commands, Utility Commands
bindtags command (Tk), Utility Commands, Utility Commands, Utility Commands
bitmap canvas items, Widget Commands
bitmap command (BLT), Alphabetical Summary of Commands
bitmaps, Standard Widget Options, Bitmap Images, Expect, Bitmap Markers
bitmap markers, Bitmap Markers
functions related to, Expect
BLT, Alphabetical Summary of Commands, Special Variables, Group Listing of Commands, Alphabetical Summary of Commands, Text Format
commands, Group Listing of Commands, Alphabetical Summary of Commands
Toolkit, Alphabetical Summary of Commands
variables, Special Variables, Text Format
bltdebug command (BLT), Alphabetical Summary of Commands
bltwish program, Alphabetical Summary of Commands
body command ([incr Tcl]),
Boolean operators, Operators and Math Functions
bounding sizes, Alphabetical Summary of Commands
braces, curly ({ }), Overview
brackets, square ([]), Contact O'Reilly & Associates, Overview
break command (core Tcl), Alphabetical Summary of Commands
bsearch command (TclX), Alphabetical Summary of Commands
buffers, Alphabetical Summary of Commands,
setting size of, Alphabetical Summary of Commands
buildpackageindex command (TclX), Alphabetical Summary of Commands
busy command (BLT), Alphabetical Summary of Commands
button command (Tk), Widget Commands, Widget Commands
button widgets, Environment Variable, Tix Mega-widgets, Tix Mega-widgets, , The -command String Must Be a Tcl List
C
C language interface, Constants, Constants
cache, discarding, Alphabetical Summary of Commands
callbacks, Use update to Refresh Widgets and for Event Processing
canvas command (Tk), Widget Commands, Widget Commands
canvas items, Widget Commands, Widget Commands, Widget Commands, Item Event Binding, Expect
configuring, Widget Commands
functions related to, Expect
canvas methods, Widget Commands
canvas widgets, Environment Variable, Widget Commands, Widget Commands
case command (core Tcl), Alphabetical Summary of Commands
catch command (core Tcl), Alphabetical Summary of Commands
catclose command (TclX), Alphabetical Summary of Commands
catgets command (TclX), Alphabetical Summary of Commands
catopen command (TclX), Alphabetical Summary of Commands
ccollate command (TclX), Alphabetical Summary of Commands
cconcat command (TclX), Alphabetical Summary of Commands
cd command (core Tcl), Alphabetical Summary of Commands
ceil command (TclX), Alphabetical Summary of Commands
cequal command (TclX), Alphabetical Summary of Commands
cget method (Tk), Standard Widget Options
channel identifiers, Predefined I/O Channel Identifiers
chart widgets, Alphabetical Summary of Commands, Alphabetical Summary of Commands
checkboxes, Tix Mega-widgets
checkbutton command (Tk), Widget Commands, Widget Commands
checkbutton widgets, Environment Variable
checklist widgets, Tix Mega-widgets
chgrp command (TclX), Alphabetical Summary of Commands
child processes, Options
chmod command (TclX), Alphabetical Summary of Commands
chown command (TclX), Alphabetical Summary of Commands
chroot command (TclX), Alphabetical Summary of Commands
cindex command (TclX), Alphabetical Summary of Commands
class command ([incr Tcl]), ,
classes, [incr Tcl], Classes, , , Tix Core Commands, Tix Core Commands, Tix Extensions to Tk image Command, Alphabetical Summary of Commands
types of, Alphabetical Summary of Commands
className command ([incr Tcl]),
clength command (TclX), Alphabetical Summary of Commands
clipboard command (Tk), Utility Commands
clock command (core Tcl), Alphabetical Summary of Commands
close command, Alphabetical Summary of Commands,
Expect,
Tcl, Alphabetical Summary of Commands
cmdtrace command (TclX), Alphabetical Summary of Commands
code command ([incr Tcl]),
color, Standard Widget Options, Standard Widget Options, Standard Widget Options, Expect
functions related to, Expect
column options, Alphabetical Summary of Commands
combo box widgets, Tix Mega-widgets, Tix Mega-widgets
command history, Input/Output, Alphabetical Summary of Commands
command strings, Alphabetical Summary of Commands
command-line options, Command-Line Options, Command-Line Options, Environment Variable, Overview, Command-Line Options
Expect, Overview
expectk, Command-Line Options
tclsh, Command-Line Options
Tk, Command-Line Options, Environment Variable
commandloop command (TclX), Alphabetical Summary of Commands
commands, Input/Output, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, , Options, Process Interaction, Alphabetical Summary of Commands, Special Variables, , , , Group Listing of Commands, Alphabetical Summary of Commands, Environment Variable, , Database Server Setup Commands, Alphabetical Summary of Commands, Database Server Setup Commands, Alphabetical Summary of Commands, Connection and Configuration Commands, Summary of Commands
BLT, Environment Variable,
command history, Input/Output, Alphabetical Summary of Commands
contexts for,
definitions of, loading, Alphabetical Summary of Commands
ensemble commands,
Expect, Process Interaction, Alphabetical Summary of Commands
loop commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
Oratcl, Database Server Setup Commands, Alphabetical Summary of Commands
renaming, Alphabetical Summary of Commands
scheduling execution of, Alphabetical Summary of Commands
substitution, Options
Sybtcl, Database Server Setup Commands, Alphabetical Summary of Commands
Tclodbc, Connection and Configuration Commands, Summary of Commands
TclX, Group Listing of Commands, Alphabetical Summary of Commands
[incr Tcl], Special Variables,
[incr Tk],
commands (continued), Environment Variable, Miscellaneous, Standard Widget Options, , Group Listing of Tix Commands, Core Commands, Tix Mega-widgets, Tix Standard Widgets Overview, , Tix Extensions to Tk image Command
Tix, Group Listing of Tix Commands, Core Commands, Tix Mega-widgets, Tix Standard Widgets Overview, , Tix Extensions to Tk image Command
Tk, Environment Variable, Miscellaneous, Standard Widget Options,
comments, Comments Are Treated as Commands, Comments Are Treated as Commands
commit, automatic, of SQL queries, Alphabetical Summary of Commands
compare strings, Alphabetical Summary of Commands
compound image type,
concat command (core Tcl), Alphabetical Summary of Commands
concatenate strings, Alphabetical Summary of Commands
conditional expressions,
configbody command ([incr Tcl]),
configuration, Widget Commands,
codes, changing,
options for menu widgets, Widget Commands
configure method (Tk), Widget Overview
constants, The Tcl C Interface, The Tk C Interface
Tcl, The Tcl C Interface
Tk, The Tk C Interface
container command (BLT), Alphabetical Summary of Commands
containers, base, Tix Mega-widgets
continue command (core Tcl), Alphabetical Summary of Commands
control statements, Tcl commands for, Predefined I/O Channel Identifiers
control widgets, Tix Mega-widgets, Tix Mega-widgets
convert_lib command (TclX), Alphabetical Summary of Commands
cos command (TclX), Alphabetical Summary of Commands
cosh command (TclX), Alphabetical Summary of Commands
cosines, Alphabetical Summary of Commands
CPU usage,
crange command (TclX), Alphabetical Summary of Commands
csubstr command (TclX), Alphabetical Summary of Commands
ctoken command (TclX), Alphabetical Summary of Commands
ctype command (TclX), Alphabetical Summary of Commands
{ } (curly braces), Overview, Think Commands, Not Statements, Lists Are Strings, but Not All Strings Are Lists
curly braces ({ }), Overview, Think Commands, Not Statements, Lists Are Strings, but Not All Strings Are Lists
cursors, Standard Widget Options, Widget Commands, Widget Commands, Expect, ,
functions related to, Expect
SQL, ,
cutbuffer command (BLT), Alphabetical Summary of Commands
D
data, Tix Mega-widgets, , Connection and Configuration Commands, Scanning and For matting Binary Data
binary, Scanning and For matting Binary Data
hierarchical, displaying, Tix Mega-widgets,
manipulating with Tclodbc, Connection and Configuration Commands
data types, Basic Language Features, Constants, Data Types, Group Listing of Functions
Tcl, Basic Language Features, Constants
Tk, Data Types, Group Listing of Functions
database command (Tclodbc), Summary of Commands
