Macintosh Terminal Pocket Guide
Daniel J. Barrett
Published by O’Reilly Media
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo
Chapter 1. The Macintosh Terminal
Welcome to the Macintosh’s best-kept secret: the Terminal! If you’ve ever browsed the Utilities folder, you’ve probably seen this icon:
Maybe you’ve even launched the Terminal and seen a plain, dull-looking window appear, displaying mysterious words:
But if you’re like most users, this is probably as far as you’ve explored. And that is a shame, because the Terminal is one of the most powerful programs for controlling your Mac.
What is the Terminal? What does it do? And why should you care? Let’s answer the last question by telling a few stories:
You’re running Microsoft Word for the Mac when its window suddenly freezes. You type, but nothing happens. You try to quit Word, but it doesn’t respond. In desperation, you go to the application dock, select the Word icon, and choose “Force Quit.” Even this has no effect! You are stuck and have no choice but to reboot your Mac.
You have a folder of 1,000 PDF files named file1, file2, file3, and so on. For compatibility with a coworker’s computer, you need to rename these files to have .pdf extensions. The Finder doesn’t seem to have any way to perform these renames in bulk, so you do them one file at a time (click, click, click) until your hands cramp.
Last week, you copied a huge folder of files (and all its subfolders, 10 levels deep) from your Mac to a server on your network. The transfer took over an hour. During the next few days, you modified a few dozen of the original files, and now you want to copy the changed files to the remote server. Of course, you don’t want to copy the entire folder again and wait a whole hour! You want to copy just the files that have changed. Unfortunately, you didn’t keep track of which ones you modified, so you hunt them down and copy them one by one…which ends up taking even longer than an hour.
Do these stories sound familiar? In each case, there seems to be no simple solution using the Mac Finder, and you wind up wasting time: rebooting, clicking icons one by one, or hunting through large folders by hand. Well, we have good news. These problems are all easily solved by typing and running commands in the Terminal. In fact, here are the commands that solve our three problems:
killall -KILL 'Microsoft Word' Terminate Word
for i in file*; do mv $i $i.pdf; done Rename your PDFs
rsync -aE myfolder server: Copy changed files
These short, somewhat cryptic commands get the job done quickly. The Terminal can save you minutes, hours, or even days of work if you learn the right commands. That’s what this book is all about.
By the way, if you’re a system administrator of multiple OS X computers, you’re going to love the Terminal. Its command line is outstanding for automating system tasks.
What’s in This Book?
This book is a short guide to the Terminal, not a comprehensive reference. We cover important, useful aspects of the Terminal (and its partner, the “shell”) so you can work productively. We do not, however, present every single command and every last option (our apologies if your favorite was omitted), nor delve into detail about OS X internals. Short, sweet, and essential, that’s our motto.
We focus on commands, the words typed on a command line to tell your Macintosh what to do. Here’s an example command that counts lines of text in a file, myfile:
wc -l myfile
We’ll cover the most important commands for the average user, such as ls (list files), grep (search for text in a file), kill (terminate programs), and df (measure free disk space), plus some advanced commands like dscl (manage users and groups) and launchctl (run services and scheduled jobs). We assume you are already familiar with the Mac desktop and the Finder.
We’ve organized the material by function to provide a concise learning path. For example, to help you view the contents of a file, we introduce all file-viewing commands together: cat for short text files, less for longer ones, od for binary files, and so on. Then we explain each command in turn, briefly presenting its common uses and options.
At press time, the current version of OS X is Lion (10.7).
What’s the Terminal?
The Terminal is an application that runs commands. If you’re familiar with DOS command lines on Microsoft Windows, the Terminal is somewhat similar (but much more powerful).
Inside each Terminal window, there is a special program running called a shell. The shell does four simple things:
It displays a prompt in the Terminal window, waiting for you to type a command and press Enter.
It reads your command and interprets any special symbols you typed.
It runs the command, automatically locating any necessary programs.
It prints the output, if any, in the Terminal window.
The Terminal’s job is merely to open windows and manage shells. Using the Terminal, you can resize the windows, change their colors and fonts, and perform copy and paste operations. But it’s the shell that is doing the real work of reading and running commands. Figure 1-1 shows how the Terminal and the shell work together: when you peer into a Terminal window, you are viewing a shell, which in turn interacts with your Macintosh.
Figure 1-1. Viewing OS X through the Terminal and the shell
What’s a Command?
OS X comes with over 1,000 commands for file manipulation, text editing, printing, mathematics, computer programming, typesetting, networking…you name it. A typical command is run in a shell by typing its program name, followed by options and arguments, like this:
wc -l myfile
The program name (wc, the “word count” program) refers to a program somewhere on your Mac that the shell will locate and run. Options, which usually begin with a dash, affect the behavior of the program. In the preceding command, the -l option tells wc to count lines and not words. The argument myfile specifies the file that wc should read and process.
CASE SENSITIVITY
The commands in this book should be entered exactly, using the same capital (uppercase) and small (lowercase) letters we provide. In other words, commands are case-sensitive. If a command is wc -l (small “L”) but you type wc -L (capital “L”), it will not work.
In some situations, capital and small letters are equivalent. Specifically, the names of files and folders are case-insensitive, so when they appear on a command line, you can use capital or small letters as you see fit. Nevertheless, the rest of the command line is case-sensitive, so we recommend not changing the case of any letters in the presented commands.
Commands can have multiple options and arguments. Options may be given individually:
wc -l -w myfile Two individual options
or combined behind a single dash:
wc -lw myfile Same as -l -w
though some programs are quirky and do not recognize combined options. Multiple arguments are also OK:
wc -l myfile1 myfile2 Count lines in two files
Options are not standardized. The same option letter (say, -l) may have different meanings to different programs: in wc -l it means “lines of text,” but in ls -l it means “longer output.” In the other direction, two programs might use different options to mean the same thing, such as -q for “run quietly” versus -s for “run silently.”
Likewise, arguments are not standardized. They usually represent filenames for input or output, but they can be other things too, like directory names or regular expressions.
Commands can be more complex and interesting than a single program with options:
Commands can run more than one program at a time, either in sequence (one program after another) or in a “pipeline” with the output of one command becoming the input of the next. Shell experts use pipelines all the time.
Commands can run “in the background” while you do other work.
The shell has a programming language built in. So instead of a command saying “run this program,” it might say, “run this program six times” or “if today is Tuesday, run this program, otherwise run a different one.”
THE COMMAND PROMPT
Before you can type a command, you must wait for the shell to display a special symbol, called a prompt. A prompt means, “I am waiting for your next command.” Prompts come in all shapes and sizes, depending how your shell is configured. Your prompt might be a dollar sign:
$
or a complex line of text containing your computer name, username, and possibly other information and symbols:
mymac:~smith$
or various other styles. All these prompts mean the same thing: the shell is ready for your commands.
In this book, we’ll use the unique symbol ➜ to indicate a shell prompt, so you won’t mistakenly type it as part of a command. Here is a prompt followed by a command:
➜ wc -l myfile
Some commands will print text on the screen as they run. To distinguish your command (which you type) from this printed output (which you don’t), we’ll display the command in bold like this:
➜ wc -l myfile The command you type
12 23 371 myfile The output it produces
Some commands in this book can be run successfully only by an administrator, a special user with permission to do anything on the system. (Also called a superuser or root.) In this case, we precede the command with sudo, which we’ll explain fully in Becoming the Superuser:
➜ sudo superuser command goes here
Ten Commands to Try
To give you a feel for the Terminal, here are 10 simple commands you can try right now. Open the Terminal by visiting your Mac’s Utilities folder (in the Finder menu, choose Go and then Utilities), and double-click the Terminal icon. Then try these commands by typing them at the Terminal prompt. You must type them exactly, including capital and small letters, spaces, and all symbols.
Display a calendar for April, 2015:
➜ cal apr 2015
April 2015
Su Mo Tu We Th Fr Sa
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
List the contents of the Applications folder:
➜ ls /Applications
Address Book.app GarageBand.app Mail.app
App Store.app Image Capture.app TextEdit.app
...
Count the number of items in your Documents folder:
➜ ls $HOME/Documents | wc -l
67
See how much space is used on your internal hard disk:
➜ df -h /
Filesystem Size Used Avail Capacity Mounted on
/dev/disk0s2 465Gi 98Gi 366Gi 22% /
Watch the processes running on your Mac (type “q” to quit):
➜ top
Print the file /etc/hosts on your default printer, if you have one:
➜ lpr /etc/hosts
See how long you’ve been logged in to your Mac:
➜ last -l $USER
smith console Wed Apr 25 10:45 still logged in
Download a PDF file from the Internet to your Mac desktop, without needing a web browser. This involves two commands, and the O is a capital letter, not a zero:
➜ curl -O http://www.blazemonger.com/sample.pdf
➜ mv sample.pdf $HOME/Desktop
Display the IP address of your Mac:
➜ ipconfig getifaddr en0 For wired
➜ ipconfig getifaddr en1 For wireless
192.168.1.47
See who owns the domain name oreilly.com (press the space bar to move forward page by page, and type “q” to quit):
➜ whois oreilly.com | less
Finally, clear the window and exit Terminal:
➜ clear
➜ exit
OK, that was more than 10 commands…but congratulations: you are now a Terminal user! These commands are just quick examples; we will see more detailed and complex commands later in the book.
Reading This Book
You don’t have to read this book from start to finish: much of it is a reference for daily work. A typical pattern might be:
Look in the Table of Contents to find a general topic (say, viewing files).
The section for that topic (File Viewing) begins with a list of relevant commands (cat, tail, etc.).
Read about the command you want (e.g., tail).
We’ll describe many commands in this book. Each description begins with a standard heading about the command; Figure 1-2 shows one for the ls (list files) command. This heading demonstrates the general usage in a simple format:
ls [options] [files]
which means you’d type “ls” followed, if you choose, by options and then filenames. You wouldn’t type the square brackets “[” and “]”: they just indicate their contents are optional; and words in italics mean you have to fill in your own specific values, like names of actual files. You may see a vertical bar between options or arguments, perhaps grouped by parentheses:
(file | directory)
This indicates choice: you may supply either a filename or directory name as an argument.
The standard heading in Figure 1-2 also lists six properties of the command printed in black (meaning the property is supported by the command) or gray (unsupported):
Figure 1-2. Standard command heading
stdin
This means the command reads from your keyboard, which goes by the name “standard input” (stdin).
stdout
The command writes to your screen, which goes by the name “standard output” (stdout).
- file
When given a dash (-) argument in place of an input filename, the command reads from standard input; and likewise, if the dash is supplied as an output filename, the command writes to standard output. For example, the following wc command line reads the files file1 and file2, then standard input, then file3:
➜ wc file1 file2 - file3
-- opt
If you supply the command-line option “--” it means “end of options”: anything appearing later on the command line is not an option. This is sometimes necessary to operate on a file whose name begins with a dash, which otherwise would be (mistakenly) treated as an option. For example, if you have a file named -foo, the command wc -foo will fail because -foo will be treated as an (invalid) option. wc -- -foo works. If a command does not support “--”, you can prepend the symbols “./” to the filename so the dash is no longer the first character:
➜ wc ./-foo
This tells the shell that -foo is the name of a file in the current working directory and not an option.
--help
The option --help makes the command print a help message explaining proper usage, then exit.
--version
The option --version makes the command print its version information and exit.
Standard Input and Output
Many commands accept input and produce output. Input can come from your keyboard, which is given the fancy name standard input, or from files, or from other commands. Likewise, output is printed on screen (known as standard output), or written to files, or sent to other commands. Error messages are treated specially and displayed on standard error, which is usually also on screen but is kept separate from standard output.[1]
Later we’ll see how to redirect standard input, output, and error to make commands communicate with files and with each other. But for now let’s just make sure you know the vocabulary. When we say a command “reads,” we mean from standard input unless we say otherwise. And when a command “writes” or “prints,” we mean on standard output, unless we’re talking about computer printers.
Keystrokes
Throughout the book, we use certain symbols to indicate keystrokes. The ^ symbol means “press and hold the Control (Ctrl) key,” so for example, ^D (pronounced “control D”) means “press and hold the Control key and type D.” The shell tends to employ the Control key as a modifier rather than the Mac’s option or command (⌘) keys.
We also write ESC to mean “press the Escape key.” Keys like Enter and space bar should be self-explanatory.
Long lines
If a shell command is too wide for this book, we break it onto multiple lines, and the symbol \ means “continued on the next line”:
➜ wc -l file_with_a_long_name another_long_file_name \
yet_another_long_file_name
This slash isn’t just a visual aid: it actually works in the shell. (It is known as a line-continuation character.) If you type one of these slashes, it must be the last character on its line: you must press Enter immediately after it.
Your friend, the echo command
In many of our examples, we’ll print information to the screen with the echo command, which we’ll formally describe in Screen Output. echo is one of the simplest commands: it merely prints its arguments on standard output, once those arguments have been processed by the shell:
➜ echo My dog has fleas
My dog has fleas
➜ echo My name is $USER Shell variable USER
My name is smith
Quick help
If you need more information than is found in this book, type man (short for “manual”) followed by any command name:
➜ man wc
This runs the man command, which displays documentation about a command one page at a time. This documentation is called a manpage (i.e., “manual page”). Press the space bar to see the next page of documentation, type b to go back to the previous page, or type q to quit. To learn more about the man command, run man man. More details are found in Getting Help.
Now that you’ve seen how this book works, let’s begin learning about the Terminal and the shell.
[1] For example, you can capture standard output in a file and still have standard error messages appear on screen.
Running the Terminal
The Terminal is simple to run. Visit your Mac’s Utilities folder, locate the Terminal icon, and launch it. A Terminal window will appear, as in Figure 1-3, ready for your commands. If you run Terminal often, place its icon into the application dock for convenience.
Figure 1-3. The Terminal application running a shell
If you’re already running the Terminal, its Shell menu provides several ways to work with shells, shown in Figure 1-4:
Figure 1-4. The Shell menu in the Terminal
New Window (⌘N)
Open a Terminal window running a shell.
New Tab (⌘T)
In the current Terminal window, which is already running a shell, open another tab with its own shell. (Similar to the tabs in web browsers such as Firefox and Safari.)
New Command... (⇧⌘N)
Run a single command in a shell, then terminate the shell. This feature opens a Terminal window and leaves it hanging around, useless, after the shell is finished. We don’t see much point to this feature.
The Terminal is the standard method for running shells on the Mac desktop, but it’s not the only way. You can also log in to a Macintosh remotely from another computer. We’ll cover this advanced topic in Running a Shell Remotely.
The Filesystem
If you think Macintosh files are just little icons on your desktop, it’s time to learn something new. When you access files from a command line rather than the Finder, things look pretty different.
Centuries ago, people believed that the Earth was the center of the solar system and everything revolved around it, even the sun. They believed this because they saw the sun move through the sky each day. But in reality, the sun is in the center, and Earth is merely one planet orbiting it.
The Macintosh desktop has a similar illusion. When you log in to the Mac, everything on the desktop seems to revolve around you: your files, your home folder, your trash, and your system preferences. It feels like you are in the center, surrounded by the rest of the Mac’s files, folders, and features. In reality, however, your desktop isn’t the center of anything: it’s just one “planet” (really a folder) in a solar system of files and folders, called the OS X filesystem, or just “the filesystem.”
In the following sections, we’ll introduce you to the true filesystem as viewed through the Terminal. This view might seem like an alien world because your familiar files and folders won’t have any icons, just words on a command line. Nevertheless, you must become comfortable with this view to take advantage of the Terminal’s powerful features. For some people, this is the most challenging aspect of getting started with the Terminal and shell.
Structure of the Filesystem
The OS X filesystem is a hierarchy, or tree, of folders and files, as in Figure 1-5. At the top is a folder called the root directory. Below the root are several folders you might recognize, like Applications, and others that might be less familiar, like bin and etc. These folders-within-a-folder are called subdirectories. Each subdirectory may itself contain other files and subdirectories, and so on, into infinity.
Figure 1-5. The OS X filesystem (partial). The root directory is at the top. The PDF file’s full path is /Users/smith/Desktop/manual.pdf
This filesystem view is not the same one you see in Finder windows. The Finder hides some folders from you, such as etc, because they contain operating system files that most users don’t need to access. It also displays disks and certain folders more prominently, such as Applications, by listing them on the left-hand side of Finder windows. This is just the user-friendly illusion of the desktop. The filesystem tree in Figure 1-5 is the reality.
FOLDERS AND DIRECTORIES
The words “folder” and “directory” are synonyms: they both mean a container for files (and other folders) on your Mac. When using the Finder, people almost always say “folder,” but when using a command line (as in the Terminal and shell), the word “directory” is more common. In this book, we use the terms “directory” and “subdirectory” often.
Each file and directory has a unique name in the filesystem, called a path, written with words and slashes. The root directory’s path is a slash (/). Below the root, the Applications subdirectory has the path /Applications, and below it, the subdirectory iTunes.app has the path /Applications/iTunes.app. In general, a path like:
/one/two/three/four
says that the root directory contains a directory called one, which contains a directory two, which contains a directory three, which contains a final file or directory, four.
Figure 1-5 reveals the truth behind your desktop in the OS X “solar system.” If your username is smith, then all the files and folders you see displayed on your desktop live inside the folder /Users/smith/Desktop. So when you see a PDF file on your desktop, manual.pdf, its true path in the OS X filesystem is /Users/smith/Desktop/manual.pdf. Now the illusion of the desktop is fully revealed: your “central,” graphical desktop is actually three levels deep in the OS X filesystem, and no more special than any other user’s Desktop folder. Figure 1-6 reveals the true filesystem location of other common parts of the desktop: the system disk, the trash, and more.
Figure 1-6. Behind the desktop illusion: some icons and their true filesystem paths
Navigating the Filesystem
When you open a Finder window and work with its icons, that window represents a particular folder. Likewise, when you open a Terminal window, its shell is working “in” some directory. More technically, your shell has a current working directory (analogous to your open Finder window). When you run commands in that shell, they operate relative to the current working directory. Figure 1-7 illustrates this concept. If your shell is “in” the directory /Users/smith/stuff, and you run a command that refers to a file receipt.pdf, then the file is really /Users/smith/stuff/receipt.pdf.
Figure 1-7. A Finder window (left) and Terminal window (right) displaying the same folder, /Users/smith/stuff
If a path begins with a slash, such as /one/two/three, it’s called an absolute path. If not, it’s a relative path, because it’s relative to a shell’s current location in the filesystem. For instance, a relative path a/b/c, when referenced from the current directory /one/two/three, implies the absolute path /one/two/three/a/b/c. In general, if you refer to a relative file path in a shell, the path is relative to your current working directory.
Two special relative paths are . (a single period) and .. (two periods in a row). A single period refers to your current directory, and two periods means your parent directory, one level above. So if your current directory is /one/two/three, then . refers to this directory and .. refers to /one/two. This explains what we did in Reading This Book, when we wrote ./-foo to indicate that -foo was a file in the current directory, and not an option.
You “move” your shell from one directory to another using the cd (“change directory”) command:
➜ cd /one/two/three
More technically, the cd command changes your shell’s current working directory, in this case to /one/two/three. This is an absolute change (since the directory begins with “/”); of course you can make relative moves as well:
➜ cd d Enter subdirectory d
➜ cd ../mydir Go up to my parent, then into directory mydir
While you’re cd-ing around the filesystem, you must remember which directory you’re “in.” If you need a reminder, run the pwd command to print the name of your current working directory:
➜ pwd
/Users/smith/stuff
File and directory names may contain most characters you expect: letters,[2] digits, periods, dashes, underscores, and most symbols (but not “/”, which is reserved for separating directories). For practical use, however, don’t create names with spaces, asterisks, question marks, parentheses, and other characters that have special meaning to the shell. Otherwise, you’ll need to quote or escape these characters all the time. (See Quoting.)
[2] OS X filenames are case-insensitive, so capital (uppercase) and small (lowercase) letters are equivalent. (This can be changed if you are technically inclined.) Commands, however, are case-sensitive.
Home Directories in the Filesystem
Users’ personal files are found in the /Users directory. Each user has a subdirectory named /Users/your-username: take for example, /Users/smith or /Users/jones. This is called your home directory. OS X provides several ways to locate or refer to your home directory:
In the Finder
On the left side of a Finder window, you may see an icon labeled with your username (e.g., “Smith”). This represents the home directory /Users/smith. Click it to access your home directory via the Finder. If you don’t see this icon, you can add it: visit the Finder menu, choose Preferences, click Sidebar, and add the icon.
cd
With no arguments, the cd command returns you (i.e., sets the shell’s working directory) to your home directory:
HOME variable
The environment variable HOME (see Shell variables) contains the name of your home directory.
➜ echo $HOME The echo command prints its arguments
/Users/smith
˜
When used in place of a directory, a lone tilde is expanded by the shell to the name of your home directory.
➜ echo ˜
/Users/smith
When followed by a username (as in ~fred), the shell expands this string to be the user’s home directory:
➜ cd ˜fred
➜ pwd The “print working directory” command
/Users/fred
System Directories in the Filesystem
A typical Macintosh has thousands of system directories. These directories contain operating system files, applications, documentation, and just about everything except personal user files (which typically live in your home directory).
Unless you’re a system administrator, you’ll rarely visit most system directories—but with a little knowledge you can understand or guess their purposes. Their names often contain three parts, which we’ll call the scope, category, and application. (These are not standard terms, but they’ll help you understand things.) For example, the directory /usr/local/share/emacs, which contains local data for the Emacs text editor, has scope /usr/local (locally installed system files), category share (program-specific data and documentation), and application Emacs (a text editor), shown in Figure 1-8. We’ll explain these three parts, slightly out of order.
Figure 1-8. Directory scope, category, and application
Directory path part 1: category
A category tells you the types of files found in a directory. For example, if the category is bin, you can be reasonably assured that the directory contains programs. Common categories are:
Directory path part 2: scope
The scope of a directory path describes, at a high level, the purpose of an entire directory hierarchy. Some common ones are:
Directory path part 3: application
The application part of a directory path, if present, is usually the name of a program. After the scope and category (say, /usr/local/doc), a program may have its own subdirectory (say, /usr/local/doc/myprogram) containing files it needs.
File Protections
A Macintosh may have many users with login accounts. To maintain privacy and security, most users can access only some files on the system, not all. This access control is embodied in two questions:
Who has permission?
Every file and directory has an owner who has permission to do anything with it. Typically the user who created a file is its owner, but relationships can be more complex.
Additionally, a predefined group of users may have permission to access a file. Groups are defined by the system administrator and are covered in Group Management.
Finally, a file or directory can be opened to all users with login accounts on the system. You’ll also see this set of users called the world or simply other.
What kind of permission is granted?
File owners, groups, and the world may each have permission to read, write (modify), and execute (run) particular files. Permissions also extend to directories, which users may read (access files within the directory), write (create and delete files within the directory), and execute (enter the directory with cd).
To see the ownership and permissions of a file, run the ls -l command, described in more detail in Basic File Operations:
➜ ls -l myfile
-rw-r--r-- 1 smith staff 7384 Jan 04 22:40 myfile
In the output, the file permissions are the 10 leftmost characters:
-rw-r--r--
a string of r (read), w (write), x (execute), dashes, and sometimes other letters and symbols. Reading from left to right (positions 1–10), the permissions mean:
Position | Meaning |
---|---|
1 | File type. A dash (-) means a plain file and d means a directory. Other more advanced values include l (symbolic link), p (named pipe), c (character device), and b (block device). |
2–4 | Owner permissions: read, write, and execute permissions for the file’s owner. |
5–7 | Group permissions: read, write, and execute permissions for the file’s group. |
8–10 | World permissions: read, write, and execute permissions for all other users. |
So in our example, the permissions -rw-r--r-- mean that the file myfile can be read and written by the owner (smith), read by members of the staff group, and read by the rest of the world.
To see the ownership and permissions of a directory, add the -d option to the earlier ls command (otherwise you’ll list the directory’s contents):
➜ ls -ld dirname
drwxr-x--- 3 smith staff 4096 Jan 08 15:02 dirname
The permissions drwxr-x--- indicate that the directory dirname can be read, written, and entered (execute permission) by the owner smith, read or entered by anyone in the staff group, and not accessed at all by any other users.
To change the owner, group ownership, or permissions of a file, use the chown, chgrp, and chmod commands, respectively, as described in File Properties.
The Shell
In order to use commands on a Macintosh, you’ll need a program that reads and executes them. That program is called the shell, which runs inside the Terminal and is OS X’s command-line user interface.[3] You type a command and press Enter, and the shell runs whatever program (or programs) you’ve requested. For example, to list the files in your Documents folder, one per line, you could execute the ls -1 command in a shell:
➜ ls -1 ~/Documents
data.pdf
letter.txt
song.mp3
A single command can also invoke several programs at the same time, and even connect programs together so they interact. Here’s a command that redirects the output of the preceding ls command to become the input of the wc program, which counts lines of text in a file; the result is the number of lines printed by ls:
➜ ls -1 ~/Documents | wc -l
3
telling you how many files are in your Documents folder. The vertical bar, called a pipe, makes the connection between ls and wc.
A shell is actually a program itself, and OS X has several different ones: the Bourne shell, the Korn shell, the C shell, and others. This book focuses on a popular shell called bash, the Bourne-Again Shell, located in /bin/bash, which is the default for user accounts. However, all these shells have similar basic functions.
[3] The same shell is found on Linux systems, and on Windows PCs that run Cygwin.
The Shell Versus Programs
When you run a command, it might invoke an OS X program (like ls), or instead it might be a built-in command, a feature of the shell itself. You can tell the difference with the type command:
➜ type ls
ls is /bin/ls
➜ type cd
cd is a shell builtin
The next few sections describe built-in features of the shell.
Selected Features of the bash Shell
A shell does much more than simply run commands. It also has powerful features to make this task easier: wildcards for matching filenames, a “command history” to recall previous commands quickly, pipes for making the output of one command become the input of another, variables for storing values for use by the shell, and more. Take the time to learn these features, and you will become faster and more productive. Let’s skim the surface and introduce you to these useful tools. (For full documentation, run info bash.)
Wildcards
Wildcards are a shorthand for sets of files with similar names. For example, a* means all files whose names begin with lowercase “a.” Wildcards are “expanded” by the shell into the actual set of filenames they match. So if you type:
➜ ls a*
the shell first expands a* into the filenames that begin with “a” in your current directory, as if you had typed:
➜ ls aardvark adamantium apple
ls never knows you used a wildcard: it sees only the final list of filenames after the shell expands the wildcard. Importantly, this means every command, regardless of its origin, works with wildcards and other shell features.
Here’s an example of wildcard use. Suppose you have a folder containing hundreds of JPEG images from your digital camera, named IMG_1001.jpg through IMG_1864.jpg. You need to delete all the images ending in 20.jpg:
IMG_1020.jpg
IMG_1120.jpg
IMG_1220.jpg
IMG_1320.jpg ...
The names of these files are not consecutive, nor are their dates, so you have no easy way to select these files as a group in the Finder and drag them to the trash. Using a shell wildcard, you can list them with a single ls command:
➜ ls *20.jpg
and delete them with a single rm command, which removes files:
➜ rm *20.jpg Careful! Deletes files immediately!
There are two characters that wildcards cannot match: a leading period, and the directory slash (/). These must be given literally, as in .pro* to match .profile, or /etc/*conf to match all filenames ending in conf in the /etc directory.
DOT FILES
Filenames with a leading period, called dot files, are special in OS X. When you name a file beginning with a period:
ls omits the file from directory listings, unless you provide the -a option.
Shell wildcards do not match the leading period.
Effectively, dot files are hidden unless you explicitly ask to see them. As a result, sometimes they are called “hidden files.”
Wildcard | Meaning |
---|---|
* | Zero or more consecutive characters. |
? | A single character. |
[set] | Any single character in the given set, most commonly a sequence of characters, like [aeiouAEIOU] for all vowels, or a range with a dash, like [A-Z] for all capital letters. |
[^ set] | Any single character not in the given set. For example, [^A-Z] means any single character that is not a capital letter. |
[! set] | ! is equivalent to ^. |
When using character sets, if you want to include a literal dash in the set, put it first or last. To include a literal closing square bracket in the set, put it first. To include a ^ or ! symbol literally, don’t put it first.
Brace expansion
Similar to wildcards, expressions with curly braces also expand to become multiple arguments to a command. The comma-separated expression:
{X,YY,ZZZ}
expands first to X, then YY, and finally ZZZ within a command line, like this:
➜ echo sand{X,YY,ZZZ}wich
sandXwich sandYYwich sandZZZwich
Braces work with any strings, unlike wildcards, which are limited to filenames. The preceding example works regardless of which files are in the current directory.
Shell variables
You can define variables and their values by assigning them:
➜ MYVAR=3
To produce the value of a variable, simply place a dollar sign in front of the variable name:
➜ echo $MYVAR
3
Some variables are standard and commonly defined by your shell upon login.
To see a shell’s variables, run:
➜ printenv All variables and their values
➜ printenv HOME One variable and its value
➜ echo $HOME One variable and its value
The scope of the variable (i.e., which programs know about it) is, by default, the shell in which it’s defined. To make a variable and its value available to other programs your shell invokes (i.e., subshells), use the export command:
➜ export MYVAR
or the shorthand to export and assign in one step:
➜ export MYVAR=3
Your variable is now called an environment variable, since it’s available to other programs in your shell’s “environment.” So in the preceding example, the exported variable MYVAR is available to all programs run by that same shell (including shell scripts: see Variables).
To make a variable value available to a specific program just once, prepend variable=value to the command line:
➜ printenv HOME
/Users/smith
➜ HOME=/Users/sally printenv HOME
/Users/sally
➜ printenv HOME
/Users/smith The original value is unaffected
Search path
Programs are scattered all over the filesystem, in directories like /bin and /usr/bin. When you run a program via a shell command, how does the shell find it? The critical variable PATH tells the shell where to look. When you type any command:
➜ ls
the shell has to find the ls program by searching through directories. The shell consults the value of PATH, which is a sequence of directories separated by colons:
➜ echo $PATH
/usr/local/bin:/bin:/usr/bin:/Users/smith/bin
and looks for the ls command in each of these directories. If it finds ls (say, /bin/ls), it runs the command. Otherwise, it reports:
-bash: ls: command not found
To add directories to your shell’s search path temporarily, modify its PATH variable. For example, to append /usr/sbin to your shell’s search path, run:
➜ PATH=$PATH:/usr/sbin
Now the additional directory is in the search path:
➜ echo $PATH
/usr/local/bin:/bin:/usr/bin:/Users/smith/bin:/usr/sbin
This change affects only the current shell. To make it permanent, put the same PATH command into your startup file $HOME/.bash_profile, as explained in Tailoring Shell Behavior. Then close your Terminal window and open a new one for the change to take effect.
Aliases
The built-in command alias defines a convenient shorthand for a longer command, to save typing. For example:
➜ alias ll='ls -l'
defines a new command ll that runs ls -l:
➜ ll
total 436
-rw-r--r-- 1 smith 3584 Oct 11 14:59 file1
-rwxr-xr-x 1 smith 72 Aug 6 23:04 file2
...
