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Preface

Artificial intelligence (AI) is changing the world around us dramatically. Along with
the development of the digital age, AI technologies have been rapidly blossoming,
advancing and maturing. Through AI, machines have exhibited human-like cogni-
tion, as they relieve workers of repetitive or dangerous tasks. AI is, therefore, claimed
to be the driving force of the Fourth Industrial Revolution. When we look at the past
200 years, the previous industrial revolutions have radically improved the standards
of living for humans. As AI becomes more sophisticated and gains the ability to
perform more complex human tasks, we will only see more and more questions
regarding what AI will be in decades—and what it means, not just for business, but
for humanity as a whole, and for the future of humans and society. Ultimately, AI
will change the way people are living, working and entertaining.

Let us draw our attention to howmuch human expertise revolves around data, how
much knowledge can be encoded into data and how much knowledge can be formed
via analysis of data. AI is uniquely situated for automating routine knowledge work
and generating new insights from available data. Such AI abilities create different
excellent smart systems to improve productivity for different purposes. For example,
AI can continuously monitor the condition of critical infrastructures (e.g. bridges,
water pipes) and predict their risks and failures automatically. AI-driven intelligent
transport systems allow tomonitor transport volumes to avoid heavy congestions and
provide on-demand transport capabilities. Moreover, AI will play even more critical
roles in dangerous fields like mining, firefighting and clearing mines for not only
productivity but also human safety.

While we continuously find that AI benefits various aspects of human needs,
increased human social and economic activity creates more opportunities for AI to
achieve human goals. The addition of AI to existing world not only removes obsta-
cles to human creativity, but also turbocharges human skills with the cognitive and
processing power of AI. New opportunities are being created to enhance human well-
being. For example, AI can be put to work in human services, enabling intelligent
processes that improve service delivery speed, providing insight-driven services that
optimise decision-making and offering proactive and personalised support at the right
time, thereby delivering new and improved personalised services for citizens. AI is
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vi Preface

also changing the recruiting and hiring processing, matching job seekers to the most
relevant open positions. Besides, AI plays tremendous roles in fighting COVID-19
pandemic to protect people from virus infections. AI can benefit human well-being
significantly, in almost as many ways as it is possible to imagine.

Climate change and global warming are increasingly becomingmajor concerns of
society, resulting in the growing awareness of the importance of sustainable activities.
AI has the potential to greatly improve environmental sustainability by achieving
better monitoring, understanding and prevention of damage and overuses on the
Earth’s land, air and water. For example, AI can help water and waste management
systems to more efficiently monitor water loss (e.g. water leakage) and water quality.
It can alsomore effectivelymanage sewerwater processing such as by adding reason-
able chemical dosing, as to lessen environmental impacts. Furthermore, AI can be
used to better monitor air pollutions and identify sources of air quality issues faster
and more accurately. Moving to the energy sector, AI can make renewable energy
technology like solar panels and wind turbines more efficient and cost effective by
optimising relevant parameters. AI enables to develop more efficient and greener
systems for the more sustainable future—in the right applications, it can only lower
our dependence on fossil fuels and move our paths towards sustainable use of land.

As varied as the applications of AI can be, the crux of the matter is the following:
human and AI actively enhance each other’s complementary strengths for a partner-
ship. AI augments human capabilities and empowers individuals for better decisions,
while humans assist AI in training models, explain the AI outcomes with domain
knowledge and sustain the responsible use of AI, such as by preventing AI from
harming humans. AI needs to follow a core principle that anything an AI does has to
fit into a human-centred value system, not a machine-centred value system, by taking
unique human abilities into account. Such human–AI collaboration, or partnership,
can only be beneficial. AI does not exist without the human in partnership and, there-
fore, fundamentally needs to fit into value systems that are human in nature. As such,
we only continue to advance our understanding of howAI functions as a facilitator to
achieve and enhance human goals, from basic needs to high-level well-being. These
understandings advance along with the development of AI technologies and grow as
we realise the large and numerous impacts of AI on society.

The above observations and discussions motivate the editing of this book:
Humanity Driven AI. The edited book makes a systematic investigation into how
AI functions as a facilitator to achieve and enhance human needs in the digital age.
We report the state-of-the-art advances in theories, techniques and applications of
humanity-driven AI. The book specifically focuses on four aspects of humanity that
AI can interact with: productivity, well-being, sustainability and partnership. The
book consists of five parts.

The first part emphasises that to satisfy human needs are important aspects of the
humanity and proposes that AI solutions can be categorised to meet various human
needs in different levels of Maslow’s hierarchy of needs. A concept of humanity-in-
the-loop is presented to integrate human needs into every stage of AI life cycle. Other
chapters in this book can be fit into this concept. During this process, ethics should
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be well maintained and assured by implementing AI ethical principles at every stage
of the AI life cycle. Human needs must be met ethically.

The second part focuses on the aspects of AI that improve productivity to meet
human needs. We move first to the fact that infrastructures such as water pipes are
indispensable assets of a city. The efficiency of water infrastructure management
plays significant roles in the smooth running of society. AI can help water utilities
to maintain their distribution systems in a financially viable way. Next we consider
a well-functioning urban transport networks and how such a network is crucial and
essential for the free flow of people and freight. AI can predict the mobility of
public transport and help to mitigate the impact of traffic congestion by providing
timely information of bus arrival time to promote productivity in traffic congestion
management. AI can also help the railway services to meet the performance metrics
and recover from incidents with consideration of a range of impacting factors.

The third part introduces the attempts and efforts of the use of AI for improving
human well-being. Privacy protection is an important issue in health-related organ-
isations. AI can enable the development of an open health ecosystem by learning a
shared model across users or organisations, without direct access to the data. We also
show the use of AI for investigation of 3D neuron morphology in order to under-
stand functions and activities in brain circuits, moving towards discovering the brain
development process related to health and brain function modification to improve
human well-being. More recently, AI has been playing significant roles in combating
the battle against COVID-19 pandemic to protect human well-being. This part intro-
duces case studies where AI plays a significant role and in an essential component
from this perspective.

The fourth part features the use ofAI for improving sustainability and environment
protection. Taking the wastage of water as an example generated every moment in
the earth because of various activities of humans, the safe delivery of wastewater
through sewer pipes from its occurrence place to the treatment factory is a critical
one that significantly affects the earth’s land, air and clean water. Here we present
the use of AI in inspecting the corrosion status of sewer pipes in order to improve
efficiency and save costs in sewer pipe maintenance and rehabilitation. Air pollution
is another issue that affects human health and environment sustainability. We also
demonstrate the great potential for AI in improving knowledge and understanding
about air pollution and environmental health. Furthermore, AI can help to protect
the marine ecosystems by avoiding the use of human-made tools such as shark nets
in coast regions while maintaining human safety at the same time.

The fifth part explores the AI–human relationships and reports on AI–human
partnerships from different perspectives. From the educational perspective, AI has
changed the human–machine interactionmode of online learning and helps to provide
personalised teaching and guidance for online learners with a multi-channel interac-
tion mechanism. AI can further examine and track learners’ engagement in educa-
tional situations. Furthermore, AI can help people with disabilities by addressing
practical problems that they encounter in a variety of domains. This part investigates
opportunities and issues in order to enhance the partnership between AI and people
with disabilities. In addition, AI explainability plays a significant role in building
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high trustworthiness of AI to humans. This part provides a common understanding of
important aspects and factors involved in building a trustworthy AI for explainability
and causability measures in medicine.

This edited book creates an important opportunity to not only promote AI tech-
niques from the humanity’s perspective, but also invent novel AI applications for
better humanity. The book aims to serve as the dedicated source for the theories,
methodologies and applications on humanity-driven AI, establishing state-of-the-art
research and providing a ground-breaking textbook to graduate students, research
professionals and AI practitioners.

Sydney, Australia
July 2021

Fang Chen
Jianlong Zhou
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AI and Humanity



Towards Humanity-in-the-Loop in AI
Lifecycle

Jianlong Zhou and Fang Chen

1 Humanity and Human Needs

According to MerriamWebsters dictionary, humanity is the quality of being human,
which includes different aspects such as human nature and human condition, from
philosophy.Humanneeds are important aspects for the humanity.Maslow’s hierarchy
of needs [9, 12] is a commonly referenced model of human needs (see Fig. 1). From
this theory, human needs are represented as a five-stage model of pyramid from the
basic needs at the bottom to higher psychological needs on the top of the needs
pyramid, which are physiological needs, safety needs, belongings and love needs,
esteem needs, and self-actualisation. The needs that belong towards the bottom of
the pyramid are basic needs (physiological and safety), the ones at the middle of the
pyramid are psychological needs (belongingness and love and esteem), and the ones
that belong to the top of the pyramid are growth needs (self-actualisation). One must
satisfy lower-level basic needs before progressing on to meet higher level growth
needs.

Furthermore, the progress of humanity is always driven by the advancement of
technologies in meeting various human needs from ancient stone tools and bronze
and iron tools, the eighteenth centuries’ Industrial Revolution of water and steam
power to mechanise production, to recent electric power to create mass production
and more recent electronics and information technology to automate production. We
are currently in the so-called the Fourth Industrial Revolution driven by big data and
artificial intelligence (AI) [27]. It is therefore significant to understand how AI can
benefit the humanity’s progress effectively and how humanity can contribute to the
advancement of AI technologies.

In this chapter, we firstly introduce powerful capabilities ofAI and negative effects
AI may cause to humans. It is shown that different levels of human needs based on
the Maslow’s hierarchy can be met by AI solutions. On the other hand, AI can be
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Fig. 1 Maslow’s hierarchy of needs

implemented through various stages in a lifecycle. A concept of humanity-in-the-
loop is proposed to integrate human needs into the AI lifecycle.We show how human
needs can be met at the every stage of the AI lifecycle. Furthermore, AI ethics is
integrated into this concept for meeting human needs ethically. We also demonstrate
the challenges of humanity-in-the-loop of AI for meeting human needs.

2 Artificial Intelligence

AI is typically defined as an autonomous and self-learning agency with the ability
to perform intelligent functions in contrast to the natural intelligence displayed by
humans, such as learning from experience, reasoning, problem-solving [19, 27]. It
is a computer system which performs tasks that are typically associated with human
intelligence or expertise. It has powerful capabilities in prediction, automation, plan-
ning, targeting, and personalisation (see Fig. 2). It is transforming our world, our life,
and our society and affects virtually every aspect of our modern lives [26].

The impressive performance of AI we have seen across a wide range of domains
motivates extensive adoptions of AI in various sectors including public services,
transport, health care, retail, education and others. For example, AI enables the mon-
itoring of climate change and natural disasters [17], enhances the management of
public health and safety [14], automates administration of government services [2],
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Fig. 2 AI can make things as smart as humans or even smarter

and promotes productivity for economic well-being of the country. AI also helps
to enable efficient fraud detection (e.g. in welfare, tax, trading, credit card) [3] and
enhances the protection of national security (e.g. with unauthorised network access
and malicious email detection) [1] and others.

However, AI may cause negative effects to human beings. For example, AI may
require huge volumes of personal data in some domains in order to learn and make
decisions, and the concern of privacy becomes one of important issues in AI [6].
Because AI can do many repetitive work more efficiently than humans, people also
worry about that their jobswill be replaced byAI and theywill lose jobs. Furthermore,
the highly developed AI algorithms such as generative adversarial networks (GANs)
can generate high-quality and lifelike faces, voices, and other human expressions
[16], which may also be used to do illegal things in the society. For example, GANs
have been used to create fake videos by replacing the face of a person by the face
of another person, which have harmful usages including fake news, hoaxes, and
financial fraud [20].
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3 AI for Human Needs

Generally, it is assumed that AI can enablemachines to exhibit human-like cognition,
and it is more efficient (e.g. higher accuracy, faster, working 24h) than humans in
various tasks. Claims about the promise of AI are abundant and growing related to
different areas of our lives [27]. Some examples are: in human’s everyday life, AI
can recognise objects in images [29], it can transcribe speech to text, it can translate
between languages [13], it can recognise emotions in images of faces or speech [11,
24, 25]; in travelling, AI makes self-driving cars possible [5], AI enables drones
to fly autonomously, AI can predict parking difficulty by area in crowded cities;
in medicine, AI can discover new uses for existing drugs, it can detect a range of
conditions from images, it enables the personalised medicine; in agriculture, AI can
detect crop disease, and spray pesticide to crops with pinpoint accuracy; in finance,
AI can make stock trades without human intervention and handle insurance claims
automatically; AI can identify potentially threatening weather in meteorology. In
meeting human’s basic needs, AI can be used to predict water pipe failures for
reliable water supplies [23, 31] and to provide efficient energy management [22].
Furthermore, AI can promote human’s safety and well-being needs by providing
personalised medicine [18] and understanding human’s emotions [11, 24, 25, 30]
during decision-making. AI and robotics are able to simulate the emotional expe-
rience and consequences of physically being with another person, which is called
artificial intimacy and could meet needs for tenderness and warmth, for romance,
empathy, and friendship [7]. The applications of artificial intimacy may include a
therapy-bot, a best-friend-for-your-child-bot, or a care-bot for grandma. Examples
of self-esteem needs include fame, prestige, and self-confidence. AI can conduct
various creative work, such as paint a van Gogh painting [8], write poems and music,
write film scripts, design logos, recommend songs/films/books you like [4] for peo-
ple’s self-esteem needs. Furthermore, self-actualization sits highest on the pyramid
of Maslow’s hierarchy of needs. To utilise and develop talents are example for this
level of needs. AI can help to conduct effective employee development and upskilling
skills [10, 21].

These diverse and ambitious claims motivate wide adoptions of AI in various
sectors including retail, education, health care, and others. All these adoptions will
ultimately help to deliver a better quality of life with manageable cost of living,
better environment, easy access of transport for time saving, etc. These diverse and
ambitious claims of AI can be categorised to meet various levels of human needs in
theMaslow’s hierarchy of needs (see Fig. 1). Table1 shows examples of AI solutions
meeting different human needs in the Maslow’s hierarchy (see Fig. 1).

Therefore, human needs play a significant role in and drive the AI development.
However, it is not clear how human needs can be integrated with the AI development
effectively so that AI can benefit humanity with high impact. This chapter introduces
a concept of humanity-in-the-loop in AI lifecyle in the next section by considering
human needs at every stage of the AI lifecyle.
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Table 1 Human needs and AI

Human needs type Needs examples AI examples for needs

Physiological needs Water, energy, food, health, Water pipe failure prediction

sleep, clothes, shelter, sex [31], energy management [22]

Safety needs Personal security, emotional Personalised medicine [18],

Security, financial security, Recognise emotions

Well-being [11, 24, 25, 30]

Belongingness and love needs Family, friendship, intimacy Artificial intimacy [7]

Esteem needs Fame, prestige, Paint a van Gogh painting [8],

Self-confidence Write poems and music,
recommend songs/films/books
[4]

Self-actualisation upskilling
needs

Utilising and developing
talents and abilities, partner
acquisition, pursuing goals,
parenting

Employee development and
skills [10, 21]

4 Humanity-in-the-loop in AI Lifecycle

In this section, we firstly present different stages of the AI application lifecycle. We
then introduce the concept of humanity-in-the-loop and demonstrate how human
needs can be integrated into the AI lifecycle to better meet human needs.

4.1 AI Lifecycle

A typical lifecycle for an AI application project development usually includes dif-
ferent stages from business and use case development, design phase, training and
test data procurement, building AI application, testing the system, deployment of
the system to monitoring performance of the system (see Fig. 3). The AI lifecycle
delineates the role of every stage in data science initiatives ranging from business
to engineering. It provides a high-level perspective of how an AI application project
development should be organised for real and practical business value with the com-
pletion of every stages. In the AI lifecycle, the first stage is to identify a business
and use case to tangibly improve operations, increase customer satisfaction, or oth-
erwise create value. Based on the identified problems, the AI application is designed
at least with the following information: (1) the objectives to be obtained in the AI
application, (2) the data to be collected, and (3) machine learning algorithms to be
used and formalised. The next stage is to collect and prepare all of the relevant data
for use in machine learning. After this, the machine learning model is trained and
tested with the collected data. Themajor objective is to get high performed and easily
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Fig. 3 Different stages of an AI lifecycle

generalised machine learning models. Then, the model is deployed in applications
and monitored during the use to improve it iteratively if any problems are found.

4.2 Humanity-in-the-loop for Human Needs and AI Ethics
Assurance

It is one of important objectives of AI solutions to meet various human needs. In
this section, we introduce human needs into the AI lifecycle and propose a concept
of humanity-in-the-loop. AI ethics can also be regarded as a special kind of human
need. It is integrated into this concept as well for meeting human needs ethically.
Based on this concept of humanity-in-the-loop, during the business and use case
development stage in the AI lifecycle, the human needs that the AI solution aims to
solve are clearly identified and well understood. These needs can be any types of
needs ranging from physiological needs to self-actualisation needs presented in the
previous section and should be reachable based on the current AI techniques and
available data.

After human needs are identified, the AI solution is designed to decide what data
will be used, what outcomes will be, who will use it, and what AI approaches will
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be used as well as others. During this stage, human needs are refined to make them
implementable in AI. In the training and test data procurement stage, different data
related to human needs are collected so that they are used to build AI models and
test them in the followed stages, where AI models are required to meet human needs
as accurately as possible.

In themodel deployment stage, theAImodel is deployed in practice tomeet human
needs. The use of the AI model is also monitored to find any possible problems of the
AI model in meeting human needs. If any problems are found during this stage, the
AI lifecycle will be iterated to solve problems. Therefore, in the whole AI lifecycle,
human needs act as the core in driving the AI lifecycle for the successful AI solutions
(see Fig. 4).

Furthermore, the AI lifecycle delineates the role of every stage in data science
initiatives ranging from business to engineering. It provides a high-level perspective
of how anAI project should be organised for real and practical business valuewith the
completion of every stages. Morley et al. [15] constructed a typology by combining
the ethical principles with the stages of the AI lifecycle to ensure that the AI system
is designed, implemented and deployed in an ethical manner. The typology indicates
that each ethical principle should be considered at every stage of the AI lifecycle.

In theAI ethics for thewholeAI lifecycle, different stages ofAI lifecyclemay have
different emphases on ethical principles. For example, in the data procurement stage,

Fig. 4 Human needs and AI ethics assurance in the AI lifecycle
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the data privacy is the core principle, while in the AImodel building stage, stakehold-
ers are more interested in the model transparency. Therefore, AI ethics plays as the
key component in the AI lifecycle to control the development and use of AI models
[28]. The concept of AI ethics assurance aims to ensure the compliance of whole
AI lifecycle with ethical principles. Ethical principles should also be implemented
at every stage of the AI lifecycle while also giving different emphases on different
ethical principles at different stages of the AI lifecycle. From this perspective, the
assurance of AI ethics is implemented at every stage of the AI lifecycle. Furthermore,
we argue that AI ethics assurance should be combined with human needs in the AI
lifecycle considering the effects of human needs on AI ethics assurance.

As a result, the humanity-in-the-loop provides a high-level framework to make
sure that AI meets various levels of human needs ethically by considering require-
ments of human needs and integrating assurance of ethical AI at every stage of the
AI lifecycle. Such concept of humanity-in-the-loop of AI not only guarantees that AI
meets human needs effectively and ethically, but also provides high-level guidance
for the development of AI solutions in meeting various human needs.

5 Discussion

Human needs are important aspects for the humanity. AI has the strong capacity to
meet or promote various levels of human needs ranging from basics needs such as
food and water needs to self-fulfilment needs such as creative activities. This chapter
tried to encapsulate AI solutions into the Maslow’s hierarchy of needs to show how
different AI approaches meet various human needs in different levels. It was found
that the most of current AI solutions focus on meeting human’s basic needs with the
use of AI-driven smart systems. For example, AI can continuously monitor the con-
dition of critical infrastructures (e.g. water pipes) and predict their risks and failures
automatically, which not onlymeets human needs for the stable water supply but also
significantly improves the efficiency of infrastructure maintenance (see Chap. 3).

Furthermore, AI benefits humanity by enhancing human well-being in various
aspects such as healthcare and human services. AI also has been playing tremen-
dous roles in fighting COVID-19 pandemic to protect people from virus infections
(see Chap.8). In addition, AI can improve environmental sustainability by achiev-
ing better monitoring, understanding, and prevention of damage and overuses on
Earth’s land, air, and water. For example, Chap. 9 shows the use of AI in helping
water and waste management systems to more efficiently monitor water wasting
(e.g. water leakage) and water quality, as well as to more effectively manage sewer
water processing (e.g. by adding reasonable chemical dosing to lessen environmental
impacts).

AI can help humanity for the self-fulfilment needs by forming partnerships
between human andAI. For example,AI can provide personalised education based on
learner’s personal background and learning experiences to augment learning capabil-
ities and empower individuals for better learning performance to achieve individuals’

http://dx.doi.org/10.1007/978-3-030-72188-6_3
http://dx.doi.org/10.1007/978-3-030-72188-6_8
http://dx.doi.org/10.1007/978-3-030-72188-6_9
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full potential (see Chap. 13). AI can help to improve the employee development and
upskilling skills based on personal expertise and experiences.

This chapter proposed humanity-in-the-loop approach to integrate humanity and
ethics of AI into every stage of AI lifecycle in order to make sure that human needs
are fully understood at the the beginning stage of business and use case development,
enough data are collected for high-performance modelling to meet human needs, and
human needs are met consistently by monitoring the use of the model after the model
is deployed. During this process, ethics should be well maintained and implemented
at every stage of the lifecycle to make sure that the use of AI is ethical and does not
cause any harms to humans.

While AI meets human needs in different levels for the productivity, well-being,
sustainability, and partnership, we are continuously seeing further challenges when
AI is used for various human needs, and some of examples are:

• The conversion of human needs to applicable AI problems is a challenge. Some
human needs are abstract and may be difficult to design effective corresponding
AI problems because of data and evaluation issues;

• The collection of data for various level of human needs is a challenge because of
availability, privacy, or other issues;

• The implementation of AI ethical principles at each stage of the AI lifecycle is
still a challenge.

Therefore, the future work on humanity-in-the-loop of AI can focus on the set
up of pipelines/frameworks to convert various human needs into AI problems that
can be implementable. For a specific case of human need to AI problem conversion,
innovative techniques such as sensor technologies can be used to collect data used
for the model building. AI ethical principles should be implemented at each stage of
the AI lifecycle.

6 Summary

This chapter proposed that AI solutions can be categorised to meet various levels of
human needs inMarslow’s hierarchy of needs. Based on the review of AI capabilities
and the AI application lifecycle, a concept of humanity-in-the-loop was presented to
integrate human needs into the AI lifecycle so that human needs are fully understood
and met at each stage of the AI lifecycle. AI ethical principles were proposed to
be implemented at each stage of the AI lifecycle to make sure that human needs
are met ethically. The humanity-in-the-loop provides high-level guidance for the
development of AI solutions in meeting various human needs. The future work on
the humanity-in-the-loop of AI can focus on the effective setup of AI problems from
various human needs, innovative approaches for data collection for building models
as well as the implementation of ethical principles of AI at each stage of the AI
lifecycle.

http://dx.doi.org/10.1007/978-3-030-72188-6_13
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AI and Ethics—Operationalizing
Responsible AI

Liming Zhu, Xiwei Xu, Qinghua Lu, Guido Governatori, and Jon Whittle

1 Introduction

When it comes to AI and Ethics/Law,1 there are two interrelated aspects of the topic.
One is on how to design, develop, and validate AI technologies and systems responsi-
bly (i.e., Responsible AI) so that we can adequately assure ethical and legal concerns,
especially pertaining to human values. The other is the use of AI itself as a means to
achieve the Responsible AI ends. In this chapter, we focus on the former issue.

In the last few years, AI continues demonstrating its positive impact on society
while sometimeswith ethically questionable consequences.Not doingAI responsibly
is starting to have devastating effect on humanity, not only on data protection, privacy,
and bias but also on labor rights and climate justice [1]. Building and maintaining
public trust in AI has been identified as the key to successful and sustainable innova-
tion [2]. Thus, the issue of ethical AI or responsible AI has gathered high-level atten-
tion. Nearly one hundred principles and guidelines for ethical AI have been issued
by private companies, research institutions, and public organizations [3, 4] and some
consensus around high-level principles has emerged [5].On the other hand, principles

1Law is usually considered to set theminimum standards of behavior while ethics sets themaximum
standards so we will use the word “ethics” throughout the chapter.
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andguidelines are far fromensuring the trustworthiness ofAI systems [6].Complicat-
ing the issue further, humans and societies perceive trust inAI in intricateways,which
does not necessarily closelymatch the trustworthiness of a particularAI system [7–9].

The remainder of the paper is organized as follows: Sect. 2 discusses the challenges
of existing works on ethical AI. The framework with an integrated view of three
aspects of ethical AI is discussed in Sect. 3. Section4 shares our experience and
observations in a crop yield prediction project. Section5 talks about the high-level
ethical principles and their operationalization. Finally, Sect. 6 concludes the chapter.

2 Ethical AI Challenges

2.1 Classification of Existing Works on Ethical AI

Significant research has gone into addressing ethical AI challenges. In this section,
we discuss the existing works, which fall into three large categories:

1. High-level ethical principle frameworks. A large number of high-level ethical
principle frameworks [4] (e.g., Australian AI Ethics Principles2). They identify
the important ethical and legal principles responsibleAI technologies and systems
are supposed to adhere to. Some effort, such as [10], further divides these high-
level principles into guidelines at the team, organizational, and industry level.
These high-level principles are hard to operationalize for many reasons [6] we
will discuss later.

2. Ethical algorithms. Significant research has gone into ethical algorithms where
the formulation of some ethical/legal properties is amenable to mathematical def-
initions, analysis, and theoretical guarantees. These include properties such as
privacy [11] and fairness [12] or for specific types of AI systems [13]. This covers
mechanisms that deal with preprocessing of data (to remove bias or individualistic
characteristics), the learning process itself (to take into consideration of ethical
constraints), learnedmodels (to be further compliant with ethical constraints), and
predictive results (to correct for residual bias or revealing individualistic informa-
tion). However, these mechanisms are algorithm focused with limited theoretical
heuristic, confined to a small number of quantification-amenable properties, and
a small subset of ethical principles and human values [14]. Most of the time,
these ethical-aware algorithms are too complicated to explain to less numeracy-
equipped stakeholders and not connected to the broader decision-making pro-
cess [2]. They are also not linked to the software development processes, espe-
cially system design methods, requirements engineering, or user-centered design
(UCD) processes.