database-id command (Tclodbc), Summary of Commands
databases, Oratcl, Oratcl, Sybtcl, Database Server Setup Commands, Tclodbc, Connection and Configuration Commands
connecting to and configuring with Tclodbc, Connection and Configuration Commands
ODBC, Tclodbc
Oracle, Oratcl
setting up servers with Sybtcl, Database Server Setup Commands
Sybase, Sybtcl
debug command (Expect), Alphabetical Summary of Commands
debugging, TclX commands for, Group Listing of Commands
delete command ([incr Tcl]),
descendants,
destroy command (Tk), Utility Commands
destroying objects, Tix Core Commands
dialog widgets, Tix Mega-widgets, Tix Mega-widgets, Tix Mega-widgets
dialogs, Tk commands for, Geometry Management
Diekhans, Mark, Special Variables
directory listings, Tix Mega-widgets, Tix Mega-widgets, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
searching, Alphabetical Summary of Commands, Alphabetical Summary of Commands
directory names, Alphabetical Summary of Commands,
directory stacks, Alphabetical Summary of Commands
dirs command (TclX), Alphabetical Summary of Commands
disable all, Tix command for, Tix Core Commands
disconnect command (Expect), Alphabetical Summary of Commands
display items, Display Items, Text Items, Tix Core Commands
$ (dollar sign), Overview
dollar sign ($), Overview
double command (TclX), Alphabetical Summary of Commands
drag&drop command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands
dup command (TclX), Alphabetical Summary of Commands
E
echo command (TclX), Alphabetical Summary of Commands
edprocs command (TclX), Alphabetical Summary of Commands
ellipses (...), Contact O'Reilly & Associates
enable all, Tix command for, Tix Core Commands
end-of-file conditions, Alphabetical Summary of Commands
end-of-line conventions, End of Line Conventions
ensemble command ([incr Tcl]),
entry boxes, Tix Mega-widgets
entry command (Tk), Widget Commands, Widget Commands
environment variables, Command-Line Options, Environment Variable, Command-Line Options, Environment Variable, Environment Variables, Environment Variables
BLT, Environment Variable
Expect, Command-Line Options
Oratcl, Environment Variables
Sybtcl, Environment Variables
Tcl, Command-Line Options
Tk, Environment Variable
eof command (core Tcl), Alphabetical Summary of Commands
error command (core Tcl), Alphabetical Summary of Commands
errors, , , Expect, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Special Variables, Common Tk Errors, Use the Source, Luke!
during background processing,
functions related to, Expect
handling, Alphabetical Summary of Commands
Oratcl, Special Variables
Tcl,
Tk, Common Tk Errors, Use the Source, Luke!
eval command (core Tcl), Alphabetical Summary of Commands, When Is a Number Not a Number?
event command (Tk), Utility Commands, Utility Commands
events, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Geometry Management, Widget Commands, Widget Commands, Widget Commands, Widget Commands, Utility Commands, Utility Commands, Utility Commands, Utility Commands, Expect, Alphabetical Summary of Commands, Use update to Refresh Widgets and for Event Processing
bind command (Tk), Utility Commands, Utility Commands
canvas widgets, Widget Commands, Widget Commands
event handlers, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
functions related to, Expect
text widgets, Widget Commands, Widget Commands
Tk commands for, Geometry Management, Utility Commands, Utility Commands
exec command (core Tcl), Alphabetical Summary of Commands, Executing Other Programs
execl command (TclX), Alphabetical Summary of Commands
exit command, Alphabetical Summary of Commands,
Expect,
Tcl, Alphabetical Summary of Commands
exp command (TclX), Alphabetical Summary of Commands
Expect, Expect, Command-Line Options, Environment Variables, Process Interaction, Process Interaction, Alphabetical Summary of Commands, Alphabetical Summary of Commands
command-line options, Command-Line Options
commands, Process Interaction, Alphabetical Summary of Commands
variables, Environment Variables, Process Interaction
expect command (Expect), Alphabetical Summary of Commands
expectk, Expect, Alphabetical Summary of Commands
expect_ commands, Alphabetical Summary of Commands
expr command (core Tcl), Operators and Math Functions, Regular Expressions, Alphabetical Summary of Commands
expr command (TclX), Unix Access Commands
expressions, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
evaluating, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
exp_ commands (Expect), Alphabetical Summary of Commands
Extended Tcl, Sybtcl
F
FAQ, Hints and Tips for the Tcl Programmer, Web Sites
fblocked command (core Tcl), Alphabetical Summary of Commands
fcntl command (TclX), Alphabetical Summary of Commands
fconfigure command (core Tcl), Alphabetical Summary of Commands, End of Line Conventions
fcopy command (core Tcl), Alphabetical Summary of Commands
file command (core Tcl), Alphabetical Summary of Commands, Alphabetical Summary of Commands, End of Line Conventions
file scan contexts, Alphabetical Summary of Commands,
fileevent command (core Tcl), Alphabetical Summary of Commands, The -command String Must Be a Tcl List
filename expansion, Executing Other Programs
filenames, End of Line Conventions
files, File Manipulation, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Tix Mega-widgets, Tix Mega-widgets, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands,
descriptors, Alphabetical Summary of Commands
file creation mode mask,
file identifiers, Alphabetical Summary of Commands
listings of, Alphabetical Summary of Commands, Tix Mega-widgets, Tix Mega-widgets, Alphabetical Summary of Commands
loading, Alphabetical Summary of Commands
locking/unlocking, Alphabetical Summary of Commands, Alphabetical Summary of Commands
manipulating, Tcl commands for, File Manipulation
reading, Alphabetical Summary of Commands
searching, Alphabetical Summary of Commands
status of, returning, Alphabetical Summary of Commands
truncating, Alphabetical Summary of Commands
writing strings to, Alphabetical Summary of Commands
find command ([incr Tcl]),
floating-point values, Operators and Math Functions
flock command (TclX), Alphabetical Summary of Commands
floor command (TclX), Alphabetical Summary of Commands
flush command (core Tcl), Alphabetical Summary of Commands
fmod command (TclX), Alphabetical Summary of Commands
focus, Focus, Standard Widget Options, Methods, ,
keyboard, Methods
focus command (Tk), Geometry Management, Utility Commands, Utility Commands
font command (Tk), Utility Commands, Utility Commands
fonts, Standard Widget Options
for command (core Tcl), Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, A Symbolic Gesture
foreach command (core Tcl), Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, A Symbolic Gesture
fork command, , Alphabetical Summary of Commands
Expect,
TclX, Alphabetical Summary of Commands
format command (core Tcl), Alphabetical Summary of Commands
for_array_keys command (TclX), Alphabetical Summary of Commands
for_file command (TclX), Alphabetical Summary of Commands
for_recursive_glob command (TclX), Alphabetical Summary of Commands
frame command (Tk), Widget Commands, Widget Commands
frame widgets, Environment Variable, Tix Mega-widgets, Tix Mega-widgets, Tix Mega-widgets
frequently asked questions, Hints and Tips for the Tcl Programmer
frequently made mistakes, Think Commands, Not Statements
fstat command (TclX), Alphabetical Summary of Commands
ftruncate command (TclX), Alphabetical Summary of Commands
functions, The Tk C Interface, The Tk C Interface, Group Listing of Functions, Expect
Tcl, The Tk C Interface, The Tk C Interface
Tk, Group Listing of Functions, Expect
funlock command (TclX), Alphabetical Summary of Commands
G
geometry management, Geometry Management, Utility Commands, Expect, Tix Core Commands
functions related to, Expect
Tk commands for, Geometry Management
get Boolean, Tix command for, Tix Core Commands
get integer, Tix command for, Tix Core Commands
gets command (core Tcl), Alphabetical Summary of Commands
glob command (core Tcl), Predefined I/O Channel Identifiers, Alphabetical Summary of Commands, When Is a Number Not a Number?