To remove an alias, use the unalias command:
➜ unalias ll
Define aliases in your $HOME/.bash_profile file (see Tailoring Shell Behavior) to make them available whenever you run a shell. To list all your aliases, type alias. If aliases don’t seem powerful enough for you (since they carry no parameters or branching), see Programming with Shell Scripts, or run info bash and read up on “shell functions.”
Input/output redirection
The shell can redirect standard input, standard output, and standard error to and from files. (We introduced these terms in Standard Input and Output.) In other words, any command that reads from standard input can read from a file instead with the shell’s < operator:
➜ some command < infile
Likewise, any command that writes to standard output can write to a file instead:
➜ some command > outfile Create/overwrite outfile
➜ some command >> outfile Append to outfile
A command that writes to standard error can have its output redirected to a file as well, using the 2> operator, while standard output still goes to the screen:
➜ some command 2> errorfile Create/overwrite outfile
To redirect both standard output and standard error to files, you can supply both > and 2> to redirect them to separate files, or >& to redirect them both to the same file:
➜ some command > outfile 2> errorfile Separate files
➜ some command >& outfile Single file
Be careful: when you redirect output to a file, the file gets overwritten without any warning, unless you are appending with the >> operator.
Pipes
You can redirect the standard output of one command to be the standard input of another, using the shell’s pipe (|) operator. For example, this command sends the output of ls (list files) into the wc (word count) program:
➜ ls | wc -l
which prints a count of files in the current directory. Multiple pipes work, too: let’s build a four-stage pipeline one step at a time. First, we list files in the current directory:
➜ ls -1
data.pdf
letter.txt
song.mp3
symphony.mp3
...
Then we extract the file extensions with the cut command (described in File Text Manipulation), which removes columns of text:
➜ ls -1 | cut -d. -f2
txt
mp3
mp3
...
Then we sort the results with the sort command (also in File Text Manipulation):
➜ ls -1 | cut -d. -f2 | sort
mp3
mp3
txt
...
Finally, in case the output is long, we pipe it through the less command (found in File Viewing) that pauses the output whenever the shell window fills up:
➜ ls -1 | cut -d. -f2 | sort | less
Pipes are one of the most powerful, useful, and downright fun features of the shell.
Combining commands
You can run several commands in sequence on a single command line. There are three ways to do this with different behavior. If you separate the commands with semicolons, they run as if you’d entered them separately at individual shell prompts:
➜ command1 ; command2 ; command3
If any of the commands fail, the sequence continues. In contrast, if you separate the commands with && symbols (pronounced “and”), the sequence will stop if any command fails:
➜ command1 && command2 && command3
Finally, if you separate the commands with || symbols (pronounced “or”), the sequence will stop as soon as one command succeeds:
➜ command1 || command2 || command3
Quoting
Normally, words on the command line are separated by spaces, tabs, or linebreaks (collectively called whitespace). If you want a word to contain whitespace (e.g., a filename with a space in it), surround it with single or double quotes to make the shell treat it as a unit. For example, the filename My Stuff would need to be quoted or else the shell will think you mean two files named My and Stuff:
➜ wc My Stuff Wrong
wc: My: open: No such file or directory
wc: Stuff: open: No such file or directory
➜ wc "My Stuff" Correct
10 34 236 My Stuff
Single quotes treat their contents literally, while double quotes let shell constructs be evaluated, such as variables:
➜ echo 'The variable HOME has value $HOME'
The variable HOME has value $HOME
➜ echo "The variable HOME has value $HOME"
The variable HOME has value /Users/smith
Backquotes (“backticks”) are the coolest quotes. They cause their contents to be evaluated as a shell command. The contents are then replaced by the standard output of the command:
➜ whoami Program that prints your username
smith
➜ echo My name is `whoami`
My name is smith
Escaping
If a character has special meaning to the shell but you want it used literally (e.g., treating * as a literal asterisk rather than a wildcard), precede the character with the backward slash “\” character. This is called escaping the special character:
➜ echo a* The wildcard matches “a” filenames
aardvark agnostic apple
➜ echo a* A literal asterisk
a*
➜ echo "I live in $HOME" Dollar sign means a variable value
I live in /Users/smith
➜ echo "I live in \$HOME" A literal dollar sign
I live in $HOME
You can also escape control characters (tabs, newlines, ^D, and so forth) to have them used literally on the command line, if you precede them with ^V. This is particularly useful for tab (^I) characters, which the shell would otherwise use for filename completion (see Filename completion):
➜ echo "There is a tab between here^V^I and here"
There is a tab between here and here
Command-line editing
Bash lets you edit the command line you’re working on using cursor movement keys. If you like the text editors Emacs and vim (see File Creation and Editing), you can also use their keystrokes for editing the command line. Emacs keystrokes work by default. To enable command-line editing with vim keys, run this command (and place it in your $HOME/.bash_profile to make it permanent):
➜ set -o vi
To re-enable Emacs keystrokes, run:
➜ set -o emacs
Here are some useful keystrokes; see File Creation and Editing for others:
Operation | Cursor keys | Emacs keystroke | vim keystroke (after ESC) |
---|---|---|---|
Go forward one character | Right arrow | ^F | l |
Go backward one character | Left arrow | ^B | h |
Go forward one word | Ctrl + right arrow | ALT-f | w |
Go backward one word | Ctrl + left arrow | ALT-b | b |
Delete forward one word |
| ALT-d | de |
Delete backward one word |
| ^W | db |
Go to beginning of line | Home | ^A | 0 |
Go to end of line | End | ^E | $ |
Delete next character | Delete | ^D | x |
Erase everything from your cursor back to the shell prompt |
| ^U | ^U |
Command history
You can recall previous commands you’ve run—that is, the shell’s history—and re-execute them. Some useful history-related commands are listed below.
There are also keystrokes for searching the command history interactively, using cursor keys or Emacs/vim keystrokes:
Operation | Cursor keys | Emacs keystroke | vim keystroke (after ESC) |
---|---|---|---|
Go to previous command | Up arrow | ^P | k |
Go to next command | Down arrow | ^N | j |
Interactive search mode |
| ^R | ^R |
Interactive search mode is extremely useful. Type ^R, then type any part of a previous command and see what appears. To continue jumping backward in history, type ^R additional times. When you see the command you want, press Enter to run it (or use other keystrokes to edit it). To cancel the search, type ^C.
Filename completion
Press the Tab key while you are in the middle of typing a filename, and the shell will automatically complete (finish typing) the filename for you. If several filenames match what you’ve typed so far, the shell will beep, indicating the match is ambiguous. Immediately press Tab again and the shell will present the alternatives. Try this:
➜ cd /usr/bin
➜ ls un TAB TAB
The shell will display all files in /usr/bin that begin with un, such as uniq, units, and unzip. Type a few more characters to disambiguate your choice some more, and press Tab again.
Shell Job Control
jobs | List your jobs. |
& | Run a job in the background. |
^Z | Suspend the current (foreground) job. |
suspend | Suspend a shell. |
fg | Unsuspend a job: bring it into the foreground. |
bg | Make a suspended job run in the background. |
All shells have job control: the ability to run programs in the background (multitasking behind the scenes) and foreground (running as the active process at your shell prompt). A job is simply the shell’s unit of work. When you run a command interactively, your current shell tracks it as a job. When the command completes, the associated job disappears. Jobs are at a higher level than OS X processes (discussed in Viewing Processes); OS X knows nothing about them. They are merely constructs of the shell. Some important vocabulary about job control is:
Foreground job
Running in a shell, occupying the shell prompt so you cannot run another command
Background job
Running in a shell, but not occupying the shell prompt, so you can run another command in the same shell
Suspend
To stop a foreground job temporarily
Resume
To cause a suspended job to start running again
Name
jobs
The built-in command jobs lists the jobs running in your current shell:
➜ jobs
[1]- Running emacs myfile &
[2]+ Stopped wc -l bigfile
The integer on the left is the job number, and the plus sign identifies the default job affected by the fg (foreground) and bg (background) commands.
Name
&
Placed at the end of a command line, the ampersand causes the given command to run as a background job:
➜ emacs myfile &
[2] 28090
The shell’s response includes the job number (2) and the process ID of the command (28090).
Name
^Z
Typing ^Z in a shell, while a job is running in the foreground, will suspend that job. It simply stops running, but its state is remembered:
➜ sleep 20 Command that simply waits 20 seconds
^Z
[1]+ Stopped sleep 20
➜
Now you’re ready to type bg to put the command into the background where it continues running, or fg to resume it in the foreground.
Name
bg
Synopsis
bg [%jobnumber]
The built-in command bg sends a suspended job to run in the background. With no arguments, bg operates on the most recently suspended job. To specify a particular job (shown by the jobs command), supply the job number preceded by a percent sign:
➜ bg %2
Some types of interactive jobs cannot remain in the background—for instance, if they are waiting for input. If you try, the shell will suspend the job and display:
[2]+ Stopped command line here
You can now resume the job (with fg) and continue.
Name
fg
Synopsis
fg [%jobnumber]
The built-in command fg brings a suspended or backgrounded job into the foreground. With no arguments, it selects a job, usually the most recently suspended or backgrounded one. To specify a particular job (as shown by the jobs command), supply the job number preceded by a percent sign:
➜ fg %2
A typical sequence of job control commands is:
➜ wc -l huge_file Start a long job
^Z Suspend the job
[1]+ Stopped wc -l huge_file
➜ bg Put wc into the background
[1]+ wc -l huge_file &
➜ Run other commands...
➜ fg Bring wc into the foreground
wc -l huge_file
578394783 huge_file The wc job finishes
Name
suspend
The built-in command suspend will suspend the current shell if possible, as if you’d typed ^Z to the shell itself. For instance, if you’ve run the sudo command to make an administrator shell (see Becoming the Superuser) and want to return to your original shell:
➜ whoami
smith
➜ sudo bash
Password: *******
whoami “#” is the superuser prompt
root
suspend
[1]+ Stopped sudo bash
➜ whoami
smith
Killing a Command in Progress
If you’ve launched a command from the shell running in the foreground, and want to kill it immediately, type ^C. The shell recognizes ^C as meaning, “terminate the current foreground command right now.” So if you are displaying a very long file (say, with the cat command) and want to stop, type ^C:
➜ cat bigfile
This is a very long file with many lines. Blah blah blah
blah blah blah blahblahblah ^C
➜
To kill a program running in the background, you can bring it into the foreground with fg and then type ^C. Alternatively, you can use the kill command (for more information, see Controlling Processes).
Killing a program is not a friendly way to end it. If the program has its own way to exit, use that when possible: see the sidebar for details.
SURVIVING A KILL
Killing a foreground program with ^C may leave your shell in an odd or unresponsive state, perhaps not displaying the keystrokes you type. This happens because the killed program had no opportunity to clean up after itself. If this happens to you:
Press ^J to get a shell prompt. This produces the same character as the Enter key (a newline) but will work even if Enter does not.
Type the shell command reset (even if the letters don’t appear while you type) and press ^J again to run this command. This should bring your shell back to normal.
^C works only within shells. It will likely have no effect if typed in a window that is not a shell window. Additionally, some programs are written to “catch” the ^C and ignore it: an example is the text editor Emacs.
Terminating a Shell
To terminate a shell, run the exit command or type ^D.[4]
➜ exit
or if you’re running a Terminal window, click the close box.
[4] Control-D sends an “end of file” signal to any program reading from standard input. In this case, the program is the shell itself, which terminates.
Tailoring Shell Behavior
To configure all your shells to work in a particular way, edit the file .bash_profile in your home directory. This file executes each time you open bash in Terminal or log in remotely (discussed in Running a Shell Remotely). It can set variables and aliases, run programs, print your horoscope, or whatever you like.
This file is an example of a shell script: a file containing shell commands that can be executed as a unit. We’ll cover this feature in more detail in Programming with Shell Scripts.
Chapter 2. Commands
Now that you’ve seen an overview of the Terminal, the shell, and the Macintosh filesystem, we turn our attention to the commands you can run in the Terminal. We will list and describe the most useful commands for working with files, processes, users, networking, and more.
Basic File Operations
ls | List files in a directory. |
cp | Copy a file. |
mv | Rename (“move”) a file. |
rm | Delete (“remove”) a file. |
ln | Create links (alternative names) to a file. |
One of the first things you’ll want to do in Terminal is manipulate files: copying, renaming, deleting, and so forth.
Name
ls — stdin stdout - file -- opt --help --version
Synopsis
ls [options] [files]
The ls command (pronounced as it is spelled, ell ess) lists attributes of files and directories. You can list files in the current directory:
➜ ls
in given directories:
➜ ls dir1 dir2 dir3
or individually:
➜ ls file1 file2 dir3/file3
The most important options are -a, -l, and -d. By default, ls hides files whose names begin with a dot, as explained in the sidebar Dot Files. The -a option displays all files:
➜ ls
myfile1 myfile2
➜ ls -a
.hidden_file myfile1 myfile2
The -l option produces a long listing:
➜ ls -l my.data
-rw-r--r-- 1 smith users 149 Oct 28 2011 my.data
that includes, from left to right: the file’s permissions (-rw-r--r--), owner (smith), group (users), size (149 bytes), last modification date (Oct 28 2011) and name. See File Protections for more information on permissions.
Add the -@ option to -l to display OS X extended attributes of the files in question:
➜ ls -l@ letter.docx
-rw-r--r--@ 1 smith users 49269 Nov 19 2011 letter.docx
com.apple.FinderInfo 32
The -d option lists information about a directory itself, rather than descending into the directory to list its files.
➜ ls -ld my.dir
drwxr-xr-x 1 smith users 4096 Oct 29 2011 my.dir
Useful options
Name
cp — stdin stdout - file -- opt --help --version
Synopsis
cp [options] file1 file2
cp [options] (files | directories) directory
The cp command normally copies a file:
➜ cp file file2
or copies multiple files and directories into a destination directory:
➜ cp file1 file2 file3 dir4 destination_directory
Using the -a option, you can also recursively copy directories.
Useful options
Name
mv — stdin stdout - file -- opt --help --version
Synopsis
mv [options] source target
The mv (move) command can rename a file or directory:
➜ mv file1 file2
or move files and directories into a destination directory:
➜ mv file1 file2 dir3 dir4 destination_directory
Useful options
-i | Interactive mode. Ask before overwriting destination files. |
-f | Force the move. If a destination file exists, overwrite it unconditionally. |
Name
rm — stdin stdout - file -- opt --help --version
Synopsis
rm [options] files | directories
The rm (remove) command can delete files:
➜ rm file1 file2 file3
or recursively delete directories and all their subdirectories:
➜ rm -r dir1 dir2
RM DELETES FILES IMMEDIATELY
The rm command does not move files into the trash. They are deleted instantly with no warning.[5] For a safer removal command, use rm -i which prompts before deletion:
➜ rm -i myfile
remove myfile? y
To make rm prompt before deletion all the time, put this alias into your $HOME/.bash_profile startup file:
alias rm="/bin/rm -i"
then close and reopen your Terminal window.
Useful options
[5] A file removed by rm can theoretically be recovered by an undelete program. To remove a file more permanently, say, in a high-security environment, use the srm command instead. See man srm for details.
Name
ln — stdin stdout - file -- opt --help --version
Synopsis
ln [options] source target
A link is a reference to another file, created by the ln command. Intuitively, links give the same file multiple names, allowing it to live in two (or more) locations at once.
There are two kinds of links. A symbolic link (also called a symlink or soft link) refers to another file by its path, much like a Macintosh “alias.” To create a symbolic link, use the -s option:
➜ ln -s myfile mysoftlink
If you delete the original file, the now-dangling link will be invalid, pointing to a nonexistent file path. A hard link, on the other hand, is simply a second name for a physical file on disk (in tech talk, it points to the same inode).[6] If you delete the original file, the link still works as if it were the original file. Figure 2-1 illustrates the difference. To create a hard link, type:
➜ ln myfile myhardlink
Figure 2-1. Hard link versus symbolic link
Symbolic links can point to files on other disk partitions, since they are just references to file paths; hard links cannot, since an inode on one disk has no meaning on another. Symbolic links can also point to directories, whereas hard links cannot.
Useful options
-s | Make a symbolic link. The default is a hard link. |
-i | Interactive mode. Ask before overwriting destination files. |
-f | Force the link. If a destination file exists, overwrite it unconditionally. |
It’s easy to find out where a symbolic link points with either of these commands:
➜ readlink linkname
➜ ls -l linkname
LINKS VS. ALIASES
Symbolic links might seem similar to Macintosh aliases because they both point to files and folders. Aliases, however, work only in the Finder, while symbolic links work with all Macintosh applications, including the shell. If you create an alias to a folder, for example, you can open the alias in the Finder (which opens the folder), but you cannot cd into the alias from the shell. cd does follow symbolic links.
Using the ls -l command, you can examine how aliases and links appear in the filesystem. Here is a file myfile that has an alias A and a symbol link L that both point to it:
➜ ls -l
-rw-r--r--@ 1 smith staff 0 Mar 18 21:43 A
lrwxr-xr-x 1 smith staff 6 Mar 18 21:42 L -> myfile
-rw-r--r-- 1 smith staff 0 Mar 18 21:42 myfile
Alias A is displayed with an @ symbol next to its permissions, indicating that it has extended attributes that identify the target file, myfile. (We’ll discuss extended attributes with the xattr command in File Properties.) The symbolic link L is displayed with an arrow (->) pointing to the target file.
[6] The inode of a file is its numeric ID on a disk partition.
Directory Operations
cd | Change your current directory. |
pwd | Print the name of your current directory, i.e., “where you are now” in the filesystem. |
basename | Print the final part of a file path. |
dirname | Print the name of a directory that contains a file. |
mkdir | Create (make) a directory. |
rmdir | Delete (remove) an empty directory. |
rm -r | Delete a nonempty directory and its contents. |
We discussed the directory structure of OS X in The Filesystem. Now we’ll cover commands that create, modify, delete, and manipulate directories within that structure.
Name
cd — stdin stdout - file -- opt --help --version
Synopsis
cd [directory]
The cd (change directory) command sets your current working directory. Using cd is like opening a particular shell’s folder in the Finder, where you’re ready to do work.
➜ cd /usr/bin
With no directory supplied, cd defaults to your home directory:
➜ cd
Name
pwd — stdin stdout - file -- opt --help --version
Synopsis
pwd
The pwd command prints the absolute path of your shell’s current working directory:
➜ pwd
/Users/smith/mydir
Name
basename — stdin stdout - file -- opt --help --version
Synopsis
basename path [suffix]
The basename command, given a file path, prints the final component in the path:
➜ basename /Users/smith/finances/money.txt
money.txt
If you provide an optional suffix, it gets stripped from the result:
➜ basename /Users/smith/finances/money.txt .txt
money
basename doesn’t care if the file path exists: it just extracts the final filename.
Name
dirname — stdin stdout - file -- opt --help --version
Synopsis
dirname path
The dirname command, given a file path, prints the name of the directory that contains it:
➜ dirname /Users/smith/finances/money.txt
/Users/smith/finances
dirname does not change your current working directory, and it doesn’t care if the path exists. It simply manipulates a file path string, just like basename does.
Name
mkdir — stdin stdout - file -- opt --help --version
Synopsis
mkdir [options] directories
mkdir creates one or more directories:
➜ mkdir directory1 directory2 directory3
Useful options
-p | Given a directory path (not just a simple directory name), create any necessary parent directories automatically. The command: ➜ mkdir -p /one/two/three creates the directories /one and /one/two if they don’t already exist, then /one/two/three. |
-m mode | Create the directory with the given permissions (explained more fully with the chmod and umask commands in File Properties): ➜ mkdir -m 0755 mydir By default, your shell’s umask controls the permissions. |
Name
rmdir — stdin stdout - file -- opt --help --version
Synopsis
rmdir [options] directories
The rmdir (remove directory) command deletes one or more empty directories you name:
➜ rmdir /tmp/junk
Useful options
-p | If you supply a directory path (not just a simple directory name), delete not only the given directory, but the specified parent directories automatically, all of which must be empty. So the command: ➜ rmdir -p one/two/three will delete not only one/two/three, but also one/two and one. |
To delete a nonempty directory and its contents, use (carefully) rm -r directory. Use rm -ri to delete interactively, or rm -rf to annihilate without any error messages or confirmation.
File Viewing
On a Mac, you’ll encounter various types of files to view: plain text, binary data, and more. Here we’ll explain how to view them.
Name
cat — stdin stdout - file -- opt --help --version
Synopsis
cat [options] [files]
The simplest viewer is cat, which just prints its files to standard output, concatenating them (hence the name). Large files will likely scroll off screen, so consider using less if you plan to read the output. That being said, cat is particularly useful for sending a set of files into a shell pipeline like this one, which concatenates files in the current directory and counts the total number of lines:
➜ cat * | wc -l
cat can also manipulate its output in small ways, optionally displaying nonprinting characters like carriage returns, prepending line numbers (though nl is more powerful for this purpose), and eliminating whitespace.
Useful options
-v | Print any nonprinting characters (carriage returns, etc.) in a human-readable format. |
-t | Same as -v, and also print tabs as ^I. |
-e | Same as -v, and also print newlines as $. |
-n | Prepend line numbers to every line. |
-b | Prepend line numbers to nonblank lines. |
-s | Squeeze each sequence of blank lines into a single blank line. |
Name
less — stdin stdout[7] - file -- opt --help --version
Synopsis
less [options] [files]
Use less to view text one “page” at a time (i.e., one window or screenful at a time). It’s great for text files, or as the final command in a shell pipeline with lengthy output:
➜ command1 | command2 | command3 | command4 | less
While running less, type h for a help message describing all its features. Here are some useful keystrokes for paging through files.
Keystroke	Meaning
q | Quit. |
h, H | View a help page. |
Space bar, f, ^V, ^F | Move forward one screenful. |
Enter | Move forward one line. |
b, ^B, ESC-v | Move backward one screenful. |
/ | Enter search mode. Follow it with a regular expression and press Enter, and less will look for the first line matching it. |
? | Same as /, but it searches backward in the file. |
n | Repeat your most recent search forward. |
N | Repeat your most recent search backward. |
v | Edit the current file with your default text editor (the value of environment variable VISUAL, or if not defined, EDITOR, or if not defined, vi). |
< | Jump to beginning of file. |
> | Jump to end of file. |
:n | Jump to next file (if viewing multiple files). |
:p | Jump to previous file (if viewing multiple files). |
less has a mind-boggling number of features; we’re presenting only the most common. The manpage is recommended reading.
Useful options
-c | Clear the screen before displaying the next page. This avoids scrolling and may be more comfortable on the eyes. |
-m | Print a more verbose prompt, displaying the percentage of the file displayed so far. |
-N | Display line numbers. |
-r | Display control characters literally; normally less converts them to a human-readable format. |
-s | Squeeze multiple, adjacent blank lines into a single blank line. |
-S | Truncate long lines to the width of the screen, instead of wrapping. |
[7] Although technically less can be plugged into the middle of a pipeline, or its output redirected to a file, there isn’t much point to doing this.
Name
head — stdin stdout - file -- opt --help --version
Synopsis
head [options] [files]
The head command prints the first 10 lines of a file: great for previewing the contents of a file:
➜ head myfile
or of many files, with a convenient header in front of each:
➜ head * | less Preview all files in the current directory
or the first few lines of output from a pipeline. Here we use the grep command (see File Text Manipulation), which locates matching lines in a file, to print all lines containing a capital E. by piping the output to head, we display only the first 10 matches:
➜ grep 'E' very-big-file | head
Useful options
-N | Print the first N lines instead of 10. |
-n N | Print the first N lines instead of 10. |
-c N | Print the first N bytes of the file. |
Name
tail — stdin stdout - file -- opt --help --version
Synopsis
tail [options] [files]
The tail command prints the last 10 lines of a file, and does other tricks as well:
➜ tail myfile
The ultra-useful -f option causes tail to watch a file actively while another program is writing to it, displaying new lines as they are written to the file. This is invaluable for watching log files as they grow:
➜ tail -f /var/log/messages
Useful options
-N | Print the last N lines of the file instead of the last 10. |
-n N | Print the last N lines of the file instead of the last 10. |
-n +N | Print all lines except the first N. |
-c N | Print the last N bytes of the file. |
-f | Keep the file open, and whenever lines are appended to the file, print them. This is extremely useful. Add the --retry option if the file doesn’t exist yet, but you want to wait for it to exist. |
-q | Quiet mode: when processing more than one file, don’t print a banner above each file. Normally tail prints a banner containing the filename. |
Name
nl — stdin stdout - file -- opt --help --version
Synopsis
nl [options] [files]
nl copies its files to standard output, prepending line numbers:
➜ nl myfile
1 Once upon a time, there was
2 a little operating system named
3 OS X, which everybody loved.
It’s more flexible than cat with its -n and -b options, providing an almost bizarre amount of control over the numbering. nl can be used in two ways: on ordinary text files, and on specially marked-up text files with predefined headers and footers.
Useful options
-b [a|t|n|p R] | Prepend numbers to all lines (a), nonblank lines (t), no lines (n), or only lines that contain regular expression R. (Default = a) |
-v N | Begin numbering with integer N. (Default = 1) |
-i N | Increment the number by N for each line, so for example, you could use odd numbers only (-i2) or even numbers only (-v2 -i2). (Default = 1) |
-n [ln|rn|rz] | Format numbers as left-justified (ln), right-justified (rn), or right-justified with leading zeroes (rz). (Default = ln) |
-w N | Force the width of the number to be N columns. (Default = 6) |
-s S | Insert string S between the line number and the text. (Default = Tab) |
Additionally, nl has the wacky ability to divide text files into virtual pages, each with a header, body, and footer with different numbering schemes. For this to work, however, you must insert nl-specific delimiter strings into the file, such as \:\:\: (start of header), \:\: (start of body), and \: (start of footer). Each must appear on a line by itself. Then you can use additional options (see the manpage) to affect line numbering in the headers and footers of your decorated file.
Name
strings — stdin stdout - file -- opt --help --version
Synopsis
strings [options] [files]
Binary files, such as executable programs and object files, usually contain some readable text. The strings program extracts that text and displays it on standard output. You can discover version information, authors’ names, and other useful tidbits with strings:
➜ strings /usr/bin/who
$NetBSD: who.c,v 1.23 2008/07/24 15:35:41 christos Exp $
Copyright (c) 1989, 1993 The Regents of the University of
California...
Combine strings and grep (a command that locates matching lines in a file; see File Text Manipulation) to make your exploring more efficient. Here we look for email addresses in the binary file for the emacs editor by searching for @ signs:
➜ strings /usr/bin/emacs | grep '@'
bug-gnu-emacs@gnu.org
Useful options
-n length | Display only strings with length greater than length (the default = 4). |
Name
od — stdin stdout - file -- opt --help --version
Synopsis
od [options] [files]
When you want to view a binary file, consider od (Octal Dump) for the job. It copies one or more files to standard output, displaying their data in ASCII, octal (base 8), decimal, hexadecimal (base 16), or floating point, in various sizes (byte, short, long). For example, this command:
➜ od /usr/bin/who
0000000 177312 137272 000000 001000 ...
0000020 000000 000020 000000 060114 ...
0000040 000000 001400 000000 000140 ...
...
displays the bytes in binary file /usr/bin/who in octal. The column on the left contains the file offset of each row, again in octal.
If your binary file also contains text, consider the -tc option, which displays character data:
➜ od -tc /usr/bin/who | head -3
0000000 312 376 272 276 \0 \0 \0 002 001 \0 ...
0000020 \0 \0 020 \0 \0 \0 L ` \0 \0 ...
0000040 \0 \0 \0 003 \0 \0 ` \0 \0 \0 ...
Useful options
-N B | Display only the first B bytes of each file. |
-j B | Begin the output at byte B +1 of each file. You can append the letter b to skip blocks instead of bytes, k for kilobytes, or m for megabytes. |
-A (d|o|x|n) | Display file offsets in the leftmost column, in decimal (d), octal (o), hexadecimal (h), or not at all (n). (Default = o) |
-t (a|c) | Display output in a character format, with non-alphanumeric characters printed as escape sequences (c) or by name (a). |
-t (d|o|u|x)[SIZE] | Display output in an integer format, including octal (o), signed decimal (d), unsigned decimal (u), hexadecimal (x). (For binary output, use xxd instead.) SIZE represents the number of bytes per integer; it can be a positive integer or any of the values C, S, I, or L, which stand for the size of a char, short, int, or long datatype, respectively. |
-t f[SIZE] | Display output in floating point. SIZE represents the number of bytes per integer; it can be a positive integer or any of the values F, D, or L, which stand for the size of a float, double, or long double datatype, respectively. If -t is omitted, the default is -to2. |
Name
xxd — stdin stdout - file -- opt --help --version
Synopsis
xxd [options] [files]
Similar to od, xxd produces a hexadecimal or binary dump of a file in several different formats. It can also do the reverse, converting from its hex dump format back into the original data. For example, here’s a hex dump of binary file /usr/bin/who:
➜ xxd /usr/bin/who
0000000: cafe babe 0000 0002 0100 ... 0003
0000010: 0000 1000 0000 4c60 0000 ... 0007L`........
0000020: 0000 0003 0000 6000 0000 ... 000c`...K.....
...
The left column indicates the file offset of the row, the next eight columns contain the data, and the final column displays the printable characters in the row, if any.
By default, xxd outputs three columns: file offsets, the data in hex, and the data as text (printable characters only).
Useful options
-l N | Display only the first N bytes. (Default displays the entire file.) |
-s N | Skip the first N bytes of the file. |
-s -N | Begin N bytes from the end of the file. (There is also a +N syntax for more advanced skipping through standard input; see the manpage.) |
-c N | Display N bytes per row. (Default = 16) |
-g N | Group each row of bytes into sequences of N bytes, separated by whitespace, like od -s. (Default = 2) |
-b | Display the output in binary instead of hexadecimal. |
-u | Display the output in uppercase hexadecimal instead of lowercase. |
-p | Display the output as a plain hex dump, 60 contiguous bytes per line. |
-r | The reverse operation: convert from an xxd hex dump back into the original file format. Works with the default hex dump format and, if you add the -p option, the plain hex dump format. If you’re bored, try either of these commands to convert and unconvert a file in a pipeline, reproducing the original file on standard output: ➜ xxd myfile | xxd -r |
-i | Display the output as a C programming language data structure. When reading from a file, it produces an array of unsigned chars containing the data, and an unsigned int containing the array length. When reading from standard input, it produces only a comma-separated list of hex bytes. |
File Creation and Editing
Command | Meaning |
---|---|
emacs | Text editor from Free Software Foundation. |
vim | Text editor, extension of Unix vi. |
look | Print dictionary words on standard output. |
To make best use of the Terminal, you must become proficient with a text editor available from the command line. For editing the plain text files you’ll need for shell operations, word processors such as Microsoft Word and Apple’s TextEdit are not appropriate because they insert invisible text-formatting characters into the files.[8] Plus they are graphical applications that run only on the Mac’s monitor, so they won’t work for remote logins (for more information, see Running a Shell Remotely). The two major editors are Emacs from the Free Software Foundation, and vim, a successor to the Unix editor vi.[9] Teaching these editors fully is beyond the scope of this book, but both have online tutorials, and we list common operations in Table 2-1. To edit a file, run either:
➜ emacs myfile
➜ vim myfile
If myfile doesn’t exist, it is created automatically the first time you save.
[8] Technically, you can use TextEdit if you save its file in the format “Plain Text.” If you don't, other shell commands will not operate properly on these files.