2 https://www.industry.gov.au/data-and-publications/building-australias-artificial-intelligence-
capability/ai-ethics-framework/ai-ethics-principles.

https://www.industry.gov.au/data-and-publications/building-australias-artificial-intelligence-capability/ai-ethics-framework/ai-ethics-principles
https://www.industry.gov.au/data-and-publications/building-australias-artificial-intelligence-capability/ai-ethics-framework/ai-ethics-principles
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3. Human values in software engineering and their operationalization. Recently,
there has been emerging research in human values in software engineering and
their operationalization [15, 16], including:

(a) Extension of value-based design methods (e.g., value-sensitive design—
VSD) [17]

(b) Extension of human factor research on productivity and usability into human
values consideration but still limited to a small subset of human values [14]

(c) Software engineering methods for embedding human values and ethical con-
sideration throughout the software development life cycle (SDLC) [15, 18,
19]

(d) Architecture and design patterns that can improve (qualitatively or quanti-
tatively) [20] or assure (with strong mathematical guarantees), “by-design,”
certain ethical or human-value related quality attributes such as privacy and
non-maleficence (e.g., security, safety, and integrity) [21, 22]

2.2 Issues of Existing Works on Ethical AI

We identify three issues in current research work regarding operationalizing ethical
principles to achieve the ultimate trust from stakeholders.

2.2.1 Mixing Inherent Trustworthiness with Perceived Trust

The inherent and technical“trustworthiness”of anAI systemcanbedirectly reflected
in technologies/products via code, algorithms, data, or system design or indirectly
reflected via the software development processes). On the other hand, trust is a
stakeholder’s (i.e., truster’s) subjective estimation of the trustworthiness of the AI
system. This subjective estimation is based on a truster’s expected and preferred
future behavior of the AI system. Mixing the two in terms of identifying assur-
ance mechanisms and presenting trustworthy evidence can overlook the additional
and special mechanisms required to gain trust (different from the ones for gaining
trustworthiness).

A highly technically trustworthy system may not be trusted by trusters for one
reason or another, rationally or irrationally. This is because a truster’s subjective
estimation of the system’s trustworthiness and expectations may have a significant
gap compared to the system’s inherent trustworthiness. It can also be the other way
around when a truster overestimates a system’s trustworthiness and puts undue trust
into it.

The reasons for this gap may be related to several issues:

• a truster’s numeracy (impacting the understanding of different types of trustwor-
thiness evidence);

• a truster’s prior beliefs and experiences;
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• a truster’s preferences and expectations on acceptable behaviors, types of evidence,
and explanation[9];

• a system’s observable behaviors to a truster.

2.2.2 Operationalizing Ethical Principles

There are many reasons why we still lack systematic methods to operationalize the
high-level ethical principles. Some are due to the AI field’s relatively short history
(e.g., compared with the medical field) thus lacking professional norms, legal and
professional accountability mechanisms, clear common aims, fiduciary duties, and
importantly proven methods to translate principles into practices [6]. Others are due
to the lack of consideration of a wider set of human values [23] such as political
self-determination and data agency beyond technical dependencies [24].

We believe another important factor is due to the relatively narrow attempt to
operationalize human values and ethical principles into verifiable “product” trust-
worthiness (via mathematical guarantees) without systematically exploring a wider
variety of mechanisms in development processes to improve both trustworthiness
and trust. Looking at process mechanisms can include highly tailored evidence gath-
ering and communication mechanisms for different types of trusters. These will help
close the gap between their subjective estimation and the system’s more objective
inherent trustworthiness.

2.2.3 Unique Characteristics of AI

Finally, many of the works do not actively consider the unique characteristics of AI
during operationalization. Referring to one [25] of the many definitions of AI, AI is
a collection of interrelated technologies used to solve problems autonomously and
perform tasks to achieve defined objectives, in some caseswithout explicit guidance
from a human being. AI has its own agency [3] reflected in its autonomy (i.e., acting
independently), adaptability (i.e., learning in order to react flexibly to unforeseen
changes in the environment), and interactivity (i.e., perceiving and interacting with
other agencies, human or artificial). So by AI’s definition and its inherent autonomy-
related characteristics, it would be impossible (not simply hard) to accurately and
completely specify all the goals, undesirable side-effects, and constraints (including
ethical ones) at its finest level of details. This is known as the value alignment
problem: given an optimization algorithm, how to make sure the optimization of its
objective function results in outcomes that we actually want, in all respects? As one
saying goes, “It never does just what I want, but only what I tell it.” This inherent
under-specification issue is both a boon and a bane of AI. Thus, it is important not just
to use guarantee mechanisms but to introduce a range of product and process-related
risk mitigation mechanisms. This will include things like continuous validation and
monitoring of systems [26] after deployment, broadening specifications, and real-
world validation [27].
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3 Our Solution

Although previous work has produced high-level ethical AI principles, general
notions of trust vs trustworthiness and product vs process support, they have not
been integrated into the context of responsible AI. The contribution of this book
chapter is the integrated view of the three aspects and how they help improve both
trust and trustworthiness of AI for a wider set of stakeholders. This integrated view
includes three components:

• the difference between trust and trustworthiness in the context of ethical AI prin-
ciples;

• how different product and process mechanisms can achieve trustworthiness for
different ethical principles;

• how different product and process evidence can be presented to different types of
trusters to improve the accuracy of their subjective estimation so they match the
inherent trustworthiness of the systems.

Our work also takes into consideration of the autonomy characteristics of AI and
its inherent under-specification challenges. Figure1 gives a graphical representation
of our framework.

For conceptualizing the relationship between trust and trustworthiness, we use
the definitions and concepts from Bauer’s work [28]:

Fig. 1 Conceptual model
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Trust PAi to is truster Ai ’s subjective estimate of the probability Pbj that B j will
display Ai ’s preferred behavior Xkt1 , i.e., of B j ’s trustworthiness.

In our work, Bj represents an AI system. The behaviors Xkt1 displayed by Bj can
include functional behaviors, behaviors that handle ethical constraints (e.g., privacy,
security, reliability, safety, and other human values and well-being) and metalevel
behaviors (e.g., transparency, explainability [29], and accountability). A truster’s
subjective estimate at t0 is about the AI system’s future behavior at t1. There are
some arguments around the concept of trust being binary (rather than probabilistic)
in reality as you either trust something or not.When you eventually decide to accept a
system to be trusted, you then accept the associated harm if the trusted party fails.We
believe this binary notion is consistent with the probabilistic notion if you introduce
a threshold along the probability spectrum to discern trusted or not trusted.

We use Australia’s ethical AI principles [25] and their definitions as a close-
enough representation of the many similar ones [4, 5] around the world. Australia’s
ethical AI principles contain eight key principles.

• P1: Human, social, and environmental well-being: Throughout their life cycle, AI
systems should benefit individuals, society, and the environment.

• P2:Human-centered values: Throughout their life cycle,AI systems should respect
human rights, diversity, and the autonomy of individuals.

• P3: Fairness: Throughout their life cycle, AI systems should be inclusive and
accessible and should not involve or result in unfair discrimination against indi-
viduals, communities, or groups.

• P4:Privacy protection and security: Throughout their life cycle,AI systems should
respect and uphold privacy rights and data protection and ensure the security of
data.

• P5: Reliability and safety: Throughout their life cycle, AI systems should reliably
operate in accordance with their intended purpose.

• P6: Transparency and explainability: There should be transparency and responsi-
ble disclosure to ensure people know when they are being significantly impacted
by an AI system and can find out when an AI system is engaging with them.

• P7: Contestability: When an AI system significantly impacts a person, commu-
nity, group, or environment, there should be a timely process to allow people to
challenge the use or output of the AI system.

• P8: Accountability:Those responsible for the different phases of theAI system life
cycle should be identifiable and accountable for the outcomes of the AI systems,
and human oversight of AI systems should be enabled.
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3.1 The Difference Between Trust and Trustworthiness
in the Context of Ethical Principles

We group the eight principles in two categories based on their nature and charac-
teristics. The first group includes the first five principles (P1–P5), which are human
values and ethical constraints similar to the non-functional software qualities [30] to
be considered. The second group includes the last three principles (P6, P7, and P8),
which are metalevel governance issues.

3.1.1 Principles as Software Qualities

These principles sometimes can be framed as functional requirements of a software
system. If that is the case, in the context of software engineering, the methodology of
requirement engineering could be adopted to ensure that the requirements captured
are as accurate and complete as possible. It is worth noting again that AI systems
cannot be fully specified and will try to solve the problems autonomously with
a level of independence and agency. On the other hand, there will be conflicting
requirements whereby tradeoff decisions need to be made.

Some principles, such as security, reliability, and safety, are the non-functional
properties well studied in the dependability research community [31]. These princi-
ples can be captured as non-functional requirements and considered from the early
stage of systemdesign. There are technicalmechanisms or reusable design fragments,
like patterns and tactics, that could be applied to fulfill the quality requirements [32].
Privacy is not a standard software quality [30], but has been treated as an increasingly
important property of a software system to realize regulatory requirements, like Gen-
eral Data Protection Regulation (GDPR)3 and Australia Privacy Act, into technical
artifacts. Reusable practices and patterns have been summarized in both industry and
academia for privacy [20]. Fairness is a concern that the machine learning develop-
ers should consider from the early stage of the data processing pipeline. Similar to
before, collections of best practice andmechanisms to remove bias at different stages
of the pipeline have been compiled [12]. The reason to group these principles is that
they can be handled and validated using a similar approach: the methodology of how
non-functional properties is handled in software system design. Some principles can
be validated in a quantifiable way, like reliability. Others could be validated against
process-oriented best practices, methods, and widely used patterns.

3.1.2 Principles as Governance Issues

The principles within this group are largely governance issues and designed to
improve truster’s confidence in theAI system. They can be seen as clear requirements

3 General Data Protection Regulation, https://gdpr-info.eu/.

https://gdpr-info.eu/
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for certain functionality provided by the software system or entities providing the
system. For example, contestability requires a system or entity function that allows
the trusters to challenge the output or use of theAI system. Transparency and explain-
ability are similar in that the users can have access to the system, data, algorithms to
understand it, including receiving an explanation of a decision or prediction.

3.1.3 Trust Versus Trustworthiness of Ethical AI Principles

Each principle can have different implications in terms of trust vs. trustworthiness.
Essentially, the difference is between what an AI system can objectively perform
(trustworthiness) and what a truster/stakeholder “prefers/wants” (trust expectation)
and their subjective estimation of the behavior of the AI system. And it has been
observed that human may have very different expectations of AI or human even their
trustworthiness are similar [7]. We list these differences in Table1.

As we can see, trust is about subjective estimation and perception and often not
limited to theAI system’s trustworthiness properties (whether via software artifacts or
development processes). As identified in [8], multiple factors contributes to people’s
trust in an AI system, including factors not related to a specific AI system such as
current society safeguards such as regulations, overall AI uncertainty, job impact,
and familiarity of AI. Some factors may be related to the organizations that build the
AI systems, use the AI system, or evaluate the AI system. The specific characteristic
of the AI system only plays a minor role in trust.

3.2 Product and Process Mechanisms for Trustworthiness

We continue using the same grouping as the last section to analyze the eight princi-
ples to demonstrate different product and development process (including the people
aspect) mechanisms to improve trustworthiness. This differentiation teases out a
broader set of considerations to improve trustworthiness, which subsequently helps
understand what are the different ways in which these mechanisms could be com-
municated to different stakeholders/trusters to improve trust.

For human, social, and environment well-being and human-centered values, we
also consider organizational culture and SDLC methods including roles and agile
practices. For quality attributes-related ethical principles, we apply architecture and
design processes, patterns and tactics, and refer to a range of data, model [27], and
algorithmic considerations. [34]. We consider design process (“in design”), design
artifacts (“by-design”), and designers (“for designers”). [3] For governance issues,
we build upon the principles in [3, 16, 24, 35].

We introduce some considerations and examples across the Product and Pro-
cess/People dimension in Table2. Many of the mechanisms presented in the table
rely on industry-wide and society-wide work, in particular:
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Table 1 Trust versus trustworthiness

Trustworthiness Trust

Human, social, and
environmental well-being

Whether stakeholder
requirements are captured
accurately and completely and
tradeoff are made in an
informed and consultative way

Whether a truster perceives the
entity, the process, and society
safeguards [8] collecting
requirements and making
tradeoffs are trustworthy and
whether a truster’s
requirements are addressed
adequately

Human-centered values Whether comprehensive sets of
relevant values are considered
[33] throughout the SDLC

Whether a truster perceives the
entity, the process, and society
safeguards [8] of developing,
verifying, and validating the
system are trustworthy

Fairness Whether data, learning
algorithms, learned models,
decisions, predictive results,
and overall designs are
developed with quantifiable
fairness, privacy, and security
constraints in mind and satisfy
the reliability and safety
requirements

Whether a truster understands
how these constraints are
satisfied and perceives the
entity, the process and society
safeguards of developing,
verifying and validating the
system are trustworthy

Privacy protection and security

Reliability and safety

Transparency and
explainability

Whether system requirements,
specifications, data,
algorithms, models, decisions,
system designs, and source
code, i.e., all related artifacts,
are open for stakeholder
inspection and understandable

Whether a truster perceives
they can understand the
artifacts and explanation
associated or they can delegate
such access and understanding
to a trustworthy third party or
society’s safeguard regulations

Contestability Whether there is a timely
process specified for people to
challenge the use or output of
the AI system at an individual
decision, group or society level

Whether a truster perceives
there is a timely and
trustworthy process run by
trustworthy entities to
challenge the use or output of
the AI system at an individual
decision, group or society level

Accountability Whether there are entities and
humans identified to be
accountable for the outcomes
of the AI systems

Whether a truster perceives the
identified accountable entities
and humans are the right ones
and can bear proportionate
responsibilities under adverse
outcomes
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Table 2 Product and process assurance mechanisms

Product Process and people

Human, social, and envi-
ronmental well-being

Well-being metrics and associated
requirements and subsequent design
and continuous validation and
monitoring features. Misuse cases
and entities, undesirable side-effects

Stakeholder engagement,
independent boards, and
conflict/tradeoff resolution process.
Roles, ceremonies, and
organizational culture

Human-centered values Digital sovereignty [24], culture
norms, value statement and stories,
value definition and explicit
tradeoffs, value-aware training data,
learning algorithms, models and
decisions/predictions, continuous
validation and monitoring

Value tradeoff processes (with
accuracy, profit and among different
conflicting values). Roles,
ceremonies, and org culture

Fairness Fairness definition and explicit
tradeoffs, fairness-aware data,
learning algorithms, models and
decisions/predictions, continuous
validation and monitoring,
game-theoretical approach

Fairness tradeoff processes (with
accuracy, profit, and among different
conflicting fairness measures) roles,
ceremonies, org culture, org-level
boards, licensed developers

Privacy protection
and security

Privacy and security requirements,
privacy/security-by-design
architectures (such as federated
learning), privacy-enhancing data
treatment and learning algorithms
(such as differential privacy,
secure-multiparty-computation),
continuous validation and monitoring

Privacy and security definition and
tradeoff processes (with accuracy,
profit, and among different
conflicting values). Roles,
ceremonies, org culture

Reliability and safety Reliability and safety requirements,
reliability/safety architectures and
designs patterns,
reliability/safety-enhancing
algorithms

Reliability and safety tradeoff
processes (with other quality
attributes). Roles, ceremonies, org
culture

Transparency
and explainability

Features that generate human
understandable explanations tailored
for different stakeholders.
Registration and record keeping,
provenance and documentation of all
artifacts. Explanations of data,
algorithm, models, and decisions.
Adjust model complexity. Have
“Why did you do that button”

Open process across SDLC including
full access to artifacts from
stakeholders or 3rd parties
representing stakeholders. Processes
for iterative exploration and
explanation. Consider “no algorithm
allowed”

Contestability Features that allow human
intervention of decisions ex ante and
ex post

Contestability definition. Roles,
ceremonies, org culture, process
conformance to standard processes

Accountability Features that allow provenance and
traceability of artifacts and decisions
that always have a clear accountable
entity and human

Artifact-specific lifecycle
management process (such as data
accountability [16] and process
creation)
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• Multistakeholder sector-specific [2] and domain-specific guidelines (such as
banned practices in digital platforms [36], regulating software-based medical
devices [37], technical solutions, and empirical knowledge bases [6]).

• AI and data ethics board or other governance mechanisms at the organization
level [35] to oversee the overall AI-driven decision-making processes (not just
algorithms and products).

• Regulator levers that incentivize organizations and create a level playing field for
ethical innovation [2] including validation and certification agencies.

• Technical and non-technical ethics and human rights training for different roles
and organizational awareness.

• Incentives for employees to play a role in identifying AI ethical risks [35].
• Ongoing monitoring and engagement with stakeholders [26, 35].

Due to the under-specification and value alignment problem of AI, none of the
assurance mechanisms can guarantee a desirable outcome alone. Each helps reduce
the risk and the ongoingmonitoring and engagement post-deployment plays a critical
role in identifying and mitigating undesirable side-effects early.

3.3 How to Present Trustworthiness Evidence to Different
Types of Trusters

It is important that we present trustworthiness evidence (e.g., product artifacts assur-
ances and process/people assurances) to different types of trusters to help with their
subjective estimation so the estimation matches the inherent trustworthiness of the
AI systems. Here we have to take into considerations of two different aspects.

Truster Preference: Based on expectation and past experiences, different types of
trusters, such asAI algorithmdevelopers, AI systemdevelopers, professional users of
AI systems, affected subjects (wherebyAI systems have impacts on them), regulators
and certifiers, or the general public may have different preferences of an AI system’s
behavior.

Truster-Specific Verifiable Evidence: Different types of trusters may expect dif-
ferent types of evidence for assuring the trustworthiness of an AI system. They may
have different abilities to understand and assess the evidence and expect different
types of explanations [9]. For example, an AI expert can assess the algorithms while
a general public would have no use of the algorithms. A system developer may under-
stand an AI algorithm and the data associated but have limited ability to evaluate the
algorithm and bias in data.

When presenting evidence, such as assurance mechanisms in the last section, the
following factors should be taken into consideration:

• Consider a stakeholder’s technical abilities to understand the evidence.
• Consider a stakeholder’s resources and time to assess the evidence.
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• Allow both stakeholders and third parties who represent the stakeholders to exam-
ine the evidence.

• Allow broader ethical and legal “standing” so the evidence can be produced and
examined at an individual decision, group, and society level by a wide range of
stakeholders or their delegates.

• Present both process and product assurance mechanisms to the right stakeholders
in the right ways.

• Focus more on process mechanisms when ethical principles cannot be easily
defined and quantified.

• Focus more on the product mechanisms when ethical principles can be defined
and quantified and technically assured.

• Improve overall awareness/familiarity of AI, and understanding of broader AI
issues such as current society safeguards, AI’s overall uncertainty, and job impact.

4 Example: Crop Yield Prediction Project

In this section, we share our experience and observations in a crop yield prediction
project. In the project, we applied a data-driven approach using machine learning
algorithms to develop an improved version of a crop yield prediction model. The
previous model was built using a domain model-driven approach and integrated into
a commercialized software product. The project combines commercial satellite data
and data collected from different farms, largely owned by individual farmers. The
resulting machine learning model predicts future yields of farms in both the farm
data collection region but also in new regions significantly different from the original
regions. There are three types of stakeholders in the project: the technical team (a
research organization playing the role of both AI system developer and operation-
time learning coordinator), data contributor (i.e., participating farmers who provided
the data), and model user (i.e., farmers who use the models for yield prediction).
We used a federated machine learning approach to deal with the data ownership
problems and the non-IID (independent and identically distributed) data distribution
problem. The learning coordinator (i.e., the technical team) designs and operates the
model training process onmultiple, distributed data contributors. Themodel was first
trained locally on a local server and then sent to a central server for aggregating and
improving a global model. The model user performs inference using the aggregated
global model. Trustworthiness and trust issues manifested differently for different
stakeholders. We applied our approach retrospectively to the project and made the
following observations in terms of trust and trustworthiness.

• Human, social, and environmental well-being

– Positive well-being requirements were considered for the project itself but not
for wider issues outside the project.

– Potential misuse of data collected was considered but not for the predictive
models.
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– Both data contributors and model users have high-level trust in the technical
team as an entity but have very little trust in any third parties who may also use
the data (even for claimed well-being improvement reasons).

– Well-being requirements were specified as high-level goals, not quantifiable
metrics.

• Human-centered values

– Human factors on usability and accessibility were considered, consulted, and
designed in the original prediction app.

– No additional human-centered values were captured apart from the explicit ones
below.

• Fairness

– Fairness issues were considered at the training data, learning algorithm, and
model level but not explicitly explained to data contributors and model users.

– A range of product assurance mechanisms was used, such as:

· Counterfactual analysis to discover potential hidden or proxy variables that
lead to different yields.

· Sensitive-variable-aware data preprocessing including random split crop sep-
aration (wheat vs. barley) and location separation (at paddock and region
level). Each attribute may have associations, thus becoming a proxy variable
regarding sensitive and protected attributes.

– Two team members built fairness-aware models in parallel as a process assur-
ance.

– Used domain attributes that were understandable to farmers (data contributors
and model users) in both training and explanation so farmers can have a higher-
level trust in the model regarding fairness across groups (not just accuracy).

• Privacy and Security

– The personal privacy of individual farmers and privacy/confidential info of farms
were both identified as key requirements.

– Potential misuses and harms of privacy info leakage were identified.
– Both data contributors and model users have high-level trust in the technical
team as an entity.

– Federated learning, including strong privacy guarantees, was used as an archi-
tectural pattern fulfilling data privacy requirements.

– The exchanged model updates were encrypted to improve model security. A
model registry was established locally to maintain the mappings of encrypted
models to the decrypted models.

– The concept of federated learning, privacy guarantee, and security mechanisms
was difficult to explain to farmers, but the high-level trust in the project team
coupled with the notion that their data never left the local server and strong
encryption was used gained adequate trust.
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• Transparency and Explainability

– Transparency and explainability requirements were identified in the project.
– Although the farmers would not be able to evaluate data, code, and models
directly, the project team nevertheless made all artifacts open to stakeholders
(under privacy and confidentiality constraints).

– Code, model, and data provenance were captured in Git and Bitbucket.
– On the data contributor side, a data contributor registry was built to store and
manage the information of the participating farmers and their paddocks that
joined the learning process. Further, a model versioning registry was imple-
mented to keep track of all local model versions of each data contributor and the
corresponding global model. Both of the design mechanisms helped increase
the trust of both model user and learning coordinator on the participating data
contributors.

– On the learning coordinator side, a decentralized aggregator was designed to
replace the central server of the learning coordinator, which could be a possi-
ble single point of failure. This improved the trust of farmers (i.e., both data
contributors and model users) on the learning coordinator.

• Contestability

– Data contributors can always withdraw from the projects with their data deleted.
However, the model trained by their data will not be immediately updated to
remove the data.

– Model users always have the right not to use the prediction or allow the prediction
to be used by others.

• Accountability

– The accountability was largely governed by the legal agreement between data
contributors, model users, and the project team.

– No role-level accountability was established, but the provenance of data, model,
and code allowed accountability to be examined.

5 Discussion

5.1 Interpretation of High-Level Ethical Principles

Mappings of different ethical principles and guidelines have been recently studied
in [4, 5]. Although a global consensus emerges on the core principles (e.g., privacy,
transparency, fairness), there have been debates on the classification and definition
of AI ethical principles. As we are using Australia’s AI ethical principles, we discuss
our interpretation and observations of these principles.
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• Autonomy. Autonomy is not discussed explicitly in the framework. Instead, a
broader principle about human-centered values is given, which covers human
rights, diversity, and the autonomy of individuals. Autonomy refers to the freedom
ofAI systemusers to a rangeof activities, including self-sovereignty/determination,
the establishment of relationships with others, selection of a preferred plat-
form/technology, experimentation, surveillance, and manipulation [4]. This might
conflict with AI systems’ inherent autonomy which refers to independent actions
without a human being. Further, users (i.e., data owners) expect to exert full control
over their data and activities without having to rely on others. To ensure auton-
omy, a distributed ledger technology like blockchain can play a vital role in the
design and implementation of a decentralized AI platform, in which secure and
self-determined interactions between stakeholders are enabled without a central
coordinator.

• Explainability. Explainability is listed together with transparency in Australia’s
AI ethical principles. Transparency refers to disclosure of all related AI artifacts,
such as source code, data, algorithms,models, and documentation. Although trans-
parency enables explainability, explainability is more than helping stakeholders
understand how an AI system works through responsible disclosure. Stakeholders
expect to understand the reasons for AI system behavior and insights about the
causes of decisions. However, it is challenging to present the explanations (e.g.,
representation of data in a network—roles of layers/neurons) to gain the trust of
stakeholders [9, 38] .

• Accountability. Accountability principles are covered by most of the ethical AI
principles and guidelines, including Australia’s AI ethical principles. Ethical AI
is often present together with responsible AI. However, the difference between
responsibility and accountability is rarely discussed. Responsibility refers to the
duty to complete a task throughout the life cycle of an AI system. For example,
a developer may be responsible for implementing an algorithm in an AI project.
Accountability is the duty to be accountable for a task after it is completed, which
happens after a situation occurs. For example, an AI startup company’s CEO may
be accountable for the inaccurate or biased decisions made by their AI system
product and has to take the role to explain how the decision is made. Role-level
accountable entities and humans should be clearly identified inAI projects. Product
features and management processes that ensure provenance and traceability of AI
artifacts and decisions can increase accountability of AI systems.

5.2 Operationalizing AI Ethics

AI ethics can be operationalized in a variety of different ways. There are more
approaches and mechanisms beyond high-level principles and low-level algorithms.

• Requirements. In addition to conventional functional requirements and non-
functional requirements, ethical principles can be defined as a subset of require-
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ments ofAI systems.As discussed in Sect. 3.1, the eight principles can be classified
into three groups: 1) P1 and P2 principles as functional requirements, 2) P3, P4,
and P5 as non-functional requirements (software qualities), and 3) P6, P7, and P8
as metalevel governance-related functional requirements to improve truster’s con-
fidence. However, it is hard to justify whether the P1 and P2 (i.e., human, social,
and environmentalwell-being and human-centered values) are fulfilled adequately.
Risk mitigation mechanismmight be needed to deal with AI autonomy and ensure
the fulfillment of P1 and P2.