global command (core Tcl), Alphabetical Summary of Commands
globbing, Pattern Globbing, Predefined I/O Channel Identifiers
grab command (Tk), Utility Commands
grab stack,
graph command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands
graphics, BLT commands for, Environment Variable
grid command (Tk), Utility Commands, Utility Commands
grid widgets, Tix Mega-widgets,
group ID, setting, Alphabetical Summary of Commands
H
hash mark (#), Overview
hash tables, The Tk C Interface
help command (TclX), Alphabetical Summary of Commands
help system, Alphabetical Summary of Commands,
helpcd command (TclX), Alphabetical Summary of Commands
helppwd command (TclX), Alphabetical Summary of Commands
hierbox command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands
hierbox widget, Widget-Specific Options
hints for the Tcl programmer, Summary of Commands, Use the Source, Luke!
history command (core Tcl), Alphabetical Summary of Commands
history, Tcl commands for, Input/Output, Alphabetical Summary of Commands
hlist widgets, Tix Mega-widgets, Tix Mega-widgets, Tix Mega-widgets, Tix Mega-widgets,
hosts, network, Alphabetical Summary of Commands
host_info command (TclX), Alphabetical Summary of Commands
Howlett, George A., Alphabetical Summary of Commands
htext command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands
hyperbolic, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
cosines, Alphabetical Summary of Commands
sines, Alphabetical Summary of Commands
tangents, Alphabetical Summary of Commands
hypertext widget windows, Alphabetical Summary of Commands
hypot command (TclX), Alphabetical Summary of Commands
hypotenuse functions, Alphabetical Summary of Commands
I
I/O, Predefined I/O Channel Identifiers, Input/Output, Alphabetical Summary of Commands, , , , , , The Tk C Interface, Alphabetical Summary of Commands
channel identifiers, Predefined I/O Channel Identifiers, Alphabetical Summary of Commands
Tcl commands for, Input/Output
id command (TclX), Alphabetical Summary of Commands
idletasks option, The -command String Must Be a Tcl List
if command (core Tcl), Alphabetical Summary of Commands, Think Commands, Not Statements
image canvas items, Widget Commands
image command, Utility Commands, , Tix Extensions to Tk image Command, Tix Extensions to Tk image Command
Tix, Tix Extensions to Tk image Command, Tix Extensions to Tk image Command
Tk, Utility Commands,
image embedding, Widget Commands
image items (Tix), Image Items
image markers, Image Markers
imagetext items (Tix), Image Items
incr command (core Tcl), Alphabetical Summary of Commands
index files, converting to package libraries, Alphabetical Summary of Commands
indices, Widget Commands, Widget Commands, Widget Commands, Widget Commands, Alphabetical Summary of Commands, Widget-Specific Options, Widget-Specific Options, Widget-Specific Options
entry, Widget-Specific Options
tab, Widget-Specific Options
text, Widget-Specific Options
info command (core Tcl), Alphabetical Summary of Commands
infox command (TclX), Alphabetical Summary of Commands
initialization, functions related to, Expect
input widgets,
input/output, Predefined I/O Channel Identifiers, Input/Output, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, The Tk C Interface, Alphabetical Summary of Commands
channel identifiers, Predefined I/O Channel Identifiers, Alphabetical Summary of Commands
Tcl commands for, Input/Output
int command (TclX), Alphabetical Summary of Commands
interact command (Expect), Alphabetical Summary of Commands, Alphabetical Summary of Commands
interp command (core Tcl), Alphabetical Summary of Commands, Alphabetical Summary of Commands
interpreter command (Expect), Alphabetical Summary of Commands
interpreters, Multiple Interpreters, Alphabetical Summary of Commands, , Command-Line Options, Constants, The Tk C Interface,
information about,
managing, Alphabetical Summary of Commands
Tcl commands for, Multiple Interpreters
intersect command (TclX), Alphabetical Summary of Commands
intersect3 command (TclX), Alphabetical Summary of Commands
inter_return command (Expect), Alphabetical Summary of Commands
itcl_class command ([incr Tcl]),
itcl_info command ([incr Tcl]),
J
join command (core Tcl), Alphabetical Summary of Commands
K
keyboard focus, Widget Commands
keyed lists, List Manipulation Commands, Alphabetical Summary of Commands, Lists Are Strings, but Not All Strings Are Lists, Indirect References
TclX commands for, List Manipulation Commands, Indirect References
keyldel command (TclX), Alphabetical Summary of Commands
keylget command (TclX), Alphabetical Summary of Commands
keylkeys command (TclX), Alphabetical Summary of Commands
keylset command (TclX), Alphabetical Summary of Commands
kill command (TclX), Alphabetical Summary of Commands
L
label command (Tk), Widget Commands
labeled mega-widgets,
Lam, Ioi, Tix Overview
lappend command (core Tcl), Alphabetical Summary of Commands, Lists Are Strings, but Not All Strings Are Lists
lassign command (TclX), Alphabetical Summary of Commands
lcontain command (TclX), Alphabetical Summary of Commands
Lehenbauer, Karl, Special Variables
lempty command (TclX), Alphabetical Summary of Commands
lgets command (TclX), Alphabetical Summary of Commands
Libes, Don, What Is Tcl?, Overview
libraries, Special Variables, Library and Package Commands, Alphabetical Summary of Commands,
package libraries,
lindex command (core Tcl), Alphabetical Summary of Commands
line breaks, Widget Commands
line canvas items, Widget Commands
line markers, Line Markers
link command (TclX), Alphabetical Summary of Commands
links, Alphabetical Summary of Commands
linsert command (core Tcl), Alphabetical Summary of Commands
list command (core Tcl), Alphabetical Summary of Commands, Lists Are Strings, but Not All Strings Are Lists
listbox command (Tk), Widget Commands, Widget Commands
listbox widgets, Geometry Management, Widget Commands, Widget Commands, Tix Mega-widgets
selection modes, Widget Commands, Widget Commands
lists, Basic Language Features, Lists, Alphabetical Summary of Commands, Options, , , List Manipulation Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, , A Symbolic Gesture, Lists Are Strings, but Not All Strings Are Lists
assigning elements of to variables, Alphabetical Summary of Commands
scrollable, ,
Tcl commands for, Lists
TclX commands for, List Manipulation Commands
llength command (core Tcl), Alphabetical Summary of Commands
lmatch command (TclX), Alphabetical Summary of Commands
load command (core Tcl), Alphabetical Summary of Commands
loading definitions for commands, Alphabetical Summary of Commands
loadlibindex command (TclX), Alphabetical Summary of Commands
local command ([incr Tcl]),
locking/unlocking files, Alphabetical Summary of Commands, Alphabetical Summary of Commands
log command (TclX), Alphabetical Summary of Commands
log10 command (TclX), Alphabetical Summary of Commands
log_file command (Expect), Alphabetical Summary of Commands
log_user command (Expect), Alphabetical Summary of Commands
loop command (TclX), Alphabetical Summary of Commands
loops, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
command loops, Alphabetical Summary of Commands
loop commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
lower command (Tk), Utility Commands
lrange command (core Tcl), Alphabetical Summary of Commands
lreplace command (core Tcl), Alphabetical Summary of Commands
lrmdups command (TclX), Alphabetical Summary of Commands
lsearch command (core Tcl), Alphabetical Summary of Commands
lsort command (core Tcl), Alphabetical Summary of Commands
lvarcat command (TclX), Alphabetical Summary of Commands
lvarpop command (TclX), Alphabetical Summary of Commands
lvarpush command (TclX), Alphabetical Summary of Commands
M
mainloop command (TclX), Alphabetical Summary of Commands
marks, Marks
matches, Multiple Matches
match_max command (Expect), Alphabetical Summary of Commands
math, Operators and Math Functions, Regular Expressions, Unix Access Commands
math functions, Operators and Math Functions, Regular Expressions
TclX commands for, Unix Access Commands
max command (TclX), Alphabetical Summary of Commands
McLennan, Michael, Basic Class Definition, Basic Structure of a Mega-widget
mega-widgets, [incr Tk], Group Listing of Tix Commands, Tix Mega-widget Overview,
labeled,
menu command (Tk), Widget Commands, Widget Commands
menu widgets, Environment Variable, Widget Commands, Widget Commands
platform-specific menus, Widget Commands
menubutton command (Tk), Widget Commands
menubutton widgets, Geometry Management, Utility Commands
message catalog, String and Character Manipulation Commands, ,
TclX commands for, String and Character Manipulation Commands
message command (Tk), Widget Commands
meter mega-widgets,
methods, Widget Overview, Widget Commands, Widget Commands, Text Indices, Text Indices, Text Indices, , , Special Variable, Protected Variables,
canvas methods, Widget Commands
widget methods, Widget Overview, Text Indices, Text Indices
[incr Tk], Special Variable, Protected Variables
min command (TclX), Alphabetical Summary of Commands
Motif window manager,
mouse cursors, Standard Widget Options, Widget Commands
N
named procedures,
namespace command (core Tcl), Alphabetical Summary of Commands
network hosts, Alphabetical Summary of Commands
nice command (TclX), Alphabetical Summary of Commands
notebook widgets, Tix Mega-widgets,
numbers, When Is a Number Not a Number?