[9] Another available editor is pico, which is simpler than Emacs and vim but more limited: see man pico for details.
Creating a File Quickly
You can quickly create an empty file (for later editing) using the touch command, providing a filename that does not exist (see File Properties):
➜ touch newfile
Another quick technique uses the echo command with the -n option, redirecting its output to a new file. This option prevents a newline character from being echoed, making the file truly empty:
➜ echo -n > newfile2
You can also write data into a new file by redirecting the output of a program (see Input/output redirection):
➜ echo anything at all > newfile
If you accidentally provide the name of an existing file, touch will preserve it but redirecting echo will erase its contents. So be careful!
Your Default Editor
Various shell commands will run an editor when necessary, and by default the editor is vim. For example, a text-based email program may invoke an editor to compose a new message, and less invokes an editor if you type “v”. But what if you don’t want vim to be your default editor? Set the environment variables VISUAL and EDITOR to your choice, for example:
➜ EDITOR=emacs
➜ VISUAL=emacs
➜ export EDITOR VISUAL Optional
Both variables are necessary because different programs check one variable or the other. Set EDITOR and VISUAL in your $HOME/.bash_profile startup file, then close and reopen your Terminal window, if you want your choices made permanent.
Regardless of how you set these variables, all system administrators should know at least basic vim and Emacs commands in case a system tool suddenly runs an editor on a critical file.
Name
Emacs — stdin stdout - file -- opt --help --version
Synopsis
emacs [options] [files]
Emacs is an extremely powerful editing environment with more commands than you could possibly imagine, plus a complete programming language to define your own editing features. To run Emacs in a Terminal window, run:
➜ emacs
Now to invoke the built-in Emacs tutorial, type ^h t.
Most Emacs keystroke commands involve the control key (like ^F) or the meta key, which is usually the Escape key or the Option key. Emacs’s own documentation notates the meta key as M- (as in M-F to mean “hold the meta key and type F”), so we will too. For basic keystrokes, see Table 2-1.
Name
vim — stdin stdout - file -- opt --help --version
Synopsis
vim [options] [files]
vim is an enhanced version of the old standard Unix editor vi. To invoke the editor in a Terminal window, run:
➜ vim
To take the vim tutorial, run:
➜ vimtutor
vim is a mode-based editor. It operates in two modes, insert and normal. Insert mode is for entering text in the usual manner, while normal mode is for running commands like “delete a line” or copy/paste. For basic keystrokes in normal mode, see Table 2-1.
Table 2-1. Basic keystrokes in Emacs and vim
Task | Emacs | vim |
---|---|---|
Type some text | Just type | Type i, then any text, and finally Esc |
Save and quit | ^x^s then ^x^c | :wq |
Quit without saving | ^x^c Respond “no” when asked to save buffers | :q! |
Save | ^x^s | :w |
Save As | ^x^w | :w filename |
Undo | ^/ or ^x u | u |
Suspend editor (not in X) | ^z | ^z |
Switch to edit mode | (N/A) | Esc |
Switch to command mode | M-x | : |
Abort command in progress | ^g | Esc |
Move forward | ^f or right arrow | l or right arrow |
Move backward | ^b or left arrow | h or left arrow |
Move up | ^p or up arrow | k or up arrow |
Move down | ^n or down arrow | j or down arrow |
Move to next word | M-f | w |
Move to previous word | M-b | b |
Move to beginning of line | ^a | 0 |
Move to end of line | ^e | $ |
Move down one screen | ^v | ^f |
Move up one screen | M-v | ^b |
Move to beginning of buffer | M-< | gg |
Move to end of buffer | M-> | G |
Delete next character | ^d | x |
Delete previous character | Backspace | X |
Delete next word | M-d | de |
Delete previous word | M-Backspace | db |
Delete current line | ^a^k | dd |
Delete to end of line | ^k | d$ |
Define region (type this keystroke to mark the beginning of the region, then move the cursor to the end of the desired region) | ^ Space bar | v |
Cut region | ^w | d |
Copy region | M-w | y |
Paste region | ^y | p |
Get help | ^h | :help |
View the manual | ^h i | :help |
Name
look — stdin stdout - file -- opt --help --version
Synopsis
look [options] prefix [dictionary_file]
While writing in your text editor, consider the look command in a second Terminal window for quickly looking up the spelling of words. It prints words that begin with a given string (case-insensitively). The words come from a dictionary file, /usr/share/dict/words. For instance, the command:
➜ look bigg
prints all words in the dictionary file that begin with those letters:
bigg
biggah
biggen
bigger
biggest
...
If you supply your own dictionary file—any text file with alphabetically sorted lines—look will print all dictionary lines that begin with the given prefix.
Useful options
-f | Ignore case. |
-t X | Match the prefix only up to and including the termination character X. For instance, look -ti big prints all words beginning with “bi.” |
File Properties
stat | Display attributes of files and directories. |
wc | Count bytes, words, lines in a file. |
du | Measure disk usage of files and directories. |
file | Identify (guess) the type of a file. |
touch | Change timestamps of files and directories. |
chown | Change owner of files and directories. |
chgrp | Change group ownership of files and directories. |
chmod | Change protection mode of files and directories. |
umask | Set a default mode for new files and directories. |
xattr | Work with extended attributes of files and directories. |
When examining a file, keep in mind that the contents are just part of the story. Every file and directory also has attributes that describe its owner, size, access permissions, and other information. The ls -l command (see Basic File Operations) displays some of these attributes, but other commands provide additional information.
Name
stat — stdin stdout - file -- opt --help --version
Synopsis
stat [options] files
The stat command displays important attributes of files. By default, file information is printed in one long line:
➜ stat myfile
234881026 3004666 -rw-r--r-- 1 lisa staff 0 1264 ...
but you can display it in a more friendly manner with the -x option:
➜ stat -x myfile
File: "myfile"
Size: 1264 FileType: Regular File
Mode: (0644/-rw-r--r--) Uid: (501/lisa) Gid: (20/staff)
Device: 14,2 Inode: 3004666 Links: 1
Access: Sun Mar 11 20:31:53 2012
Modify: Wed Mar 7 22:05:56 2012
Change: Wed Mar 7 22:05:56 2012
This includes the filename, size in bytes (1,264), file type (Regular File), permissions in octal (0644), permissions in the format of “ls -l” (-rw-r--r--), owner’s user ID (501), owner’s name (lisa), owner’s group ID (20), owner’s group name (staff), device information (14,2), inode number (3004666), number of hard links (1), and timestamps of the file’s most recent access, modification, and status change.
Useful options
-L | Follow symbolic links and report on the file they point to. |
-x | Display the results in a friendly, readable format. |
-fformat | Display the results in a highly configurable format; see the manpage for details. |
Name
wc — stdin stdout - file -- opt --help --version
Synopsis
wc [options] [files]
The wc (word count) program prints a count of bytes, words, and lines in a plain text file.[10]
➜ wc myfile
24 62 428 myfile
This file has 24 lines, 62 whitespace-delimited words, and 428 bytes.
Useful options
-l | Print the line count only. |
-w | Print the word count only. |
-c | Print the byte count only. |
[10] You can run wc on a nontext file, but the concepts of “lines” and “words” will not be well defined.
Name
du — stdin stdout - file -- opt --help --version
Synopsis
du [options] [files| directories]
The du (disk usage) command measures the disk space occupied by files or directories. By default, it measures the current directory and all its subdirectories, printing totals in blocks for each, with a grand total at the bottom:
➜ du
6213880 ./Desktop
6440952 ./Documents
14237024 ./Downloads
430300 ./Library
11408 ./Library/Application Support
0 ./Library/Assistants
...
77797648 .
It can also measure the size of files:
➜ du myfile myfile2
4 myfile
16 myfile2
Useful options
-k | Measure usage in kilobytes. |
-m | Measure usage in megabytes. |
-g | Measure usage in gigabytes. |
-h | Print in human-readable units. For example, if two directories are of size 1 gigabyte or 25 kilobytes, respectively, du -h prints 1G and 25K. |
-c | Print a total in the last line. This is the default behavior when measuring a directory, but for measuring individual files, provide -c if you want a total. |
-L | Follow symbolic links and measure the files they point to. |
-s | Print only the total size. |
Name
file — stdin stdout - file -- opt --help --version
Synopsis
file [options] files
The file command reports the type of a file:
➜ file /etc/hosts /usr/bin/who letter.doc
/etc/hosts: ASCII English text
/usr/bin/who: Mach-O universal binary ...
letter.doc: CDF V2 Document, Little Endian, Os: MacOS ...
The reported file types are not always accurate; the file program has its roots in older operating systems that don’t track true file types the way the Macintosh does. The output is an educated guess based on file content and other factors.
Useful options
-b | Omit filenames (left column of output). |
-I | Print MIME types for the file, such as “text/plain” or “audio/mpeg,” instead of the usual output. |
-f name_file | Read filenames, one per line, from the given name_file, and report their types. Afterward, process filenames on the command line as usual. |
-L | Follow symbolic links, reporting the type of the destination file instead of the link. |
-z | If a file is compressed (see File Compression and Packaging), examine the uncompressed contents to decide the file type, instead of reporting “compressed data.” |
Name
touch — stdin stdout - file -- opt --help --version
Synopsis
touch [options] files
The touch command changes two timestamps associated with a file: its modification time (when the file’s data was last changed) and its access time (when the file was last read). To set both timestamps to right now, run:
➜ touch myfile
You can set these timestamps to arbitrary values, e.g., to set its timestamp to March 15, 2012, at noon:
➜ touch -t 201203151200 myfile
If a given file doesn’t exist, touch creates it—a handy way to create empty files.
Useful options
-a | Change the access time only. |
-m | Change the modification time only. |
-c | If the file doesn’t exist, don’t create it (normally, touch creates it). |
-t timestamp | Set the file’s timestamp, using the format [[CC]YY]MMDDhhmm [.ss], where CC is the two-digit century, YY is the two-digit year, MM is the two-digit month, DD is the two-digit day, hh is the two-digit hour, mm is the two-digit minute, and ss is the two-digit second. For example, -t 20030812150047 represents August 12, 2003, at 15:00:47. |
Name
chown — stdin stdout - file -- opt --help --version
Synopsis
chown [options] user_spec files
The chown (change owner) command sets the ownership of files and directories. To make user smith the owner of several files and a directory, run:
➜ sudo chown smith myfile myfile2 mydir
The user_spec parameter may be any of these possibilities:
A username (or numeric user ID), to set the owner: chown smith myfile
A username (or numeric user ID), optionally followed by a colon and a group name (or numeric group ID), to set the owner and group: chown smith:users myfile
A username (or numeric user ID) followed by a colon, to set the owner and to set the group to the invoking user’s login group: chown smith: myfile
A group name (or numeric group ID) preceded by a colon, to set the group only: chown :users myfile. This is equivalent to chgrp users myfile; see Group Management.
Useful options
-h | If the file is a symbolic link, change the link itself, not the file it points to. |
-R | Recursively change the ownership within a directory hierarchy. |
Name
chgrp — stdin stdout - file -- opt --help --version
Synopsis
chgrp [options] group_spec files
The chgrp (change group) command sets the group ownership of files and directories:
➜ chgrp staff myfile myfile2 mydir
The group_spec parameter may be a group name or numeric group ID. See Group Management for more information on groups.
Useful options
-h | If the file is a symbolic link, change the link itself, not the file it points to. |
-R | Recursively change the ownership within a directory hierarchy. |
Name
chmod — stdin stdout - file -- opt --help --version
Synopsis
chmod [options] permissions files
The chmod (change mode) command protects files and directories from unauthorized access in the filesystem by setting access permissions. We described these permissions—read (r), write (w), and execute (x)—in File Protections. These permissions are described as a string of nine characters (rwxrwxrwx) consisting of three triplets: the first for the user owning the file, the second for group ownership, and the third for other users.
For example, here we have a file myfile that is readable and writable by its owner, readable by its group, and readable by others:
➜ ls -l myfile
-rw-r--r-- 1 smith staff 4 Apr 26 22:22 myfile
Using chmod, we can take away the read permissions for the group (g) and the other users (o):
➜ chmod g-r,o-r myfile
➜ ls -l myfile
-rw------- 1 smith staff 4 Apr 26 22:23 myfile
Now we make the file read-only for all users (a):
➜ chmod a=r myfile
➜ ls -l myfile
-r--r--r-- 1 smith staff 4 Apr 26 22:24 myfile
chmod understands permissions in two formats, one numeric, and one symbolic, as depicted in Figure 2-2.
Figure 2-2. File permission bits explained
Numeric format
Each triplet rwx can be represented by a number. Imagine that the digit 1 means a permission is present and zero means absent. So read-only permission would be 100 (meaning r--), read and write together would be 110 (meaning rw-), and execute alone would be 001 (meaning --x). In all, there are eight possibilities from 000 (---) to 111 (rwx).
These eight binary values can be written as the digits 0 to 7, as in Figure 2-2.[11] To cover all three triplets, you’ll need three digits. For example, the value 640 is the same as 110100000 in binary, which represents the permissions rw-r-----. Using these ideas, you can set a file’s absolute permissions in bits:
➜ chmod 640 myfile
➜ ls -l myfile
-rw-r----- 1 smith staff 4 Apr 26 22:24 myfile
This three-digit value is sometimes called the mode of a file (e.g., “I created that file with mode 640”). Some common modes for files are:
400 | Readable only by the owner |
444 | Read-only by everyone |
600 | Read/write only by the owner |
644 | Readable by everyone, writable only by the owner |
Some common modes for directories are:
700 | Only the owner can read, write, and enter the directory. |
750 | Owner and group may read and enter the directory, but only the owner can write. |
755 | Everyone may read and enter the directory, but only the owner can write. |
Symbolic format
You can also set a file’s permissions using a string of letters (like r for read permission) and symbols (like = to set permissions). Recall our previous example that made a file read-only by all users:
➜ chmod a=r myfile
The permissions string has three parts:
Whose permission?
u for user, g for group, o for other users not in the group, a for all users. The default is a.
Add, remove, or set?
+ to add permissions; − to remove permissions; or = to set absolute permissions, overwriting existing ones.
Which permissions?
r for read, w for write/modify, x and for execute (for directories, this is permission to cd into the directory).
You can also use the shorthand u to duplicate the owner permissions, g to duplicate the group permissions, or o to duplicate the (world) permissions.
Several other characters are described in the upcoming section Advanced permissions.
For example, to add read and write permission for the user and the group, run:
➜ chmod ug+rw myfile
To remove execute permission for all users, run either of these commands, which are equivalent:
➜ chmod a-x myfile
➜ chmod -x myfile
To create entirely new permissions (deleting the old ones) and make a file readable only by its owner, run:
➜ chmod u=r myfile
You can combine permission strings by separating them with commas, such as ug+rw,a-x.
Advanced permissions
chmod has other permissions that it can manipulate. See the manpage for more information on these less common permissions:
Figure 2-3. Advanced file permission bits
Setuid and setgid (s) apply to executable files (programs and scripts). Suppose we have an executable file myprogram owned by user “smith” and the group “friends.” If file myprogram has setuid (set user ID) enabled, then anyone who runs myprogram will “become” user smith, with all her rights and privileges, for the duration of the program. Examples:
➜ chmod u+s myprogram
➜ chmod 4755 myprogram
➜ ls -l myprogram
-rwsr-xr-x 1 smith staff 8570 Apr 30 22:58 myprogram
Likewise, if myprogram has setgid (set group ID) enabled, anyone who executes myprogram becomes a member of the friends group for the duration of the program:
➜ chmod g+s myprogram
➜ chmod 2755 myprogram
➜ ls -l myprogram
-rwxr-sr-x 1 smith staff 8570 Apr 30 22:58 myprogram
As you might imagine, setuid and setgid can impact system security, so don’t use them unless you really know what you’re doing. One misplaced chmod +s can leave your whole system vulnerable to attack.
The sticky bit (t), most commonly used for /tmp directories, controls removal of files in that directory. Normally, if you have write permission in a directory, you can delete or move files within it, even if you don’t have this access to the files themselves. Inside a directory with the sticky bit set, you also need write permission on a file in order to delete or move it:
➜ chmod +t mydirectory
➜ chmod 1755 mydirectory
➜ ls -ld mydirectory
drwxr-xr-t 2 smith staff 68 Apr 30 22:59 mydirectory
Conditional execute permission (X, not shown in Figure 2-3) means the same as x, except that it succeeds only if the file is already executable, or if the file is a directory. Otherwise, it has no effect. Example:
➜ chmod +X myfile
Useful options
-h | If the file is a symbolic link, change the link itself, not the file it points to. |
-R | Recursively change the permissions within a directory hierarchy. |
[11] Technically these digits are in base 8, a.k.a. octal numbers.
Name
umask — stdin stdout - file -- opt --help --version
Synopsis
umask [options] [mask]
The umask command sets or displays your default permission mode for creating files and directories: whether they are readable, writable, and/or executable by yourself, your group, and the world:
➜ umask Display as octal number
0002
➜ umask -S Display as characters
u=rwx,g=rwx,o=rx
Your umask specifies permissions to be removed by default from files and directories you create. With a umask value of zero, files get created with mode 666 (rw-rw-rw) and directories with mode 777 (rwxrwxrwx).[12] Any other umask value gets subtracted from these default modes. For example, if you set your umask to 002:
➜ umask 002
your default mode for files will be 666 minus 002, or 664, which is rw-rw-r--. For directories, it will be 777 minus 002, or 775, which is rwx-r-xr-x.
Here are some common values for your umask. Use mask 0022 to give yourself full privileges, and all others read/execute privileges only:
➜ umask 0022
➜ touch newfile1 && mkdir dir1
➜ ls -ld newfile1 dir1
drwxr-xr-x 2 smith staff 4096 Nov 11 12:25 dir1
-rw-r--r-- 1 smith staff 0 Nov 11 12:25 newfile1
Use mask 0002 to give yourself and your default group full privileges, and read/execute to others:
➜ umask 0002
➜ touch newfile2 && mkdir dir2
➜ ls -ld newfile2 dir2
drwxrwxr-x 2 smith staff 4096 Nov 11 12:26 dir2
-rw-rw-r-- 1 smith staff 0 Nov 11 12:26 newfile2
Use mask 0077 to give yourself full privileges with nothing for anyone else:
➜ umask 0077
➜ touch newfile3 && mkdir dir3
➜ ls -ld newfile3 dir3
drwx------ 2 smith staff 4096 Nov 11 12:27 dir3
-rw------- 1 smith staff 0 Nov 11 12:27 newfile3
Your umask affects only your current shell. To change the value for all future shells, add a umask line to your $HOME/.bash_profile configuration file, then close and reopen your Terminal window.
[12] As with the chmod command, these modes are in base 8, a.k.a. octal numbers.
Name
xattr — stdin stdout - file -- opt --help --version
Synopsis
xattr [-[cdpw]] [options] attributes [files]
Files in OS X can have not only “normal” attributes, such as read, write, and execute permission, but also extended attributes, which can be any file metadata you dream up. Extended attributes are created and manipulated with the xattr command. For example, let’s define an attribute called com.example.color, assign it the value blue, and apply it to the file myfile:[13]
➜ touch myfile Create an empty file
➜ xattr -w com.example.color blue myfile
Now list the file and look for the @ symbol in the output, indicating that extended attributes are present:
➜ ls -l@ myfile
-rw-r--r--@ 1 smith staff 0 Mar 26 22:19 myfile
and display its extended attribute values with xattr:
➜ xattr -l myfile
com.example.color: blue
or just one attribute alone, by name:
➜ xattr -p com.example.color myfile
blue
You can delete one attribute with -d:
➜ xattr -d com.example.color myfile
or all of them with -c:
➜ xattr -c myfile
While you can amuse yourself all day by creating and viewing attributes, their practical use is for Macintosh applications to store important data about files. For instance, the Finder maintains an extended attribute named com.apple.FinderInfo, displayed here in hexadecimal:
➜ xattr -l letter.docx
00000000 57 58 42 4E 4D 53 57 44 00 ...
Useful options
Two other programs for managing extended attributes are GetFileInfo for listing attributes:
➜ GetFileInfo myfile
file: "/Users/smith/Documents/myfile"
type: "\0\0\0\0"
creator: "\0\0\0\0"
attributes: avbstclinmedz
created: 04/14/2012 07:53:29
modified: 04/14/2012 07:53:29
and SetFile for changing them; for example, you can lock a file, preventing deletion, with:
➜ SetFile -aL myfile
GetFileInfo and SetFile are not provided with OS X but can be added by installing Xcode, as described in Installing Command Line Tools for Xcode.
[13] Extended attributes follow Java-style naming conventions, sort of like Internet hostnames in reverse order.
File Text Manipulation
grep | Find lines in a file that match a regular expression. |
cut | Extract columns from a file. |
paste | Append columns. |
tr | Translate characters into other characters. |
sort | Sort lines of text by various criteria. |
uniq | Locate identical lines in a file. |
tee | Copy a file and print it on standard output, simultaneously. |
Commands are terrific for text manipulation: manipulating a text file (or standard input) into a desired form by applying transformations, often in a pipeline. Any program that reads standard input and writes standard output falls into this category, but here we’ll present some of the most important tools.
Name
grep — stdin stdout - file -- opt --help --version
Synopsis
grep [options] pattern [files]
The grep command is one of the most consistently useful and powerful in the Terminal arsenal. Its premise is simple: given one or more files, print all lines in those files that match a particular regular expression pattern. For example, if a file myfile contains these lines:
The quick brown fox jumped over the lazy dogs!
My very eager mother just served us nine pancakes.
Film at eleven.
and we search for all lines containing “pancake,” we get:
➜ grep pancake myfile
My very eager mother just served us nine pancakes.
grep also understands regular expressions: special strings for matching text in a file. Here we match lines ending in an exclamation point:
➜ grep '\!$' myfile
The quick brown fox jumped over the lazy dogs!
grep can use two different types of regular expressions, which it calls basic and extended. They are equally powerful, just different, and you may prefer one over the other based on your experience with other grep implementations. The basic syntax is in Table 2-2.
Useful options
Name
egrep — stdin stdout - file -- opt --help --version
Synopsis
egrep [options] pattern [files]
The egrep command is just like grep, but uses a different (“extended”) language for regular expressions. It’s the same as grep -E.
Table 2-2. Regular expressions for grep and egrep
Regular expression | Meaning | |
---|---|---|
Plain | Extended | |
. | Any single character. | |
[...] | Match any single character in this list. | |
[^...] | Match any single character NOT in this list. | |
(...) | Grouping. | |
\| | | | Or. |
^ | Beginning of a line. | |
$ | End of a line. | |
\< | Beginning of a word. | |
\> | End of a word. | |
[:alnum:] | Any alphanumeric character. | |
[:alpha:] | Any alphabetic character. | |
[:cntrl:] | Any control character. | |
[:digit:] | Any digit. | |
[:graph:] | Any graphic character. | |
[:lower:] | Any lowercase letter. | |
[:print:] | Any printable character. | |
[:punct:] | Any punctuation mark. | |
[:space:] | Any whitespace character. | |
[:upper:] | Any uppercase letter. | |
[:xdigit:] | Any hexadecimal digit. | |
* | Zero or more repetitions of a regular expression. | |
\+ | + | One or more repetitions of a regular expression. |
\? | ? | Zero or one occurrence of a regular expression. |
\{n \} | {n } | Exactly n repetitions of a regular expression. |
\{ n ,\} | {n ,} | n or more repetitions of a regular expression. |
\{ n , m \} | { n , m } | Between n and m (inclusive) repetitions of a regular expression, n < m. |
\c | The character c literally, even if c is a special regular expression character. For example, use * to match an asterisk or \\ to match a backslash. Alternatively, put the literal character inside square brackets, like [*] or [\]. |
GREP AND END-OF-LINE CHARACTERS
When you match the end of a line ($) with grep, text files created on Linux or Microsoft Windows systems may produce odd results on a Mac. The reason is that each operating system has a different standard for ending a line. On Windows, each line in a text file ends with a two-character sequence: a carriage return (ASCII 13) followed by a newline character (ASCII 10). On Linux, each line ends with only a newline. And in OS X, a text file might end its lines with newlines or carriage returns alone. If grep isn’t matching the ends of lines properly, check the end-of-line characters with cat -v, which displays carriage returns as ^M:
➜ cat -v dosfile
Uh-oh! This file seems to end its lines with^M
carriage returns before the newlines.^M
To remove the carriage returns, use the tr -d command:
➜ tr -d '\r' < dosfile > newfile
➜ cat -v newfile
Uh-oh! This file seems to end its lines with
carriage returns before the newlines.
Name
fgrep — stdin stdout - file -- opt --help --version
Synopsis
fgrep [options] [fixed_strings] [files]
The fgrep command is just like grep, but instead of accepting a regular expression, it accepts a list of fixed strings, separated by newlines. It’s the same as grep -F. For example, if you have a dictionary file full of strings, one per line:
➜ cat my_dictionary_file
aardvark
aback
abandon
...
you can conveniently search for those strings in a set of input files:
➜ fgrep -f my_dictionary_file inputfile1 inputfile2
Normally, you’ll use the lowercase -f option to make fgrep read the fixed strings from a file. You can also read the fixed strings on the command line using quoting, but it’s a bit trickier. To search for the strings one, two, and three in a file, you’d type:
➜ fgrep 'one Note we are typing newline characters
two
three' myfile
fgrep is convenient when searching for non-alphanumeric characters like * and { because they are taken literally, not as regular expression characters.
Name
cut — stdin stdout - file -- opt --help --version
Synopsis
cut -(b|c|f)range [options] [files]
The cut command extracts columns of text from files. A “column” is defined by character offsets (e.g., the nineteenth character of each line):
➜ cut -c19 myfile
or by byte offsets (which are often the same as characters, unless you have multibyte characters in your language):
➜ cut -b19 myfile
or by delimited fields (e.g., the fifth field in each line of a comma-delimited file):
➜ cut -f5 -d, myfile
You aren’t limited to printing a single column: you can provide a range (3-16), a comma-separated sequence (3,4,5,6,8,16), or both (3,4,8-16). For ranges, if you omit the first number (-16), a 1 is assumed (1-16); if you omit the last number (5-), the end of line is used.
Useful options
-d C | Use character C as the input delimiter character between fields for the -f option. By default it’s a Tab character. |
-s | Suppress (don’t print) lines that don’t contain the delimiter character. |
Name
paste — stdin stdout - file -- opt --help --version
Synopsis
paste [options] [files]
The paste command is the opposite of cut: it treats several files as vertical columns and combines them on standard output, effectively pasting them side by side:
➜ cat letters
A
B
C
➜ cat numbers
1
2
3
4
5
➜ paste numbers letters
1 A
2 B
3 C
4
5
➜ paste letters numbers
A 1
B 2
C 3
4
5
Useful options
-d delimiters | Use the given delimiters characters between columns; the default is a Tab character. Provide a single character (-d:) to be used always, or a list of characters (-dxyz) to be applied in sequence on each line (the first delimiter is x, then y, then z, then x, then y, …). |
-s | Transpose the rows and columns of output: ➜ paste -s letters numbers |
Name
tr — stdin stdout - file -- opt --help --version
Synopsis
tr [options] charset1 [charset2]
The tr command (short for “translate”) performs some simple, useful translations of one set of characters into another. For example, to capitalize the text of a file:
➜ cat myfile
This is a very wonderful file.
➜ cat myfile | tr 'a-z' 'A-Z'
THIS IS A VERY WONDERFUL FILE.
or to change all vowels into asterisks:
➜ cat myfile | tr aeiouAEIOU '*'
Th*s *s * v*ry w*nd*rf*l f*l*.
or to delete all vowels:
➜ cat myfile | tr -d aeiouAEIOU
Ths s vry wndrfl fl.
As a very practical example, delete all carriage returns from a DOS text file so it’s more compatible with Terminal text utilities like grep:
➜ tr -d '\r' < dosfile > newfile
tr translates the first character in charset1 into the first character in charset2, the second into the second, the third into the third, etc. If the length of charset1 is N, only the first N characters in charset2 are used. If charset1 is longer than charset2, the final character in charset2 will be used repeatedly.
Character sets can have the following forms:
Form | Meaning |
---|---|
ABCD | The sequence of characters A, B, C, D. |
A-B | The range of characters from A to B. |
[x*y] | y repetitions of the character x. |
[: class :] | The same character classes accepted by grep, such as [:alnum:], [:digit:], etc. |
tr also understands the escape characters “\a” (^G = ring bell), “\b” (^H = backspace), “\f” (^L = formfeed), “\n” (^J = newline), “\r” (^M = return), “\t” (^I = Tab), and “\v” (^K = vertical Tab) accepted by printf (see Screen Output), as well as the notation \nnn to mean the character with octal value nnn.
tr is great for quick and simple translations, but for more powerful jobs consider sed, awk, or perl.
Useful options
-d | Delete the characters in charset1 from the input. |
-s | Eliminate adjacent duplicates (found in charset1) from the input. For example, tr -s aeiouAEIOU would squeeze adjacent, duplicate vowels to be single vowels (reeeeeeally would become really). |
-c | Operate on all characters not found in charset1. |
Name
sort — stdin stdout - file -- opt --help --version
Synopsis
sort [options] [files]
The sort command prints lines of text in alphabetical order, or sorted by some other rule you specify. All provided files are concatenated, and the result is sorted and printed:
➜ cat myfile
def
xyz
abc
➜ sort myfile
abc
def
xyz
Useful options
-f | Case-insensitive sorting. |
-n | Sort numerically (i.e., 9 comes before 10) instead of alphabetically (10 comes before 9 because it begins with a “1”). |
-g | Another numerical sorting method with a different algorithm that, among other things, recognizes scientific notation (7.4e3 means “7.4 times ten to the third power,” or 7,400). Run info sort for full technical details. |
-u | Unique sort: remove duplicate lines. (If used with -c for checking sorted files, fail if any consecutive lines are identical.) |
-c | Don’t sort, just check if the input is already sorted. If it is, print nothing; otherwise, print an error message. |
-b | Ignore leading whitespace in lines. |
-r | Reverse the output: sort from greatest to least. |
-t X | Use X as the field delimiter for the -k option. |
-k key | Choose sorting keys. (Combine with -t to choose a separator character between keys.) |
A sorting key is a portion of a line that’s considered when sorting, instead of considering the entire line. An example is “the fifth character of each line.” Normally, sort would consider these lines to be in sorted order:
aaaaz
bbbby
but if your sorting key is “the fifth character of each line,” then the lines are reversed because y comes before z. A more practical example involves this file of names and addresses:
➜ cat people
George Washington,123 Main Street,New York
Abraham Lincoln,54 First Avenue,San Francisco
John Adams,39 Tremont Street,Boston
An ordinary sort would display the “Abraham Lincoln” line first. But if you consider each line as three comma-separated values, you can sort on the second value with:
➜ sort -k2 -t, people
George Washington,123 Main Street,New York
John Adams,39 Tremont Street,Boston
Abraham Lincoln,54 First Avenue,San Francisco
where “123 Main Street” is first alphabetically. Likewise, you can sort on the city (third value) with:
➜ sort -k3 -t, people
John Adams,39 Tremont Street,Boston
George Washington,123 Main Street,New York
Abraham Lincoln,54 First Avenue,San Francisco
and see that Boston comes up first alphabetically. The general syntax -k F1[.C1][,F2[.C2]] means:
Item | Meaning | Default if not supplied |
---|---|---|
F1 | Starting field | Required |
C1 | Starting position within field 1 | 1 |
F2 | Ending field | Last field |
C2 | Starting position within ending field | 1 |
So sort -k1.5 sorts based on the first field, beginning at its fifth character; and sort -k2.8,5 means “from the eighth character of the second field to the first character of the fifth field.” The -t option changes the behavior of -k so it considers delimiter characters such as commas rather than spaces.