• Design. Design patterns/mechanisms can be proposed to address the ethical prin-
ciples. Existing principles intend to protect users and the external world of AI
system users. In distributed learning systems, trust issues also exist in between
participating nodes. For example, in federated learning systems, learning coordi-
nator might become a single point of failure. Thus, all the stakeholders should be
carefully considered in design patterns/mechanisms.

• Operations. Continuous validation and monitoring mechanisms are needed to
check the ethical principles continuously. Engaged stakeholders need to identify
the threshold for the significant impact which triggers the validation mechanisms.

• Governance.

Ethical maturity certification. An AI ethics maturity certification scheme/
system could be developed to assess an organization’s ethical maturity of AI
project management. Based on the review of AI projects, different levels of
ethical maturity certificates could be issued to an organization. The level/type
of certificate could be upgraded later.
Ethics review. Internal and external reviews on ethical impact can be conducted
to address ethical principles. Representatives of stakeholders are expected to join
the reviews.
Project team. When the development team is set up, team members’ diversity
(e.g., background, cultures, and disciplines) should be considered.

6 Summary

In this chapter, we explored the interaction of three issues related to humanity and
AI: hard-to-operationalize ethical AI principles, general notion of trust vs trustwor-
thiness, and product vs process support for trust/trustworthiness. We provided an
integrated view of them in the context of AI ethical principles and responsible AI. It
points to additional mechanisms especially process mechanisms and trust-enhancing
mechanisms for different stakeholders. By using the example of crop yield prediction
involving different types of data and stakeholders, we elicited the missing elements
in operationalizing ethical AI principles and potential solutions. We envision some
future directions in ethical AI such as quantifying trust and its link with trustworthi-
ness and novel process mechanisms for improving trust and trustworthiness.
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AI for Productivity



Machine Learning for Efficient Water
Infrastructure Management

Zhidong Li, Bin Liang, and Yang Wang

1 Introduction

AI has led to significant advances recently. Alpha GO [27], a Google-developed AI
system, has won the board game GO versus the most famous player. It overcomes
highly complicated challenges, including complex actions to take, variations of deci-
sions, and enormous computing capability needed. Not just for games, AI has also
deployed into many industrial areas. As one of the top industrial-collaboration data
science institute, we have deployed many AI-based systems for industries across
multiple sectors. The capability of AI has been approved. For example, it can pro-
vide services for a financial checking system, amaintenance support system for urban
infrastructures, a scheduled optimisation system for transportation, and a customer-
relation system for telecommunication. In this section, machine learning will be our
main focus for productivity.

The machine learning systems are usually targeting two tasks. First, we hope
to use the machine learning system to replace manual work that requires excessive
labours. This type of work needs human to repeat their behaviours or to make deci-
sions continuously for many times. For example, to detect track faults in railway
infrastructures, millions of pictures or long videos are used by human to check. It
takes unacceptable long time for humans to check them one by one. Another type of
work is infeasible for human. For example, water pipes buried underground cannot
be inspected without an acceptable budget. For such work, the machine learning
system can help by creating new functions to make the task feasible, just like from
zero to one.

For both tasks, the machine learning system has the capability to reduce the
cost by boosting productivity. However, the AI researches usually emphasis the
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algorithm and methods and validate them using public data sets. The validations
do not distinguish the importance of practical needs and real impacts such as a
social–economic consequence measurement. We will discuss how machine learning
systems, particularly machine learning models, are used in real projects, where how
it can improve productivity against the manual work, and even machine learning
model themselves. We will also see the productivity in different measurements, such
as the social effects and economic effects.

In this chapter, productivity-boosting scenarios for water network management
will be discussed. As it is shown in Fig. 1, the traditional management of water net-
work is mainly relying on experts. The experts are responsible for interpreting the
observations, either from on-site or from laboratory environments, into the knowl-
edge that will be used for management tasks. Such a strategy is inefficient, and
the modern approaches based on machine learning can improve the efficiency by
automatically discovering the patterns in the data using machine learning models.
However, the model building is still time-consuming, even with machine learning
experts, since the configuration of models is not straightforward. Another improve-
ment for the modelling will be discussed as shown in the last branch (AI-powered
machine learning) of Fig. 1. The improvement is to consider the model configuration
itself as a machine learning task, so it uses a more generalised approach to learn
models with machine learning techniques. This approach further reduces the labour
of machine learning experts to increase productivity.

In Fig. 1, we also list possible tasks inwater networkmanagement, includingwater
supply prediction, demand prediction, network assets failures such as pipe break,

Fig. 1 General strategies to boost the productivity of possible tasks
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water quality prediction, and dosage optimisation. We will focus on the following
two tasks:

• Water pipe failure prediction: Drinking water supply networks are valuable
urban infrastructure assets that are responsible for reliable water resource distri-
butions. However, due to fast-growing demand and ageing assets, water utilities
find it increasingly difficult to efficiently maintain their pipe networks. Pipe fail-
ures, especially the critical water pipe breaks, can cause high economic and social
costs, and hence have become the primary challenge to water utilities. Identifying
key influential factors, e.g. pipes’ physical attributes, environmental features, is
critical for understanding pipe failure behaviours.

• Water quality prediction: Monitoring drinking water quality in the entire water
delivery network is a critical component of overall water supply management.
The water quality can be quantified by a variety of indicators, but mainly the total
chlorine. However, it is extremely difficult to collect sufficient total chlorine data
from the network at customer sites(taps), whichmakes it sparse for comprehensive
modelling.

This chapter will focus on the solutions based on the fastest approach in Fig. 1.
We will discuss the technique branch for deploying an machine learning system. A
common machine learning system can be composed of three steps: factor analysis,
model design, and inference, as we have shown in Fig. 2. Using two piratical cases
in water infrastructure management, we will discuss three aspects of each step:

• First, we will list potential challenges in each step. Two cases will be discussed:
the water pipe failure prediction and water quality prediction.

• Second, we will discuss the solutions to the challenges. The methodologies of the
solutions will be discussed in details; selected outcomes are illustrated based on
the two cases.

• Third, the examples of potential risks of the solutions will also be included. We
will also provide examples of our efforts against the risks.

There will be five sections after the Sect. 1. The two cases are discussed in Sect. 2.
Then for each of the three steps, the challenges are discussed in Sect. 3. In Sect. 4, we
examine the potential solutions to the challenges. These solutions are not only based
on theories, but also the experiences from industrial projects. We further discussed
the risk of deploying these solutions in Sect. 5. The conclusions are summarised in
Sect. 6.

2 Two Case Studies

2.1 Background of Water Pipe Failure Prediction

The water utilities are responsible for providing an adequate and satisfactory supply
of water to meet the demands of the territory and for maintaining a sound water
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supply system. To deliver water to end consumers, water utilities rely on the healthy
condition of water pipes (most of them are buried underground). The network scale
is also large; the decades of urbanisation accumulate the most water pipes in large
cities to thousands of kilometres. The large territories may be maintaining network
over ten thousand kilometres.

Most water pipes were constructed more than 100 years ago. In recent decades,
conditions of more and more pipes are deteriorating, and maintenance is required.
Given the poor condition of the water pipes, proactive maintenance, including
replacement and rehabilitation, is the most effective solution. The proactive mainte-
nance relies on the prediction of failures. Otherwise, the cost and time are extraordi-
narily high. This is an urgent necessity as the water mains will continue to age and
deteriorate.

The proactivemaintenance is based on the predictive prioritisation,which requires
a good understanding of the failures and pipes. The mechanisms of water pipe fail-
ure have been studied for decades, and various physical and mechanical models,
involving pipe wall thickness [8], material deterioration according to environmen-
tal conditions and quality of manufacturing [24], and hydraulic characteristics [20],
have been developed to estimate the remaining pipe life. However, for non-intrusive
technologies, based on condition assessment, the operators can drastically improve
productivity. The water utilities are engaging with machine learning scientists for
consulting water main failure analysis and prediction.

Machine learning techniques have their value in the aforementioned problem.
Generally, there are two types of models for the prediction of water pipe failure:
physical models and statistical models. Physical models [15] are significantly influ-
enced by domain knowledge and usually designed to capture the mechanisms of
failures due to certain causes, e.g. soil corrosion. Once the process is done with a
correctly built physical model, the prediction is accurate. But they have significant
limitations, e.g., budget restriction for experiments, when applying to a large water
mains network with complex factors. In contrast, statistical models usually require
fewer resources and can capture hidden statistical failure patterns caused by different
physical reasons. Hence, they can be applied to large-scale water main networks for
guiding proactive maintenance. The statistical machine learning models are trained
by considering historical failure records, physical characteristics of pipes, and envi-
ronmental factors.

2.2 Background for Water Quality Prediction

Ensuring the continuous supply of high-quality drinking water is a critical require-
ment for water supply networks management. The treatment process involves the
removal of contaminants from raw water by filtering and chemical dosing to pro-
duce water that is pure enough for human consumption without any risk of adverse
health effect. Chlorination is themost widely usedmethod for disinfectingwater sup-
plies [6]. It relies on a balance between the dosing of new chlorine and the amount
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of residual chlorine that remains within the system until the treated water reaches
the next dosing station or its destination. This is because the disinfected water may
be polluted again when the water is being transported for a long time. Hence, given
the chlorine at the outlet of reservoirs and unknown transportation time, accurate
prediction of total chlorine of the customer taps can be significant and crucial to
water supply management. However, it is extremely difficult to collect sufficient
total chlorine data in residents and makes it sparse.

A data-driven solution can enhance productivity by providing total chlorine pre-
dictionwithin thewhole delivery network. Such a system faces a series of challenges.
First, the hydraulic system needs to capture the topology of the delivery network, so
that the water travel time can be estimated using predicted water demand across the
topology. The travel time links the upstream (e.g. reservoir) data to the downstream
(e.g. tap or resident) data. Then, a two-step strategy is required for the determination
of the crucial factors and construction of machine models for total chlorine decay to
predict total chlorine with the travel time. At last, the issue of uncertainties of both
data and the model is a concern. It should be analysed to indicate the confidence of
prediction for better decision making. The proposed models will have capabilities
to effectively predict water supply–demand and capture the variability in data with
sparse samples. As the outcome, the quantification will output distributions, provid-
ing more information for decision making. The approach also provides the insight
into which factors are important in predicting water demand and quality.

3 Productivity Challenges in Machine Learning for Water
Network Management

The productivity challenge of water networkmanagement can be improved by apply-
ing the data-drive methodology. As it is shown in Fig. 2, the key steps of the data-
driven methodology include data analytic for understanding the mechanism; model
design for the task such as regression, classification, and prediction; and model com-
putation to infer the parameters. As it is shown in Fig. 2, data will be input for factor
analysis and used for model. Then, the model will be inferred. The model output will
be used for the task, while the factor analysis outcomes are usually for explanation
and proof of concepts. We will list the challenges of each component.

3.1 Challenge of Data Analytics

To improve the productivity, machine learning is leveraged to find possible corre-
lations between the target (e.g. failure, water quality variation) and available set of
factors. For example, pipe ageing can cause pipe breaks, and temperature can be the
reason of variability of quality. It may not lead to significant amount of work for
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Fig. 2 Standard steps in a data-driven task.

experts when just a few factors take the major response and the response is certain.
However, in reality, these factors are usually complex. Taking water pipe failure as
an example, ageing is not the only factor that causes failures. There are other fac-
tors with unknown impacts. There factors usually include pipe materials, laid year,
construction year, and diameter. All these factors or combinations of these factors
can be part of the reason of failures. The combination of these factors can create at
least hundreds of pipe categories that the their failures are different because of the
joint impact. However, it is not easy for experts to interpret this. For example, it is
uncertain to determine whether pipe with wall thickness of 10mm laid in 1960 (thin
wall but new) is more risky than the pipe with wall thickness of 15mm laid in 1920
(thick but aged). Even with the same category of pipes, the performances are still
different if they are buried in different locations.

Furthermore, using machine learning method, we can observe important corre-
lation patterns that have not be noticed by experts. For example, the material used
in many decades are not as strong as before so those pipes tend to experience more
failures. An example is shown in Fig. 3 where more failures occurred for water pipes
laid between 1950 and 1980, although these pipes are newer than pipes laid between
1920 and 1930. These factors are even unknown to domain experts, not mentioning
the more complex factors or the joint impact from multiple factors.
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Fig. 3 Failure rate (the number of failures normalised by length) in different construction years.
Generally, older pipes are more likely to fail, but the observation shows that pipes laid in 1960 have
higher failure rate than pipes laid in 1920, which can only be discovered from the data

Therefore, our discussion is based on two questions for productivity:

• How can we use data-driven methodology to identify the importance of factors,
for the proof of concept?

• How can we effectively quantify the importance of factors given massive factors?

3.2 Challenges of Designing Machine Learning Models

The main purpose of model design is to build up a system (or equations or optimisa-
tion objectives) to take the observed data in, to map the observations to the targeted
events. Traditionally, the statisticians tried to model the physical mechanism using
mathematical functions, such as stochastic differential equation. Then, necessary
data are applied to the model to obtain the variables. However, in a complex system
where the targeted events are significantly impacted by multiple factors, the physical
modelling is severely restricted.

For data scientists, the industrial problems are usually in their unfamiliar domains.
For example, hydraulic system of supply water is complex. Given nearly half million
water pipes, buried undergrounds, it is impossible for experts to learn the complete
knowledge about how fast the water is travelling inside. Since the travelling time is a
key factor to understand the level of chlorine in the water, the lack of such knowledge
makes the task difficult to estimate the water quality. The unfamiliarity then becomes
obstacle to experts to design the appropriate model on data for the goal.
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To improve the productivity, we will focus on the challenge of how the data
scientist or machine learning experts can model data for solution, given the limita-
tion of the domain knowledge. This also provides productivity boost for industrial
users, without knowing how to set up physical systems, such as using experimental
environments for simulation.

3.3 Challenges of Learning Model Variables

After models are designed, the major challenge is how to obtain the latent variables
in models. The process is referred as learning/training/calibration/inference. There
are many discussions on the process. The major solution is to take the process as
an optimisation problem, as learning is to determine the variables by minimising
a loss function or by maximising a likelihood function. The techniques are based
on derivative, sampling, variational distribution, etc. Most of the models, if being
applied from an on-shelf package, include the inference in the implementation.

However, the inference still requires inputs. This inputs are referred as model
parameters (or hyperparameters). The parameters are usually manually set to control
what and how the models should learn. The learning parameters configuration is also
time-consuming. For example, the Bayesian model requires prior parameters, even
the sophistic implementation [23] of random forest model requires more than 10
parameters to work. In the traditional practice, these parameters are configured by
data scientists with solid background, but just to shrink a small part of the parameter
space of a trial-and-error method. Such method is time-consuming, and there is a
gap between data scientists who configure the model and domain experts who have
the knowledge to the problem.

4 Productivity Boost Methodologies

4.1 Efficient Factor Analysis

Machine learning-based analysis can be categorised into two classes, and each one
considers the correlation from a different end. One end is based on the assumption
from expert’s knowledge. The assumption provided by experts will be testified by
data scientists. We refer this method as top-down factor analysis. The other end is the
bottom-up factor analysis, starting from the data to the knowledge. In a bottom-up
approach, using the data, we can obtain the correlation between the collected data
features and the targeted label. This approach can be used to evaluate factors in a
more automatic way. We will discuss both approaches when they are employed for
productivity boost.
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4.1.1 Top-Down Factor Analysis

The top-down analysis is based on concepts given by experts when the scientific
analysis of concepts is complex. Here, we will study a top-down factor analysis case
using water quality. The study is based on the knowledge that water temperature in
reservoirs can affect the water quality which is represented by the chlorine level (Cl)
of water users’ taps.

Estimating the correlation is not trivial. Traditional approaches, such as correlation
coefficient, are usually used to obtain simple correlations.However, complexity is one
of the main challenges here. First, without being a simple correlation, such as linear
or quadratic, the relation between temperature and Cl can be even non-monotonic.
Second, the temperature does not stand out as the unique driving factor, and there
are many other factors, such as travel time.

This is the typical case for top-down factor analysis. The proposed solution is
using machine learning to surrogate the physical model by skipping the physical
relationship between all factors and Cl. For example, a knowledge-free model, like
the random forest [3] or SVR [5], can be used here. If we denote the model as f , we
have f : D → Y . Here D = X, Tp is the generalised representation for input factors,
including temperature Tp and other factors X . Y is the generalised representation for
sample labels. The label is Cl in our case, given Y ∈ R

+.
The machine learning model creates an extremely flexible possibility to be used

for approximating complex mechanism. Therefore, it provides the capability of sim-
ulating the mechanism in selected segments of D. It is only for the chosen segments
because of the data availability. For example, in Fig. 6b and c, we show such situ-
ation that the regression on segments around the observed data points is closer to
the ground truth. By this approach, we will alter the temperature as input to see the
variation of Cl.

The output Cl is then compared with ground truth. We listed examples in Fig. 4.
These results indicate the complex correlation between temperature and Cl. For four
regions, the temperature varies in each region, and the prediction is obtained for each
tap under monitoring. The predicted Cl values are then compared with the median
prediction for the normalisation purpose. Then, the distribution of the difference is
plotted as box plots. We can see the complex correlation, and the correlations are
different in various regions.

4.1.2 Bottom-Up Factor Analysis

Weshowanother example for bottom-up factor analysis, on identifying the systematic
characteristics that may affect Cl at downstream. The study is based on a dataset with
multiple factors. All these factors are suggested by experts that they may be useful,
but there is no sufficient information about which ones are the dominant factors. The
integrated dataset has assembled the factors from both reservoirs and tap users, along
with level sensors and water quality analysers at the reservoirs. The linking between
the reservoirs and tap users is approximated by travel time estimation, using network
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(a) Region 1 (b) Region 2

(c) Region 3 (d) Region 4

Fig. 4 Variation of predicted Cl (normalised by median) with changing temperatures

topology andwater flow velocity. The dataset enables us to capture: (1) reservoir total
chlorine (mg/L), (2) water temperature (◦C), (3) total chlorine to ammonia ratio, (4)
water pH balance, (5) water turbidity, (6) ammonia (mg/L), and (7) reservoir level
in percentage.

It is difficult to determine the importance of factors for the quality among their
complicated joint influence. This is even hard for domain experts. A nonparametric
fashion analysis is used to extract the importance as the bottom-up manner, with-
out imposing any assumptions on the relationship between the factors and Cl. The
purpose is to rank the correlations, without making upfront assumptions on what
chemical or physical processes are at work.

The analysis uses amachine learningmodel based on random forest algorithm [3].
A recursive learning/predicting is performed where, starting with all factors, each
factor is considered in turn and the factor that produces the smallest reduction in
predictive error is removed. Here, each time we train and test the data with selected
factorswith cross-validation to obtain the error. This recursive elimination is repeated
until all features have been removed. After each elimination, the data will be reused
to train and test for updated error. This enables the most critical predictive factors
to be identified. The rank of the predictive factors indicates the importance of the
factors.
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Fig. 5 Factor importance for water quality

The results are shown in Fig. 5, where the factors are ranked according to an incre-
mental order. This means the performance shown for each factors is the combination
of all factors to the left side of the one shown. The baseline error is obtained using the
historical mean Cl as prediction, representing the removal of all factors, so it causes
the largest error. The result shows that reservoir total chlorine and temperature at
reservoirs capture over 90% of the variability in the downstream Cl (the error reduc-
tion for more factors is much less). Only these two factors can reduce about 50%
of the total error. Other factors have a much smaller effect, while turbidity provides
virtually no additional information.

4.2 Machine Learning Models for Productivity

Data modelling is the core part of tasks such as prediction, regress, classification,
and forecast. There are two options: the parametric model and the nonparametric
model. We will introduce and compare both options and discuss a case of applying
nonparametric models to water pipe failure prediction.

4.2.1 Parametric Model Versus Nonparametric Models

Parametric models represent all information within parameters. The assumption is
that the data distribution can be defied in terms of a finite set of parameters. By
choosing a functional formwith the fixed set of parameters, these methods are highly
constrained to the specified form. We are using a popular parametric model, the
Weibull process [28], in water pipe failure prediction as an example. Suppose we
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hope to predict whether the event, such as failures, would happen to pipes in a
particular age. Using the Weibull process, when we consider the age t as input, we
aim to learn an intensity λ by:

λ(t) = f (t) = atb (1)

which is in the shape of a power curve. The assumption is based on the truth that the
frequency of events increase with time/age. Then, λ is different for all t , defined as
λ(t), and to be obtained from f (t) based on the average of λ.

Algorithms that do not make strong assumptions about the form of the map-
ping function are called nonparametric machine learning algorithms. By not making
assumptions, they are free to learn any functional form from the training data. The
nonparametric models, such as random forest [3] and deep learning models [12],
have been applied in various fields and used to solve many challenging machine
learning tasks. In many scenarios, these models empirically outperform other tra-
ditional models with manual settings. The name of nonparametric models does not
mean that no parameters are needed. On the contrary, it requires enormous parame-
ters to construct. For the same problem, the nonparametric models do not assume any
function like (1). The nonparametric model assumes a much more flexible function
that the degree of freedom increases with data volume. Suppose we denote the model
structure as A , then a nonparametric has the ability to determine it by A ∼ g(D),
where D is the dataset. It is noticeable that the degree of freedom is high, so that the
number of parameters is also larger than the parametric model. They must be fit by
a growing number of data to obtain λ(t). For models such as neural network [1], or
random forest [3], the parameter size is usually fixed as a large number, so that it can
model the flexibility of large data.

The differences between parametric model and nonparametric models are shown
in Fig. 6. In Fig. 6(a), we show how the data points are fit by a parametric model. In
the figure, we generate 5 points as D, and then, we generate each of corresponding
Y with a deterministic function(a quadratic function), plus a random effect(Gaussian
noise). Here, two parametric models, linear model and quadratic model, are applied
to fit these data. We can see the fit functions are close to the points. However, the
assumption of the linear model is wrong, so its fitting is less accurate. We then use
two nonparametric models (decision tree and random forest regression) to fit those
points. We can see that the results in Fig. 6(c) are less accurate. This comparison
shows that the parametric model may present a more confident prediction when data
are scarce, but the assumption of the model structure must be correct.

Another comparison is conducted between Fig. 6a, b. Here, we show that the data
have been approximately fit in Fig. 6b using nonparametric methods (decision tree
and random forest models). So its advantage here is that we do not acquire any
domain knowledge to design such a model. Here, the noise is larger at the end of the
fitted curve than the increase of uncertainty being observed. As a result, the model
not only fits the data but also retains the noise when it is large.

In Fig. 6d, we employ the Bayesian nonparametric model which is the Gaussian
process. The model can adjust its flexibility with data as well. The comparison
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Fig. 6 Comparison between parametric model and nonparametric models. a is for parametric
model. b-d are for nonparametric models

between Fig. 6b, d is that the noise has been almost cancelled out. The fitted curve
(average value from the Gaussian process) is smooth and close to the quadratic
function. Some of the significant noise has less impact on the fit curve. The fitting
also shows the uncertainty area that is enlarged to acknowledgemissing observations,
such as the right part of the curve. In addition, less data are required by the models
in Fig. 6d than Fig. 6b.

4.2.2 Modelling Water Pipe Failures with Bayesian Nonparametric
Model

The Bayesian nonparametric approach can be used for water pipe failure prediction.
The model to be discussed here is the hierarchical beta process model. The failure
data are sparse, so Bayesian prior is required for the model. It makes the model
invulnerable to wrong model structure assumptions and adaptable to various failure
patterns, thereby leading to more accurate predictions.

The exampledmodel is developed in [19] . First, themodel is based on the assump-
tion that the failures are random events, complying with a Bernoulli distribution with
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parameter pk for a category of pipe k. However, pk will be unstable given the spare
data. Therefore, a Bayesian prior will be applied to support pk from drifting too
far away from the true value. For a timely changing pk , we use the beta process as
the prior. a beta process, B ∼ BP(c, B0), is a positive random measure on a space
Ω , where c, the concentration is a positive value, and B0, the base measure, is a
fixed measure on Ω . If B0 is discrete, B0 = ∑

k qkδωk , then B has atoms at the same
locations B = ∑

k pkδωk , where pk ∼ Beta(cqk, c(1 − qk)), and each qk ∈ [0, 1].
Then, an observation data X could be modelled by a Bernoulli process with the mea-
sure B, X ∼ BeP(B), where X = ∑

k zkδωk , and each zk is a Bernoulli variable,
zk ∼ Ber(pk).

Furthermore, when there exists a set of categories, and all data belong to one of
them, the hierarchical beta process could be used to model the data. Within each
category, the atoms and the associated atom usage are modelled by a beta process.
Meanwhile, a beta process prior is shared by all the categories. More details could
be found in [29]. For a water distribution system, denote πki , as the probability of
failure for a pipe in the kth group, and the observation time interval (year) j . The
hierarchical construction for the Bayesian nonparametric modelling can be written
into:

qk ∼ Beta(c0q0, c0(1 − q0)), where k = 1, 2, ..., K ,

πk,i ∼ Beta(ckqk, ck(1 − qk)), where i = 1, ..., nk,
zk,i, j ∼ Ber(πk,i )

(2)

Here, qk and ck are the mean and concentration parameters for the kth group,
q0 and c0 are hyperparameters for the hierarchical beta process, zk,i = {zk,i, j | j =
1, ...,mk,i } is the history of pipe failure across mk,i years, zk,i, j = 1 means the pipe
failed in j th year, otherwise zk,i, j = 0.

For the hierarchical beta process, a set of {qk} are used to describe failure rates of
different groups of pipes. For each pipe group, with fixed concentration parameter
ck , our goal is to find πk,i for pipe i in group k. This can be estimated from the
observation, so we have:

p(πk,i |zk,1:nk ) =
∫

p(qk, πk,i |zk,1:nk )dqk =
∫

p(πk,i |qk, zk,i )p(qk |zk,1:nk )dqk (3)

Each term in Eq. (3) can be represented by:

p(πk,i |qk, zk,i ) ∼ Beta

⎛

⎝ckqk +
∑

j

zk,i, j , ck(1 − qk) + mk,i −
∑

j

zk,i, j

⎞

⎠ , (4)

and
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p(qk |zk,1:nk )(qk , zk,1:nk ) = p(qk)
∏

i

[∫

p(πk,i |qk)p(zk,i |πk,i )dπk,i

]

∝ qc0q0−1
k (1 − qk)

c0(1−q0)−1
∏

i

Γ (ckqk + ∑
j zk,i, j )Γ (ck(1 − qk) + mk,i − ∑

j zk,i, j )

Γ (ckqk)Γ (ck(1 − qk))

(5)

In the model, we can see that the group failure rate is controlled by hierarchical
level parameters c0 and q0. These two parameters are used to keep the learning
stable, especially when data are sparse. This can help experts to understand the
group performance without looking into all factors of an individual pipe.