numeric expressions, Basic Language Features
numerical data, BLT commands for, Numerical Data Commands
Nurmi, Roy, Overview
O
object-oriented programming, [incr Tcl]
objects, [incr Tcl], , , , Tix Core Commands
creating,
objName command ([incr Tcl]), ,
octal numbers, When Is a Number Not a Number?
ODBC databases, Overview, Summary of Commands
online help system,
open command (core Tcl), Alphabetical Summary of Commands
operators, Operators and Math Functions, Operators and Math Functions
option command (Tk), Utility Commands
option database, Widget-Specific Options, Widget-Specific Options,
options, Command-Line Options, Command-Line Options, Environment Variable, Tix Mega-widgets, Table Options, Column Options
selecting, Tix Mega-widgets
tclsh, Command-Line Options
Tk, Command-Line Options, Environment Variable
oraautocom command (Oratcl), Alphabetical Summary of Commands
orabindexec command (Oratcl), Alphabetical Summary of Commands
orabreak command (Oratcl), Alphabetical Summary of Commands
oracancel command (Oratcl), Alphabetical Summary of Commands
Oracle databases, accessing with Oratcl, Overview
oraclose command (Oratcl), Alphabetical Summary of Commands
oracols command (Oratcl), Alphabetical Summary of Commands
oracommit command (Oratcl), Alphabetical Summary of Commands
orafetch command (Oratcl), Alphabetical Summary of Commands
oralogoff command (Oratcl), Alphabetical Summary of Commands
oralogon command (Oratcl), Alphabetical Summary of Commands
oraopen command (Oratcl), Alphabetical Summary of Commands
oraplexec command (Oratcl), Alphabetical Summary of Commands
orapoll command (Oratcl), Alphabetical Summary of Commands
orareadlong command (Oratcl), Alphabetical Summary of Commands
oraroll command (Oratcl), Alphabetical Summary of Commands
orasql command (Oratcl), Alphabetical Summary of Commands
Oratcl, Oratcl, Environment Variables, Special Variables, Data Manipulation Commands, Alphabetical Summary of Commands
commands, Data Manipulation Commands, Alphabetical Summary of Commands
variables, Environment Variables, Special Variables
orawritelong command (Oratcl), Alphabetical Summary of Commands
Ousterhout, John, What Is Tcl?, Structure of This Book, Example
oval canvas items, Widget Commands
overlay command (Expect), Alphabetical Summary of Commands
ownership, setting, Alphabetical Summary of Commands
P
pack command (Tk), Utility Commands
package command (core Tcl), Alphabetical Summary of Commands
package libraries,
packages, Special Variables, Packages, , The Tk C Interface, String and Character Manipulation Commands,
autoloading,
TclX commands for, String and Character Manipulation Commands
pages, , ,
paned windows, Tix Mega-widgets, Tix Mega-widgets
parity command (Expect), Alphabetical Summary of Commands
patches, Backslash Substitutions
pathnames, Alphabetical Summary of Commands, End of Line Conventions
pattern globbing, Pattern Globbing, Predefined I/O Channel Identifiers
permissions, setting, Alphabetical Summary of Commands
photo images, Utility Commands, Expect
functions related to, Expect
pid command (core Tcl), Alphabetical Summary of Commands
pipe command (TclX), Alphabetical Summary of Commands
pixmap image type, Tix Extensions to Tk image Command
pkg_mkIndex command (core Tcl), Alphabetical Summary of Commands
place command (Tk), Utility Commands, Utility Commands
platform-specific menus, Widget Commands
platforms, What Is Tcl?, TclX, Write Once, Run Where?, Scanning and For matting Binary Data
issues concerning, Write Once, Run Where?, Scanning and For matting Binary Data
Poindexter, Tom, Overview, Overview, Summary of Commands
polygon canvas items, Widget Commands
polygon markers, Polygon Markers
popd command (TclX), Alphabetical Summary of Commands
popup menus,
POSIX utilities, The Tk C Interface
PostScript generation, Widget Commands
(pound sign), Overview, Basic Language Features, Comments Are Treated as Commands
pound sign (#), Overview, Basic Language Features, Comments Are Treated as Commands
pow command (TclX), Alphabetical Summary of Commands
proc command (core Tcl), Alphabetical Summary of Commands
procedures, Alphabetical Summary of Commands, , Alphabetical Summary of Commands, , , ,
definitions of, ,
performance profiling of, Alphabetical Summary of Commands
processes, , Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, , Alphabetical Summary of Commands,
child,
closing connections to, Alphabetical Summary of Commands
creating, Alphabetical Summary of Commands
delaying execution of, Alphabetical Summary of Commands
IDs, , Alphabetical Summary of Commands
procs, Overview
profile command (TclX), Alphabetical Summary of Commands
profrep command (TclX), Alphabetical Summary of Commands
pseudorandom integers, Alphabetical Summary of Commands
pushd command (TclX), Alphabetical Summary of Commands
puts command (core Tcl), Alphabetical Summary of Commands
pwd command (core Tcl), Alphabetical Summary of Commands
Q
" (quotation marks), Overview
quotation marks ("), Overview
quoting, Think Commands, Not Statements, Lists Are Strings, but Not All Strings Are Lists, Executing Other Programs, Quoting and More Quoting
R
radioboxes, Tix Mega-widgets
radiobutton command (Tk), Widget Commands, Widget Commands
raise command (Tk), Utility Commands
random command (TclX), Alphabetical Summary of Commands
ranges of characters, Alphabetical Summary of Commands
read command (core Tcl), Alphabetical Summary of Commands
readdir command (TclX), Alphabetical Summary of Commands
read_file command (TclX), Alphabetical Summary of Commands
rectangle canvas items, Widget Commands
recursive_glob command (TclX), Alphabetical Summary of Commands
regexp command (core Tcl), Alphabetical Summary of Commands
regsub command (core Tcl), Alphabetical Summary of Commands
regular expressions, Regular Expressions, Pattern Globbing, Alphabetical Summary of Commands, Quoting and More Quoting
remove_nulls command (Expect), Alphabetical Summary of Commands
rename command (core Tcl), Alphabetical Summary of Commands
replicate command (TclX), Alphabetical Summary of Commands
reports, generating, Alphabetical Summary of Commands
resources about Tcl/Tk, Think Commands, Not Statements, Web Sites
return command (core Tcl), Alphabetical Summary of Commands
root directory, setting, Alphabetical Summary of Commands
root window, Command-Line Options, Command-Line Options
round command (TclX), Alphabetical Summary of Commands
row options, Alphabetical Summary of Commands
S
saveprocs command (TclX), Alphabetical Summary of Commands
scale command (Tk), Widget Commands, Widget Commands
scan command (core Tcl), Alphabetical Summary of Commands
scancontext command (TclX), Alphabetical Summary of Commands
scanfile command (TclX), Alphabetical Summary of Commands
scanmatch command (TclX), Alphabetical Summary of Commands
scheduling execution of commands, Alphabetical Summary of Commands
scope command ([incr Tcl]),
scoped values, ,
