

 [image: C++ In a Nutshell]

 C++ In a Nutshell

Ray Lischner

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596002985/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Preface

C++ in a Nutshell is a reference to the C++
 language and library. Being a Nutshell guide, it is not a comprehensive
 manual, but it is complete enough to cover everything a working
 professional needs to know. Nonetheless, C++ is such a large and complex
 language that even this Nutshell guide is a large book.
This book covers the C++ standard, the international standard
 published as ISO/IEC 14882:1998(E), Programming
 Languages—C++, plus Technical Corrigendum 1. Many
 implementations of C++ extend the language and standard library. Except
 for brief mentions of language and library extensions in the appendixes,
 this book covers only the standard. The standard library is large—it
 includes strings, containers, common algorithms, and much more—but it
 omits much that is commonplace in computing today: concurrency, network
 protocols, database access, graphics, windows, and so on. See Appendix B for information about
 nonstandard libraries that provide additional functionality.
This book is a reference. It is not a tutorial. Newcomers to C++
 might find portions of this book difficult to understand. Although each
 section contains some advice on idioms and the proper use of certain
 language constructs, the main focus is on the reference material. Visit
 http://www.tempest-sw.com/cpp/ for links to sites
 and lists of books that are better suited for beginners.

Structure of This Book

This book is divided into two interleaved sections that cover the
 language and the library, and a section of appendixes. Roughly speaking,
 the language is the part of C++ that does not require any additional
 #include headers or files. The
 library is the part of C++ that is declared in the standard
 headers.
Chapter 1-Chapter 7, Chapter 11, and Chapter 12 cover the language. The first
 seven chapters form the main language reference, organized by topic. It
 is customary for a programming reference to contain a formal grammar,
 and this book does so in Chapter
 12, which is organized alphabetically by keyword (with some
 additional entries for major syntactic categories, such as expressions).
 Chapter 11 is a reference for the
 preprocessor.
Chapter 13 is the library
 reference, organized alphabetically by header. Chapter 8-Chapter 10 present an overview of the
 library and introduce the topics that span individual headers.
Sometimes, information is duplicated, especially in Chapter 12. My goal has been to present
 information when you need it, where you need it. I tried to balance the
 need for a single, clear, complete description of each language feature
 with the desire to reduce the number of cross references you must chase
 before you can understand that language feature.
Here are more detailed descriptions of each chapter.
Chapter 1 describes the basic
 rules for the C++ language: character sets, tokens, literals, and so
 on.
Chapter 2 describes how
 objects, types, and namespaces are declared and how names are looked
 up.
Chapter 3 describes
 operators, precedence, and type casts.
Chapter 4 describes all the
 C++ statements.
Chapter 5 describes function
 declarations and definitions, overload resolution, argument passing, and
 related topics.
Chapter 6 describes classes
 (and unions and structures), members, virtual functions, inheritance,
 accessibility, and multiple inheritance.
Chapter 7 describes class and
 function template declarations, definitions, instantiations,
 specializations, and how templates are used.
Chapter 8 introduces the
 standard library and discusses some overarching topics, such as traits
 and allocators.
Chapter 9 introduces the I/O
 portion of the standard library. Topics include formatted and
 unformatted I/O, stream buffers, and manipulators.
Chapter 10 introduces the
 suite of container class templates, their iterators, and generic
 algorithms. This is the portion of the library that has traditionally
 been called the Standard Template Library (STL).
Chapter 11 is an
 alphabetical reference for the preprocessor, which is part of the
 language, but with a distinct set of syntactic and semantic
 rules.
Chapter 12 is an
 alphabetical reference for the language and grammar. Backus-Naur Form
 (BNF) syntax descriptions are given for each keyword and other language
 elements, with pointers to the first seven chapters for the main
 reference material.
Chapter 13 is a reference
 for the entire standard library, organized alphabetically by header, and
 alphabetically by name within each header section.
Appendix A describes ways
 that some compilers extend the language: to satisfy customer need, to
 meet platform-specific requirements, and so on.
Appendix B describes a few
 interesting, open source C++ projects. You can find information about
 additional projects on this book's web site (http://www.tempest-sw.com/cpp/).
The Glossary defines some
 words and phrases used throughout this book and in the C++
 community.

About the Examples

Whenever possible, the examples in this book are complete,
 compilable programs. You can tell which examples fall into this category
 because they start with #include
 directives and contain a main()
 function. You can download these examples as text files from the book's
 web site at http://www.tempest-sw.com/cpp/ or from
 O'Reilly's catalog page for this book: http://www.oreilly.com/catalog/cplsian/.
Most examples are shortened to eliminate excess code that might
 interfere with the clarity of the example. In particular, these examples
 are fragments that lack a main
 function. Sometimes, an ellipsis indicates missing code, such as a
 function body. In other cases, the omissions are clear from the context.
 Most abbreviated examples have complete and compilable versions
 available for download.
All of the examples have been checked with several different
 compilers, including Comeau Computing's compiler with the Dinkumware
 standard library (widely acknowledged as the most complete and correct
 implementations of the C++ standard). Not all compilers can compile all
 the examples due to limitations and bugs in the compilers and libraries.
 For best results, try to work with the latest version of your compiler.
 Recent releases of several major compilers have made dramatic progress
 toward conformance with the standard. When possible, I have tried to
 alter the example files to work around the bugs without interfering with
 the intent of the example.
I have checked all the examples with the following
 compilers:
	Linux
		Borland Kylix 3.0

	Comeau 4.3.0.1

	GNU 3.2

	Intel 7.0

	Microsoft Windows
		Borland C++ Builder 6.4

	Metrowerks CodeWarrior 8.3

	Microsoft Visual Studio.NET 7.0

Conventions Used in This Book

This book uses the following conventions:
	Constant Width
	Used for identifiers and symbols, including all keywords. In
 the language reference, constant width shows syntax elements that
 must be used exactly as shown. For example, the if keyword, parentheses, and else keyword must be used exactly as
 follows:
if (condition) statement else statement
A function name that is followed by parentheses refers to a
 function call, typically to obtain the function result. The
 function name without the parentheses refers to the function in
 more general terms. For example:
The empty function
 returns true if the container
 is empty, e.g., size() ==
 0.

	Constant Width Italic
	Used in the language reference chapters for syntax elements
 that must be replaced by your code. In the previous example, you
 must supply the condition and the two
 statements.

	Constant Width
 Bold
	Used in examples to highlight key lines, and in complex
 declarations to highlight the name being declared. In some C++
 declarations, especially for templates, the name gets buried in
 the middle of the declaration and can be hard to spot.

	Italic
	Used in the language reference for nonterminal syntax
 elements. Italic is also used for filenames, URLs, emphasis, and
 for the first use of a technical term.

	. . .
	Indicates statements and declarations that have been removed
 for the sake of brevity and clarity. An ellipsis is also a symbol
 in C++, but context and comments make it clear when an ellipsis is
 a language element and when it represents omitted code.

	[first, last)
	Indicates a range of values from first to last, including first and excluding last.

Tip
This icon indicates a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

[image: image with no caption]

This icon indicates an issue or feature that might affect the
 portability of your code. In particular, some aspects of C++ are
 implementation-defined, such as the size of an integer, which allows the
 compiler or library author to decide what the best implementation should
 be.

For More Information

Visit the C++ in a Nutshell web site at
 http://www.tempest-sw.com/cpp/ to find links to
 newsgroups, frequently asked questions, tool and library web sites, free
 compilers, open source projects, other C++ books, and more. The web site
 also has information about the ongoing activities of the C++
 Standardization Committee.
If you are a glutton for punishment, or if you need more details
 than are provided in this book, you might want to read the actual
 standard: ISO/IEC 14882:1998(E), Programming
 Languages—C++. The standard is not easy to read, and even its
 authors sometimes disagree on its interpretation. Nonetheless, it is the
 one specification for the C++ language, and all other books, including
 this one, are derivatives, subject to error and misinterpretation. The
 C++ standard library includes the entire C standard library, which is
 documented in ISO/IEC 9899:1990, Programming
 Languages—C, plus Amendment 1:1995(E), C Integrity.
The C and C++ standards are evolving documents; the committees
 meet regularly to review defect reports and proposals for language
 extensions. As I write this, the C++ standard committee has approved a
 technical corrigendum (TC1), which is an update to the C++ standard that
 corrects defects and removes ambiguities in the original standard. TC1
 is winding its way through the ISO bureaucracy. By the time you read
 this, TC1 will have probably completed its journey and been added to the
 official standard for the C++ programming language. The book's web site
 has up-to-date information about the status of the C++ and C
 standards.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O'Reilly & Associates, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the United States or Canada)
	(707) 829-0515 (international/local)
	(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples,
 or any additional information. You can access this page at:
	http://www.oreilly.com/catalog/cplsian

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about books, conferences, Resource Centers,
 and the O'Reilly Network, see the O'Reilly web site at:
	http://www.oreilly.com

Acknowledgments

Special thanks go to my technical reviewers: Ron Natalie, Uwe
 Schnitker, and Bruce Krell. Their corrections and suggestions have
 greatly improved this book.
I posted early drafts of this book to my web site, and solicited
 comments. David Cattarin and Roshan Naik were especially helpful. I
 thank everyone who also provided comments: David Abrahams, Frank Brown,
 Cyrille Chepelov, Jerry Coffin, Buster Copley, Gerhard Doeppert, Nicolas
 Fleury, Jarrod Hollingworth, James Kanze, Michael Kochetkov, Clare
 Macrae, Thomas Maeder, Brian McAndrews, Jeff Raft, Allan Ramacher,
 Torsten Robitzki, and John Spicer.
Thanks to Comeau Computing, Dinkumware, Metrowerks, Borland, and
 Microsoft for giving me free versions of their compilers and libraries
 to use while preparing this book. Thanks also to Intel for making its
 compiler freely available to download for evaluation purposes. I thank
 VMware for licenses to its virtual machine software.
I thank my editor, Jonathan Gennick, for his patience and
 advice.
Most of all, I thank my wife, Cheryl, and my son, Arthur, for
 their love and support, without which I could not have written this
 book.

Chapter 1. Language Basics

C++ is a case-sensitive, free-form programming language that supports
 procedural, object-oriented, and generic programming. This chapter
 presents the basic rules for the language, such as lexical rules and basic
 syntax elements.

Compilation Steps

A C++ source file undergoes many transformations on its
 way to becoming an executable program. The initial steps involve
 processing all the #include and
 conditional preprocessing directives to produce what the standard calls
 a translation unit. Translation units are important
 because they have no dependencies on other files. Nonetheless,
 programmers still speak in terms of source files, even if they actually
 mean translation units, so this book uses the phrase
 source file because it is
 familiar to most readers. The term "translation" encompasses compilation
 and interpretation, although most C++ translators are compilers. This
 section discusses how C++ reads and compiles (translates) source files
 (translation units).
A C++ program can be made from many source files, and each file
 can be compiled separately. Conceptually, the compilation process has
 several steps (although a compiler can merge or otherwise modify steps
 if it can do so without affecting the observable results):
	Read physical characters from the source file and translate
 the characters to the source character set (described in Section 1.4 later in this
 chapter). The source "file" is not necessarily a physical file; an
 implementation might, for example, retrieve the source from a
 database. Trigraph sequences are reduced to their equivalent
 characters (see Section
 1.6 later in this chapter). Each native end-of-line character
 or character sequence is replaced by a newline character.

	If a backslash character is followed immediately by a
 newline character, delete the backslash and the newline. The
 backslash/newline combination must not fall in the middle of a
 universal character (e.g., \u1234) and must not be at the end of a
 file. It can be used in a character or string literal, or to
 continue a preprocessor directive or one-line comment on multiple
 lines. A non-empty file must end with a newline.

	Partition the source into preprocessor tokens separated by
 whitespace and comments. A preprocessor token is slightly different
 from a compiler token (see the next section, Section 1.2). A preprocessor
 token can be a header name, identifier, number, character literal,
 string literal, symbol, or miscellaneous character. Each
 preprocessor token is the longest sequence of characters that can
 make up a legal token, regardless of what comes after the
 token.

	Perform preprocessing and expand macros. All #include files are processed in the manner
 described in steps 1-4. For more information about preprocessing,
 see Chapter 11.

	Convert character and string literals to the execution
 character set.

	Concatenate adjacent string literals. Narrow string literals
 are concatenated with narrow string literals. Wide string literals
 are concatenated with wide string literals. Mixing narrow and wide
 string literals results in an error.

	Perform the main compilation.

	Combine compiled files. For each file, all required template
 instantiations (see Chapter 7)
 are identified, and the necessary template definitions are located
 and compiled.

	Resolve external references. The compiled files are linked to
 produce an executable image.

Tokens

All source code is divided into a stream of
 tokens . The compiler tries to collect as many contiguous
 characters as it can to build a valid token. (This is sometimes called
 the "max munch" rule.) It stops when the next character it would read
 cannot possibly be part of the token it is reading.
A token can be an identifier, a reserved keyword, a literal, or an
 operator or punctuation symbol. Each kind of token is described later in
 this section.
Step 3 of the compilation process reads
 preprocessor tokens. These
 tokens are converted automatically to ordinary compiler tokens as part
 of the main compilation in Step 7. The differences between a preprocessor token and a compiler
 token are small:
	The preprocessor and the compiler might use different
 encodings for character and string literals.

	The compiler treats integer and floating-point literals
 differently; the preprocessor does not.

	The preprocessor recognizes < header
 > as a single token (for
 #include directives); the
 compiler does not.

Identifiers

An identifier is a name that you define or that is defined
 in a library. An identifier begins with a nondigit character and is
 followed by any number of digits and nondigits. A nondigit character
 is a letter, an underscore, or one of a set of universal characters.
 The exact set of nondigit universal characters is defined in the C++ standard and
 in ISO/IEC PDTR 10176. Basically, this set contains the universal
 characters that represent letters. Most programmers restrict
 themselves to the characters a...z,
 A...Z, and underscore, but the standard permits
 letters in other languages.
[image: image with no caption]

Not all compilers support universal characters in
 identifiers.
Certain identifiers are reserved for use by the standard library:
	Any identifier that contains two consecutive underscores
 (like_ _this) is reserved, that
 is, you cannot use such an identifier for macros, class members,
 global objects, or anything else.

	Any identifier that starts with an underscore, followed
 by a capital letter (A-Z) is reserved.

	Any identifier that starts with an underscore is reserved in
 the global namespace. You can use such names in other contexts
 (i.e., class members and local names).

	The C standard reserves some identifiers for future use.
 These identifiers fall into two categories: function names and
 macro names. Function names are reserved and should not be used as
 global function or object names; you should also avoid using them
 as "C" linkage names in any
 namespace. Note that the C standard reserves these names
 regardless of which headers you #include. The reserved function names
 are:
	is followed by a
 lowercase letter, such as isblank

	mem followed by a
 lowercase letter, such as memxyz

	str followed by a
 lowercase letter, such as strtof

	to followed by a
 lowercase letter, such as toxyz

	wcs followed by a
 lowercase letter, such as wcstof

	In <cmath> with
 f or l appended, such as cosf and sinl

	Macro names are reserved in all contexts. Do not use any of
 the following reserved macro names:
	Identifiers that start with E followed by a digit or an
 uppercase letter

	Identifiers that start with LC_ followed by an uppercase
 letter

	Identifiers that start with SIG or SIG_ followed by an uppercase
 letter

Keywords

[image: image with no caption]

A keyword is an identifier that is reserved in all contexts for
 special use by the language. The following is a list of all the
 reserved keywords. (Note that some compilers do not implement all of
 the reserved keywords; these compilers allow you to use
 certain keywords as identifiers. See Section 1.5 later in this
 chapter for more information.)
	 and

	 continue

	 goto

	 public

	 try

	 and_eq

	 default

	 if

	 register

	 typedef

	 asm

	 delete

	 inline

	 reintepret_cast
	 typeid

	 auto

	 do

	 int

	 return

	 typename

	 bitand

	 double

	 long

	 short

	 union

	 bitor

	 dynamic_cast

	 mutable

	 signed

	 unsigned

	 bool

	 else

	 namespace

	 sizeof

	 using

	 break

	 enum

	 new

	 static

	 virtual

	 case

	 explicit

	 not

	 static_cast

	 void

	 catch

	 export

	 not_eq

	 struct

	 volatile

	 char

	 extern

	 operator

	 switch

	 wchar_t

	 class

	 false

	 or

	 template

	 while

	 compl

	 float

	 or_eq

	 this

	 xor

	 const

	 for

	 private

	 throw

	 xor_eq

	 const_cast

	 friend

	 protected

	 true

	

Literals

A literal is an integer, floating-point, Boolean, character, or
 string constant.
Integer literals

An integer literal can be a decimal, octal, or
 hexadecimal constant. A prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal. An
 integer literal can also have a suffix that is a combination of
 U and L, for unsigned and long, respectively. The suffix can be
 uppercase or lowercase and can be in any order. The suffix and
 prefix are interpreted as follows:
	If the suffix is UL (or
 ul, LU, etc.), the literal's type is
 unsigned long.

	If the suffix is L, the
 literal's type is long or
 unsigned long, whichever fits first. (That is,
 if the value fits in a long,
 the type is long; otherwise,
 the type is unsigned long. An error results if the value
 does not fit in an unsigned
 long.)

	If the suffix is U, the
 type is unsigned or unsigned long, whichever fits first.

	Without a suffix, a decimal integer has type int or long, whichever fits first.

	An octal or hexadecimal literal has type int, unsigned, long, or unsigned long, whichever fits first.

[image: image with no caption]

Some compilers offer other suffixes as extensions to the
 standard. See Appendix A for
 examples.
Here are some examples of integer literals:
314 // Legal
314u // Legal
314LU // Legal
0xFeeL // Legal
0ul // Legal
078 // Illegal: 8 is not an octal digit
032UU // Illegal: cannot repeat a suffix

Floating-point literals

A floating-point literal has an integer part, a decimal
 point, a fractional part, and an exponent part. You must include the
 decimal point, the exponent, or both. You must include the integer
 part, the fractional part, or both. The signed exponent is
 introduced by e or E. The literal's type is double unless there is a suffix: F for type float and L for long double. The suffix can be uppercase or
 lowercase.
Here are some examples of floating-point literals:
3.14159 // Legal
.314159F // Legal
314159E-5L // Legal
314. // Legal
314E // Illegal: incomplete exponent
314f // Illegal: no decimal or exponent
.e24 // Illegal: missing integer or fraction

Boolean literals

There are two Boolean literals, both keywords: true and false.

Character literals

Character literals are enclosed in single quotes. If
 the literal begins with L
 (uppercase only), it is a wide character literal (e.g., L'x'). Otherwise, it is a narrow character
 literal (e.g., 'x'). Narrow
 characters are used more frequently than wide characters, so the
 "narrow" adjective is usually dropped.
[image: image with no caption]

The value of a narrow or wide character literal is the value
 of the character's encoding in the execution character set. If the
 literal contains more than one character, the literal value is
 implementation-defined. Note that a character might have different
 encodings in different locales. Consult your compiler's
 documentation to learn which encoding it uses for character
 literals.
A narrow character literal with a single character has
 type char. With more than one
 character, the type is int (e.g.,
 'abc'). The type of a wide character literal is always wchar_t.
Tip
In C, a character literal always has type int. C++ changed the type of character
 literals to support overloading, especially for I/O (e.g.,
 cout << '\n' starts a new line and does not print
 the integer value of the newline character).

[image: image with no caption]

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\b'), or a universal character (e.g.,
 '\u03C0'). Table 1-1 lists the possible
 escape sequences. Note that you must use an escape sequence for a
 backslash or single-quote character literal. Using an escape for a
 double quote or question mark is optional. Only the characters shown
 in Table 1-1 are
 allowed in an escape sequence. (Some compilers extend the standard
 and recognize other escape sequences.)
Table 1-1. Character escape sequences
	Escape sequence
	Meaning

	 \\

	 \
 character

	 \'
	' character

	 \"
	" character

	 \?

	 ? character
 (used to avoid creating a trigraph, e.g., \?\?-)

	 \a

	Alert or bell

	 \b

	Backspace

	 \f

	Form feed

	 \n

	Newline

	 \r

	Carriage return

	 \t

	Horizontal tab

	 \v

	Vertical tab

	 \
 ooo
	Octal number of one to three
 digits

	 \x
 hh . . .
	Hexadecimal number of one or more
 digits

String literals

String literals are enclosed in double quotes. A
 string contains characters that are similar to character literals:
 plain characters, escape sequences, and universal characters. A
 string cannot cross a line boundary in the source file, but it can
 contain escaped line endings (backslash followed by newline).
[image: image with no caption]

A wide string literal is prefaced with L (always uppercase). In a wide string
 literal, a single universal character always maps to a single wide
 character. In a narrow string literal, the implementation determines
 whether a universal character maps to one or multiple characters
 (called a multibyte character). See Chapter 8 for more information on
 multibyte characters.
Two adjacent string literals (possibly separated by
 whitespace, including new lines) are concatenated at compile time
 into a single string. This is often a convenient way to break a long
 string across multiple lines. Do not try to combine a narrow string
 with a wide string in this way.
After concatenating adjacent strings, the null character
 ('\0' or L'\0') is automatically appended after the
 last character in the string literal.
Here are some examples of string literals. Note that the first
 three form identical strings.
"hello, reader"
"hello, \
reader"
"hello, " "rea" "der"

"Alert: \a; ASCII tab: \010; portable tab: \t"
"illegal: unterminated string
L"string with \"quotes\""
A string literal's type is an array of const char. For example, "string"'s type is const char[7]. Wide string literals are arrays
 of const wchar_t. All string literals have static
 lifetimes (see Chapter 2 for
 more information about lifetimes).
As with an array of const
 anything, the compiler can automatically convert the array to a
 pointer to the array's first element. You can, for example, assign a
 string literal to a suitable pointer object:
const char* ptr;
ptr = "string";
As a special case, you can also convert a string literal to a
 non-const pointer. Attempting to
 modify the string results in undefined behavior. This conversion is
 deprecated, and well-written code does not rely on it.

Symbols

Nonalphabetic symbols are used as operators and as punctuation (e.g.,
 statement terminators). Some symbols are made of multiple adjacent
 characters. The following are all the symbols used for operators and
 punctuation:
	 {

	 (

	 %:
	.
	 ^

	.
	 =

	 !=

	 -=

	 &=

	 }

)

	 %:%:
	 +

	 &

	 .*

	 ==

	 <<

	 +=

	 |=

	 [

	 <:
	 ;

	 -

	 |

	 ->

	 <

	 >>

	 *=

	 ^=

]

	 :>

	:
	 *

	 ?

	 ->*

	 >

	 <<=

	 /=

	 ++

	 #

	 <%

	 ...
	 /

	:
	 ~

	 <=

	 >>=

	 %=

	 --

	 ##

	 %>

	,
	 %

	 ::
	 !

	 >=

	 	 	

You cannot insert whitespace between characters that make up a symbol, and
 C++ always collects as many characters as it can to form a symbol
 before trying to interpret the symbol. Thus, an expression such as
 x+++y is read as x ++ + y. A common error when first using
 templates is to omit a space between closing angle brackets in a
 nested template instantiation. The following is an example with that
 space:
std::list<std::vector<int> > list;↑
 Note the space here.
The example is incorrect without the space character because the
 adjacent greater than signs would be interpreted as a single
 right-shift operator, not as two separate closing angle brackets.
 Another, slightly less common, error is instantiating a template with
 a template argument that uses the global scope operators:
::std::list< ::std::list<int> > list;↑
 ↑
 Space here and here
Again, a space is needed, this time between the angle-bracket
 (<) and the scope operator
 (::), to prevent the compiler from
 seeing the first token as <:
 rather than <. The <: token is an alternative token, as
 described in Section 1.5
 later in this chapter.

Comments

Comments start with /*
 and end with */. These comments do
 not nest. For example:
/* this is a comment /* still a comment */
int not_in_a_comment;
A comment can also start with //, extending to the end of the line. For
 example:
const int max_widget = 42; // Largest size of a widget
Within a /* and */ comment, // characters have no special meaning. Within
 a // comment, /* and */
 have no special meaning. Thus, you can "nest" one kind of comment within
 the other kind. For example:
/* Comment out a block of code:
const int max_widget = 42; // Largest size of a widget
*/

///* Inhibit the start of a block comment
const int max_widget = 10; // Testing smaller widget limit
//*/
A comment is treated as whitespace. For example, str/*comment*/ing describes two separate
 tokens, str and ing.

Character Sets

[image: image with no caption]

The character sets that C++ uses at compile time and runtime
 are implementation-defined. A source file is read as a sequence of
 characters in the physical character set. When a
 source file is read, the physical characters are mapped to the
 compile-time character set, which is called the source
 character set. The mapping is implementation-defined, but
 many implementations use the same character set.
At the very least, the source character set always includes the characters listed
 below. The numeric values of these characters are
 implementation-defined.
	Space
	Horizontal tab
	Vertical tab
	Form feed
	Newline
	a ... z
	A ... Z
	0 ... 9
	_ { } [] # () < > % : ; . ? *
 + - / ^ & | ~ ! = , \ " '

The runtime character set, called the execution
 character set , might be different from the source character set (though
 it is often the same). If the character sets are different, the compiler
 automatically converts all character and string literals from the source
 character set to the execution character set. The basic
 execution character set includes all the characters in the
 source character set, plus the characters listed below. The execution
 character set is a superset of the basic execution character set;
 additional characters are implemented-defined and might vary depending
 on locale.
	Alert
	Backspace
	Carriage return
	Null

Conceptually, source characters are mapped to Unicode (ISO/IEC
 10646) and from Unicode to the execution character set. You can specify
 any Unicode character in the source file as a
 universal character in the form \u
 XXXX (lowercase u) or \U
 XXXXXXXX (uppercase U), in which 0000 XXXX or
 XXXXXXXX is the hexadecimal value for the
 character. Note that you must use exactly four or eight hexadecimal
 digits. You cannot use a universal character to specify any character
 that is in the source character set or in the range 0-0x20 or 0x7F-0x9F
 (inclusive).
[image: image with no caption]

How universal characters map to the execution character set is
 implementation-defined. Some compilers don't recognize universal
 characters at all, or support them only in limited contexts.
Typically, you would not write a universal character manually.
 Instead, you might use a source editor that lets you edit source code in
 any language, and the editor would store source files in a manner that
 is appropriate for a particular compiler. When necessary, the editor
 would write universal character names for characters that fall outside
 the compiler's source character set. That way, you might write the
 following in the editor:
const long double π = 3.1415926535897932385L;
and the editor might write the following in the source
 file:
const long double \u03c0 = 3.1415926535897932385L;
The numerical values for characters in all character sets are
 implementation-defined, with the following restrictions:
	The null character always has a value that contains all zero
 bits.

	The digit characters have sequential values, starting with
 0.

The space, horizontal tab, vertical tab, form feed, and newline
 characters are called whitespace characters
 . In most cases, whitespace characters only separate
 tokens and are otherwise ignored. (Comments are like whitespace; see
 Section 1.3 earlier in this
 chapter.)

Alternative Tokens

Some symbols have multiple representations, as shown in Table 1-2. These
 alternative tokens have no special meaning in a
 character or string literal. They are merely alternative representations
 of common symbols. Most programmers do not use alternative tokens,
 especially the nonalphabetic ones. Some programmers find and, or,
 and not to be easier to read and
 understand than &&, ||, and !.
Table 1-2. Alternative tokens
	Alternative token
	Primary token

	 <%

	 {

	 %>

	 }

	 <:
	 [

	 :>

]

	 %:
	 #

	 %:%:
	 ##

	 and

	 &&

	 and_eq

	 &=

	 bitand

	 &

	 bitor

	 |

	 compl

	 ~

	 not

	 !

	 not_eq

	 !=

	 or

	 ||

	 or_eq

	 |=

	 xor

	 ^

	 xor_eq

	 ^=

[image: image with no caption]

Many compilers do not support some or even all of the alternative
 tokens. In particular, some compilers do not treat alternative keywords
 (and, or, etc.) as reserved keywords, but allow you
 to use them as identifiers. Fortunately, this problem is becoming less
 common as more vendors hew closer to the standard. Compilers that do not
 support the alternative keywords might provide them as macros in the
 <ciso646> header. See Chapter 13 for more information.

Trigraphs

A few characters have an alternative representation, called a
 trigraph sequence. A trigraph is a three-character sequence that represents a single
 character. The sequence always starts with two question marks. The third
 character determines which character the sequence represents. All the
 trigraph sequences are shown in Table 1-3. If the third character
 is not one of those in the table, the sequence is not a trigraph and is
 left alone. For example, the characters ???- represent the two characters ?~. Note that trigraphs are expanded anywhere
 they appear, including within string literals and character literals, in
 comments, and in preprocessor directives.
Table 1-3. Trigraph sequences
	Trigraph
	Replacement

	 ??=

	 #

	 ??/

	 \

	 ??'
	 ^

	 ??(

	 [

	 ??)

]

	 ??!

	 |

	 ??<

	 {

	 ??>

	 }

	 ??-

	 ~

[image: image with no caption]

Not all compilers support trigraphs. Some compilers require an
 extra switch or option. Others use a separate program to convert all
 trigraphs to their equivalent characters.
Do not use trigraphs. They are confusing to read and use. If you
 ever write multiple, adjacent question marks, make sure you are not
 accidentally writing a trigraph. For example:
std::cout << "What do you mean??!!\n";
To avoid the trigraph interpretation, separate the string
 literal:
std::cout << "What do you mean?" "?!!\n";
or escape the question marks:
std::cout << "What do you mean\?\?!!\n";

Chapter 2. Declarations

A C++ source file contains a series of zero or more
 declarations . A declaration can be a function, type, object (constant or
 variable), namespace, template, or a related entity. The first part of
 this chapter covers general topics that pertain to all declarations. The
 second part discusses types, objects, and namespaces specifically.
 Function, class, and template declarations each get their own chapters:
 Chapter 5 covers functions; Chapter 6 covers classes and friends; and
 Chapter 7 covers template
 declarations, specializations, and instantiations.
The syntax descriptions in this chapter are informal. See Chapter 12 for a precise BNF
 grammar.

Declarations and Definitions

A declaration is the all-encompassing term for anything that
 tells the compiler about an identifier. In order to use an identifier,
 the compiler must know what it means: is it a type name, a variable
 name, a function name, or something else? Therefore, a source file must
 contain a declaration (directly or in an #include file) for every name it uses.
Definitions

A definition defines the storage, value, body, or contents of a
 declaration. The difference between a declaration and a definition is
 that a declaration tells you an entity's name and the external view of
 the entity, such as an object's type or a function's parameters, and a
 definition provides the internal workings of the entity: the storage
 and initial value of an object, a function body, and so on.
In a single source file, there can be at most one definition of
 an entity. In an entire program, there must be exactly one definition
 of each function or object used in the program, except for inline
 functions; an inline function must be defined in every source file
 that uses the function, and the definitions must all be
 identical.
A program can have more than one definition of a given class, enumeration, inline
 function, or template, provided the definitions are in separate source
 files, and each source file has the same definition.
These rules are known as the One Definition Rules, or ODR.
Before you can use an entity (e.g., calling a function or
 referring to an object), the compiler needs the entity's declaration,
 but not necessarily its definition. You can use a class that has an
 incomplete declaration in some contexts, but usually you need a
 complete definition. (See Chapter
 6 for details about incomplete classes.) The complete program
 needs definitions for all the declared entities, but those definitions
 can often reside in separate source files. The convention is to place
 the declarations for classes, functions, and global objects in a
 header file (whose name typically ends with .h or .hpp), and their definitions in a source
 file (whose name typically ends with .cpp, .c, or .C). Any source file that needs to use
 those entities must #include the
 header file. Templates have additional complications concerning
 declarations and definitions. (See Chapter 7 for details.)
In this and subsequent chapters, the description of each entity
 states whether the entity (type, variable, class, function, etc.) has
 separate definitions and declarations, states when definitions are
 required, and outlines any other rules pertaining to declarations and
 definitions.

Ambiguity

Some language constructs can look like a declaration or an
 expression. Such ambiguities are always resolved in favor of
 declarations. A related rule is that a declaration that is a type
 specifier followed by a name and empty parentheses is a declaration of
 a function that takes no arguments, not a declaration of an object
 with an empty initializer. (See Section 2.6.3 later in this
 chapter for more information about empty initializers.) Example 2-1 shows some examples of
 how declarations are interpreted.
Example 2-1. Disambiguating declarations
#include <iostream>
#include <ostream>

class T
{
public:
 T() { std::cout << "T()\n"; }
 T(int) { std::cout << "T(int)\n"; }
};

int a, x;

int main()
{
 T(a); // Variable named a of type T, not an invocation of the T(int)
 // constructor
 T b(); // Function named b of no arguments, not a variable named b of
 // type T
 T c(T(x)); // Declaration of a function named c, with one argument of
 // type T
}

The last item in Example
 2-1 deserves further explanation. The function parameter
 T(x) could be interpreted as an
 expression: constructing an instance of T with the argument x. Or it could be interpreted as a
 declaration of a function parameter of type T named x, with a redundant set of parentheses
 around the parameter name. According to the disambiguation rule, it
 must be a declaration, not an expression. This means that the entire
 declaration cannot be the declaration of an object named c, whose initializer is the expression
 T(x). Instead, it must be the
 declaration of a function named c,
 whose parameter is of type T, named
 x.
If your intention is to declare an object, not a function, the simplest way to do this is
 not to use the function-call style of type cast. Instead, use a
 keyword cast expression, such as static_cast<>. (See Chapter 3 for more information about
 type casts.) For example:
T c(static_cast<T>(x)); // Declares an object named c whose initial value is
 // x, cast to type T
This problem can crop up when you least expect it. For example,
 suppose you want to construct a vector of integers by reading a series
 of numbers from the standard input. Your first attempt might be to use
 an istream_iterator:
using namespace std;
vector<int> data(istream_iterator<int>(cin), istream_iterator<int>());
This declaration actually declares a function named data, which takes two parameters of type
 istream_iterator<int>. The
 first parameter is named cin, and
 the second is nameless. You can force the compiler to interpret the
 declaration as an object definition by enclosing one or more arguments
 in parentheses:
using namespace std;
vector<int> data((istream_iterator<int>(cin)), (istream_iterator<int>()));
or by using additional objects for the iterators:
std::istream_iterator<int> start(std::cin), end;
std::vector<int> data(start, end);

Scope

A scope is a region of source code that contains declarations.
 Every declaration adds a name to a scope, and every use of a name
 requires the compiler to identify which scope contains that name's
 declaration. Sometimes you tell the compiler exactly which scope
 contains the name, and at other times the compiler determines the scope.
 Once the compiler knows the scope, it can look up the name to learn what
 the name is (object, function, class, etc.) and how the name can be
 used. Thus, you can think of a scope as a dictionary of names mapped to
 declarations.
A scope can be named or unnamed. Classes and namespaces (see
 Section 2.7 later in this
 chapter) define named scopes. Statement blocks, function bodies, and
 unnamed namespaces define unnamed scopes. You can
 qualify a name with a scope name to tell the
 compiler where to look up the qualified name, but you cannot qualify
 names from unnamed scopes. In a typical program, most names are
 unqualified, so the compiler must determine which scope declares the
 name. (See Section 2.3 later
 in this chapter.)
Scopes can be nested, and names in inner scopes can hide names that are declared in
 outer scopes. Example
 2-2 illustrates abuses of the simple scope rules: the body of the
 for loop is a scope, in which the
 variable x is declared as an int; the if
 statement creates a nested scope, in which another declaration of
 x hides the outer x. The reference to x at the end of main is invalid: no x is in scope at that point.
Example 2-2. Names in inner scopes can hide names in outer scopes
#include <iostream>
#include <ostream>

int main()
{
 for (int i = 0; i < 100; ++i)
 {
 int x = 42;
 if (x < i)
 {
 double x = 3.14;
 std::cout << x; // Prints 3.14
 }
 std::cout << x; // Prints 42
 }
 std::cout << x; // Error: no x declared in this scope
}

At the same scope level, you cannot have multiple declarations for
 the same name, unless every declaration of that name is for an
 overloaded function or function template, or if the declarations are
 identical typedef
 declarations.
Example 2-2 shows that a
 name can be hidden by a different declaration in an inner scope level.
 Also, a class name or enumeration type name can be hidden by an object,
 function, or enumerator at the same scope level. For example:
enum x { a, b, c };
const int x = 42; // OK: hides enum x
const int a = 10; // Error: int cannot hide enumerator a
{
 const int a = 10; // OK: inner scope can hide outer a
}
Different entities (functions, statements, classes, namespaces,
 etc.) establish scope in different ways. The description of each entity
 (in this and subsequent chapters) includes scoping rules. The general
 rule of thumb is that curly braces delimit a scope region. The outermost
 scope region is outside of all the curly braces and is called the
 global scope. (See Section 2.7 later in this
 chapter.)

Name Lookup

When the compiler reads an identifier, it must look up the
 identifier to determine which declaration it comes from. In most cases,
 you can readily tell which identifier is which, but it is not always so
 simple. A small mistake can sometimes lead to code that compiles
 successfully but runs incorrectly because an identifier refers to a
 different object from the one you intended. To understand name lookup
 fully, you must first understand namespaces (covered later in this
 chapter), functions (Chapter 5),
 classes (Chapter 6), and templates
 (Chapter 7).
Name lookup takes place before overloaded functions are resolved and before the access
 level of class members is checked. If a name is found in an inner scope,
 the compiler uses that declaration, even if a better declaration would
 be found in an outer scope. Example
 2-3 shows how problems can arise when an overloaded function is declared in more than one
 namespace. The function func(int) is
 global, and func(double) is defined
 in namespace N. Inside call_func, the compiler looks up the name
 func by searching first in the local
 scope (that is, the function body), then in namespace N, where it finds func(double). Name lookup stops at that point
 because the compiler found a match. Therefore, func(3) converts 3 to type double and calls func(double). The main function brings all the overloaded
 func functions into its scope (with
 using declarations, which are
 described at the end of this chapter), so name lookup can find the best
 match, which is func(int).
Example 2-3. Name lookup trumps overload resolution
void func(int i)
{
 std::cout << "int: " << i << '\n';
}

namespace N {
 void func(double d)
 {
 std::cout << "double: " << std::showpoint << d << '\n';
 }

 void call_func()
 {
 // Even though func(int) is a better match, the compiler finds
 // N::func(double) first.
 func(3);
 }
}

int main()
{
 N::call_func(); // Prints "double: 3.000000"
 using N::func;
 using ::func;
 // Now all overloaded func()s are at the same scope level.
 func(4); // Prints "int: 4"
}

Refer to Chapter 5 for more
 information about overloaded functions and to Chapter 6 for information about access
 levels in a class declaration.
Qualified Name Lookup

 To specify a particular namespace for looking up a name,
 qualify the name using the scope operator (::).
 A name that follows the global scope operator (the unary ::) is looked up in the global scope
 (outside of all namespaces). The name must be declared in the global
 scope, not in a nested scope, or the name must have been introduced
 into the global scope by a using
 directive or using declaration (see
 Section 2.7 later in this
 chapter).
Use the global scope operator to access names that have been
 hidden by an inner scope. Example
 2-4 shows this use of the ::
 operator to access the global x
 from within main after an inner
 x has been declared.
Example 2-4. The global scope operator
#include <iostream>
#include <ostream>

int x = 42;

int main()
{
 double x = 3.1415; // Hides the global x
 std::cout << x << '\n'; // Prints 3.1415
 std::cout << ::x << '\n'; // Prints 42
}

The binary scope resolution operator (also ::) requires a namespace or class name as
 its lefthand operand, and an identifier as its righthand operand. The
 identifier is looked up in the scope of the lefthand namespace or
 class. Example 2-5 shows the
 scope resolution operator untangling a mess made by using the same
 names for different kinds of entities. Notice how the inner counter hides the outer counter, so the simple name counter refers to the int variable. The lefthand operand to
 ::, however, must be a class or
 namespace, so in the expression counter::c, the inner counter does not hide the outer counter.
Example 2-5. The scope resolution operator
#include <iostream>
#include <ostream>

namespace n {
 struct counter {
 static int n;
 };
 double n = 2.71828;
}

int n::counter::n = 42; // Defines static data member

int main()
{
 int counter = 0; // Unrelated to n::counter
 int n = 10; // Hides namespace n
 ::n::counter x; // Refers to namespace n

 std::cout << n::counter::n; // Prints 42
 std::cout << n::n; // Prints 2.71828
 std::cout << x.n; // Prints 42
 std::cout << n; // Prints 10
 std::cout << counter; // Prints 0
}

Unqualified Name Lookup

 The compiler looks up an unqualified name, that is, a
 bare identifier or operator symbol, in a series of scopes in order to
 find its declaration. The simple rule is that the innermost scope is
 searched first, and succeeding outer scopes are searched until a
 matching declaration is found. Additional named scopes are searched,
 depending on the context of the usage, as explained in this section
 and the next (Section
 2.3.3). An associated simple rule is that a name must be
 declared before it is used, reading the source file from top to
 bottom.
In a class definition, the class is searched first; the
 declaration must appear before it is used, reading the class
 definition from top to bottom. The immediate base classes are searched
 next (in declaration order), and their base classes are searched. If
 the class is nested in another class, the containing class is
 searched, and its base classes are searched. If the class is local to
 a function, the block that contains the class is searched, then
 enclosing blocks are searched. Finally, the namespaces that contain
 the class declaration are searched. That is, the namespace that
 immediately contains the class is searched first; if that namespace is
 nested within another namespace, the outer namespace is searched next,
 and so on. If the class is nested, the namespaces that contain the
 outer class or classes are searched.
In the body of a member function, names are looked up first in
 the local scope and nested scopes of the function body. Then the class
 is searched; the name can be declared anywhere in the class
 definition, even if that declaration appears after the member function
 definition. (This is an exception to the "declare-before-use" rule.)
 Such names can be used in a parameter type, a default argument value,
 or the function body, but not in the function's return type. The name
 is then looked up in the manner described earlier for other names used
 in a class definition.
Warning
The name lookup rules permit a member function to use a
 name that is declared later in the class definition, but the name
 lookup rules do not trump the syntax and parsing rules. In
 particular, the parser must be able to distinguish between names
 used as types from other names. In the following example, the name
 big is used as a type, and is
 declared as a type in the class definition, but when the compiler
 first sees the name big in the
 member function declaration, the only big in scope is the global object, so the
 compiler parses the function declaration incorrectly:
int big;
// typedef big float;
struct demo {
 void func(big); // Error
 typedef big long;
};
If the declaration int
 big were a typedef instead, the declaration of
 func would be parsed as intended,
 and name lookup would find the nested type demo::big for the parameter type of
 func. A simpler solution is to
 move the typedef big long; to the start of the class
 definition, which is the style used throughout this book.

If a class or namespace contains a using directive (described later in this
 chapter), the used class or namespace is also searched.
A friend declaration does not
 add its name to the class scope. Thus, the rules for name lookup are
 slightly different than they are for a member function. If a friend function is defined within the body of the class
 granting friendship, the name is looked up in the class scope, just as
 it would be for a member function. If the function is defined outside
 the class, the class is not searched, so the rules are the same as for
 an ordinary function. Example
 2-6 shows how the two different lookup rules can cause
 confusion.
Example 2-6. Looking up names in a friend function
class foo {
public:
 friend void bar1(foo& f) {
 ++y; // OK: refers to foo::y
 }
 friend void bar2(foo& f);
private:
 static int y;
 int x;
};

void bar2(foo& f) {
 ++y; // Error: y not in scope
}

If the friend is a member function, the function and other names
 in its declaration are looked up first in the class granting
 friendship, and, if not found, in the class that contains the friend
 declaration. (See Example
 2-7.)
Example 2-7. Declaring friend member functions
class test {
public:
 typedef int T1;
 typedef float T2;
 void f(T1);
 void f(T2);
};
class other {
 typedef char T2;
 friend void test::f(T1); // Look up f and T1 in test.
 friend void test::f(T2); // Look up f and T2 in test before looking it up in
 // other.
};

In the definition of a class member (function or static data)
 outside of the class declaration, the lookup searches the class and
 ancestor classes, but only after the class name appears in the
 declarator. Thus, the type specifier (a function's return type or the
 type of a static data member) is not looked up in the class
 declaration unless the type name is explicitly qualified. (Declarators
 and type specifiers are covered later in this chapter.) Example 2-8 shows the consequences
 of this rule.
Example 2-8. Defining members outside of a class declaration
class node {
public:
 enum color { red, black };
 node(color x);
 color toggle(color c);
private:
 color c;
 static color root_color;
};

// Must qualify node::color and node::root_color, but initializer is in the scope
// of node, so it doesn't need to be qualified

node::color node::root_color = red;

// Similarly, return type must be qualified, but parameter type does not need to
// be.
node::color node::toggle(color c)
{
 return static_cast<color>(1 - c);
}

In a template declaration, the lookup rules for unqualified
 names have an additional wrinkle that depends on the template
 parameters and arguments. See Chapter
 7 for details.

Argument-Dependent Name Lookup

 Argument-dependent name lookup is an additional rule for
 looking up unqualified function names. The rule specifies additional
 classes and namespaces to search based on the types of the function
 arguments. Argument-dependent name lookup is also known as
 Koenig lookup , named after Andrew Koenig, the creator of this lookup rule. The
 short version of the rule is that the compiler looks up a function
 name in the usual places, and in the namespaces that contain the
 user-defined types (classes and enumerations) of the function
 arguments.
The slightly longer version of the Koenig lookup rule is that
 the compiler first searches all the usual places, as described earlier
 in this chapter. If it does not find a declaration, it then searches
 an additional list of classes and namespaces. The additional list
 depends on the types used for all of the function's argument
 types:
	For a class type, the compiler searches the class and its
 namespaces, plus all ancestor classes and their namespaces.

	For a pointer to a data member, the compiler searches its
 class and its namespaces, plus all ancestor classes and their
 namespaces.

	For a function pointer or reference, the compiler searches
 the classes and namespaces associated with the return type and all
 parameter types. For a pointer or reference to a member function,
 the compiler also searches its class and all ancestor classes, and
 their namespaces.

	For a union or enumerated type, the namespace that contains
 the declaration is searched. If the type is a class member, its
 class is searched.

Example 2-9 shows a
 typical case in which argument-dependent name lookup is needed. The
 operator<< function is
 declared in the std namespace in
 the <string> header. It is
 not a member function of ostream,
 and the only way the compiler can find the operator is to search the
 std namespace. The fact that its
 arguments are in the std namespace
 tells the compiler to look there.
Example 2-9. Argument-dependent name lookup
#include <string>
#include <iostream>
#include <ostream>
int main()
{
 std::string message("Howdy!\n");
 std::cout << message;
}

Another way to look at argument-dependent lookup is to consider
 a simple class declaration. For example, with rational numbers, to
 support the customary and usual arithmetic operators, you might choose
 to declare them as member functions:
namespace numeric {
 class rational {
 ...
 rational operator+(const rational& other);
 rational operator+(int i);
 };
}
Expressions such as r1
 + 42 compile successfully because they are
 equivalent to member function calls such as r1.operator+(42), so the + operator is found as a member of rational (assuming r1 is an instance of rational). But 42 +
 r1 does not work because an integer
 cannot have a member function—e.g., 42.operator+(r1). Instead, you must declare
 an operator at the namespace level:
namespace numeric {
 class rational { ... };
 rational operator+(int i, const rational& r);
 ...
}
In order to compile the expression 42 +
 r1, the compiler needs to find
 operator+ in the numeric namespace. Without a using directive, the compiler has no way of
 knowing it needs to search the numeric namespace, but the compiler knows
 that the type of the second argument is declared in numeric. Thus, argument-dependent lookup
 allows for the everyday, expected use of overloaded
 operators.

Linkage

Every name has linkage , which determines how the compiler and linker can use the
 name. Linkage has two aspects: scope and language.
 Scope linkage dictates which scopes have
 access to an entity. Language linkage dictates an entity's
 properties that depend on programming language.
Scope Linkage

Scope linkage can be one of the following:
	Internal linkage
	A name with internal linkage can be referred to from a
 different scope within the same source file. At namespace scope
 (that is, outside of functions and classes), static declarations have internal
 linkage, as do const
 declarations that are not also extern. Data members of anonymous
 unions have internal linkage. Names in an unnamed namespace have
 internal linkage.

	External linkage
	A name with external linkage can be referred to from a
 different scope, possibly in a different source file. Functions
 and objects declared with the extern specifier have external
 linkage, as do entities declared at namespace scope that do not
 have internal linkage.

	No linkage
	A name with no linkage can be referred to only from within the
 scope where it is declared. Local declarations that are not
 extern have no
 linkage.

Language Linkage

[image: image with no caption]

Every function, function type, and object has a language linkage, which is specified as a simple
 character string. By default, the linkage is "C++". The only other standard language
 linkage is "C". All other language
 linkages and the properties associated with different language
 linkages are implementation-defined.
You can specify the language linkage for a single declaration
 (not a definition) or for a series of declarations and definitions.
 When you specify linkage for a series of declarations and definitions,
 you must enclose the series in curly braces. A language linkage
 declaration does not define a scope within the curly braces. For
 example:
extern "C" void cfunction(int);
extern "C++" {
 void cppfunc(int);
 void cppfunc(double);
}
Language linkage is part of a function's type, so typedef declarations keep track of the language linkage. When
 assigning a function to a function pointer, the function and pointer
 must have the same linkage. In the following example, funcptr is a function pointer with "C" linkage (note the need for curly braces
 because it is a definition, not a declaration). You can assign a
 "C" function to funcptr, but not a "C++" function, even though the rest of the
 function type matches.
extern "C" { void (*funcptr)(int); }
funcptr = cfunction; // OK
funcptr = cppfunc; // Error
C does not support function overloading, so there can be at most one
 function with "C" linkage of a
 given name. Even if you declare a C function in two different
 namespaces, both declarations refer to the same function, for which
 there must be a single definition.
Typically, "C" linkage is used for external functions that are written
 in C (such as those in the C standard library), but that you want to
 call from a C++ program. "C++"
 linkage is used for native C++ code. Sometimes, though, you want to
 write a function in C++ that can be called from C; in that case, you
 should declare the C++ function with "C" linkage.
[image: image with no caption]

An implementation might support other language linkages. It is
 up to the implementation to define the properties of each language:
 how parameters are passed to functions, how values are returned from
 functions, whether and how function names are altered, and so on. In
 many C++ implementations, a function with "C++" linkage has a "mangled" name, that is,
 the external name encodes the function name and the types of all its
 arguments. So the function strlen(const char*) might have an external name of
 strlen_ _FCcP, making it hard to
 call the function from a C program, which does not know about C++
 name-mangling rules. Using "C"
 linkage, the compiler might not mangle the name, exporting the
 function under the plain name of strlen, which can be called easily from
 C.

Type Declarations

 One of the hallmarks of C++ is that you can define a type
 that resembles any built-in type. Thus, if you need to define a type
 that supports arbitrary-sized integers—call it bigint—you can do so, and programmers will be
 able to use bigint objects the same
 way they use int objects.
You can define a brand new type by defining a class (see Chapter 6) or an enumeration (see Section 2.5.2 later in this
 chapter). In addition to declaring and defining new types, you can
 declare a typedef, which is a synonym
 for an existing type. Note that while the name typedef seems to be a shorthand for "type
 definition," it is actually a type declaration. (See Section 2.5.4 later in this
 chapter.)
Fundamental Types

This section lists the fundamental type specifiers that are built into the C++
 language. For types that require multiple keywords (e.g., unsigned long int), you can mix the keywords in any order,
 but the order shown in the following list is the conventional order.
 If a type specifier requires multiple words, one of which is int, the int can be omitted. If a type is signed, the signed keyword can be omitted (except in the
 case of signed char).
	bool
	Represents a Boolean or logical value. It has two possible
 values: true and false.

	[image:] char

	Represents a narrow character. Narrow character literals
 usually have type char. (If a
 narrow character literal contains multiple characters, the type
 is int.) Unlike the other
 integral types, a plain char
 is not necessarily equivalent to signed char. Instead, char can be equivalent to signed char or unsigned char, depending on the implementation.
 Regardless of the equivalence, the plain char type is distinct and separate
 from signed char and unsigned char.
All the narrow character types (char, signed char, and unsigned char) share a common size and
 representation. By definition, char is the smallest fundamental
 type—that is, sizeof(char) is
 1.

	double
	Represents a double-precision, floating-point number. The
 range and precision are at least as much as those of float. A floating-point literal has
 type double unless you use
 the F or L suffix.

	float
	Represents a single-precision, floating-point
 number.

	long double
	Represents an extended-precision, floating-point number.
 The range and precision are at least as much as those of
 double.

	signed char
	Represents a signed byte.

	signed int
	Represents an integer in a size and format that is natural
 for the host environment.

	signed long int

	Represents an integer whose range is at least as large as
 that of int.

	signed short int

	Represents an integer such that the range of an int is at least as large as the range
 of a short.

	unsigned char
	Represents an unsigned byte. Some functions, especially in
 the C library, require characters and character strings to be
 cast to unsigned char instead of plain char. (See Chapter 13 for details.)

	unsigned long int

	Represents an unsigned long integer.

	unsigned short int

	Represents an unsigned short integer.

	void
	Represents the absence of any values. You cannot declare
 an object of type void, but
 you can declare a function that "returns" void (that is, does not return a
 value), or declare a pointer to void, which can be used as a generic
 pointer. (See static_cast<> under Section 3.5.2 for
 information about casting to and from a pointer to void.)

	wchar_t
	Represents a wide character. Its representation must match
 one of the fundamental integer types. Wide character literals
 have type wchar_t.

[image: image with no caption]

The representations of the fundamental types are
 implementation-defined. The integral types (bool, char, wchar_t, int, etc.) each require a binary
 representation: signed-magnitude, ones' complement, or two's
 complement. Some types have alignment restrictions, which are also
 implementation-defined. (Note that new expressions always return pointers that
 are aligned for any type.)
The unsigned types always use
 arithmetic modulo 2n, in which n is the number of bits in the type.
 Unsigned types take up the same amount of space and have the same
 alignment requirements as their signed companion types. Nonnegative
 signed values are always a subset of the values supported by the
 equivalent unsigned type and must have the same bit representations as
 their corresponding unsigned values.
Tip
Although the size and range of the fundamental types is
 implementation-defined, the C++ standard mandates minimum
 requirements for these types. These requirements are specified in
 <climits> (for the integral
 types) and <cfloat> (for
 the floating-point types). See also <limits>, which declares templates
 for obtaining the numerical properties of each fundamental
 type.

Enumerated Types

An enumerated type declares an optional type name (the
 enumeration) and a set of zero or more identifiers
 (enumerators) that can be used as values of the type. Each
 enumerator is a constant whose type is the enumeration. For
 example:
enum logical { no, maybe, yes };
logical is_permitted = maybe;

enum color { red=1, green, blue=4 };
const color yellow = static_cast<color>(red | green);

enum zeroes { a, b = 0, c = 0 };
You can optionally specify the integral value of an enumerator
 after an equal sign (=). The value
 must be a constant of integral or enumerated type. The default value
 of the first enumerator is 0. The
 default value for any other enumerator is one more than the value of
 its predecessor (regardless of whether that value was explicitly
 specified). In a single enumeration declaration, you can have more
 than one enumerator with the same value.
The name of an enumeration is optional, but without a name you
 cannot declare use the enumeration in other declarations. Such a
 declaration is sometimes used to declare integer constants such as the
 following:
enum { init_size = 100 };
std::vector<int> data(init_size);
[image: image with no caption]

An enumerated type is a unique type. Each enumerated value has a
 corresponding integer value, and the enumerated value can be promoted
 automatically to its integer equivalent, but integers cannot be
 implicitly converted to an enumerated type. Instead, you can use
 static_cast<> to cast an
 integer to an enumeration or cast a value from one enumeration to a
 different enumeration. (See Chapter
 3 for details.)
The range of values for an enumeration is defined by the
 smallest and largest bitfields that can hold all of its enumerators.
 In more precise terms, let the largest and smallest values of the
 enumerated type be vmin
 and vmax . The largest
 enumerator is emax and
 the smallest is emin .
 Using two's complement representation (the most common integer
 format), vmax is the
 smallest 2 n - 1,
 such that vmax ≥
 max(abs(e
 min) - 1, abs(e max
)). If e
 min is not negative, v min
 = 0; otherwise, v
 min = -(v max
 + 1).
[image: image with no caption]

In other words, the range of values for an enumerated type can be larger
 than the range of enumerator values, but the exact range depends on
 the representation of integers on the host platform, so it is
 implementation-defined. All values between the largest and smallest
 enumerators are always valid, even if they do not have corresponding
 enumerators.
In the following example, the enumeration sign has the range (in two's complement) -2
 to 1. Your program might not assign any meaning to static_cast<sign>(-2), but it is
 semantically valid in a program:
enum sign { neg=-1, zero=0, pos=1 };
[image: image with no caption]

Each enumeration has an underlying integral type that can store
 all of the enumerator values. The actual underlying type is
 implementation-defined, so the size of an enumerated type is likewise
 implementation-defined.
The standard library has a type called iostate, which might be implemented as an
 enumeration. (Other implementations are also possible; see <ios> in Chapter 13 for details.) The
 enumeration has four enumerators, which can be used as bits in a
 bitmask and combined using bitwise operators:
enum iostate { goodbit=0, failbit=1, eofbit=2, badbit=4 };
The iostate enumeration can
 clearly fit in a char because the
 range of values is 0 to 7, but the compiler is free to use int, short, char, or the unsigned flavors of these types as the
 underlying type.
Because enumerations can be promoted to integers, any arithmetic
 operation can be performed on enumerated values, but the result is
 always an integer. If you want to permit certain operations that
 produce enumeration results, you must overload the operators for your
 enumerated type. For example, you might want to overload the bitwise
 operators, but not the arithmetic operators, for the iostate type in the preceding example. The
 sign type does not need any
 additional operators; the comparison operators work just fine by
 implicitly converting sign values
 to integers. Other enumerations might call for overloading ++ and --
 operators (similar to the succ
 and pred functions in Pascal).
 Example 2-10 shows how
 operators can be overloaded for enumerations.
Example 2-10. Overloading operators for enumerations
// Explicitly cast to int, to avoid infinite recursion.
inline iostate operator|(iostate a, iostate b) {
 return iostate(int(a) | int(b));
}
inline iostate& operator|=(iostate& a, iostate b) {
 a = a | b;
 return a;
}
// Repeat for &, ^, and ~.

int main()
{
 iostate err = goodbit;
 if (error())
 err |= badbit;
}

POD Types

POD is short for Plain Old Data. The fundamental types and
 enumerated types are POD types, as are pointers and arrays of POD types. You
 can declare a POD class, which is a class or struct that uses only POD types for its
 nonstatic data members. A POD union is a union of POD types.
POD types are special in several ways:
	A POD object can be copied byte for byte and retain its
 value. In particular, a POD object can be safely copied to an
 array of char or unsigned char, and when copied back, it retains
 its original value. A POD object can also be copied by calling
 memcpy; the copy has the same
 value as the original.

	A local POD object without an initializer is uninitialized,
 that is, its value is undefined. Similarly, a POD type in a
 new expression without an
 initializer is uninitialized. (A non-POD class is initialized in
 these situations by calling its default constructor.) When
 initialized with an empty initializer, a POD object is initialized
 to 0, false, or a null pointer.

	A goto statement can
 safely branch across declarations of uninitialized POD objects.
 (See Chapter 4 for more
 information.)

	A POD object can be initialized using an aggregate
 initializer. (See Section
 2.6.3 later in this chapter for details.)

See Chapter 6 for more
 information about POD types, especially POD classes.

typedef Declarations

A typedef declares a synonym for an existing type. Syntactically,
 a typedef is like declaring a
 variable, with the type name taking the place of the variable name,
 and with a typedef keyword out in
 front. More precisely, typedef is a
 specifier in a declaration, and it must be combined with type
 specifiers and optional const and
 volatile qualifiers (called
 cv-qualifiers), but no storage class specifiers.
 A list of declarators follow the specifiers. (See the next section,
 Section 2.6, for more
 information about cv qualifiers, storage class
 specifiers, and declarators.)
The declarator of a typedef
 declaration is similar to that for an object declaration, except you
 cannot have an initializer. The following are some examples of
 typedef declarations:
typedef unsigned intuint;
typedef long int *long_ptr;
typedef double matrix[3][3];
typedef void (*thunk)();
typedef signed char schar;
By convention, the typedef
 keyword appears before the type specifiers. Syntactically, typedef behaves as a storage class specifier
 (see Section 2.6.1 later
 in this chapter for more information about storage class specifiers)
 and can be mixed in any order with other type specifiers. For example,
 the following typedefs are
 identical and valid:
typedef unsigned longulong; // Conventional
long typedef int unsigned ulong; // Valid, but strange
A typedef is especially
 helpful with complicated declarations, such as function pointer
 declarations and template instantiations. They help the author who
 must concoct the declarations, and they help the reader who must later
 tease apart the morass of parentheses, asterisks, and angle brackets.
 The standard library uses them frequently. (See also Example 2-11.)
typedef std::basic_string<char, std::char_traits<char> >string;
A typedef does not create a
 new type the way class and enum do. It simply declares a new name for
 an existing type. Therefore, function declarations for which the
 parameters differ only as typedefs
 are not actually different declarations. The two function declarations
 in the following example are really two declarations of the same
 function:
typedef unsigned int uint;
uint func(uint); // Two declarations of the
unsigned func(unsigned); // same function
Similarly, because you cannot overload an operator on
 fundamental types, you cannot overload an operator on typedef synonyms for fundamental types. For
 example, both the following attempts to overload + result in an error:
int operator+(int, int); // Error
typedef int integer;
integer operator+(integer, integer); // Error
C programmers are accustomed to declaring typedefs for struct, union, and enum declarations, but such typedefs are not necessary in C++. In C, the
 struct, union, and enum names are separate from the type names,
 but in C++, the declaration of a struct, union, class, or enum adds the type to the type names.
 Nonetheless, such a typedef is
 harmless. The following example shows typedef being used to create the synonym
 point for the struct point:
struct point { int x, y; }
typedef struct point point; // Not needed in C++, but harmless
point pt;

Elaborated Type Specifier

An elaborated type specifier begins with an introductory keyword: class, enum, struct, typename , or union. The
 keyword is followed by a (possibly) qualified name of a suitable type.
 That is, enum is followed by the
 name of an enumeration, class is
 followed by a class name, struct by a struct name, and union by a union name. The typename keyword is used only in templates
 (see Chapter 7) and is followed
 by a name that must be a type name in a template instantiation.
A typename-elaborated type
 specifier is often needed in template definitions. The other
 elaborated type specifiers tend to be used in headers that must be
 compatible with C or in type names that have been hidden by other
 names. For example:
enum color { black, red };
color x; // No need for elaborated name
enum color color(); // Function hides color
enum color c = color(); // Elaborated name is needed here

Object Declarations

 An object in C++ is a region of
 storage with a type, a value, and possibly a name. In traditional
 object-oriented programming, "object" means an instance of a class, but
 in C++ the definition is slightly broader to include instances of any
 data type.
An object (variable or constant) declaration has two parts: a
 series of specifiers and a list of comma-separated
 declarators. Each declarator has a name and an
 optional initializer.
Specifiers

Each declaration begins with a series of specifiers. The series can contain a storage class,
 const and volatile qualifiers, and the object's type,
 in any order.
Storage class specifiers

A storage class specifier can specify scope linkage and
 lifetime. The storage class is optional. For function parameters and
 local variables in a function, the default storage class specifier
 is auto. For declarations at
 namespace scope, the default is usually an object with static
 lifetime and external linkage. C++ has no explicit storage class for
 such a declaration. (See Section 2.6.4 later in this
 chapter and Section 2.4
 earlier in this chapter for more information.) If you use a storage
 class specifier, you must choose only one of the following:
	 auto
	Denotes an automatic variable—that is, a variable with a
 lifetime limited to the block in which the variable is
 declared. The auto
 specifier is the default for function parameters and local
 variables, which are the only kinds of declarations for which
 it can be used, so it is rarely used explicitly.

	 extern
	Denotes an object with external linkage, which might be
 defined in a different source file. Function parameters cannot
 be extern.

	 mutable
	Denotes a data member that can be modified even if the
 containing object is const.
 See Chapter 6 for more
 information.

	 register
	Denotes an automatic variable with a hint to the
 compiler that the variable should be stored in a fast
 register. Many modern compilers ignore the register storage class because the
 compilers are better than people at determining which
 variables belong in registers.

	 static
	Denotes a variable with a static lifetime and internal
 linkage. Function parameters cannot be static.

const and volatile qualifiers

The const and volatile
 specifiers are optional. You can use either one, neither, or both in
 any order. The const and volatile keywords can be used in other
 parts of a declaration, so they are often referred to by the more
 general term qualifiers; for brevity, they are
 often referred to as cv- qualifiers.
	const
	Denotes an object that cannot be modified. A const object cannot ordinarily be
 the target of an assignment. You cannot call a non-const member function of a const object.

	volatile
	Denotes an object whose value might change unexpectedly.
 The compiler is prevented from performing optimizations that
 depend on the value not changing. For example, a variable that
 is tied to a hardware register should be volatile.

Type specifiers

Every object must have a type in the form of one or more
 type specifiers. The type specifiers can be any of the
 following:
	The name of a class, enumeration, or typedef

	An elaborated name

	A series of fundamental type specifiers

	A class definition

	An enumerated type definition

Enumerated and fundamental types are described earlier in this
 chapter in Section 2.5.
 Class types are covered in Chapter
 6. The typename keyword is
 covered in Chapter 7.

Using specifiers

Specifiers can appear in any order, but the convention
 is to list the storage class first, followed by the type specifiers,
 followed by cv-qualifiers.
extern long int const mask; // Conventional
int extern const long mask; // Valid, but strange
Many programmers prefer a different order: storage class,
 cv-qualifiers, type specifiers. More and more
 are learning to put the cv-qualifiers last,
 though. See the examples under Section 2.6.2.2 later in
 this chapter to find out why.
The convention for types that require multiple keywords is to
 place the base type last and the modifiers first:
unsigned long int x; // Conventional
int unsigned long y; // Valid, but strange
long double a; // Conventional
double long b; // Valid, but strange
You can define a class or enumerated type in the same
 declaration as an object declaration:
enum color { red, black } node_color;
However, the custom is to define the type separately, then use
 the type name in a separate object declaration:
enum color { red, black };
color node_color;

Declarators

A declarator declares a single name within a declaration.
 In a declaration, the initial specifiers apply to all the declarators
 in the declaration, but each declarator's modifiers apply only to that
 declarator. (See Section
 2.6.2.2 in this section for examples of where this distinction
 is crucial.) A declarator contains the name being declared, additional
 type information (for pointers, references, and arrays), and an
 optional initializer. Use commas to separate multiple declarators in a
 declaration. For example:
int plain_int, array_of_int[42], *pointer_to_int;
Arrays

An array is declared with a constant size specified in
 square brackets. The array size is fixed for the lifetime of the
 object and cannot change. (For an array-like container whose size
 can change at runtime, see <vector> in Chapter 13.) To declare a
 multidimensional array, use a separate set of square brackets for
 each dimension:
int point[2];
double matrix[3][4]; // A 3 × 4 matrix
You can omit the array size if there is an initializer; the
 number of initial values determines the size. In a multidimensional
 array, you can omit only the first (leftmost) size:
int data[] = { 42, 10, 3, 4 }; // data[4]
int identity[][3] = { { 1,0,0 }, {0,1,0}, {0,0,1} }; // identity[3][3]
char str[] = "hello"; // str[6], with trailing \0
In a multidimensional array, all elements are stored
 contiguously, with the rightmost index varying the fastest (usually
 called row major
 order).
When a function parameter is an array, the array's size is
 ignored, and the type is actually a pointer type, which is the
 subject of the next section. For a multidimensional array used as a
 function parameter, the first dimension is ignored, so the type is a
 pointer to an array. Because the first dimension is ignored in a
 function parameter, it is usually omitted, leaving empty square
 brackets:
long sum(long data[], size_t n);
double chi_sq(double stat[][2]);

Pointers

A pointer object stores the address of another object. A
 pointer is declared with a leading asterisk (*), optionally followed by
 cv-qualifiers, then the object name, and
 finally an optional initializer.
When reading and writing pointer declarations, be sure to keep
 track of the cv-qualifiers. The
 cv- qualifiers in the declarator apply to the pointer
 object, and the cv-qualifiers in the
 declaration's specifiers apply to the type of the pointer's target.
 For example, in the following declaration, the const is in the specifier, so the pointer
 p is a pointer to a const int. The pointer object is modifiable, but
 you cannot change the int that it
 points to. This kind of pointer is usually called a pointer to
 const.
int i, j;
int const *p = &i;
p = &j; // OK
*p = 42; // Error
When the cv-qualifier is part of the
 declarator, it modifies the pointer object. Thus, in the following
 example, the pointer p is
 const and hence not modifiable,
 but it points to a plain int,
 which can be modified. This kind of pointer is usually called a
 const pointer.
int i, j;
int * const p = &i;
p = &j; // Error
*p = 42; // OK
You can have pointers to pointers, as deep as you want, in
 which each level of pointer has its own
 cv-qualifiers. The easiest way to read a
 complicated pointer declaration is to find the declarator, work your
 way from the inside to the outside, and then from right to left. In
 this situation, it is best to put cv-qualifiers
 after the type specifiers. For example:
int x;
int *p; // Pointer to int
int * const cp = &x; // const pointer to int
int const * pc; // Pointer to const int
int const * const cpc = &x; // const pointer to const int
int *pa[10]; // Array of 10 pointers to int
int **pp; // Pointer to pointer to int
When a function parameter is declared with an array type, the
 actual type is a pointer, and at runtime the address of the first
 element of the array is passed to the function. You can use array
 syntax, but the size is ignored. For example, the following two
 declarations mean the same thing:
int sum(int data[], size_t n);
int sum(int *data, size_t n);
When using array notation for a function parameter, you can
 omit only the first dimension. For example, the following is
 valid:
void transpose(double matrix[][3]);
but the following is not valid. If the compiler does not know
 the number of columns, it does not know how to lay out the memory
 for matrix or compute array
 indices.
void transpose(double matrix[][]);
A useful convention is to use array syntax when declaring
 parameters that are used in an array-like fashion—that is, the
 parameter itself does not change, or it is dereferenced with the
 [] operator. Use pointer syntax
 for parameters that are used in pointer-like fashion—that is, the
 parameter value changes, or it is dereferenced with the unary
 * operator.

Function pointers

A function pointer is declared with an asterisk
 (*) and the function signature
 (parameter types and optional names). The declaration's specifiers
 form the function's return type. The name and asterisk must be
 enclosed in parentheses, so the asterisk is not interpreted as part
 of the return type. An optional exception specification can follow
 the signature. See Chapter 5
 for more information about function signatures and exception
 specifications.
void (*fp)(int); // fp is pointer to function that takes an int parameter
 // and returns void.
void print(int);
fp = print;
A declaration of an object with a function pointer type can be
 hard to read, so typically you declare the type separately with a
 typedef declaration, and then
 declare the object using the typedef name:
typedef void (*Function)(int);
Function fp;
fp = print;
Example 2-11 shows
 a declaration of an array of 10 function pointers, in which the
 functions return int* and take
 two parameters: a function pointer (taking an int* and returning an int*) and an integer. The declaration is
 almost unreadable without using typedef declarations for each part of the
 puzzle.
Example 2-11. Simplifying function pointer declarations with
 typedef
// Array of 10 function pointersint* (*fp[10])(int*(*)(int*), int);

// Declare a type for pointer to int.
typedef int* int_ptr;
// Declare a function pointer type for a function that takes an int_ptr parameter
// and returns an int_ptr.
typedef int_ptr (*int_ptr_func)(int_ptr);
// Declare a function pointer type for a function that returns int_ptr and takes
// two parameters: the first of type int_ptr and the second of type int.
typedef int_ptr (*func_ptr)(int_ptr_func, int);
// Declare an array of 10 func_ptrs.
func_ptr fp[10];

Member pointers

Pointers to members (data and functions) work differently from
 other pointers. The syntax for declaring a pointer to a nonstatic
 data member or a nonstatic member function requires a class name and
 scope operator before the asterisk. Pointers to members can never be
 cast to ordinary pointers, and vice versa. You cannot declare a
 reference to a member. (See Chapter
 3 for information about expressions that dereference pointers
 to members.) A pointer to a static member is an ordinary pointer, not
 a member pointer. The following are some simple examples of member
 pointers:
struct simple {
 int data;
 int func(int);
};
int simple::* p = &simple::data;
int (simple::*fp)(int) = &simple::func;
simple s;
s.*p = (s.*fp)(42);

References

A reference is a synonym for an object or function. A
 reference is declared just like a pointer, but with an ampersand
 (&) instead of an asterisk
 (*). A local or global reference
 declaration must have an initializer that specifies the target of
 the reference. Data members and function parameters, however, do not
 have initializers. You cannot declare a reference of a reference, a
 reference to a class member, a pointer to a reference, an array of
 references, or a cv-qualified reference. For
 example:
int x;
int &r = x; // Reference to int
int& const rc = x; // Error: no cv qualified references
int & &rr; // Error: no reference of reference
int& ra[10]; // Error: no arrays of reference
int*&* rp = &r; // Error: no pointer to reference
int* p = &x; // Pointer to int
int*&* pr = p; // OK: reference to pointer
A reference, unlike a pointer, cannot be made to refer
 to a different object at runtime. Assignments to a reference are
 just like assignments to the referenced object.
Because a reference cannot have
 cv-qualifiers, there is no such thing as a
 const reference. Instead, a
 reference to const is often
 called a const reference for the sake of brevity.
References are often used to bind names to temporary objects, implement
 call-by-reference for function parameters, and optimize
 call-by-value for large function parameters. The divide function in Example 2-12 demonstrates the
 first two uses. The standard library has the div function, which divides two integers
 and returns the quotient and remainder in a struct. Instead of copying the structure
 to a local object, divide binds
 the return value to a reference to const, thereby avoiding an unnecessary
 copy of the return value. Furthermore, suppose that you would rather
 have divide return the results as
 arguments. The function parameters quo and rem are references; when the divide function is called, they are bound
 to the function arguments, q and
 r, in main. When divide assigns to quo, it actually stores the value in
 q, so when divide returns, main has the quotient and
 remainder.
Example 2-12. Returning results in function arguments
#include <cstdlib>
#include <iostream>
#include <ostream>

void divide(long num, long den, long& quo, long& rem)
{
 const std::ldiv_t& result = std::div(num, den);
 quo = result.quot;
 rem = result.rem;
}

int main()
{
 long q, r;
 divide(42, 5, q, r);
 std::cout << q << " remainder " << r << '\n';
}

The other common use of references is to use a const reference for function parameters,
 especially for large objects. Function arguments are passed by value
 in C++, which requires copying the arguments. The copy operation can
 be costly for a large object, so passing a reference to a large
 object yields better performance than passing the large object
 itself. The reference parameter is bound to the actual argument,
 avoiding the unnecessary copy. If the function modifies the object,
 it would violate the call-by-value convention, so you should declare
 the reference const, which
 prevents the function from modifying the object. In this way,
 call-by-value semantics are preserved, and the performance of
 call-by-reference is improved. The standard library often uses this
 idiom. For example, operator<< for std::string uses a const reference to the string to avoid
 making unnecessary copies of the string. (See <string> in Chapter 13 for details.)
If a function parameter is a non-const reference, the argument must be an
 lvalue. A const
 reference, however, can bind to an rvalue, which permits temporary objects to be passed
 to the function, which is another characteristic of call-by-value.
 (See Chapter 3 for the
 definitions of "lvalue" and "rvalue.")
A reference must be initialized so it refers to an
 object. If a data member is a reference, it must be initialized in
 the constructor's initializer list (see Chapter 6). Function parameters that
 are references are initialized in the function call, binding each
 reference parameter to its corresponding actual argument. All other
 reference definitions must have an initializer. (An extern declaration is not a definition, so
 it doesn't take an initializer.)
A const reference can be initialized to refer to a temporary
 object. For example, if a function takes a const reference to a float as a parameter, you can pass an
 integer as an argument. The compiler converts the integer to
 float, saves the float value as an unnamed temporary
 object, and passes that temporary object as the function argument.
 The const reference is
 initialized to refer to the temporary object. After the function
 returns, the temporary object is destroyed:
void do_stuff(const float& f);
do_stuff(42);
// Equivalent to:
{
 const float unnamed = 42;
 do_stuff(unnamed);
}
The restrictions on a reference, especially to a reference
 of a reference, pose an additional challenge for template authors.
 For example, you cannot store references in a container because a
 number of container functions explicitly declare their parameters as
 references to the container's value type. (Try using std::vector<int&> with your
 compiler, and see what happens. You should see a lot of error
 messages.)
Instead, you can write a wrapper template, call it rvector<typename T>, and specialize the template
 (rvector<T&>) so
 references are stored as pointers, but all the access functions hide
 the differences. This approach requires you to duplicate the entire
 template, which is tedious. Instead, you can encapsulate the
 specialization in a traits template called Ref<> (refer to Chapter 7 for more information about
 templates and specializations, and to Chapter 8 for more information about
 traits), as shown in Example
 2-13.
Example 2-13. Encapsulating reference traits
// Ref type trait encapsulates reference type, and mapping to and from the type
// for use in a container.
template<typename T>
struct Ref {
 typedef T value_type;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T container_type;
 static reference from_container(reference x) { return x; }
 static const_reference from_container(const_reference x)
 { return x; }
 static reference to_container(reference x) { return x; }
};

template<typename T>
struct Ref<T&> {
 typedef T value_type;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T* container_type;
 static reference from_container(pointer x) { return *x; }
 static const_reference from_container(const_pointer x)
 { return *x; }
 static pointer to_container(reference x) { return &x; }
};

// rvector<> is similar to vector<>, but allows references by storing references
// as pointers.
template<typename T, typename A=std::allocator<T> >
class rvector {
 typedef typename Ref<T>::container_type container_type;
 typedef typename std::vector<container_type> vector_type;
public:
 typedef typename Ref<T>::value_type value_type;
 typedef typename Ref<T>::reference reference;
 typedef typename Ref<T>::const_reference const_reference;
 typedef typename vector_type::size_type size_type;
 . . . // Other typedefs are similar.
 class iterator { ... }; // Wraps a vector<>::iterator
 class const_iterator { ... };
 . . . // Constructors pass arguments to v.
 iterator begin() { return iterator(v.begin()); }
 iterator end() { return iterator(v.end()); }
 void push_back(typename Ref<T>::reference x) {
 v.push_back(Ref<T>::to_container(x));
 }
 reference at(size_type n) {
 return Ref<T>::from_container(v.at(n));
 }
 reference front() {
 return Ref<T>::from_container(v.front());
 }
 const_reference front() const {
 return Ref<T>::from_container(v.front());
 }
 . . . // Other members are similar.
private:
 vector_type v;
};

Initializers

An initializer supplies an initial value for an object
 being declared. You must supply an initializer for the definition of a
 reference or const object. An
 initializer is optional for other object definitions. An initializer
 is not allowed for most data members within a class definition, but an
 exception is made for static
 const data members of integral or
 enumerated type. Initializers are also not allowed for extern declarations and function parameters.
 (Default arguments for function parameters can look like initializers.
 See Chapter 5 for
 details.)
The two forms of initializers are
 assignment-like and function-like . (In the C++ standard, assignment-like is called copy
 initialization, and function-like is called direct initialization.) An
 assignment-like initializer starts with an equal sign, which is
 followed by an expression or a list of comma-separated expressions in
 curly braces. A function-like initializer is a list of one or more
 comma-separated expressions in parentheses. Note that these
 initializers look like assignment statements or function calls,
 respectively, but they are not. They are initializers. The difference
 is particularly important for classes (see Chapter 6). The following are some
 examples of initializers:
int x = 42; // Initializes x with the value 42
int y(42); // Initializes y with the value 42
int z = { 42 }; // Initializes z with the value 42
int w[4] = { 1, 2, 3, 4 }; // Initializes an array
std::complex<double> c(2.0, 3.0); // Calls complex constructor
When initializing a scalar value, the form is irrelevant. The
 initial value is converted to the desired type using the usual
 conversion rules (as described in Chapter 3).
Without an initializer, all non-POD class-type objects are
 initialized by calling their default constructors. (See Chapter 6 for more information about
 POD and non-POD classes.) All other objects with static lifetimes are
 initialized to 0; objects with
 automatic lifetimes are left uninitialized. (See Section 2.6.4 later in this
 chapter.) An uninitialized reference or const object is an error.
Function-like initializers

You must use a function-like initializer when constructing an object whose
 constructor takes two or more arguments, or when calling an explicit constructor. The usual rules for
 resolving overloaded functions apply to the choice of overloaded
 constructors. (See Chapter 5
 for more information about overloading and Chapter 6 for more information about
 constructors.) For example:
struct point {
 point(int x, int y);
 explicit point(int x);
 point();
 ...
};

point p1(42, 10); // Invokes point::point(int x, int y);
point p2(24); // Invokes point::point(int x);
point p3; // Invokes point::point();
Empty parentheses cannot be used as an initializer in an
 object's declaration, but can be used in other initialization
 contexts (namely, a constructor initializer list or as a value in an
 expression). If the type is a class type, the default constructor is
 called; otherwise, the object is initialized to 0. Example 2-14 shows an
 empty initializer. No matter what type T is, the wrapper<> template can rely on
 T() to be a meaningful default
 value.
Example 2-14. An empty initializer
template<typename T>
struct wrapper {
 wrapper() : value_(T()) {}
 explicit wrapper(const T& v) : value_(v) {}
private:
 T value_;
};

wrapper<int> i; // Initializes i with int(), or zero
enum color { black, red, green, blue };
wrapper<color> c; // Initializes c with color(), or black
wrapper<bool> b; // Initializes b with bool(), or false
wrapper<point> p; // Initializes p with point()

Assignment-like initializers

In an assignment-like initializer, if the object is of class
 type, the value to the right of the equal sign is converted to a
 temporary object of the desired type, and the first object is
 constructed by calling its copy constructor.
The generic term for an array or simple class is
 aggregate because it aggregates multiple values into a single
 object. "Simple" in this case means the class does not have any of
 the following:
	User-declared constructors

	Private or protected nonstatic data members

	Base classes

	Virtual functions

To initialize an aggregate, you can supply multiple values in
 curly braces, as described in the following sections. A POD object
 is a special kind of an aggregate. (See Section 2.5.3 earlier in
 this chapter for more information about POD types; see also Chapter 6 for information about POD
 classes.)
To initialize an aggregate of class type, supply an initial
 value for each nonstatic data member separated by commas and
 enclosed in curly braces. For nested objects, use nested curly
 braces. Values are associated with members in the order of the
 members' declarations. More values than members results in an error.
 If there are fewer values than members, the members without values
 are initialized by calling each member's default constructor or
 initializing the members to 0.
An initializer list can be empty, which means all members are
 initialized to their defaults, which is different from omitting the
 initializer entirely. The latter causes all members to be left
 uninitialized. The following example shows several different
 initializers for class-type aggregates:
struct point { double x, y, z; };
point origin = { }; // All members initialized to 0.0
point unknown; // Uninitialized, value is not known
point pt = { 1, 2, 3 }; // pt.x==1.0, pt.y==2.0, pt.z==3.0
struct line { point p1, p2; };
line vec = { { }, { 1 } }; // vec.p1 is all zero.
 // vec.p2.x==1.0, vec.p2.y==0.0, vec.p2.z==0.0
Only the first member of a union can be initialized:
union u { int value; unsigned char bytes[sizeof(int)]; };
u x = 42; // Initializes x.value

Initializing arrays

Initialize elements of an array with values separated by commas and enclosed in
 curly braces. Multidimensional arrays can be initialized by nesting
 sets of curly braces. An error results if there are more values than
 elements in the array; if an initializer has fewer values than
 elements in the array, the remaining elements in the array are
 initialized to zero values (default constructors or 0). If the declarator omits the array
 size, the size is determined by counting the number of values in the
 initializer.
An array initializer can be empty, which forces all
 elements to be initialized to 0.
 If the initializer is empty, the array size must be specified.
 Omitting the initializer entirely causes all elements of the array
 to be uninitialized (except non-POD types, which are initialized
 with their default constructors).
In the following example the size of vec is set to 3 because its initializer contains three
 elements, and the elements of zero are initialized to 0s because an empty initializer is
 used:
int vec[] = { 1, 2, 3 }; // Array of three elements
 // vec[0]==1 ... vec[2]==3
int zero[4] = { }; // Initialize to all zeros.
When initializing a multidimensional array, you can flatten the curly
 braces and initialize elements of the array in row major order (last
 index varies the fastest). For example, both id1 and id2 end up having the same values in their
 corresponding elements:
// Initialize id1 and id2 to the identity matrix.
int id1[3][3] = { { 1 }, { 0, 1 }, { 0, 0, 1 } };
int id2[3][3] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
An array of char or
 wchar_t is special because you
 can initialize such arrays with a string literal. Remember that
 every string literal has an implicit null character at the end. For
 example, the following two char
 declarations are equivalent, as are the two wchar_t declarations:
// The following two declarations are equivalent.
char str1[] = "Hello";
char str2[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

wchar_t ws1[] = L"Hello";
wchar_t ws2[] = { L'H', L'e', L'l', L'l', L'o', L'\0' };
The last expression in an initializer list can be followed by
 a comma. This is convenient when you are maintaining software and
 find that you often need to change the order of items in an
 initializer list. You don't need to treat the last element
 differently from the other elements.
const std::string keywords[] = {
 "and",
 "asm",
 ...
 "while",
 "xor",
};
Because the last item has a trailing comma, you can easily
 select the entire line containing "xor" and move it to a different location
 in the list, and you don't need to worry about fixing up the commas
 afterward.

Initializing scalars

You can initialize any scalar object with a single value in curly braces, but
 you cannot omit the value the way you can with a single-element
 array:
int x = { 42 };

Object Lifetime

Every object has a lifetime , that is, the duration from when the memory for the
 object is allocated and the object is initialized to when the object
 is destroyed and the memory is released. Object lifetimes fall into
 three categories:
	Automatic
	Objects are local to a function body or a nested block
 within a function body. The object is created when execution
 reaches the object's declaration, and the object is destroyed
 when execution leaves the block.

	Static
	Objects can be local (with the static storage class specifier) or
 global (at namespace scope). Static objects are constructed at
 most once and destroyed only if they are successfully
 constructed. Local static objects are constructed when execution
 reaches the object's declaration. Global objects are constructed
 when the program starts but before main is entered. Static objects are
 destroyed in the opposite order of their construction. For more
 information, see "The main Function" in Chapter 5.

	Dynamic
	Objects created with new expressions are dynamic. Their
 lifetimes extend until the delete expression is invoked on the
 objects' addresses. See Chapter
 3 for more information about the new and delete expressions.

Namespaces

A namespace is a named scope. By grouping related declarations in a
 namespace, you can avoid name collisions with declarations in other
 namespaces. For example, suppose you are writing a word processor, and
 you use packages that others have written, including a screen layout
 package, an equation typesetting package, and an exact-arithmetic
 package for computing printed positions to high accuracy with
 fixed-point numbers.
The equation package has a class called fraction, which represents built-up fractions
 in an equation; the arithmetic package has a class called fraction, for computing with exact rational
 numbers; and the layout package has a class called fraction for laying out fractional regions of
 a page. Without namespaces, all three names would collide, and you would not be able to use more
 than one of the three packages in a single program.
With namespaces, each class can reside in a separate namespace—for
 example, layout::fraction, eqn::fraction, and math::fraction.
Tip
C++ namespaces are similar to Java packages, with a key
 difference: in Java, classes in the same package have additional
 access rights to each other; in C++, namespaces confer no special
 access privileges.

Namespace Definitions

Define a namespace with the namespace keyword followed by an optional
 identifier (the namespace name) and zero or more declarations in curly
 braces. Namespace declarations can be discontiguous, even in separate
 source files or headers. The namespace scope is the accumulation of
 all definitions of the same namespace that the compiler has seen at
 the time it looks up a given name in the namespace. Namespaces can be
 nested. Example 2-15 shows
 a sample namespace definition.
Example 2-15. Defining a namespace
// The initial declaration
namespace numeric {
 class rational { ... }
 template<typename charT, typename traits>
 basic_ostream<charT,traits>& operator<<(
 basic_ostream<charT,traits>& out, const rational& r);
}

 . . .

// This is a second definition. It adds an operator to the namespace.
namespace numeric {
 rational operator+(const rational&, const rational&);
}

// The definition of operator+ can appear inside or outside the namespace
// definition. If it is outside, the name must be qualified with the scope
// operator.
numeric::rational numeric::operator+(const rational& r1,
 const rational& r2)
{
 . . .
}

int main()
{
 using numeric::rational;
 rational a, b;
 std::cout << a + b << '\n';
}

You can define a namespace without a name, in which case the
 compiler uses a unique, internal name. Thus, each source file's
 unnamed namespace is separate from the unnamed namespace in every
 other source file.
You can define an unnamed namespace nested within a named namespace (and vice
 versa). The compiler generates a unique, private name for the unnamed
 namespace in each unique scope. As with a named namespace, you can use
 multiple namespace definitions to compose the unnamed namespace, as shown in Example 2-16.
Example 2-16. Unnamed namespaces
#include <iostream>
#include <ostream>

namespace {
 int i = 10;
}

namespace {
 int j; // Same unnamed namespace
 namespace X {
 int i = 20; // Hides i in outer, unnamed namespace
 }
 namespace Y = X;
 int f() { return i; }
}

namespace X {
 int i = 30;
 // X::unnamed is different namespace than ::unnamed.
 namespace {
 int i = 40; // Hides ::X::i, but is inaccessible outside the unnamed
 // namespace
 int f() { return i; }
 }
}

int main()
{
 int i = X::i; // ambiguous: unnamed::X or ::X?
 std::cout << ::X::f() << '\n'; // Prints 40
 std::cout << Y::i << '\n'; // Prints 20
 std::cout << f() << '\n'; // Prints 10
}

The advantage of using an unnamed namespace is that you are
 guaranteed that all names declared in it can never clash with names in
 other source files. The disadvantage is that you cannot use the scope
 operator (::) to qualify
 identifiers in an unnamed namespace, so you must avoid name collisions
 within the same source file.
Tip
C programmers are accustomed to using global static
 declarations for names that are private to a source file. You can do
 the same in C++, but it is better to use an unnamed namespace
 because a namespace can contain any kind of declaration (including
 classes, enumerations, and templates), whereas static declarations are limited to
 functions and objects.
Declarations of static
 objects and functions at namespace scope are deprecated in
 C++.

Declarations outside of all namespaces, functions, and classes
 are implicitly declared in the global namespace. A program has a single global
 namespace, which is shared by all source files that are compiled and
 linked into the program. Declarations in the global namespace are
 typically referred to as global
 declarations. Global names can be accessed
 directly using the global scope operator (the unary ::), as described earlier in Section 2.3.1.

Namespace Aliases

A namespace alias is a synonym for an existing namespace.
 You can use an alias name to qualify names (with the :: operator) in using declarations and directives, but not
 in namespace definitions. Example
 2-17 shows some alias examples.
Example 2-17. Namespace aliases
namespace original {
 int f();
}namespace ns = original; // Alias

int ns::f() { return 42; } // OK
using ns::f; // OK

int g() { return f(); }

namespace ns { // Error: cannot use alias here
 int h();
}

A namespace alias can provide an abbreviation for an otherwise
 unwieldy namespace name. The long name might incorporate a full
 organization name, deeply nested namespaces, or version
 numbers:
namespace tempest_software_inc {
 namespace version_1 { ... }
 namespace version_2 { ... }
}
namespace tempest_1 = tempest_software_inc::version_1;
namespace tempest_2 = tempest_software_inc::version_2;

using Declarations

A using declaration imports a name from one namespace and adds
 it to the namespace that contains the using declaration. The imported name is a
 synonym for the original name. Only the declared name is added to the
 target namespace, which means using
 an enumerated type does not bring with it all the enumerated literals.
 If you want to use all the literals, each one requires its own
 using declaration.
Because a name that you reference in a using declaration is added to the current
 namespace, it might hide names in outer scopes. A using declaration can also interfere with
 local declarations of the same name.
Example 2-18 shows
 some examples of using
 declarations.
Example 2-18. using declarations
namespace numeric {
 class fraction { . . . };
 fraction operator+(int, const fraction&);
 fraction operator+(const fraction&, int);
 fraction operator+(const fraction&, const fraction&);
}

namespace eqn {
 class fraction { . . . };
 fraction operator+(int, const fraction&);
 fraction operator+(const fraction&, int);
 fraction operator+(const fraction&, const fraction&);
}

int main()
{
 numeric::fraction nf;
 eqn::fraction qf;

 nf = nf + 1; // OK: calls numeric::operator+
 qf = 1 + qf; // OK: calls eqn::operator+
 nf = nf + qf; // Error: no operator+

 using numeric::fraction;
 fraction f; // f is numeric::fraction
 f = nf + 2; // OK
 f = qf; // Error: type mismatch
 using eqn::fraction; // Error: like trying to declare
 // fraction twice in the same scope
 if (f > 0) {
 using eqn::fraction; // OK: hides outer fraction
 fraction f; // OK: hides outer f
 f = qf; // OK: same types
 f = nf; // Error: type mismatch
 }
 int fraction; // Error: name fraction in use
}

You can copy names from one namespace to another with a using declaration. Suppose you refactor a
 program and realize that the numeric::fraction class has all the
 functionality you need in the equation package. You decide to use
 numeric::fraction instead of
 eqn::fraction, but you want to keep
 the eqn interface the same. So you
 insert using numeric::fraction; in the eqn namespace.
Incorporating a name into a namespace with a using declaration is not quite the same as
 declaring the name normally. The new name is just a synonym for the
 original name in its original namespace. When the compiler searches
 namespaces under argument-dependent name lookup, it searches the
 original namespace. Example
 2-19 shows how the results can be surprising if you are not
 aware of the using declaration. The
 eqn namespace declares operator<< to print a fraction, but fraction is declared in the numeric namespace. Although eqn uses numeric::fraction, when the compiler sees
 the use of operator<<, it
 looks in only the numeric
 namespace, and never finds operator<<.
Example 2-19. Creating synonym declarations with using declarations
namespace eqn {
 using numeric::fraction;
 // Big, ugly declaration for ostream << fraction
 template<typename charT, typename traits>
 basic_ostream<charT,traits>& operator<<(
 basic_ostream<charT,traits>& out, const fraction& f)
 {
 out << f.numerator() << '/' << f.denominator();
 return out;
 }
}

int main()
{
 eqn::fraction qf;
 numeric::fraction nf;
 nf + qf; // OK because the types are the same
 std::cout << qf; // Error: numeric namespace is searched for operator<<, but
 // not eqn namespace
}

The using declaration can
 also be used within a class. You can add names to a derived class from
 a base class, possibly changing their accessibility. For example, a
 derived class can promote a protected member to public visibility.
 Another use of using declarations
 is for private inheritance, promoting specific members to protected or
 public visibility. For example, the standard container classes are not designed for public
 inheritance. Nonetheless, in a few cases, it is possible to derive
 from them successfully. Example
 2-20 shows a crude way to implement a container type to
 represent a fixed-size array. The array class template derives from std::vector using private inheritance. A
 series of using declarations make
 selected members of std::vector
 public and keep those members that are meaningless for a fixed-size
 container, such as insert,
 private.
Example 2-20. Importing members with using declarations
template<typename T>
class array: private std::vector<T>
{
public:
 typedef T value_type;
 using std::vector<T>::size_type;
 using std::vector<T>::difference_type;
 using std::vector<T>::iterator;
 using std::vector<T>::const_iterator;
 using std::vector<T>::reverse_iterator;
 using std::vector<T>::const_reverse_iterator;

 array(std::size_t n, const T& x = T()) : std::vector<T>(n, x) {}
 using std::vector<T>::at;
 using std::vector<T>::back;
 using std::vector<T>::begin;
 using std::vector<T>::empty;
 using std::vector<T>::end;
 using std::vector<T>::front;
 using std::vector<T>::operator[];
 using std::vector<T>::rbegin;
 using std::vector<T>::rend;
 using std::vector<T>::size;
};

See Chapter 6 for more
 information about using
 declarations in class definitions.

using Directives

A using directive adds a namespace to the list of scopes that
 is used when the compiler searches for a name's declaration. Unlike a
 using declaration, no names are
 added to the current namespace. Instead, the used namespace is added
 to the list of namespaces to search right after the innermost
 namespace that contains both the current and used namespaces.
 (Usually, the containing namespace is the global namespace.) The
 using directive is transitive, so
 if namespace A uses namespace B, and namespace B uses namespace C, a
 name search in A also searches C. Example 2-21 illustrates the
 using directive.
Example 2-21. The using directive
#include <iostream>
#include <ostream>

namespace A {
 int x = 10;
}
namespace B {
 int y = 20;
}
namespace C {
 int z = 30;
 using namespace B;
}
namespace D {
 int z = 40;
 using namespace B; // Harmless but pointless because D::y hides B::y
 int y = 50;
}

int main()
{
 int x = 60;
 using namespace A; // Does not introduce names, so there is no conflict
 // with x
 using namespace C;

 using namespace std; // To save typing std::cout repeatedly

 cout << x << '\n'; // Prints 60 (local x)
 cout << y << '\n'; // Prints 20
 cout << C::y << '\n'; // Prints 20
 cout << D::y << '\n'; // Prints 50

 using namespace D;
 cout << y << '\n'; // Error: y is ambiguous. It can be found in D::y and C's
 // use of B::y.
}

How to Use Namespaces

Namespaces have no runtime cost. Don't be afraid to use
 them, especially in large projects in which many people contribute
 code and might accidentally devise conflicting names. The following
 are some additional tips and suggestions for using namespaces:
	When you define a class in a namespace, be sure to declare
 all associated operators and functions in the same
 namespace.

	To make namespaces easier to use, keep namespace names
 short, or use aliases to craft short synonyms for longer
 names.

	Never place a using
 directive in a header. It can create name collisions for any user
 of the header.

	Keep using directives
 local to functions to save typing and enhance clarity.

	Use using namespace std outside functions only for tiny
 programs or for backward compatibility in legacy projects.

Chapter 3. Expressions

An expression combines literals, names, operators, and
 symbols to express or compute a value, or to achieve a side effect. This
 chapter describes the rules for writing and understanding expressions,
 including information on lvalues and rvalues, type conversion, constant
 expressions, and how C++ evaluates expressions. It contains detailed
 descriptions of all the operators and other forms of expressions.
The syntax descriptions in this chapter are informal. See Chapter 12 for a precise BNF
 grammar.

Lvalues and Rvalues

 Lvalues and rvalues are fundamental to C++ expressions.
 Put simply, an lvalue is an object reference and an
 rvalue is a value. The difference between lvalues
 and rvalues plays a role in the writing and understanding of
 expressions.
An lvalue is an expression that yields an object reference, such
 as a variable name, an array subscript reference, a dereferenced
 pointer, or a function call that returns a reference. An lvalue always
 has a defined region of storage, so you can take its address.
An rvalue is an expression that is not an lvalue. Examples of
 rvalues include literals, the results of most operators, and function
 calls that return nonreferences. An rvalue does not necessarily have any
 storage associated with it.
Strictly speaking, a function is an lvalue, but the only uses for
 it are to use it in calling the function, or determining the function's
 address. Most of the time, the term lvalue means object lvalue, and this
 book follows that convention.
C++ borrows the term lvalue from C, where only an lvalue can be
 used on the left side of an assignment statement. The term rvalue is a
 logical counterpart for an expression that can be used only on the
 righthand side of an assignment. For example:
#define rvalue 42
int lvalue;
lvalue = rvalue;
In C++, these simple rules are no longer true, but the names
 remain because they are close to the truth. The most significant
 departure from traditional C is that an lvalue in C++ might be const, in which case it cannot be the target
 of an assignment. (C has since evolved and now has const lvalues.)
The built-in assignment operators require an lvalue as their lefthand operand. The
 built-in address (&) operator
 also requires an lvalue operand, as do the increment (++) and decrement (--) operators. Other operators require
 rvalues. The rules are not as strict for user-defined operators. Any
 object, including an rvalue, can be used to call member functions,
 including overloaded =, &, ++,
 and -- operators.
Some other rules for lvalues and rvalues are:
	An array is an lvalue, but an address is an rvalue.

	The built-in array subscript ([]), dereference (unary *), assignment (=, +=, etc.), increment
 (++), and decrement (--) operators produce lvalues. Other
 built-in operators produce rvalues.

	A type cast to a reference type produces an lvalue; other
 casts produce rvalues.

	A function call (including overloaded operators) that returns
 a reference returns an lvalue; otherwise, it returns an
 rvalue.

	An lvalue is converted implicitly to an rvalue when necessary,
 but an rvalue cannot be implicitly converted to an lvalue.

Example 3-1 shows
 several different kinds of lvalues and rvalues.
Example 3-1. Lvalues and rvalues
class number {
public:
 number(int i = 0) : value(i) {}
 operator int() const { return value; }
 number& operator=(const number& n);
private:
 int value;
};

number operator+(const number& x, const number& y);

int main()
{
 number a[10], b(42);
 number* p;
 a; // lvalue
 a[0]; // lvalue
 &a[0]; // rvalue
 *a; // lvalue
 p; // lvalue
 *p; // lvalue
 10; // rvalue
 number(10); // rvalue
 a[0] + b; // rvalue
 b = a[0]; // lvalue
}

Type Conversions

In an arithmetic expression, binary operators require
 operands of the same type. If this is not the case, the type of one
 operand must be converted to match that of the other operand. When
 calling a function, the argument type must match the parameter type; if
 it doesn't, the argument is converted so its type matches. C++ has cast
 operators, which let you define a type conversion explicitly, or you can
 let the compiler automatically convert the type for you. This section
 presents the rules for automatic type conversion.
Arithmetic Types

An arithmetic type is a fundamental
 integral or floating-point type: bool, char, signed char, unsigned char, int, short, long, unsigned int, unsigned short, unsigned long, float, double, or long double. Some operations are permitted only
 on arithmetic types, pointer types, enumerations, class types, or some
 combination of types. The description of each operator tells you which
 types the operator supports.

Type Promotion

Type promotion is an automatic type conversion that applies only to
 arithmetic types, converting a "smaller" type to a "larger" type while
 preserving the original value. Contrast promotions with other
 automatic type conversions (described in later subsections), which can
 lose information. Promotions involve either integral or floating-point
 values. The rules for integral promotion are:
	A "small" integral rvalue is converted to an int if the type int can represent all of the values of
 the source type; otherwise, it is converted to unsigned int. A "small" value is an integral
 bit-field (see Chapter 6)
 whose size is smaller than an int, or a value with one of the
 following types: char, signed char, unsigned char, short int, unsigned short int.

	An rvalue whose type is wchar_t or an enumeration (including
 bit-fields with enumeration type) is converted to the first type
 that can hold all the values of the source type. The type is one
 of: int, unsigned int, long, or unsigned long.

	An rvalue of type bool
 can be converted to an int; the
 value true becomes 1, and the value false becomes 0.

One floating-point promotion rule is defined:
	An rvalue of type float
 can be converted to type double.

Arithmetic Type Conversions

An arithmetic type conversion is an automatic type
 conversion that the compiler applies to the operands of the built-in
 arithmetic and comparison operators. For the arithmetic operators, the
 result type is the same as the operand type.
[image: image with no caption]

The arithmetic type conversions try to preserve the original
 values as much as possible. However, they do not always succeed. For
 example, -1 / 1u does
 not produce -1 as a result because
 -1 has type int, which is converted to type unsigned int, yielding an implementation-defined
 arithmetic value. On a 32-bit, two's-complement system, the result is
 4294967295u.
The rules for arithmetic type conversion are applied in the
 following order:
	If one operand has type long double, the other is converted to
 long double.

	Otherwise, if one operand is double, the other is converted to
 double.

	Otherwise, if one operand is float, the other is converted to
 float.

	Otherwise, integral promotions are performed (see the
 section Section
 3.2.2).

	After integral promotion, if one operand is unsigned long, the other is converted to unsigned long.

	Otherwise, if one operand is long, and the other is unsigned int, type conversion occurs as
 follows:
	If all values of type unsigned int fit in a long int, the unsigned int is converted to long int.

	Otherwise, both operands are converted to unsigned long.

	Otherwise, if one operand is long, the other is converted to long.

	Otherwise, if one operand is unsigned, the other is converted to
 unsigned.

	Otherwise, both operands are int.

Implicit Numeric Conversions

 An arithmetic value can be converted implicitly to a
 different arithmetic value, even if that conversion loses information.
 These implicit conversions can take place in assignments,
 initializers, arguments to function calls, returning values from a
 function, and template arguments. Do not confuse these conversions
 with the arithmetic type conversions described earlier, which can take
 place in any arithmetic operation.
The basic rule is that any arithmetic type can be converted to
 any other. If the destination type cannot hold the converted value,
 the behavior is undefined. When assigning a floating-point number to
 an integer, the floating-point value is truncated toward zero by
 discarding the fractional part. When converting an integer or
 enumerated value to a floating-point number, if the integer value
 falls between two floating-point values (that is, the integer is not
 representable in the floating-point format), the implementation
 chooses one of the two neighboring values.
A value can be converted to a class type if the class has a
 suitable constructor that does not use the explicit specifier. A value of class type
 can be converted to a non-class type if the source class has a type
 conversion operator of the target type. When converting a class type
 to another class type, the compiler considers the constructors for the
 target class and the type conversion operators for the source
 class.

Lvalue Conversions

Lvalue conversions automatically convert an lvalue to an
 rvalue for contexts in which an rvalue is required. The need to
 convert an lvalue to an rvalue is usually transparent, and these
 conversions are listed only for the sake of completeness:
	An array lvalue can be converted to a pointer rvalue,
 pointing to the first element of the array.

	A function lvalue can be converted to an rvalue pointer to
 the function.

	Any other lvalue can be converted to an rvalue with the same
 value. If the type is not a class type,
 cv-qualifiers are removed from the type.
 Thus, a const int lvalue is converted to an int rvalue.

Conversion to bool

Arithmetic, enumeration, and pointer values can be converted to
 bool , in which null pointers and zero arithmetic values are
 false, and everything else is
 true. A common idiom is to test
 whether a pointer is a null pointer:
if (ptr)
 ... // Do something with *ptr.
else
 ... // Pointer is null

if (! ptr)
 // Another way to test if ptr is null
This idiom is so common that some classes have operators to
 convert an object to void*, so
 void* can be converted to bool. (Any pointer type would do, but
 void* is used because the pointer
 is not meant to be dereferenced, only converted to bool.) The void* operator is used instead of a direct
 conversion to bool to avoid
 automatic promotion to an integer. For example, basic_ios defines operator void*(
) to return a null pointer if the iostream's failbit is set. (See <ios> in Chapter 13 for details.)

Type Casts

A type cast is an explicit type conversion. C++ offers several different
 ways to cast an expression to a different type. The different ways
 expose the evolution of the language. The six forms of type cast
 expressions are:
	(
 type) expr

	type (expr
)

	const_cast<
 type >(expr
)

	dynamic_cast<
 type >(expr
)

	reinterpret_cast<
 type >(expr
)

	static_cast<
 type >(expr
)

The first form was inherited from C; the second form was added
 in the early days of C++ and has the same meaning as the first, but
 with a slightly different syntax. The final four forms supplant the
 two older forms and are preferred because they are more specific, thus
 reducing the risk of error. All type cast expressions are described in
 detail later in this chapter; the first form is covered in the section
 Section 3.5.4, and the
 other five forms are covered in Section 3.5.2. The remainder
 of this section briefly discusses when to use each form.
If you simply want to force an expression to be const, or to remove a const (e.g., prior to passing a pointer to a
 legacy library that is not written in C++ and does not know about
 const declarations), use const_cast<> . (You can also change the volatile qualifier, but that is less
 common.)
If you have a pointer or reference to an object whose declared
 type is a base class, but you need to obtain a derived class pointer
 or reference, you should use dynamic_cast<> . The dynamic cast performs a runtime check to make sure
 the cast is valid. A dynamic cast works only with polymorphic classes,
 which have at least one virtual function.
The common uses of static_cast<> are to force one enumeration to a different enumerated
 type, force an arithmetic type to a different type, or force a
 particular conversion from a class-type object that has multiple type
 conversion operators. The simpler type casts are sometimes used in
 these cases, for the sake of brevity. For example, sqrt(float(i)) can be easier to read than
 sqrt(static_cast<float>(i)).
 Use static_cast to reverse any
 implicit type conversion. For example, C++ automatically converts an
 enum to an integer; use static_cast if you want to convert an
 integer to an enum. You can use
 static_cast to cast a pointer to
 and from void*.
A reinterpret_cast<>
 is reserved for potentially unsafe type casts, such as
 converting one type of pointer to another. You can also convert a
 pointer to an integer or vice versa. For example, an internal
 debugging package might record debug log files. The logger might
 convert pointers to integers using reinterpret_cast<> and print the
 integers using a specific format.
If you try to perform the wrong kind of cast with one of the
 template-like cast operators, the compiler informs you of your
 mistake. For example, if you use static_cast<> and accidentally cast
 away const-ness, the compiler
 complains. Or if you use static_cast<> where you should have
 used reinterpret_cast<>, the
 compiler complains. The short forms of casting do not provide this
 extra level of error-checking because one form must suffice for the
 several different kinds of type casts.
When you see a type cast, you should read it as a warning that
 something unusual is happening. The longer forms of type casts provide
 additional clues about the programmer's intent, and help the compiler
 enforce that intent.

Constant Expressions

A constant expression is an expression that can be evaluated
 at compile time. Constants of integral or enumerated type are required
 in several different situations, such as array bounds, enumerator
 values, and case labels. Null pointer
 constants are a special case of integral constants.
Integral Constant Expressions

An integral constant expression is an expression that can
 be evaluated at compile time, and whose type is integral or an
 enumeration. The situations that require integral constant expressions
 include array bounds, enumerator values, case labels, bit-field sizes, static member
 initializers, and value template arguments. The compiler must be able
 to evaluate the expression at compile time, so you can use only
 literals, enumerators, const
 objects that have constant initializers, integral or enumerated
 template parameters, sizeof
 expressions, and constant addresses. The address of a static lvalue
 object is a constant address, as is the address of a function. A
 string literal, being a static array of characters, is also a constant
 address.
An integral static const data
 member can be initialized in the class definition if the initializer
 is a constant integral or enumerated expression. The member can then
 be used as a constant expression elsewhere in the class definition.
 For example:
template<typename T, size_t size>
class array {
public:
 static const size_t SIZE = size;
 ...
private:
 T data[SIZE];
};
See Chapter 6 for more
 information about static data members.

Null Pointers

A constant expression with a value of 0 can be a null pointer
 constant . A null pointer constant can be converted to a
 null pointer value. The colloquial term null
 pointer almost always means null pointer value.
[image: image with no caption]

A null pointer value has an implementation-defined bit pattern.
 Many implementations use all zero bits, but some do not. Thus, the
 null pointer constant is not representative of the bits that make up a
 null pointer value, but serves only as a mnemonic for the programmer,
 much like = 0 does for a pure virtual function (Chapter 6).
When you assign a null pointer constant to a pointer-type
 variable, the compiler converts the null pointer constant to a null
 pointer value of the appropriate type. Similarly, when comparing
 pointers, the compiler ensures that the comparison is meaningful. In
 particular, a null pointer value is never equal to any valid pointer
 value, is always equal to another null pointer value, and is always
 equal to a null pointer constant. A null pointer value, when converted
 to bool, is false. A pointer that is initialized with an
 empty initializer is initialized to a null pointer value.
The NULL macro, defined in <cstdlib> and other headers (see Chapter 13), expands to a null pointer
 constant. Using NULL instead of
 0 can be a helpful reminder to the
 reader or maintainer of a program, especially when typedefs obscure the nature of a
 type:
Token tok1 = 0; // Is Token a pointer or an integer?
Token tok2 = NULL; // Token is probably a pointer.
Dereferencing a null pointer results in undefined behavior.

Expression Evaluation

At its most fundamental level, the execution of a C++
 program is the successive evaluation of expressions, under the control
 of statements (Chapter 4), in which
 some expressions can produce side effects. Any expression might have one
 or more of the following side effects:
	Accessing a volatile object

	Modifying an object

	Calling a function in the standard library

	Calling any other function that has side effects

Sequence Points

During the execution of a program, there are well-defined points
 in time called sequence points, at which the side effects
 have all been completed for expressions that have been evaluated, and
 no side effects have been started for any unevaluated expression.
 Between sequence points, the compiler is free to reorder expressions
 in any way that preserves the original semantics. The same term also
 refers to the positions in the source code that produce sequence
 points when the code executes. You can usually ignore the details of
 sequence points, but when you are using global or volatile
 objects, it is important that you know exactly when it
 is safe to access those objects. That time is after a sequence point.
 Also, any expression that modifies a scalar object more than once
 between sequence points, or that examines a scalar object's value
 after modifying it, yields undefined behavior. This rule often bites
 the unwary programmer who uses the increment and decrement operators.
 For example:
int i = 0;
i = ++i - ++i; // Error: undefined behavior
printf("%d,%d", ++i, ++i); // Error: undefined behavior
i = 3, ++i, i++; // OK: i == 5
There are sequence points in the following positions:
	At the end of every expression that is not a subexpression.
 Such an expression might be used in an expression statement, in an
 initializer, as a condition in an if statement, etc.

	After evaluating all function arguments but before calling
 the function.

	When a function returns: after copying the return value from
 the function call (if any), but before evaluating any other
 expressions outside the function.

	After evaluating the first expression (expr1) in each of the following
 expressions, provided they use the built-in operators and not
 overloaded operators:
	expr1 &&
 expr2

	expr1 || expr2

	expr1 ? expr2 :
 expr3

	expr1 , expr2

Order of Evaluation

In general, the order in which operands are evaluated is unspecified, so
 you should never write code that depends on a particular order. For
 example, in the expression f()
 / g(
), f() might be called
 first, or g() might be called
 first. The difference can be significant when the functions have side
 effects. Example 3-2 shows a
 contrived situation in which a program prints 2 if g()
 is called first, or 1 if f() is called first.
Example 3-2. Demonstrating order of evaluation
#include <iostream>
#include <ostream>

int x = 1;

int f()
{
 x = 2;
 return x;
}

int g()
{
 return x;
}

int main()
{
 std::cout << f() / g() << '\n';
}

A simpler example follows. The increment of i can happen before or after the assignment,
 so i might be 2 or 3.
int i = 1;
i = i++ + 1; // Value of i is unspecified
In a function call, all arguments are evaluated before the
 function is called. As you might expect, the order in which the
 arguments are evaluated is unspecified.

Short-Circuit Evaluation

The logical operators (&& and ||) perform short-circuit
 evaluation . The left operand is evaluated, and if the expression
 result can be known at that point, the right operand is
 not evaluated:
if (false && f()) ... // f() is never called.
if (true || f()) ... // f() is never called.
If the logical operator is overloaded, however, it cannot
 perform short-circuit evaluation. Like any other function, all the
 arguments are evaluated before the function is called. For this
 reason, you should avoid overloading the && and || operators.

Expression Rules

C++ has the usual unary operators such as logical negation
 (!a), binary operators such as
 addition (a+b), and even a ternary
 operator (a?b:c). Unlike many other
 languages, an array subscript is also an operator (a[b]), and a function call is an n-ary operator (e.g., a(b, c,
 d)).
Every operator has a precedence . Operators with higher precedence are grouped so that
 they are logically evaluated before operators with lower precedence.
 (Note that precedence determines how the compiler parses the expression,
 not necessarily the actual order of computation. For example, in the
 expression a() + b()
 * c(
), the multiplication has higher precedence, but a() might be called first.)
Some operators group from left to right. For example, the
 expression x / y
 / z is equivalent to (x /
 y) / z. Other
 operators group right to left, as in x =
 y = z, which
 is equivalent to x = (y
 = z). The order of grouping is called the
 operator's associativity.
When reading C++ expressions, you must be aware of the precedence
 and associativity of the operators involved. For example, *ptr++ is read as *(ptr++) because the postfix ++ operator has higher precedence than the
 unary * operator.
Table 3-1 summarizes
 the syntax, precedence, and associativity of each kind of expression. The subsections
 that follow describe the kinds of expressions in depth; each subsection
 covers a single precedence group.
Table 3-1. Expression syntax and associativity, grouped by
 precedence
	Group
	Associativity
	Expression

	Primary (highest precedence)
	Left-to-right
	

 literal

 this(

 expr

)

 name

 ::name

class-or-namespace

 :: name

	Postfix
	Left-to-right
	

 pointer

 [

 expr

]

 expr

 (

 expr, ...)

 type

 (

 expr, ...)

 object.member

pointer

 ->

 member

cast_keyword

 <

 type

 >(

 expr

)

typeid(

 expr

)

typeid(

 type

)

 lvalue

 ++

 lvalue

 --

	Unary
	Right-to-left
	

 ++

 lvalue

 --

 lvalue

 ~

 expr

 compl

 expr

 !

 expr

 not

 expr

 +

 expr

 -

 expr

 *

 pointer

 &

 lvalue

 sizeof

 expr

 sizeof(

 type

)

 new-expr

delete-expr

	Cast
	Right-to-left
	

 (

 type

)

 expr

	Pointer to Member
	Left-to-right
	

 object

 .*

 expr

pointer

 ->*

 expr

	Multiplicative
	Left-to-right
	

 expr

 *

 expr

expr

 /

 expr

expr

 %

 expr

	Additive
	Left-to-right
	

 expr

 +

 expr

expr

 -

 expr

	Shift
	Left-to-right
	

 expr

 <<

 expr

expr

 >>

 expr

	Relational
	Left-to-right
	

 expr

 <

 exprexpr

 >

 expr

expr

 <=

 expr

expr

 >=

 expr

	Equality
	Left-to-right
	

 expr ==

 expr

expr

 !=

 expr

expr

 not_eq

 expr

	Bitwise And
	Left-to-right
	

 expr

 &

 expr

expr

 bitand

 expr

	Bitwise Exclusive Or
	Left-to-right
	

 expr

 ^

 expr

expr

 xor

 expr

	Bitwise Inclusive Or
	Left-to-right
	

 expr

 |

 expr

expr

 bitor

 expr

	Logical And
	Left-to-right
	

 expr

 &&

 expr

expr

 and

 expr

	Logical Or
	Left-to-right
	

 expr

 ||

 expr

expr

 or

 expr

	Conditional
	Right-to-left
	

 expr

 ?

 expr : expr

	Assignment
	Right-to-left
	

 lvalue

 =

 expr

lvalue

 op

 =

 expr

 throw

 expr

 throw

	Comma (lowest precedence)
	Left-to-right
	

 expr , expr

Primary Expressions

A primary expression is the basic building block for more
 complex expressions. It is an expression in parentheses, a literal, or
 a name (possibly qualified). The various forms of primary expressions
 are:
	literal
	A constant value. String literals (being arrays of
 const char or const wchar_t) are lvalues. All other
 literals are rvalues. (See Chapter
 1.)

	this
	Refers to the target object in a nonstatic member
 function. Its type is a pointer to the class type; its value is
 an rvalue.

	(expression)
	Has the type and value of
 expression.

	unqualified-name
	Names an entity according to the name lookup rules in
 Chapter 2. The expression
 result is the entity itself, and the expression type is the
 entity's type. The result is an lvalue if the entity is an
 object, data member, or function. The following are the various
 kinds of unqualified identifiers:
	identifier
	Names an object, function, member, type, or
 namespace. The name is looked up according to the rules in
 Chapter 2. The type
 is the declared type of the entity. If the entity is an
 object, data member, or function, the value is an
 lvalue.

	operator
 symbol
	Names an operator. See Chapter 5 for more
 information.

	template-name <
 optional-template-args >
	Names a template instance. See Chapter 7 for more
 information.

	operator
 type
	Names a type conversion operator. The
 type is a type specifier,
 possibly with one or more pointer symbols in the
 declarator. (See Chapter
 2 for details about type specifiers and
 declarators.)

	~
 class-name
	Names the destructor for
 class-name.

	qualified-name
	Uses the scope operator to qualify an identifier,
 operator, or destructor. The qualified name can be in the global
 scope or in the scope of a class or namespace:
	:: identifier
	Names a global identifier. The type is the declared
 type of the entity. If the entity is an object, data
 member, or function, the value is an lvalue; otherwise, it
 is an rvalue.

	:: operator
 symbol
	Names a global operator. Note that type conversion
 operators must be member functions, so there cannot be a
 global type conversion operator. See Chapter 5 for more
 information.

	nested-name ::
 unqualified-name
nested-name :: template
 unqualified-name
	Names an entity in a class or namespace scope. The
 nested-name can be a class or
 namespace name, or it can have the form
 class-or-namespace-name
 ::
 nested-name or
 class-name :: template
 nested-name. Use the template keyword when
 instantiating a template. See Chapter 7 for information
 about template members.

	::
 nested-name ::
 unqualified-name
::
 nested-name :: template
 unqualified-name
	Names an entity in a class or namespace scope. The
 first (left-most) class or namespace name is looked up in
 the global scope.

In the rest of this chapter, the syntax element
 name-expr refers to a qualified or
 unqualified name, as described in this section. In particular, a
 name-expr can be used to the right of the .
 or -> in a postfix
 expression.
Example 3-3 shows some
 primary expressions.
Example 3-3. Primary expressions
namespace ns {
 int x;
 class cls {
 public:
 cls(int);
 ~cls();
 };
}
int x;

3.14159 // Literal
(2 + 3 * 4) // Parenthesized expression
x // Unqualified identifier
ns::x // Qualified identifier
ns::cls::cls // Qualified constructor
operator* // Unqualified operator name

Postfix Expressions

A postfix expression is an expression that uses postfix
 syntax (operator follows the operand) with some exceptions that just
 happen to have the same precedence. The postfix expressions
 are:
	pointer [expr
]
	Returns an element of an array. The subscript operator
 requires a pointer as the left operand. An array is implicitly
 converted to a pointer. The right operand is converted to an
 integer, and the expression is evaluated as *((pointer
) + (
 expr)). If the array index is out of
 bounds, the behavior is undefined. The result is an lvalue whose
 type is the base type of
 pointer.

	expr (
 optional-expr-list)
	Calls a function. The function call operator requires one
 of the following as a left operand: a function name, an
 expression that returns a function pointer, or an expression
 that returns an object that has a function call operator. (An
 operator name is the same as a function name in this case.) The
 optional-expr-list is a
 comma-separated list of zero or more assignment expressions.
 (See Section
 3.5.17 later in this chapter.) All the expressions in the
 expression list are evaluated, and then the function is called.
 The result type is the return type of the function. If the
 return type is a reference type, the result is an lvalue;
 otherwise, the result is an rvalue. If the return type is
 void, no value is returned.
 See Chapter 5 for more
 information about functions.

	simple-type-specifier (
 optional-expr-list)
	Performs type conversion or construction. A
 simple-type-specifier is a single
 name: a fundamental type or a qualified name of a class, an
 enumeration, or a typedef.
 The result is an instance of the specified type, initialized as
 follows:
	If the expression list is empty, the result is an
 rvalue that is initialized with a default constructor, or
 that is initialized to 0.
 (See Chapter 2 for
 details about initialization.)

	If the expression list contains one expression, that
 value is cast to the desired type in the same manner as a
 cast expression—that is, (type
)
 expr. If the type is a reference,
 the result is an lvalue; otherwise, it is an rvalue.

	If the expression list contains more than one
 expression, the type must be a class, and the expression
 list is passed as arguments to a suitable constructor to
 create an instance of the class, which is returned as an
 rvalue.

	object .
 name-expr
	Returns a member of an object. The name can be qualified
 to refer to a name in a base class (see Chapter 2). The return type is
 the type of name-expr. The return
 value depends on whether name-expr is
 a data member, member function, or enumerator:
	If name-expr names a static
 data member, the member is returned as an lvalue.

	If name-expr names a
 nonstatic data member, the result is an lvalue only if
 object is an lvalue. If
 name-expr is declared mutable, the result is not
 const even if
 object is const; otherwise, the result is
 const if either
 object or
 name-expr is const. Similarly, the result is
 volatile if either
 object or
 name-expr is volatile.

	If name-expr names a member
 function, the usual rules for overload resolution apply (see
 Chapter 5). If the
 function is a static member function, the result is an
 lvalue. You can take the function's address (with &) or call the
 function.

	If the function is a nonstatic member function, it
 must be used in a function call—for example, obj.memfun(arg).

	If name-expr is an
 enumerator, the result is an rvalue.

	pointer ->
 name-expr
	Returns (*(
 pointer)).name-expr.

	lvalue ++
	Increments lvalue and returns
 its value prior to incrementing (as an rvalue). The type of
 lvalue must be arithmetic or a
 pointer. The new value is lvalue
 + 1.
If lvalue has type bool, the new value is always true. This bool-specific behavior is
 deprecated.

	lvalue --
	Decrements lvalue and returns
 its value prior to decrementing (as an rvalue). The type must be
 arithmetic or a pointer and cannot be bool. The new value is
 lvalue - 1.

	const_cast< type >(expr
)
	Casts expr to
 type. If
 type is a reference, the result is an
 lvalue; otherwise, it is an rvalue. The new type must match the
 type of expr, but the const and volatile qualifiers can be
 changed.
A const_cast that
 removes a const qualifier is
 generally a bad idea. Nonetheless, it is sometimes necessary to
 cast away const-ness,
 especially when passing pointers to legacy libraries.
See Chapter 6 for a
 discussion of the mutable
 modifier, which lets you modify a data member of a const object.

	dynamic_cast<
 type >(expr
)
	Casts a base class pointer or reference
 expr to a derived class
 type. A runtime check is performed to
 make sure the true class of expr is
 type or a class derived from
 type. The class must be polymorphic,
 that is, have at least one virtual function. The base class can
 be virtual. A dynamic_cast<> cannot cast away
 cv-qualifiers. The cast works as
 follows:
	If type is void*, the return value is a
 pointer to the most-derived object that
 expr points to. The type does not
 have to be polymorphic in this case.

	If expr is a pointer,
 type must be a pointer type. If
 the type of expr does not match
 type (is not the same as
 type or derived from
 type), a null pointer value is
 returned. Otherwise, the value of
 expr cast to
 type is returned. If
 expr is a null pointer, a null
 pointer is returned.

	If expr is an object and
 type is a reference,
 expr is cast to
 type. If the type of
 expr does not match, a bad_cast exception is
 thrown.

	You can also cast from a derived class to a base
 class, which is the same as an ordinary implicit conversion.
 The type does not have to be polymorphic in this
 case.

Example 3-4
 shows some uses of dynamic_cast<> .

Example 3-4. Using dynamic_cast<>
#include <iostream>
#include <ostream>

class base {
public:
 virtual ~base() {}
};

class derived : public base {};
class most_derived : public derived {};
class other : public base {};

int main()
{
 base* b = new derived;
 dynamic_cast<most_derived*>(b); // Null pointer
 dynamic_cast<derived&>(*b); // OK
 dynamic_cast<other*>(b); // Null pointer

 derived* d = new most_derived;
 b = d;
 b = dynamic_cast<base*>(d); // OK, but dynamic_cast<>
 // is unnecessary.
}

	[image:] reinterpret_cast<
 type >(expr
)
	Casts expr to
 type. When using reinterpret_cast<>, no
 conversion functions or constructors are called. Casting to a
 reference yields an lvalue; otherwise, it yields an rvalue. Only
 the following conversions are allowed:
	A pointer can be converted to an integer. The integer
 must be large enough to hold the pointer's value. Which
 integer type you should use is implementation-defined, as is
 the mapping from pointer to integer.

	An integer or enumerated value can be converted to a
 pointer. The mapping is implementation-defined. Casting from
 a pointer to an integer back to the original pointer type
 yields the original pointer value, provided the integer type
 is large enough.

	Casting an integer constant of value 0 to a pointer always produces a
 null pointer value. Casting any other integer expression of
 value 0 to a pointer
 produces an implementation-defined pointer, which may or may
 not be a null pointer.

	A function pointer can be converted to a function
 pointer of a different type. Calling such a function results
 in undefined behavior. Converting back to the original
 pointer type produces the original pointer value.

	An object pointer can be converted to an object
 pointer of a different type. Using such an object results in
 undefined behavior. Converting back to the original pointer
 type produces the original pointer value.

	A pointer to a member can be converted to a pointer to
 a different member. Using the pointer to a member has
 undefined behavior, except that casting a pointer to a data
 member to a different pointer to a data member and back to
 the original type produces the original value, and casting a
 pointer to a member function to a different member function
 and back produces the original value.

	A null pointer constant or value can be converted to a
 null pointer of the target type.

	A reference can be cast in the same manner as a
 pointer (except that the pointer is dereferenced). That is,
 casting reinterpret_cast<T&>(x)
 is just like casting *reinterpret_cast<T*>(&x).

A reinterpret_cast
 has the following restrictions:
	A function pointer cannot be converted to an object
 pointer, or an object pointer to a function pointer.

	A member function pointer cannot be converted to a
 data member pointer, or a data member pointer to a member
 function pointer.

	A member pointer cannot be converted to a nonmember
 pointer, or a nonmember pointer to a member pointer.

	The target type must not cast away
 cv-qualifiers.

The need for reinterpret_cast<> is rare in an
 ordinary application.
Example 3-5
 shows some uses of reinterpret_cast<>. The first
 use reinterprets the representation of a float as an int to show the underlying
 representation of a float.
 This use is implementation-dependent and requires sizeof(int) to be greater than or
 equal to sizeof(float). The
 second use is a simple conversion from a function pointer to an
 integer to print the address in a specific format. It requires
 that an int be large enough
 to hold a function pointer.
Example 3-5. Using reinterpret_cast<>
#include <cassert>
#include <iomanip>
#include <iostream>
#include <ostream>

int foo()
{
 return 0;
}

int main()
{
 using namespace std;
 float pi = 3.1415926535897;
 int ipi;

 // Print numbers in pretty hexadecimal.
 cout << setfill('0') << showbase << hex << internal;

 // Show the representation of a floating-point number.
 assert(sizeof(int) == sizeof(float));
 ipi = reinterpret_cast<int&>(pi);
 cout << "pi bits=" << setw(10) << ipi << '\n';

 // Show the address of foo().
 cout << "&foo=" << setw(10) <<
 reinterpret_cast<int>(&foo) << '\n';
}

	static_cast<
 type >(expr
)
	Casts expr to
 type using a standard or user-defined
 conversion, as though you declared a temporary
 type tmp
 (
 expr) and used the value of
 tmp in place of the cast expression.
 The result is an lvalue if type is a
 reference; otherwise the result is an rvalue. A static_cast<> cannot cast away
 cv-qualifiers. The rules of permitted
 conversions are:
	The type can be void, in which case the result of
 expr is discarded.

	A base-class lvalue can be cast to a reference to a
 derived class, provided a standard conversion exists from a
 derived-class pointer to the base class. The base class must
 not be virtual. If expr is not
 actually a subobject of type, the
 behavior is undefined. (See dynamic_cast<> to learn how
 to make error-checking safe.)

	A base-class pointer can be converted to a
 derived-class pointer in the manner described for class
 references.

	A pointer to a member of a derived class can be
 converted to a pointer to a member of a base class if there
 is a standard conversion in the other direction. The target
 class (or an ancestor class) must contain the original
 member.

	Standard arithmetic conversions can work in
 reverse—for example, long
 can be cast to short.
 Integers can be cast to enumerations.

	Enumerations can be cast to other enumerations.

	A void pointer can
 be converted to any object pointer. Converting a pointer to
 void* (with the same
 cv-qualifiers as the original pointer)
 and back produces the original pointer value.

Example 3-6
 shows some uses of static_cast<> .
Example 3-6. Using static_cast<>
#include <iostream>
#include <ostream>

class base {};
class derived : public base {};
class other : public base {};

enum color { red, black };
enum logical { no, yes, maybe };

int main()
{
 base* b = new derived;
 static_cast<derived&>(*b); // OK
 static_cast<other*>(b); // Undefined behavior

 derived* d = new derived;
 b = d;
 b = static_cast<base*>(d); // OK, but unnecessary

 color c = static_cast<color>(yes);

 int i = 65;
 std::cout << static_cast<char>(i);
}

	typeid(expr)
	Returns type information for the type of
 expr without evaluating
 expr. The type information is an
 lvalue of type const std::type_info (or an
 implementation-defined type that derives from type_info). See <typeinfo> in Chapter 13 for information about
 this class.
If expr is an lvalue of a
 polymorphic type (a class with at least one virtual function),
 the type information is for the most-derived class of
 expr. If
 expr is a dereference of a null
 pointer, bad_typeid is
 thrown.
If expr is not an lvalue, or
 the type is not polymorphic, the type information is for the
 static type of expr.

	typeid(
 type)
	Returns the type information for
 type as described for typeid(
 expr). Example 3-7 shows some uses
 of typeid.
Example 3-7. Using typeid
#include <iostream>
#include <ostream>
#include <typeinfo>

class base {
public:
 virtual ~base() {}
};

class derived : public base {};
enum color { red, black };

// The actual output is implementation-defined, but should reflect the types
// shown in the comments.
int main()
{
 base* b = new derived;
 std::cout << typeid(*b).name() << '\n'; // Derived
 std::cout << typeid(base).name() << '\n'; // Base
 derived* d = new derived;
 std::cout << typeid(*d).name() << '\n'; // Derived
 std::cout << typeid(derived).name() << '\n'; // Derived
 std::cout << typeid(red).name() << '\n'; // Color
 std::cout << typeid(color).name() << '\n'; // Color
}

Unary Expressions

A unary expression uses a unary prefix operator:
	++ lvalue
	Increments lvalue, which must
 be of arithmetic or pointer type, and returns the new value as
 an lvalue. The expression ++x
 is equivalent to x += 1, unless x is of type bool, in which case the expression
 ++x is equivalent to x=true. The special-case behavior for
 bool is deprecated.

	-- lvalue
	Decrements lvalue, which must
 be of arithmetic or pointer type (not bool), and returns the new value as an
 lvalue. The expression --x is
 equivalent to x -= 1.

	* pointer
	Dereferences pointer and
 returns an lvalue for the object that
 pointer points to. If
 pointer has type
 T *, the expression has type
 T (preserving any
 cv-qualifiers).

	& lvalue
&
 qualified-name
	Returns the address of lvalue
 or qualified-name. If
 lvalue has type
 T or if
 qualified-name is a static member of
 type T, the result is the object's
 address, which is an rvalue of type pointer to
 T. If
 qualified-name is a nonstatic member
 of class C, the result type is a
 pointer to a member of class
 C.
Note that a pointer to a member is formed only by applying
 the & operand to a
 qualified name. Even in the scope of a class, &
 unqualified-name is not a pointer to
 a member, but an ordinary pointer to an object.
You cannot take the address of a bit-field. To take the
 address of an overloaded function, the context must make it
 clear which function you mean. Example 3-8 shows uses of
 the & operator.
Example 3-8. Using the & operator
class demo
{
public:
 int x;
 static int y;
 int get_x() { return x; }
};

int demo::y = 10;

int add(int a, int b) { return a + b; }
double add(double a, double b) { return a + b; }

int main()
{
 demo d;
 int demo::*p;
 int (demo::*func)();
 int *i;
 int local = 42;
 int *ptr = &local;

 p = &demo::x;
 i = &demo::y;
 func = &demo::get_x;
 d.*p = *ptr;
 *i = (d.*func)();

 int (*adder)(int, int);
 adder = &add;
 d.*p = adder(42, *i);

 return d.y;
}

	+ expr
	Returns expr, which must have
 arithmetic, enumeration, or pointer type. The usual type
 promotions take place, and the result type is the promoted type.
 The result is an rvalue.

	- expr
	Negates expr, which must have
 arithmetic or enumerated type. The usual type promotions take
 place, and the result type is the promoted type. The result is
 an rvalue. If the type is unsigned, the result is 2
 n -
 expr, in which n is the number of bits in the result
 type.

	~ expr
compl expr
	Returns the bitwise complement of
 expr, which must have integral or
 enumeration type. The type is promoted according to the usual
 rules, and the result type is the promoted type. The result is
 an rvalue. Every zero bit in expr is
 converted to a one bit, and every one bit is converted to a zero
 bit.
In the ambiguous case of ~C(
), in which C is a
 class name, ~C() is
 interpreted as the complement operator, not the destructor of
 C. If C does not have an overloaded operator~ or an implicit conversion to
 an integral or enumerated type, the expression ~C() results in an error. To force a
 reference to C's destructor,
 use a member reference (e.g., this->~C()) or a qualified name
 (e.g., C::~C()).

	! expr
not expr
	Returns the logical negation of
 expr after converting it to bool. The result is an rvalue of type
 bool. If
 expr is true, the result is false; if
 expr is false, the result is true.

	sizeof expr
sizeof (
 type)
	Returns the size in bytes of
 type or the type of
 expr (without evaluating
 expr). By definition, sizeof(char) == 1. You cannot take the size of a
 bit-field, a function, or an incomplete type. The size of a
 reference is the size of the referenced type.
The sizeof operator
 always returns a value greater than zero for a class or object
 of class type. The size of a base-class subobject within a
 derived-class object can be zero, so the compiler is not
 necessarily wasting space. You can see this in Example 3-9, which shows
 that the size of the derived class is the same as the size of
 the base class. The expression result is an rvalue of type
 size_t. (See <cstdlib> in Chapter 13.)
Example 3-9. Using the sizeof operator
#include <iostream>
#include <ostream>

class base {};
class derived : public base {};

int main()
{
 // The values actually printed depend on the implementation, but many
 // common implementations print the values shown.
 using namespace std;
 cout << sizeof(base) << '\n'; // Prints 1
 cout << sizeof(derived) << '\n'; // Prints 1
 base b[3];
 cout << sizeof(b) << '\n'; // Prints 3
 derived d[5];
 cout << sizeof(d) << '\n'; // Prints 5
}

	new type
new
 type (
 optional-expr-list)
new (
 expr-list) type
new (
 expr-list) type
 (
 optional-expr-list)
	Allocates and initializes a dynamic object or array of
 objects. The new expression
 first calls an allocation function (operator new) to allocate memory. It then
 constructs the object in the allocated memory. A class can
 provide its own allocation function by overriding operator new as a member function. Otherwise, a
 global operator new is called. (See <new> in Chapter 13 for the standard
 allocation functions.)
The parts of a new
 expression are:
	new
::new
	The new keyword
 can be prefixed with the global scope operator to call the
 global operator
 new as the allocation
 function.

	(
 expr-list)
	An expression list in parentheses is called the
 placement. The placement is optional,
 but if it is used, it must contain at least one
 expression. If present, the expressions are passed
 directly to the allocation function without further
 interpretation.
The standard library defines two placement new functions, which are
 discussed in Chapter
 13. You can also write your own overloaded operator new functions for other forms of
 placement new. The
 first operand to operator new is always the amount of
 memory to allocate followed by the placement
 parameters.

	type
	The type to allocate. It has the following form
 (optionally in parentheses):
type-specifiers
 ptr-operators
 dimensions
(See Chapter 2
 for information about type specifiers.) The
 ptr-operators are optional and
 can be * or & for pointers or
 references. The array
 dimensions are optional. All
 dimensions of an array except the first must be constant
 integral expressions (enclosed in square brackets). The
 first dimension can be any integral expression.
The compiler reads the longest sequence of
 declarators as the type, even
 if it results in a syntax error. If
 type contains parentheses
 (e.g., a function pointer) or if you want to force a
 particular type declaration, surround
 type with parentheses. For
 example, (new int[
 n])[2] allocates an array of
 n integers and extracts the
 element at index 2.
 Without the parentheses, new int[
 n][2] allocates a two-dimensional
 array of int.

	(
 optional-expr-list)
	An optional initializer that follows the usual rules
 for initializers. (See Chapter 2 for more
 information about initializers.)
If the expression list has a single expression, and
 a single object is allocated, the expression is the
 object's initial value.
If multiple expressions are in the initializer, the
 type must be a class type, and the expression list is
 passed to a suitable constructor, which is found by the
 usual rules for resolving overloaded functions (Chapter 5).
An array cannot have an initializer. If the base
 type is a POD type, the array elements are uninitialized;
 otherwise, they are initialized by calling the default
 constructor for each array element.
See Chapter 6
 for a comparison of POD and non-POD types.

The allocation function (operator new) is called with at least one
 argument: the number of bytes to allocate (of type size_t). If a placement is used, the
 placement arguments are passed as additional arguments to the
 allocation function to the right of the size. If the allocation
 function cannot fulfill the request, it typically throws
 std::bad_alloc. However, if
 you pass std::nothrow as the
 placement argument, the standard allocation function returns a
 null pointer as an error indicator instead of throwing bad_alloc.
[image: image with no caption]

Allocating an array is different from allocating a scalar.
 The allocation function is operator new[]. The requested size is the
 number of elements in the array times the size of each element.
 An implementation is free to request additional memory for its
 own use, perhaps to store the number of elements in the array.
 The amount of additional memory is implementation-defined. Even
 if the array size is zero, the returned pointer is not null. The
 allocated memory is aligned to the most restrictive boundary for
 any type. (More precisely, the allocation function must return a
 pointer that is aligned for any type, and the new expression simply uses that
 pointer.) Thus, you can, for example, allocate an array of
 char and use the memory to
 store any object. The standard containers often do this. See
 <memory> in Chapter 13 for algorithms that
 work with uninitialized memory.
If an exception is thrown during initialization, the
 memory is freed by calling a corresponding deallocation function
 (corresponding to the equivalent delete expression). If placement
 new is used, a placement
 delete operator with the same
 additional parameters is the deallocation function, if such a
 function exists; otherwise, no deallocation function is
 called.
The following are some examples of new expressions:
int n = 10; // Note that n is not const
new int // Pointer to uninitialized int
new int() // Pointer to int, initialized to 0
new int[n] // n uninitialized ints
new (int*) // Pointer to uninitialized pointer to int
new (int (*[n])()) // n function pointers
 typedef int (*int_func)();
new int_func[n]; // n function pointers
new (int*[n][4]) // n∞4 array of pointers to int
new complex<int>(42) // Pointer to a complex object
new complex<int>[5] // Five default-initialized complex objects

	delete pointer
delete[]
 pointer
	Destroys and frees a dynamic object or array of objects
 and returns void. The actual
 memory deallocation is performed by a deallocation function. A
 class can provide its own deallocation function by overriding
 operator delete. A plain delete expression looks up the
 deallocation function first in the class (if the
 pointer type is a pointer to a class
 type) and, if it is not found, in the global scope. Use the
 global scope operator to look only in the global scope. (See
 <new> in Chapter 13 for the default
 deallocation functions.)
To free an array, you must use delete[]. To free a scalar, you must
 use delete. If you make a
 mistake, the results are undefined. Note that the compiler
 cannot generally help you avoid mistakes because a pointer to a
 scalar cannot be distinguished from a pointer to an array. (Some
 libraries are more forgiving of this error than others.)
The pointer expression is
 evaluated once. If pointer is a
 pointer to a class type, the scalar form calls the object's
 destructor first, and the array form calls the destructor for
 each element of the array. The value of
 pointer is then passed to the
 deallocation function as a void*. If the expression's static type
 does not match the object's dynamic type, the static class must
 have a virtual destructor, or else the behavior is undefined.
 See Chapter 6 for more
 information.
You can delete a pointer to a const object. It is also safe to
 delete a null pointer value, in which case the deallocation
 function does nothing.

Cast Expressions

A cast expression performs an explicit type conversion.
 The cast expression is a holdover from C. In C++, the preferred cast
 syntax uses one of the explicit cast operators (described in Section 3.5.2 earlier in this
 chapter). The C-style casts are still used for their brevity,
 however.
	(
 type) expr
	The C-style cast converts
 expr to
 type using one or more template-like
 type conversions. If type is a
 reference, the result is an lvalue; otherwise the result is an
 rvalue. The following type conversions are tried in order. The
 first one that is syntactically allowed is the one used, even if
 the expression is not permitted semantically.
	const_cast<
 type >(
 expr)

	static_cast<
 type >(
 expr)

	const_cast<
 type >(static_cast<
 type1 >(
 expr))

	reinterpret_cast<
 type >(
 expr)

	const_cast<
 type >(reinterpret_cast<
 type1 >(
 expr))

The type type1 is the same as
 type, but its
 cv-qualifiers are changed to match the type
 of expr. Thus, the C-style type cast
 can mix a const cast with a
 static or reinterpret cast. A C-style cast can also cast to an
 otherwise inaccessible base class (see Chapter 6 for information about
 accessibility). That is, you can cast a derived class to an
 inaccessible base class, cast a pointer to a member of a derived
 class to a pointer to a member of an inaccessible base class, or
 cast from an inaccessible base class to an accessible derived
 class.

Pointer-to-Member Expressions

A pointer-to-member expression takes an object or a
 pointer to an object as the lefthand operand and a pointer-to-member
 as the righthand operand, and it binds the pointer-to-member to the
 object. The result can be a data member or a member function. A member
 function can be used only to call the function. Example 3-8 shows some uses of
 pointers to members. The pointer-to-member operator has the following
 syntax:
	object .*
 expr
	Binds expr to
 object, in which
 expr is a pointer-to-member of class
 C, and the type of
 object is
 C or a class derived from
 C. The result is an lvalue if
 object is an lvalue and
 expr points to a data member;
 otherwise, the result is an rvalue. The type of the result is
 determined by the type of expr. The
 behavior is undefined if expr is a
 null pointer-to-member.

	pointer ->*
 expr
	Binds expr to the object that
 pointer points to, in which
 expr is a pointer-to-member of class
 C, and the type of
 object is
 C or a class derived from
 C. The result is an lvalue if
 expr points to a data member. The
 type of the result is determined by the type of
 expr. The behavior is undefined if
 pointer is null or if
 expr is a null
 pointer-to-member.

If expr points to a virtual function,
 the usual rules apply. That is, the actual function called is that of
 the most-derived type of *pointer
 or object. See Chapter 6 for more information about
 virtual functions.

Multiplicative Expressions

[image: image with no caption]

A multiplicative expression is used for multiplication, division, and remainders. The multiplicative operators require
 arithmetic or enumeration types; the usual conversions are performed,
 and an rvalue is returned. If the result is too large, the behavior is
 undefined (except for unsigned types, for which arithmetic is
 performed modulo the integer size; see Chapter 1 for details). Many C++
 implementations ignore integer overflow. The multiplicative operators
 have the following syntax:
	expr1 *
 expr2
	Performs multiplication.

	expr1 /
 expr2
	Performs division. If the divisor is zero, the behavior is
 undefined.

	[image:] expr1 %
 expr2
	Returns the remainder of dividing
 expr1 by
 expr2. The operands must have
 integral or enumerated types. If
 expr2 is 0, the behavior is undefined;
 otherwise, the value is such that (a/b)*b + a%b == a. If both operands are nonnegative,
 the result is nonnegative; otherwise, the sign of the result is
 implementation-defined.

Additive Expressions

[image: image with no caption]

An additive expression is used for addition and subtraction. The additive operators require arithmetic,
 enumerated, or pointer types. The usual conversions are performed, and
 an rvalue is returned. If the result of an additive expression is too
 large, the behavior is undefined (except for unsigned types, for which
 arithmetic is performed modulo the integer size; see Chapter 1 for details). Many C++
 implementations ignore integer overflow. The additive operators have
 the following syntax:
	expr + expr
	Performs addition. If one operand has a pointer type, the
 other must have an integral or enumeration type. The result is a
 pointer to the same array, but with the index offset by
 N positions
 (N can be positive, negative, or
 0), in which
 N is the integral operand. The
 resulting pointer must be within the bounds of the array or
 point to one past the end of the array; otherwise, the behavior
 is undefined. Note that a pointer to any object can be treated
 as a one-element array.

	expr - expr
	Performs subtraction. If both operands have arithmetic or
 enumeration types, the usual promotions apply and the result is
 the difference of the operands.
If both operands are pointers, they must point to elements
 of the same array, or to one element past the end of the array.
 The result has type ptrdiff_t
 (declared in <cstdlib>)
 and is equal to the difference of the indices of the two
 objects.
If the left operand is a pointer and the right operand has
 integral or enumeration type, the result is the same as
 expr1 -
 expr2.

Shift Expressions

A shift expression shifts the bits of the left operand by
 an amount specified by the right operand. The operands must be have
 integral or enumerated types; both types are promoted to integral
 types. The result type is the promoted type of the left
 operand.
[image: image with no caption]

The result of a shift operation is undefined if the right
 operand is negative or is larger than the number of bits in the left
 operand.
The shift operators have the following syntax:
	expr1 << expr2
	Performs a left shift of expr1
 by expr2 bits. Vacated bits are
 filled with zeros. If expr1 is
 unsigned, the result is equal to multiplying
 expr1 by 2 raised to
 expr2 (modulo the integer size; see
 Chapter 1 for more
 information about unsigned integer arithmetic).

	[image:] expr1 >> expr2
	Performs a right shift of expr1
 by expr2 bits. If the
 expr1 is unsigned, or if it is signed
 and has a positive value, vacated bits are filled with zeros.
 The result is equal to dividing expr1
 by 2 raised to expr2 (truncated to an
 integer). If expr1 has a signed type
 and negative value, the result is implementation-defined.

The standard library overloads the shift operators for the I/O
 stream class templates. As with any overloaded function, the syntax
 (precedence and associativity) remains the same. Only the runtime
 behavior is different. See Chapter
 9 for more information.

Relational Expressions

A relational expression compares two values for relative
 order. Relational operators have higher precedence than equality
 operators, so the following two expressions are equivalent:
a < b == c > d
(a < b) == (c > d)
The result of a relational expression is an rvalue of type
 bool. The operands must have
 arithmetic, enumeration, or pointer types. For arithmetic and
 enumeration types, the usual conversions are performed, and the
 resulting values are compared.
When comparing pointers, the pointers must have the same
 types (after the usual conversions and ignoring
 cv-qualification), one must be a pointer to
 void, or one operand must be a null
 pointer constant. If the pointer types are compatible, they are
 compared as follows (L is the left operand
 and R is the right operand):
	If L and
 R point to the same function, the same
 object, or one element past the end of the same array, or if both
 are null pointers, they are considered to be equal to each other.
 That is, L <= R and
 L >= R are
 true, and L < R and
 L > R are
 false.

	[image: image with no caption]

If L and
 R point to different objects (that are
 not members of a common object and not elements of the same
 array), different functions, or if only one is a null pointer, the
 result of the relational operators depends on the
 implementation.

	If L and
 R point to data members (as ordinary
 pointers, not pointers-to-members) within the same object (members
 of the same object, elements of arrays that are data members, and
 so on, recursively applied), and if the members are not separated
 by an access specifier label, and if the object is not a union,
 then L > R if the
 member to which L points is declared
 later than the member to which R
 points. Similarly, L < R if the
 member to which L points is declared
 earlier than the member to which R
 points. If the members are separated by an access specifier label,
 the results are implementation-dependent.

	If L and
 R point to data members (as ordinary
 pointers, not pointers-to-members) of the same union, they are
 considered to be equal to each other.

	If L and
 R point to elements of the same array,
 including one element past the end of the same array, the pointer
 with the higher subscript is larger.

Example 3-10 shows
 some pointer comparisons.
Example 3-10. Comparing pointers
#include <iostream>
#include <ostream>

struct Demo {
 int x;
 int y;
};

union U {
 int a;
 double b;
 char c[5];
 Demo d;
};

int main()
{
 Demo demo[10];
 std::cout << std::boolalpha;
 // Everything prints "true".
 std::cout << (&demo[0] < &demo[2]) << '\n';
 std::cout << (&demo[0] == demo) << '\n';
 std::cout << (&demo[10] > &demo[9]) << '\n';
 std::cout << (&demo[0].x < &demo[0].y) << '\n';

 U u;
 std::cout << (&u.d == static_cast<void*>(u.c)) << '\n';
 std::cout << (&u.a == static_cast<void*>(&u.b)) << '\n';
}

The relational operators have the following syntax:
	expr1 < expr2
	Returns true if
 expr1 is less than
 expr2

	expr1 >
 expr2
	Returns true if
 expr1 is greater than
 expr2

	expr1 <=
 expr2
	Returns true if
 expr1 is less than or equal to
 expr2

	expr1 >=
 expr2
	Returns true if
 expr1 is greater than or equal to
 expr2

Equality Expressions

An equality expression compares two values to see if they
 are equal or different. Equality operators have lower precedence than
 relational operators, so the following two expressions are
 equivalent:
a < b == c > d
(a < b) == (c > d)
The result of an equality expression is an rvalue of type
 bool. The operands must have
 arithmetic, enumeration, or pointer types. For arithmetic and
 enumeration types, the usual conversions are performed, and the
 resulting values are compared.
Warning
Note that comparing the results of floating-point values for equality rarely gives the
 result you want. Instead, you probably want a fuzzy comparison that allows for floating-point
 imprecision.

When comparing pointers, the pointers must have the same type
 (after the usual conversions). The pointers are equal if any of the
 following conditions hold, and are not equal if none of the conditions
 hold:
	Both pointers are null pointers.

	Both object pointers point to the same object.

	Both object pointers point to one element past the end of
 the same array.

	Both function pointers point to the same function.

	Both member pointers point to the same member of the same
 most-derived object.

	Both member pointers point to any data members of the same
 union.

The equality operators have the following syntax:
	expr ==
 expr
	Returns true if the
 operands are equal.

	expr !=
 expr
expr not_eq
 expr
	Returns false if the
 operands are equal.

Bitwise And Expressions

A bitwise and
 expression performs and on its
 operands' bits. The bitwise and
 expression is permitted only on integral types after the usual
 arithmetic conversions. The bitwise and operator has the following
 syntax:
	expr &
 expr
expr bitand expr
	Performs bitwise and
 of the operands. Each bit of the result is 1 if the corresponding bits of the
 operands are both 1;
 otherwise, the result bit is 0.

Bitwise Exclusive Or Expressions

A bitwise exclusive
 or expression performs exclusive
 or on its operands' bits. The bitwise exclusive or expression is permitted only
 on integral types after the usual arithmetic conversions. The
 exclusive or operator has the
 following syntax:
	expr ^ expr
expr xor expr
	Performs bitwise exclusive
 or of the operands. Each bit of the result is
 1 if the corresponding bits
 of the operands are not equal; otherwise, the result bit is
 0.

Bitwise Inclusive Or Expressions

A bitwise inclusive
 or expression performs inclusive
 or on its operands' bits. The bitwise inclusive or expression is permitted only
 on integral types after the usual arithmetic conversions. The bitwise
 inclusive or operator has the
 following syntax:
	expr | expr
expr bitor expr
	Performs bitwise inclusive
 or of the operands. Each bit of the result is
 0 if the corresponding bits
 of the operands are both 0;
 otherwise, the result bit is 1.

Logical And Expressions

A logical and
 expression implicitly converts its operands to type bool. The result has type bool: true if both operands are true; otherwise, it is false. The logical and operator is a short-circuit operator,
 so the second operand is evaluated only if the first evaluates to
 true. The logical and operator has the following
 syntax:
	expr && expr
expr and
 expr
	Performs the logical and of the operands.

Logical Or Expressions

A logical or
 expression implicitly converts its operands to type bool. The result has type bool: false if both operands are false; otherwise, it is true. The logical or operator is a short-circuit operator, so
 the second operand is evaluated only if the first evaluates to
 false. The logical or operator has the following
 syntax:
	expr || expr
expr or
 expr
	Performs the logical or of the operands.

Conditional Expressions

A conditional expression is like an if statement in an expression:
	condition ? true-expr :
 false-expr
	The first operand is converted to bool. If the value is true, only the second operand is
 evaluated; if it is false,
 only the third operand is evaluated. The result of the
 conditional expression is the result of the second or third
 operand, whichever is evaluated.
The type of the expression depends on the types of the
 second and third operands: if both operands are lvalues of the
 same type, the result is an lvalue of that type. If one operand
 is an lvalue of type T, and the other
 operand is an lvalue that can be implicitly converted to a
 reference to T, the result is an
 lvalue of type T. An error
 results if the conversion is ambiguous—that is, the second
 operand can be converted to the type of the third just as
 readily as the third can be converted to the type of the second.
 Otherwise, the result is an rvalue, and the type is determined
 as follows:
	If both operands have the same type, that is the type
 of the result.

	If one operand is a throw expression, the result type
 is that of the other operand.

	If one type S can be
 implicitly converted to the other type
 T, T
 is the result type. An error results if each operand can be
 implicitly converted to the other type.

Assignment Expressions

An assignment expression assigns its right operand to its
 left operand. In addition to plain assignment (x =
 y), there are several other
 assignment operators, each of which is a shorthand for an arithmetic
 operation and an assignment. The left operand of an assignment
 expression must be a modifiable lvalue. The result is an lvalue: the
 left operand after the assignment is complete.
 Assignment operators have the following syntax:
	lvalue = expr
	Assigns expr to
 lvalue. If the left operand has class
 type, a suitable assignment operator is called. (See Chapter 6 for more information.)
 If the left operand is not of class type, and the operands have
 different types, the right operand is converted to the type of
 the left operand.

	lvalue +=
 expr
lvalue -=
 expr
	The assignment operator x op
 = y is shorthand for x =
 x
 op y, except that x is evaluated only once. The type of
 x must be an arithmetic type
 or a pointer type. The usual conversions are performed for
 op, and the result is converted to
 the type of x.

	lvalue *=
 expr
lvalue /=
 expr
lvalue %=
 expr
lvalue <<=
 expr
lvalue >>=
 expr
lvalue &=
 expr
lvalue and_eq
 expr
lvalue ^=
 expr
lvalue xor_eq
 expr
lvalue |=
 expr
lvalue or_eq
 expr
	The assignment operator x op
 = y is shorthand for x =
 x
 op y, except that x is evaluated only once. The type of
 x must be arithmetic (unlike
 the additive assignment operators, which allow pointers because
 the additive operators allow pointer operands). The usual
 conversions are performed for op, and
 the result is converted to the type of x.

	throw
 expr
throw
	Throws an exception. The first form throws
 expr as the exception object. The
 second form rethrows the current exception object. If a program
 uses the second form, and no exception is being handled,
 throw calls terminate(). (See <exception> in Chapter 13 for more information
 about terminate.)
You can throw any expression, but the convention is to
 throw an object of type exception or of a derived class,
 especially a class derived from one of the standard exception
 classes (see <stdexcept> in Chapter 13).
[image: image with no caption]

The throw expression
 initializes a temporary exception object, and that object is
 thrown to the exception handler, which can copy the exception
 object in its catch clause.
 When the handler finishes, the object is destroyed. An
 implementation can optimize away the extra copy and initialize
 the catch object directly
 with the exception expr. Even if the
 object is never copied, the class must have a copy
 constructor.
See the try statement
 in Chapter 4 for a
 description of how exceptions are handled and for examples of
 throw expressions. See also
 Chapter 5 for information
 about throw specifications in
 function declarations.

Comma Expressions

A comma expression serializes expression evaluation. The
 comma operator evaluates its left operand, discards the result, and
 then evaluates the right operand. The result is the value of the right
 operand, and the type is the type of the right operand. If the right
 operand is an lvalue, the result is an lvalue; otherwise, the result
 is an rvalue. Typically, the left operand is evaluated for a side
 effect, such as an assignment or a function call.
The comma operator can be overloaded, in which case the serial
 nature is lost. Both operands are evaluated, and the operator function
 is called. Overloading the comma operator is seldom done.
The syntax of the comma operator is:
	expr1 ,
 expr2
	Evaluates expr1, then
 expr2, and returns
 expr2. To use a comma expression as a
 function argument or in other contexts in which a comma is
 significant, enclose the comma expression in parentheses:
sin((angle = 0.0, angle + 1.0));

Chapter 4. Statements

Statements define and control what a program does. This
 chapter describes the syntax and rules for C++ statements: expressions,
 loops, selection, and control. The statement syntax rules apply
 recursively, and wherever a statement is called for, you can use (almost)
 any of the statements in this chapter.
The syntax descriptions in this chapter are informal. See Chapter 12 for a precise BNF
 grammar.

Expression Statements

An expression statement computes an expression, such as a
 function call or assignment. The expression result is discarded, so the
 expression is typically evaluated for its side effects. (See Chapter 3 for details about expressions.)
 The statement syntax is simply an optional expression followed by a
 semicolon:
expr ;
or:
;
A statement with no expression is called a null
 statement . Null statements are most often used for loops when no
 code is needed in the loop body.
Here are several examples of expression statements:
42; // Valid but pointless
cout << 42; // More typical
x = y * z; // Remember that assignment is an expression
; // Null statement

Declarations

A declaration can appear anywhere a statement appears, and
 certain statements permit additional declarations within those
 statements.
Declarations made in a substatement (of a selection or loop
 statement) are limited in scope to the substatement, even if the
 substatement is not a compound statement. For example, the following
 statement:
while (test())
 int x = init();
is equivalent to:
while (test()) {
 int x = init();
}
The first example uses a declaration as the entire loop body, and
 the second uses a compound statement (enclosing the loop body in curly
 braces). In both cases, though, the scope of x is limited to the body of the while loop.
Declaration Statements

A simple declaration can appear wherever a statement can be
 used. You can declare an object, a type, or a namespace alias. You can
 also write a using declaration or
 using directive. You can declare a
 function, but not define a function, although there is rarely any
 reason to declare a function locally. You cannot define a namespace or
 declare a template.
In traditional C programming, declarations appear at the start
 of each block or compound statement. In C++ (and in the C99 standard),
 declarations can appear anywhere a statement can, which means you can
 declare variables close to where they are used. Example 4-1 shows examples of how
 declarations can be mixed with statements.
Example 4-1. Mixing declarations and statements
#include <cctype>
#include <cstddef>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <string>

// Count lines, words, and characters in the standard input.
int main()
{ unsigned long num_lines, num_words, num_chars;

 num_lines = num_words = num_chars = 0;

 using namespace std;
 string line;
 while (getline(cin, line)) {
 ++num_lines;
 num_chars += line.length() + 1;

 bool in_word = false;
 for (size_t i = 0; char c = line[i]; ++i)
 if (isspace(static_cast<unsigned char>(c))) {
 if (in_word)
 ++num_words;
 in_word = false;
 } else if (! in_word)
 in_word = true;
 if (in_word)
 ++num_words;
 }
 cout << right <<
 setw(10) << num_lines <<
 setw(10) << num_words <<
 setw(10) << num_chars << '\n';
}

Sometimes a construct can look like an expression statement or a
 declaration. These ambiguities are resolved in favor of declarations.
 Example 4-2 shows some
 declarations that look like they might be
 expressions.
Example 4-2. Declarations that seem like expressions
class cls {
public:
 cls();
 cls(int x);
};

int x;
int* y = &x;

int main()
{
 // The following are unambiguously expressions, constructing instances of cls. cls(int(x));
 cls(*static_cast<int*>(y));

 // Without the redundant casts, though, they would look like declarations, not
 // expressions.
 cls(x); // Declares a variable x
 cls(*y); // Declares a pointer y
}

Condition Declarations

The for, if, switch, and while statements permit a declaration within each statement's condition:
if (int x = test_this(a, b)) { cout << x; }
If the condition contains a declaration, the scope of the
 declared name extends to the end of the entire statement. In
 particular, a name declared in the condition of an if statement is visible in the else part of the statement. In a loop, the
 condition object is created and destroyed for each iteration of the
 loop. The name cannot be redeclared in the immediate substatement (but
 can be redeclared in a nested statement). The name is not visible in
 subsequent statements. For example:
if (derived* d = dynamic_cast<derived*>(b)) {
 d->derived_only_func();
} else {
 assert(d == NULL); // Same d as above
 double d; // Error: can't redeclare d
 if (d == 0)
 int d; // Valid: inner block
}
cout << d; // Invalid: d no longer in scope
Like the if , switch, and
 while statements, a for loop permits a declaration in its
 condition. Unlike those other statements, it also allows a declaration
 to initialize the loop. Both declarations are in the same scope. See
 Section 4.5.2 for
 details.
The syntax for a condition declaration is:
type-specifiers
 declarator = expression
This syntax is similar to the syntax of a simple object
 declaration. In this case, the initializer is required (without it,
 the condition would not have a value), and only one declarator is
 permitted. See Chapter 2 for more
 information about type specifiers and declarators.

Compound Statements

A compound statement is a sequence of zero or more
 statements enclosed within curly braces. Compound statements are
 frequently used in selection and loop statements. They enable you to write loop bodies that
 are more than one statement long, among other things. A compound
 statement is sometimes called a block.
Here is the syntax of a compound statement:
{statement ... }
or:
{ }
A compound statement can be used as a single statement wherever a
 statement is called for. A compound statement delimits a declarative
 scope, that is, any name declared in the compound statement is not
 visible outside the statement, and names in the statement can hide names
 from outside the statement. The lifetime of any automatic object
 declared in a compound statement is confined to that statement. All such
 objects are destroyed when execution leaves the compound statement for
 any reason (e.g., branching outside the statement, execution reaches the
 end of the statement, or an exception is thrown).
Compound statements are most often used as the bodies of selection
 and loop statements, but you can also stick a compound statement in the
 middle of a compound statement to restrict the scope of variables that
 are local to the compound statement. See the examples in this chapter
 for uses of compound statements.

