

 [image: First Edition]

 Building Web Applications with Erlang

Zachary Kessin

Published by O’Reilly Media

[image:]
Beijing ⋅ Cambridge ⋅ Farnham ⋅ Köln ⋅ Sebastopol ⋅ Tokyo

Preface

Erlang promises to let you build robust, fault-tolerant servers far
 more easily than with Java or C#. It almost sounds too good to be true, but
 Erlang has become a programmer’s secret handshake. As much as many of us
 hate our phone company, there is a basic truth that must be recognized: when
 you pick up your phone to make a call, it normally just works. So people
 have started to realize that telecom folks must be doing something
 right!
Erlang was built to program telephone switches at Ericsson, and most
 of the language design choices reflect what was necessary to program a
 telephone switch. That means, for example, that Erlang software can run for
 years at a time without interruption because phone switches are expected to
 do that. Erlang applications can be upgraded in place without taking the
 system offline or even losing state because the phone company can’t drop a
 city’s worth of calls every time they have to patch a bug or roll out a new
 feature.
When a web service goes down, a lot of things break. It may not be as
 obvious as a suddenly interrupted call, but it may actually create more
 problems as failures create new failures. Web services can benefit from the
 language design decisions Erlang’s creators made in a telephone switching
 environment. Having a server that can run without interruption can allow a
 development team to provide a better service to their customers.
Who This Book Is For

This book shows you the baby steps to building a web service with
 Erlang. It does not try to teach you Erlang (there are other books for
 that), nor does it try to show you how to build the large-scale
 applications that really call for Erlang. Instead, it shows you how to
 build simple web services as a step along the way to learning to build
 large-scale web services.
I expect that many readers will, like me, be long-time web
 professionals who are looking at Erlang as a way to stand out from a crowd
 of Java and C# developers. After all, in a few years Erlang may be the
 next big thing, and you want to be ahead of the wave. Or perhaps you have
 become frustrated with some aspect of building web applications in those
 other languages and are looking for something a bit more powerful.
You need to know at least basic Erlang, but you should also be
 familiar with web development—in PHP, Perl, Ruby, Java, or something else.
 I assume that you have seen HTML and know the basics of how HTTP
 works.
There are a few examples in this book that use JavaScript to
 interface a browser with the Erlang example. Except in Chapter 9, this code is not critical to understanding
 what the Erlang code is doing, although of course if you are building a
 large web application it will contain JavaScript. I also use CoffeeScript
 in a few places. CoffeeScript is a small language that compiles down to
 JavaScript and generally makes for a much nicer programming experience
 than straight JavaScript.[1]

Learning Erlang

This book will not teach you Erlang. There are already a number of
 good resources for that, including:
	Learn You
 Some Erlang for Great Good, by Fred Hébert.
 Learn You Some Erlang will also be published by
 No Starch Press in September 2012.

	Erlang Programming, by Francesco Cesarini
 and Simon Thompson, published by O’Reilly.

	Programming Erlang, by Joe Armstrong,
 published by The Pragmatic Programmers.

Reading the first few chapters of any of these and understanding the
 basics of how Erlang works should be enough. However, you should plan to
 really work through those chapters and write some simple programs before
 attempting the projects here.
In particular, you should read up on sequential code and the very
 basics of how concurrency works in Erlang. When building large-scale
 applications in Erlang, taking advantage of the Open Telecom Platform
 (OTP) will allow the programmer to leverage a large amount of well-tested
 functionality. And while OTP is very powerful and will make development in
 Erlang much easier, the details of OTP are less important to learn up
 front and can be learned as you go along after you have an understanding
 of how other parts of the system work.

Before You Start

Before you dive into this book, you should have Erlang and Yaws
 installed on your system. (If you need help in this, check Appendix A.) Erlang and Yaws can be run on Windows, Mac, and
 Linux, so any type of system will work fine.
Note
Several people have asked me why I wrote this book around Yaws and
 not some other web package. There were a few reasons. First of all, Yaws
 seemed the easiest package to get something simple working in. Second,
 several of the other packages do not support web sockets (or at least
 didn’t when I started writing), and I knew that I would be needing web
 sockets in my own development.

I am also assuming that you are familiar with the Unix command line.
 While it is not necessary to be a Bash Kung-Fu Master (I’m not), you
 should be able to interact with the bash shell and not freak out.

What You Will Learn

Building a full Erlang application requires a large set of skills.
 This book will help you get to the point where you can build a basic web
 service application and get it running.
First, you’ll explore some of the power and mystery of Erlang and
 REST. You’ll see why Erlang makes sense as a foundation for building
 scalable and reliable systems and why REST is a popular approach to
 building web services and explore some of the tradeoffs involved in using
 the two together. This first chapter will also explore some of your data
 storage options.
The Yaws web server is the foundation of our application, so you’ll
 learn to configure Yaws and serve static content. Yes, static content. In
 many cases, a website with dynamic content will have a collection of
 static files as resources. Once you know how to manage static files, you
 can move on to working with dynamic content, embedding Erlang into an HTML
 file or other kind of file (see Dynamic Content in Yaws).
 You’ll learn about working with HTTP itself and basic debugging tools like
 logging.
You’ll need a way to route client requests presented as URLs to the
 internal resources of your service. Appmods, discussed in Chapter 3, will let you map arbitrary URLs onto relevant
 resources.
Next we cover output formats. I will show three general ways to
 output data to the user. The first, and least useful, method is to use
 ehtml to directly translate Erlang data
 into HTML or XML. We also will see how to use the erlydtl library to use the Django template
 language to create formatted output. (DTL is a common template package on
 Python and should be familiar to some readers of this book.) Finally, we
 will see how to encode Erlang data structures into JSON or XML, which can
 be sent to the user. In many cases, modern web applications will have a
 page of static (or almost static) HTML and a lot of JavaScript that will
 interact with the server by sending JSON or XML over Ajax channels.
Now that we can generate content, it’s time to build a simple
 RESTful service. You’ll assemble an application that can listen for HTTP
 requests, process them, store data, and return useful information. You’ll
 also learn how to handle large chunks of incoming information, dealing
 with multipart requests and file uploads.
If you’d like to go beyond HTTP’s request-response model, Chapter 6 presents a live bidirectional method of
 communication between the client and the server. Yaws supports web
 sockets, and the dynamic, event-driven nature of Erlang makes for an ideal
 platform for pushing dynamic data to the client.
Finally, Chapter 9 presents a somewhat
 larger example that pulls together most or all of the previously discussed
 topics into one complete application. This chapter will show how to build
 a complete small application with Yaws and OTP.

The Limits of This Book

If you want a complete guide to building large, fault-tolerant sites
 with Erlang, you’ll be disappointed. The architecture of a large-scale
 website requires a book of its own. (A project like that will probably end
 up being 90% backend and logic and 10% web interface.)
I also deliberately did not cover any of the half dozen or so
 frameworks for building web applications with Erlang, as I wanted to focus
 on the task of building a basic service in Erlang with just Yaws and
 custom code. MochiWeb, Chicago Boss, Nitrogen, Zotonic, and the rest need
 their own books, but I summarize them briefly in Appendix B.
This book does not attempt to show how to structure an Erlang
 application beyond the very basics: a full introduction to OTP requires a
 longer book than this one.
It is also not an introduction to supervision trees. They are
 covered briefly in Chapter 9, but this is a short
 introduction to a very large topic.
Erlang has a full set of features to allow it to monitor the state
 of an application and respond when processes or nodes go offline. This is
 amazingly powerful on many levels. For example, in the case of a node
 failing at 2:00 AM, Erlang can generate a log message and create a new
 node from a cloud with no need for human intervention—a far better
 scenario than an emergency wake up call for the sysadmin!
For automated testing, Erlang has a test framework called
 EUnit (documented in Erlang
 Programming) as well as a version of the Haskell QuickCheck
 testing suite. These are beyond the scope of this book, but can be quite
 useful for development.
Finally, this book does not cover details of how best to run Erlang
 on Amazon EC2 or other cloud services. Running a bunch of Erlang nodes on
 cloud hosts can make a lot of sense.

Help! It Doesn’t Compile or Run!

When working with a new framework in a language you may not know
 very well, it is inevitable that sooner or later you will hit a few
 problems. Code won’t compile, or else it will compile and then crash in
 all sorts of strange ways.
If you are anything like me, you probably won’t be doing a
 copy/paste of code directly from this book (though you are welcome to do
 so if you want); instead, you’ll probably try to adapt this code to some
 other problem you are trying to solve. After all, that’s the whole point
 of books like this—to give you tools to solve problems in fun new ways. So
 what should you do if something doesn’t work as expected?
Diagnosing the Error

If a request to Yaws does not work, it will show a screen link, as
 shown in Figure 1. This may look a bit cryptic at
 first glance, but is actually quite helpful. First of all, you will
 notice the path to the file that contains the Erlang module with the
 offending code. Then you will see the reason why it crashed (in this
 case, a call to a function in an unloaded module), and then the request
 that was made and the stack trace. In Erlang R15 this stack trace will
 also include line numbers; this screen shot is from R14B02, which does
 not include them.
[image: Error Page]

Figure 1. Error Page

What Version of Erlang and Yaws Are You Running?

This book was built around Erlang R14B02 and R15B. Ideally you
 should use R15B or later. This is a major release that among other
 features includes line numbers in stack traces, which makes finding
 errors much easier. You can find the version of Erlang you have by
 running erl -v from the command
 line.
This book was also built with Yaws version 1.92. You can find your
 version of Yaws by running yaws -v
 from the command line. The web sockets interface described in Chapter 6 changed in a major way between Yaws versions
 1.90 and 1.92.

Is Everything Loaded Correctly?

Programmers who have come to Erlang from languages like PHP or
 Perl will find that there is an extra step in Erlang. While Yaws will
 automatically compile and load new .yaws files (see Dynamic Content in Yaws), any other Erlang module must be compiled
 and loaded into the Erlang runtime. Compilation can be done from within
 the Erlang shell by using the c(Module). command, which will also load the
 new code into the Erlang runtime. This is very useful for interactive
 testing of code and for the speed of your development cycle. It's
 certainly possible that someone converting from PHP to Erlang will
 forget this step from time to time.
Erlang code can also be compiled from an external command line
 with the erlc command from a Unix
 shell.[2] Erlang will autoload the code; however, it is important to
 set the include paths correctly so that it can find the
 .beam files. This option is good for doing things
 like automatic builds. The loading of external modules may be automated
 by adding the load commands to the .erlang file or
 other configuration options.
In addition, Erlang applications will often be composed of many
 modules, all of which must be loaded into the system for it to work. So
 if something fails, check to see if a module has not been loaded or is
 not in the path. To see the current path from the shell, run code:get_path().
One nice thing about Erlang is that if the system is set up in a
 reasonable way, you should never need to take the entire system offline
 to upload a new version of code.

Are You Calling Everything Correctly?

The Erlang command line is your friend! This is a good place to
 try out your code and see if it works as expected. Don’t be afraid to
 create test data at the command line and give your functions test inputs
 to make sure that they return the correct results.
Note
When you load a module, its records are not loaded into the
 shell. This has to be done explicitly with the rr command from the Erlang shell. You can
 also define a record with rd and
 remove a record with rf. To use
 these, type help() on the Erlang
 command line.

Is Mnesia Running with Correct Tables?

Mnesia, Erlang’s built-in database, has to be started up and
 tables created for it to work. Before you start Mnesia you have to run
 the command mnesia:create_schema/1,
 which creates the basic database storage for Mnesia; then, to start
 Mnesia use the command application:start(mnesia). If you are having
 trouble with Mnesia tables, you can use the table viewer by typing
 tv:start() at the Erlang command
 prompt.

Is the Example Just Plain Wrong?

Obviously, I’ve tried to ensure that all the code in this book
 runs smoothly the first time, but it’s possible that an error crept
 through. You’ll want to check the errata on this book’s web page (see
 the How to Contact Us section at the end of the Preface), and download
 the sample code, which will be updated to fix any errors found after
 publication.

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

	Constant width
	Used for program listings, as well as within paragraphs to
 refer to program elements such as variable or function names,
 databases, data types, environment variables, statements, and
 keywords.

	Constant width
 bold
	Shows commands or other text that should be typed literally by
 the user.

	Constant width italic
	Shows text that should be replaced with user-supplied values
 or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Building Web Applications with Erlang by Zachary
 Kessin (O’Reilly). Copyright 2012 Zachary Kessin,
 978-1-449-30996-1.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://oreil.ly/build_webapps_erlang

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

A book is a team effort, and I could not have written this book
 without a great team behind me. First of all, I must thank Simon St.
 Laurent for giving me the chance to write this book and supporting me
 through the process of putting it together.
I would also like to thank Reuven Lerner, who has helped me become a
 consultant and made it much more fun than it would have been
 otherwise.
I also need to thank my Technical Reviewers:
Fred Hébert is the person behind Learn You Some Erlang for
 Great Good, which is a great way to learn Erlang. You
 can find Fred on Twitter at @mononcqc.
Steve Vinoski has been a contributor and committer on the Yaws
 project since 2008. He also writes the “Functional Web” column for IEEE
 Internet Computing, covering the application of functional programming
 languages and techniques for the development of web systems. Find his
 columns online at http://steve.vinoski.net/.
Francesco Cesarini is the coauthor of Erlang
 Programming and the CEO of Erlang Solutions.
I also want to thank all the various people who emailed and tweeted
 me about this book. I hope you find it useful! Please feel free to contact
 me on Twitter at @zkessin.
Of course I need to thank Joe Armstrong for creating Erlang, and
 “klacke” (Claes Wikstrom) for
 creating Yaws along with various other parts of the Erlang Ecosystem.
 Without them, this book would not exist.
Finally I need to thank my wife, Devora, who put up with me spending
 many more hours in front of the computer than she might have wished, and
 put up with a few sinks full of dirty dishes that I took longer to do than
 I probably should have.

[1] You can find more information about CoffeeScript at http://coffeescript.org.

[2] This also works with Cygwin on Windows.

Chapter 1. Building Scalable Systems with Erlang and REST

In the early days of the Web, building systems was simple. Take a
 Linux box, put Perl or PHP on it, add Apache and MySQL, and you were ready
 to go. Of course, this system was pretty limited. If you wanted to scale it
 past one or two servers it got real hard, real fast. It turns out that
 building scalable distributed applications is difficult, and the tools
 available to build them are often less than ideal.
Over the first decade of the 21st century, companies like Google,
 Amazon, eBay, and many others found that they needed to scale not to a few
 servers but to a few thousand servers, or even tens or hundreds of thousands
 or more. This requires a very different way of thinking about how to build a
 system, and dropping many of the patterns that had been used in the past for
 smaller systems.
One alternate recipe that offers scalability, resilience, and
 flexibility is to create your sites and applications using Erlang, with the
 frontend being defined by a variety of web services.
Why Erlang?

When I was getting ready to write this book I described the idea to
 several programmer friends. They all said, “I would never think of
 building a large-scale website in Erlang.” It may seem daunting, but
 Erlang has features that fit large-scale web projects perfectly.
Ericsson originally created Erlang, a functional language based on
 Prolog, to run in telecom switches in the 1980s. Telecom switches must run
 without interruption for long periods of time, and this drove many of the
 choices that were made in Erlang. It was built to support systems that
 would have to be fault tolerant and able to be upgraded in place without
 downtime. As it turns out, these features are ideal not only for telephone
 switches, but also for business-critical web services.
One of the first major projects to use Erlang was the Ericsson
 AXD301 switch, which used about a million lines of Erlang code along with
 some device drivers and other low-level components that were written in C.
 The AXD301 switch has achieved an unprecedented level of reliability in
 the field—in some cases, it has achieved “nine 9s” reliability![3] The amount of time that the system could be expected to be
 offline could be measured in milliseconds per year. (This was for the
 entire network, not a single node.)
Clearly, most systems written in Erlang will not achieve that level
 of reliability. With careful design and testing, it’s possible for a
 system to hit six 9s (about 30 seconds of downtime per year). However,
 reaching that is beyond the scope of this book, and requires a very
 careful study of risks that may cause the system to be unavailable and
 ensuring that no single failure (in particular, beyond your code) could
 cause that. For example, having three connections to the Internet with
 different ISPs is great, but if all three go through the same conduit it
 only takes one guy with a backhoe to cut all three wires and take a system
 offline.
Erlang applications can be upgraded in place. If an application is
 running on a cluster of servers and a bug is discovered in one module,
 there is no need to stop the system to upgrade to a new version of the
 software—Erlang provides a method to upgrade the code as it runs so that
 customers never need to be interrupted. This is a major advantage over a
 system where an application needs to be offline for an hour or more each
 time a new version of the software is rolled out, costing real money as
 customers are not able to use the system.
Erlang is also designed to support clusters of computers. In fact,
 to have a scalable and fault-tolerant system, it must
 run on more than one computer. As any given computer can fail, it is
 important that the system be able to deal with the case of a node in the
 cluster going offline and still providing services to the customers. How
 many nodes a system should run on is a complex issue, but it starts with
 the question “What is the probability of all the remaining nodes failing
 before I can bring a new node online?”
Warning
If you Google “Erlang”, you will see references to “Erlang-B” and
 “Erlang-C”. These are measures of telephone capacity that are probably
 of great importance if you are building a call center, but have nothing
 to do with the programming language.

Erlang’s Advantages

Erlang does many things differently. In most programming
 languages, concurrency is an afterthought. Each process in PHP, for
 example, runs independently and generally communicates with other PHP
 processes only via external resources like a database or memcached
 server. In Erlang, concurrency is built in from the very base of the
 system.
Another difference is that Erlang is a compiled language. In PHP
 you can just edit a file and go to the web server, and it will be
 running the new version. In Erlang you need to compile the code and load
 it into the system, and while this is not difficult, it does represent
 an extra step.
Perhaps the strangest thing about Erlang for a new Erlang
 programmer is that all variables are single assignment. In Java terms,
 it’s as if all variables are final.
 This takes some time to adapt to, but is in fact quite powerful in a
 language where concurrent processing is normal. If a variable can never
 be changed, then locks become almost an irrelevant detail. The other
 advantage is that a single assignment variable can only have its value
 assigned in one place, so if it has the wrong value then determining
 where that value came from becomes much easier: it must have been set at
 initial assignment.
Erlang features a message passing model for concurrency, so there
 is no shared state between threads—removing the need for a programmer to
 set locks in code. If you need shared state, you can do it via the
 Mnesia database (see Mnesia), Mnesia supports
 transactions and locks, providing in effect a form of software
 transactional memory (STM) shared memory.
Erlang’s processes are a feature of the language, not the
 operating system. An Erlang process is much lighter in weight than a
 similar OS process. Processes in Erlang communicate with each other by
 sending messages, which generally has very low overhead, but can be
 heavy if a large amount of data is being copied between
 processes.
Note
Unless specified otherwise, “processes” in this book refer to
 Erlang processes, not OS processes. Erlang’s processes are very
 lightweight and have very fast switching and startup times.

Lack of Types

Erlang has been criticized for its lack of a type system, and it’s
 true that Erlang does not have static typing like Haskell does. Type
 systems give programmers a way to prove that the program is consistent
 in how it treats data. However, in a distributed system like Erlang,
 providing that kind of static consistency has some practical
 costs.
Erlang allows you to upgrade a system while keeping it running.
 However, by doing this, you create a system that is inconsistent. If
 types are changed in a version change (and it is reasonable to assume
 that most version changes will involve changing types), demanding static
 typing means that nodes running the old version cannot communicate with
 nodes running the new version—and the same with processes within the
 same node.
Imagine a case where there are just two nodes in a system, both
 running the same version of some software. This is a consistent system,
 where the consistency is one of type definition. However, when it comes
 time to upgrade the system, there will be a period of time when one node
 is running the new software and the other is running the old software.
 At this point you have an inconsistent system with regard to
 types.
At this point you have a few options. If you had built your system
 in Haskell, you would probably need to have a partition in which nodes
 running the old version of the software could not talk to those running
 the new version. You could also just take the system down for a short
 period of time while you did the upgrade, therefore sacrificing the
 availability of the system but ensuring that the system while running is
 never partitioned and never inconsistent.
There is no general perfect solution to this problem. Erlang was
 built to optimize for maximum availability, as choices were made to
 allow it to be inconsistent in some ways while still making services
 available. It may in fact be possible to solve this in Haskell, but thus
 far no one has done so. Erlang was built with the assumption that errors
 will happen and that the system should have methods of dealing with them
 on an ongoing basis. Haskell was built to minimize errors, period.
 Different priorities led to different designs.

OTP—For More Than Just Telecom!

The Open Telecom Platform (OTP) framework for building
 fault-tolerant applications ships with Erlang. By setting up software to
 run inside the OTP framework, applications can take advantage of OTP’s
 built-in fault recovery and monitoring. OTP automates much of the
 concurrency of Erlang, but what really makes it shine is its ability to
 monitor a running application and keep it running.
Erlang code takes a “let it crash” approach, unlike the try/catch blocks in many other languages.
 Erlang figures that when something goes wrong, let it go wrong, and
 don’t try to duct tape it back together in an unknown state. OTP will
 restart monitored processes that die. This also has the benefit that a
 process that is on a node that has died can be restarted elsewhere.
 (Obviously a node cannot fix itself if the server it is on has died.) If
 you want a system that can be fault tolerant and continue to provide
 your service, you want a framework that can deal with failure and simply
 work around it.
This book builds an application using OTP in Chapter 9; however, this is not a complete
 introduction to the subject as I cover only the elements that are needed
 to write this specific application. The books Erlang
 Programming and Programming Erlang both
 provide a more detailed introduction, while the book Erlang
 and OTP in Action goes into much greater detail on
 OTP.

Why Web Services? Why REST?

Years of work with the Web have made people comfortable with the
 idea that a specific URL is tied to a specific resource. For example, the
 URL http://en.wikipedia.org/wiki/Erlang_(programming_language)
 is the Wikipedia page on Erlang. It is obvious in this case how the URL
 relates to the underlying resource. For a web page meant to be read by a
 person with a web browser, this is a useful representation.
Before REST surfaced, emerging from careful study of how and why
 HTTP succeeded, developers created a number of ways to send a remote
 procedure call over a network. When HTTP became the dominant mechanism for
 Internet communications, many of those same mechanisms were repurposed to
 run over HTTP. This made broad sense, as HTTP tools are common, but didn’t
 always take advantage of HTTP’s strengths.
Prior to REST, people tended to tunnel services over SOAP. However,
 SOAP does not make very good use of HTTP—it sends only XML messages back
 and forth over HTTP POST requests. It doesn’t take advantage of caching
 proxies or other features of the HTTP infrastructure, beyond HTTP’s
 frequent ability to go through a firewall.
REST takes much better advantage of HTTP, using HTTP’s limited set
 of request verbs and living within the expectations for their processing.
 This forces an approach of working with a limited number of actions on an
 unlimited number of possible resources. It takes some getting used to, but
 it offers a consistent and powerful way to send information across
 networks that it easily integrated with web infrastructure and interfaces.
Note
For full details on how a REST service should work, take a look at
 REST in Practice by Webber, Parastatidis, and
 Robinson (http://restinpractice.com).

REST treats URLs—usually called Uniform Resource Identifiers (URIs)
 in this context—as the fundamental way to address an underlying resource.
 Furthermore, a resource may have several representations; so for example,
 an ebook may be accessible as a PDF, mobi, or some other format.
In a RESTful service, the four HTTP verbs GET, POST,
 PUT, and DELETE have well defined meanings. A GET request should only retrieve information. A
 GET should also be idempotent: a client
 can call it as many times as needed, and it will not change the state of
 the system in any way the client will care about. (For example, it may add
 information to logs, but not change user-facing data.) As long as the
 server sets an ETag or a Cache-Control header, this makes it easy for a
 proxy server or client to cache a resource, allowing much faster response
 on reads across a network. (HEAD and
 OPTIONS requests, if you use them,
 should also be idempotent.)
The POST method will create a new
 entity, which could be a chatroom or a record in a database. The PUT method will replace a resource with a new
 version. This can be used to update records or the like. The DELETE method is used to remove a
 resource.
REST defines the DELETE and
 PUT methods so that they are
 repeatable. That is to say, calling them several times will have the same
 effect on a system as calling them once. For example, if you call DELETE on a resource one time or four, it should
 still have the end result that the resource is deleted (or an error is
 generated).
In a RESTful service the URL should reliably serve to identify the
 resource to be worked on. In many ways, you’ll want to build by
 identifying your resources first, and then figuring out how the
 interactions mesh to create an application.

New Opportunities for Scaling and Resilience

Erlang and RESTful web services fit into a larger picture of recent
 technical changes that make it easier to apply Erlang’s strengths.
Cloud Computing

Cloud computing, at least on the “Infrastructure as a Service”
 (IaaS) model, makes adding a new server to a network easy and fast. In a
 pre-cloud system, adding a new server would require ordering it, going
 to the data center, and physically installing it in a rack. Most cloud
 setups reduce that to a REST API that can start up a server in a minute
 or two.
This complements Erlang perfectly. Erlang has lots of features
 that allow a networked system to add nodes in real time and to detect
 when they fail. Of course, the specifics of how to set up an Erlang
 application in the cloud will depend a lot on the details of the
 application and what kind of loading it is expected to get.
Note
In IaaS cloud implementations the service provides virtual
 platforms, each of which runs a full OS. For use with Erlang that
 would probably be some form of Linux, but could also be Windows or
 some other OS.

Erlang provides a built-in function (BIF) called erlang:monitor_node/2 that will send a message
 of the form {nodedown, Node} if the
 node in question goes offline. It would be simple to have the monitoring
 process use the REST API from AWS or another cloud provider to
 automatically bring up a new node in this case. It would also be
 possible to have the system bring up new nodes if the system is becoming
 overloaded.
There are two times when a system may wish to bring up one or more
 nodes. The first is when a node fails, and the system brings up a new
 node to replace it. The second is when a set of nodes is getting
 overloaded. This will of course take some system monitoring. But if a
 system is smart enough to know that the average system load over a set
 of nodes is increasing, then instead of crashing and letting the admin
 deal with it later, the system can be set up to create new nodes and
 link them into the system. The details of how to do this will vary
 depending on the hosting provider and the needs of the
 application.
It is probably also smart to include an option to override the
 automatic system and allow an admin to set a number of servers manually.
 For example, if your company is going to run an ad in the Super
 Bowl,[4] then it makes sense to have enough servers running and
 ready before the ad runs and the systems overload.
In addition to scaling out, there is also the issue of scaling
 down during those times when a system has more nodes than are needed.
 Your system may have been running up to 300 nodes to handle the load
 from the Super Bowl advertisement, but now that it’s over it can be
 scaled back to a lower level. This is also useful for running the
 application on a test machine in development.