screen units, Widget Overview
scrollable lists, Tix Mega-widgets, Tix Mega-widgets
scrollbar command (Tk), Widget Commands, Widget Commands
scrollbar widgets, Geometry Management, Standard Widget Options, Widget Commands, Widget Commands
scrollbars, Tix Mega-widgets
scrolling methods, Widget Commands
searching, Options, Alphabetical Summary of Commands
lists, Options
searchpath command (TclX), Alphabetical Summary of Commands
security, Security
seek command (core Tcl), Alphabetical Summary of Commands
select command (TclX), Alphabetical Summary of Commands
selecting, Expect, Tix Mega-widgets, Tix Mega-widgets, Tix Mega-widgets, Tix Mega-widgets, Methods, , ,
filenames, Tix Mega-widgets, Methods
functions related to, Expect
options,
windows, ,
selection command (Tk), Utility Commands
; (semicolon), Basic Language Features, A Symbolic Gesture
semicolon (;), Basic Language Features, A Symbolic Gesture
send command, Command-Line Options, , Alphabetical Summary of Commands
Expect, Alphabetical Summary of Commands
Tk, Command-Line Options,
send_ commands (Expect), Alphabetical Summary of Commands
sequences, Utility Commands, , Event Patterns
multi-event, Utility Commands
set command (core Tcl), Alphabetical Summary of Commands, Indirect References
shell commands, Executing Other Programs
shell windows, Tix Mega-widgets
showproc command (TclX), Alphabetical Summary of Commands
signal command (TclX), Alphabetical Summary of Commands
sin command (TclX), Alphabetical Summary of Commands
sines, Alphabetical Summary of Commands
sinh command (TclX), Alphabetical Summary of Commands
slave options, Alphabetical Summary of Commands
sleep command, Alphabetical Summary of Commands, Alphabetical Summary of Commands
Expect, Alphabetical Summary of Commands
TclX, Alphabetical Summary of Commands
socket command (core Tcl), Alphabetical Summary of Commands
sorting lists, Alphabetical Summary of Commands
source command (core Tcl), Alphabetical Summary of Commands
spawn command (Expect), Alphabetical Summary of Commands
spinboxes, Tix Mega-widgets, Tix Mega-widgets
spline command (BLT), Alphabetical Summary of Commands
split command (core Tcl), Alphabetical Summary of Commands
SQL, Overview, Alphabetical Summary of Commands, , , Overview, , Overview,
automatic commit of queries, Alphabetical Summary of Commands
queries, Overview, Overview
sqrt command (TclX), Alphabetical Summary of Commands
[] (square brackets), Contact O'Reilly & Associates, Overview
square brackets ([]), Contact O'Reilly & Associates, Overview
square roots, Alphabetical Summary of Commands
startup, functions related to, Expect
statement separator (;), Basic Language Features
statement-id command (Tclodbc), Summary of Commands
statements, displaying, Alphabetical Summary of Commands
status of files, Alphabetical Summary of Commands
strace command (Expect), Alphabetical Summary of Commands
string command (core Tcl), Alphabetical Summary of Commands
string utilities, The Tk C Interface
strings, Basic Language Features, Strings, Strings, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Options, , Alphabetical Summary of Commands, , Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, A Symbolic Gesture, Indirect References
comparing, Alphabetical Summary of Commands
concatenating, Alphabetical Summary of Commands
formatting, Alphabetical Summary of Commands
length of, returning, Alphabetical Summary of Commands
scoped values for,
sending to spawned processes, Alphabetical Summary of Commands
splitting into lists, Alphabetical Summary of Commands
stripchart command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
stty command (Expect), Alphabetical Summary of Commands
subst command (core Tcl), Alphabetical Summary of Commands
substitutions, Basic Language Features, Backslash Substitutions, Backslash Substitutions, , , Binding Script and Substitutions, Indirect References
backslash, Backslash Substitutions, Backslash Substitutions
command,
script, Binding Script and Substitutions
variable, Indirect References
switch command (core Tcl), Alphabetical Summary of Commands, Comments Are Treated as Commands
Sybase databases, accessing with Sybtcl, Overview
sybcancel command (Sybtcl), Alphabetical Summary of Commands
sybclose command (Sybtcl), Alphabetical Summary of Commands
sybcols command (Sybtcl), Alphabetical Summary of Commands
sybconnect command (Sybtcl), Alphabetical Summary of Commands
sybmsg variable, Environment Variables
sybnext command (Sybtcl), Alphabetical Summary of Commands
sybpoll command (Sybtcl), Alphabetical Summary of Commands
sybreadtext command (Sybtcl), Alphabetical Summary of Commands
sybretval command (Sybtcl), Alphabetical Summary of Commands
sybsql command (Sybtcl), Alphabetical Summary of Commands
Sybtcl, Sybtcl, Environment Variables, Data Manipulation Commands, Data Manipulation Commands, Alphabetical Summary of Commands
commands, Data Manipulation Commands, Alphabetical Summary of Commands
variables, Environment Variables, Data Manipulation Commands
sybuse command (Sybtcl), Alphabetical Summary of Commands
sybwritetext command (Sybtcl), Alphabetical Summary of Commands
sync command (TclX), Alphabetical Summary of Commands
synonyms (Expect), Synonyms
syntax, Think Commands, Not Statements, Comments Are Treated as Commands
system command, Alphabetical Summary of Commands, Alphabetical Summary of Commands
Expect, Alphabetical Summary of Commands
TclX, Alphabetical Summary of Commands
system interaction, Input/Output
T
table command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands
table options, Alphabetical Summary of Commands
tabs, Widget-Specific Options, Methods
tabset command (BLT), Alphabetical Summary of Commands, Alphabetical Summary of Commands
tags, Widget Commands, Item IDs and Tags, Tags, Binding Tags
tan command (TclX), Alphabetical Summary of Commands
tangents, Alphabetical Summary of Commands
tanh command (TclX), Alphabetical Summary of Commands
Tcl, Conventions, Introduction, Structure of This Book, Tcl Core Commands, Basic Language Features, Command-Line Options, Backslash Substitutions, Predefined I/O Channel Identifiers, Tcl Interpreter Information, Lists, Alphabetical Summary of Commands, The Tcl C Interface, Constants, Data Types, Group Listing of Functions, The Tk C Interface, The Tk C Interface, The Tk C Interface, Think Commands, Not Statements, Think Commands, Not Statements, Comments Are Treated as Commands, Comments Are Treated as Commands, Comments Are Treated as Commands, Web Sites
C language interface, Constants
commands, Predefined I/O Channel Identifiers, Alphabetical Summary of Commands, The Tk C Interface
comments, Comments Are Treated as Commands, Comments Are Treated as Commands
constants, The Tcl C Interface
data types, Data Types
functions, Group Listing of Functions, The Tk C Interface
interpreter, Tcl Interpreter Information, Lists
language features, Basic Language Features
patches, Backslash Substitutions