Selections

A selection statement chooses one branch from multiple
 possibilities and executes the statements in that branch. The two
 selection statements supported by C++ are if and switch.
if Statements

An if statement has one of the following forms:
if (condition) statement
or:
if (condition) statement else statement
In the first form, the condition is
 converted to a bool, and if it is
 true, the
 statement is executed. Otherwise, the
 statement is skipped, and execution continues with the subsequent
 statement.
The second form chooses one of two alternative code paths. The
 condition is converted to a bool, and if it is true, the first
 statement is executed. Otherwise, the
 second statement is executed. Declarations
 in the first statement are not visible in the second. If if statements are nested, the else part binds with the closest, preceding
 if statement. Example 4-3 shows nested if statements.
Example 4-3. Nested if statements
if (c1)
 if (c2)
 cout << "c1 and c2 are true\n";
 else
 cout << "c1 is true, but c2 is false\n";
else if (c2)
 cout << "c1 is false, but c2 is true\n";
else
 cout << "c1 and c2 are false\n";

switch Statements

A switch statement chooses one execution path from among many
 alternatives. The syntax is:
switch (condition) statement
The condition must have an integral
 or enumerated type, or be of a class type in which the class has a
 single conversion function to an integral or enumerated type. The
 condition is evaluated once. Its value is
 compared against the case labels in
 the statement. If a case label matches the
 condition, execution continues with the
 statement immediately after the case label. If no case matches the
 condition, execution continues after the
 default label, if one is present.
 If there is no default label, the
 switch's statement is skipped and execution
 continues with the subsequent statement.
The statement part of a switch statement is typically a compound
 statement, in which every substatement has one or more case labels or a default
 label. The syntax for case and default labels is:
caseconstant-expression : statement
default : statement
The constant-expression must have an
 integral or enumerated type. The value is implicitly converted to the
 type of the condition. In a single switch statement, all case
 constant-expressions must have different
 values. A single statement in the switch's substatement can have
 multiple case labels, and a single
 switch statement can have any
 number of cases.
Tip
In C++, like C and Java, but unlike most other languages, a
 case or default label does not affect control
 flow. Execution continues from one case to the next, which is known
 as "falling through" to the next case. Use the break statement (described later in this
 chapter) to exit from a switch
 statement.

There can be at most one default case in a switch statement; it can appear anywhere in
 the statement. (The default case
 does not have to be last, as in some languages.)
By convention, case
 and default labels
 appear at the top level of the switch's substatement. They can appear
 in nested statements, but that makes the statements hard to read. In
 nested switch statements, case and default labels apply only to the innermost
 switch statement.
You should not define any objects in the switch's substatement unless they are
 enclosed in a nested compound statement. When the switch dispatches control to a particular
 case, it might jump over the declaration. Jumping over a declaration
 results in undefined behavior unless the declared object has POD type
 and is not initialized.
Example 4-4 shows
 sample switch statements.
Example 4-4. Switch statements
enum color { black, red, green, yellow, blue,
 magenta, cyan, white };
color get_pixel(unsigned r, unsigned c) { ... }

void demo()
{
 using std::cout;
 int r = ...
 int c = ... switch (get_pixel(r, c))
 {
 cout << "this is never executed, but it is valid\n";
 case black:
 cout << "no color\n";
 break; // Don't forget the break statements!
 case red: case green: case blue:
 cout << "primary\n";
 break; // Omitting break is a common mistake.
 default:
 cout << "mixed\n";
 switch (get_pixel(r+1, c+1))
 case white: {
 const int x = 0;
 cout << " white\n"; // This case is private to the inner switch
 // statement.
 c = x;
 }
 if (r > 0)
 // If the color is yellow, the switch branches directly to here. For
 // colors other than red, green, blue, and black, execution jumps to the
 // default label and arrives here if r > 0.
 case yellow:
 cout << " yellow or r > 0\n";

 break; // A break after the last case is not necessary, but is a good idea
 // if you add a case later.
 }
}

The outer switch statement
 has one case for black; another
 case for red, green, or blue; a default case; and a final case for
 yellow. The first two branches are
 conventional, and each ends with a break statement to exit the switch.
The case for yellow is
 unusual and hard to read because it is buried in an if statement. The same statement can be
 reached from the default case when the if condition is true (that is, r >
 0).
The default case has a nested switch, which has a single case, white. The inner switch statement is
 atypical because it does not have a compound statement as its
 body.

Loops

A loop statement allows you to execute a statement multiple
 times. Two loop statements, for and
 while, test at the top of the loop.
 The do statement tests at the bottom,
 thereby ensuring that the loop body executes at least once. This section
 describes the loop statements. See Section 4.6 for additional
 statements that affect or control loop execution.
A loop statement can declare variables in the scope of the loop's
 substatement. Every time the loop iterates, it reenters the substatement
 scope. This means objects that are declared in the substatement (and in
 the loop's condition) are created and destroyed with every loop
 iteration.
while Statements

A while statement repeats a statement while a condition is
 true. The syntax is:
while (condition) statement
The condition is evaluated and
 converted to bool. If the value is
 true,
 statement is executed, and the loop
 repeats. If the value is false, the
 loop finishes and execution continues with the subsequent statement.
 Thus, if condition is false the first time it is evaluated, the
 statement is never executed.
A continue statement in a while
 loop branches to the top of the loop, and execution continues with the
 evaluation of condition. A break statement exits immediately.
A while loop is typically
 used for unbounded iteration, that is, when you don't know beforehand
 how many times a loop will iterate. Example 4-5 shows how the while loop can be used to control
 I/O.
Example 4-5. Controlling I/O with the while loop
#include <algorithm>
#include <iostream>
#include <iterator>
#include <ostream>
#include <string>
#include <vector>

// Sort lines of text.
int main()
{
 using namespace std;
 string line;
 vector<string> data; while (getline(cin, line))
 data.push_back(line);
 sort(data.begin(), data.end());
 copy(data.begin(), data.end(),
 ostream_iterator<string>(cout, "\n"));
}

for Statements

A for loop is a generalization of the traditional counted
 loop that appears in most programming languages. The syntax for a
 for loop is:
for (init ; condition ; iterate-expr) statement
The init,
 condition, and
 iterate-expr parts are optional. The
 init part of the for statement can be an expression or a
 simple declaration. The init part offers
 more flexibility than a condition. While a condition can declare only
 one name, the init part can declare
 multiple names. The syntax for the init
 part is:
specifier-list declarator-list
or:
expression
As with the condition, the scope of
 the init part extends to the end of
 statement. The
 init, condition,
 and iterate-expr parts are in the same
 scope as the loop body. See Chapter
 2 for more information about specifiers and declarators.
The for loop starts by
 executing the init part, if present. It
 then evaluates the condition (just like a
 while loop). If the
 condition is true, the loop executes
 statement. It then evaluates
 iterate-expr and reevaluates
 condition. This process continues while
 condition is true. If
 condition is false, the loop finishes and execution
 continues with the subsequent statement. Thus, the
 init part is evaluated exactly once. The
 condition is evaluated at least once. The
 statement might be executed zero
 times.
The most common use of a for
 loop is to count a bounded loop, although its flexibility makes it
 useful for unbounded loops, too, as you can see in Example 4-6.
Example 4-6. Multiple uses of for loops
// One way to implement the for_each standard algorithm
template<typename InIter, typename Function>
Function for_each(InIter first, InIter last, Function f)
{ for (; first != last; ++first)
 f(*first);
 return f;
}

// One way to implement the generate_n standard algorithm
template<typename OutIter, typename Size, typename Generator>
void generate_n(OutIter first, Size n, Generator gen)
{
 for (Size i = 0; i < n; ++i, ++first)
 *first = gen;
}

A continue statement in a
 for loop branches to the top of the
 loop, and execution continues by evaluating the
 iterate-expr and then the
 condition. A break statement exits the loop without
 evaluating the iterate-expr. See Section 4.6 later in this
 chapter for examples of break and
 continue.
The init,
 condition, and
 interate-expr parts are all optional. If
 the init or
 iterate-expr parts are omitted, nothing
 happens to initialize the loop or after the statement executes. If the
 condition is omitted, it defaults to
 true.

do Statements

The do statement is like a while statement, except that it tests at the
 end of the loop body. The syntax is:
dostatement while (expression) ;
The statement is executed, then the
 expression is evaluated and converted to
 bool. If the value is true, the
 statement is repeated and the
 expression is checked again. If the
 expression is false, the loop finishes and execution
 continues with the subsequent statement. Thus,
 statement is always executed at least
 once.
A continue statement in a
 do loop jumps to the end of
 statement, and execution continues with the
 evaluation and test of expression. A
 break statement exits
 immediately.

Control Statements

Control statements change execution from its normal
 sequence. When execution leaves a scope, all automatic objects that were
 created in that scope are destroyed. (see Chapter 2 for a discussion of automatic
 and other object lifetimes)
C++ supports the following control statements:
	break;
	A break statement can be used only in the body of a
 loop or switch
 statement. It terminates the loop or switch statement and transfers execution
 to the statement immediately following the loop or switch.
In a nested loop or switch, the break applies only to the innermost
 statement. To break out of multiple loops and switches, you must
 use a goto statement or
 redesign the block to avoid nested loops and switches (by
 factoring the inner statement into a separate function, for
 example). Example 4-7
 shows a simple use of break.
Example 4-7. Using break to exit a loop
// One way to implement the find_if standard algorithm.
template<typename InIter, typename Predicate>
InIter find_if(InIter first, InIter last, Predicate pred)
{
 for (; first != last; ++first)
 if (pred(*first)) break;

 return first;
}

	continue;
	A continue statement can be used only in the body of a loop.
 It causes the loop to skip the remainder of its body and
 immediately retest its condition prior to reiterating (if the
 condition is true). In a
 for loop, the
 iterate-expr is evaluated before
 testing the condition. Example
 4-8 shows how continue
 is used in a loop.
Example 4-8. Using continue in a loop
#include <cmath>
#include <iostream>
#include <istream>
#include <limits>
#include <ostream>

int main()
{
 using std::cin;
 using std::cout;
 while(true) {
 cout << "Enter a number: ";
 double x;
 cin >> x;
 if (cin.eof() || cin.bad())
 // Input error: exit
 break;
 else if (cin.fail()) {
 // Invalid input: skip the rest of the line
 cin.clear();
 cin.ignore(std::numeric_limits<int>::max(), '\n'); continue;
 }
 cout << "sqrt(" << x << ")=" << std::sqrt(x) << std::endl;
 }
}

	goto
 identifier ;
	The goto statement transfers control to the statement that
 has identifier as a label. The goto
 statement and the labeled statement must be in the same function.
 Jumping into a block is usually a bad idea. In particular, if the
 jump bypasses the declaration of an object, the results are
 undefined unless the object has POD type and no initializer. (See
 Chapter 2 for information
 about POD types and initializers.) Example 4-9 shows some uses of
 goto statements.
Example 4-9. goto statements
#include <iostream>
#include <ostream>

int main(int argc, char* argv[])
{
 int matrix[4][5];
 for (int i = 0; i < 4; ++i)
 for (int j = 0; j < 5; ++j)
 if (! (std::cin >> matrix[i][j])) goto error;
 goto end;

 error:
 std::cerr << "Need 20 values for the matrix\n";
 end:
 return 0;
}

	return ;
return
 expr ;
	The return statement transfers execution out of a function to
 the caller. The first form does not return a value, so it should
 be used only in functions of type void, in constructors, and in
 destructors. The latter form cannot be used in constructors and
 destructors. In a function of type void, you can use the second form, but
 only if expr has type void. See Chapter 5 for more information
 about returning from functions.
[image: image with no caption]

The value of expr is converted to
 the function's return type and returned to the caller. The
 compiler is free to construct a temporary object and copy
 expr when returning. Some compilers
 optimize away the extra copy.
If execution reaches the last statement of a function
 without executing a return
 statement, an implicit return;
 is assumed. If the function has a non-void return type, the behavior is
 undefined.
The main function is
 special. If it ends without a return statement, return 0; is assumed.

	identifier :
 statement
	Any statement can have a label. A label is used only as a target of a goto statement. Label identifiers must
 be unique within a function; the scope of a label is the function
 in which it is declared. Label identifiers do not conflict with
 any other identifiers.
A statement can have multiple labels, including case and default labels.

Handling Exceptions

An exception interrupts the normal flow of control in a program. An
 exception throws an object from the point where the
 exception is raised to the point where the exception is handled. In
 between those points, function calls are aborted, and local scopes are
 abruptly exited. Local and temporary objects in those scopes are
 destroyed.
This section discusses exception handling in general and the
 try statement in particular. For information about other
 aspects of exception handling, see Chapter
 3, which describes the throw
 expression, and Chapter
 5, which describes function try blocks and throw specifications. See also <exception> and <stdexcept> in Chapter 13 for information about the
 standard exception classes and related functions.
Tip
As the name implies, an exception is used for exceptional
 circumstances, such as indexing a vector with an index that is out of
 bounds. The intention in C++ is that try statements should have near zero cost,
 but throwing and handling an exception can be expensive in terms of
 performance.

A try statement establishes a
 local scope plus exception handlers. A try statement begins with the try keyword followed by a compound statement
 and one or more catch handlers. Each
 catch handler has an exception type
 in parentheses followed by a compound statement. The exception type can
 be a sequence of type specifiers followed by an optional declarator, or
 it can be an ellipsis:
trycompound-statement
catch(type
 declarator) compound-statement
catch(type) compound-statement
catch(...) compound-statement
Each compound statement (after try and for each exception handler) forms a
 separate local scope, following the rules for any other compound
 statement.
Every time a local scope is entered—for example, by calling a
 function or by entering a compound statement or other statement that
 establishes a scope—you can think of the scope as pushing an entry on an
 execution stack. When execution leaves the scope, the scope is popped
 from the stack. Each try statement is
 also pushed on the stack.
When an exception is thrown, the execution stack is unwound. Local
 scopes are popped from the stack (destroying any automatic objects that
 were declared in each scope) until a try statement is found. The try statement is popped from the exception
 stack. Then the type of the exception object is compared with each
 exception handler. If a match is found, the exception object is copied
 to the locally-declared exception object, and execution transfers to the
 compound statement for that handler. After the handler finishes, the
 exception object is destroyed, and execution continues with the
 statement that follows the try
 statement (and its handlers).
If no matching handler is found, the stack continues to be popped
 until the next try statement is
 reached. Its handlers are compared with the exception type, and the
 process repeats until a matching handler is found. If no try statement has a matching handler, and the
 entire execution stack is popped, the terminate function is called. (See <exception> in Chapter 13.)
An exception handler can throw an exception, in which case, the
 usual rules apply for unwinding the stack. Note that the try statement has already been popped from the
 stack, so the same try statement
 cannot catch the exception. The handler can throw a new exception or
 rethrow the existing exception (in which case, the exception object is
 not freed yet).
A catch handler can use an ellipsis to mean it catches any type
 of exception. When an ellipsis is used, the handler must be last in the
 list of exception handlers.
Handlers are checked in order. The type
 in each catch clause is compared with the type
 T of the exception object according to the
 following rules:
	If type is the same as
 T or T
 & (not considering
 cv-qualifiers), the handler matches.

	If type is a base class of
 T, the handler matches.

	If type is a pointer that can be
 converted to T using a standard
 conversion (Chapter 3)—e.g.,
 type is void*—the handler matches.

	An ellipsis (...) always
 matches.

Thus, it is important to put the most specific exceptions first,
 and put base classes later. If you use an ellipsis, it must be
 last.
A common idiom is to throw an exception object and catch a
 reference. This avoids unnecessary copies of the exception
 object.
Example 4-10 shows a
 typical use of a try statement. It also shows a try function block, which is covered in Chapter 5.
Example 4-10. Throwing and catching exceptions
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <numeric>
#include <ostream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>

class bad_data : public std::out_of_range {
public:
 bad_data(int value, int min, int max)
 : std::out_of_range(make_what(value, min, max))
 {}
private:
 std::string make_what(int value, int min, int max);
};

std::string bad_data::make_what(int value, int min, int max)
{
 std::ostringstream out;
 out << "Invalid datum, " << value << ", must be in [" <<
 min << ", " << max << "]";
 return out.str();
}

// Read a set of numbers from an input stream. Verify that all data is within the
// defined boundaries. Throw bad_data if any data is invalid. If an exception is
thrown, tmp's destructor is automatically called (if it has a destructor).
template<typename T, typename charT, typename traits>
void getdata(std::basic_istream<charT,traits>& in,
 std::vector<T>& data, T min, T max)
{
 T tmp;
 while (in >> tmp)
 {
 if (tmp < min) throw bad_data(tmp, min, max);
 else if (tmp > max)
 throw bad_data(tmp, min, max);
 else
 data.push_back(tmp);
 }
}

// Arbitrary precision integer
class bigint {
public:
 bigint();
 ~bigint();
 ...
};

int main(int argc, char** argv)
{
 using namespace std;
 if (argc < 2) {
 cerr << "usage: " << argv[0] << " FILE\n";
 return EXIT_FAILURE;
 }

 vector<bigint> data;
 ifstream in(argv[1]);
 if (! in) {
 perror(argv[1]);
 return EXIT_FAILURE;
 }
 try {
 getdata(in, data, bigint(0), bigint(10));
 } catch (const bad_data& ex) {
 cerr << argv[1] << ": " << ex.what() << '\n';
 return EXIT_FAILURE;
 } catch(...) {
 std::cerr << "fatal error: unknown exception\n";
 return EXIT_FAILURE;
 }

 if (data.size() == 0)
 cout << "no data\n";
 else {
 bigint sum(accumulate(data.begin(),data.end(),bigint()));
 std::cout << "avg=" << sum / data.size() << '\n';
 }
}

Chapter 5. Functions

Every C++ program has at least one function (main), and all but the most trivial programs
 define additional functions. The C++ standard library provides numerous
 functions that your program can call. This chapter discusses how to
 declare, define, and call functions. A function declaration tells the compiler
 about a function's name, return type, and parameters. A function
 definition also provides the body of the
 function.
See Chapter 3 for more
 information about function call expressions and Chapter 4 for information about statements,
 which make up function bodies. This chapter presents information that is
 common to all kinds of functions. For characteristics that are unique to
 member functions, see Chapter 6, and
 for information that pertains specifically to function templates, see
 Chapter 7.
The syntax descriptions in this chapter are informal. See Chapter 12 for a precise BNF
 grammar.

Function Declarations

A function declaration tells the compiler about a function
 name and how to call the function. The actual body of the function can
 be defined separately (described later in this chapter). A function
 declaration has the following parts:
type
 name (parameters) cv-qualifiers
 except-spec ;
The parameters,
 cv-qualifiers, and
 except-spec are optional. The
 type is required, except for constructors,
 destructors, and type conversion operators. The
 name is the function name. (Each of these
 parts is described later in this chapter.) Example 5-1 shows a variety of
 function declarations.
Example 5-1. Declaring functions
// Function named "add", which returns type int, and takes two parameters, each
// of type int. The names a and b are optional.int add(int a, int b);

// Function named "print", which takes a const string reference, and does not
// return anything. The function is expanded inline.
inline void print(const std::string& str)
{
 std::cout << str;
}

// Function named "test", which takes two floating-point arguments and returns an
// enumeration. This function does not throw any exceptions.
enum fptest { less=-1, equal, greater };
fptest test(double, double) throw();

class demo {
public:
 // Member function named "value", which returns type int, takes no arguments,
 // and is const, which means it can be called for a const object.
 int value() const;
 // Function named "~demo", that is, a destructor, that is virtual. Constructors
 // and destructors do not have return types. Destructors do not take arguments.
 virtual ~demo();
 // Inline, overloaded, const type conversion operator
 operator bool() const { return value() != 0; }
};

Return Type

The type in a function declaration is
 the function's return type. It is a series of type
 specifiers (see Chapter 2) with
 pointer and reference operators. You can mix any of the following
 function specifiers freely with the type specifiers, but the
 convention is to list function specifiers before other type
 specifiers:
	explicit
	Applies only to constructors. An explicit constructor cannot be used in an implicit
 type conversion. See Chapter
 6 for details.

	inline
	Tells the compiler to expand the function body at the
 point of the function call. An inline function must be defined in every file in
 which it is used, and the definition must be identical in every
 file. If the function body contains a local static object,
 including string literals, every expansion of the function in
 every file refers to a common object.
A function definition in a class definition is an inline
 function definition, even without the use of the inline specifier.
[image: image with no caption]

The inline specifier is
 a hint to the compiler, and the compiler is free to ignore the
 hint. Most compilers impose a variety of restrictions on which
 functions can be expanded inline. The restrictions vary from one
 compiler to another. For example, most compilers cannot expand a
 recursive function.
Inline functions are most often used for extremely simple
 functions. For example, all standard containers have a member
 function empty, which returns
 true if the container is
 empty. Some containers might implement the function as the
 following inline
 function:
inline bool empty() const { return size() != 0; }

	virtual
	Applies only to nonstatic member functions. A virtual function's definition is bound to the
 function call at runtime instead of at compile time. See Chapter 6 for details.

If a function's return type is void, no value is returned to the caller.
 The function does not need a return
 statement. The form return; is
 permitted, or the return expression must have type void.
If the return type is anything other than void, every return statement must have an expression,
 the type of which can be implicitly converted to the function's return
 type. See Chapter 4 for more
 information about the return
 statement.
A function's return type cannot be an array or function type,
 but it can be a pointer or reference to an array or function.
In a function declaration (but not a definition), you can use
 the extern storage class specifier.
 Declarations and definitions can have linkage specifications, e.g.,
 extern "C". See Chapter 2 for more information about
 storage class and linkage.
A friend specifier can be
 used to declare a friend function. See Chapter 6 for more information.
Note that the return type is not considered in overload
 resolution. See Section
 5.3 later in this chapter for details.

Parameters

 Function parameters are optional. If a function takes no
 parameters, you can leave the parentheses empty or use the keyword
 void. If a function requires
 parameters, the parameter list is comma-separated, in which each
 parameter is a simple declaration of the following form:
type-specifiers
 declarator = expr
expr is optional; if it is omitted,
 the = symbol is also omitted. The
 type-specifiers allow for the optional
 register and auto storage class specifiers and pointer
 and reference operators. See Chapter
 2 for more information about declarators and specifiers.
Tip
In C, a function that takes no arguments requires the void keyword, but in C++, void is optional. Thus, void appears most often in headers that
 must be used in both C and C++ programs. For example:
#ifdef _ _cplusplus
 #define EXTERN extern "C"
#else
 #define EXTERN extern
#endif
EXTERN int get_version(void);
In other situations, you can use whichever style you
 prefer.

You can omit the parameter name from the
 declarator. In a function declaration, the
 name is important only to the human reader. In a function definition,
 a nameless parameter cannot be used in the function body. For example,
 suppose a graphics package defines a variety of shape classes, all
 deriving from a common base class, shape. Among the operations permitted on a
 shape is scale, which takes two
 arguments: the scaling amounts in the x and y directions. Also, suppose that the
 square shape (unlike rectangle) heeds only the x scale factor. The square::scale function might be written
 as:
void square::scale(double xscale, double)
{
 this->size *= xscale;
}
A parameter can have cv-qualifiers
 (const and volatile, as discussed in Chapter 2). The qualifiers have their
 usual meaning in the function body. The qualifiers and storage class
 specifier are not part of the function type and do not participate in
 overload resolution.

Default Arguments

A parameter can have a default argument (separated from the declarator by an
 equal sign). Only the right-most parameters can have default
 arguments. If any given parameter does not have a default argument,
 all parameters to its left cannot have default arguments. The default
 argument can be any expression. (If you want to use a comma operator,
 enclose the expression in parentheses.)
In a function call, arguments that have default values can be
 omitted, starting from the right. For each omitted argument, the
 default argument is substituted in the function call. Each default
 argument is implicitly converted to the parameter type, applying the
 same rules that govern initializers in declarations. The default
 argument expressions are evaluated every time the argument is needed
 in a function call. Names used in the default arguments are looked up
 at the point of declaration, not the point of use, as shown in Example 5-2.
Example 5-2. Declaring and using default arguments
#include <iostream>
#include <ostream>

namespace demo {
 int f()
 {
 return 20;
 }
}

int f()
{
 return 10;
}

// The default argument for y is always the global f(), even if a different f()
// is visible where func() is called.
int func(int x, int y = f())
{
 return x + y;
}

int main()
{
 using demo::f;
 std::cout << f() << '\n'; // Prints 20
 std::cout << func(32) << '\n'; // Prints 42
}

Default arguments are cumulative in multiple declarations of the
 same function in the same scope. Later declarations can provide
 default arguments for additional parameters, in which case the
 declaration must omit the default arguments for parameters that
 already have default arguments, as shown in Example 5-3.
Example 5-3. Accumulating default arguments
void func(int x, int y);
void func(int x, int y = 10);
void func(int x = 20, int y);
void other()
{
 func(); // Same as func(20, 10)
}

Different scopes can have different default arguments. For
 example, the source file in which a function is defined might have
 different default arguments from those used in function declarations
 where the function is used. However, most of the time, different
 default arguments suggests programmer errors.
In a derived class, an overridden virtual function can have different default arguments
 than its counterpart in the base class. The default argument is chosen
 at compile time, based on the object's static type. Thus, the default
 arguments are typically those of the base class, even if the function
 actually called is from the derived class. To avoid confusion, it is
 best to avoid default arguments with virtual functions, or make sure
 they are the same for all overridden functions. (See Chapter 6 for more information about
 virtual functions.)
In a member function declaration, you cannot use a nonstatic
 data member as a default argument unless it is the member of a
 specific object. If you want to use the value of a data member as the
 default value for a parameter, use an overloaded function, as shown in
 Example 5-4. (See Section 5.3 for more on
 overloaded functions.)
Example 5-4. Default arguments in member functions
class example {
public:
 void func(int x, int y = data_); // Error

 // Achieve the desired effect with overloaded functions.
 void func(int x, int y);
 void func(int x) { func(x, data_); }
private:
 int data_;
};

Variable Number of Arguments

The last parameter in a function declaration can be an
 ellipsis (...), which
 permits a variable number of arguments to be passed to the
 function. The comma that separates the next-to-last parameter from the
 ellipsis is optional. However, if portability with C is important, be
 sure to include the comma. (See <cstdarg> in Chapter 13 to learn how to access the
 additional arguments.) You can use an ellipsis as the sole parameter
 in a function, but there is no mechanism in standard C++ to access the
 arguments from the function body. Such a declaration might be used for
 an external function, however.

cv-qualifiers

Only nonstatic member functions (but not constructors or
 destructors) can have cv -qualifiers (const
 and volatile). They are optional,
 and if used in a member function declaration, apply to the implicit
 object parameter of the member function (this). You can use const, volatile, neither, or both in any order.
 Place cv-qualifiers after the closing parenthesis
 of the function parameters and before the exception specification. The
 qualifiers are part of the function type and participate in overload
 resolution, so you can have multiple functions with the same name and
 parameters, but with different qualifiers (but only if you do not also
 have a static member function of the same name and parameters; see
 Section 5.3 later in this
 chapter for details).
A pointer-to-member function and a function typedef can also have
 cv-qualifiers. Only a top-level typedef can have
 cv-qualifiers; you cannot declare a typedef that combines a function typedef and a qualifier.
cv-qualifiers are most often used to
 declare const member functions. These functions can be called for a
 const object. In general, member
 functions that do not change *this
 should be declared const. (See
 Chapter 6 for more information on
 how cv-qualifiers affect member functions.) Example 5-5 shows some simple uses
 of qualifiers.
Example 5-5. Using qualifiers with member functions
class point
{
public:
 point(int x, int y) : x_(x), y_(y) {}
 int x()const { return x_; }
 int y() const { return y_; }
 double abs() const { return sqrt(double(x())*x() + y()*y()); }
 void offset(const point& p) {
 // Cannot be const because offset() modifies x_ and y_
 x_ += p.x();
 y_ += p.y();
 }
private:
 int x_, y_;
};

Exception Specifications

An exception specification tells the compiler which
 exceptions a function can throw. Exception specifications are optional
 in a function declaration and are rarely used. The syntax is:
throw (type-list)
The type-list is optional. The
 exception specification follows the function header and
 cv-qualifiers. If present, it is a
 comma-separated list of type names. (See Chapter 2 for details about type
 names.) Each type name is an exception type that the function can
 throw. If the function throws an exception that is not listed in the
 exception specification, the unexpected function is called. If the function declaration does
 not have an exception specification, the function can throw any
 exception.
The default implementation of unexpected calls terminate to terminate the program. You can
 set your own unexpected handler,
 which must call terminate or throw
 an exception. If your handler throws an exception that is not listed
 in the function's exception specification, bad_exception is thrown. If bad_exception is not listed in the
 function's exception specification, terminate is called. In other words, if
 there is an exception specification, only exceptions of the listed
 types (or derived from one of the listed types) can be thrown from the
 function, or else the program terminates. See <exception> in Chapter 13 for details.
An overridden virtual function must have an exception
 specification that lists only types that are also listed in the
 base-class exception specifications. In particular, if the base-class
 function does not throw any exceptions, the derived class function
 must not throw any exceptions.
An exception specification most often marks functions that do
 not throw exceptions at all (throw(
)). Example 5-6
 shows various uses of exception specifications.
Example 5-6. Declaring exception specifications
class base {
public:
 virtual void f()throw();
 virtual void g(); // Can throw anything
 virtual void h() throw(std::string);
};

class derived : public base {
public:
 virtual void f() throw(); // OK: same as base
 virtual void g() throw(int); // OK: subset of base
 virtual void h() throw(int); // Error: int not in base
};

class more : public derived {
public:
 virtual void f(); // Error: can throw anything
 virtual void g() throw(); // OK
};

// Function does not throw any exceptions
int noproblem(int x, int y) throw()
try
{
 dostuff(x);
 dostuff(y);
 return 1;
}
catch(...)
{
 return 0;
}

derived* downcast(base* b) throw(std::bad_cast)
{
 return dynamic_cast<derived*>(b);
}

Tip
Java programmers should note two significant differences
 between C++ and Java with respect to exception
 specifications:
	The exception specification is introduced by throw, not throws.

	The correctness of the exception specification is checked
 at runtime, not at compile time.

Function Definitions

Every function that a program uses must be defined exactly
 once in the program, except for inline functions. (Function templates
 are a little different; see Chapter
 7 for details.) An inline function must be defined in every source file that
 uses the function. This section discusses function definitions and their
 relationship to their declarations.
Declarations and Definitions

In a source file, every function must be declared or defined
 before it is used. For functions defined in libraries or other source
 files, the convention is to declare the function in a header
 (.h or .hpp) file, and the source file where the
 function is called must #include
 the header file. Every function that is used in the program must have
 a definition.
Inline functions must be defined in every source file in which
 they are used. This is typically accomplished by defining them in a
 header file, which you must #include in each source file that calls the
 inline function. Every definition of an inline function must be
 identical.

Function Types and Signatures

A function type includes the language
 linkage, return type, parameter types, and
 cv-qualifiers. Note that for each parameter, only
 its type is significant; its name, storage class, and
 cv-qualifiers are not part of the function type.
 Exception specifications are not part of a function's type.
A single source file can have multiple declarations of the same
 function (that is, functions with the same type), even if those
 declarations differ in other ways. For example, one declaration can
 declare a parameter const and
 another might declare it volatile.
 Because cv-qualifiers on parameters do not affect
 a function's type, both declarations are equivalent. (Parameter
 qualifiers matter only in the function definition, not the
 declaration.) Example 5-7
 shows several declarations and one definition, all for a single
 function.
Example 5-7. Declaring and defining functions
// Three declarations of the same function type
int add(const int a, const int b);
int add(int x, volatile int);
int add(signed int, int signed);

// Definition of the function. The parameter qualifiers in the declarations are
// irrelevant. Only those in the definition matter.
int add(int x, int y)
{
 return x + y;
}

Array and pointer parameter types are also equivalent. In a
 function body, a parameter with an array type is actually a pointer,
 not an array. The first (leftmost) size in a multidimensional array is
 ignored and can be omitted. Similarly, a parameter of function type is
 the same as a parameter of function pointer type. The rules for
 function types apply recursively to function and function pointer
 parameters. Thus, a parameter with a type that is a pointer to a
 function that takes an int is
 equivalent to one with a type that is a pointer to a function that
 takes a const int parameter. Example 5-8 illustrates equivalent
 pointer types.
Example 5-8. Equivalent pointer types
int first(int const array[10]); // Size is ignored
int first(int const array[]); // Equivalent declaration
int first(int const *array); // Equivalent declaration
int first(int const *array) // Definition
{
 return array[0];
}

int apply(int func(int), int arg);
int apply(int func(int const), int); // Equivalent
int apply(int (*func)(int), int arg); // Equivalent
int apply(int (*func)(int const), int arg) // Definition
{
 return func(arg);
}

Because typedef declarations do not create new types, but only synonyms
 for existing types, parameters that differ only in their use of
 typedef types are equivalent, as
 shown in Example 5-9.
Example 5-9. Using typedef in equivalent parameter types
typedef int INT;
typedef int const CINT;
void func(int);
void func(INT); // Equivalent
void func(INT const); // Equivalent
void func(CINT); // Equivalent
void func(signed int i) // Definition
{
 std::cout << i;
}

You can declare a function type from a typedef, but you cannot use the typedef in a function definition. This usage
 is uncommon. For example:
typedef int func(int, int);
func add; // Declares int add(int, int);
int add(int a, int b) // Cannot use "func add" here
{
 return a + b;
}
Be careful to distinguish between a function type and a function pointer type. A function
 can be implicitly converted to a function pointer and can be called
 using a function pointer. A function pointer, however, cannot be used
 to declare a function. The following is an example of the implicit
 conversion of a function, add, to a
 function pointer, and the use of a function pointer, a, to call the function:
typedef func* funcptr; // Pointer-to-function type
funcptr a = add; // Pointer-to-function object
int i = a(1, 2); // Call the function that a points to.
A function signature is similar to a function
 type, but it ignores the return type. Overload resolution relies on
 function signatures to determine which overloaded function to call.
 See Section 5.3 later in
 this chapter.

Function Bodies and try Blocks

A function definition consists of a function declaration
 followed by a function body. The function body has one of two forms:
	compound-statement
	Executed when the function is called. When execution
 reaches a return statement or
 the end of the compound statement, the function returns.

	try
 ctor-initializers
 compound-statement
 handlers
	Sets up a try block
 that surrounds the constructor initializers and function body.
 If an exception is thrown from any of the
 ctor-initializers, it is handled by
 the handlers in the same manner as any exception thrown from the
 compound statement. Thus, this form is typically used only with
 constructors that have initializers. See Chapter 6 for more information
 about constructor initializers.

The constructor initializers in the second form are optional.
 Without them, the form can be used for any function. It is equivalent
 to having a try statement around
 the entire function body. Example
 5-10 shows a try function
 body used in this way.
Example 5-10. A try function body
void func1()
try {
 // Statements
} catch (...) {
 // Handler
}

void func2()
{
 try {
 // Statements
 } catch(...) {
 // Handler
 }
}

Function Overloading

 A single function name can have multiple declarations. If
 those declarations specify different function signatures, the function
 name is overloaded. A function call to an
 overloaded function requires the compiler to resolve the overloaded name
 and decide which function to call. The compiler uses the argument types
 (but not the return type) to resolve calls to overloaded functions. Example 5-11 shows simple examples
 of two overloaded functions named sqrt: one for int arguments and the other for double arguments. The rest of this section
 explains the rules for overloading and resolution.
Example 5-11. Overloaded functions
int sqrt(int);
double sqrt(double);

int main()
{
 std::cout << sqrt(3) << '\n'; // sqrt(int)
 std::cout << sqrt(3.14) << '\n'; // sqrt(double)
}

Declaring Overloaded Functions

Whenever you declare more than one function with the
 same name in the same scope, you are overloading the function name.
 The function can be an ordinary function, member function,
 constructor, or overloaded operator.
Overloaded functions must differ in their parameter lists: they
 must have a different number of parameters, or the parameter types
 must be different. Refer to Section 5.2.2 earlier in this
 chapter for information on equivalent parameter types.
Default arguments are not considered when declaring overloaded
 functions (but are important when resolving a call to an overloaded
 function, as described in Section 5.3.2). Example 5-12 shows overloaded
 constructors and member functions for the point class, and overloaded declarations for
 the add function.
Example 5-12. Overloaded constructors, member functions, and function
 declarations
class point {
public:
 point(int x = 0); // Overloaded constructors
 point(int x, int y);
 point(const point& pt);
 // x and y are overloaded.
 int x() const { return x_; }
 void x(int newx) { x_ = newx; }
 int y() const { return y_; }
 void y(int newy) { y_ = newy; }
private:
 int x_, y_;
};

// add is overloaded.
int add(int, int);
int add(int);
double add(double, double);
double add(double);
long add(long, long);
long add(long);

// The following declarations are not overloaded, but are redeclarations of the
// add functions.
int add(int a = 0, int b = 0);
long add(signed long, long signed);

long add(int, int); // Error: cannot overload on return type

Calling Overloaded Functions

A function call expression (Chapter 3) must identify the function
 being called, based on its name and arguments. For example, the simple
 expression f(x) might be a call to
 a function named f, a function call
 through a function pointer named f,
 a function template named f, the
 construction of an object of class f, a conversion of x to a type named f, or the invocation of the function call
 operator of an object named f. In
 each situation, the compiler might use different rules for
 interpreting f and x.
The compiler first uses the function name and context to
 create a list of candidate functions. The number and types of
 the arguments are used to select the best match from the candidates,
 and that function is the one that is called. If no match is found, the
 compiler reports an error. If more than one match ties for "best," the
 compiler reports an ambiguity error.
For example, the C++ standard library declares three different
 sqrt functions (see <cmath> in Chapter 13):
float sqrt(float);
double sqrt(double);
long double sqrt(long double);
Suppose you add another function named sqrt, such as the following, to apply it to
 each element of an array :
void sqrt(const double data[], size_t count);
In a function call to sqrt
 (e.g., sqrt(x)), the compiler first
 uses the ordinary rules of name lookup (Chapter 2) to find the first suitable
 object or function named sqrt.
 Suppose you used using namespace std; to import the standard sqrt functions into the same namespace as
 your sqrt function. The compiler
 would collect all the overloaded sqrt functions as the candidate list, which
 has four elements in this case (the three original functions plus the
 array version). The list is then pruned to eliminate functions with
 the wrong number of arguments. In this case, the array version of the
 function is eliminated because the expression has only one argument.
 Finally, the type of x is used to
 determine which function to call. If there is an exact match, the
 corresponding function is called. If x is, for example, an integer, the compiler
 reports an error because the three floating-point sqrt functions look equally good. If
 x has class type, and the class has
 a conversion function to one of the floating-point types, the compiler
 implicitly calls that conversion and then calls the corresponding
 function:
struct FixedPoint {
 ...
 operator long double();
};
void demo()
{
 FixedPoint x;
 std::cout << sqrt(x) << '\n'; // Prints a long double
}
If a candidate is a function template, the compiler deduces the argument
 types (see Chapter 7), and from
 that point on, the template instance is treated as a normal
 function.
The rules for creating the candidate list and argument list
 depend on the context of the function call. The argument list can also
 depend on context: when choosing an overloaded function to call, a
 member function's class is treated as an argument type. More
 precisely, member functions have an implicit
 object
 parameter whose type is a reference to
 T, in which T is
 the class that defines the member function. Any qualifiers on the
 member function also qualify the type (that is, the object type for a
 const function is const T &). In the function body, the type of
 this is a pointer to qualified
 T. (See Chapter 6 for more information about
 this.)
A call to a member function applies to a specific object,
 which is the implicit object
 argument. When calling a member function with the
 -> or . operator, the implicit
 object argument is the left operand. For an overloaded binary operator
 (such as operator<<), the
 implicit object argument is the left operand. For a unary operator,
 the implicit object argument is the operand. When calling an
 unqualified function inside a nonstatic member function, the implicit
 object argument is *this. The
 implicit object argument is considered the first argument in the
 argument list. Unlike normal arguments, implicit type conversions do
 not take place for the implicit object argument.

Candidate Functions

This section describes how the compiler creates its list of
 candidate functions. Table
 5-1 summarizes the various categories of function calls, and
 the subsequent subsections provide the details.
Table 5-1. Function calls and candidate lists
	Category
	Function call syntax
	Candidate functions

	 Qualified member function call
	expr . name (args)
expr -> name (args)
	Member functions

	 Unqualified function call
	name (args)
expr (args)
	Member functionsNonmember
 functions

	 Operator
	expr
 op
 expr
	Member functionsNonmember
 functions

	 Function-like initialization
	type
 name (args)
	Constructors

	 Assignment-like initialization
	type
 name = expr
	ConstructorsType conversion
 operators

	 Conversion initialization
	type
 name = expr
	Type conversion operators

	 Reference bound to initialization
	type& name = expr
	Type conversion operators

Qualified member function call

An expression that uses the . or -> operator to call a function must
 call a member function. The function name is looked up in the class
 of the left operand and in its base classes (using the name lookup
 rules listed in Chapter 2). The
 search starts in the most-derived class. If that class declares a
 member function with the desired name, the search stops, and the
 candidate functions are all the member functions with the same name
 in that class. If no matching member function is found, the search
 continues with the immediate base classes. The search stops when a
 matching name is found.
In other words, a derived class cannot overload a function that is
 declared in a base class. Instead, if the derived class has a
 function with the same name, the derived class hides the name that
 would be inherited from the base class (or the derived class might
 override a virtual function; see Chapter 6). Insert a using declaration in the derived class if
 you want the compiler to consider the base class functions as
 candidates, as shown in Example
 5-13.
Example 5-13. Overloading inherited functions
#include <iostream>
#include <ostream>

class base {
public:
 void f(int) { std::cout << "f(int)\n"; }
 void g(int) { std::cout << "g(int)\n"; }

};

class derived : public base {
public:
 void f(double) { std::cout << "f(double)\n"; }
 void g(double) { std::cout << "g(double)\n"; }
 using base::g; // g(int) and g(double) are visible.
};

int main()
{
 derived d;d.f(3); // Calls derived::f(double)
 d.g(42); // Calls base::g(int)
}

If a class has multiple immediate base classes, overload resolution must find a name in
 only one of the base classes. If functions with the desired name are
 found in multiple immediate base classes, the compiler reports an
 ambiguity error. To resolve this ambiguity, use the scope operator
 (::) to qualify the function name
 in the derived class, as shown in Example 5-14.
Example 5-14. Avoiding ambiguous base-class overloads
struct base1 {
 void func(int);
};
struct base2 {
 void func(double);
};
struct derived : base1, base2 {
 // Call to overloaded func is ambiguous.
 void demo1(long x) { func(x); }
 // Qualify the name to resolve ambiguity.
 void demo2(long x) { base2::func(x); }
};

Unqualified function call

An ordinary-looking function call can be a nonmember
 function, a member function, an object of class type, a type name,
 or a variable of type pointer-to-function. For a variable of type
 pointer-to-function, overload resolution takes place when a value is
 assigned to the variable (discussed later in this chapter). In the
 other cases, the usual name lookup rules apply when finding the
 candidate functions.
A function call in a member function searches first for
 matching member functions in the same class or an ancestor class.
 The search for a match begins in the class that is declaring the
 member function. If a match is found, candidate functions are taken
 from that class. If no matches are found, the search continues with
 ancestor classes, following the same rules as for qualified member
 function calls. If no matches are found in any ancestor classes, the
 namespace of the class is searched for nonmember functions. Example 5-15 shows how a
 matching member function in a base class precludes finding a better
 match in the global namespace.
Example 5-15. Finding candidate member functions
#include <iostream>
#include <ostream>

void proc(int x)
{
 std::cout << "proc(int:" << x << ")\n";
}

class base {
public:
 void f(int) { std::cout << "f(int)\n"; }
 void g(int) { std::cout << "g(int)\n"; }
 void proc(double) { std::cout << "base::proc(double)\n"; }
};

class derived : public base {
public:
 void f(double) { std::cout << "f(double)\n"; }
 void g(double x) {
 std::cout << "g(double)\n";
 proc(42); // Calls base::proc(double), not ::proc(int)
 }
 using base::g;
};

// Declared after derived, so call to proc() inside g() never sees this proc().
void proc(double x)
{
 std::cout << "proc(double:" << x << ")\n";
}

int main()
{
 derived d;d.g(3.14159); // Calls g(double)
}

If a function call expression resolves to an object of class
 type, the class must have a function call operator or a conversion
 operator, in which the conversion is to a function type:
 pointer-to-function, reference-to-function, or
 reference-to-pointer-to function.
A conversion operator is rarely used. The compiler
 constructs a wrapper function so that the conversion function is the
 first argument. The conversion type followed by the types of the
 actual arguments is the new list of argument types to use in
 overload resolution. In other words, all of a class's function-type
 conversion operators participate in overload resolution.
Example 5-16 shows
 how a class-type object is used as the left operand of a function
 call.
Example 5-16. Calling a class-type object as a function
#include <iostream>
#include <ostream>

typedef void (*strproc)(const char*);

void print(const char* str)
{
 std::cout << "const char*:" << str << '\n';
}

void print(int x)
{
 std::cout << "int:" << x << '\n';
}

void print(double x)
{
 std::cout << "double:" << x << '\n';
}

struct simple
{
 void operator()(int x) { print(x); } // print(int)
 void operator()(double x) { print(x); } // print(double)
};

typedef void (*intfunc)(int);
typedef void (*dblfunc)(double);

struct indirect
{
 operator intfunc() { return print; } // print(int)
 operator dblfunc() { return print; } // print(double)
 operator strproc() { return print; } // print(const char*)
};

int main()
{
 simple sim;
 indirect ind;sim(42); // Prints "int:42"
 sim.operator()(42); // Prints "int:42"
 sim(42.0); // Prints "double:42"
 ind(42); // Prints "int:42"
 ind.operator intfunc()(42); // Prints "int:42"
 ind(42.0); // Prints "double:42"
 ind("forty-two"); // Prints "const char*:forty-two"
}

Operator

The function for an overloaded operator is chosen according to the usual
 rules for resolving overloaded functions, in which the operator's
 operands are the function's arguments. You can overload operators
 only if at least one operand has a user-defined type. If all
 operands have built-in types, an operator has its built-in
 meaning.
If the left operand of an operator has class type, the
 operator can be a nonstatic member function or a nonmember function.
 Otherwise, the function must be a nonmember function. The operator
 function name is formed from the keyword operator followed by the operator symbol,
 e.g., operator[], operator++, or operator-. Unary operators can be member
 functions with no arguments or nonmember functions of one argument.
 Binary operators are member functions of one argument or nonmember
 functions of two arguments. Postfix increment and decrement
 operators are different. They are implemented as binary operators
 for which the right operand is an int. (See Chapter 3 for more
 information.)
The -> operator is also
 different. Although it is a binary operator, it is treated as a
 unary operator. It must be implemented as a member function, so the
 function takes no arguments. It returns a pointer or another object
 that overloads the ->
 operator. Ultimately, the overloaded operators must resolve to a
 pointer of class type, to which the built-in -> operator can be applied.
The candidate functions for the overloaded operator include
 all member, nonmember, and built-in candidate functions. Member
 functions do not take precedence over nonmember functions.
Example 5-17 shows
 how operator functions are different from named functions. In
 particular, it shows how operators are resolved by considering
 member functions and global functions, whereas named member
 functions take precedence over named global functions.
Example 5-17. Calling overloaded operators
class demo
{
public:
 demo(int v) : value_(v) {}

 demo add(const demo& d) const;
 demo sub(const demo& d) const;
 demo mul(const demo& d) const;
 demo operator+(const demo& d) const;
 demo operator-(const demo& d) const;
 demo operator*(const demo& d) const;
 operator int() const { return value_; }
private:
 int value_;
};

// Silly examples, but illustrative
demo add(const demo& a) { return a; }
demo mul(const demo& a) { return a; }
demo div(const demo& a) { return a; }

demo operator+(const demo& a, const demo& b)
{
 return a.operator+(b); // Force use of member function.
}

demo demo::add(const demo& d)
const
{return *this + d; // Error: calls ::operator+() or demo::operator+()?
}

demo demo::sub(const demo& d) const
{
 return this->operator-(d); // Member operator
}

demo demo::mul(const demo& d) const
{
 return ::operator*(*this, d); // Global operator
}

demo demo::operator+(const demo& d) const
{
 return demo(int(*this) + int(d));
}

demo demo::operator-(const demo& d) const
{
 return sub(d); // Calls demo::sub (recurses infinitely)
}

demo demo::operator*(const demo& d) const
{
 return ::mul(d); // Scopes operator to call global mul()
}

Function-like initialization

An object can be initialized using function-like syntax (see
 Chapter 2). When an object of
 class type is so initialized, the candidate functions are
 constructors of the named class. The same syntax applies to
 conversion initialization covered later in this chapter. Example 5-18 shows
 function-like initializers that call an overloaded
 constructor.
Example 5-18. Calling an overloaded constructor
class point {
public:
 point() : x_(0), y_(0) {}
 point(int x) : x_(x), y_(0) {}
 point(int x, int y): x_(x), y_(y) {}
private:
 int x_, y_;
};point p1(42);
point p2(4, 2);
point p3(p1);

Assignment-like initialization

An object can be initialized using assignment-like syntax (see
 Chapter 2). The candidate
 functions for "T x =
 i" are single-argument,
 non-explicit constructors of
 T. If i has class type, the candidates are
 conversion functions that convert i to type T, as shown in Example 5-19. The compiler is
 free to call T's copy constructor
 to copy a temporary T object to
 x. Even if the compiler optimizes
 away this extra copy, T must have
 an accessible copy constructor.
Example 5-19. Resolving assignment-like initialization
class point {
public:
 point() : x_(0), y_(0) {}
 point(int x) : x_(x), y_(0) {}
 point(int x, int y) : x_(x), y_(y) {}
 int x() const { return x_; }
 int y() const { return y_; }
private:
 int x_, y_;
};

class dot {
public:
 dot(int x, int y) : center_(point(x, y)) {}
 dot(const point& center) : center_(center) {}
 operator point() const { return center_; }
private:
 point center_;
};point p1 = 3; // Invokes point(int) constructor
point p2 = 4.2; // Converts 4.2 to 4, and invokes point(int)
dot d1 = p1; // Invokes dot(const point&) constructor
point p3 = d1; // Invokes dot::operator point() and implicit
 // point(const point&) copy constructor

Conversion initialization

An object that does not have class type can be initialized
 with an object of class type. The candidate functions are the
 conversion functions of that class type. Example 5-20 shows two cases of
 conversion initialization. In the first, the object c is initialized with an rbnode<int> object, n, and the compiler calls operator color(
). The second invokes operator T(
), in which T is
 int, to initialize i to the value 42.
Example 5-20. Initializing non-class-type objects by calling conversion
 functions
enum color { red, black };

template<typename T>
class rbnode {
public:
 rbnode(const T& value, color c);
 operator color() const { return color_; }
 operator T() const { return value_; }
private:
 T value_;
 color color_;
};

rbnode<int> n(42, black);color c = n;
int i = n;

Reference bound to conversion

Similar to initializing an object of non-class type with an
 expression of class type, you can initialize a reference to an
 lvalue that results from a conversion function and initialize a
 const reference to an rvalue.
 Most conversion operators do not return lvalues, so the const reference version of this rule is
 used more often. Example
 5-21 shows some examples of binding references to conversions. The object c1 is bound to a temporary copy of
 n.color_, and i1 is bound directly to n.value_.
Example 5-21. Binding references to conversion lvalues
enum color { red, black };

template<typename T>
class rbnode {
public:
 rbnode(const T& value, color c);
 operator color() { return color_; }
 operator T&() { return value_; }
private:
 T value_;
 color color_;
};

rbnode<int> n(42, black);const color& c1 = n;
int& i1 = n;

Addresses of Overloaded Functions

When taking the address of a function, the compiler does not have the
 benefit of an argument list to help resolve overloading. Instead, it
 collects a list of candidate functions and picks one based on the type
 required by the context. The context can be an initializer, an
 assignment, a function argument, the return value of a function, or an
 explicit type cast.
Of the potentially matching functions, nontemplate functions are
 better than template functions, and more-specific template functions
 are better than less-specific template functions. There must be
 exactly one best function, or else the compiler reports an error.
 Example 5-22 shows simple
 examples of resolving the addresses of overloaded functions.
Example 5-22. Taking the address of an overloaded function
int abs(int);
long abs(long);
double abs(double);

template<typename T>
T abs(T x);

template<typename T, typename U>
T abs(T x, U = U());

int main()
{
 int (*intfunc)(int) = &abs; // abs(int)
 double (*dblfunc)(double) = &abs; // abs(double)
 float (*fltfunc)(float) = &abs; // abs<float>
 short (*shrtfunc1)(short, int) = &abs; // abs<short,int>
 short (*shrtfunc2)(short) = &abs; // abs<short>
}

Best Overloaded Function

Once the compiler has found the list of candidate
 functions, it must choose the "best" match from the list. The
 candidate list is first pruned by removing functions with the wrong
 number of arguments. Then the remaining functions are checked to
 determine how to convert the actual arguments to the desired parameter
 types. The function with the simplest conversions wins. This section
 discusses these two steps.
Pruning the candidate list

Once the compiler has assembled its list of candidate
 functions, it prunes the list by removing functions that have the
 wrong number of arguments. If the function call has n argument expressions, a function is
 kept in the list if any of the following apply:
	It has exactly n
 parameters.

	It has fewer than n
 parameters followed by an ellipsis parameter.

	It has more than n
 parameters, and the extra parameters have default
 arguments.

Also, each actual argument must be convertible (applying the
 rules described in the next section) to the parameter type.
Overloading Versus Default Arguments
 Overloading functions can have the same effect as
 using default arguments. The question is when to use overloading
 and when to use default arguments. As usual, the answer is, "It
 depends."
If a default argument is complicated, you are probably
 better off using overloading. With default arguments, the
 complicated code would be duplicated at every function call. With
 overloading, you can concentrate it at a single point.
Ask yourself whether it makes sense to omit arguments,
 starting from the right. If so, you might be able to use default
 arguments. If some arguments cannot be omitted singly, you might
 need to use overloading. In the following example, omitting
 y without also omitting
 x is unusual:
void circle(float radius, float x, float y);
void circle(float radius); // x=0, y=0
If a function is complicated, you might want to use default
 arguments so you can write the function only once. Even if you use
 overloading, write a single base function and let the overloaded
 functions call the base function:
class shape {
public:
 // Using default arguments keeps the code simple because there is
 // only one constructor.
 explicit shape(color c = black, size s = 1);
 ...
};

Choosing the best function

Of the remaining candidate functions, the "best" function is
 the one that is called. If multiple functions are tied for best, the
 compiler reports an error. The best function is found by comparing
 the implicit type conversion sequences needed for each argument type
 (and possibly an implicit object argument). As described in the next
 section, some sequences are better than others. When comparing two
 functions, the better function is the one with the better conversion
 sequences:
	If two functions A and B have argument conversion
 sequences that are equally good, but A has at least one argument
 with a better sequence, A is the better function.

	If all the argument conversion sequences are equally good, a
 nontemplate function is better than a template function.

	If the conversion sequences for two template functions are
 equally good, a more-specific template function is better than a
 less-specific template function.

Argument conversion sequences

An actual argument is implicitly converted to the desired
 parameter type by undergoing a series of transformations. Basically,
 a better conversion is one in which the argument type is closer to
 the parameter type and, therefore, the type undergoes fewer
 transformations.
A standard conversion
 sequence is a sequence of built-in
 transformations that are based on automatic type conversions (Chapter 3). A sequence is built from
 at most one of each of three kinds of transformations. The quality
 of a standard conversion sequence is dictated by its worst
 transformation, in which the value-preserving transformations are
 better than those that might discard information. The
 transformations are as follows, ordered from best to worst:
	Lvalue transformation and qualification adjustment
	An lvalue transformation is the conversion of an array to a pointer, an lvalue
 to an rvalue, or a function to a function pointer. A
 qualification adjustment is adding const or volatile qualifiers to match the
 parameter. These transformations are just as good as no
 transformation at all:
void func1(const int& x);
void func2(const char* str);
func1(42);
func2("Hello");

	Promotion
	The built-in type promotions are listed in Chapter 3. In general,
 type promotions are from smaller types to larger
 types, so information cannot be lost:
void func3(long l);
func3(42);

	Conversion
	A built-in type conversion is one that might lose
 information, such as converting a number to a smaller type, or
 a floating point to an integer. Certain conversions are better
 than others:
	A conversion of a pointer to bool is worse than other
 conversions.

	Converting a derived-class pointer to a base-class
 pointer is better than converting the pointer to void*.

	Converting a derived-class pointer to void* is better than converting
 a base-class pointer to void*.

	When converting classes, class pointers, and
 pointers to members, shorter distances in a class
 hierarchy are better than longer distances; for example,
 if A inherits from
 B and B inherits from C, A* to B* is better than A* to C*.

The following are some examples of conversion
 transformations:
void func4(bool b);
func4(3.14);
void func5(void* ptr);
func5(&x);

A user-defined conversion
 sequence has up to three parts: a standard
 conversion sequence followed by a single, user-defined conversion
 (constructor or type conversion operator) followed by another
 standard conversion sequence.
A standard conversion sequence is better than a user-defined
 conversion sequence. A user-defined conversion sequence is better
 than matching an ellipsis parameter.
If one sequence of transformations is a subsequence of
 another, the shorter sequence is better than the longer one.
Among sequences that differ only by qualification, the one
 with fewer qualification adjustments is better than one with more
 adjustments.
Example 5-23 shows
 how overloaded functions are chosen. Notice that type promotions are
 preferred to the conversion to Num, even though Num has an exact type conversion to
 long. Also note how an unsigned long cannot be promoted, so it must
 undergo a built-in conversion. The compiler has no preference of
 int, long or double, so the conversion is ambiguous
 and, therefore, results in an error. The same applies to long double; even though you might consider the
 conversion to double to be
 "better" than conversion to int,
 the rules of overloading say otherwise. The final example results in
 an error because there is no matching function. An array of wchar_t cannot be converted to any of the
 types used as func
 parameters.
Example 5-23. Resolving overloaded functions
#include <string>

void func(double);
void func(long);
void func(int);
void func(const std::string&);

class Num {
public:
 Num(int i) : num_(i) {}
 operator long() const { return num_; }
private:
 int num_;
};

int main()
{
 short n = 42;
 func(n); // func(int)
 func(Num(n)); // func(long)
 func(true); // func(int)
 func(3.1415f); // func(double)
 func("string"); // func(string);
 std::string s("string");
 func(s); // func(string);
 func(3.14159L); // Error: ambiguous
 func(42UL); // Error: ambiguous
 func(L"widestr"); // Error: no match
}

Operator Overloading

For user-defined types (classes and enumerations), you can
 define alternate behavior for the C++ operators. This is called
 overloading the operators. You cannot define new
 operators, and not all operators can be overloaded. Table 5-2 lists all the operators
 and indicates which can be overloaded. For these, it shows whether the
 overload must be a member function. Overloaded operators that are
 implemented as member functions must be nonstatic member
 functions.
Table 5-2. Operators and overloading
	Operator
	Meaning
	Overloading permitted?
	Must be member function?

	 +

	Addition, unary plus
	yes
	no

	 &

	Address of
	yes
	no

	 []

	Array subscript
	yes
	yes

	 &=

	Assign bitwise and
	yes
	no

	 ^=

	Assign bitwise exclusive or
	yes
	no

	 |=

	Assign bitwise or
	yes
	no

	 -=

	Assign difference
	yes
	no

	 <<=

	Assign left shift
	yes
	no

	 =

	Assignment
	yes
	yes

	 *=

	Assign product
	yes
	no

	 /=

	Assign quotient
	yes
	no

	 %=

	Assign remainder
	yes
	no

	 >>=

	Assign right shift
	yes
	no

	 +=

	Assign sum
	yes
	no

	 &

	Bitwise and
	yes
	no

	 ~

	Bitwise complement
	yes
	no

	 ^

	Bitwise exclusive or
	yes
	no

	 |

	Bitwise or
	yes
	no

	 ?
 :
	Conditional
	no
	N/A

	 new

	Create dynamic object
	yes
	no

	 new[]

	Create dynamic array
	yes
	no

	 --

	Decrement
	yes
	no

	 delete

	Destroy dynamic object
	yes
	no

	 delete[]

	Destroy dynamic array
	yes
	no

	 /

	Division
	yes
	no

	 ==

	Equal
	yes
	no

	 ()

	Function call
	yes
	yes

	 >

	Greater than
	yes
	no

	 >=

	Greater than or equal
	yes
	no

	 ++

	Increment
	yes
	no

	 <<

	Left shift
	yes
	no

	 <

	Less than
	yes
	no

	 <=

	Less than or equal
	yes
	no

	 &&

	Logical and
	yes
	no

	 !

	Logical complement
	yes
	no

	 ||

	Logical or
	yes
	no

	 .*

	Member reference
	no
	N/A

	 ->*

	Member reference
	yes
	yes

	.
	Member reference
	no
	N/A

	 ->

	Member reference
	yes
	yes

	 *

	Multiplication, dereference
	yes
	no

	 !=

	Not equal
	yes
	no

	 %

	Remainder
	yes
	no

	 >>

	Right shift
	yes
	no

	 ::
	Scope
	no
	N/A

	,
	Serial evaluation
	yes
	no

	 -

	Subtraction, negation
	yes
	no

	 type
	Type conversion
	yes
	yes

An overloaded operator is a function in which the function name
 has the form operator followed by the
 operator symbol, or in the case of a type conversion member function, a
 list of type specifiers (with pointer, reference, and array operators).
 For example, the following code declares functions to overload the
 ! and && operators:
enum logical { no, maybe, yes };
logical operator !(logical x);
logical operator &&(logical a, logical b);
Some overloaded operators must be member functions, and others can
 be member or nonmember functions (as shown in Table 5-2). When you define a
 member function, the object is always the lefthand operand. A unary
 operator, therefore, takes no arguments because the one operand is the
 object itself. Likewise, a binary operator takes one argument: the
 righthand operand; the lefthand operand is the object. For a nonmember
 function, a unary operator takes one argument and a binary operator
 takes two arguments: the first argument is the lefthand operand, and the
 second is the righthand operand.
Use overloaded operators as you would built-in operators. You can
 also use function notation, in which the function name is operator followed by the operator symbol, but
 this usage is uncommon. You can use the function notation with built-in
 operators, too, but such usage is extremely uncommon. For
 example:
operator-(42, 10) // Same as 42 - 10
operator-(33) // Same as -33
The usual rules for resolving overloaded functions applies to
 overloaded operators. The only difference is that the built-in operators
 are added to the list of candidates along with the user-defined
 operators. Remember that you cannot overload operators when all the
 operands have fundamental types. At least one operand must have a
 user-defined type (class or enumeration).
Defining Commutative Operators
 When overloading a binary operator, consider whether the
 operator should be commutative (a
 + b is the same as b + a). If that is the case, you might need to
 define two overloaded operators:
enum priority { idle, low, normal, high };
// Adding an integer to a priority commutes. For example:
// setpriority(priority() + 2);
// setpriority(2 + priority());
priority operator+(priority p, int i);
priority operator+(int i, priority p);
// Subtracting an integer from a priority does not commute. For
// example:
// setpriority(priority() - 1);
priority operator-(priority p, int i);

Short-Circuit Operators

A key difference between the overloaded operators and the
 built-in operators is that the logical &&
 and || operators are
 short-circuit operators . If the expression result is known by evaluating only
 the left operand, the right operand is never evaluated. For overloaded
 operators, all operands are evaluated before a function is called, so
 short-circuit evaluation is impossible.
In other words, you cannot tell whether the && and || operators perform short-circuit
 evaluation by merely glancing at them. You must study the types of the
 operands. It is safest, therefore, never to overload these operators.
 If the operators are never overloaded, you know that they are always
 short-circuit operators.

Comma Operator

You can overload the comma operator (,), but you will rarely have any reason
 to do so. If you do, however, you change its semantics in a subtle
 way. The built-in comma operator has a sequence point (see Chapter 3) between its operands, so you
 know that the lefthand expression is completely evaluated before the
 righthand expression. If you overload the operator, you lose that
 guarantee. The ordinary rules apply, so the operands might be
 evaluated in any order.

Increment and Decrement

When overloading the increment and decrement operators, remember that they
 have two forms: prefix and postfix. To distinguish between the two
 forms, the postfix form takes an additional int parameter. The compiler always passes
 0 as the additional argument. Example 5-24 shows one way to
 overload the increment operator. (Decrement is analogous.)
Example 5-24. Overloading the increment operator
enum status { stopped, running, waiting };
status& operator++(status& s) { // Prefix
 if (s != waiting)
 s = status(s + 1);
 return s;
}
status operator++(status& s, int) { // Postfix
 status rtn = s;
 ++s;
 return rtn;
}
int main()
{
 status s(stopped);
 ++s; // Calls operator++(s);
 s++; // Calls operator++(s, 0);
}

Member Reference

The -> operator is different from the other operators.
 Although you use it as a binary operator, you overload it as a unary
 operator. It must be implemented as a member function, so the function
 takes no arguments. It must return one of the following:
	An object of class type, for which the type overloads the
 -> operator

	A pointer to a class type

A chain of -> operators is
 followed until it ends with a pointer to a class type. The actual
 right operand must name a member of that class. The -> operator is most often overloaded to
 implement a smart pointer. See the auto_ptr<> template in the <memory> section of Chapter 13 for an example.

Function Call

The function call operator (operator()) takes any number of arguments.
 It must be implemented as a member function. To invoke the operator,
 use an object of class type as the "name" of the function. Pass the
 arguments as you would any other function arguments. With a simple
 variable of class type, the syntax looks like an ordinary function
 call.
An object that overloads the function call operator is often
 called a functor . Functors are typically used with the standard
 algorithms to better encapsulate functionality. Some algorithms, such
 as for_each, also permit the
 functor to store state information, which cannot be done with a plain
 function. Comparison functions for the associative containers are
 easier to implement as functors. See <algorithm> and <functional> in Chapter 13 for examples.

operator new and operator delete

A new expression (Chapter 3) calls operator new to allocate
 memory, and a delete expression
 calls operator delete. (A new[] expression calls operator new[], and a delete[] expression calls operator delete[]. For the sake of simplicity,
 whenever I refer to a new
 expression, I mean a new expression
 or new[] expression. Similarly,
 operator new refers to operator new and operator new[]. Ditto for delete.)
You can overload operator
 new and operator delete in the global scope or as members of
 a class. In the global scope, the functions must not be static, nor can you declare them in a
 namespace. When you define these operators as member functions, the
 functions are always static, even
 if you omit the static specifier.
 If you do not overload the global operators, the C++ library provides
 an implementation for you. (See <new> in Chapter 13.) If you do not overload
 the operators for a class, the global operators are used.
If a class overloads the operator new and operator delete functions, the corresponding operator
 functions are called for new and
 delete expressions involving that
 class. When overloading operator
 new or operator delete as member functions or with placement
 arguments, you can call the global operator, as shown in Example 5-25.
Example 5-25. Overloading operator new and operator delete
#include <cstddef>
#include <iostream>
#include <memory>
#include <new>
#include <ostream>

class demo
{
public:
 static void* operator new(std::size_t size)
 throw (std::bad_alloc)
 {
 std::cout << "demo::new\n";
 if (instance == 0)
 instance = ::new demo;
 ++count;
 return instance;
 }
 static void operator delete(void* p) {
 std::cout << "demo::delete\n";
 if (--count == 0) {
 ::delete instance;
 instance = 0;
 }
 }

 static demo* make() { return new demo(); }

private:
 demo() {}
 demo(const demo&);
 static demo* instance;
 static std::size_t count;
};

demo* demo::instance;
std::size_t demo::count;

int main()
{
 std::auto_ptr<demo> s1(demo::make());
 std::auto_ptr<demo> s2(demo::make());
 return s1.get() == s2.get();
}

The first parameter to operator new has type size_t and is the amount of memory to
 allocate. The function returns a pointer to the allocated memory as a
 void*. Additional parameters are
 allowed for placement new functions
 (see Chapter 3). The first
 parameter to operator delete is a void* pointer to the memory; the function
 returns void. Additional parameters
 are allowed for placement delete.
 See <new> in Chapter 13 for more information about
 overloaded operator new and operator delete.
When you overload the operator new and operator delete functions, you will probably want to
 overload the scalar (operator
 new) and array versions (operator new[]) of the operator. The scalar and array
 versions often behave identically, but you have the option of making
 them behave differently. Note that the compiler initializes the
 objects, so your allocation or deallocation function does not need to
 know the number of objects being allocated or freed.
If you overload operator
 new, you should probably also
 overload operator delete. In the case of placement new, the corresponding placement delete function is called if an exception is
 thrown while constructing the newly allocated object or array. Without
 a corresponding placement delete
 function, no operator delete function is called. This is the only
 time a placement delete function is
 called. A delete expression always
 calls the plain, single-argument form of operator delete.

Type Conversion

A class can declare type conversion operators to convert
 class-type objects to other types. The operator functions must be
 nonstatic member functions. The name of each operator is the desired
 type, which can be a series of type specifiers with pointer,
 reference, and array operators, but cannot be a function or array
 type:
class bigint {
public:
 operator long(); // Convert object to type long.
 operator unsigned long();
 operator const char*(); // Return a string representation
 ...
};

The main Function

[image: image with no caption]

Every program must have a function in the global namespace
 called main, which is the main
 program. This function must return type int. The C++ environment calls main; your program must never call main. The main function cannot be declared inline or static. It can be called with no arguments or
 with two arguments:
int main()
or:
int main(int argc, char* argv[])
The argc parameter is the
 number of command-line arguments, and argv is an array of pointers to the
 command-line arguments, which are null-terminated character strings. By
 definition, argv[argc] is a null
 pointer. The first element of the array (argv[0]) is the program name or an empty
 string.
Tip
[image: image with no caption]

An implementation is required to support at least two forms of
 main: one that takes no parameters,
 and one that takes the two parameters for command-line arguments. An
 implementation can support other forms of main. The standard recommends that the first
 two parameters should be the same as they are in the standard, and
 that additional parameters follow them.

[image: image with no caption]

Static objects at namespace scope can have constant or dynamic
 initial values, those of POD type with constant values are initialized
 by constant data before the program starts, and those with dynamic
 values are initialized by code when the program begins. When, exactly,
 the objects are initialized is implementation-defined. It might happen
 before main is called, or it might be
 after.
You should avoid writing code that depends on the order in which
 static objects are initialized. If you cannot avoid it, you can work
 around the problem by defining a class that performs the required
 initialization and defining a static instance of your class. For
 example, you can guarantee that the standard I/O stream objects are
 created early so they can be used in the constructor of a static object.
 See <ios> in Chapter 13 for more information and an
 example.
A local static object is initialized when execution first reaches
 its declaration. If the function is never called, or if execution never
 reaches the declaration, the object is never initialized.
When main returns or when
 exit is called (see <cstdlib> in Chapter 13), static objects are
 destroyed in the reverse order of their construction, and the program
 terminates. All local, static objects are also destroyed. If a function
 that contains a local, static object is called during the destruction of
 static objects, the behavior is undefined.
[image: image with no caption]

The value returned from main is
 passed to the host environment. You can return 0 or EXIT_SUCCESS (declared in <cstdlib>) to indicate success, or
 EXIT_FAILURE to tell the environment
 that the program failed. Other values are implementation-defined. Some
 environments ignore the value returned from main; others rely on the value.

Chapter 6. Classes

C++ supports object-oriented programming with a traditional,
 statically-typed, class-based object model. That is, a class defines the
 behavior and the state of objects that are instances of the class. Classes
 can inherit behavior from ancestor classes. Virtual functions implement
 type polymorphism, that is, a variable can be declared as a pointer or
 reference to a base class, and at runtime it can take on the value of any
 class derived from that base class. C++ also supports C-style structures
 and unions using the same mechanism as classes. This chapter describes
 classes in all their glory. For information about class templates, see
 Chapter 7. Member functions are a
 special kind of function; see Chapter
 5 for general information about functions.
The syntax descriptions in this chapter are informal. See Chapter 12 for a precise BNF
 grammar.

Class Definitions

A class definition starts with the class , struct , or union keyword. The difference between a class and a struct is the default access level. (See Section 6.5 later in this chapter
 for details.) A union is like a
 struct for which the storage of all
 the data members overlap, so you can use only one data member at a time.
 (See Section 6.1.3 later
 in this section for details.)
A class definition can list any number of base classes, some or
 all of which might be virtual. (See Section 6.4 later in this chapter
 for information about base classes and virtual base classes.)
In the class definition are declarations for data members (called instance variables or fields in some other languages), member functions (sometimes called methods), and nested types.
A class definition defines a scope, and the class members are
 declared in the class scope. The class name itself is added to the class
 scope, so a class cannot have any members, nested types, or enumerators
 that have the same name as the class. As with any other declaration, the
 class name is also added to the scope in which the class is
 declared.
You can declare a name as a class, struct, or union without providing its full definition.
 This incomplete class declaration lets you use the class name in
 pointers and references but not in any context in which the full
 definition is needed. You need a complete class definition when
 declaring a nonpointer or nonreference object, when using members of the
 class, and so on. An incomplete class declaration has a number of uses:
	Forward class declarations
	If two classes refer to each other, you can declare one as
 an incomplete class, then provide the full definitions of
 both:
class graphics_context;
class bitmap {
...
 void draw(graphics_context*);
...
};
class graphics_context {
...
 bitblt(const bitmap&);
...
};

	Opaque types
	Sometimes a class uses hidden helper classes. The primary class can hold a
 pointer to an incomplete helper class, and you do not need to
 publish the definition of the helper class. Instead, the
 definition might be hidden in a library. This is sometimes called
 a pimpl (for a number of reasons, one of which is
 "pointer to implementation"). For example:
class bigint {
public:
 bigint();
 ~bigint();
 bigint(const bigint&);
 bigint& operator=(const bigint&);
 ...
private:
 class bigint_impl;
 std::auto_ptr<bigint_impl> pImpl_;
};
For a complete discussion of the pimpl idiom, see
 More Exceptional C++, by Herb Sutter
 (Addison-Wesley).

Example 6-1 shows
 several different class definitions.
Example 6-1. Class definitions
#include <string>struct point {
 double x, y;
};

class shape {
public:
 shape();
 virtual ~shape();
 virtual void draw();
};

class circle : public shape {
public:
 circle(const point& center, double radius);
 point center() const;
 double radius() const;
 void move_to(const point& new_center);
 void resize(double new_radius);
 virtual void draw();
private:
 point center_;
 double radius_;
};

class integer {
public:
 typedef int value_type;
 int value() const;
 void set_value(int value);
 std::string to_string() const;
private:
 int value_;
};

class real {
public:
 typedef double value_type;
 double value() const;
 void set_value(double value);
 std::string to_string() const;
private:
 double value_;
};

union number {
 number(int value);
 number(double value);
 integer i;
 real r;
};

Tip
 In C, a struct or
 union name is not automatically a
 type name, as it is in C++. A variable declaration in C, for example,
 would need to be elaborated as struct demo x
 instead of simply demo x. There is no harm in using the fully
 elaborated form in C++, and this is often done in headers that are
 meant to be portable between C and C++.
There are times, even in C++, when the fully elaborated form is
 needed, such as when a function or object declaration hides a class
 name. In this case, use the elaborated form to refer to the class
 name. For example, the POSIX API has a structure named stat, which is hidden by a function stat:
extern "C" int stat(const char* filename, struct stat* st);
int main(int argc, char* argv[])
{
 struct stat st;
 if (argc > 1 && stat(argv[1], &st) == 0) show_stats(st);
}
See Chapter 2 for more
 information about elaborated type specifiers.

Plain Old Data

Some programming languages differentiate between records and classes. Typically, a record is a simple
 storage container that lacks the more complex features of a class
 (inheritance, virtual functions, etc.). In C++, classes serve both
 purposes, but you can do things with simple classes (called POD, for plain old
 data) that you cannot do with complicated classes.
Basically, a POD class is a structure that is compatible with C.
 More precisely, a POD class or union does not have any of the
 following:
	User-defined constructors

	User-defined destructor

	User-defined copy assignment operator

	Virtual functions

	Base classes

	Private or protected nonstatic members

	Nonstatic data members that are references

Also, all nonstatic data members must have POD type. A POD type
 is a fundamental type, an enumerated type, a POD class or union, or a pointer to or array of POD
 types
Unlike C structures, a POD class can have static data members,
 nonvirtual functions, and nested types (members that do not affect the
 data layout in an object).
POD classes are often used when compatibility with C is
 required. In that case, you should avoid using any access specifier labels because they can alter the
 layout of data members within an object. (A POD class cannot have
 private or protected members, but you can have multiple public: access specifier labels and still
 have a class that meets the standard definition of a POD
 class.)
Example 6-2 shows
 POD types (point1 and
 info) and non-POD types (point2 and employee).
Example 6-2. Declaring POD and non-POD types
struct point1 { // POD
 int x, y;
};

class point2 { // Not POD
public:
 point2(int x, int y);
private:
 int x, y;
};

struct info { // POD
 static const int max_size = 50;
 char name[max_size];
 bool is_name_valid() const;
 bool operator<(const info& i); // Compare names.
};

struct employee : info { // Not POD
 int salary;
};

The virtue of a POD object is that it is just a contiguous area
 of storage that stores some value or values. Thus, it can be copied
 byte for byte and retain its value. In particular, a POD object can be
 safely copied to an array of char
 or unsigned char, and when copied back, it retains its
 original value. A POD object can also be copied by calling memcpy; the copy has the same value as the
 original.
A local POD object without an initializer is left uninitialized,
 but a non-POD object is initialized by calling its default
 constructor. Similarly, a POD type in a new expression is uninitialized, but a new
 non-POD object is initialized by calling its default constructor. If
 you supply an empty initializer to a new expression or other expression that
 constructs a POD object, the POD object is initialized to 0.
A POD class can contain padding between data members, but no
 padding appears before the first member. Therefore, a pointer to the
 POD object can be converted (with reinterpret_cast<>) into a pointer to
 the first element.
A goto statement can safely
 branch into a block, skipping over declarations of uninitialized POD
 objects. A goto that skips any
 other declaration in the block results in undefined behavior. (See
 Chapter 2 for more information
 about initializing POD objects, and Chapter 4 for more information about
 the goto statement.)

Trivial Classes

A trivial class is another form of restricted class (or union). It cannot have any of the following:
	User-defined constructors

	User-defined destructor

	User-defined copy assignment operator

	Virtual functions

	Virtual base classes

Also, all base classes must be trivial, and all nonstatic data
 members must be trivial or have non-class type. Unlike POD classes, a
 trivial class can have base classes, private and protected members,
 and members with reference type.
Trivial classes are important only because members of a union
 must be trivial. Fundamental types are trivial, as are pointers to and
 arrays of trivial types.

Unions

A union is like a struct, but with the following
 restrictions:
	It cannot have base classes.

	It cannot be a base class.

	It cannot have virtual functions.

	It cannot have static data members.

	Its data members cannot be references.

	All of its data members must be trivial.

An object of union type has enough memory to store the largest
 member, and all data members share that memory. In other words, a
 union can have a value in only one data member at a time. It is your
 responsibility to keep track of which data member is "active."
A union can be declared without a name (an
 anonymous union), in which case it must have only nonstatic data
 members (no member functions, no nested types). The members of an
 anonymous union are effectively added to the scope in which the union
 is declared. That scope must not declare any identifiers with the same
 names as the union's members. In this way, an anonymous union reduces
 the nesting that is needed to get to the union members, as shown in
 Example 6-3.
Example 6-3. An anonymous union
struct node {
 enum kind { integer, real, string } kind;
 union {
 int intval;
 double realval;
 *char strval[8];
 };
};

node* makeint(int i)
{
 node* rtn = new node;
 rtn->kind = node::integer;
 rtn->intval = i;
 return rtn;
}

Tip
Unions are used less often in C++ than in C. Two common uses
 for unions in C have been supplanted with other
 alternatives in C++:
	Unions can be used to peek inside the data representation
 for certain types, but a reinterpret_cast<> can do the same thing.

	Unions were sometimes used to save memory when storing
 different kinds of data in a structure, but inheritance is safer and offers more
 flexibility.

Local Classes

You can declare a local class, that is, a class definition that is local
 to a block in a function body. A local class has several restrictions
 when compared to nonlocal classes:
	A local class cannot have static data members.

	Member functions must be defined inline in the class
 definition.

	You cannot refer to nonstatic objects from within a local
 class, but you can refer to local static objects, local
 enumerators, and functions that are declared locally.

	A local class cannot be used as a template argument, so you
 cannot use a local functor with the standard algorithms.

Local classes are not used often. Example 6-4 shows one use of a
 local class.
Example 6-4. A local class
// Take a string and break it up into tokens, storing the tokens in a vector.
void get_tokens(std::vector<std::string>& tokens, const std::string& str)
{
 class tokenizer {
 public:
 tokenizer(const std::string& str) : in_(str) {}
 bool next()
 {
 return in_ >> token_;
 }
 std::string token() const { return token_; }
 private:
 std::istringstream in_;
 std::string token_;
 };

 tokens.clear();
 tokenizer t(str);
 while (t.next())
 tokens.push_back(t.token());
}

Data Members

A class can have static and nonstatic data members. The static storage class specifies a static data member; with no
 storage class, a data member is nonstatic. No other storage class specifier is allowed.
 Every object has its own copy of the class's nonstatic data members, and
 they share a single copy of each static data member. A data member can
 also be declared with cv -qualifiers. See Chapter
 2 for more information about storage class specifiers and
 cv-qualifiers.
You declare data members as you would local variables in a
 function, except you cannot usually supply initializers. Instead,
 nonstatic data members are initialized in the class's constructors. See
 Section 6.3 later in this
 chapter for details.
Data members are typically declared at the private access level. See Section 6.5 later in this chapter
 for details.
Data Layout

[image: image with no caption]

Nonstatic data members are organized so that members
 declared later have higher addresses than those declared earlier.
 Access specifier labels, however, can interrupt the order, and the
 relative order of members separated by an access specifier label is
 implementation-defined. Writing code that depends on the layout of a
 class is usually a bad idea, but when interfacing with external code,
 it is sometimes unavoidable. See Section 6.1.1 earlier in this
 chapter for more information.
The layout of base-class subobjects within a derived-class
 object is also unspecified. If a base class appears more than once in
 the inheritance graph, it will have multiple copies of its data
 members in the derived-class object, unless the inheritance is
 virtual. See Section 6.4
 later in this chapter for more information.
Individual data members might have specific alignment
 requirements, so the compiler can insert padding between members.
 Thus, adjacent member declarations might not have adjacent
 addresses.
Even if a class has no nonstatic data members, the size of the
 object is guaranteed to be greater than zero. If the class is used as
 a base class, however, the compiler can optimize the base-class
 subobject so it has a size of 0
 within the derived class.

Mutable Data Members

A nonstatic data member can be declared with the mutable type specifier. A mutable member can be changed even
 when the object is const.
Mutable members are often used to implement a class that can
 have objects that are logically constant, even if they are not
 physical constants. For example, a class can implement a private cache
 with a mutable data member. Suppose you are writing a class, bigint, that implements very large integers.
 The to_double member function computes an approximation of the value
 as a floating-point number. Instead of computing this value each time
 to_double is called, the bigint class saves the value after the first call and returns
 the cached value for the second and subsequent calls. When calling
 to_double for a const bigint, you still want to be able to modify
 the bigint object to cache the
 floating-point value, so the cache is declared mutable, as shown in Example 6-5.
Example 6-5. Caching a value in a mutable data member
class bigint {
public:
 bigint() : has_approx_(false) { ... }
 double to_double()
 const
 {
 if (! has_approx_) {
 approx_ = as_double();
 has_approx_ = true;
 }
 return approx_;

 }
 ...
private:
 double as_double() const;
 mutable double approx_;
 mutable bool has_approx_;
 ...
};

Bit-Fields

A nonstatic data member can be a bit-field
 , which is a sequence of bits packed into an object. The
 declarator for a bit-field uses a colon followed by an integral
 constant expression, which specifies the number of bits in the field.
 Example 6-6 shows the layout
 of the control word for an Intel x87 floating-point processor.
 (Whether this struct definition accurately maps to the actual control
 word layout is implementation-defined, but using the x87 control word
 is inherently nonportable, anyway.)
Example 6-6. Using bit-fields for a control word
// Intel x87 FPU control word.
struct fpu_control {
 enum precision_control { single, double_prec=2, extended };
 enum rounding_control { nearest, down, up, truncate };
 int : 4; // Reserved
 rounding_control round_ctl : 2;
 precision_control prec_ctl : 2;
 int : 2; // Reserved
 bool precision : 1;
 bool underflow : 1;
 bool overflow : 1;
 bool zero_divide : 1;
 bool denormal : 1;
 bool invalid_op : 1;
};

Use a bit-field as you would any other data member, but with the
 following caveats:
	You cannot take the address of a bit-field.

	You cannot bind a bit-field to a non-const reference.

	When you bind a bit-field to a const reference, the compiler creates a
 temporary object and binds that to the reference.

	Whether a bit field is signed or unsigned is implementation
 defined unless you explicitly declare it with the signed or unsigned specifier. Thus, the bit-field
 int bf : 1; might take the values 0 and 1 or -1 and 0 (two's complement), or even -0 and +0 (signed magnitude).

	A bit-field size can be larger than the declared type of the
 member, in which case the excess bits are used as padding and are
 not part of the member's value.

	Order and alignment of bit-fields are
 implementation-defined.

A bit-field without a name cannot be used or referred to, and is
 typically used for padding. A nameless bit-field can have size 0, which pads the object so the next
 bit-field is aligned on a natural memory boundary.
If you need to work with large bit-fields or treat a set of bits
 as an object, consider using the bitset template. (See <bitset> in Chapter 13.)

Static Data Members

A static data member is similar to an object declared at
 namespace scope; the class name assumes the role of the namespace
 name. In other words, there is a single copy of each static data
 member regardless of the number of instances of the class. Derived
 classes also share the single static data member. In some languages,
 static data members are called class variables.
The lifetime of a static data member is similar to the lifetime
 of a global static object. See Chapter
 2 for details.
Local classes and anonymous unions cannot have static data members. A
 static data member cannot be mutable.
The member declaration in the class definition is just a
 declaration. You must supply a definition elsewhere in the program.
 The definition can have an initializer.
Only an integral or enumerated static data member can have an
 initializer in the class definition. The initializer must be a
 constant integral expression. The value of the member can be used as a
 constant elsewhere in the class definition. The definition of the
 member must then omit the initializer. This feature is often used to
 define the maximum size of data member arrays, as shown in Example 6-7.
Example 6-7. Declaring static data members
// filename.h
class filename
{
public:
 static const int max_length = 1024;
 static const char path_separator = '/';
 static filename current_directory;
 filename(const char* str);
 ...
private:
 char name_[max_length];
};

// filename.cpp
// Definitions for the static data members and member functions
const int filename::max_length;
const char filename::path_separator;
filename filename::current_directory(".");

filename::filename(const char* str)
{
 strncpy(name_, str, max_length-1);
}
...

Member Functions

Member functions implement the behavior of a class. Member
 functions can be defined within the class definition or separately. You
 can use the inline function specifier and either the static or virtual (but not
 both) specifier. (See Chapter 2 for
 more about function specifiers.) Defining a member function within the
 class definition declares the function inline, even if you do not use
 the inline specifier.
A nonstatic member function can have const, volatile, or both function qualifiers.
 Qualifiers appear after the function parameters and before the exception
 specification. Function qualifiers are discussed in the next section,
 Section 6.3.2.
Example 6-8 shows
 various member function declarations and definitions.
Example 6-8. Declaring and defining member functions
#include <cmath>
#include <iostream>
#include <istream>
#include <ostream>

class point {
public:
 typedef double value_type;
 // Constructors are special member functions.
 explicit point(value_type x = 0.0, value_type y = 0.0);
 value_type x() const { return x_; }
 value_type y() const { return y_; }
 void x(value_type x) { x_ = x; }
 void y(value_type y) { y_ = y; }

 value_type distance() const;
 bool operator==(const point& pt) const;

 inline static point origin();
private:
 value_type x_, y_;
};

point::point(value_type x, value_type y)
: x_(x), y_(y)
{}

point::value_type point::distance()
const
{
 return std::sqrt(x() * x() + y() * y());
}

bool point::operator==(const point& pt)
const
{
 return x() == pt.x() && y() == pt.y();
}

inline point point::origin()
{
 return point();
}

int main()
{
 point p1;
 point::value_type n;
 std::cin >> n;
 p1.x(n);
 std::cin >> n;
 p1.y(n);
 if (p1 == point::origin())
 std::cout << "Origin\n";
 else
 std::cout << p1.distance() << '\n';
}

When defining a function inside a class definition, the entire
 function definition is in the scope of the class. Thus, name lookup for
 the return type and all parameter types looks first in the class, then
 in all base classes, and then in the surrounding namespaces. (See Chapter 2 for more information about name
 lookup.)
If the function definition is outside the class definition, the
 function return type is at namespace scope. Thus, if the type is a
 nested type in the class, you must fully qualify the type name. The
 function name must also be qualified so the compiler knows which class
 contains the function. After the compiler has seen the class name that
 qualifies the function name, it enters the class scope. Parameter types
 are then looked up in the class scope.
Pointers-to-Members

The address of a static member is no different than the address
 of an ordinary function or object at namespace scope. The address of a
 nonstatic member that is taken in a member function with an
 unqualified name is also an ordinary address. The address of a
 nonstatic member taken with a qualified member name (e.g., &cls::mem), however, is quite different
 from any other kind of address. The address even has a special name:
 pointer-to-member . You cannot use reinterpret_cast<> to cast a pointer-to-member to or from an ordinary data
 pointer or function pointer.
A pointer-to-member does not necessarily point to a particular
 function or object. Instead, think of it as a handle that keeps track
 of which function or data member you have selected but does not refer
 to a specific object. To use a pointer-to-member, you must use the
 .* or ->* operator, which requires an object or
 pointer as the lefthand operand and the pointer-to-member as the
 righthand operand. The operator looks up the member in the object and
 then obtains the actual data member or member function. (See Chapter 3 for more information about
 pointer-to-member expressions.) Example 6-9 shows one use of a
 pointer-to-member.
Example 6-9. A pointer-to-member
#include <iostream>
#include <ostream>

class base {
public:
 base(int i) : x_(i) {}
 virtual ~base() {}
 virtual void func() { std::cout << "base::func()\n"; }
private:
 int x_;
};

class derived : public base {
public:
 derived(int i) : base(i) {}
 virtual void func() { std::cout << "derived::func()\n"; }
};

int main()
{
 base *b = new derived(42); void (base::*fp)() = &base::func;
 (b->*fp)(); // Prints derived::func()
}

this Pointer

A nonstatic member function can be called only for an object of
 its class or for a derived class. The object is implicitly passed as a
 hidden parameter to the function, and the function can refer to the
 object by using the this keyword,
 which represents an rvalue pointer to the object. That is, if the object has
 type T, this is an rvalue of static type T*. In a call to a virtual function, the
 object's dynamic type might not match the static type of this.
 Static member functions do not have this pointers. (See the next section, Section 6.3.3.)
If the function is qualified with const or volatile, the same qualifiers apply to
 this within the member function. In
 other words, within a const member
 function of class T, this has type const T*.
 A const function, therefore, cannot
 modify its nonstatic data members (except those declared with the
 mutable specifier).
Within a member function, you can refer to data members and
 member functions using just their names, and the compiler looks up the
 unqualified names in the class, in its ancestor classes, and in
 namespace scopes. (See Chapter 2
 for details.) You can force the compiler to look only in the class and
 ancestor classes by explicitly using this to refer to the members—for example,
 this->
 data and this-> func
 (). (When using templates, an
 explicit member reference can reduce name lookup problems; see Chapter 7 for details.)
Example 6-10 shows
 some typical uses of this.
Example 6-10. The this keyword
class point {
public:
 point(int x=0, int y=0) : x_(x), y_(y) {}
 int x() const { return this->x_; }
 int y() const { return y_; }
 void x(int x) { this->x_ = x; }
 void y(int y) { y_ = y; }
 bool operator==(const point& that) {
 return this->x() == that.x() &&
 this->y() == that.y();
 }
 void move_to(context*) const { context->move_to(*this); }
 void draw_to(context*) const { context->draw_to(*this); }
 void get_position(context*) { context->getpos(this); }
private:
 int x_, y_;
};

Static Member Functions

A static member function is like a function declared at
 namespace scope; the class name assumes the role of the namespace
 name. Within the scope of the class, you can call the function using
 an unqualified name. Outside the class scope, you must qualify the
 function name with the class name (e.g.,
 cls ::member) or by
 calling the function as a named member of an object (e.g.,
 obj.member). In
 the latter case, the object is not passed as an implicit parameter (as
 it would be to a nonstatic member function), but serves only to
 identify the class scope in which the function name is looked
 up.
Static member functions have the following restrictions:
	They do not have this
 pointers.

	They cannot be virtual.

	They cannot have const or
 volatile qualifiers.

	They cannot refer to nonstatic members, except as members of
 a specific object (using the . or -> operator).

	A class cannot have a static and nonstatic member function
 with the same name and parameters.

Example 6-11 shows
 some uses of static member functions.
Example 6-11. Static member functions
class point {
public:
 point(int x, int y);

 static point origin() { return point(0, 0); }

 // Error: calls non-static function, x()
 static bool is_zero() { return x() == 0; }

 int x() const;
 int y() const;
private:
 int x_, y_;
};

Constructors

Constructors and destructors are special forms of
 member functions. A constructor is used to initialize an
 object, and a destructor is used to finalize an object.
Declaring constructors

A constructor's name is the same as the class name. If
 you use typedef to create a
 synonym for the class name, you cannot use the typedef name as the constructor
 name:
struct point {
 point(int x, int y);
...
typedef point p;

p::point(int x, int y) { . . . } // OK
point::point(int x, int y) { . . . } // OK
p::p(int x, int y) { . . . } // Error
point::p(int x, int y) { . . . } // Error
A constructor cannot have a return type, and you cannot return
 a value. That is, you must use a plain return; or return an expression of type
 void. A constructor cannot have
 const or volatile qualifiers, and it cannot be
 virtual or static.
Constructors can initialize data members with a list of member
 initializers, which appear after the function header but before the
 function body. A colon separates the header from the comma-separated
 initializers. Each initializer names a data member, an immediate
 base class, or a virtual base class. The value of the initializer
 follows in parentheses:
class-name(parameters)
: member(expr), base-class(expr-list), ...
compound-statement
You can also use a function try block, which wraps the constructor
 initializers as part of the try
 block. (See Chapter 4 for more
 information about try blocks and
 exception handlers.) The syntax is:
class-name(parameters)
try
 : member(expr), base-class(expr-list), ...
 compound-statement
 exception-handlers
You can initialize a base class by invoking any of its
 constructors, passing zero or more expressions as arguments. See
 Section 6.4 later in
 this chapter for more information.
Tip
The order in which initializers appear in the initializer
 list is irrelevant. The order of initialization is determined by
 their declarations according to the following rules:
	Virtual base classes are initialized first, in order of
 declaration in a depth-first traversal of the inheritance
 graph. Each virtual base class is initialized exactly once for
 the most-derived object.

	Nonvirtual, direct base classes are initialized next, in
 order of declaration.

	Nonstatic data members are initialized next, in order of
 declaration.

	Finally, the body of the constructor is executed.

Note that each base class is constructed according to the
 same rules. This causes the root of the inheritance tree to be
 initialized first, and the most-derived class to be initialized
 last.

A constructor can be declared with the explicit specifier. An explicit
 constructor is never called for an implicit type conversion, but
 only for function-like initialization in a declaration and for
 explicit type casts. See the next section for more
 information.

Special constructors

Two kinds of constructors are special, so special they have their
 own names: default constructors and copy constructors
 .
A default constructor can be called with no arguments. It
 might be declared with no parameters, default arguments for every
 parameter, or an ellipsis as the sole parameter. (The last case is
 uncommon.) Default constructors are called when you construct an
 array of objects, when you omit the initializer for a scalar object,
 or when you use an empty initializer in an expression:
point corners[2];
point p;
point *ptr = new point();
(Remember not to use an empty initializer in a declaration.
 For example, point p(); declares a function named p, not a default-initialized point object. See Chapter 2 for details.)
A copy constructor can take a single argument whose type is a
 reference to the class type. (Additional parameters, if any, must
 have default arguments.) The reference is usually const, but it does not have to be. The
 copy constructor is called to copy objects of the class type when
 passing objects to functions and when returning objects from
 functions.
The following example shows a default and a copy
 constructor:
struct point {
 point(); // Default constructor
 point(const point& pt); // Copy constructor
 ...
Default and copy constructors are so important, the compiler
 might generate them for you. See Section 6.3.6 later in this
 chapter for details.

Calling constructors

Constructors are special because you never call them
 directly. Instead, the compiler calls the constructor as part of the
 code it generates to create and initialize an object of class type.
 Objects can be created in several different ways:
	With automatic variables and constants in a function
 body:
void demo()
{
 point p1(1, 2);
 const point origin;
 ...

	With static objects that are local or global:
point p2(3, 4);
void demo()
{
 static point p3(5, 6);
 ...

	Dynamically, with new
 expressions:
point *p = new point(7, 8);

	With temporary objects in expressions:
set_bounds(point(left, top), point(right, bottom));

	With function parameters and return values:
point offset(point p) { p.x(p.x() + 2); return p; }
point x(1,2);
x = offset(x); // Calls point(const point&) twice

	With implicit type conversions:
point p = 2; // Invokes point(int=0, int=0), then point(const point&)

	With constructor initializers:
derived::derived(int x, int y) : base(x, y) {}

In each case, memory is set aside for the object, then the
 constructor is called. The constructor is responsible for initializing the object's members. Members that are
 listed in the initializer list are initialized as requested: scalar
 and pointer types are initialized with their given values;
 class-type objects are initialized by invoking the appropriate
 constructors. Class-type objects that are not listed are initialized
 by calling their default constructors; other types are left
 uninitialized. Every const member
 and reference-type member must have an initializer (or you must be
 willing to accept the default constructor for a class-type const member). Within the body of the
 constructor, you are free to change any non-const member. Many simple constructors are
 written with empty bodies:
struct point {
 point(int x, int y) : x_(x), y_(y) {}
 point() : x_(0), y_(0) {}
 point(double radius, double angle) {
 x = radius * cos(angle);
 y = radius * sin(angle);
 }
 ...
[image: image with no caption]

If a constructor is declared with the explicit specifier, it can never be called
 for an implicit type conversion. An implicit type conversion is commonly used during
 assignment-like construction. In the following example, two
 constructors are called: complex(1.0, 0.0) is implicitly called to construct a
 nameless temporary object, then the copy constructor is called to
 copy the temporary object into p.
 (The compiler is allowed to optimize away the copy and initialize
 p directly. Most modern compilers
 perform this optimization, but point must have a copy constructor even if
 it is never called.)
struct complex {
 complex(double re, double im = 0.0);
 ...
};
complex z = 1;
Implicit type conversions can produce some surprising results
 by calling conversion constructors when you least expect it. In the
 following example, a nameless temporary complex object is created as complex(42.0, 0.0), and this temporary object is bound
 to the z parameter in the call to
 add2.
complex add2(const complex& z) {
 z.real(z.real() + 2);
 return p;
}
z = add2(42.0);
To avoid unexpected constructor calls, declare a constructor
 with the explicit specifier if
 that constructor can be called with a single argument. Calls to an
 explicit constructor require function-like construction or an
 explicit type cast:
struct complex {
 explicit complex(double re, double im = 0.0);
 ...
};
complex z = 1; // Error
complex z(1); // OK
add2(42); // Error
add2(static_cast<complex>(42)); // OK
add2(p); // OK

Throwing exceptions during construction

A constructor can also use a function try block as its function body. The
 try keyword comes before the
 initializers. If an exception is thrown during the initialization of
 any member, the corresponding catch blocks are examined for matching
 handlers in the usual manner. (See Chapter 4 for information about
 try blocks and exception
 handlers.) Example 6-12
 shows a constructor with a function try block.
Example 6-12. Catching exceptions in constructors
struct array {
 // Initialize the array with all the items in the range (first, last). If an
 // exception is thrown while copying the items, be sure to clean up by
 // destroying the items that have been added so far.
 template<typename InIter>
 array(InIter first, InIter last)
 try
 : data_(0), size_(0)
 {
 for (InIter iter(first); iter != last; ++iter)
 push_back(*iter);
 } catch (...) {
 clear();
 }
 ...
private:
 int* data_;
 std::size_t size_;
};

Regardless of whether the function body is a plain compound
 statement or a function try
 block, the compiler keeps track of which base-class subobjects and
 which members have been initialized. If an exception is thrown
 during initialization, the destructors of only those objects that
 have been fully constructed are called.
If the object is being created as part of a new expression, and an exception is
 thrown, the object's memory is deallocated by calling the
 appropriate deallocation function. If the object is being created
 with a placement new operator,
 the corresponding placement delete operator is called—that is, the
 delete function that takes the
 same additional parameters as the placement new operator. If no matching placement
 delete is found, no deallocation
 takes place. (See Chapter 3 for
 more information on new and
 delete expressions.)
Example 6-13 shows
 a silly class that allocates two
 dynamic arrays in its constructor. Suppose the first allocation
 fails (member str_). In that
 case, the compiler knows that str_ has not been initialized and so does
 not call the auto_ptr<>
 destructor, nor does the compiler call the destructor for the
 wstr_ member. If, however, the
 allocation for str_ succeeds and
 fails for wstr_, the compiler
 calls the auto_ptr<>
 destructor for str_ to free the
 memory that had been allocated successfully. Note that if auto_ptr<> were not used, the class
 would have a memory leak because the compiler would not be able to
 free the memory for str_.
 (Pointers don't have destructors.)
Example 6-13. Exception-safe constructor
struct silly {
 silly(std::size_t n)
 : size_(n), str_(new char[n+1]), wstr_(new wchar_t[n+1])
 {}
 silly(const silly& that);
 silly& operator=(silly that);
private:
 std::size_t size_;
 std::auto_ptr<char> str_;
 std::auto_ptr<wchar_t> wstr_;
};

Destructors

A destructor finalizes an object when the object is
 destroyed. Typically, finalization frees memory, releases resources
 (such as open files), and so on. A destructor is a special member
 function. It has no return type, no arguments, and cannot return a
 value. A destructor can be virtual,
 it can be inline, but it cannot be
 static, const, or volatile. The name of a destructor is a
 tilde (~) followed by
 the class name. A class has only one destructor (although it may have
 several constructors).
Just as constructors automatically construct base-class objects,
 a destructor automatically calls destructors for nonstatic data
 members, direct base classes, and virtual base classes after the
 derived-class destructor body returns. Member and base-class
 destructors are called in reverse order of their constructors. If you
 do not write a destructor, the compiler does so for you. (See the next
 section, Section 6.3.6.)
 Any class that has virtual functions should have a virtual destructor,
 as explained in Section
 6.4 later in this chapter.
You can call a destructor explicitly, but there is rarely any
 reason to do so. The compiler calls destructors automatically when
 objects are destroyed. Dynamically allocated objects are destroyed by
 delete expressions. Static objects
 are destroyed when a program terminates. Other named objects are
 destroyed automatically when they go out of scope. Temporary, unnamed
 objects are destroyed automatically at the end of the expression that
 created them.
When you write a destructor, make sure that it never throws an
 exception. When an exception causes the stack to be unwound (see Chapter 5), objects are automatically
 destroyed. If a destructor throws an exception during stack unwinding,
 the program terminates immediately. (See <exception> in Chapter 13.)
Example 6-14 shows
 how a simple destructor is declared.
Example 6-14. Declaring a destructor
class string {
public:
 string(std::size_t n, char c = '\0')
 : str_(new char[n+1]), size_(n) {
 std::fill(str_, str_+size_+1, c);
 }
 string() : str_(new char[1]), size_(0) {
 str_[0] = '\0';
 } ~string() { delete[] str_; }
 const char* c_str() const { return str_; }
 std::size_t size() const { return size_; }
private:
 std::size_t size_;
 char* str_;
};

Implicit Member Functions

 The compiler implicitly declares and defines default and
 copy constructors, the copy assignment operator, and the destructor in
 certain circumstances. All these implicit functions are inline public members. This
 section describes what each function does and the circumstances under
 which the function is implicitly declared and defined. Example 6-15 explicitly shows how
 each implicit member function is defined.
Example 6-15. Implicit member functions
// These classes show explicitly what the implicit member functions would be.
class base {
public:
 base() {}
 base(const base& that) : m1_(that.m1_), m2_(that.m2_) {}
 base& operator=(const base& that) {
 this->m1_ = that.m1_;
 this->m2_ = that.m2_;
 return *this;
 }
 ~base() {}
private:
 int m1_;
 char* m2_;
};

class demo {
public:
 demo() {} // Default constructs three base objects
 demo(demo& d) {} // Copies three base objects in ary_[]
 demo& operator=(const demo& that) {
 this->ary_[0] = that.ary_[0];
 this->ary_[1] = that.ary_[1];
 this->ary_[2] = that.ary_[2];
 return *this;
 }
 ~demo() {} // Default destructs three base objects
private:
 base ary_[3];
};

class derived : public base {
public:
 derived() : base() {} // Constructs m3_[]
 derived(derived& that) : base(that) {} // Copies m3_[]
 derived& operator=(const derived& that) {
 static_cast<base&>(*this) =
 static_cast<const base&>(that);
 this->m3_[0] = that.m3_[0];
 this->m3_[1] = that.m3_[1];
 this->m3_[2] = that.m3_[2];
 return *this;
 }
 ~derived() {} // Calls ~base(), destructs 3 demo objects
private:
 demo m3_[3];
};

For classes whose data members have fundamental, class, or
 enumeration types, the implicit functions are often adequate. The most
 common case in which you must implement these functions explicitly is
 when an object manages pointers to memory that the object
 controls. In this case, a copy constructor or copy assignment operator must not
 blindly copy a member that is a pointer, which results in two pointers
 to the same memory. Instead, you should allocate a new pointer and
 copy the contents. In such cases, you will often find yourself
 providing the copy constructor, copy assignment operator, and
 destructor.
Tip
A useful guideline is that if you write one of the three
 special functions (copy constructor, copy assignment operator, or
 destructor), you will probably need to write all three.

If you want to store objects in a standard container, you must
 make sure it has a copy constructor and a copy assignment operator
 (implicit or explicit). See Chapter
 10 for information about the standard containers.
Implicit default constructor

The compiler implicitly declares a default constructor if a class has no user-defined
 constructors. The implicit default constructor calls the default
 constructor for all base classes and for all nonstatic data members
 of class type. Other nonstatic data members are left uninitialized.
 In other words, the behavior is the same as if you wrote the default
 constructor with no initializers and an empty function body.

Implicit copy constructor

The compiler implicitly declares a copy constructor if a class has no copy constructor.
 If every direct base class and virtual base class has a copy
 constructor that takes a const
 reference parameter, and every nonstatic data member has a copy
 constructor with a const
 reference parameter, the implicit copy constructor also takes a
 const reference parameter.
 Otherwise, the implicit copy constructor takes a plain reference
 parameter.
In other words, the compiler tries to declare the implicit
 copy constructor so it takes a const reference parameter. If it cannot
 because the implicit function would end up calling an inherited or
 member copy constructor that does not take a const parameter, the compiler gives up and
 declares a copy constructor that takes a non-const parameter.
An implicit copy constructor calls the copy constructor for
 each direct base class and each virtual base class and then performs
 a member-by-member copy of all nonstatic data members. It calls the
 copy constructor for each member of class type and copies the values
 for members of nonclass type.

Implicit copy assignment operator

The compiler implicitly declares a copy assignment operator (operator=) if a class does not have one.
 If every direct base class and virtual base class has a copy
 assignment operator that takes a const reference parameter, and if every
 nonstatic data member has a copy assignment operator with a const reference parameter, the implicit
 copy assignment operator also takes a const reference parameter. Otherwise, the
 implicit copy assignment operator takes a plain reference
 parameter.
In other words, the compiler tries to declare the implicit
 copy assignment operator, so it takes a const reference parameter. If it cannot
 because the implicit function would end up calling an inherited or
 member copy assignment operator that does not take a const parameter, the compiler gives up and
 declares a copy assignment operator that takes a non-const parameter.
An implicit copy assignment operator calls the copy assignment
 operator for each direct base class and each virtual base class and
 then performs a member-by-member assignment of all nonstatic data
 members. It calls the copy assignment operator for each member of
 class type and assigns the values for members of nonclass
 type.

Implicit destructor

The compiler declares an implicit destructor if the programmer does not provide one. If
 a base class has a virtual
 destructor, the implicit destructor is also virtual. The implicit destructor is like a
 programmer-supplied destructor with an empty function
 body.

Inheritance

A class can inherit from zero or more base
 classes. A class with at least one base class is said to be
 a derived class. A derived class inherits all the data members and member
 functions of all of its base classes and all of their base classes, and
 so on. A class's immediate base classes are called direct
 base classes . Their base classes are indirect base
 classes. The complete set of direct and indirect base
 classes is sometimes called the ancestor classes
 .
A class can derive directly from any number of base classes. The
 base-class names follow a colon and are separated by commas. Each class
 name can be prefaced by an access specifier (described later in this
 chapter). The same class cannot be listed more than once as a direct
 base class, but it can appear more than once in the inheritance graph.
 For example, derived3 in the
 following code has base2 twice in its
 inheritance tree, once as a direct base class, and once as an indirect
 base class (through derived2):
class base1 { ... };
class derived1 : public base1 { ... };
class base2 { ... }
class derived2 : public derived1, public base2 { ... }
class derived3 : protected derived2, private base2 { ... }
A derived class can access the members that it inherits from an
 ancestor class, provided the members are not private. (See Section 6.5 later in this chapter
 for details.) To look up a name in class scope, the compiler looks first
 in the class itself, then in direct base classes, then in their direct
 base classes, and so on. See Chapter
 2 for more information about name lookup.
To resolve overloaded functions, the compiler finds the first
 class with a matching name and then searches for overloads in that
 class. Chapter 5 lists the complete
 rules for overload resolution.
An object with a derived-class type can usually be converted to a
 base class, in which case the object is sliced. The
 members of the derived class are removed, and only the base class
 members remain:
struct file {
 std::string name;
};
struct directory : file {
 std::vector<file*> entries;
};
directory d;
file f;
f = d; // Only d.name is copied to f; entries are lost.
 Slicing usually arises from a programming error. Instead,
 you should probably use a pointer or reference to cast from a derived
 class to a base class. In that case, the derived-class identity and
 members are preserved. This distinction is crucial when using virtual functions, as described in the next section. For
 example:
directory* dp = new directory;
file* fp;
fp = dp; // Keeps entries and identity as a directory object
As you can see in the previous examples, the compiler implicitly
 converts a derived class to a base class. You can also use an explicit
 cast operator, but if the base class is virtual, you must use dynamic_cast<>, not static_cast<>. See Chapter 3 for more information about cast
 expressions.
If a base class is ambiguous (see Section 6.4.5 later in this
 chapter) or inaccessible (see Section 6.5 later in this
 chapter), you cannot slice a derived class to the base class, nor can
 you cast a pointer or reference to the inaccessible base class (an
 old-style cast allows it but such use is not recommended).
Virtual Functions

A nonstatic member function can be declared with the
 virtual function specifier, and is then known as a
 virtual function. A virtual function can be
 overridden in a derived class. To override a
 virtual function, declare it in a derived class with the
 same name and parameter types. The return type is usually the same but
 does not have to be identical (as described in the next section, Section 6.4.2). The virtual specifier is optional in the derived
 class but is recommended as a hint to the human reader. A constructor
 cannot be virtual, but a destructor can be. A virtual function cannot
 be static.
A class that has at least one virtual function is
 polymorphic . This form of polymorphism is more precisely known as
 type polymorphism. (C++ also supports
 parametric polymorphism with templates; see Chapter 7.) Most programmers mean type
 polymorphism when they talk about object-oriented programming.
When calling virtual functions, you must distinguish between the
 declared type of the object, pointer, or reference and the actual type
 at runtime. The declared type is often called the static type, and the
 actual type is the dynamic type. For example:
struct base {
 virtual void func();
};
struct derived : base {
 virtual void func(); // Overload
};
base* b = new derived; // Static type of b is base*.
 // Dynamic type is derived*.
b->func(); // Calls dynamic::func()
When any function is called, the compiler uses the static type
 to pick a function signature. If the function is virtual, the compiler
 generates a virtual function call. Then, at runtime, the object's
 dynamic type determines which function is actually called—namely, the
 function in the most-derived class that overrides the virtual
 function. This is known as a polymorphic function
 call.
Dispatching Virtual Functions
Virtual functions are most commonly implemented using
 virtual function tables , or vtables . Each class that declares at least one virtual
 function has a hidden data member (e.g., _
 _vtbl). The _ _vtbl
 member points to an array of function pointers. Every derived class
 has a copy of the table. Every instance of a class shares a common
 table. Each entry in the table points to a function in a base class,
 or if the function is overridden, the entry points to the derived
 class function. Any new virtual functions that the derived class
 declares are added at the end of the table.
When an object is created, the compiler sets its _ _vtbl pointer to the vtable for its
 dynamic class. A call to a virtual function is compiled into an
 index into the table and into a call to the function at that index.
 Note that the dynamic_cast<> operator can use the
 same mechanism to identify the dynamic type of the object.
 Multiple inheritance complicates matters slightly, yet
 the basic concept remains the same: indirection through a table of
 pointers.
Compilers do not have to use vtables, but they are used so
 widely, the term "vtable" has entered the common parlance of many
 C++ programmers.

An object's dynamic type can differ from its static type only if
 the object is accessed via a pointer or reference. Thus, to call a
 virtual function, you typically access the target object via a pointer
 (e.g., ptr->func()). Inside a
 member function, if you call a virtual member function using its
 unqualified name, that is the same as calling the function via
 this->, so the function is
 called virtually. If a nonpointer, nonreference object calls a virtual
 function, the compiler knows that the static type and dynamic type
 always match, so it can save itself the lookup time and call the
 function in a nonvirtual manner.
Example 6-16 shows a
 variety of virtual functions for implementing a simple calculator. A
 parser constructs a parse tree of expr nodes, in which each node can be a
 literal value or an operator. The operator nodes point to operand
 nodes, and an operand node, in turn, can be any kind of expr node. The virtual evaluate function evaluates the expression
 in the parse tree, returning a double result. Each kind of node knows how
 to evaluate itself. For example, a node can return a literal value or
 add the values that result from evaluating two operands.
Example 6-16. Declaring and using virtual functions
class expr {
public:
 virtual ~expr() {}
 virtual double evaluate() const = 0;
 std::string as_string() const {
 std::ostringstream out;
 print(out);
 return out.str();
 }
 virtual void print(std::ostream& out) const {}
 virtual int precedence() const = 0;
 template<typename charT, typename traits>
 static std::auto_ptr<expr> parse(
 std::basic_istream<charT,traits>& in);
};

// cout << *expr prints any kind of expression because expr->print() is virtual.
template<typename charT, typename traits>
std::basic_ostream<charT,traits>&
 operator<<(std::basic_ostream<charT,traits>& out, const expr& e)
{
 e.print(out);
 return out;
}

class literal : public expr {
public:
 literal(double value) : value_(value) {}
 virtual double evaluate() const { return value_; }
 virtual void print(std::ostream& out) const {
 out << value_;
 }
 virtual int precedence() const { return 1; }
private:
 double value_;
};

// Abstract base class for all binary operators
class binop : public expr {
public:
 binop(std::auto_ptr<expr> left, std::auto_ptr<expr> right)
 : left_(left), right_(right) {}
 virtual double evaluate() const {
 return eval(left_->evaluate(), right_->evaluate());
 }
 virtual void print(std::ostream& out) const {
 if (left_->precedence() > precedence())
 out << '(' << *left_ << ')';
 else
 out << *left_;

 out << op();

 if (right_->precedence() > precedence())
 out << '(' << *right_ << ')';
 else
 out << *right_;
 }
 // Reminder that derived classes must override precedence
 virtual int precedence() const = 0;
protected:
 virtual double eval(double left, double right) const = 0;
 virtual const char* op() const = 0;
private:
 // No copying allowed (to avoid messing up auto_ptr<>s)
 binop(const binop&);
 void operator=(const binop&);
 std::auto_ptr<expr> left_;
 std::auto_ptr<expr> right_;
};

// Example binary operator.
class plus : public binop {
public:
 plus(std::auto_ptr<expr> left, std::auto_ptr<expr> right)
 : binop(left, right) {}
 virtual int precedence() const { return 3; }
protected:
 virtual double eval(double left, double right) const {
 return left + right;
 }
 virtual const char* op() const { return "+"; }
};

int main()
{
 while(std::cin) {
 std::auto_ptr<expr> e(expr::parse(std::cin));
 std::cout << *e << '\n';
 std::cout << e->evaluate() << '\n';
 }
}

Sometimes you do not want to take advantage of the virtualness
 of a function. Instead, you may want to call the function as it is
 defined in a specific base class. In such a case, qualify the function
 name with the base-class name, which tells the compiler to call that
 class's definition of the function:
literal* e(new literal(2.0));
e->print(std::cout); // Calls literal::print
e->expr::print(std::cout); // Calls expr::print
A class that has at least one virtual function should also have
 a virtual destructor. If a delete
 expression (see Chapter
 3) deletes a polymorphic pointer (for which the
 dynamic type does not match the static type), the static class must
 have a virtual destructor. Otherwise, the behavior is
 undefined.

Covariant Return Types

The return type of an overriding virtual function must be the
 same as that of the base function, or it must be
 covariant . In a derived class, a covariant return type is a
 pointer or reference to a class type that derives from the return type
 used in the base class. Note that the return type classes do not
 necessarily have to match the classes that contain the functions, but
 they often do. The return type in the derived class can have
 additional const or volatile qualifiers that are not present in
 the base-class return type.
In a function call, the actual return value is implicitly cast
 to the static type used in the function call. Example 6-17 shows one typical
 use of covariant types.
Example 6-17. Covariant return types
struct shape {
 virtual shape* clone() = 0;
};
struct circle : shape {
 virtual circle* clone() {
 return new circle(*this);
 }
 double radius() const { return radius_; }
 void radius(double r) { radius_ = r; }
private:
 double radius_;
 point center_;
};
struct square : shape {
 virtual square* clone() {
 return new square(*this);
 }
private:
 double size_;
 point corners_[4];
};

circle unit_circle;

circle* big_circle(double r)
{
 circle* result = unit_circle.clone();
 result->radius(r);
 return result;
}

int main()
{
 shape* s = big_circle(42.0);
 shape* t = s->clone();
 delete t;
 delete s;
}

Pure Virtual Functions

A virtual function can be declared with the pure specifier (=0)
 after the function header. Such a function is a pure virtual
 function (sometimes called an abstract
 function). The syntax for a pure specifier requires the symbols
 = 0. You cannot use an expression that
 evaluates to 0.
Even though a function is declared pure, you can still provide a
 function definition (but not in the class definition). A definition
 for a pure virtual function allows a derived class to call the
 inherited function without forcing the programmer to know which
 functions are pure. A pure destructor must have a definition because a
 derived-class destructor always calls the base-class
 destructor.
A derived class can override a pure virtual function and provide
 a body for it, override it and declare it pure again, or simply
 inherit the pure function. See the next section, Section 6.4.4.
Example 6-18 shows
 some typical uses of pure virtual functions. A base class, shape, defines several pure virtual
 functions (clone, debug, draw, and num_sides). The shape class has no behavior of its own, so
 its functions are pure virtual.
Example 6-18. Pure virtual functions
class shape {
public:
 virtual ~shape();
 virtual void draw(graphics* context) = 0;
 virtual size_t num_sides() const = 0;
 virtual shape* clone() const = 0;
 virtual void debug(ostream& out) const = 0;
};

class circle : public shape {
public:
 circle(double r) : radius_(r) {}
 virtual void draw(graphics* context);
 virtual size_t num_sides() const { return 0; }
 virtual circle* clone() const { return new circle(radius()); }
 virtual void debug(ostream& out) const {
 shape::debug(out);
 out << "radius=" << radius_ << '\n';
 }
 double radius() const { return radius_; }
private:
 double radius_;
};

class filled_circle : public circle {
public:
 filled_circle(double r, ::color c) : circle(r), color_(c) {}
 virtual filled_circle* clone() const {
 return new filled_circle (radius(), color());
 }
 virtual void draw(graphics* context);
 virtual void debug(ostream& out) const {
 circle::debug(out);
 out << "color=" << color_ << '\n';
 }
 ::color color() const { return color_;}
private:
 color color_;
};

void shape::debug(ostream& out)
const
{}

Even though shape::debug is
 pure, it has a function body. Derived classes must override shape::debug, but they can also call it,
 which permits uniform implementation of the various debug functions. In other words, every
 implementation of debug starts by
 calling the base class debug.
 Classes that inherit directly from shape do not need to implement debug differently from classes that inherit
 indirectly.

Abstract Classes

An abstract class declares at least one pure virtual function or inherits
 a pure virtual function without overriding it. A concrete
 class has no pure virtual functions (or all inherited pure
 functions are overridden). You cannot create an object whose type is
 an abstract class. Instead, you must create objects of concrete type.
 In other words, a concrete class that inherits from an abstract class
 must override every pure virtual function.
Abstract classes can be used to define a pure interface class, that is, a class with all pure
 virtual functions and no nonstatic data members. Java and Delphi
 programmers recognize this style of programming because it is the only
 way these languages support multiple inheritance. Example 6-19 shows how interface
 classes might be used in C++.
Example 6-19. Using abstract classes as an interface specification
struct Runnable {
 virtual void run() = 0;
};

struct Hashable {
 virtual size_t hash() = 0;
};

class Thread : public Runnable, public Hashable {
public:
 Thread() { start_thread(*this); }
 Thread(const Runnable& thread) { start_thread(thread); }
 virtual void run();
 virtual size_t hash() const { return thread_id(); }
 size_t thread_id() const;
 ...
private:
 static void start_thread(const Runnable&);
};

// Derived classes can override run to do something useful.
void Thread::run()
{}

Multiple Inheritance

A class can derive from more than one base class. You
 cannot name the same class more than once as a direct base class, but
 a class can be used more than once as an indirect base class, or once
 as a direct base class and one or more times as an indirect base
 class. Some programmers speak of inheritance trees or hierarchies, but
 with multiple base classes, the organization of inheritance is a
 directed acyclic graph, not a tree. Thus, C++ programmers sometimes
 speak of inheritance
 graphs.
If multiple base classes declare the same name, the derived
 class must qualify references to the name or else the compiler reports
 an ambiguity error:
struct base1 { int n; };
struct base2 { int n; };
struct derived : base1, base2 {
 int get_n() { return base1::n; } // Plain n is an error.
};
Objects of a derived-class type contain separate subobjects for
 each instance of every base class to store the base class's nonstatic
 data members. To refer to a member of a particular subobject, qualify
 its name with the name of its base class. Static members, nested
 types, and enumerators are shared among all instances of a repeated
 base class, so they can be used without qualification (unless the
 derived class hides a name with its own declaration), as shown in
 Example 6-20.
Example 6-20. Multiple inheritance
struct base1 {
 int n;
};
struct base2 {
 enum color { black, red };
 int n;
};
struct base3 : base2 {
 int n; // Hides base2::n
};
struct derived : base1, base2, base3 {
 color get_color(); // OK: unambiguous use of base2::color
 int get_n() { return n; } // Error: ambiguous
 int get_n1() { return base2::n; } // Error: which base2?
 int get_n2() { return base3::n; } // OK
 int get_n3() { // OK: another way to get to a specific member n
 base3& b3 = *this;
 base2& b2 = b3;
 return b2.n;
 }
};

A well-designed inheritance graph avoids problems with ambiguities by
 ensuring that names are unique throughout the graph, and that a
 derived class inherits from each base class no more than once.
 Sometimes, however, a base class must be repeated in an inheritance
 graph. Figure 6-1
 illustrates the organization of multiple base classes, modeled after
 the standard I/O stream classes. Because basic_iostream derives from basic_istream and from basic_ostream, it inherits two sets of
 flags, two sets of buffers, and so on, even though it should have only
 one set of each. This problem is solved by virtual base classes, as
 explained in the next section.
[image: Deriving from multiple base classes]

Figure 6-1. Deriving from multiple base classes

Virtual Inheritance

 A base class can be declared with the virtual specifier, which is important when a
 class has multiple base classes. Ordinarily, each time a class is
 named in an inheritance graph, the most-derived class is organized so
 that an object has a distinct subobject for each occurrence of each
 base class. Virtual base classes, however, are combined into a single
 subobject. That is, each nonvirtual base class results in a distinct
 subobject, and each virtual base class gets a single subobject, no
 matter how many times that base class appears in the inheritance
 graph.
Figure 6-2
 illustrates virtual base classes as they are used in the standard
 I/O streams. Because basic_istream
 and basic_ostream derive virtually
 from basic_ios, the basic_iostream class inherits a single copy
 of basic_ios, with its single copy
 of flags, buffer, and so on.
[image: Virtual base classes]

Figure 6-2. Virtual base classes

If a base class is used as a virtual and nonvirtual base class
 in an inheritance graph, all the virtual instances are shared, and all
 the nonvirtual instances are separate from the virtual instances. This
 situation is rare, and usually indicates a programming error.
When constructing a class that has virtual base classes, the
 most-derived class's constructors must initialize all the virtual base
 classes. If a constructor does not explicitly initialize a virtual
 base class, the virtual base class's default constructor is used.
 Initializers for the virtual base classes are ignored when all base
 class constructors run.
Warning
You should design your virtual base classes so they require
 only the default constructor. Otherwise, you impose a burden on
 every derived class to initialize the virtual base class properly.
 Any change to the parameters of the virtual base class constructor
 necessitates a corresponding change to every constructor for every
 class that derives, directly or indirectly, from the virtual base
 class.

Example 6-21 shows
 the skeletons of the declarations for the standard I/O streams, as
 illustrated in Figure
 6-2.
Example 6-21. Virtual inheritance in the standard I/O classes
class ios_base;

template<typename charT, typename traits>
class basic_ios : public ios_base;

template<typename charT, typename traits>
class basic_istream : public virtual basic_ios<charT,traits>;

template<typename charT, typename traits>
class basic_ostream : public virtual basic_ios<charT,traits>;

template<typename charT, typename traits>
class basic_iostream : public basic_istream<charT,traits>,
 public basic_ostream<charT,traits>;

Polymorphic Constructors and Destructors

 When an object is constructed, the class of the object
 being created is called the most-derived class.
 When a constructor body runs, the class identity and virtual functions
 are those of the class whose constructor is running, which is not
 necessarily the most-derived class. If you call a pure virtual
 function, the behavior is undefined.
Destructors run in the opposite order of constructors. In the
 body of a destructor, the class identity and virtual functions are
 those of the destructor's class, not the most-derived class. As
 mentioned earlier, any class that has a virtual function should also
 have a virtual destructor. Example
 6-22 illustrates how an object's identity changes as it is
 being constructed.
Example 6-22. Constructing and destroying an object
#include <iostream>
#include <ostream>

struct base {
 base() { whoami(); }
 ~base() { whoami(); }
 virtual void whoami() { std::cout << "I am base\n"; }
};

struct derived : base {
 derived() { whoami(); }
 ~derived() { whoami(); }
 virtual void whoami() { std::cout << "I am derived\n"; }
};

struct most_derived : virtual derived {
 most_derived() { whoami(); }
 ~most_derived() { whoami(); }
 virtual void whoami()
 {
 std::cout << "I am most_derived\n";
 }
};

int main()
{
 most_derived md;
 // Prints:
 // I am base
 // I am derived
 // I am most_derived
 // I am most_derived
 // I am derived
 // I am base
}

Access Specifiers

 Access specifiers restrict who can access a member. You
 can use an access specifier before a base-class name in a class
 definition and have access specifier labels within a class definition.
 The access specifiers are:
	public
	Anyone can access a public member.

	protected
	Only the class, derived classes, and friends can access
 protected members.

	private
	Only the class and friends can access private
 members.

In a class definition, the
 default access for members and base classes is private. In a struct definition, the default is public. That is the only difference between a
 class and a struct, although by convention, some
 programmers use struct only for POD
 classes and use class for all other
 classes.
The access level of a base class affects which members of the base
 class are accessible to users of a derived class (not the derived
 class's access to the base class). The access level caps the
 accessibility of inherited members. In other words, private inheritance
 makes all inherited members private in the derived class. Protected
 inheritance reduces the accessibility of public members in the base
 class to protected in the derived class. Public inheritance leaves all
 accessibility as it is in the base class.
The access level of a base class also limits type casts and
 conversions. With public inheritance, you can cast from a derived class
 to a base class in any function. Only derived classes and friends can
 cast to a protected base class. For private inheritance, only the class
 that inherits directly and friends can cast to the base class.
Access level labels in a class definition apply to all data
 members, member functions, and nested types. A label remains in effect
 until a new access label is seen or the class definition ends.
[image: image with no caption]

Access specifier labels affect the layout of nonstatic data
 members. In the absence of access specifier labels, nonstatic data
 members are at increasing addresses within an object in the order of
 declaration. When separated by access specifier labels, however, the
 order is implementation-defined.
When looking up names and resolving overloaded functions, the
 access level is not considered. The access level is checked only after a
 name has been found and overloaded functions have been resolved, and if
 the level does not permit access, the compiler issues an error message.
 Example 6-23 shows how the
 compiler ignores the access level when resolving names and
 overloading.
Example 6-23. The access level and overloading
class base {
public:
 void func(double);
protected:
 void func(long);
private:
 void func(int);
};

class demo : public base {
public:
 demo() { func(42L); } // Calls base::func(long)
 void f() { func(42); } // Error: func(int) is private
};

class closed : private demo {
public:
 closed() { f(); } // OK: f() is accessible from closed
};

int main()
{
 demo d;
 d.func(42L); // Error: func(long) accessibly only from base and demo
 d.func(42); // Error: func(int) is private

 closed c;
 c.f(); // Error: private inheritance makes demo::f() private in closed.
}

A derived class can change the accessibility of inherited members
 with using declarations. A derived
 class can restore the accessibility of a member whose access was reduced
 by protected or private inheritance, or it can increase the
 accessibility of an inherited protected member. Example 6-24 shows how using declarations work. (You can omit the
 using keyword, leaving only the
 qualified name, but such usage is deprecated.)
Example 6-24. Adjusting accessibility with using declarations
struct base { // struct is public by default.
 int x;
protected:
 int y;
};
// Private inheritance makes x and y private in derived1.
class derived1 : private base {
public:
 using base::x; // x is now public.
};
// public inheritance menas x is public and y is protected in derived2.
class derived2 : public base {
public:
 using base::y; // y is now public.
private:
 using base::x; // Pointless: x is still public
};

int main()
{
 base b;
 derived1 d1;
 derived2 d2;
 b.x = 0; // OK: x is public in base
 b.y = 42; // Error: y is protected in base
 d1.x = b.x; // OK: x is public in derived1
 d2.x = d1.x; // OK: x is public in derived2
 d1.y = 42; // Error: y is private in derived1
 d2.y = b.x; // OK: y is public in derived2
 return d2.y;
}

A member's accessibility depends on how it is accessed. In
 particular, a protected, nonstatic member can be accessed only through
 its own class or a derived class, but not through a base class. Example 6-25 demonstrates this
 principle.
Example 6-25. Accessing a protected member
class base {
protected:
 int m;
};

struct derived : base {
 void reset() {
 this->m = 0; // OK
 }
 void set(base* b) {
 b->m = 0; // Error: cannot refer to m through base
 }
 bool operator==(const derived& d) {
 return this->m == d.m; // OK
 }
};

Friends

A friend is permitted full access to private and protected
 members. A friend can be a function, function template, or member
 function, or a class or class template, in which case the entire class
 and all of its members are friends.
Use the friend specifier to
 declare a friend in the class granting friendship. Note that friendship
 is given, not taken. In other words, if class A contains the declaration
 friend class
 B;, class B can access the private members of A, but A has no
 special privileges to access B (unless B declares A as a friend).
By convention, the friend
 specifier is usually first, although it can appear in any order with
 other function and type specifiers. The friend declaration can appear anywhere in the
 class; the access level is not relevant.
You cannot use a storage class specifier in a friend declaration. Instead,
 you should declare the function before the class definition (with the
 storage class, but without the friend
 specifier), then redeclare the function in the class definition (with
 the friend specifier and without the
 storage class). The function retains its original linkage. If the
 friend declaration is the first
 declaration of a function, the function gets external linkage. (See
 Chapter 2 for more information
 about storage classes and linkage.) For example:
class demo;
static void func(demo& d);
class demo {
 friend void func(demo&);
 ...
Friendship is not transitive—that is, the friend of my friend is
 not my friend (unless I declare so in a separate friend declaration)—nor is a nested class a
 friend just because the outer class is a friend. (See the next section,
 Section 6.7, for more
 information.)
Friendship is not inherited. If a base class is a friend, derived classes do
 not get any special privileges.
You cannot define a class in a friend declaration, but you can define a
 function, provided the class granting friendship is not local to a
 block. The function body is in the class scope, which affects name
 lookup (see Chapter 2). The friend
 function is automatically inline. Usually, friend functions are
 declared, not defined, in the class.
A declaration or definition of a friend function does not make
 that function a member of the class and does not introduce the name into
 the class scope. Example 6-26
 shows several different kinds of friends.
Example 6-26. Friend functions and classes
#include <iterator>

// Simple container for singly-linked lists
template<typename T>
class slist {
 // Private type for a link (node) in the list
 template<typename U>
 struct link {
 link* next;
 U value;
 };
 typedef link<T> link_type;

 // Base class for iterator and const_iterator. Keeps track of current node, and
 // previous node to support erase().
 class iter_base :
 public std::iterator<std::forward_iterator_tag, T> {
 protected:friend class slist; // So slist can construct iterators
 iter_base(slist::link_type* prv, slist::link_type* node);
 slist::link_type* node_;
 slist::link_type* prev_;
 };

public:
 typedef T value_type;
 typedef std::size_t size_type;

 class iterator : public iter_base {
 // Members omitted for bevity . . .
 private:
 friend class slist; // So slist can call constructor
 iterator(slist::link_type* prev, slist::link_type* node)
 : iter_base(prev, node) {}
 };

 friend class iter_base; // So iter_base can use link_type
 friend class iterator; // So iterator can use link_type
 template<typename U>
 friend void swap(slist<U>& a, slist<U>& b);

 iterator begin() { return iterator(0, head_); }
 iterator end() { return iterator(0, 0); }
private:
 link_type* head_;
 size_type count_;
};

template<typename T>
slist<T>::iter_base::iter_base(slist::link_type* prev,
 slist::link_type* node)
: prev_(prev), node_(node)
{}

// Swap two lists in constant time by swapping members.
template<typename T>
void swap(slist<T>& a, slist<T>& b)
{
 typename slist<T>::link_type* tmp_head = a.head_;
 typename slist<T>::size_type tmp_count = a.count_;
 a.head_ = b.head_;
 a.count_ = b.count_;
 b.head_ = tmp_head;
 b.count_ = tmp_count;
}

Nested Types

You can declare and define types within a class
 definition. Accessing these nested types is similar to using types
 declared within a namespace; the class name serves as the namespace
 name.
Tip
Java programmers have several different kinds of nested classes
 to choose from, but C++ has only one. A C++ nested class is like a
 static member class in Java. You can construct the other forms of
 nested classes by adding the appropriate declarations and support
 code. For example:
class outer {
public:
 friend inner; // Implicit in Java
 class inner {
 friend outer; // Implicit in Java
 public:
 // Inner member class keeps track of outer instance.
 inner(outer& out) : out_(out) {}
 int get() const { return out_.x(); }
 private:
 outer& out_;
 }
 int x();
 int y() { inner i(*this); return i.get(); }
};

Nested types obey access specifiers, so private types are usable
 only by the class and its friends; protected types are usable by the
 class, derived classes, and friends. Public types are usable anywhere.
 To use a nested type outside the containing class and derived classes,
 it must be qualified with the class name.
Nested enumerations add every enumerator to the class
 scope:
class Graphics {
public:
 enum color { black, red, green, yellow, blue, magenta, cyan, white };
 color pixel(int row, int col) const;
 ...
};
Graphics::color background = Graphics::white;
A typedef declaration can also
 be nested in a class. This technique is often used for traits (see Chapter 8):
template<typename T, std::size_t N>
class array {
public:
 typedef T value_type;
 typedef T* pointer_type;
 typedef T& reference_type;
 typedef std::size_t size_type;
 ...
};
A nested-class definition is like an ordinary class
 definition, except the name is local to the outer class. The inner class
 has no special access privileges to the outer class, and vice versa. A
 nested class can be declared within its outer class definition and later
 defined at namespace scope. In that case, the nested name must be
 qualified with the outer class name. Often, nested classes are fully
 defined within their outer classes:
struct outer {
 struct inner1 {
 int foo() { return 10; }
 };
 class inner2;
};
struct outer::inner2 {
 int foo();
};
int outer::inner2::foo() {
 outer::inner2 x;
 return x.foo();
}

Chapter 7. Templates

C++ is more than a mere object-oriented programming
 language. The full power of C++ is seen when programming with templates.
 Templates lie at the heart of the standard library: strings, I/O streams,
 containers, iterators, algorithms, and more.
A template is a pattern for creating classes or functions as instances
 of the template at compile time, similar to the manner in which a class is
 a pattern for creating objects as instances of the class at runtime. A
 template takes one or more parameters, and when you instantiate a class or
 function template, you must supply arguments for the parameters. The
 classes and functions can have different behaviors or implementations,
 depending on the arguments. This style of programming is often called
 generic programming. Templates can also be used to
 select code at compile time, affect the behavior of generated code, and
 set policies. This style of programming is often known as
 template metaprogramming.
Programming with templates is unlike traditional object-oriented programming. Object-oriented programming
 centers around type polymorphism (requiring classes, objects, and virtual
 functions). Template-based programming centers around
 parametric polymorphism, in which a function or
 class is defined independently of its parameters (which can be values,
 types, or even other templates).
This chapter describes the syntax and semantics of declaring,
 specializing, instantiating, and using templates. See Chapter 8 for information about some
 typical uses of templates in the standard library. See Appendix B for information about
 template-oriented projects.
The syntax descriptions in this chapter are informal. See Chapter 12 for a precise BNF
 grammar.

Overview of Templates

A template declaration can be a function declaration,
 function definition, class declaration, or class definition. The
 template declaration takes one or more parameters, which can be values,
 types, or class templates.
In most cases, you can use a template simply by naming the
 template and providing arguments for the template parameters: constant
 expressions, types, or template references. This is known as
 instantiating the template. You can instantiate a template at its point
 of use, or declare a separate instantiation as a class or function
 declaration. An instance of a function template creates a function; an
 instance of a class template creates a class and all of its
 members.
A template lets you define a class or function once for a wide
 range of template arguments, but sometimes you need to customize a
 template for particular arguments. This is known as
 specializing the template. A template specialization, as its name
 implies, is a special case of the template pattern. When you instantiate
 a template, the compiler uses the template arguments to pick a
 specialization, or if no specialization matches the arguments, the
 original template declaration. A specialization can be total or partial.
 A total specialization specifies values for all of
 the template arguments, and a partial
 specialization specifies only some of the template
 arguments.
The terminology used in this book reflects the terminology that
 many C++ programmers have adopted, even though that terminology differs
 slightly from that used in the C++ standard. In the standard,
 "specialization" means an instance of a template. "Instantiation" also
 refers to an instance of a template. When you declare a special case of
 a template, that is known as explicit
 specialization.
Many C++ programmers prefer to keep specialization and
 instantiation as separate concepts and separate terms, and I have
 adopted the simpler terminology for this book.
Note that a template declaration defines only the pattern. A
 specialization defines a pattern that applies to a specific set of
 template arguments. Only by instantiating a template do you declare or
 define a function or class. When you instantiate a template, the
 compiler uses the template arguments to pick which pattern to
 instantiate: a specialization or the main template.
Writing a template is more difficult than writing a non-template
 class or function. The template can be instantiated in almost any
 context, and the context can affect how the template definition is
 interpreted. Name lookup rules are more complicated for templates than
 for non-templates.
Example 7-1 shows
 several different kinds of templates and their uses.
Example 7-1. Declaring and using templates
#include <cmath>
#include <complex>
#include <iostream>
#include <ostream>

// Template declaration of pointtemplate<typename T>
class point {
public:
 typedef T value_type;
 point(const T& x, const T& y) : x_(x), y_(y) {}
 point() : x_(T()), y_(T()) {}
 T x() const { return x_; }
 T& x() { return x_; }
 void x(const T& new_x) { x_ = new_x; }
 T y() const { return y_; }
 T& y() { return y_; }
 void y(const T& new_y) { y_ = new_y; }
private:
 T x_, y_;
};

// Instantiate point<>.
typedef point<std::complex<double> > strange;
strange s(std::complex<double>(1, 2),
 std::complex<double>(3, 4));

// Specialize point<int> to use call-by-value instead of const references.
template<>
class point<int> {
public:
 typedef int value_type;
 point(int x, int y) : x_(x), y_(y) {}
 point() : x_(0), y_(0) {}
 int x() const { return x_; }
 int& x() { return x_; }
 void x(int new_x) { x_ = new_x; }
 int y() const { return y_; }
 int& y() { return y_; }
 void y(int new_y) { y_ = new_y; }
private:
 int x_, y_;
};

// Instance of the specialized point<int>
point<int> p(42, 0);
// Instance of the general point<>, using long as the template argument
point<long> p(42, 0);

// Function template
template<typename T>
T abs(T x)
{
 return x < 0 ? -x : x;
}

namespace {
 // Explicit instantiation
 const int abs_char_min1 = abs<int>(CHAR_MIN);
 // Implicit instantiation
 const int abs_char_min2 = abs(CHAR_MIN);
}

// Overload abs() with another function template.
template<typename floatT, typename T>
floatT abs(const point<T>& p)
{
 return std::sqrt(static_cast<floatT>(p.x()*p.x() +
 p.y()*p.y()));
}

int main()
{
 point<double> p;
 // Call instance of function template. Compiler deduces second template
 // argument (double) from the type of p.
 double x = abs<long double>(p);
 std::cout << x << '\n'; // prints 0
 std::cout << abs_char_min1 << '\n';
}

Template Declarations

A template declaration begins with a template header
 followed by a function declaration or definition, or a class declaration
 or definition. Template declarations can appear only at namespace or
 class scope. The template name must be unique in its scope (except for
 overloaded functions).
The template header starts with the template keyword followed by the template
 parameters enclosed in angle brackets (<>). Multiple parameters are separated
 by commas. The syntax is:
template <parameter-list > declaration
There are three kinds of template parameters: values, types, and class templates.
 Similar to a function parameter, a template parameter has an optional
 name and an optional default argument.
 Function templates cannot have default template arguments.
 If a class template has member definitions that are outside the class
 definition, only the class template takes default arguments; the
 individual member definitions do not. If a default argument is present,
 it is preceded by an equal sign. Only the rightmost parameters can have
 default arguments. If any parameter has a default argument, all
 parameters to its right must also have default arguments. Example 7-2 shows valid and invalid
 member definitions.
Example 7-2. Defining members of a class template
// OK: default argument for template parameter A
template<typename T, typename A = std::allocator<T> >
class hashset {
 bool empty() const;
 size_t size() const;
 ...
};
// Error: do not use default argument here
template<typename T, typename A = std::allocator<T> >
bool hashset<T,A>::empty() { return size() == 0; }

// OK
template<typename T, typename A>
size_t hashset<T,A>::size() { ... }

Each template header defines the template name and template parameters. The scope of a parameter name extends
 from its declaration to the end of the declaration or definition of the
 class or function. A parameter name can be used in subsequent template
 parameters in the same template header (such as std::allocator<T> in Example 7-2). The template parameter
 name must be unique in the template declaration and cannot be redeclared
 in its scope. If a class template has separate definitions for its
 members, each member definition is free to use different names for the
 template parameters. (See Section
 7.4.1 later in this chapter for more information.)
There are three kinds of template parameters:
	Value template
 parameter
	Declared in the same manner as a function parameter:
type-specifiers declarator
 type-specifiers declarator = expr
The type must be an integral, enumeration, pointer,
 reference, or pointer-to-member type. When the template is
 instantiated, the argument must be a constant integral or
 enumeration expression, the address of a named object or function
 with external linkage, or the address of a member:
template<unsigned Size>
struct name {
 // ...
 unsigned size() const { return Size; }
private:
 char name_[Size+1];
};
name<100> n;
Note that a string literal is an unnamed object with
 internal linkage, so you cannot use it as a template
 argument:
template<const char* Str> void print(const char* s = Str);
print<"default">(); // Error
const char def[] = "default";
print<def>(); // OK
The type-specifiers can be
 elaborated type specifiers that start with typename , that is, typename followed by a qualified type
 name. (If typename is followed
 by a plain identifier, the template parameter is a type parameter,
 as described later.) For more information about this use of
 typename, see Section 7.8 later in this
 chapter.
template<typename list<int>::value_type value>
int silly() { return value; }

	Type template
 parameter
	Introduced with the keyword typename followed by the optional
 parameter name:
typenameidentifier
typename identifier = type
The class keyword can be
 used in place of typename and
 has the same meaning in this context. (A useful convention is to
 use class when the argument
 must be a class and typename
 when the argument can be any type.) When the template is
 instantiated, the argument must be a type (that is, a list of type
 specifiers with optional pointer, reference, array, and function
 operators). In the following example, the point template is instantiated with
 unsigned long int as the template argument:
template<typename T> struct point {
 T x, y;
};
point<unsigned long int> pt;
If typename is followed
 by a qualified type name instead of a plain identifier, it
 declares a value parameter of that type, as described
 earlier.

	Template template
 parameter
	Must be a class template. It has the form of a template
 declaration:
template <parameter-list > class identifier
template < parameter-list > class identifier = template-id
When the template is instantiated, the argument must be a
 class template:
// Erase all occurrences of item from a sequence container.
template<template<typename T, typename A> class C, typename T,
 typename A>
void erase(C<T,A>& c, const T& item)
{
 c.erase(std::remove(c.begin(), c.end(), item), c.end());
}
...
list<int> l;
...
erase(l, 42);

To use a template declaration, you must create an instance of the
 template, either explicitly (by naming the template and enclosing a list
 of template arguments in angle brackets) or implicitly (by letting the
 compiler deduce the template arguments from context) for a function
 template. In either case, the compiler must know about a template
 declaration before the template is used. Typically, a template is
 declared in an #include file or
 header. The header declares the function or class template and possibly
 provides the definition of the function template or the definitions of
 all the members of the class template. See Section 7.10 later in this
 chapter for details about the files that declare and define
 templates.
A template instance must provide an argument for each template
 parameter. If a class template has fewer arguments than parameters, the
 remaining parameters must have default arguments, which are used for the
 template instance.
If a function template has fewer arguments than parameters, the
 remaining arguments are deduced from the context of the function call
 (as explained in the next section). If the arguments cannot be deduced,
 the compiler reports an error. See Section 7.7 later in this chapter
 for more information.

Function Templates

A function template defines a pattern for any number of
 functions whose definitions depend on the template parameters. You can
 overload a function template with a non-template function or with other
 function templates. You can even have a function template and a
 non-template function with the same name and parameters.
Function templates are used throughout the standard library. The
 best-known function templates are the standard algorithms (such as
 copy, sort, and for_each).
Declare a function template using a template declaration header
 followed by a function declaration or definition. Default template
 arguments are not allowed in a function template declaration or
 definition. In the following example, round is a template declaration for a function
 that rounds a number of type T to
 N decimal places (see example 7-14
 for the definition of round), and
 min is a template definition for a
 function that returns the minimum of two objects:
// Round off a floating-point value of type T to N digits.
template<unsigned N, typename T> T round(T x);
// Return the minimum of a and b.
template<typename T> T min(T a, T b)
{ return a < b ? a : b; }
To use a function template, you must specify a template instance by
 providing arguments for each template parameter. You can do this
 explicitly, by listing arguments inside angle brackets:
long x = min<long>(10, 20);
However, it is more common to let the compiler deduce the template
 argument types from the types of the function arguments:
int x = min(10, 20); // Calls min<int>()
See Section 7.3.2
 later in this chapter for details.
Function Signatures

The signature of a function template includes the template
 parameters even if those parameters are never used in the function's
 return type or parameter types. Thus, instances of different template
 specializations produce distinct functions. The following example has
 two function templates, both named func. Because their template parameters
 differ, the two lines declare two separate function templates:
template<typename T> void func(T x = T());
template<typename T, typename U> void func(T x = U());
Typically, such function templates are instantiated in separate
 files; otherwise, you must specify the template arguments explicitly
 to avoid overload conflicts.
The function signature also includes expressions that use any of
 the template parameters. In the following example, two function
 templates overload func. The
 function parameter type is an instance of the demo class template. The template parameter
 for demo is an expression that
 depends on func's template
 parameter (T or i):
template<int x> struct demo {};
template<typename T> void func(demo<sizeof(T)>);
template<int i> void func(demo<i+42>);
Just as you can have multiple declarations (but not definitions)
 of a single function, you can declare the same function template
 multiple times using expressions that differ only by the template
 parameter names. Even if the declarations are in separate files, the
 compiler and linker ensure that the program ends up with a single copy
 of each template instance.
If the expressions differ by more than just the parameter names,
 they result in distinct functions, so you can have distinct function
 template definitions. If the argument expressions result in the same
 value, the program is invalid, although the compiler is not required
 to issue an error message:
template<int i> void func(demo<i+42>);
template<int x> void func(demo<x+42>) {} // OK
template<int i> void func(demo<i+41>) {} // OK
template<int i> void func(demo<i+40+2>) {} // Error
Follow the standard procedure of declaring templates in header
 files and using those headers in the source files where they are
 needed, thereby ensuring that every source file sees the same template
 declarations. Then you will not have to be concerned about different
 source files seeing declarations that differ only by the form of the
 template argument expressions. The compiler tries to ensure that the
 program ends up with a single copy of functions that are meant to be
 the same, but distinct copies of those that are meant to be
 distinct.

Deducing Argument Types

Most uses of function templates do not explicitly specify all of
 the template arguments, letting the compiler deduce the
 template arguments from the function call. You can provide explicit
 arguments for the leftmost template parameters, leaving the rightmost
 parameters for the compiler to deduce. If you omit all the template
 arguments, you can also choose to omit the angle brackets.
In the following discussion, make sure you distinguish between
 the parameters and arguments of a template and those of a function.
 Argument type deduction is the process of determining the template
 arguments, given a function call or other use of a function (such as
 taking the address of a function).
The basic principle is that a function call has a list of
 function arguments, in which each function argument has a type. The
 function argument types must be matched to function parameter types;
 in the case of a function template, the function parameter types can
 depend on the template parameters. The ultimate goal, therefore, is to
 determine the appropriate template arguments that let the compiler
 match the function parameter types with the given function argument
 types.
Usually, the template parameters are type or template template
 parameters, but in a few cases, value parameters can also be used (as
 the argument for another template or as the size of an array).
The function parameter type can depend on the template
 parameter in the following ways, in which the template parameter is
 v for a value parameter,
 T for a type parameter, or
 TT for a template template
 parameter:
	T, T
 *, T
 &, const T,
 volatile
 T, const volatile
 T

	Array of T

	Array of size v

	Template TT, or any class
 template whose template argument is T
 or v

	Function pointer in which T is
 the return type or the type of any function parameter

	Pointer to a data member of T, or
 to a data member whose type is T

	Pointer to a member function that returns
 T, to a member function of
 T, or to a member function in which
 T is the type of any function
 parameter

Types can be composed from any of these forms. Thus, type
 deduction can occur for a struct in
 which the types of its members are also deduced, or a function's
 return type and parameter types can be deduced.
A single function argument can result in the deduction of
 multiple template parameters, or multiple function arguments might
 depend on a single template parameter.
If the compiler cannot deduce all the template arguments
 of a function template, you must provide explicit arguments. Example 7-3 shows several
 different ways the compiler can deduce template arguments.
Example 7-3. Deducing template arguments
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <list>
#include <ostream>
#include <set>

// Simple function template. Easy to deduce T.
template<typename T>
T min(T a, T b)
{
 return a < b ? a : b;
}

template<typename T, std::size_t Size>
struct array
{
 T value[Size];
};

// Deduce the row size of a 2D array.
template<typename T, std::size_t Size>
std::size_t dim2(T [][Size])
{
 return Size;
}

// Overload the function size() to return the number of elements in an array<>
// or in a standard container.
template<typename T, std::size_t Size>
std::size_t size(const array<T,Size>&)
{
 return Size;
}

template<template<typename T, typename A> class container,
 typename T, typename A>
typename container<T,A>::size_type size(container<T,A>& c)
{
 return c.size();
}

template<template<typename T, typename C, typename A>
 class container,
 typename T, typename C, typename A>
typename container<T,C,A>::size_type
size(container<T,C,A>& c)
{
 return c.size();
}

// More complicated function template. Easy to deduce Src, but impossible to
// deduce Dst.
template<typename Dst, typename Src>
Dst cast(Src s)
{
 return s;
}

int main()
{min(10, 100); // min<int>
 min(10, 1000L); // Error: T cannot be int and long

 array<int,100> data1;
 // Deduce T=int and SIZE=100 from type of data1.
 std::cout << size(data1) << '\n';

 int y[10][20];
 std::cout << dim2(y) << '\n'; // Prints 20

 std::list<int> lst;
 lst.push_back(10);
 lst.push_back(20);
 lst.push_back(10);
 std::cout << size(lst) << '\n'; // Prints 3

 std::set<char> s;
 const char text[] = "hello";
 std::copy(text, text+5, std::inserter(s, s.begin()));
 std::cout << size(s) << '\n'; // Prints 4

 // Can deduce Src=int, but not return type, so explicitly set Dst=char
 char c = cast<char>(42);
}

Overloading

Function templates can be overloaded with other function
 templates and with non-template functions. Templates introduce some
 complexities, however, beyond those of ordinary overloading (as
 covered in Chapter 5).
As with any function call, the compiler collects a list of
 functions that are candidates for overload resolution. If the function
 name matches that of a function template, the compiler tries to
 determine a set of template arguments, deduced or explicit. It the
 compiler cannot find any suitable template arguments, the template is
 not considered for overload resolution. If the compiler can find a set
 of template arguments, they are used to instantiate the function
 template, and the template instance is added to the list of candidate
 functions. Thus, each template contributes at most one function to the
 list of overload candidates. The best match is then chosen from the
 list of template and non-template functions according to the normal
 rules of overload resolution: non-template functions are preferred
 over template functions, and more specialized template functions are
 preferred over less specialized template functions. See Chapter 5 for more details on overload
 resolution.
Example 7-4 shows how
 templates affect overload resolution. Sometimes,
 template instantiation issues can be subtle. The last call to print results in an error, not because the
 compiler cannot instantiate print,
 but because the instantiation contains an error, namely, that operator << is not defined for std::vector<int>.
Example 7-4. Overloading functions and function templates
#include <cctype>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <string>
#include <vector>

template<typename T>
void print(const T& x)
{
 std::cout << x;
}

void print(char c)
{
 if (std::isprint(c))
 std::cout << c;
 else
 std::cout << std::hex << std::setfill('0')
 << "'\\x" << std::setw(2) << int(c) << '\''
 << std::dec;
}

template<>
void print(const long& x)
{
 std::cout << x << 'L';
}

int main()
{
 print(42L); // Calls print<long> specialization
 print('x'); // Calls print(char) overload
 print('\0'); // Calls print(char) overload
 print(42); // Calls print<int>
 print(std::string("y")); // Calls print<string>
 print(); // Error: argument required
 print(std::vector<int>()); // Error
}

Operators

You can create operator templates in the same manner as function
 templates. The usual rules for deducing argument types apply as
 described earlier in this section. If you want to specify the
 arguments explicitly, you can use the operator keyword:
template<typename T>
bigint operator+(const bigint& x, const T& y);
bigint a;
a = a + 42; // Argument type deduction
a = operator+<long>(a, 42); // Explicit argument type
When using operator<, be
 sure to leave a space between the operator symbol and the angle
 brackets that surround the template argument, or else the compiler
 will think you are using the left-shift operator:
operator<<long>(a, 42); // Error: looks like left-shift
operator< <long>(a, 42); // OK
Type conversion operators can use ordinary type cast syntax, but
 if you insist on using an explicit operator keyword, you cannot use the usual
 syntax for specifying the template argument. Instead, the target type
 specifies the template argument type:
struct demo {
 template<typename T>
 operator T*() const { return 0; }
};
demo d;
char* p = d.operator int*(); // Error: illegal cast
char* c = d; // d.operator char*(); // OK

Class Templates

A class template defines a pattern for any number of classes
 whose definitions depend on the template parameters. The compiler treats
 every member function of the class as a function template with the same
 parameters as the class template.
Class templates are used throughout the standard library for
 containers (list<>, map<>, etc.), complex numbers (complex<>), and even strings (basic_string<>) and I/O (basic_istream<>, etc.).
The basic form of a class template is a template declaration header followed
 by a class declaration or definition:
template<typename T>
struct point {
 T x, y;
};
To use the class template, supply an argument for each template
 parameter (or let the compiler substitute a default argument). Use the
 template name and arguments the way you would a class name.
point<int> pt = { 42, 10 };
typedef point<double> dpoint;
dpoint dp = { 3.14159, 2.71828 };
In member definitions that are separate from the class definition,
 you must declare the template using the same template parameter types in
 the same order, but without any default arguments. (You can change the
 names of the template parameters, but be sure to avoid name collisions
 with base classes and their members. See Section 7.8 later in this chapter
 for more information.) Declare the member definitions the way you would
 any other definition, except that the class name is a template name
 (with arguments), and the definition is preceded by a template
 declaration header.
In the class scope (in the class definition, or in the definition
 of a class member), the bare class name is shorthand for the full
 template name with arguments. Thus, you can use the bare identifier as
 the constructor name, after the tilde in a destructor name, in parameter
 lists, and so on. Outside the class scope, you must supply template
 arguments when using the template name. You can also use the template
 name with different arguments to specify a different template instance
 when declaring a member template. The following example shows how the
 template name can be used in different ways:
template<typename T> struct point {
 point(T x, T y); // Or point<T>(T x, T y);
 ~point<T>(); // Or ~point();
 template<typename U>
 point(const point<U>& that);
 ...
};
Example 7-5 shows a
 class template with several different ways to define its
 member function templates.
Example 7-5. Defining class templates
template<typename T, typename U = int>
class demo {
public:
 demo(T t, U u);
 ~demo();
 static T data;
 class inner; // inner is a plain class, not a template.
};

template<typename T, typename U>
demo<T,U>::demo(T, U) // Or demo<T,U>::demo<T,U>(T, U)
{}

template<typename T, typename U>
demo<T,U>::~demo<T,U>() // Or demo<T,U>::~demo()
{}

template<typename U, typename T> // Allowed, but confusing
U demo<U,T>::data;

template<typename T, typename U>
class demo<T,U>::inner {
public:
 inner(T, demo<T,U>& outer);
private:
 demo<T,U>& outer;
};

// The class name is "demo<T,U>::inner", and the constructor name is "inner".
template<typename T, typename U>
demo<T,U>::inner::inner(T, demo<T,U>& outer)
: outer(outer)
{}

The template defines only the pattern; the template must be
 instantiated to declare or define a class. See the sections Section 7.5 and Section 7.7 later in this chapter
 for more information.
Member Templates

A member template is a template inside a
 class template or non-template class that has its own
 template declaration header, with its own template parameters. It can
 be a member function or a nested type. Member templates have the following restrictions:
	Local classes cannot have member templates.

	A member function template cannot be a destructor.

	A member function template cannot be virtual.

	If a base class has a virtual function, a member function
 template of the same name and parameters in a derived class does
 not override that function.

Type conversion functions have additional rules because they
 cannot be instantiated using the normal template instantiation or
 specialization syntax:
	A using declaration
 cannot refer to a type conversion template in a base class.