System Architecture and Erlang Scaling

From about 1970 to about 2002, system processors got faster,
 doubling in speed every 18 months or so. However, somewhere around 2002
 something changed. As speeds kept getting faster, the laws of physics
 threw a brick in this progress. Faster speeds generate more heat, which
 uses more power and causes more problems in getting rid of waste heat.
 In addition, the speed of light puts a hard limit on how far a signal
 can travel in one clock cycle. Therefore, since 2002 the trend has not
 been to make processors faster but to put more of them on each
 chip.
When the CPUs were getting faster, it was pretty easy to speed up
 your code. If you just waited 18 months and did nothing, your program
 would go twice as fast! In the age of multi-core processors, this no
 longer works. Now programmers need to write programs that will use all
 the cores on a system. On a six-core chip, a sequential program can be
 running full steam on one core, but the other five are sitting around
 doing nothing.
As of the fall of 2011, Intel’s high-end server chips have eight
 cores, the consumer chips from Intel have up to six cores (in many of
 those cases, each core can run two threads), and AMD has announced a
 line of processors with eight cores. IBM’s Power7 chip has eight cores
 that run four threads each. It is not crazy to expect that in a few
 years we will be talking about chips with 32, 64, or even 128 cores or
 more. The way we write programs for these processors will be different
 from the way we wrote programs for the single-processor chips of the
 past. It is not clear that Erlang will scale to 64 or 128 cores, but it
 probably has a better chance to do so than most other languages.
If you want to use a multi-core chip efficiently, you need a large
 number of processes ready to run. Ideally the number of processes should
 be much larger than the number of chips to simplify distribution. If
 there are 16 processor threads running on the CPU, having only 16 or 32
 processes will probably not work well, as statistically there needs to
 be a pool of processors waiting to run so that there is never a time
 when all the processes are blocked. There will be many times when the
 chip is doing nothing while processes are waiting on the disk or network
 or the like. Having a large number of processes waiting means that the
 system can always have tasks in the queue when one process goes into a
 wait state.
Assuming that the time to switch between processes is very small
 (which for Erlang processes it is) then having several thousand
 processes or more would be best, so the system can make sure there are
 always processes to be thread into a waiting core.
The ability of a system like Erlang to scale well is dependent on
 three things: the speed at which processes are started, the speed at
 which the system can switch between them, and the cost for passing
 messages. Erlang does a good job minimizing all three of these
 factors.
Scaling up versus scaling out

There are two basic ways to scale a system:
 up or out. To scale a system
 up means to replace the server with a larger one—you take out the
 existing server and add in one with more CPUs, more memory, more disk,
 etc. There are limits to this, however, and it can be expensive. IBM’s
 top-of-the-line servers can have as many as 32 CPUs with 1024
 processor threads running at the same time. In web scale, however,
 that can still seem rather small.
To scale a system out means to spread it
 over a number of smaller servers. So instead of buying the
 million-dollar IBM Power7 server, you buy a bunch of Intel class
 servers and spread the work across them. The advantage of this is that
 if set up correctly, there are no limits besides the budget in how far
 it can scale. When used with today’s cloud-based PaaS platforms, it
 can be possible to scale up for unexpected loads in minutes by
 ordering more servers from AWS or another cloud provider.

Amdahl’s law

Gene Amdahl is a computer architect originally known for
 designing mainframes for IBM and others from the 1950s to the 1980s.
 He presented a strong argument about the nature of systems in which
 some parts are parallel and other parts are not.
This argument, known as Amdahl's law, states that in a system
 where parts of the process are sequential and other parts are
 parallel, then the total speedup can never be more than the parts that
 are sequential—adding more cores won’t make the whole system go
 faster. (For a full explanation of Amdahl’s law, see the Wikipedia
 page on the subject: http://en.wikipedia.org/wiki/Amdahl%27s_law.)
As an analogy, imagine that you go to a bank in which there are
 a bunch of tellers but only one cash counting machine. As more
 customers come in, the manager can always add more tellers, but if
 they must stand in line to use the cash counter the system will never
 get faster.
In any application, there will always be parts that are
 sequential. In an Erlang application, a few places come to mind.
 Module setup and tear down code is sequential, but as it will normally
 be run only when new services are being brought online, it is probably
 not a major source of bottlenecks.
One place that sequential resource uses can become a problem is
 access to disk. Disks are by definition sequential in that a given
 disk can be reading or writing only one thing at a time. The disk is
 also usually orders of magnitude slower than memory or CPU cache.
 Components like data stores that write data to disk or logging modules
 are often places where a bottleneck for the whole system can
 occur.
Another place that can cause a lot of sequential code is locks.
 In general, this is not an issue in Erlang the way it would be in Java
 or C#, but at least in theory it could be an issue with Mnesia or
 similar tools if things get blocked waiting for transactions.

Data Storage Options

Back in the “old days” of say, 1998 to 2005, the options for data
 storage when developing a web service was a choice of SQL databases.
 MySQL was always the easy choice; other options included Postgres,
 Oracle, and Microsoft SQL Server. All of these products are SQL
 databases, with all that is good and bad about SQL built into
 them.
SQL databases are very good for many things, but fail rather badly
 when it comes to horizontal scaling. Trying to build a partitioned
 database or a multi-master setup in most SQL databases is at best a
 major pain in the neck and at worst actively difficult. If Erlang and
 Yaws have been chosen for a project with the goal of having the service
 be fault tolerant and scalable, then of course those properties must be
 present in the data storage solution as well.
In the modern age, many web development projects are moving to
 “NoSQL,” which is a loosely defined set of data storage technologies
 that have been created to deal with web-scale data. The good thing about
 NoSQL is that there are many more choices in terms of how data will be
 stored than there are in SQL. The bad thing is that since there are many
 more choices, the team developing an application must be ready to
 understand those choices and select the system or systems that will work
 best.
NoSQL solutions lack some SQL features that programmers have
 become used to. The first thing to note is that there is no idea of a
 join in most NoSQL data stores. Trying to join two tables across
 multiple hosts is a problematic task, requiring multiple phases of
 searching and joining using MapReduce techniques or something
 similar.
Note
For an overview of a number of SQL and NoSQL databases, check
 out the book Seven Databases in Seven Weeks by
 Eric Redmond and Jim R. Wilson (Pragmatic Programmers: http://pragprog.com/book/rwdata/seven-databases-in-seven-weeks).
 This book discusses PostgreSQL, Riak, Redis, HBase, MongoDB, CouchDB,
 and Neo4j.

Many NoSQL data stores also lack any concept of a transaction.
 Ensuring consistency is up to the programmer. Again, this flows from the
 distributed nature of the data store. Trying to ensure that all the data
 across several hosts is always constant can often be an O(N) or even
 O(N^2) task. So it falls to the developer to ensure that data
 manipulations work in a sensible manner.
The other thing to be aware of when moving from SQL to NoSQL is
 that finding developers and system administrators who have been doing
 SQL for many years is relatively easy. There is a base of knowledge
 around SQL that has not yet been developed around NoSQL, which is still
 quite young. It is safe to say that 10 years from now SQL databases will
 look similar to the way they do today, while NoSQL still has a lot of
 evolution left simply because it is a new product family.
In order to be fault tolerant, a database, like an application
 server, must be able to scale to more than one computer and be able to
 handle the case where a server dies. In addition, to be scalable, each
 server must be independent. If with three nodes a cluster can serve N
 requests per minute, then with six nodes it should be able to serve 2N
 requests per minute (or at least close). In reality this is not usually
 possible, as contention for shared resources will get in the way. True
 linear scaling is a theoretical best case.
CAP Theorem
The CAP theorem is an idea proposed by Eric Brewer that states
 that it is impossible for a distributed computer system to provide
 strict guarantees on all three of Consistency, Availability, and
 Partition Tolerance at the same time. This
 theorem has in fact been mathematically proven to be true. A Google
 search will reveal the full details of the proof for those who may be
 interested.
A consistent system is one in which all nodes see the same data
 at all times. This is traditionally seen in single-node systems or
 those running on a small number of nodes. Most SQL databases feature
 extensive features in terms of transactions and the like to make sure
 that the data is always consistent at any given time, and in some
 cases this is an important feature.
It is possible to achieve consistency on massively concurrent
 systems; however, it must be done at the cost of fault tolerance or
 availability. In some cases the cost of achieving this may be quite
 high. In addition, if all nodes must agree on the state of data, this
 can making handling failures much harder as nodes can go
 offline.
The problem with a fully consistent system is that when scaling
 up to many nodes, the communication overhead can get very high. Every
 node must agree on all aspects of the state of the data at all times.
 This can make scaling systems difficult, as two-phase commits cause
 more and more locks to spread through the system.
However, full consistency is often not as important as people
 think. In many web scale applications, if some users see new data a
 few seconds after others, it does not matter that much—for example, if
 I post a new auction to eBay it’s not terribly important if some users
 don’t see it for a minute or two. On the other hand, in some banking
 systems this will matter a great deal.
An available system is one in which all clients can always read
 and write data. Obviously, having a system with guarantees about
 availability is a good thing; however, it is not possible to combine
 this with partition tolerance and constancy. If a system must be fully
 constant in the face of a network split, it must disallow writes as it
 will have no way to make sure the data is consistent across all
 nodes.
The best example of a partition-tolerant database is the DNS
 system. The DNS system is pretty much always available, but it is
 possible that some of the servers may be split from others at any
 given time, in which case they will serve up old data until the issue
 is resolved. Thus all users on the net will always be able to use the
 DNS system, but may not always see the same data for a given
 query.
The CAP theorem is mostly brought up in terms of databases, but
 in truth it applies to any distributed computing system. For example,
 Git and Mercurial version control tend to be AP systems, while CSV and
 Subversion tend to be CA systems. Systems like Git and Mercurial also
 need to explicitly handle the case where two sets of changes have to
 be merged.
In fact, the CAP theorem applies to many areas that might not be
 obvious. For example, foreign exchange is a widely available system
 that is not always exactly consistent. The price quotes in exchanges
 around the world will in general be similar, but may differ by a
 little bit and since it takes time for a signal to travel between
 London and New York, being 100% consistent would actually be
 impossible.
Erlang systems are by definition distributed, so CAP applies to
 not just the data store but the system as a whole. Understanding this
 idea is key to building a successful application in a distributed
 environment.

Mnesia

Mnesia is Erlang’s own database. It is a very fast data store
 designed to work well with Erlang, and it has several nice advantages.
 It works with native Erlang records and code, and it is also possible
 to set it up to serve data from RAM or from disk and to mirror data
 across nodes. You can even set it up so that data lives in memory on
 most nodes but is mirrored to disk on one or two nodes, so that all
 access is in memory for very fast operations but everything is written
 out to disk for long-term persistence.
Note
Technically the Mnesia data store is ETS and DETS. Mnesia is a
 transaction and distribution layer built on top of them.

The one possible problem with Mnesia is that while it is not a
 SQL database, it is a CA database like a SQL database. It will not
 handle network partition. This does not mean that it is not usable in
 scalable applications, but it will have many of the same issues as SQL
 databases like MySQL.
Mnesia is built into Erlang so there is nothing to install.
 However, it must be started when Yaws is started. To do this, use the
 OTP function application:start(mnesia). to start up the
 Mnesia database. From here, tables can be created with the mnesia:create_table/2 function, which uses
 Erlang records as its table schema. For full details of how to use
 Mnesia, see some of the Erlang references. The Erlang documentation
 also includes a set of man pages on Mnesia.
By using the qlc module, it
 is also possible to treat a Mnesia table as if it were a big array, so
 you can use Erlang’s array comprehensions to pull data out of Mnesia.
 It is even possible to do things like foldl to summarize data in a table.

CouchDB

CouchDB is a data store that is actually written in Erlang.
 Unlike Mnesia and MySQL, CouchDB is not organized around records with
 a fixed schema; rather, it’s a document store that takes some ideas
 from Lotus Notes. In fact, Damien Katz, who created CouchDB, used to
 work on Lotus Notes.
CouchDB also gives up strict consistency for an eventual
 consistency. By doing this, it can create guarantees of partition
 tolerance and availability. In a CouchDB network every node can be a
 master, and even if two nodes are not in communication, both can be
 updated.
This lack of consistency has some costs, but it also has some
 major benefits. In many cases, making sure all nodes agree about the
 state of data at all times is a very expensive operation that can
 create a lot of load on a large system.
There are multiple interfaces from Erlang to CouchDB, including
 couchbeam, eCouch, erlCouch, and erlang_couchdb. Each of these offers
 somewhat different features, but several of them (including couchbeam and eCouch) run as OTP applications. Links to
 all of these are available on the CouchDB wiki: http://wiki.apache.org/couchdb/Getting_started_with_Erlang.

MongoDB

MongoDB is also a NoSQL database, but it is designed to assume a
 consistent database with partition tolerance and the ability to share
 data easily. MongoDB can be accessed from Erlang with the emongo driver available from https://bitbucket.org/rumataestor/emongo. The API is
 quite straightforward and documented at the website.

Redis

Redis is also a key value data store, but unlike MongoDB and
 CouchDB, Redis normally keeps its entire dataset in memory for very
 fast access, while keeping a journal of some form on disk so that it
 is still persistent across server restarts. Like Mongo, it is a CP
 data store.
There are two sets of drivers for Redis in Erlang, Erldis and Eredis, both of which can be found on the
 Redis home page at http://redis.io.

Riak

Riak is yet another document database that is similar to CouchDB
 in some ways. Like CouchDB, it is written in Erlang and gives up
 strict consistency for availability, scalability, and partition
 tolerance. It is meant to be a distributed system and has good support
 for scaling out by adding nodes~, and scaling back in by removing
 nodes that are no longer needed. Riak can be found at http://www.basho.com.
Riak is derived in large part from Amazon’s Dynamo database. The
 idea is that you split many nodes over a consistent hashing ring, and
 any key in the database gets sent to the nodes taking charge of a
 given section of the ring.
The great thing about availability is that the nodes are split
 in a way that might allow a quorum system. That is to say that in a
 system of N nodes, for a write to be successful all the nodes must
 agree to the transaction. That is a fully consistent system with lower
 availability. If only some subset (M) of the nodes need to agree, then
 only a subset of the cluster has to be responsive for things to
 work.
By adjusting the ratio of M:N it is possible for a system to be
 tuned in terms of the level of consistency versus availability
 desired. This tuning can be set on a per-query basis so the system is
 very flexible.
As Riak is primarily written in Erlang, there is excellent
 support for interfacing Riak to Erlang applications.

[3] In practice, this often means “The system was more reliable than
 our way of measuring it.”

[4] For those of you outside North America, the Super Bowl is the
 biggest festival of advertising in the United States each year. It
 also features a sporting event.

Chapter 2. Getting Started with Yaws

Most developers who are moving from other web development environments
 to Erlang and Yaws will have used other web servers such as Nginx or Apache.
 The Erlang Yaws web server performs the same basic tasks, but the details of
 performing common actions are often different.
Erlang is not only a language, but also a runtime system and something
 that looks a lot like an application server. As such, Erlang and Yaws (or
 other web servers) will fill the same role as Apache/PHP/MySQL and other
 components all in one system.
The major differences between Erlang/Yaws and Apache/PHP have a lot to
 do with how Erlang tends to set things up. Erlang assumes that systems will
 be clustered, and processes in Erlang are somewhat different from those used
 in many other systems.
If you’ve used Apache with mod_php, you may remember that each request
 is handled by a process or thread (depending on how things are set up). The
 classic Common Gateway Interface (CGI) would start a new process for every
 request. These threads and processes are constructions of the OS and are
 relatively heavyweight objects. In Erlang the processes are owned not by the
 OS, but by the language runtime.
When building an application with Apache and PHP, for each request the
 web server must bring up a copy of the PHP interpreter and quite possibly
 recompile the various bits of PHP code that are to be run. This is an
 expensive operation. By comparison, in Yaws the Erlang code is probably
 already compiled and loaded, so in practice most of the time all Yaws will
 need to do is call the correct function.
An Erlang process is much more lightweight than an OS thread. The time
 it takes to start one, to send a message between them, or to context-switch
 them is much smaller than it would be with threads in C or Java, for
 example. This has some definite implications on how applications are
 designed. While Java will tend to use thread pools, in Erlang it is
 considered normal to just create a process for each client or socket because
 they are so inexpensive to use.
As Erlang processes are so lightweight and can be started up so
 quickly, Yaws can also create a new process for each request that comes in
 without any problem. This means that Yaws can scale up very well and quite
 quickly.
Working with Yaws

If you’ve never worked with Yaws, you have a few things to get used
 to. Yaws naturally sets up clusters, and it has its own way to create
 dynamic content and handle requests. Overall, however, Yaws is pretty easy
 to work with, and it uses the Erlang REPL so you can try code out at the
 command line.
Starting Yaws

Once Yaws is installed (see Appendix A) it must be
 started. To start Yaws at the Unix command line, simply run yaws. In Windows there are several options for
 starting Yaws from the Start menu, but the most common method is to open
 a DOS command window from the Start menu and do it from there.
There are a number of command-line switches that you can pass to
 Yaws. These let you set the node name or other options. This can also be
 done via the .erlang file, which
 Yaws will read when it first starts up. This file should contain valid
 Erlang code and should live in the user’s home directory.
When Yaws is started it will print out a few lines of information
 that look similar to Example 2-1 and then drop into
 the Erlang REPL. At this point Yaws is fully functional and will serve
 any requests that you send it. It may take a second or two from when you
 start the Yaws executable to when it is ready to serve content to
 users.
By default, Yaws will be set up to listen on port 8000 (Example 2-1 changes it to 8081 due to something else using
 that port). Normally we want to run a web server on port 80 for HTTP or
 port 443 for HTTPS; however, many Unix-type systems will not allow
 nonroot users to bind to ports numbered below 1024. Clearly, running
 Erlang as root is probably not a good idea, so we need a different
 solution to this. It would be possible to run Yaws behind a catching
 proxy server that will map port 80 to a higher port. Alternatively, you
 could use a number of methods to attach to a higher port. Various ways
 of doing this are documented on the Yaws website at http://yaws.hyber.org/privbind.yaws; you will need to
 figure out which one works best for your setup.
Note
The port that Yaws listens on is in a
 <server> block in the
 yaws.conf file. Each virtual host can listen on a
 different port or IP address, but they will all be able to access the
 same modules.

Example 2-1. YAWS at startup
Eshell V5.8.3 (abort with ^G)
(yaws@sag)1>
=INFO REPORT==== 1-Feb-2012::11:32:16 ===
Yaws: Using config file yaws.conf
(yaws@sag)1>
=ERROR REPORT==== 1-Feb-2012::11:32:16 ===
'auth_log' global variable is deprecated and ignored. it is now a per-server variable
(yaws@sag)1> yaws:Add path "/usr/lib/yaws/custom/ebin"
(yaws@sag)1> yaws:Add path "/usr/local/lib/yaws/examples/ebin"
(yaws@sag)1> yaws:Running with id="default" (localinstall=false)
Running with debug checks turned on (slower server)
Logging to directory "/var/log/yaws"
(yaws@sag)1>
=INFO REPORT==== 1-Feb-2012::11:32:17 ===
Ctlfile : /home/zkessin/.yaws/yaws/default/CTL
(yaws@sag)1>
=INFO REPORT==== 1-Feb-2012::11:32:17 ===
Yaws: Listening to 0.0.0.0:8081 for <1> virtual servers:
 - http://www:8081 under /home/zkessin/Writing/ErlangBook/yaws/DocRoot
(yaws@sag)1>

Unless you redirect them to a file, any logging commands sent by
 programs running in Yaws will appear in the Yaws startup code. You can
 also compile modules and test code here. In a system that needs to be
 kept running for a long period of time, it may be useful to start up the
 Yaws command line inside the Unix program screen, which will allow the session to be
 suspended and resumed later from a different computer. For testing and
 development I often run Yaws inside an Emacs shell buffer, from which I
 can easily copy and paste code from a scratch buffer to test
 things.
When you start up Yaws it reads a yaws.conf
 file. The default location of this file will vary depending on how Yaws
 was set up, but it can also be specified by a command-line switch. If
 you need to reload the yaws.conf file for some
 reason, you can do so by calling yaws
 --hup.

Serving Static Files

While web applications are built around dynamically generated
 content, almost all of them also have some static files that need to be
 served to clients. These will often be HTML, CSS, JavaScript, images,
 and other media. Yaws is capable of serving up static files, and as in
 Apache there is no special configuration needed: just place the files
 under the doc root and Yaws will happily push them out to the browser.
 (If Yaws is embedded inside a larger Erlang application, this may not be
 the case.)
A typical Yaws install will be spread over multiple nodes, so it
 is important that each node in a cluster have an up-to-date copy of each
 file. There are several ways to do this. If the cluster size is small
 (just a few nodes) then simply using rsync to copy files around may be a good
 solution. In a larger system, using the system’s package manager along
 with a tool like Puppet (http://puppetlabs.com) to
 distribute the files may make sense. It may also be possible to use a
 system like CouchDB to replicate resources around a network.
Using the CGI Interface
While it is best to use Yaws to manage code written in Erlang,
 you may find cases where using another language via the old-fashioned
 CGI interface still makes sense. Thankfully Yaws can do this quite
 well—simply configure the yaws.conf file to recognize files ending in
 .cgi or .php for correct handling.
In order to run scripts from Yaws, the
 <server> block in the yaws.conf file must have allowed_scripts set to include “php” or
 “cgi” as appropriate. The Yaws website has full details.
In addition, the out/1
 function can be set up to call a CGI function by invoking the yaws_cgi:call_cgi/2 function, in the case
 where a CGI function should be called conditionally or otherwise need
 special handling.

Compiling, Loading, and Running Code

When you launch Yaws from a terminal, it will present a
 command-line REPL, which can be used to interact with Yaws and Erlang.
 This is a very easy way to play around with Yaws and try things
 out.
There are several ways to compile and load Erlang code. In
 testing, the easiest way is to type c(module). at the Yaws command line. This will
 compile the Erlang code down to a .beam file, which
 is Erlang’s binary format, and load it into the Erlang system. Using
 lc([module1, module2]). will do the
 same with a list of modules. In general, the .beam
 files should be placed in directories in the code search path. In this
 case, when an unknown module is required, it will be loaded
 automatically. To explicitly load a .beam file
 compiled externally, l(module). will
 load the .beam file. (All of these take an atom,
 which is the name of the module. Other options from the shell may be
 found by running the help/0 function
 from the Yaws command line.)
Note
Erlang programs run in a virtual machine, in the same way that
 Java and .NET programs do. In Erlang’s case, the virtual machine was
 originally called “Bogdan’s Erlang Abstract Machine” and is now
 “Bjorn’s Erlang Abstract Machine” (Bogdan and Bjorn being the
 programmers who created them). As such, Erlang’s binary object files
 have the extension .beam.

You can also change directories and view the current directory
 contents by using the cd/1 and
 ls/0 shell commands.
Example 2-2 shows a simple interaction in the
 Erlang shell. The shell is opened, we check the current directory with
 pwd/0, and then check the files in
 the directory with ls/0.
Example 2-2. ls and pwd
Erlang R14B02 (erts-5.8.3) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]

Eshell V5.8.3 (abort with ^G)
1> pwd().
/home/zkessin/Writing/ErlangBook/running
ok
2> ls().
.svn example.erl test.erl
ok
3> c(test).
{ok,test}
4> test:test(1234).
1234
5>

Then the test module, shown in Example 2-3, is
 compiled with the c/1 function. In
 this case the module compiled correctly, so it returns {ok,test}. If there were errors they would be
 reported here as well. Finally we run the test:test/1 function, which just returns its
 arguments.
Example 2-3. test.erl
-module(test).
-export([test/1]).
test(X) ->
 X.

The c/1 and l/1 functions will only load code on the
 current node. If you want to load code on all connected nodes, use the
 nc/1 and nl/1 functions. These work just like the
 single-node versions, but will propagate the changes out to all
 connected nodes.
The compile and load options mentioned above will also reload a
 module that is running. So it is easy to upgrade software; just reload
 it and make sure that functions are called with an explicit module name
 to do an upgrade (this can happen with an explicit message if
 desired).
In some cases—like if you’re doing something larger involving
 make—compiling from the Yaws command
 line may not be the best choice. In that case there is an explicit
 Erlang compiler erlc,[5] which can be called from a Unix command line or from a
 build utility such as Make, Ant, or Maven. The modules can be explicitly
 loaded from a Yaws command-line switch or from the
 yaws.conf file. Normally an Erlang project is set
 up so that sources live in a src directory and the
 compiled files are moved to an ebin directory
 during the build process.
Erlang supports code autoloading. When a call is made to my_module:my_function/n, if the module
 my_module is not loaded then Erlang
 will attempt to load the module.
When Erlang attempts to load a module, it will look in its file
 path in a very similar way to how bash will find programs. You can see
 the contents of the Erlang path by running code:get_path() from the Erlang REPL. This
 will produce a result similar to Example 2-4. To add a
 new directory to the front of the path, call code:add_patha/1, and to add one to the end
 call code:add_pathz/1. Both will
 return true if the call is successful
 or {error, bad_directory} if not.
 Normally this should be done from an .erlang file
 in your home directory.
Example 2-4. Erlang path (Truncated)
(yaws@sag)16> code:get_path().
["/usr/local/lib/yaws/ebin",".",
 "/usr/lib/erlang/lib/kernel-2.14.3/ebin",
 "/usr/lib/erlang/lib/stdlib-1.17.3/ebin",
 "/usr/lib/erlang/lib/xmerl-1.2.8/ebin",
 "/usr/lib/erlang/lib/wx-0.98.9",
 "/usr/lib/erlang/lib/webtool-0.8.7/ebin",
 "/usr/lib/erlang/lib/typer-0.9/ebin",
 "/usr/lib/erlang/lib/tv-2.1.4.6/ebin",
 "/usr/lib/erlang/lib/tools-2.6.6.3/ebin",

Clustering Yaws

One of the major benefits of Erlang (and by extension, Yaws) is
 the fact that it is designed to exist in a clustered environment. The
 Yaws service itself can be clustered by simply starting it up on
 multiple nodes and then putting a standard load balancer in front of the
 web servers. However, in many cases the real power of Yaws will come
 from clustering a few nodes running Yaws with a larger Erlang
 application. As Yaws is native Erlang code, Yaws code can send and
 receive Erlang messages, which enables a Yaws application to exist
 inside an Erlang ecosphere.
In order for hosts to communicate, they must share a cookie value
 that should be kept secure. This cookie can be specified on the command
 line, set with an Erlang built-in function (BIF), or set in the
 .erlang.cookie file. Erlang will create that file
 with a random value if it is needed but not found. When setting up an
 Erlang network, finding a good way to distribute this cookie file is
 probably a good idea.
Warning
When working across multiple nodes one must be careful that the
 same code is always loaded on all nodes. Erlang has features to do
 that, such as the shell command lc/1, but will not load a new module on
 every node by default. While upgrading a system, the software must be
 able to deal with the case that some nodes may be running a newer or
 older version of the software.

Setting up links between nodes in Erlang is actually quite easy.
 The first time a message is sent from one node to another, they will be
 connected together. So calling net_admin:ping/1 or sending any other message
 will connect two nodes.
One nice thing about Erlang’s processes is that when sending
 messages between them it does not matter where each process is running.
 The code Pid ! message sends message
 to the process Pid. Pid
 can be on the same computer, in a second Erlang process on the same
 host, on a different computer, or even on a computer running in a data
 center halfway around the world.
In Figure 2-1 there are two nodes—A and
 B; within those nodes, there are three processes numbered 1, 2, and 3.
 Messages can be sent between them via the ! operator (represented here with an arrow)
 regardless of where the two nodes are.
Warning
In general, setting up cross–data center connections between
 nodes should use SSL tunneling, and may have a number of issues
 relating to delays between nodes.

[image: Cluster diagram]

Figure 2-1. Cluster diagram

Dynamic Content in Yaws

If the desired result is to output a page of HTML or XML,
 there are several good ways to go about this. If you give Yaws a file with
 the extension .yaws, it will look for any blocks in
 that file with the tag <erl> and
 run the out/1 function that is found in
 that block. This is similar to how PHP will invoke code inside of a
 <?php ?> tag and how many other
 systems do templates. It is also possible to render HTML or XML with a
 template system like “ErlyDTL” (see ErlyDTL).
Yaws will in fact compile these files down to an
 .erl file, which will live in the $HOME/.yaws directory. If there is a syntax
 error the exact path will be given.
Note
It is customary in Erlang to name a function with the name and
 parity. So out/1 is the function
 named “out” that takes one parameter, in this case a data structure that
 describes the request. The function out/2 would be a separate function that simply
 shares a name with out/1.