4.3 Automatic Learning for Machine Learning

As we mentioned in Sect. 3.3, the hyperparameter setting is a key challenge. Every
machine learning model has hyperparameters, and setting the such parameters is not
a trivial task given that the enormous parameters to test without related knowledge.

To reduce these onerous development costs, a novel idea of automating the entire
pipeline of machine learning (ML) has emerged, i.e. automated machine learning
(AutoML). AutoML aims to automate any part of the process of building a machine
learning model from raw data. The most basic task AutoML is to automatically set
hyperparameters to optimise performance. There are various definitions of AutoML.
According to [31], AutoML is designed to reduce the demand for data scientists
and enable domain experts to automatically build ML applications without much
requirement for statistical and ML knowledge. In [30], AutoML is defined as a
combination of automation andML. In aword, AutoML can be understood to involve
the automated construction of an ML pipeline on the limited computational budget.
With the exponential growth of computing power, AutoML has become a hot topic
in both industry and academia. A complete AutoML system can make a dynamic
combination of various techniques to form an easy-to-use end-to-end ML pipeline
system (as shown in Fig. 1). The success of AutoML crucially relies on the following
tasks: pre-process the data, select appropriate features, select an appropriate model
family, optimise model hyperparameters, post-process machine learning models,
and critically analyse the results obtained. Many machine learning companies have
created and publicly shared such systems (e.g. Cloud AutoML by Google) to help
people with little or no ML knowledge to build high-quality custom models.

Due to the immense potential of AutoML, many tools have been developed in this
area. AutoML tools differ in their backends they rely on (e.g. WEKA or scikit-
learn [23]), the combined algorithm selection, and hyperparameter optimisation
(CASH) methods (e.g. Bayesian optimisation or genetic programming), the library
of algorithms they select from, or whether they performmodel ensembling (e.g. bag-
ging or boosting). Table1 shows a comparison of the popular AutoML tools. The first
prominent AutoML tool is Auto-WEKA [16], which uses Bayesian optimisation to
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Table 1 Comparison of popular AutoML tools

Tool Back-end CASH strategy Model ensembling

Auto-WEKA WEKA Bayesian optimisation Bagging, boosting,
stacking, voting

Auto-sklearn Scikit-learn BayesOpt +
Meta-learn

Ensemble selection

TPOT Scikit-learn Genetic programming Stacking

H2O AutoML H2O Random search Stacking + bagging

AutoGluon Scikit-learn Fixed defaults Multi-layer stacking +
repeated bagging

select and tune the algorithms in amachine learning pipeline based onWEKA. Auto-
sklearn [9] does the same task using scikit-learn and addsmeta learning towarm-start
the search with the best pipelines on similar datasets, as well as ensemble construc-
tion. TPOT [21] optimises scikit-learn pipelines via genetic programming, starting
with simple ones and evolving them over generations. H2O AutoML [22] optimises
H2O components by stacking the best solutions found by a random search. Finally,
AutoGluon [7] optimises scikit-learn models by multi-layer stacking and repeated
bagging.

From the perspective of performance, the latest research [11] claims that there
is no AutoML tool which consistently outperforms all the others. The researchers
compared the popular AutoML systems across 39 datasets and cannot draw clear
conclusions about which AutoML tool is suitable for what kind of datasets.

From the perspective of flexibility and implementation, we choose TPOT to
implement AutoML framework for water pipe failure prediction. In order to inves-
tigate potential effects of AutoML in water industry, we have compared the pipe
failure prediction results from TPOT [18] and a standard machine learning model
(XGBoost [4]). The pipeline of the experiment is illustrated in Fig. 7.

Fig. 7 Pipeline of comparison of AutoML and classic machine learning model
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The boosting technique used in XGBoost consists in fitting sequentially multiple
tree-based base learners in a very adaptive way: each model in the sequence is fitted
giving more importance to observations in the high-dimensional features that were
badly handled by the previousmodels in the sequence. Finally, the ensemblemodel is
built based on a weighted sum of base learners. The model relies on hyperparameters
tuning, so finding the right combination of values by cross-validation is critical to
good prediction. However, a successful machine learning model is also dependent
on feature engineering and model selection. In an effort to make machine learning
more accessible, to reduce the human expertise required, and to improve model
performance, AutoML emerged as an exciting new area of active research. With the
water domain experience (the knowledge on availability of data streams, quality of
data, resolution and type of data, physical models and expectations on outcomes,
etc.), an AutoML can be designed and implemented. This will enable the automation
on algorithm selection. TPOT is selected to implement AutoML pipeline, aiming
to automate the most tedious part of machine learning by intelligently exploring
thousands of possible pipelines to find the best one for the training set. Once TPOT
is finished searching, it provides the best pipeline in addition to prediction results.

The training set used in the experiment includes 160,000 samples which cover 20
years of failure records. Two years (2018 and 2019) are selected for the pipe failure
prediction. The prediction results are validatedwith actual ground truth data by calcu-
lating the percentage of detected failures with respect to the percentage of prioritised
pipes (when pipes are ranked in descending order of the failure likelihoods). The
failure detection rates are calculated when top 5, 10, 15, and 20% prioritised pipes
are selected based on their predicted failure probabilities. The result of performance
comparison is shown in Fig. 8. It can be seen that the overall performance of TPOT is
slightly better than XGBoost. This is because TPOT not only optimises models, but
also feature selectors and transformation operators. Compared with cross-validation
used inXGBoost parameters tuning, AutoML requires less human efforts and ismore
efficient than classic machine learning model in terms of model selection and param-
eters tuning. In the experiment, each pipeline in AutoML needs 179s, while each
pipeline in cross-validation for XGBoost needs 280s. This is because the pipelines in
TPOT are optimised with genetic algorithm instead of iterations in cross-validation.

For the optimisation in TPOT, 32 operators are used including 13 ML algorithms
(e.g. Gaussian NB, decision tree, random forest), 14 feature transformation operators
(e.g.MinMax scaler, normaliser, PCA), and 5 feature selectors (e.g. Select Percentile,
Variance Threshold, RFE). After 3h training for each experiment on test year of 2018
and 2019, the optimal pipelines are obtained:

• 2018: MaxAbsScaler + XGBClassifier
• 2019: MinMaxScaler + XGBClassifier
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(a) Failure prediction evaluation in 2018 (b) Failure prediction evaluation in 2019

Fig. 8 Performance comparison of AutoML and standard machine learning model

5 Risks of Machine Learning Solution

The machine learning solution can drastically boost the productivity. However, they
are not free lunch when applying them into the water network management. We list
potential risks when deploying the solutions. They include:

• The factor analysis is correlation based rather than causality based, which may
hinder the generalisation of analysis. The observation datamay be imperfect which
could also create issues.

• The designed model can provide prediction; however, the prediction is usually an
individual value so it may be limited for delivering enough information. The value
is also not 100% guaranteed to be correct. A certainty indicator will be useful for
using the prediction.

• AutoML can boost the productivity significantly; however, the results are unstable,
and it may create over confidence on prediction while the knowledge is ignored.

5.1 Risk of Factor Analytics

The purpose of factor analysis is to prove the concepts. However, there are still risks
for the data-based evidence.

5.1.1 Correlation

The significant risk of factor analysis is essential to distinguish causality and corre-
lation. The causality means the cause and effects and is used for the factor or event,
which indeed contributes to the occurrence of the targeted label, while the correlation
can only indicate the co-occurrence of them. The analysed factors with significant
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correlation may or may not be the cause of the target. The causality analysis is an
extension of the factor analysis we have introduced. It can also improve productivity
with more certainty.

5.1.2 Imperfect Data

The data used for analysis could be imperfect. In water pipe prediction, the critical
failures are rare. Furthermore, the observation is not for the whole life of pipes, as
the failures of new pipes are rare. For example, failure rate is defined as the number
of failures per year of a 100m pipe. With the definition, assuming that a 100m pipe
with 2 historical failures in 1year, its failure rate is 2. However, if we consider a
Poisson distribution, for a pipe with failure rate of 2, it has 13.5% probability that
no failures can be observed, so the failure rate learned using this data is wrong. This
will become an imperfect data issue when the failure rate is low.

An example is shown in Fig. 9. We compare the bias of samples using Poisson
distribution. Different true failure rates are set as the parameters of Poisson distri-
bution. For each failure rate, a number of samples, 10 or 100, are sampled from the
distribution. The bias is calculated using the difference between the empirical mean
and the true failure rate, and then normalised by the true failure rate. The trend of
the results show that when failure rate is low, the bias can be higher. The bias also
depends on the number of samples, where the imperial mean could be two times
more than the true failure rate.

Fig. 9 Sample bias and
failure rate
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5.2 Model Uncertainty

One of the risks of designing machine leaning models is the uncertainty of the
prediction. The source of uncertainty can be different, such as incompleteness of data
and model setup. Uncertainty is a critical part which is usually required in decision
making. Although the current machine learning models can be used to obtain the
most possible predictions with surprisingly high accuracy [17], the model is yet to
be 100% trusted, especially when the detection can easily be changed with minor
modification on the data and model [13]. For deterministic models, uncertainty is not
straightforward tomodel. For example, Yarin et al. [10] simulated uncertainty of deep
neural networks by Gaussian process [2]. However, the uncertainties come from both
the nature of data and the prediction model. Here, we will show two examples for
dealing with the uncertainty from data (a.k.a. Aleatory uncertainty [14]) and model
(a.k.a. Epistemic uncertainty) [14] respectively, using the water demand estimation
case.

5.2.1 Modelling Epistemic Uncertainty

In the hydraulic model, to estimate the water travel duration τ from location u to
location s, a model is created.

to estimate the volume Vu,s from within the time τ until ts . The model is:

Vu,s =
ts∫

ts−τ

f s(t)dt (6)

where ts is a given end time to be predicted for s, and Vu,s is the network volume
that can be obtained from the topology of water pipe connection, diameter size,
and length. Here, f s(t) is the instantaneous flow at time t . However, it can only be
sampled as the discrete observations in reality, our example is based on the flow data
in every 15min. Here, τ can be obtained by simple maths.

Here, the model ignores the daily change of demand, which creates uncertainty in
modelling. We then construct a Bayesian linear model for its simplicity and ability to
describe both the trend and epistemic uncertainty with a normal distribution N (·).
In the model, we denote the observed features at t in day n as xn,t ∈ R

d . Therefore,
the model can be written as

fn(t) = xTn,tw + σtη, η ∼ N (0, 1) (7)

where T denotes the transpose operator, w ∈ R
d and σt are the model parameters to

be learned. f sn (t) is used for customer connection s on day n. For the inference, the
following posterior can be used:
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P(w, σh=1...96|f,X,Θ) ∝ ∏
n≤N

∏96
h=1 N ( fn(h); xTn,hw, σh)

N (w;Θ1)G (σh |Θ2)
(8)

where X = {xn,h} denotes the set of observed features, and f = { fn(h)|n ≤ N , h =
1..96} denotes the water flow at the hth 15min on the nth day. This can be used
to predict the flow for each 15min in the next 24h. During the training stage, his-
torical records of N = 2500 days are used. In order to simplify the inference, two
distributions (normal distribution and inverse gamma distribution) are used as they
are conjugated priors. Θ1 and Θ2 are hyperparameters of the normal distribution
N (·) (multivariate normal with diagonal covariance matrix) and the inverse gamma
distribution (G (·)), respectively. The implementation is based on sklearn-bayes [26]
where a variational inference method is proposed.

5.2.2 Modelling Aleatory Uncertainty

The water consumption pattern varies for different hours, days, months, and years
and also varies with different locations. For example, demand is high at weekends
and hot months and is heavily dependent on the weather for gardening and lawn
irrigation. Figure10 depicts the observed daily water consumption pattern of one
customer connection over three years. The blue line is median value, and shading
areas are for 75th, 90th, and 99th percentile of the historical data. It can be seen that
the variability of water consumed from time to time.

In the previous model, the explicit observation f (t) is only for the flow of the
whole residential zone, and each location in the zone is to bemodelled independently.
For individual location, the data is recorded for the total water usage in amonth based
on the bills. Therefore, it is intuitive to separate the flow for each location, which
brings the issue of data uncertainty given that the individual usage is incomplete.
Given a month m∗ in the past, we can model the water flow to s on day n by

Fig. 10 Pattern and uncertainty of daily water consumption by one customer connection over three
years.
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f sn = [r s(m∗) fn(h)], (9)

where r s(m) is the proportion of the usage by s to the total usage in the zone. For
any month m, the uncertainty of the separation is denoted as:

rs(t) = rs(m) = μs + ηd

2
, ηd ∼ D(α). (10)

Here, D is the Dirichlet distribution. α is the parameter of Dirichlet distribution.
For the Dirichlet distribution, the summation of each element in a sampled vector ηd
is always 1. Therefore, we also need to set

∑
s μs to 1. Then, the water flow in s can

be obtained by

f s(t) = (
μs + ηd

2
) f (t) (11)

5.3 Risk of AutoML

AutoML brings nearly grid search for the optimised parameters. It seems that the
results given is flawless. However, the risk of using AutoML cannot be ignored. The
risk of AutoML can be easily found with a quick search, and here, we will focus on
the risks in our scenario.

5.3.1 Lack of Stability

Due to the randomness in the optimisation procedure, different optimal pipelinesmay
be obtained when AutoML is conducted multiple times. In order to adress this issue,
AutoML needs a long time (hours to days) to allow the optimisation to thoroughly
search the pipeline space. However, the optimisation procedure is still more effective
than human efforts in parameters tuning in standard ML algorithms.

5.3.2 Over Confidence

The model learned indicates the optimal hyperparameter used for the current model
setting. Usually, we can see high training accuracy, and even the model is validated
on additional dataset. However, the prediction task for water industry management
does not always hold the assumption that the prediction function is always the same.
For example, the failure pattern or the factor impact can change when pipes are
getting older. Then, the best prediction does not last.

On the other hand, users may have high confidence over the AutoML model, and
then decisions are made based on the model. However, such high confidence from
accuracy cannot be guaranteed to generalise to new data, especially factors like time
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can change to prediction. The problem of such false confidence can cause the worst
consequence that nothing to be prepared for the wrong decision.

Themodel explanation is critical for curing this issue. The aim of explanation is to
help users understand the model mechanism. The most explanation take the machine
learning experts as the audience, by showing a simpliefd model that can represent the
learned model, or visualise the learned representatoin level in the model. Another
type of exaplanation is factor based, which show the audience the importance of
factors.

An important and well-accepted algorithm is LIME [25] (Local Interpretable
Model-Agnostic Explanations). LIME generates the prediction on local neighbour-
hood of each data sample under investigation. Then, a simplified model (e.g. linear
regression) is used to fit the local observation. The features weights are then obtained
from the simplified mode. As a result, LIME can give each data a list of weights of
factors to explain how the model is built.

6 Conclusion

This chapter has presented practical cases to illustrate how machine learning can be
leveraged for improving the productivity, using the data-driven water main failure
prediction andwater quality prediction as examples. Thewater pipe failure problem is
to predict the failure rate of water pipes buried underground, using the data including
pipe properties, surrounding environment, and historical failures. The water quality
prediction problem is to estimate the water quality, mainly the total chlorine level
in customers’ taps, based on the observation of chemical residuals in reservoir and
temperature.

The discussion is based on threemain steps in a standardmachine learning system.
The three steps include factor analysis, model design, and model inference. Here,
model design and model learning must be used together for the prediction task,
while the factor analysis can help users to understand the importance of factors. The
automatic factor analysis and modelling can increase the level of productivity by
replacing the manual work.

Furthermore, we have shown the challenges of all steps. In the challenges, the
factor analysis must provide an automatic manner to extract the correlations among
a large number of factors. For modelling, it is difficult to use physical knowledge
when the situation is complex. Then, learning the machine learning model itself is
also a challenge that hyperparameter setting requires resources to be feasible.

We discussed corresponding solutions to all challenges, and there are many other
alternatives.Machine learningmodels are used for analysis to understand the correla-
tions, and then, we discussed the difference between parametric model with nonpara-
metric models. The studies on pipe failure prediction using Bayesian nonparametric
models are illustrated. Then, we show examples using AutoMl to recursively learn
models with different hyperparameter settings.
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We also discussed potential risks when using these methods. The correlation is
not the cause or effect so it is concerning when the analysis is conducted. In addition,
imperfect data can be an issue, but it will be less problematic with substantial data.
The uncertainty of data and model are also potential risks if they are ignored. At last,
using AutoML can cause over confidence for users.

Because of the limitation of pages and our knowledge, this chapter cannot list
all productivity work using AI. The future work on productivity enhancement will
still be the aggregated effects from data, modelling, and inference. With the trend of
increasing computational power, themachine learning algorithmswill be applied into
more industrial projects, further improving the productivity, but facingmore practical
issues. The applicablemachine learningwill then be the dominated research direction
in AI.
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20. Misiūnas, D.: Failure Monitoring and Asset Condition Asssessment in Water Supply Systems.
Vilniaus Gedimino technikos universitetas (2008)

21. Olson, R.S.,Moore, J.H.: Tpot: A tree-based pipeline optimization tool for automatingmachine
learning. In: Workshop on automatic machine learning, pp. 66–74. PMLR (2016)

22. Pandey, P.: A deep dive into h2o’s automl. Tech. rep., Technical report, 2019. http://www.h2o.
ai/blog/a-deep-dive-into-h2os-automl (2019)

23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

24. Rajani, B., Kleiner, Y.: Comprehensive review of structural deterioration of water mains: phys-
ically based models. Urban water 3(3), 151–164 (2001)

25. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions
of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp. 1135–1144 (2016)

26. Shaumyan, A.: Python package for bayesian machine learning with scikit-learn api (2017)
27. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,

Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge.
nature 550(7676), 354–359 (2017)

28. Soland, R.M.: Bayesian analysis of the weibull process with unknown scale and shape param-
eters. IEEE Transactions on Reliability 18(4), 181–184 (1969)

29. Thibaux, R., Jordan, M.I.: Hierarchical beta processes and the indian buffet process. In: Inter-
national conference on artificial intelligence and statistics, pp. 564–571 (2007)

30. Yao, Q., Wang, M., Chen, Y., Dai, W., Yi-Qi, H., Yu-Feng, L., Wei-Wei, T., Qiang, Y., Yang,
Y.: Taking human out of learning applications: A survey on automated machine learning. arXiv
preprint arXiv:1810.13306 (2018)

31. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frameworks.
arXiv preprint arXiv:1904.12054 (2019)

http://www.h2o.ai/blog/a-deep-dive-into-h2os-automl
http://www.h2o.ai/blog/a-deep-dive-into-h2os-automl
http://arxiv.org/abs/1810.13306
http://arxiv.org/abs/1904.12054


AI for Real-Time Bus Travel Time
Prediction in Traffic Congestion
Management

Yuming Ou

1 Introduction

1.1 Urbanization and Traffic Congestion

According to a report [37] byUnited Nations, in 1990 there were 2.3 billion people—
43% of the world’s population—living in urban area. In 2018, the urban population
has increased to 4.2 billion, which was 55% of the world’s population. This urbaniza-
tion trend is expected to continue. In 2050, the global urban population is projected
to 6.7 billion. In other words, in mid-century, about 68% of the world’s population
will be living in urban area. The rapid urbanization brings opportunities as well as
challenges to us. If managing it well by improving productivity and allowing inno-
vation, we can benefit from the urbanization and enjoy the sustainable growth as
more than 80% of global GDP is generated in cities. However, the urbanization also
imposes the challenges to meet the accelerated demands such as affordable housing,
more jobs and efficient transport systems.

Transport is vital to urban development. Transport systems provide essential
mobility for citizens to access to jobs, education, housing, services and recreational
facilities. Transport systems also move goods in the cities and significantly con-
tribute to the economic growth. Urban growth and transport are strongly related to
each other. Transport has a big influence on urban development. Efficient transport
systems can attract more people and boost the urbanization. On the other hand, pop-
ulation growth can cause an increase in travel demand and thereby an increase in the
need for transport infrastructure.

With the rapid urbanization trend, one critical problem in transport systems is
traffic congestion. Traffic congestion has significantly negative impact on economy.
It imposes additional costs to the communities and businesses by longer and less
predictable travel times, reduces economic opportunities and lowers quality of life.
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It is shown that traffic congestion has been increasing over the world in the past
decades. Effectively and efficiently managing traffic congestion is a pressing need
for many cities.

1.2 Significance of Bus Travel Time Prediction

In the modern cities, public transport systems play the key role of moving people,
increasing business productivity and improving air quality. It is the most popular
transport means for commuters who regularly travel to work in the rush hour. Public
transport can help riders avoid the stress that results from the daily driving in highly
congested areas. Conveying more people in much less space than individual cars,
public transport also helps to lower traffic congestion and reduce harmful air emis-
sion. Public transport provides an economical and environmentally friendly way of
travel in cities.

However, public transport is also impacted by the congestion and suffering from
traffic delay. In order to enhance the satisfaction of transit users and attract more
people to use public transport, it is significant to improve public transport services, for
example, by reducing delays and timely updating passengers with useful information
when delays happen.

Timely and accurate bus travel time prediction is important to the public trans-
port operations. It helps the transit operators to plan effective and robust schedules
resulting in less congestion and delay. Early knowing the delay can enable transit
operators to promptly respond and take action to the unexpected events. For the tran-
sit users, this type of information is also of importance. By keeping the passengers
well-informed, the impact of delay and the consequent anxieties are largely relieved.
The travellers can optimize their travel plans, mitigate traffic delay, and avoid traffic
congestion as much as possible based on the up-to-date information. Therefore, the
overall quality of transit services can be improved by providing such information to
the transit users.

1.3 Research Problem

The research problem of this study is to predict bus travel time in real time. Bus
travel time is the time for a bus to travel from one place to another place, which
usually means bus stops. Technically, travel time, arrival time and delay have the
same meaning in the context of public transport as any of them can be easily inferred
by others. In this chapter, we use these three terms, and they are interchangeable if
not specified.

Bus travel time prediction has always been an active research topic over the past
decades due to its importance to our real-life applications. With the advance of
technologies, the methods for bus travel time prediction are progressing. Nowadays,
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automatic vehicle location (AVL) systems have been widely adopted by many transit
agencies, which make use of the Global Positioning System (GPS) automatically
determining and transmitting the geographic location of a vehicle in a real-time
fashion. This technology advance provides the transit agencies with an effective way
to track their transit vehicles. Thanks for the AVL systems, a wealth of real-time
information about the movements of vehicles is available and can be used for travel
time prediction.

Artificial intelligence (AI) particularlymachine learning technologies can provide
solutions to this problem. Utilizing machine learning technologies, we can build
prediction models on the historical vehicle movement data collected by the AVL
systems and then make predictions by feeding the latest data into the models.

In this chapter, we propose an AI-based approach to address the research problem.
The proposed approach is an end-to-end solution including real-time data retrieving
and parsing, GPS data map matching and travel time prediction. Our approach can
be used in the systems that provide real-time bus arrival time and delay information.

1.4 Research Challenges

Accurately predicting bus travel time in real time is a very challenging task. Firstly,
as the nature of transport systems, there are so many stochastic variables that can
affect the travel time. For instance, travel speed fluctuates over time due to the ever
change of traffic conditions. A broken vehicle or a major car incident can block a
road and cause the congestion on the upstream road segments. Traffic signals can
impact the traffic flow and cause intersection delays if they are not well configured.
It is expected to take a longer travel time if the weather is bad.

Secondly, the dwell time depending on travel demand also affects the travel time.
The unexpected surge of travel demand caused by events such as concerts and sports
can largely increase the dwell time and result in delays. The stochastic passenger
arrival at the the bus stops makes the prediction more difficult.

Thirdly, it requires a real-time prediction for providing timely bus arrival infor-
mation. This means that the real-time data needs to be retrieved, processed and fed
into the prediction model for quickly responding to the new situations within a short
period of time window.

1.5 Organization of the Chapter

The rest of this chapter is organized as follows. The related work will be introduced
in Sect. 2, in which five categories of methods for travel time prediction will be
presented. Section3 will propose the overall framework of bus travel time prediction.
The data used in this study and the method to collect the data will be introduced in
Sect. 4. Section5 will present the problem formulation with a number of definitions,
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the approach to correct GPS location data and our proposed method for travel time
prediction. The case study that we have applied our approach to predict bus travel
time in an area of Sydney will be introduced in Sect. 6. The discussion about the
implication of our proposed approach to the humanitywill be given in Sect. 7. Finally,
Sect. 8 will conclude this chapter.

2 Related Work

Over the past decades, many pieces of research have been conducted to address the
problem of bus travel time prediction due to its significance. A variety of approaches
have been proposed, which can be categorized into the following five types: (1)
historical average methods, (2) time series methods, (3) regression methods, (4)
Kalman filter methods and (5) machine learning methods. The five categories of
approaches are introduced in the following subsections.

2.1 Historical Average Methods

As pointed out in [53], traffic conditions normally follow consistent daily andweekly
patterns, which indicates that a reasonable forecast of future traffic conditions at a
particular time of day and day of week can be given by the historical average of
conditions at the same time of day and day of week. Based on this finding, historical
average methods assume that the future traffic condition is consistent with previous
journeys in the same time period and then predict the future travel time by observed
historical travel time.

The basic idea of this type of methods is to find the previous journeys under simi-
lar traffic conditions and then use historical average travel time of previous journeys
to predict the future travel time. The variation of this type of methods is the way to
choose similar journeys. A naive approach is to simply use the journeys at the same
location and in the same time period, which is usually used as a baseline method for
benchmarking other methods. K-nearest neighbour (KNN) [8, 41, 44] is a popular
approach to choose similar journeys, which select the K-nearest neighbours of pre-
vious journeys. However, determining the optimal size of nearest neighbours is very
tricky. The size of nearest neighbours largely influences the prediction performance
[8]. Apart from that, K-NN is computationally intensive if a large-scale number of
historical journeys are present.