	Use ordinary type conversion syntax to instantiate a type
 conversion template:
template<typename T>
struct silly {
 template<typename U> operator U*() { return 0; }
};
...
silly<int> s, t(42);
if (static_cast<void*>(s))
 std::cout << "not null\n";

A class can have a non-template member function with the same
 name as a member function template. The usual overloading rules apply
 (Chapter 5), which means the
 compiler usually prefers the non-template function to the function
 template. If you want to make sure the function template is called,
 you can explicitly instantiate the template:
template<typename T>
struct demo {
 template<typename U> void func(U);
 void func(int);
};

demo<int> d;
d.func(42); // Calls func(int)
d.func<int>(42); // Calls func<int>

Friends

A friend (of a class template or an ordinary class) can be
 a template, a specialization of a template, or a non-template function
 or class. A friend declaration cannot be a partial specialization. If
 the friend is a template, all instances of the template are friends.
 If the class granting friendship is a template, all instances of the
 template grant friendship. A specialization of a template can be a
 friend, in which case instances of only that specialization are
 granted friendship:
template<typename T> class buddy {};
template<typename T> class special {};
class demo {
 // All instances of buddy<> are friends.
 template<typename T> friend class buddy;
 // special<int> is a friend, but not special<char>, etc.
 friend class special<int>;
};
When you use the containing class template as a function
 parameter, you probably want friend functions to be templates
 also:
template<typename T>
class outer {
 friend void func1(outer& o); // Wrong

 template<typename U>
 friend void func2(outer<U>& o); // Right
};
A friend function can be defined in a class template, in which
 case every instance of the class template defines the function. The
 function definition is compiled even if it is not used.
You cannot declare a friend template in a local class.
If a friend declaration is a specialization of a function
 template, you cannot specify any default function arguments, and you
 cannot use the inline specifier.
 These items can be used in the original function template declaration,
 however.
All the rules for function templates apply to friend function
 templates. (See Section
 7.3 earlier in this chapter for details.) Example 7-6 shows examples of
 friend declarations and templates.
Example 7-6. Declaring friend templates and friends of templates
#include <algorithm>
#include <cstddef>
#include <iostream>
#include <iterator>
#include <ostream>

template<typename T, std::size_t Size>
class array {
public:
 typedef T value_type;

 class iterator_base :
 std::iterator<std::random_access_iterator_tag, T> {
 public:
 typedef T value_type;
 typedef std::size_t size_type;
 typedef std::ptrdiff_t distance_type; friend inline bool operator==(const iterator_base& x,
 const iterator_base& y)
 {
 return x.ptr_ == y.ptr_;
 }
 friend inline bool operator!=(const iterator_base& x,
 const iterator_base& y)
 {
 return ! (x == y);
 }
 friend inline ptrdiff_t operator-(const iterator_base& x,
 const iterator_base& y)
 {
 return x.ptr_ - y.ptr_;
 }

 protected:
 iterator_base(const iterator_base& that)
 : ptr_(that.ptr_) {}
 iterator_base(T* ptr) : ptr_(ptr) {}
 iterator_base(const array& a, std::size_t i)
 : ptr_(a.data_ + i) {}

 T* ptr_;
 };

 friend class iterator_base;

 class iterator : public iterator_base {
 public:
 iterator(const iterator& that) : iterator_base(that) {}
 T& operator*() const { return *this->ptr_; }
 iterator& operator++() { ++this->ptr_; return *this; }
 T* operator->() const { return this->ptr_; }

 private:
 friend class array;
 iterator(const array& a, std::size_t i = 0)
 : iterator_base(a, i) {}
 iterator(T* ptr) : iterator_base(ptr) {}

 friend inline iterator operator+(iterator iter, int off)
 {
 return iterator(iter.ptr_ + off);
 }
 };

 array() : data_(new T[Size]) {}
 array(const array& that);
 ~array() { delete[] data_; }
 iterator begin() { return iterator(*this); }
 const_iterator begin() const { return iterator(*this); }
 iterator end();
 const_iterator end() const;
 T& operator[](std::size_t i);
 T operator[](std::size_t i);

 template<typename U, std::size_t USize>
 friend void swap(array<U,USize>& a, array<U,USize>& b);

private:
 T* data_;
};

template<typename T, std::size_t Size>
void swap(array<T,Size>& a, array<T,Size>& b)
{
 T* tmp = a.data_;
 a.data_ = b.data_;
 b.data_ = tmp;
}

Specialization

A template declares a set of functions or classes from a
 single declaration, which is a powerful tool for writing code once and
 having it work in a multitude of situations. A single, one-size-fits-all
 approach is not always appropriate, however. You can therefore
 specialize a template for specific values of one or more template
 arguments and provide a completely different definition for that special
 case.
You can specialize a class template, a function template, or a
 member of a class template. Declare a specialization with an empty set
 of template parameters in the template header followed by a declaration
 that provides arguments for all the template parameters:
template<>declaration
Specializations must appear after the declaration of the primary
 template, and they must be declared in the same namespace as the primary
 template. You can also have a partial
 specialization, which provides some of the template
 arguments. (See the next section, Section 7.6.)
When a template is instantiated, if the template arguments of the
 instantiation match the arguments used in a specialization, the compiler
 instantiates the matching specialization. Otherwise, it instantiates the
 primary template. See Section
 7.7 later in this chapter for details.
To specialize a function template, the function return type and parameter
 types must match the primary template declaration. The function name can
 be followed by the specialized template arguments (enclosed in angle
 brackets and separated by commas), or you can omit them and let the
 compiler deduce the specialized arguments. See Section 7.3.2 earlier in this
 chapter for details.
If you need to change the function parameters, you can overload
 the function, but that requires an entirely new function or function
 template declaration, not a specialization. Example 7-7 shows two
 specializations of a function template.
Example 7-7. Specializing a function template
// Primary template declaration
template<typename T> T root(T x, T y)
{
 return pow(x, 1.0/y);
}

// Specialization in which T is deduced to be longtemplate<> long root(long x, long y)
{
 if (y == 2)
 return sqrt((long double)x);
 else
 return pow((long double)x, 1.0l/y);
}

// Specialization for explicit T=int
template<> int root<int>(int x, int y)
{
 if (y == 2)
 return sqrt(double(x));
 else
 return pow(double(x), 1.0/y);
}

// Overload with a different function template, such as valarray<T>.
template<template<typename T> class C, typename T>
C<T> root(const C<T>& x, const C<T>& y)
{
 return pow(x, C<T>(1.0)/y);
}

A specialization of a class template requires an entirely new class declaration
 or definition. The members of the specialized class template can be
 entirely different from the members of the primary class template. If
 you want to specialize only some members, you can specialize just those
 members instead of specializing the entire class.
In a specialization of a static data member, you must supply an explicit
 initializer to define the data member. Without an initializer, the
 member template declaration is just a declaration of the data member,
 not a definition. If you want to use the static data member, you must
 make sure it is defined:
template<typename T>
struct demo {
 static T data;
};
template<> int demo<int>::data; // Declaration
template<> int demo<int>::data = 42; // Definition
Declare specializations before the template is used. (See Section 7.7 later in this chapter
 for information on how templates are "used.") A program must have a
 single specialization for a given set of template arguments.
Example 7-8 shows some
 specializations of a class template, type_traits, which exposes a few attributes,
 or traits, of a type. The primary template describes the default traits,
 and the template is specialized for specific types, such as int. See Chapter
 8 for more information about traits.
Example 7-8. Specializing a class template
#include <iostream>
#include <ostream>
#include <sstream>
#include <string>
#include <typeinfo>

template<typename T>
struct type_traits
{
 typedef T base_type;
 enum { is_fundamental = 0 };
 enum { is_integer = 0 };
 enum { is_float = 0 };
 enum { is_pointer = 0 };
 enum { is_reference = 0 };
 static std::string to_string(const T&);
};

template<typename T>
std::string type_traits<T>::to_string(const T& x)
{
 return typeid(x).name();
}

// Specialize entire class for each fundamental type.template<>
struct type_traits<int>
{
 typedef int base_type;
 enum { is_fundamental = 1 };
 enum { is_integer = 1 };
 enum { is_float = 0 };
 enum { is_pointer = 0 };
 enum { is_reference = 0 };
 static std::string to_string(const int& x) {
 std::ostringstream out;
 out << x;
 return out.str();
 }
};

struct point
{
 int x, y;
};

// Specialize only the to_string() member function for type point.
template<>
std::string type_traits<point>::to_string(const point& p)
{
 std::ostringstream out;
 out << '(' << p.x << ',' << p.y << ')';
 return out.str();
}

int main()
{
 using std::cout;
 cout << type_traits<point>::is_fundamental << '\n';
 cout << type_traits<point>::is_pointer << '\n';
 cout << type_traits<point>::to_string(point()) << '\n';
 cout << type_traits<int>::is_fundamental << '\n';
 cout << type_traits<int>::is_pointer << '\n';
 cout << type_traits<int>::is_integer << '\n';
 cout << type_traits<int>::to_string(42) << '\n';
}

Partial Specialization

You can choose to specialize only some of the parameters
 of a class template. This is known as partial specialization. Note that
 function templates cannot be partially specialized; use overloading to
 achieve the same effect.
A partial specialization is declared with a template header that
 contains one or more template parameters. (With no template parameters,
 it is a total specialization, not a partial specialization; see the
 previous section for details.) The class declaration that follows the
 template header must supply an argument for each parameter of the
 primary template (or rely on default arguments), and the arguments can
 depend on the template parameters of the partial specialization. For
 example, suppose you have a simple pair class, similar to the one in the standard
 library, but you want to allow one member of the pair to be void. In this case, an object can be made
 smaller and store only one item:
template<typename T, typename U>
struct pair {
 T first;
 U second;
};
template<typename X> struct pair<X, void> {
 X first;
};
The partial specialization of a class is a distinct template and
 must provide a complete class definition. You cannot partially
 specialize a member of a class template, only the entire class
 template.
Example 7-9 shows
 partial specializations of the type_traits template from Example 7-8. The first partial
 specialization applies to all pointer types. It sets the is_pointer member to 1, for example. The second partial
 specialization applies to all const
 types. It sets most members to their values obtained from the
 non-const template instance. Thus,
 type_traits<const int*>::base_type is plain int.
Example 7-9. Partially specializing a class template
// Specialize for all pointer types.template<typename T>
struct type_traits<T*>
{
 typedef T base_type;
 enum { is_fundamental = type_traits<T>::is_fundamental };
 enum { is_integer = 0 };
 enum { is_float = 0 };
 enum { is_pointer = 1 };
 enum { is_reference = 0 };
 static std::string to_string(const T& x) {
 std::ostringstream out;
 out << x;
 return out.str();
 }
};

// Specialize for const types, so base_type refers to the non-const type.
template<typename T>
struct type_traits<const T>
{
 typedef T base_type;
 typedef type_traits<base_type> base_type_traits;
 enum { is_fundamental = base_type_traits::is_fundamental };
 enum { is_integer = base_type_traits::is_integer };
 enum { is_float = base_type_traits::is_float };
 enum { is_pointer = base_type_traits::is_pointer };
 enum { is_reference = base_type_traits::is_reference };
 static std::string to_string(const base_type& x) {
 return type_traits<base_type>::to_string(x);
 }
};

Instantiation

Template declarations and specializations describe the
 form that a class or function can take but do not create any actual
 classes or functions. To do these things, you must instantiate a
 template.
Most often, you implicitly instantiate a template by using it in a
 function call, object declaration, or similar context. The template
 instance requires a template argument for each template parameter. The
 arguments can be explicit (enclosed in angle brackets and separated by
 commas) or implicit (default arguments for class templates or deduced
 arguments for function templates):
template<typename T> T plus(T a, T b) { return a + b; }
template<typename T = int> struct wrapper {
 T value;
};
int x = plus(10, 20); // Instantiate plus<int>.
wrapper<double> x; // Instantiate wrapper<double>.
wrapper<> w; // Instantiate wrapper<int>.
A class member expression (. or -> operator) that names an instance of a
 member function template with template arguments must use the template keyword before the member name.
 Similarly, a qualified name of a member template must use template before the member name. Otherwise,
 the < symbol that introduces the
 template argument list is interpreted as the less-than operator:
class bigfloat {
 template<unsigned N> double round();
 template<unsigned N> static double round(double);
};

bigfloat f;
std::cout << f.template round<2>() << '\n';
std::cout << bigfloat::template round<8>(PI) << '\n';
[image: image with no caption]

Instantiating a class template does not necessarily instantiate
 all the members. Members of a class template are instantiated only when
 they are needed. A static data member is "needed" if the program refers
 to the member. A member function is "needed" if the function is called,
 has its address taken, or participates in overload resolution. An
 implementation is permitted to define every virtual function in a class
 template, and most implementations do. Each instance of a class template
 has its own, separate copy of the class's static data members.
If a class template has any specializations, the compiler must
 choose which specialization to instantiate. It starts by choosing which
 partial specializations match the template arguments. A partial
 specialization matches if the specialized template arguments can be
 deduced from the actual template arguments. See Section 7.3.2 earlier in this
 chapter.
If no specializations match, the compiler instantiates the primary
 template. If one specialization matches, that one is instantiated.
 Otherwise, the best match is chosen, in which "best" means most
 specific. An error results if two or more specializations are tied for
 best. Template specialization A is at least as specific as template
 specialization B if the parameters of A can be deduced from B's template
 parameter list. No implicit conversion takes place when comparing
 specializations. The following example shows several instances of the
 demo class template. The template
 instantiations are instances of the primary template or one of the three
 partial specializations:
template<typename T, typename U, int N> class demo {};
template<typename T, int N> class demo<T, int, N> {};
template<typename T> class demo<T, T, 0> {};
template<typename T> class demo<T*, T, 1> {};
demo<int, char, 1> w; // Primary template
demo<char, int, 10> x; // First specialization
demo<char, char, 0> y; // Second specialization
demo<char, char, 1> z; // Primary template
demo<char*,char, 1> p; // Third template
demo<char*,char, 0> q; // Primary template
demo<char*,char*, 0> r; // Second template
demo<int*, int, 1> s; // Error: ambiguous
In addition to the obvious points at which a function or class is
 needed (e.g., calling the function, taking the address of the function,
 declaring an object whose type is the class, or casting an object to the
 class), there are more subtle points of instantiation. For example, a
 template can be instantiated if it is used in the value of a default
 function argument, and the default argument is needed in a function
 call.
[image: image with no caption]

A function template is needed if an instance of the template
 is needed for overload resolution. If a class template participates in
 function overloading (that is, as part of a function parameter type),
 but the template does not need to be instantiated to resolve the
 overload (e.g., because the function parameter is a pointer or reference
 to the class template), the class template may or may not be
 instantiated. The standard leaves this up to the implementation.
If a template declaration contains an error, the compiler might
 diagnose the error when it compiles the template or when it instantiates
 the template. If a program does not instantiate the template, you might
 find that you can compile a program successfully using one compiler
 (which reports errors only when a template is instantiated), but not a
 different compiler (which reports errors when a template is
 declared).
You can explicitly instantiate a template. Use a bare
 template keyword followed by a declaration that supplies the
 template arguments for the template:
template long int plus<long int>(long int a, long int b);
template short plus(short a, short b); // Deduce plus<short>.
template struct wrapper<unsigned const char*>;
The class, function, or member template must be defined before it
 can be instantiated. If you are instantiating a specialization, the
 template specialization must appear before the instantiation in the
 source. The behavior is undefined if a template is specialized after it
 has been instantiated for the same template arguments. Example 7-10 illustrates template
 instantiation.
Example 7-10. Instantiating templates
#include <iomanip>
#include <iostream>
#include <ostream>
const double pi = 3.1415926535897932;
// Function template
template<typename T> T sqr(T x)
{
 return x * x;
}

// Class template
template<typename T>
class circle
{
public:
 circle(T r) : radius_(r) {}
 // sqr<> is instantiated when circle<> is instantiated.
 T area() const { return pi * sqr(radius_); }
 T radius() const { return radius_; }
private:
 T radius_;
};

// Function template
template<typename T>
void print(T obj)
{
 std::cout << obj << '\n';
}

// Overload the function template with another template.
template<typename T>
void print(const circle<T>& c)
{
 std::cout << "circle(" << c.radius() << ")\n";
}template int sqr<int>(int); // Explicit instantiation

// Explicit instantiation of circle<double> and implicit instantiation of
// sqr<double>
template class circle<double>;

// Error: after instantiation of sqr<double>, illegal to specialize it
template<> double sqr(double x)
{
 return x * x;
}

int main()
{
 using namespace std;
 // No circle<> instance is needed yet, even to resolve overloaded print
 // function.
 print(42);
 for (int i = 0; i < 10; ++i)
 // Implicit instantiation of sqr<int>
 cout << setw(2) << i << setw(4) << sqr(i) << '\n';
 // Instantiation of circle<float> and therefore sqr<float>
 circle<float> unit(1.0f);
 // Implicit instantiation of print<circle<float> >
 print(unit);
}

Name Lookup

 Templates introduce a new wrinkle to name lookup. (See
 Chapter 2 for the non-template
 rules of name lookup.) When compiling a template, the compiler
 distinguishes between names that depend on the template parameters
 (called dependent names) and
 those that do not (nondependent
 names). Nondependent names are looked up normally
 when the template is declared. Dependent names, on the other hand, must
 wait until the template is instantiated, when the template arguments are
 bound to the parameters. Only then can the compiler know what those
 names truly mean. This is sometimes known as two-phase
 lookup .
Dependent Names

 This section describes dependent names, and the
 following section describes what the compiler does with them.
A dependent name can have different meanings in
 different template instantiations. In particular, a function is
 dependent if any of its arguments are type-dependent. An operator has
 a dependent name if any of its operands are type-dependent.
A dependent type is a
 type that that can change meaning if a template parameter changes. The
 following are dependent types:
	The name of a type template parameter or template template
 parameter:
template<typename T> struct demo {T dependent; }

	A template instance with template arguments that are
 dependent:
template<typename T> class templ {};
template<typename U> class demo {templ<U> dependent; }

	A nested class in a dependent class template (such as the
 class template that contains the nested class):
template<typename T> class demo {class
 dependent {}; }

	An array that has a base type that is a dependent
 type:
template<typename T> class demo {T dep[1]; }

	An array with a size that is value-dependent (defined later
 in this section):
template<typename T> class demo {int dep[sizeof(T)]; }

	Pointers and references to dependent types or functions
 (that is, functions whose return types or parameter types are
 dependent or whose default arguments are dependent):
template<typename T> class demo {T& x; T (*func)(); }

	A class, struct, or union that depends on a template
 parameter for a base class or member (note that a non-template
 class nested in a class template is always dependent):
template<typename T> class demo {class
 nested { T x; }; };

	A const- or volatile-qualified version of a
 dependent type:
template<typename T> class demo {const
 T x; };

	A qualified name, in which any qualifier is the name of a
 dependent type:
template<typename T> struct outer { struct inner {}; };
template<typename T> class demo {outer<T>::inner dep; };

A type-dependent
 expression has a dependent type. It can be any of
 the following:
	this, if the class type
 is dependent

	A qualified or unqualified name if its type is
 dependent

	A cast to a dependent type

	A new expression,
 creating an object of dependent type

	Any expression that is built from at least one dependent
 subexpression, except when the result type is not dependent, as in
 the following:
	A sizeof or typeid expression

	A member reference (with the . or -> operators)

	A throw
 expression

	A delete
 expression

A constant expression can also be
 value-dependent if its type is dependent or if
 any subexpression is value-dependent. An identifier is value-dependent
 in the following cases:
	When it is the name of an object with a dependent
 type

	When it is the name of a value template parameter

	When it is a constant of integral or enumerated type, and
 its initial value is a value-dependent expression

A sizeof expression is
 value-dependent only if its operand is type-dependent. A cast
 expression is dependent if its operand is a dependent expression.
 Example 7-11 shows a
 variety of dependent types and expressions.
Example 7-11. Dependent names
template<typename T> struct base {
 typedef T value_type; // value_type is dependent.
 void func(T*); // func is dependent.
 void proc(int); // proc is nondependent.

 class inner { // inner is dependent.
 int x; // x is nondependent.
 };
 template<unsigned N>
 class data { // data is dependent.
 int array[N]; // array is dependent.
 };

 class demo : inner { // demo is dependent.
 char y[sizeof(T)]; // y is dependent.
 };
};

int main()
{
 base<int> b;
}

Resolving Names

 When writing a template declaration or definition, you
 should use qualified names as much as possible. Use member expressions
 to refer to data members and member functions (e.g., this->data). If a name is a bare
 identifier, the name lookup rules are different from the rules for
 non-templates.
The compiler looks up unqualified, nondependent names at the
 point where the template is declared or defined. Dependent base
 classes are not searched (because, at the point of declaration, the
 compiler does not know anything about the instantiation base class).
 This can give rise to surprising results. In the following example,
 the get_x member function does not
 see base<T>::x, so it returns
 the global x instead:
template<typename T> struct base {
 double x;
};
int x;
template<typename T>
struct derived : base<T> {
 int get_x() const { return x; } // Returns ::x
};
Dependent names are looked up twice: first in the context of the
 declaration and later in the context of the instantiation. In
 particular, when performing argument-dependent name lookup (Chapter 2), the compiler searches the
 declaration and instantiation namespaces for the function argument
 types.
Essentially, the instantiation context is the innermost
 namespace scope that encloses the template instantiation. For example,
 a template instance at global scope has the global scope as its
 instantiation context. The context for an instance that is local to a
 function is the namespace where the function is defined. Thus, the
 instantiation context never includes local declarations, so dependent
 names are never looked up in the local scope.
A function template can have multiple instantiation points for
 the same template arguments in a single source file. A class template can have multiple instantiations for the
 same template arguments in multiple source files. If the different
 contexts for the different instantiations result in different
 definitions of the templates for the same template arguments, the
 behavior is undefined. The best way to avoid this undefined behavior
 is to avoid using unqualified dependent names.
Example 7-12 shows
 several ways dependent name lookup affects a template. In particular,
 note that iterator_base can refer
 to its members without qualification or member expressions. However,
 the derived classes, such as iterator, must use this-> or qualify the member name with
 the base class because the base class is not searched for unqualified
 names. The print member function is
 also interesting. It prints the array by using an ostream_iterator, which calls operator<< to print each element. The
 name operator<< is dependent,
 so it is not looked up when the template is declared, but when the
 template is instantiated. At that time, the compiler knows the
 template argument, big::integer, so
 it also knows to search the big
 namespace for the right overloaded operator<<.
Example 7-12. Resolving dependent names
#include <algorithm>
#include <iostream>
#include <iterator>
#include <ostream>
#include <stdexcept>

template<unsigned Size, typename T>
class array {
 template<unsigned Sz, typename U>
 friend class array<Sz,U>::iterator;
 template<unsigned Sz, typename U>
 friend class array<Sz,U>::const_iterator;
 class iterator_base {
 public:
 iterator_base& operator++() {
 ++ptr;
 return *this;
 }
 T operator*() const { check(); return *ptr; }
 protected:
 iterator_base(T* s, T* p) : start(s), ptr(p) {}
 void check() const {
 if (ptr >= start + Size)
 throw std::out_of_range("iterator out of range");
 }
 T* ptr;
 T* start;
 };
public:
 array(): data(new T[Size]) {}
 class iterator : public iterator_base,
 public std::iterator<std::random_access_iterator_tag,T>
 {
 public:
 iterator(T* s, T* p) : iterator_base(s, p) {}
 operator const_iterator() const { return const_iterator(this->start, this->ptr);
 }
 T& operator*() {
 iterator_base::check();
 return *this->ptr;
 }
 };
 iterator begin() { return iterator(data, data); }
 iterator end() { return iterator(data, data + Size); }
 template<typename charT, typename traits>
 void print(std::basic_ostream<charT,traits>& out)
 const
 {
 std::copy(begin(), end(), std::ostream_iterator<T>(out));
 }
private:
 T* data;
};

namespace big {
 class integer {
 public:
 integer(int x = 0) : x_(x) {}
 operator int() const { return x_; }
 private:
 int x_; // Actual big integer implementation is left as an exercise.
 };

 template<typename charT, typename traits>
 std::basic_ostream<charT,traits>&
 operator<<(std::basic_ostream<charT,traits>& out,
 const integer& i)
 {
 out << int(i);
 return out;
 }
}

int main()
{
 const array<10, big::integer> a;
 a.print(std::cout);
}

Hiding Names

 When using templates, several situations can arise in
 which template parameters hide names that would be visible in a
 non-template class or function. Other situations arise in which
 template parameter names are hidden by other names.
If a member of a class template is defined outside of the
 namespace declaration that contains the class template, a template
 parameter name hides members of the namespace:
namespace ns {
 template<typename T>
 struct demo {
 demo();
 T x;
 };
 int z;
}
template<typename z>
ns::demo::demo()
{
 x = z(); // Template parameter z, not ns::z
}
Template parameter names are hidden in the following
 cases:
	If a member is defined outside of its class template,
 members of the class or class template hide template parameter
 names:
template<typename T>
struct demo {
 T x;
 demo();
};
template<typename x>
demo::demo() { x = 10; } // Member x, not parameter x

	In the definition of a member of a class template that lies
 outside the class definition, or in the definition of a class
 template, a base class name or the name of a member of a base
 class hides a template parameter if the base class is
 nondependent:
struct base {
 typedef std::size_t SZ;
};
template<int SZ>
struct derived : base {
 SZ size; // base::SZ hides template parameter.
};

If a base class of a class template is a dependent type, it and
 its members do not hide template parameters, and the base class is not
 searched when unqualified names are looked up in the derived-class
 template.

Using Type Names

 When parsing a template definition, the compiler must
 know which names are types and which are objects or functions.
 Unqualified names are resolved using the normal name lookup rules
 (described earlier in this section). Qualified dependent names are
 resolved according to a simple rule: if the name is prefaced with
 typename , it is a type; otherwise, it is not a type.
Use typename only in template
 declarations and definitions, and only with qualified names. Although
 typename is meant to be used with
 dependent names, you can use it with nondependent names. Example 7-13 shows a typical use
 of typename.
Example 7-13. Using typename in a template definition
// Erase all items from an associative container for which a predicate returns
// true.
template<typename C, typename Pred>
void erase_if(C& c, Pred pred)
{
 // Need typename because iterator is qualified
 for (typename C::iterator it = c.begin(); it != c.end();)
 if (pred(*it))
 c.erase(*it++);
 else
 ++it;
}

Tricks with Templates

Template syntax permits recursion, selection, and
 computation. In other words, it is a full-fledged programming language,
 albeit a language that is hard to write and even harder to read. The
 full scope and power of programming with templates is beyond the scope
 of this book. This section presents some tips for starting your own
 exploration of this exciting field. Appendix B tells you about some
 interesting projects in this area.
Suppose you want to write a function to round off floating-point
 values to a fixed number of decimal places. You decide to write the
 function by multiplying by a power of 10, rounding off to an integer,
 and dividing by the same power of 10. You can hardcode the amount,
 (e.g., 100) in the routine, but you prefer to use a template, in which a
 template parameter specifies the number of decimal digits to retain. To
 avoid computing the same power of 10 every time the function is called,
 you decide to use template programming to compute the constant at
 compile time.
The ipower<> template in
 Example 7-14 uses recursion to compute the power of any integer raised to
 any nonnegative integer value. Three base cases for the recursion are
 defined as specializations: raising any value to the 0th power is always
 1, raising 0 to any power is always 0, and raising 0 to the 0th power is
 undefined. (As an exercise, try to define ipower more efficiently.) Finally, the
 ipower<> class template is used
 to define the round<> function
 template.
Example 7-14. Computing at compile time
template<int x, unsigned y>
struct ipower {
 enum { value = x * ipower<x, y-1>::value };
};
template<int x>
struct ipower<x, 0> {
 enum { value = 1 };
};
template<unsigned y>
struct ipower<0, y> {
 enum { value = 0 };
};
template<> struct ipower<0, 0> {};

// Round off a floating-point value to a fixed number of digits.
template<unsigned N, typename T>
T round(T x)
{
 if (x < 0.0)
 return std::floor(x * ipower<10,N>::value - 0.5) /
 ipower<10,N>::value;
 else
 return std::floor(x * ipower<10,N>::value + 0.5) /
 ipower<10,N>::value;
}

In addition to compile-time computation, you can write more
 complicated programs that are evaluated at compile time. For example,
 the Boost project (described in Appendix B) uses templates to create
 type lists, that is, lists of types that are manipulated
 at compile time. Such lists can greatly simplify certain programming
 tasks, such as implementing type traits. Example 7-15 shows a simplified
 version of type lists. A list is defined recursively as an empty list or a node that contains a type (head) and a list (tail). (This definition should be familiar to
 anyone with experience using functional programming languages.)
Example 7-15. Defining type lists
struct empty {};
template<typename H, typename T>
struct node {
 typedef H head;
 typedef T tail;
};

template<typename T1 = empty, typename T2 = empty,
 typename T3 = empty, typename T4 = empty,
 typename T5 = empty, typename T6 = empty,
 typename T7 = empty, typename T8 = empty,
 typename T9 = empty, typename T10 = empty,
 typename T11 = empty, typename T12 = empty
>
struct list {
 typedef node<T1, node<T2, node<T3, node<T4,
 node<T5, node<T6, node<T7, node<T8,
 node<T9, node<T10, node<T11, node<T12,
 empty
 > > > > > > > > > > > > type;
};

template<typename L>
struct length {
 enum { value = 1 + length<typename L::tail>::value };
};
template<>
struct length<empty> {
 enum { value = 0 };
};

template<typename L>
struct is_empty {
 enum { value = false };
};
template<>
struct is_empty<empty> {
 enum { value = true };
};

Actions on type lists are inherently recursive. Thus, to count the
 number of items in a type list, count the head as one, and add the length of the
 tail. The recursion stops at the end
 of the list, which is implemented as a specialization of the length<> template for the empty type.
An important action when using type lists is to test membership.
 To do this, you must be able to compare two types to see if they are the
 same. The is_same_type class template
 uses partial specialization to determine when two types are the same. If
 the two types specified as template arguments are the same, the
 specialization sets value to true. If the arguments are different, the primary template is
 instantiated, and value is false. Example 7-16 shows is_same_type and how it is used in the
 is_member template.
Example 7-16. Testing membership in a type list
template<typename T, typename U>
struct is_same_type {
 enum { value = false };
};
template<typename T>
struct is_same_type<T, T> {
 enum { value = true };
};

template<typename T, typename L>
struct is_member {
 enum { value = is_same_type<T, typename L::head>::value
 || is_member<T, typename L::tail>::value };
};

template<typename T>
struct is_member<T, empty> {
 enum { value = false };
};

Once you can define type lists and test whether a type is in a
 type list, you can use these templates to implement simple type traits.
 For example, you can create a list of the integral types and test
 whether a type is one of the fundamental integral types. (Testing for
 integral types is important when implementing standard containers, as
 discussed in Chapter 10.) Example 7-17 shows some simple uses of type lists.
Example 7-17. Using type lists
#include <iostream>
#include <ostream>

typedef list<bool, char, unsigned char, signed char,
 int, short, long, unsigned,
 unsigned long, unsigned short>::type int_types;
typedef list<float, double, long double>::type real_types;

int main()
{
 using namespace std;
 cout << is_same_type<int,int>::value << '\n';
 cout << is_same_type<int, signed int>::value << '\n';
 cout << is_same_type<int, unsigned int>::value << '\n';
 cout << is_member<int, int_types>::value << '\n';
 cout << is_member<float, int_types>::value << '\n';
 cout << is_member<ostream, int_types>::value << '\n';
}

Compiling Templates

 Like an ordinary function, a function template requires a
 definition before the function can be called. Like an ordinary class, a
 class template requires a definition for each member function and static
 data member before they can be used. Unlike ordinary functions or
 members, however, templates are typically defined in every source
 file.
Templates are often used by placing a template declaration and all
 supporting definitions in a header file, (e.g., template.h). Then #include that file anywhere the template is
 needed. For every implicit or explicit instantiation, the compiler
 generates the necessary code for the template's instantiation. If
 multiple source files instantiate the same template with the same
 arguments, the compiler and linker ensure that the program contains a
 single copy of the instantiated functions and members.
Different compilers use different techniques to ensure that the
 program contains a single copy of each template instance. The following
 are four different approaches:
	The most common approach is to have the compiler keep track of
 which source files require which instantiations. When the program is
 linked, the compiler combines all the lists of required
 instantiations and compiles the template instantiations at that
 time. As an optimization, the compiler saves the compiled
 instantiations, so an instantiation that does not change does not
 need to be recompiled.

	Another approach is to have the compiler generate the code for
 all needed instantiations when it compiles each source file. The
 linker identifies duplicate instantiations and ensures that the
 linked program gets a single copy of each instantiation.

	A third approach is to separate the template declaration from
 its associated definitions. If the declaration is in template.h, the definitions are in
 template.cc. The compiler
 automatically locates the definition file from the name of the
 declaration file. In this scenario, the compiler keeps track of
 which instantiations it needs and compiles each of them only
 once.

	Another approach uses the export keyword to declare and define
 templates. An exported template lets you define a function template
 or all the members of a class template in a separate source file.
 The template's header contains only the declarations.
[image: image with no caption]

As I write this, exactly one compiler supports export. (See the book's web site for
 current details.) Major compiler vendors are finally moving toward
 full conformance with the standard, including export. Nonetheless, I doubt export will see widespread support, at
 least for the next few years.
If portability is important to you, do not use export.

Consult your compiler's documentation to learn how it handles
 templates. When writing a template that can be used by multiple
 compilers, a common technique is to put the declaration in a header file
 (e.g., template.h), and the
 definitions in another file (e.g., template.cc), and at the end of template.h, use conditional directives to
 #include "template.cc" for those compilers where it is
 needed. Use conditional compilation to define a macro only for compilers
 that support export. Example 7-18 shows this common
 pattern.
Example 7-18. Declaring and defining a template
// point.h
#ifndef POINT_H
#define POINT_H

#ifdef HAS_EXPORT
 #define EXPORT export
#else
 #define EXPORT
#endif

EXPORT template<typename T>
class point {
public:
 point(T a, T b);
 point();
 T x() const { return x_; }
 T y() const { return y_; }
private:
 T x_, y_;
};

 #ifdef NEED_TEMPLATE_DEFINITIONS
 #include "point.cc"
 #endif
#endif // POINT_H

// point.cc
#include "point.h"
EXPORT template<typename T>
point<T>::point(T a, T b)
: x_(a), y_(b)
{}

EXPORT template<typename T>
point<T>::point()
: x_(T()), y_(T())
{}

// program.cc
#include "point.h"
int main()
{
 point<float> ptf;
 point<int> pti;
 ...
}

If your compiler supports export, define HAS_EXPORT. If the compiler requires template
 definitions in every source file, define NEED_TEMPLATE_DEFINITIONS. Most compilers
 offer a way to define macros globally (e.g., in a project definition
 file, in a makefile, etc.). Another alternative is to use conditional
 compilation to test the predefined macros that most compilers define,
 and use those to set the template macros accordingly. Put these
 definitions in a configuration file that is included first by every
 other file, as shown in Example
 7-19.
Example 7-19. Configuring template compilation macros
// config.h
#ifndef CONFIG_H
#define CONFIG_H

#ifdef _ _COMO_ _
 #define HAS_EXPORT
 #undef NEED_TEMPLATE_DEFINITIONS
#endif
#if defined(__BORLANDC__) || defined(_ _GNUC_ _)
 #undef HAS_EXPORT
 #define NEED_TEMPLATE_DEFINITIONS
#endif
...

#endif // CONFIG_H

Chapter 8. Standard Library

The previous seven chapters describe the C++ language. This and
 the next two chapters describe the library. The library consists of a
 number of headers, in which each header declares types, macros, and
 functions for use in C++ programs. Much of the standard library is
 implemented using templates, so the implementation is typically embodied
 entirely in header files. Nonetheless, parts of the library are separately
 compiled and must be linked into a C++ program, the details of which are
 dictated by the implementation.
This chapter presents an overview of the standard library and some
 of its more important components: wide and multibyte characters, traits,
 policies, allocators, and numerics. Other important parts of the library
 get their own chapters: Chapter 9
 introduces the input and output classes, and Chapter 10 describes the containers,
 iterators, and algorithms that make up what is most often known as the
 "standard template library," or STL.

Overview of the Standard Library

The standard library has 51 headers, each containing a set of
 macro, function, type, and object declarations. A header is sometimes
 called a header file, but that phrase is misleading. An implementation
 does not need to implement headers as external files, although it is
 often simplest to think of a header as a file that contains macro, type,
 and function declarations.
Almost all the names declared in the standard library are in the
 std namespace. Macros, of course, are not in any namespace,
 so it is important that you know which names are macros and which are
 not. The detailed descriptions in Chapter
 13 tell you this information. The only other names that are
 outside the std namespace are the
 global operator new and operator delete functions, declared in the <new> header.
[image: image with no caption]

To use the standard library, you must #include the desired header or headers. Some implementations
 #include headers within other headers
 (e.g., <set> might #include <iterator>). The headers that a
 vendor includes within a header vary from one implementation to another,
 so code that compiles successfully with one vendor's environment might
 not compile in a different environment. The solution is to get in the
 habit of including all the headers you need.
Warning
If you see headers of the form <iostream.h>, the program was probably
 written in the days before the C++ standard. It might also mean that
 your compiler and library were written before C++ was standardized.
 Although some popular, old compilers are still in wide use, they have
 newer versions that provide much better support for the C++ standard.
 Following the C++ standard is the best way to achieve portability
 across recent compilers and libraries.

You must not add any declarations to the std namespace, although you can specialize
 templates that are declared in std.
 When you add your own specialization, you must obey all the constraints
 specified for the template, and the specialization must depend on at
 least one user-defined name that has external linkage. Otherwise, the
 behavior is undefined.
The following are brief descriptions of the contents of
 each header. The headers inherited from the C standard are marked as "C
 header." Some of these headers have improved C++ equivalents, which are
 also shown. For complete descriptions of these headers, see Chapter 13.
	<algorithm>

	Standard algorithms for copying, searching, sorting, and
 otherwise operating on iterators and containers. See Chapter 10 for more information
 about the standard algorithms.

	<bitset>
	Class template to hold a fixed-sized sequence of
 bits.

	<cassert>
	Runtime assertion-checking; C header.

	<cctype>
	Character classification and case conversion; C header (see
 also <locale>).

	<cerrno>
	Error codes; C header.

	<cfloat>
	Limits of floating-point types; C header (see also <limits>).

	<ciso646>
	Empty header because C declarations are incorporated in the
 C++ language; C header.

	<climits>
	Limits of integer types; C header (see also <limits>).

	<clocale>
	Locale-specific information; C header (see also <locale>).

	<cmath>
	Mathematical functions; C header.

	<complex>
	Complex numbers.

	<csetjmp>
	Nonlocal goto; C header.

	<csignal>
	Asynchronous signals; C header.

	<cstdarg>
	Macros to help implement functions that take a variable
 number of arguments; C header.

	<cstddef>
	Miscellaneous standard definitions; C header.

	<cstdio>
	Standard input and output; C header (see also <iostream> and related
 headers).

	<cstdlib>
	Miscellaneous functions and related declarations; C
 header.

	<cstring>
	String-handling functions; C header (see also <string>).

	<ctime>
	Date and time functions and types; C header.

	<cwchar>
	Wide character functions, including I/O; C header (see also
 <locale>, <iostream>, <string>, and other I/O-related
 headers).

	<cwctype>
	Wide character classification and case conversion; C header
 (see also <locale>).

	<deque>
	Deque (double-ended queue) standard container.

	<exception>

	Base exception class and functions related to
 exception-handling.

	<fstream>
	File-based stream I/O.

	<functional>

	Function objects; typically used with standard
 algorithms.

	<iomanip>
	I/O manipulators; used with standard I/O streams.

	<ios>
	Base class declarations for all I/O streams.

	<iosfwd>
	Forward declarations for I/O objects.

	<iostream>
	Declarations of standard I/O objects.

	<istream>
	Input streams and input/output streams.

	<iterator>
	Additional iterators for working with standard containers
 and algorithms. See Chapter
 10 for more information.

	<limits>
	Limits of numerical types.

	<list>
	Standard linked list container.

	<locale>
	Locale-specific information for formatting and parsing
 numbers, dates, times, and currency values, plus character-related
 functions for classifying, converting, and comparing characters
 and strings.

	<map>
	Associative map (sometimes called a dictionary) standard
 container.

	<memory>
	Allocators, algorithms for uninitialized memory, and smart
 pointers (auto_ptr).

	<new>
	Global operator new and operator delete and other functions related to
 managing dynamic memory.

	<numeric>
	Numerical algorithms.

	<ostream>
	Output streams.

	<queue>
	Queue and priority queue container adapters.

	<set>
	Associative set container.

	<sstream>
	String-based I/O streams.

	<stack>
	Stack container adapter.

	<stdexcept>

	Standard exception classes.

	<streambuf>

	Low-level stream buffers; used by high-level I/O
 streams.

	<string>
	Strings and wide-character strings.

	<strstream>

	String streams that work with character arrays (see also
 <sstream>).

	<typeinfo>
	Runtime type information.

	<utility>
	Miscellaneous templates, such as pair, most often used with standard
 containers and algorithms.

	<valarray>
	Numerical arrays.

	<vector>
	Vector (array-like) standard container.

C Library Wrappers

 The C++ library includes the entire C standard library (from
 the 1990 C standard, plus Amendment 1), in which each C header, such as
 <stdio.h>, is wrapped as a C++
 header (e.g., <cstdio>). Being
 part of the C++ standard, all types, functions, and objects are declared
 in the std namespace.
The external names are also reserved in the global namespace.
 Thus, proper practice is to use the names in the std namespace (e.g., std::strlen), but realize that these names are
 also reserved in the global namespace, so you cannot write your own
 ::strlen function.
The C standard permits macros to be defined to mask function
 names. In the C++ wrappers for these headers, the names must be declared
 as functions, not macros. Thus, the C <stdio.h> header might contain the
 following:
extern int printf(const char* fmt, ...);
#define printf printf
In C++, the printf macro is not permitted, so the <cstdio> header must declare the
 printf function in the std namespace, so you can use it as std::printf.
A deprecated feature of C++ is that the C standard headers
 are also available as their original C names (e.g., <stdio.h>). When used in this fashion,
 their names are in the global namespace, as though a using declaration were applied to each name
 (e.g., using std::printf). Otherwise, the old style headers
 are equivalent to the new headers. The old C header names are
 deprecated; new code should use the <cstdio>, etc., style C headers.

Wide and Multibyte Characters

The familiar char type is
 sometimes called a narrow character , as opposed to wchar_t, which is a wide
 character . The key difference between a narrow and wide character
 is that a wide character can represent any single character in any
 character set that an implementation supports. A narrow character, on
 the other hand, might be too small to represent all characters, so
 multiple narrow char objects can make
 up a single, logical character called a multibyte
 character .
Beyond some minimal requirements for the character sets (see Chapter 1), the C++ standard is purposely
 open-ended and imposes few restrictions on an implementation. Some basic
 behavioral requirements are that conversion from a narrow character to a
 wide character must produce an equivalent character. Converting back to
 a narrow character must restore the original character. The open nature
 of the standard gives the compiler and library vendor wide latitude. For
 example, a compiler for Japanese customers might support a variety of
 Japanese Industrial Standard (JIS) character sets, but not any European
 character sets. Another vendor might support multiple ISO 8859 character
 sets for Western and Eastern Europe, but not any Asian multibyte
 character sets. Although the standard defines universal characters in
 terms of the Unicode (ISO/IEC 10646) standard, it does not require any
 support for Unicode character sets.
[image: image with no caption]

This section discusses some of the broad issues in dealing with
 wide and multibyte characters, but the details of specific characters
 and character sets are implementation-defined.
Wide Characters

A program that must deal with international character sets might
 work entirely with wide characters. Although wide characters usually
 require more memory than narrow characters, they are usually easier to
 use. Searching for substrings in a wide string is easy because you
 never have the problem of matching partial characters (which can
 happen with multibyte characters).
A common implementation of wchar_t is to use Unicode UTF-32 encoding, which means each
 wide character is 32 bits and represents a single Unicode character.
 Suppose you want to declare a wide string that contains the Greek
 letter pi (π). You can specify the string with a universal name (see
 Chapter 1):
wchar_t wpi[] = "\u03c0";
Using UTF-32, the string would contain L"\x03c0". With a different wchar_t implementation, the wpi string would contain different
 values.
The standard wstring class
 supports wide strings, and all the I/O streams support wide characters
 (e.g., wistream, wostream).

Multibyte Characters

A multibyte character represents a single character as a series
 of one or more bytes, or narrow characters. Because a single character
 might occupy multiple bytes, working with multibyte strings is more
 difficult than working with wide strings. For example, if you search a
 multibyte string for the character '\x20', when you find a match, you must test
 whether the matching character is actually part of a multibyte
 character and is therefore not actually a match for the single
 character you want to find.
Consider the problem of comparing multibyte strings. Suppose you need to sort the strings
 in ascending order. If one string starts with the character '\xA1' and other starts with '\xB2', it seems that the first is smaller
 than the second and therefore should come before the second. On the
 other hand, these characters might be the first of multibyte character
 sequences, so the strings cannot be compared until you have analyzed
 the strings for multibyte character sequences.
Multibyte character sets abound, and a particular C++ compiler
 and library might support only one or just a few. Some multibyte
 character sets specifically support a particular language, such as the
 Chinese Big5 character set. The UTF-8 character set supports all
 Unicode characters using one to six narrow characters.
For example, consider how an implementation might encode the
 Greek letter pi (π), which has a Unicode value of 0x03C0:
char pi[] = "\u03c0";
[image: image with no caption]

If the implementation's narrow character set is ISO 8859-7
 (8-bit Greek), the encoding is 0xF0, so pi[] contains "\xf0". If the narrow character set is UTF-8
 (8-bit Unicode), the representation is a multibyte character, and
 pi[] would contain "\xe0\x8f\x80". Many character sets do not
 have any encoding for π, in which case the contents of pi[] might be "?", or some other implementation-defined
 marker for unknown characters.

Shift State

You can convert a multibyte character sequence to a wide character and
 back using the functions in <cwchar>. When performing such
 conversions, the library might need to keep track of state information
 during the conversion. This is known as the shift
 state and is stored in an mbstate_t object (also defined in <cwchar>).
For example, the Japanese Industrial Standard (JIS) encodes
 single-byte characters and double-byte characters. A 3-byte character
 sequence shifts from single- to double-byte mode, and another sequence
 shifts back. The shift state keeps track of the current mode. The
 initial shift state is single-byte. Thus, the multibyte string
 "\x1B$B&P\x1B(B" represents one
 wide character, namely, the Greek letter pi (π). The first three
 characters switch to double-byte mode. The next two characters encode
 the character, and the final three characters restore single-byte
 mode.
Shift states are especially important when performing I/O. By
 definition, file I/O uses multibyte characters. That is, a file is
 treated as a sequence of narrow characters. When reading a
 wide-character stream, the narrow characters are converted to wide
 characters, and when writing a wide stream, wide characters are
 converted back to multibyte characters. Seeking to a new position in a
 file might seek to a position that falls in the middle of a multibyte
 sequence. Therefore, a file position is required to keep track of a
 shift state in addition to a byte position in the file. See <ios> in Chapter 13.

Traits and Policies

 Traits are used throughout the C++ library. A
 trait is a class or class template that
 characterizes a type, possibly a template parameter. At first glance, it
 seems that traits obscure information, hiding types and other
 declarations in a morass of templates. This is true, but traits are also
 powerful tools used in writing templates. Traits are often used to
 obtain information from built-in types in the same manner as
 user-defined types.
A policy is a class or class template that
 defines an interface as a service to other classes. Traits define type
 interfaces, and policies define function interfaces, so they are closely
 related. Sometimes, a single class template implements traits and
 policies.
The typical application programmer might never use traits and
 policies directly. Indirectly, however, they are used in the string class, I/O streams, the standard
 containers, and iterators—just about everywhere in the standard
 library.
Character Traits

 One of the most commonly used trait and policy templates is char_traits<> in the <string> header. The standard declares
 two specializations: char_traits<char> and char_traits<wchar_t>.
The rest of the C++ library uses character traits to obtain
 types and functions for working with characters. For example, the
 basic_istream class template takes
 a character type, charT, and a
 character traits type as template parameters. The default value for
 the traits parameter is char_traits<charT>, which is a set of
 character traits defined in <string>. The basic_istream template declares the get() function, which reads a character and
 returns its integer equivalent. The return type is obtained from the
 character traits template, specifically int_type.
As a policy template, char_traits<> provides member
 functions that compare characters and character arrays, copy character
 arrays, and so on. For example, compare compares two character arrays for
 equality. The char_traits<char> specialization might
 implement compare by calling
 memcmp.
At a basic level, the typical C++ programmer does not need to be
 concerned with the implementation of traits. Instead, you can use the
 istream and string classes, and everything just works.
 If you are curious, you can trace the declaration of, for example,
 istream::int_type:
	istream::int_type → basic_istream<char>::int_type
 → traits::int_type → char_traits<char>::int_type → int

As you can see, traits can be difficult to follow when you need
 to know the exact type of one of the types declared in a standard
 container.
Once you get used to them, however, you can see how valuable
 traits can be. Consider what happens when you change from istream::int_type to wistream::int_type:
	wistream::int_type
 → basic_istream<wchar_t>::int_type
 → traits::int_type → char_traits<wchar_t>::int_type
 → wint_t

Note that the declarations of basic_istream and the other templates do not
 differ when the template parameter changes from char to wchar_t. Instead, you end up with a
 different template specialization for char_traits<>, which directs you to a
 different integer type.
You can implement your own character traits and policy template.
 For example, suppose you want to use strings that compare themselves
 without regard to case differences. Comparison is a policy issue,
 typically implemented by the char_traits<> template. You can define
 your own template that has the same trait and policy implementation,
 but one that implements compare to
 ignore case differences. Using your template, you can specialize
 basic_string<> to create a
 case-insensitive string class and then store those
 strings in sets and maps. The keys will be compared using your policy
 function that ignores case differences, as shown in Example 8-1.
Example 8-1. Case-insensitive character policy
template<typename T> struct ci_char_traits {};template<> struct ci_char_traits<char> {
 typedef char char_type;
 typedef int int_type;
 typedef std::streamoff off_type;
 typedef std::streampos pos_type;
 typedef std::mbstate_t state_type;

 static void assign(char_type& dst, const char_type src) {
 dst = src;
 }
 static char_type* assign(char* dst, std::size_t n, char c) {
 return static_cast<char_type*>(std::memset(dst, n, c));
 }
 static bool eq(const char_type& c1, const char_type& c2) {
 return lower(c1) == lower(c2);
 }
 static bool lt(const char_type& c1, const char_type& c2) {
 return lower(c1) < lower(c2);
 }
 static int compare(const char_type* s1,
 const char_type* s2, std::size_t n) {
 for (size_t i = 0; i < n; ++i)
 {
 char_type lc1 = lower(s1[i]);
 char_type lc2 = lower(s2[i]);
 if (lc1 < lc2)
 return -1;
 else if (lc1 > lc2)
 return 1;
 }
 return 0;
 }
 ...
private:
 static int_type lower(char_type c) {
 return std::tolower(to_int_type(c));
 }
};

typedef std::basic_string<char, ci_char_traits<char> >
 ci_string;

void print(const std::pair<const ci_string, std::size_t>& item)
{
 std::cout << item.first << '\t' << item.second << '\n';
}

int main()
{
 std::map<ci_string, std::size_t> count;
 ci_string word;
 while (std::cin >> word)
 ++count[word];
 std::for_each(count.begin(), count.end(), print);
}

Iterator Traits

 Traits are also useful for iterators (Chapter 10). An algorithm often needs
 to know the iterator category to provide specializations that optimize
 performance for random access iterators, for example. Traits provide a
 standard way to convey this information to the algorithm — namely, by
 using the iterator_category
 typedef. They also permit
 algorithms to use plain pointers as iterators.
For example, the distance
 function returns the distance between two iterators. For random access
 iterators, the distance can be computed by subtraction. For other
 iterators, the distance must be computed by incrementing an iterator
 and counting the number of increments needed. Example 8-2 shows a simple
 implementation of distance that
 uses the iterator traits to choose the optimized random access
 implementation or the slower implementation for all other input
 iterators.
Example 8-2. Implementing the distance function template
// Helper function, overloaded for random access iterators
template<typename InputIter>
typename std::iterator_traits<InputIter>::difference_type
compute_dist(InputIter first, InputIter last,
 std::random_access_iterator_tag)
{
 return last - first;
}

// Helper function, overloaded for all other input iterators
template<typename InputIter>
typename std::iterator_traits<InputIter>::difference_type
compute_dist(InputIter first, InputIter last,
 std::input_iterator_tag)
{
 typename std::iterator_traits<InputIter>::difference_type
 count = 0;
 while (first != last) {
 ++first;
 ++count;
 }
 return count;
}

// Main distance function, which calls the helper function, using the iterator
// tag to differentiate the overloaded functions.
template<typename InputIter>
typename std::iterator_traits<InputIter>::difference_type
distance(InputIter first, InputIter last)
{
 return compute_dist(first, last,
 std::iterator_traits<InputIter>::iterator_category());
}

Being able to optimize algorithms for certain kinds of iterators is one benefit
 of using traits, but the real power comes from the iterator_traits<T*> specialization.
 This class permits the use of any pointer type as an iterator. (See
 <iterator> in Chapter 13 for details.) Consider how
 the distance function is called in
 the following example:
int data[] = { 10, 42, 69, 13, 100, -1 };
distance(&data[1], &data[4]);
The compiler infers the InputIter template parameter as type
 int*. The iterator_traits<T*> template is
 expanded to obtain the iterator_category type (random_access_iterator_tag) and difference_type (ptrdiff_t).

Custom Traits

 Traits can be useful whenever you are using templates.
 You never know what the template parameters might be. Sometimes, you
 want to specialize your own code according to a template
 parameter.
For example, all the standard sequence containers have a
 constructor that takes two iterators as arguments:
template<typename InputIterator>
list(InputIterator first, InputIterator last);
But take a closer look at the declaration. The author's intent
 is clear: that the template parameter must be an input iterator, but
 nothing in the declaration enforces this restriction. The compiler
 allows any type to be used (at least any type that can be
 copied).
If the InputIterator
 type actually is an input iterator, the list is
 constructed by copying all the elements in the range [first, last). But if the InputIterator type is an integral type, the
 first argument is interpreted as a
 count, and the last argument is
 interpreted as an integer value, which is converted to the value type
 of the container; the container is then initialized with first copies of the last value, which is ordinarily the work of
 a different constructor. See Chapter
 10 for more information about these constructors.
If you need to implement your own container template, you must find a
 way to implement this kind of constructor. The simplest way is to
 define a traits template that can tell you whether a type is an
 integral type. Example 8-3
 shows one possible implementation and how it can be used by a
 container.
Example 8-3. Differentiating between integral types using traits
// Type trait to test whether a type is an integer.
struct is_integer_tag {};
struct is_not_integer_tag {};

// The default is that a type is not an integral type.
template<typename T>
struct is_integer {
 typedef is_not_integer_tag tag;
};

// Override the default explicitly for all integral types.
template<>
struct is_integer<int> {
 typedef is_integer_tag tag;
};
template<>
struct is_integer<short> {
 typedef is_integer_tag tag;
};
template<>
struct is_integer<unsigned> {
 typedef is_integer_tag tag;
};
// And so on for char, signed char, short, etc.

// Constructor uses the is_integer trait to distinguish integral from nonintegral
// types and dispatches to the correct overloaded construct function.
template<typename T, typename A>
template<typename InputIter>
list<T,A>::list(InputIter first, InputIter last)
{
 construct(first, last, is_integer<InputIter>::tag());
}

// The construct member functions finish the initialization of the list. The
// integral version casts the arguments to the size and value types.
template<typename T, typename A>
template<typename InputIter>
void list<T,A>::construct(InputIter first, InputIter last,
 is_integer_tag)
{
 insert(begin(), static_cast<size_type>(first),
 static_cast<T>(last));
}

// The non-integral version copies elements from the iterator range.
template<typename T, typename A>
template<typename InputIter>
void list<T,A>::construct(InputIter first, InputIter last,
 is_not_integer_tag)
{
 insert(begin(), first, last);
}

Traits can be used to characterize any type and specialize
 templates for a wide variety of situations. See the Boost project
 (described in Appendix B) for
 other definitions and uses of traits.

Allocators

An allocator is a policy class that defines an interface for managing
 dynamic memory. You already know about the new and delete expressions for allocating and freeing
 dynamic memory. They are simple, expressive, and useful, but the
 standard library does not necessarily use them internally. Instead, the
 standard library uses allocators, which let you provide alternative
 mechanisms for allocating and freeing memory.
The standard library provides a standard allocator (see <memory> in Chapter 13). If you don't want to use
 the standard allocator, you can use your own, provided it satisfies the
 same interface that is defined by the standard allocator.
Using Allocators

An allocator is a simple object that manages dynamic memory,
 abstracting new and delete expressions. All the container class
 templates take an allocator template parameter and use the allocator
 to manage their internal memory. You can use allocators in your own
 container classes or wherever you want to offer flexibility to the
 user of your class or template.
If you do not want to bother with allocators, you don't need to.
 All the standard containers have a default argument for their
 allocator template parameters: std::allocator, which uses standard new and delete expressions to manage dynamic
 memory.
If you write a new container class template, make sure it takes an
 allocator parameter, as the standard containers do. Use the allocator
 to manage internal memory for your container. See Chapter 10 for more information about
 containers.
If you simply want to use an allocator to manage memory, you can
 do so. Your class would use the allocator to allocate and free memory,
 initialize and finalize objects, and take the address of an allocated
 object. (See <memory> in
 Chapter 13 for a complete
 description of the allocator policy interface.) Example 8-4 shows a simple class
 that wraps a dynamic instance of any object. It is not particularly
 useful, but it illustrates how a class can use an allocator. Note how
 the allocation of memory is separated from the construction of the
 object. If allocate fails to
 allocate the desired memory, it throws bad_alloc, so the wrapper constructor fails
 before it tries to construct the object. If the allocation succeeds,
 but the call to construct fails,
 the memory must be freed, hence the try statement. The destructor assumes that
 wrapped class is well-written and never throws an exception.
Example 8-4. Wrapping a dynamic object
template<typename T, typename Alloc=std::allocator<T> >
class wrapper {
public:
 typedef T value_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::reference reference;

 // Allocate and save a copy of obj.
 wrapper(const T& obj = T(), const Alloc& a = Alloc())
 : alloc_(a), ptr_(0)
 {
 T* p = a.allocate(sizeof(T));
 try {
 alloc_.construct(p, obj);
 } catch(...) {
 // If the construction fails, free the memory without trying to finalize
 // the (uninitialized) object.
 alloc_.deallocate(p);
 throw;
 }
 // Everything succeeded, so save the pointer.
 ptr_ = p;
 }
 ~wrapper()
 {
 alloc_.destroy(ptr_);
 alloc_.deallocate(ptr_);
 }
 typename Alloc::reference operator*() { return *ptr_; }
 value_type operator*() const { return *ptr_; }
private:
 Alloc alloc_;
 typename Alloc::pointer ptr_;
};

Custom Allocators

Writing a custom allocator requires care and patience. One particularly
 difficult point is that an implementation of the standard library is
 free to assume that all instances of an allocator class are
 equivalent, that is, allocators cannot maintain state. The standard
 permits this behavior without mandating it.
Thus, you need to be aware of the standard library's
 requirements for your implementation. Once you know the requirements,
 you can write a custom allocator. As a starting point, see Chapter 13 (under <memory>), which implements the
 allocator as trivial wrappers around new and delete expressions. Other allocators might
 manage memory that is shared between processes or differentiate
 between different kinds of pointers (such as near and far pointers
 found on old PC operating systems). More sophisticated allocators can
 implement debugging or validity checks to detect programmer errors,
 such as memory leaks or double frees.

Numerics

The C++ library has several headers that support numerical
 programming. The most basic header is <cmath>, which declares transcendental
 and other mathematical functions. This C header is expanded in C++ to
 declare overloaded versions of every function. For example, whereas C
 declares only exp(double), C++ also
 declares exp(float) and exp(long double).
The <complex> header declares a class template for complex numbers,
 with the specializations you would probably expect for float, double, and long double. Transcendental and I/O functions are
 also declared for complex numbers.
The <numeric> header
 declares a few algorithms (that use standard iterators) for numerical
 sequences.
The most interesting numerical functions are in <valarray> . A valarray is like an
 ordinary numerical array, but the compiler is free to make some
 simplifying assumptions to improve optimization. A valarray is not a container, so it cannot be
 used with standard algorithms or the standard numeric algorithms.
You can use the complex
 template as an example of how to define custom numeric types. For
 example, suppose you want to define a type to represent rational numbers
 (fractions). To use rational
 objects in a valarray,
 you must define the class so it behaves the same as ordinary values,
 such as ints. In other words, a
 custom numeric type should have the following:
	A public default constructor (e.g., rational())

	A public copy constructor (e.g., rational(const rational&))

	A public destructor

	A public assignment operator (e.g., rational& operator=(const rational&))

	Reasonable arithmetic and comparison operators

When you implement a class, make sure that the copy constructor
 and assignment operator have similar, reasonable results.
When overloading arithmetic and comparison operators, think
 about which operators are meaningful (e.g., most arithmetic types should
 have addition, subtraction, multiplication, and division, but only
 integral types will probably have remainder, bitwise, and shift
 operators). You should provide overloaded operators that accept the
 built-in types as operands. For example, the complex template defines the following functions for operator+:
template<typename T> complex<T>operator+(const complex<T>& z);
template<typename T> complex<T> operator+(const complex<T>& x, const
 complex<T>& y);
template<typename T> complex<T> operator+(const complex<T>& x, const T& y);
template<typename T> complex<T> operator+(const T& x, const complex<T>& y);
Example 8-5 shows
 excerpts from a simple rational class
 template.
Example 8-5. The rational class template for rational numbers
template<typename T>
class rational
{
public:
 typedef T value_type;

 rational() : num_(0), den_(1) {}
 rational(value_type num) : num_(num), den_(1) {}
 rational(value_type num, value_type den)
 : num_(num), den_(den) { reduce(); }
 rational(const rational& r): num_(r.num_), den_(r.den_) {}
 template<typename U>
 rational(const rational<U>& r)
 : num_(r.num_), den_(r.den_) { reduce(); }

 rational& operator=(const rational& r)
 { num_ = r.num_; den_ = r.den_; return *this; }
 template<typename U>
 rational& operator=(const rational<U>& r)
 { assign(r.numerator(), r.denominator()); return *this; }

 void assign(value_type n, value_type d)
 { num_ = n; den_ = d; reduce(); }

 value_type numerator() const { return num_; }
 value_type denominator() const { return den_; }

private:
 void reduce();
 value_type num_;
 value_type den_;
};

// Reduce the numerator and denominator by the gcd. Make sure that the
// denominator is nonnegative.
template<typename T>
void rational<T>::reduce()
{
 if (den_ < 0) {
 den_ = -den_;
 num_ = -num_;
 }
 T d = gcd(num_, den_);
 num_ /= d;
 den_ /= d;
}

// Greatest common divisor using Euclid's algorithm
template<typename T>
T gcd(T n, T d)
{
 n = abs(n);
 while (d != 0) {
 T t = n % d;
 n = d;
 d = t;
 }
 return n;
}

// Multiplication assignment operator. Often implemented as a member function,
// but there is no need to do so.
template<typename T, typename U>
rational<T>& operator*=(rational<T>& dst,
 const rational<U>& src)
{
 dst.assign(dst.numerator() * src.numerator(),
 dst.denominator() * src.denominator());
 return dst;
}

// Multiply two rational numbers.
template<typename T>
rational<T> operator*(const rational<T>& a,
 const rational<T>& b)
{
 rational<T> result(a);
 result *= b;
 return result;
}

// Multiply rational by an integral value.
template<typename T>
rational<T> operator*(const T& a, const rational<T>& b)
{
 return rational<T>(a * b.numerator(), b.denominator());
}

template<typename T>
rational<T> operator*(const rational<T>& a, const T& b)
{
 return rational<T>(b * a.numerator(), a.denominator());
}
// Other arithmetic operators are similar.
// Comparison. All other comparisons can be implemented in terms of operator==
// and operator<.
template<typename T>
bool operator==(const rational<T>& a, const rational<T>& b)
{
 // Precondition. Both operands are reduced.
 return a.numerator() == b.numerator() &&
 a.denominator() == b.denominator();
}

template<typename T>
bool operator<(const rational<T>& a, const rational<T>& b)
{
 return a.numerator() * b.denominator() <
 b.numerator() * a.denominator();
}

Many numerical programmers find the C++ standard library to be
 lacking. However, the Blitz++ project is a popular, high-performance numerical library. Boost also has some numerical headers, such as a
 full-featured rational class
 template. See Appendix B for
 information about these and other C++ libraries.

Chapter 9. Input and Output

C++ has a rich I/O library, which is often called I/O
 streams . This chapter presents an overview of the C++ I/O library.
 For details of individual classes and functions, see Chapter 13. The I/O streams often use
 templates; refer to Chapter 7 for
 information about templates. See also Chapter 8 for information about character
 traits.
The standard I/O streams can also be used with standard iterator
 adapters. See Chapter 10 for
 details.

Introduction to I/O Streams

As with C and many modern languages, input and output in
 C++ is implemented entirely in the library. No language features
 specifically support I/O.
The C++ I/O library is based on a set of templates parameterized
 on the character type. Thus, you can read and write plain char-type characters, wide wchar_t characters, or some other, exotic
 character type that you might need to invent. (Read about character
 traits in Chapter 8 first.) Figure 9-1 depicts the class
 hierarchy. Notice that the names are of the form basic_ name. These
 are the template names; the specializations have the more familiar names
 (e.g., istream specializes basic_istream<char>).
[image: The I/O stream class hierarchy]

Figure 9-1. The I/O stream class hierarchy

One advantage of using inheritance in the I/O library is that the
 basic I/O functions are defined once in the base classes, and that
 interface is inherited by the derived classes and overridden when
 necessary. Using inheritance, you perform I/O with files as you would
 with strings. With only a little effort, you can derive your own I/O
 classes for specialized situations. (See Example 9-6.) Thus, to understand
 I/O in C++, you must start with the base classes.
Another advantage of the I/O stream classes is that you can
 implement your own overloaded functions that look and behave like the
 standard functions. Thus, you can read and write objects of your custom
 classes just as easily as the fundamental types.
The ios_base class declares types and constants that are used
 throughout the I/O library. Formatting flags, I/O state flags, open
 modes, and seek directions are all declared in ios_base.
The basic_istream template declares input functions, and basic_ostream declares output functions. The basic_iostream template inherits input and
 output functions through multiple inheritance from basic_istream and basic_ostream.
The stream class templates handle high-level I/O of numbers,
 strings, and characters. For low-level I/O, the streams rely on
 stream buffers , which control reading and writing buffers of characters.
 The basic_streambuf template defines the stream buffer interface, and the
 actual behavior is implemented by derived-class templates.
I/O to and from external files is handled by basic_fstream , basic_ifstream
 , and basic_ofstream
 , using basic_filebuf
 as the stream buffer. These class templates are declared in <fstream>.
You can also treat a string as a stream using basic_istringstream , basic_ostringstream,
 and basic_stringstream. The stream
 buffer template is basic_stringbuffer. These class templates are
 declared in <sstream>.
The I/O library supports formatted and unformatted I/O. Unformatted I/O simply
 reads or writes characters or character strings without interpretation.
 The I/O streams have a number of functions for performing unformatted
 I/O.
Formatted input can skip over leading whitespace, parse text as
 numbers, and interpret numbers in different bases (decimal, octal,
 hexadecimal). Formatted output can pad fields to a desired width and
 write numbers as text in different bases. Formatted I/O uses a stream's
 locale to parse numeric input or format numeric
 output.
A locale is an object of type locale. It stores character attributes,
 formatting preferences, and related information about a particular
 culture or environment. This information is organized into a set of
 facets . For example, the num_get facet defines how numbers are read and parsed from an
 input stream; the num_put facet
 defines how numbers are formatted and written to an output stream; and
 the numpunct facet specifies the
 punctuation characters used for decimal points, minus signs, and so on.
 Locales are used primarily by I/O streams, but they have other uses, as
 well. See <locale> in Chapter 13 for details.
To perform formatted I/O, the I/O streams overload the shift
 operators: left shift (<<)
 writes and right shift (>>)
 reads. Think of the shift operators as arrows pointing in the direction of
 data flow: output flows from an expression to the stream (cout << expr). Input flows from the stream to a
 variable (cin >> var). The string, complex, and other types in the standard
 library overload the shift operators, so you can perform I/O with these
 objects just as easily as you can with the fundamental types.
Custom I/O Operators

When you define your own classes for which I/O is
 meaningful, you should also override the shift operators to perform
 I/O in the same manner as the standard I/O operators. A common
 simplification is to overload the shift operators for istream and ostream, but that prevents your operators
 from being used with wide-character streams or streams with custom
 character traits. You should consider writing function templates
 instead, using basic_istream and
 basic_ostream, to take advantage of
 the generality that the I/O stream templates offer.
Other guidelines to follow when writing custom I/O functions
 are:
	Pay attention to the stream's flags, locale, and
 state.

	Set failbit for malformed
 input.

	Be careful with internal whitespace.

	When writing an object that has multiple parts, be careful
 of how you treat the stream's field width. Remember that the width
 is reset to 0 after each
 formatted output function.

Example 9-1 shows an
 example of I/O for the rational
 class, which represents a rational number. For input, two numbers are
 read, separated by a slash (/). If
 the slash is missing, the input is malformed, so failbit is set. (See the <ios> header in Chapter 13 for more information about
 failbit and the other state bits.)
 For output, the two parts of the rational number are formatted as a
 string, and the entire string is written to the output stream. Using a
 temporary string lets the caller set the field width and apply the
 width to the entire rational number as a single entity. If the
 numerator and denominator were written directly to the output stream,
 the width would apply only to the numerator. (See Example 9-3 for more information
 about rational.)
Example 9-1. Performng I/O with the rational class template
// Read a rational number. The numerator and denominator must be written as two
// numbers (the first can be signed) separated by a slash (/). For example:
// "2/3", "-14/19".
template<typename T, typename charT, typename traits>
std::basic_istream<charT, traits>&
operator>>(std::basic_istream<charT, traits>& in, rational<T>& r)
{
 typename rational<T>::numerator_type n;
 typename rational<T>::denominator_type d;
 char c;

 if (! (in >> n)) return in;
 // Allow whitespace before and after the dividing '/'.
 if (! (in >> c)) return in;
 if (c != '/') {
 // Malformed input
 in.setstate(std::ios_base::failbit);
 return in;
 }
 if (! (in >> d)) return in;
 r.set(n, d);
 return in;
}

// Write a rational number as two integers separated by a slash. Use a string
// stream so the two numbers are written without padding, and the overall
// formatted string is then padded to the desired width.
template<typename T, typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& out, const rational<T>& r)
{
 // Use the same flags, locale, etc. to write the
 // numerator and denominator to a string stream.
 std::basic_ostringstream<charT, traits> s;
 s.flags(out.flags());
 s.imbue(out.getloc());
 s.precision(out.precision());
 s << r.numerator() << '/' << r.denominator();
 // Write the string to out. The field width, padding, and alignment are already
 // set in out, so they apply to the entire rational number.
 out << s.str();
 return out;
}

The C Standard I/O Library

Because the C++ library includes the C library, you can use any
 of the C standard I/O functions, such as fopen and printf. The C standard I/O library is
 contained in <cstdio> for
 narrow I/O and <cwchar> for
 wide-character I/O. The C++ library inherits many attributes from the
 C library. For example, the C++ end-of-file marker, char_traits<char>::eof(), has the
 same value as the C end-of-file marker, EOF. In most cases, however, a C++ program
 should use C++ I/O functions rather than C functions.
The printf and scanf functions
 are noteworthy for their lack of safety. Although some compilers now
 check the format strings and compare them with the actual arguments,
 many compilers do not. It is too easy to make a simple mistake. If you
 are lucky, your program will fail immediately. If you are unlucky,
 your program will appear to work on your system and fail only when it
 is run on your customers' systems. The following is an example of a
 common mistake made when using printf :
size_t s;
printf("size=%u\n", s);
The problem here is that the size_t type might be unsigned long, which means the argument s and the format %u do not match. On some systems, the
 mismatch is harmless, but on others, wrong information will be
 printed, or worse.
Other functions, such as gets
 and sprintf, are unsafe because
 they write to character arrays with no way to limit the number of
 characters written. Without a way to prevent buffer overruns, these
 functions are practically useless.
Another limitation of the C I/O library is that it has little
 support for alternate locales. In C++, every stream can have a
 different locale. For example, this lets you write a program that
 reads a datafile in a fixed format (using the "C" locale), but prints the human-readable
 results in the native locale. Writing such a program using the C I/O
 library requires that locales be changed between each read and write
 call, which is much less convenient.
In spite of all these problems, some C++ programmers still use
 the C library. In some implementations, the C library performs better
 than the C++ library. Another reason is that some C++ functions, such
 as printf, have a brevity that
 appeals to C and C++ programmers. Compare the following examples, one
 using printf and the other using
 the << operator, which both
 print the same count and mask values in the same formats:
unsigned long count, mask;
...
printf("count=%-9.9ld\n"
 "mask=%#-8.8lx\n", count, mask);

cout.fill('0');
cout << "count=" << right << dec << setw(9) << count <<
 "\nmask=0x" << hex << setw(8) << mask << '\n';
Even though the printf
 approach seems more concise and easier to understand, I recommend
 using the C++ I/O streams. You might think printf is saving you time now, but the lack
 of safety can present major problems in the future. (Reread the
 example and imagine what would happen if count exceeded the maximum value for type
 long.)
Sometimes, using the C I/O library is necessary (e.g., perhaps
 legacy C code is being called from C++ code). To help in such
 situations, the standard C++ I/O objects are associated with their
 corresponding C FILEs. The C++
 cin object is associated with the C
 stdin object, cout is associated with stdout, and cerr and clog are associated with stderr. You can mix C and C++ I/O functions
 with the standard I/O objects.

C++ I/O Headers

This section lists the I/O-related headers in the C++ standard library, with a
 brief description of each. See the corresponding sections in Chapter 13 for more detailed
 descriptions.
	<fstream>

	File streams—that is, input and output using external
 files. Declares basic_filebuf, basic_fstream, basic_ifstream, basic_ofstream, fstream, ifstream, ofstream, wfstream, wistream, wostream, and other types.

	<iomanip>

	Declares several manipulators—that is, function objects
 that affect an I/O stream object. A manipulator offers an
 alternate, often more convenient, syntax for calling member
 functions of an I/O stream object.

	<ios>
	Base template definitions of ios_base, basic_ios and some common
 manipulators. All I/O streams derive from basic_ios, which derives from ios_base.

	<iosfwd>
	Forward declarations of the standard I/O classes and
 templates. Judicious use of <iosfwd> can reduce the
 compile-time burden in certain situations.

	<iostream>

	Declarations of the standard I/O objects: cin, cout, etc.

	<istream>

	Declares types and functions for input-only streams
 (basic_istream, istream, and wistream), and for input and output
 streams (basic_iostream,
 iostream, and wiostream).

	<ostream>

	Declares types and functions for output-only streams
 (basic_ostream, ostream, and wostream).

	<sstream>

	Declares string streams (basic_istringstream, basic_ostringstream, basic_stringbuf, basic_stringstream, istringstream, ostringstream, and stringstream), which read from and
 write to strings using the stream protocol.

	<streambuf>

	Declares low-level stream buffers (basic_streambuf) for the I/O stream
 classes. Most programs do not need to deal with the stream
 buffers, but stick to the high-level interfaces presented by the
 stream classes.

	<strstream>

	Declares string streams (istrstream, ostrstream, strstream, strstreambuf), which read and write to
 character arrays using a stream protocol. These classes are not
 template-based so they do not work for wide characters or
 alternative character traits. This header is deprecated.

Text I/O

 By default, an I/O stream performs text I/O, also known as
 formatted I/O, in which text is converted to and from numeric and other
 values. For output, values are converted to text, and padding,
 alignment, and other formatting is applied to the text. For input,
 formatting controls how text is converted to values and whether
 whitespace is skipped prior to reading an input field.
[image: image with no caption]

Different systems have different ways of representing the end of a
 line. A text I/O stream hides these details and maps all line endings in
 a file to the newline character ('\n'). Thus, the number of characters read from
 or written to a file might not match the actual file size. An
 implementation might require a newline at the end of the last line of a
 file.
To control formatting, a stream keeps track of a set of flags, a
 field width, and a precision. Table 13-12 (in the <ios> section) lists all the formatting
 flags.
Formatted Input

The formatted input functions are the overloaded operator>> functions. If the skipws flag is set (which is the default),
 whitespace characters (according to the locale imbued in the stream)
 are skipped, and input begins with the first non-whitespace
 character.
If reading into a string or
 character array, all non-whitespace characters are read into the
 string, ending with the first whitespace character or when width characters have been read (if width > 0), whichever comes first. The
 width is then reset to 0.
For all other types, the width is not used. To read a number from a
 fixed-width field, read the field into a string, then use a string
 stream to read the number, as shown in Example 9-2.
Example 9-2. Reading a number from a fixed-width field
template<typename T, typename charT, typename traits>
std::basic_istream<charT, traits>&
 fixedread(std::basic_istream<charT, traits>& in, T& x)
{
 if (in.width() == 0)
 // Not fixed size, so read normally.
 in >> x;
 else {
 std::string field;
 in >> field;
 std::basic_istringstream<charT, traits> stream(field);
 if (! (stream >> x))
 in.setstate(std::ios_base::failbit);
 }
 return in;
}

The only other flags that affect input are basefield and boolalpha:
	The basefield flag
 determines how integers are interpreted. If basefield is nonzero, it specifies a
 fixed radix (oct, hex, or dec), or if basefield is 0 (the default), the input determines
 the radix: leading 0x or
 0X for hexadecimal, leading
 0 for octal, decimal
 otherwise.

	If the boolalpha flag is
 set, a formatted read of bool
 reads a string, which must match the names true or false (in the stream's locale, according
 to the numpunct facet). If the
 boolalpha flag is not set, a
 bool is read as a long integer,
 and the number is converted to bool using the standard rules: nonzero
 is true and 0 is false. By default, the flag is clear
 (false).

Floating-point numbers are accepted in fixed or scientific
 format.
The decimal point character is determined by the stream's
 locale, as is the thousands separator. Thousands separators are
 optional in the input stream, but if present, they must match the
 locale's thousands separator character and grouping rules. For
 example, assuming that the thousands separator is , and the grouping
 is for every 3 characters (grouping(
) returns "\3"), the
 following are three valid input examples and one invalid
 example:
1,234,567 // Valid
1,234,56 // Invalid
1234567 // Valid
1234,567 // Valid
When reading data that the user types, you should imbue the
 input stream with the user's native locale (e.g., cin.imbue(locale(""))). For input that is
 being read from files or other sources that require portable data
 formats, be sure to use the "C", or
 classic, locale (e.g., cin.imbue(locale::classic())).
See the num_get facet in the
 <locale> section of Chapter 13 for details on how numeric
 input is parsed and interpreted.

Formatted Output

The formatted output functions are the overloaded operator<< functions. They all work
 similarly, using the flags and other information to format a value as
 a string. The string is then padded with zero or more copies of a
 fill character to achieve the
 desired width. The adjustfield flags are used to determine
 where the fill characters are added
 (to the left, right, or internal, with internal meaning after a sign or a leading
 0x or 0X).
The padded string is written to the output stream, and the
 stream's width is reset to 0. The width is the only formatting parameter that
 is reset. The flags, precision, and
 the fill character are "sticky" and
 persist until they are changed explicitly.
Formatting an integer depends on the basefield (hex, oct,
 or dec), uppercase (0X for hexadecimal), showpos (insert a + for positive numbers), and showbase (to insert a prefix of 0x or 0X
 for hexadecimal or 0 for octal)
 flags. The defaults are decimal, lowercase, no positive sign, and no
 base. If the locale's numpunct
 facet specifies thousands grouping, thousands separators are inserted
 at the specified positions.
Formatting a floating-point number depends on the floatfield (fixed, scientific, or 0 for general), uppercase (E for exponent), showpoint (insert decimal point even if not
 needed), and showpos (insert a
 + for positive numbers) flags. The
 defaults are general, lowercase, no point unless needed, and no
 positive sign.
If the boolalpha flag is set,
 bool values are written as names
 (e.g., true or false, or other strings, depending on the
 locale). If boolalpha is not set,
 bool values are written as integers
 (described earlier). The default flag is clear (false).
When writing output for a user's immediate consumption, you
 should imbue the output stream with the user's native locale (e.g.,
 cout.imbue(locale(""))). For output
 that is being written to files or other sources that require portable
 data formats, be sure to use the "C", or classic, locale (e.g., cout.imbue(locale::classic())).
See the num_put facet in the
 <locale> section of Chapter 13 for details on how numeric
 output is formatted.

Binary I/O

Binary, or unformatted, I/O involves characters, character arrays, or
 strings, which are read or written without interpretation, padding, or
 other adjustments. End-of-lines are not treated specially.
The unformatted read functions (such as get and read) can read into a string or character array. The gcount function returns the number of
 characters read.
The unformatted output functions (such as put and write) can write a string or character array. You can specify
 the exact number of characters to write from a character array or write
 all characters up to a null character (to write a C-style
 null-terminated string).
You can also dip down the stream buffer level to perform
 unformatted I/O, although this is seldom done except for bulk I/O of
 entire streams. See the next section for more information.

Stream Buffers

The I/O stream classes rely on stream buffers for the low-level input and output. Most
 programmers ignore the stream buffer and deal only with high-level
 streams. You might find yourself dealing with stream buffers from the
 client side—for example, using stream buffers to perform low-level I/O
 on entire streams at once—or you might find yourself on the other side,
 implementing a custom stream buffer. This section discusses both of
 these aspects.
You can copy a file in several ways. Example 9-3 shows how a C programmer
 might copy a stream once he has learned about templates.
Example 9-3. Copying streams one character at a time
template<typename charT, typename traits>
void copy(std::basic_ostream<charT, traits>& out,
 std::basic_istream<charT, traits>& in)
{
 charT c;
 while (in.get(c))
 out.put(c);
}

After measuring the performance of this solution, the intrepid
 programmer might decide that copying larger buffers is the right way to
 go. Example 9-4 shows the new
 approach. On my system, the new version runs roughly twice as fast as
 the original version. (Of course, performance measures depend highly on
 compiler, library, environment, and so on.)
Example 9-4. Copying streams with explicit buffers
template<typename charT, typename traits>
void copy(std::basic_ostream<charT, traits>& out,
 std::basic_istream<charT, traits>& in)
{
 const unsigned BUFFER_SIZE = 8192;
 std::auto_ptr<charT> buffer(new charT[BUFFER_SIZE]);
 while (in) {
 in.read(buffer.get(), BUFFER_SIZE);
 out.write(buffer.get(), in.gcount());
 }
}

After reading more about the C++ standard library, the programmer
 might try to improve performance by delegating all the work to the
 stream buffer, as shown in Example
 9-5.
Example 9-5. Copying streams via stream buffers
template<typename charT, typename traits>
void copy(std::basic_ostream<charT, traits>& out,
 std::basic_istream<charT, traits>& in)
{
 out << in.rdbuf();
}

The version in Example
 9-5 runs about as fast as the version in Example 9-4 but is much simpler to
 read and write.
Another reason to mess around with stream buffers is that you
 might need to write your own. Perhaps you are implementing a network I/O
 package. The user opens a network stream that connects to a particular
 port on a particular host and then performs I/O using the normal I/O
 streams. To implement your package, you must derive your own stream
 buffer class template (basic_networkbuf) from the basic_streambuf class template in <streambuf>.
A stream buffer is characterized by three pointers that
 point to the actual buffer, which is a character array. The pointers
 point to the beginning of the buffer, the current I/O position (that is,
 the next character to read or the next position for writing), and the
 end of the buffer. The stream buffer class manages the array and the
 pointers. When the array empties upon input, the stream buffer must
 obtain additional input from the network (the underflow function). When the array fills upon
 output, the stream buffer must write the data to the network (the
 overflow function). Other functions
 include putting back a character after reading it, seeking, and so on.
 (See <streambuf> in Chapter 13 for details about each member
 function.) Example 9-6 shows
 an extremely oversimplified sketch of how the basic_networkbuf class template might
 work.
Example 9-6. The basic_networkbuf class template
template<typename charT,
 typename traits = std::char_traits<char> >
class basic_networkbuf :
 public std::basic_streambuf<charT, traits> {
public:
 typedef charT char_type;
 typedef traits traits_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;

 basic_networkbuf();
 virtual ~basic_networkbuf();

 bool is_connected();
 basic_networkbuf* connect(const char* hostname, int port,
 std::ios_base::openmode mode);
 basic_networkbuf* disconnect();

protected:
 virtual std::streamsize showmanyc();
 virtual int_type underflow();
 virtual int_type overflow(int_type c = traits::eof());
 virtual pos_type seekoff(off_type offset,
 std::ios_base::seekdir dir,
 std::ios_base::openmode);
 virtual pos_type seekpos(pos_type sp,
 std::ios_base::openmode);
 virtual basic_networkbuf* setbuf(char_type* buf,
 std::streamsize size);
 virtual int sync();

private:
 char_type* buffer_;
 std::streamsize size_;
 bool ownbuf_; // true means destructor must delete buffer_
 // network connectivity stuff...
};

// Construct initializes the buffer pointers.
template<typename charT, typename traits>
basic_networkbuf<charT,traits>::basic_networkbuf()
: buffer_(new char_type[DEFAULT_BUFSIZ]),
 size_(DEFAULT_BUFSIZ), ownbuf_(true)
{
 this->setg(buffer_, buffer_ + size_, buffer_ + size_);
 // Leave room in the output buffer for one last character.
 this->setp(buffer_, buffer_ + size_ - 1);
}

// Return the number of characters available in the input buffer.
template<typename charT, typename traits>
std::streamsize basic_networkbuf<charT,traits>::showmanyc()
{
 return this->egptr() - this->gptr();
}

// Fill the input buffer and set up the pointers.
template<typename charT, typename traits>
typename basic_networkbuf<charT,traits>::int_type
basic_networkbuf<charT,traits>::underflow()
{
 // Get up to size_ characters from the network, storing them in buffer_. Store
 // the actual number of characters read in the local variable, count.

 std::streamsize count;
 count = netread(buffer_, size_);
 this->setg(buffer_, buffer_, buffer_ + coun));
 if (this->egptr() == this->gptr())
 return traits::eof();
 else
 return traits::to_int_type(*this->gptr());
}

// The output buffer always has room for one more character, so if c is not
// eof(), add it to the output buffer. Then write the buffer to the network
// connection.
template<typename charT, typename traits>
typename basic_networkbuf<charT,traits>::int_type
{
 if (c != traits::eof()) {
 *(this->pptr()) = c;
 this->pbump(1);
 }
 netwrite(this->pbase(), this->pptr() - this->pbase());
 // The output buffer is now empty. Make sure it has room for one last
 // character.
 this->setp(buffer_, buffer_ + size_ - 1);
 return traits::not_eof(c);
}

// Force a buffer write.
template<typename charT, typename traits>
int basic_networkbuf<charT,traits>::sync()
{
 overflow(traits::eof());
 return 0;
}

Manipulators

A manipulator is a function object that can be used as an operand to an
 input or output operator to manipulate the stream. Manipulators can send
 additional output to a stream, read input from a stream, set flags, and
 more. For example, to output a zero-padded, hexadecimal integer, you can
 use an ostream's member functions or
 manipulators, whichever you prefer. Example 9-7 shows both ways.
Example 9-7. Manipulating an output stream to format a number
using namespace std;

// Output a value using ostream's member functions.
cout.fill('0');
cout.width(8);
cout.setf(ios_base::internal, ios_base::adjustfield);
cout.setf(ios_base::hex, ios_base::basefield);
cout << value;

// Output the same value using manipulators.
cout << setfill('0') << setw(8) << hex << internal << value;

Standard Manipulators

The standard library defines several
 manipulators for setting formatting flags, setting other
 formatting parameters, skipping whitespace, flushing output, and more.
 The following is a list of all the standard manipulators, grouped by
 header:
	<ios>
	Declares the manipulators that set the formatting flags:
 boolalpha , dec
 , fixed
 , hex
 , internal
 , left
 , noboolalpha
 , noshowbase
 , noshowpoint
 , noshowpos
 , noskipws
 , nouppercase
 , nounitbuf
 , oct
 , right
 , scientific
 , showbase
 , showpoint
 , showpos
 , skipws
 , uppercase
 , and unitbuf

	<istream>

	Declares the input manipulator: ws

	<ostream>

	Declares the output manipulators: endl , ends
 , and flush

	<iomanip>

	Declares several additional manipulators: resetioflags , setioflags
 , setbase
 , setfill
 , setprecision
 , and setw

Most manipulators are declared in the same header as the stream
 type they manipulate. The only time you need to #include an additional header is when you
 use a manipulator that takes an argument. These manipulators are in
 the <iomanip> header.

Custom Manipulators

 To write your own manipulator, use the standard
 manipulators as patterns. The easiest to use are manipulators that
 take no arguments. A manipulator is simply a function that takes a
 stream as an argument and returns the same stream. The standard
 streams overload operator<<
 and operator>> to take a
 pointer to such a function as an operand.
Suppose you want to write an input manipulator that skips all
 characters up to and including a newline. (Perhaps this manipulator is
 used by a command processor after reading a // comment sequence.) Example 9-8 shows one way to write
 the skipline manipulator.
Example 9-8. Skipping a line in an input stream
template<typename charT, typename traits>
std::basic_istream<charT,traits>&
skipline(std::basic_istream<charT,traits>& in)
{
 charT c;
 while (in.get(c) && c != '\n')
 ;
 return in;
}
...
int x;
std::string next;
std::cin >> x >> skipline >> next;

Manipulators that take arguments are harder to write, but only
 slightly. You need to write some supporting infrastructure, such as
 additional overloaded operator>> or operator<< functions.
For example, suppose you want to parameterize your input
 skipline manipulator so it skips
 everything up to a caller-supplied character. This manipulator is
 defined as a class template, in which the constructor takes the
 manipulator's argument, that is, the delimiter character. You must
 overload operator>> so it
 recognizes your manipulator as an operand and invokes the
 manipulator's operator(). You
 don't need to use operator(), but
 this is a good choice when building a reusable infrastructure for
 manipulators. Example 9-9
 shows the new skip
 manipulator.
Example 9-9. Writing a manipulator that takes an argument
template<typename charT>
class skipper
{
public:
 typedef charT char_type;
 skipper(char_type delim) : delim_(delim) {}
 template<typename traits>
 void operator()(std::basic_istream<charT,traits>&) const;
private:
 char_type delim_;
};

// Skip the rest of the line. The compiler deduces the traits type from the
// stream argument.
template<typename charT>
template<typename traits>
void skipper<charT>::operator()(std::basic_istream<charT,traits>& stream)
const
{
 char_type c;
 while (stream.get(c) && c != delim_)
 ;
}

// Invoke the skipper manipulator.
template<typename charT, typename traits>
std::basic_istream<charT,traits>&
 const skipper<charT>& f)
{
 f(stream);
 return stream;
}

// Let the compiler deduce the character type.
template<typename charT>
skipper<charT> skip(charT c)
{
 return skipper<charT>(c);
}
...
int x;
std::string next;
std::cin >> x >> skip('\n') >> next;

Errors and Exceptions

 By default, I/O streams do not raise exceptions for
 errors. Instead, each stream keeps a mask of error bits called the
 I/O state. The state mask keeps track of formatting
 failures, end-of-file conditions, and miscellaneous error conditions.
 The ios_base class template defines
 several member functions for testing and modifying the state flags
 (rdstate, setstate, fail, etc.).
A common idiom is to read from an input stream until an input
 operation fails. Because this idiom is so common, the standard library
 makes it easy. Instead of calling rdstate and testing the state explicitly, you
 can simply treat the stream object as a Boolean value: true means the state is good, and false means the state has an error condition.
 Most I/O functions return the stream object, which makes the test even
 easier:
while (cin.get(c))
 cout.put(c);
The basic_ios class overloads
 operator void* to return a non-null pointer if the
 state is good or a null pointer for any error condition. Similarly, it
 overloads operator! to return
 true for any error condition. (As
 explained later in this section, an end-of-file is not an error
 condition.) This latter test is often used in conditional
 statements:
if (! cout)
 throw("write error");
The state mask has three different error bits:
	badbit
	An unrecoverable error occurred. For example, an exception
 was thrown from a formatting facet, an I/O system call failed
 unexpectedly, and so on.

	eofbit
	An end-of-file upon input.

	failbit
	An I/O operation failed to produce any input or output. For
 example, when reading an integer, if the next input character is a
 letter, no characters can be read from the stream, which results
 in an input failure.

The basic_ios conditional
 operators define "failure" as when badbit or failbit is set, but not when eofbit is set. To understand why, consider the
 following canonical input pattern. During a normal program run, the
 input stream's state is initially zero. After reading the last item from
 the input stream, eofbit is set in
 the state. At this time, the state does not indicate "failure," so the
 program continues by processing the last input item. The next time it
 tries to read from the input stream, no characters are read (because
 eofbit is set), which causes the
 input to fail, so the stream sets failbit. Now a test of the input stream
 returns false, indicating failure,
 which exits the input loop.
Sometimes, instead of testing for failure after each I/O
 operation, you may want to simplify your code. You can assume that every
 operation succeeds and arrange for the stream to throw an exception for
 any failure. In addition to the state mask, every stream has an
 exception mask, in which the bits in the exception mask correspond to
 the bits in the state mask. When the state mask changes, if any bit is
 set in both masks, the stream throws an ios_base::failure exception.
For example, suppose you set the exception mask to failbit |
 badbit. Using the canonical input
 pattern, after reading the last item from the input stream, eofbit is set in the state. At this time,
 rdstate() & exceptions(
) is still 0, so the
 program continues. The next time the program tries to read from the
 input stream, no characters are read, which causes the input to fail,
 and the stream sets failbit. Now
 rdstate() & exceptions(
) returns a nonzero value, so the stream throws ios_base::failure.
A stream often relies on other objects (especially locale facets)
 to parse input or format output. If one of these other objects throws an
 exception, the stream catches the exception and sets badbit. If badbit is set in the exceptions() mask, the original exception is
 rethrown.
When testing for I/O success, be sure to test for badbit as a special indicator of a serious
 failure. A simple test for ! cin does not distinguish between different
 reasons for failure: eofbit | failbit
 might signal a normal end-of-file, but failbit |
 badbit might tell you that there is
 something seriously wrong with the input stream (e.g., a disk error).
 One possibility, therefore, is to set badbit in the exceptions() mask so normal control flow
 deals with the normal situation of reading an end-of-file. However, more
 serious errors result in exceptions, as shown in Example 9-10.
Example 9-10. Handling serious I/O errors
#include <algorithm>
#include <cstddef>
#include <exception>
#include <iostream>
#include <map>
#include <string>

void print(const std::pair<std::string, std::size_t>& count)
{
 std::cout << count.first << '\t' << count.second << '\n';
}

int main()
{
 using namespace std;

 try {
 string word;
 map<string, size_t> counts;
 cin.exceptions(ios_base::badbit);
 cout.exceptions(ios_base::badbit);
 while (cin >> word)
 ++counts[word];
 for_each(counts.begin(), counts.end(), print);
 } catch(ios_base::failure& ex) {
 std::cerr << "I/O error: " << ex.what() << '\n';
 return 1;
 } catch(exception& ex) {
 std::cerr << "Fatal error: " << ex.what() << '\n';
 return 2;
 } catch(...) {
 std::cerr << "Total disaster.\n";
 return 3;
 }
}

Chapter 10. Containers, Iterators, and Algorithms

Containers (sometimes called collections) are a staple of computer programming. Every
 major programming language has fundamental containers, such as arrays or
 lists. Modern programming languages usually have an assortment of more
 powerful containers, such as trees, for more specialized needs.
The C++ library has a basic suite of containers (deques, lists,
 maps, sets, and vectors), but more important, it has generic
 algorithms, which are function templates that implement common
 algorithms, such as searching and sorting. The algorithms operate on
 iterators, which are an abstraction of pointers that
 apply to any container or other sequence.
This chapter presents an overview of the standard C++ containers,
 the iterators used to examine the containers, and the algorithms that can
 be used with the iterators. It covers how to use the standard containers,
 iterators, and algorithms, as well as how to write your own.
In this chapter, the mathematical notation of [first, last)
 is often used to denote a range. The square bracket marks an inclusive
 endpoint of a range, and the parenthesis marks an exclusive endpoint of a
 range. Thus, [first, last) means a range that extends from first to last, including first, but excluding last. Read more about ranges in "Iterators"
 later in this chapter.
For complete details about the various containers, iterators, and
 algorithms, see Chapter 13.

Containers

The fundamental purpose of a container is to store
 multiple objects in a single container object. Different kinds of
 containers have different characteristics, such as speed, size, and ease
 of use. The choice of container depends on the characteristics and
 behavior you require.
In C++, the containers are implemented as class templates, so you
 can store anything in a container. (Well, almost anything. The type must
 have value semantics, which means it must behave as
 an ordinary value, such as an int.
 Values can be copied and assigned freely. An original and its copy must
 compare as equal. Some containers impose additional
 restrictions.)
Standard Containers

The standard containers fall into two categories: sequence and associative containers. A sequence container preserves
 the original order in which items were added to the container. An
 associative container keeps items in ascending order (you can define
 the order relation) to speed up searching. The standard containers
 are:
	deque
	A deque (double-ended queue) is a sequence container that
 supports fast insertions and deletions at the beginning and end
 of the container. Inserting or deleting at any other position is
 slow, but indexing to any item is fast. Items are not stored
 contiguously. The header is <deque>.

	list
	A list is a sequence container that supports rapid
 insertion or deletion at any position but does not support
 random access. Items are not stored contiguously. The header is
 <list>.

	map
multimap
	A map (or dictionary) is an associative container that
 stores pairs of keys and associated values. The keys determine
 the order of items in the container. map requires unique keys. multimap permits duplicate keys. The
 header for map and multimap is <map>.

	set
multiset
	A set is an associative container that stores keys in
 ascending order. set requires
 unique keys. multiset permits
 duplicate keys. The header for set and multiset is <set>.

	vector
	A vector is a sequence container that is like an array,
 except that it can grow as needed. Items can be rapidly added or
 removed only at the end. At other positions, inserting and
 deleting items is slower. Items are stored contiguously. The
 header is <vector>.

The set and map containers perform insertions,
 deletions, and searches in logarithmic time, which implies a tree or
 tree-like implementation. Items must be kept in sorted order, so a
 hash table implementation is not allowed. Many programmers consider
 the lack of a standard hash table to be a serious omission. When the
 C++ standard is revised, a hash table is likely to be added. The
 STLport project includes hash table-based containers.
 See Appendix B for information
 about STLport.

Container Adapters

In addition to the standard containers, the standard library has
 several container adapters. An adapter is a class template that
 uses a container for storage and provides a restricted interface when
 compared with the standard containers. The standard adapters
 are:
	priority_queue
	A priority queue is organized so that the largest element
 is always the first. You can push an item onto the queue,
 examine the first element, or remove the first element. The
 header is <queue>.

	queue
	A queue is a sequence of elements that lets you add
 elements at one end and remove them at the other end. This
 organization is commonly known as FIFO (first-in, first-out).
 The header is <queue>.

	stack
	A stack is a sequence that lets you add and remove
 elements only at one end. This organization is commonly known as
 LIFO (last-in, first-out). The header is <stack>.

Pseudo-Containers

 The standard library has a few class templates that are
 similar to the standard containers but fail one or more of the
 requirements for a standard container:
	bitset
	Represents a bitmask of arbitrary size. The size is fixed when
 the bitset is declared. There
 are no bitset iterators, so
 you cannot use a bitset with
 the standard algorithms. See <bitset> in Chapter 13 for details.

	basic_string
string
wstring
	Represent character strings. The string class templates
 meet almost all of the requirements of a sequence container, and
 you can use their iterators with the standard algorithms.
 Nonetheless, they fall short of meeting all the requirements of
 a container, such as lacking front and back member functions. The header is
 <string>.

	valarray
	Represents an array of numeric values optimized for
 computational efficiency. A valarray lacks iterators, and as part
 of the optimization, the compiler is free to make assumptions
 that prevent valarray from
 being used with the standard algorithms. See <valarray> in Chapter 13 for details.

	vector<bool>

	A specialization of the vector template. Although vector<> usually meets the
 requirements of a standard container, the vector<bool> specialization does
 not because you cannot obtain a pointer to an element of a
 vector<bool> object.
 See <vector> in Chapter 13 for details.

Container Requirements

This section presents the rules that govern containers.
 Some rules apply to all the standard containers, and you can rely on
 the standard behavior for all C++ implementations. Other rules apply
 only to sequence containers, and some apply only to associative
 containers. If you write your own container class template, be sure to follow the same
 conventions and rules that apply to the standard containers.
Member types

	const_iterator

	The iterator type for const values.

	const_reference

	A const lvalue type
 for the items stored in the container. This is typically the
 same as the allocator's const_reference type.

	difference_type

	A signed integral type denoting the difference between
 two iterators.

	iterator
	The iterator type.

	reference
	An lvalue type for the items stored in the container.
 This is typically the same as the allocator's reference type.

	size_type
	An unsigned integral type that can hold any nonnegative
 difference_type
 value.

	value_type
	The type of item stored in the container. This is
 typically the same as the first template parameter.

A container that supports bidirectional iterators should
 also define the reverse_iterator
 and const_reverse_iterator
 types.
An associative container should define key_type as the key type, compare_type as the key compare function
 or functor, and value_compare as
 a function or functor that compares two value_type objects.
Optionally, a container can declare pointer and const_pointer as synonyms of the
 allocator's types of the same name, and allocator_type for the allocator, which is
 typically the last template parameter.

Member functions

Most of the standard member functions have a complexity that is constant or
 linear in the number of elements in the container. Some of the
 member functions for associative members are logarithmic in the
 number of elements in the container. Each of the descriptions in
 this section notes the complexity of the function.
A container template should have the following constructors.
 You do not need to write separate constructors in all cases; sometimes you can use
 default arguments instead of overloading. If an allocator object is
 supplied, it is copied to the container; otherwise, a default
 allocator is constructed. In each of the following descriptions,
 container is the name of the container
 class template.
	
 container ()

 container (allocator_type)
	Initializes the container to be empty. Complexity is
 constant.

	
 container (const container& that)
	Initializes the container with a copy of all the items
 and the allocator from that. Complexity is linear.

A sequence container should have the following
 additional constructors:
	
 container (size_type n, const value_type&
 x)

 container (size_type n, const value_type& x,
 allocator_type)
	Initializes the container with n copies of x. Complexity is linear with respect
 to n.

	template<InIter>
 container
 (InIter first, InIter
 last)
template<InIter>

 container (InIter first, InIter last,
 allocator_type)
	Initializes the container with copies of the items in
 the range [first, last). Complexity is linear with
 respect to last - first.
If InIter is an
 integral type, the container is initialized with first copies of last (converted to value_type). Complexity is linear
 with respect to first.

An associative container should have the following
 additional constructors:
	
 container (key_compare compare)

 container (key_compare compare,
 allocator_type)
	Initializes an empty container that uses compare to compare keys. Complexity
 is constant.

	template<InIter>
 container
 (InIter first, InIter last,
 key_compare compare)
template<InIter>
 container
 (InIter first, InIter last,
 key_compare compare, allocator_type)
	Initializes the container with copies of the items in
 the range [first, last), comparing keys with compare. Complexity is
 linear.

All containers must have a destructor:
	~
 container ()
	Calls the destructor for every object in the container,
 perhaps by calling clear.
 Complexity is linear.

Many member functions are the same for all the container
 templates, and when you write your own container template, you
 should implement the same member functions with the same behaviors.
 Some are specific to sequence containers, and some to associative
 containers. Each container template can define additional
 members.
	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first item of the
 container. Complexity is constant.

	void clear
 ()
	Erases all the items in the container. Complexity is linear.

	bool empty
 ()
 const
	Returns true if the
 container is empty (size() == 0). Complexity is constant.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one past the last
 item of the container. Complexity is constant. (See Section 10.2 later in
 this chapter for a discussion of what "one past the last item"
 means.)

	 erase
 (iterator
 p)
	Erases the item that p points to. For a sequence
 container, erase returns an
 iterator that points to the item that comes immediately after
 the deleted item or end().
 Complexity depends on the container.
For an associative container, erase does not return a value.
 Complexity is constant (amortized over many calls).

	 erase
 (iterator first,
 last)
	Erases all the items in the range [first, last). For a sequence container,
 erase returns an iterator
 that points to the item that comes immediately after the last
 deleted item or end().
 Complexity depends on the container.
For an associative container, erase does not return a value.
 Complexity is logarithmic, plus last - first.

	size_type max_size
 ()
 const
	Returns the largest number of items the container can
 possibly hold. Although many containers are not constrained,
 except by available memory and the limits of size_type, other container types,
 such as an array type, might have a fixed maximum size.
 Complexity is usually constant.

	container&
 operator=
 (const container&
 that)
	Erases all items in this container and copies all the
 items from that. Complexity
 is linear in size()
 + that.size().

	size_type size
 ()
 const
	Returns the number of items in the container. Complexity
 is usually constant.

	void swap
 (const container&
 that)
	Swaps the elements of this container with that. An associative container also
 swaps the comparison function or functions. Complexity is
 usually constant.

Each container should have all of its equality and relational operators defined, either as
 member functions or, preferably, as functions at the namespace
 level. Namespace-level functions offer more flexibility than member
 functions. For example, the compiler can use implicit type
 conversions on the lefthand operand but only if the function is not
 a member function.
A container that supports bidirectional iterators should define rbegin and rend member functions to return reverse
 iterators.
The following functions are optional. The standard containers
 provide only those functions that have constant complexity.
	reference at
 (size_type
 n)
const_reference
 at
 (size_type n)
 const
	Returns the item at index n, or throws out_of_range if n >= size(
).

	reference back
 ()
const_reference
 back
 () const
	Returns the last item in the container. Behavior is
 undefined if the container is empty.

	reference front
 ()
const_reference
 front
 () const
	Returns the first item in the container. Behavior is
 undefined if the container is empty.

	reference operator[]
 (size_type
 n)
const_reference
 operator[]
 (size_type
 n)
	Returns the item at index n. Behavior is undefined if n >= size(
).

	void pop_back
 ()
	Erases the last item in the container. Behavior is
 undefined if the container is empty.

	void pop_front
 ()
	Erases the first item in the container. Behavior is
 undefined if the container is empty.

	void push_back
 (const value_type&
 x)
	Inserts x as the new
 last item in the container.

	void push_front
 (const value_type&
 x)
	Inserts x as the new
 first item in the container.

A sequence container should define the following member
 functions. The complexity of each depends on the container
 type.
	iterator insert
 (iterator p, const
 value_type& x)
	Inserts x immediately
 before p and returns an
 iterator that points to x.

	void insert
 (iterator p, size_type
 n,
const value_type&
 x)
	Inserts n copies of
 x before p.

	template<InIter>
void insert
 (iterator p, InIter first,
 InIter last)
	Copies the values from [first, last) and inserts them before
 p.

An associative container should define the following
 member functions. In the descriptions of the complexity, N refers to the number of elements in the
 container, M refers to the
 number of elements in the argument range (e.g., last - first), and count is the value that the function
 returns. Some of these member functions seem to duplicate standard
 algorithms (as discussed in Section 10.3 later in this
 chapter), but the associative containers can implement them with
 better performance than the generic algorithms.
	size_type count
 (const key_type&
 k) const
	Returns the number of items equivalent to k. Complexity is log N + count.

	pair<const_iterator,const_iterator>
 equal_range (const
 key_type& k) const
pair<iterator,iterator>
 equal_range (const key_type& k)
	Returns the equivalent of make_pair(lower_bound(k), upper_bound(k)). Complexity is log
 N.

	size_type erase
 (const key_type&
 k)
	Erases all the items equivalent to k. Returns the number of items
 erased. Complexity is log N + count.

	const_iterator
 find
 (const key_type& k)
 const
iterator find
 (const key_type&
 k)
	Finds an item equivalent to k and returns an iterator that
 points to one such item, or end(
) if not found. Complexity is log N.

	 insert (const value_type&
 x)
	Inserts x. If the
 container permits duplicate keys, insert returns an iterator that
 points to the newly inserted item. If the container requires
 unique keys, insert returns
 pair<iterator,bool>,
 in which the first element of the pair is an iterator that
 points to an item equivalent to x, and the second element is
 true if x was inserted or false if x was already present in the
 container. Complexity is log N.

	iterator insert
 (iterator p, const
 value_type& x)
	Inserts x and returns
 an iterator that points to x. The iterator p hints to where x might belong. Complexity is log
 N in general, but is
 constant (amortized over many calls) if the hint is correct,
 that is, if x is inserted
 immediately after p.

	template<InIter>
void insert
 (InIter first, InIter
 last)
	Copies the items from [first, last) and inserts each item in the
 container. Complexity is M log(N + M), but is linear if the range is
 already sorted.

	key_compare key_comp
 ()
 const
	Returns the key compare function or functor. Complexity
 is constant.

	const_iterator
 lower_bound (const key_type& k)
 const
iterator lower_bound
 (const key_type&
 k)
	Returns an iterator that points to the first item in the
 container that does not come before k. That is, if k is in the container, the iterator
 points to the position of its first occurrence; otherwise, the
 iterator points to the first position where k should be inserted. Complexity is
 log N.

	value_compare value_comp
 ()
 const
	Returns the value compare function or functor.
 Complexity is constant.

	const_iterator
 upper_bound (const key_type& k)
 const
iterator upper_bound
 (const key_type&
 k)
	Returns an iterator that points to the first item in the
 container that comes after all occurrences of k. Complexity is log N.

Exceptions

 The standard containers are designed to be robust in
 the face of exceptions. The exceptions that the containers
 themselves can throw are well-defined (for example, at might throw out_of_range), and most member functions
 do not throw any exceptions of their own.
If a single value is being added to a container (by calling insert, push_front, or push_back), and an exception is thrown,
 the container remains in a valid state without adding the value to
 the container.
When inserting more than one value, different containers have different behaviors. A list, for example, ensures that all items
 are inserted or none, that is, if an exception is thrown, the
 list is unchanged. A map or set, however, ensures only that each
 individual item is inserted successfully. If an exception is thrown
 after inserting some of the items from a range, the destination
 container retains the elements that had been inserted
 successfully.
The erase, pop_back, and pop_front functions never throw
 exceptions.
The swap function throws an
 exception only if an associative container's Compare object's copy constructor or
 assignment operator throws an exception.
Example 10-1 shows
 an slist container, which implements a singly-linked list. A
 singly-linked list requires slightly less memory than a
 doubly-linked list but offers, at best, a forward iterator, not a
 bidirectional iterator.
Example 10-1. Implementing a custom container: a singly-linked
 list
// Simple container for singly-linked lists.
template<typename T, typename Alloc = std::allocator<T> >
class slist {
 // Private type for a link (node) in the list.
 template<typename U>
 struct link {
 link* next;
 U value;
 };
 typedef link<T> link_type;

public:
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef Alloc allocator_type;
 typedef T value_type;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 class iterator; // SeeSection 10.2 later in this chapter for
 class const_iterator; // the iterators.

 slist(const slist& that);
 slist(const Alloc& alloc = Alloc());
 slist(size_type n, const T& x, const Alloc& alloc=Alloc());
 template<typename InputIter>
 slist(InputIter first, InputIter last,
 const Alloc& alloc = Alloc());
 ~slist() { clear(); }

 slist& operator=(const slist& that);
 allocator_type get_allocator() const { return alloc_; }

 iterator begin() { return iterator(0, head_); }
 const_iterator begin() const
 { return const_iterator(0, head_); }
 iterator end() { return iterator(0, 0); }
 const_iterator end() const { return const_iterator(0, 0); }

 void pop_front() { erase(begin()); }
 void push_front(const T& x) { insert(begin(), x); }
 T front() const { return head_->value; }
 T& front() { return head_->value; }

 iterator insert(iterator p, const T& x);
 void insert(iterator p, size_type n, const T& x);
 template<typename InputIter>
 void insert(iterator p, InputIter first, InputIter last);

 iterator erase(iterator p);
 iterator erase(iterator first, iterator last);

 void clear() { erase(begin(), end()); }
 bool empty() const { return size() == 0; }
 size_type max_size() const
 { return std::numeric_limits<difference_type>::max(); }
 void resize(size_type sz, const T& x = T());
 size_type size() const { return count_; }
 void swap(slist& that);

private:
 typedef typename
 allocator_type::template rebind<link_type>::other
 link_allocator_type;

 link_type* newitem(const T& x, link_type* next = 0);
 void delitem(link_type* item);

 template<typename InputIter>
 void construct(InputIter first, InputIter last,
 is_integer_tag);

 template<typename InputIter>
 void construct(InputIter first, InputIter last,
 is_not_integer_tag);

 link_type* head_;
 link_type* tail_;
 size_t count_;
 allocator_type alloc_;
 link_allocator_type linkalloc_;
};

// Constructor. If InputIter is an integral type, the standard requires the
// constructor to interpret first and last as a count and value, and perform the
// slist(size_type, T) constructor. Use the is_integer trait to dispatch to the
// appropriate construct function, which does the real work.
template<typename T, typename A>
template<typename InputIter>
slist<T,A>::slist(InputIter first, InputIter last,
 const A& alloc)
: alloc_(alloc), linkalloc_(link_allocator_type()),
 head_(0), tail_(0), count_(0)
{
 construct(first, last, is_integer<InputIter>::tag());
}

template<typename T, typename A>
template<typename InputIter>
void slist<T,A>::construct(InputIter first, InputIter last,
 is_integer_tag)
{
 insert(begin(), static_cast<size_type>(first),
 static_cast<T>(last));
}

template<typename T, typename A>
template<typename InputIter>
void slist<T,A>::construct(InputIter first, InputIter last,
 is_not_integer_tag)
{
 insert(begin(), first, last);
}

// Private function to allocate a new link node.
template<typename T, typename A>
typename slist<T,A>::link_type*
 slist<T,A>::newitem(const T& x, link_type* next)
{
 link_type* item = linkalloc_.allocate(1);
 item->next = next;
 alloc_.construct(&item->value, x);
 return item;
}

// Private function to release a link node.
template<typename T, typename A>
void slist<T,A>::delitem(link_type* item)
{
 alloc_.destroy(&item->value);
 linkalloc_.deallocate(item, 1);
}

// Basic insertion function. All insertions eventually find their way here.
// Inserting at the head of the list (p == begin()) must set the head_ member.
// Inserting at the end of the list (p == end()) means appending to the list,
// which updates the tail_'s next member, and then sets tail_. Anywhere else in
// the list requires updating p.prev_->next. Note that inserting into an empty
// list looks like inserting at end(). Return an iterator that points to the
// newly inserted node.
template<typename T, typename A>
typename slist<T,A>::iterator
 slist<T,A>::insert(iterator p, const T& x)
{
 // Allocate the new link before changing any pointers. If newitem throws an
 // exception, the list is not affected.
 link_type* item = newitem(x, p.node_);
 if (p.node_ == 0) {
 p.prev_ = tail_;
 // At end
 if (tail_ == 0)
 head_ = tail_ = item; // Empty list
 else {
 tail_->next = item;
 tail_ = item;
 }
 }
 else if (p.prev_ == 0)
 head_ = item; // New head of list
 else
 p.prev_->next = item;
 p.node_ = item;
 ++count_;
 return p;
}

// Erase the item at p. All erasures come here eventually. If erasing begin(),
// update head_. If erasing the last item in the list, update tail_. Update the
// iterator to point to the node after the one being deleted.
template<typename T, typename A>
typename slist<T,A>::iterator slist<T,A>::erase(iterator p)
{
 link_type* item = p.node_;
 p.node_ = item->next;
 if (p.prev_ == 0)
 head_ = item->next;
 else
 p.prev_->next = item->next;
 if (item->next == 0)
 tail_ = p.prev_;
 --count_;
 delitem(item);
 return p;
}

// Comparison functions are straightforward.
template<typename T>
bool operator==(const slist<T>& a, const slist<T>& b)
{
 return a.size() == b.size() &&
 std::equal(a.begin(), a.end(), b.begin());
}

Using Containers

A container holds stuff. Naturally, you need to know how
 to add stuff to a container, remove stuff from a container, find stuff
 in a container, and so on.
Value type requirements

 Every container stores values and imposes certain
 restrictions on the values' types. Most important, the value must be
 copyable and assignable. The result of the copy constructor or
 assignment operator must be an exact copy of the original. (Note
 that you cannot store auto_ptr<> objects in a container because copies are not exact
 duplicates.)
In a sequence container, operator== is used to compare objects when searching. If you
 compare entire containers with any relational operators, the value
 types must also support operator< . All the relational operators are defined in terms of
 operator== and operator<.
In an associative container, values are stored in ascending
 order according to a comparison function or functor that you supply.
 The default is std::less<>,
 which uses operator<. Two
 objects A and B are considered to be equal (more precisely,
 equivalent) when A < B is false and B < A
 is false, so there is no need for operator==.

Inserting values

To add an item to a container, call an insert member function. Sequence containers might also have
 push_front or push_back to insert an item at the
 beginning or end of the sequence. The push_front and push_back members exist only if they can
 be implemented in constant time. (Thus, for example, vector does not have push_front.)
Every container has an insert(iter,
 item)
 function, in which iter is an iterator
 and item is the item to insert. A
 sequence container inserts the item before the
 indicated position. Associative containers treat the iterator as a
 hint: if the item belongs immediately after the iterator's position,
 performance is constant instead of logarithmic.
Sequence containers have additional insert functions: for inserting many
 copies of an item at a position and for copying a range to a given
 position. Associative containers have additional insert functions for inserting an item
 (with no positional hint) and for copying a range into the
 container.

Erasing values

To remove an item from a container, call an erase member function. All containers have
 at least two erase functions: one
 that takes a single iterator to delete the item that the iterator
 points to, and another two iterators to delete every item in the
 range. Associative containers also have an erase function that takes a value as an
 argument to erase all matching items.
The standard containers are designed to be used with the
 standard iterators (see Section 10.2 later in this
 chapter) and standard algorithms (see Section 10.3 later in this
 chapter). The standard algorithms offer much more functionality than
 the containers' member functions, but they also have limitations. In
 particular, the standard algorithms cannot insert or erase items.
 For example, among the standard algorithms are remove and remove_if. Their names are suggestive but
 misleading. They do not remove anything from the container. Instead,
 they rearrange the elements of the container so that the items to
 retain are at the beginning. They return an iterator that points to
 the first item to be erased. Call erase with this iterator as the first
 argument and end() as the second
 to erase the items from the container. This two-step process is
 needed because an iterator cannot erase anything. The only way to
 erase an item from a container is to call a member function of the
 container, and the standard algorithms do not have access to the
 containers, only to iterators. Example 10-2 shows how to
 implement a generic erase
 function that calls remove and then the erase member function.
Example 10-2. Removing matching items from a sequence container
// Erase all items from container c that are equal to item.
template<typename C>
void erase(C& c, const typename C::value_type& item)
{
 c.erase(std::remove(c.begin(), c.end(), item), c.end());
}

template<typename C, typename Pred>
void erase_if(C& c, Pred pred)
{
 c.erase(std::remove_if(c.begin(), c.end(), pred), c.end());
}

int main()
{
 std::list<int> lst;
 ...
 // Erase all items == 20.
 erase(lst, 20);
 ...
 // Erase all items < 20.
 erase_if(lst, std::bind2nd(std::less<int>(), 20));
 ...
}

Searching

The standard algorithms provide several ways to search for
 items in a container: adjacent_find, find, find_end, find_first_of, find_if, search, and search_n. These algorithms essentially
 perform a linear search of a range. If you know exactly which item
 you want, you can search an associative container much faster by
 calling the find member function.
 For example, suppose you want to write a generic function, contains, that tells you whether a
 container contains at least one instance of an item. Example 10-3 shows one way,
 which relies on find, to
 implement this function.
Example 10-3. Determining whether a container contains an item
// Need a type trait to tell us which containers are associative and which are
// not (seeChapter 8).
struct associative_container_tag {};
struct sequence_container_tag {};

template<typename C>
struct is_associative
{};

template<typename T, typename A>
struct is_associative<std::list<T,A> >
{
 typedef sequence_container_tag tag;
};
// Ditto for vector and deque

template<typename T, typename C, typename A>
struct is_associative<std::set<T,C,A> >
{
 typedef associative_container_tag tag;
};
// Ditto for multiset, map, and multimap

template<typename C, typename T>
inline bool do_contains(const C& c, const T& item,
 associative_container_tag)
{
 return c.end() != c.find(item);
}

template<typename C, typename T>
inline bool do_contains(const C& c, const T& item,
 sequence_container_tag)
{
 return c.end() != std::find(c.begin(), c.end(), item);
}

// Here is the actual contains function. It dispatches to do_contains, picking
// the appropriate overloaded function depending on the type of the container c.
template<typename C, typename T>
bool contains(const C& c, const T& item)
{
 return do_contains(c, item, is_associative<C>::tag());
}

As you can see, iterators are important for using containers.
 You need them to insert at a specific position, identify an item for
 erasure, or specify ranges for algorithms. The next section
 discusses iterators in more depth.

Iterators

An iterator is an abstraction of a pointer used for pointing
 into containers and other sequences. An ordinary pointer can point to
 different elements in an array. The ++ operator advances the pointer to the next
 element, and the * operator
 dereferences the pointer to return a value from the array. Iterators
 generalize the concept so that the same operators have the same behavior
 for any container, even trees and lists. See the <iterator> section of Chapter 13 for more details.
Iterator Categories

There are five categories of iterators:
	Input
	Permits you to read a sequence in one pass. The increment (++)
 operator advances to the next element, but there is no decrement
 operator. The dereference (*)
 operator returns an rvalue, not an lvalue, so you can read
 elements but not modify them.

	Output
	Permits you to write a sequence in one pass. The increment
 (++) operator advances to the
 next element, but there is no decrement operator. You can
 dereference an element only to assign a value to it. You cannot
 compare output iterators.

	Forward
	Permits unidirectional access to a sequence. You can refer
 to and assign to an item as many times as you want. You can use
 a forward iterator wherever an input iterator is required or
 wherever an output iterator is required.

	Bidirectional
	Similar to a forward iterator but also supports the
 -- (decrement) operator to
 move the iterator back one position.

	Random access
	Similar to a bidirectional iterator but also supports the
 [] (subscript) operator to
 access any index in the sequence. Also, you can
 add or subtract an integer to move a random access iterator by
 more than one position at a time. Subtracting two random access
 iterators yields an integer distance between them. Thus, a
 random access iterator is most like a conventional pointer, and
 a pointer can be used as a random access iterator.

An input, forward, bidirectional, or random access iterator can
 be a const_iterator. Dereferencing
 a const_iterator yields a constant
 value, but otherwise behaves as described previously. See Section 10.2.5 later in this
 chapter for details.

Iterator Safety

The most important point to remember about iterators is that they are inherently unsafe. Like
 pointers, an iterator can point to a container that has been destroyed
 or to an element that has been erased. You can advance an iterator
 past the end of the container the same way a pointer can point past
 the end of an array. With a little care and caution, however,
 iterators are safe to use.
The first key to safe use of iterators is to make sure a program
 never dereferences an iterator that marks the end of a range.
 Two iterators can denote a range of values, typically in a container.
 One iterator points to the start of the range and another marks the
 end of the range by pointing to a position one past the last element
 in the range. The mathematical notation of [first, last) tells you that the item that first points to is included in the range,
 but the item that last points to is
 excluded from the range.
A program must never dereference an iterator that points to one
 past the end of a range (e.g., last) because that iterator might not be
 valid. It might be pointing to one past the end of the elements of a
 container, for example.
Even a valid iterator can become invalid and therefore unsafe to
 use, for example if the item to which the iterator points is erased.
 The detailed descriptions in Chapter
 13 tell you this information for each container type. In
 general, iterators for the node-based containers (list, set, multiset, map, multimap) become invalid only when they
 point to an erased node. Iterators for the array-based containers
 (deque, vector) become invalid when the underlying
 array is reallocated, which might happen for any insertion and for
 some erasures.

Special Iterators

Iterators are often used with containers, but they have
 many more uses. You can define iterators for almost any sequence of
 objects. The standard library includes several examples of
 non-container iterators, most notably I/O iterators and
 inserters.
At the lowest level, a stream is nothing more than a sequence of
 characters. At a slightly higher level, you can think of a stream as a
 sequence of objects, which would be read with operator>> or written with operator<<. Thus, the standard library
 includes the following I/O iterators: istreambuf_iterator, ostreambuf_iterator, istream_iterator, and ostream_iterator. Example 10-4 shows how to use
 streambuf iterators to copy one
 stream to another.
Example 10-4. Copying streams with streambuf iterators
template<typename charT, typename traits>
void copy(std::basic_ostream<charT,traits>& out,
 std::basic_istream<charT,traits>& in)
{
 std::copy(std::istreambuf_iterator<charT>(in),
 std::istreambuf_iterator<charT>(),
 std::ostreambuf_iterator<charT>(out));
}

Another kind of output iterator is an insert
 iterator , which inserts items into a sequence collection. The
 insert iterator requires a container and an optional iterator to
 specify the position where the new items should be inserted. You can
 insert at the back of a sequence with back_insert_iterator , at the front of a sequence with front_insert_iterator , or at a specific position in any kind of container
 with insert_iterator . Each of these iterator class templates has an
 associated function template that creates the iterator for you and
 lets the compiler deduce the container type. Example 10-5 shows how to read a
 series of numbers from a stream, store them in reverse order in a
 list, and print the list, one number per line.
Example 10-5. Inserting numbers in a vector
#include <algorithm>
#include <iostream>
#include <iterator>
#include <list>

int main()
{
 using namespace std;

 list<double> data;
 copy(istream_iterator<double>(cin),
 istream_iterator<double>(),
 front_inserter(data));
 // Use the data...
 // Write the data, one number per line.
 copy(data.begin(), data.end(),
 ostream_iterator<double>(cout, "\n"));
}

Custom Iterators

The simplest way to write your own iterator is to derive
 from the iterator class template.
 Specify the iterator category as the first template parameter and the
 item type as the second parameter. In most cases, you can use the
 default template arguments for the remaining parameters. (See <iterator> in Chapter 13 for details.) The slist container from Example 10-1 needs an iterator and a const_iterator. The only difference is that
 a const_iterator returns rvalues
 instead of lvalues. Most of the iteration logic can be factored into a
 base class. Example 10-6
 shows iterator and base_iterator; const_iterator is almost identical to
 iterator, so it is not
 shown.
Example 10-6. Writing a custom iterator
// The declaration for iterator_base is nested in slist.
class iterator_base :
 public std::iterator<std::forward_iterator_tag, T> {
 friend class slist;
public:
 bool operator==(const iterator_base& iter) const
 { return node_ == iter.node_; }
 bool operator!=(const iterator_base& iter) const
 { return ! (*this == iter); }

protected:
 iterator_base(const iterator_base& iter)
 : prev_(iter.prev_), node_(iter.node_) {}
 iterator_base(slist::link_type* prev,
 slist::link_type* node)
 : prev_(prev), node_(node) {}
 // If node_ == 0, the iterator == end().
 slist::link_type* node_;
 // A pointer to the node before node_ is needed to support erase(). If
 // prev_ == 0, the iterator points to the head of the list.
 slist::link_type* prev_;
private:
 iterator_base();
};

// The declaration for iterator is nested in slist.
class iterator : public iterator_base {
 friend class slist;
public:
 iterator(const iterator& iter) : iterator_base(iter) {}
 iterator& operator++() { // Pre-increment
 this->prev_ = this->node_;
 this->node_ = this->node_->next;
 return *this;
 }
 iterator operator++(int) { // Post-increment
 iterator tmp = *this;
 operator++();
 return tmp;
 }
 T& operator*() { return this->node_->value; }
 T* operator->() { return &this->node_->value; }
private:
 iterator(slist::link_type* prev, slist::link_type* node)
 : iterator_base(prev, node) {}
};

const_iterators

Every container must provide an iterator type and a const_iterator type. Functions such as begin and end return iterator when called on a non-const container and return const_iterator when called on a const container.
Note that a const_iterator
 (with underscore) is quite different from a const iterator (without underscore). A const iterator is a constant object of type
 iterator. Being constant, it cannot
 change, so it cannot advance to point to a different position. A
 const_iterator, on the other hand,
 is a non-const object of type
 const_iterator. It is not constant,
 so its value can change. The key difference between iterator and const_iterator is that iterator returns lvalues of type T, and const_iterator returns unmodifiable objects,
 either rvalues or const lvalues of
 type T. The standard requires that
 a plain iterator be convertible to
 const_iterator, but not vice
 versa.
One problem is that some members of the standard containers
 (most notably erase and insert) take iterator as a parameter, not const_iterator. If you have a const_iterator, you cannot use it as an
 insertion or erasure position.
Another problem is that it might be difficult to compare an
 iterator with a const_iterator. If the compiler reports an
 error when you try to compare iterators for equality or inequality,
 try swapping the order of the iterators, that is, if a ==
 b fails to compile, try b ==
 a. Most likely, the problem is that
 b is a const_iterator and a is a plain iterator. By swapping the order, you let the
 compiler convert a to a const_iterator and allow the
 comparison.
For a full explanation of how best to work with const_iterators, see Scott Meyers's
 Effective STL
 (Addison-Wesley).

Reverse Iterators

Every container that supports bidirectional or random access
 iterators also provides reverse iterators, that is, iterators that start with
 the last element and "advance" toward the first element of the
 container. These iterators are named reverse_iterator and const_reverse_iterator.
The standard library includes the reverse_iterator class template as a
 convenient way to implement the reverse_iterator type. The reverse_iterator class template is an
 iterator adapter that runs in the reverse direction of the adapted
 iterator. The adapted iterator must be a bidirectional or random
 access iterator. You can obtain the adapted iterator, given a reverse
 iterator, by calling the base
 function.
On paper, the reverse iterator seems like a good idea. After
 all, a bidirectional iterator can run in two directions. There is no
 reason why an iterator adapter could not implement operator++ by calling the adapted iterator's
 operator-- function.
 Reverse iterators share a problem with const_iterators, namely that several
 members, such as insert and
 erase, do not take an iterator
 template parameter but require the exact iterator type, as declared in the container
 class. The reverse_iterator type is
 not accepted, so you must pass the adapted iterator instead, which is
 returned from the base
 function.
As an insertion point, the base iterator works fine, but for erasing,
 it is one off from the desired position. The solution is to increment
 the reverse iterator, then call base, as shown in Example 10-7.
Example 10-7. A reverse iterator
int main()
{
 std::list<int> l;
 l.push_back(10); l.push_back(42); l.push_back(99);
 print(l);
 std::list<int>::reverse_iterator ri;
 ri = std::find(l.rbegin(), l.rend(), 42);
 l.insert(ri.base(), 33);
 // OK: 33 inserted before 42, from the point of view of a reverse iterator,
 // that is, 33 inserted after 42

 ri = std::find(l.rbegin(), l.rend(), 42);
 l.erase(ri.base());
 // Oops! Item 33 is deleted, not item 42.

 ri = std::find(l.rbegin(), l.rend(), 42);
 l.erase((++ri).base());
 // That's right! In order to delete the item ri points to, you must advance ri
 // first, then delete the item.
}

For a full explanation of how best to work with reverse
 iterators, see Scott Meyer's Effective
 STL (Addison-Wesley).

Algorithms

The so-called algorithms in the standard library distinguish C++ from
 other programming languages. Every major programming language has a set
 of containers, but in the traditional object-oriented approach, each
 container defines the operations that it permits, e.g., sorting,
 searching, and modifying. C++ turns object-oriented programming on its
 head and provides a set of function templates, called
 algorithms, that work with iterators, and therefore
 with almost any container.
The advantage of the C++ approach is that the library can contain
 a rich set of algorithms, and each algorithm can be written once and
 work with (almost) any kind of container. And when you define a custom
 container, it automatically works with the standard algorithms (assuming
 you implemented the container's iterators correctly). The set of
 algorithms is easily extensible without touching the container classes.
 Another benefit is that the algorithms work with iterators, not
 containers, so even non-container iterators (such as the stream
 iterators) can participate.
C++ algorithms have one disadvantage, however. Remember that
 iterators, like pointers, can be unsafe. Algorithms use iterators, and
 therefore are equally unsafe. Pass the wrong iterator to an algorithm,
 and the algorithm cannot detect the error and produces undefined
 behavior. Fortunately, most uses of algorithms make it easy to avoid
 programming errors.
Most of the standard algorithms are declared in the <algorithm> header, with some numerical
 algorithms in <numeric>. Refer
 to the respective sections of Chapter
 13 for details.
How Algorithms Work

The generic algorithms all work in a similar fashion. They are all
 function templates, and most have one or more iterators as template
 parameters. Because the algorithms are templates, you can instantiate
 the function with any template arguments that meet the basic
 requirements. For example, for_each
 is declared as follows:
template<typename InIter, typename Function>
Function for_each(InIter first, InIter last, Function func);
The names of the template parameters tell you what is expected
 as template arguments: InIter must
 be an input iterator, and Function
 must be a function pointer or functor. The documentation for for_each further tells you that Function must take one argument whose type
 is the value_type of InIter. That's all. The InIter argument can be anything that meets
 the requirements of an input iterator. Notice that no container is
 mentioned in the declaration or documentation of for_each. For example, you can use an
 istream_iterator.
For a programmer trained in traditional object-oriented
 programming, the flexibility of the standard algorithms might seem
 strange or backwards. Thinking in terms of algorithms takes some
 adjustment.
For example, some object-oriented container classes define
 sort as a member function or as a
 function that applies only to certain kinds of objects. (For example,
 Java defines sort only on arrays
 and List objects). If you have a
 new kind of container, you must duplicate the implementation of
 sort or make sure the
 implementation of your container maps to one of the standard
 implementations of sort. In C++,
 you can invent any kind of crazy container, and as long as it supports
 a random access iterator, you can use the standard sort function.
Whenever you need to process the contents of a container, you
 should think about how the standard algorithms can help you. For
 example, suppose you need to read a stream of numbers into a data array. Typically, you
 would set up a while loop to read
 the input stream and, for each number read, append the number to the
 array. Now rethink the problem in terms of an algorithmic solution.
 What you are actually doing is copying data from an input stream to an
 array, so you could use the copy
 algorithm:
std::copy(std::istream_iterator<double>(stream),
 std::istream_iterator<double>(),
 std::back_inserter(data));
The copy algorithm copies all
 the items from one range to another. The input comes from an istream_iterator, which is an iterator
 interface for reading from an istream. The output range is a back_insert_iterator (created by the
 back_inserter function), which is
 an output iterator that pushes items onto a container.
At first glance, the algorithmic solution doesn't seem any
 simpler or clearer than a straightforward loop:
double x;
while (stream >> x)
 data.push_back(x);
More complex examples demonstrate the value of the C++
 algorithms. For example, all major programming languages have a type
 for character strings. They typically also have a function for finding
 substrings. What about the more general problem of finding a subrange
 in any larger range? Suppose a researcher is looking for patterns in a
 data set and wants to see if a small data pattern occurs in a larger
 data set. In C++, you can use the search algorithm:
std::vector<double> data;
...
if (std::search(data.begin(), data.end(), pattern.begin(),
 pattern.end()) != data.end())
{
 // found the pattern...
}
A number of algorithms take a function pointer or functor (that
 is, an object that overloads operator(
)) as one of the arguments. The algorithms call the function
 and possibly use the return value. For example, count_if counts the number of times the
 function returns a true (nonzero) result when applied to each element
 in a range:
bool negative(double x)
{
 return x < 0;
}

std::vector<double>::iterator::difference_type neg_cnt;
std::vector<double> data;
...
neg_cnt = std::count_if(data.begin(), data.end(), negative);
In spite of the unwieldy declaration for neg_cnt, the application of count_if to count the number of negative
 items in the data vector is easy to
 write and read.
If you don't want to write a function to be used only with an
 algorithm, you might be able to use the standard functors or function
 objects (which are declared in the <functional> header). For example, the
 same count of negative values can be obtained with the
 following:
std::vector<double>::iterator::difference_type neg_cnt;
std::vector<double> data;
...
neg_cnt = std::count_if(data.begin(), data.end(),
 std::bind2nd(std::less<double>, 0.0));
The std::less class template defines operator(), so it takes two arguments and
 applies operator< to those
 arguments. The bind2nd function
 template takes a two-argument functor and binds a constant value (in
 this case 0.0) as the second
 argument, returning a one-argument function (which is what count_if requires). The use of standard
 function objects can make the code harder to read, but also helps
 avoid writing one-off custom functions. (The Boost project expands and enhances the standard
 library's binders. See Appendix B
 for information about Boost.)
When using function objects, be very careful if those objects
 maintain state or have global side effects. Some algorithms copy the
 function objects, and you must be sure that the state is also properly
 copied. The numerical algorithms do not permit function objects that
 have side effects.
Example 10-8 shows
 one use of a function object. It accumulates statistical data for
 computing the mean and variance of a data set. Pass an instance of
 Statistics to the for_each algorithm to accumulate the
 statistics. The copy that is returned from for_each contains the desired
 results.
Example 10-8. Computing statistics with a functor
#include <algorithm>
#include <cstddef>
#include <cmath>
#include <iostream>
#include <ostream>

template<typename T>
class Statistics {
public:
 typedef T value_type;
 Statistics() : n_(0), sum_(0), sumsq_(0) {}
 void operator()(double x) {
 ++n_;
 sum_ += x;
 sumsq_ += x * x;
 }
 std::size_t count() const { return n_; }
 T sum() const { return sum_; }
 T sumsq() const { return sumsq_; }
 T mean() const { return sum_ / n_; }
 T variance() const
 { return (sumsq_ - sum_*sum_ / n_) / (n_ - 1); }
private:
 std::size_t n_;
 T sum_;
 T sumsq_; // Sum of squares
};

int main()
{
 using namespace std;

 Statistics<double> stat = for_each(
 istream_iterator<double>(cin),
 istream_iterator<double>(),
 Statistics<double>());

 cout << "count=" << stat.count() << '\n';
 cout << "mean =" << stat.mean() << '\n';
 cout << "var =" << stat.variance() << '\n';
 cout << "stdev=" << sqrt(stat.variance()) << '\n';
 cout << "sum =" << stat.sum() << '\n';
 cout << "sumsq=" << stat.sumsq() << '\n';
}

Standard Algorithms

Chapter 13 describes all
 the algorithms in detail. This section presents a
 categorized summary of the algorithms.
It is always your responsibility to ensure that the output range
 is large enough to accommodate the input.
If the algorithm name ends with _if, the final argument must be a
 predicate, that is, a function pointer or
 function object that returns a Boolean result (a result that is
 convertible to type bool).
Nonmodifying operations

The following algorithms examine every element of a sequence without
 modifying the order:
	count
	Returns the number of items that match a given
 value

	count_if
	Returns the number of items for which a predicate
 returns true

	for_each
	Applies a function or functor to each item

Comparison

The following algorithms compare objects or sequences (without modifying the
 elements):
	equal
	Determines whether two ranges have equivalent
 contents

	lexicographical_compare

	Determines whether one range is considered less than
 another range

	max
	Returns the maximum of two values

	max_element
	Finds the maximum value in a range

	min
	Returns the minimum of two values

	min_element
	Finds the minimum value in a range

	mismatch
	Finds the first position where two ranges differ

Searching

The following algorithms search for a value or a subsequence in a
 sequence (without modifying the elements):
	adjacent_find

	Finds the first position where an item is equal to its
 neighbor

	find
	Finds the first occurrence of a value in a range

	find_end
	Finds the last occurrence of a subsequence in a
 range

	find_first_of

	Finds the first position where a value matches any one
 item from a range of values

	find_if
	Finds the first position where a predicate returns
 true

	search
search_n
	Finds a subsequence in a range

Binary search

The following algorithms apply a binary search to a sorted
 sequence. The sequence typically comes from a sequence
 container in which you have already sorted the elements. You can use
 an associative containers, but they provide the last three functions
 as member functions, which might result in better
 performance.
	binary_search

	Finds an item in a sorted range using a binary
 search

	equal_range
	Finds the upper and lower bounds

	lower_bound
	Finds the lower bound of where an item belongs in a
 sorted range

	upper_bound
	Finds the upper bound of where an item belongs in a
 sorted range

Modifying sequence operations

The following algorithms modify a sequence:
	copy
	Copies an input range to an output range

	copy_backward

	Copies an input range to an output range, starting at
 the end of the output range

	fill
fill_n
	Fills a range with a value

	generate
generate_n
	Fills a range with values returned from a
 function

	iter_swap
	Swaps the values that two iterators point to

	random_shuffle

	Shuffles a range into random order

	remove
	Reorders a range to prepare to erase all elements equal
 to a given value

	remove_copy
	Copies a range, removing all items equal to a given
 value

	remove_copy_if

	Copies a range, removing all items for which a predicate
 returns true

	remove_if
	Reorders a range to prepare to erase all items for which
 a predicate returns true

	replace
	Replaces items of a given value with a new value

	replace_copy
	Copies a range, replacing items of a given value with a
 new value

	replace_copy_if

	Copies a range, replacing items for which a predicate
 returns true with a new value

	replace_if
	Replaces items for which a predicate returns true with a
 new value

	reverse
	Reverses a range in place

	reverse_copy
	Copies a range in reverse order

	rotate
	Rotates items from one end of a range to the other
 end

	rotate_copy
	Copies a range, rotating items from one end to the
 other

	swap_ranges
	Swaps values in two ranges

	transform
	Modifies every value in a range by applying a
 transformation function

	unique
	Reorders a range to prepare to erase all adjacent,
 duplicate items

	unique_copy
	Copies a range, removing adjacent, duplicate
 items

Sorting

The following algorithms are related to sorting and partitioning. You can supply a comparison function or
 functor or rely on the default, which uses the < operator.
	nth_element
	Finds the item that belongs at the nth position (if the range were
 sorted) and reorders the range to partition it into items less
 than the nth item and
 items greater than or equal to the nth item.

	partial_sort
	Reorders a range so the first part is sorted.

	partial_sort_copy

	Copies a range so the first part is sorted.

	partition
	Reorders a range so that all items for which a predicate
 is true come before all items for which the predicate is
 false.

	sort
	Sorts items in ascending order.

	stable_partition

	Reorders a range so that all items for which a predicate
 is true come before all items for which the predicate is
 false. The relative order of items within a partition is
 maintained.

	stable_sort
	Sorts items in ascending order. The relative order of
 equal items is maintained.

Merging

The following algorithms merge two sorted sequences:
	inplace_merge

	Merges two sorted, consecutive subranges in place, so
 the results replace the original ranges

	merge
	Merges two sorted ranges, copying the results to a
 separate range

Set operations

The following algorithms apply standard set operations to sorted
 sequences:
	includes
	Determines whether one sorted range is a subset of
 another

	set_difference

	Copies the set difference of two sorted ranges to an
 output range

	set_intersection

	Copies the intersection of two sorted ranges to an
 output range

	set_symmetric_difference
	Copies the symmetric difference of two sorted ranges to
 an output range

	set_union
	Copies the union of two sorted ranges to an output
 range

Heap operations

The following algorithms treat a sequence as a heap data structure:
	make_heap
	Reorders a range into heap order

	pop_heap
	Reorders a range to remove the first item in the
 heap

	push_heap
	Reorders a range to add the last item to the heap

	sort_heap
	Reorders a range that starts in heap order into fully
 sorted order

Permutations

The following reorder the elements of a sequence to generate
 permutations:
	next_permutation

	Reorders a range to form the next permutation

	prev_permutation

	Reorders a range to form the previous
 permutation

Custom Algorithms

Writing your own algorithm is easy. Some care is always needed when
 writing function templates (as discussed in Chapter 7), but generic algorithms do
 not present any special or unusual challenges. Be sure you understand
 the requirements of the different categories of iterators and write
 your algorithm to use the most general category possible. You might
 even want to specialize your algorithm to improve its performance with
 some categories.
The first generic algorithm that most programmers will probably
 write is copy_if, which was
 inexplicably omitted from the standard. The copy_if function copies an input range to an output range,
 copying only the values for which a predicate returns true (nonzero).
 Example 10-9 shows a simple
 implementation of copy_if.
Example 10-9. One way to implement the copy_if function
template<typename InIter, typename OutIter, typename Pred>
OutIter copy_if(InIter first, InIter last, OutIter result, Pred pred)
{
 for (; first != last; ++first)
 if (pred(*first)) {
 *result = *first;
 ++result;
 }
 return result;
}

You can also specialize an algorithm. For example, you might be
 able to implement the algorithm more efficiently for a random access
 iterator. In this case, you can write helper functions and use the
 iterator_category trait to choose a
 specialized implementation. (Chapter
 8 has more information about traits, including an example of
 how to use iterator traits to optimize a function template.)
The real trick in designing and writing algorithms is being able
 to generalize the problem and then find an efficient solution. Before
 running off to write your own solution, check the standard library.
 Your problem might already have a solution.
For example, I recently wanted to write an algorithm to find the
 median value in a range. There is no median algorithm, but there is nth_element, which solves the more general
 problem of finding the element at any sorted index. Writing median became a trivial matter of making a
 temporary copy of the data, calling nth_element, and then returning an iterator
 that points to the median value in the original range. Because
 median makes two passes over the
 input range, a forward iterator is required, as shown in Example 10-10.
Example 10-10. Finding the median of a range
template<typename FwdIter, typename Compare>
FwdIter median(FwdIter first, FwdIter last, Compare compare)
{
 typedef typename std::iterator_traits<FwdIter>::value_type value_type;
 std::vector<value_type> tmp(first, last);
 typename std::vector<value_type>::size_type median_pos = tmp.size() / 2;
 std::nth_element(tmp.begin(), tmp.begin() + median_pos,
 tmp.end(), compare);
 return std::find(first, last, tmp[median_pos]);
}

Chapter 11. Preprocessor Reference

 The preprocessing step occurs before the main compilation
 step. Historically, the preprocessor has been a separate program, but
 compilers are not required to implement the preprocessor in that way.
 Because of its history, though, the preprocessor has syntax and semantics
 that are quite different from the rest of C++. See Chapter 1 for information about all the
 steps in compiling a source file.
The preprocessor handles preprocessing
 directives , which can define and undefine macros, establish regions of
 conditional compilation, include other source files, and control the
 compilation process somewhat. A macro is a name that represents other text, called the
 macro replacement text. When the macro name is seen
 in the source file, the preprocessor replaces the name with the
 replacement text. A macro can have formal parameters, and actual arguments
 are substituted in the expansion.
Preprocessor directives obey different syntax rules from the rest of
 the language. Directives are line-oriented. Each directive starts with
 whitespace characters followed by # as
 the first non-space character on a line. After the # is more optional whitespace (no newlines are
 permitted) followed by the directive name. Each directive extends to the
 end of the line. A backslash (\) at the end
 of the line continues the directive onto the subsequent line.
The directive name must be one of the names listed in this chapter.
 Any other preprocessing token after the initial # character is an error.

Name
operator and directive — Stringify operator and null directive

Synopsis
// Null directive
identifier

A preprocessor directive with no directive name is called a
 null directive . It has no effect.
The # operator can also be
 used as a unary operator, sometimes called the stringify
 operator because it turns its operand into a string. It can be
 used only in the macro replacement text of a #define directive. It must be followed by a
 parameter name for the macro being defined. The # operator and the parameter name are
 replaced by a string literal whose contents are the text of the macro
 argument that corresponds to the macro parameter. The macro argument
 is not expanded before being converted to a string. Whitespace in the
 argument is condensed to a single space character between tokens;
 leading and trailing whitespace is removed.
The evaluation order of # and
 ## operators is undefined. If the
 order is important, you can control the order by using multiple
 macros.

Example
The following example prints the text [now is
 the time]:
#define now then
#define is was
#define print(stuff) std::cout << "[" #stuff "]\n"
print(now is the time);

See Also
 ## operator, #define
 directive

Name
operator — Concatenation operator

Synopsis

 identifier ## identifier

The ## operator is a binary
 operator, sometimes called the concatenation
 operator because it concatenates preprocessor tokens. It can be
 used only in the macro replacement text of a #define directive. It must not appear at the
 start or end of the macro replacement text. The operands of the
 ## operator must be parameter names
 for the macro being defined. They are replaced by the corresponding
 macro arguments, which are not expanded. The tokens immediately
 adjacent to the ## operator are
 concatenated to form a single token. If the result is not a valid
 token, the behavior is undefined; otherwise, the token is expanded
 normally.
The evaluation order of # and
 ## operators is undefined. If the
 order is important, you can control the order by using multiple
 macros.

Example
The following example prints std to cout because the concat macro assembles the token std from s, t, and
 d:
#define s this is not expanded by the concatenation operator
#define t nor is this, so the result is the token std
#define concat(part1, part2, part3) part1 ## part2 ## part3
concat(s, t, d)::cout << "std";

See Also
 # operator, #define
 directive

Name
#define directive — Defines a macro

Synopsis
#define identifier
 definition
#define identifier() definition
#define identifier() definition
#define identifier(identifier-list) definition

The #define directive defines
 a macro named identifier. The macro's
 replacement text is the list of tokens shown as
 definition. The macro can be simple, with
 no arguments, or can have an argument list. The argument list is
 introduced by a left parenthesis that immediately follows the macro
 name. If there is a space between
 identifier and (, the (
 is interpreted as the start of the definition of a simple macro. The
 identifier-list can be empty, or it can be
 a list of identifiers separated by commas. Whitespace is permitted in
 the identifier-list and before the closing
 parenthesis.
C programmers are accustomed to using macros to declare
 constants and simple inline functions, but C++ offers const declarations, true inline functions,
 and templates. Macros are therefore used much less often in C++ than
 in C. The main drawback to macros is that they do not obey scope or namespace
 rules. When you must use macros, a common convention is to use all
 uppercase letters for the macro names, and never use all uppercase
 letters for non-macro names.
A macro's scope is from the point of definition to the end
 of the source file, or until you undefine the macro with the #undef directive. If you try to repeat a macro definition, the
 new definition must be identical to the original definition. The only
 way to give a macro a different definition is to undefine it
 first.
Warning
[image: image with no caption]

If you #include any
 standard header, a macro name cannot be the same as a reserved
 keyword or any of the names declared in the header. Many compilers
 accept keywords as macro names, but your program would still be
 wrong and would not be portable to a compiler that is more strict
 about detecting this particular error. Even if you do not #include a standard header, using
 macros to redefine keywords is usually a bad
 idea.

Wherever a macro name appears as a distinct token after its
 definition, it is replaced with the replacement text. Macro names are
 not replaced inside string and character literals, however. The
 replacement text is rescanned for macro names, which are recursively
 expanded until no more replacements take place. During replacement,
 the original macro name is not expanded if it appears in any
 replacement text. Here is a simple example of a macro definition and
 use:
#define NAME "NAME = Tempest Software, Inc."
char companyName[] = NAME;
During the macro expansion phase of compilation, the token NAME will be replaced by its expansion, with
 the following result:
char companyName[] = "NAME = Tempest Software, Inc.";
The replacement text is never interpreted as a preprocessing
 directive. This means, for example, you cannot #define a macro within a macro's replacement
 text. Also, directive names are not subject to macro replacement
 (although directive arguments are).
You can also declare a macro with a parameter list, which is
 sometimes called a function-like macro
 :
#define DECLARE(x,y, z) x y = z
#define PRINT(a) (::std::cout << (a) << '\n')
To use a function-like macro, the macro name must be followed by
 a comma-separated argument list in parentheses. A single argument can
 contain balanced parentheses, and within those parentheses, you can
 have commas, which are not interpreted as argument separators. The
 macro invocation must have the same number of arguments as the macro
 definition has parameters. Newlines are permitted as ordinary
 whitespace characters in a macro invocation.
The following example uses the DECLARE and PRINT macros defined in the previous
 example:
int main()
{
 DECLARE(int, x, 42);
 PRINT((x = 10, x+2));
}
In the macro replacement text, each occurrence of a parameter
 name is replaced by the corresponding argument. For example, the macro
 expansion for the previous example results in the following:
int main()
{
 int x = 42;
 (::std::cout << (x = 10, x + 2) << '\n');
}
You must be extra cautious when using a template instantiation
 as a macro argument. The angle brackets that surround the template
 arguments are not treated specially for macro arguments, so commas
 that separate the template arguments are interpreted as separators for
 the macro arguments. In the following example, the DECL macro attempts to declare an object
 named n with type t. This works fine for a simple type, such
 as int, but fails with a template
 instantiation. When used with map<int,int>, the comma separates
 macro arguments, so the preprocessor sees three macro
 arguments—std::map<int, int>, and m—and reports an error:
#define DECL(t, n) t n = t()
DECL(int, zero); // Expands to int zero = int()
DECL(std::map<int,int>, m); // Error
When a macro is expanded, the macro arguments are expanded, and
 each parameter is replaced by its corresponding expanded argument
 unless the parameter is an operand to the # or ##
 operator. After the arguments have been expanded, the # and ##
 operators are evaluated, and the resulting text is rescanned for
 macros. The macro name is expanded only once, so rescanning does not
 expand the name of the macro being expanded.

Predefined Macros
The following macros are predefined. Do not undefine or redefine any
 of the predefined macros.
	_ _cplusplus
	Has the value 199711L.
 Future versions of the C++ standard will use a larger value.
 Nonconforming compilers should use a different value.

	[image:] _ _DATE_
 _
	Expands to the date of compilation, as a string literal,
 in the form "Mmm dd yyyy", in which dd begins with a space for numbers
 less than 10. An implementation is free to substitute a
 different date, but the form is always the same, and the date is
 always valid.

	_ _FILE_ _
	Expands to the name, as a string literal, of the source
 file being compiled.

	_ _LINE_ _
	Expands to the line number, as a decimal constant, of the
 source file being compiled.

	[image:] _ _STDC_
 _
	Is implementation-defined. C++ compilers might define this
 macro; if it is defined, the value is implementation-defined.
 Note that C compilers are required to define _ _STDC_ _ as 1, and in some implementations, the
 same preprocessor might be used for C and C++.

	[image:] _ _TIME_
 _
	Expands to the compilation time, as a string literal, in
 the form "hh:mm:ss". An
 implementation is free to substitute a different time, but the
 form is always the same, and the time is always valid.

An implementation is free to predefine other macros that use any
 of the reserved names, such as names that contain two adjacent
 underscores or a leading underscore followed by an uppercase letter.
 For example, compilers often define macros to indicate the host or
 target platform—e.g., _ _linux_ _.
 Consult your compiler's documentation for details.

Examples
When writing a container class template (see Chapter 10), it is important to detect
 when a template parameter is an integral type. There are several ways
 to do this. One way is to use type traits (Chapter 8). A template declares a
 special tag for all integral types and a different tag for all other
 types. The traits template is then specialized for the integral types,
 which is repetitive, tedious, and error-prone. Using a macro, however,
 reduces the opportunity for errors because the macro body is written
 once. Example 11-1 shows
 how the DECL_IS_INTEGER macro specializes the is_integer class template for each built-in
 integral type.
Example 11-1. Defining type traits with a macro
// Type trait to test whether a type is an integer.
struct is_integer_tag {};
struct is_not_integer_tag {};

// The default is that a type is not an integral type.
template<typename T>
struct is_integer {
 enum { value = 0 };
 typedef is_not_integer_tag tag;
};

// Explicitly override the default for all integral types.
#define DECL_IS_INTEGER(T) \
template<> \
struct is_integer<T> { \
 enum { value = 1 }; \
 typedef is_integer_tag tag; \
}
DECL_IS_INTEGER(bool);
DECL_IS_INTEGER(char);
DECL_IS_INTEGER(signed char);
DECL_IS_INTEGER(unsigned char);
DECL_IS_INTEGER(int);
DECL_IS_INTEGER(unsigned int);
DECL_IS_INTEGER(short);
DECL_IS_INTEGER(unsigned short);
DECL_IS_INTEGER(long);
DECL_IS_INTEGER(unsigned long);

#undef DECL_IS_INTEGER

Example 11-2 shows
 another way that macros are used when testing the string class. The TEST macro calls a function and prints the
 result. The TEST macro cannot be
 implemented as a function because it uses the # operator.
Example 11-2. Testing functions
#include <iostream>
#include <string>

int main()
{
 using namespace std;

 string s("hello, world");

#define TEST(func) cout << #func "=" << s.func << '\n'

 TEST(erase(9, 1));
 TEST(erase(5));
 TEST(find_first_not_of("aeiou"));
 ...
}

Tip
Most compilers have an option in which the compiler runs only
 the preprocessor, and you can examine the results after all macros
 have been expanded and all preprocessor directives have been
 evaluated. This mode can be helpful when debugging an incorrect
 macro expansion.

Example 11-3 is a
 contrived example that illustrates how macros are expanded. Try
 running the example through your compiler to see if the results are
 correct. (Other than whitespace, the results should be the same as
 what is shown in the rest of this section.)
Example 11-3. Expanding macros
#define x x.y
#define STR(x) #x
#define XSTR(s) STR(s)
#define CONCAT(x, y) x ## y
#define PARENS(x) (x)
#define APPLY(x,y) x(y)
#define hello HI

x // x.y
CONCAT(ST, R)(hello) // "hello"
CONCAT(X,STR)(hello) // "HI"
CONCAT(S, TR)PARENS(hello) // STR(HI)
CONCAT(S, TR)(PARENS(hello)) // "PARENS(hello)"
APPLY(CONCAT(S, TR), hello) // "HI"

The first macro expansion shows how the macro name x is not expanded in the replacement text.
 The result is simply:
x.y
The second macro expansion shows how the CONCAT macro forms a new token STR from its arguments. After the CONCAT macro is evaluated, the text is
 rescanned. The STR macro is then
 invoked with the hello argument.
 Because the x parameter is an
 operand of #, the argument is not
 expanded. Instead, # is applied to
 hello to produce the result:
"hello"
The third macro expansion is like the second, except it invokes
 XSTR instead of STR. The difference is that XSTR expands its argument, s, because the replacement text, STR(s), does not use the # or ##
 operators. Thus, XSTR(hello)
 expands to STR(HI), which has the
 following result:
"HI"
The fourth expansion also invokes CONCAT to produce STR, but STR is not followed by a left parenthesis,
 so it is not expanded as a macro. Instead, it is followed by the
 PARENS macro. The parameter of
 PARENS is not an operand of
 # or ##, so it is expanded, which means the
 argument hello expands to HI, and the final result is:
STR(HI)
The fifth expansion is just like the second, but emphasizes how
 the argument to STR is not
 expanded. The result is:
"PARENS(hello)"
The final macro expansion shows how to expand hello as an argument to STR, even when STR is the result of the CONCAT macro. The parameters of APPLY are expanded, resulting in the text
 STR(HI), which expands to:
"HI"

See Also
 #undef directive

Name
defined operator — Tests whether a macro is defined

Synopsis
defined(identifier)
defined identifier

The unary operator defined(
 identifier) (also written as defined
 identifier, without the parentheses)
 evaluates to 1 if
 identifier is a known macro name at the
 point of the defined operator, or
 0 if it is not known. The operator
 is evaluated only in the argument to an #if or #elif directive.
The behavior is undefined if the defined operator is used in any other way,
 or if the token defined results
 from macro expansion.

See Also
 #define directive, #elif
 directive, #if directive, #ifdef
 directive, #ifndef directive, #undef
 directive

Name
#elif directive — Else-if for conditional compilation

Synopsis
#elif constant-expression

The #elif directive marks a
 region of conditional compilation. Every #elif must be paired with an introductory
 directive: #if, #ifdef, or #ifndef. If the initial condition was false
 (0), and every subsequent #elif condition is false, and
 constant-expression is true (nonzero),
 subsequent statements are compiled until the next #elif, #else, or #endif directive is reached for this level
 of nesting.

See Also
 #else directive, #if
 directive

Name
#else directive — Else for conditional compilation

Synopsis
#else
The #else directive marks a
 region of conditional compilation. Every #else must be paired with an introductory
 directive: #if, #ifdef, or #ifndef. There can be any number of
 intervening #elif directives. If
 the initial condition was false (0), and every subsequent #elif condition is false, statements that
 follow the #else directive are
 compiled until the corresponding #endif directive is reached.

See Also
 #if directive

Name
#endif directive — Ends conditional compilation

Synopsis
#endif
The #endif directive ends a
 region of conditional compilation.

See Also
 #if directive

Name
#error directive — Issues an error message

Synopsis
#error message

The #error directive tells
 the preprocessor to issue an error message and mark the source file as
 ill-formed, just as if the programmer made a programming error that
 the compiler detected. You can supply any sequence of preprocessor
 tokens as the message, and those tokens are
 echoed in the error message.

Example
#if !defined(_ _cplusplus) || (_ _cplusplus < 199711L)
 #error Not a conforming C++ compiler.
#endif

See Also
 #line directive

Name
#if directive — Tests a condition

Synopsis
#if constant-expression

The #if directive begins a
 region of conditional compilation, that is, a region within a source
 file where preprocessor directives determine whether the code in the
 region is compiled. A conditional region starts with #ifdef, #ifndef, or #if and ends with #endif. Each region can have any number of
 #elif directives and an optional
 #else directive after all the
 #elif directives. The basic form to
 use is:
#if defined(_ _win32_ _)
 const char os[] = "Microsoft Windows";
#elif defined(__linux__) or defined(_ _unix_ _)
 const char os[] = "UNIX (or variant)";
#elif defined(_ _vms_ _)
 const char os[] = "VMS";
#else
 const char os[] = "(unknown)";
#endif
Macros in the directive argument are expanded, except for the
 operands of the defined operator.
 The constant expression is evaluated, and if the result is nonzero,
 the #if condition is true, and the
 code in the region that immediately follows is compiled. The region
 ends with #else, #elif, or #endif. If the #if expression is false, the condition for
 the next #elif is evaluated, and if
 that expression is true, its region is compiled, and so on. If all
 #elif expressions are false, and
 #else is present, its region is
 compiled. Conditional processing ends with the corresponding #endif directive.
Conditionals can be nested. Within an inner region, the
 preprocessor keeps track of conditional directives even if the region
 is not being compiled, so conditional directives can be properly
 matched.
The #if and #elif directives take a single parameter, a
 constant expression. The expression differs slightly from
 non-preprocessor constant expressions:
	You can use the defined
 operator.

	Integers are long, that
 is, int values (and values that
 are promoted to int) have the
 same representation as long
 int, and unsigned int values have the same representation
 as unsigned long. All bool values are promoted to integers,
 including the keywords true and
 false.

	Character literals are converted to the execution character
 set. The numeric value of a character in a preprocessor expression
 is not necessarily the same as the value of the same character in
 a non-preprocessor expression. A character may have a negative
 value.

	Keywords that are alternative operators for symbolic
 operators (i.e., and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, and xor_eq) have their usual meaning,
 although it is ineffective to try using assignment operators
 (and_eq, or_eq, and xor_eq) in an #if or #elif condition.

	[image: image with no caption]

Other identifiers and keywords that remain after macro
 expansion are replaced by 0.
 (It might seem strange to convert keywords, such as sizeof, to the integer 0, but that is the rule. Some compilers
 fail to follow this particular rule.) One consequence of this rule
 is that you cannot use type casts or new, delete, sizeof, throw, or typeid expressions in an #if or #elif condition.

Conditional directives are most often used to guard header files
 from multiple inclusion. All the standard headers are guarded, so
 including them more than once has no harmful effects. This is
 important because an implementation might include one header in
 another header. For example, <map> might include <utility> to get the declaration for
 the pair<> template. If you
 explicitly #include <map> and #include <utility>, you might end up including
 <utility> more than
 once.
Another common use is for system- or compiler-specific code.
 Every compiler predefines one or more macros to identify the compiler
 and possibly the host operating system (such as _ _linux_ _ or _
 GNUC _). Consult your compiler's documentation to learn
 which macro names are predefined.

Examples
 Example 11-4
 shows one way to nest conditional directives.
Example 11-4. Nesting conditional directives
#define zero zero // Identifiers are converted to 0.
#define one true // Bool expressions are promoted to int.#if one
// This region is compiled.
 #if zero
 This region can contain erroneous C++ code. The code is not
 compiled, so the errors do not matter.
 #else // This #else matches the inner #if.
 // This region is compiled.
 const int zero = 0;
 #endif // This #endif matches the inner #if.
 int x = zero;
#else
 This #else matches the outer #if. Because the #if
 condition was true, the #else region is not compiled.
#endif

You can guard your own headers by using conditional directives
 to define a guard macro and using the guard macro to ensure the file's
 contents are compiled only when the macro is not defined, as shown in
 Example 11-5.
Example 11-5. Guarding a header against multiple inclusion
// In the header file employee.h#ifndef EMPLOYEE_H
 #define EMPLOYEE_H
// Thus, the entire contents of the file are compiled only when EMPLOYEE_H is not
// defined. The first time the file is #included, the macro is not defined, in
// which case it is immediately defined. The second and subsequent times the same
// header is included in the same source file; the macro and conditional
// directives ensure that the entire file is skipped.

class employee { ... };

#endif // End of employee.h

See Also
 #elif directive, #else
 directive, #endif directive, #ifdef
 directive, #ifndef directive

Name
#ifdef directive — Tests whether a macro is defined

Synopsis
#ifdef identifier

The #ifdef directive begins a
 region of conditional compilation. It takes a single
 identifier as an argument and is equivalent
 to #if defined
 identifier.

See Also
defined operator, #if
 directive, #ifndef directive

Name
#ifndef directive — Tests whether a macro is undefined

Synopsis
#ifndef identifier

The #ifndef directive begins
 a region of conditional compilation. It takes a single
 identifier as an argument and is equivalent
 to #if not defined
 identifier.

See Also
defined operator, #if
 directive, #ifdef directive

Name
#include directive — Includes another source file

Synopsis
#include <header>
#include "sourcefile"
The #include directive
 includes the contents of a standard header or source file. The first
 form searches for header and replaces the
 directive with the entire contents of the header. The second form
 searches for sourcefile and replaces the
 directive with the entire contents of the named source file.
The basic action of #include
 is to read the named file or header as though its entire contents
 appeared in the source file at the position of the #include directive. Typically, common
 declarations are placed in a separate file, such as decl.h, and #include "decl.h" is used in every source file that
 depends on those declarations.
[image: image with no caption]

If a source file contains the directive #include
 "filename", and the compiler cannot find
 the external file named filename, the
 compiler also tries the form #include < filename
 >. Most compilers implement
 these two forms of #include by
 searching in different folders or directories. For example, the quote
 form searches in the current directory or in the directory that
 contains the source file, and the angle-bracket form searches only in
 "system" directories. Such details are implementation-defined, and
 some compilers might introduce further distinctions between the two
 forms.
It is possible, for example, for a compiler to recognize only
 the standard headers in the <
 header > form and use built-in knowledge of the
 standard headers without referencing any external files. This
 hypothetical compiler might report an error for all other uses of the
 angle-bracket form and require all external file inclusions to use the
 quote form. Such a compiler would not be very popular, however,
 because common practice is to treat < header
 > and
 "header" as equivalent forms, except when
 applying the rules for locating the external file named
 header.
It is common practice to install third-party libraries in common
 directories and to configure compilers to look in these directories
 for <
 header > inclusions. For example, if you use
 Boost (described in Appendix B),
 you might use #include <any.hpp> to obtain the boost::any class template. Another common
 practice is to install such libraries in subdirectories. On a Unix
 system, for example, you might install Boost in the boost subdirectory of one of the standard
 system directories and use #include
 <boost/any.hpp>. You should
 be careful, however, because using system-specific filenames is not
 portable.
The only guarantee that the standard offers is that if
 filename consists of a sequence of letters
 and underscore characters followed by a period and a single letter or
 underscore, then the implementation must provide a unique mapping of
 filename to a source file (optionally
 ignoring case distinctions). The standard permits universal characters
 in filename, but you should avoid them when
 you need maximum portability because some compilers do not support
 universal characters.
The implementation defines how and where the preprocessor
 searches for header or
 filename, how
 filename maps to an external filename,
 whether filenames heed or ignore case distinctions, and whether
 different character sequences for filename
 represent distinct external files. For example, under Windows,
 "foo.h" and "FOO.H" are usually the same file, but under
 Unix, they are usually different files. If the filesystem supports
 links, such as Unix, two names such as "foo.h" and "bar.h" might name the same file; in other
 environments, you might be guaranteed that different filenames refer
 to distinct files.
The most common convention is that < header
 > refers only to standard
 headers and to vendor-supplied extensions to the standard. Compilers
 typically have a way for you to supply your own additional libraries
 and use the associated headers as < header
 > includes. The quoted form is
 used for all header files that are part of the application, and those
 are typically located in the same directory or folder as the
 application's source files. The most common filename convention is to
 end header names with .h (for
 header), although .hpp is also
 common. For example, suppose you wrote a class to represent an
 employee. Put the class definition in employee.h and the definitions of the
 members in employee.cpp. Any
 other file that needs to use the employee class can #include "employee.h" and use the class
 definition:
#include <set>
#include "employee.h"

class business_group {
private:
 std::set<employee> employees_;
 ...
};
You can use other preprocessor tokens in an #include directive, provided they expand to
 one of the two standard forms. Each header name or filename must be a
 single preprocessor token; you cannot combine tokens to form a name.
 To preserve portability, use macros only for the entire sequence of
 the #include argument:
#define HEADER "this.h"
#include HEADER

See Also
 #if directive

Name
#line directive — Changes the line number in error messages

Synopsis
#line digits
#line digits
 string

The #line directive changes
 the compiler's notion of the current filename and line number. The
 first form changes the line number (as expressed by the _ _LINE_ _ directive and used in error
 messages) to digits. The second form
 changes the line number to digits and the
 filename to the contents of string. The new
 file name is used as the value of the _
 FILE _ macro.
The #line directive is
 typically used by programs that generate C++ as output from some other
 input. The directive records the original filename and line number
 that produced the C++ code. Error messages and debuggers can point to
 the original file instead of to the intermediate C++ source
 file.

See Also
 #error directive

Name
#pragma directive — Controls the compiler

Synopsis
#pragma tokens

[image: image with no caption]

The #pragma directive is
 implementation-defined. An implementation can define certain pragma
 parameters to control the compiler. The preprocessor ignores any
 pragma that it does not recognize.
Because pragmas are highly compiler-dependent, you should avoid
 using them as much as possible. Most compilers let you control the
 compiler by providing command-line options, configuration files, or
 project files. Do your best to keep compiler-specific information out
 of your source files. When you must use pragmas, protect them with
 conditional directives for specific compilers.