How Yaws Parses the File
When the browser requests a file with a .yaws
 extension, Yaws will read the file from the disk and parse that file.
 Any parts that are pure HTML will be sent to the browser.
However, anything in an <erl> block will
 be handled separately. Yaws will take each
 <erl> block and convert it into an Erlang
 module. Yaws will then compile the code and cache it in memory until the
 .yaws file is changed. As such, Yaws will not have
 to recompile the source except when the file is changed or first
 accessed.
Yaws will then call the function out/1 and insert the return value of that
 function into the output stream. If there is an
 <erl> block without an out/1 function, Yaws will flag it as an
 error.
If Yaws finds two or more <erl> blocks in
 a file, it will just convert each one into a module and compile and run
 them individually.
It is also important to note that unlike PHP, Yaws will not send
 any output to the socket until the entire page is processed. So it is
 possible to set a header from the bottom of the page after some HTML
 output has already been generated if that is needed.
If you want to understand the full process of how Yaws does all
 this, read the Yaws Internals Documentation at http://yaws.hyber.org/internals.yaws and the source code
 in yaws_compile.erl.

The out/1 function is called with
 a parameter of an #arg{} record that is
 defined in the yaws_api.hrl file (see Example 2-5). All the data that might be needed to figure out
 details of the current HTTP request are here and can be used to determine
 what to do. This is the definition of the #arg{} record from the Yaws sources. In any
 .yaws files this will be automatically included;
 otherwise you will have to include it in the header of your module.
Example 2-5. Structure of the #arg{} record
-record(arg, {
 clisock, %% the socket leading to the peer client
 client_ip_port, %% {ClientIp, ClientPort} tuple
 headers, %% headers
 req, %% request
 clidata, %% The client data (as a binary in POST requests)
 server_path, %% The normalized server path
 %% (pre-querystring part of URI)
 querydata, %% For URIs of the form ...?querydata
 %% equiv of cgi QUERY_STRING
 appmoddata, %% (deprecated - use pathinfo instead) the remainder
 %% of the path leading up to the query
 docroot, %% Physical base location of data for this request
 docroot_mount, %% virtual directory e.g /myapp/ that the docroot
 %% refers to.
 fullpath, %% full deep path to yaws file
 cont, %% Continuation for chunked multipart uploads
 state, %% State for use by users of the out/1 callback
 pid, %% pid of the yaws worker process
 opaque, %% useful to pass static data
 appmod_prepath, %% (deprecated - use prepath instead) path in front
 %%of: <appmod><appmoddata>
 prepath, %% Path prior to 'dynamic' segment of URI.
 %% ie http://some.host/<prepath>/<script-point>/d/e
 %% where <script-point> is an appmod mount point,
 %% or .yaws,.php,.cgi,.fcgi etc script file.
 pathinfo %% Set to '/d/e' when calling c.yaws for the request
 %% http://some.host/a/b/c.yaws/d/e
 %% equiv of cgi PATH_INFO
 }).

In Example 2-6, the HTTP method is extracted from the
 #arg{} structure and then returned to
 be rendered into HTML, as shown in Figure 2-2.
Example 2-6. Using ARG
<erl>
method(Arg) ->
 Rec = Arg#arg.req,
 Rec#http_request.method.

out(Arg) ->
 {ehtml, f("Method: ~s" , [method(Arg)])}.
</erl>

[image: Output of]

Figure 2-2. Output of Example 2-6

It is also possible to define your actual logic in a set of modules
 that are compiled and loaded normally into Erlang and then use a set of
 .yaws files to invoke those functions from the Web.
 To do this, use a .yaws file like that shown in Example 2-7. This has an out/1 function that simply calls my_module:some_func/1, which does the actual
 work. This way the actual logic can be held in normal Erlang modules but
 without the complexity of appmods (see Chapter 3). Just
 remember to export the needed functions from the Erlang modules.
Example 2-7. Calling an external function
<erl>
out(Arg) ->
 my_module:some_func(Arg).
</erl>

In Example 2-8, we use the yaws_api:parse_post/1 function to return a list
 of the options sent over HTTP via POST. There is also a function yaws_api:parse_query/1 that will return data
 sent in the query string as in an HTTP GET operation.
Example 2-8. Displaying POST variables
<erl>
out(Arg) ->
 {ehtml, f("~p", [yaws_api:parse_post(Arg)])}.
</erl>

There are a number of options for what out/1 can return. If it returns a tuple like
 {html, "Hello World"}, the string will
 be inserted literally into the HTML document.
EHTML

Among the options for return types from out/1 is {ehtml,
 DATA}, where “ehtml” is a Domain Specific Language (DSL) that
 allows you to map Erlang data structures onto HTML elements. Each
 element of an EHTML data structure should look like {Tag, Attributes, Content}, and of course the
 content can be further EHTML records so the entire EHTML structure is
 recursive.
Example 2-9. EHTML example
{table, [],
 {tr, [{class, "row"}],
 [{td, [], "Hello World"}]}}

The EHTML shown in Example 2-9 will produce the HTML
 shown in Example 2-10. EHTML can also be used to produce
 XML if needed for web services.
Example 2-10. EHTML example output
<table>
<tr class="row">
<td>Hello World</td></tr></table>

In all .yaws pages, Yaws
 includes the function f/2, which is
 an alias for the function io_lib:format/2. This function is similar to
 the C function sprintf() except that
 it uses “~” instead of “%” for formatting, which is to say that it takes
 a formatted string and a list of arguments and returns a formatted
 string. For full details of all the options, see the Erlang manual page
 at http://www.erlang.org/doc/man/io_lib.html#format-2.

Headers and Redirects

There are times when a web application will wish to set one or
 more custom headers to send back with the content of the request. To do
 this, return the tuple {header,
 HeaderString}. For example, {header,
 "X-Server: Yaws"} will send back “X-Server: Yaws” as a
 header.
To return HTML as well as multiple headers, just put the tuples in
 a list in the return values. Example 2-11 will
 cause Yaws to return a response similar to Example 2-12.
Example 2-11. Headers and content
<erl>
out(Arg) ->
	 [{html, "Header with HTML"},
	 {header, "X-Server: Yaws"}].
</erl>

Example 2-12. Headers and content response
HTTP/1.1 200 OK
Server: Yaws 1.90
Date: Fri, 30 Dec 2011 08:50:32 GMT
Content-Type: text/html
X-Server: Yaws

Header with HTML

There are a few headers that are so common that Yaws provides a
 shorthand method of sending them. You can set the headers connection, location, cache_control, set_cookie, content_type, or content_length with the following format:
 {content_length, 4312}; that
 is, as a simple pair of atom and value.
In addition, by returning the tuple {status, Code}, Yaws allows you to send back a
 status other than “200 OK”. So it is possible to send back “201” for a
 resource created or “405” if the user sent a request with an illegal
 method. To do this, return {status,
 201}.
To redirect the user to a different URI from the
 out/1 function, return the tuple {redirect,
 URL}. Yaws will send back a HTTP 302 Found response, which
 will cause the browser to redirect to the new URI. See Example 2-13.
Example 2-13. Redirect
<erl>
out(Arg) ->
 URL = "http://www.erlang.org",
 {redirect, URL}.
</erl>

The HTTP standards require a full URL for requests (see Example 2-13). However, in many cases the redirect may be from
 one resource on a server to another on the same server, so using a
 relative URI may make sense. Fortunately Yaws provides a way to do this
 by returning {redirect_local,
 RELATIVE_URI}, as in Example 2-14. Of
 course, in both of these cases, the choice of whether to redirect as
 well as the location to redirect to do not have to be fixed at compile
 time.
Example 2-14. Local redirect
<erl>
out(Arg) ->
 RELATIVE_URI = "/some_other_file.yaws",
 {redirect_local, RELATIVE_URI}.
</erl>

Note
If in development you get stuck in redirect confusion, try using
 curl to sort things out. It will
 allow you to see each redirect that the server sends back and figure
 out what went wrong. To make curl redirect, pass it
 the --location option.

Templates

In addition to EHTML and the f/2
 function described in Dynamic Content in Yaws, there are
 several template packages available on Erlang. These template engines
 allow the developer to separate HTML from data processing, which is always
 good practice. This is nice because it frees you from needing to have the
 structure of the returned Erlang data match the exact structure that will
 be shown on screen to a user. It also provides a powerful and well known
 set of transformations to convert the output of the Erlang functions to
 the HTML that the user can see.
ErlyDTL

If you are familiar with the Python Django template library,
 you’ll want to check out the ErlyDTL package. ErlyDTL is a port of the
 Django template library to Erlang, and you can find it on GitHub at
 https://github.com/evanmiller/ErlyDTL. Full
 documentation for ErlyDTL can be found there, and the full documentation
 for the Django template library can be found at the Django website:
 https://www.djangoproject.com/.
The ErlyDTL compile/2 function
 takes a template—which can be a string that will be interpreted as a
 path to a file or a literal template as a binary and a module name—and
 convert it into a compiled Erlang module with a few defined function
 that can be used to render the template and get some information about
 it. There is also a compile/3
 function that allows the developer to specify options for the
 compilation.
To compile a template as in Example 2-15,
 first load the ErlyDTL package (line
 2). In this case it was necessary to first change Erlang’s search path
 with code:add_patha/1. After that, in
 line 4, ErlyDTL:compile/2 compiles
 the templates.
Example 2-15. Compiling ErlyDTL templates
(yaws@sag)1> code:add_patha("<root>/templates/erlydtl/ebin").
true
(yaws@sag)2> l(erlydtl).
{module,erlydtl}
(yaws@sag)3> cd("templates").
/home/zkessin/Writing/ErlangBook/yaws
ok
(yaws@sag)4> erlydtl:compile("<root>/templates/hello-world.dtl", hello_world).
ok

Building ErlyDTL as Part of a Make Process
In Example 2-15, the template is compiled
 on the Erlang REPL, which is great for testing things out and making
 sure that they work correctly. However, a real project will probably
 need to do something like continuous integration and will require a
 different solution to building ErlyDTL templates.
In this case, templates should be located in their own directory
 and compiled with the script in Example 2-16 as part of the build process. The
 script will compile the templates down to .beam
 files that can be loaded as any other module.
This script should be called like in Example 2-15 and can be called from Make, Emake, or
 your build system of choice. As long as the .beam
 is in Erlang’s search path it will be loaded when needed.
	 erlydtl_compile templates/hello_world.dtl hello_world ebin
Example 2-16. ErlyDTL compile script
#!/usr/bin/env escript
-export([main/1]).

main([File_Name, Module, BinDir]) ->
 l(erlydtl),
 erlydtl:compile(File_Name,
		 Module,
		 [{out_dir,BinDir}]).

This script uses escript,
 which is a method of doing shell scripts in Erlang. The full details
 are beyond the scope of this book, but the condensed version is that
 when run, the main/1 function is
 called with a list of parameters passed on the command line.

The ErlyDTL template, when compiled, will appear to Erlang as a
 module that exports a few functions. The most basic form is template:render/1, which will return {ok, Content} or {error, Error}. There is also a template:render/2 version that allows some
 customization of the template function. It is possible to pass a locale,
 a translation function that will work on {%
 trans %} tags. For a full list of options, see the ErlyDTL web
 page.
ErlyDTL will take a Django template and compile it down to an
 Erlang .beam file with standard functions for the
 templates that can be used just like any other functions.
Django templates put symbols in double bracket escaping, as in
 Example 2-17.
Example 2-17. A simple DTL template
<h1>Hello {{ planet }}</h1>

After the template has been compiled, it can be called with the
 module:render/1 function as in Example 2-18.
Example 2-18. Calling the template
<erl>
out(Arg) ->
 {ok,HTML} = hello_world:render([{planet, "Earth"}]),
 {html, HTML}.
</erl>

Note that the render/1 function
 returns {ok, HTML} while out/1 should return something like {html, HTML}, so it is necessary to unwrap the
 results of the render function and rewrap them with a different atom.
 The server will return output like in Example 2-19 to the browser.
Example 2-19. Template output
<h1>Hello Earth </h1>

When invoking a Django template, the data to be passed in is sent
 as a list of pairs of the form {Key,
 Value} where the Key is normally an Erlang
 atom. So in Example 2-18 the passed value is
 [{planet, "Earth"}]. If there are
 multiple values, you can pass them in as a list. In addition, the value
 does not need to be a simple string, but could be a data structure of
 some form that will be processed by the template to produce a list or
 some other content.
Not Quite Working Right
When something goes wrong in a Yaws request, it will show a
 screen like Figure 2-3. In this case,
 the template has malfunctioned.
hello_world:render/1 was not
 found because the module had not been loaded.
When ErlyDTL compiles a .dtl file, it will
 by default load the code into the Erlang Virtual Machine but will not
 save a .beam file so that you have to specify the
 option out_dir as part of the
 compile, which will tell ErlyDTL where to store the
 .beam files. If not specified, it will not create
 them.
[image: Django template not quite working]

Figure 2-3. Django template not quite working

Django templates can of course do more than just interpolate
 variables as in Example 2-17. It is also possible
 to include display logic in your templates. For example, you can have
 logic to iterate over a list by using {% for i
 in somelist %} and within that to have alternate rows be
 styles by using logic like {% cycle odd even
 %}.[6]
You can also use ErlyDTL to build XML as well as HTML files, as
 shown in Example 2-20.[7] Here the template iterates over a list of articles and
 pulls data out of each field in the #article record to build an XML document for
 an RSS feed.
Example 2-20. RSS template
<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Ferd.ca</title>
 <link>{{ url.base }}</link>
 <description>My own blog about programming and whatnot.</description>
 <language>en-us</language>
 <pubDate>{{ latest_date }}</pubDate>
 <lastBuildDate>{{ latest_date }}</lastBuildDate>
	<ttl>60</ttl>
	
 {% for article in articles %}
 <item>
 <title>{{ article.title }}</title>
 <link>{{ url.base }}{{ article.slug }}.html</link>
 <description>{{ article.desc }}</description>
 <pubDate>{{ article.date }}</pubDate>
 <guid>{{ url.base }}{{ article.slug }}.html</guid>
 </item>
 {% endfor %}

 </channel>
</rss>

A full tutorial on the Django template library is beyond the scope
 of this book, but it can be found at https://docs.djangoproject.com/en/dev/ref/templates/builtins/.
 This documents all of the various forms that can be used in DTL.
Note
There are other Erlang template engines floating around the Web
 besides ErlyDTL. Each has its own strong and weak points, so you’ll
 want to look around for the best solution to a specific
 problem.

Logging

Of course any web server needs to be able to log data, which can be
 used to analyze errors as well as for reasons like business
 intelligence.
Yaws will create a number of log files by default. Where these files
 live can be configured in the yaws.conf file, but
 normally they will be somewhere like
 /var/log/yaws.
The first log is the access log, which is presented in the same
 format that Apache and a number of other web servers save their log files.
 See Example 2-21. (Note that this would normally be all
 on one line but has been wrapped over several to fit the page in this
 book.)
Example 2-21. Access log
127.0.0.1 - - [24/Feb/2012:11:31:02 +0200] "GET /templates/hello-world.yaws HTTP/1.1" 500 774
"-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.7 (KHTML, like Gecko)
Ubuntu/11.10 Chromium/16.0.912.77 Chrome/16.0.912.77 Safari/535.7"

Also, any errors that are reported in Yaws will be reported in the
 file /var/log/yaws/report.log in a format that looks
 somewhat like Example 2-22.
Example 2-22. Report log
=INFO REPORT==== 20-Sep-2011::13:49:39 ===
Yaws: Listening to 0.0.0.0:8080 for <1> virtual servers:
 - http://localhost:8080 under /usr/share/yaws

=ERROR REPORT==== 24-Sep-2011::19:15:26 ===
Yaws: bad conf: Expect directory at line 130 (docroot: /var/www/yaws) terminating

As we have seen in prior examples, if you call io:format/1 it will send the string to the Yaws
 console. This is useful for testing and such but is not captured for later
 use. What is really needed is a package that will log messages to a file
 on disk or other central point for later collection and analysis.
Erlang OTP error_logger

Erlang provides a standard error_logger package as part of OTP that
 allows the programmer to send the normal info, warning, and error levels.
Note
Erlang processes direct their console IO to the console of their
 group leader. By default, this will be the process that started up
 that process (or recursively up to a console); however, it is possible
 to change this. See the Erlang manual for more information.

The error logger is a standard part of the Erlang/OTP kernel and
 will always be present. By default it will send errors to the tty;
 however, by setting the error_logger
 parameter to {file, FileName} it will
 send errors to the named file. It is also possible to set the value of
 error_logger to silent to turn off error reporting
 altogether.
To send an error message call error_logger:error_msg/1 or error_logger:error_msg/2. The first version
 takes a literal string that is sent to the error message as is. The
 second version takes a string and a list of parameters that will be
 interpolated into that string. The formats for this are the same as in
 io:format/2, which resembles C’s
 “sprintf” but with the percent signs replaced by tildes.
Demonstrating the use of logs in an Erlang program, Example 2-23 shows a basic info log statement in a
 .yaws file.
Example 2-23. Code with logging
<erl>
out(Arg) ->
 error_logger:info_msg("~p:~p User Entered the System~n",
			 [?MODULE,?LINE]),
 {html, "Logger"}.
</erl>

It will produce output like in Example 2-24 on
 the console or in a file, depending on how the system is set up.
Example 2-24. Log message
=INFO REPORT==== 16-Jan-2012::13:38:52 ===
m1:13 User Entered the System

The macros ?MODULE and ?LINE expand to the current module and the
 current line in that file. So by putting them in the log statement it is
 possible to see where the log message was generated. As it was from a
 .yaws file in this example, the module will resolve
 to something like m1 and the line
 will not be the actual line of the .yaws
 file.
The functions error_logger:warning_msg/1,2 and error_logger:info_msg/1,2 work exactly the
 same as the error_msg/1,2 functions,
 but for a different level of errors.

[5] The erlc executable and the
 command c/1 use the same code to
 do the actual compilation. Which one to use mostly depends on which
 is better for the programmer.

[6] It is also possible to have alternate styles on rows by using
 CSS selectors like :nth-child(even) and :nth-child(odd), so there are multiple
 ways to do that. However, cycle
 can be used in other places and so should not be discounted.

[7] This is taken from Fred Hebert’s “blogerl” project. Fred was
 nice enough to allow me to use this example here.

Chapter 3. Appmods: Dynamic Content in Yaws

When developing a web service, there are times when the developer does
 not want to map the URL that is sent by the web browser to an actual file.
 This may be because all data is stored in a database or is generated
 dynamically. In this case you want the browser to go to some URL and have
 the server create the content and return it.
Appmods are to Yaws what Apache modules are to Apache—a way to create
 a custom handler for a URL in the web server. When using an appmod, the
 browser will send a standard URL, but instead of having a static file sent
 back to the user, Yaws will execute some Erlang code and send the response
 back to the user. This allows for fully dynamic content in the Yaws web
 server.
The difference is that in the case of an appmod, out/1 will need to create the full content of the
 response, while in a .yaws file it may just be a small
 part of it. In many cases, the response will not be HTML but will be some
 other format, such as XML (XML), JSON (JSON), or even something like an audio file, CSV text file, or
 PDF.
In addition, by using an appmod you can break the association between
 a file on the local disk of a node and the URL representation that is
 presented. So it is possible to present a URL like /blog-posts/2011-Dec-02/why-you-should-use-erlang.html
 without there actually being a file at that path (or even a directory
 structure)—just some code that knows how to map that URL onto some logical
 resource that can then be constructed. Similar effects can be achieved with
 mod_rewrite in Apache or with other Apache modules.
In the case of a binary format, then, Erlang should create the data
 and return it with the correct header. The specifics of how to create a
 binary will depend on the format of the data and are beyond the scope of
 this book. However, in many cases there will be Erlang modules to create the
 data; in some cases the data will be streamed to the client.
If an appmod is set up at the root of the web server, then with a
 request to http://example-server.com/chatroom/example-room.json
 the Arg#arg.appmoddata field will be set
 to /chatroom/example-room.js, which is
 the part of the path to be handled by the appmod.
It is also possible to set up the appmod to handle only a subset of
 the web server, in which case the path passed to the appmod will be just the
 end of the URI and will be in Arg#arg.appmod_prepath.
Appmod Configuration

To set up an appmod, add an appmods field to the
 <server> block in yaws.conf.
 The general format of this is shown in Example 3-1.
The basic form of the appmods configuration is <path, module>. The path can be any path
 on the web server. If you want the appmod, serve all content from the web
 server, set the path to “/”, which will route all requests to the appmod.
 However, even in this case you’ll probably want some directories to be
 served as static files, (for example, the images directory), so it is
 possible to add a list of paths to be excluded with the exclude_paths directive, as in Example 3-1.
Example 3-1. Appmod config options
	appmods = <path, module exclude_paths icons css js>

In this case, any path called that was not in the
 icons, css, or
 js directories will be routed to the function
 module:out/1. Here the out/1 function works the same as in Dynamic Content in Yaws.

When the URI Does Not Correspond to a File

In the case of .yaws files, the HTTP path sent
 to the server will map directly onto the file. The user will make a
 request like “/get-stock-price.yaws” and Yaws will invoke the code in the
 file get-stock-price.yaws.
However, in an appmod the programmer has to translate the request
 URI into some action directly. This transfers some workload from the web
 server to the developer, but it is not overly hard to do.
In order to do this we need to find out what URI the user requested
 from within our handler function. This can be set in one of several places
 in the #arg record. It will be in
 pathinfo or in fullpath (actually both).
In general, the path info will be a set of strings separated by
 slashes, so a request to /record.yaws/show/3141/5926 will have pathinfo set to show/3141/5926. This string should be split with
 re:split/3 and then used to show the
 correct data.
This path can be split up into individual tokens by using re:split/2 or string:tokens/2. As shown in Example 3-2, both of these will take the string and a token or
 regular expression to split up the string and return a list. However,
 there is a slight difference. The re:split/2 function will return a list of
 binaries and will leave the empty string at the start of the list. On the
 other hand, string:tokens/2 will return
 a list of strings and will not include the initial blank element.
Example 3-2. Splitting a string
1> T = "/show/3141/5926".
"/show/3141/5926"
2> re:split(T, "/").
[<<>>,<<"show">>,<<"3141">>,<<"5926">>]
3> string:tokens(T, "/").
["show","3141","5926"]

In Example 3-3, the path/1 function splits the appmoddata path from the arg record on the
 directory separator character (“/”) and then uses a case statement to
 match the path against various options that will provide correct handlers
 depending on details of what is passed. The patterns can match specific
 strings or have array elements assigned to variables. Patterns will match
 from top to bottom until one matches or no pattern matches, which will
 case the process to crash. A full description of pattern matching is
 beyond the scope of this book, but the concept is very important for
 programming in Erlang.
By adding the term [{return,list}, trim]
 to the re:split/3 function,
 it will drop any empty elements, and return the result as a list of
 strings and not in a binary format.
Example 3-3. Path
path(Path) ->
 Elements = re:split(Path,"/", [{return, list}, trim]),
 case Elements of
 ["ChatRooms", Room] ->
 act_on_room(Room);
 [Directory, File] ->
 show_file(Directory, File);
 [Directory] ->
 show_directory(Directory)
 end.

Cookies

When the World Wide Web was first created back in the 1990s, each
 HTTP request was independent and web requests had no ability to maintain
 any form of state. So for example, a web server had no easy way to keep
 track of items in a user’s shopping cart.
Netscape introduced cookies in an early version of Navigator and
 they are now standard in all modern browsers. A cookie can be set by the
 browser or the server, and once set will be sent in the headers of all
 HTTP requests to that server until it expires or is removed. Yaws can of
 course set cookies and access them.
In general, cookies are used to track the activities of a user on a
 website. This can include authentication as well as state. For example, if
 the site implements a shopping cart, the user’s current items can be
 tracked by a cookie. It is usually best to not put the items themselves in
 the cookie, but to put a hash that can refer to a database record that
 contains the cart information. This will greatly reduce the bandwidth used
 by the application.
HTTP cookies are a form of persistent data that can be set by the
 browser or the server and will accompany every request sent to the server.
 To set a cookie, use yaws_api:setcookie/2, which takes the cookie
 name and value. If you want to set options for the cookie, check out the
 yaws_api man page, that has versions of yaws_api:setcookie/n which take extra parameters
 to allow you to specify a bunch of other options.
Note
Do not confuse the HTTP cookies discussed here with the cookies
 that Erlang uses to provide security when connecting nodes.

You can also set a cookie by having out/1 return {set_cookie, Cookie}, since cookies are part of
 the HTTP headers.
To get the existing cookies, look at the headers record of the Arg record. The function yaws_api:find_cookie_val/2 can extract the value
 of a cookie from the list of cookies, as in Example 3-4. If
 a cookie is not set, this function will return empty HTML.
Example 3-4. Cookies
<erl>
out(Arg) ->
 Headers = Arg#arg.headers,
 Cookie = Headers#headers.cookie,
 Prefs = yaws_api:find_cookie_val("Prefs", Cookie),
 {html, Prefs}.
</erl>

Yaws also includes a set of interfaces to create session tracking
 with cookies (see Session Handling).

Session Handling

Yaws provides a nice API for handling sessions with cookies with the
 yaws_api:new_cookie_session/1-3
 functions. The basic function new_cookie_session/1 takes a state record that
 can be specified by the application. This record can be retrieved by the
 function yaws_api:cookieval_to_opaque/1.
To update the session data, use the function yaws_api:replace_cookie_session/2 with the name
 of the cookie and the new state value.
In addition to the new_cookie_session/1 function, there is also a
 new_cookie_session/2 that takes a
 timeout (TTL) value after which the cookie session will be cleared. In
 new_cookie_session/1 the session will
 time out after a default period of time.
If some form of cleanup after a session ends is desired, use the
 new_cookie_session/3 function. In
 addition to a state variable and a TTL, this function also takes a PID for
 a cleanup process. When a session ends, it will send that process a
 message of the form {yaws_session_end, Reason,
 Cookie, Opaque}. Reason can be timeout or normal.
To remove a session, use the delete_cookie_session/1 function, which will
 remove the cookie and send a cleanup message if needed.
In Example 3-5, which is taken from the Yaws
 sources, there is an example of session handling. Similar to the way PHP
 treats the $_SESSION construct, Yaws
 does not actually save the record to the HTTP cookie but will instead
 store a key of the form nonode@nohost-5560960749617266689 and store the
 cookie on the server. Normally the cookie and data will be stored in the
 Yaws processes; however, you can set it to store in a Mnesia or ETS data
 store. There are examples for this at http://yaws.hyber.org/pcookie.yaws.
Example 3-5. Cookie session handling (session.erl)
-record(myopaque, {udata,
 times = 0,
 foobar}).

out(A) ->
 H = A#arg.headers,
 C = H#headers.cookie,
 case yaws_api:find_cookie_val("baz", C) of
 [] ->
 M = #myopaque{},
 Cookie = yaws_api:new_cookie_session(M),
 Data = {ehtml,
 {html,[],
 ["I just set your cookie to ", Cookie, "Click ",
 {a, [{href,"session1.yaws"}], " here "},
 "to revisit"]}},
 CO = yaws_api:setcookie("baz",Cookie,"/"),
 [Data, CO];
 Cookie ->
 case yaws_api:cookieval_to_opaque(Cookie) of
 {ok, OP} ->
 OP2 = OP#myopaque{times = OP#myopaque.times + 1},
 yaws_api:replace_cookie_session(Cookie, OP2),
 Data = {ehtml,
 {html,[],
 [
 "Click ",
 {a, [{href,"session1.yaws"}], " here "},
 "to revisit",
 {p, [], f("You have been here ~p times",
 [OP2#myopaque.times])},
 {p, [], f("Your cookie is ~s", [Cookie])}]}},
 Data;
 {error, no_session} ->
 new_session()
 end
 end.

new_session() ->
 M = #myopaque{},
 Cookie = yaws_api:new_cookie_session(M),

 Data = {ehtml,
 {html,[],
 ["I just set your cookie to ", Cookie, "Click ",
 {a, [{href,"session1.yaws"}], " here "},

 "to revisit"]}},
 CO = yaws_api:setcookie("baz",Cookie,"/"),
 [Data, CO].