platforms supported, Conventions, Structure of This Book
resources about, Think Commands, Not Statements, Web Sites
syntax, Think Commands, Not Statements, Comments Are Treated as Commands
variables, Command-Line Options, The Tk C Interface
tcl program, Special Variables
tcl.h, The Tcl C Interface
Tcl/Tk Consortium, General
Tclodbc commands, Connection and Configuration Commands, Summary of Commands
tclsh program, command-line options, Command-Line Options, Command-Line Options
TclX, TclX, Special Variables, Alphabetical Summary of Commands
commands, Special Variables, Alphabetical Summary of Commands
tclx_error_handler command (TclX), Alphabetical Summary of Commands
tell command (core Tcl), Alphabetical Summary of Commands
terminal settings,
text canvas items, Widget Commands
text command (Tk), Widget Commands, Widget Commands
text format, Alphabetical Summary of Commands
text indices, Widget Commands, Widget Commands, Widget Commands, Widget Commands, Widget Commands
text items, Expect, Text Items
functions related to, Expect
text markers, Text Markers
text widgets, Geometry Management, Widget Commands, Widget Commands, Tix Mega-widgets
tile commands (BLT), Alphabetical Summary of Commands
tile widgets, BLT commands for, Numerical Data Commands, Alphabetical Summary of Commands
time command (core Tcl), Alphabetical Summary of Commands
times command (TclX), Alphabetical Summary of Commands
timestamp command (Expect), Alphabetical Summary of Commands, Alphabetical Summary of Commands
tips for the Tcl programmer, Summary of Commands, Use the Source, Luke!
Tix, Tix, Special Variables, Group Listing of Tix Commands, Group Listing of Tix Commands, Tix Mega-widgets,
commands, Group Listing of Tix Commands, Tix Mega-widgets,
variables, Special Variables
tix command (Tix), Tix Core Commands
tixBalloon command (Tix), Tix Mega-widgets
tixButtonBox command (Tix), Tix Mega-widgets
tixCallMethod command (Tix), Tix Core Commands
tixChainMethod command (Tix), Tix Core Commands
tixCheckList command (Tix), Tix Mega-widgets
tixClass command (Tix), Tix Core Commands
tixComboBox command (Tix), Tix Mega-widgets
tixControl command (Tix), Tix Mega-widgets
tixDescendants command (Tix), Tix Core Commands
tixDestroy command (Tix), Tix Core Commands
tixDialogShell command (Tix), Tix Mega-widgets
tixDirList command (Tix), Tix Mega-widgets
tixDirSelectBox command (Tix), Tix Mega-widgets
tixDirSelectDialog command (Tix), Tix Mega-widgets
tixDirTree command (Tix), Tix Mega-widgets
tixDisableAll command (Tix), Tix Core Commands
tixDisplayStyle command (Tix), Tix Core Commands
tixEnableAll command (Tix), Tix Core Commands
tixExFileSelectBox command (Tix), Tix Mega-widgets
tixExFileSelectDialog command (Tix), Tix Mega-widgets
tixFileComboBox command (Tix), Tix Mega-widgets
tixFileEntry command (Tix), Tix Mega-widgets
tixFileSelectBox command (Tix), Tix Mega-widgets
tixFileSelectDialog command (Tix), Tix Mega-widgets
tixForm command (Tix), Tix Core Commands
tixGetBoolean command (Tix), Tix Core Commands
tixGetInt command (Tix), Tix Core Commands
tixGrid command (Tix),
tixHList command (Tix),
tixInputOnly command (Tix),
tixLabelEntry command (Tix), Tix Mega-widgets
tixLabelFrame command (Tix), Tix Mega-widgets
tixLabelWidget command (Tix), Tix Mega-widgets
tixListNoteBook command (Tix), Tix Mega-widgets
tixMeter command (Tix), Tix Mega-widgets
tixMwm command (Tix), Tix Core Commands
tixNoteBook command (Tix), Tix Mega-widgets
tixNoteBookFrame command (Tix),
tixOptionMenu command (Tix), Tix Mega-widgets
tixPanedWindow command (Tix), Tix Mega-widgets
tixPopGrab command (Tix), Tix Core Commands
tixPopupMenu command (Tix), Tix Mega-widgets
tixPrimitive command (Tix), Tix Mega-widgets
tixPushGrab command (Tix), Tix Core Commands
tixScrolledGrid command (Tix), Tix Mega-widgets
tixScrolledHList command (Tix), Tix Mega-widgets
tixScrolledListBox command (Tix), Tix Mega-widgets
tixScrolledText command (Tix), Tix Mega-widgets
tixScrolledTList command (Tix), Tix Mega-widgets
tixScrolledWidget command (Tix), Tix Mega-widgets
tixScrolledWindow command (Tix), Tix Mega-widgets
tixSelect command (Tix), Tix Mega-widgets
tixShell command (Tix), Tix Mega-widgets
tixStackWindow command (Tix), Tix Mega-widgets
tixStdButtonBox command (Tix), Tix Mega-widgets
tixStdDialogShell command (Tix), Tix Mega-widgets
tixTList command (Tix),
tixTree command (Tix), Tix Mega-widgets
tixVStack command (Tix), Tix Mega-widgets
tixVTree command (Tix), Tix Standard Widgets Overview
tixWidgetClass command (Tix), Tix Core Commands
tixwish program, Tix Overview
Tk, What Is Tcl?, Tk Core Commands, Special Variables, Group Listing of Tk Commands, Widget Commands, The Tk C Interface, Constants, Data Types, Scanning and For matting Binary Data
C language interface, Constants
commands, Group Listing of Tk Commands, Widget Commands
constants, The Tk C Interface
data types, Data Types
errors, Scanning and For matting Binary Data
variables, Special Variables
tk command (Tk), Utility Commands
tk.h, The Tk C Interface
tk_ commands (Tk), Utility Commands
tlist widgets,
tokens, Alphabetical Summary of Commands
toplevel command (Tk), Widget Commands
trace command (core Tcl), Alphabetical Summary of Commands
trace statements, Alphabetical Summary of Commands
translit command (TclX), Alphabetical Summary of Commands
transliterating characters, Alphabetical Summary of Commands
trap command (Expect), Alphabetical Summary of Commands
tree-style mega-widgets,
trees, displaying data as, Tix Mega-widgets
trigonometric operations, Alphabetical Summary of Commands
truncating files, Alphabetical Summary of Commands
try_eval command (TclX), Alphabetical Summary of Commands
U
umask command (TclX), Alphabetical Summary of Commands
union command (TclX), Alphabetical Summary of Commands
Unix, Unix Access Commands,
accessing, TclX commands for, Unix Access Commands
signals,
unknown command (core Tcl), Alphabetical Summary of Commands
unset command (core Tcl), Alphabetical Summary of Commands
update command (core Tcl), Alphabetical Summary of Commands, The -command String Must Be a Tcl List
update command (Tk), The -command String Must Be a Tcl List
uplevel command (core Tcl), Alphabetical Summary of Commands
upvar command (core Tcl), Alphabetical Summary of Commands, Indirect References
user interaction, blocking, Alphabetical Summary of Commands
usual command ([incr Tk]),
V
variable command (core Tcl), Alphabetical Summary of Commands
variables, Command-Line Options, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, , , , Options, Environment Variable, The Tk C Interface, Command-Line Options, Special Variables, Special Variables, , Special Variable, Tix, TclX, Alphabetical Summary of Commands, Environment Variable, Alphabetical Summary of Commands, Environment Variables, Environment Variables, Indirect References, Scanning and For matting Binary Data
aliases for, Alphabetical Summary of Commands