Example
#ifdef _ _BORLANDC_ _
 #pragma pack
#endif
#ifdef _ _COMO_ _
 #pragma instantiate
#endif

Name
#undef directive — Undefines a macro

Synopsis
#undef identifier

The #undef directive deletes
 the definition of the macro named
 identifier. If
 identifier is not a macro name, the
 directive has no effect. If you attempt to undefine the identifier
 defined or any predefined macro,
 the behavior is undefined.

See Also
 #define directive

Chapter 12. Language Reference

 Here begins the alphabetic reference. This chapter presents
 each language keyword with a syntax summary, description, and, in some
 cases, an example. The syntax summaries use a modified BNF (Backus Normal
 Form or Backus-Naur Form):
	Terminal symbols (keywords and operator symbols) are in a constant-width typeface.

	To avoid ambiguity, a terminal symbol that might be mistaken for
 a BNF metacharacter (e.g., a vertical bar or a square bracket) is
 enclosed in quotes (e.g., "|").

	Nonterminal symbols (syntax elements) are in an
 italic typeface.

	Optional elements are in square brackets ([like this]).

	Choices are separated by vertical bars (|).

	A production (syntax description) is
 introduced with := or ::=. The traditional symbol (::=) is used for a
 complete definition. The abbreviated symbol (:=) is used when the
 righthand side is incomplete. For example, here is the complete
 definition of function-specifier as it is given
 under declaration:
function-specifier ::= explicit | inline | virtual
The following is a partial production of
 function-specifier:
function-specifier := inline
The abbreviated symbol (:=) lets you see that the syntax summary
 is incomplete. Whenever an incomplete rule is used, a cross reference
 (under "See Also") leads you to the complete rule.

The starting point for parsing a C++ source file (the start symbol)
 is translation-unit, which you can find under
 declaration.
C++ syntax is complicated, and even simple statements require an
 understanding of many different syntax elements. To help you, this chapter
 duplicates some syntax rules and has plenty of cross references to help
 you find the parts you need.
Almost every language element is discussed at greater length in
 Chapter 1-Chapter 7; each description in this chapter
 includes a reference to the relevant chapter or chapters. References to
 specific headers (e.g., <new>)
 are for the corresponding sections in Chapter 13.

Name
and operator — Logical and operator

Synopsis

 logical-and-expr := logical-and-expr && inclusive-or-expr |
 logical-and-expr and inclusive-or-expr

The logical and operator converts its
 operands to type bool and returns a
 bool result. This built-in operator
 is a short-circuit operator, so if the left operand is false, the expression yields false without evaluating the right operand.
 Note that an overloaded operator
 and cannot be short-circuited and
 must evaluate both operands. The keyword and is interchangeable with the && token.

Example
int* p;
if (p != NULLand *p != 0)
 do_stuff(*p);

See Also
bitand, bool, expression, not, or,
 Chapter 3, <ciso646>

Name
and_eq operator — Bitwise and assignment operator

Synopsis

 assignment-expr := logical-or-expr &= assignment-expr |
 logical-or-expr and_eq assignment-expr

The and_eq operator is an
 assignment operator that performs bitwise and. It
 is equivalent to logical-or-expr
 = logical-or-expr & assignment-expr except that logical-or-expr is evaluated only once. The
 keyword and_eq is interchangeable
 with the &= token.

Example
unsigned bitmask = 0xFFFF;
bitmask&= ~0x7E; // bitmask becomes 0xFF81.

See Also
bitand, expression, or_eq, xor_eq, Chapter 3, <ciso646>

Name
asm definition — Inline assembler definition

Synopsis

 block-decl := asm-defn
 asm-defn ::= asm (string-literal) ;
[image: image with no caption]

The asm definition is
 implementation-defined. Typically, the string-literal contains assembler
 instructions. Some compilers extend the asm syntax to make it easier to write larger
 blocks of assembler code.

Example
asm("mov 4, %eax"); // GNU on Intel IA32
asm("mov eax, 4"); // Borland on Intel IA32

See Also
declaration

Name
auto storage class — Automatic variable specifier

Synopsis

 storage-class-specifier := auto
The auto storage class
 specifier declares a local variable to be automatic. The object is
 constructed when execution reaches the variable's declaration, and the
 object is destroyed when execution leaves the scope where it is
 declared.
All local variables and function parameters are auto by default, so the explicit auto specifier is rarely used.

Example
int foo(auto int parm)
{
 auto int sqr = parm * parm;
 return sqr;
}

See Also
declaration, register, Chapter 2

Name
bitand operator — Bitwise and operator

Synopsis

 and-expr := and-expr & equality-expr | and-expr bitand equality-expr

The bitwise and operator requires integer
 or enumeration operands. It performs the usual arithmetic conversions,
 then does an and operation on pairs of bits in
 the operands, resulting in an integer.
The bitand keyword is
 interchangeable with the &
 token.

Example
unsigned bitmask = 0xFFFF;
bitmask = bitmask& ~0x7E; // bitmask becomes 0xFF81

See Also
and, and_eq, bitor, compl, expression, xor, Chapter
 3, <ciso646>

Name
bitor operator — Bitwise inclusive or operator

Synopsis

 inclusive-or-expr := inclusive-or-expr "|" exclusive-or-expr |
 inclusive-or-expr bitor exclusive-or-expr

The bitwise or operator requires integer or
 enumeration operands. It performs the usual arithmetic conversions,
 then does an inclusive or operation on pairs of
 bits in the operands, resulting in an integer. The bitor operator is interchangeable with the
 | token.

Example
unsigned bitmask = 0xF0F0;
bitmask = bitmask| 0x0102; // bitmask becomes 0xF1F2.

See Also
bitand, compl, expression, or, or_eq, xor, Chapter
 3, <ciso646>

Name
bool type — Boolean (logical) type specifier

Synopsis

 simple-type-specifier := bool
The bool type represents
 Boolean or logical values. The only valid values of the bool type are the literals true and false. A bool expression can be promoted to an
 integer: false becomes 0 and true becomes 1. Arithmetic, enumerated, and pointer
 values can be converted to bool:
 0 is false, a null pointer is false, and anything else is true.

See Also
and, false, not, or,
 true, type, Chapter
 2, Chapter 3

Name
break statement — Exits from a loop or switch statement

Synopsis

 statement := break ;
The break statement exits
 from the nearest enclosing loop (do, for,
 or while) or switch statement. Execution continues with
 the statement immediately following the end of the loop or switch. An error results if break is used outside of a loop or switch statement.

Example
while(std::cin >> x) {
 if (x < 0) break;
 data.push_back(x);
}

See Also
continue, do, for,
 statement, switch, while, Chapter
 4

Name
case keyword — Case label for switch statement

Synopsis

 statement := case constant-expression : statement

The case keyword labels a
 statement in a switch statement. A
 single statement can have multiple labels. You cannot use case outside of a switch statement.
Note that case labels have no
 effect on the order in which substatements are executed within a
 switch statement. Use the break statement to exit from a switch statement.

Example
switch(c) {case '+':
 z = add(x, y);
 break;
case '-':
 z = subtract(x, y);
 break;
}

See Also
break, default, statement, switch, Chapter 4

Name
catch keyword — Exception handler in try statement

Synopsis

 handler ::= catch (exception-declaration) compound-statement
 exception-declaration ::= type-specifier-seq declarator |
 type-specifier-seq abstract-declarator | type-specifier-seq | . . .
The catch keyword introduces
 an exception handler in a try
 statement. A single try statement
 must have one or more catch blocks.
 The exception-declaration declares an exception
 handler object. If an exception is thrown in the try's compound-statement, the type of the
 exception object is compared with the type of each catch declaration. The compound-statement of the first catch block whose type matches that of the
 exception object is executed. A catch block (typically the last one in a
 try statement) can have an
 ellipsis (. . .) as
 the exception-declaration to
 match all exceptions.

Example
int main()
try {
 run_program();
}catch(const std::exception& ex) {
 std::cerr << ex.what() << '\n';
 std::abort();
} catch(...) {
 std::cerr << "Unknown exception. Program terminated.\n";
 std::abort();
}

See Also
declarator, statement, throw, try, type, Chapter
 4

Name
char type — Character type specifier

Synopsis

 simple-type-specifier := char
[image: image with no caption]

The char type represents a
 character, sometimes called a narrow character. The char type is distinct from signed char and unsigned char, but its representation must match one
 or the other. (Which one depends on the implementation.) A char can be promoted to an integer; the
 value depends on whether the representation is signed or
 unsigned.
By definition, sizeof(char)
 is 1, so a char is often used as the basic unit of
 memory allocation. Raw memory is often allocated as arrays of char or unsigned char.

See Also
type, wchar_t, Chapter 1, Chapter 2, <cstring>, <memory>

Name
class keyword — Declares a class or template parameter, or elaborates a
 type name

Synopsis

 class-specifier ::= class-head { [member-specification] }
class-head ::= class-key [identifier] [base-clause] |
 class-key nested-name :: identifier [base-clause] |
 class-key [nested-name ::] template-id [base-clause] class-key ::= class |
 struct | union
member-specification ::= member-decl [member-specification] |
 access-specifier : [member-specification]
member-decl ::= [decl-specifier-seq] [member-declarator-list] ; |
 function-definition [;] | qualified-id ; | using-decl | template-decl
 member-declarator-list ::= member-declarator |
 member-declarator-list , member-declarator
 member-declarator ::= declarator [= 0] | declarator [= constant-expression] |
 [identifier] : constant-expression
 base-clause ::= : base-specifier-list
 base-specifier-list ::= base-specifier | base-specifier-list , base-specifier
 base-specifier ::= [base-modifiers] [::] [nested-name ::] class-name
 base-modifiers ::= virtual [access-specifier] | access-specifier [virtual]
access-specifier ::= private | protected | public
class-name ::= identifier | template-id
 type-parm := class [identifier] [= type-id] |
 template < template-parm-list > class [identifier] [= id-expression]
elaborated-type-specifier := class-key [::] [nested-name ::] identifier |
 class-key [::] [nested-name ::] [template] template-id

The class keyword introduces
 a class declaration or definition, names a type template parameter
 (type-parm), or names a class
 type in an elaborated-type-specifier. In a class definition, the only difference
 between class and struct is that the default access level is
 private for class and public for
 struct.
When declaring a type template parameter, typename and class are
 interchangeable.

Example
template<class T> // Can use typename instead of class
class point {
public:
 point(T x = 0, T y = 0);
private:
 T x_, y_;
};
point<int> pt1;
class point<int> pt2; // redundant use of class

See Also
declaration, declarator, expression, function, identifier, private, protected, public, struct, template, type, typename, union, virtual, Chapter 6, Chapter 7

Name
compl operator — Bitwise complement operator

Synopsis

 unary-expr := ~ cast-expr | compl cast-expr

The bitwise complement operator requires an
 integer or enumeration operand. It performs the usual arithmetic
 promotion and toggles each bit of its operand, resulting in an
 integer.
The compl keyword is
 interchangeable with the ~
 token.

Example
unsigned bitmask;
bitmask = ~0xF107; // bitmask becomes 0xFFFF0EF8 (32 bits).

See Also
bitand, bitor, expression, not, xor,
 Chapter 3, <ciso646>

Name
const qualifier — Marks objects and functions as constant

Synopsis

 cv-qualifier ::= const | volatile
cv-qualifier-seq ::= const | volatile | const volatile | volatile const
The const keyword can be used
 as a qualifier when declaring objects, types, or member functions.
 When qualifying an object, using const means that the object cannot be the
 target of an assignment, and you cannot call any of its non-const member functions. When qualifying
 the target of a pointer, it means the destination cannot be modified.
 When member functions of a const
 object are called, this is a
 const pointer. When qualifying a
 member function, using the const
 qualifier means that within the member function, this is a const pointer to const, and the member function can be called
 for const objects. (Member
 functions without the const
 modifier cannot be called for a const object.)
When declaring pointers and references, be sure to distinguish
 between a const pointer (for which
 the pointer cannot be assigned, but what it points to can be modified)
 and a pointer to const (for which
 the pointer can be assigned, but what it points to cannot be
 modified).

Example
struct rect {
 rect(int x, int y) : x_(x), y_(y) {}
 void x(int x) { x_ = x; }
 void y(int y) { y_ = y; }
 int x()const { return x_; }
 int y() const { return y_; }
 int area() const;
private:
 int x_, y_;
};
int rect::area() const { return x() * y(); }
const rect zero(0, 0);
const rect unit(1, 1);
rect p(4, 2), q(2, 4);
const rect* ptr1 = &zero; // OK: pointer to const
ptr1->x(42); // Error: *ptr is const
ptr1 = &p; // Error: p is not const
ptr1 = &unit; // OK: unit is const
rect* const ptr2 = &p; // OK: const pointer
ptr2 = &q; // Error: cannot set ptr2
ptr2->x(42); // OK: *ptr2 is not const

See Also
const_cast, declaration, mutable, type, volatile, Chapter 2

Name
const_cast operator — Cast to modify qualifiers

Synopsis

 postfix-expr := const_cast < type-id > (expression)
The const_cast operator
 performs a type cast that can add or remove const and volatile qualifiers. No other modifications
 to the type are permitted.
If you cast away a const or
 volatile qualifier from an object,
 and then modify the object, the behavior is undefined.

Example
template<typename T>
T& unsafe(const T& x)
{
 returnconst_cast<T&>(x);
}

See Also
const, dynamic_cast, expression, reinterpret_cast, static_cast, type, volatile, Chapter 3

Name
continue statement — Reiterates a loop statement

Synopsis

 statement := continue ;
The continue statement
 iterates a loop statement without executing the rest of the loop body.
 Control passes directly to the loop condition in a do or while loop or to the iterate expression in a
 for loop. You cannot use continue outside of a loop statement.

Example
while (getline(cin, line)) {
 if (line.empty())continue;
 parse(line);
 do_more_stuff();
};

See Also
break, do, for,
 statement, while, Chapter
 4

Name
declaration — Function, namespace, object, type, template
 declaration

Synopsis

 translation-unit ::= [declaration-seq]
declaration-seq ::= declaration | declaration-seq
 declaration
 declaration ::= block-decl | function-decl | template-decl | explicit-instantiation |
 explicit-specialization | linkage-specification | namespace-defn
 block-decl ::= simple-decl | asm-defn | namespace-alias-defn | using-decl |
 using-directive
 simple-decl ::= [decl-specifier-seq] [init-declarator-list] ;
decl-specifier ::= storage-class-specifier | type-specifier | function-specifier |
 friend | typedef
decl-specifier-seq ::= decl-specifier | decl-specifier-seq
 decl-specifier
 storage-class-specifier ::= auto | register | static | extern | mutable
function-specifier ::= inline | virtual | explicit
A source file is a sequence of zero or more declarations. See
 Chapter 2 for a full discussion
 of declarations.

See Also
asm, declarator, function, namespace, template, type, typedef, using, Chapter
 2

Name
declarator — Provides information about a single identifier in a
 declaration

Synopsis

 declarator ::= direct-declarator | ptr-operator
 declarator
 init-declarator-list ::= init-declarator | init-declarator-list , init-declarator
 init-declarator ::= declarator [initializer]
initializer ::= = initializer-clause | (expr-list)
initializer-clause ::= assignment-expr | { initializer-list [,] } | { }
initializer-list ::= initializer-clause | initializer-list , initializer-clause
 direct-declarator ::= declarator-id |
 direct-declarator (parm-decl-clause) [cv-qualifier-seq] [exception-specification] |
 direct-declarator "[" constant-expr "]" | (declarator)
ptr-operator ::= * [cv-qualifier-seq] | & | [::] nested-name :: * [cv-qualifier-seq]
declarator-id ::= id-expression | [::] [nested-name ::] type-name
 abstract-declarator ::= ptr-operator [abstract-declarator] | direct-abstract-declarator
 direct-abstract-declarator ::= [direct-abstract-declarator] (parm-decl-clause)
 [cv-qualifier-seq] [exception-specification] |
 [direct-abstract-declarator "[" constant-expr "]" | (abstract-declarator)
parm-decl-clause ::= [parm-decl-list] [...] | parm-decl-list , ...
parm-decl-list ::= parm-decl | parm-decl-list , parm-decl
 parm-decl ::= decl-specifier-seq
 declarator [= assignment-expr] |
 decl-specifier-seq [abstract-declarator] [= assignment-expr]
exception-specification ::= throw ([type-id-list])
type-id-list ::= type-id | type-id-list , type-id

A declarator provides additional information about a single
 identifier in a declaration. The declarator can be part of an object
 declaration, a class member declaration, a typedef declaration, a parameter in a
 function declaration, and so on.

See Also
declaration, expression, function, identifier, type, Chapter
 2

Name
default keyword — Catch-all label in switch statement

Synopsis

 statement := default : statement

A switch statement jumps to
 the default label if no case
 matches the switch expression. A switch statement can have at most one
 default label. If there is no
 default and the expression does not
 match any cases, control jumps directly to the statement that follows
 the switch statement.

Example
switch(c) {
case '+': ... break;
case '-': ... break;default:
 cerr << "unknown operator: " << c << '\n';
 break;
};

See Also
break, case, statement, switch, Chapter 4

Name
delete operator — Deletes a dynamic object or array of objects

Synopsis

 delete-expr ::= [::] delete cast-expr | [::] delete "[" "]" cast-expr

The delete expression
 destroys dynamically-allocated objects and frees their memory. A
 scalar allocated with new must be
 freed with delete. An array
 allocated with new[] must be freed
 with delete[]. Do not mix scalar
 allocation or deallocation with array allocation or
 deallocation.
It is safe to delete a null pointer; nothing will happen.
You can overload operator
 delete and operator delete[] (as described in Chapter 5). Two global placement
 operator delete functions are provided by the
 standard library (see the <new> header); you can define
 additional functions if you wish.
The first argument to operator delete is the pointer to the memory that
 must be freed. Additional arguments can be used for placement delete operations, which cannot be used
 directly but are matched with placement new operations if the new expression throws an exception.

Example
void operatordelete(void* p)
{
 debug(p);
 std::free(p);
}
int* p = new int;
int* array = new int[10];
...
delete p;
delete[] array;

See Also
expression, new, Chapter
 3, Chapter 5, <new>

Name
do statement — Test-at-bottom loop statement

Synopsis

 statement := do statement while (expression) ;
The do statement is a loop
 that executes statement, then
 tests expression. The loop
 iterates while expression is true
 and ends if expression is false.
 The loop body always executes at least once.

Example
do {
 cout << "Number: ";
 if (cin >> num)
 data.push_back(num);
} while(cin);

See Also
break, continue, expression, for, statement, while, Chapter
 4

Name
double type — Double-precision, floating-point type
 specifier

Synopsis

 simple-type-specifier := double
[image: image with no caption]

The double type specifier
 represents a double-precision, floating-point number. The details are
 implementation-specific, but you are guaranteed that the range and
 precision of double can never be
 less than those of float.
The type long double has at least the range and precision
 of a plain double.

See Also
float, long, type, Chapter
 2

Name
dynamic_cast operator — Polymorphic cast of class type objects

Synopsis

 postfix-expr := dynamic_cast < type-id > (expression)
The dynamic_cast operator
 performs a polymorphic cast on a pointer or reference to an object
 of class type. If expression is a
 pointer or reference to a base class, type-id can be a pointer or reference to a
 derived class. If the dynamic type of the object is not that of
 type-id or a class derived from
 type-id, the cast fails. If
 expression is a pointer, failure
 returns a null pointer; if expression is a
 reference, failure throws std::bad_cast. Casts from a derived to an
 unambiguous, accessible base class always succeed.
If expression is a null
 pointer, the result is a null pointer. If type-id is a pointer to void, the cast succeeds and returns a
 pointer to the most-derived object that expression represents.

Example
struct base {};
struct derived : base {};
base* b = new derived;
derived* d =dynamic_cast<derived*>(b);

See Also
const_cast, expression, reinterpret_cast, static_cast, type, Chapter
 3, <typeinfo>

Name
else keyword — Else part of if statement

Synopsis

 statement := if (condition) statement else statement

The else keyword introduces
 the else part of an if statement.
 If the condition is false, the
 else statement is executed.

Example
template<typename T>
T abs(T x)
{
 if (x < T())
 return -x;else
 return x;
}

See Also
if, statement, Chapter 4

Name
enum keyword — Declares enumerated type or elaborates an enumerated type
 name

Synopsis

 enum-specifier ::= enum [identifier] { [enumerator-list] }
enumerator-list ::= enumerator-defn | enumerator-list , enumerator-defn
 enumerator-defn ::= enumerator | enumerator = constant-expr
 enumerator ::= identifier
 elaborated-type-specifier := enum [::] [nested-name ::] identifier

The enum keyword declares a
 new enumerated type (as an enum-specifier) or names an existing
 enumerated type (in an elaborated-type-specifier). An enumerated
 type is an integral type that defines a set of named constants (the
 enumerator-list). Each enumerator is an identifier optionally
 followed by a value (an equal sign and a constant expression of
 integral or enumerated type). Without an explicit value, the value of
 an enumerator is one more than the value of the preceding enumerator.
 The implicit value of the first enumerator is 0.
[image: image with no caption]

Every enumerated type is stored as an integral type. The size of
 the integer is implementation-defined but is large enough to hold all
 the enumerated values. The valid values of an enumeration include the
 declared enumerators and every value that can be stored in the same
 number of bits, even if those values are not named as
 enumerators.

Example
enum logical { no, maybe, yes };
bool logical_to_bool(enum logical x) // Redundant enum
{
 return x != no;
}

See Also
expression, identifier, type, Chapter
 2

Name
explicit specifier — Explicit constructor specifier

Synopsis

 function-specifier := explicit
The explicit specifier can be
 used with a constructor to prevent implicit type conversions. It is
 permitted for any constructor but makes sense only for constructors
 that can be called with a single argument. An explicit constructor can
 be invoked from a declaration that uses function-like initialization
 or from an explicit type cast but not from a declaration that uses
 assignment-like initialization, nor from an implicit type cast.

Example
struct point {explicit point(int x, int y = 0);
};
point p1(10); // OK
point p2 = 10; // Error: would be OK without explicit
point p3;
p3 = 20; // Error: would be OK without explicit
p3 = static_cast<point>(40); // OK

See Also
class, declaration, function, static_cast, type, Chapter
 2, Chapter 6

Name
export specifier — Exported template specifier

Synopsis

 template-decl ::= [export] template < template-parm-list > declaration

The export specifier declares
 a template to be exported. An exported template lets you compile the
 definitions of a function template, or the member definitions of a
 class template, separately from the template's declaration.
[image: image with no caption]

Most compilers do not support export.

Example
export template<typename T>
class point {
public:
 point(T x, T y);
};
export template<typename T>
point::point(T x, T y) {
 ...
}

See Also
template, Chapter 7

Name
expression — Any expression

Synopsis

 expression ::= assignment-expr | expression , assignment-expr
 constant-expr ::= conditional-expr
 expr-list ::= assignment-expr | expr-list , assignment-expr
 assignment-expr ::= conditional-expr |
 logical-or-expr
 assignment-op
 assignment-expr | throw-expr
 assignment-op ::= = | *= | /= | %= | += | -= | >>= | <<= | &= | and_eq | "|=" |
 or_eq | ^= | xor_eq
throw-expr ::= throw [assignment-expr]
conditional-expr ::= logical-or-expr | logical-or-expr ? expression : assignment-expr
 logical-or-expr ::= logical-and-expr | logical-or-expr "||" logical-and-expr |
 logical-or-expr or logical-and-expr
 logical-and-expr ::= inclusive-or-expr | logical-and-expr && inclusive-or-expr |
 logical-and-expr and inclusive-or-expr
 inclusive-or-expr ::= exclusive-or-expr | inclusive-or-expr "|" exclusive-or-expr |
 inclusive-or-expr bitor exclusive-or-expr
 exclusive-or-expr ::= and-expr | exclusive-or-expr ^ and-expr |
 exclusive-or-expr xor and-expr
 inclusive-or-expr ::= equality-expr | and-expr & equality-expr |
 and-expr bitand exclusive-or-expr
 equality-expr ::= relational-expr | equality-expr == relational-expr |
 equality-expr != relational-expr | equality-expr not_eq relational-expr
 relational-expr ::= shift-expr | relational-expr < shift-expr |
 relational-expr > shift-expr | relational-expr <= shift-expr |
 relational-expr >= shift-expr
 shift-expr ::= add-expr | shift-expr << add-expr | shift-expr >> add-expr
 add-expr ::= mul-expr | add-expr + mul-expr | add-expr - mul-expr
 mul-expr ::= pm-expr | mul-expr * pm-expr | mul-expr / pm-expr |
 mul-expr % pm-expr
 pm-expr ::= cast-expr | pm-expr .* cast-expr | pm-expr ->* cast-expr
 cast-expr ::= unary-expr | (type-id) cast-expr
 unary-expr ::= postfix-expr | ++ cast-expr | -- cast-expr | unary-op
 cast-expr |
 sizeof unary-expr | sizeof (type-id) | new-expr | delete-expr
 postfix-expr ::= primary-expr | postfix-expr "[" expression "]" |
 postfix-expr ([expr-list]) | simple-type-specifier ([expr-list]) |
 typename [::] nested-name :: identifier ([expr-list]) |
 typename [::] nested-name :: [template] template-id ([expr-list]) |
 postfix-expr . [template] id-expr | postfix-expr -> [template] id-expr |
 postfix-expr . pseudo-dtor-name | postfix-expr -> pseudo-dtor-name |
 postfix-expr ++ | postfix-expr -- | const_cast < type-id > (expression) |
 dynamic_cast < type-id > (expression) |
 reinterpret_cast < type-id > (expression) |
 static_cast < type-id > (expression) | typeid (expression) |
 typeid (type-id)
pseudo-dtor-name ::= [::] [nested-name ::] type-name :: ~ type-name |
 [::] nested-name :: template template-id :: ~ type-name
 primary-expr ::= literal | this | (expression) | id-expr

An expression represents a value and a type. See Chapter 3 for details about
 expressions, precedence, associativity, lvalues and rvalues, and more.
 Some syntax rules are presented here and in the various keyword
 sections. The new-expr and
 delete-expr rules are not
 duplicated here; see new and
 delete for details. The id-expr rules are under identifier. See Chapter 1 for information about
 literals.

See Also
and, and_eq, bitand, bitor, compl, const_cast, delete, dynamic_cast, identifier, new, not,
 not_eq, or, or_eq, reinterpret_cast, sizeof, static_cast, template, type, typeid, xor, xor_eq, Chapter 3

Name
extern storage class — External storage class specifier

Synopsis

 storage-class-specifier := extern
linkage-specification ::= extern string-literal { [declaration-seq] } |
 extern string-literal
 declaration

The extern storage class
 specifier marks a declaration as having external linkage. An external
 object or function can be defined in one file and used in other
 files.
[image: image with no caption]

The extern keyword can also
 be used to specify language linkage: you provide the language name as
 a string literal. The "C++"
 language is the default. "C"
 linkage is also supported. Other languages are
 implementation-defined.

Example
extern "C" int callable_from_C(int x, int y);
extern void func(int);
extern const double pi;

See Also
declaration, static, type, Chapter
 2

Name
false literal — Boolean false literal

Synopsis
literal := false
The false literal has type
 bool and integer value 0.

See Also
bool, expression, true, Chapter
 2

Name
float type — Single-precision, floating-point type
 specifier

Synopsis

 simple-type-specifier := float
[image: image with no caption]

The float type is a
 single-precision, floating-point number. The range and precision are
 implementation-defined. They can never be more than those of double or long double.

See Also
double, long, type, Chapter
 2

Name
for statement — For loop statement

Synopsis

 statement := for (for-init-stmt [condition] ; [expression]) statement
 for-init-stmt ::= expression-stmt | simple-decl
 condition ::= expression | type-specifier-seq
 declarator = assignment-expr

The for loop is used for
 bounded loops and for unbounded loops that have well-defined
 iterations. Execution starts with for-init-stmt, which can be an expression
 statement or a declaration. (Note that the syntax for expression-stmt and simple-decl both include a terminating
 semicolon.)
condition is then
 evaluated. If condition evaluates
 to true, statement is executed.
 The iteration expression is then
 evaluated, and the condition is
 tested again. When condition is
 false, the loop ends and control passes to the statement following the
 end of the for statement.
Declarations in for-int-stmt and condition are in the same scope as
 expression and statement. A continue statement inside statement transfers control to the
 evaluation of the iteration expression.

Example
for (int i = 0; i < 10; ++i)
 cout << i << '\n';
for (node* n = head; n != 0 ; n = n->next)
 link_node(n);

See Also
break, continue, do, expression, statement, while, Chapter
 4

Name
friend specifier — Grants access to private class members

Synopsis

 decl-specifier := friend
The friend specifier declares
 a friend function, class, or template. A friend declaration can appear
 only in a class or class template definition. A friend has full access
 to the private members of the class that contains the friend
 declaration. A friend function declaration can be a function
 definition.
If a class template contains a friend declaration, all
 instantiations of the template grant friendship. If the friend is a
 template declaration, all instantiations of the template are friends.
 If the friend is a template specialization or instantiation, only that
 specialization or instantiation is a friend.
Friendship is not transitive, nor is it inherited.

Example
class list {friend bool operator==(const list& a, const list& b);
 friend class node;
 ...
};

See Also
class, declaration, template, Chapter 6, Chapter 7

Name
function — Function definition

Synopsis

 declaration := function-defn
 function-defn ::= [decl-specifier-seq] declarator [ctor-initializer] function-body |
 [decl-specifier-seq] declarator
 function-try-block
 function-body ::= compound-statement
 function-try-block ::= try [ctor-initializer] function-body
 handler-seq
 ctor-initializer ::= : member-initializer-list
 member-initializer-list ::= member-initializer |
 member-initializer-list , member-initializer
 member-initializer ::= member-initializer-id ([expr-list])
member-initializer-id ::= identifier | [::] [nested-name ::] class-name

See Chapter 5 for
 information about functions and Chapter
 6 for information about the special member functions, such as
 constructors. (A ctor-initializer
 applies only to the definition of a class constructor.)

See Also
class, declaration, declarator, statement, try, Chapter
 5

Name
goto statement — Transfers execution to a labeled statement

Synopsis

 statement := goto identifier ;
The goto statement transfers
 control to another statement in the same function. The identifier must match a statement label
 elsewhere in the function. Statement labels have the form identifier : statement.
Control cannot transfer into a try block. Transferring control into the
 middle of a block and across a declaration results in undefined
 behavior unless the declaration is for an uninitialized POD
 object.

Example
while (getline(cin, line))
 for (size_t i = 0; i < line.size(); ++i)
 if (line[i] == '.')goto exit; // Break out of nested loops.
exit:
...

See Also
break, continue, statement, Chapter 4

Name
identifier — Name of an entity

Synopsis

 id-expression ::= unqualified-id | qualified-id
 unqualified-id ::= identifier | operator-function-id | conversion-function-id |
 ~ class-name | template-id
 qualified-id ::= [::] nested-name :: [template] unqualified-id | :: identifier |
 :: operator-function-id | :: template-id
 nested-name ::= class-or-namespace-name |
 nested-name [:: class-or-namespace-name] |
 nested-name [:: template class-name]
class-or-namespace-name ::= class-name | namespace-name
 class-name ::= identifier | template-id
 namespace-name ::= identifier

An entity name can be a simple identifier, an operator name, or
 a qualified name. See Chapter 1
 for the rules that apply to valid identifiers. See Chapter 5 for more information on
 overloaded operators. See operator
 for the rules that apply to operator-function-id and conversion-function-id.

See Also
class, declarator, namespace, operator, Chapter 1, Chapter 2

Name
if statement — Selection statement

Synopsis

 statement := if (condition) statement |
 if (condition) statement else statement
 condition ::= expression | type-specifier-seq
 declarator = assignment-expr

The if statement tests
 condition, and if it is true,
 executes the first statement. If
 condition is false, and an
 else part is present, the else statement is executed; if there is no
 else part, execution continues with
 the statement immediately after the end of the if statement. If condition contains a declaration, the
 declared name is in the scope of both the if and else statements.

Example
template<typename T>
T abs(T x)
{if (x < T())
 return -x;
 else
 return x;
}

See Also
expression, else, statement, Chapter 4

Name
inline specifier — Inline function specifier

Synopsis

 function-specifier := inline
The inline function specifier
 can be used with any function or member function to hint to the
 compiler that the function should be expanded inline at the point of
 call. The compiler is free to ignore the hint. The compiler is also
 free to expand functions inline that are declared without the inline specifier, so long as this does not
 affect the semantics of the program.
An inline function must be defined in the same source file where
 it is used, before it is used. An inline function can be defined in
 more than one file (unlike other functions); the definition in every
 file must be the same.
A member function that is defined within a class definition is
 implicitly declared inline.

Example
struct point {inline point(int x, int y) : x_(x), y_(y) {} // Redundant
 inline point();
private:
 int x_, y_;
};
inline point::point() : x_(0), y_(0) {}

See Also
class, declaration, function, type, Chapter
 5

Name
int type — Integer type specifier

Synopsis

 simple-type-specifier := int
[image: image with no caption]

The int type specifier
 denotes an integral type. Alone, it represents a signed integer whose
 size is the natural size of an integer on the host platform. With the
 short or long specifier, it represents an integer
 type whose range is possibly smaller or larger than that of plain
 int. With the unsigned specifier, it represents an
 unsigned type. The signed specifier
 is allowed, but it is the default, so it is rarely used with int.

See Also
char, declaration, declarator, long, short, signed, type, unsigned, Chapter 2

Name
long type — Long type specifier

Synopsis

 simple-type-specifier := long
[image: image with no caption]

When used alone or with int,
 the long type specifier represents
 a long integer whose range is at least as large as a plain int. It can be combined with unsigned to denote an unsigned integer whose
 range is at least as large as a plain unsigned. A plain long is signed by default, but you can use
 the signed specifier to be
 explicit.
When combined with double,
 long represents an
 extended-precision, floating-point number, whose range and precision
 are at least as great as those of a plain double.

See Also
declaration,
 declarator, double, float, int, short, signed, type, unsigned, Chapter 2

Name
mutable specifier — Mutable data member specifier

Synopsis

 storage-class-specifier := mutable
The mutable specifier can be
 used with the declaration of a data member. Using it means that the
 member can be modified even if the containing object is const.

Example
// Represent a point in Cartesian coordinates. If the user requests polar
// coordinates, compute and cache the polar coordinates. If the Cartesian
// coordinates change, the polar coordinates must be recomputed. The polar
// coordinates are computed only if they are needed.
struct point {
 double angle() const {
 if (! has_angle_) {
 angle_ = tan2(y, x);
 has_angle_ = true;
 }
 return angle_;
 }
 void x(double x) { x_ = x; has_angle_ = has_arg_ = false; }
 ...
private:
 double x_, y_;mutable double angle_, arg_;
 mutable bool has_angle_, has_arg_;
};
int main()
{
 const point pt(1, 2);
 std::cout << pt.angle();
}

See Also
class, const, declaration, type, Chapter
 6

Name
namespace keyword — Declares namespace

Synopsis

 declaration := namespace-defn
 block-decl := namespace-alias-defn | using-directive
 namespace-defn ::= named-namespace-defn | unnamed-namespace-defn
 named-namespace-defn ::= namespace identifier { namespace-body }
unnamed-namespace-defn ::= namespace { namespace-body }
namespace-body ::= [declaration-seq]
namespace-alias-defn ::= namespace identifier = namespace-specifier ;
namespace-specifier ::= [::] [nested-name ::] namespace-name
 namespace-name ::= identifier
 using-directive ::= using namespace namespace-specifier ;
The namespace keyword can be
 used in a namespace definition, a namespace alias definition, or a
 using directive. A namespace is a
 scope for declarations of classes, templates, functions, objects, and
 other namespaces. Outside a namespace, you can refer to a name that is
 declared in the namespace by qualifying the name with the scope
 operator (::), such as ns::name, or with a using directive or declaration.
Multiple namespace declarations can name the same namespace,
 each one adding more declarations to the namespace. The standard
 namespace, std, is built this way,
 with many different headers all placing their declarations in the
 std namespace. A namespace can be
 anonymous, which prevents the enclosed declarations from being visible
 in other source files.
A namespace alias defines an identifier as a synonym for an
 existing namespace. See using for
 information on the using
 directive.

Example
namespace math_version_2 {
 const long double pi = 3.1415926535897932385L;
};
namespace math = math_version_2;
using namespace math;

See Also
class, declaration, identifier, using, Chapter
 2

Name
new operator — Allocates a dynamic object or array of
 objects

Synopsis

 new-expr ::= [::] new [placement] new-type-id [new-initializer] |
 [::] new [placement] (type-id) [new-initializer]
placement ::= (expr-list)
new-type-id ::= type-specifier-seq [new-declarator]
new-declarator ::= ptr-operator [new-declarator] | direct-new-declarator
 direct-new-declarator ::= "[" expression "]" |
 direct-new-declarator "[" constant-expr "]"
new-initializer ::= ([expr-list])
ptr-operator ::= * [cv-qualifier-seq] | & | [::] nested-name :: * [cv-qualifier-seq]
The new expression allocates
 memory and constructs an object. It has many forms, the simplest being
 a simple type name (e.g., new
 int). The new-type-id can be a sequence of type
 specifiers and qualifiers, with pointer operators, a reference
 operator, and an array size (e.g., new int*[n][42], which allocates a
 two-dimensional array of pointers to int with n rows and 42 columns). The first dimension
 can be an integral expression; the second and subsequent dimensions
 must be constant expressions. If the type contains parentheses, such
 as function pointers, you should enclose it in parentheses to avoid
 ambiguity.
The new expression calls an
 allocator function to allocate the necessary memory, then initializes
 the memory. The new-initializer
 is an optional list of expressions in parentheses. If no new-initializer is present, the new object
 is initialized to its default value: POD objects are uninitialized,
 and other objects are initialized with their default constructors. If
 the new-initializer consists of
 just empty parentheses, POD objects are initialized to 0, and other objects are initialized with
 their default constructors. The new-initializer can be the value of a
 scalar or a list of expressions to pass to a suitable
 constructor.
The allocator function is operator new or operator new[], which can be overloaded (as described
 in Chapter 5). Two global
 placement operator new functions are provided by the standard
 library (see the <new>
 header); you can define additional functions if you wish.
The allocator function takes a size_t as its first parameter, which is the
 number of bytes of memory to allocate. It returns a pointer to the
 memory. The placement syntax is a
 list of expressions in parentheses. The expression list is passed to
 the allocator functions after the size argument. The compiler chooses
 which overloaded operator new according to the usual rules of overload
 resolution (Chapter 5).

Example
void* operatornew(std::size_t nbytes)
{
 void* result = std::malloc(nbytes);
 debug(result);
 if (result == 0)
 throw std::bad_alloc("no more memory");
 return result;
}
int* p = new int;
int* array = new int[10];
int* placement = new(p) int;
...
delete p;
delete[] array;

See Also
declarator, delete, expression, type, Chapter
 3, Chapter 5, <new>

Name
not operator — Logical negation operator

Synopsis

 unary-expr := ! cast-expr | not cast-expr

The not operator converts its
 operand to type bool, inverts its
 value, and returns a bool result.
 The not keyword is interchangeable
 with the ! token.

Example
template<typename C>
typename C::value_type checked_first(const C& c)
{
 if (not c.empty())
 return c[0];
 throw std::out_of_range("container is empty");
}

See Also
and, bool, expression, or, Chapter
 3, <ciso646>

Name
not_eq operator — Inequality operator

Synopsis

 equality-expr := equality-expr != relational-expr |
 equality-expr not_eq relational-expr

The not_eq operator compares
 two expressions for inequality. It returns true if the operands are different or
 false if they are the same. The
 not_eq keyword is interchangeable
 with the != token. Note that there
 is no keyword equivalent for the ==
 operator.

See Also
expression, Chapter 3, <ciso646>

Name
operator keyword — Function call syntax for operators

Synopsis

 operator-function-id ::= operator op-symbol |
 operator op-symbol < [template-arg-list] >
conversion-function-id ::= operator conversion-type-id
 conversion-type-id ::= type-specifier-seq [conversion-declarator]
conversion-declarator ::= ptr-operator [conversion-declarator]
ptr-operator ::= * [cv-qualifier-seq] | & | [::] nested-name :: * [cv-qualifier-seq]
The operator keyword converts
 an operator symbol into function notation. You can use the operator keyword when invoking an operator
 or when overloading an operator.

Example
int x =operator+(10, 32);
complex<double> c, d;
c.operator+=(d);
operator+=(c, d); // Same as above
bigint operator*(const bigint& a, const bigint* b);
Table 12-1 lists
 the operator symbols (op-symbol)
 that can be overloaded. Alternative tokens (shown in parentheses) are
 interchangeable with their symbolic equivalents.
Table 12-1. Operator symbols that can be overloaded
	 delete

	 /

	 =

	 %=

	 <<=

	 ++

	 delete []

	 %

	 <

	 ^= (xor_eq)
	 ==

	 --

	 new

	 ^ (xor)
	 >

	 &=
 (and_eq)
	 != (not_eq)
	,

	 new []

	 &
 (bitand)
	 +=

	 |= (or_eq)
	 <=

	 ->*

	 +

	 | (bitor)
	 -=

	 <<

	 >=

	 ->

	 -

	 ~ (compl)
	 *=

	 >>

	 &&
 (and)
	 ()

	 *

	 ! (not)
	 /=

	 >>=

	 || (or)
	 []

See Also
expression, identifier, template, type, Chapter
 5

Name
or operator — Logical or operator

Synopsis

 logical-or-expr := logical-or-expr "||" logical-and-expr |
 logical-or-expr or logical-and-expr

The logical or operator converts its
 operands to type bool and returns a
 bool result. This built-in operator
 is a short-circuit operator, so if the left operand is true, the expression yields true without evaluating the right operand.
 Note that if operator or is overloaded, it cannot be
 short-circuited and must evaluate both operands.
The keyword or is
 interchangeable with the ||
 token.

Example
int* p;
if (p == NULLor *p == 0)
 skip();

See Also
and, bitor, bool, expression, not, Chapter
 3, <ciso646>

Name
or_eq operator — Bitwise or assignment operator

Synopsis

 assignment-expr := logical-or-expr "|=" assignment-expr |
 logical-or-expr or_eq assignment-expr

The or_eq operator is an
 assignment operator that performs bitwise
 inclusive or. It is equivalent to logical-or-expr = logical-or-expr | assignment-expr except that logical-or-expr is evaluated only
 once.
The keyword or_eq is
 interchangeable with the |=
 token.

Example
unsigned bitmask = 0xF0F0;
bitmask|= 0x0102; // bitmask becomes 0xF1F2.

See Also
and_eq, bitor, expression, xor_eq, Chapter 3, <ciso646>

Name
private access specifier — Restricts member access to the class

Synopsis

 access-specifier := private
The private keyword can be
 used within a class definition (followed by a colon) to mark
 subsequent member declarations as private or before a base-class name
 in the class header to mark the inheritance as private. The default
 access level of a class is private,
 both for members and base classes.
Private members can be used by the class itself or by
 friends.
Private inheritance means all public and protected members in
 the base class are private to the derived class.

Example
class rational {public:
 rational(int n, int d) : num_(n), den_(d) { reduce(); }
 rational() : num_(0), den_(1) {}
 int num() const { return num_; }
 int den() const { return den_; }
protected:
 void reduce(); // Reduce num_ and den_ by gcd.
private:
 int num_, den_;
};
class derived : public rational {};
class myrational : private rational {
public:
 using rational::num;
 using rational::den;
};

See Also
class, protected, public, struct, Chapter 6

Name
protected access specifier — Restricts member access to the class and derived
 classes

Synopsis

 access-specifier := protected
The protected keyword can be
 used within a class definition (followed by a colon) to mark
 subsequent member declarations as protected or before a base-class
 name in the class header to mark the inheritance as protected.
Protected members can be used by the class itself, derived
 classes, or by friends. When accessing a protected member, the access
 must be through this or an instance
 of the same class or a derived class. It cannot be through a base
 class.
Protected inheritance means all public members of the base class
 become protected in the derived class.
See private for an
 example.

See Also
class, private, public, struct, Chapter 6

Name
public access specifier — No restrictions on member access

Synopsis

 access-specifier := public
The public keyword can be
 used within a class definition (followed by a colon) to mark
 subsequent member declarations as public or before a base-class name
 in the class header to mark the inheritance as public. The default
 access level of a struct is public,
 both for members and base classes.
Public members can be used freely by any other class or
 function.
Public inheritance means all members of the base class retain
 their accessibility levels.
See private for an
 example.

See Also
class, private, protected, struct, Chapter 6

Name
register storage class — Register storage class specifier

Synopsis

 storage-class-specifier := register
The register storage class is
 like auto: it can be used for local
 objects and function parameters, and using it means that the declared
 object has automatic lifetime. It also provides a hint to the compiler
 that the object will be used frequently, so the compiler can optimize
 access, perhaps by storing the object in a machine register.
Many modern compilers routinely ignore register because the compilers are better
 than humans at allocating registers.

Example
int foo(register int parm)
{
 register int sqr = parm * parm;
 return sqr;
}

See Also
auto, type, Chapter
 2

Name
reinterpret_cast operator — Cast for unsafe pointer conversions

Synopsis

 postfix-expr := reinterpret_cast < type-id > (expression)
The reinterpret_cast operator
 performs potentially unsafe type casts. It is most often used to cast
 a pointer to a different pointer type. Casting a pointer to a
 different pointer and back is usually safe and yields the original
 value. The limitations are that object pointers can be cast only to
 object pointers with similar or stricter alignment requirements, and
 function pointers can be cast only to function pointers.
 Pointers-to-members can be cast only to pointers-to-members. You can
 cast an integer to a pointer and vice versa. In all cases, the
 destination pointer must be large enough to hold the result. Casting a
 null pointer results in a null pointer of the destination type. Any
 other cast results in undefined behavior.

Example
template<typename T>
unsigned long addressof(const T& obj)
{
 returnreinterpret_cast<unsigned long>(&obj);
}

See Also
const_cast, dynamic_cast, expression, static_cast, Chapter 3

Name
return statement — Returns from a function

Synopsis

 statement := return [expression] ;
The return statement returns
 control from a function to its caller. If the function returns
 void, the expression is typically omitted, or else
 expression must be of type
 void. If the function returns a
 non-void type, the expression must be convertible to the
 return type.
A function that returns non-void must have a return statement (except for main, which has an implicit return 0;
 if control reaches the end of the function).

See Also
expression, statement, Chapter 5

Name
short type — Short integer type specifier

Synopsis

 simple-type-specifier := short
When used alone or with int,
 the short type specifier represents
 a short integer, whose range is no bigger than a plain int. It can be combined with unsigned to denote an unsigned integer whose
 range is no bigger than a plain unsigned. A plain short is signed by default, but you can use
 the signed specifier to be
 explicit.

See Also
int, long, signed, type, unsigned, Chapter 2

Name
signed specifier — Signed integer type specifier

Synopsis

 simple-type-specifier := signed
The signed keyword can be
 used alone to mean signed int or combined with other type specifiers
 to force the type to be signed. The int, short, and long types are implicitly signed, so it is
 most often used with signed
 char to implement a signed integral
 value whose range is the smallest that the compiler allows.
[image: image with no caption]

A signed integer can be represented using two's complement,
 ones' complement, or signed magnitude.

See Also
char, int, long, short, type, unsigned, Chapter 2

Name
sizeof operator — Size of type operator

Synopsis

 unary-expr := sizeof (type-id) | sizeof unary-expr

At compile time, the sizeof
 operator returns the amount of memory required to hold an object whose
 type is type-id or the type of
 unary-expr. In the latter case,
 unary-expr is not evaluated. The size of a type
 includes any padding that the compiler adds to it, so the size of an
 array of N elements is always
 equal to N times the size of a
 single element.
By definition, sizeof(char)
 is 1, so you can think of the size
 of other types as multiples of the size of a character. The expression
 type is std::size_t.

Example
class point { ... };
point* p = malloc(sizeof(point));
point corners[] = { { 2, 4 }, {4, 2}, ..., { 42, 10 } };
const unsigned count = sizeof(corners) / sizeof(corners[0]);

See Also
expression, type, Chapter
 3, <cstdlib>

Name
statement — Statement syntax

Synopsis

 statement ::= labeled-stmt | expr-stmt | compound-stmt | decl-stmt | try-block |
 if (condition) statement | if (condition) statement else statement |
 switch (condition) statement | while (condition) statement |
 do statement while (expression) |
 for (for-init-stmt [condition] ; [expression]) statement | break ; |
 continue ; | goto identifier ; | return [expression] ;
expr-stmt ::= [expression] ;
compound-stmt ::= { [statement-seq] }
statement-seq ::= statement | statement-seq
 labeled-stmt ::= identifier : statement | case constant-expr : statement |
 default : statement
 decl-stmt ::= block-decl
 for-init-stmt ::= expr-stmt | simple-decl
 condition ::= expression | type-specifier-seq
 declarator = assignment-expr

See Chapter 4 for a
 complete discussion of statements.

See Also
break, case, continue, declaration, declarator, default, do, else,
 expression, for, goto, if,
 return, switch, try, type, while, Chapter
 4

Name
static storage class — Static storage class specifier

Synopsis

 storage-class-specifier := static
The static storage class
 specifier can be used with objects, functions, and class members. Its
 purpose varies slightly depending on how you use it:
	For local objects, static
 affects the object's lifetime: instead of being constructed anew
 every time the function is called, a static local object is
 constructed at most once, and the object retains its value across
 function calls.

	A static class member is
 not tied to a specific object. Instead, it is similar to a global
 object or function, but in the scope of the class that declares
 it.

	For global declarations, using static means the object or function has
 internal linkage instead of the default external linkage, that is,
 the object or function is not visible in other source files. This
 use is deprecated; use anonymous namespaces instead.

Example
struct demo {static const int size = 10;
 static void func() {
 return size;
 }
private:
 int data_[size];
};
static int local_data = 10;
static int local_func() { return demo::func(); }

See Also
auto, class, extern, namespace, register, type, Chapter
 2

Name
static_cast operator — Explicit cast operator

Synopsis

 postfix-expr := static_cast < type-id > (expression)
The static_cast operator
 performs type conversions from one static type to another. It cannot
 cast away const or volatile qualifiers. A static cast can
 invoke built-in type promotions or conversions or user-defined type
 conversions with type conversion operators or constructors (including
 explicit constructors).

Example
char c;
if (isalpha(static_cast<unsigned char>(c))
 handle_alpha(c);

See Also
const_cast, dynamic_cast, explicit, expression, reinterpret_cast, Chapter 3

Name
struct keyword — Declares class with public members

Synopsis

 class-key := struct
The struct keyword declares a
 class that has public access by default. Inheritance is also public by
 default. See class for syntax
 rules.

Example
struct point {
 int x, y;
};
struct point p1; // "struct" is redundant here.
point p2;

See Also
class, union, Chapter
 6

Name
switch statement — Multibranch selection statement

Synopsis

 statement := switch (condition) statement
 condition ::= expression | type-specifier-seq
 declarator = assignment-expr

The switch statement
 evaluates condition and saves the
 value. It compares the value to each case label in statement (which is typically a compound
 statement). The statements that follow the matching case label are executed. If no case label matches, the statements following
 the default label are executed. If
 there is no default, execution
 continues with the statement following the end of the switch statement.
All case labels in statement must be unique. Use the break statement to exit the switch statement at the end of each
 case.

Example
switch(c) {
case '+':
 z = add(x, y);
 break;
default:
 z = noop();
 break;
};

See Also
break, case, declarator, default, expression, if, statement, type, Chapter
 4

Name
template keyword — Declares a template, specialization, or
 instantiation

Synopsis

 declaration := template-decl | explicit-instantiation | explicit-specialization
 template-decl ::= [export] template < template-parm-list > declaration
 template-parm-list ::= template-parm | template-parm-list , template-parm
 template-parm ::= type-parm | parm-decl
 type-parm ::= class [identifier] [= type-id] | typename [identifier] [= type-id] |
 template < template-parm-list > class [identifier] [= id-expr]
template-id ::= template-name < [template-arg-list] >
typename-name ::= identifier
 template-arg-list ::= template-arg | template-arg-list , template-arg
 template-arg ::= assignment-expr | type-id | id-expr
 explicit-instantiation ::= template declaration
 explicit-specialization ::= template < > declaration
 elaborated-type-specifier := class-key [::] [nested-name ::] [template]
 template-id | typename [::] nested-name :: [template] template-id
 simple-type-specifier := [::] nested-name :: template template-id
 postfix-expr := postfix-expr . [template] id-expr |
 postfix-expr -> [template] id-expr
 pseudo-dtor-name := [::] nested-name :: template template-id :: ~ class-name
 nested-name := nested-name [:: template class-name]
qualified-id := [::] nested-name :: [template] unqualified-id

The template keyword declares
 a template, a specialization of a template, or an instance of a
 template. The declaration can be
 a function declaration, function definition, class declaration, or
 class definition.
A template instance provides arguments for the template
 parameters, enclosing the arguments in angle brackets (<>). If the template is a member of a
 class, and the . or -> operator
 is used to access the member template, you must use the template keyword to tell the compiler to
 interpret the < symbol as the
 start of the template arguments. Similarly, use the template keyword in a qualified name when
 the name is used to instantiate the template in a context in which the
 compiler would interpret the <
 symbol as the less-than operator.

Example
template<typename T>
T min(const T& a, const T& b) { return a < b ? a : b; }
typedef complex<float> cfloat;
template<> min<cfloat>(const cfloat& a, const cfloat& b)
{
 return cfloat(min(a.real(), b.real()), min(a.imag(), b.imag()));
}
template int min<int>(const int&, const int&);

See Also
class, expression, identifier, type, Chapter
 7

Name
this keyword — Object pointer in member function

Synopsis

 primary-expr := this
The this keyword can be used
 only in nonstatic member functions. Its value is a pointer to the
 target object of a member function call. If the member function is
 qualified (with const or volatile), the same qualifiers apply to the
 type of this.

Example
struct point {
 bool operator==(const point& that) {
 returnthis->x() == that.x() && this->y() == that.y();
 }
 bool operator!=(const point& that) {
 return !(*this == that);
 }
 bool write(FILE* fp) {
 fwrite(static_cast<void*>(this), sizeof(*this), 1, fp);
 }
};

See Also
class, expression, Chapter 6

Name
throw operator — Throws an exception

Synopsis

 throw-expr ::= throw [assignment-expr]
The throw operator throws
 assignment-expr as an exception.
 The throw expression has type
 void. With no operand, throw rethrows the current pending
 exception. If no exception is pending, terminate() is called.

Example
template<typename C>
typename C::value_type checked_first(const C& c)
{
 if (not c.empty())
 return c[0];throw std::out_of_range("container is empty");
}

See Also
expression, try, Chapter
 3, <exception>,
 <stdexcept>

Name
true literal — Logical true literal

Synopsis

 literal := true
The true literal has type
 bool and an integer value of
 1.

See Also
bool, expression, false, Chapter
 2

Name
try statement — Handles exceptions in statements

Synopsis

 statement := try-block
 try-block ::= try compound-statement
 handler-seq
 function-try-block ::= try [ctor-initializer] function-body
 handler-seq
 handler-seq ::= handler | handler-seq
 handler
 handler ::= catch (exception-declaration) compound-statement
 exception-declaration ::= type-specifier-seq declarator |
 type-specifier-seq abstract-declarator | type-specifier-seq | . . .
The try statement executes
 compound-statement, and if an
 exception is thrown in any of the statements within that compound
 statement (and not caught and handled by another try statement), the catch handlers are tested to see if any of
 them can handle the exception. Each catch handler is tested in turn. The first
 one to match the exception type handles the exception. If no handler
 matches, the exception propagates up the call stack to the next
 try statement. If there is no
 further try statement, terminate() is called.

Example
int main()try {
 run_program();
} catch(const exception& ex) {
 std::cerr << ex.what() << '\n';
 abort();
} catch(...) {
 std::cerr << "Unknown exception. Program terminated.\n";
 abort();
}

See Also
catch, declarator, function, throw, type, Chapter
 4, <exception> in
 Chapter 13

Name
type — Type specifiers

Synopsis

 type-specifier ::= simple-type-specifier | class-specifier | enum-specifier |
 elaborated-type-specifier | cv-qualifier
 simple-type-specifier ::= [::] [nested-name ::] type-name |
 [::] nested-name :: template template-id | bool | char | double | float | int |
 long | short | signed | unsigned | void | wchar_t
type-name ::= class-name | enum-name | typedef-name
 typedef-name ::= identifier
 elaborated-type-specifier ::= class-key [::] [nested-name ::] identifier |
 class-key [::] [nested-name ::] [template] template-id |
 enum [::] [nested-name ::] identifier | typename [::] nested-name :: identifier |
 typename [::] nested-name :: [template] template-id

Type specifiers are used throughout C++: in declarations, type
 casts, new expressions, and so on.
 Although the syntax rules shown here are quite flexible, the semantic
 rules impose many limits. For example, the simple syntax rules permit
 short long as a type (specifically, as a decl-specifier-seq; see
 declaration), but that combination of type
 specifiers is not permitted. See Chapter
 2 for details about semantics for valid type specifiers.

See Also
class, const, declaration, declarator, enum, identifier, struct, template, typedef, typename, union, volatile, Chapter 2

Name
typedef keyword — Declares a type synonym

Synopsis

 decl-specifier := typedef
A typedef declaration creates
 a synonym for an existing type. It does not create a new type (as
 class and enum do).

Example
typedef unsigned int UINT;
typedef map<string,string> dictionary;

See Also
class, declaration, enum, struct, typeid, union, Chapter
 2

Name
typeid operator — Runtime type identification operator

Synopsis

 postfix-expr := typeid (expression) | typeid (type-id)
The typeid operator returns a
 const reference to a type_info object that describes type-id or the type of expression. If expression is an lvalue (not a pointer) of
 a polymorphic class, the type_info
 of the most-derived class is returned. Otherwise, expression is not evaluated, and the
 type_info of its static type is
 returned.
Each distinct type has its own associated type_info object, but type synonyms (such as
 those created with typedef) have
 the same type_info object.

Example
template<typename T>
void debug(const T& obj)
{
 std::clog <<typeid(obj).name() << ':' << &obj << '\n';
}

See Also
expression, typedef, Chapter 3, <typeinfo>

Name
typename keyword — Introduces a type name

Synopsis

 elaborated-type-specifier := typename [::] nested-name :: identifier |
 typename [::] nested-name :: [template] template-id
 using-decl := using [typename] [::] nested-name :: unqualified-id ;
type-parm := typename [identifier] [= id-expr]
The typename keyword is used
 in two different situations:
	When referring to a qualified member of a class template,
 the compiler cannot tell whether the name refers to a type,
 object, or function. Use typename before the qualified name to
 tell the compiler that it names a type.

	In a template declaration, use typename to name a type parameter. In
 this context, class means the
 same thing as typename.

Example
template<typename C>
typename C::value_type checked_first(const C& c)
{
 if (not c.empty())
 return c[0];
 throw std::out_of_range("container is empty");
}

See Also
class, expression, template, type, using, Chapter
 7

Name
unsigned specifier — Unsigned integer type specifier

Synopsis

 simple-type-specifier := unsigned
The unsigned type specifier
 can be used with any integral type to make the type unsigned. Unsigned
 integer arithmetic is always performed modulo 2
 n , in which n
 is the number of bits in the value representation of the integer. When
 used alone, unsigned means unsigned int.

Example
char c;
if (isalpha(static_cast<unsigned char>(c))
 handle_alpha(c);

See Also
char, int, long, short, signed, type, Chapter
 2

Name
union keyword — Declares a union

Synopsis

 class-key := union
The union keyword declares an
 aggregate type, similar to a struct, but the union object can store only
 one member at a time. The storage for all members overlaps. A union
 can have member functions (including constructors and destructors) but
 not virtual member functions. A union cannot be or have a base class.
 Union members cannot be static or references. Data members cannot have
 constructors, a destructor, copy-assignment operators, virtual
 functions, or virtual base classes. An initializer for a union can
 initialize only its first member.
See class for the syntax
 rules.

Example
enum kind { integer, real, text };
struct data {
 kind data_kind;
 data(int i) : data_kind(integer), integerval(i) {}
 data(double d) : data_kind(real), realval(d) {}union {
 int integerval;
 double realval;
 };
};

See Also
class, struct, Chapter 2, Chapter 6

Name
using keyword — Looks up names in alternate classes or
 namespaces

Synopsis

 block-decl := using-decl | using-directive
 using-decl ::= using [typename] [::] nested-name :: unqualified-id ; |
 using [::] unqualified-id ;
using-directive ::= using namespace [::] [nested-name ::] namespace-name ;
The using keyword starts a
 using declaration or using directive.
A using declaration
 imports a name from another namespace into the current namespace. It
 can also be used to introduce a name into a class scope; this is most
 often used to promote the access level of an inherited member or bring
 an inherited member into the derived class for overload
 resolution.
A using directive
 tells the compiler to search an additional namespace when looking up
 unqualified names.

Example
namespace math {
 const long double pi = 3.1415926535897932385L;
};using math::pi;
long double tan(long double x = pi);
int main()
{
 using namespace std;
 cout << "pi=" << math::pi << '\n';
}

See Also
class, declaration, identifier, namespace, Chapter 2, Chapter 6

Name
virtual specifier — Polymorphic function specifier or shared base
 class

Synopsis

 function-specifier := virtual
base-modifiers ::= virtual [access-specifier] | access-specifier [virtual]
The virtual keyword has two
 unrelated uses; it is used in virtual functions and virtual base
 classes:
	As a function specifier, virtual can be used only with a
 nonstatic member function. It makes the function and class
 polymorphic. A virtual function can be declared with = 0
 after the function header, which means the function is abstract.
 You cannot create an instance of a class with an abstract
 function; instead, a derived class must override the function. You
 can create an instance of the derived class.

	Using virtual as a
 base-class modifier means the base class subobject is shared when
 it is used more than once in an inheritance graph.

Example
struct shape {virtual void draw(canvas&) = 0;
 virtual void debug();
};
struct square : virtual shape {
 virtual void draw(canvas&);
 virtual void debug();
};

See Also
class, declaration, Chapter 6

Name
void keyword — Absence of type or function arguments

Synopsis

 simple-type-specifier := void
The void keyword can be used
 as a type specifier to indicate the absence of a type or as a
 function's parameter list to indicate that the function takes no
 parameters.
When used as a type specifier, it is most often used as a
 function return type to indicate that the function does not return a
 value. It is also used as a generic pointer (e.g., void*), although this usage is needed less
 often in C++ than in C.
C++ does not require that void be used to indicate that there are no
 function parameters, but it is often used in this way for
 compatibility with C.

Example
void func(void)
{
 std::cout << "hello, world\n";
}

See Also
declaration, type, Chapter
 2, Chapter 5

Name
volatile qualifier — Volatile qualifier

Synopsis

 cv-qualifier ::= const | volatile
cv-qualifier-seq ::= const | volatile | const volatile | volatile const
The volatile qualifier can be
 used with objects and member functions. The volatile qualifier tells the compiler to
 avoid certain optimizations because the object's value can change in
 unexpected ways. As a function qualifier, volatile tells the compiler to treat
 this as a volatile pointer in the member function
 body.

Example
volatile sig_atomic_t interrupted = false;

See Also
const, const_cast, type, Chapter
 2, Chapter 5

Name
wchar_t type — Wide-character type specifier

Synopsis

 simple-type-specifier := wchar_t
[image: image with no caption]

The wchar_t type specifier
 denotes a wide character. The representation and interpretation of
 wide characters is implementation-defined.

Example
wchar_t Hellas[] = L"\u0397\u03b5\u03bb\u03bb\u03b1\u03c2";

See Also
char, type, Chapter
 1, Chapter 2

Name
while statement — Test-at-top unbounded loop statement

Synopsis

 statement := while (condition) statement
 condition ::= expression | type-specifier-seq
 declarator = assignment-expr

The while loop tests
 condition, and if
 condition is true, while executes statement. This repeats until condition is false. If condition contains a declaration, the
 declaration is in the same scope as statement.

Example
while (cin >> num)
 data.push_back(num);

See Also
break, continue, do, expression, for, statement, Chapter 4

Name
xor operator — Bitwise exclusive or operator

Synopsis

 exclusive-or-expr := exclusive-or-expr ^ and-expr | exclusive-or-expr xor and-expr

The bitwise exclusive or
 operator requires integer or enumeration operands. It performs the
 usual arithmetic conversions, then does an exclusive or operation on pairs of bits in
 the operands, resulting in an integer.
The xor operator is
 interchangeable with the ^
 token.

Example
unsigned bitmask = 0xFFF0;
bitmask = bitmask^ 0x0F12; // bitmask becomes 0xF0E2.

See Also
bitand, bitor, expression, xor_eq, Chapter 3, <ciso646>

Name
xor_eq operator — Bitwise exclusive or assignment operator

Synopsis

 assignment-expr := logical-or-expr ^= assignment-expr |
 logical-or-expr xor_eq assignment-expr

The xor_eq operator is an
 assignment operator that performs bitwise
 exclusive or. It is equivalent to logical-or-expr = logical-or-expr ^ assignment-expr, except that logical-or-expr is evaluated only
 once.
The keyword xor_eq is
 interchangeable with the ^=
 token.

Example
unsigned bitmask = 0xFFF0;
bitmask^= 0x0F12; // bitmask becomes 0xF0E2.

See Also
and_eq, expression, or_eq, xor, Chapter
 3, <ciso646>

Chapter 13. Library Reference

This chapter is a reference for the entire runtime library.
 As you can see, it is a big one. To help you find what you need, each
 header in this chapter is organized in alphabetical order. If you are not
 sure which header declares a particular type, macro, or other identifier,
 check the index. Once you find the right page, you can quickly see which
 header you must #include to define the
 identifier you need.
The subsections in each header's section describe the functions,
 macros, classes, and other entities declared and defined in the header.
 The name of the subsection tells you what kind of entity is described in
 the subsection—e.g., "terminate function," "basic_string class template,"
 and so on. Cross references in each "See Also" heading list intrasection
 references first, followed by references to other headers (in this
 chapter) and references to keywords (in Chapter 12).
The subsection for each class or class template contains
 descriptions of all important members. A few obvious or do-nothing members
 are omitted (such as most destructors) for the sake of brevity.
The entire standard library resides in the std namespace, except that macros reside outside
 any namespace. Be sure to check the subsection name closely so you know
 whether an identifier is a macro or something else. To avoid cluttering
 the reference material, the std::
 prefix is omitted from the descriptions. Examples, however, are complete
 and show how each namespace prefix is properly used.
Some C++ headers are taken from the C standard. For example, the C
 standard <stdio.h> has its C++
 equivalent in <cstdio>. The C++
 version declares all the C names (other than macros) in the std:: namespace but reserves the same names in
 the global namespace, so you must not declare your own names that conflict
 with those of the C headers.
Each C header can be used with its C name, in which case the
 declarations in the header are explicitly introduced into the global
 namespace. For example, <cstdio>
 declares std::printf (and many other
 names), and <stdio.h> does the
 same, but adds "using std::printf" to bring the name printf into the global namespace. This use of
 the C headers is deprecated.
The syntax description for most macros shows the macro name as an
 object or function declaration. These descriptions tell you the macro's
 type or expected arguments. They do not reflect the macro's
 implementation. For macros that expand to values, read the textual
 description to learn whether the value is a compile-time constant.
For an overview of the standard library, see Chapter 8. Chapter 9 presents the I/O portions of the
 library, and Chapter 10 discusses
 containers, iterators, and algorithms.
C++ permits two kinds of library implementations:
 freestanding and hosted. The
 traditional desktop computer is a hosted environment. A hosted
 implementation must implement the entire standard.
[image: image with no caption]

A freestanding implementation is free to implement a subset of the
 standard library. The subset must provide at least the following headers,
 and can optionally provide more:
	<cstdarg>
	<cstddef>
	<cstdlib>
	<exception>
	<limits>
	<new>
	<typeinfo>

<algorithm>

The <algorithm>
 header declares the generic algorithm function templates
 for operating on iterators and other objects. Refer to Chapter 10 for more information about
 using and writing generic algorithms and about the iterators they use.
 See Chapter 8 for a discussion of
 iterator traits.
Note
If you are at all confused by the removal algorithms (such as
 pop_heap, remove, and unique), be sure to read Chapter 10 first.

This section uses a number of abbreviations and conventions.
 First, each algorithm is described using plain English. Then, a more
 mathematical description of the algorithm, which tends to be harder to
 read, is given in a "Technical Notes" section.
The names of the template parameters tell you which category of
 iterator is expected. The iterator category is the minimal functionality
 needed, so you can, for example, use a random access iterator where at
 least a forward iterator is needed. (See Chapter 10 for more information on
 iterators and iterator categories.) To keep the syntax summaries short
 and readable, the iterator categories are abbreviated, as shown in Table 13-1.
Table 13-1. Template parameter names for iterator categories
	Parameter name
	Iterator category

	 BidiIter

	Bidirectional iterator

	 FwdIter

	Forward iterator

	 InIter

	Input iterator

	 OutIter

	Output iterator

	 RandIter

	Random access iterator

Other template parameter names are chosen to be self-explanatory.
 For example, any name that ends in Predicate is a function that returns a Boolean
 result (which can be type bool or any
 other type that is convertible to bool) or a Boolean functional object (an
 object that has a function call operator that returns a Boolean
 result).
A number of algorithms require sorted ranges or otherwise use a
 comparison function to test the less-than relationship. The library
 overloads each algorithm: the first function uses operator<, and the second accepts a
 function pointer or function object to perform the comparison. The
 comparison function takes two arguments and returns a Boolean result. In
 the "Technical Notes" sections, the < relationship signifies operator< or the caller-supplied function,
 depending on the version of the algorithm you are using. If you overload
 operator< or provide your own
 comparison function, make sure it correctly implements a less-than
 relationship. In particular, a
 < a must be false for any a.
In this section, the following conventions are used:
	Iterators are usually used in ranges that represent all the
 elements in the range or sequence. A range is written using standard
 mathematical notation: a square bracket denotes an inclusive
 endpoint of a range, and a parenthesis denotes an exclusive endpoint
 of a range. Thus, [x, y) is a range that starts at x, including x, and ends at y, excluding y. Chapter
 10 also discusses this aspect of iterators.

	Arithmetic expressions that involve iterators work as though
 each iterator were a random access iterator, even if the iterator is
 from a different category. For example, i - 1 for an input iterator is not
 allowed in C++ code, but in this section, it means the input
 iterator that points to one position before i.

	The names used for input ranges are typically first and last, in which first is an iterator that points to first
 the element of the range, and last is an iterator that points to one
 past the end of the range. Thus, the range is written as [first, last).

	An iterator that advances from first to last is typically called iter.

	Output iterators are typically named result. Most algorithms specify only the
 start of the output range. It is your responsibility to ensure that
 the output range has room to accommodate the entire output. The
 behavior is undefined if the output range overflows.

In each "Technical Notes" section, conventional mathematical
 notation is used with some aspects of C++ notation, such as *, which dereferences an iterator. Also, a
 single equal sign (=) means assignment, and a double equal sign (==)
 means comparison for equality. The following conventions are used for
 names:
	i, j, k
	Denote iterators, and *i, *j, and *k denote the values that the iterators
 point to.

	n, m
	Denote integers.

	a, b, c
	Denote values, which are usually of types that can be
 assigned to or from a dereferenced iterator (e.g., *i = a).

Name
adjacent_find function template — Searches for a pair of adjacent, equal
 items

Synopsis
template<typename FwdIter>
 FwdIter adjacent_find(FwdIter first, FwdIter last);
template<typename FwdIter, typename BinaryPredicate>
 FwdIter adjacent_find(FwdIter first, FwdIter last, BinaryPredicate pred);
The adjacent_find function
 template looks for the first set of adjacent items in the range
 [first, last) that are equal (first version) or in
 which pred(*iter, *(iter+1)) is true (second version). Items
 are "adjacent" when their iterators differ by one position.
The return value is an iterator that points to the first of
 the adjacent items, or last if no
 matching items are found. See Figure 13-1 for an
 example.
[image: Using adjacent_find to find two adjacent, equivalent items]

Figure 13-1. Using adjacent_find to find two adjacent, equivalent
 items

Technical Notes
The adjacent_find function
 template returns i, in which
 i = first + n, and n is the smallest value such that
 *(first + n) == *(first + n + 1) and first +
 n + 1 < last, or,
 if there is no such n,
 i = last.
Complexity is linear: the standard is muddled, but any
 reasonable implementation calls the predicate (operator== or pred) exactly n + 1 times.

See Also
find function template,
 find_if function
 template

Name
binary_search function template — Searches using a binary search

Synopsis
template<typename FwdIter, typename T>
 bool binary_search(FwdIter first, FwdIter last, const T& value);
template<typename FwdIter, typename T, typename Compare>
 bool binary_search(FwdIter first, FwdIter last, const T& value,
 Compare comp);
The binary_search function
 template uses a binary search to test whether value is in the range [first, last). It returns true upon success and false if the value is not found. The
 contents of the range must be sorted in ascending order.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X < Y.

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
The binary_search function
 template returns true if there is
 an i in [first, last) such that !(*i < value) and !(value < *i). It returns false if there is no such i.
Complexity is logarithmic. The number of comparisons is at
 most log(last - first) + 2. Although the iterator can be
 a forward iterator, the best performance is obtained with a random
 access iterator. With a forward or bidirectional iterator, the
 iterator is advanced a linear number of times, even though the
 number of comparisons is logarithmic.

See Also
equal_range function
 template, find function
 template, find_if function
 template, lower_bound function
 template, upper_bound
 function template

Name
copy function template — Copies every item in a range

Synopsis
template<typename InIter, typename OutIter>
 OutIter copy(InIter first, InIter last, OutIter result);
The copy function template
 copies items from [first,
 last) to the output iterator
 starting at result. You must
 ensure that the output sequence has enough room for last - first items. The return value is the value
 of the result iterator after
 copying all the items, as shown in Figure 13-2.
[image: Copying a range]

Figure 13-2. Copying a range

The result iterator cannot
 be in the source range [first,
 last), but other parts of the
 destination range can overlap with the source.
See Example 13-2
 (under generate).

Technical Notes
The copy function template
 assigns *(result + n) = *(first + n) for all n in the range [0, last - first).
Complexity is linear: exactly last - first assignments are performed.

See Also
copy_backward function
 template, partial_sort_copy
 function template, replace_copy function template,
 remove_copy function
 template, reverse_copy
 function template, rotate_copy function template,
 unique_copy function
 template

Name
copy_backward function template — Copies a range, starting at the end

Synopsis
template<typename BidiIter1, typename BidiIter2>
 BidiIter2 copy_backward(BidiIter1 first, BidiIter1 last, BidiIter2 result);
The copy_backward function
 template does the same thing as copy, but it works backward, starting at
 the element before last and
 copying elements toward first.
 The result iterator must point to
 one past the end of the destination and is decremented before
 copying each element. The return value is an iterator that points to
 the first element of the destination, as shown in Figure 13-3.
[image: Copying a range backward]

Figure 13-3. Copying a range backward

The result iterator cannot
 be in the source range [first,
 last), but other parts of the
 destination range can overlap with the source.

Technical Notes
The copy_backward function
 template assigns *(result -
 n) = *(last - n) for all n in the range [1, last - first].
Complexity is linear: exactly last - first assignments are performed.

See Also
copy function template,
 reverse_copy function
 template

Name
count function template — Counts the occurrences of a value

Synopsis
template<typename InIter, typename T>
 typename iterator_traits<InIter>::difference_type
 count(InIter first, InIter last, const T& value);
The count function template
 returns the number of elements in the range [first, last) that are equal to value.

Technical Notes
Complexity is linear: exactly last - first comparisons are performed.

See Also
count_if function
 template, equal_range function
 template

Name
count_if function template — Counts the number of times a predicate returns
 true

Synopsis
template<typename InIter, typename Predicate>
 typename iterator_traits<InIter>::difference_type
 count_if(InIter first, InIter last, Predicate pred);
The count_if function
 template returns the number of elements in the range [first, last) for which pred(*iter) returns true.

Technical Notes
Complexity is linear: pred
 is called exactly last -
 first times.

See Also
count function template,
 find_if function
 template

Name
equal function template — Tests whether ranges have same contents

Synopsis
template<typename InIter1, typename InIter2>
 bool equal(InIter1 first1, InIter1 last1, InIter2 first2);
template<typename InIter1, typename InIter2, typename BinaryPredicate>
 bool equal(InIter1 first1, InIter1 last1, InIter2 first2,
 BinaryPredicate pred);
The equal function template
 returns true if two ranges
 contain the same elements in the same order. The first range is
 [first1, last1), and the second range has the same
 number of elements, starting at first2. The ranges can overlap.
The first form compares items using the == operator. The second form calls
 pred(*iter1, *iter2).

Technical Notes
The equal function template
 returns true if *(first1 + n) == *(first2 + n) for all n in the range [0, last1 - first1).
Complexity is linear: at most last1 - first1 comparisons are performed.

See Also
lexicographical_compare
 function template, mismatch
 function template, search
 function template

Name
equal_range function template — Finds all occurrences of a value in a sorted range using
 binary search

Synopsis
template<typename FwdIter, typename T>
 pair<FwdIter, FwdIter>
 equal_range(FwdIter first, FwdIter last, const T& value);
template<typename FwdIter, typename T, typename Compare>
 pair<FwdIter, FwdIter>
 equal_range(FwdIter first, FwdIter last, const T& value, Compare comp);
The equal_range function
 template determines where value
 belongs in the sorted range [first, last). It returns a pair of iterators that
 specify the start and one past the end of the range of items that
 are equivalent to value, or both
 iterators in the pair point to where you can insert value and preserve the sorted nature of
 the range.
The first form compares values using the < operator. The second form calls
 comp(*iter, value).
Figure 13-4 shows
 how bounds are found with the value 36. The result of calling equal_range is pair(lb, ub). Note that for values in the range
 [19, 35], the upper and lower bound are both
 equal to lb, and for values in
 the range [37, 41], the upper and lower bound are both
 equal to ub.
[image: Finding the limits of where the value 36 belongs in a sorted range]

Figure 13-4. Finding the limits of where the value 36 belongs in a
 sorted range

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
The equal_range function
 template returns the equivalent of calling the following, although
 the actual implementation might be different:
std::make_pair(std::lower_bound(first, last, value),
 std::upper_bound(first, last, value))
or:
std::make_pair(std::lower_bound(first, last, value, comp),
 std::upper_bound(first, last, value, comp))
Complexity is logarithmic. The number of comparisons is at
 most 2 × log(last - first) + 1. Although the iterator can be
 a forward iterator, the best performance is obtained with a random
 access iterator. With a forward or bidirectional iterator, the
 iterator is advanced a linear number of times, even though the
 number of comparisons is logarithmic.

See Also
binary_search function
 template, lower_bound function
 template, upper_bound
 function template, pair in
 <utility>

Name
fill function template — Fills a range with copies of a value

Synopsis
template<typename FwdIter, typename T>
 void fill(FwdIter first, FwdIter last, const T& value);
The fill function template
 fills the destination range [first, last) by assigning value to each item in the range.

Technical Notes
The fill function template
 assigns *i = value for all
 i in the range [first, last).
Complexity is linear: exactly last - first assignments are performed.

See Also
fill_n function
 template, generate function
 template

Name
fill_n function template — Fills a counted range with copies of a
 value

Synopsis
template<typename OutIter, typename Size, typename T>
 void fill_n(OutIter first, Size n, const T& value);
The fill_n function
 template assigns value to
 successive items in the destination range, starting at first and assigning exactly n items.
The Size template parameter
 must be convertible to an integral type.

Technical Notes
The fill_n function
 template assigns *(first +
 n) = value for all
 n in the range [0, n).
Complexity is linear: exactly n assignments are performed.

See Also
fill function template,
 generate_n function
 template

Name
find function template — Searches for a value using linear search

Synopsis
template<typename InIter, typename T>
 InIter find(InIter first, InIter last, const T& value);
The find function template
 returns an iterator that points to the first occurrence of value in [first, last). It returns last if value is not found. The == operator is used to compare
 items.

Technical Notes
The find function template
 returns i = first + n, in which n is the smallest value such that
 *(first + n) == value. If there is no such n, i
 = last.
Complexity is linear: at most last - first comparisons are performed.

See Also
find_end function
 template, find_first_of
 function template, find_if
 function template, search
 function template

Name
find_end function template — Searches for the last occurrence of a
 sequence

Synopsis
template<typename FwdIter1, typename FwdIter2>
 FwdIter1 find_end(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2,
 FwdIter2 last2);
template<typename FwdIter1, typename FwdIter2, typename BinaryPredicate>
 FwdIter1 find_end(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2,
 FwdIter2 last2, BinaryPredicate pred);
The find_end function
 template finds the last (rightmost) subsequence [first2, last2) within the range [first1, last1), as illustrated in Figure 13-5. It returns an
 iterator, find_end in Figure 13-5, that points to
 the start of the matching subsequence or last1 if a match cannot be found.
The first form compares items with the == operator. The second form calls
 pred(*iter1, *iter2).
[image: Finding a subsequence with find_end and search]

Figure 13-5. Finding a subsequence with find_end and search

Technical Notes
Let length1 = last1 - first1 and length2 = last2 - first2.
The find_end function
 template returns first1 +
 n, in which n is the highest value in the range [0,
 length1 - length2) such that *(i + n + m) == (first2 + m) for all i in the range [first1, last1) and m in the range [0, length2). It returns last1 if no such n can be found.
Complexity: at most length1 × length2 comparisons are performed.

See Also
find function template,
 search function
 template

Name
find_first_of function template — Searches for any one of a sequence of
 values

Synopsis
template<typename FwdIter1, typename FwdIter2>
 FwdIter1 find_first_of(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2,
 FwdIter2 last2);
template<typename FwdIter1, typename FwdIter2, typename BinaryPredicate>
 FwdIter1 find_first_of(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2,
 FwdIter2 last2, BinaryPredicate pred);
The find_first_of function
 template searches the range [first1, last1) for any one of the items in
 [first2, last2). If it finds a matching item, it
 returns an iterator that points to the matching item, in the range
 [first1, last1). It returns last1 if no matching item is found. Figure 13-6 shows an
 example.
[image: Finding any one of a list of items]

Figure 13-6. Finding any one of a list of items

The first form compares items with the == operator. The second form calls
 pred(*iter1, *iter2).

Technical Notes
Let length1 = last1 - first1 and length2 = last2 - first2.
The find_first_of function
 template returns first1 +
 n where n is the smallest value in the range [0,
 length1) such that *(first1 + n) == (first2 + m) for some m in the range [0, length2). It returns last1 if no such n and m can be found.
Complexity: at most length1 × length2 comparisons are performed.

See Also
find function
 template

Name
find_if function template — Searches for when a predicate returns true

Synopsis
template<typename InIter, typename Predicate>
 InIter find_if(InIter first, InIter last, Predicate pred);
The find_if function
 template (similar to find)
 searches the range [first,
 last) for the first item for
 which pred(*iter) is true. It
 returns an iterator that points to the matching item. If no matching
 item is found, last is
 returned.

Technical Notes
The find_if function
 template returns i = first + n, in which n is the smallest value such that
 pred(*(first + n), value) is true. If there is no such
 n, i = last.
Complexity is linear: pred
 is called at most last -
 first times.

See Also
find function
 template

Name
for_each function template — Calls a function for each item in a range

Synopsis
template<typename InIter, typename Func>
 Function for_each(InIter first, InIter last, Func f);
The for_each function
 template calls f for each item in
 the range [first, last), passing the item as the sole
 argument to f. It returns
 f.

Example
Example 13-1 shows
 how the use for_each to test
 whether a sequence is sorted. The is_sorted object remembers the previous
 item in the sequence, which it compares with the current item. The
 overloaded bool operator returns
 true if the sequence is sorted so
 far or false if the sequence is
 out of order. The example takes advantage of the fact that for_each returns the f parameter as its result.
Example 13-1. Using for_each to test whether a list is sorted
#include <iostream>
#include <algorithm>
#include <list>

template<typename T>
class is_sorted
{
public:
 is_sorted() : first_time(true), sorted(true) {}
 void operator()(const T& item) {
 // for_each calls operator() for each item.
 if (first_time)
 first_time = false;
 else if (item < prev_item)
 sorted = false;
 prev_item = item;
 }
 operator bool() { return sorted; }
private:
 bool first_time;
 bool sorted;
 T prev_item;
};

int main()
{
 std::list<int> l;
 l.push_back(10);
 l.push_back(20);
 ... if (std::for_each(l.begin(), l.end(), is_sorted<int>()))
 std::cout << "list is sorted" << '\n';
}

Technical Notes
Complexity is linear: f is
 called exactly last - first times.

See Also
copy function template,
 accumulate in <numeric>

Name
generate function template — Fills a range with values returned from a
 function

Synopsis
template<typename FwdIter, typename Generator>
 void generate(FwdIter first, FwdIter last, Generator gen);
The generate function
 template fills the sequence [first, last) by assigning the result of calling
 gen() repeatedly.

Example
Example 13-2 shows
 a simple way to fill a sequence with successive integers.
Example 13-2. Using generate to fill a vector with integers
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>

// Generate a series of objects, starting with "start".
template <typename T>
class series {
public:
 series(const T& start) : next(start) {}
 T operator()() { return next++; }
private:
 T next;
};

int main()
{
 std::vector<int> v;
 v.resize(10);
 // Generate integers from 1 to 10. std::generate(v.begin(), v.end(), series<int>(1));
 // Print the integers, one per line.
 std::copy(v.begin(), v.end(),
 std::ostream_iterator<int>(std::cout, "\n"));
}

Technical Notes
Complexity is linear: gen
 is called exactly last -
 first times.

See Also
fill function template,
 generate_n function
 template

Name
generate_n function template — Fills a counted range with values returned from a
 function

Synopsis
template<typename OutIter, typename Size, typename Generator>
 void generate_n(OutIter first, Size n, Generator gen);
The generate_n function
 template calls gen() exactly
 n times, assigning the results to
 fill the sequence that starts at first. You must ensure that the sequence
 has room for at least n items.
 The Size type must be convertible
 to an integral type.

Example
Example 13-3 shows
 a simple way to print a sequence of integers.
Example 13-3. Using generate_n to print a series of integers
#include <algorithm>
#include <iostream>
#include <iterator>

// Use the same series template fromExample 13-2.

int main()
{
 // Print integers from 1 to 10.
 std::generate_n(std::ostream_iterator<int>(std::cout,"\n"),
 10, series<int>(1));
}

Technical Notes
Complexity is linear: gen
 is called exactly n
 times.

See Also
fill_n function
 template, generate function
 template

Name
includes function template — Tests sorted ranges for subset

Synopsis
template<typename InIter1, typename InIter2>
 bool includes(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2);
template<typename InIter1, typename InIter2, typename Compare>
 bool includes(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2,
 Compare comp);
The includes function
 template checks for a subset relationship, that is, it returns
 true if every element in the
 sorted sequence [first2, last2) is contained in the sorted sequence
 [first1, last1). It returns false otherwise.
Both sequences must be sorted. The first form uses the
 < operator to compare the
 elements. The second form calls comp(*iter1, *iter2).

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first1, last1 - 1) and !(*(j + 1) < *j) for all
 j in [first2,
 last2 - 1).
The includes function
 template returns true if there is
 an i in [first1, last1) such that *(i + n) = *(first2
 + n) for all
 n in [0, (last2 - first2)). It returns last1 if there is no such i.
Complexity is linear: at most, 2 × ((last1 - first1) + (last2 - first2)) - 1 comparisons are
 performed.

See Also
set_difference function
 template, set_intersection
 function template, set_symmetric_difference function
 template, set_union function
 template

Name
inplace_merge function template — Merges sorted, adjacent ranges in place

Synopsis
template<typename BidiIter>
 void inplace_merge(BidiIter first, BidiIter middle, BidiIter last);
template<typename BidiIter, typename Compare>
 void inplace_merge(BidiIter first, BidiIter middle, BidiIter last,
 Compare comp);
The inplace_merge function
 template merges two sorted, consecutive ranges in place, creating a
 single sorted range. The two ranges are [first, middle) and [middle, last). The resulting range is [first, last).
The merge is stable, so elements retain their respective
 orders, with equivalent elements in the first range coming before
 elements in the second.
Both sequences must be sorted. The first form uses the
 < operator to compare
 elements. The second form calls comp(*iter1, *iter2).
Figure 13-7 shows
 how inplace_merge
 operates.
[image: Merging two sorted ranges]

Figure 13-7. Merging two sorted ranges

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first, middle - 1) and !(*(j + 1) < *j) for all
 j in [middle,
 last - 1).
Postcondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
Complexity is usually linear with n + 1 comparisons, but if enough
 temporary memory is not available, the complexity might be n log n, in which n is last - first.

See Also
merge function template,
 sort function template

Name
iter_swap function template — Swaps values that iterators point to

Synopsis
template<typename FwdIter1, typename FwdIter2>
 void iter_swap(FwdIter1 a, FwdIter2 b);
The iter_swap function
 template swaps the values pointed to by a and b. You can think of its functionality
 as:
FdwIter1::value_type tmp = *b*;
*b = *a;
*a = tmp;

Technical Notes
Complexity is constant.

See Also
copy function template,
 swap function template,
 swap_ranges function
 template

Name
lexicographical_compare function template — Compares ranges for less-than

Synopsis
template<typename InIter1, typename InIter2>
 bool lexicographical_compare(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2);
template<typename InIter1, typename InIter2, typename Compare>
 bool lexicographical_compare(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, Compare comp);
The lexicographical_compare
 function template returns true if
 the sequence [first1, last1) is less than the sequence [first2, last2). If the sequences have the same
 length and contents, the return value is false. If the second sequence is a prefix
 of the first, true is returned.
 (The use of "lexicographical" emphasizes that the ranges are
 compared element-wise, like letters in words.)
The first form uses the < operator to compare elements. The
 second form calls comp(*iter1,
 *iter2).

Technical Notes
Let length1 = last1 - first1, length2 = last2 - first2, and minlength = min(length1, length2).
The lexicographical_compare
 function template returns true if
 either of the following conditions is true:
	There is an n in [0,
 minlength) such that
 *(first1 + m) == *(first2 + m) for all m in [0, n - 1), and *(first1 +
 n) < *(first2
 + n).

	*(first1 + n) == *(first2 + n) for all n in [0, length2) and length2 < length1.

Complexity is linear: at most, minlength comparisons are
 performed.

Example
#include <algorithm>
#include <iostream>
#include <ostream>

int main()
{
 using namespace std;

 int a[] = { 1, 10, 3, 42 };
 int b[] = { 1, 10, 42, 3 };
 int c[] = { 1, 10 };

 cout << boolalpha;
 cout << lexicographical_compare(a, a+4, b, b+4); // true
 cout << lexicographical_compare(a, a+4, c, c+2); // false
 cout << lexicographical_compare(a, a+4, a, a+4); // false
 cout << lexicographical_compare(c, c+2, b, b+4); // true
}

See Also
equal function
 template

Name
lower_bound function template — Finds lower bound for a value's position in a sorted
 range using binary search

Synopsis
template<typename FwdIter, typename T>
 FwdIter lower_bound(FwdIter first, FwdIter last, const T& value);
template<typename FwdIter, typename T, typename Compare>
 FwdIter lower_bound(FwdIter first, FwdIter last, const T& value, Compare comp);
The lower_bound function
 template determines where value
 belongs in the sorted range [first, last). The return value is an iterator
 that points to the first (leftmost) occurrence of value in the range, if value is present. Otherwise, the iterator
 points to the first position where you can insert value and preserve the sorted nature of
 the range.
The first form compares values using the < operator. The second form calls
 comp(*iter, value).
Figure 13-4 (under
 equal_range) shows how to find
 the bounds for the value 36. The
 lower_bound function returns
 lb as the lower bound of 36 in
 the given range. Note that lb is
 the lower bound for all values in the range [19, 36], and for values
 in the range [37, 41], the lower bound is equal to ub.

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
The lower_bound function
 template returns first +
 n, in which n is the highest value in [0, last - first) such that *(first + m) < value for all m in [0, n).
Complexity is logarithmic. The number of comparisons is at
 most log(last - first) + 1. Although the iterator can be
 a forward iterator, the best performance is obtained with a random
 access iterator. With a forward or bidirectional iterator, the
 iterator is advanced a linear number of times, even though the
 number of comparisons is logarithmic.

See Also
binary_search function
 template, equal_range function
 template, upper_bound
 function template

Name
make_heap function template — Reorders a range to convert it into a heap

Synopsis
template<typename RandIter>
 void make_heap(RandIter first, RandIter last);
template<typename RandIter, typename Compare>
 void make_heap(RandIter first, RandIter last, Compare comp);
The make_heap function
 template reorders the elements in the range [first, last) to form a heap in place.
The first form compares values using the < operator. The second form calls
 comp(*iter, value).
Heap Data Structure
A heap is a data structure that is
 ideally suited for implementing priority queues. C++ defines a
 range as a heap if two properties are satisfied:
	The first element of the range is the largest, which
 strictly means that *first < *(first + n) is false for all n in [1, last - first).

	Adding or removing an element can be done in logarithmic
 time, and the result is still a heap.

The classic example of a heap is a binary tree, in which
 each node is greater than or equal to its children, but the
 relative order of the children is not specified. Thus, the root of
 the tree is the largest element in the entire tree.

Technical Notes
Postcondition: [first,
 last) is a heap.
Complexity is linear: at most, 3 × (last - first) comparisons are performed.

See Also
pop_heap function
 template, push_heap function
 template, sort_heap function
 template, <queue>

Name
max function template — Returns the maximum of two values

Synopsis
template<typename T>
 const T& max(const T& a, const T& b);
template<typename T, typename Compare>
 const T& max(const T& a, const T& b, Compare comp);
The max function template
 returns the larger of a and
 b. If neither is larger, it
 returns a.
The first form compares values using the < operator. The second form calls
 comp(a, b).

See Also
max_element function
 template, min function
 template

Name
max_element function template — Finds the largest element in a range

Synopsis
template<typename FwdIter>
 FwdIter max_element(FwdIter first, FwdIter last);
template<typename FwdIter, typename Compare>
 FwdIter max_element(FwdIter first, FwdIter last, Compare comp);
The max_element function
 template returns an iterator that points to the largest element in
 the range [first, last). If there are multiple instances of
 the largest element, the iterator points to the first such
 instance.
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).

Technical Notes
The max_element function
 template returns first +
 n, in which n is the smallest value in [0, last - first) such that for all m in [0, last - first), *(first + n) < *(first + m) is false.
Complexity is linear: exactly max(last - first - 1, 0) comparisons are
 performed.

See Also
max function template,
 min_element function
 template

Name
merge function template — Merges sorted ranges

Synopsis
template<typename InIter1, typename InIter2, typename OutIter>
 OutIter merge(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2,
 OutIter result);
template<typename InIter1, typename InIter2, typename OutIter, typename Compare>
 OutIter merge(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2,
 OutIter result, Compare comp);
The merge function template
 merges the sorted ranges [first1,
 last1) and [first2, last2), copying the results into the
 sequence that starts with result.
 You must ensure that the destination has enough room for the entire
 merged sequence.
The return value is the end value of the destination iterator,
 that is, result + (last1 - first1) + (last2 - first2).
The destination range must not overlap either of the input
 ranges.
The merge is stable, so elements preserve their relative
 order. Equivalent elements are copied, so elements from the first
 range come before elements from the second range.
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).

Technical Notes
Let length1 = last1 - first1 and length2 = last2 - first2.
Precondition: !(*(i + 1)
 < *i) for all i in [first1, last1 - 1) and !(*(j + 1) < *j) for all
 j in [first2,
 last2 - 1).
Postcondition: !(*(i + 1)
 < *i) for all i in [result, result + length1 + length2 - 1).
Complexity is linear: at most, length1 + length2 - 1 comparisons are
 performed.

See Also
inplace_merge function
 template, sort function
 template

Name
min function template — Returns the minimum of two values

Synopsis
template<typename T>
 const T& min(const T& a, const T& b);
template<typename T, typename Compare>
 const T& min(const T& a, const T& b, Compare comp);
The min function template
 returns the smaller of a and
 b. If neither is smaller, it
 returns a.
The first form compares values using the < operator. The second form calls
 comp(a, b).

See Also
max function template,
 min_element function
 template

Name
min_element function template — Finds the smallest value in a range

Synopsis
template<typename FwdIter>
 FwdIter min_element(FwdIter first, FwdIter last);
template<typename FwdIter, typename Compare>
 FwdIter min_element(FwdIter first, FwdIter last, Compare comp);
The min_element function
 template returns an iterator that points to the smallest element in
 the range [first, last). If there are multiple instances of
 the smallest element, the iterator points to the first such
 instance.
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).

Technical Notes
The min_element function
 template returns first +
 n, in which n is the smallest value in [0, last - first) such that for all m in [0,
 last - first), *(first + m) < *(first + n) is false.
Complexity is linear: exactly max(last - first - 1, 0) comparisons are
 performed.

See Also
max_element function
 template, min function
 template

Name
mismatch function template — Finds first position where two ranges
 differ

Synopsis
template<typename InIter1, typename InIter2>
 pair<InIter1, InIter2>
 mismatch(InIter1 first1, InIter1 last1, InIter2 first2);
template<typename InIter1, typename InIter2, typename BinaryPredicate>
 pair<InIter1, InIter2>
 mismatch(InIter1 first1, InIter1 last1, InIter2 first2,
 BinaryPredicate pred);
The mismatch function
 template compares two sequences pairwise and returns a pair of
 iterators that identifies the first elements at which the sequences
 differ. The first sequence is [first1, last1), and the second sequence starts at
 first2 and has at least as many
 elements as the first sequence.
The return value is a pair of iterators; the first member of
 the pair points to an element of the first sequence, and second
 member of the pair points to an element of the second sequence. The
 two iterators have the same offset within their respective ranges.
 If the two sequences are equivalent, the pair returned is last1 and an iterator that points to the
 second sequence at the same offset (let's call it last2).
The first form compares items with the == operator. The second form calls
 pred(*iter1, *iter2).
Figure 13-8
 illustrates how the mismatch
 function template works.
[image: Checking two sequences for a mismatch]

Figure 13-8. Checking two sequences for a mismatch

Technical Notes
The mismatch function
 template returns the pair (first1 + n, first2 + n), in which n is the smallest value in [0, last1 - first1) such that *(first1 + n) == *(first2 + n) is false and *(first1 + m) == *(first2 + m) is true for all m in [0, n). If there is no such n, n
 = last1 - first1.
Complexity is linear: at most last1 - first1 comparisons are performed.

See Also
equal function template,
 search function template,
 pair in <utility>

Name
next_permutation function template — Generates next permutation

Synopsis
template<typename BidiIter>
 bool next_permutation(BidiIter first, BidiIter last);
template<typename BidiIter, typename Compare>
 bool next_permutation(BidiIter first, BidiIter last, Compare comp);
The next_permutation
 function template rearranges the contents of the range [first, last) for the next permutation, assuming
 that there is a set of lexicographically ordered permutations. The
 return value is true if the next
 permutation is generated, or false if the range is at the last
 permutation, in which case the function cycles, and the first
 permutation is generated (that is, with all elements in ascending
 order).
Figure 13-9 shows
 all the permutations, in order, for a sequence. The next_permutation function swaps elements
 to form the next permutation. For example, if the input is
 permutation 2, the result is permutation 3. If the input is
 permutation 6, the result is permutation 1, and next_permutation returns false.
[image: Permutations of a sequence]

Figure 13-9. Permutations of a sequence

Example
Example 13-4 shows
 a simple program that prints all the permutations of a sequence of
 integers. You can use this program to better understand the next_permutation function template.
Example 13-4. Generating permutations
#include <algorithm>
#include <iostream>
#include <istream>
#include <iterator>
#include <ostream>
#include <vector>

void print(const std::vector<int>& v)
{
 std::copy(v.begin(), v.end(),
 std::ostream_iterator<int>(std::cout, " "));
 std::cout << '\n';
}

int main()
{
 std::cout << "Enter a few integers, followed by EOF:";
 std::istream_iterator<int> start(std::cin);
 std::istream_iterator<int> end;
 std::vector<int> v(start, end);

 // Start with the first permutation (ascending order).
 std::sort(v.begin(), v.end());
 print(v);

 // Print all the subsequent permutations.
 while (std::next_permutation(v.begin(), v.end()))
 print(v);
}

Technical Notes
Complexity is linear: at most, there are (last - first) / 2 swaps.

See Also
lexicographical_compare
 function template, prev_permutation function template,
 swap function
 template

Name
nth_element function template — Reorders a range to properly place an item at the nth
 position

Synopsis
template<typename RandIter>
 void nth_element(RandIter first, RandIter nth, RandIter last);
template<typename RandIter, typename Compare>
 void nth_element(RandIter first, RandIter nth, RandIter last, Compare comp);
The nth_element function
 template reorders the range [first, last) so that *nth is assigned the value that would be
 there if the entire range were sorted. It also partitions the range
 so that all elements in the range [first, nth) are less than or equal to the
 elements in the range [nth,
 last).
The order is not stable—that is, if there are multiple
 elements that could be moved to position nth and preserve the sorted order, you
 cannot predict which element will be moved to that position.
Figure 13-10
 illustrates how the nth_element
 function template works.
[image: Reordering a range with nth_element]

Figure 13-10. Reordering a range with nth_element

Technical Notes
Precondition: nth is in
 the range [first, last).
Postcondition: *i <
 *nth for all i in [first, nth), !(*j < *nth) for all j
 in [nth, last), and !(*k < *nth) for all k in [nth + 1, last).
Complexity is linear for the average case but is allowed to
 perform worse in the worst case.

See Also
partition function
 template, partial_sort
 function template, sort
 function template

Name
partial_sort function template — Sorts the first part of a range

Synopsis
template<typename RandIter>
 void partial_sort(RandIter first, RandIter middle, RandIter last);
template<typename RandIter, typename Compare>
 void partial_sort(RandIter first, RandIter middle, RandIter last,
 Compare comp);
The partial_sort function
 template sorts the initial middle
 - first elements of the range
 [first, last) into the range [first, middle). The remaining elements at
 [middle, last) are not in any particular
 order.
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).
See Figure 13-11
 for an illustration of the partial-sort algorithm.
[image: The partial-sort algorithm]

Figure 13-11. The partial-sort algorithm

Technical Notes
Postcondition: for all i
 in [first, middle - 1), *(i + 1) < *i is false, and for all j in [middle, last) and for all i in [first, middle), *j < *i is false.
Complexity is logarithmic, taking about (last - first) × log(middle - first) comparisons.

See Also
nth_element function
 template, partial_sort_copy
 function template, partition
 function template, sort
 function template

Name
partial_sort_copy function template — Sorts and copies the first part of a range

Synopsis
template<typename InIter, typename RandIter>
 RandIter partial_sort_copy(InIter first, InIter last, RandIter result_first,
 RandIter result_last);
template<typename InIter, typename RandIter, typename Compare>
 RandIter partial_sort_copy(InIter first, InIter last, RandIter result_first,
 RandIter result_last, Compare comp);
The partial_sort_copy
 function template copies and sorts elements from the range [first, last) into the range [result_first, result_last). The number of items copied
 (N) is the smaller of last - first and result_last - result_first. If the source range is
 smaller than the result range, the sorted elements are taken from
 the entire source range [first,
 last) and copied into the first
 N positions of the result
 range, starting at result_first.
 If the source range is larger, it is copied and sorted into the
 first N positions of the result
 range, leaving the elements in [result_first + N, result_last) unmodified. The return value
 is result_first + N.
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).

Technical Notes
Let n = min(last - first, result_last - result_first).
Postcondition: for all i
 in [result_first, result_first + n - 1), *(i + 1) < *i is false.
Complexity is logarithmic, taking about (last - first) × log n comparisons.

See Also
nth_element function
 template, partial_sort_copy
 function template, partition
 function template, sort
 function template

Name
partition function template — Partitions a range according to a predicate

Synopsis
template<typename BidiIter, typename Predicate>
 BidiIter partition(BidiIter first, BidiIter last, Predicate pred);
The partition function
 template swaps elements in the range [first, last) so that all elements that satisfy
 pred come before those that do
 not. The relative order of elements is not preserved.
The return value is an iterator that points to the first
 element for which pred is false,
 or last if there is no such
 element.
Figure 13-12
 illustrates the partition
 function template for a predicate that tests whether a number is
 even:
function iseven(int n)
{
 return n % 2 == 0;
}
[image: Partitioning a range into even and odd numbers]

Figure 13-12. Partitioning a range into even and odd numbers

Technical Notes
Postcondition: Let r be
 an iterator in the range [first, last] such that pred(*i) is true for all i in [first, r), and pred(*j) is false for all j in [r, last).
The partition function
 template returns r.
Complexity is linear: pred
 is called exactly last -
 first times, and at most
 (last - first) / 2 swaps are performed.

See Also
nth_element function
 template, partial_sort
 function template, sort
 function template, stable_partition function
 template

Name
pop_heap function template — Removes largest element from a heap

Synopsis
template<typename RandIter>
 void pop_heap(RandIter first, RandIter last);
template<typename RandIter, typename Compare>
 void pop_heap(RandIter first, RandIter last, Compare comp);
The pop_heap function
 template copies the first (largest) element from the heap in
 [first, last) to the end of the range, that is,
 *(last - 1). It then ensures that the
 elements remaining in [first,
 last - 1) form a heap.
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).

Technical Notes
Precondition: [first,
 last) is a heap (see make_heap for the definition of a
 heap).
Postcondition: [first,
 last - 1) is a heap, and
 !(*(last - 1) < *i) for all i in [first, last - 1).
Complexity is logarithmic: at most 2 × log(last - first) comparisons are performed.

See Also
make_heap function
 template, push_heap function
 template, sort_heap function
 template, <queue>

Name
prev_permutation function template — Generates previous permutation

Synopsis
template<typename BidiIter>
 bool prev_permutation(BidiIter first, BidiIter last);
template<typename BidiIter, typename Compare>
 bool prev_permutation(BidiIter first, BidiIter last, Compare comp);
The prev_permutation
 function template rearranges the contents of the range [first, last) to the previous permutation,
 assuming that there is a set of lexicographically ordered
 permutations. The return value is true if the previous permutation is
 generated, or false if the range
 is at the first permutation, in which case the function cycles and
 generates the last permutation (that is, with all elements in
 descending order).
Figure 13-9 (under
 next_permutation) shows all the
 permutations, in order, for a sequence. The prev_permutation function swaps elements
 to form the previous permutation. For example, if the input is
 permutation 3, the result is permutation 2. If the input is
 permutation 1, the result is permutation 6, and prev_permutation returns false.

Technical Notes
Complexity is linear: at most (last - first) / 2 swaps are performed.

See Also
lexicographical_compare
 function template, next_permutation function template,
 swap function
 template

Name
push_heap function template — Adds a value to a heap

Synopsis
template<typename RandIter>
 void push_heap(RandIter first, RandIter last);
template<typename RandIter, typename Compare>
 void push_heap(RandIter first, RandIter last, Compare comp);
The push_heap function
 template adds the item at last -
 1 to the heap in [first, last - 1), forming a new heap in the range
 [first, last).
The first form compares values using the < operator. The second form calls
 comp(*iter1, *iter2).

Technical Notes
Precondition: [first,
 last - 1) is a heap (see
 make_heap for the definition of a
 heap).
Postcondition: [first,
 last) is a heap.
Complexity is logarithmic: at most log(last - first) comparisons are performed.

See Also
make_heap function
 template, pop_heap function
 template, sort_heap function
 template, <queue>

Name
random_shuffle function template — Reorders a range into a random order

Synopsis
template<typename RandIter>
 void random_shuffle(RandIter first, RandIter last);
template<typename RandIter, typename RandomNumberGenerator>
 void random_shuffle(RandIter first, RandIter last,
 RandomNumberGenerator& rand);
[image: image with no caption]

The random_shuffle function
 template changes the order of elements in the range [first, last) to a random order. The first form
 uses an implementation-defined random number generator to produce a
 uniform distribution. The second form calls rand(n) to generate random numbers, in which
 n is a positive value of type
 iterator_traits<RandIter>::difference_type.
 The return value from rand must
 be convertible to the same difference_type and be in the range [0,
 n).

Technical Notes
Complexity is linear: exactly (last - first) + 1 swaps are performed.

See Also
swap function
 template, rand in <cstdlib>

Name
remove function template — Reorders a range to remove all occurrences of a
 value

Synopsis
template<typename FwdIter, typename T>
 FwdIter remove(FwdIter first, FwdIter last, const T& value);
The remove function
 template "removes" items that are equal to value from the range [first, last). Nothing is actually erased from the
 range; instead, items to the right are copied to new positions so
 they overwrite the elements that are equal to value. The return value is one past the
 new end of the range. The relative order of items that are not
 removed is stable.
Note
The only way to erase an element from a container is to call
 one of the container's member functions. Therefore, the remove function template does not and
 cannot erase items. All it can do is move items within its given
 range. A typical pattern, therefore, is to call remove to reorder the container's
 elements, and then call erase
 to erase the unwanted elements. To help you, the value returned
 from remove is an iterator that
 points to the start of the range that will be erased. For
 example:
std::vector<int> data
...
// Erase all values that are equal to 42.
std::erase(std::remove(data.begin(), data.end(), 42),
 data.end());

See Figure 13-13
 (under remove_copy) for an
 example of the removal process.

Technical Notes
The remove function
 template assigns *(first +
 n++) = *(first + m), in which n starts at 0, for all values of
 m in [0, last - first) in which *(first + m) == value is false. The return value is
 first + n.
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove_copy function
 template, remove_copy_if
 function template, remove_if
 function template, replace
 function template

Name
remove_copy function template — Copies elements that are not equal to a
 value

Synopsis
template<typename InIter, typename OutIter, typename T>
 OutIter remove_copy(InIter first, InIter last, OutIter result, const T& value);
The remove_copy function
 template copies items from the range [first, last) to the range that starts at result. Only items that are not equal to
 value are copied, that is, cases
 in which operator== returns
 false.
The return value is one past the end of the result range. The
 relative order of items that are not removed is stable.
The source and result ranges must not overlap. Figure 13-13 illustrates the
 removal process.
[image: Removing 18s from a range by calling remove_copy(first, last, 18)]

Figure 13-13. Removing 18s from a range by calling remove_copy(first,
 last, 18)

Technical Notes
The remove_copy function
 template assigns *(result +
 n++) = *(first + m), in which n starts at 0, for all values of
 m in [0, last - first), in which *(first + m) == value is false. The return value is
 result + n.
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove function
 template, remove_copy_if
 function template, replace_copy function
 template

Name
remove_copy_if function template — Copies elements for which a predicate returns
 false

Synopsis
template<typename InIter, typename OutIter, typename Predicate>
 OutIter remove_copy_if(InIter first, InIter last, OutIter result,
 Predicate pred);
The remove_copy_if function
 template copies items from the range [first, last) to the range that starts at result. Only items for which pred returns false are copied.
The return value is one past the end of the result range. The
 relative order of items that are not removed is stable.
The source and result ranges must not overlap. See Figure 13-13 (under remove_copy) for an example of the removal
 process.

Technical Notes
The remove_copy_if function
 template assigns *(result +
 n++) = *(first + m), in which n starts at 0, for all values of
 m in [0, last - first), in which
 pred(*(first + m)) is false. The return value is
 result + n.
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove function
 template, remove_copy
 function template, replace_copy_if function
 template

Name
remove_if function template — Reorders a range to remove elements for which a
 predicate returns false

Synopsis
template<typename FwdIter, typename Predicate>
 FwdIter remove_if(FwdIter first, FwdIter last, Predicate pred);
The remove_if function
 template "removes" items for which pred returns false from the range
 [first, last). The return value is one past the
 new end of the range. The relative order of items that are not
 removed is stable.
Nothing is actually erased from the underlying container;
 instead, items to the right are assigned to new positions so they
 overwrite the elements for which pred returns false. See Figure 13-13 (under remove_copy) for an example of the removal
 process.

Technical Notes
The remove_if function
 template assigns *(first +
 n++) = *(first + m), in which n starts at 0, for all values of
 m in [0, last - first), in which
 pred(*(first + m)) is false. The return value is
 first + n.
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove function
 template, remove_copy_if
 function template, replace_if
 function template

Name
replace function template — Replaces all occurrences of one value with another
 value

Synopsis
template<typename FwdIter, typename T>
 void replace(FwdIter first, FwdIter last, const T& old_value,
 const T& new_value);
The replace function
 template replaces all occurrences of old_value in [first, last) with new_value. See Figure 13-14 (under replace_copy) for an example of the
 replacement process.

Technical Notes
The replace function
 template assigns *i =
 (*i == old_value) ? new_value : *i for all i in [first, last).
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove function
 template, replace_copy
 function template, replace_copy_if function template,
 replace_if function template,
 transform function
 template

Name
replace_copy function template — Copies a range, replacing occurrences of one value with
 another value

Synopsis
template<typename InIter, typename OutIter, typename T>
 OutIter replace_copy(InIter first, InIter last, OutIter result,
 const T& old_value, const T& new_value);
The replace_copy function
 template copies values from [first, last) to the range that starts at result. Values that are equal to old_value are replaced with new_value; other values are copied without
 modification.
The return value is an iterator that points to one past the
 end of the result range. The source and result ranges must not
 overlap. Figure 13-14
 illustrates the replacement process.
[image: Replacing all occurrences of 42 with 10]

Figure 13-14. Replacing all occurrences of 42 with 10

Technical Notes
The replace_copy function
 template assigns *(result +
 n) = *(first + n) == old_value ? new_value : *(first + n) for all n in [0, last - first).
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove_copy function
 template, replace function
 template, replace_copy_if
 function template, transform
 function template

Name
replace_copy_if function template — Copies values, replacing those that satisfy a
 predicate

Synopsis
template<typename Iter, typename OutIter, typename Predicate, typename T>
 OutIter replace_copy_if(Iter first, Iter last, OutIter result, Predicate pred,
 const T& new_value);
The replace_copy_if
 function template copies values from [first, last) to the range that starts at result. Elements for which pred returns true are replaced with
 new_value; other elements are
 copied without modification.
The return value is an iterator that points to one past the
 end of the result range. The source and result ranges must not
 overlap. See Figure
 13-14 (under replace_copy)
 for an example of the replacement process.

Technical Notes
The replace_copy_if
 function template assigns *(result + n) = *(first + n) ==
 pred(*(first + n)) ? new_value : *(first + n) for all n in [0, last - first).
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove_copy_if function
 template, replace function
 template, replace_copy
 function template, replace_if
 function template, transform
 function template

Name
replace_if function template — Replaces values that satisfy a predicate

Synopsis
template<typename FwdIter, typename Predicate, typename T>
 void replace_if(FwdIter first, FwdIter last, Predicate pred,
 const T& new_value);
The replace_if function
 template replaces all values in [first, last) for which pred is true with new_value. See Figure 13-14 (under replace_copy) for an example of the
 replacement process.

Technical Notes
The replace_if function
 template assigns *i = pred(*i) ? new_value : *i for all i in [first, last).
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove_if function
 template, replace function
 template, replace_copy
 function template, transform
 function template

Name
reverse function template — Reverses the values in a range

Synopsis
template<typename BidiIter>
 void reverse(BidiIter first, BidiIter last);
The reverse function
 template reverses the order of the items in the range [first, last). See Figure 13-15 (under reverse_copy) for an example.

Technical Notes
The reverse function
 template swaps *(first +
 n) with *(last - n - 1) for all n in [0, (last - first) / 2].
Complexity is linear: exactly (last - first) / 2 swaps are performed.

See Also
reverse_copy function
 template, rotate function
 template, swap function
 template

Name
reverse_copy function template — Copies a range in reverse order

Synopsis
template<typename BidiIter, typename OutIter>
 OutIter reverse_copy(BidiIter first, BidiIter last, OutIter result);
The reverse_copy function
 template copies items in reverse order from the range [first, last) to the range that starts at result. In other words, *(last - 1) is first copied to *result, then *(last - 2) is copied to *(result + 1),
 and so on. The return value is an iterator that points to one past
 the end of the result range. The source and result ranges must not
 overlap. Figure 13-15
 shows an example of reversing a range.
[image: Reversing a range]

Figure 13-15. Reversing a range

Technical Notes
The reverse_copy function
 template assigns *(result +
 n) = *(last - n - 1) for all n in [0, last - first).
Complexity is linear: exactly last - first assignments are performed.

See Also
copy_backward function
 template, reverse function
 template, rotate_copy
 function template

Name
rotate function template — Rotates elements in a range

Synopsis
template<typename FwdIter>
 void rotate(FwdIter first, FwdIter middle, FwdIter last);
The rotate function
 template rotates elements in the range [first, last) to the left so that the items in the
 range [middle, last) are moved to the start of the new
 sequence. Elements in the range [first, middle) are rotated to the end. See Figure 13-16 for an
 example.
[image: Rotating a range by two positions]

Figure 13-16. Rotating a range by two positions

Technical Notes
For all n in [0,
 last - first), the rotate function template moves *(first +
 n) into position first + (n + (last - middle)) % (last - first).
Complexity is linear: at most last - first swaps are performed.

See Also
reverse function
 template, rotate_copy
 function template

Name
rotate_copy function template — Rotates and copies items in a range

Synopsis
template<typename FwdIter, typename OutIter>
 OutIter rotate_copy(FwdIter first, FwdIter middle, FwdIter last,
 OutIter result);
The rotate_copy function
 template copies elements from the range [middle, last) to the range that starts at result followed by the elements from
 [first, middle), thereby effecting a rotation to
 the left. The return value is one past the end of the result
 range.
The source and result ranges must not overlap. Figure 13-16 shows an example
 of rotation.

Technical Notes
The rotate_copy function
 template assigns *(result +
 (n + (last - middle)) % (last - first)) = *(first + n) for all n in [0, last - first). It returns result + (last - first).
Complexity is linear: exactly last - first assignments are performed.

See Also
reverse_copy function
 template, rotate function
 template

Name
search function template — Searches a range for a subsequence

Synopsis
template<typename FwdIter1, typename FwdIter2>
 FwdIter1 search(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2,
 FwdIter2 last2);
template<typename FwdIter1, typename FwdIter2, typename BinaryPredicate>
 FwdIter1 search(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2,
 FwdIter2 last2, BinaryPredicate pred);
The search function
 template finds the first (leftmost) subsequence [first2, last2) within the range [first1, last1). It returns an iterator that points
 to the start of the subsequence or last1 if the subsequence is not
 found.
The first form compares items with the == operator. The second form calls
 pred(*iter1, *iter2).
Figure 13-5 (under
 find_end) illustrates the
 search function template.

Technical Notes
Let length1 = last1 - first1 and length2 = last2 - first2.
The search function
 template returns first1 +
 n, in which n is the smallest value in the range [0,
 length1 - length2) such that *(i + n + m) == (first2 + m) for all m in the range [0, length2). It returns last1 if no such n can be found.
Complexity: at most length1 × length2 comparisons are performed.

See Also
find function template,
 find_end function template,
 search_n function
 template

Name
search_n function template — Searches a range for a repeated value

Synopsis
template<typename FwdIter, typename Size, typename T>
 FwdIter search_n(FwdIter first, FwdIter last, Size count, const T& value);
template<typename FwdIter, typename Size, typename T, typename BinaryPredicate>
 FwdIter search_n(FwdIter first, FwdIter last, Size count, const T& value,
 BinaryPredicate pred);
The search_n function
 template finds the first (leftmost) subsequence of count adjacent occurrences of value in the range [first, last). It returns an iterator that points
 to the start of the subsequence or last if the subsequence is not
 found.
The first form compares items with the == operator. The second form calls
 pred(*iter, value).

Technical Notes
The search_n function
 template returns first +
 n, in which n is the smallest value in the range [0,
 last - first) such that *(i + n + m) == value for all m in the range [0, count). It returns last if no such n can be found.
Complexity: at most n ×
 (last - first) comparisons are performed.

See Also
find function template,
 search function
 template

Name
set_difference function template — Computes set difference of sorted ranges

Synopsis
template<typename InIter1, typename InIter2, typename OutIter>
 OutIter set_difference(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, OutIter result);
template<typename InIter1, typename InIter2, typename OutIter, typename Compare>
 OutIter set_difference(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, OutIter result, Compare comp);
The set_difference function
 template copies elements from the sorted range [first1, last1) to the range starting at result. Only those elements that are not
 also present in the sorted range [first2, last2) are copied. An iterator that points
 to one past the end of the result range is returned.
The result range must not overlap either source range.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.
Figure 13-17
 shows an example of a set difference using multisets.
[image: Computing the difference between sets]

Figure 13-17. Computing the difference between sets

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first1, last1 - 1) and !(*(j + 1) < *j) for all
 j in [first2,
 last2 - 1).
Postcondition: !(*(i + 1)
 < *i) for all i in [result, return - 1).
The set_difference function
 template assigns *(result +
 n++) = *(first1 + m) for all m in [first1, last1), in which *(first1 + m) is not in [first2, last2). It returns result + n.
Complexity is linear: at most 2 × ((last1 - first1) + (last2 - first2)) - 1 comparisons are
 performed.

See Also
includes function
 template, set_intersection
 function template, set_symmetric_difference function
 template, set_union function
 template

Name
set_intersection function template — Computes intersection of sorted ranges

Synopsis
template<typename InIter1, typename InIter2, typename OutIter>
 OutIter set_intersection(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, OutIter result);
template<typename InIter1, typename InIter2, typename OutIter, typename Compare>
 OutIter set_intersection(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, OutIter result, Compare comp);
The set_intersection
 function template copies elements from the sorted range [first1, last1) to the range starting at result. Only those elements that are also
 present in the sorted range [first2, last2) are copied. An iterator that points
 to one past the end of the result range is returned.
The result range must not overlap either source range.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.
Figure 13-18
 shows an example of intersection using multisets.
[image: Intersecting two sets]

Figure 13-18. Intersecting two sets

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first1, last1 - 1) and !(*(j + 1) < *j) for all
 j in [first2,
 last2 - 1).
Postcondition: !(*(i + 1)
 < *i) for all i in [result, return - 1).
The set_intersection
 function template assigns *(result + n++) = *(first1 + m) for all m in [first1, last1), in which *(first1 + m) is in [first2, last2). It returns result + n.
Complexity is linear: at most 2 × ((last1 - first1) + (last2 - first2)) - 1 comparisons are
 performed.

See Also
includes function
 template, set_difference
 function template, set_symmetric_difference function
 template, set_union function
 template

Name
set_symmetric_difference function template — Computes symmetric difference of sorted
 ranges

Synopsis
template<typename InIter1, typename InIter2, typename OutIter>
 OutIter set_symmetric_difference(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, OutIter result);
template<typename InIter1, typename InIter2, typename OutIter, typename Compare>
 OutIter set_symmetric_difference(InIter1 first1, InIter1 last1, InIter2 first2,
 InIter2 last2, OutIter result, Compare comp);
The set_symmetric_difference function template
 merges elements from the sorted ranges [first1, last1) and [first2, last2), copying the sorted, merged results
 to the range starting at result.
 Only those elements that are not also present in the sorted range
 [first2, last2) are copied from [first1, last1), and only those not present in the
 range [first1, last1) are copied from [first2, last2). An iterator that points to one
 past the end of the result range is returned.
The result range must not overlap either source range.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.
Figure 13-19
 shows an example of a set symmetric difference using
 multisets.
[image: Computing the symmetric difference between two sets]

Figure 13-19. Computing the symmetric difference between two sets

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first1, last1 - 1) and !(*(j + 1) < *j) for all
 j in [first2,
 last2 - 1).
Postcondition: !(*(i + 1)
 < *i) for all i in [result, return - 1).
Complexity is linear: at most 2 × ((last1 - first1) + (last2 - first2)) - 1 comparisons are
 performed.

See Also
includes function
 template, set_difference
 function template, set_intersection function template,
 set_union function
 template

Name
set_union function template — Computes union of sorted ranges

Synopsis
template<typename InIter1, typename InIter2, typename OutIter>
 OutIter set_union(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2,
 OutIter result);
template<typename InIter1, typename InIter2, typename OutIter, typename Compare>
 OutIter set_union(InIter1 first1, InIter1 last1, InIter2 first2, InIter2 last2,
 OutIter result, Compare comp);
The set_union function
 template merges elements from the sorted ranges [first1, last1) and [first2, last2), copying the sorted, merged results
 to the range starting at result.
 If an element is present in both ranges, only one element is copied
 to the result range. If the input ranges contain duplicates, each
 occurrence of an element in an input range results in a copy in the
 result range. An iterator that points to one past the end of the
 result range is returned.
The result range must not overlap either source range.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.
Figure 13-20
 shows an example of a set union using multisets.
[image: Computing the union of two sets]

Figure 13-20. Computing the union of two sets

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first1, last1 - 1) and !(*(j + 1) < *j) for all
 j in [first2,
 last2 - 1).
Postcondition: !(*(i + 1)
 < *i) for all i in [result, return - 1).
Complexity is linear: at most 2 × ((last1 - first1) + (last2 - first2)) - 1 comparisons are
 performed.

See Also
includes function
 template, merge function
 template, set_difference
 function template, set_intersection function template,
 set_symmetric_difference function
 template

Name
sort function template — Sorts a range in place

Synopsis
template<typename RandIter>
 void sort(RandIter first, RandIter last);
template<typename RandIter, typename Compare>
 void sort(RandIter first, RandIter last, Compare comp);
The sort function template
 sorts the range [first, last) in place. The sort is not stable, so
 equivalent elements do not preserve their original order.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.

Technical Notes
Postcondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
Complexity is n log
 n comparisons in the average
 case, in which n = last - first. Worst case performance might be
 worse. Use stable_sort if the
 worst-case performance is more important than the average
 performance.

See Also
merge function template,
 nth_element function template,
 partial_sort function
 template, partition function
 template, sort_heap function
 template, stable_sort
 function template

Name
sort_heap function template — Sorts a heap in place

Synopsis
template<typename RandIter>
 void sort_heap(RandIter first, RandIter last);
template<typename RandIter, typename Compare>
 void sort_heap(RandIter first, RandIter last, Compare comp);
The sort_heap function
 template sorts a heap in the range [first, last). The sort is not stable, so
 equivalent elements do not preserve their original order.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.

Technical Notes
Precondition: [first,
 last) is a heap (see make_heap for the definition of a
 heap).
Postcondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
Complexity is at most n
 log n comparisons, in which
 n = last - first.

See Also
make_heap function
 template, pop_heap function
 template, push_heap function
 template, sort function
 template, <queue>

Name
stable_partition function template — Partitions a range in stable order

Synopsis
template<typename BidiIter, typename Predicate>
 BidiIter stable_partition(BidiIter first, BidiIter last, Predicate pred);
The stable_partition
 function template swaps elements in the range [first, last) so that all elements that satisfy
 pred come before those that do
 not. The relative order of elements in each partition is
 preserved.
The return value is an iterator that points to the first
 element for which pred is false,
 or last if there is no such
 element.
Figure 13-12
 (under partition) illustrates the
 partition functionality.

Technical Notes
Postcondition: Let r be
 an iterator in the range [first, last] such that pred(*i) is true for all i in [first, r), and pred(*j)is false for all j in [r, last).
The stable_partition
 function template returns r.
Complexity is linear if there is enough memory. Otherwise, at
 most n log n swaps are performed, in which n = last - first. In all cases,
 pred is called exactly n times.

See Also
nth_element function
 template, partial_sort
 function template, partition
 function template, stable_sort function
 template

Name
stable_sort function template — Sorts a range in place in stable order

Synopsis
template<typename RandIter>
 void stable_sort(RandIter first, RandIter last);
template<typename RandIter, typename Compare>
 void stable_sort(RandIter first, RandIter last, Compare comp);
The stable_sort function
 template sorts the range [first,
 last) in place. The sort is
 stable, so equivalent elements preserve their original order.
The first version compares items using the < operator. The second version uses
 comp(X, Y) to test whether X <
 Y.

Technical Notes
Postcondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
Complexity is at most n
 log n comparisons, in which
 n = last - first, provided that enough memory is
 available for temporary results. If memory is limited, the
 complexity is at most n (log
 n)2
 comparisons.

See Also
merge function template,
 nth_element function template,
 partial_sort function
 template, sort function
 template, sort_heap function
 template, stable_partition
 function template

Name
swap function template — Swaps two values

Synopsis
template<typename T> void swap(T& a, T& b);
The swap function template
 swaps the values of a and
 b.
The standard containers all specialize the swap template to call their swap member functions, which usually run
 in constant time, regardless of the number of elements in the
 containers.

See Also
iter_swap function
 template, swap_ranges
 function template

Name
swap_ranges function template — Swaps all values in two ranges

Synopsis
template<typename FwdIter1, typename FwdIter2>
 FwdIter2 swap_ranges(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2);
The swap_ranges function
 template swaps all the elements in [first1, last1) with corresponding elements in the
 range that starts at first2 (and
 has the same length as the first range). The return value is one
 past the end of the second range. The two ranges must not
 overlap.

Technical Notes
The swap_ranges function
 template performs the equivalent of
 swap(*(first1 + n), *(first2 + n)) for all n in [0, last1 - first1).
Complexity is linear: exactly last1 - first1 swaps are performed.

See Also
iter_swap function
 template, swap function
 template

Name
transform function template — Copies one or two ranges after applying an operator to
 each element

Synopsis
template<typename InIter, typename OutIter, typename UnaryOperation>
 OutIter transform(InIter first, InIter last, OutIter result,
 UnaryOperation unop);
template<typename InIter1, typename InIter2, typename OutIter,
 typename BinaryOperation>
 OutIter transform(InIter1 first1, InIter1 last1, InIter2 first2,
 OutIter result, BinaryOperation binop);
The transform function
 template assigns a new value to each element in the range that
 starts at result. In the first
 case, the new value is unop(*iter), in which iter is an iterator over [first, last).
In the second case, the new value is binop(*iter1, *iter2), in which iter1 ranges over [first1, last1) and iter2 iterates over the range that starts
 at first2. The second input range
 must be at least as long as the first.
The return value is one past the end of the result range. The
 result range can be the same as any of the input ranges.

Technical Notes
The first form of transform
 assigns *(result + n) =
 unop(*(first + n)) for all n in [0, last - first).
The second form assigns *(result + n) =
 binop(*(first1 + n), *(first2 + n)) for all n in [0, last1 - first1).
Complexity is linear: unop or
 binop is called exactly n times, in which n = last - first for a unary operator or last1 - first1 for a binary operator.

See Also
copy function template,
 for_each function
 template

Name
unique function template — Removes adjacent, equal values from a range

Synopsis
template<typename FwdIter>
 FwdIter unique(FwdIter first, FwdIter last);
template<typename FwdIter, typename BinaryPredicate>
 FwdIter unique(FwdIter first, FwdIter last, BinaryPredicate pred);
The unique function
 template "removes" repetitions of adjacent, identical elements from
 the range [first, last). The return value is one past the
 new end of the range. For each sequence of identical elements, only
 the first is kept. The input range does not have to be sorted, but
 if it is, all duplicates are "removed," leaving only unique values
 (hence the function's name).
Nothing is actually erased from the underlying container;
 instead, items to the right are copied to new positions at lower
 indices (to the left) so they overwrite the elements that are
 duplicates. See Figure
 13-21 (under unique_copy)
 for an example of the removal process.
The first form compares items with the == operator. The second form calls
 pred(a, b).

Technical Notes
The unique function
 template assigns *(first +
 n++) = *(first + m) for all m in [0, last - first), in which m == 0 or *(first +m) == *(first +
 m - 1) is false. It returns first + n.
Complexity is linear: exactly max(0, last - first - 1) comparisons are
 performed.

See Also
remove function
 template, unique_copy
 function template

Name
unique_copy function template — Copies unique values

Synopsis
template<typename InIter, typename OutIter>
 OutIter unique_copy(InIter first, InIter last, OutIter result);
template<typename InIter, typename OutIter, typename BinaryPredicate>
 OutIter unique_copy(InIter first, InIter last, OutIter result,
 BinaryPredicate pred);
The unique_copy function
 template copies items from [first, last) to the range that starts at result, removing duplicates. For each
 sequence of identical elements, only the first is kept. The return
 value is one past the end of the result range.
The first form compares items with the == operator. The second form calls
 pred(a, b).
See Figure 13-21
 for an example that calls unique_copy.
[image: Copying unique elements]

Figure 13-21. Copying unique elements

Technical Notes
The unique_copy function
 template assigns *(result +
 n++) = *(first + m) for all m in [0, last - first), in which m == 0 or *(first +m) == *(first +
 m - 1) is false. It returns result + n.
Complexity is linear: exactly last - first comparisons are performed.

See Also
remove_copy function
 template, unique function
 template

Name
upper_bound function template — Finds upper bound for a value's position in a sorted
 range using binary search

Synopsis
template<typename FwdIter, typename T>
 FwdIter upper_bound(FwdIter first, FwdIter last, const T& value);
template<typename FwdIter, typename T, typename Compare>
 FwdIter upper_bound(FwdIter first, FwdIter last, const T& value, Compare comp);
The upper_bound function
 template determines where value
 belongs in the sorted range [first, last). The return value is an iterator
 that points to one past the last (rightmost) occurrence of value in the range, if value is present. Otherwise, the iterator
 points to the last position where you can insert value and preserve the sorted nature of
 the range.
The first form compares values using the < operator. The second form calls
 comp(*iter, value).
Figure 13-4 (under
 equal_range) shows an example of
 finding the bounds for the value 36. The upper_bound function returns ub as the upper bound of 36 in the given range. Note that it
 returns ub as the upper bound for
 all values in the range [36,
 41]. For values in the range
 [19, 35], the upper bound is equal to lb.

Technical Notes
Precondition: !(*(i + 1)
 < *i) for all i in [first, last - 1).
The upper_bound function
 template returns first +
 n, in which n is the highest value in [0, last - first) such that *(first + m) < value is false for all m in [0, n).
Complexity is logarithmic. The number of comparisons is at
 most log(last - first) + 1. Although the iterator can be
 a forward iterator, the best performance is obtained with a random
 access iterator. With a forward or bidirectional iterator, the
 iterator is advanced a linear number of times, even though the
 number of comparisons is logarithmic.

See Also
binary_search function
 template, equal_range function
 template, lower_bound function
 template

<bitset>

The <bitset> header declares a single class template, bitset, and some related functions. A bitset is a fixed-size sequence of bits. The
 bitwise operators (&, |, ^, etc.)
 are overloaded to work with bitsets
 in the usual manner, and you can refer to individual bits by
 index.
The Boost project has a class template for a bit sequence that can
 change size at runtime. See Appendix
 B for information about Boost.

Name
bitset class template — Fixed-size sequence of bits

Synopsis
template<size_t N>
class bitset {
public:
 // Proxy class to simulate a bit reference
 class reference {
 friend class bitset;
 reference();
 public:
 ~reference();
 reference& operator=(bool x);
 reference& operator=(const reference&);
 bool operator~() const;
 operator bool() const;
 reference& flip();
 };

 // Constructors
 bitset();
 bitset(unsigned long val);

 template<typename charT, typename traits, typename A>
 explicit bitset(const basic_string<charT,traits,A>& s, typename
 basic_string<charT,traits,A>::size_type p=0, typename basic
 string<charT,traits,A>::size_type n = basic_string<charT,traits,A>::npos);

 // bitset operations
 bitset<N>& operator&=(const bitset<N>& rhs);
 bitset<N>& operator|=(const bitset<N>& rhs);
 bitset<N>& operator^=(const bitset<N>& rhs);
 bitset<N>& operator<<=(size_t pos);
 bitset<N>& operator>>=(size_t pos);
 bitset<N>& set();
 bitset<N>& set(size_t pos, int val=true);
 bitset<N>& reset();
 bitset<N>& reset(size_t pos);
 bitset<N> operator~() const;
 bitset<N>& flip();
 bitset<N>& flip(size_t pos);

 // Element access
 reference operator[](size_t pos);
 bool operator[](size_t pos) const;

 unsigned long to_ulong() const;
 template <typename charT, typename traits, typename Alloc>
 basic_string<charT, traits, Alloc> to_string() const;

 size_t count() const;
 size_t size() const;
 bool operator==(const bitset<N>& rhs) const;
 bool operator!=(const bitset<N>& rhs) const;
 bool test(size_t pos) const;
 bool any() const;
 bool none() const;
 bitset<N> operator<<(size_t pos) const;
 bitset<N> operator>>(size_t pos) const
};
The bitset class template
 offers a convenient way to manipulate a fixed-sized sequence of
 bits. The number of bits is specified as a template argument, so
 each bitset object can have a
 different size. Each bit in a bitset can be set (1 or true) or reset (0 or false). Bit positions are numbered from
 right to left, that is, 0 is the least-significant bit, and N - 1 is the most-significant bit.
A bitset is not a standard
 container and does not provide iterators or support generic
 algorithms. For a container that holds a sequence of bit values, use
 vector<int> or deque<bool>. (See <vector> later in this chapter to
 learn more, including why you should not use vector<bool>.) In the following
 member function descriptions, N
 is the template parameter (number of bits):
	 bitset ()
	Resets all bits.

	 bitset (unsigned long value)
	Initializes the first m bits to
 value, in which
 m == CHAR_BITS * sizeof(unsigned long). If N > m, all
 other bits are reset to 0.
 If N <
 m, excess bits of m
 are ignored.

	template<typename charT,
 typename traits, typename A> explicit bitset(const
 basic_string<charT,traits,A>& s, typename
 basic_string<charT,traits,A>::size_type p=0, typename
 basic_string<charT,traits,A>::size_type n=
 basic_string<charT,traits,A>::npos)
	Initializes the bitset from the character string
 s, starting at index
 p and extending for
 n characters (or to the end
 of the string, whichever comes first). The default is to use
 all characters in the string. A character equal to '0' resets a bit, '1' sets a bit, and any other
 character causes the constructor to throw invalid_argument.
The rightmost character of the substring (that is, the
 character s[p+n-1] or the
 rightmost character of s)
 initializes the bit at index 0 of the bitset, and subsequent bits are
 initialized by characters at preceding indices of s. Bits left uninitialized by the
 string are reset. All of the bitsets in the following example are
 equal to 000111:
bitset<6> a(string("111"));
bitset<6> b(string("000111"));
bitset<6> c(string("10110011100"), 5, 4);
bitset<6> d(string("111111"), 3, 42);
The unwieldy declaration is due to the basic_string class template. For the
 common case of a plain string, you can read the declaration
 as:
bitset(const string& s, size_t p=0, size_n n=string::npos)

	bitset<N>&
 operator&= (const
 bitset<N>& rhs)
	Performs *this
 = *this & rhs. Returns *this.

	bitset<N>&
 operator|= (const
 bitset<N>& rhs)
	Performs *this
 = *this | rhs. Returns *this.

	bitset<N>&
 operator^= (const
 bitset<N>& rhs)
	Performs *this
 = *this ^ rhs. Returns *this.

	bitset<N>&
 operator<<= (size_t pos)
	Shifts bits to the left by pos positions. Vacated bits are
 filled with 0. Returns
 *this.

	bitset<N>&
 operator>>=
 (size_t
 pos)
	Shifts bits to the right by pos positions. Vacated bits are
 filled with 0. Returns
 *this.

	bool operator==
 (const bitset<N>
 rhs)
	Returns true if every
 bit in *this has the same
 value as the corresponding bit in rhs.

	bool operator!=
 (const bitset<N>
 rhs)
	Returns true if any
 bit in *this has a
 different value than the corresponding bit in rhs.

	bitset<N>
 operator<<
 (size_t
 pos)
	Returns a new bitset
 with its bits shifted to the left by pos positions. Vacated bits are
 filled with 0.

	bitset<N>
 operator>>
 (size_t
 pos)
	Returns a new bitset
 with its bits shifted to the right by pos positions. Vacated bits are
 filled with 0.

	bitset<N>
 operator~ ()
 const
	Returns a new bitset
 with all bits flipped.

	reference operator[] (size_t pos)
	Returns a bitset::reference object for the bit
 at position pos. The
 behavior is undefined if pos is out of range.

	[image:] bool
 operator[] (size_t pos) const
	Returns the value of the bit at position pos. The behavior is undefined if
 pos is out of range. This
 member function was added to the standard as part of the
 technical corrigendum (TC1), so it might not yet be supported
 by some compilers.

	bool any
 ()
 const
	Returns true if any
 bit is set. Returns false
 if all bits are 0.

	size_t count
 ()
 const
	Returns the number of bits set.

	bitset<N>&
 flip
 ()
	Toggles all bits, that is, sets 0 bits to 1 and 1 bits to 0. Returns *this.

	bitset<N>&
 flip
 (size_t
 pos)
	Toggles the bit at position pos. If pos is invalid, throws out_of_range. Returns *this.

	bool none
 ()
 const
	Returns true if all
 bits are 0. Returns
 false if any bit is
 set.

	bitset<N>&
 reset
 ()
	Resets all bits. Returns *this.

	bitset<N>&
 reset
 (size_t
 pos)
	Resets the bit at position pos. If pos is invalid, throws out_of_range. Returns *this.

	bitset<N>&
 set
 ()
	Sets all bits. Returns *this.

	bitset<N>&
 set
 (size_t pos, int val =
 true)
	Sets the bit at position pos to val != 0. If pos is invalid, throws out_of_range. Returns *this.

	size_t size
 ()
 const
	Returns N.

	bool test
 (size_t pos)
 const
	Returns the value of the bit at position pos. Throws out_of_range if pos is invalid.

	template <class charT, class
 traits, class Allocator>
basic_string<charT, traits,
 Allocator>
 to_string ()
 const
	Returns a string representation of the bitset. Each bit is converted to the
 character '0' if reset or
 '1' if set. Bit position 0
 is the rightmost character (position N - 1).
The compiler cannot deduce the template parameters when
 calling to_string, so you
 must specify them explicitly:
std::bitset<64> bits(std::string("101000111101010101"));
std::string str = bits.template to_string<char, std::char_traits<char>,
 std::allocator<char> >());

	unsigned long to_ulong
 ()
 const
	Returns the integral value of the bitset. If N is too large for unsigned long, it throws overflow_error.

See Also
 <climits> , <vector>

Name
bitset::reference class — Proxy class for a bit in a bitset

Synopsis
class reference {
 friend class bitset;
 reference()
public:
 ~reference();
 reference& operator=(bool x);
 reference& operator=(const reference&);
 bool operator~() const;
 operator bool() const;
 reference& flip();
};
The bitset::reference class
 is a proxy that refers to a single bit in a bitset. The constructor is private, so
 instances can be created only by the bitset class, particularly by its operator[] function. The member functions
 are:
	reference&
 operator= (bool
 x)
reference&
 operator= (const reference& x)
	Sets the referenced bit to x in the underlying bitset. Returns *this.

	bool operator~
 ()
 const
	Returns the logical negation of the referenced
 bit.

	operator bool
 ()
 const
	Returns the value of the referenced bit.

	reference&
 flip
 ()
	Toggles the referenced bit in the underlying bitset. Returns *this.

See Also
bitset class
 template

Name
operator& function template — Performs bitwise and of two bitsets

Synopsis
template <size_t N>
 bitset<N> operator&(const bitset<N>& a, const bitset<N>& b);
The & operator takes
 two bitsets and returns a new
 bitset that represents the
 bitwise and of the operands. In other words, an
 output bit is set only when the corresponding bit is set in both
 operands; otherwise, an output bit is reset.

See Also
bitset class template,
 operator|
 function template , operator^
 function template , <cstddef> , bit_and keyword

Name
operator| function template — Performs bitwise inclusive or of two
 bitsets

Synopsis
template <size_t N>
 bitset<N> operator|(const bitset<N>& a, const bitset<N>& b);
The | operator takes two
 bitsets and returns a new
 bitset that represents the
 bitwise inclusive or of the operands. In other
 words, an output bit is set when the corresponding bit is set in
 either operand, and an output bit is reset if the corresponding bits
 in both operands are 0.

See Also
bitset class template,
 operator &, operator ^,
 <cstddef> , bit_or keyword

Name
operator^ function template — Performs bitwise exclusive or of two
 bitsets

Synopsis
template <size_t N>
 bitset<N> operator^(const bitset<N>& a, const bitset<N>& b);
The ^ operator takes two
 bitsets and returns a new
 bitset that represents the
 bitwise exclusive or of the operands. In other
 words, an output bit is set when the corresponding bits are not
 equal in either operand, and an output bit is reset if the
 corresponding bits in both operands are identical.

See Also
bitset class template,
 operator& function template ,
 operator|
 function template , <cstddef> , xor keyword

Name
operator >>function template — Reads a bitset

Synopsis
template <typename charT, typename traits, size_t N>
 basic_istream<charT, traits)& operator>>(basic_istream<charT, traits)&
 in, const bitset<N>& x);
The >> operator reads
 a bitset from an input stream. It
 extracts up to N characters and
 constructs a bitset object using
 the same format as the string constructor.
Only '0' and '1' characters are extracted. Input stops
 when it reaches any other character (without extracting that other
 character).

See Also
bitset class template,
 operator<< function template
 , <istream> , <cstddef>

Name
operator<< function template — Writes a bitset

Synopsis
template <typename charT, typename traits, size_t N>
 basic_ostream<charT, traits)& operator<<(basic_ostream<charT, traits)& in,
 const bitset<N>& x);
The << operator
 writes a bitset on an output
 stream, using the same format as the to_string member function.

See Also
bitset class template,
 operator>> function template,
 <cstddef> , <ostream>

<cassert>

The <cassert> header (from the C standard <assert.h> header) declares the assert macro. The <cassert> header is unique in that you
 can #include it multiple times to
 obtain different effects (depending on whether the NDEBUG macro is defined at the time of
 #include <cassert>).
Assertions are checked at runtime. You can use templates to craft
 compile-time assertions. See Appendix
 B for information about the Boost project, which supports
 compile-time assertions.
Instead of assertions, consider using exceptions, which offer more
 flexibility and control.

Name
assert macro — Checks an assertion at runtime

Synopsis
void assert(int expression)
[image: image with no caption]

If enabled, the assert
 macro ensures the expression is
 true (nonzero). If so, nothing happens, and execution continues
 normally. If the expression evaluates to 0, assert prints a message to the standard
 error file and calls abort. The
 format of the message is implementation-defined, but it includes a
 textual representation of expression and the filename and line
 number where the assert call
 appears (that is, the values of the _
 FILE _ and _ _LINE_ _
 macros).
If disabled, the assert
 macro does not evaluate expression and has no effect.

See Also
abort function in <cstdlib> , throw keyword

Name
NDEBUG macro — Enables or disables compilation of
 assertions

Synopsis
#define NDEBUG
#include <cassert>
The NDEBUG macro is not
 defined by <cassert> or
 anywhere else in the standard C++ library. Instead, you can define
 the macro before including the <cassert> header to disable the
 assert macro.
In one source file, you can define and undefine NDEBUG multiple times, each time followed
 by #include <cassert>, to enable or disable the
 assert macro multiple times in
 the same source file.

See Also
assert macro

<cctype>

The <cctype> header (from the C standard <ctype.h> header) declares a number of
 functions for testing and mapping narrow character types. For working
 with wide characters, see <cwctype>.
All the functions take int
 parameters, but the value of the parameter must be an unsigned char. Most programs work with ordinary
 char, so you must cast the parameters
 and some of the return types:
char c;
if (std::isalnum(static_cast<unsigned char>(c)))
...
c = static_cast<char>(std::tolower(static_cast<unsigned char>(c)));
The only other value that is permitted is EOF.
[image: image with no caption]

These functions get their information from the current locale, as
 set by calling setlocale. The
 "C" locale is the only one with
 behavior that is defined in the standard; all other locales can define
 these functions to include or exclude different characters. Even in the
 "C" locale, the behavior of some
 functions depends on the execution character set (see Chapter 1). One requirement for all
 locales is that isalpha, iscntrl, isdigit, ispunct, and the space character (' ') are mutually exclusive. See <clocale> for information about the
 setlocale function.
See the <locale> header
 for a more flexible (albeit more complicated) mechanism for testing and
 transforming characters. Each of the functions in this section has a
 corresponding function in <locale> that takes an explicit locale argument. Also, the ctype facet supports similar
 functionality.

Name
isalnum function — Tests for an alphanumeric character

Synopsis
int isalnum(int c)
The isalnum function
 returns true (nonzero) if c is
 alphanumeric—that is, it returns isalpha(c) ||
 isnumeric(c).

Name
isalpha function — Tests for an alphabetic character

Synopsis
int isalpha(int c)
The isalpha function
 returns true (nonzero) if c is
 alphabetic. In the "C" locale,
 this includes only the characters for which islower(c) or isupper(c) is true. For other locales,
 other characters might be alphabetic.

Name
iscntrl function — Tests for a control character

Synopsis
int iscntrl(int c)
The iscntrl function
 returns true (nonzero) if c is a
 control character. The set of control characters depends on the
 locale and character set. In the 7-bit ASCII character set, the
 control characters are '\0'-'\x1F' and '\x7F'; other implementations might have
 different control characters. By definition, a control character is
 any character that is not a printable character (isprint).

Name
isdigit function — Tests for a digit character

Synopsis
int isdigit(int c)
The isdigit function
 returns true (nonzero) if c is a
 decimal digit character—that is, '0'-'9'—regardless of locale.

Name
isgraph function — Tests for a graphic character

Synopsis
int isgraph(int c)
The isgraph function
 returns true (nonzero) if c is
 any printing character (isprint)
 except space (' '). The set of
 printing characters varies with locale and character set.

Name
islower function — Tests for a lowercase letter

Synopsis
int islower(int c)
The islower function
 returns true (nonzero) if c is a
 lowercase letter. In the "C"
 locale, only the characters 'a'-'z'
 are lowercase; different locales can define other lowercase
 characters.

Name
isprint function — Tests for a printable character

Synopsis
int isprint(int c)
The isprint function
 returns true (nonzero) if c is a
 printing character, including space ('
 '), according to the locale and character set. Informally,
 a printing character occupies space on a display device.

Name
ispunct function — Tests for a punctuation character

Synopsis
int ispunct(int c)
The ispunct function
 returns true (nonzero) for a punctuation character, that is, any
 printable character (isprint)
 other than space (' ') and
 alphanumeric characters (isalnum).

Name
isspace function — Tests for a white space character

Synopsis
int isspace(int c)
The isspace function
 returns true (nonzero) if c is a
 whitespace character. In the "C"
 locale, the space (' '), form
 feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab ('\t'), and vertical tab ('\v') characters are whitespace, but
 backspace ('\b') is not.
 Different locales can define other whitespace characters.

Name
isupper function — Tests for an uppercase letter

Synopsis
int isupper(int c)
The isupper function
 returns true (nonzero) if c is an
 uppercase letter. In the "C"
 locale, only the characters 'A'-'Z'
 are uppercase; different locales can define other uppercase
 characters

Name
isxdigit function — Tests for a hexadecimal digit character

Synopsis
int isxdigit(int c)
The isxdigit function
 returns true (nonzero) if c is
 any hexadecimal digit character—that is, '0'-'9',
 'a'-'f', or 'A'-'F'—regardless of locale.

Name
tolower function — Converts a character to lowercase

Synopsis
int tolower(int c)
The tolower function
 converts uppercase characters to lowercase. If c is uppercase (that is, isupper(c) returns true), tolower returns the corresponding
 lowercase character (for which islower returns true) in the current
 locale, if there is such a character. Otherwise, it returns c.

Name
toupper function — Converts a character to uppercase

Synopsis
int toupper(int c)
The touoper function
 converts lowercase characters to uppercase. If c is lowercase (that is, islower(c) returns true), toupper returns the corresponding
 uppercase character (for which isupper returns true) in the current
 locale, if there is such a character. Otherwise, it returns c.

<cerrno>

The <cerrno> header (from the C standard <errno.h> header) declares several
 macros related to error-handling in the standard library, including the
 errno object.

Name
EDOM macro — Code for a math domain error

Synopsis
int EDOM

Standard library functions that report domain errors set
 errno to EDOM. A domain error occurs when the
 domain of an argument is out of range, such as when asking for the
 square root of a negative number.
The EDOM macro expands to a
 nonzero integer constant. The value of EDOM is implementation-defined.

Name
EILSEQ macro — Code for error in a multibyte character
 sequence

Synopsis
int EILSEQ

Standard library functions that report errors in multibyte
 character sequences set errno to
 EILSEQ. For example, passing an
 invalid wide character to the wcrtomb function results in EILSEQ.
The EILSEQ macro expands to
 a nonzero integer constant. The value of EILSEQ is implementation-defined.
Note that EILSEQ is not
 mentioned in the C++ standard, but because C++ includes the C
 standard library (Amendment 1), and EILSEQ is part of the C standard, it is
 part of the C++ standard.

Name
ERANGE macro — Code for range error

Synopsis
int ERANGE

Standard library functions that report range errors set
 errno to ERANGE. A range error occurs when the
 result of a function is out of range, such as when there is overflow
 from the pow function.
The ERANGE macro expands to
 a nonzero integer constant. The value of ERANGE is implementation-defined.

Name
errno macro — Global error code object

Synopsis
int& errno

The errno macro expands
 into an int lvalue. Standard
 library functions can store an error code in errno and return an error status to the
 caller. You can also store a value in errno (e.g., resetting the error code to
 0).
When a program starts, errno is initially 0. No library function resets errno to 0. Any library function might set errno to a nonzero value, even if it is
 not documented to do so. Therefore, the only time it is safe to
 check errno is after a library
 function returns an error status and is documented to set errno in that case.
[image: image with no caption]

The C++ standard is not explicit as to whether errno is truly a macro (versus a
 variable). The intent of the standard committee is to define
 errno as a macro, so do not use
 std::errno, and if your library
 declares errno as a variable in
 the std:: namespace, you can
 define your own macro:
#define errno (::std::errno)
In a multithreaded environment, a library implementation
 typically ensures that each thread gets a separate copy of errno. Such considerations fall outside
 the realm of the C++ standard. Consult your compiler and library
 documentation for details.

See Also
perror in <cstdio> , strerror in <cstring>

<cfloat>

The <cfloat> header is the C++ version of the C standard <float.h> header. It defines parameters
 that characterize floating-point types in the same way <climits> does for the integral types.
 The native C++ header, <limits>, defines the same information
 (and more) using templates instead of macros.
There are three sets of macros, each describing a different
 fundamental type. For each type, the corresponding set of macros has a
 common prefix: float (FLT_), double (DBL_), and long double
 (LDBL_). Each set characterizes a
 floating-point value as a sign, a significand (sometimes called the
 mantissa), a base, and an exponent:
	x = sign × significand × base
 exponent

In everyday arithmetic, we are used to working with a
 base of 10. (The base is also called the
 radix.) The most common bases for computer
 arithmetic, however, are 16 and 2. Many modern workstations use the IEC
 60559 (IEEE 754) standard for floating-point arithmetic, which uses a
 base of 2.
The significand is a string of digits in the
 given base. There is an implied radix point at the start of the
 significand so the value of the significand is always less than 1. (A
 radix point is the
 generalization of a decimal point for any radix.)
A floating-point value is normalized if the
 first digit of its significand is nonzero, or if the entire value is
 0. A value that is not normalized is
 denormalized.
The precision of a floating-point type is the
 maximum number of places in the significand. The
 range of a floating-point type depends primarily on
 the minimum and maximum values for the exponent.
[image: image with no caption]

The value returned by each macro is implementation-defined because
 all the fundamental types are implementation-defined. The standard
 mandates minimum decimal precision and range for each floating-point
 type. In this section, the descriptions for the decimal characteristics
 of each type include the minimum value set by the standard.
Only FLT_RADIX expands to a
 constant expression. All other macros in <cfloat> expand to numeric expressions,
 but the values might not be compile-time constants.

Name
DBL_DIG macro — Decimal precision

Synopsis
int DBL_DIG

Number of significant decimal digits that can be stored in a
 double. The value is always at
 least 10.

Name
DBL_EPSILON macro — Limit of accuracy

Synopsis
double DBL_EPSILON

The difference between 1 and the smallest value greater than 1
 that can be stored in a double.
 The value is always less than or equal to
 10-9.

Name
DBL_MANT_DIG macro — Significand precision

Synopsis
int DBL_MANT_DIG

Number of FLT_RADIX digits
 in the significand of a double.

Name
DBL_MAX macro — Maximum finite value

Synopsis
double DBL_MAX

Maximum finite double
 value. The value is always at least
 1037.

Name
DBL_MAX_10_EXP macro — Maximum decimal exponent

Synopsis
int DBL_MAX_10_EXP

Maximum decimal exponent for a finite double. The value is always at least
 37.

Name
DBL_MAX_EXP macro — Maximum exponent

Synopsis
int DBL_MAX_EXP

Maximum exponent of a FLT_RADIX base for a finite double.

Name
DBL_MIN macro — Minimum positive value

Synopsis
double DBL_MIN

Minimum normalized, positive double value. The value is always less
 than or equal to 10-37.

Name
DBL_MIN_10_EXP macro — Minimum decimal exponent

Synopsis
int DBL_MIN_10_EXP

Minimum negative decimal exponent for a normalized double. The value is always less than or
 equal to -37.

Name
DBL_MIN_EXP macro — Minimum exponent

Synopsis
int DBL_MIN_EXP

Minimum negative exponent of a FLT_RADIX base for a normalized double.

Name
FLT_DIG macro — Decimal precision

Synopsis
int FLT_DIG

Number of significant decimal digits that can be stored in a
 float. The value is always at
 least 6.

Name
FLT_EPSILON macro — Limit of accuracy

Synopsis
float FLT_EPSILON

The difference between 1 and the smallest value greater than 1
 that can be stored in a float.
 The value is always less than or equal to
 10-5.

Name
FLT_MANT_DIG macro — Significand precision

Synopsis
int FLT_MANT_DIG

Number of FLT_RADIX digits
 in the significand of a float.

Name
FLT_MAX macro — Maximum finite value

Synopsis
float FLT_MAX

Maximum finite float value.
 The value is always at least 1037.

Name
FLT_MAX_10_EXP macro — Maximum decimal exponent

Synopsis
int FLT_MAX_10_EXP

Maximum decimal exponent for a finite float. The value is always at least
 37.

Name
FLT_MAX_EXP macro — Maximum exponent

Synopsis
int FLT_MAX_EXP

Maximum exponent of a FLT_RADIX base for a finite float.

Name
FLT_MIN macro — Minimum positive value

Synopsis
float FLT_MIN

Minimum normalized, positive float value. The value is always less than
 or equal to 10-37.

Name
FLT_MIN_10_EXP macro — Minimum decimal exponent

Synopsis
int FLT_MIN_10_EXP

Minimum negative decimal exponent for a normalized float. The value is always less than or
 equal to -37.

Name
FLT_MIN_EXP macro — Minimum exponent

Synopsis
int FLT_MIN_EXP

Minimum negative exponent of a FLT_RADIX base for a normalized float.

Name
FLT_RADIX macro — Implementation base

Synopsis
int FLT_RADIX

The FLT_RADIX macro is an
 integer constant that specifies the radix, or base, for the
 floating-point implementation. For example, IEC 60559 (IEEE 754) has
 a FLT_RADIX of 2.

Name
FLT_ROUNDS macro — Rounding mode

Synopsis
int FLT_ROUNDS

The FLT_ROUNDS macro
 specifies how the implementation rounds floating-point numbers.
 Table 13-2 lists the
 possible values as defined in the C++ standard. An implementation
 can define additional values with other meanings.
Table 13-2. Floating-point rounding mode
	Value
	Description

	 -1

	Indeterminable

	 0

	Rounds toward 0

	 1

	Rounds to nearest

	 2

	Rounds up (toward positive
 infinity)

	 3

	Rounds down (toward negative
 infinity)

Name
LDBL_DIG macro — Decimal precision

Synopsis
int LDBL_DIG

Number of significant decimal digits that can be stored in a
 long double.The value is always at least
 10.

Name
LDBL_EPSILON macro — Limit of accuracy

Synopsis
long double LDBL_EPSILON

The difference between 1 and the smallest value greater than 1
 that can be stored in a long
 double. The value is always less
 than or equal to 10-9.

Name
LDBL_MANT_DIG macro — Significand precision

Synopsis
int LDBL_MANT_DIG

Number of FLT_RADIX digits
 in the significand of a long
 double.

Name
LDBL_MAX macro — Maximum finite value

Synopsis
long double LDBL_MAX

Maximum finite long
 double value. The value is always
 at least 1037.

Name
LDBL_MAX_10_EXP macro — Maximum decimal exponent

Synopsis
int LDBL_MAX_10_EXP

Maximum decimal exponent for a finite long double. The value is always at least
 37.

Name
LDBL_MAX_EXP macro — Maximum exponent

Synopsis
int LDBL_MAX_EXP

Maximum exponent of a FLT_RADIX base for a finite double.

Name
LDBL_MIN macro — Minimum positive value

Synopsis
long double LDBL_MIN

Minimum normalized, positive long double value. The value is always less
 than or equal to 10-37.

Name
LDBL_MIN_10_EXP macro — Minimum decimal exponent

Synopsis
int LDBL_MIN_10_EXP

Minimum negative decimal exponent for a normalized long double. The value is always less than or
 equal to -37.

Name
LDBL_MIN_EXP macro — Minimum exponent

Synopsis
int LDBL_MIN_EXP

Minimum negative exponent of a FLT_RADIX base for a normalized long double.

<ciso646>

The <ciso646> header (from the C standard <iso646.h> header) does nothing in C++.
 The C header defines a small number of macros, such as and for &&, but these macros are all reserved
 keywords in C++. The <ciso646>
 header exists only for the sake of completeness: every header in the C
 standard has an equivalent in C++.
[image: image with no caption]

Not all C++ compilers correctly implement the alternative tokens
 such as and. These compilers might
 use <ciso646> to declare these
 keywords as macros. For maximum portability to these nonconforming
 compilers, include the <ciso646> header when you want to use
 any alternative token keywords. See Chapter 1 for more information about the
 alternative tokens.

<climits>

The <climits> header (from the C standard <limits.h> header) defines parameters that
 characterize integral types in the same way <cfloat> does for the floating point
 types. The native C++ header, <limits>, defines the same information
 (and more) using templates instead of macros.
[image: image with no caption]

The types used in the descriptions of the _MIN and _MAX macros are meant as reminders and are not
 descriptive of the actual types of the macro expansions. The actual
 types are implementation-defined and can be any integral type that would
 be the result of normal integral promotions for the corresponding
 type—e.g., if unsigned char is promoted to int, UCHAR_MAX might have type int.
All of the macros in <climits> expand to constant
 expressions.

Name
CHAR_BIT macro — Bits per character

Synopsis
int CHAR_BIT

Number of bits per character. The value is always at least
 8.

Name
CHAR_MAX macro — Maximum char value

Synopsis
char CHAR_MAX

Maximum value for the char
 type. (Remember that the char
 type is the same as either signed
 char or unsigned char, so CHAR_MAX has the same value as SCHAR_MAX or UCHAR_MAX.)

See Also
WCHAR_MAX in <cwchar>

Name
CHAR_MIN macro — Minimum char value

Synopsis
char CHAR_MIN

Minimum value for the char
 type (the same value as SCHAR_MIN
 or 0).

See Also
WCHAR_MIN in <cwchar>

Name
INT_MAX macro — Maximum int value

Synopsis
int INT_MAX

Maximum value for the int
 type. The value is always at least 32,767.

Name
INT_MIN macro — Minimum int value

Synopsis
int INT_MIN

Minimum value for the int
 type. The value is always less than or equal to -32,767.

Name
LONG_MAX macro — Maximum long value

Synopsis
long int LONG_MAX

Maximum value for the long
 int type. The value is always at
 least 2,147,483,647.

Name
LONG_MIN macro — Minimum long value

Synopsis
long int LONG_MIN

Minimum value for the long
 int type. The value is always
 less than or equal to -2,147,483,647.

Name
MB_LEN_MAX macro — Maximum bytes in a multibyte character

Synopsis
int MB_LEN_MAX

Maximum number of bytes in any multibyte character, in any
 locale. The value is always at least 1.

Name
SCHAR_MAX macro — Maximum signed char value

Synopsis
signed char SCHAR_MAX

Maximum value for the signed char type. The value is always at least
 127.

Name
SCHAR_MIN macro — Minimum signed char value

Synopsis
signed char SCHAR_MIN

Minimum value for the signed char type. The value is always less than
 or equal to -127.

Name
SHRT_MAX macro — Maximum short value

Synopsis
short SHRT_MAX

Maximum value for the short
 type. The value is always at least 32,767.

Name
SHRT_MIN macro — Minimum short value

Synopsis
short SHRT_MIN

Minimum value for the short
 type. The value is always less than or equal to -32,767.

Name
UCHAR_MAX macro — Maximum unsigned char value

Synopsis
unsigned char UCHAR_MAX

Maximum value for the unsigned char type. The value is always at least
 255.

Name
UINT_MAX macro — Maximum unsigned int value

Synopsis
unsigned int UINT_MAX

Maximum value for the unsigned int type. The value is always at least
 65,535.

Name
ULONG_MAX macro — Maximum unsigned long value

Synopsis
unsigned long ULONG_MAX

Maximum value for the unsigned long type. The value is always at least
 4,294,967,295.