Access Control

Sometimes you may wish to to restrict access to resources, for
 example to users who have entered a password or can otherwise be
 authenticated (as in a Facebook application). In many cases you may wish
 to do something like check a username and password or session token
 against a Mnesia database or other data store.
Ideally you would validate the username and password against some
 source of data, such as a Mnesia table. In Example 3-6, I use the function validate_username_password/1 that extracts the
 username and password from the request and checks them against the Mnesia
 table. This function will return either {true,
 Uuid} if the user authenticates correctly, or {false, Reason}. In this case,
 Reason can be no_user in the case where there is no user by
 that name, or bad_password. Clearly
 sharing the reason why the login was rejected would be a bad idea.
The out/2 function takes the
 result of validate_username_password/1
 and returns either {status, 401} if the
 user did not authenticate or a HTML page. It also logs the login
 attempt.
Example 3-6. Custom access control (access-control.erl)
-module('access-control').
-include("../roulette/yaws_api.hrl").
-export([out/1]).
-record(user,
	{
	 uuid,
	 username,
	 passwordMD5
	}).

validate_username_password(Arg) ->
 Username = yaws_api:queryvar(Arg, "Username"),
 Password = yaws_api:queryvar(Arg, "Password"),
 PasswordMD5 = crypto:md5(Password),
 Query = fun () ->
		 mnesia:read({username, Username})
	 end,
 Value = mnesia:transaction(Query),
 case Value of
	{atomic, []} ->
	 {false, no_user};
	{atomic, [UserRecord]}
	 when UserRecord#user.passwordMD5 =:= PasswordMD5 ->
	 {true, UserRecord#user.uuid};
	 {atomic, [_UserRecord]} ->
	 {false, bad_password}
 end.

out({false, Reason}, _Arg) ->
 io:format("~p:~p Unable to login user: ~p", [?MODULE, ?LINE, Reason]),
 {status, 401};
out({true, Uuid}, _Arg) ->
 io:format("~p:~p Welcome: ~p", [?MODULE, ?LINE, Uuid]),
 {html, "Hello World"}.

out(Arg) ->
 out(validate_username_password(Arg), Arg).

Interacting with Erlang Services and Business Logic Layers

In many cases a web service will be a simple wrapper around a more
 complex middle layer made up of OTP servers, which can be communicated
 with by Erlang’s standard message passing methods.
To do this, Yaws must be clustered with the other Erlang nodes and
 must know the PID of the process to communicate with. Example 3-7 shows how to make this work.
Example 3-7. Interacting with middleware
out(Arg) ->
	BackendPid ! {webrequest, node(), Arg}
	receive
		{response, Data} ->
			Data;
		{error, ErrorMsg} ->
			ErrorMsg
	after 500 ->
		[
		 {status, 404},
		 {html, "<h2>System timed out</h2>"}]
	end.

There are a few things here to note. First of all, sending messages
 never fails, but there is no guarantee of delivery. So if the process has
 gone away for some reason, the send will not return any sort of error.
 Therefore the code in Example 3-7 must have a timeout to let
 the user know that something went wrong. In this case it is the after clause, which will wait 500ms and then
 return a timeout error.
A better way to handle this would be to wrap the middleware in a
 gen_server and use the OTP framework to
 create a number of custom servers to run the application. This is done in
 Chapter 9. In this case, each module will export
 a set of access functions that can be called and will use the OTP gen_server:call/2 or gen_server:cast/2 functions to access the server
 infrastructure. The implementation of gen_server takes care of all of the message
 passing so the ! operator is never
 explicitly used.
Compare Example 3-7 to Example 3-8.
 In the former, all the nonfunctional parts have been hidden by gen_server:call/2, which is well-tested and can
 be assumed to work correctly. In the latter, our out/1 function does not need to know anything
 about the operation of the layer it is calling; it just calls the get_data/1 function, which serves as an
 interface to some form of backend service.
Example 3-8. Interacting with a service via OTP
get_data(Req) ->
 {response, Data} = gen_server:call(?MODULE, Req),
 Data.

Chapter 4. Implementing REST

So far this book has focused on the parts of how to build a web
 service, such as how to use a template and respond to a request. It is now
 time to expand our view to building larger, more complex integrated services
 to deal with complex business requirements.
In this chapter I will show how to build a simple RESTful service to
 store a list of airports. The service will use GET to request a list of
 airports, POST to add a new airport, PUT to update an airport, and DELETE to
 remove one.
This chapter will focus on the technical aspects of how to take an
 HTTP request in to some Erlang code and turn it into the correct output data
 or server actions. So, for example, the user may send an HTTP POST to create
 a new airport record, and the code will then store that data in a Mnesia
 database.
Note
Most of what is in this chapter also applies to any form of web
 services insofar as they require the server to examine the incoming
 request and make an appropriate response.

Decoding a Request

When an HTTP request is made to the server there are a number of
 pieces of data that come with that request. All of these are sent to the
 out/1 function via the Arg data structure, and they can be extracted
 from that data structure. In some cases there are preexisting functions to
 extract the data, in others you will have to create functions to extract
 what you need.
Extracting the User’s Request

It is important to understand how a web browser or other client
 sends data to the server. In the case of a GET or HEAD request, data is
 sent via the URL and query string, so a request could look something
 like get-stock-price?stock=ibm. There
 are two pieces of information here: the first is the path of the command
 get-stock-price, and the second is
 the query string stock=ibm. For those
 of you who are familiar with PHP this would be delivered by the $_GET
 variable. In a POST or PUT request, in addition to the query string,
 data can also be sent in the body of the request.
Note
We could also make this request as /get-stock-price/ibm, which has the
 advantage of the fact that there is no query string (the bit after the
 “?”), and most implementations of the HTTP standard, including proxy
 servers and browser, do not cache GET requests that have a query
 string. We saw how to deal with this type of request in When the URI Does Not Correspond to a File.

For values sent via GET or POST there are simple functions to
 extract data. The functions parse_query/1 and parse_post/1 take the Arg data record and return a list of tuples of
 the form [{Key, Value}]. So if the
 request URL ends with ...?record=31415926, then parse_query/1 will return {"record", "31415926"}.
If instead of getting the entire list of parameters the code only
 cares about a specific value, use the yaws_api:postvar/2 or yaws_api:queryvar/2 functions. These functions
 will be imported automatically in all “.yaws” pages, and so can be used
 without the yaws_api: prefix. These
 functions will return {ok, Value} if
 the variable was set or undefined if
 it was not.
The yaws_api:getvar/2 function
 will call postvar/2 if the HTTP
 request is a HTTP POST and queryvar/2
 if the request was a HTTP GET.
In some cases (including the upcoming Example 4-15) the data is sent to the server not as a set
 of name value pairs as from a HTML form, but as a JSON or XML object in
 the payload of a HTTP POST request. In this case the user data is in the
 clidata field of the #arg record. To extract this use code like in
 Example 4-1. This function takes the Arg#arg.clidata field and decodes the JSON
 into a data structure. It then logs the data, and finally it uses the
 rfc4627:get_field/3 function to
 extract a specific field from the data structure. (This was extracted
 from Example 4-14.)
Example 4-1. Getting a JSON from a HTTP POST
out(Arg) ->
 {ok, Json, _} = rfc4627:decode(Arg#arg.clidata),
 io:format("~n~p:~p POST request ~p~n",
	 [?MODULE, ?LINE, Json]),
 Airport	= rfc4627:get_field(Json, "airport", <<>>),
 Airport.

If the user has uploaded a file with the mime type multipart/form-data, use the function yaws_api:parse_multipart_post/1. For more
 information, see Chapter 5.

Response and Headers

Another important part of REST is that HTTP status codes are used to
 return information to the client. So when creating a new airport record we
 should return a status of 201 Created,
 not 200 OK, and when a request is not
 successful because a resource does not exist the service should return
 404 Not Found. A complete list of HTTP
 status codes can be found at http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
By default Yaws will return a status of 200
 OK, so if some other status code is desired have the out/1 function return {status, Code} with the desired HTTP code. The
 out/1 function can return a list of
 tuples, so it is possible to set a status code, headers, and content (and
 any other options) from the return code. Table 4-1
 shows a list of selected status codes.
Table 4-1. Selected status codes
	Status Code	Description
	100 Continue	Used when the client wants to send a large request; allows
 the server to accept or reject request based only on the headers.
 Client must send Expect:
 100-continue.
	200 OK	Standard HTTP response. The body should contain
 content.
	201 Created	A new resource has been created.
	202 Accepted	Request accepted, but not yet acted on.
	203 Non Authoritative Information	Server processed the request but may lack a full
 response.
	204 No Content	The server processed the request but is not returning any
 content.
	205 Reset Content	Like 204, but the client must refresh its data.
	206 Partial Content	The server is sending only a part of the data. This can be
 used to resume an interrupted download.
	300 Multiple Choices	Server is presenting data in several formats; the client
 should choose one.
	301 Moved Permanently	Redirect to new URI.
	302 Found	Originally “Moved Temporarily”; should not be used in favor
 of 303 and 307.
	303 See Other	Short-term redirection to a new URI.
	304 Not Modified	Indicates that the client should use a cached copy of the
 resource.
	307 Temporary Redirect	The resource is at a different URI on a temporary
 basis.
	400 Bad Request	Request cannot be fulfilled due to bad syntax.
	401 Unauthorized	The user must authenticate; this will prompt most browsers
 to ask for a username and password.
	403 Forbidden	The server refused to respond to a request.
	404 Not Found	Resource does not exist.
	405 Method Not Allowed	Request used a HTTP verb not supported by a particular
 URI.
	406 Not Acceptable	Server cannot generate content that matches the “Accept”
 headers. For example, an image may be available only as a .gif and
 the client wants it as a .png.
	408 Request Timeout	Server timed out waiting for the client to send the
 request.
	409 Conflict	Server cannot update resource due to a conflict, for
 example two users trying to update the same record.
	410 Gone	Resource has been deleted and will not return. Ideally
 should be removed from search indexes, etc.
	411 Length Required	Request must include the length of its content.
	412 Precondition Failed	Request does not meet some precondition.
	413 Request Entity Too Large	Could be used when a file to be uploaded is greater than
 the server wants to accept.
	414 Request URI Too Long	The client sent a request URI that was too long.
	417 Expectation Failed	Client sent an Expect
 request-header that the server cannot accept.
	418 I’m a Little Teapot	Short and stout.
	429 Too Many Requests	Used when one user is sending too many requests in a period
 of time.
	500 Internal Server Error	Generic error message.
	501 Not Implemented	Server cannot respond to the request method.
	503 Service Unavailable	Server temporarily unavailable.

There are many options for how to build a frontend for testing.
 Obviously we could build a JavaScript application in a browser with jQuery
 and backbone.js or ExtJS. However, for testing we will just use the Unix
 curl binary, which allows us to issue
 commands from a command line or script.
To demonstrate this we will create a simple database listing
 airports. For each airport we will store a number of pieces of information
 including the airport name, the iata_code (e.g., “JFK”), the city and
 country where the airport is located, and a list of runways. The runways
 are stored in a runway record. These
 records are defined in Example 4-2.
Example 4-2. Airport record
-record(airport,
 {code, city, country, name }).

In any application where there is persistent data, a choice must be
 made as to how to store it. For this example we will use Erlang’s built-in
 Mnesia data store. Mnesia is integrated with Erlang, so it will always be
 present when Erlang is present. It is also quite powerful and can do
 things like partition data across multiple servers and much more.
Mnesia is a rather flexible data store that mostly mirrors SQL
 features but is built into Erlang. However, Mnesia does not have the kind
 of constraints built into SQL nor the typing that SQL systems have. Mnesia
 also can be spread across several nodes. Mnesia tables can exist on disk
 or only in memory, which allows a lot of control over performance.
To find the HTTP method that was used, look in the Arg data structure (see Example 4-3). In this case we find the request structure
 Rec, and from there we look in the
 method field. This could in fact be done in one line, but is shown in two
 for clarity.
Example 4-3. Deriving the method
method(Arg) ->
 Rec = Arg#arg.req,
 Rec#http_request.method.

Building the Response

When a request comes into the rest module it is routed to the out/1 function. This function uses the method/1 function (Example 4-3)
 to find the HTTP method, and then routes things to the handle/2 function. There are four versions of
 this function, one each for GET, POST, PUT, and DELETE. Erlang will match
 the parameter and call the correct function.
Note
The HTTP verb GET, POST, HEAD, etc., is set as an Erlang atom and
 not a string.

QLC stands for Query List Comprehension and is a set of macros that
 overload the meaning of list comprehensions in Erlang to allow them to be
 used as a Mnesia database query. [8] The general structure is
 [ReturnedValue || Row <- mnesia:table(TableName), filters],
 so in the GET clause of Example 4-4 it is taking a list of
 all the records in the table “airport”. This is similar to the SQL
 statement SELECT * FROM
 airports.
The code in Example 4-4 (taken from Example 4-14) shows how to use QLC to query the Mnesia data store,
 and then turn that data into a JSON of the form seen in Example 4-5, which can be sent to the browser. (How to
 create a JSON will be covered in JSON.)
Example 4-4. Generating the content
do(Q)->
 F = fun() ->
 qlc:e(Q)
	end,
 {atomic, Value} = mnesia:transaction(F),
 Value.

convert_to_json(Lines) ->
 Data = [{obj,
	 [{airport, Line#airport.code},
	 {city, Line#airport.city},
	 {country, Line#airport.country},
	 {name, Line#airport.name}]}
	 || Line <- Lines],
 JsonData = {obj, [{data, Data}]},
 rfc4627:encode(JsonData).

handle('GET', _Arg) ->
 io:format("~n ~p:~p GET Request ~n", [?MODULE, ?LINE]),
 Records = do(qlc:q([X || X <- mnesia:table(airport)])),
 Json = convert_to_json(Records),
 io:format("~n ~p:~p GET Request Response ~p ~n", [?MODULE, ?LINE, Json]),
 {html, Json};

Example 4-5. Generating the content (pretty printed)
{
 "data": [
 {
 "airport": "BOS",
 "city": "Boston",
 "country": "US",
 "name": "Logan"
 },
 {
 "airport": "JFK",
 "city": "New York",
 "country": "US",
 "name": "John F Kennedy"
 }
]
}

In the case of the GET request we want to query the Mnesia database
 for all airports. (This is a limited example; obviously in a real
 application this would probably be filtered in some way.)
The GET clause of the handle/2
 method calls the qlc:q function with a
 list comprehension that allows the function to retrieve the entire
 “airports” table. It would also be possible to filter this using guards if
 needed. This will return a list of records which is put into “Rec”.
In many cases the format in which we want to return data to the
 client may be specified by the client. This could be done by using the
 HTTP Accept header. For example, an
 application could send an Accept header like the
 following:
 Accept: application/xml, application/json
This client would like a response in XML or JSON format, but would
 probably prefer XML. Other clients may specify something else. In the case
 where a web service is being used to feed a JavaScript user interface, it
 is probably OK to ignore this and always return one data format. However,
 more and more web services are being used for computer-to-computer applications, and in
 this case it may be that being able to support multiple data formats is a
 key feature of an application design. It is also a good idea to return the
 content to the browser or other client with the correct MIME type. The
 choice of whether to allow multiple response formats will come down to the
 specifics of what is required of an application. However, in most cases
 picking one and sticking with it will be acceptable.
When choosing a response type, there are two possible ways that the
 code can decide. If the server would rather send one format it can query
 the headers out of the Arg#arg.headers
 data structure with a query that asks if a given format is allowed. One
 could imagine a function like Example 4-6 where a
 MIME type and Arg are passed in and it returns true or false
 if the MIME type is in the list. If the Allowed header is not present, the program
 should do something well defined. It should also be able to deal with a
 request that includes a format of */*,
 which indicates all formats are OK.
Example 4-6. Format allowed
requested_formats(Arg) ->
 Rec = Arg#arg.headers,
 Accept = Rec#headers.accept,
 [AcceptFormats| _] = string:tokens(Accept, ";"),
 string:tokens(AcceptFormats, ",").

accept_format(Format, Headers) ->
 Res = lists:any(fun (F) ->
		 string:equal(Format, F)
	 end, Headers).

JSON

One very common method of data exchange is JSON, which was created
 by Douglas Crockford from the Object Literal Syntax of JavaScript and is
 defined by RFC 4627. JSON is simple to read and there are JSON
 implementations for almost any language that may be needed, so it plays
 well with others.
Once Mnesia has given us a list of airports, we must convert that
 data to JSON format to transmit to the browser. To do this there are a
 number of Erlang modules that can be used to convert Erlang data to a
 JSON representation. These include the rfc4627 module that can be found on GitHub,
 the json2 module that is included
 with Yaws, and a bunch of others.
When decoding a JSON with the rfc4627:decode/1 function, there are two
 options. The first is that it will return {ok,
 Result, Remainder}. In this case, Result is
 the decoded JSON and Remainder is any part of the
 input string that was not parsed. If for some reason rfc4627:decode/1 cannot parse the JSON, it
 will return {error, Reason}. The most
 probable cause of this is a malformed JSON.
Note
If you are having problems with JSON format data, try passing it
 through JSONLint (http://jsonlint.com). This
 will validate JSON strings and pretty-print them as well.

Sometimes the client will send us a JSON; one problem here is that
 the name-value pair format of a JavaScript object represented in a JSON
 does not map very well onto Erlang’s data structures. However, it is
 still possible to map a JSON object onto Erlang’s data structures. Given
 the JSON in Example 4-7, the Erlang
 rfc4627 module will map it onto a data structure as
 in Example 4-8.
Example 4-7. JSON object
{
 "cust_id": 123,
 "name": "Joe Armstrong",
 "note": "wrote Erlang"
}

Example 4-8. Decoded JSON object
{obj,[{"cust_id",123},
 {"name",<<"Joe Armstrong">>},
 {"note",<<"wrote Erlang">>}]}

The mapping of JSON data types onto Erlang types is something to
 keep in mind. Arrays in JSON map onto lists in Erlang. Numbers in JSON
 map onto numbers. String values as shown in Example 4-8 are mapped onto binary values in Erlang.
 However, there are a number of JSON encoders and decoders in Erlang, and
 not all of them will map a JSON onto exactly the same data
 structure.
Warning
If you try to encode a PID value from Erlang into a JSON, it
 will not work and will give a rather confusing error message.

The object is mapped onto a data structure starting with the atom
 obj to mark it as a JSON object, then
 a set of name-value pairs as an array of two value tuples.
To get the value of a specific field from the JSON object use the
 rfc4627:get_field/2 function, which
 will take the data structure put out by decode/1 and the name of a field as an atom
 and return the value of that field. So calling rfc4627:get_field(Obj, name) on Example 4-8 will return <<"Joe Armstrong">>. In addition,
 there is a function rfc4627:get_field/3 that works just like
 rfc4627:get_field/2 except that the
 third parameter is a default value if the value is not set in the
 JSON.
When constructing an obj
 structure as in Example 4-8, the function
 rfc4627:set_field/3 will be helpful.
 It will take an object of the form shown in the example and return a new
 object of the same type with a field set to a value. So calling rfc4627:set_field(Obj, country, "Sweden") on
 the example record will add the country to the data structure.
To create a JSON string to pass to a client, use the rfc4627:encode/1 function, which will take
 data in the same format put out by rfc4627:decode/1 and turn it back into a JSON
 data string. So the data structure in Example 4-8 will be encoded into a JSON that is
 equivalent to Example 4-7. The example here has been
 reformatted by JSONLint to be easier to read; the output will be all on
 one line.
It would be tempting to try to use code similar to Example 4-9 to convert a generic Erlang record to a
 JSON (or something that will be converted to a JSON). However, the
 access to fields in a record must be done with literal atoms, so
 Rec#Type.Field won’t work. It must be
 done as Rec#test_record.airport_name.
 (It is possible to use macros here, however.)
Example 4-9. Convert to JSON (this won’t work!)
-module(convert_to_json).

-record(test_record, {room_name, room_users, desc}).
-export([convert_to_json/2]).

convert_to_json(Type, Rec) ->
 Fields = record_info(fields, Type),
 Struct = [{Field, Rec#Type.Field} || Field <- Fields],
 {obj, Struct}.

XML

While our application uses JSON for data transfer, in some cases
 XML may be a better choice. So having a way to convert data from Erlang
 records to XML would be a useful thing.
XML can be generated in Yaws with the ehtml data type. The content
 type1 should be set to application/xml and the top line should be set
 to a standard XML declaration similar to this:
	<?xml version="1.0" encoding="utf-8"?>
Alternatively, a template engine like ErlyDTL (see ErlyDTL) can be used to make XML as in Example 2-20.
In addition to generating XML with the ehtml type, it is also possible to generate it
 with the xmerl package included with
 Erlang, and parse it with xmerl_scan.
It will also often be necessary to scan an existing XML document.
 This can be done with the xmerl_scan
 package that is included with Erlang. There are two basic functions to
 do this, file/1 and string/1. The file/1 function will take the path to a file
 on disk as a parameter, while string/1 will take the XML in a string that is
 already in memory. There are also versions of both that allow the
 programmer to specify a number of options in a second parameter. Check
 the xmerl_scan man page for all the
 possible options.
The data structure that is created when you run xmerl_scan:file/1 is rather long. For the XML
 shown in Example 4-10, it will generate data as shown in
 Example 4-11. To extract a specific element from this
 data structure it is possible to use XPATH via the xmerl_xpath module.
Example 4-10. Sample XML
<?xml version="1.0" encoding="utf-8"?>
<user>
 <id>31415926</id>
 <name>Joe Armstrong</name>
 <note>Created Erlang</note>
</user>

Example 4-11. Parsed XML
{{xmlElement,user,user,[],
 {xmlNamespace,[],[]},
 [],1,[],
 [{xmlText,[{user,1}],1,[],"\n ",text},
 {xmlElement,id,id,[],
 {xmlNamespace,[],[]},
 [{user,1}],
 2,[],
 [{xmlText,[{id,2},{user,1}],1,[],"31415926",text}],
 [],".",undeclared},
 {xmlText,[{user,1}],3,[],"\n ",text},
 {xmlElement,name,name,[],
 {xmlNamespace,[],[]},
 [{user,1}],
 4,[],
 [{xmlText,[{name,4},{user,...}],1,[],[...],...}],
 [],undefined,undeclared},
 {xmlText,[{user,1}],5,[],"\n ",text},
 {xmlElement,note,note,[],
 {xmlNamespace,[],[]},
 [{user,1}],
 6,[],
 [{xmlText,[{...}|...],1,...}],
 [],undefined,undeclared},
 {xmlText,[{user,1}],7,[],"\n",text}],
 [],".",undeclared},
 []}

Responding to the REST Request

When the user sends a POST request to the web server, that is the
 key to create a new airport record. The handler needs to find the airport
 name and other information from the POST content with yaws_api:postvar/2, and then should create a new
 airport with airport:create_airport/5.
 Example 4-12 takes the airport name and other
 information, creates an airport record, and inserts it into the Mnesia
 database. The nice thing about Mnesia is that if it is set up correctly,
 data will automatically be replicated across a cluster.
Normally, when responding to a HTTP request, we return a status of
 200 OK. However, here we are creating a
 new resource, so returning a status of 201
 Created makes sense. The body could be blank or contain any
 relevant information such as the name and ID of the airport. In this case
 we return the JSON that was sent by the browser, as the ExtJS framework
 expects that.
Example 4-12. Generating the content
handle('POST', Arg) ->
 {ok, Json, _} = rfc4627:decode(Arg#arg.clidata),
 io:format("~n~p:~p POST request ~p~n",
 [?MODULE, ?LINE, Json]),
 Airport	= rfc4627:get_field(Json, "airport", <<>>),
 City	= rfc4627:get_field(Json, "city", <<>>),
 Country	= rfc4627:get_field(Json, "country", <<>>),
 Name	= rfc4627:get_field(Json, "name", <<>>),
 _Status = addAirport(Airport, City, Country, Name),
 [{status, 201},
 {html, Arg#arg.clidata}];

A Full Example

So far this chapter has used little bits of code to show how to do
 different parts of a service. This section will take those bits and unify
 them into a complete service that can be used as a basis for your own
 applications. Most (but not all) of the code here is from the previous
 sections.
In general, a REST service will want to do one of two things: either
 work records in Mnesia or another data store, or interact with some form
 of backend application by sending messages back and forth. Here is a full
 example using Mnesia.
In this example, when a GET event comes in, it will query Mnesia,
 return a list of all the airports, and return them to the user.
When the user sends a POST request, the system will add a new record
 to the Mnesia data store. If needed we could also take other actions here,
 such as invalidating a cache or calling other functions to take other
 actions.
When the user sends a PUT request, we will update an existing
 record. In this case we will look it up by its IATA code and update the
 airport for new information. We cannot handle the case where an airport
 changes its IATA code, but this should be rare enough a case that we could
 delete the record and create it again.
When the user sends a DELETE request, we will delete the record from
 the data store.
There is also an extra clause at the end to catch any requests that
 are not one of the four major HTTP requests and return a “405 Method Not
 Allowed” response.
In order for all this to work, we need to have an airport data
 format; in this case it is very simple and shown in Example 4-2. This record includes only the airport IATA
 code, name, city, and country.
We must also set up a table in the Mnesia data store, as in Example 4-13. This must be done before the code is run and
 normally would be done in an .erlang file that Yaws
 will run on startup.
Warning
The calls to io:format
 serialize all server activity through the IO server; remove them for
 production.

Example 4-13. Setting up Mnesia
%% Add this to the .erlang file
application:start(mnesia).
mnesia:create_table(airport,
		 [
		 {attributes,record_info(fields, airport)},
		 {index, [country]}]).

Example 4-14 brings all of the airport example code
 together.
Example 4-14. Full airport example
-module(rest).
-include("/usr/lib/erlang/lib/stdlib-1.17.3/include/qlc.hrl").
-include("/usr/lib/yaws/include/yaws_api.hrl").
-export([out/1, addAirport/4, handle/2]).
%-compile(export_all).

-define(RECORD_TYPE, airport).
-define(RECORD_KEY_FIELD, code).