You can repeat the -k option to define multiple keys, which will be applied from first to last as found on the command line.
Name
uniq — stdin stdout - file -- opt --help --version
Synopsis
uniq [options] [files]
The uniq command operates on consecutive, duplicate lines of text. For example, if you have a file myfile:
➜ cat myfile
a
b
b
c
b
then uniq would detect and process (in whatever way you specify) the two consecutive b’s, but not the third b:
➜ uniq myfile
a
b
c
b
The input you send to uniq must have duplicate items next to each other, or uniq will have no effect. It’s common to pipe the output of sort into uniq:
➜ sort myfile | uniq
a
b
c
In this case, only a single b remains because all three were made adjacent by sort, then collapsed to one by uniq. Also, you can count duplicate lines instead of eliminating them:
➜ sort myfile | uniq -c
1 a
3 b
1 c
Useful options
-c | Count adjacent duplicate lines. |
-i | Case-insensitive operation. |
-u | Print unique lines only. |
-d | Print duplicate lines only. |
-s N | Ignore the first N characters on each line when detecting duplicates. |
-f N | Ignore the first N whitespace-separated fields on each line when detecting duplicates. |
Name
tee — stdin stdout - file -- opt --help --version
Synopsis
tee [options] files
Like the cat command, the tee command copies standard input to standard output unaltered. Simultaneously, however, it also copies that same standard input to one or more files. tee is most often found in the middle of pipelines, writing some intermediate data to a file while also passing it to the next command in the pipeline:
➜ who | tee original_who | sort
In this command line, tee writes the output of who to the file original_who, and then passes along that same output to the rest of the pipeline (sort), producing sorted output on screen.
Useful options
-a | Append instead of overwriting files. |
-i | Ignore interrupt signals. |
Name
More Powerful Manipulations
We’ve just barely scratched the surface of text filtering. Terminal has hundreds of filters that produce ever more complex manipulations of the data. But with great power comes a great learning curve, too much for a short book. Here are a few filters to get you started.
awk
awk is a pattern-matching language. It matches data by regular expression and then performs actions based on the data. Here are a few simple examples for processing a text file, myfile.
Print the second and fourth word on each line:
➜ awk '{print $2, $4}' myfile
Print all lines that are shorter than 60 characters:
➜ awk 'length < 60 {print}' myfile
sed
Like awk, sed is a pattern-matching engine that can perform manipulations on lines of text. Its syntax is closely related to that of vim and the line editor ed. Here are some trivial examples.
Print the file with all occurrences of the string “PC” changed to “Mac”:
➜ sed 's/PC/Mac/g' myfile
Print the file with the first 10 lines removed:
➜ sed '1,10d' myfile
Perl, PHP, Python
Perl, PHP, and Python are full-fledged scripting languages powerful enough to build complete, robust applications. See Beyond Shell Scripting for references.
File Location
find | Locate files in a directory hierarchy. |
xargs | Process a list of located files (and much more). |
locate | Create an index of files, and search the index for string. |
which | Locate executables in your search path (command). |
type | Locate executables in your search path (bash built-in). |
whereis | Locate executables, documentation, and source files. |
A Macintosh can contain hundreds of thousands of files easily. How can you find a particular file when you need to? The first step is to organize your files logically into directories in some thoughtful manner, but there are several other ways to find files, including those that the Finder's built-in search cannot locate.
For finding any file, find is a brute-force program that slogs file-by-file through a directory hierarchy to locate a target. locate is much faster, searching through a prebuilt index that you generate as needed. OS X does not generate the index by default, but you can set it up to do so.
For finding programs, the which and type commands check all directories in your shell search path. type is built into the bash shell, while which is a program (normally /usr/bin/which); type is faster and can detect shell aliases. In contrast, whereis examines a known set of directories, rather than your search path.
Name
find — stdin stdout - file -- opt --help --version
Synopsis
find [directories] [expression]
The find command searches one or more directories (and their subdirectories recursively) for files matching certain criteria. It is very powerful, with over 50 options and, unfortunately, a rather unusual syntax. Here are some simple examples that search the entire filesystem from the root directory:
Find a particular file named myfile:
➜ find / -type f -name myfile -print
Print all directory names:
➜ find / -type d -print
Print filenames ending in “.txt” (notice how the wildcard is escaped so the shell ignores it):
➜ find / -type f -name *.txt -print
Useful options
You can group and negate parts of the expression with the following operators:
expression1 -and expression2
And. (This is the default if two expressions appear side by side, so the “-and” is optional.)
expression1 -or expression2
Or.
! expression
-not expression
Negate the expression.
(expression)
Precedence markers, just like in algebra class. Evaluate what’s in parentheses first. You may need to escape these from the shell with “\”.
Once you’ve specified the search criteria, you can tell find to perform these actions on files that match the criteria.
Useful options
Name
xargs — stdin stdout - file -- opt --help --version
Synopsis
xargs [options] [command]
xargs is one of the oddest yet most powerful commands available to the shell. It reads lines of text from standard input, turns them into commands, and executes them. This might not sound exciting, but xargs has some unique uses, particularly for processing a list of files you’ve located. Suppose you made a file named important that lists important files, one per line:
➜ cat important
/Users/jsmith/mail/love-letters
/usr/local/lib/critical_stuff
/etc/passwd
...
With xargs, you can process each of these files easily with other commands. For instance, the following command runs the ls -l command on all the listed files:
➜ cat important | xargs ls -l
Similarly, you can view the files with less:
➜ cat important | xargs less
and even delete them with rm (but be careful, because they’ll be destroyed without any warnings):
➜ cat important | xargs rm Warning! Deletes files!
Each of these pipelines reads the list of files from important and produces and runs new commands based on the list. The power begins when the input list doesn’t come from a file, but from another command writing to standard output. In particular, the find command, which prints a list of files on standard output, makes a great partner for xargs. For example, to search your current directory hierarchy for files containing the word “myxomatosis”:
➜ find . -print | xargs grep -l myxomatosis
This power comes with one warning: if any of the files located by find contains whitespace in its name, this will confuse grep. If one file is named (say) my stuff, then the grep command constructed is:
➜ grep -l myxomatosis my stuff
which tells grep to process two files named my and stuff. Oops! Now imagine if the program had been rm instead of grep. You’d be telling rm to delete the wrong files! To avoid this problem with xargs:
Always use find -print0 instead of -print, which separates lines with ASCII null characters instead of newline characters.
Combine this with xargs -0, which expects ASCII nulls.
As an example:
➜ find . -print0 | xargs -0 grep -l myxomatosis
We have barely scratched the surface of the xargs command, so please experiment! (With harmless commands like grep and ls at first!)
Useful options
-n k | Feed k lines of input to the command being executed. A common scenario is to use -n1, guaranteeing that each execution will process only one line of input. Otherwise, xargs may pass multiple lines of input to a single command. |
-0 | Set the end-of-line character for input to be ASCII zero rather than whitespace, and treat all characters literally. Use this when the input is coming from find -print0. |
XARGS VERSUS BACKQUOTES
If you remember Quoting, you might realize that some xargs tricks can be accomplished with backquotes. Here we delete a list of files whose names are in file_list, one per line. (Be careful: files will be deleted without any warning.)
➜ cat file_list | xargs rm -f with xargs
➜ rm -f `cat file_list` with backquotes
While both commands do similar things, backquotes can fail if the command line gets so long, after the quoted part is expanded, that it exceeds the maximum length of a shell command line. xargs does not have this limitation, so it’s safer and more suitable for large or risky operations.
Name
locate — stdin stdout - file -- opt --help --version
Synopsis
locate [options]
The locate command searches an index (database) of file locations to locate a given file. If you plan to locate many files over time in a directory hierarchy that doesn’t change much, locate is a good choice. For locating a single file or performing more complex processing of found files, use find.
You can set up OS X to index the entire filesystem on a regular basis (e.g., once a day), meaning you can simply run locate and it will work. To do this, run:
➜ sudo launchctl load -w \
/System/Library/LaunchDaemons/com.apple.locate.plist
This starts generating the index, which may take a while to complete.[14] Then you can locate files by name with:
➜ locate myfile
At this point, you might wonder why locate is necessary, since every Finder window has a Search box for locating files. In fact, this Finder feature does not locate system files that are normally hidden by the Finder. Try searching with the Finder for who, for instance, and it will not locate /usr/bin/who.[15]
Useful options
-i | Case-insensitive search. |
-l N | Display only the first N files. |
[14] The launchctl command is covered in Scheduling Jobs.
[15] You can make the Finder search for system files with a bit of work. Perform a search, then click the + button and look for the Kind dropdown. Change it to Other, then select System Files, click OK, and then change “aren’t included” to “are included.” Now you can search for system files in the Finder, but only in that Finder window. Once you close it, you have to do the preceding steps all over again. Ugh.
Name
which — stdin stdout - file -- opt --help --version
Synopsis
which file
The which command locates an executable file in your shell’s search path. If you’ve been invoking a program by typing its name:
➜ who
the which command tells you where this command is located:
➜ which who
/usr/bin/who
You can even find the which program itself:
➜ which which
/usr/bin/which
If several programs in your search path have the same name (for example, /usr/bin/who and /usr/local/bin/who), which reports only the first.
Name
type — stdin stdout - file -- opt --help --version
Synopsis
type [options] commands
The type command, like which, locates an executable file in your shell’s search path:
➜ type cat who
cat is /bin/cat
who is /usr/bin/who
However, type is built into the bash shell, whereas which is a program on disk. The type command reveals this:
➜ type which type
which is /usr/bin/which
type is a shell builtin
as well as the locations of other commands:
➜ type rm if
rm is aliased to `/bin/rm -i'
if is a shell keyword
As a built-in command, type is faster than which; however, it’s available only if your shell is bash.
Name
whereis — stdin stdout - file -- opt --help --version
Synopsis
whereis programs
The whereis command attempts to locate executable programs by searching a predetermined list of directories. It operates like which but may also check directories outside of your search path:
➜ whereis locate
/usr/bin/locate
File Compression and Packaging
gzip | Compress files with GNU Zip. |
gunzip | Uncompress GNU Zip files. |
bzip2 | Compress files in BZip format. |
bunzip2 | Uncompress BZip files. |
bzcat | Compress/uncompress BZip files via standard input/output. |
compress | Compress files with traditional Unix compression. |
uncompress | Uncompress files with traditional Unix compression. |
zcat | Compress/uncompress file via standard input/output (gzip or compress). |
zip | Compress files in Windows Zip format. |
unzip | Uncompress Windows Zip files. |
tar | Package multiple files into a single file. |
The Terminal has commands to compress files into a variety of formats and uncompress them. The most popular formats are GNU Zip (gzip), whose compressed files are named with the .gz suffix, and BZip, which uses the .bz2 suffix. Other common formats include Zip files from Windows systems (.zip suffix) and occasionally, classic Unix compression (.Z suffix).
If you come across a format we don’t cover, such as Macintosh sit files, Arc, Zoo, rar, and others, you can head over to http://en.wikipedia.org/wiki/List_of_archive_formats to learn more.
Name
gzip — stdin stdout - file -- opt --help --version
Synopsis
gzip [options] [files]
The gzip, gunzip, and zcat commands compress and uncompress files in GNU Zip format. Compressed files have the suffix .gz.
Sample commands
Name
bzip2 — stdin stdout - file -- opt --help --version
Synopsis
bzip2 [options] [files]
The bzip2, bunzip2, and bzcat commands compress and uncompress files in Burrows-Wheeler format. Compressed files have the suffix .bz2.
Sample commands
Name
compress — stdin stdout - file -- opt --help --version
Synopsis
compress [options] [files]
The compress and uncompress commands compress and uncompress files in standard Unix compression format (Lempel Ziv). Compressed files have the suffix .Z.
Sample commands
Name
zip — stdin stdout - file -- opt --help --version
Synopsis
zip [options] [files]
The zip and unzip commands compress and uncompress files in Windows Zip format. Compressed files have the suffix .zip. Unlike the preceding compression commands, zip does not delete the original files.
zip myfile.zip file1 file2 file3 ... | Pack. |
zip -r myfile.zip dirname | Pack recursively. |
unzip -l myfile.zip | List contents. |
unzip myfile .zip | Unpack. |
Name
tar — stdin stdout - file -- opt --help --version
Synopsis
tar [options] [files]
The tar program packs multiple files and directories into a single archive file for transport. Originally for backing up files onto a tape drive (its name is short for “tape archive”), tar is still a common file-packaging format. Using various options, you can create archive files, list their contents, and extract the files:
➜ tar -cvf myarchive.tar mydir Create
➜ tar -tvf myarchive.tar List contents
➜ tar -xvf myarchive.tar Extract
It’s your responsibility to name the archive file properly; tar will not add a .tar suffix for you. TAR files are usually compressed with the other programs we covered in this section. Here are sample commands for archiving a directory mydir when compressed with gzip:
➜ tar -czvf myarchive.tar.gz mydir Create archive
➜ tar -tzvf myarchive.tar.gz List contents
➜ tar -xzvf myarchive.tar.gz Extract
or compressed with bzip2:
➜ tar -cjvf myarchive.tar.bz2 mydir Create archive
➜ tar -tjvf myarchive.tar.bz2 List contents
➜ tar -xjvf myarchive.tar.bz2 Extract
or compressed with compress:
➜ tar -cZvf myarchive.tar.Z mydir Create archive
➜ tar -tZvf myarchive.tar.Z List contents
➜ tar -xZvf myarchive.tar.Z Extract
If you specify files on the command line, only those files are processed. To extract file1, file2, and file3 from a TAR file myarchive.tar, run:
➜ tar -xvf myarchive.tar file1 file2 file3
Otherwise, the entire archive is processed.
Useful options
File Comparison
diff | Line-by-line comparison of two files or directories. |
comm | Line-by-line comparison of two sorted files. |
cmp | Byte-by-byte comparison of two files. |
md5 | Compute a checksum of the given files. |
There are three ways to compare files:
Line by line (diff, comm), best suited to text files
Byte by byte (cmp), often used for binary files
By comparing checksums (md5)
These programs are all text-based. For a graphical file-comparison tool, try xxdiff at http://furius.ca/xxdiff.
Name
diff — stdin stdout - file -- opt --help --version
Synopsis
diff [options] file1 file2
The diff command compares two files line by line, or two directories. When comparing text files, diff can produce detailed reports of their differences. For binary files, diff merely reports whether they differ or not. For all files, if there are no differences, diff produces no output.
The traditional output format looks like this:
Indication of line numbers and the type of change
< Corresponding section of file1, if any

> Corresponding section of file2, if any
For example, if we start with a file fileA:
Hello, this is a wonderful file.
The quick brown fox jumped over
the lazy dogs.
Goodbye for now.
Suppose we delete the first line, change “brown” to “blue” on the second line, and add a final line, creating a file fileB:
The quick blue fox jumped over
the lazy dogs.
Goodbye for now.
Macs r00l!
Then diff fileA fileB produces this output:
1,2c1 fileA lines 1–2 became fileB line 1
< Hello, this is a wonderful file. Lines 1–2 of fileA
< The quick brown fox jumped over
--- diff separator
> The quick blue fox jumped over Line 1 of fileB
4a4 Line 4 was added in fileB
> Macs r00l! The added line
The leading symbols < and > are arrows indicating fileA and fileB, respectively. This output format is the default: many others are available, some of which can be fed directly to other tools. Try them out to see what they look like.
Option | Output format |
-n | RCS version control format, as produced by the command rcsdiff (man rcsdiff). |
-c | Context diff format, as used by the patch command (man patch). |
-D macro | C preprocessor format, using #ifdef macro ... #else ... #endif. |
-u | Unified format, which merges the files and prepends “-” for deletion and “+” for addition. |
-y | Side-by-side format; use -W to adjust the width of the output. |
-e | Create an ed script that would change fileA into fileB if run. |
-q | Don’t report changes, just say whether the files differ. |
diff can also compare directories:
➜ diff dir1 dir2
which compares any same-named files in those directories, and lists all files that appear in one directory but not the other. To compare entire directory hierarchies recursively, use the -r option:
➜ diff -r dir1 dir2
which produces a (potentially massive) report of all differences.
Useful options
-b | Don’t consider whitespace. |
-B | Don’t consider blank lines. |
-i | Case-insensitive operation. |
-r | When comparing directories, recurse into subdirectories. |
diff is just one member of a family of programs that operate on file differences. Some others are diff3, which compares three files at a time, and sdiff, which merges the differences between two files to create a third file according to your instructions.
Name
comm — stdin stdout - file -- opt --help --version
Synopsis
comm [options] file1 file2
The comm command compares two sorted files and produces three columns of output, separated by tabs:
All lines that appear in file1 but not in file2.
All lines that appear in file2 but not in file1.
All lines that appear in both files.
For example, if file1 and file2 contain these lines:
file1: file2:
apple baker
baker charlie
charlie dark
then comm produces this three-column output:
➜ comm file1 file2
apple
baker
charlie
dark
Useful options
−1 | Suppress column 1. |
−2 | Suppress column 2. |
−3 | Suppress column 3. |
−i | Case-insensitive operation. |
Name
cmp — stdin stdout - file -- opt --help --version
Synopsis
cmp [options] file1 file2 [offset1 [offset2]]
The cmp command compares two files. If their contents are the same, cmp reports nothing; otherwise, it lists the location of the first difference:
➜ cmp myfile yourfile
myfile yourfile differ: char 494, line 17
By default, cmp does not tell you what the difference is, only where it is. It also is perfectly suitable for comparing binary files, as opposed to diff, which operates best on text files.
Normally, cmp starts its comparison at the beginning of each file, but it will start elsewhere if you provide offsets:
➜ cmp myfile yourfile 10 20
This begins the comparison at the tenth byte of myfile and the twentieth of yourfile.
Useful options
Name
md5 — stdin stdout - file -- opt --help --version
Synopsis
md5 files
The md5 command does not compare files, but it does something related: it computes and displays checksums of files to verify that the files are unchanged. It produces 32-byte checksums using the MD5 algorithm:
➜ md5 myfile
MD5 (myfile) = d3b07384d113edec49eaa6238ad5ff00
If one file differs even slightly from another file, the two files are highly unlikely to have the same MD5 checksum, so comparing checksums is a reasonably reliable way to detect if two files differ. Here we write two checksums to two files (piping through cut to extract the checksum value after the equals sign) and compare them:
➜ md5 myfile1 | cut -d= -f2 > sum1
➜ md5 myfile2 | cut -d= -f2 > sum2
➜ diff -q sum1 sum2
Files sum1 and sum2 differ
➜ rm sum1 sum2 Clean up
When a very large file is available for download on the Internet, such as a disk image, its creator often publishes the checksum. When you download such a file, you can compute the checksum locally and compare it easily to the published one, verifying that the large file was not corrupted during transmission:
➜ md5 diskfile.iso > mine.md5
➜ diff -q original.md5 mine.md5
Some other programs similar to md5 are sum and cksum, which use different algorithms to compute their checksums. sum is compatible with Unix systems, specifically BSD Unix (the default) or System V Unix (-s option), and cksum produces a CRC checksum:
➜ sum myfile
12410 3 myfile
➜ cksum myfile
1204834076 2863 myfile
The first integer is a checksum and the second is a block count. But as you can see, these checksums are small numbers and therefore unreliable, since files could have identical checksums by coincidence. md5 is by far the best. See http://www.faqs.org/rfcs/rfc1321.html for the technical details.
Printing
lpr | Print a file. |
lpq | View the print queue. |
lprm | Remove a print job from the queue. |
You can print directly from the command line using the lpr family of commands. Well…sort of. Out of the box, these commands work fine for plain text and PostScript files, but not for documents like spreadsheets or Photoshop images. For those, you’ll need to run the document’s application (e.g., Photoshop) and use its Print command.
Name
lpr — stdin stdout - file -- opt --help --version
Synopsis
lpr [options] [files]
The lpr (line printer) command sends a file to a printer. To print on your default printer (or if you have just a single printer set up), run:
➜ lpr myfile.txt
If your Mac is set up with multiple printers, then to print on a different printer than the default, supply the name of the printer with the -P option:
➜ lpr -P myprinter myfile.txt
The names of your printers can be listed with the lpstat command:
➜ lpstat -p
printer HP_Color_LaserJet_2605dn is idle.
enabled since Tue Apr 24 21:00:42 2012
Now to print on this printer, run:
➜ lpr -P HP_Color_LaserJet_2605dn myfile
Useful options
-P printername | Send the file to printer printername, which you have set up previously. |
-# N | Print N copies of the file. |
-J name | Set the job name that prints on the cover page (if your system is set up to print cover pages). |
Name
lpq — stdin stdout - file -- opt --help --version
Synopsis
lpq [options]
The lpq (line printer queue) command lists all print jobs waiting to be printed.
➜ lpq
HP_Color_LaserJet_2605dn is ready and printing
Rank Owner Job File(s) Total Size
active (null) 1 untitled 1024 bytes
Useful options
-P printername | List the queue for printer printername. |
-a | List the queue for all printers. |
-l | Be verbose: display information in a longer format. |
Name
lprm — stdin stdout - file -- opt --help --version
Synopsis
lprm [options] [job_IDs]
The lprm (line printer remove) command cancels one or more print jobs. Use lpq to learn the ID of the desired print jobs (say, 61 and 78), then type:
➜ lprm -P printername 61 78
If you don’t supply any job IDs, your current print job is canceled. (Only the superuser can cancel other users’ jobs.) The -P option specifies which print queue to process.
Disks and Filesystems
df | Display available space on mounted filesystems. |
diskutil | Perform operations on disks and partitions: mounting, formatting, renaming, and more. |
mount | Mount remote (or local) disks and partitions. |
fsck_hfs | Check a Macintosh HFS disk partition for errors. |
hdiutil | Work with disk images, such as ISO and DMG files. |
tmutil | Perform Time Machine operations. |
sync | Flush all disk caches to disk. |
rsync | Mirror a set of files onto another device or host. |
Macs can have multiple disks or disk partitions. In casual conversation, these are variously called disks, partitions, filesystems, volumes, even directories. We’ll try to be more accurate.
A disk is a hardware device, which may be divided into partitions that act as independent storage devices. You might think of disks and partitions as icons on the desktop or in the /Volumes folder, but in fact OS X represents them as special files in the directory /dev. For example, a typical Mac could have its system disk partition on /dev/disk0s2, a DVD drive on /dev/disk1, and an ancient SCSI tape drive on /dev/st0.
Before a partition can hold files, it is “formatted” by a program that writes a filesystem on it. A filesystem defines how files are represented; examples are HFS Plus (the traditional OS X filesystem) and NTFS (Microsoft Windows NT filesystem). Formatting is done by applications like Disk Utility, in the Mac’s Utilities folder. We will examine several command-line tools that do disk operations.
Once a filesystem is created, you can make it available for use by mounting it on an empty directory. For example, if you mount a Windows filesystem on a directory /Volumes/win, it becomes part of your system’s directory tree, and you can create and edit files like /Volumes/win/myfile. Mounting is generally done automatically, either at boot time or upon attaching a portable drive. Filesystems can also be unmounted to make them inaccessible, say, for maintenance.
Name
df — stdin stdout - file -- opt --help --version
Synopsis
df [options] [disk devices | files | directories]
The df (disk free) program shows you the size, used space, and free space on a given disk partition. If you supply a file or directory, df describes the disk device on which that file or directory resides. With no arguments, df reports on all mounted filesystems. Here we use the -h option to display in sizes in rounded kilobytes (Ki), gigabytes (Gi), and terabytes (Ti):
➜ df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/disk0s2 111Gi 21Gi 90Gi 20% /
devfs 107Ki 107Ki 0 100% /dev
/dev/disk1s2 1.8Ti 84Gi 1.7Ti 5% /Volumes/Music
...
Useful options
Name
diskutil — stdin stdout - file -- opt --help --version
Synopsis
diskutil action [options]
The diskutil command operates on disk partitions: mounting and unmounting, getting information, renaming, erasing, and more. Read-only operations can be done by any user, but writing and mounting require an administrator. For example, if you have a portable USB drive mounted:
➜ df -h /Volumes/MyUSB
Filesystem Size Used Avail Capacity Mounted on
/dev/disk1s2 1.8Ti 813Mi 1.8Ti 1% /Volumes/MyUSB
you can unmount it with either of these diskutil commands, by providing the directory where it’s mounted:
➜ sudo diskutil unmount /Volumes/MyUSB
Volume MyUSB on disk1s2 unmounted
or the associated device in the /dev directory:
➜ sudo diskutil unmount /dev/disk1s2
Volume MyUSB on disk1s2 unmounted
and since it’s a portable drive, even eject it for safe unplugging from the Mac:
➜ sudo diskutil eject /dev/disk1s2
Disk /dev/disk1s2 ejected
Then you can remount it by its device name:
➜ sudo diskutil mount /dev/disk1s2
Volume MyUSB on /dev/disk1s2 mounted
diskutil does many other tricks, such as getting information about a partition:
➜ diskutil info /Volumes/MyUSB
Device Node: /dev/disk1s2
File System: HFS+
Name: Mac OS Extended
Bootable: Is bootable
Protocol: USB
Total Size: 2.0 TB (2000054960128 Bytes)
Ejectable: Yes
...
renaming a partition:
➜ sudo diskutil rename /dev/disk1s2 OtherName
Volume on disk1s2 renamed to OtherName
and checking its internal structure for errors:[16]
➜ sudo diskutil verifyVolume /dev/disk1s2
Started filesystem verification on disk1s2 MyUSB
Checking Journaled HFS Plus volume
Checking extents overflow file
...
You can also reformat (erase) a partition, but be careful: the operation begins immediately with no questions or warnings! First, find out what types of filesystems can be written on the disk:
➜ diskutil listFilesystems
PERSONALITY USER VISIBLE NAME

ExFAT ExFAT
MS-DOS FAT32 MS-DOS (FAT32)
HFS+ Mac OS Extended
...
Then provide your desired filesystem type and a name for the partition, such as CoolDisk, and erase it:[17]
➜ sudo diskutil erase HFS+ CoolDisk /dev/disk1s2
Started erase on disk1s2 CoolDisk ...
There are many more operations supported with various options: repartitioning a drive, erasing an entire drive, repairing errors, controlling HFS journaling, and more. See the manpage for full information.
One final note: if you come from a Linux background, you might be accustomed to the programs mount and umount for disk partitions. These commands are available in OS X, but use diskutil whenever possible. It can be more reliable in some situations “due to the complex and interwoven nature of Mac OS X” (from the manpage for umount).
[16] Or run the program fsck_hfs, which does the same thing.
[17] After reformatting, OS X might display dialogs on the Mac desktop, so if you’re logged in to the Mac remotely via SSH (discussed in Running a Shell Remotely), this might surprise whoever is using the desktop.
Name
mount — stdin stdout - file -- opt --help --version
Synopsis
mount [options] partition dir
The mount command, like diskutil, makes a disk partition available and accessible on the Mac. Unlike diskutil, however, mount can work with remote systems such as Windows share drives or NFS. It has the same functionality as the Finder’s “Connect to Server...” feature in the Go menu.
Suppose you have a Windows server, myserver, with a share named Work, and your login name on that server is jones. To mount the share on your Mac in a directory mydir, run:
➜ mkdir mydir
➜ mount -t smbfs //jones@myserver/Work mydir
Password: *******
After you enter jones’s password, the Windows share is mounted in mydir, ready for use:
➜ ls mydir
file1.txt file2.doc ...
➜ emacs mydir/file1.txt Edit a remote file
To unmount the Windows share, use the umount command:
➜ umount mydir
If the same filesystem were served by NFS (Network File System) instead of a Windows share, the command would be:
➜ mount -t nfs myserver:/Work mydir
Useful options
-t type | Declare that the mounted device has a particular filesystem type. Some common values are hfs for the Macintosh Hierarchical File System, ufs for UNIX filesystems (the default), smbfs for Microsoft Windows shares, and nfs for Network File System. For a complete list, list the directory /sbin for programs whose names begin with mount_: ➜ ls /sbin/mount_* Each suffix after mount_ represents a value of -t. |
-r | Mount the filesystem read-only. |
-w | Mount the filesystem read-write. |
Name
fsck_hfs — stdin stdout - file -- opt --help --version
Synopsis
fsck_hfs [options] [devices]
The fsck_hfs command validates a Macintosh HFS-formatted disk partition and, if requested, repairs errors found on it. (Alternatively, you can run the diskutil command, or the graphical application Disk Utility in the Utilities folder.) In general, unmount a device before checking it, so no other programs are operating on it at the same time:
➜ sudo diskutil unmount /dev/disk1s2
➜ sudo fsck_hfs -f /dev/disk1s2
** /dev/rdisk1s2
** Checking Journaled HFS Plus volume.
** Checking Extents Overflow file.
** Checking Catalog file.
** Checking multi-linked files.
...
OS X includes more validation programs for other kinds of filesystems. Run man -k fsck to see a list.
Useful options
-f | Force a filesystem check, even if OS X says the filesystem doesn’t need it. |
-n | Do not fix errors, just report them. |
-y | Fix errors automatically (use only if you really know what you’re doing; if not, you can seriously mess up a filesystem). |
Name
hdiutil — stdin stdout - file -- opt --help --version
Synopsis
hdiutil action [options]
hdiutil works with disk images, such as ISO or DMG files downloaded from the Internet. You can mount, unmount, create, resize, verify, and even burn images onto discs. To mount an ISO file mydisk.iso as a volume and access its contents, run:
➜ hdiutil attach mydisk.iso
➜ ls /Volumes
MyDisk It’s mounted in /Volumes
To unmount it when you’re done, use the detach action, passing it the name of the mounted directory in /Volumes:
➜ hdiutil detach /Volumes/MyDisk
To check that the image is valid and undamaged, run:
➜ hdiutil verify mydisk.iso
To burn the image to a CD or DVD, run:
➜ hdiutil burn mydisk.iso
hdiutil has many other actions and dozens of options: see the manpage for details.
Name
tmutil — stdin stdout - file -- opt --help --version
Synopsis
tmutil action [options]
The tmutil command, introduced in OS X Lion, performs more than 20 actions with Time Machine, the Mac’s backup software. For example, you can turn automatic backups on and off with:
➜ sudo tmutil enable
➜ sudo tmutil disable
turn local snapshots on and off with:
➜ sudo tmutil enablelocal
➜ sudo tmutil disablelocal
take a snapshot with:
➜ tmutil snapshot
start a backup with:
➜ tmutil startbackup
halt a backup with:
➜ tmutil stopbackup
and list your backups with:
➜ tmutil stopbackup
There are many other actions: see the manpage for details.
Name
sync — stdin stdout - file -- opt --help --version
Synopsis
sync
The sync command flushes all disk caches to disk. OS X usually buffers reads, writes, inode changes, and other disk-related activity in memory. sync writes the changes to disk. Normally, you don’t need to run this command, but if, say, you’re about to do something risky that might crash your machine, running sync immediately beforehand will make sure any pending disk writes are completed first.