appending values to, Alphabetical Summary of Commands
array variables,
assigning to list elements, Alphabetical Summary of Commands
BLT, Environment Variable, Alphabetical Summary of Commands
configuration code, changing,
contexts for,
Expect, Command-Line Options
global scope, Scanning and For matting Binary Data
incrementing, Alphabetical Summary of Commands
Oratcl, Environment Variables
substitution, Options, Indirect References
Sybtcl, Environment Variables
Tcl, Command-Line Options, The Tk C Interface, TclX
Tix, Tix
Tk, Environment Variable
values of, setting, Alphabetical Summary of Commands
[incr Tcl], Special Variables
[incr Tk], Special Variable
vector command (BLT), Alphabetical Summary of Commands
vectors,
vertical bar (|), Contact O'Reilly & Associates
virtual events, Utility Commands,
vwait command (core Tcl), Alphabetical Summary of Commands
W
wait command, Alphabetical Summary of Commands, Alphabetical Summary of Commands
Expect, Alphabetical Summary of Commands
TclX, Alphabetical Summary of Commands
watch command (BLT), Alphabetical Summary of Commands
while command (core Tcl), Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands
whitespace, Think Commands, Not Statements
widgets, Example, Widget Overview, Widget Commands, Expect, Expect, [incr Tk], Group Listing of Tix Commands, Standard Widgets, Tix Mega-widget Overview, , Numerical Data Commands, Widget-Specific Options, The -command String Must Be a Tcl List
configuring, Expect
displaying, Expect
hierbox widget, Widget-Specific Options
mega-widgets, [incr Tk], Group Listing of Tix Commands, Tix Mega-widget Overview
refreshing, The -command String Must Be a Tcl List
tile widgets, Numerical Data Commands
Tix commands for, Standard Widgets
Tk commands for, Example, Widget Commands
window canvas items, Widget Commands
window items, Text Items
window manager,
window markers, Window Markers
windows, Widget Commands, Group Listing of Functions, Tix Mega-widgets, , , Tix Core Commands, Alphabetical Summary of Commands,
descendants of, Tix Core Commands
embedding, Widget Commands
functions related to, Group Listing of Functions
hypertext widget windows, Alphabetical Summary of Commands
operations on,
paned, Tix Mega-widgets
windows (continued), , , Bounding Sizes
selecting, ,
sizes, Bounding Sizes
winfo command (Tk), Utility Commands
winop command (BLT), Alphabetical Summary of Commands
wish program, Example, Command-Line Options
command-line options, Command-Line Options
wishx program, Special Variables
wm command (Tk), Utility Commands
write_file command (TclX), Alphabetical Summary of Commands
writing to files, Alphabetical Summary of Commands
X
X Window System, Command-Line Options, Standard Widget Options,
XPG/3, XPG/3 Message Catalog Commands
About the Authors
Paul Raines is a physicist and scientific programmer at the Stanford Linear Accelerator Center at Stanford University where he is part of a large collaboration studying CP violation (why charge and parity are not conserved in some particle decays). He is a huge advocate of scripting languages and has been using Tcl on various projects since 1992. He is also the coauthor of O'Reilly & Associates' Tcl/Tk in a Nutshell. When he can get away from the lab, Paul enjoys hiking, bridge, and soccer.
When Jeff Tranter was first exposed to UNIX-based workstations about ten years ago, he dreamed of being able to afford a system with similar capabilities for home use. Today, he sees Linux as the realization of that dream, with the added bonus of being able to examine and modify all of the source code and even contribute to its development. He's been using Linux since 1992 and is the author of the freely available Linux Sound and CD-ROM HOWTO guides. Jeff has also written a number of Linux utilities and several Linux related magazine articles. Jeff received his bachelor's degree in electrical engineering from the University of Western Ontario. He currently works as a software designer for a high-tech telecommunications company in Kanata, Ontario, Canada's Silicon Valley North.
Colophon
The bird featured on the cover of Tck/Tk in a Nutshell is an ibis. There are over 30 species of these wading birds distributed throughout the world, primarily in the warmer and tropical regions. All ibises have long, narrow, sharply turned-down bills that they use to probe for insects, mollusks, and small crustaceans in mud or dirt. They are strong fliers and swimmers, and most prefer living in the wetlands near fresh or salt water, marshes, and swamps. They are very sociable and gregarious birds who nest in large colonies and travel in flocks. When flying, all members of the flock alternate wing beats with gliding at approximately the same rate.
Fossils indicate that ibises have existed for about 60 million years, and records of human interaction with ibises dates back 5,000 years. In ancient Egypt, the ibis was revered as the embodiment of Thoth, god of wisdom and scribe of the gods. They are frequently depicted in Egyptian hieroglyphics, and cemeteries of mummified ibises have been discovered.
Today, the most widely distributed of all ibis species is the glossy ibis. The glossy ibis is the last species of ibis known to exist in Europe and has spread to Africa, parts of Asia, and the Americas. The most common species in the Americas is the white ibis, which has gradually spread northward and is now found as far north as Maine.
Edie Freedman designed the cover of this book using a 19th-century engraving from the Dover Pictorial Archive. Kathleen Wilson produced the cover layout with QuarkXPress 3.3 using the ITC Garamond font. Whenever possible, our books use RepKover™, a durable and flexible lay-flat binding. If the page count exceeds RepKover's limit, perfect binding is used.
Madeleine Newell was the production editor for this book, and Sheryl Avruch was the production manager. Cindy Kogut of Editorial Ink did the copyedit. Nancy Crumpton wrote the index, and Seth Maislin produced the final version of the index. Nicole Arigo and Nancy Wolfe Kotary provided quality assurance, and Sebastian Banker and Betty Hugh provided production assistance.
The inside layout was designed by Nancy Priest and implemented in gtroff by Lenny Muellner. The text and heading fonts are ITC Garamond Light and Garamond Book. The screen shots that appear in the book were created in Adobe Photoshop 4.0 by Robert Romano. This colophon was written by Clairemarie Fisher O'Leary.
Tcl/Tk in a Nutshell
Paul Raines
Jeff Tranter
Editor
Andy Oram
Copyright © 2009 O'Reilly Media, Inc.
Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. The In a Nutshell series designations, Tcl/Tk in a Nutshell, the image of an ibis, and related trade dress are trademarks of O'Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
2012-08-19T17:27:28-07:00
Table of Contents
Conventions
Contact O'Reilly & Associates
About This Book
Acknowledgments
What Is Tcl?