Name
USHRT_MAX macro — Maximum unsigned short value

Synopsis
unsigned short USHRT_MAX

Maximum value for the unsigned short type. The value is always at least
 65,535.

<clocale>

The <clocale> header (from the C standard <locale.h> header) declares types and
 functions to support internationalization and localization for the C
 standard library. C++ also offers <locale>, which has more flexibility and
 functionality, but at a cost of complexity and overhead.
The various locale settings are grouped into categories. Each
 category has a macro (named LC_
 category) to identify the category in a call
 to setlocale. Ordinarily, you would
 use LC_ALL to set all the categories
 at once, but you can pick a category from one locale and another
 category from a different locale.

Name
LC_ALL macro — All locale categories

Synopsis
int LC_ALL

The LC_ALL macro expands to
 a constant integer, which sets all categories in a call to setlocale.

Name
LC_COLLATE macro — Collation order category

Synopsis
int LC_COLLATE

The LC_COLLATE macro
 expands to a constant integer, which sets the collation order
 category in a call to setlocale.
 The collation order is used by functions such as strcoll (in <cstring>).

Name
LC_CTYPE macro — Character type category

Synopsis
int LC_CTYPE

The LC_CTYPE macro expands
 to a constant integer, which sets the character type category in a
 call to setlocale. The <cctype> functions, such as isalpha, use character type
 information.

Name
LC_MONETARY macro — Monetary formatting category

Synopsis
int LC_MONETARY

The LC_MONETARY macro
 expands to a constant integer, which sets the monetary-formatting
 category in a call to setlocale.
 Call localeconv to retrieve this
 information.

Name
LC_NUMERIC macro — Numeric formatting category

Synopsis
int LC_NUMERIC

The LC_NUMERIC macro
 expands to a constant integer, which sets the numeric-formatting
 category in a call to setlocale.
 I/O functions such as printf (in
 <cstdio>) use this
 information to format numbers. Call localeconv to retrieve this
 information.

Name
LC_TIME macro — Time formatting category

Synopsis
int LC_TIME

The LC_TIME macro expands
 to a constant integer, which sets the time-formatting category in a
 call to setlocale. The strftime (in <ctime>) function uses this
 information.

Name
lconv structure — Numeric formatting information

Synopsis
struct lconv {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
};
[image: image with no caption]

The lconv structure stores
 information used to format numbers and monetary values. An
 implementation can add more members to the class and change the
 order of declaration.
The standard library is responsible for filling an lconv object with values that are
 appropriate for a locale. Do not modify the lconv object or its data members.
Each locale defines suitable values for the lconv members. The char-type members are all nonnegative
 integers, in which CHAR_MAX means
 the information is not available in the current locale. For the
 char* members, an empty string
 means the information is not available. The "C" locale uses "." for decimal_point, an empty string ("") for
 all other char* members, and
 CHAR_MAX for all char members. All strings are
 null-terminated.
The localeconv function
 returns a pointer to the current locale's lconv object.
The following are descriptions of the lconv members:
	char* currency_symbol

	The currency symbol for the current locale (e.g.,
 "$").

	char* decimal_point

	The decimal point symbol for the current locale. This
 member is unique in that it cannot be an empty string. The
 default is ".".

	char frac_digits

	The number of digits to appear after the decimal point
 in monetary formatting.

	char* grouping

	A string that is interpreted as a series of integers, in
 which each integer is the number of digits in successive
 groups of digits for nonmonetary formatting. The value
 '\0' means to repeat the
 last grouping for the rest of the value. The value CHAR_MAX means not to group the
 remaining values. Any other value is the size of a digit
 group. The first character in the string specifies the size of
 the rightmost group of digits, the second character in the
 string specifies the size of the next (moving to the left)
 group of digits, and so forth. Digit groups are separated by
 thousands_sep.
A common value is "\3", which means to format digits in
 groups of three (e.g., "1,234,567").

	char* int_curr_symbol

	A four-character string, in which the first three
 characters are the international currency symbol (according to
 ISO standard 4217:1987), and the fourth character is the
 separator between the currency symbol and the number. For
 example, the symbol for United States Dollars is USD. If the
 locale uses a space as the separator, int_curr_symbol would be "USD ".

	char int_frac_digits

	The number of digits to appear after the decimal point
 in an internationally-formatted monetary amount.

	char* mon_decimal_point

	The monetary decimal point.

	char* mon_grouping

	The monetary grouping. (This works the same as grouping, except groups are
 separated by mon_thousands_sep.)

	char* mon_thousands_sep

	The monetary thousands separator. (This works the same
 as thousands_sep in
 monetary groups, as specified by mon_grouping.)

	char n_cs_precedes

	Equal to 1 if the
 currency symbol precedes the amount when formatting a negative
 monetary value. Equal to 0
 if the symbol follows the value.

	char n_sep_by_space

	Equal to 1 if the
 currency symbol is separated from a negative value by a space.
 Equal to 0 if there is no
 space.

	char n_sign_posn

	The position of the sign for a negative monetary value.
 Table 13-3 lists
 all the position values.
Table 13-3. Position values for n_sign_posn and
 p_sign_posn
	Value
	Position

	 0

	Parentheses surround the value and the
 currency symbol.

	 1

	The sign precedes the value and the
 currency symbol.

	 2

	The sign follows the value and the
 currency symbol.

	 3

	The sign appears immediately before the
 currency symbol.

	 4

	The sign appears immediately after the
 currency symbol.

	char* negative_sign

	Marker for a negative monetary value (e.g., "-").

	char p_cs_precedes

	Equal to 1 if the
 currency symbol precedes the amount when formatting a
 nonnegative monetary value. Equal to 0 if the symbol follows the
 value.

	char p_sep_by_space

	Equal to 1 if the
 currency symbol is separated from a nonnegative value by a
 space. Equal to 0 if there
 is no space.

	char p_sign_posn

	The position of the sign for a nonnegative monetary
 value. Table
 13-3 lists all the position values.

	char* positive_sign

	Marker for a nonnegative monetary value.

	char* thousands_sep

	Thousands separator (e.g., ","), which is used in digit groups,
 as specified by grouping.

Name
localeconv function — Retrieves numeric-formatting information

Synopsis
lconv* localeconv();
The localeconv function
 returns a pointer to the current locale's lconv object.
Warning
Do not modify the lconv
 object. A call to localeconv
 might overwrite the contents of the object returned from an
 earlier call (or simultaneous call in a multithreaded program).
 Calls to setlocale for LC_ALL, LC_NUMERIC, or LC_MONETARY categories might also
 overwrite the contents of the lconv object.

Name
NULL macro — Null pointer constant

Synopsis
#define NULL . . .
The NULL macro expands to a
 null pointer constant. It is defined in several C headers. See its
 description in <cstddef>
 for details.

Name
setlocale function — Sets or queries locale

Synopsis
char* setlocale(int category, const char* locale)
The setlocale function sets
 the locale for a specific category, which you must specify using one
 of the LC_ macros. Use LC_ALL to set all categories to the same
 locale.
[image: image with no caption]

The locale parameter is the
 name of the locale. The default for all categories is the "C" locale. The empty string ("") is an
 implementation-defined native locale. The implementation can define
 other possible values for locale.
To query the current locale, pass a null pointer as the
 locale. Note that each category
 might have a different locale, so, when querying for LC_ALL, the return value might contain
 multiple locale names.
The return value is a pointer to a string that contains the
 new locale (or current locale if you are querying with a null
 locale parameter) for the
 specified category. If the locale
 cannot be set, a null pointer is returned.
Warning
Do not modify the string returned from setlocale. A call to setlocale might overwrite the contents
 of the string returned from an earlier call (or simultaneous call
 in a multithreaded program).

<cmath>

The <cmath> header declares a number of mathematical functions (from
 the C standard <math.h>). In
 addition to the standard C function, most functions have overloaded
 versions for different parameter types; each function's syntax shows all
 the overloaded versions.
[image: image with no caption]

If an argument is out of range, a domain error occurs. The
 function sets errno to EDOM and returns an error value. The value is
 defined by the implementation, so the only portable way to test for a
 domain error is to check errno. If
 the function's result is an overflow, a range error occurs. The function
 returns HUGE_VAL and sets errno to ERANGE. If underflow occurs, the function
 returns 0 and may or may not set
 errno to ERANGE. (See <cerrno> for more information about
 errno.)
Note
HUGE_VAL is defined to be a
 double, and the C++ standard does
 not define a suitable value for the float and long double versions of the math functions. If
 you are using a system that has infinity as an explicit floating-point
 value (such as IEC 60559/IEEE 754, which is found on PCs, Macintoshes,
 and modern workstations), the overloaded versions of a function
 probably return infinity for overflow, so there is no problem with the
 float and long double versions of the functions. For
 maximum portability, however, use only the double versions of the math
 functions.

All the trigonometric functions use radians. The descriptions of
 these functions use the common mathematical notation for ranges of
 values. [x, y) represents all values z such that x ≤ z
 < y—that is, the square bracket
 denotes an inclusive endpoint of a range, and the parenthesis denotes an
 exclusive endpoint of a range.
Several other headers in the standard library declare additional
 mathematical functions:
	<cfloat>
	Declares macros for the limits of floating-point
 types

	<climits>
	Declares macros for the limits of integer types

	<complex>
	Declares types and functions for working with complex
 numbers

	<cstdlib>
	Declares integer absolute value functions and functions that
 compute a quotient and remainder in a single operation

	<limits>
	Declares the numeric_limits class template for the
 limits of the numerical types—e.g., the largest float, the precision of double, and so on

	<numeric>
	Declares generic numerical algorithms

	<valarray>
	Declares types and functions for computation with arrays of
 numbers

Name
abs function — Computes absolute value

Synopsis
float abs(float x)
double abs(double x)
long double abs(long double x)
The abs function returns
 the absolute value of its argument: if x < 0, it returns -x; otherwise, it returns x.
The abs function in
 <cmath> is the same as
 fabs. The <cstdlib> header declares integer
 versions of the abs
 function.

See Also
fabs function, abs function in <cstdlib>

Name
acos function — Computes inverse cosine

Synopsis
float acos(float x)
double acos(double x)
long double acos(long double x)
The acos function returns
 the inverse cosine of its argument. The parameter x must be in the range [-1, 1], or a
 domain error occurs. The return value is in the range [0, π].

Name
asin function — Computes inverse sine

Synopsis
float asin(float x)
double asin(double x)
long double asin(long double x)
The asin function returns
 the inverse sine of its argument. The parameter x must be in the range [-1, 1], or a
 domain error occurs. The return value is in the range [-π/2,
 π/2].

Name
atan function — Computes inverse tangent

Synopsis
float atan(float x)
double atan(double x)
long double atan(long double x)
The atan function returns
 the inverse tangent of its argument. The return value is in the
 range [-π/2, π/2].

Name
atan2 function — Computes inverse tangent

Synopsis
float atan2(float y, float x)
double atan2(double y, double x)
long double atan2(long double y, long double x)
[image: image with no caption]

The atan2 function returns
 the inverse tangent of y/x using
 the sign of both numbers to determine the quadrant for the return
 value. It correctly handles the case in which x is 0.
 (That is, it returns π/2 times the sign of y for nonzero y; if y
 is 0, the result is
 implementation-defined and might be a range error). The return value
 is in the range [-π, π].

Name
ceil function — Computes ceiling

Synopsis
float ceil(float x)
double ceil(double x)
long double ceil(long double x)
The ceil function returns
 the smallest integer that is greater than or equal to x.

See Also
floor function

Name
cos function — Computes cosine

Synopsis
float cos(float x)
double cos(double x)
long double cos(long double x)
The cos function returns
 the cosine of its argument, in radians. The return value is in the
 range [-1, 1].

Name
cosh function — Computes hyperbolic cosine

Synopsis
float cosh(float x)
double cosh(double x)
long double cosh(long double x)
The cosh function returns
 the hyperbolic cosine of its argument. Note that <cmath> has no inverse hyperbolic
 trigonometric functions; the Boost project fills that gap. See Appendix B for information about
 Boost.

Name
exp function — Computes exponential

Synopsis
float exp(float x)
double exp(double x)
long double exp(long double x)
The exp function returns
 e x.
 If x is too large, a range error
 occurs.

See Also
log function, pow function

Name
fabs function — Computes absolute value

Synopsis
float fabs(float x)
double fabs(double x)
long double fabs(long double x)
The fabs function returns
 the absolute value of its argument: if x < 0, it returns -x; otherwise, it returns x.
The fabs function is the
 same as abs for floating-point
 numbers. It exists only for compatibility with C.

See Also
abs function, abs function in <cstdlib>

Name
floor function — Computes floor

Synopsis
float floor(float x)
double floor(double x)
long double floor(long double x)
The floor function returns
 the largest integer that is less than or equal to x.

See Also
ceil function

Name
fmod function — Computes modulus

Synopsis
float fmod(float x, float y)
double fmod(double x, double y)
long double fmod(long double x, long double y)
[image: image with no caption]

The fmod function returns
 the floating-point remainder of dividing x by y.
 If y is 0, the behavior is implementation-defined:
 the return value might be 0, or a
 domain error can occur. If y is
 nonzero, the return value is x -
 k × y for some integer k, such that the result has the same sign
 as x and an absolute value less
 than the absolute value of y.

Name
frexp function — Computes binary fraction and exponent

Synopsis
float frexp(float x, int* exp)
double frexp(double x, int* exp)
long double frexp(long double x, int* exp)
The frexp function
 separates a floating-point number into a fraction and an exponent
 (with a base of 2) such that x =
 frac × 2e, in
 which frac is in the range [1/2, 1) or is
 0 if x is 0.
 The exponent, e, is stored in *exp. The return value is
 frac. If x is 0,
 the return value and *exp are
 0.

See Also
ldexp function, modf function

Name
HUGE_VAL macro — Range error value

Synopsis
double HUGE_VAL

[image: image with no caption]

When an overflow occurs, most functions set errno to ERANGE and return HUGE_VAL with the correct sign of the
 result. The exact value of HUGE_VAL is implementation-defined and is
 not necessarily a compile-time constant. It might even be a value
 that can be returned as a valid result from the function. In that
 case, the only way to discover whether an overflow occurred is to
 test errno, as shown in Example 13-5.

Example
Example 13-5. Computing a logarithm to any base
// Return the logarithm of x to the base n.
template<typename T>
T logn(T x, T n)
{
 errno = 0;
 T logx = log(x);
 if (errno == ERANGE)
 return logx; // Should be HUGE_VAL
 else if (errno != 0)
 return logx; // Implementation defined
 T logn = log(n);
 if (errno == ERANGE)
 return logn; // Should be HUGE_VAL
 else if (errno != 0)
 return logn; // Implementation defined
 if (logn == 0) {
 errno = EDOM;
 return 0;
 }
 return logx / logn;
}

See Also
 <cerrno>

Name
ldexp function — Makes floating point from binary fraction and
 exponent

Synopsis
float ldexp(float frac, int exp)
double ldexp(double frac, int exp)
long double ldexp(long double frac, int exp)
The ldexp function returns
 a floating-point number that it constructs from a fractional part
 and an exponent (base 2). The return value is frac ×
 2exp.

See Also
frexp function, modf function

Name
log function — Computes natural logarithm

Synopsis
float log(float x)
double log(double x)
long double log(long double x)
[image: image with no caption]

The log function returns
 the natural (base e) logarithm
 of its argument. A domain error occurs if x is negative. A range error might occur
 if x is 0.

Name
log10 function — Computes common logarithm

Synopsis
float log10(float x)
double log10(double x)
long double log10(long double x)
[image: image with no caption]

The log10 function returns
 the common (base 10) logarithm of its argument. A domain error
 occurs if x is negative. A range
 error might occur if x is
 0.

Name
modf function — Separates integer and fraction parts

Synopsis
float modf(float x, float* iptr)
double modf(double x, double* iptr)
long double modf(long double x, long double* iptr)
The modf function splits a
 floating-point number into integral and fractional parts. Both parts
 have the same sign as x. The
 integral part is stored in *iptr;
 the return value is the fractional part.

See Also
frexp function, ldexp function

Name
pow function — Computes power

Synopsis
float pow(float x, float y)
float pow(float x, int y)
double pow(double x, double y)
double pow(double x, int y)
long double pow(long double x, long double y)
long double pow(long double x, int y)
The pow function raises
 x to the y power. If x is negative, and y is not an integral value, a domain error
 occurs. If x is 0, and y is less than or equal to 0, and the result cannot be represented as
 a real number, a domain error occurs. A range error can occur if the
 result is out of range.

See Also
exp function

Name
sin function — Computes sine

Synopsis
float sin(float x)
double sin(double x)
long double sin(long double x)
The sin function returns
 the sine of its argument, in radians. The return value is in the
 range [-1, 1].

Name
sinh function — Computes hyperbolic sine

Synopsis
float sinh(float x)
double sinh(double x)
long double sinh(long double x)
The sinh function returns
 the hyperbolic sine of its argument. Note that <cmath> has no inverse hyperbolic
 trigonometric functions; the Boost project fills that gap. See Appendix B for information about
 Boost.

Name
sqrt function — Computes square root

Synopsis
float sqrt(float x)
double sqrt(double x)
long double sqrt(long double x)
The sqrt function returns
 the square root or its argument. If x is negative, a domain error occurs. The
 return value is always positive or 0.

Name
tan function — Computes tangent

Synopsis
float tan(float x)
double tan(double x)
long double tan(long double x)
The tan function returns
 the tangent of its argument. The standard does not specify the
 result when the tangent is undefined (that is, when x is kπ +π/2 for any integer k), but a reasonable result is a range
 error. Due to the nature of the tangent function, the sign of the
 return value (HUGE_VAL) can be
 positive or negative.

Name
tanh function — Computes hyperbolic tangent

Synopsis
float tanh(float x)
double tanh(double x)
long double tanh(long double x)
The tanh function returns
 the hyperbolic tangent of its argument. Note that <cmath> has no inverse hyperbolic
 trigonometric functions; the Boost project fills that gap. See Appendix B for information about
 Boost.

<complex>

The <complex> header declares the complex class template and specializations for
 the float, double, and long double
 types. It also declares mathematical functions that work with complex values.

Name
abs function template — Computes absolute value

Synopsis
template<typename T> T abs(const complex<T>& z)
The abs function returns
 the absolute value (or magnitude) of z.

See Also
polar function
 template, abs function in
 <cmath>

Name
arg function template — Computes argument (angle)

Synopsis
template<typename T> T arg(const complex<T>& z)
The arg function returns
 the argument (angle in polar coordinates) of z.

See Also
polar function
 template

Name
complex class template — Complex number template

Synopsis
template<typename T>
class complex {
public:
 typedef T value_type;
 complex(const T& re = T(), const T& im = T());
 complex(const complex& z);
 template<typename X> complex(const complex<X>& z);
 T real() const;
 T imag() const;
 complex& operator= (const T& x);
 complex& operator+=(const T& x);
 complex& operator-=(const T& x);
 complex& operator*=(const T& x);
 complex& operator/=(const T& x);
 complex& operator=(const complex& z);
 template<typename X>
 complex& operator= (const complex<X>& z);
 template<typename X>
 complex& operator+=(const complex<X>& z);
 template<typename X>
 complex& operator-=(const complex<X>& z);
 template<typename X>
 complex& operator*=(const complex<X>& z);
 template<typename X>
 complex& operator/=(const complex<X>& z);
};
The complex class template
 represents a complex number. The <complex> header specializes the
 template for the float, double, and long double types. You can instantiate complex<> for any type that behaves
 in the manner of the fundamental numeric types.
The type definition is a straightforward representation of a
 complex number. Basic assignment operators are defined as member
 functions, and arithmetic operators are defined as global
 functions.
	template<typename
 X> complex (const complex<X>& z)
	Constructs a complex<T> object by copying
 the members from z.
 Effectively, this converts a complex object instantiated for
 one type to a complex
 object of another type.

	T real
 ()
 const
	Returns the real part of *this.

	T imag
 ()
 const
	Returns the imaginary part of *this.

	complex& operator=
 (const T&
 x)
	Assigns x to the real
 part of *this and 0 to the imaginary part. Returns
 *this.

	complex& operator+=
 (const T&
 x)
	Adds x to the real
 part of *this, leaving the
 imaginary part alone. Returns *this.

	complex& operator-=
 (const T&
 x)
	Subtracts x from the
 real part of *this, leaving
 the imaginary part alone. Returns *this.

	complex& operator*=
 (const T&
 x)
	Multiplies the real and imaginary parts of *this by x. Returns *this.

	complex& operator/=
 (const T&
 x)
	Divides the real and imaginary parts of *this by x. Returns *this.

	complex& operator=
 (const complex&
 z)
	Assigns the real and imaginary parts of z to *this. Returns *this.

	template<typename X>
 complex& operator= (const complex<X>& z)
	Assigns the real and imaginary parts of z to *this. Returns *this. Note that z and *this can have different template
 parameter types.

	template<typename X>
 complex& operator+= (const complex<X>& z)
	Adds z to *this. Returns *this. Note that z and *this can have different template
 parameter types.

	template<typename X>
 complex& operator-= (const complex<X>& z)
	Subtracts z from
 *this. Returns *this. Note that z and *this can have different template
 parameter types.

	template<typename X>
 complex& operator*=(const complex<X>& z)
	Multiplies *this by
 z. Returns *this. Note that z and *this can have different template
 parameter types.

	template<typename X>
 complex& operator/= (const complex<X>& z)
	Divides *this by
 z. Returns *this. Note that z and *this can have different template
 parameter types.

Name
complex<double> template specialization — Double-precision complex number

Synopsis
template<> class complex<double> {
public:
 typedef double value_type;
 complex(double re = 0.0, double im = 0.0);
 complex(const complex<float>&);
 explicit complex(const complex<long double>&);
 double real() const;
 double imag() const;
 complex<double>& operator= (double);
 complex<double>& operator+=(double);
 complex<double>& operator-=(double);
 complex<double>& operator*=(double);
 complex<double>& operator/=(double);
 complex<double>& operator=(const complex<double>&);
 template<typename X>
 complex<double>& operator= (const complex<X>&);
 template<typename X>
 complex<double>& operator+=(const complex<X>&);
 template<typename X>
 complex<double>& operator-=(const complex<X>&);
 template<typename X>
 complex<double>& operator*=(const complex<X>&);
 template<typename X>
 complex<double>& operator/=(const complex<X>&);
};
The complex<double>
 class is a straightforward specialization of the complex class template. It changes the
 operators to pass double
 parameters by value instead of by reference, and it adds a new
 constructor:
	explicit complex
 (const complex<long
 double>& z)
	Constructs a complex number by copying from z. Note that you might lose
 precision or overflow, so the constructor is explicit.

Name
complex<float> template specialization — Single-precision complex number

Synopsis
template<> class complex<float> {
public:
 typedef float value_type;
 complex(float re = 0.0f, float im = 0.0f);
 explicit complex(const complex<double>&);
 explicit complex(const complex<long double>&);
 float real() const;
 float imag() const;
 complex<float>& operator= (float);
 complex<float>& operator+=(float);
 complex<float>& operator-=(float);
 complex<float>& operator*=(float);
 complex<float>& operator/=(float);
 complex<float>& operator=(const complex<float>&);
 template<typename X>
 complex<float>& operator= (const complex<X>&);
 template<typename X>
 complex<float>& operator+=(const complex<X>&);
 template<typename X>
 complex<float>& operator-=(const complex<X>&);
 template<typename X>
 complex<float>& operator*=(const complex<X>&);
 template<typename X>
 complex<float>& operator/=(const complex<X>&);
};
The complex<float>
 class is a straightforward specialization of the complex class template. It changes the
 operators to pass float
 parameters by value instead of by reference, and it adds two new
 constructors:
	explicit complex
 (const
 complex<double>& z)
explicit complex
 (const complex<long
 double>& z)
	Constructs a complex number by copying from z. Note that you might lose
 precision or overflow, so the constructors are explicit.

Name
complex<long double> template
 specialization — Extended-precision complex number

Synopsis
template<> class complex<long double> {
public:
 typedef long double value_type;
 complex(long double re = 0.0L, long double im = 0.0L);
 complex(const complex<float>&);
 complex(const complex<double>&);
 long double real() const;
 long double imag() const;
 complex<long double>&
 operator=(const complex<long double>&);
 complex<long double>& operator= (long double);
 complex<long double>& operator+=(long double);
 complex<long double>& operator-=(long double);
 complex<long double>& operator*=(long double);
 complex<long double>& operator/=(long double);
 template<typename X>
 complex<long double>& operator= (const complex<X>&);
 template<typename X>
 complex<long double>& operator+=(const complex<X>&);
 template<typename X>
 complex<long double>& operator-=(const complex<X>&);
 template<typename X>
 complex<long double>& operator*=(const complex<X>&);
 template<typename X>
 complex<long double>& operator/=(const complex<X>&);
};
The complex<long
 double> class is a straightforward specialization of
 the complex class template. It
 changes the operators to pass long double parameters by value instead of by
 reference.

Name
conj function template — Computes conjugate

Synopsis
template<typename T> complex<T> conj(const complex<T>& z)
The conj function returns
 the complex conjugate of z.

Name
cos function template — Computes cosine

Synopsis
template<typename T> complex<T> cos(const complex<T>& z)
The cos function returns
 the complex cosine of z.

See Also
cos function in <cmath>

Name
cosh function template — Computes hyperbolic cosine

Synopsis
template<typename T> complex<T> cosh(const complex<T>& z)
The cosh function returns
 the complex hyperbolic cosine of z.

See Also
cosh function in <cmath>

Name
exp function template — Computes exponential

Synopsis
template<typename T> complex<T> exp(const complex<T>& z)
The exp function returns
 the exponential of z, that is,
 e
 z .

See Also
exp function in <cmath>

Name
imag function template — Returns imaginary part

Synopsis
template<typename T> T imag(const complex<T>& z)
The imag function returns
 the imaginary part of z, that is,
 z.imag().

See Also
abs function in <cmath>

Name
log function template — Computes natural logarithm

Synopsis
template<typename T> complex<T> log(const complex<T>& z)
The log function returns
 the complex natural (base e)
 logarithm of z. The branch cuts
 are along the negative real axis, which means the imaginary part of
 the result is in the range [-πi, πi].

See Also
log function in <cmath>

Name
log10 function template — Computes common logarithm

Synopsis
template<typename T> complex<T> log10(const complex<T>& z)
The log10 function returns
 the complex common (base 10) logarithm of z. The branch cuts are along the negative
 real axis, which means the imaginary part of the result is in the
 range [-πi, πi].

See Also
log10 function in <cmath>

Name
norm function template — Computes normalized value

Synopsis
template<typename T> T norm(const complex<T>& z)
The norm function returns
 the square of the absolute value of z.

See Also
abs function
 template

Name
operator+ function template — Persforms unary positive or addition

Synopsis
template<typename T>
 complex<T> operator+(const complex<T>& z);

template<typename T> complex<T>
 operator+(const complex<T>& x, const complex<T>& y);
template<typename T> complex<T>
 operator+(const complex<T>& x, const T& y);
template<typename T> complex<T>
 operator+(const T& x, const complex<T>& y);
The unary positive operator returns z.
The binary addition operator returns the sum of its operands.
 If either operand is of type T,
 the argument is interpreted as the real part, with an imaginary part
 of T() or 0.

Name
operator- function template — Performs negation or subtraction

Synopsis
template<typename T>
 complex<T> operator-(const complex<T>&);

template<typename T>
 complex<T> operator-(const complex<T>&, const complex<T>&);
template<typename T>
 complex<T> operator-(const complex<T>&, const T&);
template<typename T>
 complex<T> operator-(const T&, const complex<T>&);
The unary negation operator returns -z.
The binary subtraction operator returns the difference of its
 operands. If either operand is of type T, the argument is interpreted as the real
 part, with an imaginary part of T(
) or 0.

Name
operator* function template — Performs multiplication

Synopsis
template<typename T>
 complex<T> operator*(const complex<T>&, const complex<T>&);
template<typename T>
 complex<T> operator*(const complex<T>&, const T&);
template<typename T>
 complex<T> operator*(const T&, const complex<T>&);
The binary * operator
 performs complex multiplication. If either operand is of type
 T, the argument is interpreted as
 the real part, with an imaginary part of T(
) or 0.

Name
operator/ function template — Performs division

Synopsis
template<typename T>
 complex<T> operator/(const complex<T>&, const complex<T>&);
template<typename T>
 complex<T> operator/(const complex<T>&, const T&);
template<typename T>
 complex<T> operator/(const T&, const complex<T>&);
The binary / operator
 performs complex division. If either operand is of type T, the argument is interpreted as the real
 part, with an imaginary part of T(
) or 0. Division by
 zero results in undefined behavior.

Name
operator== function template — Checks equality

Synopsis
template<typename T>
 bool operator==(const complex<T>&, const complex<T>&);
template<typename T>
 bool operator==(const complex<T>&, const T&);
template<typename T>
 bool operator==(const T&, const complex<T>&);
The == operator returns
 true if the real and imaginary
 parts of both values are equal. If either operand is of type
 T, the argument is interpreted as
 the real part, with an imaginary part of T(
) or 0.

Name
operator!= function template — Checks inequality

Synopsis
template<typename T>
 bool operator!=(const complex<T>&, const complex<T>&);
template<typename T>
 bool operator!=(const complex<T>&, const T&);
template<typename T>
 bool operator!=(const T&, const complex<T>&);
The != operator returns
 true if the real or imaginary
 parts are not equal. If either operand is of type T, the parameter is interpreted as the
 real part, with an imaginary part of T(
) or 0.

Name
operator<< function template — Writes a complex number

Synopsis
template<typename T, typename charT, typename traits>
 basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>&,
 const complex<T>& z);
The << operator
 prints z to the output stream in
 the form (x, y), in which
 x is the real part, and y is the imaginary part. Example 13-6 shows how z is formatted. If you want more control
 over the formatting, you must print the value yourself.

Example
Example 13-6. Formatting a complex number
template<class T, class charT, class traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& o,
 const std::complex<T>& x)
{
 std::basic_ostringstream<charT, traits> s;
 s.flags(o.flags());
 s.imbue(o.getloc());
 s.precision(o.precision());
 s << "(" << x.real() << "," << x.imag() << ")";
 return o << s.str();
}

Name
operator>> function template — Reads a complex number

Synopsis
template<typename T, typename charT, typename traits>
 basic_istream<charT, traits>& operator>>(basic_istream<charT, traits>&,
 complex<T>& z);
The >> operator reads
 a complex number from an input stream into z. The input format can be any of the
 following:
	x
	The value x is the
 real part, and T() or
 0 is the imaginary
 part.

	(x)
	The value x is the
 real part, and T() or
 0 is the imaginary
 part.

	(x, y)
	The value x is the
 real part, and y is the
 imaginary part.

Name
polar function template — Converts to polar coordinates

Synopsis
template<typename T>
complex<T> polar(const T& r, const T& theta)
The polar function returns
 a complex object that represents the value given in polar
 coordinates, in which r is the
 magnitude and theta is the angle
 (in radians). The resulting value has the following real and
 imaginary parts:
real = r * cos(theta)
imag = r * sin(theta)

See Also
abs function template,
 arg function template

Name
pow function template — Computes power

Synopsis
template<class T>
 complex<T> pow(const complex<T>& x, int y);
template<class T>
 complex<T> pow(const complex<T>& x, const T& y);
template<class T>
 complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T>
 complex<T> pow(const T& x, const complex<T>& y);
The pow function returns
 the complex power xy. If x and y
 are both 0, the result is
 implementation-defined; otherwise, the result is exp(y *
 log(x)). The branch cuts are
 along the negative real axis.

See Also
exp function template,
 log function template,
 pow function in <cmath>

Name
real function template — Returns real part

Synopsis
template<typename T> T real(const complex<T>& z)
The real function returns
 the real part of z, that is,
 z.real().

Name
sin function template — Computes sine

Synopsis
template<typename T> complex<T> sin(const complex<T>& z)
The sin function returns
 the complex sine of z.

See Also
sin function in <cmath>

Name
sinh function template — Computes hyperbolic sine

Synopsis
template<typename T> complex<T> sinh(const complex<T>& z)
The sinh function returns
 the complex hyperbolic sine of z.

See Also
sinh function in <cmath>

Name
sqrt function template — Computes square root

Synopsis
template<typename T> complex<T> sqrt(const complex<T>& z)
The sqrt function returns
 the complex square root of z.The
 branch cuts are along the negative real axis. The result always has
 a nonnegative real part.

See Also
sqrt function in <cmath>

Name
tan function template — Computes tangent

Synopsis
template<typename T> complex<T> tan(const complex<T>& z)
The tan function returns
 the complex tangent of z.

See Also
tan function in <cmath>

Name
tanh function template — Computes hyperbolic tangent

Synopsis
template<typename T> complex<T> tanh(const complex<T>& z)
The tanh function returns
 the complex hyperbolic tangent of z.

See Also
tanh function in <cmath>

<csetjmp>

The <csetjmp> header is the C++ version of the C standard <setjmp.h> header.
Warning
This chapter presents only the most cursory description of this
 header because its use is limited in a C++ program. Use exceptions
 instead of the functions in <csetjmp>.

Name
jmp_buf type — Jump buffer

Synopsis
typedef . . . jmp_buf;
The jmp_buf type is an
 opaque array type that stores information for the setjmp and longjmp functions.

Name
longjmp function — Performs nonlocal goto

Synopsis
void longjmp(jmp_buf env, int val);
The longjmp function
 bypasses the normal function return and unwinds the call stack to
 the point where setjmp was called
 with the same jmp_buf
 environment. When setjmp returns
 to its caller, it returns val; if
 val is 0, setjmp returns 1.
Calling longjmp is similar
 to throwing an exception that is caught at the point of the setjmp call. One important difference,
 however, is that if any objects on the stack would have been
 destroyed by throwing an exception, the program's behavior is
 undefined if you call longjmp.
 This is why you should use exceptions instead of longjmp.

Name
setjmp function — Establishes nonlocal label

Synopsis
int setjmp(jmp_buf env);
The setjmp function stores
 the current execution environment in its argument so that the
 environment can be restored by a call to longjmp. The first time setjmp is called, it returns 0. When longjmp is called, setjmp returns the val argument that was passed to longjmp; that value is guaranteed to be
 nonzero.

<csignal>

The <csignal> header is the C++ version of the standard C <signal.h> header. It declares functions
 and macros related to signal handling.
A signal is a condition that can arise during
 program execution. A signal can originate by an explicit call to
 raise or abort, from external sources (such as the user
 interrupting the program), or from internal events (such as
 floating-point errors or memory violations). Each signal has a
 handler, which is a function that the C++ library
 calls when a signal occurs (called raising the
 signal).
[image: image with no caption]

Signals are identified by integers. A program can establish
 different handlers for different signal numbers. You can choose to
 ignore a signal by using SIG_IGN as
 the signal handler. If the signal is raised, no handler is called, and
 the program continues. Each signal also has a default handler (SIG_DFL). When a program starts, every signal
 number is initialized with SIG_IGN or
 SIG_DFL. The details are
 implementation-defined.
You can set your own handler for any signal by calling the
 signal function. A handler is a
 function that takes one parameter: the signal number. The signal handler
 function is limited in what it can do. Unless a signal is raised by an
 explicit call to raise or abort, the only useful thing the handler can
 do is to set a global flag. The type of the flag must be sig_atomic_t.
The standard defines a basic set of signals, and an implementation
 is free to define additional signals. On the other hand, an
 implementation is not required to raise any signals. Remember that
 arithmetic overflow, pointer violations, and the like result in
 undefined behavior. (See Chapter
 4.) Thus, an implementation is free to terminate a program
 immediately, ignore the error, raise a signal, or do anything else. Some
 signals are meant to reflect external events, such as the user
 terminating the program. How the user terminates a program is likewise
 implementation-defined.
Unix and Unix-like operating systems have much more extensive
 signal-handling facilities. The <csignal> handler as documented in this
 section is portable to all hosted C++ environments, regardless of
 operating system, although the portable behavior is limited. Most uses
 of <csignal> in real programs
 take advantage of additional, nonstandard capabilities. Consult your
 compiler's and library's documentation for details.

Name
raise function — Raises a signal

Synopsis
int raise(int sig);
The raise function sends a
 signal to the running program. The sig parameter is the signal number. The
 return value is 0 for success or
 nonzero for an error.

Name
SIG_DFL macro — Default handler

Synopsis
void (*SIG_DFL)(int)
The SIG_DFL macro
 represents the default handling of a signal. The macro expands to a
 constant whose value is suitable as the second argument to the
 signal function.

Name
SIG_ERR macro — Error return

Synopsis
void (*SIG_ERR)(int)
The SIG_ERR macro
 represents the value returned from signal in the event of an error. It
 expands to a constant expression.

Name
SIG_IGN macro — Ignore signal

Synopsis
void (*SIG_IGN)(int)
The SIG_IGN macro tells
 signal to ignore a signal. The
 macro expands to a constant whose value is suitable as the second
 argument to the signal
 function.

Name
SIGABRT macro — Abort signal number

Synopsis
int SIGABRT

The SIGABRT macro expands
 to a positive integer constant that represents an abnormal
 termination. The abort function raises SIGABRT.

Name
SIGFPE macro — Floating-point error signal number

Synopsis
int SIGFPE

The SIGFPE macro expands to
 a positive integer constant that represents a floating-point
 exception, such as division by zero. An implementation is not
 required to raise SIGFPE for a
 floating-point error.

Name
SIGILL macro — Illegal instruction signal number

Synopsis
int SIGILL

The SIGILL macro expands to
 a positive integer constant that represents an illegal
 instruction.

Name
SIGINT macro — User interrupt signal number

Synopsis
int SIGINT

The SIGINT macro expands to
 a positive integer constant that represents a user interrupt.

Name
SIGSEGV macro — Segmentation violation signal number

Synopsis
int SIGSEGV

The SIGSEGV macro expands
 to a positive integer constant that represents an addressing fault
 (segmentation violation).

Name
SIGTERM macro — Terminate signal number

Synopsis
int SIGTERM

Description
The SIGTERM macro expands
 to a positive integer constant that represents a request to
 terminate the program.

Name
sig_atomic_t type — Atomic type

Synopsis
typedef ... sig_atomic_t;
[image: image with no caption]

The sig_atomic_t type is an
 integral type that can be accessed atomically—that is, even if a
 signal is delivered, the entire value is read or written. The actual
 type is implementation-defined.

Name
signal function — Sets a signal handler

Synopsis
void (*signal(int sig, void (*func)(int)))(int);
The signal function
 controls the program's behavior when a signal is delivered to the
 program. The first parameter (sig) is the signal number. The second
 parameter (func) is the function
 to call when signal sig is
 delivered.
The func parameter can also
 be one of the special values SIG_DFL or SIG_IGN. Use SIG_DFL to get the default behavior; use
 SIG_IGN to ignore a
 signal.
[image: image with no caption]

The default behavior for a signal is implementation-defined,
 but it usually results in the termination of the program. The signal
 handler must not use any C++ features (such as throwing an
 exception), or the results will be implementation-defined. The
 function must have "C"
 linkage.
If the func parameter is a
 function pointer, that function is called when signal sig is delivered. Unless the signal is
 delivered by calling abort or
 raise, the function is highly
 restricted in what it can do:
	The handler must not call any function in the standard
 library except signal, and
 the first parameter must be sig.

	The handler must not refer to any variable with static
 storage except it can assign a value to a variable of type
 volatile sig_atomic_t.

	If the signal is the result of a computational error such
 as SIGFPE, the signal handler
 must not return, but should call abort or exit. (Yes, this item contradicts the
 first item.)

Warning
Real implementations have looser restrictions, such as
 allowing calls to other library functions from a signal handler.
 The library functions that are permitted varies, but every
 practical implementation allows at least abort. If you must use signal handlers
 in your program, you will probably need to rely on behavior that
 is dictated by your host environment, extending the limitations of
 the C++ standard.

If the handler returns normally, and the signal is not the
 result of a computational error, execution continues from the point
 where it was interrupted.
The return value of signal
 is the previous value of the signal handler for sig, or SIG_ERR for an error. If SIG_ERR is returned, errno is set.
Example 13-7 shows
 a simple signal handler that sets a global flag when the user
 interrupts the program. Until the user interrupts it, the program
 reads input and counts the number of lines the user typed.

Example
Example 13-7. Reading input until the program is interrupted
#include <csignal>
#include <iostream>
#include <string>

volatile std::sig_atomic_t interrupted;

// Signal handler sets a global flag
extern "C" void sigint(int sig)
{
 interrupted = 1;
}

int main()
{
 //
 if (std::signal(SIGINT, sigint) == SIG_ERR)
 std::cerr << "Cannot set signal handler\n";
 else
 {
 unsigned long count = 0; // Count lines.
 while(! interrupted)
 {
 std::cout << "> "; // User prompt
 std::string s;
 if (! std::getline(std::cin, s))
 // EOF does not terminate the loop; only SIGINT does this.
 std::cin.clear();
 ++count;
 }
 std::cout << "I counted " << count << " line(s).\n";
 }
}

<cstdarg>

The <cstdarg> header is the C++ version of the C standard <stdarg.h> header, which declares macros
 for accessing the arguments to a function that takes a variable number
 of arguments, that is, a function that is declared with an ellipsis as
 the last parameter.
A function that takes a variable number of arguments (called a
 variadic function) must have some way of knowing
 how many arguments have actually been passed to the function and what
 their types are. For example, the printf function (in <cstdio>) uses its format string to
 determine the number and type of arguments.
Example 13-8 shows how
 a function can use the <cstdarg> macros. The max function takes at least two arguments. The
 first is a count of the number of remaining arguments; the count must be
 positive. The template parameter specifies the type of each argument
 that follows the count.
Example 13-8. Finding the maximum value of any number of arguments
#include <cassert>
#include <cstdarg>

// Use a trivial wrapper class to ensure that va_end is called.
class varargs {
public:
 ~varargs() { va_end(ap); }
 std::va_list& ap;
};

template <typename T>
T max(unsigned count, ...)
{
 assert(count > 0);
 varargs va;
 va_start(va.ap, count);
 T result = va_arg(va.ap, T); // Get first argument.
 while (--count > 0) {
 T arg = va_arg(va.ap, T); // Get successive arguments.
 if (arg > result)
 result = arg; // Remember the largest.
 }
 return result;
}

int main()
{
 int a, b, c, d;
 ...
 int x = max<int>(4, a, b, c, d);
 int y = max<int>(2, x, 42);
 return y;
}

Name
va_arg macro — Gets next argument

Synopsis
T va_arg(va_list ap, T)
The va_arg macro fetches
 the next argument, which must be of type T. The ap parameter must have been initialized by
 calling va_start. The type
 T must be a type that results
 from the standard type promotions (Chapter 3) or else the behavior is
 undefined. For example, T cannot
 be char, but must be int because the standard promotion of type
 char is to type int (or, in rare circumstances, unsigned int). The behavior is undefined if there
 is no next argument.

Name
va_end macro — Ends getting arguments

Synopsis
void va_end(va_list ap)
The va_end macro finishes
 fetching arguments. You must call va_end once for each call to va_start. You cannot nest calls to
 va_start and va_end, but you can call them multiple
 times sequentially in the same function.

Name
va_list type — Argument list

Synopsis
typedef ... va_list;
The va_list type is an
 opaque type that refers to the function's arguments. Declare a local
 variable of type va_list and
 supply the variable to the va_start, va_arg, and va_end macros.

Name
va_start macro — Starts getting arguments

Synopsis
void va_start(va_list& ap, lastNamedParm)
The va_start macro
 initializes ap and prepares to
 fetch function arguments with va_arg. You must call va_end to clean up and finalize ap. The second argument to va_start is the name of the function's
 last parameter before the ellipsis. The last named parameter must
 not have a function, array, or reference type.

<cstddef>

The <cstddef> header is the C++ version of the C standard <stddef.h> header, which declares a few
 types and macros.
The C header declares the wchar_t type, but wchar_t is a reserved keyword in C++, so there
 is no need to #include <cstddef> to declare this type.

Name
NULL macro — Null pointer

Synopsis
#define NULL
 . . .
The NULL macro expands to a
 null pointer constant, such as 0
 or 0L.
[image: image with no caption]

Some C libraries declare NULL as ((void*)0) in stddef.h. This definition is fine for C,
 but is wrong for C++. Most C++ compilers correctly declare NULL, but you should be aware of the
 difference.

Name
offsetof macro — Computes member offset

Synopsis
size_t offsetof(type, member-name)
The offsetof macro returns
 the offset, in bytes, of a member of a struct as a constant integer. The
 type must be a plain, C-style struct (Plain Old Data, or POD), and the
 expression &(t.member-name
) must be an address constant,
 assuming t is an instance of
 type. In particular, this means the
 member-name must not be a bit-field, a
 static member, or a function member. (See Chapter 6 for more information about
 POD types.)

Name
ptrdiff_t type — Pointer difference type

Synopsis
typedef ... ptrdiff_t

[image: image with no caption]

The ptrdiff_t type is a
 signed integral type that represents the difference between two
 pointers. The exact type is implementation-defined.

Name
size_t type — sizeof result type

Synopsis
typedef ... size_t

[image: image with no caption]

The size_t type is the type
 of the result of the sizeof
 operator. It is an unsigned integral type. The exact type is
 implementation-defined.

<cstdio>

The <cstdio> header is a wrapper for the C standard <stdio.h> header, which declares input
 and output types, macros, and functions. See also <cwchar> for wide character I/O
 functions.
C++ I/O streams offer more flexibility, type-safety, and clarity.
 On the other hand, C I/O offers simplicity and compatibility with C
 libraries. See Chapter 9 for an
 overview of the C++ I/O stream classes.

Name
_IOFBF macro — Full buffering

Synopsis
int _IOFBF

When passed as the mode
 parameter to setvbuf, the
 _IOFBF macro sets an open file to
 full buffering. A buffer is flushed when it is full. The _IOFBF macro expands to a constant
 integer.
[image: image with no caption]

Support for fully-buffered streams is
 implementation-dependent.

See Also
setvbuf function

Name
_IOLBF macro — Line buffering

Synopsis
int _IOLBF

When passed as the mode
 parameter to setvbuf, the
 _IOLBF macro sets an open file to
 line buffering. A buffer is flushed when it is full or when a
 newline character is read or written. The _IOLBF macro expands to a constant
 integer.
[image: image with no caption]

Support for line-buffered streams is
 implementation-dependent.

See Also
setvbuf function

Name
_IONBF macro — No buffering

Synopsis
const int _IONBF

When passed as the mode
 parameter to setvbuf, the
 _IONBF macro disables the
 buffering of an open file. Characters are read or written as soon as
 possible, without buffering. The _IONBF macro expands to a constant
 integer.
[image: image with no caption]

Support for unbuffered streams is implementation-dependent.
 For example, a host operating system might line buffer input from a
 terminal, even if a program requests unbuffered input.

See Also
setvbuf function

Name
BUFSIZ macro — Buffer size

Synopsis
int BUFSIZ

The BUFSIZ macro specifies
 the minimum buffer size for the setbuf function. The BUFSIZ macro expands to a constant
 integer.

See Also
setbuf function, setvbuf function

Name
clearerr function — Clears error status

Synopsis
void clearerr(FILE* stream)
The clearerr function
 clears the error and end-of-file indicators for stream.

See Also
feof function, ferror function

Name
EOF macro — End-of-file or error

Synopsis
int EOF

The EOF macro represents
 end-of-file when returned from getchar and other functions. Some
 functions return EOF to indicate
 an error.
[image: image with no caption]

The value of EOF is a
 negative integer constant. The precise value is
 implementation-defined.

Name
fclose function — Closes a file

Synopsis
int fclose(FILE* stream)
The fclose function flushes
 and closes an open file. It returns 0 upon success or EOF when there is an error.

See Also
fopen function

Name
feof function — Tests for end-of-file

Synopsis
int feof(FILE* stream)
The feof function returns
 true (nonzero) if stream is
 positioned at the end-of-file, or false (0) otherwise.

See Also
clearerr function,
 ferror function

Name
ferror function — Tests for error

Synopsis
int ferror(FILE* stream)
The ferror function returns
 true (nonzero) if stream has an
 error condition set, or false
 (0) otherwise.

See Also
clearerr function,
 feof function

Name
fgetc function — Reads a character

Synopsis
int fgetc(FILE* stream)
The fgetc function reads a
 single character from stream. It
 returns the character as an unsigned char converted to int or EOF for an error or end-of-file.

See Also
feof function, ferror function, getc macro, fputc function, fwgetc in <cwchar>

Name
fgetpos function — Returns file position

Synopsis
int fgetpos(FILE* stream, fpos_t* pos)
The fgetpos function stores
 stream's current position in the
 object that pos points to. The
 only use for the position is to save it and pass it to fsetpos to set the file's position. You
 cannot use the position arithmetically, e.g., to advance the
 position by one character.
The return value is 0 for
 success or nonzero for failure. If fgetpos fails, it sets errno.

See Also
fpos_t type, fsetpos function, ftell function

Name
fgets function — Reads a string

Synopsis
char* fgets(char* s, int n, FILE* stream)
The fgets function reads a
 line of text from stream into the
 character array that s points to.
 It stops reading after a newline character or after n - 1 characters have been read. The
 newline character, if one is encountered, is copied into s.
The return value is s for
 success or a null pointer for an error or end-of-file. If fgets fails, the contents of the string
 s are undefined.

See Also
fgetc function, getc macro, fputs function, fwgets in <cwchar>

Name
FILE type — File type

Synopsis
typedef . . . FILE

The FILE type represents
 the contents of an external file. A C++ program works with FILE pointers, in which the actual
 FILE objects are managed by
 functions in the standard library. Thus, you never need to allocate
 or free FILE objects.

See Also
fclose function, fopen function, freopen function, <fstream>

Name
FILENAME_MAX macro — Maximum length of a filename

Synopsis
int FILENAME_MAX

FILENAME_MAX is the size
 you should use when declaring a character array that will store a
 filename. Some systems do not have a fixed maximum size for a
 filename, in which case FILENAME_MAX is a recommended size, and
 the resulting character array might not be large enough to hold all
 valid filenames. The FILENAME_MAX
 macro expands to a constant integer.
Note
Use std::string instead
 of a character array to avoid any problems with character arrays
 that are too small.

Name
fopen function — Opens a file

Synopsis
FILE* fopen(const char* filename, const char* mode)
The fopen function opens a
 file.
[image: image with no caption]

The filename parameter
 specifies the filename in an implementation-defined manner. The
 mode parameter specifies how to
 open the file. The mode must
 begin with one of the strings listed in Table 13-4. Additional
 characters can follow, and the interpretation of the extra
 characters is implementation-defined. Mode strings are
 case-sensitive.
Table 13-4. File open modes
	Mode string
	Description

	 a

	Append: opens an existing file for appending,
 that is, every write is forced to the end of the file. If
 the file to be opened does not exist, a creates it.

	 r

	Read: opens an existing file for
 reading.

	 w

	Write: creates a new file for writing. If the
 file already exists, w
 truncates it to zero length.

	 ab

	Append in binary mode.

	 rb

	Read in binary mode.

	 wb

	Write in binary mode.

	 a+

	Append update: opens a file in append mode and
 allows it to be read.

	 r+

	Read update: opens an existing file for
 reading, and also allows writing.

	 w+

	Write update: creates a new file for writing,
 and also allows reading. If the file already exists,
 w+ truncates it to zero
 length.

	 ab+ or
 a+b
	Append update in binary mode.

	 rb+ or
 r+b
	Read update in binary mode.

	 wb+ or
 w+b
	Write update in binary mode.

See Also
fclose function, freopen function

Name
FOPEN_MAX macro — Minimum limit on the number of open files

Synopsis
int FOPEN_MAX

A typical operating system has a maximum number of files that
 can be open at one time. This number might be variable or fixed;
 FOPEN_MAX is the guaranteed
 minimum value of the limit. The FOPEN_MAX macro expands to a constant
 integer.

See Also
fopen function

Name
fpos_t type — File position

Synopsis
typedef . . . fpos_t

The fpos_t type is an
 opaque type that represents a position in a file. The only way to
 set the value of an fpos_t object
 is to call fgetpos, and the only
 things you can do with the value are assign an fpos_t value to it and pass it as a
 function argument, especially to fsetpos.

See Also
fgetpos function, fsetpos function, fpos in <ios>

Name
fprintf function — Writes formatted data

Synopsis
int fprintf(FILE* stream, const char* format, . . .)
The fprintf function writes
 formatted output to stream. The
 format parameter contains the
 formatting information, and the remaining arguments are printed
 according to the format. The return value is the number of
 characters printed, or a negative value for an error.
Characters in format are
 printed verbatim except for conversion specifications, which begin
 with a percent sign (%). Each
 conversion specification is made up of the following parts (in
 order): flags, field width, precision, size, and conversion
 specifier.
The following are detailed descriptions of the parts of a
 conversion specification:
	Flags
	The flag characters are optional and can appear in any
 order. Table
 13-5 lists the flag characters and their
 meanings.
Table 13-5. Formatting flag characters
	Flag
	Description

	 -

	Left-justified (default is
 right-justified).

	 +

	Signed conversions always begin with a
 sign (default is to use a sign only if the value is
 negative).

	Space
	The output is an initial space character
 if a signed conversion results in an empty string or a
 string that does not start with a sign character (+
 takes precedence over space).

	 #

	Use an alternate form: insert a 0 for %o; insert 0x for %x or 0X for %X; always output a decimal
 point for floating-point conversions; do not remove
 trailing zeros for %g or %G; behavior is undefined
 for other conversions.

	 0

	Fields are padded with leading zeros
 (after the sign or base indication). The - flag takes precedence over
 0. For integer
 conversions, a precision takes precedence over the
 0
 flag.

	Field width
	An optional number that specifies the minimum number of
 characters that the field will occupy. If the field is an
 asterisk (*), the field
 width is obtained from the next argument to be
 processed.

	Precision
	An optional number of digits for an integer, number of
 decimal digits for a floating-point number, or maximum size
 for a string. The precision is specified as a dot (.) followed
 by a number or an asterisk.

	Size
	The character h,
 l, or L. h means an integer is short or unsigned short. l means an integer is long or unsigned long, a character is wint_t, or a string is a pointer to
 wchar_t. L means a floating-point number is
 long double.

	Conversion character
	Specifies the type of the argument containing the data
 to be printed using a conversion specification. It must be one
 of the following:
	d, i
	Signed decimal integer.

	o
	Unsigned octal integer.

	u
	Unsigned decimal integer.

	x, X
	Unsigned hexadecimal integer. x writes the digits a-f in lowercase, and X writes the digits A-F in uppercase.

	f
	Fixed-precision floating point.

	e, E
	Exponential floating point. The exponent is
 introduced with e or
 E, matching the
 conversion character.

	g, G
	General floating point. Use style f or e. Use style e if the exponent is less than
 -4 or greater than the precision; otherwise, use style
 f. Trailing zeros are
 dropped, and a trailing decimal point is dropped if it
 would be the last character.

	c
	Character. The argument must be an unsigned char promoted to int, or, if the l size modifier is used, the
 argument must be wchar_t promoted to wint_t, which is then printed
 as a multibyte character.

	s
	String. The argument is a pointer to a
 null-terminated array of characters, or, if the l size modifier is used, the
 argument must be a pointer to a wchar_t array, which is
 converted to a series of multibyte characters.

	[image:] p
	Pointer. The argument must be a pointer to
 void. The output
 format is implementation-defined.

	n
	The argument must be a pointer to an integer;
 fprintf stores in the
 integer the number of characters written so far. Use the
 h or l size modifiers if the
 argument is a pointer to short int or long int.

	%
	Prints a literal %.

Warning
It is your responsibility to ensure that the argument types
 match the format. Any errors
 result in undefined behavior. Mismatches between format and the argument is a common and
 sometimes subtle source of error. You can avoid these problems
 entirely by using C++ I/O streams instead of fprintf and related functions.

All the printf-related
 functions interpret the format string identically.

Example
The following are examples of calling printf:
long double pi = 3.141592653589792L;
int i = 42;
const char greeting[] = "Hello, how are you?";

printf(">%d %% %Lg<\n", i, pi); // Prints >42 % 3.14159<
printf(">%4d<\n", i); // Prints > 42<
printf(">%-16.8Le<\n", pi); // Prints >3.14159265e+00 <
printf(">%#*.*x<\n", 8, 4, i); // Prints > 0x002a<
printf(">%.5s<\n", greeting); // Prints >Hello<

See Also
fscanf function, printf function, sprintf function, vfprintf function, wcrtomb in <cwchar> , fwprintf in <cwchar>

Name
fputc function — Writes a character

Synopsis
int fputc(int c, FILE* stream)
The fputc function writes a
 single character to stream. The
 character must be an unsigned
 char, which is automatically
 promoted to int, so the proper
 way to print a variable of type char is as follows:
char ch;
fputc(static_cast<unsigned char>(ch), stream);
The return value is EOF for
 an error or c for success.

See Also
putc macro, fwputc in <cwchar>

Name
fputs function — Writes a string

Synopsis
int fputs(const char* s, FILE* stream)
The fputs function writes
 the string s to stream. It returns EOF for an error or a nonnegative value
 for success.

See Also
fputc function, puts function, fwputs in <cwchar>

Name
fread function — Reads binary data

Synopsis
size_t fread(void* ptr, size_t size, size_t count, FILE* stream)
The fread function reads up
 to count elements from stream into the memory that ptr points to. The memory must have POD
 type (see Chapter 6). Each
 element is size bytes long. It
 returns the number of elements that were read successfully.

See Also
fwrite function

Name
freopen function — Opens a file with an existing stream

Synopsis
FILE* freopen(const char* filename, const char* mode, FILE* stream)
The freopen function opens
 a file using an existing stream. The file previously associated with
 the stream is closed first, and
 the named file is opened in the same manner as if fopen were called. See fopen for a description of the mode parameter.
The main purpose of using freopen is to reopen one of the standard
 files: stdin, stdout, and stderr.

See Also
fclose function, fopen function

Name
fscanf function — Reads formatted data

Synopsis
int fscanf(FILE* stream, const char* format, . . .)
The fscanf function
 performs a formatted read from stream. The format parameter contains formatting
 information, and the remaining arguments are pointers. When fscanf reads items, it stores their values
 in the objects that successive arguments point to. The return value
 is the number of items read or a negative value for an error.
Items are read from stream
 and interpreted according to format, which contains whitespace
 characters, non-whitespace characters, and conversion
 specifications, which begin with a percent sign (%). A whitespace character directs
 fscanf to skip over whitespace in
 the input stream. Non-whitespace characters must match the input
 text. Each conversion specification is made up of the following
 parts (in order): assignment suppression, field width, size, and
 conversion specifier.
The following are descriptions of the conversion specification
 elements:
	Assignment suppression
	An optional asterisk (*) directs fscanf to read and parse the input
 according to the conversion specification, but not to assign
 the value to an argument.

	Field width
	An optional number (positive decimal integer) that
 specifies the maximum number of characters to read.

	Size
	The character h,
 l, or L. h means an integer is short or unsigned short. l means an integer is long or unsigned long; a floating-point number is
 double, or a string
 argument is a pointer to wchar_t for the c, s, and [conversion specifiers. L means a floating-point number is
 long double. The default size for an
 integer is int or unsigned int, float for a floating-point number,
 and char for any of the
 character conversion specifiers.

	Conversion character
	Specifies the type of the argument containing the data
 to be printed using a conversion specification. It must be one
 of the following:
	d
	Signed decimal integer.

	i
	Signed integer. Reads and interprets a prefix of
 0x or 0X for hexadecimal, 0 for octal, or anything else
 for decimal.

	o
	Unsigned octal integer.

	u
	Unsigned decimal integer.

	x, X
	Unsigned hexadecimal integer.

	e, E, f, g, G
	Floating point in fixed or exponential
 format.

	c
	Characters. The field width (default 1) specifies the exact number
 of characters to read. The corresponding argument must
 be a pointer to a character array large enough to hold
 the characters. If the l modifier is used, the input
 is read as multibyte characters, which are converted to
 wide characters and stored in a wchar_t array. In either case,
 no null character is appended.

	s
	String. Reads a sequence of non-whitespace
 characters. The corresponding argument must be a pointer
 to a character array that is large enough to hold the
 sequence plus a terminating null character. If the
 l modifier is used,
 the input is read as multibyte characters, which are
 converted to wide characters and stored in a wchar_t array, followed by a
 terminating null wide character.

	[image:] p
	Pointer. The argument must be a pointer to
 void. The input
 format is implementation-defined and matches the format
 that fprintf
 uses.

	n
	The argument must be a pointer to an integer;
 fscanf stores in the
 integer the number of characters read so far. The
 h or l size modifiers can be used
 if the argument is a pointer to short int or long int. Nothing is read from the
 input, and %n does
 not affect the count returned by fscanf.

	[
	Matches a sequence of characters. The conversion
 specification lists a set of characters (called the
 scanset) in square brackets. The
 input string is a sequence of characters that matches
 any of the characters in the scanset or, if the scanset
 begins with a circumflex (^), any character not in the
 scanset. If the l
 modifier is used, the input is read as multibyte
 characters, which are converted to wide characters and
 stored in a wchar_t
 array, followed by a terminating null wide
 character.

	%
	Matches a literal % in the input stream.

Warning
It is your responsibility to ensure that the argument types
 match the format. Any errors
 result in undefined behavior. Mismatches between format and the argument are a common and
 sometimes subtle source of error. You can avoid these problems
 entirely by using C++ I/O streams instead of fscanf and related functions.

All the scanf-related
 functions interpret the format string identically.

Example
The following is an example of calling scanf. The input stream is:
start 3.14 BeefFeed cab42.0e-01, 1234
and the scanf call
 is:
char c[10];
double d;
float f;
long int l;
unsigned short us;
scanf("start %4lf %4lx%*x %9[abcdefg]%f,%hu", &d, &l, c, &f, &us);
which has the following result:
c = "cab"
d = 3.14
f = 4.2
l = 48879 (0xbeef)
us = 1234

See Also
fprintf function,
 scanf function, sscanf function, vfscanf function, mbrtowc in <cwchar> , fwscanf in <cwchar>

Name
fseek function — Changes file position

Synopsis
int fseek(FILE* stream, long int offset, int origin)
The fseek function seeks to
 a different position in stream.
 The origin must be one of
 SEEK_CUR, SEEK_END, or SEEK_SET. The offset is relative to the current
 position, end-of-file, or start-of-file, respectively. The
 end-of-file flag is cleared, and any ungetc character is also cleared.
Use fsetpos instead of
 fseek when using large files—that
 is, for which a position does not necessarily fit into a long int.
The return value is 0 for
 success or nonzero for an error.

See Also
fsetpos function, ftell function, SEEK_CUR macro, SEEK_END macro, SEEK_SET macro

Name
fsetpos function — Changes file position

Synopsis
int fsetpos(FILE* stream, const fpos_t* pos)
The fsetpos function seeks
 to a different position in stream. The position must have been
 returned from an earlier successful call to fgetpos.

See Also
fpos_t type, fseek function, fgetpos function

Name
ftell function — Returns current file position

Synopsis
long int ftell(FILE* stream)
The ftell function returns
 the current file position in stream. This position can be used (with an
 origin of SEEK_SET) in a
 subsequent call to fseek. If
 ftell fails, it returns -1L (which may be, but is not necessarily,
 the same value as EOF).

See Also
fgetpos function, fseek function

Name
fwrite function — Writes binary data

Synopsis
size_t fwrite(const void* ptr, size_t size, size_t count, FILE* stream)
The fwrite function writes
 up to count elements to stream. Each element is size bytes long, and ptr points to the first such element. The
 memory must have POD type (see Chapter
 6).
The return value is the number of complete elements
 successfully written to stream.

See Also
fread function

Name
getc macro — Reads a character

Synopsis
int getc(FILE* stream)
The getc macro reads a
 character from stream and returns
 that character as an unsigned
 char. The return value is
 EOF for end-of-file or a read
 error.

See Also
fgetc function, getchar macro, putc macro

Name
getchar macro — Reads a character from stdin

Synopsis
int getchar()
The getchar macro is
 equivalent to getc(stdin).

See Also
fgetc function, getc macro, putchar macro

Name
gets function — Reads a string unsafely

Synopsis
char* gets(char* s)
The gets function reads a
 line of text (up to and including a newline) into the string
 s.
Warning
There is no way to limit the input to the size of s, so you should never call gets. Use fgets instead.

See Also
fgets function, getchar macro

Name
L_tmpnam macro — Length of temporary filename

Synopsis
int L_tmpnam

L_tmpnam is the length of a
 temporary filename for tmpnam.
 The L_tmpnam macro expands to a
 constant integer.

See Also
tmpnam function

Name
NULL macro — Null pointer constant

Synopsis
#define NULL
 . . .
The NULL macro expands to a
 null pointer constant. See <cstddef> for more
 information.

See Also
NULL in <cstddef>

Name
perror function — Writes an error message

Synopsis
void perror(const char* s)
The perror function writes
 an error message to stderr. If
 s is not null and is not an empty
 string, it is printed first, followed by a colon and a space. The
 error message is printed next and is the same text as that returned
 by strerror, passing errno as its argument.

See Also
errno in <cerrno> , strerror in <cstring>

Name
printf function — Writes formatted data

Synopsis
int printf(const char* format, . . .)
The printf function is
 equivalent to calling fprintf to
 stdout. See fprintf for information about the format string.

See Also
fprintf function, vprintf function, wprintf in <cwchar>

Name
putc macro — Writes a character

Synopsis
int putc(int c, FILE* stream)
The putc macro writes the
 character c, which must be cast
 to unsigned char, to stream.

See Also
fputc function, putchar macro, wputc in <cwchar>

Name
putchar macro — Writes a character to stdout

Synopsis
int putchar(int c)
The putchar macro is
 equivalent to putc(c, stdout).

See Also
fputc function, putc macro, wputchar in <cwchar>

Name
puts function — Writes a string

Synopsis
int puts(const char* s)
The puts function writes a
 string to stdout.

See Also
fputs function,
 putc function, wputs in <cwchar>

Name
remove function — Deletes a file

Synopsis
int remove(const char* filename)
The remove function deletes
 the file named by filename. It
 returns 0 for success or nonzero
 for an error.

See Also
rename function

Name
rename function — Renames a file

Synopsis
int rename(const char* oldname, const char* newname)
The rename function renames
 the file specified by oldname to
 newname. The return value is
 0 for success or nonzero for
 failure.

See Also
remove function

Name
rewind function — Resets file position

Synopsis
void rewind(FILE* stream)
The rewind function moves a
 file position to the beginning of a file and is equivalent to
 fseek(stream, 0, SEEK_SET).

See Also
fseek function, fsetpos function

Name
SEEK_CUR macro — Seek from current file position

Synopsis
int SEEK_CUR

Pass SEEK_CUR as the last
 parameter to fseek to seek from
 the current file position. Positive offset values seek toward the
 end of the file, and negative values seek toward the beginning of
 the file. The SEEK_CUR macro
 expands to a constant integer.

See Also
fseek function

Name
SEEK_END macro — Seek from end-of-file

Synopsis
int SEEK_END

Pass SEEK_END as the last
 parameter to fseek to seek
 relative to the end of the file. Positive offset values seek past
 the end of the file, and negative values seek toward the beginning
 of the file. The SEEK_END macro
 expands to a constant integer.

See Also
fseek function

Name
SEEK_SET macro — Seek from beginning of file

Synopsis
int SEEK_SET

Pass SEEK_SET as the last
 parameter to fseek to seek from
 the start of the file. Positive offset values seek toward the end of
 the file. The SEEK_SET macro
 expands to a constant integer.

See Also
fseek function

Name
setbuf function — Sets file buffer

Synopsis
void setbuf(FILE* stream, char* buf)
The setbuf function sets
 the buffer to use when reading from or writing to stream. The size of buf must be at least BUFSIZ characters.

See Also
BUFSIZ macro, setvbuf function

Name
setvbuf function — Sets file buffer

Synopsis
int setvbuf(FILE* stream, char* buf, int mode, size_t size)
The setvbuf function sets
 the buffering for stream. The
 mode determines the buffering mode: no buffering (_IONBF), line buffering (_IOLBF), or full buffering (_IOFBF). You can supply a buffer in the
 buf argument, with size as the buffer size, or use a null
 pointer for the buf argument to
 let setvbuf allocate the buffer.
 (The buffer will be freed when the file is closed or setvbuf is called to change the
 buffering.)
Call setvbuf before
 performing any I/O on stream.

See Also
IOFBF macro, _IOLBF macro, _IONBF macro, setbuf function

Name
size_t type — Size type

Synopsis
typedef . . . size_t;
[image: image with no caption]

The size_t type is the type
 of the result of the sizeof
 operator. It is an unsigned integral type. The exact type is
 implementation-defined.

See Also
size_t in <cstddef>

Name
sprintf function — Writes formatted data to a string

Synopsis
int sprintf(char* s, const char* format, ...)
The sprintf function is
 like fprintf, but instead of
 writing to an open file, it "writes" by copying characters to the
 string s. See fprintf for a description of the format parameter.
You must ensure that s is
 large enough for the formatted string. For some formats, this is
 impossible, which makes sprintf
 unsafe to use.

See Also
fprintf function, sscanf function, vsprintf function, wsprintf in <cwchar> , <sstream>

Name
sscanf function — Reads formatted data from a string

Synopsis
int sscanf(const char* s, const char* format, ...)
The sscanf function is like
 fscanf, but instead of reading
 from an open file, it "reads" characters from the string s. See fscanf for a description of the format parameter.

See Also
fscanf function, sprintf function, vsscanf function, swscanf in <cwchar> , <sstream>

Name
stderr macro — Standard error file

Synopsis
FILE* stderr

The stderr macro is a
 standard file, suitable for printing error messages. Its buffering
 is implementation-defined: either unbuffered or line
 buffered.

See Also
cerr in <iostream> , clog in <iostream>

Name
stdin macro — Standard input file

Synopsis
FILE* stdin

The stdin macro is a
 standard file used for reading from the program's standard input
 device. stdin is fully buffered
 if the standard input is not an interactive device.

See Also
cin in <iostream>

Name
stdout macro — Standard output file

Synopsis
FILE* stdout

The stdout macro is a
 standard file used to print to the program's standard output device.
 stdout is fully buffered if the
 standard output is not an interactive device.

See Also
cout in <iostream>

Name
TMP_MAX macro — Size of temporary filename

Synopsis
int TMP_MAX

The TMP_MAX macro is the
 number of unique names the tmpnam
 function generates.

See Also
tmpnam function

Name
tmpfile function — Opens a temporary file

Synopsis
FILE* tmpfile()
The tmpfile function
 generates a unique filename and opens a file with that name using
 mode "wb+". When the program
 terminates normally, the file is automatically deleted. If the
 temporary file cannot be created, a null pointer is returned.

See Also
tmpnam function

Name
tmpnam function — Returns a temporary filename

Synopsis
char* tmpnam(char* s)
The tmpnam function
 generates a unique filename and returns a pointer to that name. If
 the s parameter is not null, it
 must point to an array of at least L_tmpnam characters, the new filename is
 copied into that array, and s is
 returned. If s is null, a static
 character array is returned; the contents of the array are
 overwritten each time tmpnam is
 called.
Warning
The tmpnam function has a
 race condition: after it generates a "unique" filename, but before
 the file is actually created, another program might generate the
 same "unique" filename. Use tmpfile instead of tmpnam to ensure that the file is
 created, thereby ensuring that its name is unique.

See Also
L_tmpnam macro, tmpfile function

Name
ungetc function — Pushes a character back for reading later

Synopsis
int ungetc(int c, FILE* stream)
The ungetc function pushes
 back the character c (which must
 be an unsigned char), so the next read from stream will return c. The standard guarantees that you can
 push back just one character, though in some situations, you may be
 able to push back more.
The return value is c for
 success or EOF for an
 error.

See Also
fgetc function, getc macro, getchar macro, ungetwc in <cwchar>

Name
vfprintf function — Writes formatted data

Synopsis
#include <cstdarg>
int vfprintf(FILE* stream, const char* format, va_list arg)
The vfprintf function is
 like fprintf, but the values to
 print are taken from successive arguments in arg (obtained by calling va_start(arg,
 param)). Use vfprintf to write your own fprintf-like function.

Example
The following shows how you can implement fprintf in terms of vfprintf:
int fprintf(std::FILE* stream, const char* format, . . .)
{
 std::va_list ap;
 va_start(ap, format);
 int result = vfprintf(stream, format, ap);
 va_end(ap);
 return result;
}

See Also
fprintf function,
 vfwprintf in <cwchar> , <cstdarg>

Name
vprintf function — Writes formatted data

Synopsis
#include <cstdarg>
int vprintf(const char* format, va_list arg)
The vprintf function is
 like printf, but the values to
 print are taken from successive arguments in arg (obtained by calling va_start(arg,
 param)). Use vprintf to write your own printf-like function.

See Also
printf function,
 vwprintf in <cwchar> , <cstdarg>

Name
vsprintf function — Writes formatted data to a string

Synopsis
#include <cstdarg>
int vsprintf(char* s, const char* format, va_list arg)
The vsprintf function is
 like sprintf, but the values to
 print are taken from successive arguments in arg (obtained by calling va_start(arg,
 param)). Use vsprintf to write your own sprintf-like function.

See Also
sprintf function,
 vswprintf in <cwchar> , <cstdarg>

<cstdlib>

The <cstdlib> header is the C++ version of the C standard <stdlib.h> header, which declares
 macros, types, and functions of general utility. Several functions in
 <cstdlib> convert character
 arrays to numbers. You can also use a string stream (see <sstream>) if you want more control over
 the conversion, or if you need to convert a number to a string.
The multibyte functions (mblen,
 etc.) have counterparts in <cwchar> that are reentrant, that is,
 the <cwchar> functions take an
 explicit mbstate_t* parameter to
 avoid using an internal, static shift state.

Name
abort function — Terminates the program abnormally

Synopsis
void abort()
The abort function raises
 the SIGABRT signal. Unless the
 program has registered a handler for SIGABRT, the default action is to
 terminate the program without destroying any automatic or static
 objects and without calling any atexit functions.

See Also
atexit function, exit function, raise in <csignal> , SIGABRT in <csignal>

Name
abs function — Computes an absolute value

Synopsis
int abs(int x)
long abs(long x)
The abs function returns
 the absolute value of x. The
 <cmath> header declares
 floating-point versions of the abs function.

See Also
labs function, abs function in <cmath>

Name
atexit function — Calls a function at program termination

Synopsis
extern "C" int atexit(void (*func)())
extern "C++" int atexit(void (*func)())
The atexit function
 registers a parameterless function, func, which is called when the program
 exits normally.
Multiple functions can be registered, and registered functions
 are called in the opposite order of registration. A function can be
 registered more than once, in which case it will be called as many
 times as it was registered.
The atexit functions are
 not called if the program exits due to a signal, such as SIGABRT.

See Also
abort function, exit function

Name
atof function — Converts a string to floating point

Synopsis
double atof(const char* str)
The atof function reads a
 floating-point number from the character array str and returns the value of the
 floating-point number. The conversion is similar to calling strtod(str, NULL).

See Also
atoi function, atol function, strtod function

Name
atoi function — Converts a string to an integer

Synopsis
int atoi(const char* str)
The atoi function reads an
 integer from the character array str and returns the value of the number.
 The atoi function is equivalent
 to calling static_cast<int>(strtol(str,
 NULL, 10)).

See Also
atof function, atol function, strtod function

Name
atol function — Converts a string to a long integer

Synopsis
long atol(const char* str)
The atol function reads an
 integer from the character array str, and returns the value of the number.
 The conversion is similar to calling strtol(str, NULL, 10).

See Also
atof function, atoi function, strtol function, strtoul function

Name
bsearch function — Performs a binary search

Synopsis
extern "C"
 void* bsearch(const void* key, const void* base, size_t count, size_t size, int
 (*compare)(const void*, const void*))
extern "C++"
 void* bsearch(const void* key, const void* base, size_t count, size_t size, int
 (*compare)(const void*, const void*))
The bsearch function uses a
 binary search to search for key
 in the array base, in which each
 element takes up size bytes.
 There are count elements in the
 array.
The compare function is
 called with key as the first
 argument and a pointer into the array as the second. The function
 should return an integer less than zero if the key is less than the
 array element, greater than zero if the key is larger, or 0 if the key is the same as the array
 element.
The bsearch function
 returns a pointer to the array element that matches key or a null pointer if no element
 matches.
Two versions of bsearch are
 declared so the compare function
 can have "C" linkage or "C++" linkage.

See Also
qsort function,
 binary_search in <algorithm>

Name
calloc function — Allocates memory

Synopsis
void* calloc(size_t count, size_t size)
The calloc function
 allocates count elements, each of
 size bytes, and initializes the
 allocated memory to all zeros. It returns a pointer to the start of
 the newly allocated memory or a null pointer if there is
 insufficient memory to fulfill the request. The pointer is suitably
 aligned for any type.
C++ programs should use the new operator instead of calling calloc. Call fill or memset to fill the allocated memory with
 zeros.

See Also
free function, malloc function, realloc function, new keyword, fill in <algorithm> , memset in <cstring>

Name
div function — Computes quotient and remainder

Synopsis
div_t div(int numerator, int denominator)
ldiv_t div(long numerator, long denominator)
The div function divides
 numerator by denominator and returns the quotient and
 the remainder in a structure.

See Also
div_t type, ldiv function

Name
div_t type — Quotient and remainder type

Synopsis
struct div_t { int quot, rem; }
The div_t type is used only
 by the div function to return the
 quotient and remainder of an integer division. The order of the
 quot and rem members in the structure may vary
 between implementations.

See Also
div function, ldiv_t type

Name
exit function — Terminates the program normally

Synopsis
void exit(int code)
[image: image with no caption]

The exit function
 terminates the program normally. Automatic objects are not
 destroyed, but static objects are. Then, all functions registered
 with atexit are called in the
 opposite order of registration. The code is returned to the operating system.
 An exit code of 0 or EXIT_SUCCESS means successful completion.
 If code is EXIT_FAILURE, an
 indication of program failure is returned to the operating system.
 Other values of code are
 implementation-defined.

See Also
abort function, atexit function

Name
EXIT_FAILURE macro — Exit status for unsuccessful termination

Synopsis
int EXIT_FAILURE

Pass EXIT_FAILURE to
 exit to terminate the program
 normally and informs the operating system that the program was
 unsuccessful. Returning EXIT_FAILURE from main is the same as calling exit. The EXIT_FAILURE macro expands to an integer
 constant.

See Also
exit function

Name
EXIT_SUCCESS macro — Exit status for successful termination

Synopsis
int EXIT_SUCCESS

Pass EXIT_SUCCESS to
 exit to terminate the program
 normally and inform the operating system that the program was
 successful. Returning EXIT_SUCCESS from main is the same as calling exit.
The value 0 also means
 success, but EXIT_SUCCESS is not
 necessarily equal to 0. The EXIT_SUCCESS macro expands to an integer
 constant.

See Also
exit function

Name
free function — Releases allocated memory

Synopsis
void free(void* ptr)
The free function releases
 the memory that ptr points to.
 The pointer must have been returned by a call to malloc or calloc. After freeing the pointer, do not
 refer to the memory again.

See Also
calloc function, malloc function, realloc function, delete keyword

Name
getenv function — Gets environment variable

Synopsis
char* getenv(const char* name)
[image: image with no caption]

The getenv function obtains
 the value of an environment variable. The environment is a
 system-defined list of name/value pairs. The getenv function searches the environment
 for name and returns the
 associated value. The getenv
 function returns a null pointer if the specified name is not
 found.

Name
labs function — Computes absolute value

Synopsis
long labs(long x)
The labs function returns
 the absolute value of x.

See Also
abs function, abs function in <cmath>

Name
ldiv function — Computes quotient and remainder

Synopsis
ldiv_t ldiv(long numerator, long denominator)
The ldiv function divides
 numerator by denominator and returns the quotient and
 remainder in a structure.

See Also
div function, ldiv_t type

Name
ldiv_t type — Quotient and remainder type

Synopsis
struct ldiv_t { long quot, rem; }
The ldiv_t type is used
 only as the return type for the ldiv function and the overloaded div function. It stores the quotient and
 remainder of a long integer division.

See Also
div_t type, ldiv function

Name
malloc function — Allocates memory

Synopsis
void* malloc(size_t size)
The malloc function
 allocates size bytes of memory.
 It returns a pointer to the start of the newly allocated memory or a
 null pointer if there is insufficient memory to fulfill the request.
 The pointer is suitably aligned for any type.
C++ programs should use the new operator instead of calling malloc.

See Also
calloc function, free function, realloc function, new keyword

Name
MB_CUR_MAX function — Maximum size of a multibyte character

Synopsis
int MB_CUR_MAX

The MB_CUR_MAX macro is the
 maximum number of bytes required to represent a multibyte character
 in the extended character set, in any locale.

See Also
mblen function, mbtowc function, wctomb function, MB_LEN_MAX in <climits> , <clocale>

Name
mblen function — Returns number of bytes in a multibyte
 character

Synopsis
int mblen(const char* s, size_t n)
The mblen function returns
 the length of the multibyte character pointed to by s. The character array s can be null, it can point to an empty
 string, or it must have at least n bytes, which must form a valid multibyte
 character.
If s is null, the return
 value depends on whether multibyte characters have state-dependent
 encodings. (See Chapter 8 for a
 discussion of shift state.) The mblen function returns a nonzero value if
 encodings are state-dependent or 0 if encodings are not
 state-dependent.
If s points to an empty
 string, 0 is returned.
If s points to a valid
 multibyte character, the number of bytes that make up that character
 is returned. If s points to an
 invalid multibyte character, -1
 is returned.

See Also
MB_CUR_MAX macro, mbtowc function, mbrlen in <cwchar>

Name
mbstowcs function — Converts multibyte string to wide string

Synopsis
size_t mbstowcs(whcar_t* dst, const char* src, size_t n)
The mbstowcs function
 converts a multibyte string to a wide character string. The src parameter points to the
 null-terminated multibyte string. Up to n wide characters are stored in dst. If fewer than n characters are stored, a null wide
 character is appended to the wide character array.
The return value is the number of wide characters stored in
 dst. If any multibyte character
 in src is not valid, the return
 value is static_cast<size_t>(-1).

See Also
mbtowc function,
 wcstombc function, mbcrtowcs in <cwchar>

Name
mbtowc function — Converts multibyte character to wide
 character

Synopsis
int mbtowc(wchar_t* pwc, const char* src, size_t n)
The mbtowc function
 converts a multibyte character sequence to a single wide character.
 It starts by counting the number of bytes in src that make up the first multibyte
 character. It examines only the first n bytes.
If src is null, the return
 value depends on whether multibyte characters have state-dependent
 encodings. (See Chapter 8 for a
 discussion of shift state.) The mbtowc function returns a nonzero value if
 encodings are state-dependent or 0 if encodings are not
 state-dependent.
If src points to an empty
 string, 0 is returned.
If src points to a valid
 multibyte character, the number of bytes that make up that character
 is returned. If dst is not null,
 the multibyte character is converted to its equivalent wide
 character, and the wide character is stored in *dst.
If src points to an invalid
 multibyte character, -1 is
 returned.

See Also
mblen function, mbstowcs function, wctomb function, mbrtowc in <cwchar>

Name
NULL macro — NULL pointer constant

Synopsis
#define NULL . . .
The NULL macro expands to a
 null pointer constant. See <cstddef> for more
 information.

See Also
NULL in <cstddef>

Name
qsort function — Sorts an array

Synopsis
extern "C"
 void qsort(void* base, size_t count, size_t size, int
 (*compare)(const void*, const void*))
extern "C++"
 void qsort(void* base, size_t count, size_t size, int
 (*compare)(const void*, const void*))
The qsort function sorts in
 ascending order an array of count
 elements, each of size size
 bytes, in which base is the
 pointer to the first element. The array must have POD type. The sort
 is not stable, that is, the relative order of identical elements is
 not necessarily preserved.
The compare function takes
 two pointers into the array and compares the elements. It returns an
 integer: negative if the first element is less than the second,
 positive if the first is greater than the second, or 0 if the two elements are equal.
The name qsort derives from
 the original implementation, which used the Quick Sort algorithm.
 The current standard does not specify which sort algorithm is used,
 nor does it specify any performance characteristics of the sort
 algorithm.
Two versions of qsort are
 declared so the compare function
 can have "C" linkage or "C++" linkage.

See Also
bsearch function,
 sort in <algorithm>

Name
rand function — Generates a pseudo-random number

Synopsis
int rand()
The rand function returns a
 pseudo-random integer in the range 0 to RAND_MAX, inclusive.

See Also
RAND_MAX macro, srand function

Name
RAND_MAX macro — Maximum value returned by rand

Synopsis
int RAND_MAX

RAND_MAX is the maximum
 value that rand can return. The
 RAND_MAX macro expands to an
 integer constant.

See Also
rand function

Name
realloc function — Reallocates memory

Synopsis
void* realloc(void* ptr, size_t size)
The realloc function
 changes the size of the allocated memory that ptr points to. The new size is size bytes. The return value is a pointer
 to the newly resized memory block, which might be at a different
 address than the original block. The pointer is suitably aligned for
 any type.
The contents of the original memory are preserved, up to the
 smaller of the new and old sizes. If the new size is larger than the
 old size, the extra memory above the old size is
 uninitialized.
The memory might be copied, so you can store only POD values
 in the memory that you reallocate with realloc.
If ptr is null, realloc behaves just like malloc(size). If size is 0, realloc is like free and frees ptr.
If there is insufficient memory to fulfill the request, the
 original memory is untouched, and a null pointer is returned.

See Also
calloc function, free function, malloc function, Chapter 6

Name
size_t type — Size type

Synopsis
typedef . . . size_t

[image: image with no caption]

The size_t type is the type
 of the result of the sizeof
 operator. It is an unsigned integral type. The exact type is
 implementation-defined.

See Also
size_t in <cstddef>

Name
srand function — Sets seed for pseudo-random number
 generator

Synopsis
void srand(unsigned int seed)
The srand function saves
 seed as the seed for a new
 sequence of pseudo-random numbers to be returned by successive calls
 to rand. The default seed is
 1.

See Also
rand function

Name
strtod function — Converts a string to double

Synopsis
double strtod(const char* str, char** end)
The strtod function
 converts a character array to a floating-point number. The string
 str is divided into three parts:
 optional whitespace, the text of the floating-point value, and a
 trailing part, which starts with the first character that cannot be
 part of a floating-point number. The first part is skipped, and the
 second part is converted to a floating-point value. If the second
 part is empty, 0 is returned. If
 end is not null, *end is assigned a pointer to the start of
 the third part of str. If the
 third part is empty, *end points
 to the terminating null character.
If the result would cause overflow, positive or negative
 HUGE_VAL is returned, and
 errno is set to ERANGE. If the result causes underflow,
 0 is returned, and errno is set to ERANGE.

See Also
atoi function, strtol function, strtoul function, wcstod in <cwchar>

Name
strtol function — Converts a string to a long integer

Synopsis
long int strtol(const char* str, char** end, int base)
The strtol function
 converts a character array to a long integer. The string str is divided into three parts: optional
 whitespace, the text of the integer value, and a trailing part,
 which starts with the first character that cannot be part of an
 integer. The first part is skipped, and the second part is converted
 to a long integer. If the second part is empty, 0 is returned. If end is not null, *end is assigned a pointer to the start of
 the third part of str. If the
 third part is empty, *end points
 to the terminating null character.
If base is 0, the base is determined from the prefix
 of the integer text: a leading 0x
 or 0X means hexadecimal, a
 leading 0 means octal, and
 anything else is decimal. Otherwise, base must be between 2 and 36, in which
 the letters a-z (of either case) represent digits with
 values of 10-35. Only letters that are appropriate for the base are
 permitted, that is, the corresponding digit value must be less than
 the base.
If the resulting value is too large or too small to fit in a
 long int, the value LONG_MAX or LONG_MIN is returned, and errno is set to ERANGE.

See Also
atol function, strtod function, strtoul function, wcstol in <cwchar>

Name
strtoul function — Converts a string to unsigned long

Synopsis
unsigned long strtoul(const char* str, char** end, int base)
The strtoul function
 converts a character array to an unsigned long integer. The string
 str is divided into three parts:
 optional whitespace, the text of the integer value, and a trailing
 part, which starts with the first character that cannot be part of
 an integer. The first part is skipped, and the second part is
 converted to an unsigned long integer. If the second part is empty,
 0 is returned. If end is not null, *end is assigned a pointer to the start of
 the third part of str. If the
 third part is empty, *end` points
 to the terminating null character.
If base is 0, the base is determined from the prefix
 of the integer text: a leading 0x
 or 0X means hexadecimal, a
 leading 0 means octal, and
 anything else is decimal. Otherwise, base must be between 2 and 36, in which
 the letters a-z (of either case) represent digits with
 values of 10-35. Only letters that are appropriate for the base are
 permitted, that is, the corresponding digit value must be less than
 the base.
If the resulting value is too large to fit in an unsigned long int, the value ULONG_MAX is returned, and errno is set to ERANGE.

See Also
atol function, strtod function, strtol function, wcstoul in <cwchar>

Name
system function — Runs a program

Synopsis
int system(const char* command)
[image: image with no caption]

The system function passes
 command to the host operating
 system to run as an external command. The use and interpretation of
 the command string is implementation-defined.
The return value is implementation-defined.
If command is null, the
 return value is true (nonzero) if a command processor is available;
 it is false (0) if no command
 processor is available.

Name
wctomb function — Converts a wide character to a multibyte
 character

Synopsis
int wctomb(char* s, wchar_t wc)
The wctomb function
 converts a wide character to a multibyte character. It first
 determines the number of bytes needed to represent wc as a multibyte character. If s is not null, the sequence of multibyte
 characters is stored there. At most, MB_CUR_MAX bytes are stored, and the
 return value is the actual number of bytes written to s. If wc does not have a valid multibyte
 encoding, -1 is returned.
If s is null, the return
 value is true (nonzero) if multibyte characters have state-dependent
 encodings, or false (0) if they
 do not.

See Also
mbtowc function, wcstombs function, wcrtomb in <cwchar>

Name
wcstombs function — Converts a wide string to a multibyte
 string

Synopsis
size_t wcstombs(char* dst, const wchar_t* src, size_t n)
The wcstombs function
 converts a wide string src to a
 string dst of multibyte
 characters. At most, n bytes of
 dst are written to. If the
 conversion of src requires fewer
 than n bytes, a trailing null
 byte is appended to dst.
If any wide characters cannot be represented as a multibyte
 character, static_cast<size_t>(-1) is returned.
 Otherwise, the return value is the number of bytes written to
 dst (not counting a trailing null
 byte).

See Also
mbstowcs function,
 wctomb function, wcsrtombs in <cwchar>

<cstring>

The <cstring> header is for the C++ version of the C standard <string.h> header, which declares
 string-handling functions.
The functions in this section fall into two categories, identified
 by the first three letters of the function name:
	mem . . .
	The mem functions operate
 on arbitrary chunks of memory, treating the memory as arrays of
 unsigned char. The caller must specify the size
 of each memory chunk.

	str . . .
	The str functions operate
 on null-terminated character arrays. Even though the function
 parameters are declared as type char, they are always interpreted as
 unsigned char when comparing two
 characters.

See also <cwchar> for
 wide character string functions.
Note
Instead of using C-style, null-terminated character arrays, C++
 code should use the string and
 wstring classes that are declared
 in the <string> header. C++
 strings offer high performance, more flexibility, more safety, and
 greater ease of use. The char_traits class template in <string> also provides member
 functions for working with narrow and wide character arrays.

Name
memchr function — Searches for a byte

Synopsis
const void* memchr(const void* mem, int c, size_t n)
 void* memchr(void* mem, int c, size_t n)
The memchr function
 searches the memory that mem
 points to, of size n bytes, for
 the byte whose value is c
 (converted to unsigned char). The return value is a pointer into
 the mem array to the first
 occurrence of c, or a null
 pointer if c is not present in
 the first n bytes of mem.

See Also
strchr function,
 find in <algorithm> , wmemchr in <cwchar>

Name
memcmp function — Compares memory

Synopsis
int memcmp(const void* s1, const void* s2, size_t n)
The memcmp function
 compares the first n bytes of
 s1 and s2 as arrays of unsigned char. If all n bytes are equal, the return value is
 0. Otherwise, the return value is
 positive if s1 is greater than
 s2 or negative if s1 is less than s2.

See Also
strcmp function, strncmp function, equal in <algorithm>, lexicographical_compare in <algorithm> , mismatch in <algorithm> , wmemcmp in <cwchar>

Name
memcpy function — Copies memory

Synopsis
void* memcpy(void* dst, const void* src, size_t n)
The memcpy function copies
 n bytes from src to dst. If src and dst overlap, the results are undefined.
 The return value is dst.
If you copy the memory that contains any non-POD objects, the
 results are undefined. See Chapter
 6 for more information about POD objects.

See Also
memmove function, strcpy function, strncpy function, copy in <algorithm> , wmemcpy in <cwchar> , Chapter 6

Name
memmove function — Copies possibly overlapping memory

Synopsis
void* memmove(void* dst, const void* src, size_t n)
The memmove function copies
 n bytes from src to dst. The memory regions can overlap. The
 return value is dst.
If you copy the memory that contains any non-POD objects, the
 results are undefined. See Chapter
 6 for more information about POD objects.

See Also
memcpy function, strcpy function, strncpy function, copy in <algorithm>, copy_backward in <algorithm> , wmemmove in <cwchar> , Chapter 6

Name
memset function — Fills memory with a byte

Synopsis
void* memset(void* s, int c, size_t n)
The memset function fills
 the array s with n copies of c (converted to unsigned char). The return value is s.

See Also
memcpy function,
 fill_n in <algorithm> , wmemset in <cwchar>

Name
NULL macro — NULL pointer constant

Synopsis
#define NULL . . .
The NULL macro expands to a
 null pointer constant. See <cstddef> for more
 information.

See Also
NULL in <cstddef>

Name
size_t type — Size type

Synopsis
typedef . . . size_t

[image: image with no caption]

The size_t type is the type
 of the result of the sizeof
 operator. It is an unsigned integral type. The exact type is
 implementation-defined.

See Also
size_t in <cstddef>

Name
strcat function — Concatenates strings

Synopsis
char* strcat(char* dst, const char* src)
The strcat function
 concatenates src onto the end of
 dst, overwriting the null byte
 that ends dst. The src and dst arrays cannot overlap. The caller must
 ensure that dst points to a
 region of memory that is large enough to hold the concatenated
 result, including its null terminator.

See Also
strcpy function, strncat function, wcscat in <cwchar>

Name
strchr function — Searches a string for a character

Synopsis
const char* strchr(const char* s, int c)
 char* strchr(char* s, int c)
The strchr function returns
 a pointer to the first occurrence of c (converted to unsigned char) in the null-terminated string
 s. If c does not appear in s, a null pointer is returned.

See Also
memchr function, strcspn function, strpbrk function, strrchr function, strspn function, wcschr in <cwchar>

Name
strcmp function — Compares strings

Synopsis
int strcmp(const char* s1, const char* s2)
The strcmp function
 compares two null-terminated strings as arrays of unsigned char. If the strings are equal, the return
 value is 0. Otherwise, the return
 value is positive if s1 is
 greater than s2 or negative if
 s1 is less than s2. If one string is a prefix of the
 other, the longer string is greater than the shorter string.

See Also
memcmp function, strncmp function, wcscmp in <cwchar>

Name
strcoll function — Compares strings using locale's collation
 order

Synopsis
int strcoll(const char* s1, const char* s2)
The strcoll function
 compares two null-terminated strings, interpreting the strings
 according to the LC_COLLATE
 (defined in <clocale>)
 category of the current C locale. The return value is the same as
 that of strcmp.

See Also
strcmp function,
 wcscoll in <cwchar>, collate in <locale> , <clocale>

Name
strcpy function — Copies a string

Synopsis
char* strcpy(char* dst, const char* src)
The strcpy function copies
 the null-terminated string src to
 dst. The caller must ensure that
 dst points to a region of memory
 that is large enough to hold the entire src string plus its null terminator. The
 return value is dst.

See Also
memcpy function, strncpy function, wcscpy in <cwchar>

Name
strcspn function — Counts initial characters not in a span set

Synopsis
size_t strcspn(const char* str, const char* spanset)
The strcspn function
 returns the number of characters at the start of str that are not in the string spanset. Thus, the c in its name means complement, that is,
 strcspn counts characters that
 are in the complement of the span set.

See Also
strchr function, strpbrk function, strspn function, strstr function, wcscspn in <cwchar>

Name
strerror function — Retrieves error message text

Synopsis
char* strerror(int errnum)
The strerror function
 returns a pointer to an error message string that corresponds to the
 error number errnum. The message
 is the same as that printed by the perror function.
A program must not modify the array returned by strerror, and subsequent calls to strerror can overwrite the array.

See Also
perror in <cstdio> , <cerrno>

Name
strlen function — Computes length of a string

Synopsis
size_t strlen(const char* s)
The strlen function returns
 the length of the null-terminated string s, that is, the number of bytes that come
 before the null byte at the end of the string.

See Also
wcslen in <cwchar>

Name
strncat function — Concatenates strings

Synopsis
char* strncat(char* dst, const char* src, size_t n)
The strncat function
 concatenates src onto the end of
 dst, overwriting the null byte at
 the end of dst. At most, n characters are copied from src. A terminating null character is
 always appended to the end of dst. The caller must ensure that dst points to a region of memory that is
 large enough to hold the concatenated result, including the null
 terminator. The return value is dst.

See Also
strcat function,
 wcsncat in <cwchar>

Name
strncmp function — Compares strings

Synopsis
int strncmp(const char* s1, const char* s2, size_t n)
The strncmp function
 compares at most n characters of
 two null-terminated strings as arrays of unsigned char. If the strings are equal, the return
 value is 0. Otherwise, the return
 value is positive if s1 is
 greater than s2 or negative if
 s1 is less than s2. If one string is a prefix of the
 other, the longer string is greater than the shorter string.

See Also
memcmp function, strcmp function, wcsncmp in <cwchar>

Name
strncpy function — Copies a string

Synopsis
char* strncpy(char* dst, const char* src, size_t n)
The strncpy function copies
 at most n characters from the
 null-terminated string src to
 dst. If src is shorter than dst, null characters are appended to the
 end so that exactly n characters
 are always written to dst.
The return value is dst.

See Also
memcpy function, strcpy function, wcsncpy in <cwchar>

Name
strpbrk function — Locates a character in a span set

Synopsis
const char* strpbrk(const char* str, const char* spanset)
 char* strpbrk(char* str, const char* spanset)
The strpbrk function
 searches str for any of the
 characters in spanset and returns
 a pointer to the first occurrence of such a character. If none of
 the characters in spanset appear
 in str, strpbrk returns a null pointer.

See Also
strchr function, strcspn function, strspn function, wcspbrk in <cwchar>

Name
strrchr function — Locates rightmost occurrence of a character

Synopsis
const char* strrchr(const char* str, int c)
 char* strrchr(char* str, int c)
The strrchr function
 returns a pointer to the last (rightmost) occurrence of c (converted to unsigned char) in the null-terminated string
 s. If c does not appear in s, NULL
 is returned.

See Also
memchr function, strchr function, wcsrchr in <cwchar>

Name
strspn function — Counts characters in a span set

Synopsis
size_t strspn(const char* str, const char* spanset)
The strspn function returns
 the number of characters at the start of str that are in the string spanset.

See Also
strchr function, strcspn function, strpbrk function, wcsspn in <cwchar>

Name
strstr function — Finds a substring

Synopsis
const char* strstr(const char* str, const char* substr)
 char* strstr(char* str, const char* substr)
The strstr function returns
 the address in str of the first
 occurrence of substr or a null
 pointer if substr does not appear
 in str.

See Also
strchr function,
 wcsstr in <cwchar>

Name
strtok function — Tokenizes a string

Synopsis
char* strtok(char* str, const char* delimset)
The strtok function splits
 str into separate tokens,
 separated by one or more characters from delimset. The contents of str are modified when each token is
 found.
To parse a string str, you
 must call strtok multiple times.
 The first time, pass str as the
 first parameter to strtok; for
 the second and subsequent calls, pass a null pointer. Because
 strtok saves str, only one series of strtok calls can be active at a time. Each
 call to strtok can use a
 different delimset.
The strtok function skips
 over initial delimiters, searching str for the first character that is not in
 delimset. If it reaches the end
 of the string without finding any token characters, it returns a
 null pointer. Otherwise, it saves a pointer to the first
 non-delimiter character as the start of the token. It then searches
 for the next delimiter character, which ends the token. It changes
 the delimiter character to a null character and returns a pointer to
 the start of the token. When strtok is called with a null pointer as
 the first parameter, it starts searching for the next token at the
 point where the previous search ended.

See Also
strcspn function, strpbrk function, strspn function, wcstok in <cwchar>

Name
strxfrm function — Transforms a string for collation

Synopsis
size_t strxfrm(char* dst, const char* src, size_t n)
The strxfrm function
 transforms the src string by
 converting each character to its collation order equivalent. The
 equivalent is copied into dst.
 Thus, after transforming two different strings with strxfrm, the transformed strings can be
 compared by calling strcmp to
 obtain the same result as calling strcoll on the original strings.
No more than n bytes are
 stored in dst, including the
 trailing null character. If n is
 0, dst can be null.
The return value is the number of transformed characters
 written to dst.

See Also
strcmp function, strcoll function, wcsxfrm in <cwchar> , collate in <locale> , <clocale>

<ctime>

The <ctime> header is the C++ version of the C standard <time.h> header, which declares types
 and functions for working with dates and times.
[image: image with no caption]

The time_t type is the
 fundamental representation of a date and time. The details of this type
 and how it encodes a date and time are implementation-defined. Unix
 programmers recognize this type as the number of seconds since January
 1, 1970, but that is only one possible implementation.
A date and time have a secondary representation as a tm object, which breaks down a date and time
 into constituent parts. The parts facilitate formatting dates and times
 for output, or you can read a date and time, parse the parts, and build
 a tm object, which you can then
 convert to a time_t object.
This section describes the types and functions for working with
 dates and times. The Boost project has additional date and time classes.
 See Appendix B for information
 about Boost.

Name
asctime function — Converts a time to a string

Synopsis
char* asctime(const tm* tmptr)
The asctime function
 formats the date and time pointed to by tmptr as a character string. It returns a
 pointer to a static buffer that is overwritten with each call. (The
 static buffer can be shared with ctime.)
The returned value has the format "Ddd Mmm
 DD HH:MM:SS YYYY\n" followed by a terminating null
 character. Thus, the result always has a length of 25. The day of
 the week (Ddd) and month name
 (Mmm) are English abbreviations
 and are not localized—that is, Monday is represented by "Mon" regardless of locale. The day of the
 month (DD) always takes up the
 same number of characters, using a leading space if necessary. The
 hours (HH), minutes (MM), and seconds (SS) use a leading zero if
 necessary.

See Also
ctime function, gmtime function, localtime function, time_put in <locale>

Name
clock function — Gets the processor time

Synopsis
clock_t clock()
[image: image with no caption]

The clock function returns
 the amount of processor time used since an implementation-defined
 start time. The time is returned in implementation-defined units.
 There are CLOCKS_PER_SEC units
 per second.
The value returned by the clock function is not useful by itself but
 is intended to be used by comparing it with the value returned from
 an earlier call to clock. For
 example, the first statement in the main function might be a call to clock; the difference between subsequent
 calls and the original call tell you how much time has elapsed since
 the program started.
If the environment cannot provide the processor time, static_cast<clock_t>(-1) is
 returned.

See Also
clock_t type, CLOCKS_PER_SEC macro, time function

Name
clock_t type — Represents processor time

Synopsis
typedef . . . clock_t

The clock_t type is an
 arithmetic type returned by the clock function.

See Also
clock function

Name
CLOCKS_PER_SEC macro — Processor time resolution

Synopsis
int CLOCKS_PER_SEC

The CLOCKS_PER_SEC macro
 returns the number of clock ticks per second. It is not necessarily
 a compile-time constant.

See Also
clock function

Name
ctime function — Converts a time to a string

Synopsis
char* ctime(const time_t* timeptr)
The ctime function converts
 the date and time pointed to by timeptr to local time and formats the time
 as a string. It is equivalent to:
std::asctime(std::localtime(timeptr));
The text is written to a static buffer, and a pointer to that
 buffer is returned. Subsequent calls can overwrite the buffer
 contents. The static buffer can be shared with asctime.

See Also
asctime function, localtime function

Name
difftime function — Computes the difference between two times

Synopsis
double difftime(time_t t1, time_t t2);
The difftime function
 computes the difference between two times: t1 - t2. The return value is in seconds.

See Also
time function, time_t type

Name
gmtime function — Extracts parts of a UTC time

Synopsis
tm* gmtime(const time_t* timeptr)
The gmtime function expands
 the calendar time pointed to by timeptr into a static tm object using Coordinated Universal Time
 (UTC). It returns a pointer to the static object. Subsequent calls
 to gmtime overwrite the object.
 The static object can be shared with localtime.
If UTC is not available (for example, the host operating
 system does not provide the time zone offset), a null pointer is
 returned.

See Also
localtime function,
 tm struct

Name
localtime function — Extracts parts of a local time

Synopsis
tm* localtime(const time_t* timeptr)
The localtime function
 expands the calendar time pointed to by timeptr into a static tm object using local time. It returns a
 pointer to the static object. Subsequent calls to localtime overwrite the object. The static
 object can be shared with gmtime.

See Also
gmtime function, tm struct

Name
mktime function — Makes a time from parts

Synopsis
time_t mktime(tm* tmptr)
The mktime function makes a
 time_t time by assembling the
 parts in a tm object, interpreted
 as local time. The tm_wday and
 tm_yday members are ignored, and
 other fields are permitted to be outside their normal ranges.
If the conversion is successful, the corresponding time is
 returned, the tm_wday and
 tm_yday members are set, and the
 other fields are changed if necessary to reflect their normal
 ranges.
If the time cannot be represented as a time_t value, static_cast<time_t>(-1) is
 returned.

See Also
localtime function,
 time_t type, tm struct, time_get in <locale>

Name
NULL macro — NULL pointer constant

Synopsis
#define NULL . . .
The NULL macro expands to a
 null pointer constant. See <cstddef> for more
 information.

See Also
NULL in <cstddef>

Name
size_t type — Size type

Synopsis
typedef . . . size_t

[image: image with no caption]

The size_t type is the type
 of the result of the sizeof
 operator. It is an unsigned integral type. The exact type is
 implementation-defined.

See Also
size_t in <cstddef>

Name
strftime function — Formats a time as a string

Synopsis
size_t strftime(char* str, size_t n, const char* fmt, const tm* tmptr)
The strftime function
 formats a tm object as a string.
 Up to n bytes are stored in
 str, including a terminating null
 character. The return value is the number of characters actually
 stored, not counting the final null character. If the formatted
 result requires more than n
 characters, the return value is 0.
Characters from fmt are
 copied to str, except conversion
 specifiers, which start with a percent sign (%) and are followed by one of the letters
 shown in Table 13-6.
 The LC_TIME category in the
 current C locale controls the text that is copied to str for each conversion specifier.
Table 13-6. Conversion specifiers for strftime
	Specifier
	Description

	 a

	Abbreviated weekday name

	 A

	Full weekday name

	 b

	Abbreviated month name

	 B

	Full month name

	 C

	Complete date and time

	 D

	Day of the month (01-31)

	 H

	Hour (00-23); 24-hour clock

	 I

	Hour (01-12); 12-hour clock

	 j

	Day of the year (001-366)

	 m

	Month (01-12)

	 M

	Minutes (00-59)

	 P

	A.M./P.M. designation for use with a 12-hour
 clock

	 S

	Second (00-61); up to two leap
 seconds

	 U

	Week number (00-53); week 1 starts with the first
 Sunday

	 w

	Weekday (0-6); Sunday is day 0

	 W

	Week number (00-53); week 1 starts with first
 Monday

	 x

	Date

	 X

	Time

	 y

	Year in century (00-99)

	 Y

	Year

	 Z

	Time zone name or abbreviation, or empty string
 if time zone is unknown

	 %

	Literal %

See Also
asctime function, ctime function, tm struct, time_put in <locale> , <clocale>

Name
time function — Gets the current date and time

Synopsis
time_t time(time_t *timeptr)
[image: image with no caption]

The time function returns
 the current date and time in an implementation-defined format. If
 the host environment cannot provide the date and time, static_cast<time_t>(-1) is
 returned.
If timeptr is not null, the
 return value is also stored in *timeptr.

See Also
clock function, time_t type

Name
time_t type — Represents a date and time

Synopsis
typedef . . . time_t

[image: image with no caption]

The time_t type is an
 arithmetic type that represents a date and time. The actual type and
 the encoding of the date and time are implementation-defined.

See Also
clock_t type, time function, tm struct

Name
tm struct — Represents the parts of a date and time

Synopsis
struct tm {
 int tm_sec; /* Seconds: 0-61 */
 int tm_min; /* Minutes: 0-59 */
 int tm_hour; /* Hours: 0-23 */
 int tm_mday; /* Day of month: 1-31 */
 int tm_mon; /* Month: 0-11 */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday: 0-6 */
 int tm_yday; /* Days since January 1: 0-365 */
 int tm_isdst; /* Daylight Savings Time */
}
The tm structure stores
 parts of a date and time. The values returned by localtime and gmtime will always be in the ranges shown
 above. (Note that two extra leap seconds are allowed for tm_sec.)
The tm_isdst member is
 positive when Daylight Savings Time is in effect, 0 when it is not in effect, or negative if
 it is unknown.
[image: image with no caption]

The order of the members is implementation-defined. An
 implementation can have additional members.

See Also
gmtime function, localtime function, mktime function, time_t type

<cwchar>

The <cwchar> header is the C++ version of the C standard <wchar.h> header, which declares types
 and functions for working with wide characters. Many of these functions
 are wide versions of functions found in <cstdio> and <cstring> plus improved versions of the
 multibyte functions from <cstdlib>.
You can use narrow (byte-oriented) I/O functions, as declared in
 <cstdio>, or wide I/O
 functions, as declared in <cwchar>, but you cannot mix wide and
 narrow functions on a single stream without explicitly changing the
 stream's orientation (see the fwide
 function in this section for details).
Wide I/O treats a file as a sequence of multibyte characters. When
 reading, multibyte characters are converted to wide characters, and when
 writing, wide characters are converted to multibyte characters. The
 conversion depends on the C locale (set with setlocale in <clocale>).
See Chapter 1 for information
 about character sets, Chapter 8 for
 information about multibyte characters and shift states, and Chapter 9 for information about wide
 characters and I/O.
When working with wide characters, consider using the C++ I/O
 streams and wstring class instead of
 the C functions. (See <string>
 later in this chapter for the wstring
 class and the char_traits class
 template.) The <locale> header
 provides additional support for converting between narrow and wide
 characters (the codecvt and related
 facets).

Name
btowc function — Converts a multibyte character to a wide
 character

Synopsis
wint_t btowc(int c)
The btowc function returns
 a wide character representation of c, which is a multibyte character that can
 be represented in a single byte (as an unsigned char). If c is not a valid one-byte, multibyte
 character, or if c is EOF, WEOF is returned.

See Also
mbrtowc function, wctob function, WEOF macro, codecvt in <locale>

Name
fgetwc function — Reads a wide character

Synopsis
wint_t fgetwc(FILE* stream)
The fgetwc function reads
 the next wide character from stream. It returns the character read, or
 WEOF for end-of-file or an
 error.

See Also
fgetws function, fputwc function, getwc macro, fgetc in <cstdio>

Name
fgetws function — Reads a wide string

Synopsis
wchar_t* fgetwc(wchar_t* str, int n, FILE* stream)
The fgetws function reads a
 line of wide characters from stream and stores them in str. The newline character is also stored.
 At most, n wide characters are
 stored in str, including a
 terminating null wide character.
The return value is str for
 success or a null pointer for end-of-file or an error.

See Also
fgetwc function, fputws function, fgets in <cstdio>

Name
fputwc function — Writes a wide character

Synopsis
wint_t fputwc(wchar_t wc, FILE* stream)
The fputwc function writes
 a wide character, wc, to stream. It returns wc, or WEOF for an error.

See Also
fgetwc function, putwc macro, fputc in <cstdio>

Name
fputws function — Writes a wide string

Synopsis
int fputws(const wchar_t* str, FILE* stream)
The fputws function writes
 the wide string str to stream. It returns EOF (not WEOF) for an error, or a nonnegative value
 for success.

See Also
fgetws function, fputwc function, fputs in <cstdio>

Name
fwide function — Gets or sets stream orientation

Synopsis
int fwide(FILE* stream, int mode);
The fwide function gets or
 sets the orientation of stream.
 The orientation is wide or narrow (byte). When a file is opened, it
 starts without orientation. Calling any wide I/O function on the
 stream gives it wide orientation. Calling any narrow I/O function on
 the stream gives it narrow orientation. Mixing narrow and wide
 functions on a stream results in an error—that is, calling a narrow
 function on a stream with wide orientation or calling a wide
 function on a stream with narrow orientation results in an
 error.
Before performing any I/O on a newly opened stream, you can
 force the stream's orientation by calling fwide. Once the orientation is set, it
 cannot be changed except by closing and reopening the stream (for
 example, by calling freopen in
 <cstdio>).
If mode is positive, the
 orientation is set to wide. If mode is negative, the orientation is set
 to narrow. If the orientation has already been set, it is not
 changed, and the stream's true orientation is returned. If mode is 0, the orientation is queried without
 being changed.
The return value indicates the new orientation: positive for
 wide, negative for narrow, or 0
 if the stream has no orientation.

See Also
fopen in <cstdio> , freopen in <cstdio>

Name
fwprintf function — Writes formatted data

Synopsis
int fwprintf(FILE* stream, const wchar_t* format, . . .)
The fwprintf function
 writes wide output to stream,
 formatted according to the conversion specifiers in format. See fprintf in <cstdio> for more
 information.

See Also
fprintf in <cstdio>

Name
fwscanf function — Reads formatted data

Synopsis
int fwscanf(FILE* stream, const wchar_t* format, . . .)
The fwscanf function reads
 wide input from stream and
 interprets it according to the conversion specifiers in format. See fscanf in <cstdio> for more
 information.

See Also
fscanf in <cstdio>

Name
getwc macro — Reads a wide character

Synopsis
wint_t getwc(FILE* stream)
The getwc macro reads a
 wide character from stream. It
 returns the character converted to wint_t, or WEOF for end-of-file or an error.

See Also
fgetwc function, getwchar macro, getc in <cstdio>

Name
getwchar macro — Reads a wide character

Synopsis
wint_t getwchar()
The getwchar macro is
 equivalent to getwc(stdin).

See Also
getwc macro, getchar in <cstdio>

Name
mbrlen function — Gets number of bytes in a multibyte
 character

Synopsis
size_t mbrlen(const char* str, size_t n, mbstate_t* ps)
The mbrlen function counts
 the number of bytes needed to complete the next multibyte character
 that str points to. At most,
 n bytes of str are examined.
The ps parameter points to
 the shift state, which keeps track of the conversion state between
 calls to mbrlen. If ps is a null pointer, an internal shift
 state is used (which is similar to calling mblen in <cstdlib>).
The return value is one of the following:
	0
	If the multibyte character represents the null wide
 character

	static_cast<size_t>(-1)
	If str does not point
 to a valid multibyte character

	static_cast<size_t>(-2)
	If n is too
 small

	Anything else
	If the multibyte character is valid, in which case the
 value returned is the number of bytes in the multibyte
 character

See Also
mbrtowc function, mbstate_t type, mblen in <cstdlib>

Name
mbrtowc function — Converts a multibyte character to a wide
 character

Synopsis
size_t mbrtowc(wchar_t* pwc, const char* str, size_t n, mbstate_t* ps)
The mbrtowc function
 converts a multibyte character to a wide character. First, it counts
 the number of bytes needed to complete the next multibyte character
 that str points to. At most,
 n bytes of str are examined. If str points to a valid multibyte character,
 that character is converted to a wide character, which is stored in
 *pwc.
The ps parameter points to
 the shift state, which keeps track of the conversion state between
 calls to mbrtowc. If ps is a null pointer, an internal shift
 state is used (which is similar to calling mbtowc in <cstdlib>).
The return value is one of the following:
	0
	If the multibyte character represents the null wide
 character

	static_cast<size_t>(-1)
	If str does not point
 to a valid multibyte character

	static_cast<size_t>(-2)
	If n is too
 small

	Anything else
	If the multibyte character is valid, in which case the
 value returned is the number of bytes in the multibyte
 character

See Also
mbstate_t type,
 mbtowc in <cstdlib> , codecvt in <locale>

Name
mbsinit function — Determines whether a state is the initial shift
 state

Synopsis
int mbsinit(const mbstate_t* ps)
The mbsinit function
 returns true (nonzero) if ps is a
 null pointer or it points to an mbstate_t object that is in the initial
 shift state; otherwise, it returns false (0).

See Also
mbstate_t type

Name
mbsrtowcs function — Converts a multibyte string to a wide
 string

Synopsis
size_t mbsrtowcs(wchar_t* dst, const char** src, size_t len, mbstate_t* ps)
The mbsrtowcs converts a
 multibyte string to a wide character string. The src parameter indirectly points to the
 null-terminated multibyte string, that is, *src points to the start of the multibyte
 string.
If dst is not null, up to
 len wide characters are stored in
 dst. If fewer than len characters are stored, a trailing null
 character is appended to the wide character array. If conversion
 stops upon reaching a null character in the src string, a null pointer is assigned to *src; otherwise, *src is assigned a pointer to the byte
 immediately past the end of the last multibyte character
 converted.
The dst parameter can be a
 null pointer, in which case no wide characters are stored and
 *src is not altered, but ps is updated and the return value is the
 same as it would be if dst were
 large enough to hold the entire converted string.
The ps parameter points to
 the shift state, which keeps track of the conversion state between
 calls to mbsrtowcs. If ps is a null pointer, an internal shift
 state is used (which is similar to calling mbstowcs in <cstdlib>). If the conversion ends
 without a terminating null character in *src, the shift state is reset to an
 mbstate_t initial state.
The return value is the number of wide characters successfully
 converted. If any multibyte character is not valid, the return value
 is static_cast<size_t>(-1).

See Also
mbrtowc function, mbstate_t type, mbstowcs in <cstdlib> , codecvt in <locale>

Name
mbstate_t type — Represents a multibyte shift state

Synopsis
typedef . . . mbstate_t

The mbstate_t type is an
 opaque, POD type that stores the conversion state used to convert
 between multibyte and wide characters. The type is
 implementation-defined, but it is not an array type, so an mbstate_t object can be returned from a
 function.
A value of 0 for an
 mbstate_t object corresponds to
 the initial shift state, although other values might also represent
 the initial state. Thus, to initialize an mbstate_t object, use a default
 constructor:
std::mbstate_t mbs = std::mbstate_t();
If two mbstate_t objects
 are identical, they represent the same shift state, but the reverse
 is not necessarily true.
There is no way to compare two mbstate_t objects to determine whether
 they represent the same state, but you can call mbsinit to determine whether a state is
 the initial state.
Typically, you would use an mbstate_t object by initializing it to the
 initial shift state, then passing it to any of the multibyte
 functions (such as mbrtowc)
 repeatedly. Each call to the multibyte function reads the shift
 state and uses that information for the conversion, updating the
 shift state depending on which multibyte characters were provided as
 input. You should not alter the mbstate_t object between calls to the
 multibyte function.

See Also
mbrlen function, mbrtowc function, mbsinit function, mbsrtowcs function, wcrtomb function, wcsrtombs function

Name
NULL macro — NULL pointer constant

Synopsis
#define NULL . . .
The NULL macro expands to a
 null pointer constant. See <cstddef> for more
 information.

See Also
NULL in <cstddef>

Name
putwc macro — Writes a wide character

Synopsis
wint_t putwc(wchar_t wc, FILE* stream)
The putwc macro writes the
 wide character wc. The return
 value is the character converted to wint_t, or WEOF for an error.

See Also
fputwc function, putwchar macro, putc in <cstdio>

Name
putwchar macro — Writes a wide character to stdout

Synopsis
wint_t putwchar(wchar_t wc)
The putwchar macro is
 equivalent to puwc(wc, stdout).

See Also
putwc macro, putchar in <cstdio>

Name
size_t type — Size type

Synopsis
typedef . . . size_t

[image: image with no caption]

The size_t type is the type
 of the result of the sizeof
 operator. It is an unsigned integral type. The exact type is
 implementation-defined.

See Also
size_t in <cstddef>

Name
swprintf function — Writes formatted data to a wide string

Synopsis
int swprintf(wchar_t* dst, size_t n, const wchar_t* format, . . .)
The swprintf function is
 similar to sprintf, except it
 stores the formatted output in a wide string, dst, and the format is a wide string. Another
 difference is that n is the
 maximum number of wide characters (including a terminating null wide
 character) that can be written to dst.
The return value is the number of wide characters actually
 stored in dst (not counting the
 terminating null wide character) or a negative value if the
 formatted output requires n or
 more characters (not including the terminating null
 character).

See Also
fwprintf function,
 vswprintf function, sprintf in <cstdio>

Name
swscanf function — Reads formatted data from a wide string

Synopsis
int swscanf(const wchar_t* str, const wchar_t* format, . . .)
The swscanf function is
 similar to sscanf, except it
 reads from a wide string, str,
 and the format string is also
 wide. Like sscanf, the return
 value is the number of items converted.

See Also
fwscanf function,
 sscanf in <cstdio>

Name
tm struct — Represents the parts of a date and time

Synopsis
struct tm {
 int tm_sec; /* Seconds: 0-61 */
 int tm_min; /* Minutes: 0-60 */
 int tm_hour; /* Hours: 0-24 */
 int tm_mday; /* Day of month: 1-31 */
 int tm_mon; /* Month: 1-12 */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday: 0-6 */
 int tm_yday; /* Days since January 1: 0-365 */
 int tm_isdst; /* Daylight Savings Time */
}
The tm structure stores
 parts of a date and time. It is the same structure definition as
 that found in <ctime>. See
 <ctime> for details.

See Also
tm struct in <ctime>

Name
ungetwc function — Pushes back a wide character

Synopsis
wint_t ungetwc(wint_t wc, FILE* stream)
The ungetwc function pushes
 back the wide character wc, so
 the next read from stream will
 return wc. The standard
 guarantees that you can push back just one character, though in some
 situations you may be able to push back more.
The return value is wc if
 the pushback was successful, or WEOF if the pushback was not
 successful.

See Also
fgetwc function,
 getwc function, ungetc in <cstdio>

Name
vfwprintf function — Writes formatted data

Synopsis
int vfwprintf(FILE* stream, const wchar_t* format, va_list arg)
The vfwprintf function is
 similar to vfprintf in <cstdio>, except it prints wide
 characters to stream, and the
 format parameter is a wide
 string.

See Also
vfprintf in <cstdio> , <cstdarg>

Name
vswprintf function — Writes formatted data to a wide string

Synopsis
int vswprintf(wchar_t* dst, size_t n, const wchar_t* format, va_list arg)
The vswprintf function is
 similar to vsprintf in <cstdio>, except it stores its
 output in a wide string, dst, and
 the format parameter is a wide
 string. Another difference is that no more than n wide characters are written to dst, including a terminating null
 character.

See Also
swprintf function,
 vsprintf in <cstdio> , <cstdarg>

Name
vwprintf function — Writes formatted data

Synopsis
int vwprintf(const wchar_t* format, va_list arg)
The vwprintf function is
 similar to vprintf in <cstdio>, except it prints wide
 characters to stdout, and the
 format parameter is a wide
 string.

See Also
wprintf function,
 vprintf in <cstdio> , <cstdarg>

Name
WCHAR_MAX macro — Largest value of a wide character

Synopsis
wchar_t WCHAR_MAX

The WCHAR_MAX macro is the
 largest value that can be represented by the wchar_t type. It is not necessarily a
 valid character in the extended character set.

See Also
WCHAR_MIN macro,
 CHAR_MAX in <climits> , <limits>

Name
WCHAR_MIN macro — Smallest value of a wide character

Synopsis
wchar_t WCHAR_MIN

The WCHAR_MIN macro is the
 smallest value that can be represented by the wchar_t type. It is not necessarily a
 valid character in the extended character set.

See Also
WCHAR_MAX macro,
 CHAR_MIN in <climits> , <limits>

Name
wcrtomb function — Converts a wide character to a multibyte
 character

Synopsis
size_t wcrtomb(char* dst, wchar_t wc, mbstate_t* ps)
The wcrtomb function
 converts a wide character to a multibyte character. It first
 determines the number of bytes needed to represent wc as a multibyte character. If dst is not null, the sequence of multibyte
 characters is stored there. At most, MB_CUR_MAX (defined in <cstdlib>) bytes are stored, and the
 return value is the actual number of bytes written to dst. If wc does not have a valid multibyte
 encoding, static_cast<size_t>(-1) is
 returned.
If dst is null, wcrtomb ignores wc and converts the null wide character
 using a private, internal buffer (e.g., wcrtomb(
 buffer, L'\0', ps)).
The ps parameter points to
 the shift state, which keeps track of the conversion state between
 calls to wcrtomb. If ps is null, an internal shift state is
 used (which is similar to calling wctomb in <cstdlib>).

See Also
mbrtowc function, mbstate_t type, MB_CUR_MAX in <cstdlib> , wctomb in <cstdlib> , codecvt in <locale>

Name
wcscat function — Concatenates wide strings

Synopsis
wchar_t* wcscat(wchar_t* dst, const wchar_t* src)
The wcscat function
 concatenates src onto the end of
 dst, overwriting the null
 character at the end of dst. The
 caller must ensure that dst
 points to a region of memory that is large enough to hold the entire
 string plus its null terminator. The return value is dst.

See Also
wcscpy function, wcsncat function, strcat in <cstring>

Name
wcschr function — Searches for a wide character in a wide
 string

Synopsis
const wchar_t* wcschr(const wchar_t* str, wchar_t wc)
 wchar_t* wcschr(wchar_t* str, wchar_t wc)
The wcschr function returns
 a pointer to the first occurrence of wc in the null-terminated wide string
 str. If wc does not appear in str, a null pointer is returned.

See Also
wmemchr function, wcscspn function, wcspbrk function, wcsrchr function, wcsspn function, strchr in <cstring>

Name
wcscmp function — Compares wide strings

Synopsis
int wcscmp(const wchar_t* s1, const wchar_t* s2)
The wcscmp function
 compares two null-terminated wide strings. If the strings are equal,
 the return value is 0. Otherwise,
 the return value is positive if s1 is greater than s2 or negative if s1 is less than s2. If one string is a prefix of the
 other, the longer string is greater than the shorter string.

See Also
wmemcmp function, wcsncmp function, strcmp in <cstring>

Name
wcscoll function — Compares wide strings using locale's collation
 order

Synopsis
int wcscoll(const wchar_t* s1, const wchar_t* s2)
The wcscoll function
 compares two null-terminated wide strings, interpreting the strings
 according to the LC_COLLATE
 (defined in <clocale>)
 category of the current C locale. The return value is the same as
 that of wcscmp.

See Also
wcscmp function,
 strcoll in <cstring> , <clocale> , collate in <locale>

Name
wcscpy function — Copies wide strings

Synopsis
wchar_t* wcscpy(wchar_t* dst, const wchar_t* src)
The wcscpy function copies
 the null-terminated wide string src to dst. The caller must ensure that dst points to a region of memory that is
 large enough to hold the entire src string plus its null terminator. The
 return value is dst.

See Also
wmemcpy function, wcsncpy function, strcpy in <cstring>

Name
wcscspn function — Counts initial characters that do not match a span
 set

Synopsis
size_t wcscspn(const wchar_t* str, const wchar_t* spanset)
The wcscspn function
 returns the number of wide characters at the start of str that are not in the wide string
 spanset. Thus, the c in its name means complement, that is,
 wcscspn counts characters that
 are in the complement of the span set.

See Also
wcschr function, wcspbrk function, wcsspn function, wcsstr function, strspn in <cstring>

Name
wcsftime function — Formats a time as a wide string

Synopsis
size_t wcsftime(wchar_t* str, size_t n, const wchar_t* format, const tm* tmptr)
The wcsftime function is
 similar to strftime in <ctime>, except it formats the
 result as a wide string, str, and
 the format parameter is a wide
 string.

See Also
strftime in <ctime>

Name
wcslen function — Gets length of a wide string

Synopsis
size_t wcslen(const wchar_t* str)
The wcslen function returns
 the number of wide characters (not including the terminating null
 wide character) in str.

See Also
strlen in <cstring>

Name
wcsncat function — Concatenates wide strings

Synopsis
wchar_t* wcscat(wchar_t* dst, const wchar_t* src, size_t n)
The wcsncat function
 concatenates src onto the end of
 dst. At most, n wide characters are copied from src. A terminating null wide character is
 always appended to the end of dst. You must ensure that dst points to a region of memory that is
 large enough to hold the concatenated result plus the null
 terminator. The return value is dst.

See Also
wcscat function,
 strncat in <cstring>

Name
wcsncmp function — Compares wide strings

Synopsis
int wcsncmp(const wchar_t* s1, const wchar_t* s2, size_t n)
The wcsncmp function
 compares at most n wide
 characters of two null-terminated wide strings. If the strings are
 equal, the return value is 0.
 Otherwise, the return value is positive if s1 is greater than s2 or negative if s1 is less than s2. If one string is a prefix of the
 other, the longer string is greater than the shorter string.

See Also
wcscmp function,
 strncmp in <cstring>

Name
wcsncpy function — Copies wide strings

Synopsis
wchar_t* wcsncpy(wchar_t* dst, const wchar_t* src, size_t n)
The wcsncpy function copies
 at most n wide characters from
 the null-terminated wide string src to dst. If src is shorter than dst, null wide characters are appended to
 the end so that exactly n
 characters are always written to dst.
The return value is dst.

See Also
wcscpy function,
 strncpy in <cstring>

Name
wcspbrk function — Locates a span set member in a wide string

Synopsis
const wchar_t* wcspbrk(const wchar_t* str, const wchar_t* spanset)
 wchar_t* wcspbrk(wchar_t* str, const wchar_t* spanset)
The wcspbrk function
 searches str for any of the wide
 characters in spanset and returns
 a pointer to the first occurrence of such a character. If none of
 the characters in spanset appears
 in str, strpbrk returns a null pointer.

See Also
wcschr function, wcscspn function, wcsspn function, strpbrk in <cstring>

Name
wcsrchr function — Locates rightmost occurrence of a wide
 character

Synopsis
const wchar_t* wcsrchr(const wchar_t* str, wchar_t wc)
 wchar_t* wcsrchr(wchar_t* str, wchar_t wc)
The wcsrchr function
 returns a pointer to the last (rightmost) occurrence of wc in the null-terminated wide string
 str. If wc does not appear in str, the function returns a null pointer
 .

See Also
wmemchr function, wcschr function, strrchr in <cstring>

Name
wcsrtombs function — Converts a wide string to a multibyte
 string

Synopsis
size_t wcsrtombs(char* dst, const wchar_t** src, size_t len, mbstate_t* ps)
The wcsrtombs function
 converts a wide string to a string of multibyte characters. The
 src parameter points indirectly
 to the source wide string, that is, *src points to the start of the wide
 string.
If dst is not null, up to
 len bytes are stored in dst. If fewer than len bytes are stored, a trailing null
 character is appended to the narrow character array. If conversion
 stops upon reaching a null wide character in the src string, a null pointer is assigned to *src; otherwise, *src is assigned a pointer to the
 character immediately past the end of the last wide character
 converted.
The dst parameter can be
 null, in which case no narrow characters are stored and *src is not altered, but ps is updated and the return value is the
 same as it would be if dst were
 large enough to hold the entire converted string.
The ps parameter points to
 the shift state, which keeps track of the conversion state between
 calls to wcsrtombs. If ps is null, an internal shift state is
 used (which is similar to calling wcstombs in <cstdlib>). If the conversion ends
 without a terminating null character in *src, the shift state is reset to an
 mbstate_t initial state.
If any of the wide characters cannot be represented as a
 multibyte character, static_cast<size_t>(-1) is returned.
 Otherwise, the return value is the number of bytes successfully
 converted from wide characters (not counting the trailing null
 byte).

See Also
mbstate_t type,
 wmbsrtowcs function, wcrtomb function, wcstombs in <cstdlib> , codecvt in <locale>

Name
wcsspn function — Counts characters that match a span set

Synopsis
size_t wcsspn(const wchar_t* str, const wchar_t* spanset)
The wcsspn function returns
 the number of wide characters at the start of str that are in the string spanset.

See Also
wcschr function, wcscspn function, wcspbrk function, strspn in <cstring>

Name
wcsstr function — Finds a wide substring

Synopsis
const wchar_t* wcsstr(const wchar_t* str, const wchar_t* substr)
 wchar_t* wcsstr(wchar_t* str, const wchar_t* substr)
The wcsstr function returns
 the index in str of the first
 occurrence of substr, or a null
 pointer if substr does not appear
 in str.

See Also
wcschr function,
 strstr in <cstring>

Name
wcstod function — Converts a wide string to double

Synopsis
double wcstod(const wchar_t* str, wchar_t** end)
The wcstod function
 converts a wide string to double.
 It is similar to the strtod
 function.

See Also
wcstol function, wcstoul function, strtod in <cstdlib>

Name
wcstok function — Tokenizes a wide string

Synopsis
wchar_t* wcstok(wchar_t* str, const wchar_t* delimset, wchar_t** ptr)
The wcstok function is
 similar to strtok in <cstring>, except it works with wide
 strings. Another difference is that it is reentrant, taking a third
 parameter, ptr, which is the
 address of a wide string. The wcstok function uses ptr for storing working information, which
 it uses when str is null.
To parse a string str, you
 must call wcstok multiple times.
 The first time, pass str as the
 first parameter to wcstok; for
 the second and subsequent calls, pass a null pointer. For the final
 argument, ptr, pass the address
 of a wchar_t* object. For
 subsequent calls to wcstok (when
 str is null), pass the address of
 the same ptr object. Do not
 modify ptr between successive
 calls to wcstok when parsing a
 single wide string.
Each call to wcstok can use
 a different delimset.

See Also
wcscspn function, wcspbrk function, wcsspn function, strtok in <cstring>

Name
wcstol function — Converts a wide string to a long integer

Synopsis
long int wcstol(const wchar_t* str, wchar_t** end)
The wcstol function
 converts a wide string to long
 int. It is similar to the
 strtol function in <cstdlib>.

See Also
wcstod function, wcstoul function, strtol in <cstdlib>

Name
wcstoul function — Converts a wide string to an unsigned long
 integer

Synopsis
unsigned long int wcstoul(const wchar_t* str, wchar_t** end)
The wcstoul function
 converts a wide string to unsigned long int. It is similar to the strtoul function in <cstdlib>.

See Also
wcstod function, wcstol function, strtoul in <cstdlib>

Name
wcsxfrm function — Transforms a wide string for collation

Synopsis
size_t strxfrm(wchar_t* dst, const wchar_t* src, size_t n)
The wcsxfrm function
 transforms the src wide string by
 converting each wide character to its collation order equivalent.
 The functionality and return value are similar to strxfrm in <cstring>, except wcsxfrm works with wide strings.

See Also
wcscmp function, wcscoll function, strxfrm in <cstring> , collate in <locale> , <clocale>

Name
wctob function — Converts a wide character to a single byte

Synopsis
int wctob(wint_t wc)
If the wide character wc
 has a single-byte representation as a multibyte character, wctob returns that byte; otherwise, it
 returns EOF.

See Also
btowc function,
 EOF in <cstdio> , codecvt in <locale>

Name
WEOF macro — End-of-file or error

Synopsis
wint_t WEOF

The WEOF macro expands to a
 constant integer value that does not correspond to any valid wide
 character value. Unlike EOF,
 WEOF is not guaranteed to be
 negative.

See Also
wint_t type, EOF in <cstdio>

Name
wint_t type — Integer representation of a wide character

Synopsis
typedef . . . wint_t

The wint_t type is an
 integral type that represents wide characters. It can hold the value
 for any character in the extended character set plus the value
 WEOF.

See Also
WEOF macro

Name
wmemchr function — Searches for a wide character

Synopsis
const wchar_t* wmemchr(const wchar_t* mem, wchar_t c, size_t n)
 wchar_t* wmemchr(wchar_t* mem, wchar_t c, size_t n)
The wmemchr function
 searches the memory that mem
 points to, of size n wide
 characters, for the wide character whose value is c. The return value is a pointer in the
 mem array that points to the
 first occurrence of c, or a null
 pointer if c is not present in
 the first n wide characters of
 mem.

See Also
wcschr function,
 find in <algorithm> , memchr in <cstring>

Name
wmemcmp function — Compares wide strings

Synopsis
int wmemcmp(const wchar_t* s1, const wchar_t* s2, size_t n)
The wmemcmp function
 compares the first n wide
 characters of s1 and s2. If all n wide characters are equal, the return
 value is 0. Otherwise, the return
 value is positive if s1 is
 greater than s2 or negative if
 s1 is less than s2.

See Also
wcscmp function, wcsncmp function, equal in <algorithm> , lexicographical_compare in <algorithm> , mismatch in <algorithm> , memcmp in <cstring>

Name
wmemcpy function — Copies wide strings

Synopsis
wchar_t* wmemcpy(wchar_t* dst, const wchar_t* src, size_t n)
The wmemcpy function copies
 n wide characters from src to dst. If src and dst overlap, the results are undefined.
 The return value is dst.

See Also
wcscpy function, wcsncpy function, wmemmove function, copy in <algorithm> , memcpy in <cstring>

Name
wmemmove function — Copies overlapping wide strings

Synopsis
wchar_t* memmove(wchar_t* dst, const wchar_t* src, size_t n)
The wmemmove function
 copies n wide characters from
 src to dst. The memory regions can overlap. The
 return value is dst.

See Also
wcscpy function, wcsncpy function, wmemcpy function, copy in <algorithm> , copy_backward in <algorithm> , memmove in <cstring>

Name
wmemset function — Fills a wide string with an integer

Synopsis
wchar_t* wmemset(wchar_t* str, wchar_t wc, size_t n)
The wmemset function fills
 the array str with n copies of the wide character wc. The return value is str.

See Also
wmemcpy function,
 fill_n in <algorithm> , memset in <cstring>

Name
wprintf function — Writes formatted wide data

Synopsis
int wprintf(const wchar_t* format, . . .)
The wprintf function is
 similar to printf in <cstdio>, except it prints wide
 characters, and the format
 parameter is a wide string.

See Also
wfprintf function, wsprintf function, wvprintf function, printf in <cstdio>

Name
wscanf function — Reads formatted wide data

Synopsis
int wscanf(const wchar_t* format, . . .)
The wscanf function is
 similar to scanf in <cstdio>, except it reads wide
 characters, and the format
 parameter is a wide string.

See Also
wfscanf function, wsscanf function, scanf in <cstdio>

<cwctype>

The <cwctype> header is the C++ version of the C standard <wctype.h> header, which declares types
 and functions for classifying and converting wide characters.
Most of the functions in this header are wide equivalents of
 functions found in <cctype>.
 For example, iswalnum determines
 whether a wide character is alphanumeric, just as isalnum determines whether a narrow (byte)
 character is alphanumeric. The behavior of the wide functions is similar
 to their narrow equivalents. In particular, for any narrow character
 c, its wide character equivalent
 wc, and classification functions
 isxyz and iswxyx, if isxyz(c) is true, then iswxyz(wc) is true and vice versa. The only
 exception is that iswgraph and
 iswpunct behave slightly differently
 than isgraph and ispunct for whitespace characters other than
 ' '.
The behavior of the <cwctype> functions depend on the C
 locale, as set with the setlocale
 function in <clocale>. For more
 flexibility in dealing with multiple locales, you can use C++ locales,
 in particular the ctype facet in
 <locale>.

Name
iswalnum function — Determines whether a wide character is
 alphanumeric

Synopsis
int iswalnum(wint_t wc)
The iswalnum function
 returns true (nonzero) if either iswalpha(wc) or iswdigit(wc) is true.

See Also
iswalpha function,
 iswdigit function, isalnum in <cctype>

Name
iswalpha function — Determines whether a wide character is
 alphabetic

Synopsis
int iswalpha(wint_t wc)
The iswalpha function
 returns true (nonzero) if wc is
 an alphabetic character, that is, a wide character for which
 iswcntrl, iswdigit, iswpunct, and iswspace all return false (0).

See Also
iswcntrl function,
 iswdigit function, iswpunct function, iswspace function, isalpha in <cctype>

Name
iswcntrl function — Determines whether a wide character is a control
 character

Synopsis
int iswcntrl(wint_t wc)
The iswcntrl function
 returns true (nonzero) if wc is a
 wide control character, that is, a wide character for which iswalnum, iswpunct, and iswspace all return false (0).

See Also
iswalnum function,
 iswpunct function, iswspace function, iscntrl in <cctype>

Name
iswctype function — Tests any category of a wide character

Synopsis
int iswctype(wint_t wc, wctype_t desc)
The iswctype function tests
 any category of the wide character wc. The category to test is specified by
 desc, which must be obtained by
 calling wctype. The setting of
 the LC_CTYPE category must be the
 same for the call to iswctype and
 the call to wctype that returned
 desc.
Using iswctype, you can
 implement all the isw . . .
 functions. For example, you can implement the iswalnum function as follows:
int iswalnum(wint_t wc)
{
 return std::iswctype(wc, std::wctype("alnum"));
}

See Also
wctype function, wctype_t type

Name
iswdigit function — Determines whether a wide character is a
 digit

Synopsis
int iswdigit(wint_t wc)
The iswdigit function
 returns true (nonzero) if wc is a
 decimal digit character—that is, '0'-'9'—regardless of locale.

See Also
iswxdigit function,
 isdigit in <cctype>

Name
iswgraph function — Determines whether a wide character is
 graphic

Synopsis
int iswgraph(wint_t wc)
The iswgraph function
 returns true (nonzero) if iswprint(wc) is true and iswspace(wc) is false. Note that iswgraph is slightly different from
 isgraph in that it returns true
 for whitespace characters other than '
 '.

See Also
iswprint function,
 iswspace function

Name
iswlower function — Determines whether a wide character is
 lowercase

Synopsis
int iswlower(wint_t wc)
The iswlower function
 returns true (nonzero) if wc is a
 lowercase character.

See Also
iswalpha function,
 iswupper function, towlower function, islower in <cctype>

Name
iswprint function — Determines whether a wide character is
 printable

Synopsis
int iswprint(wint_t wc)
The iswprint function
 returns true (nonzero) if wc is a
 printable wide character.

See Also
iswgraph function,
 isprint in <cctype>

Name
iswpunct function — Determines whether a wide character is
 punctuation

Synopsis
int iswpunct(wint_t wc)
The iswpunct function
 returns true (nonzero) if iswalnum(wc), iswcntrl(wc), and iswspace(wc) are false.

See Also
iswalnum function,
 iswcntrl function, iswspace function, ispunct in <cctype>

Name
iswspace function — Determines whether a wide character is
 whitespace

Synopsis
int iswspace(wint_t wc)
The iswspace function
 returns true (nonzero) if wc is a
 whitespace character.

See Also
iswgraph function,
 iswprint function, isspace in <cctype>

Name
iswupper function — Determines whether a wide character is
 uppercase

Synopsis
int iswupper(wint_t wc)
The iswupper function
 returns true (nonzero) if wc is
 an uppercase character.

See Also
iswalpha function,
 iswlower function, towupper function, isupper in <cctype>

Name
iswxdigit function — Determines whether a wide character is a hexadecimal
 digit

Synopsis
int iswxdigit(wint_t wc)
The iswxdigit function
 returns true (nonzero) if wc is a
 hexadecimal digit character—that is, '0'-'9',
 'a'-'f', or 'A'-'F'—regardless of locale.

See Also
iswdigit function,
 isxdigit in <cctype>

Name
towctrans function — Translates a wide character's case

Synopsis
wint_t towctrans(wint_t wc, wctrans_t desc)
The towctrans function
 translates the wide character wc
 according to the description desc, which was returned from the wctrans function. For example, the
 towlower function can be
 implemented using towctrans:
wint_t towlower(wint_t wc)
{
 return std::towctrans(wc, std::wctrans("tolower"));
}

See Also
wctrans function, wctrans_t type

Name
towlower function — Converts a wide character to lowercase

Synopsis
wint_t towlower(wint_t wc)
The towlower function maps
 the wide character wc to
 lowercase. If iswupper(wc) is
 false, or if wc has no lowercase
 mapping, wc is returned
 unchanged.

See Also
towctrans function,
 towupper function, tolower in <cctype>

Name
towupper function — Converts a wide character to uppercase

Synopsis
wint_t towupper(wint_t wc)
The towupper function maps
 the wide character wc to
 uppercase. If iswlower(wc) is
 false, or if wc has no uppercase
 mapping, wc is returned
 unchanged.

See Also
towctrans function,
 towlower function, toupper in <cctype>

Name
wctrans function — Construct a wctrans_t object

Synopsis
wctrans_t wctrans(const char* property)
The wctrans function
 constructs a wctrans_t object
 according to the given property. Table 13-7 lists the
 properties defined in the standard.
Table 13-7. Character translation properties
	Property
	Description

	"tolower"
	Maps from uppercase to lowercase

	"toupper"
	Maps from lowercase to uppercase

See Also
towctrans function,
 wctrans_t type

Name
wctrans_t type — Represents a wide character translation

Synopsis
typedef . . . wctrans_t

The wctrans_t type is a
 scalar type used to represent character mappings for the towctrans function.

See Also
towctrans function,
 wctrans function, <clocale>

Name
wctype function — Constructs a wctype_t object

Synopsis
wctype_t wctype(const char* property)
The wctype function
 constructs a wctype_t object that
 describes wide characters that have the given property. Table 13-8 lists the
 properties that are supported by this standard.
Table 13-8. Character classification properties
	Property
	Description

	"alnum"
	Alphanumeric

	"alpha"
	Alphabetic

	"cntrl"
	Control

	"digit"
	Digit

	"graph"
	Non-space printable

	"lower"
	Lowercase

	"print"
	Printable or whitespace

	"punct"
	Punctuation

	"space"
	Whitespace

	"upper"
	Uppercase

	"xdigit"
	Hexadecimal digit

See Also
iswctype function,
 wctype_t type, <clocale>

Name
wctype_t type — Represents a character classification

Synopsis
typedef . . . wctype_t

The wctype_t type is a
 scalar type used to represent character classifications for the
 iswctype function.

See Also
iswctype function,
 wctype function, <clocale>

Name
WEOF macro — End-of-file or error

Synopsis
wint_t WEOF

The WEOF macro expands to a
 constant integer value that does not correspond to any valid wide
 character value. Unlike EOF,
 WEOF is not guaranteed to be
 negative.

See Also
WEOF in <cwchar> , EOF in <cstdio>

Name
wint_t type — Integer representation of a wide character

Synopsis
typedef . . . wint_t

The wint_t type is an
 integral type that represents wide characters. It can hold the value
 for any character in the extended character set plus the value
 WEOF.

See Also
wint_t in <cwchar>

<deque>

The <deque> header is one of the standard container template headers.
 It declares the deque class template
 and a few global functions that operate on deque objects.
A deque, short for double-ended queue, is
 similar to a vector, but the performance is constant when adding to or
 removing from the collection at the beginning and at the end.
If you need a vector of bool
 that behaves as a normal C++ container, you should use deque<bool> instead of vector<bool>. See <vector> later in this chapter for an
 explanation.
See Chapter 10 for
 information about containers in general.

Name
deque class template — Double-ended queue

Synopsis
template <class T, class Alloc = allocator<T> >
class deque {
public:
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef T value_type;
 typedef Alloc allocator_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

 explicit deque(const Alloc& = Alloc());
 explicit deque(size_type n, const T& value = T(), const Alloc& = Alloc());
 template <class InputIterator>
 deque(InputIterator first, InputIterator last, const Alloc& = Alloc());
 deque(const deque<T,Alloc>& x);

 ~deque();

 deque<T,Alloc>& operator=(const deque<T,Alloc>& x);
 template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
 void assign(size_type n, const T& t);
 allocator_type get_allocator() const;

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

 size_type size() const;
 size_type max_size() const;
 void resize(size_type sz, T c = T());
 bool empty() const;

 reference operator[](size_type n);
 const_reference operator[](size_type n) const;
 reference at(size_type n);
 const_reference at(size_type n) const;
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;

 void push_front(const T& x);
 void push_back(const T& x);
 iterator insert(iterator position, const T& x);
 void insert(iterator position, size_type n, const T& x);
 template <class InputIterator>
 void insert (iterator position, InputIterator first, InputIterator last);
 void pop_front();
 void pop_back();
 iterator erase(iterator position);
 iterator erase(iterator first, iterator last);
 void swap(deque<T,Alloc>&);
 void clear();
};
The deque class template
 represents a double-ended queue. It is one of the standard container
 types, like list and vector. Like a list, a deque yields
 amortized, constant performance when adding and removing items from
 the beginning and end of the container. Like a vector, performance
 is constant when accessing items at any index in the deque.
 Performance for inserting or removing items not at the start or end
 is linear with respect to the size of the container.
After inserting items at the beginning or end of the deque,
 all iterators become invalid. All references and pointers to items
 in the deque remain valid. After inserting in the middle of the
 deque, all iterators, references, and pointers to items in the deque
 become invalid.
After erasing an element from the beginning or end of the
 deque, all iterators and references remain valid, except those
 pointing to the erased element. After erasing an element from the
 middle of the deque, all iterators, references, and pointers to
 items in the deque become invalid.
	explicit deque
 (const Alloc& = Alloc(
))
	Constructs an empty deque.

	explicit deque
 (size_type n, const T&
 value = T(), const Alloc& = Alloc())
	Constructs a deque with n copies of value.

	template <class
 InputIterator>
 deque (InputIterator first, InputIterator last, const
 Alloc& alloc = Alloc())
	Constructs a deque with copies of the elements in
 [first, last), unless InputIterator is an integral type,
 in which case the deque is constructed as though the arguments
 were cast as follows:
deque(static_cast<size_type>(first), static_cast<value_type>(last),
 alloc);

	template <class
 InputIterator>
void assign
 (InputIterator first,
 InputIterator last)
	Erases the current contents of the deque and inserts the
 elements in [first,
 last), unless InputIterator is an integral type,
 in which case the arguments are interpreted as though they
 were cast as follows:
assign(static_cast<size_type>(first), static_cast<value_type>(last));

	void assign
 (size_type n, const T&
 t)
	Erases the current contents of the deque and inserts
 n copies of t.

	allocator_type
 get_allocator ()
 const
	Returns the allocator object.

	reference operator[]
 (size_type
 n)
const_reference
 operator[] (size_type n) const
	Returns the element at index n. If n >= size(
), the behavior is undefined.

	reference at
 (size_type
 n)
const_reference
 at
 (size_type n)
 const
	Returns the element at index n. If n >= size(
), it throws out_of_range.

	reference back
 ()
const_reference
 back
 () const
	Returns the last element in the deque. The behavior is
 undefined if the deque is empty.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first element of
 the deque.

	void clear
 ()
	Erases all elements from the deque.

	bool empty
 ()
 const
	Returns size()
 == 0.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to the last element of
 the deque.

	iterator erase
 (iterator
 position)
	Erases the element at position.

	iterator erase
 (iterator first, iterator
 last)
	Erases all the elements in the range [first, last).

	reference front
 ()
const_reference
 front
 () const
	Returns the first element of the deque. The behavior is
 undefined if the deque is empty.

	iterator insert
 (iterator position,
 const T& x)
	Inserts x at position. If position is begin() or end(), the performance is constant;
 at any other position, the performance is linear.

	void insert
 (iterator pos, size_type n,
 const T& x)
	Inserts n copies of
 x at pos.

	template <class
 InputIterator>
void insert
 (iterator position,
 InputIterator first, InputIterator last)
	Inserts the elements in the range [first, last) starting at position, unless InputIterator is an integral type,
 in which case the arguments are interpreted as though they
 were cast:
insert(position, static_cast<size_type>(first),
 static_cast<value_type>(last));
If an exception is thrown, such as bad_alloc when there is insufficient
 memory for a new element, the deque is unchanged, and all
 iterators and references remain valid. If the exception is
 thrown from an element's copy constructor or assignment
 operator, however, the behavior is unspecified.

	size_type max_size
 ()
 const
	Returns the size of the largest possible deque.

	void pop_front
 ()
	Erases the first element of the deque. The behavior is
 undefined if the deque is empty.

	void pop_back
 ()
	Erases the last element of the deque. The behavior is
 undefined if the deque is empty.

	void push_front
 (const T&
 x)
	Inserts x as the new
 first element of the deque.

	void push_back
 (const T&
 x)
	Inserts x as the new
 last element of the deque.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 element of the deque.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first element of the deque.

	size_type size
 ()
 const
	Returns the number of elements in the deque.

	void resize
 (size_type n, T c = T(
))
	Changes the size of the deque to n. If n > size(), one or more copies of
 c are added to the end of
 the deque to reach the desired size. If the new size is
 smaller than the current size, the first n elements are unchanged, and
 elements are erased from the end to reach the new size.

	void swap
 (deque<T,Alloc>&
 that)
	Exchanges all the elements in the deque with all the
 elements in that.

See Also
<list>, <vector>

Name
operator== function template — Compares two deques for equality

Synopsis
template<typename T, typename A>
bool operator==(const deque<T,A>& x, const deque<T,A>& y)
The == operator returns
 true if x and y
 are the same size and their elements are equal, that is, x.size() == y.size(
) && equals(x.begin(), x.end(), y.begin()).

See Also
equals in <algorithm>

Name
operator!= function template — Compares two deques for inequality

Synopsis
template<typename T, typename A>
bool operator!=(const deque<T,A>& x, const deque<T,A>& y)
The != operator is
 equivalent to ! (x == y).

Name
operator< function template — Compares two deques for less-than

Synopsis
template<typename T, typename A>
bool operator<(const deque<T,A>& x, const deque<T,A>& y)
The < operator
 determines whether x is less than
 y using the same algorithm as
 lexicographical_compare(x.begin(
), x.end(), y.begin(), y.end()).

See Also
lexicographical_compare in
 <algorithm>

Name
operator<= function template — Compares two deques for less-than-or-equal

Synopsis
template<typename T, typename A>
bool operator<=(const deque<T,A>& x, const deque<T,A>& y)
The <= operator is
 equivalent to ! (y < x).

Name
operator> function template — Compares two deques for greater-than

Synopsis
template<typename T, typename A>
bool operator>(const deque<T,A>& x, const deque<T,A>& y)
The > operator is
 equivalent to (y < x).

Name
operator>= function template — Compares two deques for
 greater-than-or-equal

Synopsis
template<typename T, typename A>
bool operator>=(const deque<T,A>& x, const deque<T,A>& y)
The >= operator is
 equivalent to ! (x < y).

Name
swap function template specialization — Swaps the contents of two deques

Synopsis
template<typename T, typename Alloc>
void swap(deque<T, Alloc>& x, deque<T, Alloc>& y)
The swap function template
 specialization is equivalent to calling x.swap(y).

See Also
swap in <algorithm>

<exception>

The <exception>
 header declares classes, types, and functions related to
 fundamental exception handling. See <stdexcept> for additional exception
 classes.
Note
This section describes a complicated system of exceptions,
 function calls, and handlers. The end result is simpler than it might
 seem at first:
A function can throw only the exception types listed
 in its exception specification, or else the program terminates
 immediately.
If a function does not have an exception specification, it can
 throw any exception. (Virtual functions work a little differently; see
 Chapter 6 for details.)

Name
bad_exception class — Wrong exception type

Synopsis
class bad_exception : public exception {
public:
 bad_exception() throw();
 bad_exception(const bad_exception&) throw();
 bad_exception& operator=(const bad_exception&) throw();
 virtual const char* what() const throw();
};
A bad_exception object is
 thrown from the unexpected
 function when unexpected throws
 an exception that is not listed in the exception specification that
 caused unexpected to be called.
 Most programs do not throw or catch bad_exception. You can list bad_exception in an exception
 specification if you want to handle this unusual situation
 differently.
See Chapter 5 and
 unexpected (in this section) for
 more details.

See Also
terminated function, unexpected function, throw keyword

Name
exception class — Base class for all standard exceptions

Synopsis
class exception {
public:
 exception() throw();
 exception(const exception&) throw();
 exception& operator=(const exception&) throw();
 virtual ~exception() throw();
 virtual const char* what() const throw();
};
The exception class is the
 base class for all exception objects thrown by the standard library
 or by code generated by the compiler. By convention, user-defined
 exception classes also derive from exception or from one of its derived
 classes.
	[image:] virtual const
 char* what () const throw();
	Returns a message that describes the nature of the
 exception. The exact contents of the string are
 implementation-defined; it might be a multibyte string, which
 can be converted to a wstring.

See Also
bad_exception class,
 bad_alloc in <new> , bad_cast in <typeinfo> , bad_typeid in <typeinfo> , ios_base::failure in <ios> , logic_error in <stdexcept> , runtime_error in <stdexcept>

Name
set_terminate function — Changes the terminate() handler

Synopsis
typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler f) throw();
The set_terminate function
 saves f to be used by calls to
 terminate. The previous value of
 the terminate handler is returned.

See Also
terminate
 function

Name
set_unexpected function — Changes the unexpected() handler

Synopsis
typedef void (*unexpected_handler)();
unexpected_handler set_unexpected(unexpected_handler f)
 throw();
The set_unexpected function
 saves f to be used by calls to
 unexpected. The previous value of
 the unexpected handler is returned.

See Also
unexpected
 function

Name
terminate function — Terminates program when exception handling
 fails

Synopsis
void terminate()
The terminate function is
 called when normal exception handling cannot handle an exception for
 any reason—for example, when there is no matching catch block for an exception, or when an
 exception is thrown and, while the stack is unwinding, another
 exception is thrown by a destructor.
A program might also call terminate explicitly.
You can change the behavior of the terminate function by calling set_terminate. The default behavior is to
 call abort.
The terminate function is a
 last resort because normal exception handling failed. For this
 reason, you cannot rely on the usual destruction of static objects
 and objects on the stack.

See Also
set_terminate function,
 unexpected function, abort function in <cstdlib> , catch keyword

Name
uncaught_exception function — Determines whether exception handling is currently
 underway

Synopsis
bool uncaught_exception()
The uncaught_exception
 function returns true while an
 exception is processed: after evaluating the argument of a throw expression but before a matching
 exception declaration is initialized in a catch block. It also returns true after terminate is called (but not for an
 explicit call to terminate). It
 returns false at other
 times.
Call uncaught_exception to
 learn whether exception handling is currently underway. If it
 returns true, throwing a new
 exception results in a call to terminate.

See Also
terminate function,
 catch keyword, throw keyword

Name
unexpected function — Handles an unexpected exception type

Synopsis
void unexpected()
If a function has an exception specification and throws an
 exception that is not listed in the exception specification, the
 unexpected function is called to
 handle the unexpected exception.
You can implement your own unexpected function. If you do so, you
 must ensure that unexpected does
 not return normally. It can terminate the program—for example, by
 calling terminate—or it can throw
 an exception.
If your unexpected function
 throws an exception that is not listed in the function's exception
 specification, a new exception of type bad_exception is created and thrown. If
 the function's exception specification does not list bad_exception, terminate is called automatically.
The default implementation of unexpected calls terminate.
In other words, if a function has an exception specification,
 it is guaranteed that only the specified exceptions can be thrown
 out of the function, or else the application will be
 terminated.

See Also
bad_exception class,
 set_unexpected function,
 abort in <cstdlib> , throw keyword

<fstream>

The <fstream> header declares classes and other types for performing
 I/O with external files. A file in C++ is a sequence of bytes. A narrow
 (byte) stream or buffer simply reads or writes those bytes. A wide
 stream or buffer reads multibyte characters and converts them to wide
 characters (according to the stream's locale) or converts wide
 characters to their multibyte equivalents for writing.
See Chapter 9 for a general
 discussion of I/O and related topics (stream buffers, locales, and
 facets), Chapter 1 for more
 information about character sets, and the <iostream> section in this chapter for
 information about the base-class templates required by the fstream class templates. Refer to Chapter 8 for information about traits in
 general and to the <string>
 section in this chapter for detailed information about the char_traits class template. Refer to the
 <streambuf> section in this
 chapter for information about the basic_streambuf class template.
To open a file for reading, use ifstream; for writing, use ofstream; for reading and writing, use
 fstream; for wide character I/O, use
 wifstream, wofstream, or wfstream.

Name
basic_filebuf class template — Class template for file buffers

Synopsis
template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 basic_filebuf();
 virtual ~basic_filebuf();

 bool is_open() const;
 basic_filebuf<charT,traits>*
 open(const char* filename, ios_base::openmode mode);
 basic_filebuf<charT,traits>*
 open(const char* filename, ios_base::open_mode mode);
 basic_filebuf<charT,traits>* close();
protected:
 virtual streamsize showmanyc();
 virtual int_type underflow();
 virtual int_type uflow();
 virtual int_type pbackfail(int_type c = traits::eof());
 virtual int_type overflow(int_type c = traits::eof());
 virtual basic_streambuf<charT,traits>*
 setbuf(char_type* s, streamsize n);
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode = ios_base::in | ios_base::out);
 virtual pos_type seekpos(pos_type newpos,
 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual int sync();
 virtual void imbue(const locale& loc);
};
The basic_filebuf class
 template implements a stream buffer that is associated with an
 external file. The connection to the external file is equivalent to
 calling C I/O functions (declared in <cstdio>) but may or may not
 actually call the C functions. For example, the open function is equivalent to calling
 fopen and having the filebuf object store the returned FILE pointer.
The external file is treated as a series of bytes, which might
 form multibyte characters. When converting the multibyte character
 sequences to characters in the file buffer, which are of type
 charT, the file buffer uses a
 code conversion facet from the buffer's locale. This codecvt facet is equivalent to
 a_codecvt, which is declared and
 initialized as follows:
std::codecvt<charT, char, typename traits::state_type>
 a_codecvt = use_facet<codecvt<charT, char,
 typename traits::state_type> >(getloc());
Some of the function descriptions in this section refer to
 a_codecvt and describe functionality,
 assuming that an actual codecvt
 facet object exists. An implementation does not have to create a
 codecvt facet object as long as
 the file stream acts as though it did create and use an explicit
 codecvt facet. (See <locale> for more information about
 codecvt.)
Remember that codecvt<char, char, mbstate_t> is essentially a no-op,
 mapping a character to itself, so the codecvt facet is most important when
 charT is wchar_t.
See <streambuf> for a
 description of the required behavior of a stream buffer, especially
 for the virtual functions that basic_filebuf overrides.
The following are the member functions of basic_filebuf:
	 basic_filebuf ()
	Initializes the file buffer in a closed state.

	virtual ~basic_filebuf
 ()
	Calls close() and
 finalizes the file buffer.

	basic_filebuf<charT,
 traits>* close
 ()
	Closes the file, severing the connection between the
 external file and the file buffer. If the file is already
 closed, it returns a null pointer. Otherwise, it calls
 overflow(EOF) to flush the
 output buffer. If the buffer recently called overflow, the external character
 stream might have an incomplete shift sequence of a multibyte
 character. The close
 function therefore calls a_codecvt
 .unshift() as often as
 needed to complete the shift sequence, and then calls overflow(EOF) again to flush the
 buffer. Finally, the external file is closed by calling
 fclose or its
 equivalent.
The return value is this for success or a null pointer
 for failure.

	virtual void imbue (const
 locale& loc)
	Changes the file buffer's locale, in particular the
 codecvt facet. It is safe
 to change the locale when the file is positioned at its
 beginning, when the character encoding
 (a_codecvt .encoding()) is not
 state-dependent, or the old and new locales have the same
 codecvt facet.

	bool is_open
 () const
	Returns true if the
 file is open or false if
 the file is closed.

	basic_filebuf<charT,
 traits>*
 open (const
 char* filename, ios_base::openmode mode)
basic_filebuf<charT,
 traits>*
 open (const char* filename, ios_base::open_mode mode)
	Opens the file filename. If the file is already
 open (is_open() returns
 true), a null pointer is
 returned immediately; otherwise, the file buffer is
 initialized and the named file is opened by calling the
 equivalent of fopen(filename,
 modestr). The
 modestr is determined from the
 mode (without the ios_base::ate bit), as shown in
 Table 13-9. No
 other mode combinations are allowed. If the mode includes ios_base::ate, the opened file is
 positioned at its end by calling the equivalent of fseek(file, 0, SEEK_END).
The second form is deprecated. It has the same
 functionality as the first form. See ios_base::openmode in <ios> for details.
If the file is opened successfully, this is returned; otherwise, the
 return value is a null pointer.
Table 13-9. File open modes
	ios_base mode bits
	fopen equivalent mode
 string

	 out

	"w"

	 out |
 app
	"a"

	 out |
 trunc
	"w"

	 in

	"r"

	 in |
 out
	"r+"

	 in | out |
 trunc
	"w+"

	 binary |
 out
	"wb"

	 binary | out |
 app
	"ab"

	 binary | out |
 trunc
	"wb"

	 binary |
 in
	"rb"

	 binary | in |
 out
	"r+b"

	 binary | in |
 out | trunc
	"w+b"

	virtual int_type
 overflow
 (int_type
 c = traits::eof())
	Converts its output using
 a_codecvt .out and writes the converted
 characters to the external file. The return value is traits::eof() for failure, which
 also occurs if the file is not open. For success, the return
 value is traits::not_eof(c).

	virtual int_type
 pbackfail
 (int_type
 c = traits::eof())
	Tries to push back the character c so it will be the next character
 read from the input buffer. If a push-back position is not
 available (see <streambuf> for a definition
 of "push-back position"), the file buffer attempts to make one
 available (e.g., by moving the file position).
If c is traits::eof() or the same character
 as gptr()[-1], the file
 buffer decrements the gptr(
) pointer; otherwise, if the input array is
 assignable, c is assigned
 to gptr()[-1] and gptr() is decremented.
The return value is traits::eof() for failure or
 traits::not_eof(c) for
 success.

	virtual pos_type
 seekoff
 (off_type
 off, ios_base::seekdir way,
 ios_base::openmode = ios_base::in | ios_base::out)
	Tries to seek to a new position in the file as an offset
 from a defined position. If the file is not open, the attempt
 to seek fails. If the character set encoding uses shift states
 or otherwise does not have a fixed size per character,
 off must be 0. Otherwise, if the destination is
 not the current position (off != 0 or way != basic_ios::cur), the output buffer
 is flushed and unshift sequences are written as needed
 (a_codecvt .unshift). The new file position is
 set by calling the equivalent of fseek(file,
 width * off,
 origin), in which
 width is
 a_codecvt .encoding() and
 origin is determined as shown in
 Table 13-10. If
 width < 0, off must be 0, so the call is fseek(file, 0, origin
). The return value is the
 new file position or -1 for
 an error or if the new position is unknown. Note that seekoff does not use its final
 parameter.
Table 13-10. Seek origins
	ios_base::seekdir options
	fseek equivalents

	 basic_ios::beg

	 SEEK_SET

	 basic_ios::cur

	 SEEK_CUR

	 basic_ios::end

	 SEEK_END

	virtual pos_type
 seekpos (pos_type newpos,
 ios_base::openmode
 which=ios_base::in|ios_base::out)
	Attempts to set the file position to newpos, which must be the result of
 calling seekoff or seekpos on the same file. If
 which includes the ios_base::in bit, the input sequence
 is updated; if which
 includes the ios_base::out
 bit, the output sequence is updated, and any necessary unshift
 characters are written prior to setting the file position. If
 neither bit is set in which, an error results. The return
 value is -1 for an error or
 newpos for success.