-record(?RECORD_TYPE,
 {?RECORD_KEY_FIELD, city, country, name }).

out(Arg) ->
 Method = method(Arg) ,
 io:format("~p:~p ~p Request ~n", [?MODULE, ?LINE, Method]),
 handle(Method, Arg).

method(Arg) ->
 Rec = Arg#arg.req,
 Rec#http_request.method.

convert_to_json(Lines) ->
 Data = [{obj,
	 [{airport, Line#?RECORD_TYPE.code},
	 {city, Line#?RECORD_TYPE.city},
	 {country, Line#?RECORD_TYPE.country},
	 {name, Line#?RECORD_TYPE.name}]}
	 || Line <- Lines],
 JsonData = {obj, [{data, Data}]},
 rfc4627:encode(JsonData).

addAirport(Code, City, Country, Name) ->
 NewRec = #?RECORD_TYPE{
		 ?RECORD_KEY_FIELD	= Code,
		 city			= City,
		 country		= Country,
		 name			= Name},
 io:format("~p:~p Adding Airport ~p~n",
	 [?MODULE,?LINE, NewRec]),
 Add = fun() ->
 mnesia:write(NewRec)
 end,
 {atomic, _Rec} = mnesia:transaction(Add),
 NewRec.

handle('GET', _Arg) ->
 io:format("~n ~p:~p GET Request ~n", [?MODULE, ?LINE]),
 Records = do(qlc:q([X || X <- mnesia:table(?RECORD_TYPE)])),
 Json = convert_to_json(Records),
 io:format("~n ~p:~p GET Request Response ~p ~n", [?MODULE, ?LINE, Json]),
 {html, Json};

handle('POST', Arg) ->
 {ok, Json, _} = rfc4627:decode(Arg#arg.clidata),
 io:format("~n~p:~p POST request ~p~n",
 [?MODULE, ?LINE, Json]),
 Airport	= rfc4627:get_field(Json, "airport", <<>>),
 City	= rfc4627:get_field(Json, "city", <<>>),
 Country	= rfc4627:get_field(Json, "country", <<>>),
 Name	= rfc4627:get_field(Json, "name", <<>>),
 _Status = addAirport(Airport, City, Country, Name),
 [{status, 201},
 {html, Arg#arg.clidata}];

handle('PUT', Arg) ->
 [IndexValue,_] = string:tokens(Arg#arg.pathinfo),
 {ok, Json, _} = rfc4627:decode(Arg#arg.clidata),
 io:format("~p:~p PUT request ~p ~p~n",
 [?MODULE, ?LINE, IndexValue, Json]),
 Airport	= rfc4627:get_field(Json, "airport", <<>>),
 City	= rfc4627:get_field(Json, "city", <<>>),
 Country	= rfc4627:get_field(Json, "country", <<>>),
 Name	= rfc4627:get_field(Json, "name", <<>>),

 NewRec = #?RECORD_TYPE{
		 ?RECORD_KEY_FIELD	= Airport,
		 city			= City,
		 country		= Country,
		 name			= Name},

 io:format("~p:~p Renaming ~p",
 [?MODULE, ?LINE, NewRec]),
 ChangeName = fun() ->
			 mnesia:delete(
			 {?RECORD_KEY_FIELD, IndexValue}),			
 mnesia:write(NewRec)
 end,
 {atomic, _Rec} = mnesia:transaction(ChangeName),
 [{status, 200},
 {html, IndexValue}];

handle('DELETE', Arg) ->

 [IndexValue, _] = string:tokens(Arg#arg.pathinfo),
 io:format("~p:~p DELETE request ~p",
 [?MODULE, ?LINE, IndexValue]),

 Delete = fun() ->
 mnesia:delete(
 {?RECORD_KEY_FIELD, IndexValue})
 end,

 Resp = mnesia:transaction(Delete),
 case Resp of
 {atomic, ok} ->
 [{status, 204}];
 {_, Error} ->
 io:format("~p:~p Error ~p ",
 [?MODULE, ?LINE, Error]),
 [{status, 400},
 {html, Error}]
 end;

handle(Method,_) ->
 [{error, "Unknown method " ++ Method},
 {status, 405},
 {header, "Allow: GET, HEAD, POST, PUT, DELETE"}
].

do(Q)->
 F = fun() ->
 qlc:e(Q)
	end,
 {atomic, Value} = mnesia:transaction(F),
 Value.

Finally, we need a frontend to use all this with. I created a simple
 frontend in CoffeeScript with ExtJS (see http://sencha.com) and it is included in Example 4-15. This creates a UI in the browser that looks
 like Figure 4-1.
Example 4-15. CoffeeScript frontend (airport.coffee)
makeModel = ->
 Ext.define("Airport",
 extend: "Ext.data.Model",
 fields:[
 {name: "airport"}
 {name: "city"}
 {name: "country"}
 {name: "name"}
]
)

makeStore = ->
 model = makeModel()
 store = Ext.create("Ext.data.Store",
 autoLoad : true
 autoSync : true
 model : model
 proxy :
 type : "rest"
 url : "airports.yaws" # Will need to change the backend here
 reader :
 type: "json"
 root: "data"
 writer:
 type: "json"
)

setupAirports = ->
 store = makeStore()
 rowEditing = Ext.create "Ext.grid.plugin.RowEditing"
 grid = Ext.create "Ext.grid.Panel"
 renderTo : document.body
 plugins : [rowEditing]
 width : 500
 height : 300
 title : "Airports"
 store : store
 columns:
 [
 {
 text : 'Airport',
 width : 60
 sortable : true
 dataIndex : "airport"
 editor : {allowBlank: false}
 }
 {
 text : "City"
 dataIndex : "city"
 sortable : true
 editor : {allowBlank: false}
 }
 {
 text : "Country"
 dataIndex : "country"
 sortable : true
 editor : {allowBlank: false}
 }
 {
 text : "Airport Name"
 dataIndex : "name"
 sortable : true
 editor : {allowBlank: false}
 }
]
 dockedItems:
 [
 xtype: "toolbar"
 items:
 [
 {
 text: "Add"
 handler: ->
 store.insert(0, new Airport())
 rowEditing.startEdit(0,0)
 }
 {
 itemId: 'delete'
 text: "Delete"
 handler: () ->
 selection = grid
 .getView()
 .getSelectionModel()
 .getSelection()[0]
 if(selection)
 store.remove(selection)
 }
]
]

Ext.onReady setupAirports

[image: Airports UI in a browser]

Figure 4-1. Airports UI in a browser

[8] For those who have worked in .NET, this is similar to
 LINQ.

Chapter 5. File Upload

While being able to submit a form or other post variables via Ajax is
 a useful thing, sooner or later most applications will want to let a user
 upload a file, for example an avatar image or a video.
Yaws allows an application to receive a file from the user in the
 standard upload format that users of other server-side technologies such as
 PHP have come to expect.
When uploading a file in PHP, PHP buffers the input into the /tmp directory and then sends the finished file to
 your program. In Yaws, the server sends the file in chunks to your code. So
 instead of getting a complete file, the programmer has to be ready to get a
 stream of chunks of data. This does put a little more work onto the
 programmer, but it also allows the programmer to work with an incomplete
 upload if that is desired.
The examples in this chapter are taken from the example on the Yaws
 documentation website with a few minor changes. The full working code is in
 Example 5-4, while the examples preceding it show parts
 of the code for explanation.
Note
To test uploading, you can of course use a browser, but using the
 curl[9] program from a command line makes everything easier to test.
 Using a command line like this one will upload a file from the local disk
 to the Yaws server. In this example, the file you specify should be copied
 to the upload directory, /tmp/YawsUploads—if that directory does not
 exist it will be created. When the upload is finished, the web server will
 return an HTML fragment with the text “File Upload Done”.
 curl -F radio=@large_audio_file.mp3 http://localhost:8081/upload.yaws

The File Upload Request

In the case of a file upload, out/1 will be called not just once but multiple
 times, with each call having a new slice of the data (see Example 5-1). In order to maintain the state of the upload
 (and anything else that may go along with it) Yaws provides a way to
 return a state from out/1 and have it
 returned to you in the next invocation. In this example, the state of the
 upload is encoded in the #upload{}
 record and stored between calls in Arg#arg.state.
The first clause in this function uses a guard to check if the
 Arg#arg.state field is not set. If it
 has not been set, then it creates a blank upload object and passes it to
 multipart/2. The second clause of the
 function simply gets the existing state object from Arg#arg.state and passes it to multipart/2.
Example 5-1. Repeated upload requests
<erl>
multipart(Arg, State) ->
 Parse = yaws_api:parse_multipart_post(Arg),
 case Parse of
 [] -> ok;
 {cont, Content, Res} ->
 case nextChunk(Arg, Res, State) of
 {done, Result} ->
 Result;
 {cont, NewState} ->
 {get_more, Content, NewState}
 end;
 {result, Res} ->
 case nextChunk(Arg, Res, State#upload{last=true}) of
 {done, Result} ->
 Result;
 {cont, _} ->
 err()
 end
 end.

out(A) when A#arg.state == undefined ->
 State = #upload{},
 multipart(A, State);
out(A) ->
 multipart(A, A#arg.state).
</erl>

The function yaws_api:parse_multipart_post/1 will return
 {result, Res} if this is the final
 chunk of data from the browser. However, if the function returns {cont, Contents, Res} then there is more data to
 come from the browser. At this point the out/1 function should return {get_more, Contents, State}. The next time
 out/1 is called, the
 State part of that tuple will be passed back in to be
 used as shown in Example 5-2.
When the upload is finished, multipart/2 will return a result such as
 {html, "Upload Finished"} that will be
 shown to the user. If the upload is not finished, it will return a tuple
 as described above to let Yaws know to give it more data. Note this
 example does not save the data that will be shown in Saving to Disk.
Example 5-2. Multipart
multipart(Arg, State) ->
 Parse = yaws_api:parse_multipart_post(Arg),
 case Parse of
 [] -> ok;
 {cont, Content, Res} ->
 case nextChunk(Arg, Res, State) of
 {done, Result} ->
 Result;
 {cont, NewState} ->
 {get_more, Content, NewState}
 end;
 {result, Res} ->
 case nextChunk(Arg, Res, State#upload{last=true}) of
 {done, Result} ->
 Result;
 {cont, _} ->
 err()
 end
 end.

Saving to Disk

The most obvious thing to do with a file upload is to save it to the
 filesystem. This may be a final location for the file, or a way to buffer
 large uploads until they are finished and can be pushed into some other
 storage mechanism so as not to use up large amounts of memory.
To write a file to disk call the BIF file:open/2 as in Example 5-3. If there is not an error, this will return
 {ok, FD} where FD is the file handle
 that can be used to write to the file. For full details on handling files
 in Erlang, see the Erlang manual pages.
Once the file has been opened, each subsequent chunk of data can be
 added to the file with file:write/2
 until the end of the file, when file:close/2 can be called to close the file
 handle.
Note
If a process dies in the middle of writing a file, Erlang will
 close the file handle automatically. It may be worth it to have the
 monitoring mechanism delete the file as well.

There are several clauses of the writeToDisk/3 function in Example 5-3, but they all take the same three
 parameters. The first is the standard Arg record that Yaws sends to out/1, which is passed on here. The second is a
 list of the parts of the file to be saved, and the third is the current
 state record.
The parts buffer is a list of chunks of the uploaded file that can
 be saved to disk. If the list is empty and State#upload.last is false, then all the data
 that has been buffered has been processed. In this case writeToDisk/3 will return {cont, State}, which will let Yaws know to send
 the next chunk of data when it arrives and wait until that happens.
When the buffer is not empty, it will consist of a list of tuples of
 the form {Atom, Data}. There are
 several possible atoms that could be sent.
The first element to be sent will be sent with the form {head, {Name, Options} }. To handle this,
 writeToDisk/3 should open the file
 handle, set up the state record, and then recursively call writeToDisk/3 with the new state record and the
 tail of the buffer list.
In the case of a chunk of data in the middle of a file, the head of
 the buffer will look like {body, Data}.
 In this case, the data should be written out to disk, and then writeToDisk/3 should again be called recursively
 with the tail of the list.
If the buffer list is empty and State#upload.last is true, then the file is
 finished uploading. At this point we can call file:close/1 to close the file handle. After
 that we can call upload_callback/1 to
 handle any operations that we may wish to handle after the upload finishes
 (such as syncing to other nodes or uploading to CouchDB) and we return a
 done status.
Example 5-3. Save file upload
writeToDisk(A, [{part_body, Data}|Res], State) ->
 writeToDisk(A, [{body, Data}|Res], State);

writeToDisk(_A, [], State) when State#upload.last==true,
 State#upload.filename /= undefined,
 State#upload.fd /= undefined ->
 file:close(State#upload.fd),
 upload_callback(State),
 Res= {html, "Done"},
 {done, Res};

writeToDisk(A, [], State) when State#upload.last==true ->
 {done, err()};

writeToDisk(_A, [], State) ->
 {cont, State};

writeToDisk(A, [{head, {_Name, Opts}}|Res], State) ->
 case lists:keysearch(filename, 1, Opts) of
 {value, {_, Fname0}} ->
 Fname = yaws_api:sanitize_file_name(basename(Fname0)),
	 TargetDir = "/tmp",
	 file:make_dir(TargetDir),
	 case file:open([TargetDir, Fname] ,[write]) of
		{ok, Fd} ->
		 S2 = State#upload{filename = Fname,
				 fd = Fd},
		 writeToDisk(A, Res, S2);
		Err ->
		 {done, err()}
	 end;
	false ->
 writeToDisk(A,Res,State)
 end;

writeToDisk(A, [{body, Data}|Res], State)
 when State#upload.filename /= undefined ->
 case file:write(State#upload.fd, Data) of
 ok ->
 writeToDisk(A, Res, State);
 Err ->
 {done, err()}
 end.

If uploading files is a large part of an application, then the disk
 can become a bottleneck in the application’s performance. While the server
 may have 20 or 40 cores, the disk is very sequential and the slowest part
 of the system. This has to be considered in light of Amdahl’s law (see
 Amdahl’s law). It’s possible that using something like
 Amazon’s S3 might be a better solution (see Saving to Amazon S3).

Putting It All Together

Example 5-4 brings together the various pieces of
 code to show you how to upload a file in Yaws.
Example 5-4. Complete upload code (upload.yaws)
<erl>

-record(upload, {
 fd,
 filename,
 last}).

-define(DIR, "/tmp/").

out(Arg) when Arg#arg.state == undefined ->
 State = #upload{},
 multipart(Arg, State);
out(Arg) ->
 multipart(Arg, Arg#arg.state).

err() ->
 {ehtml,
 {p, [], "error"}}.

multipart(Arg, State) ->
 Parse = yaws_api:parse_multipart_post(Arg),
 case Parse of
 [] -> ok;
 {cont, Cont, Res} ->
 case addFileChunk(Arg, Res, State) of
 {done, Result} ->
 Result;
 {cont, NewState} ->
 {get_more, Cont, NewState}
 end;
 {result, Res} ->
 case addFileChunk(Arg, Res, State#upload{last=true}) of
 {done, Result} ->
 Result;
 {cont, _} ->
 err()
 end
 end.

addFileChunk(Arg, [{part_body, Data}|Res], State) ->
 addFileChunk(Arg, [{body, Data}|Res], State);

addFileChunk(_Arg, [], State) when State#upload.last	== true,
 State#upload.filename	/= undefined,
 State#upload.fd	/= undefined ->

 file:close(State#upload.fd),
 Res = {ehtml,
 {p,[], "File upload done"}},
 {done, Res};

addFileChunk(Arg, [], State) when State#upload.last==true ->
 {done, err()};

addFileChunk(_Arg, [], State) ->
 {cont, State};

addFileChunk(Arg, [{head, {_Name, Opts}}|Res], State) ->
 case lists:keysearch(filename, 1, Opts) of
 {value, {_, Fname0}} ->
 Fname = yaws_api:sanitize_file_name(basename(Fname0)),

 %% we must not put the file in the
 %% docroot, it may execute uploade code if the
 %% file is a .yaws file !!!!!
	 file:make_dir(?DIR),
	 case file:open([?DIR, Fname] ,[write]) of
		{ok, Fd} ->
		 S2 = State#upload{filename = Fname,
				 fd = Fd},
		 addFileChunk(Arg, Res, S2);
		Err ->
		 {done, err()}
	 end;
	false ->
 addFileChunk(Arg,Res,State)
 end;

addFileChunk(Arg, [{body, Data}|Res], State)
 when State#upload.filename /= undefined ->
 case file:write(State#upload.fd, Data) of
 ok ->
 addFileChunk(Arg, Res, State);
 Err ->
 {done, err()}
 end.

basename(FilePath) ->
 case string:rchr(FilePath, $\\) of
 0 ->
 %% probably not a DOS name
 filename:basename(FilePath);
 N ->
 %% probably a DOS name, remove everything after last \
 basename(string:substr(FilePath, N+1))
 end.
</erl>

Storage in a Distributed System

The other complication is that writing the file to disk is probably
 not the correct way to handle the data. Erlang applications are
 distributed applications that run across a large number of servers. So if
 you upload a file from a user and it gets put on one node, it will not be
 seen by all the others. In this case it is a much better idea to keep the
 file in some sort of data store that has a way of replicating data around
 the network.
One solution is to try to put files on a shared filesystem. Unless
 it’s a system like Amazon’s S3, however, this can be a bad idea for a few
 reasons. First of all, the server that holds that system will become a
 bottleneck and a single point of failure. If that system were to go
 offline, the entire system will become unavailable. In addition, such a
 system would have to be quite large to handle the load of all the clients.
 Once again, the specifics of storage will have to be evaluated in light of
 the design and use of the application.
Using something like CouchDB (see CouchDB) would
 make sense here as it will allow the file to be propagated around the
 nodes of the application pretty well. In this case, what would probably
 happen is that the file would be uploaded to the local disk and then, when
 the upload is complete, it would be moved into the distributed system, be
 that CouchDB, Riak, HBase, or something else. This way, if a file upload
 is canceled or is corrupt, it will not be propagated out onto the
 network.
The other option for dealing with uploaded data is not to write it
 out at all, but to stream it to the users. Yaws is fully able to stream
 multimedia—see the Yaws documentation for more detail.

Saving to Amazon S3

Often we will want to take a file that a user has uploaded and make
 it available to the world to download. For example, think of a video on
 YouTube: the user uploads the file, probably does some manipulation of the
 data itself (converting formats, etc.), and then puts it somewhere that
 other users can view it.
One of the easiest ways to do this is to save the file to Amazon S3,
 a highly reliable cloud service that was built to solve this particular
 problem.
To use Amazon Web Services (AWS) from Erlang, use the
 erlcloud package at https://github.com/gleber/erlcloud. This package provides
 an Erlang interface to AWS. In this case we’re interested only in the S3
 service.
In Amazon S3 files live in buckets, and the code in Example 5-5 assumes that we have created a bucket already. The
 name of the bucket should be set by the -define() in the file. It is also possible to
 set default options on the bucket so that they are what your application
 needs. In addition, there are two keys that have to be set in this file
 (set them to your AWS keys).
Once the file has been uploaded from the user we need to upload it
 to S3 using the function erlcloud_s3:put_object/6 (if you want to allow
 default options there are also functions erlcloud_s3:put_object/3-5). Pass this function
 the bucket name, the key, and the value to upload; you can also pass
 options, HTTP headers, and a config object. This will upload the object to
 Amazon S3.
Once everything is set, we can upload a file to S3. To do this we
 pass in the key and value to the function s3:upload(),
 which will call erlcloud_s3:put_object/3 to upload the
 file.
If the file is on disk use the function s3:upload_file/2, which will automatically read
 the file into memory and pass it on to upload/2.
Example 5-5. Uploading to S3 (s3.erl)
-module(s3).

-define('ACCESS_KEY', "********************").
-define('SECRET_ACCESS_KEY', "**").
-define('BUCKET', "*************").

-export([upload/2, upload_file/2]).

upload_file(Key, Path) ->
 {ok, Binary} = file:read_file(Path),
 upload(Key, Binary).

upload(Key, Value) ->
 erlcloud_ec2:configure(?ACCESS_KEY, ?SECRET_ACCESS_KEY),
 error_logger:info_msg("~p:~p Settng up AWS to S3 ~n",
 [?MODULE, ?LINE]),
 R = erlcloud_s3:put_object(?BUCKET, Key, Value, [], [{"Content-type", "image/jpeg"}]),
 error_logger:info_msg("~p:~p Uploaded File ~p to S3 ~n",
 [?MODULE, ?LINE, R]),
 {ok, R}.

Obviously, before using this example you will need to fill in your
 access key and secret key as well as the name of your bucket. In addition,
 before trying to upload code to S3 you will need to start up the
 inets and ssl services in Erlang. To
 do that, run these two lines when starting the Erlang node:
 inets:start().
 ssl:start().
To see this in action you can run Example 5-6,
 which will take a key and file from a Unix command line and upload it to
 S3. There are better AWS command-line tools, but this is a helpful way of
 testing the code in Example 5-5.
Example 5-6. Uploading to S3 shell wrapper (s3_upload)
#!/usr/bin/env escript
-export([main/1]).

main([Key, File_Name]) ->
 inets:start(),
 ssl:start(),
 s3:upload_file(Key, File_Name).

[9] Curl is a standard Unix program and can be run in Windows with
 Cygwin.

Chapter 6. WebSockets

Traditionally HTTP is not very good for live communications. The
 communication stream is controlled by the client and is really designed for
 the case where the client wants to load or set data from time to time. A
 number of methods have been used to simulate TCP-socket-like behavior over
 HTTP but none of them works very well. HTML5 introduced the idea of
 WebSockets, a full-on, bi-directional communication channel between the
 browser and a server.
In some ways WebSockets take the opposite approach to dealing with
 interactions between the browser and the client than REST does. REST is
 built around the idea that the browser (or other client) will send a number
 of discrete requests to the server of the form, show this data, or perform
 some action.
Note
As WebSockets are not supported in all browsers, having a cross-platform way of handling communication
 would be helpful. This can be done with the JavaScript package
 Socket.io (http://socket.io) and
 the Erlang package socket.io-erlang (https://github.com/yrashk/socket.io-erlang).

From an Erlang perspective, WebSockets make interactions between the
 browser and Erlang applications more transparent. An Erlang application will
 generally consist of a bunch of little servers passing messages around
 between them. When opening up WebSockets between the user’s browser and the
 Erlang application, we can push that model out onto the user’s
 browser.
To visualize this, look at Figure 6-1. Here the Erlang cloud on the
 left consists of a bunch of processes (shown as squares) passing messages
 between them (shown as arrows). There is one process shown in orange with
 rounded corners holding open the WebSocket (the double arrow), which is
 talking to the web browser and the client-side application. By extension
 there could be many sockets connecting to many web browsers allowing
 communications between the users.
[image: Cluster diagram with sockets]

Figure 6-1. Cluster diagram with sockets

Thankfully, while the syntax of how events handlers are called in
 JavaScript and Erlang is somewhat different, the semantics are pretty
 similar. In Erlang we can use a receive
 block or an OTP behavior like gen_server
 or gen_fsm. In JavaScript we can use the
 .onmessage event handler and find the
 data in a dictionary in the parameter list.
However, the web browser does not understand the Erlang message
 format, so we will need to translate between the internal messages being
 sent around by Erlang and a format that the browser can understand. This can
 be done with JSON, XML, HTML, or a custom format. In this chapter, I will
 use JSON because it is the easiest to work with in the browser, but other
 formats can work too if they make sense.
The WebSocket Request

To set up a WebSocket in JavaScript with jQuery, use code as in
 Example 6-1. The socket will be opened by creating a
 WebSocket object with the URL of the
 server resource. Once the socket is ready for action, JavaScript will call
 the socket.onopen handler function.
Example 6-1. socket.js
$(function ()
{
 var WebSocket = window.WebSocket || window.MozWebSocket;
 var socket = new WebSocket("ws://localhost:8081/websockets/basic_echo_callback.yaws");

 // wait for socket to open
 socket.onopen = function ()
 {

 $('input#echo').on('keypress', function (event)
 {
 if (event.which == 13) {
 event.preventDefault();
 var msg = $(this).val();

 socket.send(JSON.stringify(
 {
 message:msg
 }));
 }
 });

 socket.onmessage = function (msg)
 {
 var message = $.parseJSON(msg.data);
 var html = $('div#messages').html() + message.message + "
\n";
 $('div#messages').html(html);

 }
 }
});

Warning
As with much of HTML5, not all browsers support WebSockets. As of
 this writing, the WebSocket interface is supported by Google Chrome and
 Mozilla Firefox, and Microsoft has said that WebSockets will be a
 feature of Internet Explorer Version 10. Safari, Opera, and the mobile
 browsers do not yet fully support WebSockets. (Opera actually does
 support them but only if you explicitly turn them on, which most users
 probably don’t.) The Mobile Safari (iOS) and Android browsers also do
 not fully support WebSockets. There is also a plug-in for PhoneGap to
 allow WebSockets to be used on that platform.
WebSockets are new technology and the specifications for them have
 changed a few times, so they should be used with caution at the moment.
 I hope that within a few years we will be able to use them more fully.
 The Yaws team has been doing a pretty good job of keeping up to date
 with the changes, so as long as you keep Yaws up to date you should be
 OK.

The JavaScript interface to sockets, then, contains two main
 functions: a way to send messages to the server, and a way to handle
 messages that come back. To send a message, use the function socket.send(), which will send a string to the
 server. In this case it is the content of the input box, and is triggered
 when the input box receives a change event.
To handle incoming messages, use the socket.onmessage handler, which gets called when
 the server sends us a message.
Now that we have explored (in brief) the JavaScript interface to how
 to build a web socket, it is time to move on to the server side. When the
 browser opens up a web socket, it sends a request to the server that looks
 like a standard HTTP request but with the addition of an Upgrade header, as in Example 6-2.
Example 6-2. Upgrade header
	Upgrade: WebSocket

This header can be found with the is_websocket/1 function, as shown in Example 6-3. This will return true if the request is
 to open a socket and false otherwise.
Example 6-3. Get upgrade header
is_websocket(#headers{other=L}) ->
 lists:foldl(fun({http_header,_,K0,_,V}, false) ->
 K = case is_atom(K0) of
 true ->
 atom_to_list(K0);
 false ->
 K0
 end,
 case string:to_lower(K) of
 "upgrade" ->
 true;
 _ ->
 false
 end;
 (_, Acc) ->
 Acc
 end, false, L).

Basic WebSocket Handler

The main conceptual difference between a WebSocket and a normal HTTP
 connection is that an HTTP connection is a one-shot item. The request
 comes in, the server does something and sends back a response, and that is
 the end of it. With a socket, the connection is much more like a
 persistent TCP socket connection, where multiple pieces of data are sent
 back and forth over an extended period of time, as long as several hours
 in some cases.[10]
Warning
TheYaws WebSockets interfaces have changed recently. This chapter
 works with Yaws Version 1.92, which was released December 23, 2011;
 future versions may change things again.

To deal with a WebSocket, a callback module should be defined that
 exports a function handle_message/1
 (there is also an advanced mode that uses handle_message/2). This function will be called
 by Yaws each time the browser sends data over the socket.
If there is no need for the function to save some form of state from
 one call to the next, you will need to invoke your socket in advanced mode
 and do a bit more work to save up partial frames. In that case handle_message/1 should be replaced by handle_message/2, which has a bunch more
 options.
The handle_message/1 function
 should take as an option a tuple in the form {Type, Data} where Type can
 be text or binary and Data is the
 message that is sent. In Example 6-4 (which
 was taken from the Yaws sources) there are several clauses that show some
 of the different cases that can occur.
Example 6-4. handle_message/1
-module(basic_echo_callback).