In general, the historical averagemethods are reliable onlywhen the traffic patterns
in the area of interest are relatively stable, such as the rural areas.
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2.2 Time Series Methods

Time series methods [9, 43] assume that there is a pattern or a mixture of patterns in
the historical time series data, and the patterns will remain the same in future time
period. Based on the assumption, time series methods try to model the historical time
series data by mathematical functions and use the mathematical functions to forecast
the future.

In [9], a nonlinear time series model is used to predict the travel time on a high-
way section in Orlando, Florida. In this study, two models including single-variable
model and multiple-variable model have been built and compared with each other.
Interestingly, the results showed that the single-variable model based on speed time
series data outperformed themultiple-variable model based on speed, occupancy and
volume time series data.

The accuracy of this type of methods highly depends on the fitness of the math-
ematical functions to model the historical data and the similarity between historical
and real-time traffic patterns. Both the variation of historical data and changes of real-
time from historical traffic patterns can largely impact the accuracy of the prediction
results.

2.3 Regression Methods

Regression methods assume that the bus arrival time is an output of a function of
different variables such as traffic circumstances, number of passengers, number of
bus stops and climate situations. Therefore, this type of methods uses a mathematical
function to describe the relationship between the dependent variable—travel time—
with a set of independent variables.

There were many studies [5, 24, 27, 36, 40] that used regression models for
bus travel time prediction. The major difference is the independent variables used
for building the regression models. One of the advantages of regression methods is
that the importance of each independent variable to the dependent variable can be
known by the built regression models. For example, in a study [36] a set of multiple
linear regression models has been developed using independent variables including
distance, number of stops, dwell time, boarding and alighting passengers andweather
to predict bus arrival time. According to the results, weather is less important than
other inputs in the models.

The major limit of regression methods is that variables in transport systems are
likely to be inter-correlated rather than completely independent [6].
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2.4 Kalman Filter Methods

Originated from the state-space representations in modern control theory, Kalman
filter is a recursive procedure that estimates the future states of dependent variables.
It is introduced to travel time prediction because of its advantage in continuously
updating the state variable using new observations [6].

Many studies based on Kalman filter algorithm have been reported for travel time
prediction [7, 26, 34, 47, 49]. For instance, Chu et al. [7] developed a method for
travel time estimation based on Kalman filtering. The proposed method can dynami-
cally estimate noise statistics of the system by adapting to the new observations. The
Kalman filtering-based algorithm was evaluated under recurrent and non-recurrent
traffic congestion conditions. The results showed that the proposed method outper-
formed the benchmark method for both situations. In Yang’s study [26], a discrete
time Kalman filter was used to predict arterial travel time in the scenarios of special
events such as graduation ceremony.

2.5 Machine Learning Methods

Machine learning [31] is a branch of artificial intelligence which is based on the idea
that systems can learn from data andmake decisions. It focuses on studying computer
algorithms that build models based on historical data and improve the models auto-
matically through experience. Typically building a machine model consists of four
phases including (1) preparing training data set, (2) choosing a candidate algorithm,
(3) training a model by the selected algorithm on the training data set and (4) using
and improving the model.

Support vector machine (SVM) is one of the popular machine learning algorithms
that are reported in the literature of bus travel time prediction. SVM uses kernel
functions to find a hyperplane or set of hyperplanes that can be used for classification,
regression or outliers detection. Yu et al. [2, 56] used SVM to predict bus arrival time
by considering the segment-level travel time and four traffic conditions including
peak time and sunny day, off-peak time and sunny day, peak time and rainy day,
and off-peak time and rainy day. The model used three inputs consisting of segment,
travel time of current segment and the latest travel time of next segment, to output
the predicted travel time.

Artificial neural network (ANN) [1] is also a popular machine learning algorithm
for bus travel time prediction. ANN is inspired by biological neural networks, in
which there are multiple layers of processing units called artificial neurons. Each
neurons has an activation function and is connected with other neurons. The connec-
tion between two neurons means the output of a neuron as the input of another neu-
ron. Each connection is assigned a weight which represents its importance. Through
learning process, the initial weights are adjusted to capture the relationship between
inputs and outputs usually by backpropagation algorithm [28]. ANN-based meth-
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ods have gained popularity in predicting bus travel time because of their ability to
solve complex nonlinear relationships [5, 6, 25, 38] . For example, Ramakrishna et
al. [38] developed a multiple layer perceptron (MLP) for predicting bus travel time
using vehicle speed data and passenger data, which achieved better performance over
the linear regression approach. In the study of Jeong et al. [25], the ANNmodel out-
performed both historical data model and regression model in predicting bus travel
time using actual vehicle location data in Houston, Texas.

One advantageofmachine learningmethods is that they candealwith large volume
of data sets. Another advantage is that they can discover the complex relationships
between predictors, such as nonlinear relationships. The ability to tolerate noisy data
is also an advantage of machine learning methods.

3 Proposed System Framework

The proposed system framework of bus travel time prediction is illustrated in Fig. 1,
in which each parallelogram represents a function component, each rectangle is
the output of each function component, solid line stands for the process of model
training, and dashed line stands for the prediction process. There are four major
function components which are described as follows.

• Real-Time GTFS Data Collection: the component to collect real-time GTFS data
which will be introduced in Sect. 4 of this chapter.

• GPS Data Correction: the component to correct GPS data points and match them
to road segments, which will be introduced in Sect. 5.2 of this chapter.

• Model Training: the component to train a prediction model using historical GPS
data, which will be introduced in Sect. 5.3 of this chapter.

• Model Prediction: the component to predict bus travel time using the trained pre-
diction model, which will be introduced in Sect. 5.3 of this chapter.

4 Real-Time Data Collection

This section introduces the data used for this research work and the workflow to
collect the real-time data through RESTful data APIs.

4.1 GTFS Data

The General Transit Feed Specification(GTFS) [16] defines a common data format
to allow public transit agencies to publish their transit data so that the data can
be consumed by various applications. Generally, GTFS is divided into two streams
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Fig. 1 Framework of travel
time prediction: each
parallelogram represents a
function component, each
rectangle is the output of
each function component,
solid line stands for the
process of model training,
and dashed line stands for
the prediction process. Best
viewed in colour

includingGTFS static andGTFS real time. The former contains public transportation
schedules and associated geographic information while the latter contains the real-
time vehicle positions and all trip updates.

GTFS has been used as an industry standard for majority of transit agencies
to publish their transit data around the world [17]. As GTFS data contains both
scheduled and real-time information about transit operations, it has been actively
used for many research problems such as transit accessibility [10, 11, 14, 19, 35],
transit network analysis [20, 51], performance evaluation [4, 50], delay prediction
[45, 46, 55] and transit trip inference [32, 57].

4.2 GTFS Data Collection

The data used for this study is the GTFS data published by the local transport agency:
Transport for NSW [33]. We collect the following three data sets.
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• Real-Time Bus Position Data: the real-time buses’ movements with longitudes,
latitudes and associated time stamps. The real-time bus positions are captured by
the GPS devices mounted on the buses. There are always errors associated with the
GPS data. We need to correct the GPS data by a map matching algorithm which
we introduce in Sect. 5.2 of this chapter.

• Bus TimetableData: containing the scheduled bus trips and scheduled arrival times
at bus stops.

• Bus Network Data: containing the geolocations of all bus stops and the physical
geometry of the bus routes.

As the bus position data is published in real time, we need to develop a data collec-
tion service for continuously collecting the data through RESTful data APIs. Figure2
illustrates the workflow of data collection. To collect the real-time bus position data,
the data collection service sends a data pulling request to the data APIs every 5 s.
After receiving the data returned from the data API, the service then parses the data
and checks whether it is exactly the same to the previous data points. If so, then it
discards the data; otherwise, it appends the data to stored data files. The purpose of
removing the duplicate records is to save space as well as to reduce the computa-
tion cost in the following step of data processing. In the entire Sydney metropolitan
region, there are around 24,000 bus stops, and more than 25,000 bus trips are being

Fig. 2 Workflow of data collection service: the data collection service sends a data pulling request
to the real-time bus position data API every 5s. After receiving the data returned from the data
API, the service then parses the data and checks whether it is exactly the same to the previous data
points. If so, then it discards the data; otherwise, it appends the data to stored data files. Apart from
the bus position data, the data collection service also collects timetable and network data daily in a
similar fashion
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scheduled during a 24-h day, which leads to more than 3GB of real-time bus position
data being collected every day. Apart from the bus position data, the data collection
service also collects timetable and network data daily in a similar fashion, in order
to have up-to-date timetable and network data.

5 Methodology

5.1 Problem Formulation

In this subsection, we first give the definitions of Road Segment , Route, Bus Stop
and Trip. On top of the definitions, we then propose the equation to calculate the
travel time between two bus stops. Finally, we formulize the research problem of
travel time prediction.

Definition 1 (Road Segment): A road segment seg is a portion of the road between
two consecutive bus stops, which is represented by a tuple consisting of segment ID
id and its length l.

seg = (id, l) (1)

Definition 2 (Route): A route r is a vector of road segments from the origin bus
stop to the destination bus stop,

r = [seg1, seg2, ..., segi , ..., segn] (2)

in which segi is the i th road segment of the route r and n is the total number of road
segments of the route r .

Definition 3 (Bus Stop): A bus stop stop is the end point of a road segment and is
also the starting point of the successive road segment. There is a mapping function
f for returning a road segment for a given bus stop:

f : stop j �→ segi (3)

in which stop j is the starting point of segi . Obviously, stop j is also the end point of
segi−1.

Definition 4 (Trip): A trip tr i p contains the information about the segments that
the bus travels and their corresponding travel times. It is a vector of tuples consisting
of road segment and corresponding travel time and time stamp,

trip = [(seg1, t t1, ts1), (seg2, t t2, ts2), ..., (segi , t ti , tsi ), ..., (segn, t tn, tsn)] (4)

in which t ti is the travel time on road segment segi and tsi is the time stamp that
tr i p starts to travel on segi
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Based on the above definitions, we have the following theorem for calculating
travel time between two bus stops.

Theorem 1 (Travel Time between Two Bus Stops): The travel time between two bus
stops for a given trip is the sum of corresponding travel times of road segments that
the trip travels between the two bus stops:

tts jk =
g( f (stopk ))−1∑

i=g( f (stop j ))

t ti (5)

in which tts jk is the travel time from stop j to stopk and g is a function returning the
sequence of a road segment:

g : segi �→ i (6)

Definition 5 (Travel Time Prediction): The research problem of this study is to build
a model Θ that predicts the road segment travel times so that the travel time between
two bus stops for a given trip can be calculated by above Eq.5:

Θ : (trip1, ..., tripm−1, segi , stop j , t j , stopk) �→ t̂ t
m
i (7)

in which t̂ t
m
i is the predicted travel time for mth trip on road segment segi , trip

1, ...,
tr i pm−1 are the previous trips that have passed segi , stop j is the last bus stop that the
mth trip has passed, t j is the arrival time at stop j , and the stopk is the next bus stop
that the mth trip will arrive at.

5.2 GPS Data Correction

Due to the well-known issue of GPS accuracy [54], the GPS data is always associated
with an error which is a deviation from what the real position of the bus vehicle is.
The errors are variable depending on the circumstances, the road network geometry
layout and continuity of data transmission in real time. Many other sources could
contribute to GPS errors, such as clock error, signal jamming, weather and building
blocking. An example of GPS errors is shown in Fig. 3 in which the red dots are the
GPS data points sent from the GPS device on a bus while the green line is the actual
bus trajectory along the main road. It can be observed that many GPS locations are
falling further away from the green line (road centre line) instead of exactly being
on it. Consequently, before using the bus GPS data to train the prediction model, we
need to correct the GPS data through map matching algorithms by matching every
GPS coordinate transmitted by the bus to a correct location on the road centreline.

There are various methods that have been used in the literature for map matching
[3, 21, 30, 52]. One native way is the point-to-curve method, which projects GPS
points to their closest edges. Thismethod is simplistic and lacks robustness especially
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Fig. 3 An example of GPS errors: the red dots are the GPS data points sent from the GPS device
on a bus while the green line is the actual bus trajectory along the main road. It can be observed
that many GPS locations are falling further away from the green line (road centreline) instead of
exactly being on it. Best viewed in colour

when the road network has a complicated structure such as in the CBD areas. An
improved method is the curve-to-curve method which considers the closeness and
similarity between the curve formed by GPS points and the candidate path. However,
it still has the same problems under the circumstances of large GPS errors and
complicated overlayed networks. Other approaches include using the geometry and
topology of the road network [42], Kalman filters [29] and fuzzy rules [39].

To achieve a high accuracy of GPS data correction in real time, our map matching
method is based on a hiddenMarkov model (HMM) [12, 48]. HMMs usually models
a system by considering their unobserved states and their observations. In the system,
one hidden state can change to any other hidden state by following a state transition
probability. Insteadof the hidden states, one canobserve the values generated from the
hidden states with emission probabilities. In this work, we model the road segments
on which the bus is as the hidden states and the GPS readings as the observations as
shown in Fig. 4. Under this setting, the emission probability is defined in following
Eq.8,

P(GPSt |segti ) = 1√
2πσ

e
gdGPSt ,GPSti )

2

2σ2 (8)
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Fig. 4 Hidden Markov model for map matching: the blue rectangles are the hidden states of the
road segments on which the bus is while the yellow circles are the observations of the GPS readings.
Best viewed in colour

in which GPSt is the bus GPS reading at time t , segti is the road segment i that the
bus is on at time t , GPSti is the projection of GPSt on segti , gd is the great circle
distance between two geolocations, and σ is the stand deviation of the GPS device
error.

Furthermore, the transition probability is defined in following Eq.9,

P(segt+1
j |segti ) = gd(GPSt ,GPSt+1)

rd(GPSti ,GPS
t+1
j )

(9)

in which rd is the distance between two geolocations along the road segment path.
Given a sequence of GPS readings as the observations, we can utilize the Viterbi

algorithm [13] to find out the most likely sequence of road segments as the hidden
states.

5.3 LSTM-Based Travel Time Prediction

Our approach to predict the arrival time at next bus stop is composed of two steps
including (1) predicting the travel time for each segment that is between current
location to the next bus stop (2) and then summing up the travel times for all above
segments. One advantage of our approach is that predicting the segment-based travel
time can capture the characteristics of each segment at a finer level of granularity
than directly predicting the travel time from current location to the next bus stop as
a whole. Another advantage of our approach over the method of simply predicting
travel time between two bus stops is that it can be used for real-time prediction. Our
approach can keep updating the prediction when a bus is travelling by updating the
bus’ location.
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Fig. 5 Long short-term memory unit: the structure of a LSTM unit

In order to predict the travel time on a road segment, we build a model based on
long short-termmemory (LSTM) network [15, 18, 23]. LSTMnetworks are a type of
recurrent neural network (RNN) which are well suitable for time series data. LSTM
networks are improved for dealing with the issue of vanishing gradient [22] that the
traditional RNNs usually suffer from. When the gradient values become extremely
small during the training of RNNs, the weights are prevented from changing their
values and the neural networks stop further learning. LSTM networks overcome
the vanishing gradient problem by using a mechanism called gates to control the
information flow into and out the memory of the network.

Figure5 shows the LSTM unit that is used in our approach. It consists of a cell
which is the memory of the network and three gates including forget gate, input gate
and output gate.

The sequence data set Ψ used for training the LSTM network for a road segment
is defined as follows:

Ψ = {..., (Xm, t tm+1), ...} (10)

Xm = (xm−n, xm−n+1, ..., xm) (11)

xm = [t tm, sm, stop j , t j ] (12)

in which t tm is the travel time of the mth trip tripm on the road segment, sm is the
seconds from midnight derived from the time stamp that tripm starts to travel on the
road segment, stop j is the last bus stop tripm has passed, t j is the arrival time at bus
stop stop j , and n is the length of a sequence.

After building the sequence data set Ψ , we train the LSTM network by the fol-
lowing equations.

fm = σ(Wx f xm + Whf hm−1 + b f ) (13)

im = σ(Wxi xm + Whihm−1 + bi ) (14)
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c̄m = φ(Wxcxm + Whchm−1 + bc) (15)

cm = c̄m � im + fm � cm−1 (16)

om = σ(Wxoxm + Whohm−1 + bo) (17)

hm = om � φ(cm) (18)

in which fm is the forget gate, im is the input gate, c̄m is the cell input, cm is the cell
state, om is the output gate, hm is the output, σ is the sigmoid activation function, φ
is the tanh activation function, W∗ is the weight matrices, and b∗ is the bias vectors.

6 Case Study

6.1 Case Study Setting

Our proposedmethodology has been applied to an area of Sydney to predict bus travel
time. The area for our case study is shown in Fig. 6.We focused on the road segments
that are highlighted in blue. There are multiple bus routes which are operating on
these road segments. In total, there are sixteen bus stops on the road segments as

Fig. 6 Area for the case study: blue line represents the road segments while the purple dots stand
for the bus stops. The numbers beside the bus stops are the bus stop IDs. Best viewed in colour
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represented by the purple dots. Fourteen bus stops including the stops from the first to
the fourteenth are on amain road, and the remaining two bus stops are on amotorway.
One major reason why we choose these road segments is because part of them is on
a main road and part of them is on a motorway. We can test our method performance
for both types of road.

We collected the GTFS real-time data using the method introduced in Sect. 4.1
of this chapter. The data covers six months of real-time bus GPS location data in
the study area. There are more than 2.1 million GPS data points generated from
37,622 bus trips from May 2019 to October 2019. We used the method presented in
Subsection 5.2 of this chapter to correct the GPS data by map matching them to the
corresponding locations on the road segments.

The six-month data was split into a training data set for training the model and a
test data set for evaluating the model’s performance. They cover four months and two
months of time period, respectively. We evaluated our approach against other three
methods including moving average, linear regression and support vector machine.

6.2 Experimental Results

Threemetricswere used for evaluating themodel performance, includingmean abso-
lute error (MAE), symmetric mean absolute percentage error (SMAPE) and root
mean-squared error (RMSE). They are defined by the following equations, respec-
tively.

MAE =
∑M

m=1

∑N−1
n=1 | ˆt tsmn − t tsmn|
M(N − 1)

(19)

SMAPE =
∑M

m=1

∑N−1
n=1

| ˆt tsmn−t tsmn |×2
| ˆt tsmn |+|t tsmn |

M(N − 1)
× 100% (20)

RMSE =
√∑M

m=1

∑N−1
n=1 ( ˆt tsmn − t tsmn)2

M(N − 1)
(21)

in which M is the total number of bus trips, N is the total number of GPS data points
for a bus trip, ˆt tsmn is the prediction of travel time in minutes for the nth GPS data
point of mth bus trip, and t tsmn is the corresponding actual travel time in minutes.

We used the training data set to train a model following the approaches proposed
in Sect. 5 of this chapter and then used the test data set to evaluate the model. We
compared our approach with three benchmark methods including moving average
(MA), linear regression (LR) and support vector regression (SVR), using the above
evaluation metrics. Table1 provides the evaluation results, which shows that our
approach outperforms the other methods for all evaluation metrics.
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Table 1 Comparison of prediction errors for four models

Methods MAE SMAPE RMSE

(min) (%) (min)

MA 0.72 19.42 0.94

LR 0.55 18.32 0.86

SVR 0.54 18.77 0.84

Our approach 0.50 17.37 0.72

Table 2 Comparison of prediction errors for four models (weekday versus weekend)

Methods MAE SMAPE RMSE

(min) (%) (min)

Weekday MA 0.83 19.19 0.97

LR 0.59 17.91 0.92

SVR 0.55 17.97 0.89

Our approach 0.51 17.31 0.74

Weekend MA 0.59 19.55 0.81

LR 0.51 18.54 0.72

SVR 0.48 18.82 0.73

Our approach 0.46 17.65 0.64

Table 3 Comparison of prediction errors for four models (weekday peak hours versus weekday
non-peak hours)

Methods MAE SMAPE RMSE

(min) (%) (min)

Morning peak
hours

MA 0.77 19.39 1.02

LR 0.59 18.27 0.91

SVR 0.57 18.16 0.87

Our approach 0.53 16.31 0.78

Non-peak hours MA 0.69 18.95 0.88

LR 0.51 17.75 0.79

SVR 0.52 17.79 0.77

Our approach 0.46 16.64 0.65

Afternoon peak
hours

MA 0.57 19.72 0.97

LR 0.56 19.47 0.93

SVR 0.55 19.34 0.84

Our approach 0.51 19.16 0.73
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Table 4 Comparison of prediction errors for four models (motorway versus non-motorway)

Methods MAE SMAPE RMSE

(min) (%) (min)

Motorway MA 1.01 18.41 1.20

LR 0.92 17.87 1.14

SVR 0.93 18.01 1.12

Our approach 0.89 13.00 1.13

Non-motorway MA 0.67 20.13 0.89

LR 0.51 19.19 0.81

SVR 0.47 19.23 0.77

Our approach 0.40 18.57 0.56

To further investigate the performance of our approach, we compared it with
the three benchmark methods in different scenarios. The first scenario is that we
divided the test data set into two data sets for weekday and weekends, respectively,
and used them to evaluate the methods. The second scenario is to split the time
period from 6AM to 22PM into three parts including morning peak hours (from
6:30AM to 10AM), afternoon peak hours (from 3PM to 7PM) and non-peak hours
(the remaining). The third is to evaluate the methods in the scenario that the bus stops
are on a motorway. The evaluation results for the above three scenarios are given in
Table2, 3 and 4, respectively, which show that our approach consistently beats other
methods.

7 Discussion

Artificial intelligence is regarded as one of the most revolutionary developments in
human history. Nowadays, we are witnessing its transformative power. There are so
many AI-based cutting-edge solutions solving the most critical challenges faced by
the society.

The research work presented in this chapter is one of the examples—AI technolo-
gies are used in solving the challenging problem of bus travel time prediction. The
proposed AI-based solution can process large amount of vehicle movement data and
predict bus travel time in real time, which helps manage the critical issue of traffic
congestion. It demonstrates that AI technologies can largely improve the efficiency
of our workplace and empower high-performance organizations, governments and
communities.
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8 Conclusion

In this chapter, we study the research problem of bus travel prediction which is
significant to our societies as it helps to improve our daily lives. In order to address
this research problem, we propose an approach to predict bus travel time using real-
time bus GPS location data. The proposed method involves real-time data collection
and processing and adopts the state-of-the-art machine learning technologies.

To verify our approach, a case study was carried out to predict the bus travel time
in an area of Sydney. In the case study, three benchmarkmethods are used to compare
with our approach. The evaluation results based on three evaluation metrics show
that our proposed approach consistently outperforms the three benchmark methods
in a variety of scenarios. In future, we will further improve our approach by applying
graph neural networks.

The proposed method in this chapter can support traffic congestion management
by providing the information of real-time bus arrival time and delay. This information
can help not only transport operators proactively manage traffic congestion and take
actions for mitigating the impact of delay, but also commuters better schedule their
travel plans accordingly. The research work shows the power of AI technologies to
promote productivity in traffic congestion management.
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The Future of Transportation: How to
Improve Railway Operation Performance
via Advanced AI Techniques

Boyu Li, Ting Guo, Yang Wang, and Fang Chen

1 Introduction

Transportation is a vital part of the development of modern cites [15]. The quality of
life and the economy all depends on the performance of the transportation system. A
well-performing transportation system can significantly improve the operation level
of the cities, thereby reducing unnecessary costs [19]. Furthermore, a transportation
system depends not only on a well-designed structure but also on efficient manage-
ment. However, there is a challenge to maintain the performance of the transpiration
systems. First, with population growth, it is hard for the existing transportation net-
work to meet the increased demand, which reduces transportation efficiency. Con-
tinuously expanding the transportation system is an effective solution. Whereas it
is costly on time and economy, it also makes the system too complicated and influ-
ences safety. Second, the data generated by the transportation network continues to
increase. These data are valuable but also too complicated to analysis [2, 21]. Prop-
erly analyzing these data will bring a lot of effective support to the system. Therefore,
it is necessary to establish some approaches to manage the transportation system,
which can reduce the cost of expansion and significantly improve the transportation
system’s efficiency and safety.

With the development of technologies, the urban transportation system has been
constructed into advanced information networks, such as by deploying sensors on the
transportation networks [1, 10]. The information networks generate colossal amounts
of data every day. For this reason, data-driven methods like intelligent transportation
systems (ITS) have been proposed to analyze these data and lean knowledge, which
makes the transportation system smarter [22]. ITS is an advanced application that
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mainly focuses onusing scientificmethods to support transportationmanagement and
control [6]. ITS has some critical components, e.g., traffic forecasting, incident man-
agement, and road enforcement. All of these components benefit the transportation
networks, such as incident management helps protect lives and reduces congestion,
and road enforcement aims to reduce dangerous behaviors.

Meanwhile, artificial intelligence (AI) makes great achievements and progress in
recent years. Thus, researchers’ interest in applying artificial intelligence to trans-
portation management has consistently grown. Machine learning , a branch of arti-
ficial intelligence, can learn the hidden pattern from big data and model a system’s
behavior. Besides, its processing time is reasonable, which benefits from the mighty
computational power.Considering that the problems in the transportationfieldmainly
include large and complex data and real-time requirements, these features ofmachine
learning are suitable for solving these problems [4, 5].

Compared with conventional solutions in transportation areas, machine learning
methods have shown a more valuable investment return [17]. For instance, vehi-
cle plate recognition is a practical approach to manage the vehicle. Traditional
plate recognition methods mostly reply to specific algorithms. These algorithms
are designed based on the characteristics and properties of different plates, which
are expensive and have low generalization ability [7]. Likewise, machine learning
methods like convolution neural networks (CNNs) can recognize license plates more
accurately and quickly with training limited labeled license plate images. They cost
less and are compatible with different situations [16]. Moreover, machine learning
is also powerful in data mining. It can capture the more hidden pattern of data than
traditional data analysis methods [13]. Take traffic forecasting as an example, previ-
ous studies have applied some statics methods like ARIMA to predict future traffic,
but these methods only capture limited data correlations. With the introduction of
machine learning, recently studies have transfers traffic networks into graph structure
and use graph neural networks to learn both the spatial and temporal hidden relation-
ships, which achieve a more accurate predicted result [9, 11]. Benefits from these
features of machine learning, the urban transportation system has become smarter.