Structure of This Book
Overview
Basic Language Features
Command-Line Options
Environment Variables
Special Variables
Backslash Substitutions
Operators and Math Functions
Regular Expressions
Pattern Globbing
Predefined I/O Channel Identifiers
Group Listing of Commands
Control Statements
File Manipulation
Tcl Interpreter Information
Lists
Arrays
Strings
Input/Output
System Interaction
Command History
Multiple Interpreters
Packages
Miscellaneous Commands
Alphabetical Summary of Commands
after
append
array
auto_execok
auto_load
auto_mkindex
auto_reset
bgerror
binary
break
case
catch
cd
clock
close
concat
continue
eof
error
eval
exec
exit
expr
fblocked
fconfigure
fcopy
file
fileevent
flush
for
foreach
format
gets
glob
global
history
if
incr
info
interp
join
lappend
lindex
linsert
list
llength
load
lrange
lreplace
lsearch
lsort
namespace
open
package
pid
pkg_mkIndex
proc
puts
pwd
read
regexp
regsub
rename
return
scan
seek
set
socket
source
split
string
subst
switch
tell
time
trace
unknown
unset
update
uplevel
upvar
variable
vwait
while
Example
Command-Line Options
Environment Variable
Special Variables
Group Listing of Tk Commands
Widgets
Geometry Management
Event Handling
Focus
Dialogs
Miscellaneous
Widget Overview
Standard Widget Options
Widget Commands
button
canvas
checkbutton
entry
frame
label
listbox
menu
menubutton
message
radiobutton
scale
scrollbar
text
toplevel
Utility Commands
bell
bind
bindtags
clipboard
destroy
event
focus
font
grab
grid
image
lower
option
pack
place
raise
selection
send
tk
tkwait
tk_
winfo
wm
Constants
Data Types
Group Listing of Functions
Tcl Objects
Interpreters and Script Evaluation
Creating New Tcl Commands
Initialization and Packages
Parsing
Exceptions
Accessing Tcl Variables
Hash Tables
String Utilities
POSIX Utilities
Input/Output
Notifier and Events
Miscellaneous
Alphabetical Summary of Functions
Constants
Data Types
Group Listing of Functions
Windows
Configuring Widgets
Bitmaps and Photo Images
Events
Displaying Widgets
Canvases
Text
The Selection
Geometry Management
Application Startup and Initialization
Error Handling
Color
Cursors
Miscellaneous
Alphabetical Summary of Functions
Overview
Example
Command-Line Options
Environment Variables
Special Variables
Grouped Summary of Commands
Process Interaction
Utility Commands
Synonyms
Alphabetical Summary of Commands
close
debug
disconnect
exit
exp_continue
exp_getpid
exp_internal
exp_open
exp_pid
expect
expect_after
expect_background
expect_before
expect_tty
expect_user
expect_version
fork
inter_return
interact
interpreter
log_file
log_user
match_max
overlay
parity
remove_nulls
send
send_error
send_log
send_tty
send_user
sleep
spawn
strace
stty
system
timestamp
trap
wait
Basic Class Definition
Special Variables
Group Listing of Commands
Classes
Objects
Miscellaneous
Example
Alphabetical Summary of Commands
className
objName
body
class
code
configbody
delete
ensemble
find
itcl_class
itcl_info
local
Scope
Basic Structure of a Mega-widget
Special Variable
Methods and Variables
Public Methods
Protected Methods
Protected Variables
Alphabetical Summary of Commands
usual
Tix Overview
Special Variables
Group Listing of Tix Commands
Mega-widgets
Standard Widgets
Core Commands
Tix Mega-widget Overview
Tix Mega-widgets
Balloon
ButtonBox
CheckList
ComboBox
Control
DialogShell
DirList
DirSelectBox
DirSelectDialog
DirTree
ExFileSelectBox
ExFileSelectDialog
FileComboBox
FileEntry
FileSelectBox
FileSelectDialog
LabelEntry
LabelFrame
LabelWidget
ListNoteBook
Meter
NoteBook
OptionMenu
PanedWindow
PopupMenu
Primitive
ScrolledGrid
ScrolledHList
ScrolledListBox
ScrolledText
ScrolledTList
ScrolledWidget
ScrolledWindow
Select
Shell
StackWindow
StdButtonBox
StdDialogShell
Tree
VStack
VTree
Tix Standard Widgets Overview
Display Items
Image Items
Imagetext Items
Text Items
Window Items
Tix Standard Widgets
Grid
HList
InputOnly
NoteBookFrame
TList
Tix Core Commands
tix
CallMethod
ChainMethod
Class
Descendants
Destroy
DisableAll
DisplayStyle
EnableAll
Form
GetBoolean
GetInt
Mwm
PopGrab
PushGrab
WidgetClass
Tix Extensions to Tk image Command
image
image
Special Variables
Group Listing of Commands
General Commands
Debugging and Development Commands
Unix Access Commands
File Commands
File Scanning Commands
Math Commands
List Manipulation Commands
Keyed List Commands
String and Character Manipulation Commands
XPG/3 Message Catalog Commands
Help Commands
Library and Package Commands
Alphabetical Summary of Commands
abs
acos
alarm
apropos
asin
atan
atan2
auto_commands
auto_load_file
auto_packages
bsearch
buildpackageindex
catclose
catgets
catopen
ccollate
cconcat
ceil
cequal
chgrp
chmod
chown
chroot
cindex
clength
cmdtrace
commandloop
convert_lib
cos
cosh
crange
csubstr
ctoken
ctype
dirs
double
dup
echo
edprocs
execl
exp
fcntl
flock
floor
fmod
for_array_keys
for_file
for_recursive_glob
fork
fstat
ftruncate
funlock
help
helpcd
helppwd
host_info
hypot
id
infox
int
intersect
intersect3
keyldel
keylget
keylkeys
keylset
kill
lassign
lcontain
lempty
lgets
link
lmatch
loadlibindex
log
log10
loop
lrmdups
lvarcat
lvarpop
lvarpush
mainloop
max
min
nice
pipe
popd
pow
profile
profrep
pushd
random
read_file
readdir
recursive_glob
replicate
round
saveprocs
scancontext
scanfile
scanmatch
searchpath
select
showproc
signal
sin
sinh
sleep
sqrt
sync
system
tan
tanh
tclx_errorHandler
times
translit
try_eval
umask
union
wait
write_file
Environment Variable
Special Variables
Group Listing of Commands
Graphical Commands
Numerical Data Commands
Tile Widget Commands
Utility Commands
Alphabetical Summary of Commands
barchart
beep
bgexec
bitmap
bltdebug
busy
container
cutbuffer
drag&drop
graph
hierbox
htext
spline
stripchart
table
tabset
tile
vector
watch
winop
Overview
Example
Environment Variables
Special Variables
Group Listing of Commands
Database Server Setup Commands
Data Manipulation Commands
Alphabetical Summary of Commands
oraautocom
orabindexec
orabreak
oracancel
oraclose
oracols
oracommit
orafetch
oralogoff
oralogon
oraopen
oraplexec
orapoll
orareadlong
oraroll
orasql
orawritelong
Overview
Example
Environment Variables
Special Variables
Group Listing of Commands
Database Server Setup Commands
Data Manipulation Commands
Alphabetical Summary of Commands
sybcancel
sybclose
sybcols
sybconnect
sybnext
sybpoll
sybreadtext
sybretval
sybsql
sybuse
sybwritetext
Overview
Group Listing of Commands
Connection and Configuration Commands
Data Manipulation Commands
Statement Commands
Summary of Commands
database
database-id
statement-id
15. Hints and Tips for the Tcl Programmer
Think Commands, Not Statements
Comments Are Treated as Commands
A Symbolic Gesture
Lists Are Strings, but Not All Strings Are Lists
Indirect References
Executing Other Programs
When Is a Number Not a Number?
Quoting and More Quoting
Write Once, Run Where?
Filenames and Pathnames
End of Line Conventions
Determining Platform Specifics
Scanning and For matting Binary Data
Common Tk Errors
Global Scope for -variable and -textvariable
The -command String Must Be a Tcl List
Use update to Refresh Widgets and for Event Processing
Use the Source, Luke!
Web Sites
General
Tcl/Tk Extensions
Usenet Newsgroups
Books
Mailing Lists