	[image:] virtual basic_streambuf<charT, traits>*
 setbuf (char_type*
 s, streamsize n)
	Sets the buffer. If you call setbuf(0, 0) before any I/O operations are
 performed on a file, the file is set to unbuffered. The
 behavior is implementation-defined for any other argument
 values. The return value is this.

	virtual streamsize
 showmanyc
 ()
	Returns an estimate of the number of characters
 immediately available for input.In other words, it does the
 same thing as the base class showmanyc function.

	[image:] virtual int sync ()
	Flushes output to the external file. The behavior for
 input is implementation-defined.

	virtual int_type
 uflow ()
	Fills the input buffer in the same manner as underflow.

	virtual int_type
 underflow
 ()
	Fills the input buffer. Multibyte characters are read
 from the external file and converted to charT characters by calling the
 equivalent of a_codecvt .in.

See Also
filebuf class, wfilebuf class, basic_streambuf in <streambuf>

Name
basic_fstream class template — Class template for file input and output
 streams

Synopsis
template <class charT, class traits=char_traits<charT> >
class basic_fstream : public basic_iostream<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 basic_fstream();
 explicit basic_fstream(const char* filename,
 ios_base::openmode mode = ios_base::in|ios_base::out);

 basic_filebuf<charT,traits>* rdbuf() const;
 bool is_open();
 void open(const char* filename,
 ios_base::openmode mode = ios_base::in|ios_base::out);
 void close();
};
The basic_fstream class
 template supports reading and writing to and from named files using
 a basic_filebuf<charT,
 traits> object. (See <istream> for a description of the
 base-class template, basic_iostream.) In the following member
 function descriptions, the file buffer object is assumed to be a
 private data member with the name
 buf.
	 basic_fstream ()
	Constructor initializes the base class with basic_iostream(& buf) and initializes
 buf with its default
 constructor.

	explicit basic_fstream
 (const char* filename, ios_base::openmode mode = ios_base::in | ios_base::out)
	Initializes the base class and
 buf, then calls open(filename, mode). If open returns a null pointer, the
 constructor calls setstate(failbit).

	basic_filebuf<charT,
 traits>* rdbuf
 () const
	Returns &
 buf.

	bool is_open
 ()
	Returns rdbuf()->is_open(
).

	void open
 (const
 char* filename, ios_base::openmode mode = ios_base::in | ios_base::out)
	Calls rdbuf(
)->open(filename, mode). If that function returns a
 null pointer, open calls
 setstate(failbit).

	void close
 ()
	Calls rdbuf()->close(
). If that function fails, close calls setstate(failbit).

See Also
basic_filebuf class
 template, basic_ios in
 <ios> , basic_iostream in <istream>

Name
basic_ifstream class template — Class template for file input streams

Synopsis
template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 basic_ifstream();
 explicit basic_ifstream(const char* s, ios_base::openmode mode = ios_base::in);

 basic_filebuf<charT,traits>* rdbuf() const;
 bool is_open();
 void open(const char* s, ios_base::openmode mode = ios_base::in);
 void open(const char* s, ios_base::open_mode mode);
 void close();
};
The basic_ifstream class
 template supports reading from named files using a basic_filebuf<charT, traits> object. (See <istream> for a description of the
 base-class template, basic_istream.) In the following member
 function descriptions, the file buffer object is assumed to be a
 private data member with the name
 buf:
	 basic_ifstream ()
	Initializes the base class with basic_istream(&
 buf) and initializes
 buf with its default
 constructor.

	explicit basic_ifstream
 (const char* filename, ios_base::openmode mode = ios_base::in)
	Initializes the base class and
 buf, then calls open(filename, mode). If open returns a null pointer, the
 constructor calls setstate(failbit).

	basic_filebuf<charT,
 traits>* rdbuf
 () const
	Returns &
 buf.

	bool is_open
 ()
	Returns rdbuf()->is_open(
).

	void open
 (const
 char* filename, ios_base::openmode mode = ios_base::in)
void open
 (const char* filename,ios_base::open_mode mode)
	Calls rdbuf(
)->open(filename, mode). If that function returns a
 null pointer, open calls
 setstate(failbit). The
 second form is deprecated. It has the same functionality as
 the first form. See ios_base::openmode in <ios> for details.

	void close
 ()
	Calls rdbuf()->close(
). If that function fails, close calls setstate(failbit).

See Also
basic_filebuf class
 template, basic_ios in
 <ios> , basic_istream in <istream>

Name
basic_ofstream class template — Class template for file output streams

Synopsis
template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 basic_ofstream();
 explicit basic_ofstream(const char* s, ios_base::openmode mode =
 ios_base::out);
 basic_filebuf<charT,traits>* rdbuf() const;
 bool is_open();
 void open(const char* s, ios_base::openmode mode = ios_base::out);
 void open(const char* s, ios_base::open_mode mode);
 void close();
};
The basic_ofstream class
 template supports writing to named files using a basic_filebuf<charT, traits> object. (See <ostream> for a description of the
 base-class template, basic_ostream.) In the following member
 function descriptions, the file buffer object is assumed to be a
 private data member with the name
 buf:
	 basic_ofstream ()
	Initializes the base class with basic_ostream(&
 buf) and initializes
 buf with its default
 constructor.

	explicit basic_ofstream
 (const char* filename, ios_base::openmode mode = ios_base::out)
	Initializes the base class and
 buf, then calls open(filename, mode). If open returns a null pointer, the
 constructor calls setstate(failbit).

	basic_filebuf<charT,
 traits>* rdbuf
 () const
	Returns &
 buf.

	bool is_open
 ()
	Returns rdbuf()->is_open(
).

	void open
 (const char* filename, ios_base::openmode mode = ios_base::out)
void open
 (const
 char* filename,ios_base::open_mode mode)
	Calls rdbuf(
)->open(filename, mode). If that function returns a
 null pointer, open calls
 setstate(failbit). The
 second form is deprecated. It has the same functionality as
 the first form. See ios_base::openmode in <ios> for details.

	void close
 ()
	Calls rdbuf()->close(
). If that function fails, close calls setstate(failbit).

See Also
basic_filebuf class
 template, basic_ios in
 <ios> , basic_ostream in <ostream>

Name
filebuf class — File buffer

Synopsis
typedef basic_filebuf<char> filebuf;
The filebuf class is a
 specialization of the basic_filebuf template for char characters.

See Also
basic_filebuf class
 template, wfilebuf
 class

Name
fstream class — Input and output file stream

Synopsis
typedef basic_fstream<char> fstream;
The fstream class is a
 specialization of the basic_fstream template for char characters.

See Also
basic_fstream class
 template, wfstream
 class, iostream in <istream>

Name
ifstream class — Input file stream

Synopsis
typedef basic_ifstream<char> ifstream;
The ifstream class is a
 specialization of the basic_ifstream template for char characters. Example 13-9 shows a simple use
 of the ifstream and ofstream classes.

Example
Example 13-9. Copying a file using ifstream and ofstream
#include <cstdlib>
#include <fstream>
#include <cstdio> // For perror()
#include <iostream> // For cerr

int main(int argc, char** argv)
{
 if (argc != 3) {
 std::cerr << "usage: copy FROM TO\n";
 return EXIT_FAILURE;
 }

 // Open the input file.
 std::ifstream in(argv[1]);
 if (! in) {
 std::perror(argv[1]);
 return EXIT_FAILURE;
 }

 // Open the output file.
 std::ofstream out(argv[2]);
 if (! out) {
 std::perror(argv[2]);
 return EXIT_FAILURE;
 }

 // Copy the input to the output, one character at a time.
 char c;
 while (in.get(c))
 out.put(c);
 out.close();
 // Make sure the output was written.
 if (! out) {
 std::perror(argv[2]);
 return EXIT_FAILURE;
 }
}

See Also
basic_ifstream class
 template, wifstream
 class, istream in <istream>

Name
ofstream class — Output file stream

Synopsis
typedef basic_ofstream<char> ofstream;
The ofstream class is a
 specialization of the basic_ofstream template for char characters.

See Also
basic_ofstream class
 template, wofstream
 class, ostream in <ostream>

Name
wfilebuf class — Wide character file buffer

Synopsis
typedef basic_filebuf<wchar_t> wfilebuf;
The wfilebuf class is a
 specialization of the basic_filebuf template for wchar_t characters.

See Also
basic_filebuf class
 template, filebuf
 class

Name
wfstream class — Wide character input and output stream

Synopsis
typedef basic_fstream<wchar_t> wfstream;
The wfstream class is a
 specialization of the basic_fstream template for wchar_t characters.

See Also
basic_fstream class
 template, fstream
 class, wiostream in <istream>

Name
wifstream class — Wide character input stream

Synopsis
typedef basic_ifstream<wchar_t> wifstream;
The wifstream class is a
 specialization of the basic_ifstream template for wchar_t characters.

See Also
basic_ifstream class
 template, ifstream
 class, wistream in <istream>

Name
wofstream class — Wide character output stream

Synopsis
typedef basic_ofstream<wchar_t> wofstream;
The wofstream class is a
 specialization of the basic_ofstream template for wchar_t characters.

See Also
basic_ofstream class
 template, ofstream
 class, wostream in <ostream>

<functional>

The <functional>
 header defines several functionals,
 or function objects. A function object is an object
 that has an operator(), so it can be
 called using the same syntax as a function. Function objects are most
 often used with the standard algorithms.
For example, to copy a sequence of integers, adding a fixed amount
 (42) to each value, you could use the following expression:
std::transform(src.begin(), src.end(), dst.begin(),
 std::bind2nd(std::plus<int>(), 42))
The result of combining bind2nd
 and plus<int> is a function
 object that adds the value 42 when it
 is applied to any integer. The transform algorithm copies all the elements
 from src to dst, applying the functional argument to each
 element. See the detailed description of bind2nd and plus in this section for details.
The standard function objects are defined for C++ operators; for
 binding function arguments; and for adapting functions, member
 functions, etc., as function objects.
Boost defines functionals that extend and improve on those in the
 standard library. See Appendix B
 for information about Boost.

Name
binary_function class template — Base class for binary functionals

Synopsis
template <typename Arg1, typename Arg2, typename Result>
struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
};
The binary_function
 template is a base-class template for all the function classes that
 represent binary operations. It provides standard names for the
 argument and result types.
The base template has separate template parameters for each of
 the argument types and the return type. Many of the predefined
 function objects in this section use the same type for all three
 parameters, but you can use different types when defining your own
 function object, as shown in Example 13-10.

Example
Example 13-10. Functional to round off a floating-point number
// Functional for a binary function that rounds off a floating-point number (of
// type FltT) to a certain number of decimal places (supplied as an unsigned)
template<typename FltT>
struct roundoff : std::binary_function<FltT,unsigned,FltT> {
 FltT operator()(FltT x, unsigned digits) const {
 FltT y = std::pow(10.0, static_cast<FltT>(digits));
 FltT z = x * y;
 return (z < 0 ? std::ceil(z - 0.5) : std::floor(z + 0.5)) / y;
 }
};
...
// Copy seq to seq2, rounding off to two decimal places.
std::transform(seq.begin(), seq.end(), seq2.begin(),
 std::bind2nd(roundoff<double>(), 2));

See Also
binary_negate class
 template, const_mem_fun1_ref_t class
 template, const_mem_fun1_t
 class template, mem_fun1_ref_t class template,
 mem_fun1_t class template,
 pointer_to_binary_function class
 template, unary_function
 class template

Name
binary_negate class template — Logical negation of a binary predicate

Synopsis
template <typename P>
class binary_negate : public
 binary_function<typename P::first_argument_type,
 typename P::second_argument_type, bool>
{
public:
 explicit binary_negate(const P& predicate);
 bool operator()(const typename P::first_argument_type& x,
 const typename P::second_argument_type& y) const;
};
The binary_negate class
 template is a binary functional that returns the logical negation of
 another binary functional—that is, operator() returns !predicate(x, y). The simplest way to use binary_negate is to use the not2 function template.

See Also
unary_negate class
 template, not2 function
 template

Name
bind1st function template — Creates a binder1st function object

Synopsis
template <typename Operation, typename T>
binder1st<Operation> bind1st(const Operation& op, const T& x);
The bind1st function is a
 convenient way to construct a binder1st object. Use bind1st when you have a binary function
 and always want to supply the same value as the first argument to
 the function.

Example
Suppose you have a container of data points, and you want to
 count the number of points that exceed a threshold—in other words,
 where the threshold is less than or equal to the data point. Here is
 one way to do this:
std::cout
 << std::count_if(data.begin(), data.end(),
 std::bind1st(std::less_equal<double>(), threshold))
 << '\n';

See Also
bind2nd function
 template, binder1st class
 template

Name
bind2nd function template — Creates a binder2nd function object

Synopsis
template <typename Operation, typename T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);
The bind2nd function is a
 convenient way to construct a binder2nd object. Use bind2nd when you have a binary function
 and always want to supply the same value as the first argument to
 the function.

Example
Suppose you have a container of data points, and you want to
 count the number of points that exceed a threshold. Here is one way
 to do this:
std::cout << std::count_if(data.begin(), data.end(),
 std::bind2nd(std::greater<double>(), threshold)) << '\n';

See Also
bind1st function
 template, binder2nd class
 template

Name
binder1st class template — Binds a value to the first argument of a binary
 function

Synopsis
template <typename Operation>
class binder1st : public unary_function<
 typename Operation::second_argument_type,
 typename Operation::result_type>
{
protected:
 Operation op;
 typename Operation::first_argument_type value;
public:
 binder1st(const Operation& x,
 const typename Operation::first_argument_type& y);
 typename Operation::result_type operator()
 (const typename Operation::second_argument_type& x)const;
};
The binder1st class
 template is a unary functional that binds a fixed value as the first
 argument to a binary function object. The constructor initializes
 the op and value data members with the x and y
 arguments. The operator() member
 function returns op(value,
 x).
See the bind1st function
 template for an easier way to construct and use the binder1st class template.

See Also
bind1st function
 template, binder2nd class
 template

Name
binder2nd class template — Binds a value to the second argument of a binary
 function

Synopsis
template <typename Operation>
class binder2nd : public unary_function<
 typename Operation::first_argument_type,
 typename Operation::result_type>
{
protected:
 Operation op;
 typename Operation::second_argument_type value;
public:
 binder2nd(const Operation& x,
 const typename Operation::second_argument_type& y);
 typename Operation::result_type operator()
 (const typename Operation::first_argument_type& x) const;
};
The binder2nd class
 template is a unary functional that binds a fixed value as the
 second argument to a binary function object. The constructor
 initializes the op and value data members with the x and y
 arguments. The operator() member
 function returns op(x, value).
See the bind2nd function
 template for an easier way to construct and use the binder2nd class template.

See Also
bind2nd function
 template, binder1st class
 template

Name
const_mem_fun_ref_t class template — Calls a member function of a constant reference
 object

Synopsis
template <typename Rtn, typename T>
class const_mem_fun_ref_t : public unary_function<T, Rtn>
{
public:
 explicit const_mem_fun_ref_t(Rtn (T::*p)() const);
 Rtn operator()(const T& p) const;
};
The const_mem_fun_ref_t
 class template is a unary functional that wraps a member function
 pointer. The Rtn template
 parameter is the member function's return type, and the T template parameter is the class that
 declares the member function. The argument to the constructor is a
 pointer to the member function, which takes no arguments. The member
 function is called from operator(
) using a reference to the const object.
See the mem_fun_ref
 function template for an easier way to construct and use the
 const_mem_fun_ref_t class
 template.

See Also
const_mem_fun_t class
 template, const_mem_fun1_ref_t class
 template, mem_fun_ref
 function template, mem_fun_ref_t class template

Name
const_mem_fun_t class template — Calls a member function of a constant
 object

Synopsis
template <class Rtn, class T>
class const_mem_fun_t : public unary_function<T*, Rtn>
{
public:
 explicit const_mem_fun_t(Rtn (T::*p)() const);
 Rtn operator()(const T* p) const;
};
The const_mem_fun_t class
 template is a unary functional that wraps a member function pointer.
 The Rtn template parameter is the
 member function's return type, and the T template parameter is the class that
 declares the member function. The argument to the constructor is a
 pointer to the member function, which takes no arguments. The member
 function is called from operator(
) using a pointer to the const object.
See the mem_fun function
 template for an easier way to construct and use the const_mem_fun_t class template.

See Also
const_mem_fun_ref_t class
 template, const_mem_fun1_t
 class template, mem_fun
 function template, mem_fun_t
 class template

Name
const_mem_fun1_ref_t class template — Calls a member function of a constant reference object
 with an argument

Synopsis
template <typename Rtn, typename T, typename Arg>
class const_mem_fun1_ref_t :
 public binary_function<T, Arg, Rtn>
{
public:
 explicit const_mem_fun1_ref_t(Rtn (T::*p)(Arg) const);
 Rtn operator()(const T& p, Arg x) const;
};
The const_mem_fun1_ref_t
 class template is a binary functional that wraps a member function
 pointer. The Rtn template
 parameter is the member function's return type, the T template parameter is the class that
 declares the member function, and the Arg template parameter is the type of the
 member function's sole argument.
The argument to the constructor is a pointer to the member
 function. The member function is called from operator() using a reference to the
 const object.
See the mem_fun_ref
 function template for an easier way to construct and use the
 const_mem_fun1_ref_t class
 template.

See Also
const_mem_fun_ref_t class
 template, const_mem_fun1_t
 class template, mem_fun_ref
 function template, mem_fun1_ref_t class
 template

Name
const_mem_fun1_t class template — Calls a member function of a constant object with an
 argument

Synopsis
template <typename Rtn, typename T, typename Arg>
class const_mem_fun1_t: public binary_function<T*, Arg, Rtn>
{
public:
 explicit const_mem_fun1_t(Rtn (T::*p)(Arg) const);
 Rtn operator()(const T* p, Arg x) const;
};
The const_mem_fun1_t class
 template is a binary functional that wraps a member function
 pointer. The Rtn template
 parameter is the member function's return type, the T template parameter is the class that
 declares the member function, and the Arg template parameter is the type of the
 member function's sole argument.
The argument to the constructor is a pointer to the member
 function. The member function is called from operator() using a pointer to the
 const object.
See the mem_fun function
 template for an easier way to construct and use the const_mem_fun1_t class template.

See Also
const_mem_fun_t class
 template, const_mem_fun1_ref_t class
 template, mem_fun function
 template, mem_fun1_t class
 template

Name
divides class template — Binary functional to divide

Synopsis
template <typename T>
struct divides : binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
};
The divides class template
 is a binary functional in which operator(
) returns x / y.

See Also
binary_function class
 template, minus class
 template, modulus class
 template, multiplies class
 template, negate class
 template, plus class
 template

Name
equal_to class template — Binary functional to compare for equality

Synopsis
template <typename T>
struct equal_to : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The equal_to class template
 is a binary functional in which operator(
) returns x == y.

See Also
binary_function class
 template, greater class
 template, greater_equal class
 template, less class
 template, less_equal class
 template, not_equal_to class
 template

Name
greater class template — Binary functional to compare for
 greater-than

Synopsis
template <typename T>
struct greater : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The greater class template
 is a binary functional in which operator(
) returns x > y.

See Also
binary_function class
 template, equal_to class
 template, greater_equal class
 template, less class
 template, less_equal class
 template, not_equal_to class
 template

Name
greater_equal class template — Binary functional to compare for
 greater-than-or-equal

Synopsis
template <typename T>
struct greater_equal : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The greater_equal class
 template is a binary functional in which operator() returns x >=
 y.

See Also
binary_function class
 template, equal_to class
 template, greater class
 template, less class
 template, less_equal class
 template, not_equal_to class
 template

Name
less class template — Binary functional to compare for less-than

Synopsis
template <typename T>
struct less : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The less class template is
 a binary functional in which operator(
) returns x < y.

See Also
binary_function class
 template, equal_to class
 template, greater class
 template, greater_equal class
 template, less_equal class
 template, not_equal_to class
 template

Name
less_equal class template — Binary functional to compare for
 less-than-or-equal

Synopsis
template <typename T>
struct less_equal : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The less_equal class
 template is a binary functional in which operator() returns x <=
 y.

See Also
binary_function class
 template, equal_to class
 template, greater class
 template, greater_equal class
 template, less class
 template, not_equal_to class
 template

Name
logical_and class template — Binary functional for logical conjunction

Synopsis
template <typename T>
struct logical_and : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The logical_and class
 template is a binary functional in which operator() returns x && y. Note that no short-circuiting occurs
 because both arguments must be evaluated before operator() can be called.

See Also
logical_not class
 template, logical_or class
 template

Name
logical_not class template — Binary functional for logical negation

Synopsis
template <typename T>
struct logical_not : unary_function<T, bool> {
 bool operator()(const T& x) const;
};
The logical_not class
 template is a unary functional in which operator() returns !x.

See Also
logical_and class
 template, logical_or class
 template, not1 function
 template, not2 function
 template

Name
logical_or class template — Binary functional for logical disjunction

Synopsis
template <typename T>
struct logical_or : binary_function<T, T, bool> {
 bool operator()(const T& x, const T& y) const;
};
The logical_or class
 template is a binary functional in which operator() returns x ||
 y. Note that no short-circuiting
 occurs because both arguments must be evaluated before operator() can be called.

See Also
logical_and class
 template, logical_not class
 template

Name
mem_fun function template — Creates a function object to call a member function via
 a pointer

Synopsis
template<typename Rtn, typename T>
 const_mem_fun_t<Rtn,T> mem_fun(Rtn (T::*f)() const);
template<typename Rtn, typename T, typename Arg>
 const_mem_fun1_t<Rtn,T,Arg> mem_fun(Rtn (T::*f)(Arg) const);
template<typename Rtn, typename T>
 mem_fun_t<Rtn,T> mem_fun(Rtn (T::*f)());
template<typename Rtn, typename T, typename Arg>
 mem_fun1_t<Rtn,T,Arg> mem_fun(Rtn (T::*f)(Arg));
The mem_fun function
 template takes a pointer to a member function as an argument and
 returns a function object that can call the member function. The
 function object must be applied to a pointer to T (or a derived class). The Rtn template parameter is the return type
 of the member function, and the T
 template parameter is the object that has the member function. The
 optional Arg template parameter
 is the type of the argument to the member function.
The mem_fun function is
 usually the simplest way to create a function object that wraps a
 member function. In normal use, the compiler deduces the template
 parameters.
Suppose you have an Employee class and a container of Employee pointers. One of the member
 functions of Employee is gets_bonus, which returns a bool: true if the employee is lucky and gets a
 bonus this year, and false if the
 employee is unlucky. Example
 13-11 shows how to remove all the unlucky employees from the
 container.

Example
Example 13-11. Wrapping a member function called via a pointer as a
 function object
class Employee {
public:
 int sales() const { return sales_; }
 std::string name() const { return name_; }
 bool gets_bonus() const { return sales() > bonus; }
...
};

std::list<Employee*> empptrs;
// Fill empptrs with pointers to Employee objects.
...
// Remove the employees who will NOT receive bonuses.
std::list<Employee*>::iterator last =
 std::remove_if(empptrs.begin(), empptrs.end(),
 std::not1(std::mem_fun(&Employee::gets_bonus)));

See Also
const_mem_fun_t class
 template, const_mem_fun1_t
 class template, mem_fun_ref
 function template, mem_fun_t
 class template, mem_fun1_t
 class template, ptr_fun
 function template

Name
mem_fun_ref function template — Creates a function object to call a member function via
 a reference

Synopsis
template<typename Rtn, typename T>
 const_mem_fun_ref_t<Rtn,T>
 mem_fun_ref(Rtn (T::*f)() const);
template<typename Rtn, typename T, typename Arg>
 const_mem_fun1_ref_t<Rtn,T,Arg>
 mem_fun_ref(Rtn (T::*f)(Arg) const);
template<typename Rtn, typename T>
 mem_fun_ref_t<Rtn,T> mem_fun_ref(Rtn (T::*f)());
template<typename Rtn, typename T, typename Arg>
 mem_fun1_ref_t<Rtn,T,A> mem_fun_ref(Rtn (T::*f)(Arg));
The mem_fun_ref function
 template takes a pointer to a member function as an argument and
 returns a function object that can call the member function. The
 function object must be applied to an object of type T (or a derived class). The object is
 passed by reference to the functional. The Rtn template parameter is the return type
 of the member function; the T
 template parameter is the object that has the member function. The
 optional Arg template parameter
 is the type of the argument to the member function.
The mem_fun_ref function is
 usually the simplest way to create a function object that wraps a
 member function. In normal use, the compiler deduces the template
 parameters.
Suppose you have an Employee class and a container of Employee objects. As in Example 13-11, one of the
 member functions of Employee is
 gets_bonus, which returns a
 bool: true if the employee is lucky and gets a
 bonus this year, or false if the
 employee is unlucky. Example
 13-12 shows how to remove all the unlucky employees from the
 container.

Example
Example 13-12. Wrapping a member function called via a reference as a
 function object
class Employee {
public:
 int sales() const { return sales_; }
 std::string name() const { return name_; }
 bool gets_bonus() const { return sales() > bonus; }
...
};

std::list<Employee> emps;
// Fill emps with Employee objects.
...
// Erase the employees who will NOT receive bonuses. The call to remove_if
// rearranges emps; the call to erase removes the unlucky employees from the
// list.
emps.erase(
 std::remove_if(emps.begin(), emps.end(),
 std::not1(std::mem_fun_ref(&Employee::gets_bonus))),
 emps.end());

See Also
const_mem_fun_ref_t class
 template, const_mem_fun1_ref_t class
 template, mem_fun function
 template, mem_fun_ref_t class
 template, mem_fun1_ref_t
 class template, ptr_fun
 function template

Name
mem_fun_ref_t class template — Calls a member function of a reference
 object

Synopsis
template <typename Rtn, typename T>
class mem_fun_ref_t : public unary_function<T, Rtn>
{
public:
 explicit mem_fun_ref_t(Rtn (T::*p)());
 Rtn operator()(T& p) const;
};
The mem_fun_ref_t class
 template is a unary functional that wraps a member function pointer.
 The Rtn template parameter is the
 member function's return type, and the T template parameter is the class that
 declares the member function. The argument to the constructor is a
 pointer to the member function, which takes no arguments. The member
 function is called from operator(
) using a reference to the object.
See the mem_fun_ref
 function template for an easier way to construct and use the
 mem_fun_ref_t class
 template.

See Also
const_mem_fun_ref_t class
 template, mem_fun_ref
 function template, mem_fun_t
 class template, mem_fun1_ref_t class
 template

Name
mem_fun_t class template — Calls a member function of a constant
 object

Synopsis
template <class Rtn, class T>
class mem_fun_t : public unary_function<T*, Rtn>
{
public:
 explicit mem_fun_t(Rtn (T::*p)() const);
 Rtn operator()(const T* p) const;
};
The mem_fun_t class
 template is a unary functional that wraps a member function pointer.
 The Rtn template parameter is the
 member function's return type, and the T template parameter is the class that
 declares the member function. The argument to the constructor is a
 pointer to the member function, which takes no arguments. The member
 function is called from operator(
) using a pointer to the object.
See the mem_fun function
 template for an easier way to construct and use the mem_fun_t class template.

See Also
const_mem_fun_t class
 template, mem_fun function
 template, mem_fun_ref_t class
 template, mem_fun1_t class
 template

Name
mem_fun1_ref_t class template — Calls a member function of a constant reference object
 with an argument

Synopsis
template <typename Rtn, typename T, typename Arg>
class mem_fun1_ref_t :
 public binary_function<T, Arg, Rtn>
{
public:
 explicit mem_fun1_ref_t(Rtn (T::*p)(Arg) const);
 Rtn operator()(const T& p, Arg x) const;
};
The mem_fun1_ref_t class
 template is a binary functional that wraps a member function
 pointer. The Rtn template
 parameter is the member function's return type, the T template parameter is the class that
 declares the member function, and the Arg template parameter is the type of the
 member function's sole argument.
The argument to the constructor is a pointer to the member
 function. The member function is called from operator() using a const reference to the object.
See the mem_fun_ref
 function template for an easier way to construct and use the
 mem_fun1_ref_t class
 template.

See Also
const_mem_fun1_ref_t class
 template, mem_fun_ref
 function template, mem_fun_ref_t class template, mem_fun1_t class template

Name
mem_fun1_t class template — Calls a member function of an object with an
 argument

Synopsis
template <typename Rtn, typename T, typename Arg>
class mem_fun1_t: public binary_function<T*, Arg, Rtn>
{
public:
 explicit mem_fun1_t(Rtn (T::*p)(Arg));
 Rtn operator()(T* p, Arg x) const;
};
The mem_fun1_t class
 template is a binary functional that wraps a member function
 pointer. The Rtn template
 parameter is the member function's return type, the T template parameter is the class that
 declares the member function, and the Arg template parameter is the type of the
 member function's sole argument.
The argument to the constructor is a pointer to the member
 function. The member function is called from operator() using a pointer to the
 object.
See the mem_fun function
 template for an easier way to construct and use the mem_fun1_t class template.

See Also
const_mem_fun1_t class
 template, mem_fun function
 template, mem_fun_t class
 template, mem_fun1_ref_t
 class template

Name
minus class template — Binary functional for subtraction

Synopsis
template <typename T>
struct minus : binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
};
The minus class template is
 a binary functional in which operator(
) returns x - y.

See Also
binary_function class
 template, divides class
 template, modulus class
 template, multiplies class
 template, negate class
 template, plus class
 template

Name
modulus class template — Binary functional for modulus (remainder)

Synopsis
template <typename T>
struct modulus : binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
};
The modulus class template
 is a binary functional in which operator(
) returns x % y.

See Also
binary_function class
 template, divides class
 template, minus class
 template, multiplies class
 template, negate class
 template, plus class
 template

Name
multiplies class template — Binary functional for multiplication

Synopsis
template <typename T>
struct multiplies : binary_function<T, T, T> {
 T operator()(const T& x, const T& y) const;
};
The multiplies class
 template is a binary functional in which operator() returns x *
 y.

See Also
binary_function class
 template, divides class
 template, minus class
 template, modulus class
 template, negate class
 template, plus class
 template

Name
negate class template — Unary functional for arithmetic negation

Synopsis
template <typename T>
struct negate : unary_function<T,T> {
 T operator()(const T& x) const;
};
The negate class template
 is a unary functional that performs arithmetic negation, that is,
 operator() returns -x.

See Also
divides class template,
 minus class template, modulus class template, multiplies class template, plus class template, unary_function class
 template

Name
not1 function template — Returns a unary_negate object

Synopsis
template <typename Predicate>
unary_negate<Predicate> not1(const Predicate& pred);
The not1 function template
 is a convenient way to construct a unary_negate function object that performs
 the logical negation of pred. See
 Example 13-11 earlier in
 this section.

See Also
logical_not class
 template, not2 function
 template, unary_negate class
 template

Name
not2 function template — Returns a binary_negate object

Synopsis
template <typename Predicate>
binary_negate<Predicate> not2(const Predicate& pred);
The not2 function template
 is a convenient way to construct a binary_negate function object that
 performs the logical negation of pred.

See Also
binary_negate class
 template, logical_not class
 template, not1 function
 template

Name
not_equal_to class template — Binary functional for inequality

Synopsis
template <typename T>
struct not_equal_to : binary_function<T, T, bool>
{
 bool operator()(const T& x, const T& y) const;
};
The not_equal_to class
 template is a binary functional in which operator() returns x !=
 y.

See Also
binary_function class
 template, equal_to class
 template, greater class
 template, greater_equal class
 template, less class
 template, less_equal class
 template

Name
plus class template — Binary functional for addition

Synopsis
template <typename T>
struct plus : binary_function<T, T, T>
{
 T operator()(const T& x, const T& y) const;
};
The plus class template is
 a binary functional in which operator(
) returns x + y.

See Also
binary_function class
 template, divides class
 template, minus class
 template, modulus class
 template, multiplies class
 template, negate class
 template

Name
pointer_to_binary_function class template — Functional for a pointer to a binary
 function

Synopsis
template <class Arg1, class Arg2, class Rtn>
class pointer_to_binary_function :
 public binary_function<Arg1,Arg2,Rtn>
{
public:
 explicit pointer_to_binary_function(Rtn (*f)(Arg1, Arg2));
 Rtn operator()(Arg1 x, Arg2 y) const;
};
The pointer_to_binary_function class template
 is a function object that wraps a pointer to a function, in which
 the function is an ordinary (nonmember) function that takes two
 arguments. The ptr_fun function
 template is the most convenient way to create a pointer_to_binary_function object.

See Also
pointer_to_unary_function
 class template, ptr_fun
 function template

Name
pointer_to_unary_function class template — Functional for a pointer to a unary
 function

Synopsis
template <typename Arg, typename Rtn>
class pointer_to_unary_function :
 public unary_function<Arg, Rtn>
{
public:
 explicit pointer_to_unary_function(Result (*f)(Arg));
 Rtn operator()(Arg x) const;
};
The pointer_to_unary_function class template
 is a function object that wraps a pointer to a function, in which
 the function is an ordinary (nonmember) function that takes one
 argument. The ptr_fun function
 template is the most convenient way to create a pointer_to_unary_function object.

See Also
pointer_to_binary_function
 class template, ptr_fun
 function template

Name
ptr_fun function template — Creates a pointer to a function object

Synopsis
template <typename Arg1, typename Arg2, typename Rtn>
 pointer_to_binary_function<Arg1,Arg2,Rtn>
 ptr_fun(Rtn (*f)(Arg1, Arg2));
template <typename Arg, typename Rtn>
 pointer_to_unary_function<Arg, Rtn>
 ptr_fun(Rtn (*f)(Arg));
The ptr_fun function
 template creates a function object from a pointer to a function. The
 resulting function object has an operator(
) that calls the function. Functions of one and two
 arguments are supported.
For example, suppose you have two numeric vectors, a and b, and you want to raise each element of
 a to the power of the
 corresponding element in b,
 saving the result in a third vector, c. There is no predefined power function
 object, so you can use ptr_fun
 and your own power function
 instead, as shown in Example
 13-13.

Example
Example 13-13. Wrapping the pow function in a function object
std::vector<double> a, b, c;
double power(double x, double y)
{
 return std::pow(x, y);
}
...
std::transform(a.begin(), a.end(), b.begin(), c.begin(),std::ptr_fun(power));

See Also
mem_fun function
 template, mem_fun_ref
 function template, pointer_to_binary_function class
 template, pointer_to_unary_function class
 template

Name
unary_negate class template — Logical negation of a unary predicate

Synopsis
template <typename P>
class unary_negate :
 public unary_function<typename P::argument_type,bool>
{
public:
 explicit unary_negate(const P& predicate);
 bool operator()(const typename P::argument_type& x) const;
};
The unary_negate class
 template is a binary functional that returns the logical negation of
 another unary functional—that is, operator(
) returns !predicate(x). The simplest way to use
 unary_negate is to use the
 not1 function template.

See Also
binary_negate class
 template, not1 function
 template

Name
unary_function class template — Base class for unary functionals

Synopsis
template <typename Arg, typename Result>
struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
};
The unary_function template
 is a base class for all the function classes that represent unary
 operations. It provides standard names for the argument and result
 types.

See Also
binary_function class
 template, binder1st class
 template, binder2nd class
 template, const_mem_fun_ref_t
 class template, const_mem_fun_t class template,
 mem_fun_ref_t class template,
 mem_fun_t class template,
 negate class template, pointer_to_unary_function class
 template, unary_negate class template

<iomanip>

The <iomanip> header declares several I/O manipulators. An I/O
 manipulator is a function object that can be used in a sequence of input
 or output operators to manipulate the I/O stream. The manipulators are
 simple wrappers for functionality that is available as member functions
 of the ios_base class, but
 manipulators are simpler to use in some situations.
For example, to print formatted output, the following two code
 fragments are equivalent:
// Using manipulators
std::cout << std::setw(16) << std::setprecision(12) << x;

// Without manipulators
std::cout.width(16);
std::cout.precision(12);
std::cout << x;
At a basic level, manipulators are easy to use. If you want to
 understand exactly how they work, perhaps to write your own, see Chapter 9 for a thorough discussion of
 I/O, including manipulators.
[image: image with no caption]

The return type of each manipulator is implementation-defined. For
 the following function descriptions, this type is shown as
 manip_t.
Use a manipulator by applying it to a stream—that is,
 out << manip, in
 which out is an instance of basic_ostream, or
 in >> manip, in
 which in is an instance of basic_istream. In the following function
 descriptions, stream refers to the input or
 output stream to which the manipulator is being applied.

Name
resetiosflags function — Clears specified flags

Synopsis

 manip_t
 resetiosflags(ios_base::fmtflags mask)
The resetiosflags function
 clears the flag bits in mask for
 a stream. In other words, it performs the equivalent of
 stream .setf(ios_base::fmtflags(0), mask).

See Also
setiosflags function,
 ios_base in <ios>

Name
setbase function — Sets conversion radix

Synopsis

 manip_t
 setbase(int base)
The setbase function sets
 the conversion radix for a stream. In other words, it performs the
 equivalent of stream .setf(newbase, ios_base::basefield), in which
 newbase depends on base, as shown in Table 13-11. Notice that
 any value of a base other than 8, 10, or 16 is treated the same as
 0.
Table 13-11. Conversion radix
	setbase argument
	fmtflags equivalent

	 8

	 ios_base::oct

	 10

	 ios_base::dec

	 16

	 ios_base::hex

	Anything else
	 0

See Also
ios_base in <ios>

Name
setfill function template — Sets pad character

Synopsis
template <typename charT>
manip_t
 setfill(charT c)
The setfill function
 template sets the fill character for a stream to c. In other words, it performs the
 equivalent of stream .fill(c).

See Also
ios_base in <ios>

Name
setiosflags function — Sets specified flags

Synopsis

 manip_t
 setiosflags(ios_base::fmtflags mask)
The setiosflags function
 sets the flag bits in mask for a
 stream. In other words, it performs the equivalent of
 stream .setf(mask).

See Also
resetiosflags
 function, ios_base in
 <ios>

Name
setprecision function — Sets precision

Synopsis

 manip_t
 setprecision(int n)
The setprecision function
 template sets the output precision for a stream to n. In other words, it performs the
 equivalent of stream .precision(n).

See Also
ios_base in <ios>

Name
setw function — Sets field width

Synopsis

 manip_t
 setw(int n)
The setw function template
 sets the output field width for a stream to n. In other words, it performs the
 equivalent of stream .width(n).

See Also
ios_base in <ios>

<ios>

The <ios> header declares the classes, types, and manipulator
 functions that form the foundation of the C++ I/O library (which is
 often called I/O streams). The class ios_base is the base class for all I/O stream
 classes. The class template basic_ios
 derives from ios_base and declares
 the behavior that is common to all I/O streams (e.g., establishing a
 stream buffer and defining the I/O state).
Refer to Chapter 9 for more
 information about input and output, including the use of manipulators,
 formatting flags, streams, and stream buffers.
The <ios> header #includes <iosfwd>.

Name
basic_ios class template — Base class template for all I/O streams

Synopsis
template <class charT, class traits = char_traits<charT> >
class basic_ios : public ios_base
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 // Status
 operator void*();
 const bool operator!();
 const iostate rdstate() const;
 void clear(iostate state = goodbit);
 void clear(io_state state);
 void setstate(iostate state);
 void setstate(io_state state);
 bool good() const;
 bool eof() const;
 bool fail() const;
 bool bad() const;
 iostate exceptions() const;
 void exceptions(iostate except);
 void exceptions(io_state except);
 explicit basic_ios(basic_streambuf<charT,traits>* sb);
 virtual ~basic_ios();
 basic_ostream<charT,traits>* tie() const;
 basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);
 basic_streambuf<charT,traits>* rdbuf() const;
 basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);
 basic_ios& copyfmt(const basic_ios& rhs);
 char_type fill() const;
 char_type fill(char_type ch);
 locale imbue(const locale& loc);
 char narrow(char_type c, char deflt) const;
 char_type widen(char c) const;
protected:
 basic_ios();
 void init(basic_streambuf<charT,traits>* buf);
private:
 basic_ios(const basic_ios&); // Not defined
 basic_ios& operator=(const basic_ios&); // Not defined
};
The basic_ios class
 template is the root of all I/O stream class templates. It provides
 a common functionality for all derived stream classes; in
 particular, it manages a stream buffer. In the following
 descriptions, the name buf refers to a
 private data member that points to the stream buffer. An
 implementation can use any name.
The following are the member functions of basic_ios:
	 basic_ios ()
	The default constructor leaves the data members
 uninitialized. In a derived class, the default constructor
 must call init to
 initialize the members.

	 basic_ios (const basic_ios&)
	The copy constructor is declared private and is not
 defined, which prevents the copying of any I/O stream
 objects.

	explicit basic_ios
 (basic_streambuf<charT,traits>*
 sb)
	Calls init(sb) to
 initialize the members.

	 operator
 void* ()
	If fail() returns
 true, the void* operator returns a null
 pointer; otherwise, it returns a non-null pointer to indicate
 success. operator void* is most often used as an
 implicit conversion in a conditional (e.g., while (cin) cin >> data[i++]).

	const bool operator!
 ()
	Returns fail().
 operator ! is most often used in a
 conditional (e.g., if
 (!cout) cerr << "output error\n").

	basic_ios&
 operator= (const
 basic_ios&)
	The assignment operator, like the copy constructor, is
 private, so it cannot be used and is not defined. Assigning or
 copying an I/O stream would corrupt the stream buffer.

	bool bad
 ()
 const
	Returns true if
 badbit is set in rdstate(), or false otherwise.

	void clear
 (iostate state =
 goodbit)
void clear
 (io_state
 state)
	Sets the I/O state to state. If rdbuf() is a null pointer, badbit is also set (to state | ios_base::badbit). After setting the
 state, if any state bit is an exception bit ((rdstate() & exceptions()) != 0), basic_ios::failure is thrown.
The second form is deprecated. See ios_base::iostate later in this
 section for details.

	basic_ios&
 copyfmt (const basic_ios&
 rhs)
	Copies formatting information from rhs. In particular, the format
 flags, fill character, locale, and the contents of the
 iword() and pword() arrays are copied. The I/O
 state and stream buffer are not copied. Before copying any
 callback functions, each one is called with erase_event. The callbacks are then
 replaced with those copied from rhs, and each one is called with
 copyfmt_event. (See
 ios_base for information
 about callbacks.) The exceptions(
) mask is copied last. The return value is *this.

	bool eof
 ()
 const
	Returns true if
 eofbit is set in rdstate(), or false otherwise.

	iostate exceptions
 ()
 const
void exceptions
 (iostate
 except)
void exceptions
 (io_state
 except)
	Returns or sets the exception mask. (See the clear function for how and when an
 exception is thrown.) The third form is deprecated. See
 ios_base::iostate later in
 this section for details.

	bool fail
 ()
 const
	Returns true if
 badbit is set or if
 failbit is set in rdstate(), or false if neither bit is set.

	char_type fill
 ()
 const
char_type fill
 (char_type ch)
	Returns or changes the fill character (also called the
 pad character). When setting the fill
 character, the old fill character is returned.

	bool good
 ()
 const
	Returns true if the
 I/O state is clean—that is, it returns rdstate() == 0.

	locale imbue
 (const locale&
 loc)
	Calls ios_base::imbue(loc) and rdbuf()->pubimbue(loc) (if
 rdbuf() is not null). The
 return value is the previous value of ios_base::imbue().

	void init
 (basic_streambuf<charT,traits>*
 buf)
	Initializes the basic_ios object. Table 13-12 lists the
 observable effects of initialization. Also, the arrays for
 iword() and pword() are initially null
 pointers.

Table 13-12. Effects of calling basic_ios::init
	Member function
	Return value

	 exceptions(
)
	 goodbit

	 fill()

	 widen(' ')

	 flags()

	 skipws |
 dec

	 getloc()

	Current global locale, that is, std::locale()

	 precision(
)
	 6

	 rdbuf()

	 buf

	 rdstate()

	 buf !=0 ? goodbit : badbit

	 tie()

	Null pointer

	 width()

	 0

	char narrow
 (char_type c, char
 deflt) const
	Narrows the character c by returning the following:
std::use_facet<ctype<char_type> >(getloc()).narrow(c, deflt)

	basic_streambuf<charT,traits>*
 rdbuf
 ()
 const
basic_streambuf<charT,traits>*
 rdbuf (basic_streambuf<charT,traits>*
 sb)
	Returns or changes the stream buffer,
 buf. After changing the stream
 buffer, the rdbuf function
 calls clear(). The
 function returns the previous value of rdbuf().

	const iostate rdstate
 ()
 const
	Returns the current I/O state bitmask. See the bad, eof, fail, and good functions for convenient ways
 to test different bits in the state mask.

	void setstate
 (iostate
 state)
void setstate
 (io_state
 state)
	Sets the specified bits in the I/O state bitmask—that
 is, it calls clear(rdstate(
) | state). The
 second form is deprecated. See ios_base::iostate later in this
 section for details.

	basic_ostream<charT,traits>*
 tie
 () const
basic_ostream<charT,traits>*
 tie
 (basic_ostream<charT,traits>*
 tiestr)
	Ties a stream (typically an input stream) to an output
 stream, tiestr. Any input
 operation on this stream is prefaced by flushing tiestr. Tying streams can be used to
 ensure that prompts appear at the proper time. With no
 arguments, the tie function
 returns the currently tied stream, or 0 if no stream is tied.

	char_type widen
 (char c)
 const
	Widens the character c by returning the following:
std::use_facet<ctype<char_type> >(getloc()).widen(c)

See Also
ios_base class,
 ctype in <locale> , basic_streambuf in <streambuf>

Name
boolalpha function — Manipulator for reading and writing bool as
 text

Synopsis
ios_base& boolalpha(ios_base& stream)
The boolalpha function is a
 manipulator that sets the boolalpha flag, which tells the stream to
 read or write a bool value as
 text, according to the stream's locale. Specifically, the function
 calls stream.setf(ios_base::boolalpha) and
 returns stream.

See Also
ios_base::fmtflags
 type, noboolalpha
 function, num_get in <locale> , num_put in <locale>

Name
dec function — Manipulator for decimal integers

Synopsis
ios_base& dec(ios_base& stream)
The dec function is a
 manipulator that sets the conversion radix to base 10. The function
 calls stream.setf(ios_base::dec,
 ios_base::basefield) and returns
 stream.

See Also
hex function, ios_base::fmtflags type, noshowbase function, oct function, showbase function, num_get in <locale> , num_put in <locale>

Name
fixed function — Manipulator for fixed-point output

Synopsis
ios_base& fixed(ios_base& stream)
The fixed function is a
 manipulator that sets the floating-point output style to
 fixed-point. The function calls stream.setf(ios_base::fixed, ios_base::floatfield) and returns stream.

See Also
ios_base::fmtflags
 type, noshowpoint
 function, scientific
 function, showpoint
 function, num_get in <locale> , num_put in <locale>

Name
fpos class template — Represents a file position

Synopsis
template <typename stateT>
class fpos{
public:
 stateT state() const;
 void state(stateT);

 // The following functionality is required, although not necessarily as member
 // functions.
 fpos(int i);
 fpos(streamoff offset);
 operator streamoff() const;
 bool operator==(const fpos& rhs) const;
 bool operator!=(const fpos& rhs) const;
 fpos operator+(streamoff offset) const;
 fpos operator-(streamoff offset) const;
 fpos& operator+=(streamoff offset);
 fpos& operator-=(streamoff offset);
 streamoff operator-(const fpos& rhs) const;
};
The fpos class template
 represents a position in a stream. The stateT template parameter is a multibyte
 shift state, such as mbstate_t.
 Objects of type fpos can be
 compared for equality or inequality, they can be subtracted to yield
 a stream offset, or a stream offset can be added to an fpos position to produce a new fpos. Also, stream offsets can be
 converted to and from fpos
 values. Although the declaration in this section shows these
 functions as member functions, they might be global functions or be
 provided in some other fashion.
The Shift State Problem
The C++ standard requires a library implementation to
 implement fpos<> and the
 streamoff types so that you can
 convert an object whose type is any fpos<> instance into a streamoff object and back again,
 recovering the original value.
Most library implementations do not work this way.
Instead, streamoff is
 usually implemented as an integral type, such as int or long. The problem is that fpos<> must store a stream
 position and a shift state, and the stream position is usually
 implemented with the same type as streamoff. In other words, converting
 from fpos<> to streamoff discards the shift state. The
 library cannot convert streamoff back to the original fpos<> because the original shift
 state is gone.
Note that char_traits has
 the same problem when specialized for char and wchar_t because its pos_type is defined to be streampos, which is defined in <iosfwd> to be fpos<mbstate_t>, and off_type is defined as streamoff.
The solution is not to convert a stream position to a stream
 offset. If you must do this, remember that you might be
 sacrificing the shift state. Save the shift state separately so
 you can restore it when converting a stream offset back to a
 stream position.

See Also
streamoff type,
 mbstate_t in <cwchar>

Name
hex function — Manipulator for hexadecimal integers

Synopsis
ios_base& hex(ios_base& stream)
The hex function is a
 manipulator that sets the conversion radix to base 16. The function
 calls stream.setf(ios_base::hex,
 ios_base::basefield) and returns
 stream.

See Also
dec function, ios_base::fmtflags type, noshowbase function, oct function, showbase function, num_get in <locale> , num_put in <locale>

Name
internal function — Manipulator to align output on an internal
 point

Synopsis
ios_base& internal(ios_base& stream)
The internal function is a
 manipulator that sets the stream's alignment to internal. The
 function calls stream.setf(ios_base::internal, ios_base::adjustfield) and returns
 stream. Internal padding works as
 follows:
	If the formatted number begins with a sign, insert the
 padding after the sign.

	If the formatted number begins with 0x or 0X, insert the padding after the
 x or X.

	Otherwise, insert the padding before the number (like
 ios_base::right).

See Also
ios_base::fmtflags
 type, left function,
 right function

Name
ios_base class — Root class for I/O declarations

Synopsis
class ios_base{
public:
 class failure;
 typedef . . . fmtflags;
 typedef . . . iostate;
 typedef . . . io_state;
 typedef . . . openmode;
 typedef . . . open_mode;
 typedef . . . seekdir;
 typedef . . . seek_dir;
 typedef . . . streamoff;
 typedef . . . streampos;
 class Init;

 // Destructor
 virtual ~ios_base();
 // Formatting
 fmtflags flags() const;
 fmtflags flags(fmtflags fmtfl);
 fmtflags setf(fmtflags fmtfl);
 fmtflags setf(fmtflags fmtfl, fmtflags mask);
 void unsetf(fmtflags mask);
 streamsize precision() const;
 streamsize precision(streamsize prec);
 streamsize width() const;
 streamsize width(streamsize wide);
 // Locales
 locale imbue(const locale& loc);
 locale getloc() const;
 // Storage
 static int xalloc();
 long& iword(int index);
 void*& pword(int index);
 // Callbacks
 enum event { erase_event, imbue_event, copyfmt_event };
 typedef void (*event_callback)(event, ios_base&, int index);
 void register_callback(event_callback fn, int index);
 static bool sync_with_stdio(bool sync = true);
protected:
 ios_base();
private:
 ios_base(const ios_base&);
 ios_base& operator=(const ios_base&);
};
The ios_base class is the
 root class for all the I/O stream classes. It declares fundamental
 types that are used throughout the I/O library. It also has members
 to keep track of formatting for input and output, storing arbitrary
 information for derived classes, and registering functions to be
 called when something interesting happens to the stream
 object.
The io_state, open_mode, seek_dir, streamoff, and streampos types are deprecated and might
 not be included in a future revision of the C++ standard. The first
 three are integer types that are equivalent to iostate, openmode, and seekdir. (See their respective subsections
 later in this section for details.) The streamoff and streampos types have equivalent types at
 namespace scope. See streamoff
 later in this section and streampos in <iosfwd> for details.
The following are the member functions of ios_base:
	 ios_base
	The default constructor is protected so you cannot
 accidentally declare an object of type ios_base. It does not initialize its
 members. That is left to the basic_ios::init function.

	 ios_base
	The copy constructor is private and not defined so you
 cannot copy objects of type ios_base or its derived
 classes.

	 ~ios_base
	Calls every registered callback with the erase_event if the ios_base object has been properly
 initialized. See basic_ios::init.

	ios_base& operator=
 (const
 ios_base&)
	The assignment operator is private and not defined to
 prevent the assignment of ios_base objects or its
 derivatives.

	fmtflags flags
 ()
 const
fmtflags flags
 (fmtflags
 fmtfl)
	Returns the current format flags or sets the flags. When
 setting the flags, the previous flags are returned.

	locale getloc
 ()
 const
	Returns the stream's currently imbued locale.

	locale imbue
 (const locale&
 loc)
	Saves loc as the new
 locale and calls all registered callbacks with imbue_event. The new locale is
 stored before calling any callbacks, so if a callback function
 calls getloc, it gets the
 new locale.

	long& iword
 (int
 index)
	Returns a reference to a long integer that is stored in
 a private array, at index index. If iword has been called before with
 the same index, a reference to the array element is returned.
 Otherwise, the array is extended as needed so that index is a valid index, and the new
 entry is initialized to 0.
 A reference to the new element is returned.
The structure of the internal array is
 implementation-defined, and it might be a sparse array. The
 internal array grows as needed, and all prior values stored in
 the array are preserved, although the references might become
 invalid in any of the following situations:
	After a call to iword with a different
 index

	After calling basic_ios::copyfmt for this
 object

	When the object is destroyed

If iword fails
 (perhaps because the internal array cannot grow), it returns a
 reference to a valid long& with a value that is
 initially 0. If the member
 function is called for an object whose class derives from
 basic_ios<>, badbit is set (which might throw
 ios_base::failure).
See the xalloc member
 function to learn how to obtain a suitable index.

	streamsize precision
 ()
 const
streamsize precision
 (streamsize
 prec)
	Returns or sets the precision (places after the decimal
 point) used to format floating-point numbers for output. When
 setting a new precision, the previous precision is
 returned.

	void*& pword
 (int
 index)
	Returns a reference to a void* that is stored in a private
 array, at index index. If
 pword has been called
 before with the same index, a reference to the array element
 is returned. Otherwise, the array is extended as needed so
 that index is a valid
 index, and the new entry is initialized to a null pointer. A
 reference to the new element is returned.
The structure of the internal array is
 implementation-defined, and it might be a sparse array. The
 internal array grows as needed, and all prior values stored in
 the array are preserved, although the references might become
 invalid in any of the following situations:
	After a call to pword with a different
 index

	After calling basic_ios::copyfmt for this
 object

	When the object is destroyed

If pword fails
 (perhaps because the internal array cannot grow), it returns a
 reference to a valid void*& with a value that is
 initially 0. If the object
 derives from basic_ios<>, badbit is set (which might throw
 ios_base::failure).
See the xalloc member
 function to learn how to obtain a suitable index.

	void register_callback
 (event_callback fn, int
 index)
	Registers a function fn to be called when one of three
 events occurs for the ios_base object:
	The object is destroyed (erase_event)

	copyfmt is called
 (erase_event followed
 by copyfmt_event)

	imbue is called
 (imbue_event)

Each callback function is registered with an integer
 index. The index is passed
 to the callback function. Functions are called in the opposite
 order of registration. The callback function must not throw
 exceptions.
For example, suppose a program stores some debugging
 information with each stream. It allocates a struct and stores a pointer to the
 struct in the stream's
 pword array. When copyfmt is called, the debugging
 information should also be copied. Example 13-14 shows how
 to use callbacks to make sure the memory is managed
 properly.
Example 13-14. Copying information associated with streams
void manage_info(std::ios_base::event event,
 std::ios_base& stream, int index)
{
 infostruct* ip;

 switch(event) {
 case std::ios_base::erase_event:
 ip = static_cast<infostruct*>(stream.pword(index));
 stream.pword(index) = 0;
 delete ip;
 break;
 case std::ios_base::copyfmt_event:
 stream.pword(index) = new infostruct;
 break;
 default:
 break; // imbue_event does not affect storage.
 }
}

void openread(std::ifstream& f, const char* name)
{
 f.open(name);
 int index = f.xalloc();
 f.pword(index) = new infostruct;
 f.register_callback(manage_info, index);
}

	fmtflags setf
 (fmtflags
 addflags)
	Sets the addflags
 bits of the formatting flags. It is equivalent to calling
 flags(flags() | addflags).

	fmtflags setf
 (fmtflags newflags, fmtflags
 mask)
	Clears the mask bits
 from the formatting flags and then sets the newflags & mask bits. It is equivalent to
 calling flags((flags()
 & ~mask) | (newflags & mask)). The two-argument version of
 setf is most often used
 with multiple-choice flags (e.g., setf(ios_base::dec, ios_base::basefield)).

	static bool sync_with_stdio
 (bool sync =
 true)
	Determines whether the standard C++ I/O objects are
 synchronized with the C I/O functions. Initially, they are
 synchronized.
[image: image with no caption]

If you call sync_with_stdio(false) after any I/O
 has been performed, the behavior is
 implementation-defined.

	void unsetf
 (fmtflags
 mask)
	Clears the mask bits from the formatting flags. It is
 equivalent to calling flags(flags()
 & ~mask).

	streamsize width
 ()
 const
streamsize width
 (streamsize
 wide)
	Returns or sets the minimum field width. When setting
 the width, the previous width is returned.

	static int xalloc
 ()
	Returns a unique integer, suitable for use as an index
 to the iword or pword functions. You can think of
 ios_base as having a static
 integer data member, xalloc_index,
 and xalloc is implemented
 so it returns xalloc_index ++.

See Also
basic_ios class
 template

Name
ios_base::event type — Callback event type

Synopsis
enum event { erase_event, imbue_event, copyfmt_event };
The ios_base::event type
 denotes an interesting event in the lifetime of an I/O stream
 object. See the register_callback
 function in the ios_base class,
 earlier in this section, to learn how to register a function that is
 called when one of these events occurs.

See Also
ios_base class, ios_base::event_callback
 type

Name
ios_base::event_callback type — Callback function type

Synopsis
typedef void (*event_callback)(event, ios_base&, int index);
The ios_base::event_callback type denotes a
 callback function. See the register_callback function in the ios_base class, earlier in this section,
 to learn how to register a callback function, which a stream object
 calls when an interesting event occurs.

See Also
ios_base class, ios_base::event type

Name
ios_base::failure class — Exception class for I/O failure

Synopsis
class ios_base::failure : public exception
{
public:
 explicit failure(const string& msg);
 virtual ~failure();
 virtual const char* what() const throw();
};
The ios_base::failure class
 is the base class for I/O-related exceptions. Its use of the
 constructor's msg parameter and
 what() member function are
 consistent with the conventions of the exception class.

See Also
basic_ios::clear function,
 exception in <exception>

Name
ios_base::fmtflags type — Formatting flags

Synopsis
typedef . . . fmtflags;
static const fmtflags boolalpha;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;
[image: image with no caption]

The fmtflags type is an
 integer, enum, or bitmask type
 (the exact type is implementation-defined) that represents
 formatting flags for input and output. In the ios_base class, several static constants
 are also defined, which can be implemented as enumerated literals or
 as explicit constants. Table
 13-13 lists the flag literals.
Table 13-13. fmtflags literals
	Literal name
	Description

	 boolalpha

	Reads and writes bool values as text, according
 to the locale

	 dec

	Reads and writes decimal
 integers

	 fixed

	Writes floating-point values in fixed
 notation

	 hex

	Reads and writes hexadecimal
 integers

	 internal

	Aligns output to internal point (e.g., after
 sign or 0x)

	 left

	Left-aligns output

	 oct

	Reads and writes octal integers

	 right

	Right-aligns output

	 scientific

	Writes floating-point values in scientific
 notation

	 showbase

	Writes a prefix for an integer radix (e.g.,
 0x for
 hexadecimal)

	 showpoint

	Writes decimal point, even if not
 needed

	 showpos

	Writes plus sign (+), even if not
 needed

	 skipws

	Skips whitespace before input

	 unitbuf

	Flushes output after each
 operation

	 uppercase

	Uses uppercase in generated output (e.g.,
 0X prefix)

Some formatting items are Boolean: a flag is set or cleared.
 For example, the uppercase flag
 can be set to perform output in uppercase (that is, the 0X hexadecimal prefix or E in scientific notation), or the flag can
 be cleared for lowercase output. Other flags are set in
 fields. You can set a field to one of a number
 of values. Table
 13-14 lists the field names, definitions, and the default
 behavior if the field value is 0.
 Each field name is used as a mask for the two-argument form of the
 ios_base::setf function.
Table 13-14. fmtflags constants
	Constant name
	Value
	Default

	 adjustfield

	 left
 | internal | right
	 right

	 basefield

	 dec
 | hex | oct
	Output: decInput: leading 0x or 0x is hex, 0 is oct, anything else is dec

	 floatfield

	 fixed
 | scientific
	 scientific
 if exponent is < -4 or ≥ precision, else fixed; strip trailing zeros and
 unneeded decimal point

See Also
ios_base class,
 ctype in <locale> , num_get in <locale> , num_put in <locale>

Name
ios_base::Init class — Initialization class

Synopsis
class ios_base::Init {
public:
 Init();
 ~Init();
};
The Init class is used to
 ensure that the construction of the standard I/O stream objects
 occurs. The first time an ios_base::Init object is constructed, it
 constructs and initializes cin,
 cout, cerr, clog, wcin, wcout, wcerr, and wclog. A static counter keeps track of the
 number of times ios_base::Init is
 constructed and destroyed. When the last instance is destroyed,
 flush() is called for cout, cerr, clog, wcout, wcerr, and wclog.
For example, suppose a program constructs a static object, and
 the constructor prints a warning to cerr if certain conditions hold. To ensure
 that cerr is properly initialized
 and ready to receive output, declare an ios_base::Init object before your static
 object, as shown in Example
 13-15.

Example
Example 13-15. Ensuring proper initialization of standard I/O
 streams
class myclass {
public:
 myclass() {
 if (! okay())
 std::cerr << "Oops: not okay!\n";
 }
};
static std::ios_base::Init init;
static myclass myobject;

See Also
 <iostream>

Name
ios_base::iostate type — I/O status

Synopsis
typedef . . . iostate
typedef . . . io_state
static const iostate badbitstatic const iostate eofbit
static const iostate failbit
static const iostate goodbit = iostate(0);
[image: image with no caption]

The ios_base::iostate type
 is an integer, enum, or bitset
 type (the exact type is implementation-defined) that represents the
 status of an I/O stream. The io_state type is an integral type that
 represents the same information. Some functions that take an
 iostate parameter have an
 overloaded version that accepts an io_state parameter and has the same
 functionality as its iostate
 counterpart. The io_state type
 and related functions are deprecated, so you should use the iostate versions.
Table 13-15
 lists the iostate literals and
 their meanings. The basic_ios
 class template has several member functions for setting, testing,
 and clearing iostate bits.
Table 13-15. iostate literals
	Literal
	Description

	 badbit

	Irrecoverable error, such as a null streambuf pointer or a write
 failure

	 eofbit

	End-of-file when reading

	 failbit

	Failure to read or write expected characters (
 e.g., trying to read an integer from nonnumeric
 input)

	 goodbit

	No problems; value is 0

See Also
basic_ios class
 template, <bitset>

Name
ios_base::openmode type — Open mode bits

Synopsis
typedef . . . openmode
typedef . . . open_mode
static const openmode app
static const openmode ate
static const openmode binary
static const openmode in
static const openmode out
static const openmode trunc

[image: image with no caption]

The ios_base::openmode type
 is an integer, enum, or bitset
 type (the exact type is implementation-defined) that defines the
 mode for opening a file. The open_mode type is an integral type that
 represents the same information. Some functions that take an
 openmode parameter have an
 overloaded version that accepts an open_mode parameter and has the same
 functionality as its openmode
 counterpart. The open_mode type
 and related functions are deprecated, so you should use the openmode versions.
Table 13-16
 lists the openmode literals and
 their meanings. (Refer to the <fstream> section of this chapter
 for the most common use of ios_base::openmode and the permitted
 combinations of openmode
 literals.) The openmode type is
 also used for the basic_streambuf::pubseekoff and pubseekpos functions, and for related
 functions.
Table 13-16. openmode literals
	Literal
	Description

	 app

	Seeks to end-of-file before each
 write

	 ate

	Seeks to end-of-file immediately after
 opening

	 binary

	Reads and writes in binary mode (default is
 text)

	 in

	Opens for input (reading)

	 out

	Opens for output (writing)

	 trunc

	Truncates file to zero length

See Also
<bitset>, basic_filebuf in <fstream> , basic_streambuf in <streambuf>

Name
ios_base::seekdir type — Seek direction

Synopsis
typedef . . . seekdir
typedef . . . seek_dir
static const seekdir beg
static const seekdir cur
static const seekdir end

[image: image with no caption]

The ios_base::seekdir type
 is an implementation-defined enumerated type that specifies the
 origin for seeking to a new file position. The seek_dir type is an integral type that
 represents the same information. Some functions that take a seekdir parameter have overloaded versions
 that accept a seek_dir parameter
 and have the same functionality as their seekdir counterparts. The seek_dir type and related functions are
 deprecated, so you should use the seekdir versions.
Table 13-17
 lists the seekdir literals. Note
 that the order and integer values of the literals are
 implementation-defined.
Table 13-17. seekdir literals
	Literal
	Description

	 beg

	Seeks from the beginning of the stream (e.g.,
 offset is absolute position)

	 cur

	Seeks from the current position; positive is
 toward end of stream, and negative offsets are toward the
 beginning of the stream

	 end

	Seeks relative to the end of the stream;
 negative offsets are towards the beginning

See Also
basic_istream in <istream> , basic_ostream in <ostream> , basic_streambuf in <streambuf>

Name
left function — Manipulator to left-align output

Synopsis
ios_base& left(ios_base& stream)
The left function is a
 manipulator that selects left-alignment for output to stream. The function calls stream.setf(ios_base::left, ios_base::adjustfield) and returns
 stream.

See Also
internal function,
 ios_base::fmtflags type,
 right function

Name
noboolalpha function — Manipulator to disable reading and writing bool as
 text

Synopsis
ios_base& noboolalpha(ios_base& stream)
The noboolalpha function is
 a manipulator that clears the boolalpha flag, causing the stream to read
 or write bool values as integers.
 Specifically, the function calls stream.unsetf(ios_base::boolalpha) and
 returns stream.

See Also
boolalpha function,
 ios_base::fmtflags type,
 ctype in <locale>

Name
noshowbase function — Manipulator to disable showing output radix

Synopsis
ios_base& noshowbase(ios_base& stream)
The noshowbase function is
 a manipulator that clears the showbase flag, which tells an output
 stream to write a prefix for integer output: 0x for hexadecimal or 0 for octal. Specifically, the function
 calls stream.unsetf(ios_base::showbase) and
 returns stream.

See Also
hex function, ios_base::fmtflags type, oct function, nouppercase function, showbase function, uppercase function, num_put in <locale>

Name
noshowpoint function — Manipulator to suppress unnecessary decimal
 points

Synopsis
ios_base& noshowpoint(ios_base& stream)
The noshowpoint function is
 a manipulator that clears the showpoint flag, causing an output stream
 to write a decimal point for floating-point output, even if the
 point is unnecessary (only zeros appear after the decimal point).
 Specifically, the function calls stream.unsetf(ios_base::showpoint) and
 returns stream.

See Also
fixed function, ios_base::fmtflags type, scientific function, showpoint function, num_put in <locale>

Name
noshowpos function — Manipulator to suppress plus sign in nonnegative
 output

Synopsis
ios_base& noshowpos(ios_base& stream)
The noshowpos function is a
 manipulator that clears the showpos flag, which causes an output
 stream to always write a plus sign (+) in front of a number even if
 the sign is unnecessary (the value is 0 or positive). Specifically, the function
 calls stream.unsetf(ios_base::showpos) and
 returns stream.

See Also
ios_base::fmtflags
 type, showpos
 function, num_put in <locale>

Name
noskipws function — Manipulator to disable skipping whitespace before
 reading

Synopsis
ios_base& noskipws(ios_base& stream)
The noskipws function is a
 manipulator that clears the skipws flag, which tells an input stream
 to skip whitespace before reading most fields. Specifically, the
 function calls stream.unsetf(ios_base::skipws) and
 returns stream.

See Also
ios_base::fmtflags
 type, skipws
 function, num_get in <locale>

Name
nounitbuf function — Manipulator to use unit buffering

Synopsis
ios_base& nounitbuf(ios_base& stream)
The nounitbuf function is a
 manipulator that clears the unitbuf flag, so the stream is not flushed
 after each output operation. Specifically, the function calls
 stream.unsetf(ios_base::unitbuf)
 and returns stream.

See Also
ios_base::fmtflags
 type, unitbuf
 function

Name
nouppercase function — Manipulator to use lowercase in generated
 output

Synopsis
ios_base& nouppercase(ios_base& stream)
The nouppercase function is
 a manipulator that clears the uppercase flag, which tells an output
 stream to use uppercase letters for generated output (e.g., 0X for hexadecimal prefix or E for exponents). Specifically, the
 function calls stream.unsetf(ios_base::uppercase) and
 returns stream.

See Also
hex function, ios_base::fmtflags type, scientific function, uppercase function, num_put in <locale>

Name
oct function — Manipulator for octal integers

Synopsis
ios_base& oct(ios_base& stream)
The oct function is a
 manipulator that sets the conversion radix to base 8. The function
 calls stream.setf(ios_base::oct,
 ios_base::basefield) and returns
 stream.

See Also
dec function, hex function, ios_base::fmtflags type, noshowbase function, showbase function, num_get in <locale> , num_put in <locale>

Name
right function — Manipulator to right-align output

Synopsis
ios_base& right(ios_base& stream)
The right function is a
 manipulator that selects right-alignment for output to stream. The function calls stream.setf(ios_base::right, ios_base::adjustfield) and returns
 stream.

See Also
internal function,
 ios_base::fmtflags type,
 left function

Name
scientific function — Manipulator to use scientific notation for
 output

Synopsis
ios_base& scientific(ios_base&)
The fixed function is a
 manipulator that sets the floating-point output style to scientific
 or exponential notation. The function calls stream.setf(ios_base::scientific, ios_base::floatfield) and returns stream.

See Also
fixed function, ios_base::fmtflags type, num_get in <locale> , num_put in <locale>

Name
showbase function — Manipulator to show output radix

Synopsis
ios_base& showbase(ios_base& stream)
The showbase function is a
 manipulator that sets the showbase flag, which tells an output
 stream to write a prefix for integer output: 0x for hexadecimal or 0 for octal. Specifically, the function
 calls stream.setf(ios_base::showbase) and
 returns stream.

See Also
hex function, ios_base::fmtflags type, oct function, noshowbase function, nouppercase function, uppercase function, num_put in <locale>

Name
showpoint function — Manipulator to show decimal point even when
 unnecessary

Synopsis
ios_base& showpoint(ios_base& stream)
The showpoint function is a
 manipulator that sets the showpoint flag, which tells an output
 stream to write a decimal point for floating-point output, even if
 the point is unnecessary (only zeros appear after the decimal
 point). Specifically, the function calls stream.setf(ios_base::showpoint) and
 returns stream.

See Also
fixed function, ios_base::fmtflags type, noshowpoint function, scientific function, num_put in <locale>

Name
showpos function — Manipulator to show plus sign for nonnegative
 numbers

Synopsis
ios_base& showpos(ios_base& stream)
The showpos function is a
 manipulator that sets the showpos
 flag, which tells an output stream to write a plus (+) sign, even if the sign is unnecessary
 (the value is 0 or positive).
 Specifically, the function calls stream.setf(ios_base::showpos) and returns
 stream.

See Also
ios_base::fmtflags
 type, noshowpos
 function, num_put in <locale>

Name
skipws function — Manipulator to skip whitespace before
 reading

Synopsis
ios_base& skipws(ios_base& stream)
The skipws function is a
 manipulator that sets the skipws
 flag, which tells an input stream to skip whitespace before reading
 most fields. Specifically, the function calls stream.setf(ios_base::skipws) and returns
 stream.

See Also
ios_base::fmtflags
 type, noskipws
 function, num_get in <locale>

Name
streamoff type — Stream offset type

Synopsis
typedef . . . streamoff

[image: image with no caption]

The streamoff type is an
 implementation-defined type that represents a signed offset in a
 stream. See the fpos type for
 more information about working with file positions and
 offsets.

See Also
fpos type, char_traits in <string>

Name
streamsize type — Stream size type

Synopsis
typedef . . . streamsize

[image: image with no caption]

The streamsize type is an
 implementation-defined type that is used to represent the size of
 various stream entities, such as number of characters to read or
 write. It is a synonym for one of the signed integral types. You can
 convert a streamsize to a
 streamoff without loss of
 information. You can also convert a streamoff back to a streamsize. If the streamoff is the result of converting a
 streamsize, converting the
 streamoff back to streamsize yields the original streamsize.

See Also
fpos type, char_traits in <string>

Name
unitbuf function — Manipulator to use unit buffering

Synopsis
ios_base& unitbuf(ios_base& stream)
The unitbuf function is a
 manipulator that sets the unitbuf
 flag, which causes the stream to be flushed after each output
 operation. Specifically, the function calls stream.setf(ios_base::unitbuf) and returns
 stream.

See Also
ios_base::fmtflags
 type, nounitbuf
 function

Name
uppercase function — Manipulator to use uppercase for generated
 output

Synopsis
ios_base& uppercase(ios_base& stream)
The uppercase function is a
 manipulator that sets the uppercase flag, which tells an output
 stream to use uppercase letters for generated output (e.g., 0X for hexadecimal prefix or E for exponents). Specifically, the
 function calls stream.setf(ios_base::uppercase) and
 returns stream.

See Also
hex function, ios_base::fmtflags type, nouppercase function, scientific function, num_put in <locale>

<iosfwd>

The <iosfwd> header provides forward declarations of the various
 I/O-related classes and templates. The forward declarations are
 incomplete type declarations. (Read about complete and incomplete types
 in Chapter 6.) By using <iosfwd> you can sometimes avoid
 including the complete definitions of the I/O classes, and thereby save
 some compilation time.
It is always safe to include <iosfwd> and any of the other I/O
 headers, even if they both declare the same type.
Because <iosfwd> does not
 provide any complete type declarations, this section contains only Table 13-18, which lists each
 type name with a reference to the header (if any) that is required for
 the complete type.
Table 13-18. Forward type declarations in <iosfwd>
	Type declaration
	Header

	 template<typename
 T> class allocator
	 <memory>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_filebuf

	 <fstream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_fstream

	 <fstream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_ifstream

	 <fstream>

	 template<typename
 charT, typename
 traits=char_traits<charT> > class basic_ios

	 <ios>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_iostream

	 <istream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_istream

	 <istream>

	 template<typename
 charT, typename traits=char_traits<charT>, typename Alloc
 = allocator<charT> > class basic_istringstream

	 <sstream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_ofstream

	 <fstream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_ostream

	 <ostream>

	 template<typename
 charT, typename traits=char_traits<charT>, typename Alloc
 = allocator<charT> > class basic_ostringstream

	 <sstream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class basic_streambuf

	 <streambuf>

	 template<typename
 charT, typename traits=char_traits<charT>, typename Alloc
 = allocator<charT> > class basic_stringbuf

	 <sstream>

	 template<typename
 charT, typename traits=char_traits<charT>, typename Alloc
 = allocator<charT> > class basic_stringstream

	 <sstream>

	 template<typename
 charT> class char_traits

	 <string>

	 template<>
 class char_traits<char>

	 <string>

	 template<>
 class char_traits<wchar_t>

	 <string>

	 typedef
 basic_filebuf<char>
 filebuf

	 <fstream>

	 template <typename
 state> class fpos
	 <ios>

	 typedef
 basic_fstream<char>
 fstream

	 <fstream>

	 typedef
 basic_ifstream<char>
 ifstream

	 <fstream>

	 typedef
 basic_ios<char> ios
	 <ios>

	 typedef
 basic_iostream<char>
 iostream

	 <istream>

	 typedef
 basic_istream<char>
 istream

	 <istream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class istreambuf_iterator

	 <iterator>

	 typedef
 basic_istringstream<char>
 istringstream

	 <sstream>

	 typedef
 basic_ofstream<char>
 ofstream

	 <fstream>

	 typedef
 basic_ostream<char>
 ostream

	 <ostream>

	 template<typename
 charT, typename traits=char_traits<charT> >
 class ostreambuf_iterator

	 <iterator>

	 typedef
 basic_ostringstream<char>
 ostringstream

	 <sstream>

	 typedef
 basic_streambuf<char>
 streambuf

	 <streambuf>

	 typedef
 fpos<char_traits<char>::state_type>
 streampos
	N/A

	 typedef
 basic_stringbuf<char>
 stringbuf

	 <sstream>

	 typedef
 basic_stringstream<char>
 stringstream

	 <sstream>

	 typedef
 basic_filebuf<wchar_t>
 wfilebuf

	 <fstream>

	 typedef
 basic_fstream<wchar_t>
 wfstream

	 <fstream>

	 typedef
 basic_ifstream<wchar_t>
 wifstream

	 <fstream>

	 typedef
 basic_ios<wchar_t>
 wios

	 <ios>

	 typedef
 basic_iostream<wchar_t>
 wiostream

	 <istream>

	 typedef
 basic_istream<wchar_t>
 wistream

	 <istream>

	 typedef
 basic_istringstream<wchar_t> wistringstream

	 <sstream>

	 typedef
 basic_ofstream<wchar_t>
 wofstream

	 <fstream>

	 typedef
 basic_ostream<wchar_t>
 wostream

	 <ostream>

	 typedef
 basic_ostringstream<wchar_t> wostringstream

	 <sstream>

	 typedef
 basic_streambuf<wchar_t>
 wstreambuf

	 <streambuf>

	 typedef
 fpos<char_traits<wchar_t>::state_type>
 wstreampos
	N/A

	 typedef
 basic_stringbuf<wchar_t>
 wstringbuf

	 <sstream>

	 typedef
 basic_stringstream<wchar_t> wstringstream

	 <sstream>

<iostream>

The <iostream> header declares the eight standard stream objects:
 cerr, cin, clog,
 cout, wcerr, wcin, wclog, and wcout. These objects are initialized when the
 first instance of ios_base::Init is
 constructed (or earlier), or before the main program starts. They are not destroyed
 during normal program execution, so any static object's destructor or
 other function can use the standard I/O objects.
Each of the standard I/O objects is associated with a standard C
 FILE pointer (see <cstdio>). (You can sever the connection
 by calling ios_base::sync_with_stdio(false), as described
 in <ios>.) You can use narrow
 or wide I/O objects, but once you have performed any I/O on an
 underlying C stream, you cannot switch from narrow to wide or wide to
 narrow. For example, after writing to cerr, you cannot write to wclog because both objects use the same C
 stream, stderr. See Chapter 9 for more information about
 I/O.
Many C++ programmers assume that <iostream> automatically #includes <istream> and <ostream>, but the standard does not
 guarantee that behavior. Always #include every header you need, for
 example:
#include <cstdlib>
#include <iostream>
#include <istream>
#include <ostream>

// Copy standard input to standard output.
int main()
{
 std::cout << std::cin.rdbuf();
 return std::cout ? EXIT_SUCCESS : EXIT_FAILURE;
}

Name
cerr variable — Error message stream

Synopsis
extern ostream cerr

The cerr object is a
 standard output stream associated with the C stderr file. It is typically used for
 error messages. When the cerr
 object is initialized, it sets the unitbuf flag, causing cerr to flush the output buffer after
 every operation.

See Also
clog variable, wcerr variable, ostream in <ostream>

Name
cin variable — Normal input stream

Synopsis
extern istream cin

The cin object is a
 standard input stream associated with the C stdin file. It is used for normal program
 input. It is tied to cout (see
 the tie member function of
 basic_ios in <ios>).

See Also
wcin variable,
 basic_ios in <ios> , istream in <istream>

Name
clog variable — Log output stream

Synopsis
extern ostream clog

The clog object is a
 standard output stream associated with the C stderr file. Unlike cerr, the clog object does not set the unitbuf flag. This makes it more suitable
 for writing less critical messages that are not considered normal
 program output, such as debugging or logging messages.

See Also
cerr variable, wclog variable, ostream in <ostream>

Name
cout variable — Normal output stream

Synopsis
extern ostream cout

The cout object is a
 standard input stream associated with the C stdout file. It is used for normal program
 output.

See Also
wcout variable,
 ostream in <ostream>

Name
wcerr variable — Wide error message stream

Synopsis
extern wostream wcerr

The wcerr object is a wide
 character standard output stream associated with the C stderr file. It is typically used for
 error messages. When the wcerr
 object is initialized, it sets the unitbuf flag, causing wcerr to flush the output buffer after
 every operation.

See Also
cerr variable, wclog variable, wostream in <ostream>

Name
wcin variable — Wide input stream

Synopsis
extern wistream wcin

The wcin object is a wide
 character standard input stream associated with the C stdin file. It is used for wide program
 input. It is tied to wcout (see
 the tie() member function of
 basic_ios in <ios>).

See Also
cin variable, basic_ios in <ios> , wistream in <istream>

Name
wclog variable — Wide log output stream

Synopsis
extern wostream wclog

The wclog object is a wide
 character standard output stream associated with the C stderr file. Unlike wcerr, the wclog object does not set the unitbuf flag. This makes it more suitable
 for writing less critical messages that are not considered normal
 program output, such as debugging or logging messages.

See Also
clog variable, wcerr variable, wostream in <ostream>

Name
wcout variable — Wide output stream

Synopsis
extern wostream wcout

The wcout object is a wide
 character standard input stream associated with the C stdout file. It is used for wide program
 output.

See Also
cout variable,
 wostream in <ostream>

<istream>

The <istream> header declares the input stream classes, templates, and
 an input manipulator.
Note
istream is declared in
 <istream>, and ostream is declared in <ostream>, but iostream is declared in <istream>, not <iostream>.

See <fstream> for
 derived-class templates that read from files and <sstream> for derived-class templates
 that read from strings. See <ios> for the base-class declarations.
 Refer to Chapter 9 for general
 information about I/O.

Name
basic_iostream class template — Base class for input and output stream

Synopsis
template <typename charT, typename traits = char_traits<charT> >
class basic_iostream : public basic_istream<charT,traits>,
 public basic_ostream<charT,traits>
{
public:
 explicit basic_iostream(basic_streambuf<charT,traits>* sb);
 virtual ~basic_iostream();
};
The basic_iostream class
 template represents a stream that can perform input and output. (For
 details, see its base class templates, basic_istream in this section and basic_ostream in <ostream>.) Note that the two
 base-class templates share a common stream buffer, sb. Note also that basic_istream and basic_ostream inherit virtually from
 basic_ios; basic_iostream inherits a single instance
 of the formatting flags, iostate,
 and so on.

See Also
basic_istream class
 template, iostream
 class, wiostream
 class, basic_iostream in
 <ios> , basic_ostream in <ostream>

Name
basic_istream class template — Base class for input stream

Synopsis
template <typename chT, typename traits = char_traits<chT> >
class basic_istream : virtual public basic_ios<chT,traits>
{
public:
 // Types
 typedef chT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 explicit basic_istream(basic_streambuf<chT,traits>* sb);
 virtual ~basic_istream();
 class sentry;
 // Formatted input
 basic_istream<chT,traits>& operator>>(basic_istream<chT,traits>&
 (*pf)(basic_istream<chT,traits>&));
 basic_istream<chT,traits>& operator>> (basic_ios<chT,traits>& |
 (*pf)(basic_ios<chT,traits>&));
 basic_istream<chT,traits>& operator>>(ios_base& (*pf)(ios_base&));
 basic_istream<chT,traits>& operator>>(bool& n);
 basic_istream<chT,traits>& operator>>(short& n);
 basic_istream<chT,traits>& operator>>(unsigned short& n);
 basic_istream<chT,traits>& operator>>(int& n);
 basic_istream<chT,traits>& operator>>(unsigned int& n);
 basic_istream<chT,traits>& operator>>(long& n);
 basic_istream<chT,traits>& operator>>(unsigned long& n);
 basic_istream<chT,traits>& operator>>(float& f);
 basic_istream<chT,traits>& operator>>(double& f);
 basic_istream<chT,traits>& operator>>(long double& f);
 basic_istream<chT,traits>& operator>>(void*& p);
 basic_istream<chT,traits>& operator>> (basic_streambuf<char_type,traits>* sb);
 // Unformatted input
 streamsize gcount() const;
 int_type get();
 basic_istream<chT,traits>& get(char_type& c);
 basic_istream<chT,traits>& get(char_type* s, streamsize n);
 basic_istream<chT,traits>& get(char_type* s, streamsize n, char_type delim);
 basic_istream<chT,traits>& get(basic_streambuf<char_type,traits>& sb);
 basic_istream<chT,traits>& get(basic_streambuf<char_type,traits>& sb,
 char_type delim);
 basic_istream<chT,traits>& getline(char_type* s, streamsize n);
 basic_istream<chT,traits>& getline(char_type* s, streamsize n,
 char_type delim);
 basic_istream<chT,traits>& ignore (streamsize n = 1, int_type
 delim=traits::eof());
 int_type peek();
 basic_istream<chT,traits>& read(char_type* s, streamsize n);
 streamsize readsome(char_type* s, streamsize n);
 basic_istream<chT,traits>& putback(char_type c);
 basic_istream<chT,traits>& unget();
 int sync();
 pos_type tellg();
 basic_istream<chT,traits>& seekg(pos_type);
 basic_istream<chT,traits>& seekg(off_type, ios_base::seekdir);
};
The basic_istream class
 template is the base for all input streams. It declares members for
 reading from streams and for managing streams. The act of reading
 from a stream is also known as extracting from
 the stream.
All reads go through a stream buffer, which provides the
 low-level access to the stream data. (See the sbumpc and sgetc functions for basic_streambuf in the <streambuf> header.) If the stream
 buffer returns traits::eof() for
 an input operation, the stream sets failbit | eofbit in the stream's I/O state. If the
 buffer object throws an exception, the stream sets badbit.
Before performing an input operation (e.g., operator>> or a get() function), the stream constructs a
 sentry object. If the sentry
 evaluates to true, the read
 operation continues. If the read throws an exception, badbit is set. The second (noskipws) argument to the sentry
 constructor is false for the
 formatted functions (operator>>) and true for all other input operations. The
 sentry object is destroyed before the input function returns. See
 basic_istream::sentry later in
 this section for more information.
When an input operation throws an exception, the stream sets
 badbit. If badbit is set in the exceptions() mask, the stream does not
 throw ios_base::failure, but
 instead rethrows the original exception. If any input operation sets
 eofbit or failbit, and that bit is set in the
 exceptions() mask, the usual
 ios_base::failure exception is
 thrown.
The following are the basic_istream member functions:
	explicit basic_istream
 (basic_streambuf<chT,traits>*
 sb)
	Calls the basic_ios(sb) constructor and
 initializes gcount() to
 0.

	basic_istream<chT,traits>&
 operator>>
 (basic_istream<chT,traits>&
 (*manip)(basic_istream<chT,traits>&))
	Returns manip(*this).
 See the ws function for an
 example of such a manipulator.

	basic_istream<chT,traits>&
 operator>> (basic_ios<chT,traits>&(*manip)(basic_ios<chT,traits>&))
basic_istream<chT,traits>&
 operator>> (ios_base&
 (*manip)(ios_base&))
	Calls manip(*this)
 and returns *this. See the
 dec function in <ios> for an example of such a
 manipulator.

	basic_istream<chT,traits>&
 operator>> (bool& n)
basic_istream<chT,traits>&
 operator>> (short& n)
basic_istream<chT,traits>&
 operator>> (unsigned short& n)
basic_istream<chT,traits>&
 operator>> (int& n)
basic_istream<chT,traits>&
 operator>> (unsigned int& n)
basic_istream<chT,traits>&
 operator>> (long& n)
basic_istream<chT,traits>&
 operator>> (unsigned long& n)
basic_istream<chT,traits>&
 operator>> (float& f)
basic_istream<chT,traits>&
 operator>> (double& f)
basic_istream<chT,traits>&
 operator>> (long double& f)
basic_istream<chT,traits>&
 operator>> (void*& p)
	Reads a formatted item from the stream. These formatted
 input functions use the num_get facet of the stream's imbued
 locale as shown in Example 13-16. See the
 <locale> header for
 information about num_get
 and locales.
Example 13-16. Using the num_get facet to format input
typedef
 std::num_get<char_type,
 std::istreambuf_iterator<char_type, traits_type> >
 numget;
std::ios_base::iostate err = 0;
std::use_facet<numget>(getloc()).(*this, 0, *this, err, val);
this->setstate(err);

	basic_istream<chT,traits>&
 operator>> (basic_streambuf<char_type,traits>*
 sb)
	Copies input to the stream buffer sb. If sb is a null pointer, the stream
 sets failbit and returns
 immediately. Otherwise, the function copies characters from
 the input stream to sb
 until it reaches the end of the input stream, writing to
 sb fails, or an exception
 is caught. If no characters are copied to sb, failbit is set. The return value is
 *this.

	streamsize gcount
 ()
 const
	Returns the number of characters extracted by the most
 recent call to an unformatted member function (get, getline, ignore, peek, putback, read, readsome, and unget).

	int_type get
 ()
	Reads a single character and returns it. If no character
 is available, the function sets failbit and returns traits::eof().

	basic_istream<chT,traits>&
 get
 (char_type&
 c)
	Reads a single character and stores it in c. If no character is available, the
 function sets failbit and
 does not modify c. The
 return value is *this.

	basic_istream<chT,traits>&
 get
 (char_type* s, streamsize
 n)
	Returns get(s,
 n, widen('\n')).

	basic_istream<chT,traits>&
 get
 (char_type* s, streamsize
 n, char_type delim)
	Reads up to n - 1
 characters into the character array that s points to. Reading stops at the
 end-of-file (which sets eofbit) or when the next character
 would be delim (but the
 delimiter character is not read from the buffer). If no
 characters are stored in s,
 failbit is set.
A null character is always appended to the end of
 s. The return value is
 *this.

	basic_istream<chT,traits>&
 get
 (basic_streambuf<char_type,traits>&
 sb)
	Returns get(sb,
 widen('\n')).

	basic_istream<chT,traits>&
 get
 (basic_streambuf<char_type,traits>&
 sb, char_type delim)
	Copies characters to the output buffer sb. Copying stops when an
 end-of-file is reached, when writing to sb fails, or when the next character
 to read would be delim (the
 delimiter is not read from the input buffer). If no characters
 are copied to sb, failbit is set.

	basic_istream<chT,traits>&
 getline (char_type* s,
 streamsize n)
	Returns getline(s,
 n, widen('\n')).

	basic_istream<chT,traits>&
 getline (char_type* s, streamsize n, char_type
 delim)
	Reads up to n - 1
 characters into the character array that s points to. Reading stops at the
 end-of-file (which sets eofbit) or when delim is read (the delimiter
 character is read from the buffer but not stored in s).
If no characters are read from the stream, failbit is set. If exactly n - 1 characters are read before
 reaching the end-of-file, eofbit is set; otherwise, if the
 limit of n - 1 characters
 is reached before reading a delimiter, failbit is set.
A null character is always appended to the end of
 s. The return value is
 *this.

	basic_istream<chT,traits>&
 ignore
 (streamsize n=1,
 int_type delim=traits::eof())
	Reads characters from the input buffer and discards
 them. The operation stops when one of the following
 occurs:
	n characters have
 been read and discarded if n != numeric_limits<streamsize>::max.

	End-of-file is reached, in which case eofbit is set.

	delim is read if
 delim != traits::eof().

The return value is *this.

	int_type peek
 ()
	Looks ahead to the next character in the input stream.
 If good() returns true, rdbuf()->sgetc() is returned;
 otherwise, traits::eof()
 is returned. No characters are extracted from the stream, so a
 subsequent call to gcount(
) returns 0.

	basic_istream<chT,traits>&
 read
 (char_type* s,
 streamsize n)
	Reads up to n
 characters and stores them in the array that s points to. Before reading
 anything, if good() is
 false, failbit is set, and
 nothing is read. Otherwise, if end-of-file is reached before
 reading n characters,
 eofbit and failbit are set. A null character is
 not appended to s. The
 return value is *this.

	streamsize readsome
 (char_type* s,
 streamsize n)
	Tries to read as many immediately available characters
 as possible into the array that s points to. If good() is false before reading,
 failbit is set, and
 readsome returns
 immediately. Otherwise, readsome calls rdbuf()->in_avail() and does
 one of the following:
	in_avail()
 == -1: eofbit is set and no characters
 are read

	in_avail()
 == 0: no characters are read

	in_avail()
 > 0: min(in_avail(), n) characters are read into
 s

A null character is not appended to s. The return value is the number of
 characters stored in s.

	basic_istream<chT,traits>&
 putback (char_type
 c)
	Tries to push back the character c so it will be the next character
 read from the input stream. If good(
) is false,
 failbit is set and putback returns. Otherwise, if
 rdbuf() is not null,
 putback calls rdbuf()->sputbackc(c). If
 rdbuf() is null or
 sputbackc returns traits::eof(), badbit is set. The return value is
 *this. A subsequent call to
 gcount() returns 0.

	basic_istream<chT,traits>&
 seekg
 (pos_type
 pos)
basic_istream<chT,traits>&
 seekg
 (off_type off,
 ios_base::seekdir dir)
	Tries to seek to a new position in the stream. The first
 form specifies the position explicitly; the second form
 specifies the new position as an offset from a known position
 (beginning of file, current position, or end-of-file). If
 fail() is false, seekg calls rdbuf()->pubseekoff(pos) or
 rdbuf(
)->pubseekoff(off, dir). The return value is *this.

	int sync
 ()
	Synchronizes the stream buffer. If rdbuf() is null, sync returns -1; otherwise, sync calls rdbuf()->pubsync(). If pubsync returns -1, badbit is set, and sync returns -1. Otherwise, sync returns 0.

	pos_type tellg
 ()
	Returns the current position in the stream. If fail() is true, the return value is
 pos_type(-1); otherwise,
 the return value is rdbuf(
)->pubseekoff(0, ios_base::cur, ios_base::in).

	basic_istream<chT,traits>&
 unget
 ()
	Tries to push back the last input character. If good() is false, failbit is set and unget returns. Otherwise, if
 rdbuf() is not null,
 putback calls rdbuf()->sungetc(). If rdbuf() is null or sungetc returns traits::eof(), badbit is set. The return value is
 *this. A subsequent call to
 gcount() returns 0.

See Also
istream class, wistream class

Name
basic_istream::sentry class — Sentry class for input streams

Synopsis
template <typename chT, typename traits=char_traits<chT> >
class basic_istream<chT,traits>::sentry{
 public: explicit sentry(basic_istream<chT,traits>& stream,
 bool noskipws = false);
 ~sentry();
 operator bool() const;
private:
 sentry(const sentry&); // Not defined
 sentry& operator=(const sentry&); // Not defined
};
A basic_istream object
 constructs a temporary sentry
 object prior to each input operation. The sentry object is destroyed when the input
 operation finishes and the function returns. The sentry manages tied streams and is
 responsible for skipping whitespace prior to a formatted
 read.
The stream passes itself and a flag to the sentry's
 constructor. Formatted reads (operator>>) use false for the second argument; unformatted
 reads (get, getline, etc.) use true.
If stream.good() is true,
 the sentry first flushes any tied stream. That is, if stream.tie() is not null, the sentry
 calls stream.tie()->flush().
 This ensures that prompts and similar output appears before the
 input is requested. Then, if the noskipws argument is false, and if the
 skipws bit is not set in the
 stream's formatting flags ((ios_base::skipws & stream.fmtflags()) == 0),
 the sentry's constructor reads and discards whitespace characters.
 The sentry uses code similar to that shown in Example 13-17.

Example
Example 13-17. Skipping whitespace in an input sentry
const std::ctype<char_type>& ctype =
 std::use_facet<ctype<char_type> >(stream.getloc());
int_type c;
while ((c = stream.rdbuf()->snextc()) != traits::eof())
 if (ctype.is(ctype.space,c) == 0) {
 // Put back the non-space character.
 stream.rdbuf()->sputbackc(c);
 break;
 }

If anything goes wrong, the sentry calls stream.setstate(failbit). The sentry's
 operator bool() returns true if stream.good() is true, and false otherwise.

See Also
basic_istream class
 template, basic_ostream::sentry in <ostream>

Name
iostream class — Narrow input and output stream

Synopsis
typedef basic_iostream<char> iostream;
The iostream class
 specializes basic_iostream for
 the char type.

See Also
basic_iostream class
 template, istream
 class, wiostream
 class, ostream in <ostream>

Name
istream class — Input stream

Synopsis
typedef basic_istream<char> istream;
The istream class
 specializes basic_istream for the
 char type.

See Also
basic_istream class
 template, iostream
 class, wistream
 class, ostream in <ostream>

Name
operator>> function template — Input operator for single characters

Synopsis
template<typename charT, typename traits>
 basic_istream<charT,traits>& operator>>
 (basic_istream<charT,traits>& stream, charT& c);

template<typename traits> basic_istream<char,traits>&
 operator>>(basic_istream<char,traits>& stream, unsigned char& c);
template<typename traits> basic_istream<char,traits>&
 operator>>(basic_istream<char,traits>& stream, signed char& c);
The operator>>
 function reads a character from an input stream using the rules for
 a formatted read (that is, a sentry object is constructed and initial
 whitespace is skipped). The character is stored in c. If no character is available, failbit is set. The return value is
 stream.
Note that the first form of operator>> reads the stream's
 character type. If the stream's character type is char, the second and third forms read
 signed char and unsigned char.

See Also
basic_istream class
 template

Name
operator>> function template — Input operator for character arrays

Synopsis
template<typename charT, typename traits>
 basic_istream<charT,traits>& operator>>
 (basic_istream<charT,traits>& stream, charT* str);

template<typename traits> basic_istream<char,traits>&
 operator>>(basic_istream<char,traits>& stream, unsigned char* str);
template<typename traits> basic_istream<char,traits>&
 operator>>(basic_istream<char,traits>& stream, signed char* str);
The operator>>
 function reads characters from stream into str. As with any formatted input, a
 sentry object is created and
 initial whitespace is skipped. Characters are then read from the
 stream into str until an
 end-of-file is reached or the next character read would be a
 whitespace character (the space is not read from the stream).
To limit the number of characters read (always a good idea),
 set the stream's width to
 n. At most, n
 - 1 characters will be read into s. The function resets the width to
 0 after reading the stream. A
 null character is always appended to the end of the string.
If no characters are read from the stream, failbit is set.
Note that the first form of operator>> reads with the stream's
 character type. If the stream's character type is char, the second and third forms read
 signed char and unsigned char.

See Also
basic_istream class
 template

Name
wiostream class — Wide input and output stream

Synopsis
typedef basic_iostream<wchar_t> wiostream;
The wiostream class
 specializes basic_iostream for
 the wchar_t type.

See Also
basic_iostream class
 template, iostream
 class, wistream
 class, wostream in <ostream>

Name
wistream class — Wide input stream

Synopsis
typedef basic_istream<wchar_t> wistream;
The wistream class
 specializes basic_istream for the
 wchar_t type.

See Also
basic_istream class
 template, istream
 class, wiostream
 class, wostream in <ostream>

Name
ws function — Skips whitespace manipulator

Synopsis
template <class charT, class traits>
 basic_istream<charT,traits>& ws(basic_istream<charT,traits>& stream);
The ws function is an input
 stream manipulator that skips whitespace characters in stream using the same technique as
 basic_istream::sentry. If the
 manipulator reaches the end-of-file, it sets eofbit, but not failbit.

Example
Suppose you want to read a line of text by calling getline, but you also want to skip
 whitespace at the beginning of the line. (Because getline is an unformatted input function,
 it does not automatically skip whitespace.) The following example
 shows one way to skip whitespace and read the line using ws:
char buffer[BUFSIZ];
 . . .
in >> ws;
in.getline(buffer, sizeof(buffer));

See Also
basic_istream class
 template, basic_istream::sentry class

<iterator>

The <iterator> header declares classes and templates for defining and
 using iterators. (See Chapter 10.)
 Iterators are especially important when using the standard algorithms in
 <algorithm>.
An iterator gives a program access to the contents of a container
 or other sequence, such as an I/O stream. You can think of an iterator
 as an abstraction of a pointer; the syntax for using iterators resembles
 that of pointers. Conceptually, an iterator points to a single element
 in a container or sequence and can be advanced to the next element with
 the ++ (increment) operator. The
 unary * (dereference) operator
 returns the element that the iterator points to. Iterators (except for
 output iterators) can be compared: two iterators are equal if they point
 to the same position in the same sequence, or if they both point to one
 position past the end of the same sequence.
There are five categories of iterators:
	Input iterators
	Permit one pass to read a sequence. The increment operator
 advances to the next element, but there is no decrement operator.
 The dereference operator does not return an lvalue, so you can
 read elements but not modify them.

	Output iterators
	Permit one pass to write a sequence. The increment operator
 advances to the next element, but there is no decrement operator.
 You can dereference an element only to assign a value to it. You
 cannot compare output iterators.

	Forward iterators
	Are like a combination of an input and an output iterator.
 You can use a forward iterator anywhere an input iterator is
 required or where an output iterator is required. A forward
 iterator, as its name implies, permits unidirectional access to a
 sequence. You can refer to a single element and modify it multiple
 times before advancing the iterator.

	Bidirectional iterators
	Are like forward iterators but also support the decrement
 operator (--) to move the
 iterator backward by one position.

	Random access iterators
	Are like bidirectional iterators but also support the
 [] (subscript) operator to
 access any index in the sequence. Also, you can add or subtract an
 integer to move a random access iterator by more than one position
 at a time. Subtracting two random access iterators yields an
 integer distance between them. Thus, a random access iterator is
 most like a conventional pointer, and, in fact, a pointer can be
 used as a random access iterator.

An input, forward, bidirectional, or random access iterator can be
 a const_iterator. Dereferencing a
 const_iterator yields a constant (an
 rvalue or a const lvalue). Chapter 10 discusses const_iterators in more depth.
An iterator can point to any element in a sequence or to one
 position past the end. You cannot dereference an iterator that points to
 one past the end, but you can compare it with other iterators (provided
 it is not an output iterator) or, if it is a bidirectional or random
 access iterator, decrease its position so it points to a valid element
 of the sequence.
Iterators are often used in ranges. A range
 has two iterators: a starting point and an ending point. The end
 iterator typically points to one position past the last element in the
 range. Thus, a range is often written using the mathematical notation of
 [first, last), in which the square bracket means
 first is included in the range, and
 the parenthesis means last is
 excluded from the range.
Like ordinary pointers, iterators can be uninitialized or
 otherwise have invalid values, such as x.begin(
) - 1, in which x is any container. It is your responsibility
 to ensure that you dereference only valid iterators, that you don't let
 iterators run past their valid end-points, and so on.
To create your own iterator class, see the iterator class template.

Name
advance function template — Moves iterator forward or backward

Synopsis
template <typename InputIterator, typename Distance>
 void advance(InputIterator& i, Distance n);
The advance function
 template advances an input iterator i by a distance n. If the iterator is bidirectional or
 random access, n can be negative.
 If the iterator is random access, the advance function is specialized as
 i + n;
 other iterators apply the ++
 operator n times (or -- for a bidirectional iterator when
 n is negative).

See Also
distance function
 template

Name
back_insert_iterator class template — Output iterator to push items back onto a
 container

Synopsis
template <typename Container>
 class back_insert_iterator :
 public iterator<output_iterator_tag,void,void,void,void>
{
protected:
 Container* container;
public:
 typedef Container container_type;
 explicit back_insert_iterator(Container& x);
 back_insert_iterator<Container>&
 operator=(typename Container::const_reference value);
 back_insert_iterator<Container>& operator*();
 back_insert_iterator<Container>& operator++();
 back_insert_iterator<Container> operator++(int);
};
The back_insert_iterator
 class template implements an output iterator that stores elements in
 a container by calling the container's push_back function. The most convenient
 way to create a back_insert_iterator object is to use the
 back_inserter function
 template.
The way back_insert_iterator works seems slightly
 unconventional, although it is perfectly reasonable for an output
 iterator: the * operator returns
 the iterator, not an element of the container. Thus, the expression
 *iter = value
 assigns value to the iterator
 itself. The iterator's assignment operator appends value to the underlying container by
 calling the container's push_back
 function. Thus, the iterator does not maintain any notion of a
 position, and the increment operator is a no-op.
The following are the member functions of back_insert_iterator:
	explicit back_insert_iterator
 (Container& x)
	Initializes the container member with &x.

	back_insert_iterator<Container>&
 operator= (typename Container::const_reference
 value)
	Calls container->push_back(value). The
 return value is *this.

	back_insert_iterator<Container>&
 operator* ()
	Returns *this.

	back_insert_iterator<Container>&
 operator++ ()
back_insert_iterator<Container>&
 operator++ (int)
	Returns *this with no
 side effects.

See Also
back_inserter function
 template, front_insert_iterator class
 template, insert_iterator
 class template

Name
back_inserter function template — Creates a back_insert_iterator

Synopsis
template <typename Container>
 back_insert_iterator<Container> back_inserter(Container& x);
The back_inserter function
 template constructs a back_insert_iterator object for the
 container x. Example 13-18 shows how to use
 back_inserter to read integers
 from a file into a vector.

Example
Example 13-18. Using back_inserter to add numbers to a vector
std::ifstream in("experiment.dat");
std::vector<int> data;
std::copy(std::istream_iterator<int>(in),
 std::istream_iterator<int>(),
 std::back_inserter(data));

See Also
back_insert_iterator class
 template, front_inserter
 function template, inserter
 function template

Name
bidirectional_iterator_tag class — Tag for a bidirectional iterator

Synopsis
struct bidirectional_iterator_tag :
 public forward_iterator_tag {};
Use the bidirectional_iterator_tag class as the
 iterator category when declaring a new bidirectional iterator class.
 When writing a generic algorithm or similar function, you can use
 the iterator's category to write specialized implementations for
 different kinds of iterators. See Example 13-19 (under the
 distance function
 template).

See Also
bidirectional_iterator_tag
 class, forward_iterator_tag
 class, input_iterator_tag
 class, iterator class
 template, output_iterator_tag class, random_access_iterator_tag
 class

Name
distance function template — Counts elements between two iterators

Synopsis
template<typename InputIterator>
 typename iterator_traits<InputIterator>::difference_type
 distance(InputIterator first, InputIterator last);
The distance function
 returns the number of elements between first and last. The function is specialized for
 random access iterators to use the - operator; for other input iterators, the
 function applies the ++ operator
 to first until first == last. The behavior is undefined if
 first and last refer to different containers or if
 last points to an element earlier
 than first.
Example 13-19
 shows a simple implementation of the distance function. The first specialized
 implementation works for any iterator (except output iterators,
 which do not support comparison with the != operator). The second one works only
 with random access iterators and uses the subtraction operator to
 compute the distance in constant time. The compiler picks the more
 specialized function when it can, so random access iterators can
 compute distances in constant time, compared to linear time for
 other iterators.

Example
Example 13-19. A simple implementation of distance
namespace std {
 template<typename InputIter>
 typename iterator_traits<InputIter>::difference_type
 specialize_distance(InputIter first, InputIter last, ...)
 {
 typename iterator_traits<InputIter>::difference_type n;
 for (n = 0; first != last; ++first)
 ++n;
 return n;
 }

 template<typename InputIter>
 typename iterator_traits<InputIter>::difference_type
 specialize_distance(InputIter first, InputIter last,
 random_access_iterator_tag)
 {
 return last - first;
 }

 template<typename InputIter>
 typename iterator_traits<InputIter>::difference_typedistance(InputIter first, InputIter last)
 {
 return specialize_distance(first, last,
 iterator_traits<InputIter>::iterator_category());
 }
}

See Also
advance function
 template

Name
forward_iterator_tag class — Tag for a forward iterator

Synopsis
struct forward_iterator_tag : public input_iterator_tag {};
Use the forward_iterator_tag class as the iterator
 category when declaring a new forward iterator class. When writing a
 generic algorithm or similar function, you can use the iterator's
 category to write specialized implementations for different kinds of
 iterators. See Example
 13-19 (under the distance
 function template).

See Also
bidirectional_iterator_tag
 class, forward_iterator_tag
 class, input_iterator_tag
 class, iterator class
 template, output_iterator_tag class, random_access_iterator_tag
 class

Name
front_insert_iterator class template — Iterator to insert elements at the front of a
 container

Synopsis
template <typename Container>
class front_insert_iterator :
 public iterator<output_iterator_tag,void,void,void,void>
{
protected:
 Container* container;
public:
 typedef Container container_type;
 explicit front_insert_iterator(Container& x);
 front_insert_iterator<Container>&
 operator=(typename Container::const_reference value);
 front_insert_iterator<Container>& operator*();
 front_insert_iterator<Container>& operator++();
 front_insert_iterator<Container> operator++(int);
};
The front_insert_iterator
 class template implements an output iterator that stores elements in
 a container by calling the container's push_front function. The most convenient
 way to create a front_insert_iterator object is to use the
 front_inserter function
 template.
The way front_insert_iterator works seems slightly
 unconventional, although it is perfectly reasonable for an output
 iterator: the * operator returns
 the iterator, not an element of the container. Thus, the expression
 *iter = value
 assigns value to the iterator
 itself. The iterator's assignment operator adds value to the underlying container by
 calling the container's push_front function. Thus, the iterator
 does not maintain any notion of a position, and the increment
 operator is a no-op.
The following are the member functions of front_insert_iterator:
	explicit front_insert_iterator
 (Container& x)
	Initializes the container member with &x.

	front_insert_iterator<Container>&
 operator= (typename
 Container::const_reference value)
	Calls container->push_front(value). The
 return value is *this.

	front_insert_iterator<Container>&
 operator* ()
	Returns *this.

	front_insert_iterator<Container>&
 operator++ ()
front_insert_iterator<Container>
 operator++ (int)
	Returns *this with no
 side effects.

See Also
back_insert_iterator class
 template, front_inserter
 function template, insert_iterator class
 template

Name
front_inserter function template — Creates a front_insert_iterator

Synopsis
template <typename Container>
 front_insert_iterator<Container>
 front_inserter(Container& x);
The front_inserter function
 template constructs a front_insert_iterator object for the
 container x. Example 13-20 shows how to use
 front_inserter to read integers
 from a file into a list in reverse order.

Example
Example 13-20. Using a front_inserter to add numbers to a list
std::ifstream in("experiment.dat");
std::list<int> data;
std::copy(std::istream_iterator<int>(in),
 std::istream_iterator<int>(),
 std::front_inserter(data));

See Also
back_inserter function
 template, front_insert_iterator class
 template, inserter function
 template

Name
input_iterator_tag class — Tag for an input iterator

Synopsis
struct input_iterator_tag {};
Use the input_iterator_tag
 class as the iterator category when declaring a new input iterator
 class. When writing a generic algorithm or similar function, you can
 use the iterator's category to write specialized implementations for
 different kinds of iterators. See Example 13-19 (under the
 distance function
 template).

See Also
bidirectional_iterator_tag
 class, forward_iterator_tag
 class, iterator class
 template, output_iterator_tag class, random_access_iterator_tag
 class

Name
insert_iterator class template — Iterator to insert elements in a container

Synopsis
class insert_iterator :
 public iterator<output_iterator_tag,void,void,void,void>
{
protected:
 Container* container;
 typename Container::iterator iter;
public:
 typedef Container container_type;
 insert_iterator(Container& cont, typename Container::iterator iter);
 insert_iterator<Container>&
 operator=(typename Container::const_reference value);
 insert_iterator<Container>& operator*();
 insert_iterator<Container>& operator++();
 insert_iterator<Container>& operator++(int);
};
The insert_iterator class
 template implements an output iterator that stores elements in a
 container by calling the container's insert function. The most convenient way
 to create a insert_iterator
 object is to use the inserter
 function template.
The way insert_iterator
 works seems slightly unconventional, although it is perfectly
 reasonable for an output iterator: the * operator returns the iterator, not an
 element of the container. Thus, the expression *iter =
 value assigns value to the iterator itself. The
 iterator's assignment operator adds value to the underlying container by
 calling the container's insert
 function. Thus, the iterator does not maintain any notion of a
 position, and the increment operator is a no-op.
The following are the member functions of insert_iterator:
	 insert_iterator (Container& x, typename Container::iterator
 i)
	Initializes the container member with &x and iter with i. Thus, the elements to be inserted
 in the container will be inserted at position i.

	insert_iterator<Container>&
 operator= (typename
 Container::const_reference value)
	Assigns a value to an element in the iterator's
 container, performing the equivalent of the following:
iter = container->insert(iter, value);
++iter;
return *this;

	insert_iterator<Container>&
 operator* ()
	Returns *this.

	insert_iterator<Container>&
 operator++ ()
insert_iterator<Container>
 operator++ (int)
	Returns *this with no
 side effects.

See Also
back_insert_iterator class
 template, front_insert_iterator class template,
 inserter function
 template

Name
inserter function template — Creates an insert_iterator

Synopsis
template <typename Container, typename Iterator>
 insert_iterator<Container>
 inserter(Container& x, Iterator i);
The inserter function
 template constructs an insert_iterator object for the container
 x to insert items starting at
 position i. Figure 13-22 illustrates a
 simple use of the inserter
 function.
[image: Using inserter to insert a vector in the middle of another vector]

Figure 13-22. Using inserter to insert a vector in the middle of another
 vector

See Also
back_inserter function
 template, front_inserter
 function template, insert_iterator class
 template

Name
istream_iterator class template — Input iterator to read items from an
 istream

Synopsis
template <typename T, typename charT = char,
 typename traits = char_traits<charT>, typename Distance = ptrdiff_t>
class istream_iterator :
 public iterator<input_iterator_tag,
 T, Distance, const T*, const T&>
{
public:
 typedef charT char_type;
 typedef traits traits_type;
 typedef basic_istream<charT,traits> istream_type;
 istream_iterator();
 istream_iterator(istream_type& stream);
 istream_iterator(const istream_iterator<T,charT,traits,Distance>& x);
 ~istream_iterator();
 const T& operator*() const;
 const T* operator->() const;
 istream_iterator<T,charT,traits,Distance>& operator++();
 istream_iterator<T,charT,traits,Distance> operator++(int);
};
The istream_iterator class
 template wraps an input iterator around an input stream (an instance
 of basic_istream), making the
 stream appear to be a sequence of items, each of type T.
Example 13-20
 (under the front_inserter
 function template) shows how an istream_iterator can be used to read a
 series of integers from a file.
The following are the member functions of istream_iterator:
	 istream_iterator ()
	Constructs an istream_iterator that denotes the
 end of the stream. End-of-stream iterators are equal to each
 other and are not equal to any other istream_iterator.

	 istream_iterator (istream_type& stream)
	Constructs an istream_iterator to read from a
 stream. The constructor might read the first item from the
 stream. An istream_iterator
 that wraps a stream is equal to an end-of-stream iterator when
 stream.eof() is true.

	 istream_iterator (const
 istream_iterator<T,charT,traits,Distance>&
 iter)
	Constructs a copy of iter. Note that two istream_iterator objects are the
 same (operator== is true)
 if they point to the same stream object.

	const T& operator*
 ()
 const
	Returns the item that was read most recently from the
 stream.

	 operator->
	Returns a pointer to the item that was read most
 recently from the stream.

	istream_iterator<T,charT,traits,Distance>&
 operator++ ()
	Reads the next item from the stream using operator>>. The return value
 is a copy of *this, made
 prior to reading from the stream.

See Also
istreambuf_iterator class
 template, ostream_iterator
 class template, basic_istream in <istream>

Name
istreambuf_iterator class template — Input iterator to read characters from a
 streambuf

Synopsis
template<typename charT, typename traits=char_traits<charT> >
class istreambuf_iterator :
 public iterator<input_iterator_tag, charT, typename traits::off_type, charT*,
 charT&>
{
public:
 typedef charT char_type;
 typedef traits traits_type;
 typedef typename traits::int_type int_type;
 typedef basic_streambuf<charT,traits> streambuf_type;
 typedef basic_istream<charT,traits> istream_type;
 class proxy; // Exposition only

 istreambuf_iterator() throw();
 istreambuf_iterator(istream_type& s) throw();
 istreambuf_iterator(streambuf_type* s) throw();
 istreambuf_iterator(const proxy& p) throw();
 charT operator*() const;
 istreambuf_iterator<charT,traits>& operator++();
 proxy
 operator++(int);
 bool equal(istreambuf_iterator& b) const;
};
The istreambuf_iterator
 class template wraps a stream buffer object (instance of basic_streambuf) as an input iterator to
 read characters from the stream buffer. Example 13-21 shows how to use
 streambuf_iterators to copy
 files.

Examples
Example 13-21. Copying files using streambuf iterators
void copyfile(const char* from, const char* to)
{
 std::ifstream in(from);
 std::ofstream out(to);

 std::copy(std::istreambuf_iterator<char>(in),
 std::istreambuf_iterator<char>(),
 std::ostreambuf_iterator<char>(out));
}

The post-increment operator (++) returns a proxy
 object, which is an object that stands in for the
 istreambuf_iterator object. Its
 use is largely transparent, and you rarely need to think about it.
 The definition and name of the proxy class are
 implementation-defined, but the class has at least the capability to
 return the input character and the underlying stream buffer. This
 section assumes that the class name is
 proxy. Example 13-22 shows a
 prototypical implementation of
 proxy.
Example 13-22. A trivial implementation of the proxy class
template<typename charT, typename traits=char_traits<charT> >
class istreambuf_iterator<charT, traits>::proxy
{
 friend template<typename charT, typename traits>
 class istreambuf_iterator<charT,traits>;
 charT keep;
 basic_streambuf<charT,traits>* sbuf;
 proxy(charT c, basic_streambuf<charT,traits>* sbuf);
 : keep(c), sbuf(sbuf) {}
public:
 charT operator*() { return keep; }
};

In the following descriptions of the member functions of
 istreambuf_iterator, the data
 member sbuf is a pointer to the
 iterator's stream buffer. The sbuf member
 serves only to keep the function descriptions clear and simple; the
 class is not required to have such a member, nor is the class
 required to have a member with that name.
	 istreambuf_iterator
 () throw()
	Constructs the end-of-stream iterator.

	 istreambuf_iterator
 (istream_type& s) throw(
)
 istreambuf_iterator
 (streambuf_type* sb) throw(
)
 istreambuf_iterator
 (const
 proxy &
 p) throw()
	Constructs an istreambuf_iterator and initializes
 sbuf to s.rdbuf(), sb, or p.sbuf. If sb == 0, an end-of-stream iterator
 is constructed.

	charT operator*
 ()
 const
	Returns sbuf ->sgetc().

	istreambuf_iterator<charT,traits>&
 operator++ ()
	Calls sbuf ->sbumpc() and returns *this.

	proxy
 operator++
 (int)
	Returns proxy (sbuf ->sbumpc(), sbuf).

	bool equal
 (istreambuf_iterator& b)
 const
	Returns true if both
 iterators are end-of-stream iterators or if neither iterator
 is an end-of-stream iterator. The iterators do not have to use
 the same stream buffer.

See Also
istream_iterator class
 template, ostreambuf_iterator class
 template, basic_streambuf
 in <streambuf>

Name
iterator class template — Iterator base-class template

Synopsis
template<typename Category, typename T, typename Difference = ptrdiff_t,
 typename Pointer = T*, typename Reference = T&>
struct iterator{
 typedef T value_type;
 typedef Difference difference_type;
 typedef Pointer pointer;
 typedef Reference reference;
 typedef Category iterator_category;
};
The iterator class template
 is a convenient base-class template to use when implementing your
 own iterator.
The following are the template parameters, which are all type
 parameters:
	Category
	Must be one of the five iterator category tags: bidirectional_iterator_tag, forward_iterator_tag, input_iterator_tag, output_iterator_tag, or random_access_iterator_tag.

	T
	The element type. It can be void for an output iterator because
 you cannot dereference an output iterator.

	Difference
	An integral type that represents the distance between
 two iterators. It can be void for an output iterator because
 you cannot measure the distance between two output iterators.
 This parameter is optional; the default is ptrdiff_t, which is suitable for
 typical pointer-like iterators.

	Pointer
	The pointer-to-element type. This parameter is optional;
 the default is T*, which is
 correct for most iterators.

	Reference
	The reference-to-element type. This parameter is
 optional; the default is T&, which is correct for most
 iterators.

See Also
iterator_traits class
 template, reverse_iterator
 class template

Name
iterator_traits class template — Iterator traits

Synopsis
template<typename Iterator>
struct iterator_traits{
 typedef typename Iterator::difference_type difference_type;
 typedef typename Iterator::value_type value_type;
 typedef typename Iterator::pointer pointer;
 typedef typename Iterator::reference reference;
 typedef typename Iterator::iterator_category iterator_category;
};
The iterator_traits class
 template declares traits for an iterator. If you use the iterator class template as the base for
 your custom iterator, you don't need to specialize iterator_traits. If you are writing a
 custom container or algorithm, you should always use iterator_traits to obtain the traits of an
 iterator. If you use a plain pointer as an iterator, the standard
 library specializes iterator_traits for you. See the next
 subsection.
If you write your own specialization, the iterator_category type must be one of the
 five iterator tag classes. (See the iterator class template.) For an output
 iterator, difference_type and
 value_type are void.
When writing a generic algorithm or other function that uses
 iterators, you can use iterator_traits to specialize the behavior
 for certain kinds of iterators. See Example 13-19 (under distance), which shows how iterator traits
 can be used to improve the performance of a function.

See Also
iterator class
 template

Name
iterator_traits<T*> template specialization — Iterator traits specialized for pointers

Synopsis
template<typename T>
struct iterator_traits<T*>{
 typedef ptrdiff_t difference_type;
 typedef T value_type;
 typedef T* pointer;
 typedef T& reference;
 typedef random_access_iterator_tag iterator_category;
};
The iterator_traits class
 template is specialized for pointers. This specialization lets you
 use a pointer as a random access iterator.

See Also
iterator_traits class
 template

Name
iterator_traits<const T*> template
 specialization — Iterator traits specialized for pointers to
 const

Synopsis
template<typename T>
struct iterator_traits<const T*>{
 typedef ptrdiff_t difference_type;
 typedef T value_type;
 typedef const T* pointer;
 typedef const T& reference;
 typedef random_access_iterator_tag iterator_category;
};
The iterator_traits class
 template is specialized for pointers to const. This specialization lets you use a
 pointer as a random access iterator.

See Also
iterator_traits class
 template

Name
ostream_iterator class template — Output iterator to write items to an
 ostream

Synopsis
template <typename T, typename charT = char,
 typename traits = char_traits<charT> >
class ostream_iterator :
 public iterator<output_iterator_tag,void,void,void,void>
{
public:
 typedef charT char_type;
 typedef traits traits_type;
 typedef basic_ostream<charT,traits> ostream_type;
 ostream_iterator(ostream_type& s);
 ostream_iterator(ostream_type& s, const charT* delimiter);
 ostream_iterator(const ostream_iterator<T,charT,traits>& x);
 ~ostream_iterator();
 ostream_iterator<T,charT,traits>& operator=(const T& value);
 ostream_iterator<T,charT,traits>& operator*();
 ostream_iterator<T,charT,traits>& operator++();
 ostream_iterator<T,charT,traits>& operator++(int);
};
The ostream_iterator class
 template wraps an output iterator around an output stream (instance
 of basic_ostream), making the
 stream appear to be a sequence of items, each of type T. For example, suppose you have a vector
 of data. You can print the data, one number per line, by using an
 ostream_iterator:
std::vector<int> data;
 . . . // Acquire data.
std::copy(data.begin(), data.end(),
 std::ostream_iterator(std::cout, "\n"));
The following are the member functions of ostream_iterator:
	 ostream_iterator (ostream_type& stream)
 ostream_iterator (ostream_type& stream, const charT* delimiter)
 ostream_iterator (const
 ostream_iterator<T,charT,traits>& x)
	Prepares to write items to stream. If delimiter is present, it will be
 written after each item. The copy constructor copies the
 reference to the stream and to the delimiter from x.

	ostream_iterator<T,charT,traits>&
 operator= (const T&
 value)
	Writes value to the
 stream using operator<<. If the ostream_iterator has a delimiter, it
 is written after value. The
 return value is *this.

	ostream_iterator<T,charT,traits>&
 operator* ()
	Returns *this.

	ostream_iterator<T,charT,traits>&
 operator++ ()
ostream_iterator<T,charT,traits>&
 operator++ (int)
	Returns *this with no
 side effects.

See Also
istream_iterator class
 template, ostreambuf_iterator class
 template, basic_ostream in
 <ostream>

Name
ostreambuf_iterator class template — Output iterator to write characters to a
 streambuf

Synopsis
template<typename charT, typename traits=char_traits<charT> >
class ostreambuf_iterator :
 public iterator<output_iterator_tag,void,void,void,void>
{
public:
 typedef charT char_type;
 typedef traits traits_type;
 typedef basic_streambuf<charT,traits> streambuf_type;
 typedef basic_ostream<charT,traits> ostream_type;

 ostreambuf_iterator(ostream_type& s) throw();
 ostreambuf_iterator(streambuf_type* s) throw();
 ostreambuf_iterator& operator=(charT c);
 ostreambuf_iterator& operator*();
 ostreambuf_iterator& operator++();
 ostreambuf_iterator& operator++(int);
 bool failed() const throw();
};
The ostreambuf_iterator
 class template wraps a basic_streambuf object as an output
 iterator to write characters to the stream buffer. Example 13-21 (under istreambuf_iterator) shows how to use
 streambuf iterators to copy
 files.
In the following descriptions of the member functions of
 ostreambuf_iterator, the data
 member sbuf is a pointer to the
 iterator's stream buffer. The sbuf member
 serves only to keep the function descriptions clear and simple; the
 class is not required to have such a member, or a member with that
 name.
	 ostreambuf_iterator
 (ostream_type& s) throw(
)
 ostreambuf_iterator
 (streambuf_type* sb) throw(
)
	Saves the stream buffer s.rdbuf() or sb in
 sbuf.

	ostreambuf_iterator& operator=
 (charT
 c)
	Calls sbuf ->sputc(c) (only if failed() returns false) and returns *this.

	ostreambuf_iterator& operator*
 ()
	Returns *this.

	ostreambuf_iterator& operator++
 ()
ostreambuf_iterator& operator++
 (int)
	Returns *this.

	bool failed
 () const throw(
)
	Returns true if
 sbuf ->sputc() ever returned traits::eof(). Otherwise, it
 returns false.

See Also
istreambuf_iterator class
 template, ostream_iterator
 class template, basic_streambuf in <streambuf>

Name
output_iterator_tag class — Tag for an output iterator

Synopsis
struct output_iterator_tag {};
Use the output_iterator_tag
 class as the iterator category when declaring a new output iterator
 class. When writing a generic algorithm or similar function, you can
 use the iterator's category to write specialized implementations for
 different kinds of iterators. See Example 13-19 (under the
 distance function
 template).

See Also
bidirectional_iterator_tag
 class, forward_iterator_tag
 class, input_iterator_tag
 class, iterator class
 template, random_access_iterator_tag
 class

Name
random_access_iterator_tag class — Tag for a random access iterator

Synopsis
struct random_access_iterator_tag :
 public bidirectional_iterator_tag {};
Use the random_access_iterator_tag class as the
 iterator category when declaring a new random access iterator class.
 When writing a generic algorithm or similar function, you can use
 the iterator's category to write specialized implementations for
 different kinds of iterators. See Example 13-19 (under the
 distance function
 template).

See Also
bidirectional_iterator_tag
 class, forward_iterator_tag
 class, input_iterator_tag
 class, iterator class
 template, output_iterator_tag class

Name
reverse_iterator class template — Iterator wrapper to reverse direction

Synopsis
template <typename Iterator>
class reverse_iterator : public iterator<
 typename iterator_traits<Iterator>::iterator_category,
 typename iterator_traits<Iterator>::value_type,
 typename iterator_traits<Iterator>::difference_type,
 typename iterator_traits<Iterator>::pointer,
 typename iterator_traits<Iterator>::reference>
{
protected:
 Iterator current;
public:
 typedef Iterator iterator_type;
 typedef typename iterator_traits<Iterator>::difference_type
 difference_type;
 typedef typename iterator_traits<Iterator>::reference reference;
 typedef typename iterator_traits<Iterator>::pointer pointer;
 reverse_iterator();
 explicit reverse_iterator(Iterator x);
 template <typename U>
 reverse_iterator(const reverse_iterator<U>& u);
 Iterator base() const; // Explicit
 reference operator*() const;
 pointer operator->() const;
 reverse_iterator& operator++();
 reverse_iterator operator++(int);
 reverse_iterator& operator--();
 reverse_iterator operator--(int);
 reverse_iterator operator+(difference_type n) const;
 reverse_iterator& operator+=(difference_type n);
 reverse_iterator operator-(difference_type n) const;
 reverse_iterator& operator-=(difference_type n);
 reference operator[](difference_type n) const;
};
The reverse_iterator class
 template is an adapter for a bidirectional or random access iterator
 to iterate the sequence in the opposite direction of the adapted
 iterator. In other words, if the adapted iterator advances from the
 first to the last item in a container, a reverse iterator starts
 with the last items and "advances" to the first item. In addition to
 the reverse_iterator template,
 there are also several function templates for the comparison and
 arithmetic (+ and -) operators.
The standard containers return reverse_iterator objects from the rbegin() and rend() functions. The following example
 shows a simple implementation of these functions:
reverse_iterator rbegin() { return reverse_iterator(end()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
Because an iterator can point to one past the last item in a
 container but cannot point to one item before the first, a reverse
 iterator conceptually points to one item before
 the position to which the adapted iterator points. In other words,
 given an iterator, iter, which
 points to 42 in Example
 13-23, if you construct a reverse iterator that adapts
 iter, the reverse iterator
 appears to point to 29. When you increment the reverse iterator, it
 decrements the adapted iterator. Thus, the "next" element in the
 sequence of the reverse iterator is 12. (The adapted iterator points
 to 29.) The adapted iterator is also called the base
 iterator. See Chapter
 10 for a discussion of some of the interesting ramifications
 of using reverse_iterator.
[image: How a reverse iterator works]

Figure 13-23. How a reverse iterator works

The following member functions of reverse_iterator refer to
 adapted as the data member that stores
 the base() iterator. The
 adapted member is actually named current, and is a protected data member of
 reverse_iterator:
	 reverse_iterator ()
	Initializes the adapted data
 member with its default constructor.

	explicit reverse_iterator
 (Iterator
 iter)
	Initializes the adapted data
 member to iter.

	template <typename
 U> reverse_iterator (const reverse_iterator<U>&
 ri)
	Initializes the adapted data
 member to ri.base(
).

	Iterator base
 () const
	Returns the adapted iterator,
 adapted. Note that the adapted
 iterator points to one position after the
 reverse iterator's logical position.

	reference operator
 *() const
	Returns a reference to the item that the reverse
 iterator logically points to, which is one item
 before the item to which base() points. Thus, you can think
 of the dereference function working as follows:
reference operator*() const {
 iterator_type tmp = base();
 --tmp;
 return *tmp;
}

	pointer operator
 ->()
 const
	Returns a pointer to the item that the reverse iterator
 logically points to, that is, &(operator*()).

	reverse_iterator&
 operator ++()
	Decrements adapted and
 returns *this.

	reverse_iterator
 operator++ (int)
	Saves a copy of (*this), decrements
 adapted, and returns the saved copy
 of *this.

	reverse_iterator&
 operator --()
	Increments adapted and
 returns *this.

	reverse_iterator
 operator-- (int)
	Saves a copy of the current item (operator*()), increments
 adapted, and returns the saved
 item.

	reverse_iterator
 operator+ (difference_type
 n) const
	Returns reverse_iterator(base(
) - n).

	reverse_iterator&
 operator+= (difference_type
 n)
	Subtracts n from
 adapted and returns *this.

	reverse_iterator
 operator- (difference_type n)
 const
	Returns reverse_iterator(base(
) + n).

	reverse_iterator&
 operator-= (difference_type
 n)
	Adds n to
 adapted and returns *this.

	reference operator[]
 (difference_type n)
 const
	Returns base(
)[-n-1].

The following are several nonmember functions that compare
 reverse iterators and perform basic arithmetic such as finding the
 distance between two reverse iterators and advancing a reverse
 iterator by an integer:
	template <typename
 Iterator>
bool operator==
 (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns true when the
 base iterators are equal, that is, x.base() == y.base(
).

	template <typename
 Iterator>
bool operator!=
 (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns true when
 x and y have different base iterators,
 that is, x.base() != y.base(
).

	template <typename
 Iterator>
bool operator<
 (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns true when
 x is closer than y to the beginning of the sequence.
 Because x and y are reverse iterators, the
 function returns y.base()
 < x.base().

	template <typename
 Iterator>
bool operator>
 (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns true when
 x is farther than y from the beginning of the
 sequence. Because x and
 y are reverse iterators,
 the function returns y.base(
) > x.base().

	template <typename
 Iterator>
bool operator>=
 (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns true when
 x is farther than y from the beginning of the sequence
 or x equals y. Because x and y are reverse iterators, the
 function returns y.base()
 >= x.base().

	template <typename
 Iterator>
bool operator<=
 (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns true when
 x is closer than y to the beginning of the sequence
 or x equals y. Because x and y are reverse iterators, the
 function returns y.base()
 <= x.base().

	template <typename
 Iterator>
typename
 reverse_iterator<Iterator>::difference_type
 operator- (const
 reverse_iterator<Iterator>& x, const
 reverse_iterator<Iterator>& y)
	Returns the distance between two reverse iterators, that
 is, y.base() - x.base(
).

	template <typename
 Iter>
reverse_iterator<Iter>
 operator+ (typename
 reverse_iterator<Iter>::difference_type n,
 constreverse_iterator<Iter>& ri)
	Advances a reverse iterator ri by n. This function is a counterpart to
 the operator+ member
 function, allowing you to write ri + n and n + ri, which yield the same
 result.

See Also
iterator class
 template, Chapter 10

<limits>

The <limits> header declares the numeric_limits class template and related
 types and specializations that define the limits and characteristics of
 the fundamental arithmetic types (such as the largest possible int). It is the C++ equivalent of the C
 headers <cfloat> and <climits> (and the wchar_t limits in <cwchar>).
The <limits> header has a
 number of advantages over the <cfloat> and <climits> declarations. In particular,
 by using a template, you can write your own template-based classes that
 depend on the characteristics of a template parameter; this is not
 possible with the macro-based C headers.

Name
float_denorm_style type — Represents existence of denormalized, floating-point
 values

Synopsis
enum float_denorm_style {
 denorm_indeterminate = -1;
 denorm_absent = 0;
 denorm_present = 1;
};
The float_denorm_style type
 is an enumerated type that represents whether denormalized
 floating-point values are supported.

Name
float_round_style type — Represents the floating-point rounding
 style

Synopsis
enum float_round_style {
 round_indeterminate = -1,
 round_toward_zero = 0,
 round_to_nearest = 1,
 round_toward_infinity = 2,
 round_toward_neg_infinity = 3
};
The float_round_style type
 is an enumerated type that represents how floating-point numbers are
 rounded.

Name
numeric_limits class template — Represents the limits and characteristics of an
 arithmetic type

Synopsis
template<typename T>
class numeric_limits{
public:
 static const bool is_specialized = false;
 static T min() throw();
 static T max() throw();
 static const int digits = 0;
 static const int digits10 = 0;
 static const bool is_signed = false;
 static const bool is_integer = false;
 static const bool is_exact = false;
 static const int radix = 0;
 static T epsilon() throw();
 static T round_error() throw();
 static const int min_exponent = 0;
 static const int min_exponent10 = 0;
 static const int max_exponent = 0;
 static const int max_exponent10 = 0;
 static const bool has_infinity = false;
 static const bool has_quiet_NaN = false;
 static const bool has_signaling_NaN = false;
 static const float_denorm_style has_denorm = denorm_absent;
 static const bool has_denorm_loss = false;
 static T infinity() throw();
 static T quiet_NaN() throw();
 static T signaling_NaN() throw();
 static T denorm_min() throw();
 static const bool is_iec559 = false;
 static const bool is_bounded = false;
 static const bool is_modulo = false;
 static const bool traps = false;
 static const bool tinyness_before = false;
 static const float_round_style round_style = round_toward_zero;
};
The numeric_limits class
 template represents the limits and characteristics of an arithmetic
 type. The data members that are shown as static const are constants that you can use in
 other integral constant expressions.
The default is for all members to be 0 or false. The header has specializations for
 all fundamental types, and only for the fundamental types. Every
 specialization in the standard library defines every member, even if
 the member does not pertain to the type (e.g., floating-point
 characteristics of an integral type). Meaningless members are
 defined as 0 or false.
You can specialize numeric_limits for your own types. For
 example, suppose you write a class, bigint, to represent integers of arbitrary
 size. You can define your specialization to show that the type is
 unbounded, signed, integral, etc. You should follow the convention
 of the standard library, namely, by defining all members, even if
 they do not apply to your type. Be sure to define is_specialized as true.
Use numeric_limits to query
 the properties or traits of a numeric type. For example, suppose you
 are writing a data analysis program. Among the data are points you
 want to ignore, but you need to keep their places in the data array.
 You decide to insert a special marker value. Ideally, the marker
 value (such as infinity) cannot possibly appear in the actual data
 stream. If the floating-point type that you are using does not
 support infinity, you can use the maximum finite value. Example 13-23 lists the
 no_data function, which returns
 the value used for the no-data marker.

Example
Example 13-23. Using infinity or maximum finite value to mean "no
 data"
// Define a template that will differentiate types that have a specialized
// numeric_limits and an explicit value for infinity.
template<typename T, bool is_specialized, bool has_infinity>
struct max_or_infinity
{};

// Specialize the template to obtain the value of infinity.
template<typename T>
struct max_or_infinity<T, true, true>
{
 static T value()
 { return std::numeric_limits<T>::infinity(); }
};

// Specialize the template if infinity is not supported.
template<typename T>
struct max_or_infinity<T, true, false>
{
 static T value() { return std::numeric_limits<T>::max(); }
};

// Note that a type without a numeric_limits specialization does not have a
// max_or_infinity specialization, so the no_data function would result in
// compile-time errors when applied to such a type.
//
// The no_data function returns a value that can be used to mark points that do
// not have valid data.
template<typename T>
Tno_data()
{
 return max_or_infinity<T,
 std::numeric_limits<T>::is_specialized,
 std::numeric_limits<T>::has_infinity>::value();
}

The C++ standard mandates that all integers are binary and use
 two's complement, ones' complement, or signed magnitude
 representation. The representation of floating-point numbers is not
 specified. The numeric_limits
 template assumes that a number is represented as a sign, a
 significand (sometimes called the mantissa), a
 base, and an exponent:
	x = sign × significand × base
 exponent

In everyday arithmetic, we are used to working with a
 base of 10. (The base is also called the
 radix.) The most common bases for computer
 arithmetic, however, are 16 and 2. Many modern workstations use the
 IEC 60559 (IEEE 754) standard for floating-point arithmetic, which
 uses a base of 2.
The significand is a string of digits in
 the given base. There is an implied radix point at the start of the
 significand, so the value of the significand is always less than
 one. (A radix point is the
 generalization of a decimal point for any radix.)
A finite floating-point value is
 normalized if the first digit of its
 significand is nonzero, or if the entire value is 0. The term
 denormalized means a finite value is not
 normalized.
The precision of a floating-point type is
 the maximum number of places in the significand. The
 range of a floating-point type depends
 primarily on the minimum and maximum values for the exponent.
The following are descriptions of the members of numeric_limits:
	static T denorm_min
 () throw()
	Returns the smallest positive, denormalized
 floating-point value. If has_denorm is false, it returns the smallest
 positive normalized value. For non-floating-point types, it
 returns 0.

	static const int digits
	The number of radix
 digits that can be represented. For integer types, it is the
 number of non-sign bits; for floating-point types, it is the
 number of places in the significand.

	static const int digits10
	The number of decimal digits that can be represented. If
 is_bounded is false, digits10 is 0.

	static T epsilon
 () throw()
	Returns the difference between 1.0 and the smallest
 representable value greater than 1.0. For integral types,
 epsilon returns 0.

	static const
 float_denorm_style has_denorm
	Indicates the denormalized, floating-point style. It is
 denorm_indeterminate if the
 style cannot be determined at compile time. It is meaningful
 for all floating-point types.

	static const bool has_denorm_loss
	Indicates whether the loss of accuracy in a
 floating-point computation is a denormalization loss rather
 than an inexact result.

	static const bool has_infinity
	Indicates whether the floating-point type can represent
 positive infinity. In particular, has_infinity is true when is_iec559 is true.

	static const bool has_quiet_NaN
	Indicates whether the floating-point type can represent
 a quiet (nonsignaling) NaN (not-a-number). In particular, this
 is true when is_iec559 is true.

	static const bool has_signaling_NaN

	Indicates whether the floating point type can represent
 a signaling NaN. In particular, this is true when is_iec559 is true.

	static T infinity () throw()
	Returns the value of positive infinity if has_infinity is true.

	static const bool is_bounded
	Indicates whether the type represents a finite set of
 values. This is true for
 all fundamental types.

	static const bool is_exact
	Indicates whether the type represents values exactly. It
 is true for all integral
 types and false for the
 fundamental floating-point types.

	static const bool is_iec559
	Indicates whether the type follows the IEC 60559 (IEEE
 754) standard for floating-point arithmetic. It is meaningful
 only for floating-point types. Among the requirements of the
 IEC 60559 standard are support for positive and negative
 infinity, and for values that are NaN.

	static const bool is_integer
	true for all integral
 types.

	static const bool is_modulo
	Indicates whether the type uses modulo arithmetic. This
 is always true for unsigned
 integral types and often true for signed integral types. It
 is false for typical
 floating-point types.

	static const bool is_signed
	Indicates whether the type is signed, that is, supports
 positive and negative values.

	static const bool is_specialized
	Indicates whether numeric_limits is specialized for
 the type. It is false by
 default, so you can detect whether numeric_limits<> has been
 specialized for a particular type, and therefore determine
 whether a false or 0 value is meaningful.

	static T max
 () throw()
	Returns the maximum finite value when is_bounded is true.

	static const int max_exponent
	The largest allowable exponent for a finite
 floating-point number.

	static const int max_exponent10
	The largest allowable decimal exponent for a finite
 floating-point number.

	static T min
 () throw()
	Returns the minimum finite value. It is meaningful when
 is_bounded is true or when is_bounded and is_signed are both false.

	static const int min_exponent
	The smallest allowable exponent for a floating-point
 number such that radix
 raised to min_exponent
 - 1 is representable as a normalized
 floating-point number.

	static const int
 min_exponent10
	The smallest negative decimal exponent such that 10
 raised to min_exponent10 is
 representable as a normalized floating-point number.

	static T quiet_NaN
 () throw()
	Returns a quiet NaN value if has_quiet_NaN is true.

	static const int
 radix

	The base used in the representation of a numeric value.
 For floating-point numbers, it is the base of the
 exponent.

	static T round_error
 () throw()
	Returns the maximum rounding error.

	static const
 float_round_style round_style
	Indicates the rounding style used by the floating-point
 type. (See the float_round_style type for a
 definition of the possible return values.) For integral types,
 the return value is always round_toward_zero.

	static T signaling_NaN
 () throw()
	Returns a signaling NaN value if has_signaling_NaN is true.

	static const bool
 tinyness_before
	Indicates whether a floating-point type tests for
 denormalized values before rounding.

	static const bool
 traps

	Indicates whether arithmetic errors
 trap, that is, result in signals or
 exceptions. It is false if
 errors are quietly ignored.

The numeric_limits template
 is specialized for all the fundamental numeric types and for no
 other types in the C++ standard. In each case, is_specialized is true, and other members are set as
 appropriate. The C++ standard (by way of the C standard) defines the
 minimum requirements for an implementation. The requirements for
 integral types are given in <climits>, and for floating-point
 types in <cfloat>.
The following are the standard specializations:
	numeric_limits<bool>
	numeric_limits<char>
	numeric_limits<double>
	numeric_limits<float>
	numeric_limits<int>
	numeric_limits<long>
	numeric_limits<long
 double>
	numeric_limits<short>
	numeric_limits<signed
 char>
	numeric_limits<unsigned
 char>
	numeric_limits<unsigned
 int>
	numeric_limits<unsigned
 long>
	numeric_limits<unsigned
 short>
	numeric_limits<wchar_t>

<list>

The <list> header is one of the standard container template headers.
 It declares the list class template
 and a few global function templates that operate on list objects.
A list is a sequence container that has constant performance when
 adding to or removing from any point in the container. It supports
 bidirectional iterators, but not random access. Although the standard
 does not mandate any particular implementation, the obvious choice is to
 use a doubly-linked list to implement the list class template.
See Chapter 10 for
 information about containers.

Name
list class template — List container

Synopsis
template <typename T, typename Alloc = allocator<T> >
class list{
public:
 // Types
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef T value_type;
 typedef Alloc allocator_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

 // Construct/copy/destroy
 explicit list(const Alloc& = Alloc());
 explicit list(size_type n, const T& value = T(), const Alloc& = Alloc());
 template <class InputIterator>
 list(InputIterator first, InputIterator last, const Alloc& = Alloc());
 list(const list<T,Alloc>& x);
 ~list();
 list<T,Alloc>& operator=(const list<T,Alloc>& x);
 template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
 void assign(size_type n, const T& t);
 allocator_type get_allocator() const;
 // Iterators
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 // Capacity
 bool empty() const;
 size_type size() const;
 size_type max_size() const;
 void resize(size_type sz, T c = T());
 // Element access
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 // Modifiers
 void push_front(const T& x);
 void pop_front();
 void push_back(const T& x);
 void pop_back();
 iterator insert(iterator position, const T& x);
 void insert(iterator position, size_type n, const T& x);
 template <class InputIterator>
 void insert(iterator position, InputIterator first, InputIterator last);
 iterator erase(iterator position);
 iterator erase(iterator position, iterator last);
 void swap(list<T,Alloc>&);
 void clear();
 // List operations
 void splice(iterator position, list<T,Alloc>& x);
 void splice(iterator position, list<T,Alloc>& x, iterator i);
 void splice(iterator position, list<T,Alloc>& x, iterator first,
 iterator last);
 void remove(const T& value);
 template <class Predicate>
 void remove_if(Predicate pred);
 void unique();
 template <class BinaryPredicate>
 void unique(BinaryPredicate binary_pred);
 void merge(list<T,Alloc>& x);
 template <class Compare>
 void merge(list<T,Alloc>& x, Compare comp);
 void sort();
 template <class Compare> void sort(Compare comp);
 void reverse();
};
The list class template is
 one of the standard container types, like deque and vector. A list stores a sequence of items such that
 inserting or erasing an item at any position requires constant time.
 The list template supports all
 the usual operations for a sequence container plus some functions
 that are unique to list.
When an item is erased from the list (by calling pop_back, erase, remove, etc.), all iterators that point to
 that item become invalid. All pointers and references to the item
 become invalid. No other iterators, pointers, or references are
 invalidated when inserting or erasing any items.
[image: image with no caption]

The size function can have
 constant or linear complexity. The standard encourages library
 vendors to implement the list
 class template so that size has
 constant complexity, but it permits worse performance (namely,
 linear in the size of the list). If size does not have constant complexity,
 you should expect all versions of splice to have constant complexity in all
 cases. (The last constraint is not mandated by the standard, but by
 common sense.)
The following are the member functions of list:
	explicit list
 (const Alloc& = Alloc(
))
	Initializes an empty list that uses the given
 allocator.

	explicit list
 (size_type n, const T& value = T(
), const Alloc& = Alloc())
	Initializes a list that contains n copies of value.

	template < typename
 InputIterator>
 list (InputIterator first, InputIterator last, const
 Alloc& = Alloc())
	Initializes the list with a copy of the items in the
 range [first, last), unless InputIterator is an integral type,
 in which case the list is constructed as though the arguments
 were cast:
list(static_cast<size_type>(first), static_cast<value_type>(last),
 alloc);

	 list (const list<T,Alloc>&
 x)
	Constructs a copy of the contents and allocator of the
 list x.

	list<T,Alloc>& operator=
 (const
 list<T,Alloc>& x)
	Replaces the list's contents with copies of the contents
 of x.

	template <typename
 InputIterator>
void assign
 (InputIterator first,
 InputIterator last)
	Replaces the list's contents with the items in the range
 [first, last), unless InputIterator is an integral type,
 in which case the arguments are interpreted as though they
 were cast:
assign(static_cast<size_type>(first), static_cast<value_type>(last));

	void assign
 (size_type n, const T&
 value)
	Replaces the list's contents with n copies of value.

	reference back
 ()
const_reference
 back
 () const
	Returns the last item in the list. The behavior is
 undefined if the list is empty.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first item in the
 list.

	void clear
 ()
	Erases all the items in the list, invalidating all
 iterators that point to the list.

	bool empty
 () const
	Returns true if the
 list is empty. Note that empty(
) has constant complexity even if size() does not.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points one past the last item
 in the list.

	iterator erase
 (iterator
 position)
iterator erase
 (iterator first, iterator
 last)
	Erases the item at position or all the items in the
 range [first, last).

	reference front
 ()
const_reference
 front
 () const
	Returns the first item in the list. The behavior is
 undefined if the list is empty.

	allocator_type
 get_allocator () const
	Returns the list's allocator.

	iterator insert
 (iterator position,
 const T& x)
void insert
 (iterator position,
 size_type n, const T& x)
template <typename
 InputIterator>
void insert
 (iterator position,
 InputIterator first, InputIterator last)
	Inserts one or more items before position. The performance is linear
 in the number of items inserted, and the T copy constructor is invoked once
 for each item inserted in the list. The first form inserts the
 item x; the second form
 inserts n copies of
 x; the third form copies
 the items in the range [first, last), unless InputIterator is an integral type,
 in which case the arguments are interpreted as though they
 were cast:
insert(position, static_cast<size_type>(first),
 static_cast<value_type>(last));
If an exception is thrown, such as bad_alloc when there is insufficient
 memory for a new element, the list is unchanged.

	size_type max_size
 () const
	Returns the size of the largest possible list.

	void merge
 (list<T,Alloc>& x)
template <class
 Compare>
void merge
 (list<T,Alloc>&
 x, Compare comp)
	Merges another sorted list, x, into the current list, which must
 also be sorted. Items are erased from x, so after merge returns, x is empty. Items are compared using
 the < operator or
 comp. The same function
 used to sort the items must be used to compare items. The
 merge is stable, so the relative order of items is unchanged;
 if the same item is already in the list and in x, the item from x is added after the item already in
 the list.
The performance of the merge is linear: exactly size() + x.size()
 - 1 comparisons
 are performed.

	void pop_back
 ()
	Erases the last item from the list. The behavior is
 undefined if the list is empty.

	void pop_front
 ()
	Erases the first item from the list. The behavior is
 undefined if the list is empty.

	void push_back
 (const T&
 x)
	Inserts x at the end
 of the list.

	void push_front
 (const T&
 x)
	Inserts x at the
 beginning of the list.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last item
 in the list.

	void remove
 (const T&
 value)
	Erases all occurrences of value from the list. The performance
 is linear; exactly size()
 comparisons are performed.

	template <typename
 Predicate>
void remove_if
 (Predicate
 pred)
	Erases all items for which pred(item) returns true. The
 performance is linear: pred
 is called exactly size()
 times.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first item in the list.

	void resize
 (size_type sz, T c = T(
))
	Changes the size of the list to n. If n > size(), one or more copies of
 c are added to the end of
 the list to reach the desired size. If the new size is smaller
 than the current size, elements are erased from the end to
 reach the new size.

	void reverse
 ()
	Reverses the order of the entire list. The performance
 is linear.

	[image:] size_type
 size () const
	Returns the number of elements in the list. The
 complexity of size() can
 be constant or linear, depending on the implementation.

	void sort
 ()
template <typename
 Compare>
void sort
 (Compare comp)
	Sorts the items in the list, comparing items with the
 < operator or by calling
 comp. The sort is stable,
 so the relative positions of the items do not change. The
 performance is N log
 N, in which N is size(
).
Note
You must call the sort member function to sort a
 list. The generic sort
 algorithm requires a random access iterator, but list provides only a bidirectional
 iterator.

	void splice
 (iterator position,
 list<T,Alloc>& x)
void splice
 (iterator position,
 list<T,Alloc>& x, iterator i)
void splice
 (iterator position,
 list<T,Alloc>& x, iterator first, iterator
 last)
	Moves one or more items from x, inserting the items just before
 position. The first form
 moves every item from x to
 the list. The second form moves the item at position i. The third form moves all items in
 the range [first, last); position must not be in that range.
 The third form requires no more than linear time when &x != this; all other cases work in
 constant time. If size()
 has linear complexity, you should expect splice() to have constant
 complexity in all cases.

	void swap
 (list<T,Alloc>& x)
	Swaps all the items in this list with all the items in
 x. The performance should
 be constant.

	void unique
 ()
template <typename
 BinaryPredicate>
void unique
 (BinaryPredicate
 pred)
	Erases adjacent duplicate items from the list. Items are
 compared with the ==
 operator or by calling pred. When adjacent equal items are
 found in the list, the first one is retained, and the second
 and subsequent items are erased. The performance is linear:
 size() - 1 comparisons are performed (unless
 the list is empty).

See Also
deque in <deque> , vector in <vector>

Name
operator== function template — Compares lists for equality

Synopsis
template <typename T, typename A>
bool operator==(const list<T,A>& x, const list<T,A>& y);
The == operator returns
 true if x and y
 have the same size and their elements are equal, that is, x.size() == y.size(
) && equals(x.begin(), x.end(), y.begin()).

See Also
equals in <algorithm>

Name
operator!= function template — Compares lists for inequality

Synopsis
template <typename T, typename A>
bool operator!=(const list<T,A>& x, const list<T,A>& y);
The != operator is
 equivalent to ! (x == y).

Name
operator< function template — Compares lists for less-than

Synopsis
template <typename T, typename A>
bool operator<(const list<T,A>& x, const list<T,A>& y);
The < operator
 determines whether x is less than
 y using the same algorithm as
 lexicographical_compare(x.begin(
), x.end(), y.begin(), y.end()).

See Also
lexicographical_compare in
 <algorithm>

Name
operator<= function template — Compares lists for less-than-or-equal

Synopsis
template <typename T, typename A>
bool operator<=(const list<T,A>& x, const list<T,A>& y);
The <= operator is
 equivalent to ! (y < x).

Name
operator> function template — Compares lists for greater-than

Synopsis
template <typename T, typename A>
bool operator>(const list<T,A>& x, const list<T,A>& y);
The > operator is
 equivalent to (y < x).

Name
operator>= function template — Compares lists for greater-than-or-equal

Synopsis
template <typename T, typename A>
bool operator>=(const list<T,A>& x, const list<T,A>& y);
The >= operator is
 equivalent to ! (x < y).

Name
swap function template — Swaps the contents of two lists

Synopsis
template<typename T, typename A>
void swap(list<T, A>& x, list<T, A>& y)
The swap function template
 specialization is equivalent to calling x.swap(y).

See Also
swap in <algorithm>

<locale>

The <locale> header declares class and function templates for
 internationalization and localization. It supports conversion between
 narrow and wide character sets, character classification and collation,
 formatting and parsing numbers, currency, dates and times, and
 retrieving messages. For example, every I/O stream has a locale, which
 it uses to parse formatted input or to format output.
A locale is an embodiment of a set of
 cultural conventions, including information about the native character
 set, how dates are formatted, which symbol to use for currency, and so
 on. Each set of related attributes is called a
 facet, which are grouped into categories.
The categories are fixed and defined by the standard (see Table 13-20, under locale::category, for a complete list), and
 each category has several predefined facets. For example, one of the
 facets in the time category is time_get<charT, InputIter>, which specifies rules for
 parsing a time string. You can define additional facets; see the
 description of the locale::facet
 class in this section for details.
Many of the facets come in two flavors: plain and named. The plain
 versions implement default behavior, and the named versions implement
 the behavior for a named locale. See the locale class later in this section for a
 discussion of locale names.
When a program starts, the global locale is initialized to the
 "C" locale, and the standard I/O
 streams use this locale for character conversions and formatting. A
 program can change the locale at any time; see the locale class in this section for
 details.
The C++ <locale> header
 provides more functionality than the C <clocale>, <cctype> , and <cwchar> headers, especially the ability
 to extend a locale with your own facets. On the other hand, facets and
 the locale class template are more complicated than the C functions. For
 simple character classification in a single locale, you are probably
 better off using the C functions. If a program must work with multiple
 locales simultaneously, use the C++ locale template.

Name
codecvt class template — Facet for mapping one character set to
 another

Synopsis
template <typename internT,typename externT,typename stateT>
class codecvt : public locale::facet, public codecvt_base
{
public:
 typedef internT intern_type;
 typedef externT extern_type;
 typedef stateT state_type;
 explicit codecvt(size_t refs = 0);
 result out(stateT& state, const internT* from, const internT* from_end,
 const internT*& from_next, externT* to, externT* to_limit,
 externT*& to_next) const;
 result unshift(stateT& state, externT* to, externT* to_limit,
 externT*& to_next) const;
 result in(stateT& state, const externT* from, const externT* from_end,
 const externT*& from_next, internT* to, internT* to_limit,
 internT*& to_next) const;
 int encoding() const throw();
 bool always_noconv() const throw();
 int length(stateT&, const externT* from, const externT* end, size_t max)
 const;
 int max_length() const throw();
 static locale::id id;
protected:
 virtual ~codecvt();
 virtual result do_out(stateT& state, const internT* from,
 const internT* from_end, const internT*& from_next,
 externT* to, externT* to_limit, externT*& to_next)
 const;
 virtual result do_in(stateT& state, const externT* from,
 const externT* from_end, const externT*& from_next,
 internT* to, internT* to_limit, internT*& to_next)
 const;
 virtual result do_unshift(stateT& state, externT* to, externT* to_limit,
 externT*& to_next) const;
 virtual int do_encoding() const throw();
 virtual bool do_always_noconv() const throw();
 virtual int do_length(stateT&, const externT* from, const externT* end,
 size_t max) const;
 virtual int do_max_length() const throw();
};
The codecvt template
 converts characters from one character encoding to another. It is
 most often used to convert multibyte characters to and from wide
 characters.
The following template specializations are required by the
 standard:
	codecvt<wchar_t,
 char, mbstate_t>
	Converts multibyte narrow characters to wide characters
 (in) and wide to multibyte
 (out)

	codecvt<char,
 char, mbstate_t>
	A no-op, "converting" characters to themselves

As with other facets, the public members of codecvt call virtual, protected members
 with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as in and
 out, which in turn call do_in and do_out. The descriptions below are for the
 virtual functions because they do the real work. Imagine that for
 each virtual function description, there is a corresponding
 description for a public, nonvirtual function, such as:
	bool always_noconv
 () const throw(
)
	Returns do_always_noconv(
)

The following are the virtual, protected members of codecvt:
	virtual bool do_always_noconv
 () const throw(
)
	Returns true if the
 codecvt object does not
 actually perform any conversions, that is, in and out are no-ops. For example, for the
 specialization codecvt<char,char,mbstate_t>,
 do_always_noconv always
 returns true.

	virtual int do_encoding () const throw(
)
	Returns the number of externT characters needed to
 represent a single internT
 character. If this number is not a fixed constant, the return
 value is 0. The return
 value is -1 if externT character sequences are not
 state-dependent.

	virtual result do_in (stateT&
 state, const externT* from, const externT* from_end, const externT*& from_next, internT* to, internT* to_limit, internT*& to_next) const
	Converts externT
 characters to internT
 characters. The characters in the range [from, from_end) are converted and stored
 in the array starting at to. The number of characters
 converted is the minimum of from_end - from and to_limit - to.
The from_next
 parameter is set to point to the value in [from, from_end) where the conversion
 stopped, and to_next points
 to the value in [to,
 to_limit) where the
 conversion stopped. If no conversion was performed, from_next is the same as from, and to_next is equal to to.
The return value is a result, as described in Table 13-19 (under
 the codecvt_base
 class).

	virtual int do_length (stateT&,
 const externT* from, const externT* from_end, size_t max) const
	Returns the number of externT characters in the range
 [from, from_end) that are used to convert
 to internT characters. At
 most, max internT characters are
 converted.

	virtual int do_max_length () const throw(
)
	Returns the maximum number of externT characters needed to
 represent a single internT
 character, that is, the maximum value that do_length can return when max is 1.

	virtual result do_out (stateT&
 state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const
	Converts internT
 characters to externT
 characters. The characters in the range [from, from_end) are converted and stored
 in the array starting at to. The number of characters
 converted is the minimum of from_end - from and to_limit - to.
The from_next
 parameter is set to point to the value in [from, from_end) where the conversion
 stopped, and to_next points
 to the value in [to,
 to_limit) where the
 conversion stopped. If no conversion was performed, from_next is the same as from, and to_next is equal to to.
The return value is a result, as described in Table 13-19 (under
 codecvt_base class).

	virtual result do_unshift (stateT&
 state, externT* to,
 externT* to_limit,
 externT*& to_next) const
	Ends a shift state by storing characters in the array
 starting at to such that
 the characters undo the state shift given by state. Up to to_limit - to characters are written, and
 to_next is set to point to
 one past the last character written into to.
The return value is a result, as described in Table 13-19 (under
 codecvt_base class).

See Also
codecvt_base class,
 codecvt_byname class
 template, locale::facet
 class

Name
codecvt_base class — Base class for the codecvt template

Synopsis
class codecvt_base {
public:
 enum result { ok, partial, error, noconv };
};
The codecvt_base class is
 the base class for the codecvt
 and codecvt_byname class
 templates. It declares the result
 type, which is the type returned by the do_in and do_out conversion functions. Table 13-19 lists the
 literals of the result enumerated
 type.
Table 13-19. codecvt_base::result literals
	Literal
	Description

	 error

	Error in conversion (e.g., invalid state or
 multibyte character sequence)

	 noconv

	No conversion (or unshift terminated)
 needed

	 ok

	Conversion finished successfully

	 partial

	Not all source characters converted, or
 unshift sequence is
 incomplete

See Also
codecvt class
 template, codecvt_byname
 class template

Name
codecvt_byname class template — Facet for mapping one character set to
 another

Synopsis
template<typename internT, typename externT, typename stateT>
class codecvt_byname :
 public codecvt<internT, externT, stateT>
{
public:
 explicit codecvt_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in codecvt
};
The codecvt_byname class
 template converts characters from one character encoding to another
 using the rules of a named locale. The codecvt_byname<char,char,mbstate_t>
 and codecvt_byname<wchar_t,char,mbstate_t>
 instantiations are standard.