Name
rsync — stdin stdout - file -- opt --help --version
Synopsis
rsync [options] source destination
The rsync command is perfect for copying large sets of files for backups. It is also very fast because it copies only the parts of files that have changed, rather than entire files. You might remember rsync from the beginning of the book, where it solved the problem of copying only changed files to a remote server.
rsync is not as simple as Apple’s Time Machine, but it’s very flexible, supports other platforms besides OS X, and can be controlled precisely from the command line. rsync can make an exact copy of all files, including file permissions and other attributes (called mirroring), or it can just copy the data. It can run over a network or on a single machine. It’s also very fast compared to an ordinary copy command.
rsync has many uses and over 50 options; we’ll present just a few common cases relating to backups.[18]
RSYNC AND EXTENDED ATTRIBUTES
Always include the -E option when copying files to a Macintosh. This option ensures that OS X extended attributes and resource forks are copied. If the destination for your files is a Windows or Linux machine, -E is not important, since these other platforms do not store Mac extended attributes.
To mirror (copy exactly) the directory D1 and its contents into another directory D2 on a single machine:
➜ rsync -a -E D1 D2
In order to mirror directory D1 over the network to another host, server.example.com, where you have an account with username smith, secure the connection with SSH to prevent eavesdropping:
➜ rsync -a -E -e ssh D1 smith@server.example.com:D2
Useful options
[18] A related command is ditto, which copies files on a single Macintosh. rsync, in contrast, also runs on Windows, Linux, and other operating systems and can copy files over a network securely. See man ditto for more details.
Viewing Processes
ps | List process. |
uptime | View the system uptime and CPU load. |
w | List active processes for all users. |
top | Monitor resource-intensive processes interactively. |
A process is a unit of work in OS X. Each program you run represents one or more processes, and OS X provides commands for viewing and manipulating them. Every process is identified by a numeric process ID, or PID. If your Mac seems unusually slow, the commands in this section can help identify the cause.
Processes are different from jobs (see Shell Job Control): processes are part of the operating system, whereas jobs are higher-level constructs known only to the shell in which they’re running. A running program comprises one or more processes; a job consists of one or more programs executed as a shell command.
Name
ps — stdin stdout - file -- opt --help --version
Synopsis
ps [options]
The ps command displays information about your running processes, and optionally the processes of other users:
➜ ps
PID TTY TIME CMD
4706 ttys000 00:00:01 bash
15007 ttys000 00:00:00 emacs
16729 ttys000 00:00:00 ps
ps has at least 80 options; we’ll cover just a few useful combinations. To view your processes:
➜ ps -x
all of user smith’s processes:
➜ ps -u smith
all occurrences of a program:
➜ ps -axc | grep -w program_name
processes on terminal ttys000:
➜ ps -ts000
particular processes 1, 2, and 3505:
➜ ps -p1,2,3505
and all processes and their threads:
➜ ps -axM
Name
uptime — stdin stdout - file -- opt --help --version
Synopsis
uptime
The uptime command tells you how long the system has been running since the last boot, and displays the load average, a measure of how busy your processor is. If your Mac seems slow, run uptime and the load average will tell you if it’s due to heavy load on the processor:
➜ uptime
10:54pm up 8 days, 3:44, 3 users, load average: 0.89,
1.00, 2.15
This information is, from left to right: the current time (10:54pm), system uptime (8 days, 3 hours, 44 minutes), number of users logged in (3), and system load average for three time periods: one minute (0.89), five minutes (1.00), and fifteen minutes (2.15). The load average is the average number of processes ready to run in that time interval.
Name
w — stdin stdout - file -- opt --help --version
Synopsis
w [username]
The w command displays the current process running in each shell for all logged-in users:
➜ w
10:51pm up 8 days, 3:42, 8 users,
load averages: 0.24 0.52 0.53
USER TTY FROM LOGIN@ IDLE WHAT
barrett console - Thu22 27:13 emacs
jones s000 host1 6Sep03 2:33 -
smith s001 host2 6Sep03 - w
The top line is the same one printed by uptime. The columns indicate the user’s terminal, originating host (if applicable), login time, idle time, and the current process. Provide a username to see only that user’s information.
Useful options
-h | Don’t print the header line. |
Name
top — stdin stdout - file -- opt --help --version
Synopsis
top [options]
The top command lets you monitor the most active processes, updating the display at regular intervals (say, every second). If your Mac seems slow, top will tell you which process, if any, is to blame. It is a screen-based program that updates the display in place, interactively. top first displays general system information about CPU and memory usage:
➜ top
Processes: 81 total, 2 running, 1 stuck, 78 sleeping, ...
2012/03/12 22:28:03
Load Avg: 0.36, 0.43, 0.48
CPU usage: 8.10% user, 21.62% sys, 70.27% idle
SharedLibs: 632K resident, 0B data, 0B linkedit.
MemRegions: 48380 total, 1582M resident, 29M private, ...
PhysMem: 891M wired, 2095M active, 770M inactive, ...
VM: 189G vsize, 1091M framework vsize, 21497(0) pageins, ...
Networks: packets: 53842/12M in, 63096/41M out.
Disks: 4550433/439G read, 985283/54G written.
and follows it with a list of running processes:
PID COMMAND %CPU TIME ... RPRVT RSHRD RSIZE
42652 top 8.8 00:00.89 ... 1392K 216K 2108K
42206 sshd 0.0 00:00.05 ... 456K 1632K 3036K
41202 Address Book 0.0 00:01.41 ... 13M 13M 22M
39720- Microsoft Wo 0.6 05:38.03 ... 409M 55M 670M
...
While top is running, you can press keys to change its behavior interactively, such as setting the update speed (s) or sorting by a particular column (o). Type ? to see a complete list and q to quit.
Useful options
-l N | Perform N updates, then quit. The command top -l1 > outfile saves a quick snapshot to a file. |
-s N | Update the display every N seconds. |
-pid N | Display only the processes with PID N. |
Controlling Processes
open | Open any file in its default Mac application. |
kill | Terminate a process (or send it a signal). |
nice | Invoke a program at a particular priority. |
renice | Change a process’s priority as it runs. |
shutdown | Reboot or halt the computer. |
Once processes are started, they can be paused, restarted, terminated, and reprioritized. We discussed some of these operations as handled by the shell in Shell Job Control. Now we cover killing and reprioritizing.
Name
open — stdin stdout - file -- opt --help --version
Synopsis
open [options] [files] [--args application_arguments]
The open command opens the given files with whatever application is registered to do so. For example, open myfile.txt runs TextEdit, open spreadsheet.xls launches Microsoft Excel or Apple’s Numbers, and open /Users/smith/Documents opens the Finder to display that folder. The application launches in the background so you get your shell prompt back.
You can also open a URL, launching your default web browser:
➜ open http://www.apple.com
Useful options
-a app | Open the files with the given application app instead of the default one. If you omit the filename after -a, the application is simply launched. |
-e | Open with TextEdit. |
-f | Read from standard input into your default text editor. Useful as the last step of a shell pipeline. |
-W | Open the application in the foreground for the shell. By default, it opens in the background so you get your shell prompt back. |
Name
kill — stdin stdout - file -- opt --help --version
Synopsis
kill [options] [process_ids]
The kill command sends a signal to a process, given its process ID (PID). This can terminate a process (the default action), interrupt it, suspend it, crash it, and so on. You must own the process, or be the superuser, to affect it. Remember our story in the introduction about terminating a hung Microsoft Word? We used a kill command (actually killall, described shortly) for this purpose, since it can succeed when other more common methods have failed.
To terminate the process with PID 13243, for example, run:
➜ kill 13243
You can also terminate a shell job (see Shell Job Control) by its job number, preceded by a percent sign to distinguish it from a PID:
➜ kill %2
If kill does not work—some programs catch this signal without terminating—add the option -KILL or (equivalently) -9:
➜ kill -KILL 13243
which is virtually guaranteed to work. However, this is not a clean exit for the program, which may leave system resources allocated (or cause other inconsistencies) upon its death.
If you don’t know the PID of a process, run ps and examine the output:
➜ ps -ax | grep emacs
or even better, try the killall command, which looks up all processes for a given program by its name and kills them:
➜ killall less
[1]+ Terminated: 15 less -c myfile
In addition to the kill program in the filesystem (usually /bin/kill), most shells have built-in kill commands, but their syntax and behavior differ. However, they all support the following usage:
➜ kill -N PID
➜ kill -NAME PID
where N is a signal number, and NAME is a signal name without its leading “SIG” (e.g., use -HUP to send the SIGHUP signal). To see a complete list of signals transmitted by kill, run kill -l, though its output differs depending on which kill you’re running. For descriptions of some signals, run man kill.
Name
nice — stdin stdout - file -- opt --help --version
Synopsis
nice [-n level] command_line
When invoking a system-intensive program, you can be nice to the other processes (and users) by lowering its priority. That’s what the nice command is for: it sets a nice level (an amount of “niceness”) for a process so it gets less attention from the OS X process scheduler.[19] Here’s an example of setting a big job to run at nice level 7:
➜ nice −n 7 sort VeryLargeFile > outfile
If you run nice without a level, 10 is used. Normal processes (run without nice) run at level zero. The superuser can also lower the nice level, increasing a process’s priority:
➜ sudo nice -n -10 myprogram
To see the nice levels of your jobs, use ps and look at the “NI” column:
➜ ps -o pid,user,args,nice
[19] This is called “nicing” the process. You’ll hear the term used as a verb: “That process was niced to 12.”
Name
renice — stdin stdout - file -- opt --help --version
Synopsis
renice [+-N] [options] PID
While the nice command can invoke a program at a given nice level, renice changes the nice level of an already-running process. Here we increase the nice level (decrease the priority) of process 28734 by five:
➜ renice +5 -p 28734
Ordinary users can increase the nice level of their own processes, while the superuser can also decrease it (increasing the priority) and can operate on any process. The valid range is −20 to +20, but avoid high negative numbers or you might interfere with vital system processes.
Useful options
-p pid | Affect the given process ID. You can omit the -p and just provide a PID (renice +5 28734). |
-u username | Affect all processes owned by the given user. |
Name
shutdown — stdin stdout - file -- opt --help --version
Synopsis
shutdown [options] time [message]
The shutdown command shuts down or reboots OS X; only the superuser may run it. Here’s a command to shut down the system in 10 minutes, broadcasting the message “scheduled maintenance” to all users logged in:
➜ sudo shutdown -h +10 "scheduled maintenance"
The time may be a number of minutes preceded by a plus sign, like +10; an absolute time in hours and minutes, like 16:25; or the word now to mean immediately.
With no options, just a time, shutdown puts the system into single-user mode, a special maintenance mode in which only one person is logged in (on the desktop), and all nonessential services are off.
➜ sudo shutdown now
To exit single-user mode, either perform another shutdown to halt or reboot, or type ^D to bring up the system in normal, multiuser mode.
Useful options
-r | Reboot the system. |
-h | Halt the system. |
Scheduling Jobs
sleep | Wait a set number of seconds, doing nothing. |
at | Schedule a job for a single, future time. |
crontab | Schedule jobs for many future times. |
launchctl | Control system services. |
If you need to launch programs at particular times or at regular intervals, OS X provides several scheduling tools on the command line with various degrees of complexity.
Name
sleep — stdin stdout - file -- opt --help --version
Synopsis
sleep seconds
The sleep command simply waits a set number of seconds:
➜ sleep 5 Do nothing for 5 seconds
sleep is useful for delaying a command for a set amount of time, say if you want to run something after you’ve stepped away from the keyboard:
➜ sleep 10 && echo 'Ten seconds have passed.'
(10 seconds pass)
Ten seconds have passed.
Name
at — stdin stdout - file -- opt --help --version
Synopsis
at [options] time_specification
The at command runs a list of shell commands once at a specified time. It reads its shell commands from standard input, so press ^D when you’re finished typing them:
➜ at 7am
echo Remember to go shopping | mail smith
lpr $HOME/shopping-list
^D
job 559 at 2012-07-14 21:30
Of course, you can send commands to at using a pipeline:
➜ echo lpr myfile | at 7am
The commands run in the background, not in your current shell, so they are not interactive. You cannot see anything they print (say, using echo) unless you redirect the output to a file or pipe it to another program that can communicate with you (such as mail in our example). Likewise, you cannot provide input to these commands from the keyboard.
The time specifications understood by at are enormously flexible. In general, you can specify:
A time followed by a date (not a date followed by a time)
Only a date (assumes the current clock time)
Only a time (assumes the very next occurrence, whether today or tomorrow)
A special word like now, midnight, or teatime (16:00)
Any of the preceding followed by an offset, like “+ 3 days”
Dates are acceptable in many forms: december 25 2012, december 25, 12/25/2012, 25.12.2012, today, thursday, and more. Month names can be abbreviated to three letters (jan, feb, mar, ...). Times are also flexible: 8pm, 8 pm, 8:00pm, 8:00 pm, 20:00, and 2000 are equivalent. Offsets are a plus or minus sign followed by whitespace and an amount of time, such as + 2 weeks.
If you don’t specify a part of the date or time, at copies the missing information from the system date and time. So thursday means the upcoming Thursday at the current clock time, december 25 means the next upcoming December 25, and 4:30pm means the very next occurrence of 4:30 p.m. in the future.
The command you supply to at is not evaluated by the shell until execution time, so wildcards, variables, and other shell constructs are not expanded until then. Also, your current environment (see printenv) is preserved within each job so it executes as if you were logged in. Aliases, however, aren’t available to at jobs, so don’t include them.
To list your at jobs, use atq (“at queue”):
➜ atq
559 Tue Mar 13 20:54:00 2012
To display the shell commands associated with an at job, use the -c option:
➜ at -c 559
echo Remember to go shopping | mail smith
lpr $HOME/shopping-list
To delete an at job, run atrm (“at remove”) with the job number:
➜ atrm 559
Useful options
-f filename | Read commands from the given file instead of standard input. |
-c job_number | Print the job commands to standard output. |
Name
crontab — stdin stdout - file -- opt --help --version
Synopsis
crontab [options] [file]
The crontab command, like at, schedules jobs for specific times. However, crontab is for recurring jobs, such as “Run this command at midnight on the second Tuesday of each month.” To make this work, you edit and save a file (called your crontab file), which automatically gets installed in a system directory (/var/at/tabs). Once a minute, an OS X process called cron wakes up, checks your crontab file, and executes any jobs that are due:
➜ crontab -e
Edit your crontab file in your default editor ($EDITOR)
➜ crontab -l
Print your crontab file on standard output
➜ crontab -r
Delete your crontab file
➜ crontab myfile
Install the file myfile as your crontab file
➜ sudo crontab ...
Work with the root user’s crontab file to run administrative system processes
➜ sudo crontab -u smith ...
Work with user smith’s crontab file
Crontab files contain one job per line. (Blank lines and comment lines beginning with “#” are ignored.) Each line has six fields, separated by whitespace. The first five fields specify the time to run the job, and the last is the job command itself. The first five fields are:
Minutes of the hour
Integers between 0 and 59. This can be a single number (30), a sequence of numbers separated by commas (0,15,30,45), a range (20–30), a sequence of ranges (0–15,50–59), or an asterisk to mean “all.” You can also specify “every nth time” with the suffix /n; for instance, both */12 and 0–59/12 mean 0,12,24,36,48 (i.e., every 12 minutes).
Hours of the day
Same syntax as for minutes.
Days of the month
Integers between 1 and 31; again, you may use sequences, ranges, sequences of ranges, or an asterisk.
Months of the year
Integers between 1 and 12; again, you may use sequences, ranges, sequences of ranges, or an asterisk. Additionally, you may use three-letter abbreviations (jan, feb, mar, ...), but not in ranges or sequences.
Days of the week
Integers between 0 (Sunday) and 6 (Saturday); again, you may use sequences, ranges, sequences of ranges, or an asterisk. Additionally, you may use three-letter abbreviations (sun, mon, tue, ...), but not in ranges or sequences.
Command to execute
Any shell command, which will be executed in your login environment, so you can refer to environment variables like $HOME and expect them to work. Use only absolute paths to your commands (e.g., /usr/bin/who instead of who) as a general rule.
Here is a line from a crontab file that runs a backup with rsync every Sunday at 1:30 a.m. We provide the absolute path to the rsync program to ensure that the cron program finds it, a good practice with all crontab entries.
30 1 * * sun /usr/bin/rsync -a -E / server:
Here are more example time specifications. Each would be followed by a command to execute:
* * * * * | Every minute |
45 * * * * | 45 minutes after each hour (1:45, 2:45, etc.) |
45 9 * * * | Every day at 9:45 a.m. |
45 9 8 * * | The eighth day of every month at 9:45 a.m. |
45 9 8 12 * | Every December 8 at 9:45 a.m. |
45 9 8 dec * | Every December 8 at 9:45 a.m. |
45 9 * * 6 | Every Saturday at 9:45 a.m. |
45 9 * * sat | Every Saturday at 9:45 a.m. |
45 9 * 12 6 | Every Saturday in December, at 9:45 a.m. |
45 9 8 12 6 | Every Saturday in December, plus December 8, at 9:45 a.m. |
If the command produces any output upon execution, cron will email it to the user who owns the crontab file.
Name
launchctl — stdin stdout - file -- opt --help --version
Synopsis
launchctl [subcommand [arguments]]
The launchctl command (pronounced “launch control”) sets up programs to run automatically according to a schedule or other rules. It is similar to cron but more flexible and complex. It’s also made for the Mac whereas cron comes from a Unix/Linux background. Its full operation is beyond the scope of this book, but we’ll show you the basics.
Launching a program requires several parts:
A program to be launched.
A property list or plist file that specifies how the program gets launched, written in XML.
Specifying whether to run as an agent or a daemon. An agent is associated with a particular user and can have a graphical user interface (GUI). A daemon is not associated with a user and cannot have a GUI.
The system service launchd, which controls all the launched programs.
The launchctl command, a front-end to launchd, which handles plist files.
plist files are found in several system directories, including /Library/LaunchAgents, /Library/LaunchDaemons, /System/Library/LaunchAgents, and /System/Library/LaunchDaemons. If you write or install personal plist files, they go into $HOME/Library/LaunchAgents or $HOME/Library/LaunchDaemons. An example plist file is /System/Library/LaunchDaemons/ssh.plist, which turns the SSH server on and off. In Enabling remote logins, we enable the SSH server via System Preferences, but you could also start it with the command:
➜ sudo launchctl load \
/System/Library/LaunchDaemons/ssh.plist
and terminate it with:
➜ sudo launchctl unload \
/System/Library/LaunchDaemons/ssh.plist
What do plist files look like? Here is an example for a trivial task: running the date program every 10 seconds, writing the output to a file /tmp/date.log:
<?xml version="1.0" encoding="UTF-8"?> Required
<!DOCTYPE plist PUBLIC Required
-//Apple Computer//DTD PLIST 1.0//EN Required
http://www.apple.com/DTDs/PropertyList-1.0.dtd"> Required
<plist version="1.0"> Required
<dict> Begin properties
<key>label</key> Name of job
<string>com.example.date</string>
<key>ProgramArguments</key> Program to run
<array>
<string>/bin/date</string>
</array>
<key>Nice</key> Niceness level
<integer>1</integer> (see “nice” on page)
<key>StartInterval</key> How often to run
<integer>10</integer> (in seconds)
<key>StandardOutPath</key> File for stdout
<string>/tmp/date.log</string>
</dict> End of properties
</plist>
Let’s name the preceding plist file com.example.date.plist and store it in the directory $HOME/Library/LaunchAgents. To make sure the plist file has correct syntax, run the plutil command:
➜ plutil -lint com.example.date.plist
com.example.date.plist: OK
Then launch the process with launchctl:
➜ cd $HOME/Library/LaunchAgents
➜ launchctl load com.example.date.plist
If you watch the output file specified in the plist file, /tmp/date.log, you’ll see that it receives a date every 10 seconds or so:
➜ tail -f /tmp/date.log
Tue Mar 20 20:41:14 EDT 2012
Tue Mar 20 20:41:25 EDT 2012
Tue Mar 20 20:41:36 EDT 2012
Exciting, isn’t it? When you want this to stop, run:
➜ launchctl unload com.example.date.plist
To perform launchctl commands automatically when the Macintosh boots, put them into $HOME/.launchd.conf (for yourself) or /etc/launchd.conf (for system processes), one per line.
This was a simplified example. plist files have 50 types of keys, and launchctl supports over 20 subcommands. See the manpage for more details, and for the full syntax of plist files, run man launchd.plist.
Useful subcommands
load F | Tell launchd to load the plist file F. |
unload F | Tell launchd to unload the plist file F. |
list | List all jobs currently loaded in launchd |
Users and Their Environment
logname | Print your login name. |
whoami | Print your current, effective username. |
id | Print the user ID and group membership of a user. |
who | List logged-in users, long output. |
users | List logged-in users, short output. |
last | Determine when someone last logged in. |
finger | Print information about users. |
chfn | Change a user’s personal information. |
passwd | Change a password. |
chsh | Change a user’s shell. |
dscl | Create, modify, and delete users. |
printenv | Print your environment. |
How many user accounts are set up on your Macintosh? For many Mac owners, the answer is “one.”[20] Nevertheless, any Macintosh can have multiple user accounts for family, co-workers, or beloved pets. OS X is a full-fledged multiuser operating system, meaning that multiple people can work a single Macintosh at the same time. While one person is using the connected display, keyboard, and mouse (known as the console), others can log in remotely and run shells and commands (discussed in Running a Shell Remotely). Each user is identified by a unique username, like “smith” or “funkyguy,” and owns a (reasonably) private part of the system for doing work (/Users/smith, /Users/funkyguy, etc.).
This section’s grab-bag of programs tells you all about users: their names, login times, and properties of their environment. Several other commands let you change a user’s password, default shell, and personal details.
[20] Not counting the Guest User, which is installed with OS X.
Name
logname — stdin stdout - file -- opt --help --version
Synopsis
logname
The logname command prints your login name:
➜ logname
smith
Name
whoami — stdin stdout - file -- opt --help --version
Synopsis
whoami
The whoami command prints the name of the current, effective user. This may differ from your login name (the output of logname) if you’ve used the sudo command. The following example distinguishes whoami from logname. In normal situations, they both print your username:
➜ logname
smith
➜ whoami
smith
When you become the root user via sudo, then effectively you are the root user, and whoami indicates this:
➜ sudo logname
smith
➜ sudo whoami
root
Name
id — stdin stdout - file -- opt --help --version
Synopsis
id [options] [username]
Every user has a unique, numeric user ID, and a default group with a unique, numeric group ID. The id command prints these values along with their associated user and group names:
➜ id
uid=500(smith) gid=20(staff)
groups=20(staff),402(com.apple.sharepoint.group.1),...
➜ sudo id
uid=0(root) gid=0(wheel)
groups=0(wheel),402(com.apple.sharepoint.group.1),...
Useful options
Name
who — stdin stdout - file -- opt --help --version
Synopsis
who [options] [filename]
The who command lists all logged-in users, one line per login shell:
➜ who
smith console Sep 6 17:09
barrett ttys000 Sep 6 17:10 (example.com)
jones ttys001 Sep 8 20:58 (192.168.13.7)
jones ttys002 Sep 3 05:11 (192.168.13.7)
Normally, who gets its data from the file /var/run/utmpx. The filename argument can specify a different data file, if you happen to have one in the right format.
Useful options
-H | Print a row of headings as the first line. |
-u | Also print each user’s idle time at his/her terminal. |
-T | Also indicate whether each user’s terminal is writable (see mesg in Messaging). A plus sign means yes, a minus sign means no, and a question mark means unknown. |
-m | Display information only about yourself, i.e., the user associated with the current terminal. |
-q | Quick display of usernames only, and a count of users. Much like the users command, but it adds a count. |
Name
users — stdin stdout - file -- opt --help --version
Synopsis
users
The users command prints a quick listing of users who have login sessions:
➜ users
barrett jones smith
Like the who command, users reads the file /var/run/utmpx.
Name
last — stdin stdout - file -- opt --help --version
Synopsis
last [options] [users]
The last command displays a history of logins, in reverse chronological order.
➜ last
dan ttys003 example.com Mon Sep 8 21:07 - 21:08 (00:01)
lisa console Mon Sep 8 20:25 - 20:56 (00:31)
dan ttys001 example.com Sun Sep 7 22:19 still logged in
...
You may provide usernames or tty names to limit the output.
Useful options
-N | Print only the latest N lines of output, where N is a positive integer. |
-t tty | Print entries only for the given tty name, such as ttys001. |
Name
finger — stdin stdout - file -- opt --help --version
Synopsis
finger [options] [user[@host]]
The finger command prints information about logged-in users in a short form:
➜ finger
Login Name TTY Idle Login Time Phone
smith Sandy Smith *con Sep 6 17:09
barrett Daniel Barrett s00 24 Sep 6 17:10
jones Jill Jones s01 Thu 20:58
or a long form:
➜ finger smith
Login: smith Name: Sandy Smith
Directory: /Users/smith Shell: /bin/bash
On since Sat Sep 6 17:09 (EDT) on console
No Mail.
Project: Enhance world peace
Plan: Mistrust first impulses; they are always right.
The user argument can be a local username or a remote user in the form user@host. However, most computers no longer allow finger connections from the outside world due to security concerns.
Useful options
-l | Print in long format. |
-s | Print in short format. |
-p | Don’t display the Project and Plan sections, which are ordinarily read from the user’s ~/.project and ~/.plan files, respectively. |
Name
chfn — stdin stdout - file -- opt --help --version
Synopsis
chfn [options] [username]
The chfn (change finger) command updates a few pieces of personal information maintained by the system: real name, home telephone, office telephone, and office location, as displayed by the finger command.[21] Invoked without a username, chfn affects your account; invoked with a username (by the superuser), it affects that user. With no options, chfn will prompt you for the desired information:
➜ chfn
Password: ********
Name [Shawn Smith]: Shawn E. Smith
Office [100 Barton Hall]:
Office Phone [212-555-1212]: 212-555-1234
Home Phone []:
Useful options
-f name | Change the full name to name. |
-h phone | Change the home phone number to phone. |
-p phone | Change the office phone number to phone. |
-o office | Change the office location to office. |
[21] This information is stored in the OS X user database, not in your Address Book.
Name
passwd — stdin stdout - file -- opt --help --version
Synopsis
passwd [options] [username]
The passwd command changes a login password, yours by default:
➜ passwd
or another user’s password if run by an administrator:
➜ sudo passwd smith
Name
chsh — stdin stdout - file -- opt --help --version
Synopsis
chsh [options] [username]
The chsh (change shell) command sets your login shell program. Different shells have different capabilities, and if you’re familiar with a different shell from another operating system (say, Linux), you might want to use that shell on the Mac.
Invoked without a username, chsh affects your account; invoked with a username (by an administrator), it affects that user. With no options, chsh will prompt you for the desired information:
➜ chsh
Changing shell for smith.
Password: *******
New shell [/bin/bash]: /bin/tcsh
The new shell must be listed in /etc/shells.
Useful options
-s shell | Specify the new shell. |
-l | List all permissible shells. |
Name
dscl — stdin stdout - file -- opt --help --version
Synopsis
dscl [arguments]
The dscl command has many uses, but for our purposes, it’s for creating, modifying, and deleting users. Normally you create users with System Preferences, under Users & Groups (Lion) or Accounts (earlier versions of OS X), and frankly this is the easiest method for a single user. But if you need to do it via the shell (say, for creating multiple users in bulk), dscl is the approved technique. In this section, we’ll create a user on the local Macintosh. First we need to choose:
A username. We’ll use zippy.
A password.
A unique positive integer for the user ID. We’ll use 550.
A default group for the user to belong to. We’ll use the staff group, whose group ID is 20.
There is no single command to create a user with all necessary attributes; you must issue multiple dscl commands to get the job done. First, we’ll create the user:[22]
➜ sudo dscl localhost -create /Local/Default/Users/zippy
Immediately set a password so intruders cannot log in:
➜ sudo passwd zippy
Password: *******
Now specify the user ID, a positive integer that must be unique, i.e., no other users on your Macintosh have the same ID. You can discover the highest user ID in use by running:
➜ dscl . list /users UniqueID | awk '{print $2}' \
| sort -n | tail -1
214
which lists all users and their IDs, extracts the second item (the IDs), sorts them numerically, and then prints the last (highest) ID. Choose a new ID higher than 500, since users with lower IDs don’t show up in System Preferences, and you might want to manage the user later. Once you’ve chosen an ID (say, 550), run:
➜ sudo dscl localhost -create /Local/Default/Users/zippy \
UniqueID 550
Next, specify the user’s default group ID:
➜ sudo dscl localhost -create /Local/Default/Users/zippy \
PrimaryGroupID 20
Choose a shell for the user, generally bash:
➜ sudo dscl localhost -create /Local/Default/Users/zippy \
UserShell /bin/bash
Set the user’s real name:
➜ sudo dscl localhost -create /Local/Default/Users/zippy \
RealName 'Zippy D. Doodah'
Finally, set and create the user’s home directory:
➜ sudo dscl localhost -create /Local/Default/Users/zippy \
NFSHomeDirectory /Users/zippy
➜ sudo mkdir /Users/zippy
➜ sudo chown zippy:staff /Users/zippy
and you’re done! Run System Preferences, look under Users & Groups (Lion) or Accounts (earlier versions of OS X), and user zippy should show up. You can also see zippy’s details by running finger:
➜ finger zippy
or see more technical output with dscl:
➜ sudo dscl localhost -read /Local/Default/Users/zippy
To turn the user into an administrator, use System Preferences or run the dseditgroup command:
➜ sudo dseditgroup -o edit -t user -a zippy admin
To delete a user, run dscl, then optionally delete the user’s home directory:
➜ sudo dscl localhost -delete /Local/Default/Users/zippy
➜ sudo rm -rf /Users/zippy
The user is now gone:
➜ finger zippy
finger: zippy: no such user
➜ sudo dscl localhost -read /Local/Default/Users/zippy
<dscl_cmd> DS Error: -14136 (eDSRecordNotFound)
[22] If your version of OS X is very old and these commands fail, try a slightly different syntax. Instead of localhost, supply a root slash (/), and instead of /Local/Default, write /Local.
Name
printenv — stdin stdout - file -- opt --help --version
Synopsis
printenv [environment_variable]
The printenv command prints all environment variables known to your shell and their values:
➜ printenv
HOME=/Users/smith
MAIL=/var/spool/mail/smith
NAME=Sandy Smith
SHELL=/bin/bash
...
or a specified variable:
➜ printenv HOME
/Users/smith
Becoming the Superuser
Every Macintosh has a special user named root—the superuser or administrator on a Macintosh—who has the privileges to do anything at all on the system. Ordinary users are restricted: they can run most programs, but in general they can modify only the files they own. An administrator, on the other hand, can create, modify, or delete any file and run any program on a given Mac.
If you administer your Mac, you might never need to use the root account.[23] Rather, any account can be set up with administrator privileges (also called root privileges) and have all the same power as root. To do this, run System Preferences, visit Users & Groups (Lion) or Accounts (earlier versions of OS X), select the desired user, and check the checkbox “Allow user to administer this computer.” (Only an administrator can elevate other users to be administrators.)