%% Export for websocket callbacks
-export([handle_message/1, say_hi/1]).

handle_message({text, Message}) ->
 io:format("~p:~p basic echo handler got ~p~n",
	 [?MODULE, ?LINE, Message]),
 {reply, {text, <<Message/binary>>}}.

say_hi(Pid) ->
 io:format("asynchronous greeting~n", []),
 yaws_api:websocket_send(Pid, {text, <<"hi there!">>}).

When handle_message/1 is called
 it can return one of three responses. If it wishes to reply to the
 incoming message, it should return {reply, {Type,
 Data}}, which will send that message back out to the
 client.
If handle_message/1 does not have
 any message to send back, it should return the atom noreply.
If the server needs to send data to the client not in response to an
 action by the client, which is after all one of the main reasons to use a
 WebSocket, the function yaws_api:websocket_end/2 as shown in the
 function say_hi/1 in Example 6-4 will allow that message to be sent.
 This can be used in a standard receive
 loop to allow data from other parts of an application to be sent to the
 client.
When the request to establish a WebSocket first arrives to the
 out/1 function, return {websocket, CallBackModule, Options} where
 CallBackModule is the module with handle_message/1,2 defined and
 Options are any initial state that should be passed in
 (often just an empty list). A full Erlang implementation of the WebSocket
 setup code is shown in Example 6-5. This
 brings together pieces shown previously for a full picture.
Example 6-5. Setting up a WebSocket
<erl>

get_upgrade_header(#headers{other=L}) ->
 lists:foldl(fun({http_header,_,K0,_,V}, undefined) ->
 K = case is_atom(K0) of
 true ->
 atom_to_list(K0);
 false ->
 K0
 end,
 case string:to_lower(K) of
 "upgrade" ->
 true;
 _ ->
 false
 end;
 (_, Acc) ->
 Acc
 end, undefined, L).

%%--
out(Arg) ->
 case get_upgrade_header(Arg#arg.headers) of
	true ->
	 error_logger:warning_msg("Not a web socket client~n"),
	 {content, "text/plain", "You're not a web sockets client! Go away!"};
	false ->
	 error_logger:info_msg("Starting web socket~n"),
	 {websocket, basic_echo_callback, []}
 end.

</erl>

To close the connection to the client, handle_message/1 can return {close, Reason}.
This echo code in action will look like Figure 6-2. When the browser sends data to the
 server, this code is set up to log it as shown in Example 6-6.
[image: WebSockets in action]

Figure 6-2. WebSockets in action

Example 6-6. Log from a WebSocket
=INFO REPORT==== 13-Mar-2012::16:43:25 ===
Starting web socket
basic_echo_callback:10 basic echo handler got <<"{\"message\":\"This is a Test\"}">>

Advanced WebSocket Handler

If a process needs more control over the WebSockets or needs to
 maintain state, using handle_message/2
 will allow the programmer to do that. Contrast the implementation of
 handle_message/2 in Example 6-7 with that of handle_message/1 in Example 6-4. In Example 6-7 the first parameter is a #ws_frame_info record versus the tuple above.
 This lets the programmer work with partial frames. The downside is that
 you must handle both the state and the partial frames yourself. If being
 able to handle partial frames is not something you need, then some form of
 abstraction could be created to manage that and just expose the state
 handling features.
Example 6-7. Advanced WebSocket interface
%%%==
%%% compiled using erlc -I include src/advanced_echo_callback.erl
%%%==

-module(advanced_echo_callback).

-export([handle_message/2]).

-include("yaws_api.hrl").

%% define callback state to accumulate a fragmented WS message
%% which we echo back when all fragments are in, returning to
%% initial state.
-record(state, {frag_type = none, % fragment type
 acc = <<>>}). % accumulate fragment data

%% start of a fragmented message
handle_message(#ws_frame_info{fin=0,
 opcode=FragType,
 data=Data},
 #state{frag_type=none, acc = <<>>}) ->
 {noreply, #state{frag_type=FragType, acc=Data}};

%% non-final continuation of a fragmented message
handle_message(#ws_frame_info{fin=0,
			 opcode=continuation,
 data=Data},
 #state{frag_type = FragType, acc = Acc}) ->
 {noreply, #state{frag_type=FragType, acc = <<Acc/binary,Data/binary>>}};

%% end of text fragmented message
handle_message(#ws_frame_info{fin=1,
 opcode=continuation,
 data=Data},
 #state{frag_type=text, acc=Acc}) ->
 Unfragged = <<Acc/binary, Data/binary>>,
 {reply, {text, Unfragged}, #state{frag_type=none, acc = <<>>}};

%% one full non-fragmented message
handle_message(#ws_frame_info{opcode=text, data=Data}, State) ->
 {reply, {text, Data}, State};

%% end of binary fragmented message
handle_message(#ws_frame_info{fin=1,
 opcode=continuation,
 data=Data},
 #state{frag_type=binary, acc=Acc}) ->
 Unfragged = <<Acc/binary, Data/binary>>,
 io:format("echoing back binary message~n",[]),
 {reply, {binary, Unfragged}, #state{frag_type=none, acc = <<>>}};

%% one full non-fragmented binary message
handle_message(#ws_frame_info{opcode=binary,
 data=Data},
 State) ->
 io:format("echoing back binary message~n",[]),
 {reply, {binary, Data}, State};

handle_message(#ws_frame_info{opcode=ping,
 data=Data},
 State) ->
 io:format("replying pong to ping~n",[]),
 {reply, {pong, Data}, State};

handle_message(#ws_frame_info{opcode=pong}, State) ->
 %% A response to an unsolicited pong frame is not expected.
 %% http://tools.ietf.org/html/\
 %% draft-ietf-hybi-thewebsocketprotocol-08#section-4
 io:format("ignoring unsolicited pong~n",[]),
 {noreply, State};

handle_message(#ws_frame_info{}=FrameInfo, State) ->
 io:format("WS Endpoint Unhandled message: ~p~n~p~n", [FrameInfo, State]),
 {close, {error, {unhandled_message, FrameInfo}}}.

In addition, each time handle_message/2 is called in Example 6-7, it is also given a #state record. This state can then be kept
 across calls and updated as needed. Thus handle_message/2 should return {reply, {Type,Data}, State} or {noreply, State}, as opposed to the forms for
 handle_message/1 that do not include
 the State record. [11]
To signify that the advanced mode should be used instead of the
 basic mode, the out/1 function should
 return the tuple {websocket, Module, {advanced,
 InitialState}}.

[10] Technically HTTP also exists over a socket, but it is a
 short-lived one that is closed as soon as the request is done, and
 does not take advantage of much of the power of TCP sockets.

[11] This is very similar to how the OTP gen_server behavior works.

Chapter 7. Streaming

Sometimes you want to stream data from a server to a client, for
 example, for an Internet radio station or a service like Pandora or Ustream.
 Yaws can do this quite well and with minimal effort on the part of the
 programmer.
The difference between streamed data and a standard HTTP connection is
 that a stream can remain open for a long period of time (oftentimes hours or
 days) and send data to the client for that entire time. However, unlike
 WebSockets (see Chapter 6) a stream is a one-way data
 connection and will normally be binary data like music or video as opposed
 to textual data in a WebSocket.
Simple Streaming

To set up streaming in Yaws, the out/1 function should return the tuple {streamcontent, MimeType, FirstChunk} as in
 Example 7-1.
Example 7-1. Setting up streaming (stream.yaws)
<erl>
 out(A) ->
 io:format("~nStarting audio stream~n"),
 spawn(streaming, stream_data, [self()]),
 {streamcontent, "audio/mp3", <<>>}.
</erl>

You must also spawn a new process to actually send the data to the
 client. This is done in Example 7-1 with the call to
 spawn/3. This will create a new process
 and pass the process ID of the creating process, as shown in Example 7-2. When creating that process, the out/1 function passes its own PID via the
 self/0 function to the function
 streaming:stream_data/1.
To actually send the data to the stream, call the function yaws_api:stream_chunk_deliver/2 with the Yaws
 creating PID and the data to be sent. When the stream is finished, call
 yaws_api:stream_chunk_end/1 to tell
 Yaws to close things down.
Warning
When streaming audio or video to the HTML5
 <audio> and <video>
 tags, not all browsers support all formats. So it will be necessary to
 convert formats so that all users can see the content if your frontend
 is HTML5.

If the source of the data is faster than what is receiving the data,
 replace yaws_api:stream_chunk_deliver/2
 with yaws_api_stream_chunk_deliver_blocking/2. This
 will make sure that the data being sent does not overflow the client’s
 buffers.
Example 7-2. Sending data to a stream (streaming.erl)
-module(streaming).

-export([stream_data/1]).

stream_data(Pid) ->
 File = "audio.mp3",
 FileHDL = open_file(File),
 stream_from_file(Pid, FileHDL, 1).

open_file(File) ->
 {ok, IoDevice} = file:open(File,
			 [read, binary]),
 IoDevice.

stream_from_file(Pid, File, I) ->
 Result = file:read(File, 4096),
 case Result of
	{ok, Data} ->
	 yaws_api:stream_chunk_deliver_blocking(Pid,Data),
	 stream_from_file(Pid, File, I+1);
	eof ->
	 yaws_api:stream_chunk_end(Pid);
	{error,Reason}->
	 error_logger:error_msg("~p:~p Error ~p ~n",
				 [?MODULE, ?LINE, Reason])
 end.

Of course, not all audio streams have to be played via a web
 browser. It is possible to play audio via a media player like Windows
 Media Player, iTunes, or VLC. Figure 7-1 shows an audio
 stream playing in VLC streamed from Yaws; the code is shown in Example 7-2.
[image: VLC playing a stream from Yaws]

Figure 7-1. VLC playing a stream from Yaws

While this example pulls data from the disk to send to a user for
 simplicity, it is also possible to have the data sent from another process
 that is receiving data from an external source. In that case, you want to
 change the function stream_from_file/3
 in Example 7-2 to a function that will have a receive
 block that will get the data.
The great advantage of this is that if you are sending data to a lot
 of receivers, it is possible to reduce the memory usage by having one
 receive loop handle a group of users. This would make a great deal of
 sense when data is streaming into an application in some way (say from an
 audio input).
In order to help visualize the flow of data in this application,
 take a look at Figure 7-2. In this diagram, data
 always moves from left to right. Data enters into the system via the
 left-most arrow and flows to the line of boxes in the Erlang cloud, which
 is a buffer that will send the data out to the streaming processes of the
 Clients.
Note
When sending large binary messages between processes, Erlang will
 not make a copy of the binary but just pass a reference. However, this
 is inadvisable to the user.

[image: Streaming dataflow diagram]

Figure 7-2. Streaming dataflow diagram

Chapter 8. Using the HTTP Client

Sometimes you need not to create an HTTP service but to consume
 one—perhaps to use a RESTful service or other API, or to load-test a server
 by hitting it with lots of requests at once. Erlang provides an HTTP client
 API that lets you do this. You can find the manual page for this module at
 http://www.erlang.org/doc/man/httpc.html. The
 httpc module is part of the standard Erlang distribution
 and does not have to be installed separately.
The first thing to do before using the httpc module is to start the
 inets service by calling inets:start() or application:start(inets). If you are running an
 application this can be done from the .erlang file or
 from the command line in testing. If you do not start
 inets, httpc will not work correctly.
 [12]
If there are some options that must be set for all calls then you can
 use the function httpc:set_options/1 or
 httpc:set_options/2. There are a number
 of options that can be set here, including all of the standard ones you
 would expect. Of particular note is the max_sessions option, which defaults to 2. In
 addition, if you need to set a proxy server you can do it here with the
 Proxy option. When calling set_option it will return ok or {error,
 Reason}.
Note
There are several other HTTP client packages for Erlang that provide
 more features, including ibrowse and
 lhttpc. You can find both online.

Making a Request

There are four functions available to make an HTTP request that run
 from one to five parameters (there is no function with three). These
 provide progressively more control over the HTTP request.
The simplest version of an HTTP request is httpc:request/1, which takes a URL as an
 argument. The request/1 function simply
 performs an HTTP GET operation on the supplied URL as shown in Example 8-1. In this case a request to http://www.google.com returns {ok, Response} or {error, Reason}. The Response
 will be the headers of the HTTP request along with the body of the request
 (truncated in Example 8-1).[13] If you wish to extract the values from a successful request
 you can use this line to extract the variables: {ok, {{Version, 200, ReasonPhrase}, Headers,
 Body}}.
Example 8-1. A simple HTTP request
14> httpc:request("http://www.google.com").
{ok,{{"HTTP/1.1",200,"OK"},
 [{"cache-control","private, max-age=0"},
 {"date","Tue, 24 Apr 2012 17:59:10 GMT"},
 {"server","gws"},
 {"content-length","40887"},
 {"content-type","text/html; charset=windows-1255"},
 {"expires","-1"},
 {"x-xss-protection","1; mode=block"},
 {"x-frame-options","SAMEORIGIN"}],
 "<!doctype html>..."}}

Sometimes a simple GET is not enough control—for example, you wish
 to access a REST service where you may need to send data with POST, PUT,
 or DELETE, or to test for the existence of a resource with a HEAD
 request.
To have more control over the request, use request/4 or request/5. The first parameter here will be the
 HTTP verb set as an atom. Next will be the content of the request,
 followed by HTTP options, general options, and finally a profile
 parameter. (For a full list of options, see the manual page.)
To post data to a service, use the request/4 version of the function as shown in
 Example 8-2. In this case we are sending a simple payload
 of data to the server, which can be URL-encoded or a JSON. In this example
 the payload is the data to be sent to the server and the URL is the
 address of the resource to send it to.
Example 8-2. HTTP post
-module(post).
-export([post/3]).

post(url_encoding, URL, Payload) ->
 httpc:request(post, {URL,
			 [],
			 "application/x-www-form-urlencoded",
			 Payload},
		 [],
		 []);
post(json, URL, Payload) ->
 httpc:request(post, {URL,
			 [],
			 "application/json",
			 Payload},
		 [],
		 []).

If you do not want to have your process wait for the HTTP request
 for some reason, you could wrap the request in a fun and use spawn/1 to run it in its own process. However,
 the http:request/4 function will do
 this for you if it is passed [{sync, false}]
 as an option. In this case the request will return immediately
 and you will get the content in a receive block. The process will be sent the
 message {http, {RequestId, Result}}.
 This would be especially useful in the case where a program has to poll
 several servers for some information and collate the results. If you are
 used to doing Ajax in JavaScript this will feel familiar.
-module('async_request').
-export([async_request/1]).
async_request(URL) ->
 {ok, RequestId} =
	httpc:request(get, {URL, []}, [], [{sync, false}]),
 receive
	{http, {RequestId, Result}} ->
	 Result
 after 500 ->
	 error
 end.

Finally, if the HTTP request will return a large amount of data, it
 may be useful to have it written to disk for further processing. To do
 this you can use the option {stream,
 Filename} as in Example 8-3. In this case,
 the request/4 function will return
 {ok, saved_to_file} or {error, Reason} depending on what happened. It
 is also possible to stream data to a process by passing self or {self,
 once} instead of a filename. For more details on how that works,
 look at the httpc man page on http://erlang.org.
Example 8-3. Save to a file (stream_to.erl)
-module('stream_to').
-export([stream_to/2]).

stream_to(URL, Filename) ->
 httpc:request(get,
		 {URL,[]},
		 [],
		 [{stream, Filename}]
).

Using OAuth

Many websites now use OAuth to provide identity services. OAuth is a
 protocol that allows a user to authenticate from an external resource,
 such as Google or Facebook. To use OAuth, a program just needs to know the
 token from the server and httpc or another web
 client.
The way OAuth works is that your site redirects the user to a web
 page provided by the OAuth provider, and this site then prompts the user
 to approve your site’s use of OAuth. Assuming the user authorizes the
 access, the user will be redirected back to your site with a token. If you
 then make an HTTP request to the providing site with that token, it will
 respond with a JSON that provides user information, including their name.
 See Example 8-4.
Example 8-4. Using OAuth (oauth.erl)
-module(oauth).

-export([auth/2]).

auth(Site, OAuthToken) ->
 URL = lists:flatten(io_lib:format("~s~s", [Site, OAuthToken])),
 io:format("~n~p:~p (~p)~n OAuth URL ~p~n", [?MODULE, ?LINE, self(), URL]),
 {ok, {{_Version, 200, _ReasonPhrase}, _Headers, Body}} = httpc:request(URL),
 {ok, JSON,_} = rfc4627:decode(Body),
 io:format("~n~p:~p (~p)~n JSON: ~p~n", [?MODULE, ?LINE, self(), JSON]),
 JSON.

In the case of the Facebook Canvas (see the next section), once the
 user has authorized, then when Facebook loads your Canvas page it will
 send a POST to the page with a JSON containing an OAuth token. (Full
 details are on Facebook’s developer site.) Once you have that token, you
 can do an https request to the Facebook server, which will return a JSON
 like in Example 8-9. (Note that this JSON has been
 reformatted with JSON Lint and personal information has been
 removed.)
Facebook Canvas

If you are building a Facebook application, one way you can
 interact with Facebook is via the Canvas. When an application is opened
 by Facebook as a Canvas, it is opened in an iframe inside a page from
 Facebook. Inside that page your app can communicate with your server and
 do anything else you want it to do. You can also communicate with
 Facebook via their interfaces.
When Facebook opens a Canvas page, it sends you a POST containing
 a signed request that is a base64-encoded JSON allowing you to
 authenticate the user.
To use this data, get the signed_request field of the post data from
 Facebook and split it on the period. The first part is a signature that
 you use your secret key to validate, and the second part is the data to
 allow you to authenticate the user.
If the user has not authorized with your application, you will get
 a JSON like in Example 8-5. In this case you
 should redirect the user to the Facebook authentication dialog. (See
 Facebook’s documentation for the details: https://developers.facebook.com/docs/authentication/canvas/.)
At this point you need to redirect the user to the Facebook
 authorization page.
Example 8-5. Initial JSON
{
 "algorithm": "HMAC-SHA256",
 "issued_at": 1335672795,
 "user": {
 "country": "il",
 "locale": "en_US",
 "age": {
 "min": 21
 }
 }
}

To implement this, use a page like Example 8-6, which generates a basic HTML page and then
 calls the code in Example 8-7 to unpack the request
 and send the JSON to any included JavaScript. (You probably also want to
 save the data in a session cookie.)
Example 8-6. Facebook interface Yaws file (facebook.yaws)
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv	="Content-Type"
	 content	="text/html; charset=UTF-8">
 <title>Canvas</title>
 </head>
 <body>
 <pre>
 <erl>
out(Arg) ->
 {ok, SignedRequest} = postvar(Arg, "signed_request"),
 ParsedRequest	= facebook:parse_signed_request(SignedRequest),
 facebook:response(facebook:user_has_authorized(ParsedRequest)).
 </erl>
 </pre>
 </body>
</html>

The code in Example 8-7 will implement the basics of a Facebook
 interface. It can decode the request from Facebook and interact with the
 OAuth servers.
Example 8-7. Facebook interface (facebook.erl)
-module(facebook).

-export([parse_signed_request/1,
 user_has_authorized/1,
 make_redirect_script/0,
 get_user_id/1,
 get_user_info/1,
 response/1]).

-define(SECRET, "********************************").
-define(APP_ID, "***************").
-define(APP_NAMESPACE, "*************").

parse_signed_request(SignedRequest) ->
 [_EncodingSig, Payload] = string:tokens(SignedRequest, "."),
 PayloadJson = tt:fb_decode_base64(Payload),
 {ok, JSON, _} = rfc4627:decode(PayloadJson),
 JSON.

user_has_authorized(ParsedRequest) ->
 rfc4627:get_field(ParsedRequest, "oauth_token", undefined).

get_user_id(ParsedRequest) ->
 rfc4627:get_field(ParsedRequest, "user_id", undefined).

make_user_redirect_url()->
 URLPatern =
	"https://www.facebook.com/dialog/oauth/?client_id=~s&redirect_uri=~s&scope=~s",
 RedirectURL = lists:flatten(io_lib:format("https://apps.facebook.com/~s",
						 [?APP_NAMESPACE])),
 Permission_Names = string:join(["user_interests",
				 "user_location",
				 "user_photos",
				 "user_hometown",
				 "email"],
				 ","),
 URL = io_lib:format(URLPatern,
 [?APP_ID,
 yaws_api:url_encode(RedirectURL),
 Permission_Names]),
 lists:flatten(URL).

make_redirect_script() ->
 Url		= make_user_redirect_url(),
 Tag		= "~p",
 Script	= io_lib:format(Tag, [Url,Url]),
 lists:flatten(Script).

get_user_info(OAuthToken) ->
 URL = lists:flatten("https://graph.facebook.com/me?access_token="
			++ binary:bin_to_list(OAuthToken)),
 io:format("~n~p:~p (~p)~n OAuth URL ~p~n", [?MODULE, ?LINE, self(), URL]),
 {ok, {{_Version, 200, _ReasonPhrase}, _Headers, Body}} = httpc:request(URL),
 {ok, JSON,_} = rfc4627:decode(Body),
 io:format("~n~p:~p (~p)~n JSON: ~p~n", [?MODULE, ?LINE, self(), Body]),
 JSON.

response(undefined)->
 {html, facebook:make_redirect_script()};
response(OAuthToken) ->
 UserInfo = get_user_info(OAuthToken),
 io:format("~n~p:~p (~p)~n JSON: ~p~n", [?MODULE, ?LINE, self(), UserInfo]),
 JSON = rfc4627:encode(UserInfo),
 [
 {ehtml, {script,[], "user_info_data = " ++ JSON}}].

Once the user has told Facebook that he wishes to allow your app
 to know who he is, Facebook will open your page with a JSON that looks
 like Example 8-8. Here you will note that
 there are two new fields. The first is the oauth_token that enables you to request the
 user’s details from Facebook; the second is the user_id that can be used to track sessions and
 locally cache user information.
Example 8-8. Authorized JSON
{
 "algorithm": "HMAC-SHA256",
 "expires": 1335679200,
 "issued_at": 1335673105,
 "oauth_token": "AAAB9elehJ9...",
 "user": {
 "country": "il",
 "locale": "en_US",
 "age": {
 "min": 21
 }
 },
 "user_id": "100************"
}

See Example 8-9 for the data that Facebook sends
 back from an OAuth request if the user has allowed the app to
 authenticate. (Not that the JSON here has been reformatted to make it
 more readable.)
Example 8-9. Using OAuth (oauth.json)
{
 "id": "***************",
 "name": "Joshua Levi",
 "first_name": "Joshua",
 "last_name": "Levi",
 "link": "http:\\/\\/www.facebook.com\\/profile.php?id=***************",
 "gender": "male",
 "email": "zkessin\\u0040**********.***",
 "timezone": 3,
 "locale": "en_US",
 "updated_time": "2010-10-17T10:49:04+0000"
}

[12] The inets service is a part of the standard
 Erlang distribution.

[13] I also removed several long lines here to make this example more
 readable.

Chapter 9. Building an Application with OTP

So far this book has shown small pieces of Erlang or other code to
 demonstrate one idea or another. This chapter does something a bit
 different. Here I will develop a larger application to demonstrate how all
 the parts of an Erlang- and Yaws-based web application hang together.
This application will allow a bunch of users to notify each other of
 updates in status. Whenever a user’s status changes in their browser or on
 their phone, that change will be made available by the server. It will also
 keep track of each user’s status so when a user signs in, she can see all
 the existing status messages. This application can serve as the base of many
 distributed applications, and I hope it will prove illustrative of how to
 build an application in Erlang.
Note
Feel free to use this module as a basis for your own product. If you
 do something really cool with it, please let me know!

This application will also split the application into layers: we’ll
 have a server level that will coordinate between the users, and a web
 frontend that will use a simple web interface.
In this chapter we’ll build a more complex application using the
 standard Erlang/OTP structures. By doing this we can take advantage of the
 fact that OTP is a very well tested framework for building extremely robust
 servers, and match that with an interface in Yaws that can work with the web
 browser.
An OTP application features several parts, all of which must be
 present. First we have the workers that actually
 perform the tasks of the application—in this case, keeping track of user
 status messages.
But beyond our workers we also have some other processes. The first
 type is a supervisor. The supervisor exists to keep an
 eye on the workers—if a worker dies, the supervisor will restart the process, and the
 users will simply see a restarted server the next time they try to poll for
 a status.
To understand how this works, look at Figure 9-1. In this diagram each box represents a
 process and each process is responsible for those below it on the tree. Here
 the supervisors are depicted as squares while the workers are circles. If
 one of the processes were to die (which sooner or later will happen), its
 supervisor will restart it. The full setup does not have to be on one
 server, so it would be possible for the nodes on the right to be on one
 server while those on the left are on the other, thus giving us the ability
 to handle fallover. How to do that fully is beyond the scope of this
 book.
[image: Supervision tree]

Figure 9-1. Supervision tree

Directory Structure

The OTP application wants files to be in a standard set of
 directories. These are ebin,
 include, priv,
 src, and test. Other directories
 can be added to this if needed.
The ebin directory is the only one that is
 actually required, and it should hold the .beam files
 as well as the .app file that describes the
 application (see The App File).
The src directory will hold all Erlang sources
 required for the applications. Any .hrl include files
 should be in the include directory. Testing code of
 course lives in the test directory.
The final directory is priv, which can contain
 any other resources that an application may need. This can include
 templates, config files, so forth. You can always get the application’s
 priv directory by calling code:priv_dir(Application).

Building an Application Server

When building an application in Erlang, I like to start by thinking
 about what kind of information is moving around the application. I will
 normally diagram this with pencil and paper or on a whiteboard. However,
 to save you the trouble of deciphering my handwriting I have translated it
 to a more readable form (see Figure 9-2).
[image: Data movement]

Figure 9-2. Data movement

This web application consists of a few parts, so let’s look at it
 from the outside in. There is a part that runs in the web browser (covered
 in Interfacing the Server with the Web) that will communicate with the server
 via a web resource. The browsers are the right-hand squares on the right,
 the Yaws web servers are the rounded boxes in the middle, and the OTP
 server is the gen_server on the left of the
 diagram.
In this case we use a generic server as shown in The Multicast Server to hold the state of each user. Users will update
 their status by periodically polling for changes over a web
 interface.

The Generic Server

The actual logic of an OTP application will consist of a collection
 of basic servers that will normally be written around the basic
 abstractions provided by the OTP library. The main one is gen_server, which is a generic server. The
 gen_server provides all the standard
 parts of a server, and all the developer has to do is create the functions
 that implement the features needed for the application in question.
Much like implementing an interface in Java, to implement
 gen_server a module must implement a few functions:
 start_link/0, init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2, code_change/3. If you use Emacs as your editor,
 Erlang mode will create this structure along with a number of others for
 you with a template. For an example of this template, take a look at Example D-3 in Appendix D. Many of the
 examples in this chapter are based on the Emacs templates.
To understand all of this, it helps to have a simple module to look
 at. Example 9-1 is a simple server that will generate
 sequential unique IDs.
Example 9-1. Generate unique IDS (uniq.erl)
-module(uniq).
-behaviour(gen_server).

%% API
-export([start_link/0]).
-export([get_id/0]).
%% gen_server callbacks
-export([init/1,
	 handle_call/3,
	 handle_cast/2,
	 handle_info/2,
	 terminate/2,
	 code_change/3]).

-define(SERVER, ?MODULE).

-record(state, {count}).

get_id() ->
 {id, ID} = gen_server:call(?MODULE, {}),
 ID.