See Also
codecvt class
 template, locale::facet
 class

Name
collate class template — Facet for comparing strings in collation
 order

Synopsis
template <typename charT>
class collate : public locale::facet
{
public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit collate(size_t refs = 0);
 int compare(const charT* low1, const charT* high1, const charT* low2,
 const charT* high2) const;
 string_type transform(const charT* low, const charT* high) const;
 long hash(const charT* low, const charT* high) const;
 static locale::id id;
protected:
 virtual ~collate();
 virtual int do_compare(const charT* low1, const charT* high1,
 const charT* low2, const charT* high2) const;
 virtual string_type do_transform (const charT* low, const charT* high) const;
 virtual long do_hash (const charT* low, const charT* high) const;
};
The collate class template
 is a facet used to compare strings. In some locales, the collation
 order of characters is not the same as the numerical order of their
 encodings, and some characters might be logically equivalent even if
 they have different encodings.
You can use a locale object
 as a comparator for algorithms that need a comparison function; the
 locale's operator() function uses the collate facet to perform the
 comparison.
The standard mandates the collate<char> and collate<wchar_t> instantiations,
 which perform lexicographical (element-wise, numerical) comparison.
 See lexicographical_compare in
 <algorithm> earlier in this
 chapter.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as compare, which calls do_compare. The descriptions below are for
 the virtual functions because they do the real work. Imagine that
 for each virtual function description, there is a corresponding
 description for a public, nonvirtual function, such as:
	int compare
 (const
 charT* low1, const charT* high1,
 const charT*
 low2, const charT* high2)
 const
	Returns do_compare(low1, high1, low2, high2)

The following are the virtual, protected members of collate:
	virtual int do_compare (const
 charT* low1, const charT* high1, const charT* low2,
 const charT*
 high2) const
	Compares the character sequences [low1, high1) with the character sequence
 [low2, high2). The return value is one of
 the following:
	-1 if sequence 1
 is less than sequence 2

	0 if the
 sequences are equal

	1 if sequence 1
 is greater than sequence 2

	virtual long do_hash (const
 charT* low, const charT* high)
 const
	Returns a hash value for the character sequence
 [low, high). If do_compare returns 0 for two character sequences,
 do_hash returns the same
 value for the two sequences. The reverse is not necessarily
 the case.

	virtual string_type
 do_transform
 (const
 charT* low, const charT* high) const
	Transforms the character sequence [low, high) into a string that can be
 compared (as a simple lexicographical comparison) with another
 transformed string to obtain the same result as calling
 do_compare on the original
 character sequences. The do_transform function is useful if a
 program needs to compare the same character sequence many
 times.

See Also
collate_byname class
 template, locale
 class, locale::facet
 class

Name
collate_byname class template — Facet for comparing strings in collation
 order

Synopsis
template <typename charT>
class collate_byname : public collate<charT>
{
public:
 typedef basic_string<charT> string_type;
 explicit collate_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in collate
};
Compares strings using a named locale's collation order. The
 collate_byname<char> and
 collate_byname<wchar_t>
 instantiations are standard.

See Also
collate class
 template, locale::facet
 class

Name
ctype class template — Facet for classifying characters

Synopsis
class ctype : public locale::facet, public ctype_base
{
public:
 typedef charT char_type;
 explicit ctype(size_t refs = 0);
 bool is(mask m, charT c) const;
 const charT* is(const charT* low, const charT* high, mask* vec) const;
 const charT* scan_is(mask m, const charT* low, const charT* high) const;
 const charT* scan_not(mask m, const charT* low, const charT* high) const;
 charT toupper(charT c) const;
 const charT* toupper(charT* low, const charT* high) const;
 charT tolower(charT c) const;
 const charT* tolower(charT* low, const charT* high) const;
 charT widen(char c) const;
 const char* widen(const char* low, const char* high, charT* to) const;
 char narrow(charT c, char dfault) const;
 const charT* narrow(const charT* low, const charT*, char dfault, char* to)
 const;
 static locale::id id;
protected:
 virtual ~ctype();
 virtual bool do_is(mask m, charT c) const;
 virtual const charT* do_is(const charT* low, const charT* high, mask* vec)
 const;
 virtual const charT* do_scan_is(mask m, const charT* low,
 const charT* high) const;
 virtual const charT* do_scan_not(mask m, const charT* low,
 const charT* high) const;
 virtual charT do_toupper(charT) const;
 virtual const charT* do_toupper(charT* low, const charT* high) const;
 virtual charT do_tolower(charT) const;
 virtual const charT* do_tolower(charT* low, const charT* high) const;
 virtual charT do_widen(char) const;
 virtual const char* do_widen(const char* low, const char* high, charT* dest)
 const;
 virtual char do_narrow(charT, char dfault) const;
 virtual const charT* do_narrow(const charT* low, const charT* high,
 char dfault, char* dest) const;
};
The ctype class template is
 a facet for classifying characters.
[image: image with no caption]

The ctype<char>
 specialization is described in its own section later in this
 chapter. The standard also mandates the ctype<wchar_t> instantiation. Both
 instantiations depend on the implementation's native character
 set.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as narrow,
 which calls do_narrow. The
 descriptions below are for the virtual functions because they do the
 real work. Imagine that for each virtual function description, there
 is a corresponding description for a public, nonvirtual function,
 such as:
	bool is
 (mask m, charT c)
 const
	Returns do_is(m,
 c)

The following are the virtual, protected members of ctype:
	virtual bool do_is (mask m, charT c)
 const
virtual const charT* do_is (const charT* low,
 const charT*
 high, mask* dest) const
	Classifies a single character c or a sequence of characters
 [low, high). The first form tests the
 classification mask, M,
 of c and returns (M & m) != 0. The second form determines the
 mask for each character in the range and stores the mask values in the dest array (which must be large
 enough to hold high -
 low masks), returning
 high. See Table 13-19 (under
 the ctype_base class) for a
 description of the mask
 type.

	virtual char do_narrow (charT c, char dfault)
 const
virtual const charT* do_narrow (const charT* low, const charT* high, char
 dfault, char* dest) const
	Converts a character c or a sequence of characters
 [low, high) to narrow characters of type
 char. The first form
 returns the narrow character, and the second form stores the
 characters in the array dest (which must be large enough to
 hold high - low characters), returning high. If a charT source character cannot be
 converted to a narrow character, the first function returns
 dfault, and the second
 function stores dfault in
 dest as the narrow version
 of that character.

	virtual const charT* do_scan_is (mask m, const charT*
 low, const charT* high) const
	Searches the sequence of characters [low, high) for the first character that
 matches m, that is, for
 which do_is(m, c) is true. The return value is a pointer
 to the first matching character, or high if no characters match m.

	virtual const charT* do_scan_not (mask m, const charT*
 low, const charT* high) const
	Searches the sequence of characters [low, high) for the first character that
 does not match m, that is,
 for which do_is(m, c) is false. The return value is a pointer
 to the first matching character, or high if every character matches
 m.

	virtual charT do_tolower (charT
 c) const
virtual const charT* do_tolower (charT* low, const charT* high)
 const
	Converts a character c or a sequence of characters
 [low, high) to lowercase. The first form
 returns the lowercase version of c, or it returns c if c does not have a lowercase
 counterpart.
The second form modifies the character sequence: each
 character in [low, high) is replaced by its lowercase
 counterpart; if a character cannot be converted to lowercase,
 it is not touched. The function returns high.

	virtual charT do_toupper (charT
 c) const
virtual const charT* do_toupper (charT* low,
 const charT* high) const
	Converts a character c or a sequence of characters
 [low, high) to uppercase. The first form
 returns the uppercase version of c, or it returns c if c does not have a uppercase
 counterpart.
The second form modifies the character sequence: each
 character in [low, high) is replaced by its uppercase
 counterpart; if a character cannot be converted to uppercase,
 it is not touched. The function returns high.

	virtual charT do_widen (char c)
 const
virtual const char* do_widen (const char* low, const char* high, charT* dest)
 const
	Converts a narrow character c or a sequence of narrow characters
 [low, high) to characters of type charT. The first form returns the
 new character, and the second form stores the characters in
 the array dest (which must
 be large enough to hold high - low characters), returning high.

See Also
ctype_base class,
 ctype_byname class template,
 locale::facet class

Name
ctype<char> class — Facet for classifying narrow characters

Synopsis
template <>
class ctype<char> : public locale::facet, public ctype_base
{
 ...
public:
 explicit ctype(const mask* tab = 0, bool del = false, size_t refs = 0);
 static const size_t table_size = . . . ;
 inline bool is(mask m, char c) const;
 inline const char* is(const char* low, const char* high, mask* vec) const;
 inline const char* scan_is(mask m, const char* low, const char* high) const;
 inline const char* scan_not(mask m, const char* low, const char* high) const;
protected:
 virtual ~ctype();
 inline const mask* table() const throw();
 inline static const mask* classic_table() throw();
};
The ctype<> class
 template is specialized for type char (but not signed char or unsigned char) so the member functions can be
 implemented as inline functions. The standard requires the
 implementation to have the protected member functions table and classic_table. Each of these functions
 returns an array of mask values indexed by characters cast to
 unsigned char. The number of elements in a table
 must be at least table_size,
 which is an implementation-defined constant value.
The following are the key member functions:
	explicit ctype
 (const mask* tab = 0, bool
 del = false, size_t refs = 0)
	Initializes the table(
) pointer with tab. If tab is a null pointer, table() is set to classic_table(). If tab is not null, and del is true, the ctype object owns the table, and
 when the ctype destructor
 is called, it will delete the table. The refs parameter is passed to the base
 class, as with any facet.

	virtual ~ctype
 ()
	If the constructor's del flag was true, and tab was not a null pointer, performs
 delete[] tab.

	inline bool is
 (mask m, charT c)
 const
inline const charT* is (const charT* low,
 const charT*
 high, mask* dest) const
	Tests character classifications. The first form
 returns:
(table()[static_cast<unsigned char>(c)] & m) != 0
The second form stores the following in dest for each element c of the range [low, high):
table()[static_cast<unsigned char>(c)]
Note that is does not
 call do_is, so is can be implemented as an inline
 function.

	inline static const
 mask* classic_table () throw(
)
	Returns a table that corresponds to the "C" locale.

	inline const char*
 scan_is (mask m, const char*
 low, const char* high) const
	Searches the sequence of characters [low, high) for the first character that
 matches m, that is, for
 which is(m, c) is true. The return value is a pointer
 to the first matching character, or high if no characters match m.

	inline const char*
 scan_not (mask m, const char*
 low, const char* high) const
	Searches the sequence of characters [low, high) for the first character that
 does not match m, that is,
 for which is(m, c) is false. The return value is a pointer
 to the first matching character, or high if every character matches
 m.

	inline const mask*
 table
 () throw(
)
	Returns the value that was passed to the constructor as
 the tab parameter, or, if
 tab was null, classic_table() is returned.

See Also
ctype class template,
 locale::facet class, <cctype> , <cwctype>

Name
ctype_base class — Base class for ctype facet

Synopsis
class ctype_base{
public:
 enum mask {
 space, print, cntrl, upper, lower, alpha, digit, punct, xdigit,
 alnum=alpha|digit, graph=alnum|punct
 };
};
The ctype_base class is the
 base class for the ctype and
 ctype_byname class templates. It
 declares the mask enumerated
 type, which is used for classifying characters. Table 13-20 describes the
 mask literals and their
 definitions for the classic "C"
 locale.
Table 13-20. mask literals for classifying characters
	Literal
	Description
	"C" locale

	 alpha

	Alphabetic (a letter)
	 lower or
 upper

	 alnum

	Alphanumeric (letter or digit)
	 alpha or
 digit

	 cntrl

	Control (nonprintable)
	Not print

	 digit

	'0'-'9'
	All locales

	 graph

	Character that occupies graphical
 space
	 print but
 not space

	 lower

	Lowercase letter
	'a'-'z'

	 print

	Printable character (alphanumeric, punctuation,
 space, etc.)
	Depends on character set; in ASCII: '\x20'-'\x7e')

	 space

	Whitespace
	' ',
 '\f', '\n', '\r', '\t', '\v'

	 upper

	Uppercase letter
	'A'-'Z'

	 xdigit

	Hexadecimal digit ('0'-'9', 'a'-'f', 'A'-'F')
	All locales

See Also
ctype class template,
 ctype_byname class
 template

Name
ctype_byname class template — Facet for classifying characters

Synopsis
template <typename charT>
class ctype_byname : public ctype<charT>
{
public:
 typedef ctype<charT>::mask mask;
 explicit ctype_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in ctype
};
The ctype_byname class
 template is a facet for classifying characters; it uses a named
 locale. The ctype_byname<char> and ctype_byname<wchar_t> instantiations
 are standard.

See Also
ctype class template,
 ctype_byname<char>
 class

Name
ctype_byname<char> class — Facet for classifying narrow characters

Synopsis
template <>
class ctype_byname<char> : public ctype<char>
{
public:
 explicit ctype_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in ctype<char>
};
The ctype_byname<char> class specializes
 the ctype_byname template for
 type char. (No specialization
 exists for signed char and unsigned char.) It derives from ctype<char>, so it inherits its
 table-driven implementation.

See Also
ctype<char>
 class, ctype_byname class
 template

Name
has_facet function template — Test for existence of a facet in a locale

Synopsis
template <typename Facet>
bool has_facet(const locale& loc) throw();
The has_facet function
 determines whether the locale loc
 supports the facet Facet. It
 returns true if the facet is
 supported or false if it is not.
 Call has_facet to determine
 whether a locale supports a user-defined facet. (Every locale must
 support the standard facets that are described in this section.)
 Example 13-24 shows how
 has_facet is used.

Example
Example 13-24. Testing whether a locale supports a facet
// The units facet is defined under the locale::facet class (later in this
// section).

using std::locale;
if (std::has_facet<units>(locale()) {
 // Get a reference to the units facet of the locale.
 const units& u = std::use_facet<units>(locale());
 // Construct a value of 42 cm.
 units::value_t len = u.make(42, units::cm);
 // Print the length (42 cm) in the locale's preferred units.
 u.length_put(std::cout, len);
}

See Also
locale class, use_facet function template

Name
isalnum function template — Determines whether a character is alphanumeric in a
 locale

Synopsis
template <typename charT>
bool isalnum(charT c, const locale& loc);
The isalnum function
 determines whether the character c is an alphanumeric character in the
 locale loc. It returns the
 following:
use_facet<ctype<charT> >(loc).is(ctype_base::alnum, c)

See Also
ctype_base class,
 ctype class template, isalpha function template, isdigit function template

Name
isalpha function template — Determines whether a character is a letter in a
 locale

Synopsis
template <typename charT>
bool isalpha(charT c, const locale& loc);
The isalpha function
 determines whether the character c is a letter in the locale loc. It returns the following:
use_facet<ctype<charT> >(loc).is(ctype_base::alpha, c)

See Also
ctype_base class,
 ctype class template, isalnum function template, islower function template, isupper function template

Name
iscntrl function template — Determines whether a character is a control character in
 a locale

Synopsis
template <typename charT>
bool iscntrl(charT c, const locale& loc);
The iscntrl function
 determines whether the character c is a control character in the locale
 loc. It returns the
 following:
use_facet<ctype<charT> >(loc).is(ctype_base::cntrl, c)

See Also
ctype_base class,
 ctype class template, isprint function template

Name
isdigit function template — Determines whether a character is a digit in a
 locale

Synopsis
template <typename charT>
bool isdigit(charT c, const locale& loc);
The isdigit function
 determines whether the character c is a digit in the locale loc. It returns the following:
use_facet<ctype<charT> >(loc).is(ctype_base::digit, c)

See Also
ctype_base class,
 ctype class template, isalnum function template, isxdigit function template

Name
isgraph function template — Determines whether a character is graphical in a
 locale

Synopsis
template <typename charT>
bool isgraph(charT c, const locale& loc);
The isgraph function
 determines whether the character c is graphical (alphanumeric or
 punctuation) in the locale loc.
 It returns the following:
use_facet<ctype<charT> >(loc).is(ctype_base::graph, c)

See Also
ctype_base class,
 ctype class template, isalnum function template, isprint function template, ispunct function template

Name
islower function template — Determines whether a character is lowercase in a
 locale

Synopsis
template <typename charT>
bool islower(charT c, const locale& loc);
The islower function
 determines whether the character c is a lowercase letter in the locale
 loc. It returns the
 following:
use_facet<ctype<charT> >(loc).is(ctype_base::lower, c)

See Also
ctype_base class,
 ctype class template, isalpha function template, isupper function template

Name
isprint function template — Determines whether a character is printable in a
 locale

Synopsis
template <typename charT>
bool isprint(charT c, const locale& loc);
The isprint function
 determines whether the character c is printable in the locale loc. It returns the following:
use_facet<ctype<charT> >(loc).is(ctype_base::print, c)

See Also
ctype_base class,
 ctype class template, iscntrl function template, isgraph function template, isspace function template

Name
ispunct function template — Determines whether a character is punctuation in a
 locale

Synopsis
template <typename charT>
bool ispunct(charT c, const locale& loc);
The ispunct function
 determines whether the character c is punctuation in the locale loc. It returns the following:
use_facet<ctype<charT> >(loc).is(ctype_base::punct, c)

See Also
ctype_base class,
 ctype class template, isgraph function template

Name
isspace function template — Determines whether a character is whitespace in a
 locale

Synopsis
template <typename charT>
bool isspace(charT c, const locale& loc);
The isspace function
 determines whether the character c is whitespace in the locale loc. It returns the following:
use_facet<ctype<charT> >(loc).is(ctype_base::space, c)

See Also
ctype_base class,
 ctype class template, isgraph function template, isprint function template

Name
isupper function template — Determines whether a character is uppercase in a
 locale

Synopsis
template <typename charT>
bool isupper(charT c, const locale& loc);
The isupper function
 determines whether the character c is an uppercase letter in the locale
 loc. It returns the
 following:
use_facet<ctype<charT> >(loc).is(ctype_base::upper, c)

See Also
ctype_base class,
 ctype class template, isalpha function template, islower function template

Name
isxdigit function template — Determines whether a character is a hexadecimal digit in
 a locale

Synopsis
template <typename charT>
bool isxdigit(charT c, const locale& loc);
The isxdigit function
 determines whether the character c is a hexadecimal digit in the locale
 loc. It returns the
 following:
use_facet<ctype<charT> >(loc).is(ctype_base::xdigit, c)

See Also
ctype_base class,
 ctype class template, isdigit function template

Name
locale class — Represents a locale as a set of facets

Synopsis
class locale{
public:
 class facet;
 class id;
 typedef int category;
 static const category
 none, collate, ctype, monetary, numeric, time, messages,
 all = collate|ctype|monetary|numeric|time|messages;
 // Construct/copy/destroy
 locale() throw();
 locale(const locale& other) throw();
 explicit locale(const char* std_name);
 locale(const locale& other, const char* std_name,category);
 template <typename Facet>
 locale(const locale& other, Facet* f);
 locale(const locale& other, const locale& one, category);
 ~locale() throw();

 const locale& operator=(const locale& other) throw();
 template <typename Facet>
 locale combine(const locale& other) const;

 basic_string<char> name() const;
 bool operator==(const locale& other) const;
 bool operator!=(const locale& other) const;
 template <typename charT, typename Traits, typename Alloc>
 bool operator()(const basic_string<charT,Traits,Alloc>& s1,
 const basic_string<charT,Traits,Alloc>& s2) const;

 static locale global(const locale&);
 static const locale& classic();
};
The locale class template
 represents the information for a locale. This information is stored
 as a set of facets. Several facets are defined by the C++ standard,
 and user-defined facets can be added to any locale. The has_facet function template tests whether
 a locale supports a particular facet. The use_facet function template retrieves a
 facet of a locale.
References to a facet are safe until all locale objects that
 use that facet have been destroyed. New locales can be created from
 existing locales, with modifications to a particular facet.
Some locales have names. A locale can be constructed for a
 standard name, or a named locale can be copied or combined with
 other named locales to produce a new named locale.
Note
When interacting with the user, either through the standard
 I/O streams or through a graphical user interface, you should use
 the native locale, that is, locale(""). When performing
 I/O—especially to external files where the data must be portable
 to other programs, systems, or environments—always use the
 "C" locale (locale::classic()).

Example 13-25
 shows locales that control input and output formats.

Example
Example 13-25. Using locales for input and output
// Open a file and read floating-point numbers from it, computing the mean.
// Return the mean or 0 if the file contains no data. The data is in the classic
// format, that is, the same format used by C++.
double mean(const char* filename)
{
 std::ifstream in(filename);
 // Force the datafile to be interpreted in the classic locale, so the same
 // datafile can be used everywhere. in.imbue(std::locale::classic());
 double sum = 0;
 unsigned long count = 0;
 std::istream_iterator<double> iter(in), end;
 for (; iter != end; ++iter) {
 ++count;
 sum += *iter;
 }
 return count == 0 ? 0.0 : sum / count;
}

int main()
{
 // Print results in the user's native locale.
 std::cout.imbue(std::locale(""));
 std::cout << mean("data.txt") << '\n';
}

The following are the member functions of locale:
	 locale () throw()
	Initializes the locale with a copy of the current global
 locale. The initial global locale is locale::classic().

	 locale (const locale& other) throw()
	Copies the other
 locale.

	[image:] explicit
 locale (const char* std_name)
	Initializes the locale using a standard name. The names
 "C" and "" (empty string)
 are always defined, in which "C" is the locale returned by the
 classic() function, and ""
 identifies the implementation-defined native locale.
An implementation can define additional names. Many C++
 implementations use ISO language codes and country codes to
 identify a locale. For example, the ISO 639 language code for
 English is "en", and the ISO 3166 country code for the United
 States is "US", so "en_US"
 could identify the locale for U.S. English.

	 locale (const locale& other, const char* std_name,
 category mask)
	Copies the locale
 from other, except for
 those categories identified by mask, which are copied from the
 standard locale identified by std_name. The new locale has a name
 only if other has a
 name.

	template <typename
 Facet>
 locale (const locale& other, Facet*
 f)
	Copies the locale
 from other except for the
 facet Facet, which is
 obtained from f if f is not null.

	 locale (const locale& other, const locale& one,
 category mask)
	Copies the locale from other except for those categories
 identified by mask, which
 are copied from one. The
 new locale has a name only if other and one have names.

	template <typename
 Facet>
locale combine
 (const locale&
 other) const
	Returns a new locale that is a copy of *this, except for Facet, which is copied from other. If other does not support the
 facet—that is, has_facet<Facet>(other) is
 false—runtime_error is thrown. The new
 locale has no name.

	[image:] basic_string<char> name
 () const
	Returns the locale's name or "*" if the locale has no name. The
 exact contents of the name string are implementation-defined,
 but you can use the string to construct a new locale that is
 equal to *this—that is,
 *this == locale(name().c_str()).

	const locale&
 operator= (const locale&
 other) throw()
	Copies other and
 returns *this.

	bool operator==
 (const locale&
 other) const
	Returns true if the
 two locales are the same object, one locale object is a copy
 of the other, or the two locales are named and have the same
 name. Otherwise, the function returns false.

	bool operator!=
 (const locale&
 other) const
	Returns !(*this
 == other).

	template <typename charT, typename Tr, typename
 A>
bool operator()
 (const
 basic_string<charT, Tr, A>& s1, const
 basic_string<charT,Tr,A>& s2) const
	Compares two strings using the collate<charT> facet and
 returns true if s1 < s2. You can use the locale object as
 a comparator predicate to compare strings. See <string> for more
 information.

	[image:] static
 locale
 global (const locale&
 loc)
	Sets the global locale to loc and returns the previous global
 locale. If the new locale has a name, the C locale is set by
 calling setlocale(LC_ALL,
 loc.name().c_str()); if
 the locale does not have a name, the effect on the C locale is
 implementation-defined.

	static const locale&
 classic
 ()
	Returns a locale that implements the "C" locale.

See Also
has_facet function
 template, use_facet function
 template, setlocale in
 <clocale> , <string>

Name
locale::category type — Bitmask of facet categories

Synopsis
typedef int category;
static const category
 none, collate, ctype, monetary, numeric, time, messages,
 all = collate|ctype|monetary|numeric|time|messages;
The category type is an
 int and represents a bitmask of
 category identifiers, as listed in Table 13-21. Each category
 represents a set of one or more related facets. When combining
 locales, you can copy all the facets in one or more categories.
 Category identifiers can be combined using bitwise operators.
Table 13-21. Standard categories and their facets
	Literal
	Facets

	 collate

	 collate<char>

 collate<wchar_t>

	 ctype

	 ctype<char>

 ctype<wchar_t>

 codecvt<char,char,mbstate_t>

 codecvt<wchar_t,char,mbstate_t>

	 messages

	 messages<char>

 messages<wchar_t>

	 monetary

	 money_get<char>

 money_get<wchar_t>

 money_put<char>

 money_put<wchar_t>

 moneypunct<char>

 moneypunct<wchar_t>

 moneypunct<char,true>

 moneypunct<wchar_t,true>

	 numeric

	 num_get<char>

 num_get<wchar_t>

 num_put<char>

 num_put<wchar_t>

 numpunct<char>

 numpunct<wchar_t>

	 time

	 time_get<char>

 time_get<wchar_t>

 time_put<char>

 time_put<wchar_t>

See Also
locale class

Name
locale::facet class — Base class for locale facets

Synopsis
class locale::facet{
protected:
 explicit facet(size_t refs = 0);
 virtual ~facet();
private:
 facet(const facet&); // Not defined
 void operator=(const facet&); // Not defined
};
The facet class is the base
 class for all facets. A derived class must also declare a public,
 static data member of type locale::id whose name is id. Even a derived class must declare its
 own id member because it must
 have an identifier that is distinct from that of the base-class
 facet. Any other members for a custom facet are entirely up to the
 programmer; the derived class does not need to provide a copy or
 default constructor or an assignment operator.
The locale class assigns a
 value to id when the facet object
 is added to a locale. You never need to examine or alter the
 id member; it is managed entirely
 by locale.
The explicit constructor for facet takes a single argument, ref. If ref ==
 0, the facet object is not deleted until the last
 locale that uses the facet is destroyed. If ref ==
 1, the facet object is never destroyed. The
 standard facet classes (ctype,
 etc.) also take a ref parameter
 and pass it directly to the inherited facet constructor. Custom facets can do
 whatever the programmer wants, such as relying on the default value
 of 0 to manage the facet's
 lifetime automatically.
For example, suppose you want to define a facet that captures
 the locale-specific preferences for units of measure, such as length
 and weight. A program can store and manipulate values in a common
 base unit and convert to the preferred unit for output. Example 13-26 shows a units facet that allows you to do these
 things.

Example
Example 13-26. A simple facet for working with units of measure
class units : public std::locale::facet
{
public:
 enum length_units {
 length_base=1,
 mm=10, cm=10*mm, m=10*cm, km=1000*m,
 in=254, ft=12*in, yd=3*ft, mi=5280*ft };

 typedef double value_t;

 // All facets must have a static ID member.
 static std::locale::id id;

 // Constructor initializes length_units_ according to local preferences.
 units();

 // Read a length and its units, and return the length in base units.
 value_t length_get(std::istream& stream) const;

 // Convert value to the preferred units, and print the converted value followed
 // by the unit name.
 void length_put(std::ostream& stream, value_t value) const;

 // Make a base unit value from a value in src_units.
 value_t make(value_t src_value, length_units src_units)
 const;
 // Convert base units to dst_unit.
 value_t convert(value_t src_value, length_units dst_units)
 const;
 // Return the name of a unit.
 const char* unit_name(length_units units) const;
 // Return the preferred unit for length.
 length_units get_length_unit() const;
private:
 length_units length_units_;
};

int main()
{
 // Add the units facet to the global locale:
 // 1. Construct a new locale that is a copy of the global locale, with the new
 // units facet added to it.
 // 2. Set the new locale as the global locale.
 std::locale loc(std::locale(std::locale(), new units));
 std::locale::global(loc);

 // Now anyone can get the units facet from the global locale.
 const units& u = std::use_facet<units>(std::locale());
 units::value_t size = u.make(42, units::cm);
 u.length_put(std::cout, size);
}

See Also
locale class, locale::id class

Name
locale::id class — Facet identification

Synopsis
class locale::id{
public:
 id();
private:
 void operator=(const id&); // Not defined
 id(const id&); // Not defined
};
The id class identifies a
 facet. It is used only to declare a public, static member of type
 locale::id in every facet class.
 See locale::facet for more
 information.

See Also
locale::facet
 class

Name
messages class template — Facet for retrieving strings from a message
 catalog

Synopsis
template <typename charT>
class messages : public locale::facet, public messages_base
{
public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit messages(size_t refs = 0);
 catalog open(const basic_string<char>& fn, const locale&) const;
 string_type get(catalog c, int set, int msgid, const string_type& dfault)
 const;
 void close(catalog c) const;
 static locale::id id;
protected:
 virtual ~messages();
 virtual catalog do_open(const basic_string<char>&, const locale&) const;
 virtual string_type do_get(catalog, int set, int msgid,
 const string_type& dfault) const;
 virtual void do_close(catalog) const;
};
The messages class template
 is a facet for a message catalog. A message catalog is a database of
 textual messages that can be translated into different languages.
 The messages<char> and
 messages<wchar_t>
 instantiations are standard.
[image: image with no caption]

How a message catalog is found is implementation-defined. For
 example, a catalog name could be the name of an external file, or it
 could be the name of a special resource section in the program's
 executable file. The mapping of message identifiers to a particular
 message is also implementation-defined.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as get,
 which calls do_get. The
 descriptions below are for the virtual functions because they do the
 real work. Imagine that for each virtual-function description, there
 is a corresponding description for a public, nonvirtual function,
 such as:
	void close
 (catalog cat) const
	Calls do_close(cat).

The following are the virtual, protected members of messages:
	virtual void do_close (catalog
 cat) const
	Closes the message catalog cat.

	virtual string_type
 do_get (catalog
 cat, int set,
 int msgid, const string_type& dfault) const
	Gets a message that is identified by set, msgid, and dfault from catalog cat. If the message cannot be found,
 dfault is returned.

	virtual catalog
 do_open
 (const
 basic_string<char>&
 name, const locale& loc) const
	Opens a message catalog name. If the catalog cannot be
 opened, a negative value is returned. Otherwise, the catalog value can be passed to
 get to retrieve messages.
 Call close to close the
 catalog.

See Also
messages_base class,
 messages_byname class
 template

Name
messages_base class — Base class for message facets

Synopsis
class messages_base {
public:
 typedef int catalog;
};
The message_base class is
 the base class for messages and
 message_byname. It declares the
 catalog type, which stores a
 handle for an open message catalog.

See Also
messages class
 template, messages_byname
 class template

Name
messages_byname class template — Facet for retrieving strings from a message
 catalog

Synopsis
template <typename charT>
class messages_byname : public messages<charT>
{
public:
 typedef messages_base::catalog catalog;
 typedef basic_string<charT> string_type;
 explicit messages_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in messages
};
The messages_byname class
 template is a facet for a message catalog; it uses a named locale.
 The messages_byname<char>
 and messages_byname<wchar_t>
 instantiations are standard.

See Also
messages class
 template, messages_base
 class

Name
money_base class — Base class for moneypunct facet

Synopsis
class money_base {
public:
 enum part { none, space, symbol, sign, value };
 struct pattern { char field[4]; };
};
The money_base class is a
 base class for the moneypunct and
 moneypunct_byname class
 templates. It declares the part
 and pattern types. A pattern actually stores four part values, but they are stored as four
 char values for space efficiency.
 See moneypunct for an explanation
 of how part and pattern are used.

See Also
moneypunct class
 template, moneypunct_byname
 class template

Name
money_get class template — Facet for input of monetary values

Synopsis
template <typename charT,
 typename InputIterator = istreambuf_iterator<charT> >
class money_get : public locale::facet
{
public:
 typedef charT char_type;
 typedef InputIterator iter_type;
 typedef basic_string<charT> string_type;
 explicit money_get(size_t refs = 0);
 iter_type get(iter_type s, iter_type end, bool intl, ios_base& f,
 ios_base::iostate& err, long double& units) const;
 iter_type get(iter_type s, iter_type end, bool intl, ios_base& f,
 ios_base::iostate& err, string_type& digits) const;
 static locale::id id;
protected:
 virtual ~money_get();
 virtual iter_type do_get(iter_type begin, iter_type end, bool intl,
 ios_base& strean, ios_base::iostate& err,
 long double& units) const;| virtual iter_type
 do_get(iter_type begin, iter_type end, bool intl,
 ios_base& stream, ios_base::iostate& err,
 string_type& digits) const;
};
The money_get class
 template is a facet for parsing monetary values from an input
 stream. The money_get<char>
 and money_get<wchar_t>
 instantiations are standard. Example 13-27 shows a simple
 use of money_get and money_put.

Example
Example 13-27. Reading and writing monetary values
#include <iostream>
#include <locale>
#include <ostream>

int main()
{
 std::ios_base::iostate err = std::ios_base::goodbit;
 long double value;
 std::cout << "What is your hourly wage? ";
 std::use_facet<std::money_get<char> >(std::locale()).get(
 std::cin, std::istreambuf_iterator<char>(),
 false, std::cin, err, value);
 if (err)
 std::cerr << "Invalid input\n";
 else {
 std::cout << value << '\n';
 std::cout << "You make ";
 std::use_facet<std::money_put<char> >(std::locale()).put(
 std::cout, false, std::cout, std::cout.fill(),
 value * 40);
 std::cout << " in a 40-hour work week.\n";
 }
}

As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public function get, which calls
 do_get. The description below is
 for the virtual functions because they do the real work. Imagine
 that for each virtual-function description, there is a corresponding
 description for a public, nonvirtual function, such as:
	iter_type get
 (iter_type begin, iter_type end, bool intl,
 ios_base& stream, ios_base::iostate& err, long double& units) const
	Calls do_get(begin,
 end, intl, stream, err, units)

The following are the virtual, protected members of money_get:
	virtual iter_type
 do_get (iter_type begin, iter_type end, bool intl, ios_base& stream, ios_base::iostate&
 err, long double& units) const
virtual iter_type
 do_get (iter_type begin, iter_type end, bool intl, ios_base& stream, ios_base::iostate&
 err, string_type& digits) const
	Reads characters in the range [begin, end) and interprets them as a
 monetary value. If intl is
 true, the value is parsed
 using international format; otherwise, local format is used.
 That is, the intl value is
 used as the Intl template
 parameter to moneypunct<char_type, Intl>. If a valid monetary value
 is read from the input stream, the integral value is stored in
 units or is formatted as a
 string in digits. (For
 example, the input "$1,234.56" yields the units 123456 or the digits "123456".) The digit string starts
 with an optional minus sign ('-') followed by digits ('0'-'9'), in which each character
 c is produced by calling
 ctype<char_type>.widen(c).
If a valid sequence is not found, err is modified to include stream.failbit. If the end of the
 input is reached without forming a valid monetary value,
 stream.eofbit is also
 set.
If the showbase flag
 is set (stream.flags()
 & stream.showbase is not 0), the currency symbol is required;
 otherwise, it is optional. Thousands grouping, if the local
 format supports it, is optional.
The sign of the result is dictated by positive_sign() and negative_sign() from the moneypunct facet.
The return value is an iterator that points to one past
 the last character of the monetary value.

See Also
money_put class
 template, moneypunct class
 template, num_get class
 template

Name
money_put class template — Facet for output of monetary values

Synopsis
template <typename charT,
 typename OutputIterator = ostreambuf_iterator<charT> >
class money_put : public locale::facet
{
public:
 typedef charT char_type;
 typedef OutputIterator iter_type;
 typedef basic_string<charT> string_type;
 explicit money_put(size_t refs = 0);
 iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
 long double units) const;
 iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
 const string_type& digits) const;
 static locale::id id;
protected:
 virtual ~money_put();
 virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,
 long double units) const;
 virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill,
 const string_type& digits) const;
};
The money_put class
 template is a facet for formatting and printing monetary values. See
 Example 13-27 (under
 money_get), which shows how to
 use the money_put facet. The
 money_put<char> and
 money_put<wchar_t>
 instantiations are standard.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as put,
 which calls do_put. The
 descriptions below are for the virtual functions because they do the
 real work. Imagine that for each virtual function description, there
 is a corresponding description for a public, nonvirtual function,
 such as:
	iter_type put
 (iter_type iter, bool intl,
 ios_base& stream, char_type fill, long double units)
 const
	Returns do_put(iter,
 intl, stream, fill, units)

The following are the virtual, protected members of money_put:
	virtual iter_type
 do_put (iter_type
 iter, bool intl,
 ios_base& stream, char_type fill, long double units)
 const
virtual iter_type
 do_put (iter_type iter, bool intl,
 ios_base& stream, char_type fill, const string_type&
 digits) const
	Formats a monetary value and writes the formatted
 characters to iter. The
 value to format is either an integer, units, or a string of digit
 characters in digits. If
 the first character of digits is widen('-'), the remaining digits are
 interpreted as a negative number.
The formatting pattern and punctuation characters are
 obtained from the moneypunct facet. For positive
 values, pos_format() is
 used; for negative values, neg_format() is used. The pattern
 dictates the output format. (See moneypunct later in this section for
 information on patterns.) The currency symbol is printed only
 if the showbase flag is set
 (that is, stream.flags()
 & stream.showbase is nonzero).
 Thousands separators and a decimal point are inserted at the
 appropriate places in the formatted output.
If necessary, fill
 characters are inserted until the formatted width is stream.width(). The stream's
 adjustfield flag dictates
 how fill characters are inserted. That is, stream.flags() & stream.adjustfield is tested, and if
 it is equal to:
	ios_base::internal
	Fill characters are inserted where the pattern is
 none or space.

	ios_base::left
	Fill characters are appended to the end of the
 formatted field.

	None of the above
	Fill characters are inserted at the start of the
 formatted field.

Finally, stream.width(0) is called to reset
 the field width to 0. The
 return value is an iterator that points to one past the last
 output character.

See Also
money_get class
 template, moneypunct class
 template, num_put class
 template

Name
moneypunct class template — Facet for punctuation of monetary values

Synopsis
template <typename charT, bool International = false>
class moneypunct : public locale::facet, public money_base
{
public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit moneypunct(size_t refs = 0);
 charT decimal_point() const;
 charT thousands_sep() const;
 string grouping() const;
 string_type curr_symbol() const;
 string_type positive_sign() const;
 string_type negative_sign() const;
 int frac_digits() const;
 pattern pos_format() const;
 pattern neg_format() const;
 static locale::id id;
 static const bool intl = International;
protected:
 virtual ~moneypunct();
 virtual charT do_decimal_point() const;
 virtual charT do_thousands_sep() const;
 virtual string do_grouping() const;
 virtual string_type do_curr_symbol() const;
 virtual string_type do_positive_sign() const;
 virtual string_type do_negative_sign() const;
 virtual int do_frac_digits() const;
 virtual pattern do_pos_format() const;
 virtual pattern do_neg_format() const;
};
The moneypunct class
 template is a facet that describes the punctuation characters used
 to format a monetary value.
The moneypunct<char,false>, moneypunct<wchar_t,false>, moneypunct<char,true>, and moneypunct<wchar_t,true>
 instantiations are standard.
Specify true for the
 International template parameter
 to obtain an international format, or false to obtain a local format. In an
 international format, the currency symbol is always four characters,
 usually three characters followed by a space.
The money_get and money_put facets use a pattern to parse or
 format a monetary value. The pattern specifies the order in which
 parts of a monetary value must appear. Each pattern has four fields,
 in which each field has type part
 (cast to char). The symbol, sign, and value parts must appear exactly once, and
 the remaining field must be space
 or none. The value none cannot be first (field[0]); space cannot be first or last (field[3]).
Where sign appears in the
 pattern, the first character of the sign string (positive_sign() or negative_sign()) is output, and the
 remaining characters of the sign string appear at the end of the
 formatted output. Thus, if negative_sign(
) returns "()", the
 value -12.34 might be formatted
 as "(12.34)".
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as grouping, which calls do_grouping. The descriptions below are
 for the virtual functions because they do the real work. Imagine
 that for each virtual-function description, there is a corresponding
 description for a public, nonvirtual function, such as:
	string_type curr_symbol
 () const
	Returns do_curr_symbol(
)

The following are the virtual, protected members of moneypunct:
	virtual string_type
 do_curr_symbol
 () const
	Returns the currency symbol, such as "$" (which is used by some U.S.
 locales) or "USD " (which
 is the international currency symbol for U.S. dollars). In the
 "C" locale, the currency
 symbol is "" or L"".

	virtual charT do_decimal_point
 () const
	Returns the character used before the fractional part
 when do_frac_digits is
 greater than 0. For
 example, in the U.S., this is typically '.', and in Europe, it is typically
 ','. In the "C" locale, the decimal point is
 '.' or L'.'.

	virtual int do_frac_digits () const
	Returns the number of digits to print after the decimal
 point. This value can be 0.
 In the "C" locale, the
 number of digits is std::numeric_limits<char>.max(
).

	virtual string do_grouping () const
	Returns a string that specifies the positions of
 thousands separators. The string is interpreted as a vector of
 integers, in which each value is a number of digits, starting
 from the right. Thus, the string "\3" means every three digits form a
 group. In the "C" locale,
 the grouping is "" or L"".

	virtual pattern
 do_neg_format
 () const
	Returns the pattern used to format negative values. In
 the "C" locale, the
 negative format is {
 symbol, sign, none, value }.

	virtual string_type
 do_negative_sign
 () const
	Returns the string (which may be empty) used to identify
 negative values. The position of the sign is dictated by the
 do_neg_format pattern. In
 the "C" locale, the
 negative sign is "-" or
 L"-".

	virtual pattern
 do_pos_format
 () const
	Returns the pattern used to format positive values. In
 the "C" locale, the
 positive format is {
 symbol, sign, none, value }.

	virtual string_type
 do_positive_sign
 () const
	Returns the string (which may be empty) used to identify
 positive values. The position of the sign is dictated by the
 do_pos_format pattern. In
 the "C" locale, the
 positive sign is "" or L"".

	virtual charT do_thousands_sep
 () const
	Returns the character used to separate groups of digits,
 in which the groups are specified by do_grouping. In the U.S., the
 separator is typically ',',
 and in Europe, it is often '.'. In the "C" locale, the thousands separator
 is '\0' or L'\0'.

See Also
money_base class,
 money_get class template,
 money_put class template,
 moneypunct_byname class
 template, numpunct class
 template

Name
moneypunct_byname class template — Facet for punctuation of monetary values

Synopsis
template <typename charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl>
{
public:
 typedef money_base::pattern pattern;
 typedef basic_string<charT> string_type;
 explicit moneypunct_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in moneypunct
};
The moneypunct_byname class
 template provides formatting characters and information for monetary
 values using the rules of a named locale. The moneypunct_byname<char,International>
 and moneypunct_byname<wchar_t,International>
 instantiations are standard.

See Also
moneypunct class
 template

Name
num_get class template — Facet for input of numbers

Synopsis
template <typename charT,
 typename InputIterator = istreambuf_iterator<charT> >
class num_get : public locale::facet
{
public:
 typedef charT char_type;
 typedef InputIterator iter_type;
 explicit num_get(size_t refs = 0);
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, bool& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, long& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, unsigned short& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, unsigned int& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, unsigned long& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, float& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, double& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, long double& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, void*& v) const;
 static locale::id id;
protected:
 virtual ~num_get();
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, bool& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, long& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, unsigned short& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, unsigned int& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, unsigned long& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, float& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, double& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, long double& v) const;
 virtual iter_type do_get(iter_type, iter_type, ios_base&,
 ios_base::iostate& err, void*& v) const;
};
The num_get class template
 is a facet for parsing and reading numeric values from an input
 stream. The istream extraction
 operators (>>) use num_get. The num_get<char> and num_get<wchar_t> instantiations are
 standard.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as get,
 which calls do_get. The
 descriptions below are for the virtual functions because they do the
 real work. Imagine that for each virtual function description, there
 is a corresponding description for a public, nonvirtual function,
 such as:
	iter_type get
 (iter_type begin, iter_type end, ios_base& stream, ios_base::iostate& err, bool& v)
 const
	Returns do_get(begin,
 end, stream, err, v)

The following are the virtual, protected members of num_get:
	virtual iter_type
 do_get (iter_type
 begin, iter_type end, ios_base& stream, ios_base::iostate& err, bool& v)
 const
	Reads a bool value,
 which can be represented as a number or as a character string.
 The function first tests the boolalpha flag, that is, stream.flags() & stream.boolalpha. If the flag is
 0, a numeric value is read;
 if the flag is 1, a string
 is read from [begin,
 end).
If boolalpha is
 false, the input is interpreted as a long int. If the numeric value is
 1, v is assigned true; if the value is 0, v is assigned false; otherwise, failbit is set in err, and v is not modified.
If boolalpha is true,
 characters are read from begin until one of the following
 happens:
	The input matches truename(
) from the numpunct facet:
use_facet<numpunct<char_type> >(stream.getloc()).truename()
v is assigned
 true, and err is assigned goodbit. A match is determined
 by the shortest input sequence that uniquely matches
 truename() or falsename().

	The input matches falsename(): v is assigned false, and err is assigned goodbit.

	begin == end, in which case eofbit is set in err.

	The input does not match truename() or falsename(); failbit is set in err.

	virtual iter_type
 do_get (iter_type begin, iter_type end, ios_base& stream, ios_base::iostate& err, type
 & v) const
	Reads a single value. The do_get function is overloaded for
 most of the fundamental types. The behavior of each function
 is essentially the same (except for the bool version described earlier) and
 depends on stream.flags(),
 the ctype facet, and the
 numpunct facet. Both facets
 are obtained for the locale stream.getloc().
First, input characters are collected from the range
 [begin, end) or until the input character is
 not part of a valid number according to the flags and numpunct facet. A locale-dependent
 decimal point is replaced with the character '.'. Thousands separators are read
 but not checked for valid positions until after the entire
 number has been read. The set of valid characters depends on
 the type of v and the
 flags, in particular the basefield flags. If stream.flags() & basefield is hex, hexadecimal characters are
 read; if it is oct, only
 octal characters are read ('0'-'7'). If the basefield is 0, the prefix
 determines the radix: 0x or
 0X for hexadecimal,
 0 for octal, and anything
 else for decimal. Floating-point numbers can use fixed or
 exponential notation, regardless of the flags.
[image: image with no caption]

If v is of type
 void*, the format is
 implementation-defined in the same manner as the %p format for scanf (in <cstdio>).
After all the valid characters have been read, they are
 interpreted as a numeric value. If the string is invalid, or
 if the thousands groupings are incorrect, failbit is set in err and v is not changed. If the string is
 valid, its numeric value is stored in v and err is set to goodbit. If the entire input stream
 is read (up to end),
 eofbit is set in err.

See Also
money_get class
 template, num_put class
 template, numpunct class
 template, basic_istream in
 <istream>

Name
num_put class template — Facet for output of numbers

Synopsis
template <typename charT,
 typename OutputIterator = ostreambuf_iterator<charT> >
class num_put : public locale::facet
{
public:
 typedef charT char_type;
 typedef OutputIterator iter_type;
 explicit num_put(size_t refs = 0);
 iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const;
 iter_type put(iter_type s, ios_base& f, char_type fill, long v) const;
 iter_type put(iter_type s, ios_base& f, char_type fill, unsigned long v) const;
 iter_type put(iter_type s, ios_base& f, char_type fill, double v) const;
 iter_type put(iter_type s, ios_base& f, char_type fill, long double v) const;
 iter_type put(iter_type s, ios_base& f, char_type fill, const void* v) const;
 static locale::id id;
protected:
 virtual ~num_put();
 virtual iter_type do_put(iter_type, ios_base&, char_type fill, bool v) const;
 virtual iter_type do_put(iter_type, ios_base&, char_type fill, long v) const;
 virtual iter_type do_put(iter_type, ios_base&, char_type fill, unsigned long)
 const;
 virtual iter_type do_put(iter_type, ios_base&, char_type fill, double v) const;
 virtual iter_type do_put(iter_type, ios_base&, char_type fill, long double v)
 const;
 virtual iter_type do_put(iter_type, ios_base&, char_type fill, const void* v)
 const;
};
The num_put class template
 is a facet for formatting and outputing a numeric value. The
 ostream output operators
 (>>) use num_put. The num_put<char> and num_put<wchar_t> instantiations are
 standard.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as put,
 which calls do_put. The
 descriptions below are for the virtual functions because they do the
 real work. Imagine that for each virtual function description, there
 is a corresponding description for a public, nonvirtual function,
 such as:
	iter_type put
 (iter_type out, ios_base& stream, char_type fill, bool v) const
	Returns do_put(out,
 stream, fill, v)

The following are the virtual, protected members of num_put:
	virtual iter_type
 do_put (iter_type
 out, ios_base& stream, char_type fill, bool v) const
	Writes a bool value
 to out. If the boolalpha flag is clear, that is,
 stream.flags() & stream.boolalpha is 0, the integer value of v is written as a number. If
 boolalpha is set, v is written as a word: if v is true, truename() is written; if v is false, falsename() is written using the
 numpunct facet. For
 example:
const numpunct<charT>& n = use_facet<numpunct<charT> >;
string_type s = v ? n.truename() : n.falsename();
// Write characters of s to out.

	virtual iter_type
 do_put (iter_type out, ios_base& stream, char_type fill, type
 v) const
	Formats v as a string
 and writes the string contents to out using the flags of stream to control the formatting and
 the imbued locale of stream
 to obtain the ctype and
 numpunct facets for
 punctuation rules and characters. The format also depends on
 type:
	Integral types (long, unsigned long)
	The format depends on the basefield flags (stream.flags() & basefield). If oct, the number is formatted
 as octal; if hex, the
 number is formatted as hexadecimal (using 'a'-'f' for the digits 10-16, or
 'A'-'F' if the uppercase flag is set); or
 else the number is decimal. If the showbase flag is set, a prefix
 is used: 0 for octal,
 or 0x or 0X for hexadecimal (depending
 on the uppercase
 flag).

	Floating-point types (double, long double)
	The format depends on the floatfield flags (stream.flags() & floatfield). If fixed, the format is
 fixed-point: an integer part, a decimal point, and a
 fractional part. If scientific, the format is
 exponential.
If the floatfield flags do not
 indicate fixed or
 scientific, the
 general format is used: exponential if the exponent is
 -4 or less or greater than the precision (number of
 places after the decimal point), or fixed otherwise.
 Trailing zeros are dropped, as is the decimal point if
 would be the last character in the string.
If the uppercase flag is set, the
 exponent is introduced by 'E', or else by 'e'. If the showpoint flag is set, the
 decimal point is always present.

	[image:]Pointer (void*)
	The output format for a pointer is
 implementation-defined.
If the number is negative, it is prefaced with a
 minus sign ('-'). If
 the number is positive, no sign is output unless the
 showpos flag is set,
 in which case a positive sign ('+') appears at the start of
 the string.
If a decimal point character is needed, it is
 obtained from the numpunct facet's decimal_point() function.
 Integers have thousands separators inserted according to
 the grouping()
 function. See numpunct later in this section
 for more information.
If necessary, fill characters are inserted
 until the formatted width is stream.width(). The stream's
 adjustfield flag
 dictates how fill
 characters are inserted. That is, stream.flags() & stream.adjustfield is tested,
 and if it is equal to:
	ios_base::internal
	Fill characters are inserted after a sign (if
 present) or, if there is no sign, after a leading
 0x or 0X, or else at the start
 of the field.

	ios_base::left
	Fill characters are appended to the end of the
 formatted field.

	Any other value
	Fill characters are inserted at the start of
 the formatted field.

Finally, stream.width(0) is called to
 reset the field width to 0. The return value is an
 iterator that points to one past the last output
 character.

See Also
money_put class
 template, num_get class
 template, numpunct class
 template, basic_ostream in
 <ostream>

Name
numpunct class template — Facet for punctuation of numbers

Synopsis
template <typename charT>
class numpunct : public locale::facet
{
public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit numpunct(size_t refs = 0);
 char_type decimal_point() const;
 char_type thousands_sep() const;
 string grouping() const;
 string_type truename() const;
 string_type falsename() const;
 static locale::id id;
protected:
 virtual ~numpunct();
 virtual char_type do_decimal_point() const;
 virtual char_type do_thousands_sep() const;
 virtual string do_grouping() const;
 virtual string_type do_truename() const;
 virtual string_type do_falsename() const;
};
The numpunct class template
 is a facet for numeric formatting and punctuation. The num_get and num_put facets use numpunct. The numpunct<char> and numpunct<wchar_t> instantiations are
 standard.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as grouping, which calls do_grouping. The descriptions below are
 for the virtual functions because they do the real work. Imagine
 that for each virtual-function description, there is a corresponding
 description for a public, nonvirtual function, such as:
	char_type decimal_point
 () const
	Returns do_decimal_point(
)

The following are the virtual, protected members of numpunct:
	virtual char_type
 do_decimal_point
 () const
	Returns the decimal point character, which is typically
 '.' in U.S. locales and
 ',' in European locales. In
 the "C" locale, the decimal
 point is '.' or L'.'.

	virtual string_type
 do_falsename ()
 const
	Returns the textual representation for the value
 false. In the standard
 instantiations (numpunct<char> and numpunct<wchar_t>), the value
 is "false" or L"false".

	virtual string do_grouping () const
	Returns a string that specifies the positions of
 thousands separators. The string is interpreted as a vector of
 integers, in which each value is a number of digits, starting
 from the right. Thus, the string "\3" means every three digits form a
 group. In the "C" locale,
 the grouping is "" or L"".

	virtual char_type
 do_thousands_sep
 () const
	Returns the character used to separate digit groups.
 (See do_grouping earlier in
 this section.) In U.S. locales, this is typically ',', and in European locales, it is
 typically '.'. In the
 "C" locale, the thousands
 separator is '\0' or
 L'\0'.

	virtual string_type
 do_truename
 () const
	Returns the textual representation for the value
 true. In the standard
 instantiations (numpunct<char> and numpunct<wchar_t>), the value
 is "true" or L"true".

See Also
moneypunct class
 template, num_get class
 template, num_put class
 template

Name
numpunct_byname class template — Facet for punctuation of numbers

Synopsis
template <typename charT>
class numpunct_byname : public numpunct<charT>
{
// This class is specialized for char and wchar_t.
public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit numpunct_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in numpunct
};
The numpunct_byname class
 template is a facet for numeric formatting and punctuation; it uses
 the rules of a named locale. The numpunct_byname<char> and numpunct_byname<wchar_t>
 instantiations are standard.

See Also
numpunct class
 template

Name
time_base class — Base class for time facets

Synopsis
class time_base {
public:
 enum dateorder { no_order, dmy, mdy, ymd, ydm };
};
The time_base class is a
 base class for the time_get class
 template. It declares the dateorder type. See time_get for more information.

See Also
time_get class
 template

Name
time_get class template — Facet for input of dates and times

Synopsis
template <typename charT, typename InputIterator = istreambuf_iterator<charT> >
class time_get : public locale::facet, public time_base
{
public:
 typedef charT char_type;
 typedef InputIterator iter_type;
 explicit time_get(size_t refs = 0);
 dateorder date_order() const;
 iter_type get_time(iter_type s, iter_type end, ios_base& f,
 ios_base::iostate& err, tm* t) const;
 iter_type get_date(iter_type s, iter_type end, ios_base& f,
 ios_base::iostate& err, tm* t) const;
 iter_type get_weekday(iter_type s, iter_type end,
 ios_base& f, ios_base::iostate& err, tm* t) const;
 iter_type get_monthname(iter_type s, iter_type end,
 ios_base& f, ios_base::iostate& err, tm* t) const;
 iter_type get_year(iter_type s, iter_type end, ios_base& f,
 ios_base::iostate& err, tm* t) const;
 static locale::id id;
protected:
 virtual ~time_get();
 virtual dateorder do_date_order() const;
 virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;
 virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;
 virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;
 virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;
 virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;
};
The time_get class template
 is a facet for parsing and reading dates and times from an input
 stream. The components of the date and time value are stored in a
 tm structure. (See <ctime> for more information about
 tm.) The time_get<char> and time_get<wchar_t> instantiations are
 standard.
Most of the time_get
 functions take an err parameter
 in much the same way other facets and their functions do. Unlike
 other facets, however, the time_get functions do not set err to goodbit upon success. Instead, they only
 set failbit for an error. They do
 not set eofbit if the end of the
 input sequence is reached.
Most of the time_get
 functions take a t parameter,
 which is a pointer to a tm
 object, which is filled in with the relevant parts of the date and
 time. If a function fails, the state of the tm object is undefined.
As with other facets, the public members call virtual,
 protected members with the same name prefaced by do_. Thus, to use the facet, call the
 public functions, such as get_date, which calls do_get_date. The descriptions below are
 for the virtual functions because they do the real work. Imagine
 that for each virtual-function description, there is a corresponding
 description for a public, nonvirtual function, such as:
	dateorder date_order
 () const
	Returns do_date_order(
)

The following are the virtual, protected members of time_get:
	virtual dateorder
 do_date_order
 () const
	Returns the order in which the day, month, and year
 appear in a locale-specific date. If the formatted date
 includes additional elements, the return value is no_order. See the time_base class for the declaration
 of the dateorder
 type.

	[image:] virtual iter_type
 do_get_time
 (iter_type
 begin, iter_type end, ios_base& stream, ios_base::iostate&
 err, tm* t) const
	Reads characters from [begin, end) and interprets them as a time,
 according to the format of time_put<>::put, using the
 'X' format. The time
 elements are stored in *t.
 If the input is invalid, the state of t's members is undefined, and
 err is set to failbit. The return value is an
 iterator that points to one past where the input
 stopped.

	virtual iter_type
 do_get_date
 (iter_type
 begin, iter_type end, ios_base& stream, ios_base::iostate&
 err, tm* t) const
	Reads characters from [begin, end) and interprets them as a date,
 according to the format of time_put<>::put, using the
 'x' format. The date
 elements are stored in *t.
 If the input is invalid, the state of t's members is undefined, and
 err is set to failbit. The return value is an
 iterator that points to one past where the input
 stopped.

	virtual iter_type
 do_get_weekday (iter_type begin,
 iter_type end, ios_base& stream, ios_base::iostate&
 err, tm* t)
 const
	Reads characters from [begin, end) until it reads the name of a
 day of the week, either abbreviated or spelled out. The
 appropriate date elements are stored in *t. If the input is invalid, the
 state of t's members is
 undefined, and err is set
 to failbit. The return
 value is an iterator that points to one past where the input
 stopped.

	virtual iter_type
 do_get_monthname
 (iter_type begin,
 iter_type end,
 ios_base& stream, ios_base::iostate&
 err, tm* t) const
	Reads characters from [begin, end) until it reads the name of a
 month, either abbreviated or spelled out. The appropriate date
 elements are stored in *t.
 If the input is invalid, the state of t's members is undefined, and
 err is set to failbit. The return value is an
 iterator that points to one past where the input
 stopped.

	virtual iter_type
 do_get_year (iter_type begin,
 iter_type end, ios_base& stream, ios_base::iostate& err,
 tm* t) const
	Reads characters from [begin, end) until it reads a year. It is up
 to the implementation to determine whether two-digit years are
 accepted, and if so, which century to apply to the abbreviated
 year. The t->tm_year
 member is set appropriately. If the input is invalid, the
 state of t's members is
 undefined, and err is set
 to failbit. The return
 value is an iterator that points to one past where the input
 stopped.

See Also
time_base class, time_get_byname class template,
 time_put class template,
 tm in <ctime>

Name
time_get_byname class template — Facet for input of dates and times

Synopsis
template <typename charT, typename InputIterator = istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT, InputIterator>
{
public:
 typedef time_base::dateorder dateorder;
 typedef InputIterator iter_type;
 explicit time_get_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in time_get
};
The time_get_byname class
 template is a facet for reading dates and times from an input stream
 using a named locale. The time_get_byname<char> and time_get_byname<wchar_t>
 instantiations are standard.

See Also
time_get class
 template

Name
time_put class template — Facet for output of dates and times

Synopsis
template <typename charT, typename OutputIterator = ostreambuf_iterator<charT> >
class time_put : public locale::facet
{
public:
 typedef charT char_type;
 typedef OutputIterator iter_type;
 explicit time_put(size_t refs = 0);
 iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,
 const charT* pattern, const charT* pat_end) const;
 iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,
 char format, char modifier = 0) const;
 static locale::id id;
protected:
 virtual ~time_put();
 virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,
 char format, char modifier) const;
};
The time_put class template
 is a facet for formatting and writing dates and times. The time_put<char> and time_put<wchar_t> instantiations are
 standard.
Note that time_put is
 unlike other facets. The public put function does not always directly call
 do_put. Here are the complete
 descriptions of put and do_put:
	iter_type put
 (iter_type out, ios_base& stream,
 char_type fill, const tm* t, const charT* pattern, const charT*
 pat_end) const
	Reads the pattern in [pattern, pat_end) and writes formatted date
 and time information to out. The pattern contains ordinary
 characters (which are written directly to out) interspersed with format
 specifiers. A format specifier starts with '%' and is followed by an optional
 modifier character, which is followed in turn by a format
 specifier character. The put function checks format
 characters by first calling narrow from the ctype<charT> facet, then
 checking the narrowed character.
For each format specifier, put calls do_put(out, stream, fill, t, format, modifier), in which format is the format specifier and
 modifier is the modifier
 character or 0 if no
 modifier is present.
[image: image with no caption]

The use of modifier characters is
 implementation-defined. The standard does not define any
 modifiers. See the do_put
 member function for more information.

	iter_type put
 (iter_type out, ios_base& stream,
 char_type fill, const tm* t, char format, char modifier = 0)
 const
	Returns do_put(out,
 stream, fill, t, format, modifier).

	virtual iter_type
 do_put
 (iter_type out,
 ios_base& stream, char_type fill, const tm* t, char format, char
 modifier) const
	Formats a single date or time element and writes the
 formatted characters to out. The format character specifies what to
 output (as shown in Table 13-22). The
 date and time information is obtained from t.
The do_put function,
 unlike some of the other output facets, does not use stream's flags or field width. The
 fill parameter is used by
 implementation-defined formatting.
Table 13-22. Format specifiers for do_put
	Specifier
	Description

	 a

	Abbreviated weekday name

	 A

	Full weekday name

	 b

	Abbreviated month name

	 B

	Full month name

	 C

	Complete date and time

	 D

	Day of the month (01-31)

	 H

	Hour (00-23); 24-hour
 clock

	 I

	Hour (01-12); 12-hour
 clock

	 j

	Day of the year (001-366)

	 m

	Month (01-12)

	 M

	Minutes (00-59)

	 P

	A.M./P.M. designation for use with a
 12-hour clock

	 S

	Second (00-61); up to two leap
 seconds

	 U

	Week number (00-53); week 1 starts with the
 first Sunday

	 w

	Weekday (0-6); Sunday is day
 0

	 W

	Week number (00-53); week 1 starts with
 first Monday

	 x

	Date

	 X

	Time

	 y

	Year in century (00-99)

	 Y

	Year

	 Z

	Time zone name or abbreviation, or empty
 string if time zone is unknown

	 %

	Literal %

Note
[image: image with no caption]

The use of modifier is
 implementation-defined. The C++ standard recommends the use of
 POSIX modifiers, which are 'E'
 and 'O'. These modifiers
 request the use of an alternative format if the locale has one.
 The 'E' modifier applies to
 certain format specifiers to request an alternative representation
 for dates and times. The 'O'
 modifier applies to certain format specifiers to request the use
 of alternative numeric symbols. If a locale cannot honor the
 modified request, it uses the unmodified format specifier.

See Also
time_get class
 template, time_put_byname
 class template,
 <ctime>

Name
time_put_byname class template — Facet for output of dates and times

Synopsis
template <typename charT, typename OutputIterator = ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT,OutputIterator>
{
public:
 typedef charT char_type;
 typedef OutputIterator iter_type;
 explicit time_put_byname(const char*, size_t refs = 0);
protected:
 // . . . Same virtual functions as in time_put
};
The time_put class template
 is a facet for formatting and writing dates and times using a named
 locale. The time_put_byname<char> and time_put_byname<wchar_t>
 instantiations are standard.

See Also
time_put class
 template

Name
tolower function template — Converts a character to lowercase in a
 locale

Synopsis
template <typename charT>
charT tolower(charT c, const locale& loc);
The tolower function
 converts the character c to
 lowercase using the locale loc:
use_facet<ctype<charT> >(loc).tolower(c)

See Also
ctype class template,
 islower function template,
 toupper function
 template

Name
toupper function template — Converts a character to uppercase in a
 locale

Synopsis
template <typename charT>
charT toupper(charT c, const locale& loc);
The toupper function
 converts the character c to
 uppercase using the locale loc:
use_facet<ctype<charT> >(loc).toupper(c)

See Also
ctype class template,
 isupper function template,
 tolower function
 template

Name
use_facet function template — Retrieves a facet for a locale

Synopsis
template <typename Facet>
const Facet& use_facet(const locale& loc)
The use_facet function
 template obtains a facet from locale loc. See Example 13-24 and Example 13-27, earlier in this
 section.

See Also
has_facet function
 template, locale::facet
 class

<map>

The <map> header is one of the standard container template headers.
 It declares the map and multimap class templates and a few global
 function templates that operate on map and multimap objects.
A map is a container that stores pairs of
 keys and values. Looking up keys, inserting keys, and deleting keys can
 all be performed in logarithmic or better time. Maps support
 bidirectional iterators (no random access). In other languages and
 libraries, maps are also called dictionaries and associative
 arrays.
See Chapter 10 for
 information about containers. See the <utility> section later in this
 chapter for information about the pair class template.

Name
map class template — Associative map container with unique keys

Synopsis
template <typename Key, typename T, typename Compare = less<Key>,
 typename Alloc = allocator<pair<const Key, T> > >
class map {
public:
 typedef Key key_type;
 typedef T mapped_type;
 typedef pair<const Key, T> value_type;
 typedef Compare key_compare;
 typedef Alloc allocator_type;
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 class value_compare :
 public binary_function<value_type,value_type,bool>
 {
 friend class map;
 protected:
 Compare comp;
 value_compare(Compare c) : comp(c) {}
 public:
 bool operator()(const value_type& x, const value_type& y) const
 { return comp(x.first, y.first); }
 };
 explicit map(const Compare& comp = Compare(), const Alloc& = Alloc());
 template <class InputIterator>
 map(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Alloc& = Alloc());
 map(const map<Key,T,Compare,Alloc>& x);
 ~map();
 map<Key,T,Compare,Alloc>& operator=(const map<Key,T,Compare,Alloc>& x);

 allocator_type get_allocator() const;
 // Iterators
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 // Capacity
 bool empty() const;
 size_type size() const;
 size_type max_size() const;
 // Element access
 T& operator[](const key_type& x);
 // Modifiers
 pair<iterator, bool> insert(const value_type& x);
 iterator insert(iterator hintpos, const value_type& x);
 template <class InputIterator>
 void insert(InputIterator first, InputIterator last);
 void erase(iterator position);
 size_type erase(const key_type& x);
 void erase(iterator first, iterator last);
 void swap(map<Key,T,Compare,Alloc>&);
 void clear();
 // Observers
 key_compare key_comp() const;
 value_compare value_comp() const;
 // Map operations
 iterator find(const key_type& x);
 const_iterator find(const key_type& x) const;
 size_type count(const key_type& x) const;
 iterator lower_bound(const key_type& x);
 const_iterator lower_bound(const key_type& x) const;
 iterator upper_bound(const key_type& x);
 const_iterator upper_bound(const key_type& x) const;
 pair<iterator,iterator> equal_range(const key_type& x);
 pair<const_iterator,const_iterator>
 equal_range(const key_type& x) const;
};
The map class template
 represents a map container. A map stores pairs of unique keys and
 associated objects, in which the key type is specified by the
 Key template parameter, and the
 associated type is the T template
 parameter. The values stored in the map are of type pair<const Key, T> (which has the convenience typedef
 value_type).
A map's iterators are bidirectional. They return value_type references; use the first member to access the key or second to access the associated
 object.
Note that keys are const in
 the map. You must not change the key while it is stored in a map.
 More precisely, you must not change the key in a way that alters its
 relative order with the other keys in the map. If you need to modify
 a key, you can erase the key from the map, modify the key, and
 insert the new key with its original associated value, as shown in
 Example 13-28.

Examples
Example 13-28. One way to modify a key in a map
template <typename Key, typename T, typename C, typename A>
void change_key(std::map<Key, T, C, A>& m,
 const Key& oldkey, const Key& newkey)
{
 using std::map;
 typedef typename map<Key, T, C, A>::iterator map_iterator;
 map_iterator i = m.find(oldkey);
 if (i != m.end()) {
 // Save a copy of i->second because erase invalidates i.
 T tmp = i->second;
 m.erase(i);
 m[newkey] = tmp;
 }
 // Exercise: What if newkey is already in m?
}

Within a map, keys are ordered in ascending order, according
 to the Compare template parameter
 (which can be a function pointer or functor that compares two
 objects of type Key and returns
 true if the first argument should come before the second). Keys must
 be unique, but note that uniqueness is determined only by calling
 Compare, not by using the
 == operator. That is, two
 objects, a and b, are different (and therefore can both
 be present in a single map
 object) if Compare(a, b) is true or Compare(b, a) is true. See multimap later in this section for a map
 container that can store non-unique keys.
Inserting into a map does not invalidate any iterators for
 that map or references to pairs in the map. Erasing an element
 invalidates only iterators and references that refer to that
 element.
Inserting into a map and searching for an element in a map
 usually take logarithmic time. Erasing a single element, given an
 iterator, takes amortized constant time.
The subscript operator ([])
 lets you use a map as an associative array, for which the array
 indices are keys. If a key is not already present in the map, it is
 added. Using operator[] allows
 for compact, easy-to-read code, as you can see in Example 13-29, which shows how
 to use map to count word
 frequencies in the standard input.
Example 13-29. Using a map to count word frequencies
#include <cstddef>
#include <iostream>
#include <istream>
#include <map>
#include <ostream>
#include <string>

typedef std::map<std::string, std::size_t> freqmap;

// Print a single word and its count.
void print(const freqmap::value_type info)
{
 std::cout << info.first << '\t' << info.second << '\n';
}

int main()
{
 freqmap fm;
 std::string word;
 // Count words. If a word is not in the map, add it. When a new word is added,
 // its count is initially 0. Each time, including the first, increment the
 // count.
 while (std::cin >> word)
 ++fm[word];
 // Print the frequencies of each word, in order.
 std::for_each(fm.begin(), fm.end(), print);
}

The following are the member functions of map:
	explicit map
 (const Compare& comp = Compare(),
 const Alloc& = Alloc())
	Creates an empty map.

	template <class
 InputIterator>
 map (InputIterator first, InputIterator last,
 const Compare&
 comp = Compare(
), const Alloc& = Alloc(
))
	Creates an empty map and then copies all pairs in the
 range [first, last) into the new map.

	 map (const map<Key,T,Compare,Alloc>&
 x)
	Creates a new map and copies the allocator and all the
 pairs from x to the new
 map.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first item in the
 map.

	void clear
 ()
	Erases every item in the map.

	size_type count
 (const
 key_type& x) const
	Returns the number of pairs whose keys are equivalent to
 x. This value is always
 0 or 1.

	bool empty
 () const
	Returns size()
 == 0.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one past the last
 item in the map.

	pair<iterator,iterator>
 equal_range (const key_type&
 x)
pair<const_iterator,const_iterator>
 equal_range (const key_type& x) const
	Returns the lower bound and upper bound as a pair:
std::make_pair(lower_bound(x), upper_bound(x))

	void erase
 (iterator
 position)
size_type erase
 (const key_type&
 x)
void erase
 (iterator first, iterator
 last)
	Erases one or more pairs from the map. The first version
 erases the pair at position
 in constant time (amortized over many calls). The second
 version erases the pair equivalent to x, if it is present, returning a
 count of the number of pairs erased, that is, 0 or 1. It runs in logarithmic time. The
 third version erases all elements in the range [first, last) in a time proportional to log
 size() + (last - first).

	iterator find
 (const key_type&
 x)
const_iterator
 find
 (const key_type& x)
 const
	Searches for a pair whose key is equivalent to x and returns an iterator that
 points to that pair or end(
) if it is not found. It runs in logarithmic
 time.

	allocator_type
 get_allocator () const
	Returns the map's allocator.

	pair<iterator,
 bool> insert (const value_type&
 x)
iterator insert
 (iterator
 hintpos, const value_type& x)
template <class InputIterator> void insert
 (InputIterator
 first, InputIterator last)
	Inserts one or more pairs into the map, but only if an
 equivalent key is not already present in the map. If the key
 is already present, the insert attempt is ignored. The first
 version attempts to insert the pair x in logarithmic time.
The second version inserts the pair x using hintpos as a position hint. If
 x is inserted immediately
 after hintpos, the
 performance is constant (amortized over many insertions); at
 any other position, the performance is logarithmic. Use this
 form when inserting many items that are already in the desired
 order.
The third version copies all the pairs in the range
 [first, last), which must be pointing to a
 different map object. If
 the items are already in the desired order, the performance is
 linear; otherwise, it is N log
 (size() + N
), in which
 N is last - first.

	key_compare key_comp
 () const
	Returns the comparator function pointer or object, which
 compares keys. The key_compare type is the same as the
 Compare template parameter.
 See also the value_comp
 member.

	iterator lower_bound
 (const
 key_type& x)
const_iterator
 lower_bound (const key_type& x) const
	Returns an iterator that points to the first pair in the
 map that does not come before x. That is, if x is in the map, the iterator points
 to its position; otherwise, the iterator points to the first
 position where x should be
 inserted. Performance is logarithmic.

	size_type max_size
 () const
	Returns the largest number of pairs that can be in the
 map.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 element of the map.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first element of the map.

	size_type size
 () const
	Returns the number of pairs in the map.

	void swap
 (map<Key,T,Compare,Alloc>&)
	Swaps the contents of the map with the contents of
 x.

	iterator upper_bound
 (const key_type&
 x)
const_iterator
 upper_bound (const key_type& x) const
	Returns an iterator that points to the first pair in the
 map that comes after x.
 Performance is logarithmic.

	value_compare value_comp
 () const
	Returns a value_compare object, which can be
 used to compare pairs. The value_compare object takes two
 value_type arguments and
 compares their keys, returning true if the first should come before
 the second in the map.

	map<Key,T,Compare,Alloc>&
 operator= (const
 map<Key,T,Compare,Alloc>&
 x)
	Erases all the elements of the map and replaces them
 with copies of the elements of x.

	T& operator[]
 (const
 key_type& x)
	Returns a reference to the object associated with the
 key x. If x is not in the map, it is added
 with a default associated object, and a reference to that new
 object is returned. That is, operator[] returns:
(*((insert(std::make_pair(x, T()))).first)).second
Note that there is no const version of this
 operator.

See Also
multimap class
 template, set in <set>

Name
multimap class template — Associative map container with duplicate
 keys

Synopsis
template <class Key, class T, class Compare = less<Key>,
 class Alloc = allocator<pair<const Key, T> > >
class multimap {
public:
 typedef Key key_type;
 typedef T mapped_type;
 typedef pair<const Key,T> value_type;
 typedef Compare key_compare;
 typedef Alloc allocator_type;
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 class value_compare :
 public binary_function<value_type,value_type,bool>
 {
 friend class multimap;
 protected:
 Compare comp;
 value_compare(Compare c) : comp(c) {}
 public:
 bool operator()(const value_type& x, const value_type& y)
 const { return comp(x.first, y.first); }
 };

 explicit multimap(const Compare& comp = Compare(),
 const Alloc& = Alloc());
 template <class InputIterator>
 multimap(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Alloc& = Alloc());
 multimap(const multimap<Key,T,Compare,Alloc>& x);
 ~multimap();
 multimap<Key,T,Compare,Alloc>&
 operator=(const multimap<Key,T,Compare,Alloc>& x);
 allocator_type get_allocator() const;
 // Iterators
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 // Capacity
 bool empty() const;
 size_type size() const;
 size_type max_size() const;
 // Modifiers
 iterator insert(const value_type& x);
 iterator insert(iterator hintpos, const value_type& x);
 template <class InputIterator>
 void insert(InputIterator first, InputIterator last);
 void erase(iterator position);
 size_type erase(const key_type& x);
 void erase(iterator first, iterator last);
 void swap(multimap<Key,T,Compare,Alloc>&);
 void clear();
 // Observers
 key_compare key_comp() const;
 value_compare value_comp() const;
 // Map operations
 iterator find(const key_type& x);
 const_iterator find(const key_type& x) const;
 size_type count(const key_type& x) const;
 iterator lower_bound(const key_type& x);
 const_iterator lower_bound(const key_type& x) const;
 iterator upper_bound(const key_type& x);
 const_iterator upper_bound(const key_type& x) const;
 pair<iterator,iterator> equal_range(const key_type& x);
 pair<const_iterator,const_iterator>
 equal_range(const key_type& x) const;
};
The multimap class template
 represents a map container that can store duplicate keys. A map
 stores pairs of keys and associated objects, in which the key type
 is specified by the Key template
 parameter, and the associated type is the T template parameter. The values stored in
 the map are of type pair<const
 Key, T> (which has the convenience typedef
 value_type).
A map's iterators are bidirectional. They return value_type references; use the first member to access the key or second to access the associated
 object.
Note that keys are const in
 the map. You must not change the key while it is stored in a map.
 More precisely, you must not change the key in a way that alters its
 relative order with the other keys in the map. See Example 13-28 (earlier in this
 section), which shows how to change a key by erasing and reinserting
 an object.
Within a map, keys are ordered in ascending order, according
 to the Compare template parameter
 (which can be a function pointer or functor that compares two
 objects of type Key and returns
 true if the first argument should come before the second).
Inserting into a map does not invalidate any iterators for
 that map. Erasing an element invalidates only iterators that refer
 to that element.
Inserting a single item into a map and searching for an
 element in a map usually take logarithmic time. Erasing a single
 element, given an iterator, takes amortized constant time.
The following are the member functions of multimap. Note that multimap does not have a subscript
 operator.
	explicit multimap
 (const Compare& comp =
 Compare(), const Alloc& = Alloc())
	Creates an empty map.

	template <class
 InputIterator>
 multimap (InputIterator first, InputIterator last,
 const Compare&
 comp = Compare(
), const Alloc& = Alloc(
))
	Creates an empty map and then copies all pairs in the
 range [first, last) into the new map.

	 multimap (const multimap<Key,T,Compare,Alloc>&
 x)
	Creates a new map and copies all the pairs from x to the new map.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first item in the
 map.

	void clear
 ()
	Erases every item in the map in linear time.

	size_type count
 (const
 key_type& x) const
	Returns the number of pairs whose keys are equivalent to
 x. Complexity is
 proportional to log(size(
)) + the return value.

	bool empty
 () const
	Returns size()
 == 0.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one past the last
 item in the map.

	pair<iterator,iterator>
 equal_range (const key_type&
 x)
pair<const_iterator,const_iterator>
 equal_range (const key_type& x) const
	Returns the lower bound and upper bound as a pair:
std::make_pair(lower_bound(x), upper_bound(x))

	void erase
 (iterator
 position)
size_type erase
 (const key_type&
 x)
void erase
 (iterator first, iterator
 last)
	Erases one or more pairs from the map. The first version
 erases the pair at position
 in constant time (amortized over many calls). The second
 version erases all the pairs equivalent to x if any are present, returning a
 count of the number of pairs erased. The third version erases
 all elements in the range [first, last). The last two forms take time
 proportional to log(size(
)) + the number of elements erased.

	iterator find
 (const key_type&
 x)
const_iterator
 find
 (const key_type& x)
 const
	Searches for a pair whose key is equivalent to x and returns an iterator that
 points to that pair or end(
) if it is not found. If x occurs more than once, the
 iterator might point to any of the equivalent pairs.

	allocator_type
 get_allocator () const
	Returns the map's allocator.

	pair<iterator,
 bool> insert (const value_type& x)
iterator insert
 (iterator
 hintpos, const value_type& x)
template <class InputIterator> void insert
 (InputIterator
 first, InputIterator last)
	Inserts one or more pairs into the map. The first
 version inserts the pair x
 in logarithmic time.
The second version inserts the pair x using hintpos as a position hint. If
 x is inserted immediately
 after hintpos, the
 performance is constant (amortized over many insertions); at
 any other position, the performance is logarithmic. Use this
 form when inserting many items that are already in the desired
 order.
The third version copies all the pairs in the range
 [first, last), which must be pointing to a
 different multimap object.
 If the items are already in the desired order, the performance
 is linear; otherwise, it is N log
 (size() + N
), in which
 N is last - first.

	key_compare key_comp
 () const
	Returns the comparator function pointer or object, which
 compares keys. The key_compare type is the same as the
 Compare template parameter.
 See also the value_comp
 member.

	iterator lower_bound
 (const
 key_type& x)
const_iterator
 lower_bound (const key_type& x) const
	Returns an iterator that points to the first pair in the
 map that does not come before x. That is, if x is in the map, the iterator points
 to the position of its first occurrence; otherwise, the
 iterator points to the first position where x should be inserted. Performance is
 logarithmic.

	size_type max_size
 () const
	Returns the largest number of pairs that can be in the
 map.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 element of the map.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first element of the map.

	size_type size
 () const
	Returns the number of pairs in the map.

	void swap
 (multimap<Key,T,Compare,Alloc>&)
	Swaps the contents of the map with the contents of
 x.

	iterator upper_bound
 (const key_type&
 x)
const_iterator
 upper_bound (const key_type& x) const
	Returns an iterator that points to the first pair in the
 map that comes after all occurrences of x. Performance is
 logarithmic.

	value_compare value_comp
 () const
	Returns a value_compare object, which can be
 used to compare pairs. The value_compare object takes two
 value_type arguments and
 compares their keys, returning true if the first should come before
 the second in the map.

	multimap<Key,T,Compare,Alloc>&
 operator= (const
 multimap<Key,T,Compare,Alloc>&
 x)
	Erases all the elements of the map and replaces them
 with copies of the elements of x.

See Also
map class template,
 multiset in <set>

Name
operator== function template — Compares maps for equality

Synopsis
template <class Key, class T, class Comp, class Alloc>
bool operator==(const map<Key,T,Comp,Alloc>& x,
 const map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
bool operator==(const multimap<Key,T,Comp,Alloc>& x,
 const multimap<Key,T,Comp,Alloc>& y);
The == operator returns
 true if x and y
 have the same size and their elements are equal, that is, x.size() == y.size(
) && equals(x.begin(), x.end(), y.begin()).

See Also
equals in <algorithm>

Name
operator!= function template — Compares maps for inequality

Synopsis
template <class Key, class T, class Comp, class Alloc>
bool operator!=(const map<Key,T,Comp,Alloc>& x,
 const map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
bool operator!=(const multimap<Key,T,Comp,Alloc>& x,
 const multimap<Key,T,Comp,Alloc>& y);
The != operator is
 equivalent to ! (x == y).

Name
operator< function template — Compares maps for less-than

Synopsis
template <class Key, class T, class Comp, class Alloc>
bool operator<(const map<Key,T,Comp,Alloc>& x,
 const map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
bool operator<(const multimap<Key,T,Comp,Alloc>& x,
 const multimap<Key,T,Comp,Alloc>& y);
The < operator
 determines whether x is less than
 y, using the same algorithm as
 lexicographical_compare(x.begin(
), x.end(), y.begin(), y.end()).

See Also
lexicographical_compare in
 <algorithm>

Name
operator<= function template — Compares maps for less-than-or-equal

Synopsis
template <class Key, class T, class Comp, class Alloc>
bool operator<=(const map<Key,T,Comp,Alloc>& x,
 const map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
bool operator<=(const multimap<Key,T,Comp,Alloc>& x,
 const multimap<Key,T,Comp,Alloc>& y);
The <= operator is
 equivalent to ! (y < x).

Name
operator> function template — Compares maps for greater-than

Synopsis
template <class Key, class T, class Comp, class Alloc>
bool operator>(const map<Key,T,Comp,Alloc>& x,
 const map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
bool operator>(const multimap<Key,T,Comp,Alloc>& x,
 const multimap<Key,T,Comp,Alloc>& y);
The > operator is
 equivalent to (y < x).

Name
operator>= function template — Compares maps for greater-than-or-equal

Synopsis
template <class Key, class T, class Comp, class Alloc>
bool operator>=(const map<Key,T,Comp,Alloc>& x,
 const map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
bool operator>=(const multimap<Key,T,Comp,Alloc>& x,
 const multimap<Key,T,Comp,Alloc>& y);
The >= operator is
 equivalent to ! (x < y).

Name
swap function template — Swaps the contents of two maps

Synopsis
template <class Key, class T, class Comp, class Alloc>
 void swap(map<Key,T,Comp,Alloc>& x, map<Key,T,Comp,Alloc>& y);
template <class Key, class T, class Comp, class Alloc>
 void swap(multimap<Key,T,Comp,Alloc>& x, multimap<Key,T,Comp,Alloc>& y);
The swap function template
 specialization is equivalent to calling x.swap(y).

See Also
swap in <algorithm>

<memory>

The <memory> header declares function and class templates for
 allocating and using memory, such as the auto_ptr<> smart pointer, algorithms for
 working with uninitialized memory, and a standard allocator for use with
 the standard containers.
The auto_ptr class template
 provides a simple ownership model for working with pointers. It can be
 extremely useful for writing exception-safe code. On the other hand,
 copying an auto_ptr<> object
 does not produce an exact copy (ownership of the pointer is
 transferred), so auto_ptr<>
 objects cannot be stored in standard containers.
Several functions work with uninitialized memory, which can be
 helpful when implementing a container. For example, an implementation of
 vector must allocate an uninitialized
 array of objects and initialize elements of the array as they are
 needed. The uninitialized_ . . .
 functions can come in handy for that purpose.
The allocator class template
 manages memory allocation and deallocation and the construction and
 destruction of objects in the memory it manages. It is the default
 allocator for all the standard containers.

Name
allocator class template — Encapsulates memory allocation and
 deallocation

Synopsis
template <class T>
class allocator {
public:
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 template <class U> struct rebind {
 typedef allocator<U> other;
 };
 allocator() throw();
 allocator(const allocator&) throw();
 template <class U> allocator(const allocator<U>&) throw();
 ~allocator() throw();
 pointer address(reference x) const;
 const_pointer address(const_reference x) const;
 pointer allocate(size_type, allocator<void>::const_pointer hint = 0);
 void deallocate(pointer p, size_type n);
 size_type max_size() const throw();
 void construct(pointer p, const T& val);
 void destroy(pointer p);
};
The allocator class
 template encapsulates basic allocation and deallocation functions.
 The standard containers rely on allocators for memory management and
 use allocator as the default
 allocator.
Most programmers do not need to use allocator, which offers few advantages
 over plain new and delete. However, if you want to write your
 own container, or provide a custom allocator for the standard
 containers, you should take the time to understand allocator.
Perhaps the easiest way to understand allocator is to take a look at a trivial
 implementation in Example
 13-30. Note that a library might have a more complicated
 implementation to handle multithreading, improve performance, etc.
 Some libraries offer allocators for special purposes, such as
 allocating memory that can be shared among multiple processes. This
 particular implementation is just a sample.

Example
Example 13-30. Sample allocator implementation
template<typename T>
class myallocator {
public:
 typedef std::size_t size_type;
 typedef std::ptrdiff_t difference_type;
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 template <class U> struct rebind {
 typedef myallocator<U> other;
 };
 myallocator() throw() {}
 myallocator(const myallocator&) throw() {}
 template <class U>
 myallocator(const myallocator<U>&) throw() {}
 ~myallocator() throw() {}
 pointer address(reference x) const {return &x;}
 const_pointer address(const_reference x) const {return &x;}
 pointer allocate(size_type n, void* hint = 0) {
 return static_cast<T*>(::operator new (n * sizeof(T)));
 }
 void deallocate(pointer p, size_type n) {
 ::operator delete(static_cast<void*>(p));
 }
 size_type max_size() const throw() {
 return std::numeric_limits<size_type>::max() / sizeof(T);
 }
 void construct(pointer p, const T& val) {
 new(static_cast<void*>(p)) T(val);
 }
 void destroy(pointer p) {
 p->~T();
 }
};

template<typename T>
bool operator==(const myallocator<T>&, const myallocator<T>&)
{
 return true;
}

template<typename T>
bool operator!=(const myallocator<T>&, const myallocator<T>&)
{
 return false;
}

template<>
class myallocator<void> {
public:
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
 template <class U> struct rebind {
 typedef myallocator<U> other;
 };
};

The following are the members of allocator:
	 allocator () throw()
 allocator (const allocator&) throw()
template<class
 U>
 allocator
 (const allocator<U>&) throw()
	Constructs a new allocator object, possibly copying an
 existing allocator. Remember that all instances must be
 equivalent, so an allocator typically does not have any data
 members to initialize.

	pointer address
 (reference x)
 const
const_pointer address
 (const_reference x)
 const
	Returns the address of x, that is, &x.

	pointer allocate
 (size_type
 n, allocator<void>::const_pointer
 hint = 0)
	Calls the global new
 operator to allocate enough memory to hold n objects of type T. The hint argument must be 0 or a pointer obtained from a prior
 call to allocate that has
 not been passed to deallocate. The return value is a
 pointer to the newly allocated memory. If the memory cannot be
 allocated, bad_alloc is
 thrown.
An implementation might use hint to improve performance.

	[image:] typedef const
 T* const_pointer
	A type for a pointer to const. In a custom allocator, the
 type should be equivalent to const T*.

	typedef const T&
 const_reference
	A type for a const
 lvalue. In a custom allocator, the type should be equivalent
 to const T&.

	void construct
 (pointer p, const T&
 val)
	Calls the global new
 operator to construct an instance of T with value val using the memory that p points to. That is, it calls
 new(static_cast<void*>(p))
 T(val).

	void deallocate
 (pointer p, size_type
 n)
	Calls the global delete operator to free the memory
 that p points to. The
 n argument is the number of
 items of type T—the same
 value passed to allocate.

	void destroy
 (pointer
 p)
	Calls the destructor for the object at address p. That is, it calls reinterpret_cast<T*>(p)->~T(
).

	typedef ptrdiff_t
 difference_type

	A type that represents the difference of any two
 pointers that the allocator returns from allocate().

	size_type max_size
 () const throw(
)
	Returns the maximum size that can be passed to allocate.

	typedef T* pointer

	A pointer type. In a custom allocator, the type should
 be equivalent to T*.

	template <class U>
 struct rebind
	Binds the allocator object to a different value type.
 The rebind class has a
 single typedef, other,
 which is an instance of the same allocator template, but with
 U as the template
 parameter. The rebind
 template is necessary for standard containers that allocate
 helper objects, such as link nodes, rather than allocating
 values directly. If you are not implementing a standard
 container, you probably don't need to understand rebind.

	typedef T&
 reference
	An lvalue type. In a custom allocator, the type should
 be equivalent to T&.

	typedef size_t
 size_type
	A type that can represent the size of the largest
 allocation request.

	typedef T value_type

	The type of allocated values, which is typically
 T.

See Also
allocator<void>
 class, <new> , new operator, delete operator

Name
allocator<void> class — Specializes allocator for void pointers

Synopsis
template <> class allocator<void> {
public:
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
 template <class U> struct rebind {
 typedef allocator<U> other;
 };
};
The allocator<void>
 specialization is necessary to represent pointers to void without permitting the allocation of
 objects of type void.

See Also
allocator class
 template

Name
auto_ptr class template — Smart pointer to manage ownership of
 pointers

Synopsis
template <class T> struct auto_ptr_ref {};
template<class T>
class auto_ptr {
public:
 typedef T element_type;
 explicit auto_ptr(T* p = 0) throw();
 auto_ptr(auto_ptr&) throw();
 template<class U> auto_ptr(auto_ptr<U>&) throw();
 auto_ptr(auto_ptr_ref<T>) throw();
 ~auto_ptr() throw();
 auto_ptr& operator=(auto_ptr&) throw();
 template<class U>
 auto_ptr& operator=(auto_ptr<U>&) throw();
 auto_ptr& operator=(auto_ptr_ref<T> r) throw();

 T& operator*() const throw();
 T* operator->() const throw();
 T* get() const throw();
 T* release() throw();
 void reset(T* p = 0) throw();

 template<class U> operator
 auto_ptr_ref<U>() throw();
 template<class U> operator
 auto_ptr<U>() throw();
};
The auto_ptr class template
 implements a smart pointer to manage ownership of pointers. Proper
 use of auto_ptr ensures that a
 pointer has exactly one owner (which prevents accidental double
 deletes), and the owner automatically frees the memory when the
 owner goes out of scope (which prevents memory leaks). Assignment of
 auto_ptr values transfers
 ownership from the source to the target of the assignment.
The auto_ptr_ref type holds
 a reference to an auto_ptr.
 Implicit conversions between auto_ptr and auto_ptr_ref facilitate the return of
 auto_ptr objects from functions.
 Usually, you can ignore the auto_ptr_ref type and let the implicit
 conversions handle the details for you. All you need to do is use
 auto_ptr as a return type. The
 details of auto_ptr_ref are
 implementation-defined.
Some of the typical uses for auto_ptr are:
	Data members
	Data members of pointer type that point to dynamically
 allocated objects are prime candidates for auto_ptr, which ensures that the
 memory is properly freed when the owning object is destroyed.
 Be sure to implement a copy constructor and assignment
 operator for any class that uses auto_ptr<> for its data
 members.

	Local variables
	If a function must dynamically allocate a temporary
 object, store the pointer in an auto_ptr variable. When the function
 returns (normally or as the result of an exception), the
 object is destroyed automatically. This can drastically reduce
 the need for try-catch statements.

	Transferring ownership
	In a complex program, objects are frequently allocated
 in one part of the program and freed in another. It can be
 difficult to keep track of when it is safe or proper to free
 an object. Using auto_ptr,
 you can safely ensure that each object has exactly one owner,
 and ownership is properly passed via assignment and function
 calls. When the object is no longer needed, it is freed
 automatically.

Because you cannot simply copy or assign an auto_ptr, you cannot use auto_ptr objects in a standard container.
 Another limitation is that auto_ptr cannot hold a pointer to an
 array. Allocating and freeing a single object (e.g., new int) is different from allocating and
 freeing an array of objects, (e.g., new int[42]), and auto_ptr is designed to work only with
 single objects.
Note
A useful guideline is that a program should avoid bare
 pointers (e.g., int* x). Bare pointers are error-prone: they
 are subject to memory leaks, double-freeing, and dangling
 references. Instead, use some form of ownership, such as auto_ptr<>, or one of the Boost
 smart pointers.

The Boost project has additional smart-pointer class templates
 that permit copying, arrays, and shared ownership. See Appendix B for more information about
 Boost.
Example 13-31
 shows some uses of auto_ptr.

Example
Example 13-31. Sample uses of auto_ptr
class brush { . . . };
class pen { . . . };

// A function can return an auto_ptr<> object.
std::auto_ptr<brush> default_brush()
{
 return std::auto_ptr<brush>(new brush);
}

class DisplayContext {
 // Display or graphics context for drawing on a window.
public:
 DisplayContext()
 : brush_(default_brush()), pen_(new pen) {...}
 . . .
private:
 // Make sure caller never tries to copy or assign
 // DisplayContext, but uses only objects that are
 // managed by auto_ptr<>.
 DisplayContext(const DisplayContext& dc);
 DisplayContext& operator=(const DisplayContext& dc);
 // Automatically manage lifetime of the pen and brush.
 // When the DisplayContext is freed, so are the pen
 // and brush instances.
 std::auto_ptr<brush> brush_;
 std::auto_ptr<pen> pen_;
};

void repaint()
{
 // Allocate a new display context. Use auto_ptr to ensure
 // that it will be freed automatically.
 std::auto_ptr<DisplayContext> dc(new DisplayContext());
 // Draw stuff on the display context.
 dc->draw(. . .);
 // No need to call release; the display context is
 // automatically released when repaint() returns.
}

int main()
{
 std::auto_ptr<DisplayContext> dc1(new DisplayContext);
 std::auto_ptr<DisplayContext> dc2(dc1);

 dc1 = dc2;
 repaint();
}

The following are the members of auto_ptr:
	explicit auto_ptr
 (T* p = 0) throw(
)
	Initializes the auto_ptr object to own the pointer
 p.

	 auto_ptr (auto_ptr& x) throw()
template<class
 U>
 auto_ptr (auto_ptr<U>& x) throw(
)
	Initializes the auto_ptr object with the pointer
 returned from x.release().
 In the second version, the type U* must be implicitly convertible to
 T*. Note that x is not const. It is not possible to copy a
 const auto_ptr because to do so would
 break the ownership rules.

	 auto_ptr (auto_ptr_ref<T> r) throw(
)
	Initializes the auto_ptr object with the pointer
 obtained from calling release on r's auto_ptr.

	 ~auto_ptr () throw(
)
	Deletes the owned pointer (e.g., delete get()).

	T* get
 () const throw(
)
	Returns the owned pointer.

	T* release
 () throw()
	Returns get() and
 resets the owned pointer to 0.

	void reset
 (T* p = 0)
 throw()
	Deletes the owned pointer (if it is not equal to
 p) and saves p as the new owned pointer.

	template<class U>
 operator auto_ptr_ref<U >() throw()
	Returns a temporary auto_ptr_ref object that owns the
 pointer. The pointer must be convertible to U*. Ownership is released and
 transferred to the new auto_ptr_ref object.

	template<class U>
 operatorauto_ptr<U
 >() throw()
	Returns a new auto_ptr object. The owned pointer
 is converted to type U*,
 and ownership is transferred to the new auto_ptr object.

	auto_ptr& operator=
 (auto_ptr&
 x) throw()
template<class
 U>
auto_ptr& operator=
 (auto_ptr<U>&
 x) throw()
auto_ptr& operator=
 (auto_ptr_ref<T> r) throw(
)
	Transfers ownership of the pointer that is owned by
 x or by the auto_ptr object held by r to *this. That is, it calls reset(x.release()).

	T& operator*
 () const throw(
)
	Returns *get(). If
 the owned pointer is a null pointer, the behavior is
 undefined.

	T* operator
 ->()
 const throw()
	Returns get(
).

See Also
new operator

Name
get_temporary_buffer function template — Allocates temporary memory buffer

Synopsis
template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
The get_temporary_buffer
 function template allocates memory for temporary use. The request is
 for up to n adjacent objects of
 type T. The return value is a
 pair of the pointer to the newly
 allocated memory and the actual size of the memory allocated (in
 units of sizeof(T)). If the
 memory cannot be allocated, the return value is a pair of 0s. The allocated memory must be freed by
 calling return_temporary_buffer.
 The temporary buffer is uninitialized.
This function has limited usefulness. You must test the return
 value to see how much memory was allocated and ensure that the
 memory is properly freed if an exception is thrown. It is usually
 simpler to call new and save the
 pointer in an auto_ptr<>.

See Also
auto_ptr class
 template, return_temporary_buffer function
 template, pair in <utility>

Name
operator== function template — Compares allocators for equality

Synopsis
template <class T1, class T2>
bool operator==(const allocator<T1>&, const allocator<T2>&)
 throw();
The operator== function
 template always returns true. In
 other words, any object of type allocator is considered to be the same as
 every other allocator.

See Also
allocator class
 template

Name
operator!= function template — Compares allocators for inequality

Synopsis
template <class T1, class T2>
bool operator!=(const allocator<T1>&, const allocator<T2>&)
 throw();
The operator!= function
 template always returns false. In
 other words, any object of type allocator is considered to be the same as
 every other allocator.

See Also
allocator class
 template

Name
raw_storage_iterator class template — Iterator for uninitialized memory

Synopsis
template <class OutputIterator, class T>
class raw_storage_iterator :
 public iterator<output_iterator_tag,void,void,void,void> {
public:
 explicit raw_storage_iterator(OutputIterator x);
 raw_storage_iterator<OutputIterator,T>& operator*();
 raw_storage_iterator<OutputIterator,T>&
 operator=(const T& element);
 raw_storage_iterator<OutputIterator,T>& operator++();
 raw_storage_iterator<OutputIterator,T> operator++(int);
};
The raw_storage_iterator
 class template implements an output iterator that writes to
 uninitialized memory. It adapts another output iterator that must
 have operator& return a
 pointer to T. The adapted
 iterator is typically used as a pointer to uninitialized
 memory.
Use the raw_storage_iterator as you would any
 other output iterator.

See Also
uninitialized_copy function
 template, uninitialized_fill
 function template, uninitialized_fill_n function
 template, <iterator>

Name
return_temporary_buffer function template — Frees temporary memory buffer

Synopsis
template <class T>
void return_temporary_buffer(T* p);
The return_temporary_buffer
 function reclaims the memory that was previously allocated by
 get_temporary_buffer.

See Also
get_temporary_buffer function
 template

Name
uninitialized_copy function template — Copies into uninitialized memory

Synopsis
template <class InputIter, class FwdIter>
FwdIter uninitialized_copy(InputIter first, InputIter last, FwdIter result);
The uninitialized_copy
 function template is like the copy algorithm, except the result iterator is assumed to point to
 uninitialized memory. The range [first, last) is copied to result using placement new.

See Also
raw_storage_iterator class
 template, uninitialized_fill
 function template, copy in
 <algorithm> , new operator

Name
uninitialized_fill function template — Fills uninitialized memory

Synopsis
template <class FwdIter, class T>
void uninitialized_fill(FwdIter first, FwdIter last, const T& x);
The uninitialized_fill
 function template is like the fill algorithm, except that it fills
 uninitialized memory. Every item in the range [first, last) is constructed as a copy of x using placement new.

See Also
raw_storage_iterator class template, uninitialized_copy function
 template, uninitialized_fill_n function
 template, fill in <algorithm> , new keyword

Name
uninitialized_fill_n function template — Fills uninitialized memory

Synopsis
template <class FwdIter, class Size, class T>
void uninitialized_fill_n(FwdIter first, Size n, const T& x);
The uninitialized_fill_n
 function template is like the fill_n algorithm, except it fills
 uninitialized memory. Starting with first, n copies of x are constructed using placement new.

See Also
raw_storage_iterator class
 template, uninitialized_fill
 function template, fill_n
 in <algorithm> , new keyword

<new>

The <new> header declares types and functions related to dynamic
 memory management. (See Chapter 3
 for more information about the new
 and delete expressions, including
 placement new and delete, and the operator new and operator delete functions.) Most programs do not need
 to use <new>. The header is
 typically used by libraries and programs that implement their own
 operator new and operator delete functions or otherwise provide custom
 management of dynamic memory.
If a source file uses the standard new and delete expressions, it does not need to
 #include <new>. You can also use the pointer
 placement new without including this
 header. In order to use the nothrow
 placement new, or catch bad_alloc, you must include this
 header.
Most programs do not call the operators directly, but instead use
 new and delete expressions, and the compiler generates
 calls using the appropriate operators. Library implementors sometimes
 make direct calls to the operators, especially to allocate uninitialized
 memory. See <memory> earlier in
 this chapter for examples.
Some specialized applications might implement the global operator new and operator delete functions or provide additional
 overloaded operators for specialized circumstances, such as allocating
 memory that is shared across process boundaries. If you write your own
 operator new, you should obey the following
 guidelines:
	Implement operator new and operator new[].

	Implement operator delete and operator delete[]. Even if your operator new is a placement new function, you should have a
 corresponding placement delete
 function (which is called if a new expression throws an
 exception).

	Return a pointer that meets the strictest alignment
 requirements of any type. (Note that malloc in <cstdlib> and the standard operator new function return aligned
 pointers.)

	Handle out-of-memory situations by throwing bad_alloc (or a class that derives from
 bad_alloc) or returning a null
 pointer. If you return a null pointer, your operator new function must have an empty exception
 specification.

	If operator new and operator delete are member functions, include the
 static keyword as a reminder to
 the human reader. The compiler always treats these functions as
 static, even if you omit the keyword.

Example 13-32 shows a
 trivial implementation of the global operator new and operator delete functions.
Example 13-32. Implementing operator new and operator delete with malloc and
 free
#include <cstdlib>
#include <new>

void* operator new(std::size_t size) throw(std::bad_alloc)
{
 void* ptr = std::malloc(size);
 if (ptr == 0)
 throw std::bad_alloc();
 return ptr;
}

void* operator new(std::size_t size, const std::nothrow_t&)
throw()
{
 return std::malloc(size);
}

void* operator new[](std::size_t size) throw(std::bad_alloc)
{
 return operator new(size);
}

void* operator new[](std::size_t size, const std::nothrow_t&)
throw()
{
 return operator new(size, std::nothrow);
}

void operator delete(void* ptr) throw()
{
 std::free(ptr);
}

void operator delete(void* ptr, const std::nothrow_t&)
throw()
{
 std::free(ptr);
}

void operator delete[](void* ptr) throw()
{
 operator delete(ptr);
}

void operator delete[](void* ptr, const std::nothrow_t&)
throw()
{
 operator delete(ptr);
}

Name
bad_alloc class — Exception class for failed memory
 allocation

Synopsis
class bad_alloc : public exception {
public:
 bad_alloc() throw();
 bad_alloc(const bad_alloc&) throw();
 bad_alloc& operator=(const bad_alloc&) throw();
 virtual ~bad_alloc() throw();
 virtual const char* what() const throw();
};
[image: image with no caption]

The bad_alloc class is an
 exception class that is thrown when operator new is unable to fulfill a request to
 allocate memory. As with any of the standard exception classes,
 what() returns an
 implementation-defined character string.

See Also
 operator new , set_new_handler exception in <exception>

Name
nothrow object — Requests null pointer return when out of
 memory

Synopsis
struct nothrow_t {};
extern const nothrow_t nothrow;
The nothrow object is used
 in placement new expressions to
 request that the new operator
 return a null pointer instead of throwing bad_alloc if the memory allocation request
 cannot be fulfilled.
The nothrow_t type does not
 do anything; it is used only in overloaded placement new and delete operators.
Note that nothrow is also
 accepted by overloaded operator
 delete for symmetry with new. The nothrow version of operator delete behaves just like the ordinary
 operator delete. Like any placement delete function, it is called only if the
 placement new expression throws
 an exception.

See Also
 operator delete , operator
 new

Name
operator delete — Global operator delete

Synopsis
void operator delete(void* ptr) throw();
void operator delete[](void* ptr) throw();
void operator delete(void* ptr, const std::nothrow_t&) throw();
void operator delete[](void* ptr, const std::nothrow_t&) throw();
void operator delete(void* ptr, void*) throw();
void operator delete[](void* ptr, void*) throw();
The global operator
 delete function is called from a
 delete expression to free memory.
 The memory, which ptr points to,
 must have been returned by a corresponding call to operator new or be a null pointer. You must not
 call operator delete more than once for the same
 pointer. If ptr is null, operator delete returns without doing
 anything.
The first two versions of operator delete free the memory that ptr points to, which must have been
 allocated by calling the plain form of operator new. These forms of operator delete are called from a delete expression. The first is called for
 a scalar delete, and the second
 is called for an array delete[].
The remaining forms are called only when the corresponding
 placement new expression throws
 an exception during construction. The nothrow functions free the memory that
 ptr points to. The last two forms
 do nothing. See the new
 expression in Chapter 3 to
 learn how and when placement operator delete is called.
Unlike other identifiers in the standard library, operator delete is global and is not in the
 std namespace. Also, unlike with
 other functions in the standard library, you can provide your own
 implementation of operator
 delete, which replaces the
 standard implementation. You cannot, however, replace the last two
 versions of delete with your own
 implementation.

See Also
 operator new

Name
operator new — Global operator new

Synopsis
void* operator new(std::size_t size) throw(std::bad_alloc);
void* operator new(std::size_t size, const std::nothrow_t&) throw();
void* operator new[](std::size_t size) throw(std::bad_alloc);
void* operator new[](std::size_t size, const std::nothrow_t&) throw();
void* operator new(std::size_t size, void* ptr) throw();
void* operator new[](std::size_t size, void* ptr) throw();
The global operator
 new function allocates memory and
 returns a pointer to the newly allocated memory. The memory must
 later be released by a corresponding delete expression or an explicit call to
 operator delete.
The first version of new
 allocates at least size bytes of
 memory, suitably aligned to store any type, and returns a pointer to
 the memory. If the request cannot be fulfilled, it throws bad_alloc.
The second version is like the first, but it returns a null
 pointer instead of throwing bad_alloc if sufficient memory cannot be
 allocated.
The third version is like the first, but it allocates memory
 for storing an array of objects. It might allocate more than
 size bytes to permit the library
 to store additional bookkeeping information. You must use the array
 form of delete[] to free this
 memory.
The fourth version is like the third, but it returns a null
 pointer instead of throwing bad_alloc if sufficient memory cannot be
 allocated.
To allocate memory, the operator new functions first try to allocate
 size bytes. If they cannot, they
 call the handler function set by the most recent call to set_new_handler. Then they try again to
 allocate size bytes. This loop
 repeats until the request is fulfilled or the handler function fails
 to return. The nothrow versions
 of the function return 0 if the
 most recent call to set_new_handler was a null pointer or if
 the new handler function throws bad_alloc.
The final two versions do nothing except return ptr. These forms permit placement new expressions to specify a memory
 location where an object will be constructed.
Unlike other identifiers in the standard library, operator new is global and is not in the std namespace. Also, unlike with other
 functions in the standard library, you can provide your own
 implementation of operator
 new, which replaces the standard
 implementation. You cannot, however, replace the last two versions
 of new with your own
 implementation.

See Also
nothrow object, operator
 delete , set_new_handler function

Name
set_new_handler function — Sets handler for obtaining memory

Synopsis
typedef void (*new_handler)();
new_handler set_new_handler(new_handler new_p) throw();
The set_new_handler
 function stores a function pointer for a function that obtains
 additional memory from the operating system for use by the new operator. When the default operator new is unable to fulfill a request to
 allocate memory, it calls the handler that was set by the most
 recent call to set_new_handler.
 This handler must do one of the following:
	Obtain more memory from the host environment

	Throw bad_alloc (or a
 type that derives from bad_alloc)

	Call abort() or
 exit() to halt the
 program

The return value is the pointer to the previous handler, or
 0 for the first call to set_new_handler.

<numeric>

The <numeric> header declares several function templates for numerical
 algorithms. See <algorithm>
 earlier in this chapter for most of the standard algorithms. See
 <cmath> for math functions that
 operate on scalar quantities. The <functional> section contains the
 standard functors, which might be useful when calling the numeric
 algorithms.
Refer to Chapter 10 for
 general information about algorithms and iterators. See Appendix B for information about other
 libraries that provide additional numeric functions.

Name
accumulate function template — Computes a value from all items in a range

Synopsis
template <typename InputIter, typename T>
T accumulate(InputIter first, InputIter last, T init);
template < typename InputIter, typename T, typename BinaryOp>
T accumulate(InputIter first, InputIter last, T init, BinaryOp binary_op);
The accumulate function
 template sums all the values in the range [first, last) added with init and returns the result. The result
 and intermediate sum have the same type as init. The second version calls binary_op instead of using the addition
 (+) operator.

Technical Notes
The result is computed as follows: for each i in the range [first, last), tmp = binary_op(tmp, *i), in which tmp is initialized to init. The final value of tmp is returned.
The binary_op function or
 functor must not have any side effects.
Complexity is linear: binary_op is called exactly last - first times.

Name
adjacent_difference function template — Computes differences of adjacent elements in a
 range

Synopsis
template <typename InIter, typename OutIter>
OutIter adjacent_difference(InIter first, InIter last, OutIter result);
template <typename InIter, typename OutIter, typename BinOp>
OutIter adjacent_difference(InIter first, InIter last, OutIter result,
 BinOp binary_op);
The adjacent_difference
 function computes the differences of adjacent elements in the range
 [first, last) and assigns those differences to the
 output range starting at result.
 The second version calls binary_op instead of using the subtraction
 (-) operator.

Technical Notes
For each i in [first + 1, last) and j
 in [result,
 result + (last - first)), assign *j = *i - tmp, in which tmp is initially *first; it becomes *i after each assignment to *j.
The return value is the result iterator pointing to one past the
 last element written.
The binary_op function or
 functor must not have any side effects. The result iterator can be the same as
 first.
Complexity is linear: binary_op is called exactly last - first - 1 times.

Name
inner_product function template — Computes inner product of two ranges

Synopsis
template <typename InIter1, typename InIter2, typename T>
T inner_product(InIter1 first1, InIter1 last1, InIter2 first2, T init);
template <typename InIter1, typename InIter2, typename T,
 typename BinaryOp1, typename BinaryOp2>
T inner_product(InIter1 first1, InIter1 last1, InIter2 first2, T init,
 BinaryOp1 binary_op1, BinaryOp2 binary_op2);
The inner_product function
 template computes an inner product of two ranges. It accumulates the
 products of corresponding items in [first1, last1) and [first2, last2), in which last2 = first2 + (last1 - first1). The second version calls binary_op1 as the accumulator operator
 (instead of addition) and binary_op2 as the multiplication
 operator.

Technical Notes
The result is computed as follows: for each i in the range [first1, last1), and for each j in [first2, last2), in which last2 = first2 + (last1 - first1), assign tmp = binary_op1(tmp, binary_op2(*i, *j)), in which tmp is initialized to init. The final value of tmp is returned.
The binary_op1 and binary_op2 functions or functors must not
 have side effects.
Complexity is linear: binary_op1 and binary_op2 are called exactly last - first times.

See Also
accumulate function
 template

Name
partial_sum function template — Compute sums of subranges in a range

Synopsis
template <typename InIter, typename OutIter>
OutIter partial_sum(InIter first, InIter last, OutIter result);
template <typename InIter, typename OutIter, typename BinOp>
OutIter partial_sum(InIter first, InIter last, OutIter result, BinOp binary_op);
The partial_sum function
 template assigns partial sums to the range that starts at result. The partial sums are computed by
 accumulating successively larger subranges of [first, last). Thus, the first result item is
 *first, the second is *first + *(first + 1),
 and so on. The second version calls binary_op instead of using the addition
 operator (+).

Technical Notes
For each i in [first, last), assign *(result + k) = sum(first, i), in which k = i
 - first, and
 sum(a, b) computes the sum in the manner of
 accumulate(a + 1, b, *a, binary_op).
The return value is the result iterator, pointing to one past the
 last item written.
The binary_op function or
 functor must not have any side effects. The result iterator can be the same as
 first.
Complexity is linear: binary_op is called exactly (last - first) - 1 times.

<ostream>

The <ostream> header declares the output stream class template,
 specializations, and manipulators.
See <fstream> for derived
 classes that write to files and <sstream> for derived classes that write
 to strings. See <ios> for the
 base-class declarations. See <string> for information about the
 char_traits template. Refer to Chapter 9 for general information about
 I/O.

Name
basic_ostream class template — Base class for output streams

Synopsis
template <class charT, class traits = char_traits<charT> >
class basic_ostream : virtual public basic_ios<charT,traits>
{
public:
 // Types (inherited from basic_ios)
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 explicit basic_ostream(basic_streambuf<charT,traits>* sb);
 virtual ~basic_ostream();

 class sentry;

 // Formatted output
 basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&
 (*pf)(basic_ostream<charT,traits>&));
 basic_ostream<charT,traits>& operator<<(basic_ios<charT,traits>&
 (*pf)(basic_ios<charT,traits>&));
 basic_ostream<charT,traits>& operator<<(ios_base&(*pf)(ios_base&));
 basic_ostream<charT,traits>& operator<<(bool n);
 basic_ostream<charT,traits>& operator<<(short n);
 basic_ostream<charT,traits>& operator<<(unsigned short n);
 basic_ostream<charT,traits>& operator<<(int n);
 basic_ostream<charT,traits>& operator<<(unsigned int n);
 basic_ostream<charT,traits>& operator<<(long n);
 basic_ostream<charT,traits>& operator<<(unsigned long n);
 basic_ostream<charT,traits>& operator<<(float f);
 basic_ostream<charT,traits>& operator<<(double f);
 basic_ostream<charT,traits>& operator<<(long double f);
 basic_ostream<charT,traits>& operator<<(const void* p);
 basic_ostream<charT,traits>& operator<<
 (basic_streambuf<char_type,traits>* sb);
 // Unformatted output
 basic_ostream<charT,traits>& put(char_type c);
 basic_ostream<charT,traits>& write(const char_type* s, streamsize n);
 basic_ostream<charT,traits>& flush();

 pos_type tellp();
 basic_ostream<charT,traits>& seekp(pos_type);
 basic_ostream<charT,traits>& seekp(off_type, ios_base::seekdir);
};
The basic_ostream class
 template is the base for all output streams. It declares members for
 writing to streams and for managing streams. The act of writing to a
 stream is also known as inserting to the
 stream.
All writes go through a stream buffer, which provides
 low-level access to the stream data. (See the sputc function for basic_streambuf in the <streambuf> header.) If the stream
 buffer object throws an exception, the stream sets badbit.
Before performing an output operation (e.g., operator<<, put, or write), a stream constructs a sentry object. If the sentry evaluates to true, the write operation continues. If
 the write throws an exception, badbit is set. The sentry object is destroyed before the
 output function returns. See basic_ostream::sentry later in this
 section for more information.
When an output operation throws an exception, the stream sets
 badbit. If badbit is set in the exceptions() mask, the stream does not
 throw ios_base::failure, but
 instead rethrows the original exception.
The following are the basic_ostream member functions:
	explicit basic_ostream
 (basic_streambuf<char_type,traits>*
 sb)
	Constructs a basic_ostream object and then
 initializes it by calling init(sb).

	virtual ~basic_ostream
 ()
	Destroys the basic_ostream object without calling
 any functions of the stream buffer. Derived classes that might
 have buffered, unflushed data must take appropriate action to
 ensure that the buffer is flushed before the stream object is
 destroyed.

	basic_ostream<charT,traits>&
 flush
 ()
	Flushes the output buffer. If rdbuf() is not null, flush calls rdbuf()->pubsync(). If pubsync returns -1, flush sets badbit. The return value is *this.

	basic_ostream<charT,traits>&
 put
 (char_type
 c)
	Writes a single character c. If the write fails, put sets badbit. The return value is *this.

	basic_ostream<charT,traits>&
 seekp
 (pos_type
 pos)
basic_ostream<charT,traits>&
 seekp
 (off_type
 off, ios_base::seekdir
 dir)
	Tries to seek to a new position in the stream. The first
 form specifies the position explicitly; the second form
 specifies the new position as an offset from a known position
 (start-of-file, current position, or end-of-file). If fail() is false, seekp calls rdbuf()->pubseekoff(pos) or
 rdbuf()->pubseekoff(off,
 dir). If fail()
 is true, seekp does nothing. The return value
 is *this.

	pos_type tellp
 ()
	Returns the current position in the stream. If fail() is true, the return value is pos_type(-1); otherwise, the return
 value is rdbuf(
)->pubseekoff(0,ios_base::cur,ios_base::out).

	basic_ostream<charT,traits>&
 write
 (const
 char_type* s, streamsize n)
	Writes n characters
 from s. If the output fails
 after any character, write
 sets badbit and stops
 writing. The return value is *this.

	basic_ostream<charT,traits>&
 operator<<
 (basic_ostream<charT,traits>&
 (*pf)(basic_ostream<charT,traits>&))
	Calls pf(*this) and
 returns *this. See endl later in this section for an
 example of a manipulator that uses this operator.

	basic_ostream<charT,traits>&
 operator<< (basic_ios<charT,traits>&
 (*pf)(basic_ios<charT,traits>&))
basic_ostream<charT,traits>&
 operator<< (ios_base&
 (*pf)(ios_base&))
	Calls pf(*this) and
 returns *this. See the
 dec function in <ios> for an example of a
 manipulator that uses this operator.

	basic_ostream<charT,traits>&
 operator<< (bool n)
basic_ostream<charT,traits>&
 operator<< (short n)
basic_ostream<charT,traits>&
 operator<< (unsigned short n)
basic_ostream<charT,traits>&
 operator<< (int n)
basic_ostream<charT,traits>&
 operator<< (unsigned int n)
basic_ostream<charT,traits>&
 operator<< (long n)
basic_ostream<charT,traits>&
 operator<< (unsigned long n)
basic_ostream<charT,traits>&
 operator<< (float f)
basic_ostream<charT,traits>&
 operator<< (double f)
basic_ostream<charT,traits>&
 operator<< (long double f)
basic_ostream<charT,traits>&
 operator<< (const void* p)
	Formats a value and writes the formatted characters to
 the output stream. These functions start by creating a
 sentry object; they then
 use the num_put facet of
 the stream's imbued locale as shown in Example 13-33. If the
 formatting fails, failbit
 is set. If an exception is thrown, badbit is set. See the <locale> header for
 information about num_put
 and locales.
Example 13-33. Using the num_put facet to format output
typedef
 std::num_put<char_type,
 std::ostreambuf_iterator<char_type, traits_type> >
 numput;
std::ostreambuf_iterator<char_type, traits_type> iter =
 std::use_facet<numput>(getloc()).(*this,*this,fill(),val);
if (iter.failed())
 setstate(ios_base::badbit);

	basic_ostream<charT,traits>&
 operator<< (basic_streambuf<char_type,traits>*
 sb)
	Writes characters from the stream buffer sb. If sb is null, badbit is set. Otherwise, characters
 are read from sb and
 written to *this until one
 of the following happens:

	The end-of-file is reached on sb

	Writing fails (badbit
 is set)

	An exception is thrown when reading from sb (failbit is set)

If no characters are written, failbit is set.

See Also
ostream class, wostream class, iostream in <istream>

Name
basic_ostream::sentry class — Sentry class for output streams

Synopsis
template <class charT,class traits = char_traits<charT> >
class basic_ostream<charT,traits>::sentry {
public:
 explicit sentry(basic_ostream<charT,traits>& os);
 ~sentry();
 operator bool() const;
private:
 sentry(const sentry&); // Not defined
 sentry& operator=(const sentry&); // Not defined
};
A basic_ostream object
 constructs a temporary sentry
 object prior to each output operation. The sentry object is
 destroyed when the output operation finishes and the function
 returns. The sentry manages tied streams and unit buffering.
The stream passes itself to the sentry's constructor. If
 stream.good() is true, the sentry first flushes any tied
 stream. That is, if stream.tie()
 is not null, the sentry calls stream.tie(
)->flush().
If sentry preparation fails, badbit is set.
The sentry destructor flushes the buffer if the unitbuf flag is on and the output function
 did not throw an exception:
if ((os.flags() & ios_base::unitbuf) && !uncaught_exception())
 os.flush();

See Also
basic_ostream class
 template, basic_ios in
 <ios>

Name
endl function template — Manipulator to write an end-of-line
 character

Synopsis
template <class charT, class traits>
basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);
The endl function template
 is a manipulator that writes a newline to os and then calls os.flush():
std::cout << "Hello, world." << std::endl;
If you do not need to flush the output stream, do not use
 endl; write a plain '\n' character instead. If you feel you
 need to flush the output stream after finishing a line of output,
 consider using unit buffering for the stream, or if you need to
 flush the output prior to reading an input stream, you can tie the
 streams instead of using endl.
 See the basic_ios class template
 (in <ios>) for information
 about tied streams and the ios_base class (also in <ios>) for information about unit
 buffering.

See Also
basic_ios in <ios> , ios_base::fmtflags in <ios>

Name
ends function template — Manipulator to write an end-of-string
 character

Synopsis
template <class charT, class traits>
basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);
The ends function template
 is a manipulator that writes a null character (defined by charT()) to os to mark the end of a string. Typically,
 ends is used only when writing to
 a character array stream, that is, ostrstream:
std::ostrstream out1;
out1 << "Hi" << std::ends; // out1.str() has length 2.

See Also
 <strstream>

Name
flush function template — Manipulator to flush output buffer

Synopsis
template <class charT, class traits>
basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);
The flush function template
 is a manipulator that calls os.flush:
std::cout << "This is important!" << std::flush;

See Also
basic_ostream class
 template

Name
operator<< function template — Character output operator

Synopsis
template<class charT, class traits>
basic_ostream<charT,traits>&
 operator<<(basic_ostream<charT,traits>& out, charT c);
template<class charT, class traits>
basic_ostream<charT,traits>&
 operator<<(basic_ostream<charT,traits>& out, char c);
template<class traits>
basic_ostream<char,traits>&
 operator<<(basic_ostream<char,traits>& out, char c);
template<class traits>
basic_ostream<char,traits>&
 operator<<(basic_ostream<char,traits>& out, signed char c);
template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
 unsigned char c);
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,
 const charT* s);
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,
 const char* s);
template<class traits>
basic_ostream<char,traits>&
 operator<<(basic_ostream<char,traits>& out, const char* s);
template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
 const signed char* s);
template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
 const unsigned char* s);
The << operator
 writes a single character c, or a
 character string s, to the output
 stream out. As with other
 formatted output functions, a sentry object is created, and the
 character or string is written with appropriate padding. Each
 character is converted to the stream's character type by calling
 widen. Finally, width(0) is called.

See Also
basic_ostream class
 template, basic_ostream::sentry class

Name
ostream class — Output stream

Synopsis
typedef basic_ostream<char> ostream;
The ostream class
 specializes basic_ostream for the
 char type.

See Also
basic_ostream class
 template, wostream
 class, iostream in <istream>

Name
wostream class — Wide output stream

Synopsis
typedef basic_ostream<wchar_t> wostream;
The wostream class
 specializes basic_ostream for the
 wchar_t type.

See Also
basic_ostream class
 template, ostream
 class, wiostream in <istream>

<queue>

The <queue> header declares the queue and priority_queue container adapters. These class
 templates are not containers in their own rights, but they adapt
 containers to present the behavior of a queue or priority queue.
A queue is a sequence of items that supports
 insertion at one end and removal from the other end. Because the first
 item inserted into a queue is the first item removed, a queue is
 sometimes called a FIFO (first-in, first-out) container.
Instead of preserving FIFO order, a priority
 queue maintains heap order, which ensures that the largest
 item is always first. In strict C++ terms, the first item in a priority
 queue is not less than any other item in the queue. This is called the
 "largest" item, but you can also think of it as the most important item
 or the one with the highest priority.
See Chapter 10 for
 information about containers.

Name
operator== function template — Compares queues for equalilty

Synopsis
template <typename T, typename Container>
bool operator==(const queue<T, Container>& x, const queue<T, Container>& y);
The == operator compares
 two queues for equality by comparing the adapted containers (e.g.,
 the return value is x.c == y.c).

Name
operator!= function template — Compares queues for inequalilty

Synopsis
template <typename T, typename Container>
bool operator!=(const queue<T, Container>& x, const queue<T, Container>& y);
The != operator compares
 two queues for inequality by comparing the adapted containers (e.g.,
 the return value is x.c != y.c).

Name
operator< function template — Compares queues for less-than

Synopsis
template <typename T, typename Container>
bool operator<(const queue<T, Container>& x, const queue<T, Container>& y);
The < operator compares
 two queues by comparing the adapted containers (e.g., the return
 value is x.c < y.c).

Name
operator<= function template — Compares queues for less-than-or-equal

Synopsis
template <typename T, typename Container>
bool operator<=(const queue<T, Container>& x, const queue<T, Container>& y);
The <= operator compares
 two queues by comparing the adapted containers (e.g., the return
 value is x.c <= y.c).

Name
operator> function template — Compares queues for greater-than

Synopsis
template <typename T, typename Container>
bool operator>(const queue<T, Container>& x, const queue<T, Container>& y);
The > operator compares
 two queues by comparing the adapted containers (e.g., the return
 value is x.c >= y.c).

Name
operator>= function template — Compares queues for greater-than-or-equal

Synopsis
template <typename T, typename Container>
bool operator>=(const queue<T, Container>& x, const queue<T, Container>& y);
The >= operator compares
 two queues by comparing the adapted containers (e.g., the return
 value is x.c >= y.c).

Name
priority_queue class template — Priority queue container adapter

Synopsis
template <typename T, typename Container = vector<T>,
 typename Compare = less<typename Container::value_type> >
class priority_queue {
public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;

 explicit priority_queue(const Compare& x = Compare(),
 const Container& = Container());
 template <class InputIterator>
 priority_queue(InputIterator first, InputIterator last,
 const Compare& x = Compare(),
 const Container& = Container());
 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 const value_type& top() const { return c.front(); }
 void push(const value_type& x);
 void pop();
protected:
 Container c;
 Compare comp;
};
The priority_queue class
 template is an adapter for any sequence container that supports
 random access, such as deque and
 vector. (The default is vector.) The priority queue keeps its
 elements in heap order, so it requires a comparator (the Compare template parameter).
Because priority_queue is
 not itself a standard container, it cannot be used with the standard
 algorithms. (In particular, note the lack of begin and end member functions.) Thus, the priority_queue adapter is useful only for
 simple needs.
Unlike queue, priority_queue has no comparison
 operators.
Most of the members of priority_queue are straightforward
 mappings from a simple queue protocol to the underlying container
 protocol. The members are:
	explicit priority_queue
 (const Compare& cmp = Compare(),
 const Container& cont = Container())
	Copies cont to the
 data member c, copies
 cmp to comp, and then calls make_heap(c.begin(), c.end(), comp) to initialize the priority
 queue.

	template <class
 InputIter>
 priority_queue (InputIter first, InputIter last, const Compare& cmp = Compare(),
 const Container& cont
 = Container(
))
	Copies cont to the
 data member c, copies
 cmp to comp, and then adds the elements
 [first, last) to the container by calling
 c.insert(c.end(), first, last). Finally, this method
 initializes the priority queue by calling make_heap(c.begin(), c.end(), comp).

	bool empty
 () const
	Returns true if the
 priority queue is empty.

	void pop
 ()
	Erases the largest (last) item from the priority queue
 by calling pop_heap and
 then erasing the last element in the container.

	void push
 (const value_type&
 x)
	Inserts x in the
 container and then calls push_heap to restore priority queue
 order.

	size_type size
 () const
	Returns the number of items in the priority
 queue.

	const value_type&
 top () const
	Returns the largest (last) item in the priority
 queue.

See Also
make_heap, pop_heap, and push_heap in <algorithm> , list in <list> , vector in <vector>

Name
queue class template — Queue container adapter

Synopsis
template <class T, class Container = deque<T> >
class queue {
public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;

 explicit queue(const Container& = Container());
 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 value_type& front() { return c.front(); }
 const value_type& front() const { return c.front(); }
 value_type& back() { return c.back(); }
 const value_type& back() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_front(); }
protected:
 Container c;
};
The queue class template is
 an adapter for any sequence container that supports the front(), back(
), push_back(), and
 pop_front() members. See the
 list and deque class templates for the standard
 containers that are suitable. (The default is deque.)
Because queue is not itself
 a standard container, it cannot be used with the standard
 algorithms. (In particular, note the lack of begin and end member functions.) Thus, the queue adapter is useful only for simple
 needs.
Most of the members of queue are straightforward mappings from
 a simple queue protocol to the underlying container protocol. The
 members are:
	explicit queue
 (const Container& cont
 = Container())
	Takes an existing container cont and copies its contents into
 the queue. With no argument, the constructor creates a new,
 empty container for the queue.

	value_type&
 back
 ()
const value_type&
 back
 () const
	Returns the last item in the queue, that is, the item
 that was added most recently to the queue.

	bool empty
 () const
	Returns true if the
 queue is empty.

	value_type&
 front
 ()
const value_type&
 front
 () const
	Returns the first item in the queue.

	void pop
 ()
	Erases the first item from the queue.

	void push
 (const value_type&
 x)
	Inserts x at the end
 of the queue.

	size_type size
 () const
	Returns the number of items in the queue.

See Also
deque in <deque> , list in <list> , stack in <stack>

<set>

The <set> header is one of the standard container template headers.
 It declares the set and multiset class templates and a few global
 function templates that operate on set and multiset objects.
A set is a container that stores keys. Looking up keys, inserting
 keys, and deleting keys can all be performed in logarithmic or better
 time. Sets support bidirectional iterators (not random access).
See Chapter 10 for
 information about containers.

Name
multiset class template — Set container with duplicate keys

Synopsis
template <typename Key, typename Compare = less<Key>,
 typename Alloc = allocator<Key> >
class multiset {
public:
 typedef Key key_type;
 typedef Key value_type;
 typedef Compare key_compare;
 typedef Compare value_compare;
 typedef Alloc allocator_type;
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

 explicit multiset(const Compare& comp = Compare(), const Alloc& = Alloc());
 template <class InputIterator>
 multiset(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Alloc& = Alloc());
 multiset(const multiset<Key,Compare,Alloc>& x);
 ~multiset();
 multiset<Key,Compare,Alloc>& operator=(const multiset<Key,Compare,Alloc>& x);
 allocator_type get_allocator() const;
 // Iterators
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

 bool empty() const;
 size_type size() const;
 size_type max_size() const;

 iterator insert(const value_type& x);
 iterator insert(iterator hintpos, const value_type& x);
 template <class InputIterator>
 void insert(InputIterator first, InputIterator last);
 void erase(iterator position);
 size_type erase(const key_type& x);
 void erase(iterator first, iterator last);
 void swap(multiset<Key,Compare,Alloc>&);
 void clear();

 key_compare key_comp() const;
 value_compare value_comp() const;

 iterator find(const key_type& x) const;
 size_type count(const key_type& x) const;
 iterator lower_bound(const key_type& x) const;
 iterator upper_bound(const key_type& x) const;
 pair<iterator,iterator> equal_range(const key_type& x) const;
};
The multiset class template
 is a standard container that contains an ordered set of keys of type
 T. The keys can be duplicated,
 that is, the multiset can contain more than one instance of a
 particular key.
A multiset's iterators are bidirectional. Note that keys are
 const in the set. You must not
 change the key while it is stored in a set. More precisely, you must
 not change the key in a way that alters its relative order with the
 other keys in the set. If you need to modify a key, erase the key
 from the set, modify the key, and insert the new key, as shown in
 Example 13-34 (in the
 set class template).
Within a multiset, keys are ordered in ascending order,
 according to the Compare template
 parameter (which can be a function pointer or functor that compares
 two objects of type Key and
 returns true if the first argument should come before the second).
 Keys do not need to be unique. When searching for keys, they are
 compared using the function or functor specified by the Compare template parameter. Two objects,
 a and b, are different if Compare(a, b) is true or Compare(b, a) is true. See set later in this section for a set
 container that stores unique keys.
Inserting into a multiset does not invalidate any iterators
 for that set or references to items in the set. Erasing an element
 invalidates only iterators and references that refer to that
 element.
Inserting into a set and searching for an element in a set
 usually take logarithmic time. Erasing a single element, given an
 iterator, takes constant time, amortized over many erasures.
The following are the member functions of multiset:
	explicit multiset
 (const Compare& comp =
 Compare(), const Alloc& = Alloc())
	Constructs an empty multiset.

	template <class InputIterator>
 multiset (InputIterator first, InputIterator last, const Compare& comp = Compare(
), const Alloc& = Alloc(
))
	Constructs an empty multiset and then copies all items
 in the range [first,
 last) into the new set. The
 complexity is linear if the keys in [first, last) are already sorted. If they
 are not sorted, the complexity is N log N, in which N is last - first.

	 multiset (const multiset<Key,Compare,Alloc>&
 x)
	Constructs a new multiset and copies the allocator and
 all the items from x to the
 new set.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first element of
 the set.

	void clear
 ()
	Erases every item in the set.

	size_type count
 (const key_type& x)
 const
	Returns the number of keys that are equivalent to
 x. The complexity is
 log(size()) + r, in which r is the return value.

	bool empty
 () const
	Returns size()
 == 0.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one past the last
 element of the set.

	pair<iterator,iterator>
 equal_range (const key_type& x)
 const
	Returns the lower bound and upper bound as a pair:
std::make_pair(lower_bound(x), upper_bound(x))
The complexity is log(size(
)).

	void erase
 (iterator
 position)
size_type erase
 (const key_type&
 x)
void erase
 (iterator first,
 iterator last)
	Erases one or more elements from the set. The first
 version erases the item at position in constant time (amortized
 over many calls). The second version erases the items
 equivalent to x, if any are
 present, returning a count of the number of items erased. The
 third version erases all elements in the range [first, last). The last two forms run in
 time proportional to log(size(
)) + r, in
 which r is the number of
 items erased.

	iterator find
 (const key_type& x)
 const
	Searches for a key that is equivalent to x and returns an iterator that
 points to that key or end(
) if it is not found. If x occurs more than once, the
 iterator might point to any of its occurrences in the
 multiset. The complexity is log(size(
)).

	allocator_type
 get_allocator () const
	Returns the set's allocator.

	pair<iterator,bool> insert
 (const value_type&
 x)
iterator insert
 (iterator
 hintpos, const value_type& x)
template <class InputIterator>
void insert
 (InputIterator
 first, InputIterator last)
	Inserts one or more items into the set. The first
 version inserts x in
 logarithmic time.
The second version inserts x using hintpos as a position hint. If
 x is inserted immediately
 after hintpos, the
 performance is constant (amortized over many insertions); at
 any other position, the performance is logarithmic.
The third version copies all the items in the range
 [first, last), which must be pointing to a
 different multiset object.
 If the items are already in the desired order, the performance
 is linear; otherwise, it is N log
 (size() + N
), in which
 N is last - first.

	key_compare key_comp
 () const
	Returns the comparator function pointer or object. The
 key_compare type is the
 same as the Compare
 template parameter.

	iterator lower_bound
 (const key_type& x)
 const
	Returns an iterator that points to the first item in the
 set that does not come before x. That is, if x is in the set, the iterator points
 to the position of its first occurrence; otherwise, the
 iterator points to the first position where x should be inserted. The complexity
 is log(size()).

	size_type max_size
 () const
	Returns the largest number of items that can be in the
 set.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 element of the set.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first element of the set.

	size_type size
 () const
	Returns the number of items in the set.

	void swap
 (multiset<Key,Compare,Alloc>&)
	Swaps the contents of the set with the contents of
 x.

	iterator upper_bound
 (const key_type& x)
 const
	Returns an iterator that points to the first item in the
 set that comes after all occurrences of x. The complexity is log(size()).

	value_compare value_comp
 () const
	Returns the comparator function pointer or functor
 object. The value_compare
 type is the same as the Compare template parameter.

	multiset<Key,Compare,Alloc>&
 operator= (const
 multiset<Key,Compare,Alloc>& x)
	Erases all the elements of the set and replaces them
 with copies of the elements of x.

See Also
set class template,
 multimap in <map>

Name
operator== function template — Compares sets for equality

Synopsis
template <typename Key, typename T, typename C, typename A>
bool operator==(const set<Key,T,C,A>& x, const set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
bool operator==(const multiset<Key,T,C,A>& x, const multiset<Key,T,C,A>& y);
The == operator returns
 true if x and y
 have the same size and their elements are equal, that is, x.size() == y.size(
) && equals(x.begin(), x.end(), y.begin()).

See Also
equals in <algorithm>

Name
operator!= function template — Compares sets for inequality

Synopsis
template <typename Key, typename T, typename C, typename A>
bool operator!=(const set<Key,T,C,A>& x, const set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
bool operator!=(const multiset<Key,T,C,A>& x, const multiset<Key,T,C,A>& y);
The != operator returns
 ! (x ==
 y).

Name
operator< function template — Compares sets for less-than

Synopsis
template <typename Key, typename T, typename C, typename A>
bool operator<(const set<Key,T,C,A>& x, const set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
bool operator<(const multiset<Key,T,C,A>& x, const multiset<Key,T,C,A>& y);
The < operator
 determines whether x is less than
 y using the same algorithm as
 lexicographical_compare(x.begin(
), x.end(), y.begin(), y.end()).

See Also
lexicographical_compare in
 <algorithm>

Name
operator<= function template — Compares sets for less-than-or-equal

Synopsis
template <typename Key, typename T, typename C, typename A>
bool operator<=(const set<Key,T,C,A>& x, const set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
bool operator<=(const multiset<Key,T,C,A>& x, const multiset<Key,T,C,A>& y);
The <= operator returns
 ! (y <
 x).

Name
operator> function template — Compares sets for greater-than

Synopsis
template <typename Key, typename T, typename C, typename A>
bool operator>(const set<Key,T,C,A>& x, const set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
bool operator>(const multiset<Key,T,C,A>& x, const multiset<Key,T,C,A>& y);
The > operator returns
 (y < x).

Name
operator>= function template — Compares sets for greater-than-or-equal

Synopsis
template <typename Key, typename T, typename C, typename A>
bool operator>=(const set<Key,T,C,A>& x, const set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
bool operator>=(const multiset<Key,T,C,A>& x, const multiset<Key,T,C,A>& y);
The >= operator returns
 ! (x <
 y).

Name
set class template — Set container with unique keys

Synopsis
template <typename Key, typename Compare = less<Key>,
 typename Alloc = allocator<Key> >
class set {
public:
 typedef Key key_type;
 typedef Key value_type;
 typedef Compare key_compare;
 typedef Compare value_compare;
 typedef Alloc allocator_type;
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

 explicit set(const Compare& comp = Compare(),
 const Alloc& = Alloc());
 template <class InputIterator>
 set(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Alloc& = Alloc());
 set(const set<Key,Compare,Alloc>& x);
 ~set();
 set<Key,Compare,Alloc>& operator=(const set<Key,Compare,Alloc>& x);

 allocator_type get_allocator() const;

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

 bool empty() const;
 size_type size() const;
 size_type max_size() const;

 pair<iterator,bool> insert(const value_type& x);
 iterator insert(iterator hintpos, const value_type& x);
 template <class InputIterator>
 void insert(InputIterator first, InputIterator last);
 void erase(iterator position);
 size_type erase(const key_type& x);
 void erase(iterator first, iterator last);
 void swap(set<Key,Compare,Alloc>&);
 void clear();
 // Observers
 key_compare key_comp() const;
 value_compare value_comp() const;
 // Set operations
 iterator find(const key_type& x) const;
 size_type count(const key_type& x) const;
 iterator lower_bound(const key_type& x) const;
 iterator upper_bound(const key_type& x) const;
 pair<iterator,iterator> equal_range(const key_type& x) const;
};
The set class template is a
 standard container that contains an ordered set of unique keys of
 type T.
A set's iterators are bidirectional. Note that keys are
 const in the set. You must not
 change the key while it is stored in a set. More precisely, you must
 not change the key in a way that alters its relative order with the
 other keys in the set. If you need to modify a key, erase the key
 from the set, modify the key, and insert the new key, as shown in
 Example 13-34.

Example
Example 13-34. One way to modify a key in a set
template <typename T, typename C, typename A>
void change_key(std::set<T, C, A>& s,
 const T& oldkey, const T& newkey)
{
 using std::set;
 typedef typename set<T, C, A>::iterator set_iterator;
 set_iterator i = s.find(oldkey);
 if (i != s.end()) {
 m.erase(i);
 m.insert(newkey);
 }
 // Exercise: What if newkey is already in s?
}

Within a set, keys are ordered in ascending order, according
 to the Compare template parameter
 (which can be a function pointer or functor that compares two
 objects of type Key and returns
 true if the first argument should come before the second). Keys must
 be unique, but note that uniqueness is determined only by calling
 Compare, not by using the
 == operator. That is, two
 objects, a and b, are different (and therefore can both
 be present in a single set
 object) if Compare(a, b) is true or Compare(b, a) is true. See multiset earlier in this section for a set
 container that can store non-unique keys.
Inserting into a set does not invalidate any iterators for
 that set or any references to items in the set. Erasing an element
 invalidates only iterators or references that refer to that
 element.
Inserting into a set and searching for an element in a set
 usually take logarithmic time. Erasing a single element, given an
 iterator, takes constant time, amortized over many erasures.
The following are the member functions of set:
	explicit set
 (const Compare& comp = Compare(),
 const Alloc& = Alloc())
	Constructs an empty set.

	template <class InputIterator>
 set (InputIterator first, InputIterator last, const Compare& comp = Compare(
), const Alloc& = Alloc(
))
	Constructs an empty set and then copies all items in the
 range [first, last) into the new set. The
 complexity is linear if the keys in [first, last) are already sorted. If they
 are not sorted, the complexity is N log N, in which N is last - first.

	 set (const set<Key,Compare,Alloc>&
 x)
	Constructs a new set and copies the allocator and all
 the items from x to the new
 set.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first element of
 the set.

	void clear
 ()
	Erases every item in the set.

	size_type count
 (const key_type& x)
 const
	Returns the number of keys that are equivalent to
 x. This value is always
 0 or 1. The complexity is log(size()).

	bool empty
 () const
	Returns size()
 == 0.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one past the last
 element of the set.

	pair<iterator,iterator>
 equal_range (const key_type& x)
 const
	Returns the lower bound and upper bound as a pair:
std::make_pair(lower_bound(x), upper_bound(x))
The complexity is log(size(
)).

	void erase
 (iterator
 position)
size_type erase
 (const key_type&
 x)
void erase
 (iterator first, iterator
 last)
	Erases one or more elements from the set. The first
 version erases the item at position in constant time (amortized
 over many calls). The second version erases the item
 equivalent to x, if it is
 present, returning a count of the number of items erased, that
 is, 0 or 1. It runs in logarithmic time. The
 third version erases all elements in the range [first, last) in a time proportional to
 log(size()) + r, in which r is last - first.

	iterator find
 (const key_type& x)
 const
	Searches for a key that is equivalent to x and returns an iterator that
 points to that key or end(
) if it is not found. The complexity is log(size()).

	allocator_type
 get_allocator () const
	Returns the set's allocator.

	pair<iterator,bool> insert
 (const value_type&
 x)
iterator insert
 (iterator
 hintpos, const value_type& x)
template <class InputIterator>
void insert
 (InputIterator
 first, InputIterator last)
	Inserts one or more items into the set, but only if an
 equivalent key is not already present in the set. If the key
 is already present, the insert attempt is ignored. The first
 version attempts to insert x in logarithmic time.
The second version inserts x using hintpos as a position hint. If
 x is inserted immediately
 after hintpos, the
 performance is constant (amortized over many insertions); at
 any other position, the performance is logarithmic.
The third version copies all the items in the range
 [first, last), which must be pointing to a
 different set object. If
 the items are already in the desired order, the performance is
 linear; otherwise, it is N log(size() + N), in which N is last - first.

	key_compare key_comp
 () const
	Returns the comparator function pointer or object. The
 key_compare type is the
 same as the Compare
 template parameter.

	iterator lower_bound
 (const key_type& x)
 const
	Returns an iterator that points to the first item in the
 set that does not come before x. That is, if x is in the set, the iterator points
 to its position; otherwise, the iterator points to the first
 position where x should be
 inserted. The complexity is log(size(
)).

	size_type max_size
 () const
	Returns the largest number of items that can be in the
 set.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 element of the set.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first element of the set.

	size_type size
 () const
	Returns the number of items in the set.

	void swap
 (set<Key,Compare,Alloc>&)
	Swaps the contents of the set with the contents of
 x.

	iterator upper_bound
 (const key_type& x)
 const
	Returns an iterator that points to the first item in the
 set that comes after x. The
 complexity is log(size(
)).

	value_compare value_comp
 () const
	Returns the comparator function pointer or functor
 object. The value_compare
 type is the same as the Compare template parameter.

	set<Key,Compare,Alloc>&
 operator= (const
 set<Key,Compare,Alloc>& x)
	Erases all the elements of the set and replaces them
 with copies of the elements of x.

See Also
multiset class
 template, multimap in
 <map>

Name
swap function template — Swaps the contents of two sets

Synopsis
template <typename Key, typename T, typename C, typename A>
 void swap(set<Key,T,C,A>& x,
 set<Key,T,C,A>& y);
template <typename Key, typename T, typename C, typename A>
 void swap(multiset<Key,T,C,A>& x,
 multiset<Key,T,C,A>& y);
The swap function template
 specialization is equivalent to calling x.swap(y).

See Also
swap in <algorithm>

<sstream>

The <sstream> header declares classes, templates, and other types for
 reading from and writing to strings in the same manner as reading from
 and writing to files.
See Chapter 9 for a general
 discussion of I/O, Chapter 1 for
 more information about character sets, and the <iostream> section in this chapter for
 information about the base-class templates required by the stringstream class templates. Refer to Chapter 8 for information about traits in
 general and to the <string>
 section in this chapter for detailed information about the char_traits template. Refer to the <streambuf> section in this chapter for
 information about the basic_streambuf
 template. See also <strstream>
 for classes that are similar to the string streams, except they work
 with arrays of narrow characters.
To read from a string, use istringstream; for writing, use ostringstream; for reading and writing, use
 stringstream. For wide character I/O,
 use wistringstream, wostringstream, or wstringstream. Example 13-35 shows tostring, a simple use of ostringstream to convert a value to a string.
 (Think of tostring as the inverse of
 strtol and friends.)
Example 13-35. Converting a value to a string
template<typename T>
std::string tostring(const T& x)
{
 std::ostringstream out;
 out << x;
 return out.str();
}

Example 13-36 shows a
 use of istringstream to interpret
 HTML colors. In HTML, a color can be a name, such as white, or a hexadecimal digit string that
 begins with #. The digit string is
 interpreted as a triplet of red, green, and blue color elements, each
 expressed as two hexadecimal digits. For the sake of simplicity, the
 example omits error handling and assumes that the order of the color
 elements matches the order needed by the program. The known color names
 are stored in a map.
Example 13-36. Interpreting an HTML color string
typedef std::map<std::string, unsigned long> colormap;
colormap colors;

unsigned long get_color(const std::string& text)
{
 unsigned long rgb;
 colormap::iterator i = colors.find(text);
 if (i != colors.end())
 return i->second;
 else if (text.length() == 0)
 return 0;
 else {
 std::istringstream in(text);
 if (in.peek() == '#')
 in.ignore();
 in >> std::noskipws >> std::hex >> rgb;
 if (in)
 return rgb;
 else
 return 0;
 }
}

void initcolors(colormap& colors)
{
 . . .
 colors["black"] = 0x000000;
 colors["blue"] = 0x0000FF;
 colors["green"] = 0x00FF00;
 colors["red"] = 0xFF0000;
 colors["white"] = 0xFFFFFF;
}

Name
basic_istringstream class template — Base class for input string streams

Synopsis
template <class charT, class traits = char_traits<charT>,
 class Alloc = allocator<charT> >
class basic_istringstream: public basic_istream<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 explicit basic_istringstream(ios_base::openmode which = ios_base::in);
 explicit basic_istringstream(const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode which = ios_base::in);

 basic_stringbuf<charT,traits,Alloc>* rdbuf() const;
 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>& s);
};
The basic_istringstream
 class template is the base class for input string streams.
 Typically, you would construct an istringstream with a string argument and
 then read from the string stream just as you would from any other
 input stream.
The following are the methods of basic_istringstream:
	explicit basic_istringstream
 (ios_base::openmode which =
 ios_base::in)
	Initializes an empty input string stream by constructing
 an internal basic_stringbuf
 object, passing which
 | ios_base::in to that object's
 constructor, and passing the address of the string buffer to
 the base-class constructor for basic_istream.

	explicit basic_istringstream
 (const basic_string<charT,traits,Alloc>&
 str, ios_base::openmode
 which = ios_base::in)
	Initializes a string stream with str as the initial string contents
 by constructing an internal basic_stringbuf object, passing
 str and which | ios_base::in to that object's
 constructor, and passing the address of the string buffer to
 the base-class constructor for basic_istream.

	basic_stringbuf<charT,traits,Alloc>*
 rdbuf
 () const
	Returns a pointer to the internal basic_stringbuf object.

	basic_string<charT,traits,Alloc>
 str
 () const
	Returns the buffer contents as a string, that is,
 rdbuf()->str().

	void str
 (const basic_string<charT,traits,Alloc>&
 s)
	Calls rdbuf(
)->str(s) to set the buffer contents.

See Also
basic_stringstream class
 template, istringstream
 class, wistringstream
 class, basic_ifstream in
 <fstream> , basic_istream in <istream>

Name
basic_ostringstream class template — Base class for output string streams

Synopsis
template <class charT, class traits = char_traits<charT>,
 class Alloc = allocator<charT> >
class basic_ostringstream: public basic_ostream<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
 explicit basic_ostringstream(const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode which = ios_base::out);

 basic_stringbuf<charT,traits,Alloc>* rdbuf() const;
 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>& s);
};
The basic_ostringstream
 class template is the base class for output string streams.
 Typically, you would construct an ostringstream with no string and let the
 string stream allocate the string as you write to the stream. You
 would then call the str member
 function to read the resulting string.
The following are the methods of basic_ostringstream:
	explicit basic_ostringstream
 (ios_base::openmode which =
 ios_base::out)
	Initializes an empty output string stream by
 constructing an internal basic_stringbuf object, passing
 which | ios_base::out to that object's
 constructor, and passing the address of the string buffer to
 the base-class constructor for basic_ostream.

	explicit basic_ostringstream
 (const basic_string<charT,traits,Alloc>&
 str, ios_base::openmode
 which = ios_base::out)
	Initializes a string stream with str as the initial string contents
 by constructing an internal basic_stringbuf object, passing
 str and which | ios_base::out to that object's
 constructor, and passing the address of the string buffer to
 the base-class constructor for basic_ostream.

	basic_stringbuf<charT,traits,Alloc>*
 rdbuf
 () const
	Returns a pointer to the internal basic_stringbuf object.

	basic_string<charT,traits,Alloc>
 str
 () const
	Returns the buffer contents as a string, that is,
 rdbuf()->str().

	void str
 (const basic_string<charT,traits,Alloc>&
 s)
	Calls rdbuf(
)->str(s) to set the buffer contents.

See Also
basic_stringstream class
 template, ostringstream
 class, wostringstream
 class, basic_ofstream in
 <fstream> , basic_ostream in <ostream>

Name
basic_stringbuf class template — Base class for string buffers

Synopsis
template <class charT, class traits = char_traits<charT>,
 class Alloc = allocator<charT> >
class basic_stringbuf : public basic_streambuf<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 explicit basic_stringbuf(ios_base::openmode mode = ios_base::in |
 ios_base::out);
 explicit basic_stringbuf(const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode mode = ios_base::in |
 ios_base::out);
 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>& s);
protected:
 virtual int_type underflow();
 virtual int_type pbackfail(int_type c = traits::eof());
 virtual int_type overflow (int_type c = traits::eof());
 virtual basic_streambuf<charT,traits>* setbuf(charT*, streamsize);
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in |
 ios_base::out);
 virtual pos_type seekpos(pos_type sp,
 ios_base::openmode which = ios_base::in |
 ios_base::out);
};
The basic_stringbuf class
 template implements a stream buffer for string-based streams. A
 string buffer maintains a single character buffer with separate
 positions for reading and writing. That is, the buffer has begin, next, and end pointers for reading and separate
 begin, next, and end pointers for writing. The begin pointer points to the start of a
 buffer, and the end pointer
 points to one past the end of the buffer. The next pointer points to the position where
 the next character will be read or written. Refer to basic_streambuf in <streambuf> for details about buffer
 positions.
In the following descriptions of the member functions of
 basic_stringbuf, mode refers to a private copy of the
 mode parameter that is passed to
 the constructors. The implementation is not required to have such a
 data member, but the descriptions below are clearer with the
 assumption that it exists.
	explicit basic_stringbuf
 (ios_base::openmode mode =
 ios_base::in | ios_base::out)
	Initializes the buffer with an empty string and
 remembers the mode.

	explicit basic_stringbuf
 (const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode mode = ios_base::in | ios_base::out)
	Initializes the buffer with a copy of str and remembers the mode. If mode & ios_base::in is nonzero, the input
 position is initialized to read from the start of the buffer.
 If mode & ios_base::out is nonzero, the output
 position is initialized to overwrite the buffer.

	virtual int_type
 overflow (int_type c =
 traits::eof())
	Attempts to append c
 to the end of the buffer as follows:
	If c is an
 end-of-file character (c is traits::eof()), nothing
 happens, and a non-end-of-file character is returned to
 indicate success.

	If c is not
 end-of-file, and a write position is available, c is appended to the buffer by
 calling sputc(c).

	If a write position is not available, and the
 mode allows writing
 (mode & ios_base::out is nonzero), the
 buffer is extended by one character and c is appended. If the mode allows reading (mode & ios_base::in is nonzero), the
 read end pointer egptr(
) is set to point to one position past the end
 of the buffer.

The return value is traits::not_eof(c) for success or
 traits::eof() for
 failure.

	virtual int_type
 pbackfail
 (int_type
 c = traits::eof())
	Attempts to push c
 back onto the buffer for reading as follows:
	If c is an
 end-of-file character (c is traits::eof()), and a putback
 position is available, gptr(
) is set to gptr(
) - 1.

	If c is not an
 end-of-file character, and a putback position is
 available, and gptr(
)[-1] is equal to c, gptr() is set to gptr() - 1.

	If c is not an
 end-of-file character, and a putback position is
 available, and the mode allows writing (mode & ios_base::out is nonzero),
 gptr() is set to
 gptr() - 1, and
 *gptr() is assigned
 c.

The return value is traits::not_eof(c) for success or
 traits::eof() for
 failure.

	virtual pos_type
 seekoff
 (off_type
 off, ios_base::seekdir
 way, ios_base::openmode
 which = ios_base::in|ios_base::out)
	Sets the stream position. The input position, output
 position, or both can be set, depending on (which & (ios_base::in | ios_base::out)). The following are
 the possible results of this expression:
	ios_base::in
	Sets the input position

	ios_base::out
	Sets the output position

	ios_base::in
 | ios_base::out, and way is either ios_base::beg or ios_base::end
	Sets input and output positions

	Otherwise
	The function fails and returns pos_type(-1)

The new position is determined as an offset off, which is added to the position
 at the start of the stream, the current position, or at the
 end of the stream, depending on way (ios_base::beg, ios_base::cur, or ios_base::end). If the desired
 position is negative or past the end of the buffer, the
 function fails and returns pos_type(-1). If the function
 succeeds, it returns the new position.

	virtual pos_type
 seekpos
 (pos_type
 sp, ios_base::openmode
 which = ios_base::in|ios_base::out)
	Sets the stream position to sp. The input position is set if
 which & ios_base::in is nonzero. The output
 position is set if which
 & ios_base::out is nonzero. If
 sp is not a valid position,
 or if neither the input nor the output position is set,
 seekpos fails and pos_type(-1) is returned. The return
 value is sp for success. If
 sp was not returned from a
 prior call to a positioning function (that is, seekoff, seekpos, tellg, or tellp), the results are
 undefined.

	[image:] virtual basic_streambuf<charT,traits>*
 setbu
 f (charT*, streamsize)
	Calling setbuf(0,
 0) has no effect other than
 to return this. The result
 of any other call to setbuf
 is implementation-defined.

	basic_string<charT,traits,Alloc>
 str
 () const
	Returns the contents of the buffer as a string. If the
 mode allows output
 (mode & ios_base::out is nonzero), the
 buffer contents are taken from the output positions;
 otherwise, the buffer contents are copied from the input
 positions.

	void str
 (const basic_string<charT,traits,Alloc>&
 s)
	Deallocates the current buffer if one exists and
 replaces it with a copy of s. If mode & ios_base::in is nonzero, the input
 positions are set to read from the start of the buffer. If
 mode & ios_base::out is nonzero, the output
 positions are set to overwrite the buffer.

	virtual int_type
 underflow ()
	Returns *gptr() if
 more input is available, that is, if there is a read position.
 Otherwise, the function returns traits::eof().

See Also
stringbuf class, wstringbuf class, basic_filebuf in <fstream> , basic_streambuf in <streambuf>

Name
basic_stringstream class template — Base class for input and output string
 streams

Synopsis
template <class charT, class traits = char_traits<charT>,
 class Alloc = allocator<charT> >
class basic_stringstream: public basic_iostream<charT,traits>
{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;

 explicit basic_stringstream(ios_base::openmode which =
 ios_base::out|ios_base::in);
 explicit basic_stringstream(const basic_string<charT,traits,Alloc>& str,
 ios_base::openmode which =
 ios_base::out|ios_base::in);

 basic_stringbuf<charT,traits,Alloc>* rdbuf() const;
 basic_string<charT,traits,Alloc> str() const;
 void str(const basic_string<charT,traits,Alloc>& str);
};
The basic_stringstream
 class template is the base class for string streams that permit
 input and output. You can start with an empty string and write to
 the stream, or start with a string and read from the stream. If you
 initialize the stream with a string and start writing, the output
 overwrites the string. You can switch between reading and writing at
 any time and set the read and write positions independently.
The following are the methods of basic_stringstream:
	explicit basic_stringstream
 (ios_base::openmode which
 = ios_base::in |
 ios_base::out)
	Initializes an empty string stream by constructing an
 internal basic_stringbuf
 object, passing which
 | ios_base::in | ios_base::out to that object's
 constructor and the address of the string buffer to the
 base-class constructor for basic_iostream.

	explicit basic_stringstream
 (const basic_string<charT,traits,Alloc>&
 str, ios_base::openmode
 which = ios_base::in|ios_base::out)
	Initializes a string stream with str as the initial string contents
 by constructing an internal basic_stringbuf object, passing
 str and which | ios_base::in | ios_base::out to that object's
 constructor and the address of the string buffer to the
 base-class constructor for basic_iostream.

	basic_stringbuf<charT,traits,Alloc>*
 rdbuf
 () const
	Returns a pointer to the internal basic_stringbuf object.

	basic_string<charT,traits,Alloc>
 str
 () const
	Returns the buffer contents as a string, that is,
 rdbuf()->str().

	void str
 (const basic_string<charT,traits,Alloc>&
 s)
	Calls rdbuf(
)->str(s) to set the buffer contents.

See Also
basic_istringstream class
 template, basic_ostringstream class
 template, stringstream
 class, wstringstream
 class, basic_fstream in
 <fstream> , basic_iostream in <istream>

Name
istringstream class — Input string stream

Synopsis
typedef basic_istringstream<char> istringstream;
The istringstream class is
 a specialization of the basic_istringstream template for char characters.

See Also
basic_istringstream class
 template, wistringstream
 class, ifstream in <fstream> , istream in <istream>

Name
ostringstream class — Output string stream

Synopsis
typedef basic_ostringstream<char> ostringstream;
The ostringstream class is
 a specialization of the basic_ostringstream template for char characters.

See Also
basic_ostringstream class
 template, wostringstream
 class, ofstream in <fstream> , ostream in <ostream>

Name
stringbuf class — Narrow character string buffer

Synopsis
typedef basic_stringbuf<char> stringbuf;
The stringbuf class is a
 specialization of the basic_stringbuf template for char characters.

See Also
basic_stringbuf class
 template, wstringbuf
 class, filebuf in <fstream> , streambuf in <streambuf>

Name
stringstream class — Input and output string stream

Synopsis
typedef basic_stringstream<char> stringstream;
The stringstream class is a
 specialization of the basic_stringstream template for char characters.

See Also
basic_stringstream class
 template, wstringstream
 class, fstream in <fstream> , iostream in <istream>

Name
wistringstream class — Wide input string stream

Synopsis
typedef basic_istringstream<wchar_t> wistringstream;
The wistringstream class is
 a specialization of the basic_istringstream template for wchar_t characters.

See Also
basic_istringstream class
 template, istringstream
 class, wifstream in <fstream> , wistream in <istream>

Name
wostringstream class — Wide output string stream

Synopsis
typedef basic_ostringstream<wchar_t> wostringstream;
The wostringstream class is
 a specialization of the basic_ostringstream template for wchar_t characters.

See Also
basic_ostringstream class
 template, ostringstream
 class, wofstream in <fstream> , wostream in <ostream>

Name
wstringbuf class — Wide character string buffer

Synopsis
typedef basic_stringbuf<wchar_t> wstringbuf;
The wstringbuf class is a
 specialization of the basic_stringbuf template for wchar_t characters.

See Also
basic_stringbuf class
 template, stringbuf
 class, wfilebuf in <fstream> , wstreambuf in <streambuf>

Name
wstringstream class — Wide input and output string stream

Synopsis
typedef basic_stringstream<wchar_t> wstringstream;
The wstringstream class is
 a specialization of the basic_stringstream template for wchar_t characters.

See Also
basic_stringstream class
 template, stringstream
 class, wfstream in <fstream> , wiostream in <istream>

<stack>

The <stack> header declares the stack container adapter. This class template
 is not a container in its own right, but adapts other containers to
 present the behavior of a stack.
A stack is a sequence of items that supports insertion and removal
 at one end. Because the last item inserted into a stack is the first
 item removed, a stack is sometimes called a LIFO (last-in, first-out)
 container.
See Chapter 10 for
 information about containers.

Name
operator== function template — Compares stacks for equality

Synopsis
template <typename T, typename Container>
bool operator==(const stack<T, Container>& x, const stack<T, Container>& y);
The == operator compares
 two stacks for equality by comparing the adapted containers (e.g.,
 the return value is x.c == y.c).

Name
operator!= function template — Compares stacks for inequality

Synopsis
template <typename T, typename Container>
bool operator!=(const stack<T, Container>& x, const stack<T, Container>& y);
The != operator compares
 two stacks for inequality by comparing the adapted containers (e.g.,
 the return value is x.c != y.c).

Name
operator< function template — Compares stacks for less-than

Synopsis
template <typename T, typename Container>
bool operator<(const stack<T, Container>& x, const stack<T, Container>& y);
The < operator compares
 two stacks by comparing the adapted containers (e.g., the return
 value is x.c < y.c).

Name
operator<= function template — Compares stacks for less-than-or-equal

Synopsis
template <typename T, typename Container>
bool operator<=(const stack<T, Container>& x, const stack<T, Container>& y);
The <= operator compares
 two stacks by comparing the adapted containers (e.g., the return
 value is x.c <= y.c).

Name
operator> function template — Compares stacks for greater-than

Synopsis
template <typename T, typename Container>
bool operator>(const stack<T, Container>& x, const stack<T, Container>& y);
The > operator compares
 two stacks by comparing the adapted containers (e.g., the return
 value is x.c >= y.c).

Name
operator>= function template — Compares stacks for greater-than-or-equal

Synopsis
template <typename T, typename Container>
bool operator>=(const stack<T, Container>& x, const stack<T, Container>& y);
The >= operator compares
 two stacks by comparing the adapted containers (e.g., the return
 value is x.c >= y.c).