Any user who is an administrator can easily become the superuser and run arbitrary commands. You needn’t log out and log back in to do this; just preface any shell command with sudo and provide your password:
➜ sudo command here
Password: *******
For example:
➜ ls /private/secrets View a protected directory
ls: secrets: Permission denied It failed
➜ sudo ls /private/secrets Try with sudo
Password: *******
secretfile1 secretfile2 It worked!
After the command has run, you’ll be your ordinary self again, with one extra bonus. Future sudo commands will not prompt for your password, making it easier to run multiple sudo commands in a row. This special power lasts for five minutes after your last sudo command, after which sudo will prompt for passwords again.
If you plan to run many superuser commands and don’t want to type “sudo” all the time, run a shell as root:
➜ sudo /bin/bash
so every command you execute runs as root. Be careful to terminate this shell (by typing ^D or exit) when you’re finished, so nobody else can walk up and run superuser commands with it.
If you provide a username to sudo:
➜ sudo -u sophia command here
you will run the command as that user, rather than as an administrator.
The behavior of sudo is configurable in complex ways. You can exercise precise control over privileges (in the /etc/sudoers file) and even keep a log of the commands that get run. A full discussion is beyond the scope of this book: if you would like to read more, see man sudo and visit http://www.gratisoft.us/sudo/ for full details.
[23] In fact, it is disabled by default.
Name
Useful options
-u username | Run the command as the given user. |
-b | Run the command in the background. |
Group Management
groups | Print the group membership of a user. |
dscl | Create, modify, and delete groups. |
A group is a set of accounts treated as a single entity. If you give permission for a group to take some action (such as modify a file), then all members of that group can take it. For example, you can give full permissions for the group friends to read, write, and execute the file /tmp/sample:
➜ groups
users smith friends
➜ chgrp friends /tmp/sample
➜ chmod 770 /tmp/sample
➜ ls -l /tmp/sample
-rwxrwx--- 1 smith friends 2874 Oct 20 22:35 /tmp/sample
To add users to a group, use dscl. To change the group ownership of a file, recall the chgrp commands from File Properties.
Name
groups — stdin stdout - file -- opt --help --version
Synopsis
groups [usernames]
The groups command prints the OS X groups to which you belong, or to which other users belong:
➜ whoami
smith
➜ groups
smith users
➜ groups jones root
jones : jones users
root : root bin daemon sys adm disk wheel src
Name
dscl — stdin stdout - file -- opt --help --version
Synopsis
dscl [arguments]
We encountered the dscl command in Users and Their Environment when creating and deleting users. It can also create and delete groups. As with users, you must run multiple commands to make a group. Suppose we want a new group named gang. First do the initial creation:
➜ sudo dscl localhost -create /Local/Default/Groups/gang
Give the group the password *, meaning a non-functional password, and a unique positive integer ID:
➜ sudo dscl localhost -create /Local/Default/Groups/gang \
passwd '*'
➜ sudo dscl localhost -create /Local/Default/Groups/gang \
gid 301
Now add the local user zippy to the group, and check the result with the groups command:
➜ sudo dscl localhost -create /Local/Default/Groups/gang \
GroupMembership zippy
Now confirm that zippy is a member of the group:
➜ groups zippy
... gang ...
To delete the group, run:
➜ sudo dscl localhost -delete /Local/Default/Groups/gang
You can also list all groups:
➜ dscl . list /groups
Host Information
uname | Print basic system information. |
sw_vers | Print the Macintosh software version. |
hostname | Print the system’s hostname. |
scutil | Set or get host information. |
ifconfig | Set and display network interface information. |
ipconfig | Set and display network interface information for debugging. |
Every Macintosh (or host) has a name, a network IP address, and other properties. Here’s how to display this information.
Name
uname — stdin stdout - file -- opt --help --version
Synopsis
uname [options]
The uname command prints fundamental information about the lowest level of the OS X operating system, known as the kernel:
➜ uname -a
Darwin mymac.home 11.3.0 Darwin Kernel Version 11.3.0:
Thu Jan 12 18:47:41 PST 2012; root:xnu-1699.24.23~1
/RELEASE_X86_64 x86_64
This includes the kernel name (Darwin), hostname (mymac.home), kernel release (11.3.0), and kernel version (Darwin Kernel Version 11.3.0: Thu Jan 12 ...). Each of these values can be printed individually using options.
Useful options
Name
sw_vers — stdin stdout - file -- opt --help --version
Synopsis
sw_vers [options]
The sw_vers command displays the OS X software version on your Macintosh:
➜ sw_vers
ProductName: Mac OS X
ProductVersion: 10.7.3
BuildVersion: 11D50
Useful options
-productName | Print only the product name. |
-productVersion | Print only the product version. |
-buildVersion | Print only the build version. |
Name
hostname — stdin stdout - file -- opt --help --version
Synopsis
hostname [options] [name]
The hostname command prints the network name of your computer:
➜ hostname
myhost.example.com
or your short hostname, which is the computer name you set in System Preferences (under Sharing):
➜ hostname -s
myhost
You can also set your hostname, as root:
➜ sudo hostname orange
This change is temporary and will not survive a reboot. To make it permanent, run the scutil command or use System Preferences (under Sharing).
Hostnames and nameservers are complicated topics well beyond the scope of this book. Don’t just blindly start setting hostnames!
Useful options
-s | Print your host’s short name. |
Name
scutil — stdin stdout - file -- opt --help --version
Synopsis
scutil [options] [arguments]
The scutil command (“system configuration utility”) can display basic network information, set the computer hostname, and perform several other tasks. For example, view your computer name with:
➜ scutil --get ComputerName
My Macintosh
change the computer name with:
➜ sudo scutil --set ComputerName banana
check if another host is reachable from your Mac (though the ping command is more informative):
➜ scutil -r www.apple.com
Reachable
or view technical DNS information with:
➜ scutil --dns
DNS configuration
resolver #1
search domain[0] : home
nameserver[0] : 192.168.1.1
resolver #2
...
The program has other uses as well, like interacting with the system configuration daemon (configd), but they are beyond the scope of this book.
Name
ifconfig — stdin stdout - file -- opt --help --version
Synopsis
ifconfig [options] interface
The ifconfig displays information about your network interfaces, such as IP addresses. We’ll cover a few simple commands here, but networking in general is beyond the scope of this book.
To display information about the default network interface (usually called en0 or en1):
➜ ifconfig en0
en0: flags=8823<UP,BROADCAST,SMART,RUNNING,SIMPLEX>
options=4<VLAN_MTU>
ether 00:25:4b:fd:44:6c
inet6 fe80::225:4bff:fefd:446c%en1 prefixlen 64
inet 192.168.1.7 netmask 0xffffff00
media: autoselect (100baseTX <full-duplex,flow-control>)
status: active
This includes your MAC address (00:25:4b:fd:44:6c), your IP address (192.168.1.7), your netmask (0xffffff00, which is hexadecimal for 255.255.255.0), and various other information. To view all loaded network interfaces, run:
➜ ifconfig -a
Name
ipconfig — stdin stdout - file -- opt --help --version
Synopsis
ipconfig action [arguments]
The ipconfig command displays and sets various aspects of your computer’s network interface. This command is only for testing and debugging, and the whole topic is beyond the scope of this book, but we’ll teach you a few tricks. To see the IP address and subnet mask of the network interface en0, try:
➜ ipconfig getifaddr en0
192.168.1.7
➜ ipconfig getoption en0 subnet_mask
255.255.255.0
or to count your network interfaces, run:
➜ ipconfig ifcount
2
To display the IP address of your Mac’s primary DNS server, and your Mac’s domain name, run:
➜ ipconfig getoption en0 domain_name_server
192.168.1.1
➜ ipconfig getoption en0 domain_name
example.com
To view the DHCP information that your Mac received from a DHCP server, run:
➜ ipconfig getpacket en0
op = BOOTREPLY
htype = 1
flags = 0
hlen = 6
...
Most other ipconfig actions, such as changing parameters of your network interface, require more technical knowledge of networking.
Host Location
host | Look up hostnames, IP addresses, and DNS info. |
whois | Look up the registrants of Internet domains. |
ping | Check if a remote host is reachable. |
traceroute | View the network path to a remote host. |
When dealing with remote computers, you might want to know more about them. Who owns them? What are the IP addresses? Where on the network are they located?
Name
host — stdin stdout - file -- opt --help --version
Synopsis
host [options] name [server]
The host command looks up the hostname or IP address of a remote machine by querying DNS:
➜ host apple.com
apple.com has address 17.172.224.47
apple.com has address 17.149.160.49
➜ host 17.172.224.47
47.224.172.17.in-addr.arpa domain name pointer apple.com.
It can also find out much more:
➜ host -a apple.com
Trying "apple.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 2915
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, ...
;; QUESTION SECTION:
;apple.com. IN ANY
;; ANSWER SECTION:
apple.com. 2003 IN A 17.172.224.47
apple.com. 2003 IN A 17.149.160.49
Received 59 bytes from 192.168.1.1#53 in 20 ms
though a full discussion of this output is beyond the scope of this book. The final, optional “server” parameter specifies a particular nameserver for the query:
➜ host apple.com nserver.apple.com
Using domain server:
Name: nserver.apple.com
Address: 17.254.0.50#53
apple.com has address 17.149.160.49
...
To see all options, type host by itself.
Useful options
-a | Display all available information. |
-t | Choose the type of nameserver query: A, AXFR, CNAME, HINFO, KEY, MX, NS, PTR, SIG, SOA, and so on. |
Here’s an example of the -t option to locate MX records:
➜ host -t MX apple.com
apple.com mail is handled by 10 mail-in11.apple.com.
If the host command doesn’t do what you want, try dig, another powerful DNS lookup utility. There’s also the nslookup command, mostly obsolete but still available in OS X.
Name
whois — stdin stdout - file -- opt --help --version
Synopsis
whois [options] domain_name
The whois command looks up the registration of an Internet domain:
➜ whois itunes.com
Domain Name: ITUNES.COM
Name Server: NSERVER.APPLE.COM
Updated Date: 27-apr-2010
Creation Date: 11-aug-1998
Expiration Date: 10-aug-2019
...
plus a few screens full of legal disclaimers from the registrar.
Useful options
-h registrar | Perform the lookup at the given registrar’s server. For example, whois -h whois.networksolutions.com yahoo.com. |
-p port | Query the given the TCP port instead of the default, 43 (the whois service). |
Name
ping — stdin stdout - file -- opt --help --version
Synopsis
ping [options] host
The ping command tells you if a remote host is reachable. It sends small packets (ICMP packets to be precise) to a remote host and waits for responses.
➜ ping google.com
PING google.com (74.125.226.144) from 192.168.0.10 :
56(84) bytes of data.
64 bytes from www.google.com (74.125.226.144): icmp_seq=0
ttl=49 time=32.390 msec
64 bytes from www.google.com (74.125.226.144): icmp_seq=1
ttl=49 time=24.208 msec
^C
--- google.com ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/mdev = 24.208/28.299/32.390/4.091 ms
Useful options
-c N | Ping at most N times. |
-i N | Wait N seconds (default 1) between pings. |
-n | Print IP addresses in the output, rather than hostnames. |
Name
traceroute — stdin stdout - file -- opt --help --version
Synopsis
traceroute [options] host [packet_length]
The traceroute command prints the network path from your local host to a remote host, and the time it takes for packets to traverse the path.
➜ traceroute yahoo.com
1 server.example.com (192.168.0.20) 1.397 ms ...
2 10.221.16.1 (10.221.16.1) 15.397 ms ...
3 gbr2-p10.cb1ma.ip.att.net (12.123.40.190) 4.952 ms ...
...
16 p6.www.dcn.yahoo.com (216.109.118.69) * ...
Each host in the path is sent three “probes” and the return times are reported. If five seconds pass with no response, traceroute prints an asterisk. Also, traceroute may be blocked by firewalls or unable to proceed for various reasons, in which case it prints a symbol:
Symbol	Meaning
!F | Fragmentation needed. |
!H | Host unreachable. |
!N | Network unreachable. |
!P | Protocol unreachable. |
!S | Source route failed. |
!X | Communication administratively prohibited. |
!N | ICMP unreachable code N. |
The default packet size is 40 bytes, but you can change this with the final, optional packet_length parameter (e.g., traceroute myhost 120).
Useful options
-n | Numeric mode: print IP addresses instead of hostnames. |
-w N | Change the timeout from five seconds to N seconds. |
Network Connections
ssh | Securely log into a remote host, or run commands on it. |
telnet | Log into a remote host (not secure!). |
scp | Securely copy files to/from a remote host (batch). |
sftp | Securely copy files to/from a remote host (interactive). |
ftp | Copy files to/from a remote host (interactive, not secure!). |
It’s easy to establish network connections from one machine to another for remote logins and file transfers. Just make sure you do it securely with the commands we cover.
Name
ssh — stdin stdout - file -- opt --help --version
Synopsis
ssh [options] host [command]
The ssh (Secure Shell) program securely logs you into a remote machine where you already have an account:
➜ ssh remote.example.com
Alternatively, it can run a single command on that remote machine without needing an interactive shell. Here we rename a file:
➜ ssh remote.example.com mv file1 file2
ssh encrypts all data that travels across its connection, including your username and password (which you’ll need to access the remote machine). The SSH protocol also supports other ways to authenticate, such as public keys and host IDs. See man sshd for details.
Useful options
-l user | Specify your remote username; otherwise, ssh assumes your local username. You can also use the syntax username@host: ➜ ssh smith@server.example.com |
-p port | Use a port number other than the default (22). |
-t | Allocate a tty on the remote system; useful when trying to run a remote command with an interactive user interface, such as a text editor. |
-v | Produce verbose output, useful for debugging. |
Name
telnet — stdin stdout - file -- opt --help --version
Synopsis
telnet [options] host [port]
The telnet program logs you into a remote machine where you already have an account.
➜ telnet remote.example.com
Avoid telnet for remote logins: most implementations are not secure and send your password over the network in plain text for anyone to steal. Use ssh instead, which protects your password and data via encryption. There are two exceptions:
In a Kerberos environment, using secure (“kerberized”) telnet software on both the client and server side. See http://web.mit.edu/kerberos/ for more information.
Connecting to a remote port when you aren’t sending any sensitive information at all. For example, to check for the presence of a web server (port 80) on a remote system:
➜ telnet remote.example.com 80
Trying 192.168.55.21...
Connected to remote.example.com
Escape character is '^]'.
xxx Type some junk and press Enter
<HTML><HEAD> Yep, it’s a web server
<TITLE>400 Bad Request</TITLE>
</HEAD><BODY>
<H1>Bad Request</H1>
Your browser sent a request that
this server could not understand.<P>
</BODY></HTML>
Connection closed by foreign host.
Note that you are simply connecting to the port, not necessarily using it in a correct or meaningful way.
To discourage you further from using telnet non-securely, we aren’t even going to describe its options.
Name
scp — stdin stdout - file -- opt --help --version
Synopsis
scp local_spec remote_spec
The scp (secure copy) command copies files and directories from one computer to another in batch. (For an interactive user interface, see sftp.) It encrypts all communication between the two machines using SSH, and prompts for your password as needed. As a simple example, scp can copy a local file to a remote machine (by default into your remote home directory):
➜ scp myfile remote.example.com:newfile
recursively copy a directory to a remote machine:
➜ scp -r mydir remote.example.com:
copy a remote file to your local machine:
➜ scp remote.example.com:myfile .
or recursively copy a remote directory to your local machine:
➜ scp -r remote.example.com:mydir .
If your remote username differs from your local one, use the username@host syntax:
➜ scp myfile smith@remote.example.com:
Useful options
-p | Duplicate all file attributes (permissions, timestamps) when copying. |
-r | Recursively copy a directory and its contents. |
-v | Produce verbose output, useful for debugging. |
Name
sftp — stdin stdout - file -- opt --help --version
Synopsis
sftp (host | username@host)
The sftp program copies files interactively and securely between two computers. (As opposed to scp, which copies files in batch.) The user interface is much like that of ftp, but ftp is not secure.
➜ sftp remote.example.com
Password: ********
Connected to remote.example.com.
sftp> cd MyFiles
sftp> ls
README
file1
file2
file3
sftp> get file2
Fetching /Users/smith/MyFiles/file2 to file2
sftp> quit
If your username on the remote system is different from your local one, use the username@host argument:
➜ sftp smith@remote.example.com
Command | Meaning |
---|---|
help | View a list of available commands. |
ls | List the files in the current remote directory. |
lls | List the files in the current local directory. |
pwd | Print the remote working directory. |
lpwd | Print the local working directory. |
cd dir | Change your remote directory to be dir. |
lcd dir | Change your local directory to be dir. |
get file1 [file2] | Copy remote file1 to local machine, optionally renamed as file2. |
put file1 [file2] | Copy local file1 to remote machine, optionally renamed as file2. |
mget file* | Copy multiple remote files to the local machine using wildcards * and ?. |
mput file* | Copy multiple local files to the remote machine using wildcards * and ?. |
quit | Exit sftp. |
Name
ftp — stdin stdout - file -- opt --help --version
Synopsis
ftp [options] host
The ftp (File Transfer Protocol) program copies files between computers, but not in a secure manner: your username and password travel over the network as plain text. Use sftp instead if your remote server supports it.
The same commands we listed for sftp also work for ftp. (However, the two programs support other, differing commands, too.)
Email Commands
Minimal text-based mail client and command-line mailer. | |
mailq | View the outgoing mail queue on your system. |
If you read email on your Mac, you’re probably using a graphical mail application, such as Mail, or a web-based mail reader. In the Terminal, you can also run some simple, entirely text-based programs for handling email.
Before you can use these programs, your Mac’s mail server software, known as postfix, will need to be configured. This is an advanced task: mail server setup is too complex for this book. If you want to attempt it, the necessary files are located in /etc/postfix. This configuration can vary greatly depending on your mail provider and your network setup. Search the web for “postfix” and the name of your mail provider to locate setup instructions.
Name
mail — stdin stdout - file -- opt --help --version
Synopsis
mail [options] recipient
The mail program is a quick, simple email client. Most people want a more powerful program for regular use, but for quick messages from the command line or in scripts, mail is really handy.
To send a quick message:
➜ mail smith@example.com
Subject: my subject
I'm typing a message.
To end it, I type a period by itself on a line.
. Ends the message
EOT
➜
To send a quick message using a single command, use a pipeline:
➜ echo "Hello world" | mail -s "subject" smith@example.com
To mail a file using a single command, you can use redirection or a pipeline:
➜ mail -s "my subject" smith@example.com < filename
➜ cat filename | mail -s "my subject" smith@example.com
Notice how easily you can send the output of a pipeline as an email message; this is useful in scripts.
Useful options
-s subject | Set the subject line of an outgoing message. |
-v | Verbose mode: print messages about mail delivery. |
-c addresses | CC the message to the given addresses, a comma-separated list. |
-b addresses | BCC the message to the given addresses, a comma-separated list. |
Name
mailq — stdin stdout - file -- opt --help --version
Synopsis
mailq
The mailq command lists any outgoing email messages awaiting delivery:
➜ mailq
Queue ID- --Size-- ----Arrival Time-- -Sender/Recipient--
46AAB43972* 333 Tue Jan 10 21:17:14 smith@example.com
jones@elsewhere.org
Sent mail messages are also recorded in a log file, /var/log/mail.log.
Name
Beyond Mail Readers
Various commands can make email more “transparent” than on other systems that merely display your mailbox and send and receive messages. The ability to list outgoing email messages with mailq is just one example. Here are some other options to whet your appetite and encourage you to explore:
You can process your mailboxes with any command-line tools, such as grep, because mail files are plain text.
You can manually retrieve messages from your mail server at the command line with the fetchmail command. Using a simple configuration file, this command can reach out to IMAP and POP servers and download mail in batch. See man fetchmail.
Your system can run a mail server, such as postfix or sendmail, to handle the most complex mail delivery situations.
You can control local mail delivery in sophisticated ways with the procmail command, which filters arriving email messages through any arbitrary program. See man procmail.
Spam filtering can be sophisticated on OS X: check out the SpamAssassin suite of programs. You can run it personally on your incoming email, or at the server level for large numbers of users. SpamAssassin is not included in OS X but is available from http://spamassassin.apache.org.
In short, email is not limited to the features of your mail-reading program. Investigate and experiment!
Web Commands
curl | Download web pages and files. |
wget | Download multiple web pages and files. |
Your Mac comes with a web browser, Safari, and you can also install Firefox, Google Chrome, or other third party browsers. Through the Terminal, however, you can interact with the web in other ways. The two commands we cover, curl and wget, can both hit web pages and download files from the command line, but they have different features and advantages.
As a reminder, you can open any URL from the command line, launching your default web browser, with the open command, as we saw in Controlling Processes:
➜ open http://... Any URL
Name
curl — stdin stdout - file -- opt --help --version
Synopsis
curl [options] [URLs]
The curl command hits a URL and downloads the data to a file or standard output. It’s great for capturing web pages or downloading files. For example, let’s capture the Yahoo home page:
➜ curl http://www.yahoo.com > mypage.html
which is saved to a file mypage.html in the current directory. If you provide multiple URLs, they’ll all be appended to mypage.html.
Perhaps the most useful feature of curl is its ability to download files without needing a web browser:
➜ curl -O http://www.example.com/files/manual.pdf
You can write shell scripts to download sets of files if you know their names. (See Programming with Shell Scripts for details.) This line downloads files 1.mpeg through 3.mpeg from example.com:
➜ for i in 1 2 3; do \
curl -o $i.mpeg http://example.com/$i.mpeg; done
curl can resume a large download if it gets interrupted in the middle, say, due to a network failure: just run curl -C with the same target URL in the following way:
➜ curl -o myfile http://example.com/some_big_file
Transfer gets interrupted. Now run:
➜ cat myfile | curl -C - -o myfile \
http://example.com/some_big_file
This sends the partial myfile to curl for analysis, then resumes the download. curl has over 100 options, so we’ll cover just a few important ones.
Useful options
-o filename | Write the retrieved data to the given file. Otherwise it’s written to standard output. |
-O | Write the retrieved data to a file with the same name as the original. |
-K filename | Read commands from a configuration file. For example, you can read URLs from the given file and retrieve them in turn, if each line is of the file of the form url="http://...". |
-C | Continue mode: if a previous retrieval was interrupted, leaving only a partial file as a result, pick up where curl left off. See the earlier text for a full explanation. |
--retry N | Try N times before giving up. |
-s | Silent operation. Do not display anything (including the standard progress meter) while downloading. |
-F name=value | If the target URL has a form on it, fill in the form values and submit the form, then retrieve the resulting page. For example, if the page has an HTML text input named email, run (say): curl -F . |
-m N | Quit after N seconds of operation. |
Name
wget — stdin stdout - file -- opt --help --version
Synopsis
wget [options] URL
The wget command, like curl, hits a URL and downloads the data to a file. Unlike curl, it can also download multiple files and even entire website hierarchies to arbitrary depth.
GETTING WGET
wget is not supplied with OS X, but it’s so powerful and useful that we cover it anyway. If you install the Homebrew package manager, as we explain in Installing Software with a Package Manager, you can obtain wget with a single command:
➜ brew install wget
For example, let’s capture the Yahoo home page with wget:
➜ wget http://www.yahoo.com
23:19:51 (220.84 KB/s) - `index.html' saved [31434]
which is saved to a file index.html in the current directory. wget has the added ability to resume a download if it gets interrupted in the middle, say, due to a network failure: just run wget -c with the same URL and it picks up where it left off. This is simpler than the same feature in curl.
wget can also download files over a network without needing a web browser:
➜ wget http://www.example.com/files/manual.pdf
This is great for large files like videos and disk images. You can also download all pages of a website to a specified depth (say, 2 levels deep), a feat that curl cannot do:
➜ wget -r -l2 http://www.example.com
wget has over 70 options, so we’ll cover just a few important ones.
Useful options
Messaging
talk | Simple chat program. |
write | Send messages to a terminal. |
mesg | Prohibit talk and write. |
tty | Print your terminal device name. |
Long before instant messaging and texting was invented, users sent messages to each other with older commands that still exist in OS X. These include talk and write, which work over OS X terminal devices (ttys). This style of communication may seem primitive, but occasionally it can be useful, particularly in pipelines.
Name
talk — stdin stdout - file -- opt --help --version
Synopsis
talk [user[@host]] [tty]
The talk program predates modern instant messaging by a few decades: it connects two users, logged in on the same or different hosts, for one-to-one communication. (Provided the remote machine accepts talk connections.) It runs in a Terminal window, splitting it horizontally, so you can see your own typing and that of your partner:
➜ talk friend@example.com
If your partner has multiple login shells running, you can specify one of his ttys for the talk connection.
Name
write — stdin stdout - file -- opt --help --version
Synopsis
write user [tty]
The write program is more primitive than talk: it sends lines of text from one logged-in user to another on the same Mac. It cannot communicate over a network:
➜ write smith
Hi, how are you?
See you later.
^D
^D ends the connection. write is also useful in pipelines for quick one-off messages:
➜ echo 'Howdy!' | write smith
Name
mesg — stdin stdout - file -- opt --help --version
Synopsis
mesg [y|n]
The mesg program controls whether talk and write connections can reach your terminal. mesg y permits them, mesg n denies them, and mesg prints the current status (y or n). The default is y:
➜ mesg
is y
➜ mesg n Change the status
➜ mesg
is n
Name
tty — stdin stdout - file -- opt --help --version
Synopsis
tty
The tty program prints the name of the terminal device associated with the current shell:
➜ tty
/dev/ttys000
Screen Output
echo | Print simple text on standard output. |
printf | Print formatted text on standard output. |
pbcopy | Copy standard input to the clipboard. |
pbpaste | Copy the clipboard to standard output. |
yes | Print repeated text on standard output. |
clear | Clear the screen or window. |
Terminal provides several commands for printing messages on standard output, such as echo:
➜ echo hello world
hello world
Each command has different strengths and intended purposes. These commands are invaluable for learning about the shell, debugging problems, writing shell scripts (see Programming with Shell Scripts), or just talking to yourself.
Name
echo — stdin stdout - file -- opt --help --version
Synopsis
echo [options] strings
The echo command simply prints its arguments:
➜ echo We are having fun
We are having fun
OS X has several different echo commands with slightly different behavior. There’s /bin/echo, but shells typically override this with a built-in command called echo. To find out which you’re using, run the command type echo.
Useful options
-n | Don’t print a final newline character. |
-e | Recognize and interpret escape characters. (Not supported by /bin/echo.) For example, try echo 'hello\a' and echo -e 'hello\a'. The first prints literally and the second makes a beep. |
-E | Don’t interpret escape characters: the opposite of -e. (Not supported by /bin/echo.) |
Available escape characters are:
Name
printf — stdin stdout - file -- opt --help --version
Synopsis
printf format_string [arguments]
The printf command is an enhanced echo: it prints formatted strings on standard output. It operates much like the C programming language function printf(), which applies a format string to a sequence of arguments to create some specified output. For example:
➜ printf "User %s is %d years old.\n" sandy 29
User sandy is 29 years old.
The first argument is the format string, which in our example contains two format specifications, %s and %d. The subsequent arguments, sandy and 29, are substituted by printf into the format string and then printed. Format specifications can get fancy with floating-point numbers:
➜ printf "That\'ll be $%0.2f, sir.\n" 3
That'll be $3.00, sir.
It is your responsibility to make sure the number of format specifications (%) equals the number of arguments supplied to printf after the format string. If you have too many arguments, the extras are ignored, and if you have too few, printf assumes default values (0 for numeric formats, an empty string for string formats). Nevertheless, you should treat such mismatches as errors, even though printf is forgiving. If they lurk in your shell scripts, they are bugs waiting to happen.
Format specifications are described in detail on the manpage for the C function printf (see man 3 printf). Here are some useful ones:
%d | Decimal integer |
%ld | Long decimal integer |
%o | Octal integer |
%x | Hexadecimal integer |
%f | Floating point |
%lf | Double-precision floating point |
%c | A single character |
%s | String |
%q | String with any shell metacharacters escaped |
%% | A percent sign by itself |
Just after the leading percent sign, you can insert a numeric expression for the minimum width of the output. For example, “%5d” means to print a decimal number in a five-character-wide field, and “%6.2f” means a floating-point number in a six-character-wide field with two digits after the decimal point. Some useful numeric expressions are:
n | Minimum width n. |
0n | Minimum width n, padded with leading zeroes. |
n.m | Minimum width n, with m digits after the decimal point. |
printf also interprets escape characters like “\n” (print a newline character) and “\a” (ring the bell). See the echo command for the full list.
Name
pbcopy — stdin stdout - file -- opt --help --version
Synopsis
pbcopy [options]
pbcopy copies standard input to the Macintosh clipboard.[24] This is great for copying the output of commands into other programs. For example, to copy the output of who into TextEdit, first send the output to the clipboard:
➜ who | pbcopy
Then perform a paste operation in TextEdit. You can also copy the entire contents of a text file to the clipboard with:
➜ pbcopy < myfile.txt
Typed without arguments, pbcopy reads from standard input until you type ^D on a line by itself:
➜ pbcopy
This is the symphony
that Schubert wrote
and never finished.
^D Ctrl-D to end the input
➜
Now perform a paste operation in another application, and you’ll get the typed text.
pbcopy is most effective when you’re using the Mac desktop and Terminal. If you’re logged in from a remote system via SSH (as described in Running a Shell Remotely), you won’t have the same clipboard as the graphical applications on the desktop, so copying from them won’t work.
[24] Apple uses the term “pasteboard,” hence the “pb” in the name.
Name
pbpaste — stdin stdout - file -- opt --help --version
Synopsis
pbpaste [options]
pbpaste is the companion to pbcopy: it copies the contents of the Macintosh clipboard to standard output. For example, to count the number of words in a TextEdit document, copy the document’s text to the clipboard and then run:
➜ pbpaste | wc -w
94821
Run without any arguments, pbpaste simply prints the clipboard contents on standard output (onscreen). To copy the contents to a text file, run:
➜ pbpaste > outfile.txt
If you’re bored, try this useless pipe command:
➜ pbpaste | pbcopy
which copies the clipboard back into itself. As with pbcopy, to get the most out of pbpaste, you should be using the desktop and Terminal, not logged in from a remote system via SSH.
Name
yes — stdin stdout - file -- opt --help --version
Synopsis
yes [string]
The yes command prints the given string (or “y” by default) forever, one string per line:
➜ yes
y
y
y
...
➜ yes again
again
again
again
...
Though it might seem useless at first glance, yes can be perfect for turning interactive commands into batch commands. Want to get rid of an annoying “Are you SURE you want to do that” message? Pipe the output of yes into the input of the command to answer all those prompts:
➜ yes | some interactive command
When the interactive command terminates, so will yes. Be careful with this technique: you must be certain that every prompt should be answered with the same string.
Name
clear — stdin stdout - file -- opt --help --version
Synopsis
clear
This command simply clears your shell display.
Math and Calculations
expr | Evaluate simple math on the command line. |
dc | Text-based calculator. |
seq | Print a sequence of numbers on standard output. |
Need a calculator? While the Finder provides a graphical calculator, the Terminal also has some command-line programs to compute mathematical truths for you.