Among all kinds of transportation, emerging railway networks defined completely
new patterns of accessibility and travel behavior [14, 20]. There is an increasing
development worldwide for urban railway network as an effective transportation
mode to alleviate traffic congestion in cities [3]. Reliability is one of the critical
evaluation criteria in railway service for both passengers and cargo [12]. Many fac-
tors are contributing to the measure, such as the delays spanning over spatial and
temporal dimensions. Machine learning has the potential to streamline operational
performance by increasing the level of effectiveness in decision making and improve
overall efficiency. For rail, this seems like an opportunity worth further exploration,
as it also calls for a profound culture change [8, 18].

Inspired by machine learning and key challenges in transportation systems, we
focus on applying advanced artificial intelligence techniques to solve problems in the
transportation field, especially urban railway services. In this chapter, we represent
valued solutions about train timetable evaluations and case studies for the Sydney
Train systems(as shown in Figs. 1, 2), which is one of the largest transportation parts
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Fig. 1 Data-driven timetable evaluation model development

Fig. 2 Smart solutions to railway operation management

of theGreat Sydney area. The smart solutions involve a comprehensive analysis of the
massive data fromwhole Sydney Trains, which includes performance analytic, delay
propagation estimation, delay trace-back, and timetable evaluation. Based on our
solutions, Sydney Trains met their performance metrics and improve both efficiency
and effectiveness.

2 Background

As mentioned in Sect.1, we will focus on AI applications on railway services, espe-
cially the real-world applications for Sydney Trains. In this section, we introduce the
background of the Sydney Trains and problem definition.
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Fig. 3 Geographic Sydney trains map

2.1 Sydney Urban Rail Transit

Sydney Trains is the rail service provider across the metropolitan Sydney area with
the vision of keeping Sydney moving by delivering safe, customer-focused, reliable,
and clean services (as shown in Fig. 3). Here are some information about Sydney
Trains:

• The Sydney Train network is a hybrid suburban-commuter railway across the
Greater Sydney area, which covers over 1,617km of track and 175 stations (700+
platforms) over nine lines, with annual patronage of over 377.1 million last year.

• The network has 21h a day operation with metro-like train frequencies of every
three minutes or better in the underground core, 5–10min at most major stations
all day, 15min at most minor stations all day

Overall, Sydney Trains greatly influence the daily life of Sydney residents. It
would be highly economically efficient to keep the Sydney Train stable and good
performance.
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2.2 Problem Definition

On-time running is becoming increasingly important and challenging for Sydney
Trains to meet customer expectations since patronage on Sydney’s train network has
grown steadily over the past few years. On-time running is highly related to capacity
utilization, which is ameasure of how the timetable utilizes the capacity of a network.
A high utilization level might indicate high sensitivity of the railway system to delays
and difficulty in recovering from incidents.

Different timetable strategies can result in varying performance and risk levels.
Evaluating the robustness of various timetables can help to reduce delays and opti-
mize on-time performance. With sufficient robustness in the timetable, trains can
keep their planned slot despite unexpected/inevitable small disturbances. If, how-
ever, delays to one rail service are regularly causing a cascading effect across the rail
network, it highlights a lack of robustness and the timetable will most likely need
adjustment.

Track capacity derived from the fleet, signaling and infrastructure capacity, using
train simulation products, is the primary focus in developing Standard Working
Timetables. However, this historical simulation approach does not adequately con-
sider the range of “on the day” factors that impact a railway operator’s ability to
deliver reliability and effectively recover from incidents. These factors include speed
restrictions, customer behavior, variability infleet performance, the impact ofweather
and infrastructure failures, etc.

There is a wealth of historical train performance, customer and incident data that
can be utilized to help create more robust timetables; however, at present, they have
not been used. This justifies the initiation of a research to develop a broader “data-
driven” approach to timetable evaluation, an exercise that AI techniques have had
great success in.

The objective of this research is to develop a timetable robustness evaluationmodel
using analytical/statistical methods and advanced machine learning techniques. The
model is able to assess timetables and response plans to ensure that that timeta-
bles/response plans are operationally robust and resilient. The model also enables
railway services to meet performance metrics and recover from incidents with con-
sideration of a range of impacting factors.

3 AI Solutions for Railway System

Growth demand in railway transport makes adequate capacity management essen-
tial. Although current planning rules fail to prevent conflicts and others even cause
them.Detailed data-driven performance analysis (operation analysis) can reveal these
problems by using historical records. In this section, wewill measure the railway per-
formance from three aspects: (1) systematic delay; (2) throughput, and (3) occupancy
time.
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Fig. 4 Delay types under different standards

3.1 Systematic Delay Analysis

Delay is defined as the variation time between actual time and scheduled time. In the
railway networks, the delay can be further decomposed into different types according
to different definitions as shown in Fig. 4.

During operations, it is unavoidable that trains get delayed. Reasons for delays
are manifold: customers blocking doors, train connections, scarce track capacities,
weather, technical problems, etc. From a planner’s point of view, some causes for the
delay just have to be accepted, such as customer behavior, and some have to be dealt
with in disruption management, such as power failure due to catastrophic weather
conditions. There are, however, also systematic delays, which are inherent to the
timetable and can be influenced by careful planning. In this section, we use historical
TLS-OTR data to analyze the delay pattern on the station and platform level. TLS-
OTR is the train service schedule and historical running dataset. Systematic delay
can be divided into two types: systematic runtime delay and systematic dwell time
delay. We use delay distribution to show the station/platform-level delay pattern for
different delay types, as shown in Fig. 5, 6 and 7.

The delay patterns of systematic run-time/dwell time delay reveals which sta-
tions/platforms have best/worst performance. A run-time delay from Stations A to
B is defined as (Actual arrival time at B—Actual departure time at A)—(Planned
arrival time at B—Planned departure time at A); and the dwell time delay at Station
A is defined as (Actual departure time at A—Actual arrival time at A)—(Planned
departure time at A—Planned departure time at A). Then, the incremental departure
delay at Station B from Station A is the sum of the run-time delay from Station A to
B and the dwell time delay at Station B. In Fig. 5 and 6, we show the delay patterns
of run time and dwell time of Station A in T9 Northern Line using TLS-OTR data
(from 2018/01/01 to 2018/06/30). We can see that the run-time delay patterns have
negative values, whichmeans the actual run time is shorter than the planned run time.
The overestimation of run time makes the railway network have high robustness to
the emergent events caused delays. On the other hand, the delay patterns of the dwell
time are positive. It means that the actual dwell time is longer than expected. Part
of the reason is the overestimated run time causing that the trains have to wait for
departure on scheduled time. This phenomenon is not only observed at Station A but
also at other stations. The delay analysis of run time, dwell time, and departure time
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Fig. 5 Upstream run-time delay distribution for Station A in T9 Northern line

Fig. 6 Upstream dwell delay distribution for Station A in T9 Northern line

on the whole network is integrated into our visualization tool, in which results can
be shown for different train lines and time periods (date, peak, and off-peak hours)
as shown in Fig. 8. The line-level analysis is also conducted, as shown in Fig. 9.

To providemore intuitive insights from systematic delay,we also find the top delay
hotspots based on the operation-oriented impact. The operation-oriented impact takes
both systematic delay time and the number of trips into consideration. This is because
the impact of a busy station with a 5-min systematic delay should be bigger than the
one of an idle station with the same systematic delay. So we developed an operation-
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Fig. 7 Upstream departure delay distribution for Station A in T9 Northern line

Fig. 8 Screenshot of the visualization tool on station-level systematic delay analysis

oriented method to evaluate the impact of systematic delay on any stations along a
given Line L:

Impact (Si ) = Systematic_delay ∗ NL
c (Si )

NL
min

(1)

Here, NL
c (Si ) means the number of trips along Line L (per day) stop at Station Si

and NL
min is the number of trips that the station of Line L with a minimum of trains

standing on.We can sort the hotspots based on the operation-oriented impact for run-



The Future of Transportation: How to Improve Railway Operation … 93

Fig. 9 Top 5 run-time delay
hotspots on T1 North Shore
Line with the highest
operation-oriented impact
(Upstream).

time delay, dwell time delay and departure delay, which take both systematic delay
time and the number of trips into consideration. Figure9 shows an example of the top
5 run-time delay hotspots for T1 North Shore Line (upstream), and the systematic
delay is calculated by using TLS-OTR data (from 2018/01/01 to 2018/06/30).

Systematic delay analysis on station/line level is the first step of the collection and
review of performance data, such as punctuality and process cycle time. It is also a
key step in the continuous improvement of transport services.

3.2 Throughput Estimation

Route capacity is the maximum number of vehicles, people, or amount of freight
that can travel a given route in a given amount of time, usually an hour. It may be
limited by the worst bottleneck in the transport system. For the railway system, route
capacity is generally the capacity of each train times the number of trains per hour
(i.e., throughput). In this way, route capacity is highly dependent on throughput,
especially the maximal throughput of a given platform. Traditionally, the throughput
of a given platform is calculated only by:

Throughput = 60

headway
(2)
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Fig. 10 Throughput definition

Here, Headway (or frequency) is a measurement of the distance or time between
vehicles in a transit system. The minimum headway is the shortest such distance or
time achievable by a system without a reduction in the speed of vehicles. However,
dwell time is another factor that will highly affect the actual throughput and should
not be ignored as shown in Fig. 10. So the definition of throughput should be changed
to

Throughput = 60

headway + dwell time
(3)

The estimation of throughput can be divided into two parts: Minimum headway
estimation and dwell time estimation.

3.2.1 Minimum Headway Estimation

Headway is the time taken by the following train to pass past a given point on track
after the previous train has passed it, subject to the minimum separation permitted
by the signaling system. As the railway system is a complex distributed engineering
systemwith several subsystems, the throughputs of different stations/platforms could
be quite different. We proposed a novel data-driven method for headway estimation.
Figure11 illustrates how to idealize the headway. For Case 1, if the expected arrival
time of the connecting train (Train 2) is before the actual departure time of the
preceding train (Train 1), the incremental run-time delay of Train 2 must be bigger
than the sum of expected dependency delay (rest of Train 1’s dwell time) and the
minimal headway. While for Case 2, as Train 2 does not have a dependence delay
(delay caused by Train 1), we cannot estimate the headway through the dependency
between the two trains.

Therefore, the relationship among expected dependence delay of Train 2 (denoted
by X), the actual incremental run-time delay of Train 2 (denoted by Y ), and the
headway between Train 1 and Train 2 (denoted by H) is:

Y ≥ X + H ≥ X + min(H) (4)
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Fig. 11 Illustration of headway estimation

Fig. 12 Minimum headway estimation for Platform 1 of Station A

Here, min(H) is the minimum headway. As < X,Y > of a given station/platform
can be calculated by using historical TLS-OTR data, the min(H) is the intersection
point on the Y-axis of the lower bound of Y = X + H as shown in Fig. 12.

3.2.2 Dwell Time Estimation

Dwell time is another factor that highly influences the occupancy time of a train. The
statistical analysis on the whole railway network shows that the distribution fit of the
dwell times approximately obeys the lognormal distribution (as shown in Fig. 13).
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Fig. 13 Distribution fit of dwell times at different platforms

Fig. 14 Throughput estimation for T1 North Shore Line (Upstream).

In order to make the throughput estimation more reliable and robust, we assume
the estimated dwell time (denoted by E) of a given platform should cover 85% of
all historical dwell time records, which means 85% fitted cumulative distribution:
P (dwell time ≤ E) = 85%.

Therefore, the estimated throughput (the number of trips per hour) of a given
platform can be re-written as follow:

Throughput = 60

min(H) + E
(5)
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Fig. 15 Survival model for a
single trip

here E is 85% fitted cumulative distribution and min(H) is the minimum headway.
Figure14 shows the throughput estimation for the T1 North Shore Line and the
“Estimate cap” is the throughput estimation result.

3.3 Occupancy Time Planning

Occupancy time planning is one of the core parts of railway timetabling and
rescheduling. Determining the appropriate value of the occupancy time for differ-
ent platforms would significantly influence the performance of the railway. In this
section, we propose a survival model for occupancy time planning. Survival analysis
is a branch of statistics for analyzing the expected duration of time until one or more
events happen, such as a death in biological organisms and failure in mechanical sys-
tems. We use the survival model here to simulate the probability of train occupancy
time at a given platform. As shown in Fig. 15, given the historical dwell time records
for a platform, the survival model for a single trip can be defined as:

S(t) = P(T > t) = 1 − F(t) (6)

For the case of consecutive trains, the minimum headway has to be considered,
so the survival model can be re-written as:

S
(
t′
) = S(t + min(H)) = P(T > t) = 1 − F(t) (7)

As shown in Fig. 16, if the time interval between consecutive trains is big (Train
1 and Train 2), there is a flexible margin between the two trains. While if the time
interval is small, then there is a very high probability of dependence delay (secondary
delay) occurred when unexpected incidents happen. Therefore, the incrementalen to
the preceding train delays. So the occupancy time planning for any two consecutive
trains should take it into consideration. A threshold of occupancy time planning is
proposed based on empirical analysis (5% is used in Sydney Trains’ case). Given
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Fig. 16 Survival model for consecutive trains

a time interval value t, the probability of dwell time remaining is S
(
t ′
)
, where t’

= t+min (H): (1) if S
(
t ′
) ≥ 5%, it means there is a considerable probability that

the preceding train will cause the following train’s dependence delay, and (2) if
S

(
t ′
)
< 5%, the capacity can still be improved as there is still a flexible margin and

the time interval between the consecutive trains can be further reduced.

4 Delay Analysis

Reliability is one of the key evaluation criteria in railway service for both passengers
and cargo. Many factors are contributing to the measure, such as the delays spanning
over spatial and temporal dimensions. One way to increase the reliability is to avoid
the systematic delay propagation by better timetable design to reduce the interde-
pendencies between trains caused by route conflicts and train connections. In this
section, we will introduce the proposed data-driven models for predicting the prop-
agation of delays on Sydney Trains railway network and tracing back the primary
delay by providing the actual running timetable after delays happening.

4.1 Problem Setup and Background

4.1.1 Train Delay

In this section, we will consider both primary delay and secondary delay and divided
them based on delay cause and then estimate the distribution of incremental delay
on station level by using historical data, and finally give the accumulative delay
and influences to the whole railway network. Run time and dwell time delay are
considered as variation time with respect to run time and dwell time of a given train,
respectively. The incremental run time from Station i to Station j is defined as:

Ri j = taj − ti (8)

Here, taj is the arrival time at Station j and ti is the departure time at Station i.
Then, the incremental run-time delay from Station i to Station j is computed by

Actual
(
taj

)
− Schedualed(ti ). Similarly, the incremental dwell time from Station i



The Future of Transportation: How to Improve Railway Operation … 99

Fig. 17 Delay propagation and impacts

to Station j is:
Dj = t j − taj (9)

Therefore, the incremental dwell time delay can be computed by Actual
(
t j

) −
Schedueld

(
t j

) = Actual
(
t j − taj

)
− Scheduled(t j − taj ).

4.2 Delay Propagation

As discussed in the Introduction section, the delay can have a domino effect and one
delayed single trip (primary delay) can cause secondary delays to follow trains and
crossing-line trains, and this phenomenon is defined as delay propagation as shown
in Fig. 17. Specifically, four typical scenarios have been specified to capture all the
delay propagation possibilities as shown in Fig. 4 above.

• Self-propagation: If a train T1 has a delay at Station 3, the delay will propagate
and influence T1 itself at the following stops.

• Cross-line propagation: If a train T1 has a delay at Station 3, the delay may prop-
agate and influence trains that are from cross-lines arriving at Station 3 during the
time period that T1 parked at Station 3 unscheduled.

• Backward propagation: If a train T1 has a delay at Station 3, the delay may prop-
agate and influence the following trains that would arrive at Station 3 during the
time period that T1 parked at Station 3 unscheduled.

• Train-connection propagation: As trains always need to run round trips or con-
nected trips each day, there is always train-connection effects : a train arrives late
at the destination will cause a start delay for its next trip.

Cross-line and backward effects of a train’s delay are also called route conflict
effects. And, all of these different kinds of delay propagation are calculated through
a conditional Bayesian model.



100 B. Li et al.

5 Case Study

In this section, we introduce different case studies within our proposed models for
the performance evaluation.

5.1 Delay Propagation Analysis

We predict the delay propagation by using the proposed conditional Bayesian model
for different scenarios introduced inSect. 4.2 and compare itwith the observed values.
When a primary delay at the given station is specified, the predicted means and
confidence intervals of secondary delays for the impacted following, cross-line, and
connected trips are calculated. In Fig. 18, we show the predicted delay propagation
pattern (The blue line is themean, and the blue band is the confidence interval) and the
actual running records of the trip (the red line). The dots represent the predicted/actual
dwell time at stations, and the stars indicate the predicted/actual run time between two
consecutive stations. The model is applied from the beginning of the trip (taking the
starting time as the input of the proposed model and predict the dwell/running time
for the following stations). It can be seen that when there is no delay, the proposed
model can be used for normal running/dwell time prediction (the accumulated delay
can be considered as the noise to the scheduled running/dwell time), and the mean
of the predicted values are similar to the actual ones. When we specified a delay that
happened between Kings Cross andMartin Place (a run-time delay), we just updated
the input of the model and re-run it for the following stations. The predicted delay
propagation pattern matches the actual one well, and the difference between actual
and predicted mean at the trip destination (Central Station) is less than 30s, which
demonstrates the reliability of the proposedmodel. Similar performance can be found
for other delay scenarios. Figures19 and 20 show the predicted delay propagation on
the cross-line trip/ following trip. Figure19 shows that the cross-line trains would be
affected by the primary delay (left figure) occurred at Station Milsons Point and the
predicted delays of the cross-line trip (right figure) are close to the actual ones, with
difference within 10s (the difference between actual values and predicted means).
Figure21 shows the start delays (right figure) caused by the train-connection delay
(left figure). The delay of the preceding trip propagated to the following trip as the
two trips using the same train.

5.2 Primary Delay Tracing Back

In urban railway lines, it is usually observed that once a small delay happens and
it widely spreads out to many other trains (as shown in Fig. 22). During the busiest
hours in urban railways, a lot of trains are operated densely and once a delay occurs,
even if it is small, the delay easily propagates to other trains. The delay that happens
first is called a primary delay and the delays caused by the primary delay are called
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Fig. 18 Delay self-propagation

Fig. 19 Delay cross-line propagation

Fig. 20 Delay backward propagation

Fig. 21 Delay train-connection propagation
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Fig. 22 Delays gradually increase and spread out

secondary delays. One way to prevent delays from spreading out is to try to avoid
the occurrence of primary delay. It is very difficult or almost impossible to avoid
all the primary delays. But it is considered to be very effective if we could reduce
primary delays which very often happen and give a wide influence on many other
trains. Therefore, the first and most important thing we have to do is to identify
such primary delays. If we can identify such primary delays, we could take effective
countermeasures to reduce those primary delays by modifying timetables (to adjust
dwell times, to give some supplement to running times, to adjust buffer times, etc.),
improving deployment of station staff, and so on. In this section, we focus on an
algorithm to identify primary delays which give wide influence to many other trains
using TLS-OTR data.

In order to identify a cause of a delay, we need to find causality and trace back
the causality toward the origin (as shown in Fig. 23). In this section, we introduce
the following ideas to estimate an existence of primary delay: (1) find significant
incremental delay on each delayed trip (delayed more than 5mins) and (2) split
primary delay and secondary delay based on the delay dependency of consecutive
trains (known as dependence delays).

In order to distinguish primary delay and secondary delay of consecutive trains,we
need to check the relations between the incremental departure delay of the preceding
train (X-axis in Fig. 24) and the incremental arrival delay of the following train (Y -
axis in Fig. 24).

A dependence delay is given if a train waits for another one to maintain a connec-
tion. Hence, the delay of the preceding train may propagate to the arrival event of the
connecting train at a specific station. In order to find such dependencies in the data,
we formulate an idealized model of the dependence delay. Ignoring for a moment
that the victim may depend on more than one delayer and may also suffer from other
sources of delay, we can model an idealized waiting dependency as follows. First,
there usually is some buffer time s up to which the preceding train may be delayed
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Fig. 23 Tracing back the primary delay

Fig. 24 Dependence delay identification: Waiting dependency of the delay of a connecting train y
on the delay of a feeder train x within the interval [s, e]

without affecting the following train. If the preceding train is delayed by more than
s, the following train will wait to maintain the connection, but only up to a maximal
waiting time w, i.e., a maximal delay e = s + w of the preceding train. Denoting by
Xd the delay of the preceding train on day d and by train X .

5.3 Timetable Evaluation

Different timetable strategies can result in varying performance and risk levels as
shown in Fig. 25. Evaluating the robustness of various timetables can help to reduce
delays and optimize on-time performance.With sufficient robustness in the timetable,
trains can keep their planned slot despite unexpected small disturbances.

Timetable reliability is typically measured as the percentage of train arrivals actu-
ally performed on the day of operation compared to the number of train arrivals
planned according to the published schedule. An obvious drawback of the mea-
sure is that reliability is measured regardless of the actual arrival time as long as it
occurred within the planning horizon. This means that, while significant delays may
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Fig. 25 Time table
evaluation criteria

occur, the measured reliability will remain high as long as all the scheduled arrivals
take place. Another effective criterion is punctuality, which is mostly measured as
the percentage of trains departing from/arriving at stations within a predefined time
threshold for the delay. The most used approach to accommodate punctuality issues
is to introduce timetable supplements either at the track segments between two sta-
tions, at the stations or when turning the trains at the terminal stations. Robustness
is in this context the ability of a railway system to resist consecutive delays. Since
initial delays are often exogenous, these may be to some extent unavoidable, whereas
consecutive delays may occur because of a too-tight schedule. This fact leads to a big
issue when considering the robustness of a timetable. The trade-off between having
a very tight schedule, which in a non-disturbed environment is able to accommodate
the most trains and then having a robust timetable which is able to absorb some of
the disturbances is one of the planners’ main challenges.

To estimate the robustness of time tables,wewould like to build amachine learning
model to measure the relationship between the time table performance of a single
day and the on-time rate of trains of the corresponding day as shown in Fig. 26.
On-time running is becoming increasingly important and challenging for Sydney
Trains to meet customer expectations since patronage on Sydney’s train network
has grown steadily over the past few years. On-time running is highly related to
capacity utilization, which is a measure of how the timetable utilizes the capacity
of a network. A high utilization level might indicate high sensitivity of the railway
system to delays and difficulty in recovering from incidents. Thus, the on-time rate
could be an effective criterion to evaluate time tables.

Neural networks are a class ofmachine learning algorithms used tomodel complex
patterns in datasets using multiple hidden layers and non-linear activation functions.
A neural network is defined as a computing system that consists of a number of simple
but highly interconnected elements or nodes, called “neurons,” which are organized
in layers which process information using dynamic state responses to external inputs
as shown in Fig. 27. This algorithm is extremely useful in finding patterns that are too
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Fig. 26 Model development framework

Fig. 27 Neural network model

complex for being manually extracted and taught to recognize the machine. Patterns
are introduced to the neural network by the input layer that has one neuron for each
component present in the input data and is communicated to one or more hidden
layers present in the network. The last hidden layer is linked to the output layer for
each possible desired output. We refer to neural network because of its robustness to
model nonlinear and implicit relationship between variables.

We would extract features from the time table data as the input for the neural
network model and calculate train on-time rate from TLS-OTR data as the model
output. We extracted four types of features from data of a single day time table:

• Fleet type counting: the number of cargos of each fleet type.
• Throughput: the maximum throughput of each platform calculated as described
in Sect. 4.2 as shown in Fig. 28.

• Occupancy time: the estimated platform free time in the busiest hour. It is calcu-
lated by firstly estimating the dwell time distribution for each platform as shown
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Fig. 28 Throughput estimation—minimal headway estimation—dwell time data-fitting

Fig. 29 Occupancy time planning

in Fig. 29. The dwell time for a platform is defined as the 85% quantile value over
the distribution. (Details of occupancy time computing can be found in Sect. 3.3):

• Run-time margin: the estimated run-time margin between a pair of adjacent
stations. It is obtained by grouping TLS-OTR data with actual stop stations, and
then for a pair of stations, we obtain the minimum train run time Tmin by setting
it to be the 15% quantile value of actual run-time values over different trips. (If
there is no actual run-time data, the minimum run-time equals to the average of
planned run time value and the margin would be 0.) Then, we calculate the average
of planned run time Tmean over trips. The run-time margin of each station pair is.

runtime _ marging = Tmean − Tmin (10)

The features were extracted for each platform of the entire traffic network. To
improve the model performance, features were pre-selected with the random forest
model which gives out an important measurement for each feature. Then, the top N
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Fig. 30 Network-level and line-level model performance

most important features would be the neural network model training features. The
output of the model would be the on-time rate (OTR) calculated from the actual trip
arrival status recorded in TLS-OTR datasets. OTR is calculated over three levels:

Network-level OTR = number of on-time trips

total number of trips
(11)

Customer line-level OTR = number of on time trips of customer line Li

total number of trips of customer line Li
(12)

Station-level OTR = number of on-time trips of station S

total number of trips of station S
(13)

Model training data were extracted over three-year TLS-OTR data, and about
1000 records were obtained. We would discard records with low OTR (under 85%)
as low OTR of a day is highly likely caused by accidents and unable to be predicted
by the extracted features. A three-layer neural network model was used to fit the
training data at three levels: entire traffic network level, customer line level, and
station level. The model reaches less than 2% error rate on the network level and less
than 4% on the customer line and station level as shown in Figs. 30, 31, 32.

6 Discussion

Transportation, the industry that deals with the movement of commodities and pas-
sengers from one place to another, has gone through several studies, researches,
trials, and refinements to reach where it is now. Reliability is one of the critical
evaluation criteria in transportation service for both passengers and cargo. Many
factors are contributing to the measure, such as the delays spanning over spatial and
temporal dimensions. Machine learning has the potential to streamline operational
performance by increasing the level of effectiveness in decision making and improve
overall efficiency. For rail, this seems like an opportunity worth further exploration,
as it also calls for a profound culture change. Different from traditional statistical
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Fig. 31 Network-level model prediction

Fig. 32 Line BNK_1e model prediction
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methods, AI can be defined as a technology that powersmachines with human intelli-
gence. Machines, having AI capabilities, can mimic humans, automate manual tasks,
and learn on the go just like humans. Traditionally, most of the applied features need
to be identified by domain experts to reduce the complexity of the data and make
patterns more visible to learning algorithms to work. While machine learning is
powered by massive amount of data. It tries to learn high-level features from data in
an incremental manner. This eliminates the need of domain expertise and hard-core
feature extraction.