%%%===
%%% API
%%%===

start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

init([]) ->
 {ok, #state{count= 1 }}.

handle_call(_Request, _From, State) ->
 Count = State#state.count,
 {reply,
 {id, Count},
 #state{count = Count + 1}}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

This server is started by calling start_link/0, which will initialize the server
 by calling the init/1 function. This
 always starts off the internal state of the server with count being
 1.
This module exports one function API that consists of the function
 get_id/0. This function uses the
 gen_server:call/2 function to send a
 message requesting an ID from the server. Unlike using something like
 Pid ! get_id, this has an implicit
 timeout. If the server does not respond inside five seconds, gen_server:call/2 will die and leave a message.
 If this is not enough time (or too much), you can pass a third parameter
 that will let you specify a timeout. Pass the time in milliseconds or the
 atom infinity.
The handle_call function will be
 called when a message comes in that has to be responded to. In general
 this function will do something and return a tuple like {reply, Reply, NewState}.
Note
If you have programmed in Haskell or a similar language, you may
 notice that the gen_server looks a
 lot like a state monad.

All of the state that is used by the functions in the server is
 bound up in the State parameter that is
 passed in to the various functions; there are no other artifacts such as
 singletons in Java or the JavaScript window object. This may seem quite restrictive,
 but it actually enables some very powerful features.
Note
This also makes writing tests much easier! The
 handle_call function will normally be close to a pure
 function, with all the global state in one place both before and after.
 There is no chance for a strange side effect to go clobber something
 over there.

The OTP framework wraps messages that are sent in a structure that
 enables the gen_server to call both
 handle_cast and handle_call for different kinds of messages.
 However, if a message is sent to the server that is not wrapped by the
 gen_server framework it will be handled
 by handle_info/2.
If you do not need this functionality, then having a handle_info/2 function that will log any
 messages as errors will enable you to track down where they are being sent
 from. Or you could omit the handle_info/2 function altogether; you will get
 a warning when you compile but it can be ignored. In this case, when an
 unknown message is sent to the process gen_server will
 terminate the process and leave an error message. In general, this is what
 you want as the supervisor will recreate it (see Let’s Have Some Adult Supervision Around Here!). Remember, in Erlang, defensive programming is
 bad—we want a server that is going wrong to terminate so that the
 supervisor can start up a fresh copy with a known good state.
If your server needs to do any cleanup when it is done, use the
 terminate/2 function. This can close
 database connections or flush buffers, remove temporary files, and so on.
 The first parameter of the terminate/2
 function will be the reason the process is being terminated—it could be
 because the supervisor was told to shut down, or is shutting down a number
 of workers, or a linked node is shutting down.[14]

The Multicast Server

In our application (Example 9-2) we
 have a fairly simple server implementation in multi_cast_server. This server keeps track of
 the most recent state of each user. As such, this function only has an
 external API of three functions: get_current_user_status/0, which gets the status
 of all users on the system; get_current_user_status/1, which gets the status
 of a specific user; and update_status/2, which updates the user’s
 status.
Each of these functions will send a message via the gen_server:call/2 function to the server, which
 will reply with a clause of the handle_call/3 function.
The handle_call/3 function takes
 the three possible requests and the current state of the server and either
 updates the state or returns the requested information.
Note
This server has more logging in it than you might normally want. I
 like to put a lot of log statements in for development.

The actual state of the group is passed around as a State value to each element. In this case it is
 just an array, though in a more complex example it could be (and probably
 should be) a record for a more complex data structure. There are two
 functions that have been created to deal with this state: update_user_status/3 and get_user_status/2.
Example 9-2. Multicast server
%%%---
%%% @author Zach Kessin <>
%%% @copyright (C) 2012, Zach Kessin
%%% @doc
%%%
%%% @end
%%% Created : 21 Mar 2012 by Zach Kessin <>
%%%---
-module(multi_cast_server).

-behaviour(gen_server).

%% API
-export([start_link/0]).

-export([get_current_user_status/0,
	 get_current_user_status/1,
	 update_status/2]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
	 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).

%%%===
%%% API
%%%===

get_current_user_status() ->
 gen_server:call(?MODULE, {get_current_user_status}).

get_current_user_status(User) ->
 gen_server:call(?MODULE, {get_current_user_status, User}).

update_status(User, Status) ->
 ok = gen_server:call(?MODULE, {update_status, User, Status}),
 ok.

%%%===
%%% Functions for internal Use
%%%===

update_user_status([], User, Status) ->
 [{User, Status}];

update_user_status([{User, _OldStatus} | Tail], User, Status) ->
 [{User,Status} | Tail];

update_user_status([{O,S}|Tail], User, Status) ->
 R = update_user_status(Tail, User, Status),
 [{O,S}|R].

get_user_status(UserStatus, TargetUser) ->
 case lists:filter(fun({User,_Status}) ->
			 User == TargetUser
		 end,
		 UserStatus) of
	[] ->
	 no_status;
	[TargetUserStatus] ->
	 {ok, TargetUserStatus}
 end.

%%--
%% @doc
%% Starts the server
%%
%% @spec start_link() -> {ok, Pid} | ignore | {error, Error}
%% @end
%%--
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%%===
%%% gen_server callbacks
%%%===

%%--
%% @private
%% @doc
%% Initializes the server
%%
%% @spec init(Args) -> {ok, State} |
%% {ok, State, Timeout} |
%% ignore |
%% {stop, Reason}
%% @end
%%--

init([]) ->
 io:format("~n~p:~p(~p) init(~p)~n",
	 [?MODULE, ?LINE, self(), []]),

 {ok, []};

init(Status) ->
 io:format("~n~p:~p(~p) init(~p)~n",
	 [?MODULE, ?LINE, self(), Status]),
 {ok, Status}.

%%--
%% @private
%% @doc
%% Handling call messages
%%
%% @spec handle_call(Request, From, State) ->
%% {reply, Reply, State} |
%% {reply, Reply, State, Timeout} |
%% {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, Reply, State} |
%% {stop, Reason, State}
%% @end
%%--

handle_call({get_current_user_status}, _From, State) ->
 {reply,
 {ok, State},
 State};

handle_call({get_current_user_status, User}, _From, State) ->
 {reply,
 get_user_status(State, User),
 State};

handle_call({update_status, User, Status}, _From, State) ->
 io:format("~p:~p (~p) Update ~p -> ~p ~n",
	 [?MODULE, ?LINE, self(), User, Status]),
 io:format("STATE ~p ~n", [State]),
 NewState = update_user_status(State, User, Status),
 {reply, ok, NewState}.

%%--
%% @private
%% @doc
%% Handling cast messages
%%
%% @spec handle_cast(Msg, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% @end
%%--
handle_cast(_Msg, State) ->
 {noreply, State}.

%%--
%% @private
%% @doc
%% Handling all non call/cast messages
%%
%% @spec handle_info(Info, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% @end
%%--
handle_info(_Info, State) ->
 {noreply, State}.

%%--
%% @private
%% @doc
%% This function is called by a gen_server when it is about to
%% terminate. It should be the opposite of Module:init/1 and do any
%% necessary cleaning up. When it returns, the gen_server terminates
%% with Reason. The return value is ignored.
%%
%% @spec terminate(Reason, State) -> void()
%% @end
%%--
terminate(_Reason, _State) ->
 ok.

%%--
%% @private
%% @doc
%% Convert process state when code is changed
%%
%% @spec code_change(OldVsn, State, Extra) -> {ok, NewState}
%% @end
%%--
code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%%===
%%% Internal functions
%%%===

When developing this module I first exposed those two functions with
 an -export() directive and made sure
 that they did the right thing on test data by trying out a number of test
 cases. Once I was sure that these two functions worked as they should, I
 removed the export module and started up the server. I then tried a number
 of examples from the Erlang command line, as summarized in Example 9-3. In fact I literally cut and
 pasted this code from an Emacs buffer into Yaws, which was running in an
 Emacs shell buffer. It crashed my server with an error, I fixed that bug,
 and repeated until everything worked.
Example 9-3. Multicast server test
c(multi_cast_server).
multi_cast_server:start_link().
multi_cast_server:update_status("Zach","Testing").
multi_cast_server:update_status("Nati","TV").
multi_cast_server:update_status("Zach","Coding").
multi_cast_server:get_current_user_status("Zach").
multi_cast_server:get_current_user_status().

Note
In addition to the generic server (gen_server), there is also a generic finite
 state machine (gen_fsm)
 implementation and a lot more in the OTP framework. These are beyond the
 scope of this book, but Learn You Some Erlang and
 the Erlang documentation cover them quite well.

Interfacing the Server with the Web

So far we have a bunch of Erlang services that are kind of
 interesting but not particularly useful in and of themselves, as they
 can’t interface with the outside world—which is, after all, what we want
 to do. So we need to write some code to provide a web interface onto all
 of this.
To do this we will first add an htdocs
 directory to the standard set of Yaws directories. This directory can
 contain all the public facing files of the web service including
 .yaws files, images, CSS, JavaScript, and so
 forth.
Note
In this case we will connect the htdocs dir
 to the Yaws document root via a symlink, but we could also do it in the
 yaws.conf file. It is also possible to run Yaws as
 an OTP app inside an existing Erlang setup, but this is beyond the scope
 of this book.

The first file, shown in Example 9-4, is a simple
 one that calls the multi_cast_server:get_current_user_status/0
 function and then formats the result as a JSON for the server with the
 function convert_to_json/1. Note that
 the strings are converted to binaries with the list_to_binary/1 function that is built into
 Erlang. If you don’t do this then you will get back an array of integers
 in the JSON, which is probably not what you had in mind.
Example 9-4. Get status (status.yaws)
<erl>
convert_to_json(Data) ->
 Content = [{obj, [{name, list_to_binary(Name)},
		 {status, list_to_binary(Status)}]} ||
		 {Name, Status} <-Data],
 {obj, [{data, Content}]}.

out(_Arg) ->
 {ok, Obj} = multi_cast_server:get_current_user_status(),
 io:format("~n (~p) Raw Data ~p~n", [self(), Obj]),
 JSON = rfc4627:encode(convert_to_json(Obj)),
 io:format("~n (~p) JSON -> ~p~n", [self(), JSON]),
 {content, "application/json", JSON}.
</erl>

Once again we have some extra log information in this example; the
 output from the logs can be found in Example 9-5.
 Here you can see the raw data that comes back from the server, and the
 JSON into which it has been converted (extra whitespace has been
 added).
Example 9-5. Get status log data
 (<0.365.0>) Raw Data [{"Zach","Coding"},{"Nati","TV"}]
 (<0.365.0>) JSON ->
 "[{\"name\":\"Zach\",\"status\":\"Coding\"},{\"name\":\"Nati\",\"status\":\"TV\"}]"

The users can get the status of other users by sending a GET to
 Example 9-4. This is a very simple
 .yaws file that serves only to call the server and
 then translate the returned data into the JSON that the client will
 expect.
To set the status of a user, the browser will send a POST request to
 “set-status.yaws” (Example 9-6). As above, this
 file contains only enough code to decode the user’s request and pass the
 data on to the server.
Example 9-6. Set status (set-status.yaws)
<erl>
out(Arg) ->
 {ok, Name} = postvar(Arg, "name"),
 {ok, Status} = postvar(Arg, "status"),
 io:format("~n(~p) Name ~p, Status ~p ~n",
	 [self(), Name, Status]),
 multi_cast_server:update_status(Name, Status),
 {html, "true"}.

</erl>

Some Client-Side Code

For the client-side code we are going to keep it very simple. Using
 ExtJS we will construct a simple interface that will show the current
 status of all the users in a grid. At the bottom of the grid will be a
 field where users can enter their current status.
In Figure 9-3, the browser application
 displays the current status of the various users with an interface written
 in ExtJS. The CoffeeScript code in Example 9-7
 shows a basic interface of a grid displaying each user along with their
 status.
The interface also has a form allowing the user to set his or her
 status. This example lets you set the status for any user; a more robust
 example should of course use some authentication to determine the
 user.
Example 9-7. Socket handler (socket_handler.coffee)
makeStore = ->
 store = Ext.create("Ext.data.Store",
 autoLoad : true
 fields : ["name","status"]
 proxy :
 type : "ajax"
 url : "status.yaws"
 reader :
 type: "json"
 root: "data"
)
 console.log(store)
 store

setupMultiCast = ->
 store = makeStore()
 form = Ext.create("Ext.form.Panel",
 buttons:
 {
 xtype: "button"
 text: "Set Status"
 handler: () ->
 values = form.getValues()
 console.log(values)
 Ext.Ajax.request(
 url: "set-status.yaws",
 params: values
 success: () ->
 store.load()
 alert("Data Reloaded")
)

 }
 title: "Set Status"
 items: [
 {
 xtype : "textfield"
 name : "name"
 fieldLabel : "User"
 width : 400
 }
 {
 xtype : "textarea"
 name : "status"
 fieldLabel : "Status"
 width : 400
 }
]
)

 grid = Ext.create("Ext.grid.Panel",
 width : 500
 height : 350,
 frame : true
 renderTo : "multi_cast"
 store : store
 title : "User Status"
 bbar : form
 buttons : [
 {
 text: "Reload"
 handler: () -> store.load()
 }]

 columns:
 [
 {
 text: "User"
 width: 80
 sortable: true
 dataIndex: "name"
 }
 {
 text: "Status"
 dataIndex: "status"
 sortable: true
 width: 300
 }
]

)

Ext.onReady setupMultiCast

[image: Multicast application]

Figure 9-3. Multicast application

Let’s Have Some Adult Supervision Around Here!

Our server will run for a long time distributing messages between
 various users. Sooner or later something will go wrong. If that happens
 the process will terminate, and we want to define what happens next. In
 this case, several things need to happen: first of all, the server should
 be restarted, and we also want to log what happened so we can fix it
 later.
OTP uses the concept of a supervisor to do all of these things, and
 thankfully building a basic supervisor is pretty easy. The basic
 supervisor is the supervisor behavior.
 Like a gen_server, you just need to
 create a module that exports a few functions, and also like a gen_server, the Emacs Erlang mode will create a
 template you can use. Example 9-8 is based on
 the Emacs template with some of the comments removed for space.
Example 9-8. Setting up our Supervisor
%%%---
%%% @author Zach Kessin <>
%%% @copyright (C) 2012, Zach Kessin
%%% @doc
%%%
%%% @end
%%% Created : 18 Mar 2012 by Zach Kessin <>
%%%---
-module(multi_cast_sup).

-behaviour(supervisor).

%% API
-export([start_link/0]).

%% Supervisor callbacks
-export([init/1]).

-define(SERVER, ?MODULE).

%%%===
%%% API functions
%%%===

%%--
%% @doc
%% Starts the supervisor
%%--
start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

%%%===
%%% Supervisor callbacks
%%%===

%%--
%% @private
%% @doc
%% Whenever a supervisor is started using supervisor:start_link/[2,3],
%% this function is called by the new process to find out about
%% restart strategy, maximum restart frequency and child
%% specifications.
%%
%% @spec init(Args) -> {ok, {SupFlags, [ChildSpec]}} |
%% ignore |
%% {error, Reason}
%% @end
%%--
init([]) ->
 RestartStrategy = one_for_one,
 MaxRestarts = 1000,
 MaxSecondsBetweenRestarts = 3600,

 SupFlags = {RestartStrategy,
 MaxRestarts,
 MaxSecondsBetweenRestarts},

 Restart = permanent,
 Shutdown = 2000,
 Type = worker,

 AChild = {'process_id',
 {'AModule', start_link, []},
 Restart,
 Shutdown,
 Type,
 ['AModule']},

 {ok, {SupFlags, [AChild]}}.

%%%===
%%% Internal functions
%%%===

When creating a supervisor, you need to create a module that exports
 an init/1 function. This function is
 called when the supervisor starts up and defines the rules for how and
 when workers are created and restarted.
The supervisor is run as its own process that does nothing but
 monitor other processes (these can be other supervisors or the ones doing
 the actual work). When these other processes die, the supervisor will
 restart them; it can also kill them when it’s time to shut down an
 application.
In addition, the supervisor is where worker processes are started.
 This is done by listing the processes in the supervisor init/1 function as part of the return value. For
 each process we get a structure like in Example 9-9. The first field is a process ID that is
 used by the supervisor internally; it may show up in listings but you can
 probably ignore it. The second term tells how to start our server. It
 should contain the module, the function to start the module (normally
 start_link), and any parameters to pass
 to that function.
Example 9-9. Process init structure
{
 Process_id,
 {Module, start_link, []},
 Restart,
 Shutdown,
 Type,
 [Module]
}

The Restart term tells the
 supervisor how and when to restart this server if needed. Options are
 permanent, temporary, and transient. A permanent
 process will always be restarted. A temporary process will never be restarted. A
 transient process will be restarted if
 it dies unexpectedly, but if it terminates normally it will not be
 restarted.
The supervisor includes protection against a process that is stuck
 restarting itself and instantly exiting. If you set the MaxR and MaxT
 values it will limit the process to a set number of restarts in a period
 of time. In our example we limit the number of restarts to 1000 per hour;
 in a production system these numbers will need to be adjusted for the
 specifics of the application.
The Shutdown term comes into play when it is time
 to shut down an application. When an application is being shut down
 worker, processes may need to close resources or otherwise clean up. As
 such, the supervisor should allow time to do that. In this case, set
 Shutdown to a time in milliseconds for how long each
 process can take before the supervisor will kill it outright. To kill a
 process with no warning set this to brutal_kill; if the processes may need a very
 long time, set this to infinity.
 Getting this setting right may take some fine-tuning.
The Type parameter can have two possible values:
 worker or supervisor. That is, the process can be a worker
 or a lower level of supervision.
Finally we have a list of modules. Normally this will be the same
 module as used above unless we are doing something weird and dynamic, in
 which case it might be the atom dynamic.
Now that we have our supervisor built we need to test it out. To do
 this we want to make our server die due to a bug and see that it
 restarted. So we’ll introduce a new clause in the update_user_status/3 function that will cause
 the process to crash when a user sets a blank status message:
update_user_status(_users,_User, "") ->
 ok = status;

As you can see in Example 9-10, when we set the
 user’s status to an empty string, we get an error and the process
 terminates.
Warning
When running this from the Erlang shell, run unlink(SupervisorPid). before testing
 restarts. Otherwise the crashing process will also crash the shell
 (which restarts) and the supervisor.

Example 9-10. Running the supervisor
2> multi_cast_server:start_link().
{ok,<0.63.0>}
3> multi_cast_server:update_status("Zach","").
multi_cast_server:136 (<0.63.0>) Update "Zach" -> []
STATE []

=ERROR REPORT==== 3-Apr-2012::13:04:00 ===
** Generic server multi_cast_server terminating
** Last message in was {update_status,"Zach",[]}
** When Server state == []
** Reason for termination ==
** {{badmatch,status},
 [{multi_cast_server,update_user_status,3},
 {multi_cast_server,handle_call,3},
 {gen_server,handle_msg,5},
 {proc_lib,init_p_do_apply,3}]}
** exception exit: {badmatch,status}
 in function multi_cast_server:update_user_status/3
 in call from multi_cast_server:handle_call/3
 in call from gen_server:handle_msg/5
 in call from proc_lib:init_p_do_apply/3

Ideally, you want each unit of work that can crash to be in its own
 process so that the smallest possible unit of work will crash. In this
 case we could take the function to create the updated state and put it in
 its own stateless process that would simply take a state, update it, and
 return it.

A Little Optimization

If you want to enhance this module for more speed, create a second
 module that will cache the JSON and create a hash of the data as an ETag.
 Then have the browser send a request with an HTTP IF-None-Match header, and if the data has not
 changed it will just get back an HTTP 304 header and use the data that it
 already has. And the nice thing is that the server will not have to
 compute the hash or create the JSON for each request, but can do it only
 when data is changed.
Warning
For Etags to be effective they need to be consistent. If each time
 the user makes a request she is shown a different server that has a
 different value, then the Etag will be useless. So in order for this to
 work, the load balancer needs to make sure that the same user is always
 shown the same server, or that there is some other mechanism for making
 sure that the user sees consistent data from the ETag.

This server keeps track of two pieces of information: the output
 JSON, and an MD5 hash that will be used by the browser to determine if it
 has up-to-date data.
Note
The crypto:md5/1 function
 returns an array of numbers that is the raw hash of the data. We use the
 base64:encode_to_string/1 function to
 turn it into a string like "4CNCRcsAqiYMz6mamgsjXg==", which looks like
 something one would expect to get from MD5.

We also get an additional bit of reliability here. We can set this
 up so that when this server crashes it will just restart and have the
 init/1 function automatically query the
 server that holds the data to refresh it. On the other hand, if that
 server crashes we can set it so that this server will also be restarted so
 there is no stale data. This is done in Example 9-11, which creates a server to create the
 JSON data.
Example 9-11. Caching the results (multi_cast_front)
%%%---
%%% @author Zach Kessin <>
%%% @copyright (C) 2012, Zach Kessin
%%% @doc
%%%
%%% @end
%%% Created : 5 Apr 2012 by Zach Kessin <>
%%%---
-module(multi_cast_front).

-behaviour(gen_server).

%% API
-export([start_link/0]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
	 terminate/2, code_change/3]).
-export([get_json/0, get_etag/0, update_status/2]).
-export([convert_to_json/1, make_state/0]).
-define(SERVER, ?MODULE).

-record(state, {etag, json}).

get_json() ->
 gen_server:call(?MODULE, {get_json}).

get_etag() ->
 gen_server:call(?MODULE, {get_etag}).

update_status(User, Status) ->
 multi_cast_server:update_status(User, Status),
 gen_server:call(?MODULE, {update_status}).

%%%===
%%% API
%%%===

%%--
%% @doc
%% Starts the server
%%
%% @spec start_link() -> {ok, Pid} | ignore | {error, Error}
%% @end
%%--
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%%===
%%% gen_server callbacks
%%%===

init([]) ->
 io:format("~n~p:~p(~p) init(~p)~n",
	 [?MODULE, ?LINE, self(), []]),

 State = make_state(),
 {ok, State}.

handle_call({get_json}, _From, State) ->
 {reply, State#state.json, State};

handle_call({get_etag}, _From, State) ->
 {reply, State#state.etag, State};

handle_call({update_status}, _From, _State) ->
 NewState = make_state(),
 {noreply, NewState}.

	
handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(_Info, State) ->
 {noreply, State}.

terminate(_Reason, _State) ->
 ok.

code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%%===
%%% Internal functions
%%%===

convert_to_json(Data) ->
 Content = [{obj, [
		 {name, list_to_binary(Name)},
		 {status, list_to_binary(Status)}]} ||
		 {Name, Status} <-Data],
 {obj, [{data, Content}]}.

make_state () ->
 {ok, Data}	= multi_cast_server:get_current_user_status(),
 io:format("~n~p:~p(~p) new data ~p~n",
	 [?MODULE, ?LINE, self(), Data]),

 Json	= rfc4627:encode(convert_to_json(Data)),
 Etag	= base64:encode_to_string(crypto:md5(Json)),
 io:format("~n~p:~p(~p) new data Etag: ~p ~p~n",
	 [?MODULE, ?LINE, self(), Etag, Json]),
 NewState	= #state{
 json = Json,
 etag = Etag},
 NewState.

We also need to change the supervisor in Example 9-8 so that it will start both servers and
 restart them in the correct way. I have added a second server under the
 name “Front” in addition to the initial server we had in the first
 example.
I have also changed the restart strategy from one_for_one to rest_for_one. This ensures that since the
 frontend server is started after the main server it will be restarted if
 the main one is, but not the other way around. This new supervisor is
 shown in Example 9-12.
Example 9-12. Setting up our supervisor (Take 2)
-module(multi_cast_sup2).

-behaviour(supervisor).

%% API
-export([start_link/0]).

%% Supervisor callbacks
-export([init/1]).

-define(SERVER, ?MODULE).

%%%===
%%% API functions
%%%===

%%--
%% @doc
%% Starts the supervisor
%%--
start_link() ->
 supervisor:start_link({local, ?SERVER}, ?MODULE, []).

%%%===
%%% Supervisor callbacks
%%%===

init([]) ->
 io:format("~n~p:~p (~p) init([]) ~n",
	 [?MODULE, ?LINE, self()]),
 RestartStrategy = rest_for_one,
 MaxRestarts = 1000,
 MaxSecondsBetweenRestarts = 3600,
 ServerName			= multi_cast_server,
 ServerFrontName = multi_cast_front,
 SupFlags = {RestartStrategy,
 MaxRestarts,
 MaxSecondsBetweenRestarts},

 Restart = permanent,
 Shutdown = 2000,
 Type = worker,

 Server = {'multi_cast_server_id',
 {ServerName, start_link, []},
 Restart,
 Shutdown,
 Type,
 [ServerName]},
 Front ={'multi_cast_front_id',
 {ServerFrontName, start_link, []},
 Restart,
 Shutdown,
 Type,
 [ServerFrontName]},
 {ok, {SupFlags, [Server, Front]}}.

%%%===
%%% Internal functions
%%%===

We will also need to change the status.yaws and set-status.yaws files (Examples 9-4 and 9-6)to reflect
 the new interfaces.
The case of set-status.yaws is
 pretty simple, as we just need to change the call from multi_cast_server:update_status/2 to multi_cast_front:update_status/2 (see Example 9-13).
Example 9-13. Setting the status with the front controller
 (set-status2.yaws)
<erl>
out(Arg) ->
 {ok, Name} = postvar(Arg, "name"),
 {ok, Status} = postvar(Arg, "status"),
 io:format("~n(~p) Name ~p, Status ~p ~n",
	 [self(), Name, Status]),
 multi_cast_front:update_status(Name, Status),
 {html, "true"}.

</erl>

However, we have a bit of extra work to do
 in status2.yaws. Here we no longer have
 to convert the data to JSON ourselves, but we do have to check for a cache
 hit. If the browser sends an If-None-Match header, we will get the value of
 that header and compare it to the ETag that has been stored on the server.
 If they are the same, we should send back the 304 status code and tell the
 browser to use its cached copy of the data; otherwise we send back the
 actual data, and of course set an ETag in the header.
Example 9-14. Getting status with ETags (status2.yaws)
<erl>

get_etag_header(Arg) ->
 Headers = Arg#arg.headers,
 Headers#headers.if_none_match.

get_response(Current_Etag, Header_Etag)
 when Current_Etag =:= Header_Etag ->
 {status, 304};
get_response(Current_Etag, _Header_Etag) ->
 JSON = multi_cast_front:get_json(),
 io:format("~n (~p) JSON -> ~p~n", [self(), JSON]),
 [
 {content, "application/json", JSON},
 {header, "Etag: "++ Current_Etag}
].

out(Arg) ->
 Header_Etag		= get_etag_header(Arg),
 Current_Etag	= multi_cast_front:get_etag(),
 io:format("~n (~p) If-None-Match: ~p ~n", [self(), Header_Etag]),
 io:format("~n (~p) ETag: ~p ~n", [self(), Current_Etag]),
 get_response(Current_Etag, Header_Etag).
</erl>

When the code in Example 9-14 is run, the
 response will look like Example 9-15 if the If-None-Match header is not set or if it does
 not match.
Example 9-15. The output from Example 9-14
HTTP/1.1 200 OK
Server: Yaws/1.92 Yet Another Web Server
Date: Tue, 10 Apr 2012 15:44:58 GMT
Content-Length: 12
Content-Type: application/json
Etag: 4CNCRcsAqiYMz6mamgsjXg==

{"data":[]}

If the header does match then the system will return Example 9-16, which will let the client know that the
 data has not changed.
Example 9-16. Cache hit from Example 9-14
HTTP/1.1 304 Not Modified
Server: Yaws/1.92 Yet Another Web Server
Date: Tue, 10 Apr 2012 15:49:30 GMT
Content-Length: 1
Content-Type: text/html

Bundling as an Application

When we take the supervisors (Let’s Have Some Adult Supervision Around Here!) and
 the actual workers, we can package them together into an “application”
 that can be started and stopped in a standard way by Erlang. Once you do
 this, your application servers can be started by calling application:start/1,2. Pass it the name of the
 application to start and, if needed, an array containing any parameters
 that should be passed when starting the application.
The application behavior can be in the same module as the
 supervisor, as they share no function names, but it is probably better to
 leave them separate. In general the application should be named APPNAME_app.erl and the supervisor APPNAME_sup.erl.
Note
Erlang uses the term “application” to refer to a related set of
 services. Not to be confused with the more conventional use of the
 term.