Name
expr — stdin stdout - file -- opt --help --version
Synopsis
expr expression
The expr command does simple math (and other expression evaluation) on the command line:
➜ expr 7 + 3
10
➜ expr '(' 7 + 3 ')' '*' 14 We quote special shell characters
140
➜ expr length ABCDEFG
7
➜ expr 15 '>' 16
0 Meaning false
Each argument must be separated by whitespace. Notice that we had to quote or escape any characters that have special meaning to the shell. Parentheses (escaped) may be used for grouping. Operators for expr include:
Operator | Numeric operation | String operation |
---|---|---|
+ | Addition | |
- | Subtraction | |
* | Multiplication | |
/ | Integer division | |
% | Remainder (modulo) | |
< | Less than | Earlier in dictionary. |
<= | Less than or equal | Earlier in dictionary, or equal. |
> | Greater than | Later in dictionary. |
>= | Greater than or equal | Later in dictionary, or equal. |
= | Equality | Equality. |
!= | Inequality | Inequality. |
| | Boolean “or” | Boolean “or”. |
& | Boolean “and” | Boolean “and”. |
s : regexp | Does the regular expression regexp match string s? |
In Boolean expressions, expr treats the number 0 and the empty string as false; any other value is true. When returning Boolean results, expr returns 0 for false and 1 for true.
expr is not very efficient, but it’s highly useful in shell scripts, described in Programming with Shell Scripts. For more complex needs, consider using a language like Perl instead.
Name
dc — stdin stdout - file -- opt --help --version
Synopsis
dc [options] [files]
The dc (desk calculator) command is a reverse-polish notation (RPN), stack-based calculator that reads expressions from standard input and writes results to standard output. If you know how to use a Hewlett-Packard RPN calculator, dc is pretty easy once you understand its syntax. But if you’re used to traditional calculators, dc may seem inscrutable. We’ll cover only some basic commands.
For stack and calculator operations:
q | Quit dc. |
f | Print the entire stack. |
c | Delete (clear) the entire stack. |
p | Print the topmost value on the stack. |
P | Pop (remove) the topmost value from the stack. |
n k | Set precision of future operations to be n decimal places (default is 0: integer operations). |
To pop the top two values from the stack, perform a requested operation, and push the result:
+ | Addition. |
− | Subtraction. |
* | Multiplication. |
/ | Division. |
% | Remainder. |
^ | Exponentiation (second-to-top value is the base, top value is the exponent). |
To pop the top value from the stack, perform a requested operation, and push the result:
v | Square root. |
Examples:
➜ dc
4 5 + p Print the sum of 4 and 5
9
2 3 ^ p Raise 2 to the 3rd power and print the result
8
10 * p Multiply the stack top by 10 and print the result
80
f Print the stack
80
9
+p Pop the top two stack values and print their sum
89
Name
seq — stdin stdout - file -- opt --help --version
Synopsis
seq [options] specification
The seq command prints a sequence of integers or real numbers, suitable for piping to other programs. There are three kinds of specification arguments:
A single number: an upper limit
seq begins at 1 and counts up to the number:
➜ seq 3
1
2
3
Two numbers: lower and upper limit
seq begins at the first number and counts as far as it can without passing the second number:
➜ seq 2 5
2
3
4
5
Three numbers: lower limit, increment, and upper limit
seq begins at the first number, increments by the second number, and stops at (or before) the third number:
➜ seq 1 .3 2
1
1.3
1.6
1.9
You can also go backward with a negative increment:
➜ seq 5 -1 2
5
4
3
2
Useful options
-w | Print leading zeroes, as necessary, to give all lines the same width: ➜ seq -w 8 10 |
-f format | Format the output lines with a printf-like format string, which must include either %g (the default), %e, or %f: ➜ seq -f '**%g**' 3 |
-s string | Use the given string as a separator between the numbers. By default, a newline is printed (i.e., one number per line): ➜ seq -s ':' 10 |
Dates and Times
cal | Print a calendar. |
date | Print or set the date and time. |
Need a date? How about a good time? Try these programs to display and set dates and times on your system.
Name
cal — stdin stdout - file -- opt --help --version
Synopsis
cal [options] [month [year]]
The cal command prints a calendar—by default, the current month:
➜ cal
December 2011
Su Mo Tu We Th Fr Sa
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
To print a different calendar, supply a month and four-digit year:
➜ cal 8 2012
If you omit the month (cal 2012), the entire year is printed. You must provide the full year number with four digits: cal 12 will print a calendar for the year 12 A.D.
Useful options
-y | Print the current year’s calendar. |
-j | Number each day by its position in the year; in our example, September 1 would be displayed as 244, September 2 as 245, and so on. |
Name
date — stdin stdout - file -- opt --help --version
Synopsis
date [options] [format]
The date command prints dates and times. The results will depend on your system’s locale settings (for your country and language). In this section we assume an English, US-based locale.
By default, date prints the system date and time in the local time zone:
➜ date
Wed Mar 14 00:31:53 EDT 2012
You can format the output differently by supplying a format string beginning with a plus sign:
➜ date '+%D'
03/14/12
➜ date '+The time is %l:%M %p on a beautiful %A in %B'
The time is 12:31 AM on a beautiful Wednesday in March
Here is a sampling of the date command’s many formats:
Format | Meaning | Example (US English) |
---|---|---|
Whole dates and times: | ||
%c | Full date and time, 12-hour clock | Sun 28 Sep 2003, 09:01:25 PM EDT |
%D | Numeric date, 2-digit year | 09/28/03 |
%x | Numeric date, 4-digit year | 09/28/2003 |
%T | Time, 24-hour clock | 21:01:25 |
%X | Time, 12-hour clock | 09:01:25 PM |
Words: | ||
%a | Day of week (abbreviated) | Sun |
%A | Day of week (complete) | Sunday |
%b | Month name (abbreviated) | Sep |
%B | Month name (complete) | September |
%Z | Time zone | EDT |
%p | AM or PM | PM |
Numbers: | ||
%w | Day of week (0–6, 0=Sunday) | 0 |
%u | Day of week (1–7, 1=Monday) | 7 |
%d | Day of month, leading zero | 02 |
%e | Day of month, leading blank | 2 |
%j | Day of year, leading zeroes | 005 |
%m | Month number, leading zero | 09 |
%y | Year, 2 digits | 03 |
%Y | Year, 4 digits | 2003 |
%M | Minute, leading zero | 09 |
%S | Seconds, leading zero | 05 |
%l | Hour, 12-hour clock, leading blank | 9 |
%I | Hour, 12-hour clock, leading zero | 09 |
%k | Hour, 24-hour clock, leading blank | 9 |
%H | Hour, 24-hour clock, leading zero | 09 |
%s | Seconds since the beginning of OS X time: midnight of January 1, 1970 | 1331699686 |
Other: | ||
%n | Newline character | |
%t | Tab character | |
%% | Percent sign | % |
This concludes our documentation of shell commands. Many other commands live in the directories /bin, /usr/bin, /sbin, and /usr/sbin, so feel free to explore them and learn their features with the man command. Additionally, you can download and install powerful new commands from the Internet, and even create your own by combining other commands. That’s what we’ll cover next.
Chapter 3. Advanced Topics
Our tour of the Macintosh Terminal has shown you a variety of commands, but they are just the tip of the iceberg. In this final part of the book, we’ll cover some advanced features to give you even more flexibility and control over your Mac:
Remote logins
Logging in to your Macintosh from a remote location and running shells without the Terminal.
Package management
Downloading and installing additional commands from the Internet.
Shell scripts
Combinations of commands that you can run as a single command.
Running a Shell Remotely
It’s possible to log in to a Macintosh over a network—from another Mac, a Windows PC, a Linux box—and run a shell to do work. This is accomplished with software called SSH (Secure Shell) included with OS X. We saw SSH in Network Connections, but only for connecting from your Mac to remote machines. Now we’ll see how to log into your Mac from the outside world and run shells. This is a terrific feature if you don’t need the Finder or other graphical programs. Multiple users can even log in at the same time from remote locations and run shells simultaneously.
We’ll begin by covering the basics of accessing your Macintosh remotely to run shells. Afterward, we’ll discuss some roadblocks that can prevent incoming connections from working.
Enabling remote logins
Before connecting to your Macintosh remotely, you need to permit the Mac to receive SSH connections by enabling the Remote Login feature. Be aware that Remote Login and SSH can potentially expose your Macintosh to intruders; however, SSH is considered an industry-standard secure technology by corporations worldwide, so it’s a pretty common choice for remote access.[25]
To enable Remote Login on your Mac:
Launch the System Preferences application.
Click the Sharing icon, and unlock the Sharing Preferences if needed (you’ll be prompted for an administrator username and password).
Locate the checkbox Remote Login and check it. This immediately launches an SSH server in the background.
In the Allow access section, select either All users or Only these users, depending on what you want. If the latter, list the users who may access this Mac remotely.
Exit the System Preferences application. The SSH server is running and will automatically start up each time you boot your Mac. To disable it, uncheck Remote Login.
To test that Remote Login is working, open Terminal and type the following command, which connects from your Mac back to itself using SSH:
➜ ssh localhost
If you see this scary-looking message, enter “yes”:[26]
The authenticity of host 'localhost' can't be established.
RSA key fingerprint is 0a:41:c6:ef:66:38:4c:d2:91:e1:...
Are you sure you want to continue connecting (yes/no)? yes
This message, which should disappear once you’ve typed “yes,” also means Remote Login is working. Now you should see a password prompt. Type ^C to kill ssh and get your prompt back:
Password: ^C
➜
You are now set up for remote logins. On the other hand, if you see this error message after running ssh:
➜ ssh localhost
ssh: connect to host localhost port 22: Connection refused
then Remote Login isn’t running or is misconfigured. Go back and check the earlier setup steps.
[25] Nevertheless, computer security is a complex topic, so if you have any doubts about permitting SSH access, speak with an expert.
[26] But only in this special situation, where you are connecting to your own computer (localhost) for the first time! In other situations, this warning can mean a real security problem.
Logging in remotely with SSH
Once your Macintosh has Remote Login enabled, try logging into it from another computer. From a Macintosh or a Linux machine, run this command:
➜ ssh username@hostname
where username is your username on the destination (your Macintosh), and hostname is its hostname or IP address. Enter your password (on the destination Mac) when prompted by SSH, and then you should see a shell prompt.[27]You are remotely logged in to your Mac! Go ahead and type some commands. When you’re finished, type ^D or exit to end the shell, logging yourself out and terminating the SSH connection. We discuss the ssh command in more detail in Network Connections.
To connect from a Windows PC to your Macintosh via SSH, you’ll need an SSH client program for Windows. A simple, free program is PuTTY, which you can download from http://www.chiark.greenend.org.uk/~sgtatham/putty/. Provide the hostname of your Macintosh to PuTTY, you’ll be prompted for your Mac username and password, and then a shell will run.
[27] You might also see another “RSA key fingerprint” warning, as in Enabling remote logins. If you’re positive that you’re connecting to your Mac, and not an intruder’s machine, you can dismiss this warning as well.
SSH roadblocks
When connecting to a Macintosh remotely via SSH, you can run into difficulty and connections may fail. Here are some common reasons:
Remote Login via SSH not enabled
The Macintosh must be configured to enable Remote Login via SSH, as described in Enabling remote logins.
SSH configuration issues
SSH servers are highly configurable via the file /etc/sshd_config. Some configurations can deny remote connections in certain situations. See man sshd_config to learn more.
Firewalls
If your Macintosh is behind a firewall, say, inside a company’s private network, you might not be able to connect to it. (The Mac’s own Firewall application will not interfere with Remote Login.)
Dynamic IP addresses
Your Macintosh’s internet service provider might change the Mac’s IP address on a regular basis. (In technical terms, your Mac is using DHCP to obtain its IP address.) If so, and you don’t know the current IP address, you won’t be able to connect to your Mac from the outside. This is common for home computer setups. You can get around this issue by signing up for a dynamic DNS service, such as Dyn (http://www.dyn.com), that assigns a consistent hostname to your Mac that you can use externally.
Installing Software with a Package Manager
You can install thousands of new commands for use within the Terminal. The method of installation is different from what you’ve seen in the point-and-click world, where you run a graphical installer or drag icons into your Applications folder. Instead, you use a program called a package manager, which itself runs on the command line. Setting up a package manager is a multi-step process, but when it’s complete, you’ll be able to install new commands extremely easily.[28] We will lead you through the basic steps:
Obtain a free Apple Developer ID at http://developer.apple.com. (You don’t have to be a software developer to get an ID.)
Download and install Xcode, Apple’s software development application.
Download and install the Command Line Tools for Xcode.
Download and install Homebrew, a convenient, free package manager.
Once these steps are complete, you can install new command-line programs easily with Homebrew, by typing the command brew install.
[28] Frankly, setting up a package manager on the Mac is tedious, inconvenient, error-prone, and overall a pain in the neck. (Much more difficult than similar setups in the Windows and Linux world.) But the end result is definitely worthwhile and we recommend it.
Obtaining an Apple Developer ID
An Apple Developer ID is a free login account on the website developer.apple.com. You’ll need this account to download necessary software for installing new command-line tools. Simply visit developer.apple.com and sign up.
Installing Xcode
Xcode is a package for developing software for Apple products, including the Macintosh, iPhone, iPad, and more. Even if you’re not a software developer, you need Xcode as a prerequisite for the package manager.
As of OS X Lion, Xcode is a free download from the App Store.[29] Simply search for “Xcode” and download the application. When the Xcode icon appears on your desktop, launch it and follow the installation prompts. When the installation is complete, Xcode is now located in your Applications folder.
[29] For older versions of OS X, download and install Xcode from developer.apple.com. Get Xcode version 3.2.6 for Snow Leopard, 3.1.4 for Leopard, 2.5 for Tiger, or 1.5 for Panther. Some versions of OS X might also include Xcode on their installation DVDs.
Installing Command Line Tools for Xcode
Next, install the command line tools for Xcode. In modern versions of Xcode, the installation is done within Xcode. For example, in OS X Lion, launch Xcode, visit its Xcode menu, and choose Preferences. When the Preferences window opens, click the Downloads pane, locate Command Line Tools, and click Install. [30] When installation is finished, you’re ready to install Homebrew and make package management simple.
As an aside, if you’re a software developer, you’ll be delighted that the Command Line Tools for Xcode include compilers and debuggers (the GNU C Compiler and GNU Debugger, Make, Flex, Bison, etc.), revision control systems (Subversion, Git, CVS, RCS), and more. Most of them get installed in /usr/bin.
[30] For older versions of Xcode, or if you encounter errors during this installation (as this author did), download the Command Line Tools for Xcode directly from developer.apple.com.
Installing the Homebrew Package Manager
Homebrew is a free application that simplifies the process of installing command-line tools. With a single command, you can search for, install, uninstall, or update any of thousands of free tools. To install Homebrew:
Visit http://mxcl.github.com/homebrew/ and follow links to the installation instructions.
Open a Terminal window on your Mac.
The Homebrew installation instructions will provide you with a long, cryptic command (beginning with /usr/bin/ruby...). Copy and paste this command into the shell in your Terminal window, and press Enter.
As the installation command runs in the shell, it will prompt you with questions. Respond to them in the shell. When the installation completes, you’ll have a new command available in the shell, brew, for installing and managing software packages.
Run the brew doctor command, which validates that Homebrew is properly installed:
➜ brew doctor
If you see any error messages, read them carefully and correct whatever problems are reported. For example, this message:
Error: no such file or directory - /usr/local/Cellar
indicates a directory is missing, so you’d run mkdir /usr/local/Cellar to create it. Keep rerunning brew doctor until there are no errors and you see this message:
➜ brew doctor
Your system is raring to brew.
indicating that the installation is correct and complete.
Guess what? You are finally done! After all that work installing Xcode, the Command Line Tools, and Homebrew, you now have a simple package manager for downloading and installing new commands. Hooray!
Using Homebrew
The brew command performs all Homebrew operations: searching for software, installing it, updating it, uninstalling it, and more. Let’s demonstrate its use by installing a package.[31] Suppose you want a command to work with MP3 files, displaying and modifying the artist and title information inside them, known as ID3 tags. We use Homebrew to search for any packages with “id3” in their names:
➜ brew search id3
id3lib id3tool id3v2 libid3tag
After some web research, you determine that id3tool is the program you want. To install it, run the brew install command:
➜ brew install id3tool
==> Downloading http://nekohako.xware.cx/id3tool/...
##
==> ./configure --disable-debug --prefix=/usr/local/...
==> make install
/usr/local/Cellar/id3tool/1.2a: 6 files, 40K,
built in 2 seconds
That’s it! The id3tool command is now installed, which you can confirm with the brew list command:
➜ brew list | grep id3tool
id3tool
and you can see the location where it got installed, using the shell’s type command:
➜ type id3tool
/usr/local/bin/id3tool
You can now run id3tool to examine your MP3 files:
➜ id3tool song.mp3
Filename: song.mp3
Song Title: Playing The Game
Artist: Gentle Giant
Album: The Power And The Glory
Track: 4
Year: 1974
Genre: Progressive Rock (0x5C)
Here is a list of common brew commands for managing software packages:
Homebrew has many other features, including the ability to create packages of your own. See the manpage for details. In addition, Homebrew is not the only package manager available for OS X. If you’d like to explore others, try Fink (http://www.finkproject.org/) or MacPorts (http://www.macports.org/).
[31] Homebrew uses the term formula instead of “package.”
Installing from TAR Files
Package managers like Homebrew are not the only means for installing software on the command line. Much free software is distributed in compressed TAR files, which we first encountered in File Compression and Packaging. You can work with these files manually to unpack, build, and install programs without a package manager. However, you’ll need to deal yourself with dependencies between programs, difficult uninstalls, and a host of other issues that package managers handle automatically. (In fact, Homebrew uses compressed TAR files behind the scenes.) Let’s examine how to work with these files.
Packaged software files with names ending in .tar.gz and .tar.bz2 typically contain source code written in a programming language.[32] Before installing the software, you’ll need to compile (build) it. Typical build instructions are:
List the package contents, one file per line. Assure yourself that each file, when extracted, won’t overwrite something precious on your system, either accidentally or maliciously:[33]
➜ tar tvzf package.tar.gz | less For gzip files
➜ tar tvjf package.tar.bz2 | less For bzip2 files
If satisfied, extract the files into a new directory. Run these commands as yourself, not as root, for safety reasons:
➜ mkdir newdir
➜ cd newdir
➜ tar xvzf <path>/package.tar.gz For gzip files
➜ tar xvjf <path>/package.tar.bz2 For bzip2 files
Look for an extracted file named INSTALL or README. Read it to learn how to build the software, for example:
➜ cd newdir
➜ less INSTALL
Usually the INSTALL or README file will tell you to run a script called configure in the current directory, then run make, then run make install. Examine the options you may pass to the configure script:
➜ ./configure --help
Run configure with appropriate options:
➜ ./configure options...
then run make to build the binary program from the source files:
➜ make
and finally, run make install as an administrator to install the software into system folders:
➜ sudo make install
Password: *******
Now your new software is ready for use.
[32] The extension .tar.gz is sometimes shortened to .tgz.
[33] A maliciously designed TAR file could include an absolute file path like /etc/passwd designed to overwrite your system password file.
Programming with Shell Scripts
For our final topic in this book, we’ll show you how to combine multiple commands to perform more complex operations. Earlier when we covered the shell (bash), we said it had a programming language built in. In fact, you can write programs, or shell scripts, to accomplish tasks that a single command cannot. Like any good programming language, the shell has variables, conditionals (if-then-else), loops, input and output, and more. Entire books have been written on shell scripting, so we’ll be covering the bare minimum to get you started. For full documentation, run info bash, search the Web, or pick up a more in-depth O’Reilly book.
Creating and Running Shell Scripts
To create a shell script, simply put bash commands into a file as you would type them. For example, you could put these lines into a file called myscript:
echo "Here are your files:"
ls
When you run the script, its commands will run in order:
Here are your files:
file1.txt file2.pdf
There are several ways to run a shell script:
Prepend #!/bin/bash and make the file executable
This is the most common way to run scripts. Add the following line to the top of the script file:
#!/bin/bash
It must be the first line of the file, left-justified. The result in our example looks like this:
#!/bin/bash
echo "Here are your files:"
ls
Then make the file executable:
➜ chmod +x myscript
Move it into a directory in your search path. Then run it like any other command:
➜ myscript
Alternatively, run the script from your current directory by prepending “./” (indicating the current directory) so the shell finds the script:
➜ ./myscript
The current directory is generally not in your search path for security reasons. You wouldn’t want a local script named, say, “ls” to override the real ls command unexpectedly.
Pass to bash
You can run bash directly as a command. It will interpret its argument as the name of a script and run it:
➜ bash myscript
Run in current shell with “.” or source
The preceding methods run your script as an independent entity that has no effect on your current shell.[34] If you want your script to make changes to your current shell (setting variables, changing directory, and so on), it can be run in the current shell with the source or “.” command, since the two are equivalent:
➜ . myscript
➜ source myscript
Launch from the Finder
If you make a script executable with chmod, it can be run from the Finder by double-clicking on its icon:[35]
➜ chmod +x myscript
After the script runs, a Terminal window might be left around that you have to close by hand. You can change this behavior so the window closes when the shell exits:
In the Terminal menu, choose Preferences... to make the Preferences dialog appear.
Click the Settings icon.
Click the Shell tab.
Locate the settings When the shell exits, and select the value Close the window.
Exit the Preferences dialog. When you launch scripts from the Finder, the associated Terminal window will now close automatically.
Now that you know how to run shell scripts, let’s discuss the various constructs you can put into these scripts.
[34] That’s because the script runs in a separate shell (a subshell or child shell) that cannot alter the original shell.
[35] In OS X versions prior to 10.5, scripts need an additional step to be launchable from the Finder. Either rename the script to have the extension .command (e.g., myscript.command), or open the script’s Info dialog (⌘I) and set it to open with Terminal.
Whitespace and Linebreaks
bash shell scripts are sensitive to whitespace and linebreaks. Because the “keywords” of this programming language are actually commands evaluated by the shell, you need to separate arguments with whitespace. Likewise, a linebreak in the middle of a command will mislead the shell into thinking the command is incomplete. Follow the conventions we present here and you should be fine.
If you must break a long command into multiple lines, end each line (except the last) with a single \ character, which means “continued on next line”:
➜ grep abcdefghijklmnopqrstuvwxyz file1 file2 \
file3 file4
The slash must be the final character on its line: that is, you must press Enter immediately after it. Finally, any text following a hash mark (#) on a line is a comment.
Variables
We described shell variables in Shell variables:
➜ MYVAR=6
➜ echo $MYVAR
6
All values held in variables are strings, but if they are numeric, the shell will treat them as numbers when appropriate:
➜ NUMBER="10"
➜ expr $NUMBER + 5
15
When you refer to a variable’s value in a shell script, it’s a good idea to surround it with double quotes to prevent certain runtime errors. An undefined variable, or a variable with spaces in its value, will evaluate to something unexpected if not surrounded by quotes, causing your script to malfunction:
➜ FILENAME="My Document" Space in the name
➜ ls $FILENAME Try to list it
ls: My: No such file or directory Oops! ls saw 2 arguments
ls: Document: No such file or directory
➜ ls -l "$FILENAME" List it properly
My Document ls saw only 1 argument
If a variable name is evaluated adjacent to another string, surround it with curly braces to prevent unexpected behavior:
➜ NAME="apple"
➜ echo "The plural of $NAME is $NAMEs"
The plural of apple is Oops! No variable “NAMEs”
➜ echo "The plural of $NAME is ${NAME}s"
The plural of apple is apples What we wanted
Input and Output
Script output is provided by the echo and printf commands, which we described in Screen Output:
➜ echo "Hello world"
Hello world
➜ printf "I am %d years old\n" `expr 20 + 20`
I am 40 years old
Input is provided by the read command, which reads one line from standard input and stores it in a variable:
➜ read name
Sandy Smith <ENTER>
➜ echo "I read the name $name"
I read the name Sandy Smith
Booleans and Return Codes
Before we can describe conditionals and loops, we need to explain the concept of a Boolean (true/false) test. A Boolean is an entity that can have the value true or false. A Boolean test simply checks a value to see if it’s true or false. To the shell, the value 0 means true or success, and anything else means false or failure. (Think of zero as “no error” and other values as error codes.)[36]
Every command returns an integer value, called a return code or exit status, to the shell when the command exits. You can see this value in the special variable $?:
➜ cat myfile
My name is Sandy Smith and
I really like OS X Lion
➜ grep Smith myfile
My name is Sandy Smith and A match was found...
➜ echo $?
0 ...so return code is “success”
➜ grep aardvark myfile
➜ echo $? No match was found...
1 ...so return code is “failure”
The return codes of a command are usually documented on its manpage.
test and “[”
The shell’s test command evaluates simple Boolean expressions involving numbers and strings, setting its exit status to 0 (true) or 1 (false):
➜ test 10 -lt 5 Is 10 less than 5?
➜ echo $?
1 No, it isn’t
➜ test -n "hello" Does the string “hello” have nonzero length?
➜ echo $?
0 Yes, it does
Here are common test arguments for checking properties of integers, strings, and files:
File tests | |
-d name | File name is a directory |
-f name | File name is a regular file |
-L name | File name is a symbolic link |
-r name | File name exists and is readable |
-w name | File name exists and is writable |
-x name | File name exists and is executable |
-s name | File name exists and its size is nonzero |
f1 -nt f2 | File f1 is newer than file f2 |
f1 -ot f2 | File f1 is older than file f2 |
String tests | |
s1 = s2 | String s1 equals string s2 |
s1 != s2 | String s1 does not equal string s2 |
-z s1 | String s1 has zero length |
-n s1 | String s1 has nonzero length |
Numeric tests | |
a -eq b | Integers a and b are equal |
a -ne b | Integers a and b are not equal |
a -gt b | Integer a is greater than integer b |
a -ge b | Integer a is greater than or equal to integer b |
a -lt b | Integer a is less than integer b |
a -le b | Integer a is less than or equal to integer b |
Combining and negating tests | |
t1 -a t2 | And: both tests t1 and t2 are true |
t1 -o t2 | Or: either test t1 or t2 is true |
! your_test | Negate the test, i.e., your_test is false |
\(your_test \) | Parentheses are used for grouping, as in algebra |
test has an unusual alias, “[” (left square bracket), as a shorthand for use with conditionals and loops. If you use this shorthand, you must supply a final argument of “]” (right square bracket) to signify the end of the test. The following tests are identical to the previous two:
➜ [10 -lt 5]
➜ echo $?
1
➜ [-n "hello"]
➜ echo $?
0
Remember that “[” is a command like any other, so it is followed by individual arguments separated by whitespace. So if you mistakenly forget some whitespace:
➜ [5 -lt 4] No space between 4 and]
bash: [: missing ']'
then test thinks the final argument is the string “4]” and complains that the final bracket is missing.
true and false
bash has built-in commands true and false, which simply set their exit status to 0 and 1, respectively:
➜ true
➜ echo $?
0
➜ false
➜ echo $?
1
These will be useful when we discuss conditionals and loops.
[36] This is the opposite of how the expr command treats Booleans.
Conditionals
A conditional statement provides a way to execute one set of commands or another, based on Boolean tests (or conditions). One example is the if statement, which chooses between alternatives. The simplest form is the if-then statement:
if command If exit status of command is 0
then
body
fi
For example, if you write a script that must be run with sudo, you can check for administrator privileges like this:
if [`whoami` = "root"]
then
echo "You are the superuser"
fi
Here’s a practical example for your ~/.bash_profile file (see Tailoring Shell Behavior). Some users like to place some of their shell configuration commands (such as aliases) into a separate file, ~/.bashrc. We can tell ~/.bash_profile to load and run these commands if the file exists:
Inside ~/.bash_profile:
if [-f $HOME/.bashrc]
then
. $HOME/.bashrc
fi
Next is the if-then-else statement:
if command
then
body1
else
body2
fi
For example:
if [`whoami` = "root"]
then
echo "You are the superuser"
else
echo "You are an ordinary dude"
fi
Finally, we have the form if-then-elif-else, which may have as many tests as you like:
if command1
then
body1
elif command2
then
body2
elif ...
...
else
bodyN
fi
For example:
if [`whoami` = "root"]
then
echo "You are the superuser"
elif ["$USER" = "root"]
then
echo "You might be the superuser"
elif ["$bribe" -gt 10000]
then
echo "You can pay to be the superuser"
else
echo "You are still an ordinary dude"
fi
The case statement is a simplified alternative to long chains of if-then-else if all the Boolean tests use the same value or expression. In this example, the variable value $answer is used by all the choices, so case is an appropriate statement:
echo "What would you like to do?"
read answer
case "$answer" in
eat)
echo "OK, have a hamburger"
;;
sleep)
echo "Good night then"
;;
*)
echo "I'm not sure what you want to do"
echo "I guess I'll see you tomorrow"
;;
esac
The general form is:
case string in
expr1)
body1
;;
expr2)
body2
;;
...
exprN)
bodyN
;;
*)
bodyelse
;;
esac
where string is any value, usually a variable value like $answer, and expr1 through exprN are patterns (run the command info bash reserved case for details), with the final * like a final “else.” Each set of commands must be terminated by ;; (as shown):
case $letter in
X)
echo "$letter is an X"
;;
[aeiou])
echo "$letter is a vowel"
;;
[0-9])
echo "$letter is a digit, silly"
;;
*)
echo "The letter '$letter' is not supported"
;;
esac
Loops
The while loop repeats a set of commands as long as a condition is true:
while command While the exit status of command is 0
do
body
done
For example, if this is the script myscript:
i=0
while [$i -lt 3]
do
echo "$i"
i=`expr $i + 1`
done
➜ ./myscript
0
1
2
The until loop repeats until a condition becomes true:
until command While the exit status of command is nonzero
do
body
done
For example:
i=0
until [$i -ge 3]
do
echo "$i"
i=`expr $i + 1`
done
➜ ./myscript
0
1
2
The for loop iterates over values from a list:
for variable in list
do
body
done
For example:
for name in Tom Jack Harry
do
echo "$name is my friend"
done
➜ ./myscript
Tom is my friend
Jack is my friend
Harry is my friend
The for loop is particularly handy for processing lists of files; for example, all files of a certain type in the current directory:
for file in *.doc *.docx
do
echo "$file is a Microsoft Word file"
done
Be careful to avoid infinite loops, using while with the condition true, or until with the condition false:
while true Beware: infinite loop!
do
echo "forever"
done
until false Beware: infinite loop!
do
echo "forever again"
done
Use break or exit to terminate these loops based on some condition inside their bodies.
Break and Continue
The break command jumps out of the nearest enclosing loop. Consider this simple script called myscript:
for name in Tom Jack Harry
do
echo $name
echo "again"
done
echo "all done"
➜ ./myscript
Tom
again
Jack
again
Harry
again
all done
Now with a break:
for name in Tom Jack Harry
do
echo $name
if ["$name" = "Jack"]
then
break
fi
echo "again"
done
echo "all done"
➜ ./myscript
Tom
again
Jack The break occurs after this line
all done
The continue command forces a loop to jump to its next iteration:
for name in Tom Jack Harry
do
echo $name
if ["$name" = "Jack"]
then
continue
fi
echo "again"
done
echo "all done"
➜ ./myscript
Tom
again
Jack The continue occurs after this line
Harry
again
all done
break and continue also accept a numeric argument (break N, continue N) to control multiple layers of loops (e.g., jump out of N layers of loops), but this kind of scripting leads to confusing code and we don’t recommend it.