Name
stack class template — Stack container adapter

Synopsis
template <class T, class Container = deque<T> >
class stack {
public:
 typedef typename Container::value_type value_type;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
protected:
 Container c;
public:
 explicit stack(const Container& = Container());
 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 value_type& top() { return c.back(); }
 const value_type& top() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_back(); }
};
The stack class template is
 an adapter for any sequence container—such as deque, list, and vector—that supports the back, push_back, and pop_back members. (The default is deque.)
Because stack is not itself
 a standard container, it cannot be used with the standard
 algorithms. (In particular, note the lack of begin and end member functions.) Thus, the stack adapter is useful only for simple
 needs.
Most of the members of stack are straightforward mappings from a
 simple stack protocol to the underlying container protocol. The
 members are:
	explicit stack
 (const Container& cont = Container(
))
	Copies the elements from cont to the c data member

	bool empty
 () const
	Returns true if the
 stack is empty

	void pop
 ()
	Erases the item at the top of the stack

	void push
 (const value_type&
 x)
	Adds x at the top of
 the stack

	size_type size
 () const
	Returns the number of items in the stack

	value_type&
 top
 ()
const value_type&
 top
 () const
	Returns the item at the top of the stack

See Also
 <deque> , <list> , <queue> , <vector>

<stdexcept>

The <stdexcept>
 header defines several standard exception classes. (Refer
 to <exception> for the base
 exception class.) Figure 13-24 shows all the
 exception classes in the standard library, including a few that are
 declared in other headers. Note that the standard library has very few
 places that throw exceptions. The exceptions in <stdexcept> are available primarily for
 your use.
[image: All the standard exception classes]

Figure 13-24. All the standard exception classes

See Chapter 3 for more
 information about throw expressions
 and Chapter 4 for information about
 handling exceptions with try
 statements.

Name
domain_error class — Arithmetic domain error

Synopsis
class domain_error : public logic_error {
public:
 explicit domain_error(const string& what_arg);
};
The domain_error class is
 used to report domain errors, that is, arguments to functions that
 are outside the valid domain for input to the functions. For
 example, a function that converts a color from the Hue, Saturation,
 Lightness colorspace to the Red, Green, Blue colorspace might
 require a Saturation in the range [0.0, 1.0] and throw domain_error for any other value.

See Also
logic_error
 class

Name
invalid_argument class — Invalid function argument

Synopsis
class invalid_argument : public logic_error {
public:
 explicit invalid_argument(const string& what_arg);
};
The invalid_argument class
 is thrown to report invalid arguments to functions. Specific kinds
 of invalid arguments are covered by the other logic errors; use
 invalid_argument for any other
 situations. For example, constructing a bitset from a string throws invalid_argument if any character is other
 than '0' or '1'.

See Also
logic_error
 class

Name
length_error class — Exceed maximum size

Synopsis
class length_error : public logic_error {
public:
 explicit length_error(const string& what_arg);
};
The length_error class is
 used to attempt to set or change the size of an object that exceeds
 the maximum size. For example, the string class throws length_error if you attempt to create a
 string longer than max_size()
 characters.

See Also
logic_error
 class

Name
logic_error class — Base class for logic errors

Synopsis
class logic_error : public exception {
public:
 explicit logic_error(const string& what_arg);
};
The logic_error class is a
 base class for logic-error exceptions. A logic
 error is a violation of the preconditions or other
 requirements for a function.

See Also
domain_error class,
 invalid_argument class,
 length_error class, out_of_range class, runtime_error class

Name
out_of_range class — Argument out of range

Synopsis
class out_of_range : public logic_error {
public:
 explicit out_of_range(const string& what_arg);
};
The out_of_range class is
 used when an index or similar value is out of its expected or
 allowed range. For example, the at member (of deque, string, and vector) throws out_of_range if the index is
 invalid.

See Also
logic_error
 class

Name
overflow_error class — Arithmetic overflow

Synopsis
class overflow_error : public runtime_error {
public:
 explicit overflow_error(const string& what_arg);
};
The overflow_error class
 can be used for arithmetic overflow. For example, bitset::to_ulong throws overflow_error if the arithmetic value of
 the bitset exceeds the maximum
 value of an unsigned long.
[image: image with no caption]

Note that overflow in most arithmetic expressions has
 undefined behavior; an implementation might throw overflow_error, but there is no guarantee
 that it will throw this or any other exception.

See Also
runtime_error
 class

Name
range_error class — Arithmetic range error

Synopsis
class range_error : public runtime_error {
public:
 explicit range_error(const string& what_arg);
};
The range_error class can
 be used when a function's results would fall outside its valid
 range. Note that the <cmath> functions do not throw any
 exceptions, but a third-party math library might throw range_error for, say, computing a power
 that exceeds the limits of its return type.

See Also
runtime_error
 class

Name
runtime_error class — Base class for runtime errors

Synopsis
class runtime_error : public exception {
public:
 explicit runtime_error(const string& what_arg);
};
The runtime_error class is
 the base class for runtime errors, which are errors that cannot
 reasonably be detected by a static analysis of the code but can be
 revealed only at runtime.

See Also
overflow_error class,
 range_error class, underflow_error class

Name
underflow_error class — Arithmetic underflow

Synopsis
class underflow_error : public runtime_error {
public:
 explicit underflow_error(const string& what_arg);
};
[image: image with no caption]

The underflow_error class
 can be used for arithmetic underflow. Note that underflow in most
 arithmetic expressions has undefined behavior; an implementation
 might throw underflow_error, but
 there is no guarantee that it will throw this or any other
 exception.

See Also
 runtime_error class

<streambuf>

The <streambuf>
 header declares the basic_streambuf class template and its two
 specializations: streambuf and
 wstreambuf. A stream buffer object
 manages low-level access to a sequence of characters. The characters
 might be stored in an external file or reside entirely in memory. See
 the <fstream>, <sstream>, and <strstream> headers for examples of
 different kinds of stream buffers that are derived from basic_streambuf.
Most programs do not use stream buffers directly, but use stream
 classes instead because they provide a higher-level interface. Each
 stream object has an associated stream buffer object.
See Chapter 9 for general
 information on input and output using the stream classes.

Name
basic_streambuf class template — Stream buffer

Synopsis
template <class charT, class traits = char_traits<charT> >
class basic_streambuf{
public:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 virtual ~basic_streambuf();

 locale pubimbue(const locale &loc);
 locale getloc() const;
 basic_streambuf<char_type,traits>* pubsetbuf(char_type* s, streamsize n);
 pos_type pubseekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in | ios_base::out);
 pos_type pubseekoff(off_type off, ios_base::seekdir way,
 ios_base::open_mode which=ios_base::in | ios_base::out);
 pos_type pubseekpos(pos_type sp, ios_base::openmode which = ios_base::in |
 ios_base::out);
 pos_type pubseekpos(pos_type sp,ios_base::open_mode which);
 int pubsync();
 // Input
 streamsize in_avail();
 int_type snextc();
 int_type sbumpc();
 int_type stossc();
 int_type sgetc();
 streamsize sgetn(char_type* s, streamsize n);
 // Putback
 int_type sputbackc(char_type c);
 int_type sungetc();
 // Output
 int_type sputc(char_type c);
 streamsize sputn(const char_type* s, streamsize n);
protected:
 basic_streambuf();
 // Input
 char_type* eback() const;
 char_type* gptr() const;
 char_type* egptr() const;
 void gbump(int n);
 void setg(char_type* gbeg, char_type* gnext, char_type* gend);
 // Output
 char_type* pbase() const;
 char_type* pptr() const;
 char_type* epptr() const;
 void pbump(int n);
 void setp(char_type* pbeg, char_type* pend);
 // Locales
 virtual void imbue(const locale &loc);
 // Buffer management and positioning
 virtual basic_streambuf<char_type,traits>*
 setbuf(char_type* s, streamsize n);
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in |
 ios_base::out);
 virtual pos_type seekpos(pos_type sp, ios_base::openmode which = ios_base::in |
 ios_base::out);
 virtual streamsize showmanyc();
 virtual int sync();
 virtual int_type underflow();
 virtual int_type uflow();
 virtual streamsize xsgetn(char_type* s, streamsize n);
 // Putback
 virtual int_type pbackfail(int_type c = traits::eof());
 // Output
 virtual int_type overflow(int_type c = traits::eof());
 virtual streamsize xsputn(const char_type* s, streamsize n);
};
The basic_streambuf class
 template manages an input buffer and an output buffer, in which each
 buffer is an array of characters. The base character type is a
 template parameter, charT. A
 buffer has the following three pointers to the array (the names
 below are not part of the standard but are used for informational
 purposes only):
	begin
	Points to the beginning of the array

	next
	Points to the next element in the array, that is, the
 next character to read or the position at which to write the
 next character

	end
	Points to one past the end of the array

The pointers in this list can all be null pointers, which
 makes the stream "buffer" unbuffered. If the pointers are not null,
 the following rules apply:
	If next <
 end for an output array,
 the stream buffer is said to have a write
 position. The next output character is
 written to * next.

	If begin <
 next for an input array,
 the stream buffer is said to have a push
 back position. When a character
 is pushed back, it is stored in next
 [-1].

	If next <
 end for an input array, the
 stream buffer is said to have a read
 position. The next character to read from
 the buffer is * next.

Figure 13-25
 depicts an input buffer, in which the characters "Hello, world."
 have been fetched from the input source. So far, the first six
 characters have been read from the input buffer, and the next
 character to read is the space between "Hello," and "world."
[image: Input stream buffer]

Figure 13-25. Input stream buffer

Figure 13-26
 depicts an output buffer, which has room for 12 characters. So far,
 the buffer contains the five characters "Hello".
[image: Output stream buffer]

Figure 13-26. Output stream buffer

Several functions come in pairs: a public function that is the
 public interface and a protected, virtual function to do the actual
 work. For example, pubsync is a
 public function that simply calls sync, which is protected and virtual. The
 name of the public function is pub followed by the name of the protected
 function. The two exceptions are sgetn and sputn, which are public, with xsgetn and xsputn as their protected
 counterparts.
The basic_streambuf class
 template implements minimal functionality for managing the buffer
 pointers. Derived-class templates must override the virtual
 functions to provide concrete behavior. See basic_filebuf in <fstream>, basic_stringbuf in <sstream>, and strstreambuf in <strstream> for examples of derived
 classes and templates.
The following descriptions start with the expected public
 behavior. If you are writing a stream class that uses a stream
 buffer, you can rely on that behavior from the stream buffer object.
 If you are writing your own derived-class template, that is the
 behavior you must implement. Each description ends with the actual
 implementation in basic_streambuf.
When comparing characters, converting characters to integers
 or integers to characters, and obtaining the end-of-file marker,
 basic_streambuf uses the
 character traits specified by the traits template parameter. See <string> for information about the
 default character traits, char_traits.
The following are the public member functions of basic_streambuf:
	locale getloc
 ()
 const
	Returns the current locale, which can be set by calling
 pubimbue.

	streamsize in_avail
 ()
	Returns the number of characters available for input.
 The return value is egptr(
) - gptr() if
 the stream buffer has a read position, or the result of
 calling showmanyc() if the
 stream buffer does not have a read position.

	locale pubimbue
 (const locale
 &loc)
	Saves a copy of the locale, loc. Subsequent calls to getloc return a copy of the imbued
 locale. The basic_streambuf
 class does not use the locale, but a derived class can use the
 locale to interpret multibyte characters and for other
 purposes. When a stream buffer is created, it is initially
 imbued with the global locale.

	pos_type pubseekoff
 (off_type off,
 ios_base::seekdir way, ios_base::openmode
 which=ios_base::in|ios_base::out)
pos_type pubseekoff
 (off_type off,
 ios_base::seekdir way, ios_base::open_mode
 which=ios_base::in|ios_base::out)
	Returns seekoff(off,
 way, which), which changes the stream
 position. The second form is deprecated. See ios_base::openmode in <ios> for details.

	pos_type pubseekpos
 (pos_type sp,
 ios_base::openmode
 which=ios_base::in|ios_base::out)
pos_type pubseekpos
 (pos_type sp,
 ios_base::open_mode which)
	Returns seekpos(off,
 way, which), which changes the stream
 position. The second form is deprecated. See ios_base::openmode in <ios> for details.

	basic_streambuf<char_type,traits>*
 pubsetbuf (char_type* s,
 streamsize n)
	Returns setbuf(s,
 n), which typically sets
 the begin, next, and end array pointers.

	int pubsync
 ()
	Returns sync(),
 which synchronizes the internal arrays with the external I/O
 source, if any. The pubsync
 function returns -1 for a
 failure and any other value for success.

	int_type snextc
 ()
	Returns the next input character and advances the input
 pointers. Specifically, snextc calls sbumpc(), and if sbumpc returns traits::eof(), snextc returns traits::eof(); otherwise, it
 returns sgetc().

	int_type sbumpc
 ()
int_type stossc
 ()
	Returns the next input character (if one is available)
 and increments the input array's next pointer. If there is no read
 position, sbumpc returns
 uflow(); otherwise, it
 returns *gptr().

The stossc function is
 deprecated. If it is implemented, it calls sbumpc().
	int_type sgetc
 ()
	Returns the next available input character without
 advancing the input pointer. If no read position is available,
 sgetc returns underflow(); otherwise, it returns
 *gptr().

	streamsize sgetn
 (char_type* s,
 streamsize n)
	Returns xsgetn(s,
 n).

	virtual streamsize
 showmanyc ()
	Returns an estimate of the number of characters
 immediately available for input. If showmanyc returns a positive value,
 at least that many characters can be read before underflow returns traits::eof(). If showmanyc returns -1, calls to underflow or uflow will fail. If the return value
 is 0, input might be
 available, but there is no guarantee. Read the function name
 as s-how-many-c.

	int_type sputbackc
 (char_type
 c)
	Tries to push back the character c so the next read will return
 c. If a push-back position
 is available (gptr()
 > ebase()), and the most recently
 read character (gptr(
)[-1]) is c, the
 input next pointer is
 decremented, and *gptr()
 is returned. Otherwise, pbackfail(c) is returned.

	int_type sputc
 (char_type
 c)
	Writes the character c to the output array and returns
 c if an output position is
 available. Otherwise, sputc
 returns overflow(c).

	streamsize sputn
 (const char_type* s,
 streamsize n);
	Calls xsputn(s,
 n) to write a string
 s of length n.

	int_type sungetc
 ()
	Pushes back the character that was read most recently
 from the input stream. If a push-back position is available,
 the function decrements the input next pointer and returns *gptr(); otherwise, it returns
 pbackfail().

The following are the protected member functions of basic_streambuf. Those marked as virtual should probably be overridden in a
 derived class template.
	 basic_streambuf ()
	Initializes all pointers to null pointers. The locale
 (as returned from getloc(
)) is initialized to the current global
 locale.

	char_type* eback
 ()
 const
	Returns the begin
 pointer for the input array.

	char_type* egptr
 ()
 const
	Returns the end
 pointer for the input array.

	char_type* epptr
 ()
 const
	Returns the end
 pointer for the output array.

	void gbump
 (int n)
	Advances the next
 pointer for the input array by n characters.

	char_type* gptr
 ()
 const
	Returns the next
 pointer for the input array.

	virtual void imbue
 (const locale
 &loc)
	A derived class overrides the imbue function to take whatever
 action is needed when the stream buffer's locale is changed.
 For example, the stream buffer might cache facets or other
 information from the new locale.
The pubimbue function
 calls imbue
 before storing a new locale; thus, within
 the call to imbue, the
 getloc function returns the
 old locale, and the loc
 parameter is the new locale.
The default behavior for imbue is to do nothing.

	virtual int_type
 overflow (int_type c =
 traits::eof())
	The stream buffer calls overflow to flush the output buffer
 when it is full. The overflow function handles the
 sequence of characters stored in the buffer array, or an empty
 string if the begin and
 other pointers are null. If c is not traits::eof(), c is appended to the output
 sequence. For example, a file stream buffer might write the
 array to the file. If an output error occurs, an exception is
 thrown or traits::eof() is
 returned. For success, any value other than traits::eof() is returned.
The default behavior is to do nothing and return
 traits::eof().

	virtual int_type
 pbackfail (int_type c =
 traits::eof())
	Handles a push-back failure. When the sungetc or sputbackc functions try to push back
 a character, they first attempt to adjust the current input
 next pointer. This can
 fail for one of three reasons:
	Input is unbuffered (gptr(
) == 0).

	The input buffer is empty (gptr() == eback()).

	The push-back character, c, is not the same character
 that was most recently read (that is, c != gptr()[-1]).

If the push-back attempt fails, pbackfail mediates with the external
 input source, if any, to try to complete the push-back
 operation. For example, a file stream buffer might adjust the
 external file position so the next character read from the
 input array will retrieve the pushed-back character.
If c is traits::eof(), the input sequence
 is moved back one position to reread the character at that
 position. If c is not
 traits::eof(), pbackfail tries to ensure that the
 next character read will be c; the derived class is free to
 modify the input source, change the stream position, or take
 another action to push back c.
The return value is traits::eof() for failure or any
 other value for success.
The default behavior is to do nothing and return
 traits::eof().

	char_type* pbase
 ()
 const
	Returns the output buffer's begin pointer.

	void pbump
 (int n)
	Increments the output buffer's next pointer by n characters.

	char_type* pptr
 ()
 const
	Returns the output buffer's next pointer.

	Virtual pos_type
 seekoff (off_type off,
 ios_base::seekdir way, ios_base::openmode
 which=ios_base::in|ios_base::out)
	Changes the stream position. The default behavior is to
 do nothing except return pos_type(-1).

	virtual pos_type
 seekpos (pos_type sp,
 ios_base::openmode
 which=ios_base::in|ios_base::out)
	Changes the stream position. The default behavior is to
 do nothing except return pos_type(-1).

	virtual
 basic_streambuf<char_type,traits>* setbuf
 (char_type* s,
 streamsize n)
	Typically sets the internal array pointers. The default
 behavior is to do nothing and return this.

	void setg
 (char_type* gbegin,
 char_type* gnext, char_type* gend)
	Sets the input array pointers: begin = gbegin, next = gnext, and end = gend.

	void setp
 (char_type* pbegin,
 char_type* pend)
	Sets the output array pointers: begin = next = pbegin and end = pend.

	virtual int sync
 ()
	Synchronizes the stream buffer with its external source,
 if any. Any characters in the output array are written, and
 all pointers are adjusted as needed. The return value is
 -1 for failure and anything
 else for success.
The default behavior is to do nothing and return
 0.

	virtual int_type
 uflow
 ()
	Fills the input array and fetches the first character
 from the array. It is called from sbumpc if the input is not buffered
 (gptr() == 0) or if the input buffer is empty
 (gptr() >= egptr()). Input is obtained from
 the external source, and the input pointers are reset.
The key difference between uflow and underflow is that uflow advances the input next pointer after returning the
 first character in the buffer, but underflow does not.
The return value from uflow is *gptr() if there is a read position
 or traits::eof() if there
 is no more input or some other failure occurs.
The default behavior is to do nothing and return
 traits::eof().

	virtual int_type
 underflow ()
	Fills the input array and returns the first character in
 the array. The sgetc()
 function calls underflow
 when the input is not buffered (gptr(
) == 0) or when the input buffer is empty
 (gptr() >= egptr()). Input is obtained from
 the external source, and the input pointers are reset.
The key difference between uflow and underflow is that uflow advances the input next pointer after returning the
 first character in the buffer, but underflow does not.
The return value is *gptr(
) if there is a read position or traits::eof() if there is no more
 input or some other failure occurs.
The default behavior is to do nothing and return
 traits::eof().

	virtual streamsize
 xsgetn
 (char_type* s,
 streamsize n)
	Reads up to n
 characters from the input stream into the character array that
 s points to. No null
 character is appended to s.
 It is equivalent to calling sbumpc up to n times or until it returns traits::eof(). The number of
 characters actually read and stored in s is returned. Derived classes can
 override this function to provide a more efficient
 implementation.

	virtual streamsize
 xsputn
 (const char_type* s,
 streamsize n)
	Writes up to n
 characters from s to the
 output stream. It is equivalent to calling sputc up to n times or until it returns traits::eof(). The number of
 characters actually written is returned. Derived classes can
 override this function to provide a more efficient
 implementation.

See Also
basic_filebuf in <fstream> , basic_stringbuf in <sstream>

Name
streambuf class — Stream buffer specialization

Synopsis
typedef basic_streambuf<char> streambuf;
The streambuf class
 specializes basic_streambuf for
 the char type.

See Also
char_traits<char> in
 <string>

Name
wstreambuf class — Stream buffer, wide character
 specialization

Synopsis
typedef basic_streambuf<wchar_t> wstreambuf;
The wstreambuf class
 specializes basic_streambuf for
 the wchar_t type.

See Also
char_traits<wchar_t>
 in <string>

<string>

The <string> header declares the class templates and functions that
 support the string and wstring types, which are specializations of
 the basic_string class template. The
 string types are easier to use and safer than C-style character arrays.
 Another important class template is char_traits, which describes a character type
 and is used throughout the standard library.
The complete declarations of the overloaded operators can be
 daunting to read. To help you, each function template declaration is
 followed by a comment that shows the equivalent declaration that uses
 the common typedefs for narrow
 characters (e.g., string instead of
 basic_string<charT, traits, Allocator>).
Example 13-37 shows a
 function that classifies a string as an identifier, integer, floating
 point, or other. The example demonstrates the use of the string class and several of its member
 functions.
Example 13-37. Classifying a string
#include <iostream>
#include <string>

enum kind { empty, ident, integer, floatingpt, error };

kind classify(const std::string& s)
{
 using std::string;
 const string lower("abcdefghijklmnopqrstuvwxyz");
 const string upper("ABCDEFGHIJKLMNOPQRSTUVWXYZ");
 const string letters = lower + upper + '_';
 const string digits("0123456789");
 const string identchars = letters + digits;

 if (s.empty())
 return empty;

 else if (letters.find_first_of(s[0]) != string::npos) {
 // Check for valid identifier.
 if (s.find_first_not_of(identchars, 1) == string::npos)
 return ident;
 else
 return error;
 }

 // Skip a leading sign, if present.
 string::size_type pos;
 if (s[0] == '+' or s[0] == '-')
 pos = 1;
 else
 pos = 0;

 // The number must start with a digit.
 if (pos == s.length())
 return error;
 if (not digits.find_first_of(s[pos]))
 return error;
 // Find where the digit string ends.
 pos = s.find_first_not_of(digits, pos);
 if (pos == string::npos)
 // Only digits => integer
 return integer;

 else if (s[pos] == '.') {
 // There is a decimal point.
 pos = s.find_first_not_of(digits, pos+1);
 if (pos == string::npos)
 // Integer part "." fractional part
 return floatingpt;
 }

 // Look for optional exponent.
 if (s[pos] == 'e' or s[pos] == 'E') {
 if (pos == s.length() - 1)
 return error; // 'e' or 'E' is last char
 else if (s[pos+1] == '+' or s[pos+1] == '-')
 ++pos; // skip over sign;
 if (pos == s.length() - 1)
 return error; // Sign is last char.
 pos = s.find_first_not_of(digits, pos+1);
 if (pos == string::npos)
 return floatingpt;
 }

 return error;
}

Name
basic_string class template — Base class for string types

Synopsis
template<class charT, class traits = char_traits<charT>,
 class Alloc = allocator<charT> >
class basic_string {
public:
 typedef traits traits_type;
 typedef typename traits::char_type value_type;
 typedef Alloc allocator_type;
 typedef typename Alloc::size_type size_type;
 typedef typename Alloc::difference_type difference_type;
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 static const size_type npos = -1;

 explicit basic_string(const Alloc& a = Alloc());
 basic_string(const basic_string& str);
 basic_string(const basic_string& str, size_type pos, size_type n = npos,
 const Alloc& a = Alloc());
 basic_string(const charT* s, size_type n, const Alloc& a = Alloc());
 basic_string(const charT* s, const Alloc& a = Alloc());
 basic_string(size_type n, charT c, const Alloc& a=Alloc());
 template<class InputIterator>
 basic_string(InputIterator begin, InputIterator end,
 const Alloc& a = Alloc());
 ~basic_string();
 basic_string& operator=(const basic_string& str);
 basic_string& operator=(const charT* s);
 basic_string& operator=(charT c);

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 // Size and capacity
 size_type size() const;
 size_type length() const;
 size_type max_size() const;
 void resize(size_type n, charT c);
 void resize(size_type n);
 size_type capacity() const;
 void reserve(size_type res_arg = 0);
 void clear();
 bool empty() const;
 // Element access
 const_reference operator[](size_type pos) const;
 reference operator[](size_type pos);
 const_reference at(size_type n) const;
 reference at(size_type n);
 basic_string substr(size_type pos = 0, size_type n = npos) const;
 // Modifiers
 basic_string& operator+=(const basic_string& str);
 basic_string& operator+=(const charT* s);
 basic_string& operator+=(charT c);
 basic_string& append(const basic_string& str);
 basic_string& append(const basic_string& str, size_type pos, size_type n);
 basic_string& append(const charT* s, size_type n);
 basic_string& append(const charT* s);
 basic_string& append(size_type n, charT c);
 template<class InputIter>
 basic_string& append(InputIter first, InputIter last);
 void push_back(charT c);
 basic_string& assign(const basic_string& str);
 basic_string& assign(const basic_string& str, size_type pos, size_type n);
 basic_string& assign(const charT* s, size_type n);
 basic_string& assign(const charT* s);
 basic_string& assign(size_type n, charT c);
 template<class InputIter>
 basic_string& assign(InputIter first, InputIter last);
 basic_string& insert(size_type pos1, const basic_string& str);
 basic_string& insert(size_type pos1, const basic_string& str, size_type pos2,
 size_type n);
 basic_string& insert(size_type pos, const charT* s, size_type n);
 basic_string& insert(size_type pos, const charT* s);
 basic_string& insert(size_type pos, size_type n, charT c);
 iterator insert(iterator p, charT c);
 void insert(iterator p, size_type n, charT c);
 template<class InputIter>
 void insert(iterator p, InputIter first, InputIter last);
 basic_string& erase(size_type pos = 0, size_type n = npos);
 iterator erase(iterator position);
 iterator erase(iterator first, iterator last);
 basic_string& replace(size_type pos1, size_type n1, const basic_string& str);
 basic_string& replace(size_type pos1, size_type n1, const basic_string& str,
 size_type pos2, size_type n2);
 basic_string& replace(size_type pos, size_type n1, const charT* s,
 size_type n2);
 basic_string& replace(size_type pos, size_type n1, const charT* s);
 basic_string& replace(size_type pos, size_type n1, size_type n2, charT c);
 basic_string& replace(iterator i1, iterator i2, const basic_string& str);
 basic_string& replace(iterator i1, iterator i2, const charT* s, size_type n);
 basic_string& replace(iterator i1, iterator i2, const charT* s);
 basic_string& replace(iterator i1, iterator i2, size_type n, charT c);
 template<class InputIterator>
 basic_string& replace(iterator i1, iterator i2, InputIterator j1,
 InputIterator j2);
 size_type copy(charT* s, size_type n, size_type pos = 0) const;
 void swap(basic_string& str);
 // String operations
 const charT* c_str() const;
 const charT* data() const;
 allocator_type get_allocator() const;
 // Searching
 size_type find(const basic_string& str, size_type pos = 0) const;
 size_type find(const charT* s, size_type pos, size_type n) const;
 size_type find(const charT* s, size_type pos = 0) const;
 size_type find(charT c, size_type pos = 0) const;
 size_type rfind(const basic_string& str, size_type pos = npos) const;
 size_type rfind(const charT* s, size_type pos, size_type n) const;
 size_type rfind(const charT* s, size_type pos=npos) const;
 size_type rfind(charT c, size_type pos = npos) const;
 size_type find_first_of(const basic_string& str, size_type pos = 0) const;
 size_type find_first_of(const charT* s, size_type pos, size_type n) const;
 size_type find_first_of(const charT* s, size_type pos = 0) const;
 size_type find_first_of(charT c, size_type pos = 0) const;
 size_type find_last_of(const basic_string& str, size_type pos = npos) const;
 size_type find_last_of(const charT* s, size_type pos, size_type n) const;
 size_type find_last_of(const charT* s, size_type pos = npos) const;
 size_type find_last_of(charT c, size_type pos=npos) const;
 size_type find_first_not_of(const basic_string& str, size_type pos = 0) const;
 size_type find_first_not_of(const charT* s, size_type pos, size_type n) const;
 size_type find_first_not_of(const charT* s, size_type pos = 0) const;
 size_type find_first_not_of(charT c, size_type pos = 0) const;
 size_type find_last_not_of(const basic_string& str, size_type pos = npos)
 const;
 size_type find_last_not_of(const charT* s, size_type pos, size_type n) const;
 size_type find_last_not_of(const charT* s, size_type pos = npos) const;
 size_type find_last_not_of(charT c, size_type pos = npos) const;
 // Comparisons
 int compare(const basic_string& str) const;
 int compare(size_type pos1, size_type n1, const basic_string& str) const;
 int compare(size_type pos1, size_type n1, const basic_string& str,
 size_type pos2, size_type n2) const;
 int compare(const charT* s) const;
 int compare(size_type pos1, size_type n1, const charT* s) const;
 int compare(size_type pos1, size_type n1, const charT* s, size_type n2)
 const;
};
The basic_string class
 template is the base for the string and wstring types. A string object holds a sequence, or string,
 of characters and provides a number of useful member functions for
 searching and modifying the string. You can also work with C-style,
 null-terminated character strings as arguments to basic_string members, including
 constructors. A basic_string
 object keeps track of an explicit length instead of using the C
 convention of null-terminated character arrays. The string and wstring types are therefore much easier to
 use and offer greater safety (see the at member function), while still offering
 ease-of-use with many functions that take C-style strings as
 arguments.
If you need a sequence of characters that you don't need to
 treat as a character string, you can use vector<char> or vector<wchar_t>, but in most cases
 you will probably find string or
 wstring to be more convenient.
 You can usually use a string or
 wstring as a container that
 supports random access iterators, so you can use strings with the
 standard algorithms.
Many of the member functions can throw exceptions. Specifying
 an index out of range often throws out_of_range. An attempt to construct a
 string or modify a string so its length exceeds max_string() throws length_error. The basic_string class uses an allocator
 object for memory allocation, which can throw an exception (such as
 bad_alloc) almost any time the
 string is modified.
Iterators, pointers, and references to elements of a string
 become invalid in the following situations:
	The string is the target of the swap member function or an argument to
 the swap function
 template.

	The string is an argument to operator>> or getline.

	You call the data or
 c_str member function.

	You call any non-const
 member function except operator[], at, begin, end, rbegin, or rend.

	You call the non-const
 version of operator[],
 at, begin, end, rbegin, or rend after any of the above
 situations, except after calling a form of insert or erase that returns an iterator (so the
 returned iterator remains valid).

The following are the members of basic_string. Several small examples
 appear throughout this section, illustrating the use of some of the
 more complex member functions. Some of the functions are described
 in terms of temporary string objects or calls to other member
 functions. The actual implementation might be different, provided
 the behavior is the same.
	explicit basic_string
 (const Alloc& a =
 Alloc())
	Constructs an empty string.

	 basic_string (const basic_string& str)
	Constructs a string that is a copy of str, with Alloc() as the allocator.

	 basic_string (const basic_string& str, size_type pos, size_type n
 = npos, const Alloc& a =
 Alloc())
	Copies a substring of str, starting at pos. If pos is out of range (that is,
 pos > str.size()), out_of_range is thrown. The number
 of characters copied is n
 or the number of characters left in the string (str.size() - pos), whichever is smaller.

	 basic_string (const charT* s, size_type n, const Alloc& a =
 Alloc())
	Copies the first n
 characters from s.

	 basic_string (const charT* s, const Alloc& a =
 Alloc())
	Copies a null-terminated character array, s. More precisely, this constructor
 copies traits::length(s)
 characters from s.

	 basic_string (size_type n,
 charT c, const Alloc& a =
 Alloc())
	Initializes the string with n copies of the character c.

	template<class
 InputIterator>
 basic_string (InputIterator begin, InputIterator end, const Alloc& a =
 Alloc())
	The constructor depends on the type of InputIterator:
	For any input iterator, the string is initialized by
 copying the contents of the range [begin, end).

	If InputIterator
 is an integral type, the string is initialized with
 static_cast<size_type>(begin)
 copies of the character static_cast<value_type>(end).

	basic_string&
 append
 (const
 basic_string& str, size_type pos, size_type n)
	Appends characters to the end of the string. If pos > str.size(), out_of_range is thrown. Otherwise,
 up to n characters are
 copied from str, starting
 at position pos. The return
 value is *this. See also
 operator+= later in this
 section.

	basic_string&
 append
 (const basic_string& str)
	Returns append(str,
 0, npos).

	basic_string&
 append
 (const charT* s, size_type n)
basic_string&
 append
 (const charT* s)
basic_string&
 append
 (size_type
 n, charT c)
template<class
 InputIter>
basic_string&
 append
 (InputIter
 first, InputIter last)
	Constructs a temporary string
 str, passing the arguments to the
 constructor, and returns append(str).

	basic_string&
 assign
 (const
 basic_string& str, size_type pos, size_type n)
	Erases the current contents of the string and replaces
 them with the substring of str that starts at pos and extends for up to n characters. The return value is
 *this. See also operator= later in this
 section.

	basic_string&
 assign
 (const basic_string& str)
	Returns assign(str,
 0, npos).

	basic_string&
 assign
 (const charT* s, size_type n)
basic_string&
 assign
 (const charT*
 s)
basic_string&
 assign
 (size_type
 n, charT c)
template<class
 InputIter>
basic_string&
 assign
 (InputIter
 first, InputIter last)
	Constructs a temporary string
 str, passing the arguments to the
 constructor, and returns assign(str).

	const_reference
 at
 (size_type n)
 const
reference at
 (size_type n)
	Returns the character at position n. If n >= size(
), out_of_range
 is thrown. See also operator[] later in this
 section.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first character
 of the string.

	const charT* c_str () const
	Returns a pointer to a null-terminated (C-style)
 character array that contains the same characters as the
 string followed by a terminating null character. The pointer
 becomes invalid after calling any non-const member function of the string.
 The typical use of c_str is
 to interface with C functions that require a null-terminated
 character string:
std::printf(fmtstr.c_str(), value);
See also the data
 member function.

	size_type capacity
 () const
	Returns the number of characters allocated for use by
 the string. The string grows as needed; capacity tells you how much you can
 put in the string before it must grow again.

	void clear
 ()
	Erases all the characters in the string.

	int compare
 (const
 basic_string& str) const
	Returns traits::compare(data(
), str.data(),
 len), in which
 len is the smaller of size() and str.size().

	int compare
 (size_type
 pos1, size_type n1, const basic_string& str) const
	Constructs a temporary string
 tmp (*this, pos1, n1), and returns
 tmp .compare(str).

	int compare
 (const charT* s) const
	Constructs a temporary string
 tmp (s), and returns this->compare(tmp).

	int compare
 (size_type
 pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2) const
int compare
 (size_type
 pos1, size_type n1, const charT* s) const
int compare
 (size_type
 pos1, size_type n1, const charT* s, size_type n2) const
	Constructs two temporary strings
 tmp1 (*this, pos1, n1) and
 tmp2:
 tmp2 (str, pos2, n2), tmp2
 (s), or
 tmp2 (s, n2). The function returns
 tmp1 .compare(tmp2).

	size_type copy
 (charT*
 dst, size_type n, size_type pos = 0) const
	Copies up to n
 characters from the string, starting at position pos, to the character array dst. If pos > size(
), out_of_range
 is thrown. The number of characters copied,
 len, is the smaller of n and size(
) - pos. The return value is
 len.

	const charT* data () const
	Returns a pointer to a character array that has the same
 character contents as the string. Note that the character
 array is not null-terminated. If size() == 0, data returns a valid, non-null
 pointer. Do not modify the contents of the data string. The pointer becomes
 invalid after calling any non-const member function of the string.
 See also the c_str member
 function.

	bool empty
 () const
	Returns true if the
 string is empty (size()
 == 0).

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one position past the
 end of the string.

	basic_string&
 erase
 (size_type
 pos = 0, size_type n =
 npos)
	Erases characters from the string, starting at position
 pos and erasing n or size(
) - pos characters, whichever is
 smaller. If pos > size(
), out_of_range
 is thrown. The return value is *this. For example:
std::string s("hello, world");
s.erase(9, 1) == "hello, wold"
s.erase(5) == "hello"

	iterator erase
 (iterator
 position)
	Erases the character at position and returns an iterator
 that points to the next character (if there is one) or
 end().

	iterator erase
 (iterator first, iterator
 last)
	Erases characters in the range [first, last) and returns an iterator that
 points to the character that last pointed to (prior to the
 erasure) or end().

	size_type find
 (const
 basic_string& str, size_type pos =
 0) const
size_type find
 (const charT* s, size_type pos, size_type n) const
size_type find
 (const charT* s, size_type pos =
 0) const
size_type find
 (charT c, size_type pos = 0)
 const
	Returns the smallest index of a string or character, or
 npos if the search fails.
 The search starts at position pos. The string to search for is
 str or a temporary string
 tmp constructed as
 tmp (s, n), tmp
 (s), or
 tmp (1, c). In other words, find returns the smallest
 i such that
 i >= pos, i
 + str.size() <= size(
), and at(i
 +
 j) == str.at(j)
 for all j in [0, str.size()). For example:
string("hello").find('l') == 2
string("hello").find("lo", 2) == 3
string("hello").find("low") == string::npos
See also rfind later
 in this section.

	size_type find_first_not_of
 (const
 basic_string& str, size_type pos = 0) const
	Finds the first character at or after position pos that does not appear in str, or npos if every character appears in
 str. For example:
string("hello").find_first_not_of("aeiou") == 0
string("hello").find_first_not_of("aeiou", 1) == 2
string("hello").find_first_not_of("aeiou", 6) == string::npos

	size_type find_first_not_of (charT c, size_type pos = 0) const
size_type find_first_not_of (const charT* s, size_type pos = 0)
 const
size_type find_first_not_of (const charT* s, size_type pos, size_type n)
 const
	Constructs a temporary string
 tmp and returns find_first_not_of(tmp, pos), in which
 tmp is constructed as
 tmp (1, c), tmp
 (s), or
 tmp (s, n).

	size_type find_first_of
 (const
 basic_string& str, size_type pos = 0) const
	Finds the first character at or after position pos that appears in str, or npos if no character appears in
 str. For example:
string("hello").find_first_of("aeiou") = 1
string("hello").find_first_of("aeiou", 2) = 4
string("hello").find_first_of("aeiou", 6) = string::npos

	size_type find_first_of
 (charT c, size_type pos = 0)
 const
size_type find_first_of
 (const charT* s, size_type pos = 0) const
size_type find_first_of
 (const charT* s, size_type pos, size_type n) const
	Constructs a temporary string
 tmp and returns find_first_of(tmp, pos), in which
 tmp is constructed as
 tmp (1, c), tmp
 (s), or
 tmp (s, n).

	size_type find_last_not_of
 (const
 basic_string& str,
 size_type pos = npos) const
	Finds the last character at or before position pos that does not appear in str, or npos if every character appears in
 str. For example:
string("hello").find_last_not_of("aeiou") == 3
string("hello").find_last_not_of("aeiou", 1) == 0
string("hello").find_last_not_of("aeiou", 0) == 0

	size_type find_last_not_of
 (charT c, size_type pos = npos)
 const
size_type find_last_not_of
 (const charT* s, size_type pos = npos) const
size_type find_last_not_of
 (const charT* s, size_type pos, size_type n) const
	Constructs a temporary string
 tmp and returns find_last_not_of(tmp, pos), in which
 tmp is constructed as
 tmp (1, c), tmp
 (s), or
 tmp (s, n).

	size_type find_last_of
 (const
 basic_string& str, size_type pos = npos) const
	Finds the last character at or before position pos that appears in str, or npos if no character appears in
 str. For example:
string("hello").find_last_of("aeiou") == 4
string("hello").find_last_of("aeiou", 3) == 1
string("hello").find_last_of("aeiou", 0) == string::npos

	size_type find_last_of
 (charT c, size_type pos = npos) const
size_type find_last_of
 (const charT* s, size_type pos = npos)
 const
size_type find_last_of
 (const charT* s, size_type pos, size_type n)
 const
	Constructs a temporary string
 tmp and returns find_last_of(tmp, pos), in which
 tmp is constructed as
 tmp (1, c), tmp
 (s), or
 tmp (s, n).

	allocator_type
 get_allocator () const
	Returns the string's allocator object.

	basic_string&
 insert
 (size_type
 pos1, const basic_string& str, size_type pos2, size_type n)
	Inserts a substring of str into the string starting at
 position pos1. The
 substring to insert starts at pos2 and extends for up to n characters. If pos1 > size(
) or pos2
 > str.size(), out_of_range is thrown. The number
 of characters inserted is the smaller of n and str.size() - pos2. The return value is *this. For example:
string s("hello");
s.insert(5, ", world") // s == "hello, world"
s.insert(5, "out there", 3, 42) // s == "hello there, world"

	basic_string&
 insert
 (size_type
 pos, const basic_string& str)
basic_string&
 insert
 (size_type
 pos, const charT* s, size_type n)
basic_string&
 insert
 (size_type
 pos, const charT* s)
basic_string&
 insert
 (size_type
 pos, size_type n, charT c)
	Returns insert(pos,
 str, 0, npos), in which the last three
 versions construct a temporary string
 tmp as
 tmp (s, n), tmp
 (s), or
 tmp (n, c), and then returns insert(pos,
 tmp , o,
 npos).

	iterator insert
 (iterator p, charT
 c)
void insert
 (iterator
 p, size_type n, charT c)
template<class
 InputIter>
void insert
 (iterator
 p, InputIter first, InputIter last)
	Inserts text before the character that p points to. The first version
 inserts the character c and
 returns an iterator that points to c, the second version inserts
 n copies of the character
 c, and the third version
 inserts the temporary string constructed from the arguments
 (first, last). If InputIter is an integral type, the
 temporary string contains static_cast<size_type>(first)
 copies of the character static_cast<value_type>(last).

	size_type length
 () const
	Returns size(
).

	size_type max_size
 () const
	Returns the size of the largest possible string.

	const_reference
 operator[] (size_type
 pos) const
reference operator[]
 (size_type
 pos)
	Returns the character at position pos. If pos == size(
), the return value is charT(), that is, a null character.
 The behavior is undefined if pos > size(
).

	basic_string&
 operator= (const
 basic_string& str)
	If *this and str are the same object, the
 assignment operator does nothing and returns *this. If they are different
 objects, the operator replaces the current string contents
 with the contents of str
 and returns *this.

	basic_string&
 operator= (const charT* s)
basic_string&
 operator= (charT c)
	Constructs a temporary string,
 tmp (s) or
 tmp (1, c), and assigns *this = tmp.
 The return value is *this.

	basic_string&
 operator+= (const
 basic_string& str)
basic_string&
 operator+= (const charT* s)
basic_string&
 operator+= (charT c)
	Calls append with the
 same arguments and returns *this.

	void push_back
 (charT
 c)
	Appends c to the end
 of the string. Its existence lets you use basic_string with a back_insert_iterator.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 character of the string.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first character of the string.

	basic_string&
 replace (size_type
 pos1, size_type n1, const basic_string& str, size_type pos2, size_type n2)
	Erases a substring and inserts another string in its
 place. The string to erase starts at pos1 and extends for up to n1 characters (the smaller of
 n1 and size() - pos1). The string to insert is a
 substring of str, starting
 at pos2 and extending for
 up to n2 characters (the
 smaller of n2 and str.size() - pos2). The replacement string is
 inserted at pos1. If
 pos1 > size(
) or pos2
 > str.size(), out_of_range is thrown. The return
 value is *this.

	basic_string&
 replace (size_type pos, size_type n1, const basic_string& str)
basic_string&
 replace (size_type pos, size_type n1, const charT* str)
basic_string&
 replace (size_type pos, size_type n1, const charT* s, size_type n2)
basic_string&
 replace (size_type pos, size_type n1, size_type n2, charT c)
	Returns replace(pos,
 n1,
 tmp, 0, npos), in which
 tmp is a temporary string
 constructed as tmp (str),
 tmp (s, n2), or
 tmp (n2, c). For example:
std::string s("hello");
s.replace(1, 4, "appy") s=="happy"
s.replace(5, 0, "your birthday !", 4, 10) s=="happy birthday"
s.replace(1, 1, 1, 'i') s=="hippy birthday"

	basic_string&
 replace (iterator first, iterator last, const basic_string& str)
	Erases the text in the range [first, last) and inserts str at the position first pointed to. The return value
 is *this.

	basic_string&
 replace (iterator first, iterator last, const charT* s, size_type n)
basic_string&
 replace (iterator first, iterator last, const charT* s)
basic_string&
 replace (iterator first, iterator last, size_type n, charT c)
template<class
 InputIterator>
basic_string&
 replace (iterator first, iterator last, InputIterator i1, InputIterator i2)
	Returns replace(first, last, tmp
), in which
 tmp is a temporary string
 constructed as tmp (s, n), tmp
 (s),
 tmp (n, c), or
 tmp (i1, i2).

	void reserve
 (size_type res_arg =
 0)
	Ensures that the capacity(
) is at least as large as res_arg. Call reserve to avoid the need to
 reallocate the string data repeatedly when you know the string
 will grow by small increments to a large size. Note that
 size() does not
 change.

	void resize
 (size_type n, charT
 c)
void resize
 (size_type
 n)
	Changes the size of the string to n characters. If n <= size(
), the new string has the first n characters of the original string.
 If n > size(
), the new string has n - size(
) copies of c
 appended to the end. The second version returns resize(n, charT()).

	size_type rfind
 (const
 basic_string& str, size_type pos = npos) const
size_type rfind
 (const charT* s, size_type pos, size_type n) const
size_type rfind
 (const charT* s, size_type pos = npos) const
size_type rfind
 (charT c, size_type pos = npos) const
	Returns the largest index at or before pos of a string or character or
 npos if the search fails.
 The string to search for is str or a temporary string
 tmp constructed as
 tmp (s, n), tmp
 (s), or
 tmp (1, c). In other words, rfind returns the largest
 i such that
 i <= pos, i
 + str.size() <= size(
), and at(i
 +
 j) == str.at(j)
 for all j in [0, str.size()). (See also find, earlier in this section.) For
 example:
string("hello").rfind('l') == 3
string("hello").rfind("lo", 2) == string::npos
string("hello").rfind("low") == string::npos

	size_type size
 () const
	Returns the number of characters (not bytes) in the
 string.

	basic_string substr
 (size_type
 pos = 0, size_type n =
 npos) const
	Returns a substring that starts at position pos and extends for up to n characters (the smaller of
 n and size() - pos). If pos > size(
), out_of_range
 is thrown.

	void swap
 (basic_string&
 str)
	Exchanges string contents with str in constant time.

See Also
char_traits class
 template, <sstream> , <vector>

Name
char_traits class template — Base class for character traits

Synopsis
template<typename charT> struct char_traits;
The char_traits template
 describes a character type and provides basic functions for
 comparing, converting, and copying character values and arrays. (See
 the char_traits<char> and
 char_traits<wchar_t>
 specializations later in this section for details.) If you create a
 custom character type, you should specialize char_traits<> or define your own
 traits class, which you can provide to basic_string and other templates as the
 traits template parameter. Your
 traits class should define the same members that char_traits<char> defines. See Chapter 8 for an example.

See Also
char_traits<char>
 class, char_traits<wchar_t>
 class

Name
char_traits<char> class — Character traits of char type

Synopsis
template<> struct char_traits<char> {
 typedef char char_type;
 typedef int int_type;
 typedef streamoff off_type;
 typedef streampos pos_type;
 typedef mbstate_t state_type;

 static void assign(char_type& dst, const char_type& src);
 static char_type* assign(char_type* dst, size_t n, const char_type& c);
 static bool eq(const char_type& c1, const char_type& c2);
 static bool lt(const char_type& c1, const char_type& c2);
 static size_t length(const char_type* str);
 static int compare(const char_type* s1, const char_type* s2, size_t n);
 static const char_type* find(const char_type* str, size_t n,
 const char_type& c);
 static char_type* copy(char_type* dst, char_type* src, size_t n);
 static char_type* move(char_type* dst, char_type* src, size_t n);
 static bool eq_int_type(const int_type& i1, const int_type& i2);
 static int_type eof();
 static int_type not_eof(const int_type& i);
 static char_type to_char_type(const int_type& i);
 static int_type to_int_type(const char_type& c);
};
[image: image with no caption]

The char_traits<char>
 class specializes char_traits for
 narrow characters. The streamoff
 type is implementation-defined. The streampos type is defined as fpos<mbstate_t> in <iosfwd>. The character traits are
 defined for the type char and
 have the same meaning in all locales. The other types are
 self-explanatory. The following are the member functions:
	static void assign (char_type& dst,
 const char_type& src)
	Assigns dst = src.

	static char_type*
 assign (char_type* dst, size_t n,
 const char_type& c)
	Fills dst with
 n copies of c, that is, dst[0] through dst[n-1] = c.

	static int compare (const
 char_type* s1, const char_type* s2, size_t
 n)
	Compares the first n
 characters of the arrays s1
 and s2, returning an
 integer result:
	0 if eq(s1[
 i], s2[i
]) is true for all
 i in [0, n)

	Negative if eq(s1[
 i], s2[i
]) is true for all
 i in [0,
 k), and lt(s1[
 k], s2[k
]) is true for some
 k in [0, n)

	Positive otherwise

	static char_type*
 copy (char_type*
 dst, char_type* src, size_t n)
	Copies n characters
 from src to dst. The arrays src and dst must not overlap.

	static int_type
 eof ()
	Returns the end-of-file marker, EOF (in <cstdio>). The end-of-file
 marker is different from all characters, that is, for all
 character values c, eq_int_type(eof(), to_int_type(
 c)) is false.

	static bool eq (const char_type& c1,
 const char_type& c2)
	Returns c1 == c2.

	static bool eq_int_type (const int_type& i1,
 const int_type& i2)
	Returns true if
 i1 is the same as i2. Specifically, for all character
 values c1 and
 c2, eq(c1,
 c2) has the same value as eq_int_type(to_int_type(
 c1), to_int_type(
 c2)). Also, eof() is always equal to eof() and not equal to to_int_type(c) for any character
 c. The value is unspecified for any
 other integer values.

	static const char_type*
 find (const char_type* str,
 size_t n, const
 char_type& c)
	Returns a pointer p to the
 first character in str such
 that eq(*
 p, c) is true. It returns a null
 pointer if there is no such character in the first n characters of str.

	static size_t length (const char_type*
 str)
	Returns the length of the null-terminated character
 string str, that is, it
 returns the smallest i such that
 eq(str[
 i], charT(
)) is true.

	static bool lt (const char_type&
 c1, const char_type& c2)
	Returns c1 < c2.

	static char_type*
 move (char_type*
 dst, char_type*
 src, size_t n)
	Copies n characters
 from src to dst. The arrays src and dst are allowed to overlap.

	static int_type
 not_eof
 (const int_type&
 i)
	Returns a value that is guaranteed to be different from
 eof(). If i is not eof(), i is returned. Otherwise, some other
 value is returned.

	static char_type
 to_char_type
 (const int_type&
 i)
	Converts i to its
 equivalent character value (for which eq_int_type(i, to_int_type(to_char_type(i))) is
 true). If i is not
 equivalent to any character, the behavior is
 unspecified.

	static int_type
 to_int_type
 (const char_type&
 c)
	Converts c to its
 equivalent integer representation.

See Also
char_traits<wchar_t>
 class, mbstate_t in <cwchar> , fpos in <ios> , <iosfwd>

Name
char_traits<wchar_t> class — Character traits of wchar_t type

Synopsis
template<> struct char_traits<wchar_t> {
 typedef wchar_t char_type;
 typedef wint_t int_type;
 typedef streamoff off_type;
 typedef wstreampos pos_type;
 typedef mbstate_t state_type;

 static void assign(char_type& dst, const char_type& src);
 static char_type* assign(char_type* dst, size_t n, const char_type& c);
 static bool eq(const char_type& c1, const char_type& c2);
 static bool lt(const char_type& c1, const char_type& c2);
 static size_t length(const char_type* str);
 static int compare(const char_type* s1, const char_type* s2, size_t n);
 static const char_type* find(const char_type* str, size_t n,
 const char_type& c);
 static char_type* copy(char_type* dst, char_type* src, size_t n);
 static char_type* move(char_type* dst, char_type* src, size_t n);
 static bool eq_int_type(const int_type& i1, const int_type& i2);
 static int_type eof();
 static int_type not_eof(const int_type& i);
 static char_type to_char_type(const int_type& i);
 static int_type to_int_type(const char_type& c);
};
The char_traits<wchar_t> class
 specializes char_traits for wide
 characters. The wstreamoff type
 is implementation-defined. The wstreampos type is defined as fpos<mbstate_t> in <iosfwd>. The other types are
 self-explanatory. The character traits are defined for the type
 wchar_t and have the same meaning
 in all locales.
See char_traits<char>
 earlier in this section for a description of the member functions.
 The eof() function returns
 WEOF (in <cwchar>).

See Also
char_traits<char>
 class, mbstate_t in <cwchar> , fpos in <ios> , <iosfwd>

Name
getline function template — Reads a line into a string

Synopsis
template<class charT, class traits, class Allocator>
 basic_istream<charT,traits>& getline(basic_istream<charT,traits>& in,
 basic_string<charT,traits,Allocator>& str,
 charT delim);
// istream& getline(istream& in, string& str, char delim);
template<class charT, class traits, class Allocator>
 basic_istream<charT,traits>& getline(basic_istream<charT,traits>& in,
 basic_string<charT,traits,Allocator>&
 str);
// istream& getline(istream& in, string& str);
The getline function
 template reads a line of text from an input stream into the string
 str. It starts by creating a
 basic_istream::sentry(in,
 true) object. If the sentry
 object evaluates to true,
 getline erases str then reads characters from in and appends them to str until end-of-file is reached or
 delim is read. (The delim character is read from the stream
 but not appended to the string.) Reading also stops if max_size() characters have been stored in
 the string, in which case ios_base::failbit is set. If no characters
 are read from the stream, ios_base::failbit is set. The return value
 is in.
The second form of getline
 uses a newline as the delimiter, that is, it returns getline(in, str, in.widen('\n')).

See Also
operator>> function
 template, basic_istream in
 <istream> , basic_istream::sentry in <istream>

Name
operator+ function template — Concatenates two strings

Synopsis
template<class charT, class traits, class Allocator>
 basic_string<charT,traits,Allocator> operator+(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// string& operator+(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 basic_string<charT,traits,Allocator> operator+(const charT* a,
 const basic_string<charT,traits,Allocator>& b);
// string& operator+(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 basic_string<charT,traits,Allocator> operator+(
 const basic_string<charT,traits,Allocator>& a, const charT* b);
// string& operator+(const string& a, const char* b);
template<class charT, class traits, class Allocator>
 basic_string<charT,traits,Allocator> operator+(
 const basic_string<charT,traits,Allocator>& a, charT b);
// string& operator+(const string& a, char b);
The + operator concatenates
 two strings and returns the result. It constructs a new string as a
 copy of a, then calls a.append(b) and returns the copy.

See Also
basic_string class
 template

Name
operator== function template — Compares strings for equality

Synopsis
template<class charT, class traits, class Allocator>
 bool operator==(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// bool operator==(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator==(const charT* a, const basic_string<charT,traits,Allocator>& b);
// bool operator==(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator==(const basic_string<charT,traits,Allocator>& a, const charT* b);
// bool operator==(const string& a, conat char* b);
The == operator compares
 two strings for equality or compares a string and a null-terminated
 character array. It returns a.compare(b) == 0,
 converting a or b from a character array to a string, as
 needed.

See Also
basic_string class
 template

Name
operator!= function template — Compares strings for inequality

Synopsis
template<class charT, class traits, class Allocator>
 bool operator!=(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// bool operator!=(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator!=(const charT* a, const basic_string<charT,traits,Allocator>& b);
// bool operator!=(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator!=(const basic_string<charT,traits,Allocator>& a, const charT* b);
// bool operator!=(const string& a, conat char* b);
The != operator compares
 two strings for inequality or compares a string and a
 null-terminated character array. It returns !(a ==
 b).

See Also
basic_string class
 template

Name
operator< function template — Compares strings for less-than

Synopsis
template<class charT, class traits, class Allocator>
 bool operator<(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// bool operator<(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator<(const charT* a, const basic_string<charT,traits,Allocator>& b);
// bool operator<(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator<(const basic_string<charT,traits,Allocator>& a, const charT* b);
// bool operator<(const string& a, conat char* b);
The < operator compares
 two strings or compares a string and a null-terminated character
 array. It returns a.compare(b)
 < 0, converting a or b
 from a character array to a string, as needed.

See Also
basic_string class
 template

Name
operator<= function template — Compares strings for less-than-or-equal

Synopsis
template<class charT, class traits, class Allocator>
 bool operator<=(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// bool operator<=(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator<=(const charT* a, const basic_string<charT,traits,Allocator>& b);
// bool operator<=(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator<=(const basic_string<charT,traits,Allocator>& a, const charT* b);
// bool operator<=(const string& a, conat char* b);
The <= operator compares
 two strings or compares a string and a null-terminated character
 array. It returns a.compare(b)
 <= 0, converting a or b
 from a character array to a string, as needed.

See Also
basic_string class
 template,

Name
operator> function template — Compares strings for greater-than

Synopsis
template<class charT, class traits, class Allocator>
 bool operator>(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// bool operator>(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator>(const charT* a, const basic_string<charT,traits,Allocator>& b);
// bool operator>(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator>(const basic_string<charT,traits,Allocator>& a, const charT* b);
// bool operator>(const string& a, conat char* b);
The > operator compares
 two strings or compares a string and a null-terminated character
 array. It returns a.compare(b)
 > 0, converting a or b
 from a character array to a string, as needed.

See Also
basic_string class
 template

Name
operator>= function template — Compares strings for greater-than-or-equal

Synopsis
template<class charT, class traits, class Allocator>
 bool operator>=(
 const basic_string<charT,traits,Allocator>& a,
 const basic_string<charT,traits,Allocator>& b);
// bool operator>=(const string& a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator>=(const charT* a, const basic_string<charT,traits,Allocator>& b);
// bool operator>=(const char* a, const string& b);
template<class charT, class traits, class Allocator>
 bool operator>=(const basic_string<charT,traits,Allocator>& a, const charT* b);
// bool operator>=(const string& a, conat char* b);
The >= operator compares
 two strings or compares a string and a null-terminated character
 array. It returns a.compare(b)
 >= 0, converting a or b
 from a character array to a string, as needed.

See Also
basic_string class
 template

Name
operator<< function template — Writes a string to an output stream

Synopsis
template<class charT, class traits, class Allocator>
 basic_ostream<charT, traits>& operator<<(
 basic_ostream<charT, traits>& out,
 const basic_string<charT,traits,Allocator>& str);
// ostream& operator<<(ostream& out, const string& str);
The << operator
 writes the string str to out. Like any formatted output function,
 it first creates a sentry object, and if the sentry evaluates to
 true, it writes the string
 contents by calling out.rdbuf(
)->sputn. If str.size(
) < out.width(), fill characters are added to
 achieve the desired width. If sputn fails, ios_base::failbit is set.

See Also
ios_base in <ios> , basic_ostream in <ostream> , basic_ostream::sentry in <ostream>

Name
operator>> function template — Reads a string from an input stream

Synopsis
template<class charT, class traits, class Allocator>
 basic_istream<charT,traits>& operator>>(
 basic_istream<charT,traits>& in,
 basic_string<charT,traits,Allocator>& str);
// istream& operator>>(istream& in, string& str);
The >> operator reads
 a string from in and stores the
 string in str. Like any other
 formatted input operator, it first creates a sentry object basic_istream::sentry(in), and if the
 sentry evaluates to true, it
 erases str and then reads
 characters from in and appends
 the characters to str. If
 in.width() is greater than 0, no
 more than in.width() characters
 are read from in; otherwise, up
 to max_size() characters are
 read. Reading also stops at end-of-file or when reading a whitespace
 character (isspace is true for
 locale in.getloc()). The
 whitespace character is left in the input stream. The return value
 is in.

See Also
getline function
 template, basic_istream in
 <istream> , basic_istream::sentry in <istream>

Name
string class — Narrow character string class

Synopsis
typedef basic_string<char> string;
The string class
 specializes basic_string for type
 char.

See Also
basic_string class
 template, wstring
 class

Name
swap function template — Swaps two strings

Synopsis
template<class charT, class traits, class Allocator>
 void swap(basic_string<charT,traits,Allocator>& a,
 basic_string<charT,traits,Allocator>& b);
// void swap(string& a, string& b);
The swap function template
 specialization is equivalent to calling a.swap(b).

See Also
swap in <algorithm>

Name
wstring class — Wide character string class

Synopsis
typedef basic_string<wchar_t> wstring;
The wstring class
 specializes basic_string for type
 wchar_t.

See Also
basic_string class
 template, string class

<strstream>

The <strstream>
 header declares several classes for reading from
 character arrays and writing to character arrays in the same manner as
 reading from and writing to files.
This header and its classes are deprecated in the standard,
 meaning they might disappear from a future version of the standard.
 Instead, you are encouraged to use the <sstream> header and its class
 templates. Nonetheless, the <strstream> classes have their uses;
 when you are dealing exclusively with narrow characters, and are using
 character arrays instead of string objects, these classes sometimes
 offer better performance than their <sstream> counterparts.
See Chapter 10 for a general
 discussion of I/O, and the <istream> and <ostream> sections in this chapter for
 information about the base classes from which the strstream classes derive. Refer to the
 <streambuf> section in this
 chapter for information about the streambuf class.

Name
istrstream class — Input character array streams

Synopsis
class istrstream: public istream
{
public:
 explicit istrstream(const char* str);
 explicit istrstream(char* str);
 istrstream(const char* str, streamsize n);
 istrstream(char* str, streamsize n);

 strstreanbuf* rdbuf() const;
 char* str();
};
The istrstream class
 represents an input string stream. To construct an istrstream, pass a character array (with
 an optional size). You can then read from the string stream just as
 you would from any other input stream.
The following are the methods of istrstream:
	explicit istrstream
 (const char*
 str)
explicit istrstream
 (char*
 str)
	Initializes an input string stream by constructing an
 internal stream buffer as strstreambuf(str, 0) and passing the address of the
 stream buffer to the base-class constructor for istream.

	explicit istrstream
 (const char* str,
 streamsize n)
explicit istrstream
 (char* str, streamsize
 n)
	Initializes an input string stream by constructing an
 internal stream buffer as strstreambuf(str, n) and passing the address of the
 stream buffer to the base-class constructor for istream.

	strstreambuf* rdbuf
 () const
	Returns a pointer to the internal strstreambuf object.

	char* str
 ()
	Returns the internal string, rdbuf()->str().

See Also
ostrstream class,
 strstream class, strstreambuf class, istream in <istream> , istringstream in <sstream>

Name
ostrstream class — Output character array streams

Synopsis
class ostrstream: public ostream
{
public:
 ostrstream();
 ostrstream(char* str, int n, ios_base::openmode mode = ios_base::out);

 strstreambuf* rdbuf() const;
 void freeze(bool flag = true);
 char* str();
 int pcount() const;
};
The ostrstream class
 represents an output string stream. You can provide a character
 array, and the stream contents are written to that array. Another
 typical usage is to construct an ostrstream with no argument and let the
 string stream allocate the string as you write to the stream. Then
 call str() to obtain the
 resulting character array. Once you call str(), the stream is
 frozen and cannot be modified. The pointer
 returned from str() remains
 valid until the ostrstream object
 is destroyed or until you thaw the stream to
 allow writing again.
The following are the methods of ostrstream:
	 ostrstream ()
	Initializes an empty output string stream by
 constructing an internal strstreambuf object and passing the
 address of the string buffer to the base-class constructor for
 ostream.

	 ostrstream (char* str, int n, ios_base::openmode
 mode = ios_base::out)
	Initializes a string stream with str as the initial string contents
 by constructing an internal strstreambuf object and passing the
 address of the buffer to the base-class constructor for
 ostream. If the ios_base::app bit is set in mode, the buffer is constructed like
 this:
strstreambuf(str, n, str + std::strlen(str));
If the ios_base::app
 bit is clear in mode, the
 buffer is constructed like this:
strstreambuf(str, n, str);

	void freeze
 (bool flag =
 true)
	Freezes or thaws the buffer by calling rdbuf()->freeze(flag).

	strstreambuf* rdbuf
 () const
	Returns a pointer to the internal strstreambuf object.

	char* str
 ()
	Returns a pointer to the buffer's character array, that
 is, rdbuf()->str(
).

	int pcount
 ()
 const
	Returns the number of bytes in the output buffer by
 calling rdbuf()->pcount(
).

See Also
istrstream class,
 strstream class, strstreambuf class, ostream in <ostream> , ostringstream in <sstream>

Name
strstream class — Input and output character array streams

Synopsis
class strstream: public iostream
{
public:
 typedef char char_type;
 typedef typename char_traits<char>::int_type int_type;
 typedef typename char_traits<char>::pos_type pos_type;
 typedef typename char_traits<char>::off_type off_type;

 strstream();
 strstream(char* s, int n,
 ios_base::openmode mode = ios_base::in|ios_base::out);
 virtual ~strstream();

 strstreambuf* rdbuf() const;
 void freeze(bool freezefl = true);
 int pcount() const;
 char* str();
};
The strstream class is a
 stream class that performs input and output to a character array.
 You can start with an empty string and write to the stream, or start
 with a string and read from the stream. You can switch between
 reading and writing at any time. If you use the default constructor
 and write to the stream, the stream buffer grows as needed. Then you
 can call str() to obtain the
 resulting character array. Once you call str(), the stream is frozen and cannot be
 modified. The pointer returned from str(
) remains valid until the ostrstream object is destroyed or until
 you thaw the stream to allow writing again.
The following are the methods of strstream:
	 strstream ()
	Initializes an empty string stream by constructing an
 internal strstreambuf
 object and passing the address of the string buffer to the
 base-class constructor for iostream.

	 basic_strstream (char* str, int n,
 ios_base::openmode mode = ios_base::in|ios_base::out)
	Initializes a string stream with str as the initial string contents
 by constructing an internal strstreambuf object and passing the
 address of the buffer to the base-class constructor for
 iostream. If the ios_base::app bit is set in mode, the buffer is constructed like
 this:
strstreambuf(str, n, str + std::strlen(str));
If the ios_base::app
 bit is clear in mode, the
 buffer is constructed like this:
strstreambuf(str, n, str);

	void freeze
 (bool flag =
 true)
	Freezes or thaws the buffer by calling rdbuf()->freeze(flag).

	strstreambuf* rdbuf
 () const
	Returns a pointer to the internal strstreambuf object.

	char* str
 ()
	Returns a pointer to the buffer's character array, that
 is, rdbuf()->str(
).

	int pcount
 ()
 const
	Returns the number of bytes in the output buffer by
 calling rdbuf()->pcount(
).

See Also
istrstream class,
 ostrstream class, strstreambuf class, basic_iostream in <istream> , stringstream in <sstream>

Name
strstreambuf class — I/O buffer for character array streams

Synopsis
class strstreambuf : public basic_streambuf<char> {
public:
 explicit strstreambuf(streamsize alsize_arg = 0);
 strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
 strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = 0);
 strstreambuf(const char* gnext_arg, streamsize n);
 strstreambuf(signed char* gnext_arg, streamsize n,
 signed char* pbeg_arg = 0);
 strstreambuf(const signed char* gnext_arg, streamsize n);
 strstreambuf(unsigned char* gnext_arg, streamsize n,
 unsigned char* pbeg_arg = 0);
 strstreambuf(const unsigned char* gnext_arg, streamsize n);
 virtual ~strstreambuf();

 void freeze(bool freezefl = true);
 char* str();
 int pcount();

protected:
 virtual int_type overflow (int_type c = EOF);
 virtual int_type pbackfail(int_type c = EOF);
 virtual int_type underflow();
 virtual pos_type seekoff(off_type off, ios_base::seekdir way,
 ios_base::openmode which = ios_base::in |
 ios_base::out);
 virtual pos_type seekpos(pos_type sp,
 ios_base::openmode which = ios_base::in |
 ios_base::out);
};
The strstreambuf class
 implements a stream buffer for character array streams. An internal
 buffer maintains a single character array with separate positions
 for reading and writing. That is, the buffer has begin, next, and end pointers for reading and separate
 begin, next, and end pointers for writing. The begin pointer points to the start of a
 buffer, and the end pointer
 points to one past the end of the buffer. The next pointer points to the position where
 the next character is to be read or written. Refer to basic_streambuf in <streambuf> for details about buffer
 positions.
A strstreambuf object
 maintains a set of flags, an allocated buffer size, and two function
 pointers for an allocation and deallocation function. If the
 allocation function pointer is null, the new[] operator is used for allocating the
 character array; if the deallocation function pointer is null, the
 delete[] operator is used.
The flags are:
	allocated
	Indicates that the character array has been allocated,
 so the destructor should delete it

	constant
	Indicates that the character array is const, so it cannot be used for
 output

	dynamic
	Indicates that the character array has been dynamically
 allocated and can grow as needed to accommodate output

	frozen
	Indicates that the character array can no longer be
 modified, extended, or freed

The following are the public member functions of strstreambuf:
	explicit strstreambuf
 (streamsize
 alloc_size = 0)
	Saves alloc_size as
 the suggested size of the character array, and sets the
 dynamic flag. The
 allocation and deallocation functions are set to null
 pointers.

	 strstreambuf (void* (*palloc)(size_t), void (*pfree)(void*))
	Sets the dynamic
 flag and saves palloc and
 pfree as the allocation and
 deallocation functions.

	 strstreambuf (char* gnext_arg, streamsize n,
 char* pbeg_arg =
 0)
 strstreambuf (signed char* gnext_arg, streamsize n,
 signed char*
 pbeg_arg = 0)
 strstreambuf (unsigned char* gnext_arg, streamsize n,
 unsigned char*
 pbeg_arg = 0)
	Clears all flags and sets the allocation and
 deallocation functions to null pointers. If pbeg_arg is null, the output
 pointers are null and the input buffer is set to n bytes starting at gnext_arg by calling setg(gnext_arg, gnext_arg, gnext_arg + N). If pbeg_arg is not null, the input
 pointers are set by calling setg(gnext_arg, gnext_arg, pbeg_arg), and the output pointers
 are set by calling setp(pbeg_arg, pbeg_arg + N). N is determined as follows:
	n > 0
	N is n.

	n == 0
	N is strlen(gnext_arg).

	n < 0
	N is INT_MAX.

	 strstreambuf (const char* gnext_arg, streamsize n)
 strstreambuf (const signed char* gnext_arg, streamsize n)
 strstreambuf (const unsigned char* gnext_arg, streamsize n)
	Initializes the buffer pointers in the same manner as
 constructing strstreambuf(const_cast<char*>(gnext_arg),
 n). The only difference is
 that the constant flag is
 set.

	virtual ~strstreambuf
 ()
	The destructor frees the character array if the
 allocated flag is set and
 the frozen flag is
 clear.

	void freeze
 (bool freezefl =
 true)
	Freezes or thaws the character buffer. If the dynamic flag is set, the freeze
 function sets or clears the frozen flag to match the freezefl parameter. If the dynamic flag is clear, freeze() does nothing.

	char* str
 ()
	Returns the internal character buffer by calling
 freeze() and returning
 gbase().

	int pcount
 ()
	Returns the number of output bytes in the buffer. If
 pptr() is null, 0 is returned; otherwise, pptr() -
 pbase() is returned.

The overridden virtual functions are:
	virtual int_type
 overflow (int_type c =
 EOF)
	Attempts to append c
 to the end of the character array as follows:
	If c == EOF, nothing happens and a
 non-end-of-file character is returned to indicate
 success.

	If c != EOF, and a write position is
 available, c is
 appended to the character array by calling sputc(c).

	If a write position is not available, the dynamic flag is set, and the
 frozen flag is clear,
 then the character array is extended and c is appended to the array. The
 array is extended by allocating a new, larger character
 array; copying the old contents (if any); updating the
 read and write pointers. If the array is successfully
 extended, the allocated flag is set.

	Otherwise, the array cannot be extended, so the
 function fails.

The return value is c
 for success or EOF for
 failure. If c is EOF, a value other than EOF is returned for success.

	virtual int_type
 pbackfail
 (int_type
 c = traits::eof())
	Attempts to push back c onto the input array for reading
 as follows:
	If c == EOF, and a putback position is
 available, gptr() is
 set to gptr() -
 1.

	If c != EOF, a putback position is
 available, and gptr(
)[-1] is equal to c, gptr() is set to gptr() - 1.

	If c != EOF, the constant flag is clear, and a
 putback position is available, gptr() is set to gptr() - 1, and *gptr() is assigned c.

	Otherwise, the character cannot be put back, so the
 function fails.

The return value is c
 for success or EOF for
 failure. If c is EOF, a value other than EOF is returned for success.

	virtual pos_type
 seekoff
 (off_type
 off, ios_base::seekdir
 way, ios_base::openmode
 which = ios_base::in|ios_base::out)
	Sets the stream position. The input position, output
 position, or both can be set, depending on (which & (ios_base::in | ios_base::out)). The following are
 the possible results of this expression:
	os_base::in
	Sets the input position

	os_base::out
	Sets the output position

	ios_base::in
 | ios_base::out, and way is either ios_base::beg or ios_base::end
	Sets input and output positions

	Otherwise
	The function fails and returns pos_type(-1)

The new position is determined by adding the offset
 off to a base position
 given by way, which must be
 one of the following:
	ios_base::beg
	The base position is the at start of the
 stream—that is, off
 is an absolute position.

	ios_base::cur
	The base position is the current stream
 position.

	ios_base::end
	The base position is at the end of the
 stream.

In all cases, a positive offset is toward the end of the
 stream, and a negative offset is toward the start of the
 stream. If the desired position is negative or past the end of
 the string, the function fails and returns pos_type(-1). If the function
 succeeds, it returns the new position.

	virtual pos_type
 seekpos
 (pos_type
 sp, ios_base::openmode
 which = ios_base::in|ios_base::out)
	Sets the stream position to sp. The input position is set if
 which & ios_base::in is nonzero. The output
 position is set if which
 & ios_base::out is nonzero. If
 sp is not a valid position,
 or if neither the input nor the output position is set,
 seekpos fails and pos_type(-1) is returned. The return
 value is sp for success. If
 sp was not returned from a
 prior call to a positioning function (that is, seekoff, seekpos, tellg, or tellp), the results are
 undefined.

	[image:] virtual basic_streambuf<charT,traits>*
 setbu
 f(charT*,
 streamsize)
	Calling setbuf(0,
 0) has no effect. The
 result of any other call to setbuf is
 implementation-defined.

	virtual int_type
 underflow ()
	Gets another character from the input range without
 moving the input pointer. If the stream has a read position,
 the function returns *gptr(
). If there is no read position, but there is a
 non-null write pointer past the end of the input range—that
 is, pptr() > gend(
)—then the read end pointer (gend()) is advanced at least one
 position but still less than or equal to pptr(). The return value is
 EOF for failure or *gnext() for success.

See Also
stringbuf in <sstream> , basic_streambuf in <streambuf>

<typeinfo>

The <typeinfo> header declares the type_info class (for the typeid operator) and two exception classes
 related to type information and casting.

Name
bad_cast class — Exception for dynamic_cast<>

Synopsis
class bad_cast : public exception {
public:
 bad_cast() throw();
 bad_cast(const bad_cast&) throw();
 bad_cast& operator=(const bad_cast&) throw();
 virtual ~bad_cast() throw();
 virtual const char* what() const throw();
};
The dynamic_cast<>
 operator throws bad_cast when the
 cast of a reference fails. See dynamic_cast in Chapter 3 for more
 information.

See Also
dynamic_cast
 operator

Name
bad_typeid class — Exception for null pointer in typeid
 expressions

Synopsis
class bad_typeid : public exception {
public:
 bad_typeid() throw();
 bad_typeid(const bad_typeid&) throw();
 bad_typeid& operator=(const bad_typeid&) throw();
 virtual ~bad_typeid() throw();
 virtual const char* what() const throw();
};
The typeid operator throws
 bad_typeid when it is applied to
 an expression of the form *p, in
 which p is a null pointer. See
 typeid in Chapter 3 for more
 information.

See Also
typeid operator

Name
type_info class — Type information

Synopsis
class type_info {
public:
 virtual ~type_info();
 bool operator==(const type_info& rhs) const;
 bool operator!=(const type_info& rhs) const;
 bool before(const type_info& rhs) const;
 const char* name() const;
private:
 type_info(const type_info& rhs);
 type_info& operator=(const type_info& rhs);
};
[image: image with no caption]

The typeid operator
 (described in Chapter 3)
 returns a static type_info
 object. The type information includes the type's name and a
 collation order, both of which are implementation-defined. An
 implementation might derive classes from type_info to provide additional
 information.
Note that the copy constructor and assignment operators are
 inaccessible, so you must store pointers if you want to use a
 standard container. Example
 13-38 shows how to store type_info pointers in a set, where the order is determined by the
 before member function.

Example
Example 13-38. Storing type information
#include <algorithm>
#include <functional>
#include <iostream>
#include <ostream>
#include <set>
#include <typeinfo>

typedef bool (*type_info_compare) (const std::type_info*, const std::type_info*);

typedef std::set<const std::type_info*, type_info_compare>
 typeset;

// Return true if *a comes before *b (comparison function to store type_info
// pointers in an associative container).
bool type_info_less(const std::type_info* a, const std::type_info* b)
{
 return a->before(*b);
}

// Print a type_info name on a line.
void print(const std::type_info* x)
{
 std::cout << x->name() << '\n';
}

void demo()
{
 // Construct and initialize the set.
 typeset types(&type_info_less);

 types.insert(&typeid(int));
 types.insert(&typeid(char));
 types.insert(&typeid(std::type_info));
 types.insert(&typeid(std::bad_alloc));
 types.insert(&typeid(std::exception));
 . . .
 // Print the types in the set.
 std::for_each(types.begin(), types.end(), print);
}

The members of type_info
 are:
	bool before
 (const
 type_info& rhs) const
	Returns true if this
 type_info object comes
 before rhs in the
 implementation-defined order. The relative order of types can
 vary between programs, even for the same types.

	[image:] const
 char*
 name () const
	Returns the type's name as a null-terminated string,
 which might be a multibyte string. The contents of the name
 string are implementation-defined.

	bool operator==
 (const type_info&
 rhs) const
bool operator!=
 (const type_info&
 rhs) const
	Compares type_info
 objects, which are equal when the types they describe are the
 same.

See Also
typeid operator

<utility>

The <utility> header declares the pair<> class template, which has many
 uses, especially by maps in the <map> header. It also defines the
 rel_ops namespace, which defines
 relational operators in terms of ==
 and <.

Name
make_pair function template — Constructs a pair object

Synopsis
template <typename T1, typename T2>
pair<T1,T2> make_pair(T1 a, T2 b);
Constructs a pair<T1,T2> object and initializes
 it with the values a and b. The advantage of using make_pair over a simple pair<> constructor is that the
 compiler can deduce the types T1
 and T2 from the values a and b. Example 13-39 shows a typical
 use of make_pair.

Example
Example 13-39. Making pairs of objects
std::map<std::string, int> wordcounts;
wordcounts.insert(std::make_pair("hello", 1));

// Functor, suitable for passing to for_each to find minimum and maximum values
// in a range
template<typename T>
class minmax
{
public:
 minmax() : min_(std::numeric_limits<T>::max()),
 max_(std::numeric_limits<T>::min())
 {}
 void operator()(const T& x) {
 if (x < min_) min_ = x;
 if (max_ < x) max_ = x;
 }
 operator std::pair<T,T>() const {
 returnstd::make_pair(min_, max_);
 }
private:
 T min_;
 T max_;
};

int main()
{
 std::vector<int> v;
 // Fill v with data.
 std::pair<int,int> mm =
 std::for_each(v.begin(), v.end(), minmax<int>());
 // Do something with mm.
}

See Also
pair class
 template

Name
operator== function template — Compares for equality

Synopsis
template <typename T1, typename T2>
bool operator==(const pair<T1,T2>& a, const pair<T1,T2>& b);
Returns true if a and b
 are equal, that is, a.first
 == b.first && a.second == b.second.

Name
operator!= function template — Compares for inequality

Synopsis
namespace rel_ops {
 template<typename T>
 bool operator!=(const T& a, const T& b);
}
template <typename T1, typename T2>
bool operator!=(const pair<T1,T2>& a, const pair<T1,T2>& b);
Returns true if a and b
 are not equal, that is, !
 (a == b).

Name
operator< function template — Compares for less-than

Synopsis
template <typename T1, typename T2>
bool operator<(const pair<T1,T2>& a, const pair<T1,T2>& b);
Returns true if a is less than b, assuming that the first member is more significant than
 second. That is, the return value
 is a.first < b.first || (!(b.first < a.first) && a.second < b.second).

Name
operator<= function template — Compares for less-than-or-equal

Synopsis
namespace rel_ops {
 template<typename T>
 bool operator<=(const T& a, const T& b);
}
template <typename T1, typename T2>
bool operator<=(const pair<T1,T2>& a, const pair<T1,T2>& b);
Returns true if a is less than or equal to b, that is, ! (b
 < a).

Name
operator> function template — Compares for greater-than

Synopsis
namespace rel_ops {
 template<typename T>
 bool operator>(const T& a, const T& b);
}
template <typename T1, typename T2>
bool operator>(const pair<T1,T2>& a, const pair<T1,T2>& b);
Returns true if a is greater than b, that is, b <
 a.

Name
operator>= function template — Compares for greater-than-or-equal

Synopsis
namespace rel_ops {
 template<typename T>
 bool operator>=(const T& a, const T& b);
}
template <typename T1, typename T2>
bool operator>=(const pair<T1,T2>& a, const pair<T1,T2>& b);
Returns true if a is greater than or equal to b, that is, ! (a
 < b).

Name
pair class template — Represents a pair of related objects

Synopsis
template <typename T1, typename T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1& x, const T2& y);
 template<typename U, typename V> pair(const pair<U, V> &p);
};
The pair class template
 represents a pair of related objects, in which the relationship is
 defined by the programmer. The most common use of pairs is by the
 map class template, which stores
 pairs of keys and associated objects.
The Boost project has a generalization of pair, called tuple. See Appendix B for information about
 Boost.
The pair constructors are
 straightforward:
	 pair ()
	Initializes first as
 T1() and second as T2()

	 pair (const T1& x, const T2&
 y)
	Initializes first
 with x and second with y

	template<typename
 U, typename V>
 pair (const pair<U, V> &p)
	Initializes first
 with p.first and second with p.second, performing implicit
 conversions as needed

See Also
make_pair function
 template

Name
rel_ops namespace — Relational operators

Synopsis
namespace std {
 namespace rel_ops {
 template<typename T> bool operator!=(const T&, const T&);
 template<typename T> bool operator> (const T&, const T&);
 template<typename T> bool operator<=(const T&, const T&);
 template<typename T> bool operator>=(const T&, const T&);
 }
}
The std::rel_ops namespace
 declares four comparison operators. The four operators are
 implemented in terms of the ==
 and < operators. The rel_ops namespace has limited utility. If
 you are using an unusual class, which has only operator== and operator<, you can add a using namespace std::rel_ops directive to a function that
 makes heavy use of comparison operators and this unusual class. Even
 better, though, is fixing the class declaration to provide all
 necessary comparison operators. If you are writing a class that
 represents an ordered value, you should provide all six operators
 and not force your users to rely on rel_ops. The Boost project has templates
 that you can derive from to fill in all the relational operators,
 based on equality and less-than. See Appendix B for information about
 Boost.

See Also
operator!= function
 template, operator>
 function template, operator<= function template,
 operator>= function template

<valarray>

The <valarray> header declares types and functions for operating on
 arrays of numerical values. The intention is to provide types that could
 be optimized on certain hardware platforms for computationally-intensive
 programs. The consensus in the C++ user community seems to be that the
 standard failed to live up to the intentions. Several other numerical
 libraries, such as Blitz++ and MTL, provide high-performance matrix
 solutions. (See Appendix B for more
 information about Blitz++.) Most programs do not need <valarray>.
A valarray is a class template
 that represents a one-dimensional array of numerical values. The array
 can grow at runtime. All the arithmetic operators and mathematical
 functions are overloaded to work with two valarray arguments or with a valarray and a scalar. You can also work with
 parts of an array: slices, generalized slices, masks, and indirect
 arrays.
A slice is a set of elements of a valarray, with a starting index, a count, and
 a stride (an index interval). A generalized
 slice (gslice)
 lets the stride count and length vary, which can be used to implement
 multidimensional arrays. A mask is a valarray of flags, in which the flags indicate
 whether the corresponding item is part of the masked array. An
 indirect array is an array of
 indices. Each of these concepts is explained in this section.
The most important distinguishing feature of valarrays is that they do not allow aliasing,
 that is, an object cannot be an element of more than one valarray. This enables additional
 optimizations that are not possible on ordinary arrays.
Because valarray is optimized
 for performance, no error-checking is performed. Referring to an index
 out of range or operating on arrays of different size result in
 undefined behavior—the same as with ordinary arrays. Unlike ordinary
 arrays, a convenient size() member
 function helps to ensure that you do not make mistakes.
See the <cmath> header
 for scalar mathematical functions and <numeric> for a few numeric
 algorithms. See <complex> for
 complex numbers.
Throughout this section, examples show valarray objects and subsets printed using
 operator<<, which is shown in
 Example 13-40.
Example 13-40. Printing a valarray or subset array
// Print a valarray on one line, enclosed by curly braces. For example:
// "{ 1 2 3 }".
template<typename T>
void print_valarray(std::ostream& out, const std::valarray<T>& a)
{
 out << '{';
 for (size_t i = 0; i < a.size(); ++i)
 out << ' ' << a[i];
 out << " }";
}

// Print a slice_array, gslice_array, etc. by converting to a valarray.
// Converting a valarray to a valarray is wasteful, but harmless for these simple
// examples.
template<template<typename T> class U, typename T>
std::ostream& operator<<(std::ostream& out, const U<T>& x)
{
 print_valarray(out, static_cast<std::valarray<T> >(x));
 return out;
}

Name
abs function template — Computes absolute value

Synopsis
template<typename T> valarray<T> abs(const valarray<T>& a);
The abs function computes
 the absolute value of each element of a.

See Also
abs in <cmath> , abs in <cstdlib>

Name
acos function template — Computes inverse cosine

Synopsis
template<typename T> valarray<T> acos(const valarray<T>& a);
The acos function computes
 the inverse cosine of each element of a.

See Also
acos in <cmath>

Name
asin function template — Computes inverse sine

Synopsis
template<typename T> valarray<T> asin(const valarray<T>& a);
The asin function computes
 the inverse sine of each element of a.

See Also
asin in <cmath>

Name
atan function template — Computes inverse tangent

Synopsis
template<typename T> valarray<T> atan(const valarray<T>& a);
The atan function computes
 the inverse tangent of each element of a.

See Also
atan2 function
 template, atan in <cmath>

Name
atan2 function template — Computes inverse tangent of two arguments

Synopsis
template<typename T>
valarray<T> atan2(const valarray<T>& b, const valarray<T>& a);
template<typename T> valarray<T> atan2(const valarray<T>& b, const T& x);
template<typename T> valarray<T> atan2(const T& y, const valarray<T>& a);
The atan2 function computes
 the inverse tangent of y/x, in
 which y is a scalar or an element
 of b, and x is a scalar or an element of a.

See Also
atan function
 template, atan2 in <cmath>

Name
cos function template — Computes cosine

Synopsis
template<typename T> valarray<T> cos(const valarray<T>& a);
The cos function computes
 the cosine of each element of a.

See Also
cos in <cmath>

Name
cosh function template — Computes hyperbolic cosine

Synopsis
template<typename T> valarray<T> cosh(const valarray<T>& a);
The cosh function computes
 the hyperbolic cosine of each element of a.

See Also
cosh in <cmath>

Name
exp function template — Computes exponential

Synopsis
template<typename T> valarray<T> exp(const valarray<T>& a);
The exp function computes
 the exponential e x for each element x of a.

See Also
exp in <cmath>

Name
gslice class — Generalized slice

Synopsis
class gslice {
public:
 gslice();
 gslice(size_t start, const valarray<size_t>& size,
 const valarray<size_t>& stride);
 size_t start() const;
 valarray<size_t> size() const;
 valarray<size_t> stride() const;
};
The gslice class describes
 a generalized slice of a valarray. A generalized slice is a subset
 of the elements of a valarray,
 characterized by a starting index and a set of sizes and strides.
 The size and stride arrays must have the same size.
 Each size/stride pair denotes a set of elements at periodic indices.
 The number of elements in the generalized slice is equal to the
 product of the values in the size
 array. The elements are taken from a valarray at each index
 i:
	i = start + Σ k
 j × stride
 j

in which kj takes all the values in
 the range [0, size[j]), and
 j is in the range [0, stride.size(
)). The highest value of j
 varies fastest. With a single element in stride and size, gslice is the same as plain slice. Example 13-41 demonstrates
 gslice more clearly. Pay
 particular attention to the final gslice, where you can see how the indices
 advance, first with a stride of 3 (k1
 ranges from 0 to 2), then with a stride of 2
 (k0 ranges from 0 to 3)

Example
Example 13-41. Generalized slicing of a valarray
// Construct valarray objects from a few integers.
std::valarray<std::size_t> va(std::size_t a0)
{
 std::valarray<std::size_t> result(1);
 result[0] = a0;
 return result;
}

std::valarray<std::size_t> va(std::size_t a0, std::size_t a1)
{
 std::valarray<std::size_t> result(2);
 result[0] = a0;
 result[1] = a1;
 return result;
}

int main()
{
 using namespace std;
 valarray<int> a(24);
 for (size_t i = 0; i < a.size(); ++i)
 a[i] = i;
 cout << a << '\n';
// Prints { 0 1 2 3 4 5 6 7 8 9 10 11 ... 20 21 22 23 }

 cout << a[slice(1, 4, 3)] << '\n';
// Prints { 1 4 7 10 }
 cout << a[gslice(1, va(4), va(3))] << '\n';
// Prints { 1 4 7 10 }

 const valarray<int> const_a(a);
 cout << const_a[gslice(2, va(4, 3), va(2, 3))] << '\n';
// Prints { 2 5 8 4 7 10 6 9 12 8 11 14 }
}

Notice also that the final gslice requires a const valarray. This is because it contains
 degenerate slices, in which an element (e.g., 8) appears more than
 once in the result. The aliasing rules of a valarray prohibit multiple references to
 the same element, so if a const
 valarray were not used, the
 results would be undefined. By using a const valarray, the result is a copy of the
 sliced elements, so the two occurrences of element 8 are separate
 objects, not aliases for the same object, and disaster is
 averted.
A generalized slice is most often used to represent a
 multidimensional array. For example, you can treat a valarray of 24 elements as a 2 × 3 × 4
 matrix. To extract a plane of the matrix, you can use a gslice. Figure 13-27 depicts the
 matrix and the plane. Example
 13-42 shows the code.
[image: A 3-D matrix stored in a valarray]

Figure 13-27. A 3-D matrix stored in a valarray

Example 13-42. Using gslice for multidimensional arrays
// SeeExample 13-41 for the va function.
int main()
{
 using namespace std;
 valarray<int> a(24);
 for (size_t i = 0; i < a.size(); ++i)
 a[i] = i;
 cout << a[gslice(1, va(2, 3), va(12, 4))] << '\n';
// Prints: { 1 5 9 13 17 21 }
}

To create an n-dimensional submatrix of an m-dimensional matrix, the size and stride arrays must both have length
 n. The size array determines the dimensions of
 the result.
Use the subscript operator to take a generalized slice of a
 valarray. You can assign a
 valarray to a generalized slice,
 in which the righthand side of the assignment must have the same
 size as the size of the slice. You can also convert the slice to a
 valarray, which copies only those
 elements of the slice to the new valarray.
When you take a generalized slice of a valarray, the result is a gslice_array object, but the gslice_array type is mostly transparent to
 the programmer. See gslice_array
 later in this section for details.

See Also
gslice_array class
 template, slice
 class

Name
gslice_array class template — Helper class for generalized slices

Synopsis
template <typename T>
class gslice_array {
public:
 typedef T value_type;
 void operator=(const valarray<T>&) const;
 void operator*=(const valarray<T>&) const;
 void operator/=(const valarray<T>&) const;
 void operator%=(const valarray<T>&) const;
 void operator+=(const valarray<T>&) const;
 void operator-=(const valarray<T>&) const;
 void operator^=(const valarray<T>&) const;
 void operator&=(const valarray<T>&) const;
 void operator|=(const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 void operator=(const T&);
 ~gslice_array();
private:
 gslice_array();
 gslice_array(const gslice_array&);
 gslice_array& operator=(const gslice_array&);
};
The gslice_array class
 template represents a subset of the elements of a valarray, called a generalized slice. To
 create a generalized slice, use valarray's operator[] with an argument of type
 gslice.
For some operations, the gslice_array object is transparent. In
 particular, you can assign a valarray to a gslice_array object (provided they have
 the same size), or you can construct a new valarray from a gslice_array.
If you want to perform other operations, such as
 non-assignment arithmetic, you must explicitly convert the gslice_array to valarray, as demonstrated in Example 13-43.

Example
Example 13-43. Using gslice_array
// SeeExample 13-41 for the va function.
int main()
{
 using namespace std;
 const int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
 valarray<int> a(data, sizeof(data)/sizeof(data[0]));
 cout << a << '\n';
// Prints { 1 2 3 4 5 6 7 8 }

 cout << a[gslice(1, va(2, 2), va(4, 2))] << '\n'
 << a[gslice(0, va(2, 2), va(4, 2))] << '\n';
// prints:
// { 2 4 6 8 }
// { 1 3 5 7 }

 // operator+ is not defined for gslice_array, so cast to valarray to perform
 // addition.
 cout <<
 static_cast<valarray<int> >(a[gslice(1, va(2,2), va(4,2))]) +
 static_cast<valarray<int> >(a[gslice(0, va(2,2), va(4,2))])
 << '\n';
// Prints: { 3 7 11 15 }

 // Simple assignment does not require casting.
 a[gslice(0, va(2, 2), va(4, 2))] = 0;
 cout << a << '\n';
// Prints: { 0 2 0 4 0 6 0 8 }

 // Computational assignment does not require casting.
 valarray<int> ten(10, 4);
 a[gslice(1, va(2, 2), va(4, 2))] *= ten;
 cout << a << '\n';
// Prints: { 0 20 0 40 0 60 0 80 }
}

The members of gslice_array
 are straightforward. When using any of the assignment operators, the
 valarray on the righthand side
 must be the same size as the gslice_array on the lefthand side. You can
 also assign a scalar to every element of the array. Note that the
 default constructor, copy constructor, and copy assignment operator
 are all private. The purpose of this is to restrict the use of
 gslice_array so it can be used
 only as a return value from valarray's operator[].

See Also
gslice class, indirect_array class template,
 mask_array class template,
 slice_array class template,
 valarray class
 template

Name
indirect_array class template — Helper class for indirect arrays

Synopsis
template <typename T>
class indirect_array {
public:
 typedef T value_type;
 void operator=(const valarray<T>&) const;
 void operator*=(const valarray<T>&) const;
 void operator/=(const valarray<T>&) const;
 void operator%=(const valarray<T>&) const;
 void operator+=(const valarray<T>&) const;
 void operator-=(const valarray<T>&) const;
 void operator^=(const valarray<T>&) const;
 void operator&=(const valarray<T>&) const;
 void operator|=(const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 void operator=(const T&);
 ~indirect_array();
private:
 indirect_array();
 indirect_array(const indirect_array&);
 indirect_array& operator=(const indirect_array&);
};
The indirect_array class
 template represents a subset of the elements of a valarray. To create an indirect subset,
 use valarray's operator[] with an argument of type
 valarray<size_t>. The
 elements of the argument are the desired indices in the
 subset.
For some operations, the indirect_array object is transparent. In
 particular, you can assign a valarray to an indirect_array object (provided they have
 the same size), or you can construct a new valarray from an indirect_array.
If you want to perform other operations, such as
 non-assignment arithmetic, you must explicitly convert the indirect_array to valarray, as demonstrated in Example 13-44.

Example
Example 13-44. Using indirect_array
int main()
{
 using namespace std;
 const int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
 valarray<int> a(data, sizeof(data)/sizeof(data[0]));
 cout << a << '\n';
// Prints: { 1 2 3 4 5 6 7 8 }

 // Specify the indices into a.
 const size_t p[] = { 2, 3, 5, 7 };
 valarray<size_t> indices(p, sizeof(p)/sizeof(p[0]));
 cout << a[indices] << '\n';
// Prints: { 3 4 6 8 }

 // Add 10 to the elements at the desired indices.
 valarray<int> ten(10, 4);
 a[indices] += ten;
 cout << a << '\n';
// Prints: { 1 2 13 14 5 16 7 18 }

 // Must cast to perform ordinary arithmetic.
 cout << static_cast<valarray<int> >(a[indices])
 * ten << '\n';
// Prints: { 130 140 160 180 }
}

The members of indirect_array are straightforward. When
 using any of the assignment operators, the valarray on the righthand side must be the
 same size as the indirect_array
 on the lefthand side. You can also assign a scalar to every element
 of the array. Note that the default constructor, copy constructor,
 and copy assignment operator are all private. The purpose of this is
 to restrict the use of indirect_array so it can be used only as a
 return value from valarray's
 operator[].

See Also
gslice_array class
 template, mask_array class
 template, slice_array class
 template, valarray class
 template

Name
log function template — Computes natural logarithm

Synopsis
template<typename T> valarray<T> log(const valarray<T>& a);
The log function computes
 the natural (base e) logarithm
 of each element of a.

See Also
log in <cmath>

Name
log10 function template — Computes common logarithm

Synopsis
template<typename T> valarray<T> log10(const valarray<T>& a);
The log10 function computes
 the common (base 10) logarithm of each element of a.

See Also
log10 in <cmath>

Name
mask_array class template — Helper class for mask arrays

Synopsis
template <typename T>
class mask_array {
public:
 typedef T value_type;
 void operator=(const valarray<T>&) const;
 void operator*=(const valarray<T>&) const;
 void operator/=(const valarray<T>&) const;
 void operator%=(const valarray<T>&) const;
 void operator+=(const valarray<T>&) const;
 void operator-=(const valarray<T>&) const;
 void operator^=(const valarray<T>&) const;
 void operator&=(const valarray<T>&) const;
 void operator|=(const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 void operator=(const T&);
 ~mask_array();
private:
 mask_array();
 mask_array(const mask_array&);
 mask_array& operator=(const mask_array&);
};
The mask_array class
 template represents a subset of the elements of a valarray. To create a mask subset, use
 valarray's operator[] with an argument of type
 valarray<bool>. An element
 is included in the result set if the corresponding element in the
 argument is true.
For some operations, the mask_array object is transparent. In
 particular, you can assign a valarray to a mask_array object (provided they have the
 same size), or you can construct a new valarray from a mask_array.
If you want to perform other operations, such as
 non-assignment arithmetic, you must explicitly convert the mask_array to valarray, as demonstrated in Example 13-45.

Example
Example 13-45. Using mask_array
// Simple average
template<typename T>
T avg(const std::valarray<T>& a)
{
 return a.sum() / a.size();
}

int main()
{
 using namespace std;
 const int data[] = { 1, -3, 10, 42, -12, 13, -7, 69 };
 valarray<int> a(data, sizeof(data)/sizeof(data[0]));
 cout << a << '\n';
// Prints: { 1 -3 10 42 -12 13 -7 69 }

 // Print the values that are above average.
 cout << "avg=" << avg(a) << '\n';
 cout << a[a > avg(a)] << '\n';
// Prints: { 42 69 }

 // Force all negative values to be 0. Notice how no cast is needed for the
 // simple assignment.
 a[a < 0] = 0;
 cout << a << '\n';
// Prints: { 1 0 10 42 0 13 0 69 }

 // Other operations, such as multiplication by a scalar, are defined only for
 // valarray, so a cast is needed.
 cout << static_cast<valarray<int> >(a[a > 0]) * -1 << '\n';
// Prints: { -1 -10 -42 -13 -69 }
}

The members of mask_array
 are straightforward. When using any of the assignment operators, the
 valarray on the righthand side
 must be the same size as the mask_array on the lefthand side. You can
 also assign a scalar to every element of the array. Note that the
 default constructor, copy constructor, and copy assignment operator
 are all private. The purpose of this is to restrict the use of
 mask_array so it can be used only
 as a return value from valarray's
 operator[].

See Also
gslice_array class
 template, indirect_array
 class template, slice_array
 class template, valarray
 class template

Name
operator* function template — Performs multiplication

Synopsis
template<typename T>
valarray<T> operator*(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator*(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator*(const T& x, const valarray<T>& b);
The * operator performs
 elementwise multiplication. It multiplies each x *
 y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When multiplying two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s).

Name
operator/ function template — Performs division

Synopsis
template<typename T>
valarray<T> operator/(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator/(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator/(const T& x, const valarray<T>& b);
The / operator performs
 elementwise division. It divides each x /
 y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When dividing two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s).

Name
operator+ function template — Performs addition

Synopsis
template<typename T>
valarray<T> operator+(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator+(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator+(const T& x, const valarray<T>& b);
The + operator performs
 elementwise addition. It adds each x +
 y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When adding two arrays, they must have
 the same size. The resulting array has the same size as the argument
 array(s).

Name
operator- function template — Performs subtraction

Synopsis
template<typename T>
valarray<T> operator-(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator-(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator-(const T& x, const valarray<T>& b);
The - operator performs
 elementwise subtraction. It subtracts each x -
 y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When subtracting two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s).

Name
operator& function template — Performs bitwise and

Synopsis
template<typename T>
valarray<T> operator&(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator&(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator&(const T& x, const valarray<T>& b);
The & operator performs
 bitwise and on each x &
 y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 & is defined.

Name
operator| function template — Performs bitwise or

Synopsis
template<typename T>
valarray<T> operator|(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator|(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator|(const T& x, const valarray<T>& b);
The | operator performs
 bitwise inclusive or on
 each x | y, in
 which x is a scalar or an element
 of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 | is defined.

Name
operator^ function template — Performs bitwise exclusive or

Synopsis
template<typename T>
valarray<T> operator^(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator^(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator^(const T& x, const valarray<T>& b);
The ^ operator performs
 bitwise exclusive or on
 each x ^ y, in
 which x is a scalar or an element
 of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 ^ is defined.

Name
operator>> function template — Performs right shift

Synopsis
template<typename T>
valarray<T> operator>>(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator>>(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator>>(const T& x, const valarray<T>& b);
The >> operator
 performs right shift on each x
 >> y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 >> is defined.

Name
operator<< function template — Performs left shift

Synopsis
template<typename T>
valarray<T> operator<<(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> operator<<(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> operator<<(const T& x, const valarray<T>& b);
The << operator
 performs left shift on each x
 << y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 << is defined.

Name
operator&& function template — Performs logical and

Synopsis
template<typename T>
valarray<bool> operator&&(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator&&(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator&&(const T& x, const valarray<T>& b);
The && operator
 performs logical and on each x && y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 && is defined. As with
 any other overloaded operator
 &&, short-cut evaluation
 is not supported.

Name
operator|| function template — Performs logical or

Synopsis
template<typename T>
valarray<bool> operator||(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator||(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator||(const T& x, const valarray<T>& b);
The || operator performs
 logical or on each x ||
 y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 || is defined and yields a
 bool result or a result that can
 be converted to bool. As with any
 other overloaded operator
 ||, short-cut evaluation is not
 supported.

Name
operator== function template — Compares for equality

Synopsis
template<typename T>
valarray<bool> operator==(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator==(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator==(const T& x, const valarray<T>& b);
The == operator compares
 each x == y,
 in which x is a scalar or an
 element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 == is defined and yields a
 bool result or a result that can
 be converted to bool.

Name
operator!= function template — Compares for inequality

Synopsis
template<typename T>
valarray<bool> operator!=(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator!=(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator!=(const T& x, const valarray<T>& b);
The != operator compares
 each x != y,
 in which x is a scalar or an
 element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 != is defined and yields a
 bool result or a result that can
 be converted to bool.

Name
operator< function template — Compares for less-than

Synopsis
template<typename T>
valarray<bool> operator<(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator<(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator<(const T& x, const valarray<T>& b);
The < operator compares
 each x < y,
 in which x is a scalar or an
 element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 < is defined and yields a
 bool result or a result that can
 be converted to bool.

Name
operator<= function template — Compares for less-than-or-equal

Synopsis
template<typename T>
valarray<bool> operator<=(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator<=(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator<=(const T& x, const valarray<T>& b);
The <= operator compares
 each x <= y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 <= is defined and yields a
 bool result or a result that can
 be converted to bool.

Name
operator> function template — Compares for greater-than

Synopsis
template<typename T>
valarray<bool> operator>(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator>(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator>(const T& x, const valarray<T>& b);
The > operator compares
 each x > y,
 in which x is a scalar or an
 element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 > is defined and yields a
 bool result or a result that can
 be converted to bool.

Name
operator>= function template — Compares for greater-than-or-equal

Synopsis
template<typename T>
valarray<bool> operator>=(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<bool> operator>=(const valarray<T>& a, const T& y);
template<typename T>
valarray<bool> operator>=(const T& x, const valarray<T>& b);
The >= operator compares
 each x >= y, in which x is a scalar or an element of a, and y is a scalar or an element of b. When operating on two arrays, they must
 have the same size. The resulting array has the same size as the
 argument array(s). The type T
 must be one for which operator
 >= is defined and yields a
 bool result or a result that can
 be converted to bool.

Name
pow function template — Computes power

Synopsis
template<typename T>
valarray<T> pow(const valarray<T>& a, const valarray<T>& b);
template<typename T>
valarray<T> pow(const valarray<T>& a, const T& y);
template<typename T>
valarray<T> pow(const T& x, const valarray<T>& b);
The pow function computes
 the power xy, in which x is a scalar or an element of a, and y is a scalar or an element of b.

See Also
pow in <cmath>

Name
sin function template — Computes sine

Synopsis
template<typename T> valarray<T> sin(const valarray<T>& a);
The sin function computes
 the sine of the elements of a.

See Also
sin in <cmath>

Name
sinh function template — Computes hyperbolic sine

Synopsis
template<typename T> valarray<T> sinh(const valarray<T>& a);
The sinh function computes
 the hyperbolic sine of the elements of a.

See Also
sinh in <cmath>

Name
slice class — Slice of an array

Synopsis
class slice {
public:
 slice();
 slice(size_t, size_t, size_t);
 size_t start() const;
 size_t size() const;
 size_t stride() const;
};
The slice class describes a
 slice of a valarray. A slice is a
 subset of the elements of a valarray at periodic indices. The slice
 has a starting index, a size, and a stride, in which the stride is
 the index interval. Figure
 13-28 depicts slice(1,3,4)
 of a valarray.
[image: Slicing a valarray]

Figure 13-28. Slicing a valarray

Use the subscript operator to take a slice of a valarray. You can assign a valarray to a slice, in which the
 righthand side of the assignment must have the same size as the size
 of the slice. You can also convert the slice to a valarray, which copies only those elements
 of the slice to the new valarray.
When you take a slice of a valarray, the result is a slice_array object, but the slice_array type is mostly transparent to
 the programmer. See slice_array
 later in this section for details.
You can use a slice to treat a valarray as a two-dimensional matrix. A
 slice can specify a row or column of the matrix. For an n × m matrix, row r is slice(r*m,
 m, 1), and column c is slice(c, n, m), as you can see in Example 13-46.

Example
Example 13-46. A simple 2-D matrix class
template<typename T>
class matrix2D {
public:
 matrix2D(std::size_t rows, std::size_t columns) :
 rows_(rows), cols_(columns), data_(rows * columns) {}
 std::size_t rows() const { return rows_; }
 std::size_t cols() const { return cols_; }
 std::valarray<T> row(std::size_t r) const
 { return data_[std::slice(r*cols(),cols(), 1)]; }
 std::valarray<T> col(std::size_t c) const
 { return data_[std::slice(c, rows(), cols())]; }
 std::slice_array<T> row(std::size_t r)
 { return data_[std::slice(r*cols(),cols(), 1)]; }
 std::slice_array<T> col(std::size_t c)
 { return data_[std::slice(c, rows(), cols())]; }
 T& operator()(std::size_t r, std::size_t c)
 { return data_[r*cols()+c]; }
 T operator()(std::size_t r, std::size_t c) const
 { return row(r)[c]; }
 matrix2D<T> transpose() {
 matrix2D<T> result(cols(), rows());
 for (std::size_t i = 0; i < rows(); ++i)
 result.col(i) = static_cast<std::valarray<T> >(row(i));
 return result;
 }
private:
 std::size_t rows_;
 std::size_t cols_;
 std::valarray<T> data_;
};

See Also
gslice class, slice_array class template

Name
slice_array class template — Helper class for slice

Synopsis
template <typename T>
class slice_array {
public:
 typedef T value_type;
 void operator=(const valarray<T>&) const;
 void operator*=(const valarray<T>&) const;
 void operator/=(const valarray<T>&) const;
 void operator%=(const valarray<T>&) const;
 void operator+=(const valarray<T>&) const;
 void operator-=(const valarray<T>&) const;
 void operator^=(const valarray<T>&) const;
 void operator&=(const valarray<T>&) const;
 void operator|=(const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 void operator=(const T&);
 ~slice_array();
private:
 slice_array();
 slice_array(const slice_array&);
 slice_array& operator=(const slice_array&);
};
The slice_array class
 template represents a subset of the elements of a valarray, taken at periodic indices,
 called a slice. To create a slice, use valarray's operator[] with an argument of type
 slice.
For some operations, the slice_array object is transparent. In
 particular, you can assign a valarray to a slice_array object (provided they have the
 same size), or you can construct a new valarray from a slice_array.
If you want to perform other operations, such as
 non-assignment arithmetic, you must explicitly convert the slice_array to valarray, as demonstrated in Example 13-47.

Example
Example 13-47. Slicing a valarray
int main()
{
 using namespace std;
 const int data[] = { 1,2,3,4,5,6,7,8,9,10,11,12,13 };
 valarray<int> v(data, sizeof(data)/sizeof(data[0]));
 const int newdata[] = { 30, 70, 110 };
 valarray<int> rpl(newdata, 3);
 v[slice(2, 3, 4)] = rpl;
 cout << v << '\n';
// Prints: { 1 2 30 4 5 6 70 8 9 10 110 12 13}
 v[slice(3, 4, 2)] = -1;
 cout << v << '\n';
// Prints: { 1 2 30 -1 5 -1 70 -1 9 -1 110 12 13}
 valarray<int> mult(3, 2);
 v[slice(8, 2, 3)] *= mult;
 cout << v << '\n';
// Prints: { 1 2 30 -1 5 -1 70 -1 27 -1 110 36 13}
 cout << static_cast<valarray<int> >(v[slice(1, 5, 2)])
 << '\n';
// Prints: { 2 -1 -1 -1 -1}
 cout << static_cast<valarray<int> >(v[slice(4, 3, 2)]) +
 static_cast<valarray<int> >(v[slice(2, 3, 2)])
 << '\n';
// Prints: { 35 75 97}
}

The members of slice_array
 are straightforward. When using any of the assignment operators, the
 valarray on the righthand side
 must be the same size as the slice_array on the lefthand side. You can
 also assign a scalar to every element of the array. Note that the
 default constructor, copy constructor, and copy assignment operator
 are all private. The purpose of this is to restrict the use of
 slice_array so it can be used
 only as a return value from valarray's operator[].

See Also
gslice_array class
 template, indirect_array
 class template, mask_array
 class template, slice
 class, valarray class
 template

Name
sqrt function template — Computes square root

Synopsis
template<typename T> valarray<T> sqrt(const valarray<T>& a);
The sqrt function computes
 the square root of the elements of a.

See Also
sqrt in <cmath>

Name
tan function template — Computes tangent

Synopsis
template<typename T> valarray<T> tan(const valarray<T>& a);
The tan function computes
 the tangent of the elements of a.

See Also
tan in <cmath>

Name
tanh function template — Computes hyperbolic tangent

Synopsis
template<typename T> valarray<T> tanh(const valarray<T>& a);
The tanh function computes
 the hyperbolic tangent of the elements of a.

See Also
tanh in <cmath>

Name
valarray class template — Array of values

Synopsis
template<typename T>
class valarray {
public:
 typedef T value_type;

 valarray();
 explicit valarray(size_t);
 valarray(const T&, size_t);
 valarray(const T*, size_t);
 valarray(const valarray&);
 valarray(const slice_array<T>&);
 valarray(const gslice_array<T>&);
 valarray(const mask_array<T>&);
 valarray(const indirect_array<T>&);
 ~valarray();

 valarray<T>& operator=(const valarray<T>&);
 valarray<T>& operator=(const T&);
 valarray<T>& operator=(const slice_array<T>&);
 valarray<T>& operator=(const gslice_array<T>&);
 valarray<T>& operator=(const mask_array<T>&);
 valarray<T>& operator=(const indirect_array<T>&);

 T operator[](size_t) const;
 T& operator[](size_t);

 valarray<T> operator[](slice) const;
 slice_array<T> operator[](slice);
 valarray<T> operator[](const gslice&) const;
 gslice_array<T> operator[](const gslice&);
 valarray<T> operator[](const valarray<bool>&) const;
 mask_array<T> operator[](const valarray<bool>&);
 valarray<T> operator[](const valarray<size_t>&) const;
 indirect_array<T> operator[](const valarray<size_t>&);

 valarray<T> operator+() const;
 valarray<T> operator-() const;
 valarray<T> operator~() const;
 valarray<bool> operator!() const;

 valarray<T>& operator*= (const T&);
 valarray<T>& operator/= (const T&);
 valarray<T>& operator%= (const T&);
 valarray<T>& operator+= (const T&);
 valarray<T>& operator-= (const T&);
 valarray<T>& operator^= (const T&);
 valarray<T>& operator&= (const T&);
 valarray<T>& operator|= (const T&);
 valarray<T>& operator<<=(const T&);
 valarray<T>& operator>>=(const T&);
 valarray<T>& operator*= (const valarray<T>&);
 valarray<T>& operator/= (const valarray<T>&);
 valarray<T>& operator%= (const valarray<T>&);
 valarray<T>& operator+= (const valarray<T>&);
 valarray<T>& operator-= (const valarray<T>&);
 valarray<T>& operator^= (const valarray<T>&);
 valarray<T>& operator|= (const valarray<T>&);
 valarray<T>& operator&= (const valarray<T>&);
 valarray<T>& operator<<=(const valarray<T>&);
 valarray<T>& operator>>=(const valarray<T>&);

 size_t size() const;
 T sum() const;
 T min() const;
 T max() const;
 valarray<T> shift (int) const;
 valarray<T> cshift(int) const;
 valarray<T> apply(T func(T)) const;
 valarray<T> apply(T func(const T&)) const;
 void resize(size_t sz, T c = T());
};
The valarray class template
 represents an array of numeric values, with restrictions that permit
 an implementation to optimize performance. In particular, an object
 cannot be an element of more than one array. A subset, such as a
 generalized slice or indirect array, cannot specify a single element
 more than once, or else the behavior is undefined.
You can instantiate valarray with any numerical type as its
 template parameter if you limit yourself to using only operations
 that are defined for that type. For example, you cannot use operator<< on valarray<double> because you cannot
 use operator<< on scalars
 of type double.
Examples of using valarray
 can be found throughout this section.
The following are the members of valarray:
	 valarray ()
	Constructs an empty valarray.

	explicit valarray
 (size_t n)
	Constructs a valarray
 of length n, in which all
 elements are initialized to T(
).

	 valarray (const T& x, size_t n)
	Construct a valarray
 that contains n copies of
 x.

	 valarray (const T* x, size_t n)
	Constructs a valarray
 by copying n elements from
 the array x.

	 valarray (const valarray& a)
	Constructs a valarray
 by copying a.

	 valarray (const slice_array<T>&
 a)
 valarray (const gslice_array<T>&
 a)
 valarray (const mask_array<T>&
 a)
 valarray (const indirect_array<T>&
 a)
	Constructs a valarray
 by copying the elements referenced by a.

	valarray<T>
 apply
 (T func(T))
 const
valarray<T>
 apply
 (T func(const T&))
 const
	Returns a new array whose contents are the result of
 calling func for each
 element of the original array.

	valarray<T>
 cshift
 (int n)
 const
	Performs a circular shift (rotation) by n places. The return value is a new
 array that has the same size as the original, but the element
 at new index i comes from
 (i + n) % size(
) in the original.

	T max
 ()
 const
	Returns the largest element of the array or an undefined
 value if the array is empty. Elements are compared using
 operator<.

	T min
 ()
 const
	Returns the smallest element of the array or an
 undefined value if the array is empty. Elements are compared
 using operator<.

	valarray<T>&
 operator= (const
 valarray<T>& a)
	Each element of this array is assigned the corresponding
 elements of a. If size() != a.size(
), the behavior is undefined.

	valarray<T>&
 operator= (const T& x)
	Each element of this array is assigned the scalar value
 x.

	valarray<T>&
 operator= (const slice_array<T>&
 a)
valarray<T>&
 operator= (const gslice_array<T>&
 a)
valarray<T>&
 operator= (const mask_array<T>&
 a)
valarray<T>&
 operator= (const indirect_array<T>&
 a)
	Each element of this array is assigned the corresponding
 element from the subset array a. The value being assigned to an
 element must not depend on any other value in this array, that
 is, a cannot be a subset of
 *this, or, if it is, the
 element assigned to index i must
 depend only on index i and not on
 values at any other index.

	T operator[]
 (size_t i)
 const
T& operator[]
 (size_t i)
	Returns the element at index i. The behavior is undefined for
 i >= size(
). The anti-aliasing rule means that for any two
 distinct valarray objects
 a and b, and for all valid indices
 i and j,
 you can safely assume that the following is true: &a[i
] != &b[j
]. All values in a single
 valarray object are stored
 contiguously, just as in an ordinary array. References become
 invalid after a call to resize.

	valarray<T>
 operator[] (slice) const
slice_array<T>
 operator[] (slice)
valarray<T>
 operator[] (const gslice&) const
gslice_array<T>
 operator[] (const gslice&)
valarray<T>
 operator[] (const valarray<bool>&)
 const
mask_array<T>
 operator[] (const
 valarray<bool>&)
valarray<T>
 operator[] (const valarray<size_t>&)
 const
indirect_array<T>
 operator[] (const
 valarray<size_t>&)
	Returns a subset of this valarray. A subset of a const valarray is a new valarray. A subset of a non-const valarray is a helper object that
 maintains a reference to the original valarray. (See the descriptions of
 the helper classes earlier in this section for details.)
 Briefly, the four kinds of subsets are:
	A slice object
 specifies a simple slice, suitable for extracting a row or
 column of a 2-D array.

	A gslice is a
 generalized slice, which permits multidimensional
 matrices.

	A mask_array is
 created by specifying an array of bool as the argument. If an
 element is true, that
 element is part of the resulting subset.

	An indirect_array
 is created by specifying an array of size_t indices as the argument.
 Each element specifies an index, and the element at that
 index is added to the resulting array.

	valarray<T>
 operator+ ()
 const
valarray<T>
 operator- () const
valarray<T>
 operator~ ()
 const
valarray<bool>
 operator! ()
 const
	Returns a new valarray in which each new element
 is the result of applying the unary operator to the
 corresponding element in the original array.

	valarray<T>&
 operator*= (const T&
 x)
valarray<T>&
 operator/= (const T&
 x)
valarray<T>&
 operator%= (const T&
 x)
valarray<T>&
 operator+= (const T&
 x)
valarray<T>&
 operator-= (const T& x)
valarray<T>&
 operator^= (const T&
 x)
valarray<T>&
 operator&= (const T&
 x)
valarray<T>&
 operator|= (const T&
 x)
valarray<T>&
 operator<<=
 (const T&
 x)
valarray<T>&
 operator>>=
 (const T&
 x)
	Modifies this valarray by applying the assignment
 operator to each element of the array. The return value is
 *this.

	valarray<T>&
 operator*= (const
 valarray<T>& a)
valarray<T>&
 operator/= (const
 valarray<T>& a)
valarray<T>&
 operator%= (const
 valarray<T>& a)
valarray<T>&
 operator+= (const
 valarray<T>& a)
valarray<T>&
 operator-= (const
 valarray<T>& a)
valarray<T>&
 operator^= (const
 valarray<T>& a)
valarray<T>&
 operator|= (const
 valarray<T>& a)
valarray<T>&
 operator&= (const
 valarray<T>& a)
valarray<T>&
 operator<<=
 (const
 valarray<T>& a)
valarray<T>&
 operator>>=
 (const
 valarray<T>& a)
	Modifies this valarray by applying the assignment
 operator to each element of the array and to the corresponding
 element of a. The behavior
 is undefined if size()
 != a.size(). The return value is
 *this.

	void resize
 (size_t sz, T x = T(
))
	Changes the size of the array to sz and reinitializes every element
 of the array to x.

	valarray<T>
 shift
 (int n)
 const
	Performs a shift by n
 places. The return value is a new array with the same size as
 the original array, but the element at index
 i in the new array comes from index
 i + n in the original array. If
 i + n < 0 or ≥ size(), the new element is set to
 T().

	size_t size
 ()
 const
	Returns the number of elements in the array.

	T sum
 ()
 const
	Returns the sum of all the elements in the array using
 operator+=. If the array is
 empty, the value is undefined.

See Also
gslice class, gslice_array class template, indirect_array class template,
 mask_array class template,
 slice class, slice_array class template

<vector>

The <vector> header is one of the standard container template headers.
 It declares the vector class template
 and a few global function templates that operate on vector objects.
A vector is a sequence container that yields linear performance
 for inserting and erasing at any point in the container, except the end,
 for which performance is constant. A vector supports random access
 iterators. A vector is best thought of as a generalization of
 arrays.
See Chapter 10 for
 information about containers in.

Name
operator== function template — Compares for equality

Synopsis
template <typename T, typename A>
bool operator==(const vector<T,A>& x, const vector<T,A>& y);
template <typename Alloc>
bool operator==(const vector<bool,Alloc>& x, const vector<bool,Alloc>& y);
The == operator returns
 true if x and y have the same size and their elements
 are equal, that is, x.size() == y.size()
 && equals(x.begin(), x.end(), y.begin()).

See Also
equals in <algorithm>

Name
operator!= function template — Compares for inequality

Synopsis
template <typename T, typename A>
bool operator!=(const vector<T,A>& x, const vector<T,A>& y);
template <typename Alloc>
bool operator!=(const vector<bool,Alloc>& x, const vector<bool,Alloc>& y);
The != operator returns
 ! (x ==
 y).

Name
operator< function template — Compares for less-than

Synopsis
template <typename T, typename A>
bool operator<(const vector<T,A>& x, const vector<T,A>& y);
template <typename Alloc>
bool operator<(const vector<bool,Alloc>& x, const vector<bool,Alloc>& y);
The < operator
 determines whether x is less than
 y using the same algorithm as
 lexicographical_compare(x.begin(
), x.end(), y.begin(), y.end()).

See Also
lexicographical_compare in
 <algorithm>

Name
operator<= function template — Compares for less-than-or-equal

Synopsis
template <typename T, typename A>
bool operator<=(const vector<T,A>& x, const vector<T,A>& y);
template <typename Alloc>
bool operator<=(const vector<bool,Alloc>& x, const vector<bool,Alloc>& y);
The <= operator returns
 ! (y <
 x).

Name
operator> function template — Compares for greater-than

Synopsis
template <typename T, typename A>
bool operator>(const vector<T,A>& x, const vector<T,A>& y);
template <typename Alloc>
bool operator>(const vector<bool,Alloc>& x, const vector<bool,Alloc>& y);
The > operator returns
 (y < x).

Name
operator>= function template — Compares for greater-than-or-equal

Synopsis
template <typename T, typename A>
bool operator>=(const vector<T,A>& x, const vector<T,A>& y);
template <typename Alloc>
bool operator>=(const vector<bool,Alloc>& x, const vector<bool,Alloc>& y);
The >= operator returns
 ! (x <
 y).

Name
swap function template — Swaps contents of two vectors

Synopsis
template <typename T, typename Alloc>
void swap(vector<T,Alloc>& x, vector<T,Alloc>& y);
template <typename Alloc>
void swap(vector<bool,Alloc>& x, vector<bool,Alloc>& y);
The swap function template
 specialization is equivalent to calling x.swap(y).

See Also
swap in <algorithm>

Name
vector class template — Array-like container

Synopsis
template <typename T, typename Alloc = allocator<T> >
class vector {
public:
 typedef typename Alloc::reference reference;
 typedef typename Alloc::const_reference const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef T value_type;
 typedef Alloc allocator_type;
 typedef typename Alloc::pointer pointer;
 typedef typename Alloc::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

 explicit vector(const Alloc& = Alloc());
 explicit vector(size_type n, const T& value = T(), const Alloc& = Alloc());
 template <class InpIt>
 vector(InpIt first, InpIt last, const Alloc& = Alloc());
 vector(const vector<T,Alloc>& x);
 ~vector();
 vector<T,Alloc>& operator=(const vector<T,Alloc>& x);
 template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
 void assign(size_type n, const T& u);
 allocator_type get_allocator() const;

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
 reverse_iterator rend();
 const_reverse_iterator rend() const;

 size_type size() const;
 size_type max_size() const;
 void resize(size_type sz, T c = T());
 size_type capacity() const;
 bool empty() const;
 void reserve(size_type n);
 // Element access
 reference operator[](size_type n);
 const_reference operator[](size_type n) const;
 const_reference at(size_type n) const;
 reference at(size_type n);
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 // Modifiers
 void push_back(const T& x);
 void pop_back();
 iterator insert(iterator position, const T& x);
 void insert(iterator position, size_type n, const T& x);
 template <class InpIt>
 void insert(iterator position, InpIt first, InpIt last);
 iterator erase(iterator position);
 iterator erase(iterator first, iterator last);
 void swap(vector<T,Alloc>&);
 void clear();
};
The vector class template
 is a standard sequence container that is like an array: adding or
 removing from the end of the vector takes constant time (amortized
 over many such operations), adding or removing from anywhere else
 takes linear time, and random access happens in constant
 time.
Elements of a vector are
 stored contiguously, just like an ordinary array. For most cases in
 which you need an array, you should use a vector instead because a vector offers greater safety (no need for
 dynamic memory and raw pointers, the at member function checks array bounds,
 etc.)
All iterators and references to a vector's elements become
 invalid when the vector's internal array is resized, which can
 happen for an insertion when the size matches the capacity, or when
 you explicitly change the size (e.g., by calling resize). You can ensure that an insertion
 does not force a resize by calling reserve to set the capacity prior to
 inserting one or more items. Iterators and references also become
 invalid when they are past (at a higher index) the point where an
 item is inserted or erased.
If you need a vector of Boolean values, consider using
 deque<bool> instead of
 vector<bool>. See vector<bool> for an
 explanation.
The following are the members of vector:
	explicit vector
 (const Alloc& =
 Alloc())
	Constructs an empty vector.

	explicit vector
 (size_type
 n, const T& value = T(),
 const Alloc&
 = Alloc())
	Constructs a vector of size n, in which each element is
 initialized to value.

	template <class
 InpIt>
 vector (InpIt first, InpIt last, const Alloc& = Alloc())
	Constructs an empty vector and copies [first, last) into the new vector unless
 InputIterator is an
 integral type, in which case the vector is constructed as
 though the arguments were cast as follows:
vector(static_cast<size_type>(first), static_cast<value_type>(last),
 alloc);

	 vector (const vector<T,Alloc>&
 v)
	Constructs a copy of v.

	vector<T,Alloc>& operator=
 (const
 vector<T,Alloc>&
 v)
	Erases all the elements of the vector, then copies the
 elements from v into the
 vector.

	template <class
 InputIterator>
void assign
 (InputIterator
 first, InputIterator last)
	Erases all the elements of the vector, then copies the
 elements from [first,
 last) into the vector,
 unless InputIterator is an
 integral type, in which case the arguments are interpreted as
 though they were cast as follows:
assign(static_cast<size_type>(first), static_cast<value_type>(last));

	void assign
 (size_type
 n, const T& value)
	Erases all the elements of the vector, then inserts
 n copies of value.

	const_reference
 at
 (size_type n)
 constreference at (size_type n)
	Returns the element at index n. If n >= size(
), throws out_of_range.

	reference back
 ()
const_reference
 back
 () const
	Returns the last element of the vector. Behavior is
 undefined if the vector is empty.

	iterator begin
 ()
const_iterator
 begin
 () const
	Returns an iterator that points to the first element of
 the vector.

	size_type capacity
 () const
	Returns the number of elements the vector can store
 before it resizes itself.

	void clear
 ()
	Erases all elements of the vector.

	iterator end
 ()
const_iterator
 end
 () const
	Returns an iterator that points to one past the last
 element of the vector.

	bool empty
 () const
	Returns size()
 == 0.

	iterator erase
 (iterator
 position)
	Erases the element at position.

	iterator erase
 (iterator first, iterator
 last)
	Erases all the elements in the range [first, last).

	reference front
 ()
const_reference
 front
 () const
	Returns the first element of the vector. Behavior is
 undefined if the vector is empty.

	locator_type get_allocator
 () const
	Returns the allocator object.

	iterator insert
 (iterator
 position, const T& x)
	Inserts x before
 position.

	void insert
 (iterator
 pos, size_type n, const T& x)
	Inserts n copies of
 x at pos.

	template <class
 InpIt>
void insert
 (iterator
 pos, InpIt first, InpIt last)
	Inserts the elements in the range [first, last) starting at position pos, unless InputIterator is an integral type,
 in which case the arguments are interpreted as though they
 were cast as follows:
insert(pos, static_cast<size_type>(first),
 static_cast<value_type>(last));
If an exception is thrown, such as bad_alloc when there is insufficient
 memory for a new element, the vector is unchanged, and all
 iterators and references remain valid. If the exception is
 thrown from an element's copy constructor or assignment
 operator, however, the behavior is unspecified.

	size_type max_size
 () const
	Returns the size of the largest possible vector.

	reference operator[]
 (size_type
 n)
const_reference
 operator[] (size_type n) const
	Returns the element at index n. If n >= size(
), the behavior is undefined.

	void pop_back
 ()
	Erases the last element of the vector. The behavior is
 undefined if the vector is empty.

	void push_back
 (const T&
 x)
	Inserts x as the new
 last element of the vector.

	reverse_iterator
 rbegin
 ()
const_reverse_iterator
 rbegin
 () const
	Returns a reverse iterator that points to the last
 element of the vector.

	reverse_iterator
 rend
 ()
const_reverse_iterator
 rend
 () const
	Returns a reverse iterator that points to one position
 before the first element of the vector.

	void reserve
 (size_type
 n)
	Ensures that capacity(
) is at least n.
 Call reserve to avoid the
 need to reallocate the vector repeatedly when you know the
 vector will grow by small increments to a large size, or when
 you want to ensure that iterators do not become invalid after
 inserting one or more items. Note that size() does not change.

	void resize
 (size_type
 sz, T c = T())
	Changes the size of this vector to n. If n > size(), one or more copies of
 c are added to the end of
 the vector to reach the desired size. If the new size is
 smaller than the current size, elements are erased from the
 end to reach the new size.

	size_type size
 () const
	Returns the number of elements in the vector.

	void swap
 (vector<T,Alloc>&
 that)
	Exchanges all the elements in this vector with all the
 elements in that.

See Also
vector<bool>
 class, deque in <deque> , list in <list>

Name
vector<bool> class — Specialized vector of bool

Synopsis
template <typename Alloc>
class vector<bool, Alloc> {
public:
 typedef bool const_reference;
 typedef . . . iterator;
 typedef . . . const_iterator;
 typedef . . . size_type;
 typedef . . . difference_type;
 typedef bool value_type;
 typedef Alloc allocator_type;
 typedef . . . pointer;
 typedef . . . const_pointer typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

 class reference;
 static void swap(reference x, reference y);
 void flip();
 . . . // Same as vector<> . . .
};
The vector<bool>
 specialization is an interesting beast. It is an attempt to
 demonstrate how to define a container that uses a
 proxy to represent the elements of the
 container. The bool elements are
 packed into integers, and the vector<bool>::reference type is a
 proxy that represents a single bool element by keeping track of the bit
 number within the integer and the integer's index in the
 vector.
However, by using a proxy, vector<bool> violates the
 constraints of a container, so it cannot be used in many situations
 that call for a standard container. In particular, the pointer type cannot point to an element of
 the container because C++ does not have a type that can point to a
 single bit. Many algorithms require the pointer type, and so they cannot work with
 a vector<bool>
 object.
If you need to use a compact, fixed-size set of bits, use the
 bitset class template. If you
 need a standard container that contains bool elements, use deque<bool>.
In addition to the members of the vector<> template, vector<bool> also defines the
 following functions:
	static void swap (reference x, reference
 y)
	Swaps two bit values

	void flip
 ()
	Flips all the bits in the vector

See Also
vector class template,
 vector<bool>::reference
 class, bitset in <bitset> , deque in <deque>

Name
vector<bool>::reference class — Bit reference proxy

Synopsis
class reference {
 friend class vector;
 reference();
public:
 ~reference();
 operator bool() const;
 reference& operator=(const bool x);
 reference& operator=(const reference& x);
 void flip();
};
The reference class
 represents a single bit in a vector<bool>. The constructor is
 private, so only vector<bool> can create reference objects. The reference keeps track of the position of
 an individual bit in a vector<bool>, so you can get, set,
 or flip the bit. The following are the members of reference:
	void flip
 ()
	Flips or toggles the bit, that is, performs the
 equivalent of *this
 = ! *this

	operator bool
 () const
	Returns the bit value as a bool

	reference&
 operator= (const bool x)
reference&
 operator= (const reference& x)
	Assigns x to *this

See Also
vector<bool>
 class

Appendix A. Compiler Extensions

When writing portable code, you should stick to the
 standard, but sometimes you have to use compiler-specific extensions of
 the standard. This appendix lists some of the more interesting extensions
 in a few compilers. It is not a reference of compiler extensions, but more
 an illustration of the kinds of extensions that compiler writers choose to
 implement.

Borland C++ Builder and Kylix

Borland has several extensions to C++ to support its Rapid Application Development products: C++ Builder (for
 Microsoft Windows) and Kylix (for Linux). This section presents
 highlights of the RAD extensions.
	_ _closure
	In C++ Builder, a closure is like a pointer to a member
 function that has been bound to a specific object. Given a
 closure, you can call it the way you would call an ordinary
 function. To declare a closure type or object, use _ _closure as a modifier for the name of
 a function pointer:
typedef int (* _ _closure MemFunc)(int);
MemFunc func;
struct demo {
 int sqr(int x) { return x * x; }
};
demo d;
func = d.sqr;
int n = func(10); // n = 100

	_ _declspec
	The _ _declspec keyword
 takes an attribute in parentheses and serves as a declaration
 specifier. Depending on the attribute, it can be used to modify a
 function, object, or class. For example, _ _declspec(noreturn) is a function
 specifier that tells the compiler that the function does not
 return, which permits additional optimization and error-checking
 (for example, eliminating statements that follow a call to the
 noreturn function):
void _ _declspec(noreturn) abort();
Other attributes include:
	thread
	A storage-class specifier that declares an object to
 be local to a thread; that is, each runtime thread has a
 separate copy of the object.

	dllexport
	A function specifier that tells the linker to export
 the function name from a dynamic-link library (DLL).

	uuid(
 string-literal)
	Modifies a class declaration. It associates a
 universally unique identifier (UUID) with the class, which
 is required for implementing COM objects in Windows. A
 class's UUID can be retrieved with the _ _uuidof operator.

	_ _int64
	The _ _int64 type is a
 64-bit integer type. In current releases of C++ Builder and Kylix,
 long is 32 bits. A 64-bit
 integer literal is written with a suffix of i64 (e.g., 10000000000000i64).

	_ _property
	A property is a class member that is used like a data
 member, but it can have the semantics of a member function.
 Properties are the foundation for the RAD features of C++ Builder
 and Kylix. A property is associated with a reader and writer,
 which can be data member names or member function names:
class TControl {
private:
 int height_;
 void set_height(int h);
 . . .
_ _published:
 _ _property int height { read=height_, write=set_height };
};
TControl * ctl = new TControl;
ctl->height = 10; // Calls ctl->set_height(10)
int h = ctl->height; // Gets ctl->height_

	_ _published
	The _ _published
 access specifier label yields the same
 accessibility as the public
 keyword, but it also directs the compiler to store additional
 runtime type information (RTTI) for the published declarations.
 The RAD features use the RTTI when the user designs an
 application

	_ _thread
	The _ _thread keyword is a synonym for _
 _declspec(thread).

	_ _uuidof
	The _ _uuidof operator takes an expression as an operand and
 returns the UUID of the expression's class. The class declares its
 UUID with _ _declspec(uuid(. .
 .)). A class can implement the
 standard COM member function, QueryInterface, with _ _uuidof:
class demo {
 virtual HRESULT QueryInterface(const UUID& iid, void** obj)
 {
 if (iid == _ _uuidof(IUnknown)) {
 obj = reinterpret_cast<IUnknown>(this);
 static_cast<IUnknown*>(*obj)->AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
 }
};

GNU Compiler Collection

The GNU C++ compiler has many extensions to the standard. The
 most widespread version, 2.95, is mature, stable, but very much outdated
 with regard to the C++ standard. The new 3.x
 version hews much closer to the standard, while retaining the familiar
 GNU extensions. This section presents highlights of only a few of the
 extensions.
	_ _attribute_ _
	A function can be modified with attributes to tell the
 compiler about the function. For example, _ _attribute_ _((noreturn)) tells the
 compiler that the function does not return, which enables the
 compiler to remove unneeded code, such as statements that follow
 calls to the function. Some attributes can apply to objects,
 labels, and types. Several different attributes are supported,
 such as:
	always_inline
	Always expand this function inline, even if
 optimizations are disabled.

	const
	The function has no side effects and does not depend
 on any global variables; therefore, the compiler can replace
 repeated calls to the function with a single call, saving
 the result.

	deprecated
	The function, object, or type is deprecated. Using a
 deprecated entity results
 in a compiler warning.

	dllexport
	On Windows, marks the function as exported from a
 DLL.

	pure
	Slightly less strong than const, a pure function has no side
 effects but can depend on global variables. The compiler can
 optimize away repeated calls when it knows intervening code
 does not modify any global variables.

	case
 range
	In a switch statement, a
 single case label can specify a range of values:
switch(c) {
case 'a' . . . 'z': case 'A' . . . 'Z':
 do_english_letter(c);
 break;
 // . . . Other cases, etc.
}

	long long
	The long long type is an
 integral type that has at least 64 bits. A long long literal is written with a suffix of
 LL (e.g., 10000000000000LL).

	Minimum and maximum operators
	The operators <? and
 >? return the minimum and
 maximum of their two operands. You can overload these operators
 the way you would any other operator:
template<typename T>
T max3(const T& a, const T& b, const T& c)
{
 return a >? b >? c;
}

	typeof
	The typeof keyword takes an expression as an operand and
 yields the type of the expression. You can use typeof wherever you can use a type
 identifier. Templates create a need for typeof because when writing the
 template, you have no way of knowing the return type of an
 operator or function. For example:
template<typename T, typename U>
typeof(T+U) incr(const T& t, const U& u)
{
 return t + u;
}

Microsoft Visual C++

Microsoft's latest C++ compiler has a split personality. It can generate a
 conventional program following the standard (more or less), or it can
 produce .NET output using a modified language called Managed C++, which
 restricts some features and adds others. The following are some
 highlights of the Managed C++ extensions:
	_ _box
	The _ _box operator takes a value object as an argument and
 returns a managed (_ _gc)
 object that wraps the value in a managed "box." You can also
 declare a pointer to a value type with the _ _box specifier so the pointer can
 store boxed values. The compiler treats boxed values specially and
 lets you access the members of the value transparently, as though
 the box were not present. Nonetheless, the box manages the
 lifetime of the value it contains.

	_ _declspec
	The _ _declspec
 keyword takes a list of attributes in parentheses
 and serves as a declaration specifier. Depending on the
 attributes, it can be used to modify a function, object, or class.
 See Section A.1 for
 more information.

	_ _gc
	The key feature of Managed C++ is that objects are
 garbage-collected. This means the lifetime and memory are managed
 automatically by the runtime environment. As long as the object is
 in use, it remains alive. When the object is no longer used
 anywhere in the program, it is up for reclamation.
Declare a class using the _
 _gc specifier to mark the class as managed. A managed
 class has numerous restrictions, such as:
	No more than one base class (which must also be
 managed)

	No unmanaged data members (except POD types)

	No friends

	No operator new or operator delete members

	No user-defined copy constructors

	No const or volatile qualified member
 functions

Managed objects are created with the global new operator. They are freed
 automatically when they are no longer needed. If the class has a
 destructor, you can invoke the delete operator, which calls the
 destructor but does not free the memory.

	_ _int64
	The _ _int64 type is a 64-bit integer type. In the current
 releases of Visual C++, long is
 32 bits. A 64-bit integer literal is written with a suffix of
 i64 (e.g., 10000000000000i64).

	_ _pin
	Sometimes, a managed application must call an unmanaged
 library or system call. The _
 _pin keyword locks a managed object at its address in
 memory and prevents the garbage collector from moving the object.
 The address of the object can safely be passed to the unmanaged
 function. When the _ _pin
 pointer goes out of scope, the managed object is no longer pinned
 and can be moved or reclaimed.

	_ _property
	A property is a pseudo-member that is used like a data
 member, but it can have the semantics of a member function.
 Properties are the foundation of the Visual Studio RAD features. A
 property is associated with a getter and setter, which have the
 forms get_
 name (
) and set_
 name (
) for the property named
 name:
_ _gc class Control {
private:
 int height_;
public:
 _ _property int get_height() const { return height_; }
 _ _property void set_height(int h);
};
Control * ctl = new Control;
ctl->height = 10; // Calls ctl->set_height(10)
int h = ctl->height; // Calls ctl->get_height()

	_ _value
	A _ _value class is intended for small objects with short
 lifetimes, which are allocated on the runtime stack, not the
 managed heap (the way _ _gc
 objects are managed). A managed class can have _ _value data members, but not the other
 way around.

	#using
	The #using directive is similar to #include, except the included object is
 not a header or file but a .NET assembly, which contains all the
 information the compiler needs to use the classes, types, and
 functions that are defined in the assembly.

Appendix B. Projects

This appendix lists three interesting C++ projects. Of course, many, many more projects exist.
 These were chosen because they best reflect the capabilities or future
 directions of C++. This book's web site (http://www.tempest-sw.com/cpp/) has links to these and
 other projects.

Blitz++

The Blitz++ project brings high-performance numerical computing to C++. In some
 respects, it is what valarray<>
 should have been. Blitz++ has powerful array and matrix
 classes, operators, and functions, with strides, subarrays, and so on.
 The package is written to minimize the number of unnecessary temporary
 objects and take advantage of compile-time computation (via template
 metaprogramming) whenever possible.
One of the key optimizations is that arithmetic operators and
 mathematical functions involving Blitz++ arrays do not compute values
 immediately. Instead, they return expression objects. When an expression
 object is assigned to an array, the expression is computed, storing the
 results directly in the target of the assignment, without the need for
 large temporary arrays.
Example B-1 shows a
 program that demonstrates a few of the features of Blitz++.
Example B-1. Working with matrices
#include <iostream>
#include <ostream>
#include "blitz/array.h"

// Blitz formats output in a manner that is best suited for subsequent input by a
// program, not for reading by a human. The print() function uses a format that
// is slightly better for human readers. (Further improvement is left as an
// exercise.)
template<typename T>
void print(const blitz::Array<T, 3>& a)
{
 std::cout << a.extent(0) << " x " << a.extent(1) <<
 " x " << a.extent(2) << ":\n[";
 for (size_t i = a.lbound(0); i <= a.ubound(0); ++i)
 {
 // Blitz can print a 2-D array well enough, so extract each 2-D plane and
 // print it. Note that plane shares storage with a, so even if a is large,
 // memory is not wasted by needlessly copying data.
 blitz::Array<T, 2>
 plane(a(i, blitz::Range::all(), blitz::Range::all()));
 std::cout << plane;
 }
 std::cout << "]\n";
}

int main()
{
 // Math with TinyVector and TinyMatrix uses template metaprogramming to produce
 // fast code, even for complicated operations, such as matrix multiplication.
 blitz::TinyMatrix<double,2,4> a;
 blitz::TinyMatrix<double,4,3> b;
 blitz::TinyMatrix<double,2,3> c;
 a = 1, 2, 3, 4, // Set elements of a.
 0, 1, -2, -1;
 b = 3.14159; // Set all elements of b.
 c = blitz::product(a, b); // Matrix multiplication
 std::cout << a << b << c;

 // Arrays can have more than two dimensions and offer more computing power.
 blitz::Array<double,3> d(2,3,4), e(2,3,4), f(2,3,4);
 // Set elements of d to values that depend on the indices.
 d = blitz::firstIndex() + blitz::secondIndex() +
 blitz::thirdIndex();
 // Set a subarray of d to 42.
 d(blitz::Range::all(),blitz::Range(1,2),blitz::Range(2,3))
 = 42;
 print(d);

 // Call sin for each element of d.
 e = sin(d);
 print(e);

 // If an element of e is negative, set corresponding element of f to 1; set
 // other elements to -1.
 f = blitz::where(e < 0, 1.0, -1.0);
 print(f);

 // Elementwise multiplication
 e *= f;
 print(e);
 // Add all elements of f.
 std::cout << blitz::sum(f) << '\n';
}

Boost

The Boost project was started by members of the C++ Standard
 Committee as a way to explore future directions for the C++ library and
 to provide a high-quality library that extends what is available in the
 standard C++ library. Boost has grown to encompass many areas, such as
 dates and times, regular expressions, lambda expressions, mathematical
 functions, graphs (the mathematical kind, not the pictorial kind), type
 traits, multithreaded programming, and more.
Some of the Boost packages have already been proposed as
 extensions to the standard library. By the time you read this, the
 Standard Committee might already have accepted a formal Technical
 Specification for an extension to the standard library. See my web site
 at http://www.tempest-sw.com/cpp/ for current
 information.
This section presents two of the packages in Boost that are part
 of the proposed library extension: tuples and smart pointers. A
 tuple is a generalization of the standard pair class template. Instead of being limited
 to 2 elements, a tuple can contain up to 10 elements (and the maximum
 can be extended if necessary). Example B-2 shows one way to use
 boost::tuple.
Example B-2. Using a tuple
#include <numeric>
#include <iostream>
#include <ostream>
#include <vector>
#include "boost/tuple/tuple.hpp"

// Store count, sum, and sum of squares.typedef boost::tuple<std::size_t, double, double> Stats;

// Accumulate statistics.
Stats stats(Stats s, double x)
{
 ++s.get<0>();
 s.get<1>() += x;
 s.get<2>() += x * x;
 return s;
}

int main()
{
 std::vector<double> v;
 . . . fill v with data . . .

 Stats s = std::accumulate(v.begin(), v.end(),
 boost::make_tuple(0U, 0.0, 0.0), stats);
 std::cout << "count = " << s.get<0>() << '\n';
 std::cout << "mean = " << s.get<1>() / s.get<0>() << '\n';
}

Boost has several smart pointer class templates. They solve a
 number of problems that the standard auto_ptr<> class template does not. For example, you cannot store an
 auto_ptr<> object in a standard
 container, but you can store a boost::shared_ptr<> object. Boost has
 several other smart pointer templates; for the sake of brevity, Example B-3 shows only shared_ptr<> .
Example B-3. Using shared pointers
#include <algorithm>
#include <iostream>
#include <iterator>
#include <ostream>
#include <string>
#include <vector>
#include "boost/smart_ptr.hpp"

// A company has employees. Each employee can be Exempt or NonExempt. Certain
// Exempt employees are Managers, which are distinguished by having a group of
// Employees. All the memory for said employees is managed automatically by Boost
// shared_ptr<> templates.

class Employee {
public:
 Employee(const std::string& name) : name_(name) {}
 virtual ~Employee() {}
 const std::string name() const { return name_; }
 virtual void print(std::ostream&);
private:
 const std::string name_;
};typedef boost::shared_ptr<Employee> employee;

void Employee::print(std::ostream& out)
{
 out << name() << '\n';
}

class Exempt : public Employee {
public:
 Exempt(const std::string& name) : Employee(name) {}
};

class NonExempt : public Employee {
public:
 NonExempt(const std::string& name) : Employee(name) {}
};

class Manager : public Exempt {
public:
 Manager(const std::string& name) : Exempt(name) {}
 void add(Employee* e) { group_.push_back(employee(e)); }
 void add(employee e) { group_.push_back(e); }
 virtual void print(std::ostream&);
private:
 std::vector<employee> group_;
};
typedef boost::shared_ptr<Manager> manager;

void Manager::print(std::ostream& out)
{
 out << name() << " { ";
 std::copy(group_.begin(), group_.end(),
 std::ostream_iterator<employee>(out, ""));
 out << "}\n";
}

// Make it easier to print any kind of employee.
template<typename charT, typename traits>
std::basic_ostream<charT,traits>& operator<<(std::basic_ostream<charT,traits>&
 out, employee e)
{
 e->print(out);
 return out;
}

int main()
{
 manager ceo(new Manager("I. M. Portant"));
 manager muddle(new Manager("Muddled manager"));
 ceo->add(muddle);
 muddle->add(new Exempt("J. Doe"));
 muddle->add(new NonExempt("J. Dough"));
 ceo->print(std::cout);
}

STLport

The STLport project is a free, open source implementation of
 the C++ standard library. Although every modern compiler comes with a
 more-or-less complete standard library, there remain differences,
 omissions, and errors in most vendor-supplied libraries. If portability
 across compilers and platforms is a major concern, you might want to use
 the same library implementation on all platforms.
You might also want to use STLport for its additional features,
 such as debug mode, which helps detect programming errors. You can also
 use the library safely in a multithreaded program; for example, reading
 from a standard container is thread-safe. Of course, writing to any
 shared data must be properly synchronized. See the Boost project for
 help with threads and synchronization.
Also included are extensions to the standard library: hashed
 containers, singly-linked lists, and ropes (strings
 that scale well for very large sizes).
See my web page at http://www.tempest-sw.com/cpp/ for links and more
 information.

Glossary

This brief glossary defines words and phrases that are used often in
 this book. Also included are terms that the C++ community often uses, even
 though this book does not use them. Frequent and judicious use of the
 terms in this glossary will convince all your friends and coworkers of
 your remarkable C++ skills.
A-Z
	Algorithm
	A generic function, usually one that operates on a sequence
 specified by a pair of iterators. See Chapter 10.

	Argument
	An expression that is used in a function call to initialize a
 function parameter (Chapter 3).
 Can also be a template argument (Chapter 7).

	cv -qualifier
	A const or volatile qualifier, or both (in any
 order). See Chapter 2.

	Deprecated
	Obsolete. A language or library feature that is deprecated
 might be removed from the next version of the standard. You should
 avoid using deprecated features if you can.

	 Explicit specialization
	The C++ standard term for a template definition that defines a
 special case of an earlier template, supplying one or more template
 arguments that apply only to the explicit specialization. In this
 book, plain specialization means the same
 thing. See Chapter 7.

	Ill-formed
	A source file or program that does not follow the rules of the
 C++ standard. This book uses informal terms, such as "illegal" or
 "invalid," to refer to programs that are ill-formed or that invoke
 undefined behavior. See also
 Well-formed.

	 Implementation-defined behavior
	Behavior that is well-defined but varies from one
 implementation to another. The vendor is required to document the
 precise behavior. For example, the size of an int is implementation-defined. It might be
 16 bits, 32 bits, 48 bits, or some other size. The C++ standard can
 mandate limits on the implementation-defined behavior—for example,
 the minimum size for an int is 16
 bits.

	Instance or instantiation
	Can be a template instance or class instance. A template
 instance applies a set of template arguments to a template name,
 creating a specific function or class. Each template argument is
 matched with a template parameter; arguments can be explicit, or can
 be deduced for a function template or supplied by default arguments
 for a class template. See Chapter
 7.
A class instance is an object of class type. See
 Object, Chapter
 6.

	Iterator
	An abstraction of a pointer that can point to an element of a
 container or other sequence. Most algorithms work with iterators.
 See Chapter 10.

	Lvalue
	An object reference. You can take the address of an lvalue,
 but you cannot take the address of an rvalue. The lefthand operand
 of the built-in assignment operator must be a non-const lvalue (hence the l in lvalue). See
 also Rvalue, Chapter 3.

	NRVO
	Named Return Value Optimization. A compiler is free to
 optimize away the call to a copy constructor when an object is
 returned from a function. Some compilers perform this optimization
 only when the return expression is the name of an object. See also
 RVO.

	Object
	A region of storage with a type. Unlike some object-oriented
 languages, the term "object" is not restricted to instances of class
 type. An object of class type can be an lvalue or an rvalue. An
 object of fundamental or enumerated type is an lvalue. See Chapter 2.

	ODR
	One Definition Rule. A program can have any number of
 declarations of an entity, such as a function, template, or global
 variable. It must have at most one definition of these entities. See
 Chapter 2 for details and
 exceptions to this rule.

	Opaque type
	A type whose implementation is hidden. A pimpl is one way to
 implement an opaque type. See also Pimpl
 idiom.

	 Parameter
	Function parameter or template parameter. A function parameter
 is an object that is local to the function and is initialized with
 the value of a function argument in a function call. See Chapter 5.
A template parameter can be a value, a type, or a template; it
 gets its "value" from a template argument in a template
 instantiation. See Chapter
 7.

	Parametric polymorphism
	Generic programming, such that a function can have a single
 definition that applies regardless of the type of its parameters.
 See Chapter 7.

	Pimpl idiom
	A way of implementing an opaque type that uses a wrapper class
 that holds a pointer to a hidden implementation class. The name can
 mean pointer-to-implementation. See Opaque
 type, Chapter
 6.

	POD
	Plain Old Data. A C-style type: a fundamental type, enumerated
 type, a pointer to a POD type, or an array of POD types. A class,
 structure, or union can be a POD type if its nonstatic data members
 all have POD types. See Chapter
 6.

	Polymorphism
	Greek for "having many shapes." Usually means type
 polymorphism. See also Parametric
 polymorphism.

	RAII
	Resource Allocation Is Initialization applies to a
 style of programming that ensures that resources are correctly
 allocated and deallocated. The auto_ptr<> template is an example of
 RAII.

	Rvalue
	A value that does not necessarily have any storage or address.
 An rvalue of fundamental type can appear only on the right side of
 an assignment (hence the R in Rvalue). An lvalue can be implicitly
 converted to an rvalue, but not the other way around. See Chapter 3.

	RVO
	Return Value Optimization. A compiler is free to
 optimize away the call to a copy constructor when an object is
 returned from a function. See also NRVO.

	SFINAE
	Substitution Failure Is Not An Error. When the
 compiler looks for candidate functions for overload resolution, all
 function templates with the desired name are initially considered.
 If the compiler cannot generate a template instance to match the
 function call's arguments, that function template is not considered.
 That is, failure to substitute the arguments is not an error.

	Specialization
	Defining a template for a specific set of template arguments.
 A specialization can be total (specifying all
 template arguments) or partial (specifying only
 some of the template arguments). Only class templates can have
 partial specializations. See Chapter
 7.

	Type polymorphism
	An object can have a pointer or reference to a base class as
 its type. At runtime, it can take a pointer or reference to a
 derived class as its value. At runtime, calls to virtual functions
 bind to the functions in the derived class. The derived-class type
 is known as the object's dynamic type; the
 declared type of the object is the static type.
 See Chapter 6.

	 Undefined behavior
	Anything can happen. Maybe an exception will be thrown; maybe
 a signal will be raised; maybe the application will crash and burn.
 A particular implementation might have well-defined behavior, but
 different implementations are free to choose different behaviors.
 For example, dereferencing a null pointer produces undefined
 behavior. A desktop application might raise a segmentation fault
 signal. An embedded control for a toy robot might reset itself. An
 operating system kernel might panic and shut down, possibly
 corrupting filesystems and databases. Anything can happen.

	Well-formed
	A program that obeys the syntactic rules, the diagnosable
 semantic rules, and the one-definition rule of the C++ standard.
 Note that the compiler is not required to diagnose all errors, so
 you can have a program that is well-formed but still incorrect. See
 also Ill-formed.

About the Author
Ray Lischner began his career as a software developer, but dropped out of the corporate rat race to become an author. He started using C++ in the late 1980s, working at a company that was rewriting its entire product line in C++. Over the years, he has witnessed the evolution of C++ from cfront to native compilers to integrated development environments to visual, component-based tools. Ray has taught C++ at Oregon State University. He is the author of Delphi in a Nutshell and O'Reilly's upcoming C++ in a Nutshell, as well as other books.

Colophon
Our look is the result of reader comments, our own experimentation,
 and feedback from distribution channels. Distinctive covers complement our
 distinctive approach to technical topics, breathing personality and life
 into potentially dry subjects.
The animal on the cover of C++ in a Nutshell
 is an Eastern chipmunk, a striped ground squirrel found mostly in eastern
 North America. Eastern chipmunks have five dark and two light stripes on
 their backs, extending from head to rump, and two stripes on their long,
 bushy tails. They are distinguished from other ground squirrels by the
 white stripes above and below their eyes. The coloration of chipmunks
 throughout North America varies but is quite uniform within
 regions.
Chipmunks often make their homes in sparse forests or farms, where
 they can build the entrances to their lodges in stone walls, broken trees,
 or thick underbrush. A lodge consists of a maze of tunnels leading to a
 large, leaf-lined nest. Chipmunks spend most of the daylight hours
 outdoors but head for their lodges before nightfall. Although they are
 excellent climbers, chipmunks live primarily on the ground.
Chipmunks eat nuts, seeds, insects, and occasionally birds' eggs.
 Like all ground squirrels, they have large cheek pouches, sometimes
 extending as far back as their shoulders, in which they can store food.
 They collect and store nuts and seeds through the summer and fall. When
 the weather starts to get cool, all the chipmunks in a region suddenly
 disappear into their lodges, where they begin hibernation. On warm winter
 days one can often see chipmunk pawprints in the snow, as they will
 sometimes wake up and leave their lodges for brief periods when the
 temperature rises.
Mating season for Eastern chipmunks is mid-March to early April. The
 gestation period is 31 days, after which a litter of three to six is born.
 Baby chipmunks leave the lodge after one month and are mature by
 July.
The chipmunk most likely got its name from the noise it makes, which
 sounds like a loud "cheep." You can occasionally see a chipmunk hanging
 upside down from a tree branch "cheeping" its call.
Matt Hutchinson was the production editor and copyeditor for
 C++ in a Nutshell. Sarah Sherman and Claire
 Cloutier provided quality control. Julie Hawks wrote the index. Derek Di
 Matteo and Mary Brady provided production assistance
Ellie Volckhausen designed the cover of this book, based on a series
 design by Edie Freedman. The cover image is a 19th-century engraving from
 the Dover Pictorial Archive. Emma Colby produced the cover layout with
 QuarkXPress 4.1 using Adobe's ITC Garamond font.
David Futato designed the interior layout. This book was converted
 by Joe Wizda and Andrew Savikas to FrameMaker 5.5.6 with a format
 conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
 Sierra that uses Perl and XML technologies. The text font is Linotype
 Birka; the heading font is Adobe Myriad Condensed; and the code font is
 LucasFont's TheSans Mono Condensed. The illustrations that appear in the
 book were produced by Robert Romano and Jessamyn Read using Macromedia
 FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
 Christopher Bing. This colophon was written by Clairemarie Fisher
 O'Leary.
The online edition of this book was created by the Safari production
 group (John Chodacki, Becki Maisch, and Madeleine Newell) using a set of
 Frame-to-XML conversion and cleanup tools written and maintained by Erik
 Ray, Benn Salter, John Chodacki, and Jeff Liggett.

C++ In a Nutshell

Ray Lischner

Editor
Jonathan Gennick

Copyright © 2009 O'Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-08-19T13:02:21-07:00

OEBPS/httpatomoreillycomsourceoreillyimages60304.png
i i 1
bein rea ad
phasel) optr) epptrl)

OEBPS/httpatomoreillycomsourceoreillyimages60264.png
first 1

1

2

10020 350 8 8

t

retum

2 0B«

t !

fist2 lost2

OEBPS/httpatomoreillycomsourceoreillyimages60276.png
171219 42 36 16 18

t t

st ot

181216 42 36 19 17

t i t

fist reum st

OEBPS/httpatomoreillycomsourceoreillyimages60292.png
10 10 10 20 20 4

1

1 ot
101030 @2

t 1

2 2

10101020 20 30 2

) t

result retrn

OEBPS/httpatomoreillycomsourceoreillyimages60284.png

OEBPS/httpatomoreillycomsourceoreillyimages60288.png
10 10 10 20 20 4

st
101030 2
2 otz
00 2

result retum

OEBPS/httpatomoreillycomsourceoreillyimages60248.png
os_base os base
T T
e e
i i
s i
o st il i s i smanbil]
Fa e e 3
B b s [-}
kel o i B
od_fean) e o
oo

T F

[TTaCTT)

OEBPS/httpatomoreillycomsourceoreillyimages60268.png
1

1

st

1

t

fist2

LN ARTRRTRE AR R ")

i

rtumfist

0 aelny oo

t

retumsecond

OEBPS/httpatomoreillycomsourceoreillyimages60254.png
1

t

fist

7

2 a2/ 3% 18

t

retun

t

Jast

OEBPS/httpatomoreillycomsourceoreillyimages60286.png
10 10 10 20 20 4

st
101030 2
2 otz
020 20

result retum

OEBPS/httpatomoreillycomsourceoreillyimages60302.png

OEBPS/httpatomoreillycomsourceoreillyimages60282.png
7

8

result

2 aenaee

LR ARTARTIRTART)

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages60296.png
‘vector |
01229 200

1

r
o2

6 15 2

tdcopyveton eg, et and) si-sereecton, e
ot
1001229 601524 2 4020

t

it

OEBPS/httpatomoreillycomsourceoreillyimages60280.png
7

7

result

2

2

18 4218 2.

1018 10 18

OEBPS/httpatomoreillycomsourceoreillyimages60256.png
fist last
i '

17 @2lalnse

17 @lalnse

i t

result e

OEBPS/httpatomoreillycomsourceoreillyimages60308.png
0

Start=1
f

2|12

%

485016

OEBPS/httpatomoreillycomsourceoreillyimages60260.png
fist

1

7

1836 36 36| 2

1 1

» w

OEBPS/httpatomoreillycomsourceoreillyimages60300.png
Sopten
[rceprion]

T L T I L 1
oot [cepo] [pe | [foseoore] [“ogc. | [rrne ol
[opeivier] [wxsption | [yretrior] o] [Guocern] [ctaepn)

e w————
vt ot vy [Tengh e | [srgomen] [domin]
e | e e | v
——
i) [omion s [‘amge
taeneept | [sumeern | [ctaencept]

OEBPS/httpatomoreillycomsourceoreillyimages60290.png
10 10 10 20 20 4

w]w]w[a
i o
EEE
j]

result retum

OEBPS/httpatomoreillycomsourceoreillyimages60272.png
LARTIRT)

t

st

LARTIRT

t

fist

2

t

oth

nth

36 16 18

18 a2 3%

OEBPS/httpatomoreillycomsourceoreillyimages60250.png
Jos_base
o

i

ok s o s
T T
e .

S —

)

R

o s

OEBPS/httpatomoreillycomsourceoreillyimages60262.png
first 1 last?

1umuu1auzul
t
e indend
w210
t i

fist2 last2

OEBPS/httpatomoreillycomsourceoreillyimages60306.png

OEBPS/httpatomoreillycomsourceoreillyimages60246.png

OEBPS/httpatomoreillycomsourceoreillyimages60274.png
71218 4236 16 18

1 ! i

fist midde st

121617 18 4236 18

t 1)

fint midde last

OEBPS/httpatomoreillycomsourceoreillyimages60252.png
e 1
= -
— i

OEBPS/httpatomoreillycomsourceoreillyimages60270.png
10

10

2

10

2

2

10

10

2

10

OEBPS/httpatomoreillycomsourceoreillyimages60298.png
10

29 200

tt
fr
revrse. ieatorfe)

OEBPS/orm_front_cover.jpg
A Language & Library Reference

O'REILLY® Ray Lischner

OEBPS/httpatomoreillycomsourceoreillyimages60266.png
v
1 10,105 42, [10][37] 425 8¢

1 t t

ot midde ot

110, 105 10| 37 |2, |25 84

1 t

fist lost

OEBPS/httpatomoreillycomsourceoreillyimages60278.png
7

7

esult

1218 4218 3% 18

12/ a2 3%

retum

OEBPS/httpatomoreillycomsourceoreillyimages60258.png
fist last
i '

17 @2lalnse

17 @lalnse

1 t

retum result

OEBPS/httpatomoreillycomsourceoreillyimages60294.png
010 10 2 2

1

st

0 220

' t

result retum