To create an application, we use the application template from
 Emacs. The application behavior has two functions called start/2 and stop/1. The start function will be called when
 the application is started, and the stop function is called when the
 application is stopped. Normally these will be used for setup and
 cleanup.
Example 9-17. Setting up our application
%%%---
%%% @author Zach Kessin <>
%%% @copyright (C) 2012, Zach Kessin
%%% @doc
%%%
%%% @end
%%% Created : 18 Mar 2012 by Zach Kessin <>
%%%---
-module(multi_cast_app).

-behaviour(application).

%% Application callbacks
-export([start/2, stop/1]).

%%%===
%%% Application callbacks
%%%===

%%--
%% @private
%% @doc
%% This function is called whenever an application is started using
%% application:start/[1,2], and should start the processes of the
%% application. If the application is structured according to the OTP
%% design principles as a supervision tree, this means starting the
%% top supervisor of the tree.
%%
%% @spec start(StartType, StartArgs) -> {ok, Pid} |
%% {ok, Pid, State} |
%% {error, Reason}
%% StartType = normal | {takeover, Node} | {failover, Node}
%% StartArgs = term()
%% @end
%%--
start(_StartType, _StartArgs) ->
 io:format("~n~p:~p (~p) start(~p, ~p) ~n",
 [?MODULE, ?LINE, self(), _StartType, _StartArgs]),
 case multi_cast_sup2:start_link() of
 {ok, Pid} ->
 {ok, Pid};
 Error ->
 Error
 end.

%%--
%% @private
%% @doc
%% This function is called whenever an application has stopped. It
%% is intended to be the opposite of Module:start/2 and should do
%% any necessary cleaning up. The return value is ignored.
%%
%% @spec stop(State) -> void()
%% @end
%%--
stop(_State) ->
 ok.

%%%===
%%% Internal functions
%%%===

The App File

Every application in Erlang has an application file that lives in
 the ebin directory. This file will consist of a big
 data structure that looks like Example 9-18. The file
 should normally be titled something like my_app_name.app—in our case multi_cast.app.
This file has a number of fields, and in practice when creating one
 you will want to pull up the documentation as to what each field means, or
 base a new file on an older example.
The tuple starts with the atom application, followed by an atom that is the
 name of the application. After that is a large property list with a few
 key fields. The description field is a description of
 the application. The vsn field is the
 version number of the application. The next field,
 modules, will contain a list of the modules that an
 application uses. OTP will ensure that a module belongs to only one
 application and that all of these modules are present. Some of these
 applications will be server processes and others can be just groups of
 functions. Listing those modules here will ensure that the system will let
 you know if they are absent.
The registered field contains a
 list of the names registered by an application. This is useful because if
 two applications try to register the same name, OTP will know that and
 issue a warning.
The final item is mod, which is
 the callback module with the application behavior. If your app does not have
 any services that need to be started (for example if it’s just a bunch of
 pure functions), omit this line.
Warning
The Example 9-18 file must have a period
 (“.”) at the end or it won’t work, and will give a really
 cryptic-looking error message.

Example 9-18. Setting up our application (multi_cast.app)
{
 application,
 multi_cast,
 [
 {description, "Multi Cast Example"},
 {vsn, "1.0.0"},
 {modules,
 [
 multi_cast_app,
 multi_cast_sup2,
 multi_cast_server,
 multi_cast_front
]},
 {registered, [multi_cast_server, multi_cast_front, multi_cast_sup2]},
 {mod, {multi_cast_app, []}}
]
}.

Once our applications have been defined and tested from the command
 line, we can set up Erlang to automatically start our application when it
 starts. This can be done by adding the like application:start(MyApplication). to the
 .erlang file or by passing a flag to the Erlang VM on
 starting.
The application framework also provides us a clean way to start,
 stop, and upgrade our application with all its dependencies.

Wrapping Up OTP

This chapter is not a full introduction to OTP, nor was it intended
 to be. However, I wanted to introduce some of the basic structure of OTP
 as a way to show how to structure an application.
The application we built in this chapter has some inherent limits;
 for one thing, the user’s status is stored in a list, which makes updates
 an O(N) operation. Since I intended to
 use this where the number of items in the list is small, fewer than 25 or
 so, it should not be a major problem. It would of course be possible to
 change the data structure to use a different data structure if
 needed.
In addition, this application assumes that only one copy of the
 servers will be running on a node. A more realistic goal would be to have
 a master supervisor that would create a supervisor and servers for each
 group of users. In such a case we would have a large number of groups of
 users, each with their own servers and supervisor. Above those would be
 one master supervisor that would restart the local supervisor if needed,
 which could then restart the servers.
In short, there are many things that were not covered here. I did
 not cover gen_fsm or gen_event, but these can provide other types of
 servers to nicely complement the gen_server.

[14] See the manual page for the full details (http://www.erlang.org/doc/man/gen_server.html#Module:terminate-2).

Appendix A. Installing Erlang and Yaws

Erlang can be installed from http://www.erlang.org. There are versions for Mac, Linux, and
 Windows. In addition, most popular Linux distributions have packages for
 Erlang. As of this writing, the current version is R15B01.
Many modern Linux distributions will feature Erlang and Yaws in their
 basic package system. So from Ubuntu, doing a simple sudo apt-get install yaws will install Erlang and
 Yaws (and any dependencies). Similarly, Fedora Linux includes both Erlang
 and Yaws as part of the basic packages, which can be installed via yum.
Yaws can be found at http://yaws.hyber.org and
 downloaded from there. Once again, most Linux distributions will include
 packages. As of January 2012, the current version is 1.92.
In Ubuntu Linux, doing a simple apt-get
 install yaws will install Yaws with all the dependencies,
 including Erlang itself.
For Microsoft Windows, there are installers for Yaws that can be
 downloaded from http://yaws.hyber.org. However, before
 Yaws can run, Erlang itself must be downloaded separately.

Appendix B. Beyond Yaws

This book has been an introduction to using Yaws with Erlang. However,
 there are a number of other web servers and frameworks for Erlang that may
 make more sense for a specific project.
Web Servers

In addition to Yaws, there are two other Erlang web servers in
 active development: Cowboy and MochiWeb. Each has a different set of pros
 and cons that should be considered.
A detailed comparison of different Erlang web server options could
 be a book in and of itself. However, a good place to start is http://www.ostinelli.net/a-comparison-between-misultin-mochiweb-cowboy-nodejs-and-tornadoweb/,
 which attempts to compare Misultin, MochiWeb, and Cowboy along with
 Node.js (JavaScript) and Tornadoweb (Python).
Cowboy

Cowboy (https://github.com/extend/cowboy) is
 a new web server for Erlang designed to be small, fast, and modular. It
 is also designed to be easy to embed in other applications, which can be
 useful if you are creating a web interface to a larger Erlang
 application.
To set up a Cowboy server you must create some socket listeners
 and handlers to deal with incoming requests. So compared to Yaws, there
 is a bit more upfront set up required, you can’t just give it a bunch of
 static files or embed Erlang in .yaws files and go.
 You must explicitly tell it how to handle requests.
Cowboy can also handle web sockets, and there is example code on
 the Cowboy GitHub page; however, work is still ongoing on that project.
 It is unclear how much support there is for file uploads, streaming
 data, and the like.

MochiWeb

MochiWeb (https://github.com/mochi/mochiweb)
 is not so much a web server as a set of components for building web
 servers. As such, it does not include many things that are included with
 Yaws, such as a URL dispatcher; you will have to create that on your
 own.
That being said, MochiWeb has a dedicated following on the Web,
 and many of the web frameworks use it as a base. You can find a MochiWeb
 tutorial at https://github.com/mochi/mochiweb.

Misultin

Misultin is an Erlang web server that has unfortunately been
 discontinued. The developers felt that with Cowboy, MochiWeb, and others
 running around that supporting yet another Erlang web server was too
 much duplicated effort. As such, they are supporting existing users but
 suggesting that everyone move to Cowboy (Cowboy) or
 MochiWeb (MochiWeb). Several of the frameworks for
 Erlang can run on Misultin, but most can also run on MochiWeb or
 Yaws.

Web Frameworks

There are currently at least six Erlang web frameworks that can be
 used: BeepBeep, Chicago Boss, Erlang Web, ErlyWeb, Nitrogen, and Zotonic.
 The Chicago Boss team maintains a high-level grid showing what frameworks
 support which features that can be found here: https://github.com/evanmiller/ChicagoBoss/wiki/Comparison-of-Erlang-Web-Frameworks.
Note
BeepBeep, Erlang Web, and ErlyWeb seem to have not been updated
 since 2008 or 2009, so I am not going to cover them further.

Chicago Boss

Chicago Boss (http://www.chicagoboss.org) is
 a full-featured web framework originally built around Misultin and
 currently moving to Cowboy. It is under active development, has a nice
 website with a great tutorial, and has a lot of flexibility.
Chicago Boss is built around an MVC architecture, which should
 feel familiar to programmers who have used other MVC frameworks like
 Symfony on PHP or Ruby on Rails. It also features a built-in Queue
 system called “BossMQ” that can be used to link pieces of a larger
 application. Using BossMQ is as simple as calling boss_mq:push/2 to add a message to a queue and
 boss_mq:pull/2 to get a message from
 the queue. (For more details, see the Chicago Boss website.) This can be
 used with long polling, but for now it does not appear that Chicago Boss
 supports web sockets.
In terms of data storage, Chicago Boss features a lot of options.
 You can store your data in Mnesia, MongoDB, MySQL, PostgreSQL, Riak, or
 Tokyo Tyrant. It also uses ErlyDTL (ErlyDTL) for
 templates.
In general, Chicago Boss seems to be very well thought out and has
 a solid website with well-written documentation.

Nitrogen

Nitrogen (http://nitrogenproject.com/) is an
 event-based framework created by Rusty Klophaus. It uses its own
 template system instead of ErlyDTL or the like. It also seems to want to
 generate HTML in Erlang, while many modern systems will want to send
 JSON data to the browser and have the “View” layer running in a
 browser.

Zotonic

Zotonic (http://zotonic.com) is a CMS and
 framework for Erlang, and if you have used Drupal, it will probably feel
 pretty familiar. It features a rich set of management screens to allow a
 nondeveloper to manage a Zotonic website. It advertises a lot of
 features out of the box and is under active development. If you want to
 present web content with an Erlang backend, Zotonic may be a great
 choice!
Zotonic is built on MochiWeb and uses Postgres to store its
 data.

Appendix C. Interfacing with Ruby and Python

So you’ve been reading this book and thinking that Erlang sounds
 amazingly cool. You already have a web infrastructure in PHP, Python, or
 Ruby but you would love to be able to build some structure in Erlang. There
 are several ways you can do this. You could use something like RabbitMQ to
 couple different parts of an application with queues. You could also create
 a web service in Erlang and access it from another language, or send data
 over a socket. However, what would be really nice is being able to have
 native communications between Erlang and some other language.
This is actually fairly simple to do. As we know by now, Erlang
 processes can communicate over a wire protocol. When you send a message from
 process A to process B, all the data is serialized in some way and sent
 across to the other process to receive. Knowing that, you might think it
 would be pretty easy to create a package in another language that can speak
 that protocol and work with it, and of course you would be right. There are
 packages for Ruby and Python (and others) that can do that quite well.
 (Sending Erlang functions to other languages probably won’t work.)
These interfaces can be used to mate a frontend in Python or Ruby to
 an Erlang backend or vice versa. They can also be used when porting some
 code to Erlang for testing. If you have a module that has been well tested
 in Ruby, for example, you could use QuickCheck to try a large number of test
 cases on both the Ruby and Erlang versions and make sure that both work
 correctly.
In order to have an Erlang node in some other language, there are a
 few actions that a package must be able to perform. It must be able to
 connect to an existing node and disconnect when done, and of course it must
 be able to send and receive messages from other nodes.
Note
There is a module to interface PHP with Erlang called “mypeb”
 (http://mypeb.googlecode.com). However, I was unable
 to get it to compile.

Ruby

Erlang and Ruby can be interfaced with the erlectricity package that can be found at http://code.google.com/p/erlectricity/source/browse/. This
 package provides a Ruby interface that can interact with Erlang.
In Example C-1, which was taken from the
 erlectricity examples, after some initial setup there
 is a receive block created in Ruby. Here the syntax is
 distinctively Ruby, but the semantics directly parallel that of a receive
 block in Erlang.
The semantics of the receive block match those in
 Erlang. Here receive opens a block. The
 receive block uses the method f.when (line 8) to parallel the structure in
 Erlang quite nicely. Also note that the recursive structure of an Erlang
 loop is reproduced with the g.receive_loop method call.
To send a message from Ruby to Erlang you need the process ID. You
 would then use f.send! :result,
 graph.to_blob, which will send the message to the Erlang
 process. The Erlang process will receive a tuple of the form {result, Blob}.
Example C-1. gruff_provider.rb
$:.unshift(File.dirname(__FILE__) + "/../../lib/")
require 'erlectricity'
require 'rubygems'
require 'gruff'

receive do |f|

 f.when(:plot, String, Symbol, String) do |name, style, font|
 graph = Gruff.const_get(style).new
 graph.title = name
 graph.font = font
 graph.legend_font_size = 10

 f.receive do |g|
 g.when(:data, Symbol, Array) do |name, points|
 graph.data name, points
 g.receive_loop
 end

 g.when(:labels, Erl.hash) do |label_data|
 graph.labels = label_data
 g.receive_loop
 end

 g.when(:end){ :ok }
 end
 f.send! :result, graph.to_blob
 f.receive_loop
 end

end

Python

You can interface Python with Erlang using py_interface (http://www.lysator.liu.se/~tab/erlang/py_interface/), which
 is a Python implementation of an Erlang node.[15] I checked the code out of Git and ran the script howto-make-a-new-version followed by configure and make, all of which seemed to work. My system is
 Ubuntu 11.10 and has Python version 2.7.2+ on it.
Note
In theory, you could create one node in Python and another in
 Ruby, and have them send messages back and forth with no Erlang in
 between. However, I am not sure this is actually a useful thing to do or
 a good idea.

While py_interface does not have
 a great manual, it does have a decent readme file and a good set of
 examples that can be used as a basis to explore how to do things. The bad
 thing is that the syntax of this module is not nearly as nice as that seen
 in Ruby.
Python is not really concurrent in the way that Erlang is, so the
 way things work is a bit different. Specifically, the Python API is single
 threaded and uses callbacks to handle messages from Erlang. The module
 also tries to map Erlang types onto Python as much as possible, and uses
 classes when it can’t.
You can see a basic example of how to set up a Python node in Example C-2, which is taken from the py_interface examples. It imports erl_node, erl_opts, and erl_eventhandler from the py_interface module. Then in the main() function it sets up a node with the
 function erl_node.ErlNode(ownNodeName,
 erl_opts.ErlNodeOpts(cookie=cookie)). It then publishes the node
 so that other processes can find it and registers the mailbox with
 n.CreateMBox(__TestMBoxCallback). The
 callback __TestMBoxCallback is what
 actually responds to any incoming messages from Erlang. The rest of the
 function just sets up an event loop to wait for requests to come
 in.
Example C-2. Python example
#! /usr/bin/env python

import sys
import getopt

from py_interface import erl_node
from py_interface import erl_opts
from py_interface import erl_eventhandler

###
###
###
TEST CODE
###
###

def __TestMBoxCallback(msg):
 print "msg=%s" % `msg`

n=None
m=None
def main(argv):
 try:
 opts, args = getopt.getopt(argv[1:], "?n:c:")
 except getopt.error, info:
 print info
 sys.exit(1)

 hostName = "localhost"
 ownNodeName = "py_interface_test"
 cookie = "cookie"

 for (optchar, optarg) in opts:
 if optchar == "-?":
 print "Usage: %s erlnode" % argv[0]
 sys.exit(1)
 elif optchar == "-c":
 cookie = optarg
 elif optchar == "-n":
 ownNodeName = optarg

 print "Creating node..."
 n = erl_node.ErlNode(ownNodeName, erl_opts.ErlNodeOpts(cookie=cookie))
 print "Publishing node..."
 n.Publish()
 print "Creating mbox..."
 m = n.CreateMBox(__TestMBoxCallback)
 print "Registering mbox as p..."
 m.RegisterName("p")

 print "Looping..."
 evhand = erl_eventhandler.GetEventHandler()
 evhand.Loop()

main(sys.argv)

[15] py_interface is licensed under the
 LGPL.

Appendix D. Using Erlang with Emacs

For many Erlang developers, the editor of choice is Emacs. As a
 longtime Emacs user I have found there to be many reasons for this.
One feature of the Emacs Erlang mode is that you can compile a file by
 typing “C-c C-k”, which will open Erlang in a shell and compile the buffer
 you are in. You can also copy and paste code from a buffer to an Erlang
 shell.
Being able to copy and paste code from a buffer to the Erlang REPL
 makes it very easy to explore solutions to a problem. The programmer can
 create a simple module and load it into Erlang with “C-c C-k”, then create a
 bunch of test cases that are copied via standard Emacs editing to the shell
 to ensure that the code is working correctly. This does not replace formal
 testing, but supplements it when doing development.
In addition, the Erlang mode has a set of templates that can be used
 to create common structures. So if you need to work with the OTP gen_server pattern, you can generate the skeleton
 of that structure by opening up a new buffer and selecting the correct
 structure. The template for gen_server is shown in Example D-3 at the end of this chapter.
Note
Erlang comes with a very nice Erlang mode. You can find more details
 on it at http://www.erlang.org/doc/apps/tools/erlang_mode_chapter.html.

Distel

If you want to have a powerful interface between Emacs and Erlang,
 check out Distel mode. Distel (short for Distributed Emacs Lisp) extends
 Emacs Lisp to be able to speak to an Erlang node in a way very similar to
 Ruby or Python, as shown in Appendix C.
The Distel package can be found at http://fresh.homeunix.net/~luke/distel/ and downloaded from
 there.
When starting up Distel, you need to tell it which node to talk to.
 It will prompt you for a node name, which can be in the form node@host or just node if it is local. Once you have given Distel
 a node name it will continue to use that node unless you prefix a command
 with C-u node-name.
Distel supports a number of features to make coding Erlang in Emacs
 easier. First of all, it supports completions of modules and functions by
 hitting M-?. It also allows you to load
 and evaluate Erlang code from the minibuffer. To load a module, use
 C-c C-d L and Distel will prompt you
 for the module name. Distel also features some pretty fancy refactoring
 tools.
In addition to tools, Distel also features some applications that
 can make working with Erlang easier. It features a process manager that
 will work from an Emacs buffer (C-c C-d
 l) and that allows you to find out all sorts of information
 about a process, including a backtrace and the contents of the process
 mailbox.
Distel will also allow you to interface Erlang’s debugging
 facilities with Emacs, and will let you do all sorts of things to debug
 and profile Erlang code as it runs.
Finally, Distel will let you have a more powerful interactive
 session then the standard Erlang command line. Based on the Emacs Lisp
 scratch buffer, running an
 interactive session allows you to evaluate code directly from an editor
 buffer and see the results.
The Distel manual is only 11 pages long and can be found on the
 Distel web page. It’s worth reading.

Flymake Mode

If you like using an IDE that highlights errors as you type, check
 out Flymake mode, which provides exactly that feature in Emacs. Flymake
 mode supports many languages, including Erlang.
In order to use Flymake, add the Emacs Lisp code in
 flymake.el (Example D-1) to your
 .emacs file. You may need to change the path to
 “flymake_emacs” to match the location of the file on your system.
Example D-1. flymake.el
(require 'flymake)
(defun flymake-erlang-init ()
 (let* ((temp-file (flymake-init-create-temp-buffer-copy
		 'flymake-create-temp-inplace))
	 (local-file (file-relative-name temp-file
		(file-name-directory buffer-file-name))))
 (list "~/bin/flymake_erlang" (list local-file))))

(add-to-list 'flymake-allowed-file-name-masks
	 '("\\.erl\\'" flymake-erlang-init))

The Emacs Lisp calls the binary “flymake_erlang” to compile code as
 you type (Example D-2). This uses escript, which is a tool to write scripts in
 Erlang as you might do in Perl or Python. It does this by calling the
 function main/1 with a list of
 parameters.
Example D-2. flymake_erlang
#!/usr/bin/env escript
-export([main/1]).

main([File_Name]) ->
 compile:file(File_Name, [warn_obsolete_guard, warn_unused_import,
 warn_shadow_vars, warn_export_vars,
 			 strong_validation, report,
 			 {i, "../include"}]).

Gen Server Template

Example D-3. gen_server.erl
%%%---
%%% @author Zach Kessin <zkessin@gmail.com>
%%% @copyright (C) 2012, Zach Kessin
%%% @doc
%%%
%%% @end
%%% Created : 18 Jan 2012 by Zach Kessin <zkessin@gmail.com>
%%%---
-module(gen_server).

-behaviour(gen_server).

%% API
-export([start_link/0]).

%% gen_server callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
	 terminate/2, code_change/3]).

-define(SERVER, ?MODULE).

-record(state, {}).

%%%===
%%% API
%%%===

%%--
%% @doc
%% Starts the server
%%
%% @spec start_link() -> {ok, Pid} | ignore | {error, Error}
%% @end
%%--
start_link() ->
 gen_server:start_link({local, ?SERVER}, ?MODULE, [], []).

%%%===
%%% gen_server callbacks
%%%===

%%--
%% @private
%% @doc
%% Initializes the server
%%
%% @spec init(Args) -> {ok, State} |
%% {ok, State, Timeout} |
%% ignore |
%% {stop, Reason}
%% @end
%%--
init([]) ->
 {ok, #state{}}.

%%--
%% @private
%% @doc
%% Handling call messages
%%
%% @spec handle_call(Request, From, State) ->
%% {reply, Reply, State} |
%% {reply, Reply, State, Timeout} |
%% {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, Reply, State} |
%% {stop, Reason, State}
%% @end
%%--
handle_call(_Request, _From, State) ->
 Reply = ok,
 {reply, Reply, State}.

%%--
%% @private
%% @doc
%% Handling cast messages
%%
%% @spec handle_cast(Msg, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% @end
%%--
handle_cast(_Msg, State) ->
 {noreply, State}.

%%--
%% @private
%% @doc
%% Handling all non call/cast messages
%%
%% @spec handle_info(Info, State) -> {noreply, State} |
%% {noreply, State, Timeout} |
%% {stop, Reason, State}
%% @end
%%--
handle_info(_Info, State) ->
 {noreply, State}.

%%--
%% @private
%% @doc
%% This function is called by a gen_server when it is about to
%% terminate. It should be the opposite of Module:init/1 and do any
%% necessary cleaning up. When it returns, the gen_server terminates
%% with Reason. The return value is ignored.
%%
%% @spec terminate(Reason, State) -> void()
%% @end
%%--
terminate(_Reason, _State) ->
 ok.

%%--
%% @private
%% @doc
%% Convert process state when code is changed
%%
%% @spec code_change(OldVsn, State, Extra) -> {ok, NewState}
%% @end
%%--
code_change(_OldVsn, State, _Extra) ->
 {ok, State}.

%%%===
%%% Internal functions
%%%===

About the Author
Zachary Kessin has been working on developing interactive web applications since 1994. In the last few years Zachary's focus has been on building complex applications in the browser with Javascript, browser-based testing with Selenium, functional programming, and code generation.

Building Web Applications with Erlang

Zachary Kessin

Editor
Simon St. Laurent

	Revision History
	2012-06-04	First release

Copyright © 2011 Zachary Kessin

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Building Web
 Applications with Erlang, the cover image of a Silver Moony,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2012-06-05T10:29:33-07:00

OEBPS/httpatomoreillycomsourceoreillyimages1220114.png
8081/templates/hello-world.yaws - Chromium

[localhost:8081/template

€ > €@ [® localhost:8081/templates/hello-world.yaws % v X

Internal error, yaws code crashed

ERROR erlang code crashed:
ile: /home/zkessin/Writing/Books/BuildingRESTfulliebServicesiithErlang/yaws/DocRoot/templates/hello-world. yaws:1
{undef, [(hello_world, render, [[(planet, "Sarth"}]]},
(m2,0ut, 1),
(yaws_server,deliver_dyn_part,8),
(yaws_server,aloop, 31,
(yaws_server, acceptor0, 2],
{proc_lib, init_p_do_apply, 3111
Req: (http_request,'GET', (abs_path,"/templates/hello-world.yaws"}, (1,11}
: [{hello_world, render, [[(planet, "Earth"}]]],
(m2,0ut, 1),
(yaws_server,deliver_dyn_part,8),
(yaws_server,aloop, 31,
(yaws_server, acceptor0, 2],
(proc_1ib, init_p_do_apply,3}]

OEBPS/httpatomoreillycomsourceoreillyimages1220128.png.jpg
rlang Cluster

OEBPS/httpatomoreillycomsourceoreillyimages1220116.png

OEBPS/httpatomoreillycomsourceoreillyimages1220120.png
Airports

A Deete

jpoct e o CY Country Airport Name.
B0s Bostn us Logan

K Newvor us

John F Kennedy

OEBPS/httpatomoreillycomsourceoreillyimages1220124.png
€ € [® localhost:8081/websockets/socket.htmlz RIS

‘This is a Test

T -

. [Type [intistor [sze [Time | Timetine T R R—
.. Oner | B 2m @
et socketht.. 3. .
appl. socketht. 10.. 5ms @
wi.. Omer | 1278 Pen

4 requests | 3448KB transfered | 640ms (onload: 688ms, DOMContentLoaded: 683ms)
@D | Documents Stylesheets Images Scripts XHR Fonts WebSockets Other

Q[© | <topframe> | @D | Emors Wamings Logs 3

OEBPS/httpatomoreillycomsourceoreillyimages1220130.png.jpg
Supervisors

Workers

OEBPS/httpatomoreillycomsourceoreillyimages1220122.png
ilang Cluster

b

Web Browser

OEBPS/httpatomoreillycomsourceoreillyimages1220134.png
User Status

Status
Zach Testing Server Code.
Nat =
sui
Set status
User:
status:

Set Status.

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1220126.png
Media Browser Playlist SearchFilter

Playlist ~ | Title ~ | Durati
Media Library

» My Computer 8

«(»

(1) (wmow == (@39 ¢]

| http://localhost:8081/streaming/stream.yaws | [1.00x | 04:39/——

OEBPS/orm_front_cover.jpg
Working with REST and Web Sockets on Yaws

Building Web
Applications

with Erlang

O’RE|LLY® Zachary Kessin

OEBPS/httpatomoreillycomsourceoreillyimages1220132.png
it Web Browser

HITP

a——~Ha&

jen_server

OEBPS/httpatomoreillycomsourceoreillyimages1220118.png
@@ localhost:8081/method.yaws - Chromium

| localhost:8081/method.y
(- € | ® localhost:8081/method.yaws a

Method: GET