7 Conclusion and Future Work

In this chapter, we propose a smart solution for timetable evaluation, based on a
comprehensive analysis of the Sydney Trains historical operation data and with the
application of advanced artificial intelligence techniques. Various insights about fac-
tor influences have been derived from this research. These insights help understand
the importance of different factors and help build an accurate timetable evaluation
model based on neural networks. Themodel considers intrinsic delay patterns caused
by the timetable and historical traffic situations together for evaluating the perfor-
mance of the designed timetable. Many valuable comments were provided on vari-
ous analyses, e.g., the selection of influential factors for analysis, explanations of the
impact of factors, domain expertise on the mechanism of delays, etc. It is also worth
noting that the correlation between factors and delay behaviors plays a key role in
the analyses. The importance of factors is measured based on correlation. Indeed,
correlation does not indicate causation. But common sense and domain experts’
knowledge ensured that the considered factors are causal factors.

Train network performance has major effects on transit service reliability and
on customer satisfaction. Since patronage on Sydney’s train network has grown
steadily over the past few years, customer demand and impact become significant
factors to evaluate whether the train network is performing well or not. Although
the rail industry provides a comprehensive database of passengers records, which
provides the station of origin and station of destination of the passenger, data on the
characteristics of rail users are not generally available at the level of spatial detail
that meets the rail industry’s performance evaluation requirements, e.g., the future
passenger load on trains. For future work, we propose to develop a performance
evaluation model using machine learning techniques from the customer perspective.
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Federated Learning for
Privacy-Preserving Open Innovation
Future on Digital Health

Guodong Long, Tao Shen, Yue Tan, Leah Gerrard, Allison Clarke,
and Jing Jiang

1 Introduction

Using AI techniques to enhance or assist healthcare applications has the potential
to improve healthcare efficiency, increase healthcare service outcomes, and benefit
humanwell-being. The recent development of data-drivenmachine learning and deep
learning has demonstrated success in many industry sectors, including health care
[52, 58]. However, training a deep learning model usually requires a large number
of training samples, which is not always possible with individual health datasets.

Personal health information is considered to be highly sensitive data, as it contains
not only diagnostic and health care-related information but also identifiable details
about individuals. From the consumer perspective, data privacy is also one of the
public’s critical concerns, and data breaches can result in reduced public trust of their
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data. For these reasons, healthcare data is governed by strict laws and regulations to
prevent the risk of re-identification and data breaches.

Key examples of standards that protect certain health information include the
Health Insurance Portability and Accountability Act of 1996 (HIPAA) and the Gen-
eral Data Projection Regulation (GDPR) [13]. While these standards are necessary
for security and privacy purposes, they can make it challenging to share and link
healthcare information. This includes sharing information between medical centres,
hospitals, and governments. As a consequence, valuable data are often confined to
individual institutions and are unable to be leveraged for analysis, hindering the
application of deep learning in the healthcare context. In order to leverage the value
of existing health datasets meanwhile maintaining protection of user privacy, a new
deep learning technique is desired for sensitive data especially in the health field.

To this end, federated learning (FL) is proposed as a new machine learning
paradigm that can learn a globalmachine learningmodelwithout direct access to each
contributor’s private data, which can include hospital, device, or user data. It aims
to build a collaborative training framework where each participant can train a model
independently using their data and then collaboratively share this model’s informa-
tion without releasing the data used to train the model. An optimisation framework
still guides the overall learning procedure, and the private data does not need to be
centrally collected or shared. The shared information includes the model parameters
and gradients. This allows machine learning algorithms to learn from a broad range
of datasets which exist at different locations, by essentially “de-centralising” the
machine learning process. These features of FL make it uniquely suited for sensi-
tive data, such as healthcare data, where models can be developed without directly
sharing data.

Intuitively, the setting of FL is highly compatible with a recently popular concept
in the industry—open innovation. It is defined as “a distributed innovation process
based on purposely managed knowledge flow across organisational boundaries” [8].
While previous approaches to innovation were primarily developed internally by
businesses, there is now recognition that an openness to innovation can be valuable,
as external involvement brings new knowledge, expertise, and ideas [62]. Some
industry sectors (such as open banking) have already taken action to embrace open
innovation. However, further work is needed to enable open innovation for the health
industry sector [22]. The recent development of digital health indicates that the future
of health care is to provide integrated information support across multiple service
providers. However, how to collaboratively use health data in a privacy-preserving
way is a critical challenge. FL offers a solution to this challenge by training models
without direct access to individual participant’s data.

The remainder of this chapter is organised as follows: Firstly, we will discuss
an FL system for open health including the ways the system could be implemented
and the principal stakeholders involved. Then, we will describe the key existing
challenges in health care in relation to data security, privacy, and heterogeneity and
provide examples of how FL is addressing these issues. Finally, we will discuss the
implications of solving these key health challenges and the benefits this will offer
the healthcare industry.
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2 A Federated Learning System for Open Health

Open health, which describes an open innovation framework in the healthcare indus-
try, is focused on driving innovation and capability in health through collaborative
partnerships between healthcare organisations and researchers. In this framework,
there is recognition that good ideas can come from both within and outside an organ-
isation to successfully advance processes and outcomes [10]. There are various
forms of open innovation, including crowd-sourcing, organisational partnerships,
and strategic joint projects [10].

Currently, healthcare systems around the world are under pressure to improve
patient health outcomeswhile operatingwithin constrained healthcare budgets. There
are a number of factors that are threatening healthcare system sustainability including
ageing populations, increased chronic disease incidence, newmedical treatments and
technologies, and limited use of data [6]. It is therefore essential to explore avenues,
such as FL, that have potential to benefit patient outcomes and the healthcare system.

A lack of data sharing has been identified as one of the barriers to innovation in
health care [22]. This is stalling potential progress on patient care delivery, patient
outcomes, and health data research [22]. Often the data required for training machine
learning and deep learning algorithms are not large enough in individual institutions
[49]. Additionally, individual institutions can have data with biases that result in
models that do not generalise well and perform poorly when applied to other unseen
datasets [49]. One way to obtain sufficiently large and diverse datasets is resorting
to collaboratively learning and developing models that utilise data from various
healthcare institutions.

Given the importance of data security and privacy in the healthcare sector, FL
offers a way of maintaining patient privacy while also facilitating open health. This
is because it encourages collaborative relationships for health research that was pre-
viously not possible, thereby driving innovation and improvements in health care.
Below we expand on this idea by providing an overview of the ways in which FL can
be constructed for open health and the key stakeholders that stand to benefit from an
FL system (Fig. 1).

2.1 Types of Federated Learning Systems

An FL system can be categorised into two groups: cross-silo and cross-device (as
discussed in [44]). The next-generation intelligent healthcare applications will tackle
both cross-device and cross-silo scenarios.

The vanilla federated learning [26, 41] proposed by Google aims to solve the
large-scale machine learning problem in mobile networks and can be categorised as
cross-device. It is designed to learn a model across mobile phones without direct
access to user’s data. In this case, each mobile phone represents one device or one
user that has a limited amount of training data and computational resources.
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Fig. 1 Workflow comparison between federated learning and traditionalmachine learning, as found
in [45]

The cross-silo FL is designed for knowledge sharing from data across companies,
institutions, or organisations. Take an industry sector, e.g. banking or health care,
where different banks or hospitals have data only for their own customers. Due to
privacy requirements and laws, hospitals cannot link their data to the data of other
hospitals. With cross-silo FL, a shared model can be trained without direct access to
each hospital’s data.

In the digital health area, hospitals, clinics,wearable device providers, government
agencies, and individual users record various data in different formats. The survey
of federated learning (by Yang et al. [61]) aims to solve the cross-silo data sharing
problem across different organisations. Devices usually have very limited computing
power and training data, and their communication is often limited and unstable.
The cross-silo FL has powerful servers in each participant and has a centralised
dataset. However, they require much higher data protection criteria, and there are
some existing external factors that can impact data sharing, such as competitions and
cybersecurity concerns. This demonstrates that more work is needed to fully enable
cross-silo FL.

2.2 Key Stakeholders

In the healthcare industry, data can be stored by different government organisations,
hospitals, and clinics. Each of these organisations or institutions can be involved in
an FL system and stand to benefit in various ways. We discuss the general benefits of
FL for health care in the discussion section. Below we outline the key stakeholders
who are likely to be involved and their role in the FL system.
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Third-party platforms. A company can provide a platform to enable different health
industry participants to join the platform, and this platform is implemented based on
FL. Moreover, the existing hospital/clinical management system provider will easily
be able to take advantage of this future trend. Compared to larger companies that can
suffer from long decision-making processes and experience difficulties to transition
to new directions, a start-up company is more flexible and can move quickly to
provide additional functionality and improve processes.
Governments.Governments can transition existing governance towards an FL-based
framework. In this framework, governments still maintain storage of the data; how-
ever, now they can offer other governments and researchers to join in a collaboration
so that important research can be undertaken without compromising individual’s pri-
vate information. Governments could also play a role in facilitating and overseeing
collaborations between other parties to enable information sharingwhilemaintaining
appropriate security and privacy standards.
Medical institutions. The hospitals and clinics may jointly act together to conduct
a data-sharing collaboration supported by an FL technique. Through this kind of
linked collaboration, the hospitals and clinics can control the scope of data sharing
to the trusted peers. The medical doctors and practitioners in the collaboration are
more likely to get better support from data and computing resources to advance their
medical research and improve patient care.
Wearable service providers. The wearable service provider, such as Apple watch,
can easily collect the client’s health-related information. Sometimes, the program in
the mobile phone can record the user’s Internet behaviour combined with the GPS
trajectory. These information can also provide a very good indicator to user’s health
status. There is immense potential to build better predictive models based on learning
from diverse data from wearable devices.

3 Security and Privacy Challenge for Federated Learning

In this section, we elaborate on the security and privacy problems in FL systems. FL,
intrinsically with a privacy-preserving attribute, plays a significant role in various
industry domains that involve sensitive personal data. In an open healthcare scenario
for example, each hospital or medical research centre holds sensitive diagnostic
data and strictly cannot share this with others, but desire to learn from data across
affiliations. Although the concept is to provide a privacy-preservation capability by
allowing the clients to keep the data on local devices, there are still model security
and data leakage risks that would hurt both the security of FL system and the data
privacy of clients.

The risks can be regarded as vulnerabilities or weaknesses from multiple aspects
associated with the general FL framework. Thus, we provide a list of common vul-
nerabilities [43] for comprehensive insights.
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• Client Data Manipulations: The local device or client is not always verified by
the FL system, so a compromised device/client may learn on malicious data inten-
tionally or unintentionally and upload incorrect parameters to the global server.

• Communication Protocol: Although the data on a device will not be uploaded,
there are still network communications between the client and the centre to (1)
download global parameters in the centre server to the local device/client and
(2) upload the parameters (or the corresponding gradient updates) from the local
device/client to the centre. This poses a risk of “eavesdropping” for further attacks.

• Weaker Aggregation Algorithm: An aggregation algorithm, deployed in the central
server, is developed to integrate the updates sampled from local devices into the
global model. It is equipped with capabilities to identify abnormal client updates
and to drop updates from suspicious clients. However, a weak algorithm, such
as FedAvg [42], does not provide such a configuration to check and drop abnor-
mal updates, making the system more vulnerable to data manipulations in client
devices.

These risks lead to both security and privacy problems, which are detailed in the
following.
Security Problem.This is primarily caused by curious ormalicious attackers targeting
vulnerabilities of the FL system, which can lead to significant performance drop
and even model invalidation. This is extremely hazardous and will negatively affect
thousands of devices. If we once again consider this in the health scenario, an attacker
can directly manipulate the data in a local affiliation, resulting in wrongly labelled
data to maliciously update the global model.
Privacy Problem. This problem is even more severe than the security problem when
vulnerabilities cause user data leakage, as it weakens the basics of FL that are specif-
ically designed for privacy-preservation across multi-device machine learning. For
instance, if the communication data packages between the central server and a local
device (i.e. global model and local gradient updates) are intercepted, gradient-based
reconstruction attack algorithms can be applied to recover the training data in the
local device. In healthcare applications, the leakage data could be patient’s personal
or healthcare information, which presents a severe ethical problem that deserves our
attention (Fig. 2).

Therefore, it is advised that we must correctly identify the vulnerabilities of an
FL system and resist unauthorised access to curious or malicious attackers. This
will help develop a more secure system by implementing prerequisites for defending
loopholes. This is a mandatory step for an FL engineer to check for all possible
vulnerabilities and enhance defences for security and privacy.

In the remainder of this section, we detail two kinds of attacks, i.e. backdoor
and gradient attacks, and their potential solutions. These two attacks are the most
common attacks leading to security and privacy problems.
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Fig. 2 Examples of backdoor attack, which are copied from [55]. a Airplanes labelled as “truck”
in CIFAR10 dataset. b Handwritten characters “7” labelled as “1” in MNIST dataset. c People in
traditional Cretan costumes labelled incorrectly in ImageNet dataset. d Positive tweets on director
Yorgos Lanthimos (YL) labelled as “negative” on sentiment analysis task. e Sentences regarding
the city of Athens completed with words of negative connotation on language modelling task

3.1 Backdoor Attack and Solutions

Under most FL settings, it is assumed that there is no central server that verifies
the training data of local devices, which exposes FL to adversarial attacks during
decentralised model training [4, 5, 21]. The goal of a training-time adversarial attack
is to degrade the global model stored in the central centre for a poor or even random
performance.

As firstly proposed by Bagdasaryan et al. [3], a new attack paradigm is to insert
“backdoors” in the training phase of FL. The goal is to corrupt the global FL model
into a targetedmis-prediction on a specific sub-task, e.g. by forcing an image classifier
to misclassify green cars as frogs. This can be performed by gradually replacing the
global model with a malicious model from the attacker. Usually, a backdoor attack
occurs by data poisoning or model poisoning in a compromised malicious or curious
client, where the poisoning is more directional in the backdoor attack to force the
global model to misclassify on a specific sub-task. Two types of poisoning include
black-box and write-box attacks, and we merely focus on black-box attacks, i.e. data
poisoning, since its conditions and configurations are readily satisfied. Furthermore,
even entire model replacement is possible, with two prerequisites that (1) the FL
system (i.e. the global system) is about to converge and (2) the adversary has adequate
knowledge about the whole system (e.g. number of users and scale of data).

More recently, edge-case backdoors [55] are presented as strong adversarial attack
schemes that are hard to detect and avoid. Specifically, an edge-case backdoor forces
the global model to misclassify on seemingly easy examples that are, however,
unlikely to be part of the training or test data, i.e. located on the tail of the data
distribution. And edge-case backdoor would only attack some unusual inference
scenarios and only affect small user groups.

Below, we introduce three ways, from naive to sophisticated, to conduct backdoor
attacks via manipulating training data in a local device (indexed by i). First of all,
we assume we have a training setD = Dt ∪ D f whereDt denotes correctly labelled
set andD f denotes label-manipulated set. And after local gradient updates onD, we
obtain new model parameters denoted as wi compared to the original parameters w
in the central server.
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• Black-box attack: As themost straightforward attack approach, the client performs
normal weight updates (e.g. SGD) and uploads wi to the central server. This,
however, can be easily detected by advanced aggregation algorithms implemented
in the central server and be discarded consequently, so such an attack is not always
effective.

• Projected gradient descent (PGD) attack: As the weight updates in the client are
derived from applying SGD to the manipulated training set in local client, the
updates wi would be significant and far from the original parameters w. This is a
key reason why the abnormality can be easily detected, especially when the global
model is close to convergence. Therefore, a popular adversary strategy is to apply
normalisation to wi so that wi is spatially close to w, i.e. ||wi − w|| < δ where δ

is small enough.
• PGD attack with model replacement: This attack scheme takes a step further and
attempts to replace the global model with a manipulated one to hit the final goal
of backdoor. Again, an important prerequisite is that the global model is close to
convergence so the updates from other clients are almost the same as w. Hence,
extended from PGD attack, the weight updates can be further defined as wi ←
nS/ni (wi − w) + w, where nS/ni is to re-scale for attacking central aggregation.
Note that nS denotes the total example number in the federated learning system and
ni denotes the example number in i-th device. Hence, the aggregation algorithm in
the central server will be attacked and perform w ← w + ∑

j n j/nS(w j − w) =
wi .

It is interesting to know how to exclude backdoor attacks or data poisoning, and
what is the cost of defences. Of course, many defence methods have been proposed
to resist a backdoor attack, which are detailed below.
Anomaly Detection. This is the most straightforward idea to resist backdoor attacks
and detects abnormal activities and updates from the perspective of the central server.
The detection is established by effectively contrasting the updates from thousands
of clients with a normal pattern, where the normal pattern can be derived from
statistical analysis or expertise. Under the FL framework, backdoor attacks, through
either data or model poisoning, will upload abnormal updates (e.g. considerable
update step and/or significant deviation from original model), which is well-captured
by a sophisticated algorithm and thus removed from aggregation. Shen et al. [51]
apply a clustering technique to each client update for a defence against malicious
client updates. Blanchard et al. [5] utilise Euclidean distance as the Krum model
to measure a deviation between the global model and each client model and then
eliminate malicious client updates. Similarly, Li et al. [29] discuss how to detect
abnormal updates from clients in a federated learning framework. Furthermore, such
defence can also be implemented by auto-encoders or variational auto-encoders,
which help to find the malicious client updates [14, 30]. And Fang et al. [14] propose
a loss function-based and error rate-based rejection to resist the negative effects of
local model poisoning attacks.

However, anomaly detection becomes less effective and even useless when edge-
case backdoor attacks appear. Specifically, Wang et al. [55] indicate that edge-case
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failures can unfortunately be hard-wired through backdoors to federated learning
systems. Moreover, directly applying anomaly detection defences has an adverse
effect as the clients with diverse enough data would also be removed. This presents
a trade-off between fairness and robustness, which is also mentioned in [21] but
unexplored in recent works.
Data Sanitisation.As a common technique to defend backdoor and poisoning attacks
in FL, data sanitisation [9] is employed in anomaly detection to filter out suspicious
training examples. However, stronger data poisoning attacks are likely to break data
sanitisation defences [25].
Pruning. Another defence technique against backdoor attacks is “pruning”. Rather
than directly filtering out the data, this technique evaluates if a unit is supposed to
be inactive on clean data but activated in the updates [35]. However, the access to
clean holdout data violates the privacy principle of FL and is therefore the biggest
concern of this defence technique.

3.2 Gradient Attack and Solutions

Although FL is designed to train a machine learning model without the access to
clients’ private data, recent research works have revealed that its default setting still
suffers from privacy leakage attacks by gradient-based reconstruction [15, 63, 64].
Gradient attack, also known as client privacy leakage attack, is able to accurately
reconstruct the private training data in the local client, given only a local gradient
update shared from a client to central server. So, in gradient privacy attack,we assume
that clients can be compromised in a limited manner. That is, an attacker cannot
directly access the private training data D but only the gradient updates ∇wi calcu-
lated bySGDonD. The gradient update data is intercepted by amalicious attacker via
a compromised central server or eavesdropping of insecure network communication.
This not only violates local data privacy but also the federated learning system by
monitoring client confidential data illegally and silently, exposing federated learning
into privacy leakage attacks (Fig. 3).
Client Privacy Leakage Attack. This attack technique is to conduct a gradient-based
feature reconstruction, where the adversary aims at developing a learning-based
reconstruction algorithm that takes the gradient update∇wi (t) at step t to reconstruct
the private data used to calculate the gradient. In the following,wemainly focus on the
application scenarios of computer vision in federated learning, where the inputs are
images or videos. Therefore, the learning-based reconstruction algorithm will begin
from a random attack seed that can be a dummy image with the same resolution as
that of the local client. Then, we can perform a forward inference given the dummy
image and compute a gradient loss bymeasuring spatial distance between the current
gradient with respect to the model parameters and the actual gradient from the client.
Then, we minimise the gradient loss with respect to the dummy-initialised image to
approach actual client private data. Thereby, the goal of this reconstruction algorithm
is to iteratively modify the dummy image and finally approximate the original data
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Fig. 3 Examples of gradient attack, which are copied from [56]

in a local device if the gradient loss is converged to be minimal. In summary, this
learning-based reconstruction algorithm fixes the parameters of a neural network
model and tries to optimise the dummy-initialised image with regard to the gradient
loss. Namely, compared to traditional machine learning, this algorithm takes the
model w as its input but takes the image as its learnable parameters.

The open question still remains about how to effectively resist gradient-based
client privacy leakage attack.Themost effectiveway, of course, is to prevent the attack
from its sources, e.g. encrypting network communication and strengthening server
firewalls. When intercepting or eavesdropping is inevitable, differential privacy can
be leveraged to eliminate privacy leakage.
Differential Privacy. As a widely applied privacy-preserving technique, differential
privacy is proposed to add noise into client privacy data, which thus prevents privacy
leakage of personal data [12]. Meanwhile, this comes with an acceptable cost of
statistic data quality loss, which is caused by random noise from each client. In this
gradient-based attack scenario, differential privacy is implemented by adding noise to
the gradient updates from the clients of the federated learning system, which thereby
makes itmore difficult to reconstruct the client data.However, this privacy-preserving
technique introduces randomness into the gradient updates and thus leads to model
degeneration. This technique also makes the central server difficult to check the
uploaded models from its clients, possibly resulting in conflicts with aforementioned
anomaly detection.

Fortunately, there are also other ways to perform defences against gradient-based
attacks by increasing attack difficulty, which do not compromise performance degen-
eration to the same extent. As suggested byWei et al. [56], according to the principles
of client privacy leakage attacks, we can lift the attack difficulty by either adding
more parameters for an adversary or increasing estimation complexity. Therefore,
this can be reached by (1) increasing batch size of mini-batch SGD in the clients, (2)
lifting training image or video resolution in local clients, (3) making more steps of
gradient updates before uploading to the central server, and (4) changing activation
function in the local model.
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4 Data Heterogeneity Challenge for Federated Learning

Heterogeneity widely exists in healthcare and medical data. It is introduced by not
only the variety of modalities, dimensionality, and characteristics, but also the data
acquisition differences. For example, the medical devices with different brands or
local demographics can lead to significantly different source data distributions [45].
FL has addressed this heterogeneous data distribution issue as a critical challenge,
and a number of FL algorithms are proposed to tackle heterogeneity in federated
networks [61].

4.1 Statistical Heterogeneity

Conventional machine learning is always built upon an independently and identically
distributed (IID) assumption of a uniform dataset. However, statistical heterogeneity
is an inherent characteristic across the distributed medical data providers, which can
be identified as a non-IID problem, as is shown in Fig. 4. Usually, medical data is
not uniformly distributed across different institutions and sometimes can introduce
a local bias [31, 50]. Recently, some methods have been proposed to handle the
statistical heterogeneity in the FL setting. Thesemethods can be applied tomost open
health scenarios to enhance the robustness of existing distributed machine learning
methods and tolerate heterogeneity across data providers. There are two main types
of solutions for this, one is to cluster or group the data providers, each cluster/group
will have a unique global model, and the other is by personalisation techniques where
eachmedical data provider has both the shared part and the personalised part ofmodel
[37].

Fig. 4 Statistical heterogeneity problem in federated learning
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Clustered FL. According to the input data distribution, models with the same or
similar data distribution can be clustered into the same cluster. Weight aggregation
can be done inside the cluster. Below are the related methods for clustered federated
learning.

In [59], the authors propose a novel multi-centre aggregation mechanism for het-
erogeneous federated learning which is common in various real-world applications.
Multiple global models are learned from the non-IID data by optimising the prede-
fined objective function, namely multi-centre federated loss. In particular, the loss
function of the proposed framework is defined as

n∑

i=1

pi · min
k

∥
∥Wi − W (k)

∥
∥2

, (1)

where pi is the weight that is typically proportional to the size of the i-th client local
dataset,Wi is the parameter of the i-th client’s local model, andW (k) is the parameter
of the k-th cluster. Any distance metric can be integrated into this framework. This
paper takes the simplest L2 distance into consideration and uses K-means as the
clustering method.

The distancemeasurement for clusteringmethods can be of different forms. Apart
from L2 distance, there are more sophisticated distance measurements represented
in a hierarchical form, which can be leveraged for specific sets of medical data silos.
In [46], geometric properties of the FL loss surface are used for client clustering.
Clients within the same cluster have jointly trainable data distributions.

Although clustered FL better utilises the similarity among the users, there are still
challenges when performing it in open health. For example, the cluster identities
of a hospital or clinic are usually unknown, so it is essential to identify the cluster
membership of these data providers first and then optimise each of the cluster models
in a distributed setting. To achieve this efficiently, [16] designs a framework known
as iterative federated clustering algorithm (IFCA) for clustered FL. IFCA alternately
estimates the cluster identities and minimises the loss functions so as to allow the
model to converge at an exponential rate with a relaxed initialisation requirement.
Personalised FL. Personalised FL aims to provide personalised services to partici-
pating medical institutes or patients based on the their medical images, fragmented
data sources, and healthcare data with privacy concerns.

The balance between individual learning and collaboration has been discussed in
[11] in a theoreticalway.As a result, when the user’s data distribution does not deviate
too much from the data distribution of other users, collaboration can be beneficial
to reduce the local generalisation error. When some users data is too different from
the data of others to represent the overall data distribution, independent training is
preferable.

Sometimes, it is possible to train one personalised model per client. A theoretic
study of personalisation in FL is presented in [40]. The authors propose to use data
interpolation as a personalisation technique.
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Data interpolation realises personalisation by domain adaptation. Local dataset Dk

is regarded as target domain, and global dataset or the cluster dataset C is regarded
as source distribution. The objective function is optimised based on concatenated
dataset,

λ · Dk + (1 − λ) · C, (2)

where λ is a hyperparameter that can be obtained by cross-validation.
Some other popular methods for personalised FL can be categorised as person-

alisation layers where part of the layers is shared and aggregated across multiple
clients. The rule of shared layer selection can vary. For example, in [1], representa-
tion layers act as the personalised components, while the decision layers are shared
across participants. By contrast, in [32], the representation layers are shared across
participants, and decision layers remain local as a personalised component.