Command-Line Arguments
Shell scripts can accept command-line arguments just like other commands.[37] Within a shell script, you can refer to these arguments as $1, $2, $3, and so on:
➜ cat myscript
#!/bin/bash
echo "My name is $1 and I come from $2"
➜ ./myscript Johnson Wisconsin
My name is Johnson and I come from Wisconsin
➜ ./myscript Bob
My name is Bob and I come from
Your script can test the number of arguments it received with $#:
if [$# -lt 2]
then
echo "$0 error: you must supply two arguments"
else
echo "My name is $1 and I come from $2"
fi
The special value $0 contains the name of the script, and is handy for usage and error messages:
➜ ./myscript Bob
./myscript error: you must supply two arguments
To iterate over all command-line arguments, use a for loop with the special variable $@, which holds all arguments:
for arg in $@
do
echo "I found the argument $arg"
done
[37] To a shell script, there is no difference between an option and an argument. They are all considered arguments.
Exiting with a Return Code
The exit command terminates your script and passes a given return code to the shell. Return codes are the reason that commands could be run in sequence in Combining commands: the shell checks the return code of the preceding command before running the next. Also, a shell script that calls another script can check its exit code in conditional statements to determine what to do next.
By tradition, scripts should return 0 for success and 1 (or other nonzero value) on failure. If your script doesn’t call exit, the return code is automatically 0:
if [$# -lt 2]
then
echo "$0 error: you must supply two arguments"
exit 1
else
echo "My name is $1 and I come from $2"
fi
exit 0
➜ ./myscript Bob
./myscript error: you must supply two arguments
➜ echo $?
1
Beyond Shell Scripting
Shell scripts are fine for many purposes, but OS X comes with much more powerful scripting languages, as well as compiled programming languages. Here are a few.
Language | Command | To get started... |
---|---|---|
C, C++ | gcc, g++[a] | man gcc |
Perl | perl | man perl |
PHP | php | man php |
Python | python | man python |
Ruby | ruby | man ruby |
.NET | mono | man mono |
Java | javac | man javac |
[a] These are not supplied with OS X, but are installed with Xcode. |
Getting Help
If you need more information than this book provides, there are several things you can do.
Run the man command
The man command displays an online manual page, or manpage, for a given program. For example, to learn about listing files with ls, run:
➜ man ls
To search for manpages by keyword for a particular topic, use the -k option followed by the keyword:
➜ man -k database
Run the info command
The info command is a text-based, menu-driven help system covering some important Terminal commands and applications:
➜ info ls
While info is running, some useful keystrokes are:
To get help, type h
To quit, type q
To page forward and backward, use the space bar and Backspace keys
To jump between hyperlinks, press Tab
To follow a hyperlink, press Enter
If info has no documentation on a given program, it displays the program’s manpage. For a listing of available documentation, type info by itself. To learn how to navigate the info system, type info info.
Use the --help option (if any)
Some commands respond to the option --help by printing a short help message. Try:
➜ diff --help
If the output is longer than the screen, pipe it into the less program to display it in pages (press q to quit):
➜ diff --help | less
Examine the directory /usr/share/doc
This directory contains supporting documents for several programs. For example, files for the bash shell are found in /usr/share/doc/bash.
Mac-specific websites
Some great sites for asking OS X questions are Mac OS X Hints (http://hintsforums.macworld.com/) and AskDifferent (http://apple.stackexchange.com/). You can also visit the website for this book: http://shop.oreilly.com/product/0636920025382.do.
Linux help sites
Many shell commands are found in Linux as well, so check Linux-related sites, including http://www.linuxquestions.org, http://unix.stackexchange.com, http://www.linuxhelp.net, and http://www.linuxforums.org.
Web search
To decipher an error message from a command, enter the message into a web search engine, word for word, and you will likely find helpful results.
Final Words
We’ve covered many commands and capabilities of the Terminal and the shell. Nevertheless, we’ve just scratched the surface. OS X includes over 1,000 commands that can be run in the Terminal, and thousands more can be downloaded and installed. We encourage you to continue reading, exploring, and learning the capabilities of the Macintosh Terminal. Good luck!
Acknowledgments
This book is dedicated with love to my parents who are both Mac fans. My father, Stephen Barrett, is a prolific writer who inspired me to be an author. My mother, Judith Barrett, taught me the value of working hard. Thanks, Mom and Dad: I hope you’ll both learn interesting things from this book.
I also thank my editor Andy Oram and long-time collaborator Mike Loukides, and the O’Reilly production staff. The technical review team (Stephen Barrett, Vandad Nahavandipoor, Rich Rosen, Ernie Rothman, and Matthew Stevenson) did an outstanding job and definitely improved the manuscript. Thanks also go to Chris Connors at Vistaprint, and as always, to my amazing and patient family, Lisa and Sophia.
Index
A NOTE ON THE DIGITAL INDEX
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.
Symbols
! (exclamation point), shell command history, Command history
(hash mark), , Whitespace and Linebreaks
comment in crontab,
comment in shell scripts, Whitespace and Linebreaks
#!, beginning of shell script, Creating and Running Shell Scripts
$ (dollar sign), Shell variables,
grep end of line,
shell variables, Shell variables
& (ampersand), running background jobs,
&& (two ampersands), Combining commands,
logical and, stopping execution of combined commands, Combining commands
sleep command,
* (asterisk), Wildcards, , ,
crontab,
regular expression,
shell wildcard, Wildcards
traceroute,
- (dash), standard input/output, Reading This Book
-- (two dashes), end of options, Reading This Book
--help option, Getting Help
. (period), Navigating the Filesystem, Wildcards, Creating and Running Shell Scripts
current directory, Navigating the Filesystem
dot files, Wildcards
shell script execution, Creating and Running Shell Scripts
.. (two periods), parent directory, Navigating the Filesystem
.NET, Beyond Shell Scripting
/ (slash), root directory, Structure of the Filesystem
; (semicolon), combine commands using, Combining commands
[(left square bracket), alias for test command, test and “[”
\ (backward slash), Long lines, Escaping, Useful options, Whitespace and Linebreaks
escaping special characters, Escaping, Useful options
line continuation, Long lines, Whitespace and Linebreaks
^C keystroke (killing programs), Killing a Command in Progress, Killing a Command in Progress
recovering the shell, Killing a Command in Progress
^V keystroke (inserting control characters), Escaping
^Z keystroke (suspending jobs),
| (pipe operator), Pipes
|| (two pipes), logical or, stopping execution of combined commands, Combining commands
˜ (tilde), denoting home directories, Home Directories in the Filesystem
A
absolute path of current directory, printing,
administrator, What’s a Command?, , Becoming the Superuser, Becoming the Superuser
creating,
agents,
alias command, Aliases
alphabetical order, sorting text in,
ampersand (&), running background jobs,
Applications directory, Directory path part 1: category
arguments for commands, What’s a Command?
at command,
atq command,
atrm command,
attributes of files, , Useful options, , , , , Useful options
changing,
extended, , Useful options, , , Useful options
awk command, , awk
vs. tr command,
B
background jobs, running, Shell Job Control
backquotes on command line, Quoting, Useful options
vs. xargs, Useful options
backups,
backward slash (\), Escaping, Whitespace and Linebreaks
escaping special characters, Escaping
line continuation, Whitespace and Linebreaks
basename command,
bash (Bourne-Again Shell), The Shell, The Shell, Command-line editing, Tailoring Shell Behavior, File Location, , , Programming with Shell Scripts
(see also shell)
command-line editing, Command-line editing
configuring behavior, Tailoring Shell Behavior
printf command,
programming with shell scripts, Programming with Shell Scripts
type command, File Location,
.bashrc file, Conditionals
.bash_profile file, Search path, Aliases, Command-line editing, Tailoring Shell Behavior, , Your Default Editor, , Conditionals
adding a second configuration file, Conditionals
aliases, Aliases
command-line editing, Command-line editing
editor environment variables, Your Default Editor
rm alias,
search path, Search path
umask,
bg command, ,
jobs command and,
bin directory, Directory path part 1: category
Booleans, , Booleans and Return Codes
expr command,
return codes, Booleans and Return Codes
Bourne-Again Shell, The Shell (see bash)
braces, Brace expansion, , Variables
expansion on command line, Brace expansion
grep regular expressions,
shell variables, Variables
break command, Break and Continue
brew command, Installing the Homebrew Package Manager, Using Homebrew
browsing the Web, Web Commands
bunzip2 command,
burning CDs and DVDs,
bzcat command, , Sample commands
bzip2 command, , Useful options
tar -j option, Useful options
C
C and C++ languages, Beyond Shell Scripting
cal command,
calculator programs, Math and Calculations
calendar printing,
capital vs. small letters, What’s a Command? (see case sensitivity)
carriage returns, ,
displaying,
case sensitivity, What’s a Command?, Navigating the Filesystem
command line, What’s a Command?
filenames, Navigating the Filesystem
case statement, Conditionals
cat command, , ,
revealing end-of-line characters,
tee command and,
CD burning,
cd command, Navigating the Filesystem, Home Directories in the Filesystem,
home directories, locating, Home Directories in the Filesystem
cgi-bin directory, Directory path part 1: category
checksums, comparing,
chfn command,
chgrp command, File Protections, , Group Management
chmod command, File Protections,
chown command, File Protections,
chsh command,
cksum command,
clear command (clearing the screen),
clipboard, ,
copying to,
pasting from,
clock programs, Dates and Times
cmp command, File Comparison, Useful options
columns of text, extracting from files,
combining commands, Combining commands
comm command, File Comparison,
command prompt, What’s a Command?
command-line arguments in shell scripts, Command-Line Arguments
command-line editing with bash, Command-line editing
commands, What’s a Command?, Combining commands, Command history, Killing a Command in Progress,
combining, Combining commands
killing, Killing a Command in Progress,
previous, Command history
comparing files, File Comparison
completing filenames with Tab key, Filename completion
compress command, , Useful options
tar -Z option, Useful options
compressing/uncompressing files, File Compression and Packaging, , ,
TAR files, , ,
conditionals in shell scripts, Conditionals
configure script, Installing from TAR Files
configuring the shell, Tailoring Shell Behavior
connecting to networks, Network Connections
console, Users and Their Environment
continue command, Break and Continue
controlling processes, Controlling Processes
copy and paste,
cp command,
cron process,
crontab command,
curl command,
curly-brace expressions, Brace expansion (see braces)
cut command,
D
daemons,
date command, Dates and Times,
dc command,
default editor, setting, Your Default Editor
/dev directory, Directory path part 1: category
df command,
DHCP, SSH roadblocks
diff command, File Comparison,
diff3 command, , Useful options
dig command, Useful options
directories, Structure of the Filesystem, Home Directories in the Filesystem, System Directories in the Filesystem, , , ,
changing, using cd command,
creating,
deleting empty directories,
home directories, Home Directories in the Filesystem
printing absolute path of,
system directories, System Directories in the Filesystem
dirname command,
disk images, ,
checksums,
disk usage command (du),
disks and filesystems, Disks and Filesystems
diskutil command, ,
mount,
DISPLAY environment variable, Shell variables
DMG files,
doc directory, Directory path part 1: category
domain name service (DNS), , Host Location,
querying,
dot files, Wildcards
downloading files, ,
dscl command, ,
groups,
users,
dseditgroup command,
du command,
DVD burning,
dynamic IP address, SSH roadblocks
E
echo command, Your friend, the echo command, Creating a File Quickly, , Input and Output
creating empty files, Creating a File Quickly
script output provided by, Input and Output
ed line editor, sed,
diff -e command,
EDITOR environment variable, , Your Default Editor
setting default editor, Your Default Editor
egrep command,
else statement, Conditionals
Emacs text editor, Command-line editing, Command-line editing, File Creation and Editing
bash command-line editing, Command-line editing
creating/editing files, File Creation and Editing
email, Directory path part 1: category, Shell variables, Email Commands, Email Commands, , , , , Beyond Mail Readers, Beyond Mail Readers
directory, Directory path part 1: category, Shell variables
file format, Beyond Mail Readers
log file,
pipelines,
queue,
readers, Email Commands
scripting,
spam filtering, Beyond Mail Readers
empty file, creating,
end-of-line characters,
environment variables, Home Directories in the Filesystem, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, Shell variables, , , Your Default Editor, Your Default Editor,
DISPLAY, Shell variables
EDITOR, , Your Default Editor
HOME, Home Directories in the Filesystem, Shell variables
LOGNAME, Shell variables
MAIL, Shell variables
OLDPWD, Shell variables
PATH, Shell variables
printing,
PWD, Shell variables
SHELL, Shell variables
TERM, Shell variables
USER, Shell variables
VISUAL, , Your Default Editor
escaping special characters, Escaping
etc directory, Directory path part 1: category
exclamation point (!) for shell history, Command history
exit command, Terminating a Shell, Loops, Exiting with a Return Code
exiting with return codes, Exiting with a Return Code
terminating loops, Loops
terminating shells, Terminating a Shell
exit status of commands, Booleans and Return Codes
export command, Shell variables
expr command,
extended attributes, , Useful options, , , Useful options
aliases and, Useful options
copying with rsync, Useful options
listing,
xattr command,
F
false command, true and false, Loops
infinite loops and, Loops
fetchmail command, Beyond Mail Readers
fg command, ,
jobs command and,
file command,
filename completion, Filename completion
files, File Protections, File Protections, Wildcards, , , , , , , , , File Viewing, File Creation and Editing, File Creation and Editing, File Properties, , , , , , , , , File Location, File Location, ,
attributes of, File Properties
copying, using cp command,
counting words,
creating, File Creation and Editing,
deleting, using rm command,
disk space of,
editing, File Creation and Editing
group ownership,
hidden, Wildcards
linking, using ln command,
listing, using ls command,
locating, File Location, File Location
moving,
ownership, File Protections, , ,
permissions, File Protections, ,
renaming, using mv command,
timestamps,
transferring between machines, ,
viewing, File Viewing
filesystem, The Filesystem, Structure of the Filesystem, Disks and Filesystems
find command, ,
with xargs,
finger command, ,
Fink package manager, Using Homebrew
firewall, SSH roadblocks
fonts directory, Directory path part 1: category
for loops, Loops, Command-Line Arguments
command-line arguments and, Command-Line Arguments
foreground, bringing jobs into,
formatting disks, Disks and Filesystems
fsck_hfs command, ,
ftp (File Transfer Protocol) program, ,
nonsecure, use sftp,
G
g++ command, Beyond Shell Scripting
gcc command, Beyond Shell Scripting
GetFileInfo command, Useful options
GNU Emacs, File Creation and Editing (see Emacs text editor)
grep command, ,
egrep command and,
group ownership of files,
groups, Group Management, ,
creating,
deleting,
groups command, Useful options,
id -Gn command and, Useful options
gunzip command,
gzip command, , Useful options
tar -z option, Useful options
H
hard links,
hdiutil command,
head command,
help and tutorials, Getting Help
--help option, Reading This Book
hexadecimal numbers, , , , , , ,
dumping a binary file,
grep regular expressions,
MAC address,
netmask,
od command,
xattr command,
xxd command,
HFS filesystems, Disks and Filesystems
hidden files, Wildcards
history command, Command history
home directories, Home Directories in the Filesystem
HOME environment variable, Home Directories in the Filesystem, Shell variables
Homebrew package manager, Installing the Homebrew Package Manager, Using Homebrew
installing, Installing the Homebrew Package Manager
running, Using Homebrew
host command,
host information, Host Information, Host Location
hostname command, Useful options,
html directory, Directory path part 1: category
I
ICMP packets,
id command,
if statement, Conditionals
ifconfig command,
include directory, Directory path part 1: category
index of file locations, creating,
info command, Getting Help
inode, Useful options, , , , Useful options,
input in shell scripts, Input and Output
input/output redirection, Input/output redirection
installing software, Installing Software with a Package Manager
instant messaging, Messaging
Internet domains, looking up registration of,
IP address, SSH roadblocks
ipconfig command,
ISO files,
J
Java language, Beyond Shell Scripting, Beyond Shell Scripting
javac command, Beyond Shell Scripting
job control, Shell Job Control
jobs command,
jobs, scheduling, ,
K
Kerberos,
kernel, , , Useful options, Useful options
name, Useful options
version, , Useful options
kill command, Killing a Command in Progress,
killall command,
L
last command,
launchctl command,
less command, ,
lib directory, Directory path part 1: category
libexec directory, Directory path part 1: category
Library directory, Directory path part 1: category
line continuation character, Whitespace and Linebreaks
linebreaks, , , Whitespace and Linebreaks
grep,
in shell scripts, Whitespace and Linebreaks
Windows and Macintosh,
links, ,
hard vs. symbolic,
linuxforums.org, Getting Help
linuxhelp.net, Getting Help
linuxquestions.org, Getting Help
ln command,
load average, , ,
top command,
uptime command,
locate command,
locating files, File Location, , , , ,
find command,
locate command,
type command,
whereis command,
which command,
log directory, Directory path part 1: category
logging in to remote machines, ,
logname command, ,
whoami and,
LOGNAME environment variable, Shell variables
look command,
loops in shell scripts, Loops
lowercase vs. uppercase letters, What’s a Command? (see case sensitivity)
lpq command,
lpr command, Printing
lprm command,
lpstat command,
ls command, Reading This Book, File Protections, , File Properties
displaying file attributes, File Properties
file protections and, File Protections
M
MacPorts package manager, Using Homebrew
mail, Email Commands (see email)
mail command,
mail directory, Directory path part 1: category, Shell variables
MAIL environment variable, Shell variables
mailq command,
make command, Installing from TAR Files
man command, Quick help, Directory path part 1: category, Getting Help
man directory, Directory path part 1: category
masks and protection modes,
math commands, Math and Calculations
md5 command, File Comparison, ,
mesg command, Useful options,
MIME, Useful options
mkdir command,
modes for files,
mono command, Beyond Shell Scripting
mount command, ,
diskutil,
mv command,
N
nameserver, (see domain name service)
.NET, Beyond Shell Scripting
network connections, establishing, Network Connections
network interface, displaying information about,
nice command,
nl command, ,
cat command and,
nslookup command, Useful options
ntfs filesystems, Disks and Filesystems
O
octal numbers, , , , , , , Useful options, Useful options
chmod command,
cmp command, Useful options
dumping a binary file,
echo command, Useful options
od command,
stat command,
tr command,
umask command,
od command,
OLDPWD environment variable, Shell variables
open command,
options for commands, What’s a Command?
OS X,
version,
output in shell scripts, Input and Output
ownership of files, File Protections,
P
package managers, Installing Software with a Package Manager, Installing the Homebrew Package Manager, Using Homebrew, Using Homebrew, Installing from TAR Files
advantages, Installing from TAR Files
Fink, Using Homebrew
Homebrew, Installing the Homebrew Package Manager
MacPorts, Using Homebrew
partitioning disks, Disks and Filesystems
passwd command,
paste command,
pasteboard, (see clipboard)
patch command, context diff,
PATH environment variable, Shell variables
pbcopy command,
pbpaste command,
Perl language, Beyond Shell Scripting
permissions for files, File Protections, ,
PHP language, Beyond Shell Scripting
PID, Viewing Processes, , ,
ping command, ,
pipe (|) operator, Pipes
plist file,
postfix mail server, Beyond Mail Readers
printenv command, ,
at command and,
printf command, , Input and Output
script output provided by, Input and Output
printing, Printing, , ,
listing printers,
removing print jobs,
viewing print jobs,
/private directory, Directory path part 2: scope
processes, Viewing Processes, Viewing Processes, Controlling Processes, Controlling Processes
controlling, Controlling Processes
shell jobs vs., Viewing Processes
viewing, Viewing Processes
processor type, Useful options
procmail command, Beyond Mail Readers
prompt, What’s a Command?
property list file,
ps command, ,
public_html directory, Directory path part 1: category
pwd command, Navigating the Filesystem,
PWD environment variable, Shell variables
Python language, Beyond Shell Scripting
Q
quoting, Quoting, Useful options, Variables
find command, Useful options
in shell scripts, Variables
on command line, Quoting
R
rcsdiff command,
read command, Input and Output
readlink command, Useful options
recursive, Useful options, , Useful options, , Useful options, Useful options, Useful options, Useful options, Useful options, Useful options, , , , Useful options, , Useful options, Useful options
chgrp, Useful options
chmod, Useful options
chown, Useful options
directory comparison,
directory copy, Useful options
directory deletion, , Useful options
directory listing, Useful options
file copy, , Useful options
file finding,
remote copy,
secure file copy, Useful options
text search, Useful options
web retrieval, Useful options
xattr, Useful options
zip,
redirecting input/output, Input/output redirection
regular expressions, , , , , awk, Useful options, Using Homebrew
awk command, awk
brew command, Using Homebrew
egrep command,
find -regex command, Useful options
grep command, ,
less command,
remote login, enabling, Enabling remote logins
remote machines, , , , , , , ,
file transfers, ,
hostname lookup,
logging in with ssh,
logging in with telnet,
sending ICMP packets to,
traceroute command,
renice command,
reset command, Killing a Command in Progress
resuming jobs with fg command,
return codes of commands, Booleans and Return Codes, Exiting with a Return Code
rm command,
rmdir command,
root directory (/), Structure of the Filesystem
/root home directory for superuser, Home Directories in the Filesystem
root user, What’s a Command?, Becoming the Superuser, Becoming the Superuser
rsync command,
Ruby language, Beyond Shell Scripting
run directory, Directory path part 1: category
S
sbin directory, Directory path part 1: category
scheduling jobs, ,
scp command,
scutil command,
sdiff command, , Useful options
secure copy (scp) command,
secure shell (ssh) program, (see ssh)
sed command, , sed
vs. tr command,
semicolon (;), combine commands using, Combining commands
sendmail mail server, Beyond Mail Readers
seq command,
SetFile command, Useful options
sftp command,
share directory, Directory path part 1: category
SHELL environment variable, Shell variables
shell prompt, What’s a Command?
shell scripts, Programming with Shell Scripts, Programming with Shell Scripts, Creating and Running Shell Scripts, Creating and Running Shell Scripts, Conditionals, Loops, Break and Continue, Command-Line Arguments, Exiting with a Return Code
break and continue in, Break and Continue
command-line arguments in, Command-Line Arguments
conditionals, Conditionals
creating, Creating and Running Shell Scripts
loops in, Loops
programming with, Programming with Shell Scripts
return codes, Exiting with a Return Code
running, Creating and Running Shell Scripts
shells, The Shell, The Shell, The Shell Versus Programs, Command history, Shell Job Control, , Terminating a Shell, Tailoring Shell Behavior,
(see also bash)
changing login shell program,
configuring behavior, Tailoring Shell Behavior
history-related commands, Command history
job control, Shell Job Control
suspending,
terminating, Terminating a Shell
vs. programs, The Shell Versus Programs
shutdown command,
slash (/), Structure of the Filesystem, Structure of the Filesystem
directory separator, Structure of the Filesystem
root directory, Structure of the Filesystem
sleep command,
small vs. capital letters, What’s a Command? (see case sensitivity)
soft links,
software installation, Installing Software with a Package Manager
sort command,
source command, Creating and Running Shell Scripts
spamassassin, Beyond Mail Readers
special characters, escaping, Escaping
spool directory, Directory path part 1: category
src directory, Directory path part 1: category
srm command,
ssh (secure shell) program, , Enabling remote logins, Logging in remotely with SSH
remote logins, Logging in remotely with SSH
server setup, Enabling remote logins
stackexchange.com, Getting Help
standard error, Standard Input and Output
standard input, Standard Input and Output
standard output, Standard Input and Output, Screen Output
printing messages on, Screen Output
stat command,
stdin, Reading This Book
(see also standard input)
stdout, Reading This Book
(see also standard output)
subdirectories, Structure of the Filesystem
subshell, Shell variables, Creating and Running Shell Scripts
sudo command, What’s a Command?, , Becoming the Superuser
whoami command and,
sum command,
superusers, What’s a Command?, Becoming the Superuser, Becoming the Superuser
becoming, Becoming the Superuser
suspend command,
sw_vers command,
symbolic links, , Useful options
target file of, Useful options
sync command,
system directories, System Directories in the Filesystem
system load,
T
Tab key, completing filenames with, Filename completion
tail command,
talk command,
tape drives, copying files to,
tar command,
TAR files, , , , Installing from TAR Files, Installing from TAR Files
bzipped,
compressed,
gzipped,
software packaging, Installing from TAR Files
tee command,
telnet command,
TERM environment variable, Shell variables
Terminal, running, Running the Terminal
terminating shells, Terminating a Shell
test command, test and “[”
text manipulation commands, File Text Manipulation
TextEdit, File Creation and Editing
tilde (˜), denoting home directories, Home Directories in the Filesystem
Time Machine,
time, displaying/setting, Dates and Times
timestamps,
tmp directory, Directory path part 1: category
tmutil command,
top command,
touch command, Creating a File Quickly,
creating empty files, Creating a File Quickly
tr command,
traceroute command,
translating characters, using tr command,
true command, true and false, Loops
infinite loops and, Loops
tty command,
tutorials, , , , Getting Help
Emacs,
vim editor,
type command, File Location,
types of files, reporting,
U
umask command,
umount command, ,
diskutil,
unalias command, Aliases
uname command,
uncompress command,
uniq command,
infinite loops and, Loops
unzip command,
uppercase vs. lowercase letters, What’s a Command? (see case sensitivity)
uptime command, ,
USER environment variable, Shell variables
users, Users and Their Environment, , , , , , , , , , Becoming the Superuser
creating,
deleting,
finger command and,
listing logged-in users,
password changes,
printenv command and,
printing login names,
printing user IDs,
superusers and, Becoming the Superuser
updating information,
users command,
/usr directory, Directory path part 2: scope
/usr/share/doc directory, Getting Help
V
/var directory, Directory path part 1: category
variables, Shell variables, Shell variables, Variables
defining, Shell variables
in shell scripts, Variables
vi, File Creation and Editing (see vim text editor)
viewing, File Viewing, File Viewing, Viewing Processes
files, File Viewing, File Viewing
processes, Viewing Processes
vim text editor, Command-line editing, , File Creation and Editing, , sed
bash command-line editing, Command-line editing
less command,
sed and, sed
VISUAL environment variable, , Your Default Editor
setting default editor, Your Default Editor
/Volumes directory, Directory path part 2: scope
W
w command,
wc command, What’s a Command?,
web browsing, Web Commands, , , ,
automation, ,
retrieving pages via command line, ,
wget command,
whereis command, File Location,
which command,
infinite loops and, Loops
whitespace, Quoting, , , Whitespace and Linebreaks, Whitespace and Linebreaks
find and xargs commands,
linebreaks,
programming with shell scripts, Whitespace and Linebreaks
quoting on command line, Quoting
who command, ,
tee command and,
whoami command,
whois command,
wildcard characters and the shell, Wildcards, Wildcards
(see also regular expressions)
write command,
www directory, Directory path part 1: category
X
X11 directory, Directory path part 1: category, Directory path part 2: scope
xargs command, Useful options, , , Useful options
vs. backquotes, Useful options
with find command,
xattr command, Useful options,
Xcode, Installing Software with a Package Manager, Beyond Shell Scripting
XML,
xxd command,
xxdiff command, File Comparison
Y
yes command,
Z
zcat command, , Sample commands, Sample commands
zip command,
About the Author
Daniel J. Barrett has been immersed in Internet technology since 1985. Currently working as a software engineer, Dan has also been a heavy metal singer, Unix system administrator, university lecturer, web designer, and humorist. He is the author of O'Reilly's Linux Pocket Guide, and he is the coauthor of Linux Security Cookbook, and SSH, The Secure Shell: The Definitive Guide.
Macintosh Terminal Pocket Guide
Daniel J. Barrett
Editor
Andy Oram
Editor
Mike Loukides
Revision History | |
---|---|
2012-06-11 | First release |
Copyright © 2012 Daniel Barrett
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Macintosh Terminal Pocket Guide, the image of the emu wren, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.
While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472
2012-06-13T07:21:01-07:00
Table of Contents
Macintosh Terminal Pocket Guide
What’s in This Book?
What’s the Terminal?
What’s a Command?
Ten Commands to Try
Reading This Book
Standard Input and Output
Keystrokes
Long lines
Your friend, the echo command
Quick help
Running the Terminal
The Filesystem
Structure of the Filesystem
Navigating the Filesystem
Home Directories in the Filesystem
System Directories in the Filesystem
Directory path part 1: category
Directory path part 2: scope
Directory path part 3: application
File Protections
The Shell
The Shell Versus Programs
Selected Features of the bash Shell
Wildcards
Brace expansion
Shell variables
Search path
Aliases
Input/output redirection
Pipes
Combining commands
Quoting
Escaping
Command-line editing
Command history
Filename completion
Shell Job Control
jobs
&
^Z
bg
fg
suspend
Killing a Command in Progress
Terminating a Shell
Tailoring Shell Behavior
Basic File Operations
ls
cp
mv
rm
ln
Directory Operations
cd
pwd
basename
dirname
mkdir
rmdir
File Viewing
cat
less
head
tail
nl
strings
od
xxd
File Creation and Editing
Creating a File Quickly
Your Default Editor
Emacs
vim
look
File Properties
stat
wc
du
file
touch
chown
chgrp
chmod
umask
xattr
File Text Manipulation
grep
egrep
fgrep
cut
paste
tr
sort
uniq
tee
File Location
find
xargs
locate
which
type
whereis
File Compression and Packaging
gzip
bzip2
compress
zip
tar
File Comparison
diff
comm
cmp
md5
Printing
lpr
lpq
lprm
Disks and Filesystems
df
diskutil
mount
fsck_hfs
hdiutil
tmutil
sync
rsync
Viewing Processes
ps
uptime
w
top
Controlling Processes
open
kill
nice
renice
shutdown
Scheduling Jobs
sleep
at
crontab
launchctl
Users and Their Environment
logname
whoami
id
who
users
last
finger
chfn
passwd
chsh
dscl
printenv
Becoming the Superuser
Group Management
groups
dscl
Host Information
uname
sw_vers
hostname
scutil
ifconfig
ipconfig
Host Location
host
whois
ping
traceroute
Network Connections
ssh
telnet
scp
sftp
ftp
Email Commands
mailq
Web Commands
curl
wget
Messaging
talk
write
mesg
tty
Screen Output
echo
printf
pbcopy
pbpaste
yes
clear
Math and Calculations
expr
dc
seq
Dates and Times
cal
date
Running a Shell Remotely
Enabling remote logins
Logging in remotely with SSH
SSH roadblocks
Installing Software with a Package Manager
Obtaining an Apple Developer ID
Installing Xcode
Installing Command Line Tools for Xcode
Installing the Homebrew Package Manager
Using Homebrew
Installing from TAR Files
Programming with Shell Scripts
Creating and Running Shell Scripts
Whitespace and Linebreaks
Variables
Input and Output
Booleans and Return Codes
test and “[”
true and false
Conditionals
Loops
Break and Continue
Command-Line Arguments
Exiting with a Return Code
Beyond Shell Scripting
Getting Help
Final Words
Acknowledgments