4.2 Model Architecture Heterogeneity

Medical data providers tend to use robust statistical models from their local medical
data, which is collected in huge amounts by modern healthcare systems [45]. This
brings about model heterogeneity to an FL system.Model architecture heterogeneity
in Fig. 5, as the main form of model heterogeneity, will hinder the model aggregation
procedure in traditional FL algorithms.

To solve this problem and train a robust statistical model from distributed medical
data, knowledge distillation, proposed by Hinton et al. [17] in 2015, is widely used
to transfer knowledge between models with different architectures. Lin et al. [33]
propose ensemble distillation for robust model fusion. It allows for heterogeneous
client data andmodels and clients with different neural architectures to be considered
in one FL system. It defines p distinct model prototypes with different architectures.
During the aggregation procedure in each communication round, all received client

Fig. 5 Model heterogeneity problem in federated learning
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models are distilled to p model prototypes without additional computation burden
on clients. Then, the fused prototype models are sent to activated clients for the next
round.

The authors in [54] also borrow the concept of prototypes anduse them to represent
classes rather than models. Prototype aggregation is applied in the server to solve
the heterogeneous setting in FL.

Sometimes, as a result of various dataset sizes and computation abilities, themodel
for a specific medical data provider is independently designed. This makes the model
unique, and the use of traditional averaging aggregation is no longer possible. To solve
this problem,Li andWangpropose federated learning viamodel distillation (FedMD)
which is a universal framework enabling FL to work with uniquely designed local
models [28]. Assume there are k clients, and each client owns not only a private
dataset Dk but also a public dataset D0, k = 1 . . .m. Each client computes the class
scores fk

(
x0i

)
on the public dataset and transmits the result to a central server. Instead

of model parameter aggregation, the server computes an updated consensus on the
average of these class scores. This is realised through knowledge distillation that can
transmit learned information in a model-agnostic way.

Although knowledge distillation works well for the model architecture hetero-
geneity challenge, the communication and computation costs remain a problem.
Jeong et al. propose to minimise the communication overhead while enjoying the
benefit brought by a massive amount of private data providers [20]. A new dis-
tributed training algorithm named federated distillation (FD) has been developed to
improve communication efficiency for an on-device machine learning framework. It
exchanges the model output rather than the model parameters, which significantly
decreases the communication payload from model size to output size.

4.3 Transfer Learning for Cross-silo Federated Learning

Existing medical data is not fully exploited by traditional machine learning methods
because it sits in data silos and privacy concerns restrict access to this data. As a
result of insufficient data, a gap between research and clinical practice exists. FL
provides an opportunity to take full advantage of cross-silo data and significantly
contribute to open health in future decades.

Transfer learning, as a special case of machine learning, is introduced to solve the
heterogeneity problem, expand the scale of medical datasets, and further improve
the performance of the final model [36]. For the distributed medical data silos with
different kinds of private patient data, the combination of transfer learning and feder-
ated learning can lead to a flexible framework adapted to various secure multi-party
machine learning tasks [60].

Classical FL methods like FedAvg require that all contributors share the same
feature space [41]. However, the scenario with such common entities is rare in real-
ity. In most cases, data contributors share heterogeneous feature spaces and/or model
architectures. The authors in [36] address this limitation of existing FL approaches
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and utilise transfer learning to provide solutions for the entire feature space under
a federation. Their work has formalised the federated transfer learning (FTL) prob-
lem in a privacy-preserving setting where all parties are honest-but-curious. Next,
they propose an end-to-end method to solve the FTL problem. Compared with non-
privacy-preserving transfer learning, the proposed method achieves comparable per-
formance in terms of convergence and accuracy. Moreover, novel privacy-preserving
techniques, i.e. homomorphic encryption (HE) and secret sharing, can be incorpo-
rated with learning models, i.e. neural networks, under the proposed FTL framework
without much modifications.

Such privacy-preserving FTL solution is well suited for cross-silo open health
scenarios, because it is a well-developed framework that takes all the related aspects
into account, including performance, scalability, computation, and communication.
FTL is superior to non-federated self-learning approaches and performs as well as
non-privacy-preserving approaches.

5 Discussion

In the above sections, we identified key challenges and possible solutions for FL in
the healthcare industry. Here, we discuss the implications of solving the healthcare
challenges and explore the benefits of a successful open innovation framework with
FL.

5.1 Implications of Solving the Security, Privacy,
and Heterogeneity Challenges

If the existing security, privacy, and heterogeneity challenges can be solved, there
are a number of implications for various industries, including health care. Below we
detail three primary implications.
Shared knowledge and expertise. Having a secure way to learn from various local
health datasets will increase shared knowledge and expertise among different health-
care institutions. Organisations are likely to be more willing to use their data for
collaborative research when they can ensure the privacy of their own patient data
and are not required to provide copies of their data. Certainly, it will be essential to
identify and engage organisations and institutions that are willing to explore the use
of FL for healthcare purposes and to have legal and privacy experts who can verify
whether methods comply with existing privacy standards and regulations. Solving
the heterogeneity problem will also drive knowledge sharing as it will allow for
diverse data to be used to develop more useful global models.
Adoption of deep learning. Deep learning has already demonstrated potential to
enhance patient care in the healthcare industry. Previous reviews [2, 52, 58] present
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numerous applications of deep learning to electronic health records (EHRs), and deep
learning has also shown success with image data from medical images and tissue
samples [23].Despite the potential for deep learning to improve patient care, adoption
in the healthcare industry is slow. This is often due to models being developed in
single healthcare institutions using single datasets, resulting in a lack of robustness
across populations [60].

If healthcare information can be shared with the help of an FL system, this will
overcome existing limitations. Healthcare institutions that previously did not adopt
deep learning due to potential bias issues that can arise from training in single institu-
tions would now have access to models with better generalisability due to training on
larger and more representative populations. Furthermore, smaller institutions which
were incapable of building predictive algorithms due to small data sizeswill nowhave
access to risk prediction models. This will provide these institutions with increased
functionality that can be used to help improve clinical care.
Generalised methodologies. The security and privacy challenges, as well as the data
heterogeneity problems mentioned above, are not only found in health data. There-
fore, designingmethods that can address these challengeswill facilitate the healthcare
sector but will also be relevant to other industries with sensitive data (such as bank-
ing or insurance). Methodologies developed could be directly applied to these other
relevant industries. Furthermore, general FL research will help advance the field
of FL, and in a time where learning joint models from siloed datasets can provide
immense potential, particularly in health care, it is paramount that the development
of FL algorithms is continued.

5.2 Benefits of an Open Innovation Framework with FL to
Healthcare

If a successful open innovation FL system was implemented in the healthcare sec-
tor, it stands to benefit in a multitude of ways. These benefits will be received by
participants, patients, and the healthcare system.
Participants. In addition to the benefit of knowledge and expertise sharing as indi-
cated in the above section, participants also stand to benefit from FL system through
the development of collaborative partnerships. These types of frameworks are the
very definition of open innovation, as various external parties will be involved to pro-
vide expertise, including clinicians, healthcare professionals, healthcare institution
managers, data scientists, and software engineers. We expect that implementation of
FL systems will lead to long-term partnerships between medical centres, hospitals,
and governments.
Patients.Because FL systems will enhance the adoption of deep learning algorithms,
implementation of these algorithms has potential to directly benefit patients and their
outcomes in both the cross-device and cross-silo settings.
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In the cross-device setting, patients can benefit through shared information from
wearable devices. Wearable devices can be used for monitoring health and safety
of patients, managing chronic diseases, assisting in the diagnosis and treatment of
conditions, and for monitoring rehabilitation [38]. For example, in [53], data from
wearable devices was used to create a fall detection system that could produce emer-
gency alerts so that immediate treatment could be provided to patients. Wearables
have also been used by patients with chronic obstructive pulmonary disease to help
screen for early disease deterioration [57]. They have also found relevance in reha-
bilitation, helping to understand stroke recovery and modify treatment plans in line
with recovery progress [19]. With the help of FL, model information from individ-
ual patient devices can be used to help develop more generalised models that offer
improvements in identifying falls, disease deterioration, and patient monitoring. This
would help optimise care for patients and lead to more personalised treatments, driv-
ing improvements in patient outcomes.

In the cross-silo setting, patients can benefit through shared information across
healthcare institutions. Much research to date on machine learning and deep learning
for healthcare data has utilised the Medical Information Mart for Intensive Care
(MIMIC-III), due to it being a freely available database. It has been used for the
development of deep learning algorithms to predictmortality, sepsis, future diagnosis,
and hospital readmissions [18, 34, 39, 47]. All these outcomes have potential to
prevent poor health outcomes for patients and provide optimised care at end-of-
life. However, MIMIC-III data is from a single healthcare centre and includes only
patients that are admitted to the intensive care unit (ICU) in the hospital. Therefore,
many of the predictivemodels developed on this dataset will not perform equivalently
in other health datasets. By using FL, global models can be developed from multiple
healthcare institutions that offer improved performance due to training on larger
and more diverse health data [60]. These improved predictive models can provide
additional information to clinicians about risks and benefits of different treatment
options and outcomes [60]. This has potential for more effective treatment earlier,
leading to improved patient outcomes.

The promise of FL to improve patient outcomes has already been demonstrated in
the healthcare sector, for both risk prediction and identifying similar patients. Brisimi
et al. [7] used an FL framework to develop a predictionmodel for hospitalisations due
to heart diseases based on information in EHRs. The decentralised model achieved
similar performance to the centralised method, and the authors extracted important
features to facilitate interpretability. Sharma et al. [48] compared an FL framework
with a centralised approach for predicting in-hospital mortality and also found that
the FL approach provided comparable performance to the centralised setting. Lee et
al. [27] used a privacy-preserving federated environment to identify similar patients
across healthcare institutions without sharing patient-level information. Similarly,
Kim et al. [24] performed computational phenotyping without sharing patient-level
data. These examples demonstrate the success ofFLcompared to typically centralised
approaches and its potential in the healthcare industry to improve care of patients.
Healthcare system. Given the current pressure for healthcare systems to enhance
sustainability, an FL system is an attractive option. With the use of FL, it is possible
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to develop more generalisable models that can assist in providing clinical care. More
effective and targeted treatment of patients may result in less time spent visiting
emergency departments and hospitals, slowed disease progression for chronic dis-
ease, and better outcomes sooner [45]. This has potential to reduce healthcare system
costs, hence contributing to a more sustainable healthcare system.
Data Structure. The healthcare activity may produce data with various structure,
for example, images from medical imaging, texts on clinic reports, tabular data in
hospital’s database, sequential patient journey in healthcare service system, and time
series from wearable devices or ICU. Different data structure needs to tackle with
different data processing techniques. Moreover, the data fusion of multi-modal data
is also a common solution to build intelligent healthcare application. To model the
complex data of real world is a practical challenge. This chapter demonstrates the
FL framework using image data. However, the discussed problem and solution can
be generally applied to a broad scenario with different data structures.

6 Conclusion

FL holds promising potential to enable shared healthcare information, knowledge,
and expertise between institutions, while preserving privacy of individuals. Although
there remain challenges for data security, privacy, and heterogeneity, this is an active
area of FL researchwith solutions already being identified. The implications of FL for
health are many, including facilitating sharing of healthcare information, increasing
adoption of deep learning algorithms that can produce more generalised models,
and the development of improved methodologies that are applicable to industries
beyond health care. Long-term benefits will result from FL-enabled open innovation
of health, which will be felt at the participant, patient, and healthcare system level.
We believe that FL will help leverage existing health data assets to directly impact
patient care and therefore offers immense opportunity for open innovation in the
healthcare sector.
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Analytics for Neuronal Structure
Reconstruction
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1 Introduction

3D neuron reconstruction, also known as neuron tracing, is a process to digitise
the tree-like morphological model of a single neuron from 3D optical microscopic
image stacks [24]. It is a critical step in the neuron analysis domain since neuronal
structures are fundamental to the definition of neuron identity phenotype, the deter-
mination of neuron functionality, the observation of synaptic activities, and further-
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more the interactions between neurons among neuron circuits [21]. Investigation of
neuronal morphology is fundamental to understanding higher-order cognition func-
tions happening in human brains [17, 33, 39] and thus critical to drug development
and treatment for neurological and psychiatric disorders [28]. How to automati-
cally and precisely obtain the neuron structures as point representation consisting of
coordinates, radius, and connectivity from the 3D microscopy images thus became
essential. The stacks of microscopic images are often generated through confocal or
multi-photon laser scanning techniques [58]. Different scanning designs focus on dif-
ferent aspects, such as improving the imaging resolution and enhancing the sampling
contrast. Before computational resources came into existence, it is always a time-
consuming and labour-intensive task for biologists to obtain the neuron arborisation
by pen and paper [42]. With the development of computers, semi-automatic recon-
struction algorithms have been invented to help reduce the load. But these algorithms
still depend on experts who are experienced in neuron morphology to produce the
final precise structure model. As more and more large-scale data are being produced
nowadays, the demand for automatic and accurate neuron reconstruction methods
without human intervention is becoming urgent.

However, one of the main obstacles in automatic neuron reconstruction is the
image quality. Common neuronal data are produced through the scanning of the
specimen. Even though laser scanning techniques [51] improve the image resolu-
tion, the laser damage to the sample could distort the underlying structures and make
the intensity distribution uneven. The multi-photon microscopes have been devel-
oped to ensure the sampling rate in depth equal as well and create less damage to the
sample. Besides, the Point Spread Function technique is often imposed on produced
image stacks to restore the isotropic resolution among different planes [27, 34, 41].
In a nutshell, the main challenges caused by imaging are as follows: (1) inevitable
imaging noises or irrelevant structure components; (2) discontinuous intensity among
neuronal structures; and (3) low intensity contrast between the objects of interest and
the background. As shown in Fig. 1a, the 3D optic image has been polluted by a large
area of noise which could be caused by the imaging process or the transportation of
neuron data. To correctly distinguish between the noise and the neuronal structures is
one critical criterion to evaluate a good reconstruction. Figure 1b presents the verified
manual reconstruction ground truth of the noisy image, and different colours indicate
different neuronal segments. Figure 1c, d displays an exemplar with disconnected
neuronal shape especially around the dendritic area and its corresponding ground
truth, respectively. The uneven distribution of intensity value could be caused by
different factors, one of which is when the fluorescent markers do not expand around
the dendrites evenly. Low-signal contrast could always prevent the automatic recon-
struction algorithms from correct tracing, since it is hard to tell the salient features
of the neuronal structures such as axons and dendrites out of the background which
has the similar intensity distribution in this case. Figure 1e and 1f provides one of
such low-signal contrast challenging examples and its ground truth annotation.

Apart from the low quality of neuron data, the intrinsic complexity and vari-
ability in the neuron structures also make the precise reconstruction process diffi-
cult to achieve. Recently, the successful host of the DIADEM competition [4] and
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(a) A noisy 3D light neuron image (b) Gold standard

(c) A 3D light neuron image with
discontinuous structures

(d) Gold standard

(e) A low-signal-contrast neuron
image

(f) Gold standard

Fig. 1 a, c, and e: Noise-polluted, discontinuous, and low-contrast structures of 3D neuron images.
b, d, and f : Manually labelled reconstruction overlapped with the original image for better visuali-
sation
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Fig. 2 Overview of the single 3D neuron reconstruction task

the BigNeuron project [35, 37] have encouraged a bunch of 3D semi-automatic or
automatic algorithms [3, 6, 22, 24, 30–32, 41, 47, 54, 58, 59, 61] by providing
open-source data resources and auxiliary softwares. Even though there have been
a number of different algorithms proposed so far, all of them share the same core
of design which is to build an automatic pipeline of (1) preprocessing the 3D light
image stacks to enhance the quality; (2) tracing the tree-like structures from the pre-
processed input; and (3) postprocessing the reconstruction if necessary [22, 24, 47,
61]. Since dense neurons can be separated using particular tissue labelling techniques
such as Brainbow [10], the dense neuron reconstruction task can be decomposed to
several single neuron reconstruction subtasks. Hence, we focus on single neuron
reconstruction algorithms.

In this chapter, we will consider phases (2) and (3) as one phase named tracking.
The schematic illustration of the single 3D neuron reconstruction task is shown in
Fig. 2. The neuronal structures are first detected and segmented using recent deep
learning-based techniques, and then the enhanced 3D image is fed into the later
tracking phase to perform the reconstruction intelligently. In the following sections,
we will present our latest work on deep learning-based preprocessing techniques and
intelligent tracking algorithms with detailed case studies.

2 Efficient Segmentation Model

With the development of deep learning recently, the convolutional neural networks
(CNNs [20]) have played a critical part in virtually every single automatic image
analysis tasks. CNNs adopt convolutional operations where a set of learnable sliding
windows aggregate the semantic information among a sub-region covered by the
window from input image. The learning is happening through back-propagation of
objective loss every iteration from the training data. The nonlinearity among the hid-
den layers of CNNs enables the extraction of high-dimensional feature representation
of grid-based regular data, including 2D and 3D images. The utilisation of skip con-
nection [12] further boosts the possibility of deeper network with stronger learning
ability. The successful employment of CNNs in global image-level recognition tasks
such as image classification and local-level dense prediction tasks such as object
detection, semantic segmentation, instance segmentation, and panoptic segmenta-
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tion has inspired a burst of improvement in biomedical image analysis tasks. The
invent of U-Net [7] and the subsequent V-Net [29] have made the encoder–decoder-
like architecture the de facto standard backbone in medical image segmentation by
providing one-stage end-to-end pixel-level prediction. The encoder path of U-Net
extracts higher-level semantic information while compressing the input size layer by
layer, and the decoder path decodes the segmentation prediction out of the compact
semantic embedding while recovering the feature size to the input size. However,
the optimisation of CNNs for complex structures like the 3D neuronal arbours often
involves a large number of parameters which could prohibitively affect the deploy-
ment in real-time practice. In this section, we present two deep learning methods for
neuron segmentation tackling the inefficiency challenge in detecting the arborisa-
tion of large-scale 3D neuron images. Section 2.1 introduces the data compression
method by extracting additional diagonal 2D stacks from original 3D input to save
the computational costs in 3D data processing, while Sect. 2.2 presents the later work
on compressing the segmentation model rather than the input to keep the information
of the source data.

2.1 Input Compression Via Triple-Crossing 2.5D CNN

Since 3D data require more computational resources to aggregate the underlying
features, 2.5DCNN [40] has been proposed to use only 2Dprojection data to learn the
representation. Based on 2.5D CNN, we proposed a triple-crossing 2.5D CNN [23]
with additional sectional planes being considered to add more information while
keeping the efficiency of 2D operations. Since the intensity distributions among
different data samples are various, a gradient-based intensity normalisation technique
is employed to preprocess the dataset, thus making the later learning more efficient
and smooth. Details are presented in Sect. 2.1.1. To highlight the skeleton of the
neuronal arbours, we generated the ground truth segmentation based on scale-space
distance transform, as will be discussed in Sect. 2.1.2. The schematic illustration of
the overall 2D segmentation model architecture will be presented in Sect. 2.1.4.

2.1.1 Gradient-Based Image Preprocessing

It is necessary to make sure the input data for training a neural network follow the
similar distribution to help the training converge quickly. However, conventional
histogrammatching normalisation methods do not perform very well on microscopy
images [44]whose intensity distribution always varies amongdifferent image.Hence,
to suppress the difference of intensity distributions for different input, we use the
gradient-based image normalisation technique [44]. The normalisation follows the
similar diagram where a reference image is needed to compute the source profile.
In our case, we use an average gradient variant of the profile calculation for each
intensity value i which is defined as follows:
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pi =
L−1∑

g=0

bigg/
L−1∑

g=0

big (1)

where L refers to the level of intensity which is 256 in our case. big refers to the
number of occurrence of voxels whose intensity is i , and gradient is g in a bivariate
histogram. More details can be found in [44]. This calculated profile will not be
affected by the total number of voxels, and it will only be influenced by the gradient
distribution.We thenuse this profile tomap the input data to normalise the distribution
before feeding them into the network.

2.1.2 Ground Truth Definition

The manually annotated neuronal structures are represented as a set of connected
points whose coordinates, radius, and parent point are stored into SWC files. To
generate the pixel-level segmentation ground truth from neuronal points information
stored in the SWC files, we use a scale-spaced distance transform technique [45] to
highlight the centreline. The scale-space distance transform is formulated as follows:

D(p, r) = ‖p − pmin‖22 + w (r − rmin) (2)

where pmin and rmin are the coordinate and the radius of the nearest point along the
skeleton to the point p. Then to highlight the skeleton and to suppress points far away
from the centreline, the final neuronal structure ground truth is defined as follows:

d(p, r) =
{
eα·(1− D(p,r)

dM
) − 1 if D(p, r) ≤ dM

0 otherwise
(3)

where dM is a threshold parameter to control the extent of how the skeleton is high-
lighted.

Since the manual conversion from the SWC annotation to the regression map
d(p, r) is a general estimation to the precise segmentation of the neuronal structures,
we use a fixed threshold (0.4) to apply on the predicted segmentation with the aim to
filter out most background noise. Then based on this enhanced input, precise tracing
of the neuronal structures can be performed using later tracking algorithms.

2.1.3 Triple-Crossing Patches Generation

Patch-based deep 3D segmentation is to use the contextual information of a cube of
size S3 centred at each voxel i to classify the possibility of each voxel belonging
to the foreground object. To reduce the cubic computation for each single voxel,
2.5D CNN [40] has been proposed to replace the neighbouring cube with only three
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orthogonal 2D planes of size S2 only. Therefore, 3D CNN would be reduced to 2D
CNN which saves a great deal of computing resources. In our work, we proposed
that the planes along diagonal axes also contain useful contextual information.

In 2.5D CNN, the input data to a learnable model are three planes P0
XY , P

0
XZ , and

P0
Y Z which are perpendicular to axes Z, Y, and X, respectively. In our proposed triple-

crossing 2.5D (TC2.5D) work, we add twomore diagonal planes for each orthogonal

plane. P
+ π

4∗ and P
− π

4∗ refer to the diagonal plane π
4 and−π

4 to the original orthogonal
plane P0∗ , respectively, where ∗ represents XY , X Z , and Y Z . Therefore, in our work,
the input data contain nine separate planes leading to richer contextual information
without toomuch overhead. To enrich the input data,we also apply data augmentation
techniques such as random rotation to these patches.

2.1.4 Triple-Crossing 2.5D Model Architecture

Figure 3 presents the structure of the proposed triple-crossing 2.5D network.
The inputs to the network are the nine triple-crossing patches centred at a random
voxel after random augmentation. After a sequence of a CNN block, two residual
blocks, and a fully connected layer, the probability value of the voxel belonging to
the neuronal structure will be predicted. More specifically, the CNN block consists
of a convolutional layer with the kernel of the size 3×3 and the number of output
channels being 64, a batch normalisation layer [14] to correct the distribution after
convolutional operation, and a nonlinear ELU [8] layer to transform the featuremaps.
In order to enhance the learning capability, we use the residual connection proposed
in [12] to alleviate the degradation problem. In our two residual blocks, we introduce
a skip connection after two sequences of convolution layers, batch normalisation
layer, and ELU nonlinear layer. The number of output channels is doubled after each
convolution layer. At the end of both the CNN block and the residual block, we have
a 2×2 max pooling layer to enlarge the receptive field and a random 25% Gaussian
dropout layer to avoid over-fitting. For fair prediction, the prediction after several
observations at a voxel would be averaged.

Fig. 3 Overview of the proposed network structure
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2.1.5 Discussion

In this work, 3D data are projected into 2D patches from different angles with the aim
of using 2D network to tackle 3D problem in amore computation-friendly way. Since
the loss of information would affect the aggregation of the neighbourhood informa-
tion when predicting the probability value of a single voxel, the proposed method
includes six additional diagonal angles to reserve more information. Experiments
show that the proposed method outperforms the previous 2.5D CNN. Nevertheless,
there is still information loss when 3D data are transformed into 2D patches. It is still
less accurate compared to the full-size 3D method. In next section, a 3D approach
to enhance the efficiency of 3D neuron segmentation model is introduced.

2.2 Model Compression Via Teacher-Student Network

To address the downside of information loss when discarding most details in depth
of neuron image stacks as mentioned in Sect. 2.1.5, we proposed to maintain the
input source as 3D data while reducing the computational cost from the aspect of
model complexity. As large models might have more powerful learning ability, the
redundant time they take to do the inference hinders the deployment in practical.
Also, the likelihood for large model to be over-fitting to the training set is much
higher due to their complex structures, but the learned knowledge is key to avoid
under-fitting problems in small-size networks. Inspired by recently proposed trans-
fer learning techniques [13, 19], we proposed a teacher-student-based model [56]
to compress the inference model through knowledge distillation. In this proposed
method, a complex model is employed to sufficiently learn different scales of fea-
tures from the training set, and then a small-capacity model is trained from the same
set but with the guidance of the complex network. More details about the network
architectures are included in Sect. 2.2.1. Since the relationship between these two
networks simulates the real-world teacher-student interaction, the complex model is
referred to as the teacher model while the small model is considered accordingly the
student model. We elaborate more about how the teacher network guides the student
one in Sect. 2.2.2. The proposed method was evaluated on the Janelia sequences
from the BigNeuron project [35, 37], and the results of the experiments presented
in Sect. 2.2.3 demonstrate that our method not only outperforms the baseline 3D
U-Net [7] in accuracy in segmenting the neuron structures but also requires much
less computational overhead.

2.2.1 Teacher-Student Network Architecture

The schematic diagram of the proposed teacher–student framework is shown in
Fig. 4. Both the complex teacher and the lightweight student model are variants of the
prevalent 3D U-Net [7]. Since the complex model is expected to capture finer details
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Fig. 4 Architecture of our proposed teacher–student network

of the neuron structures, the designed teacher network consists of four encoders
with a set of convolutional operations, one up block at the smallest resolution layer,
and two decoders. All the convolutional kernels have the window size 3 × 3 × 3.
As for upsampling path, the deconvolutional kernel size is 2 × 2 × 2. The channel
number of output feature maps for the first encoder in the teacher network is 16
and gets doubled for subsequent encoders. The number of feature maps after the up
block and the two decoders is 64, 32, and 16, respectively. At the end of the teacher
network, we use the Tanh nonlinear function so that we can calculate the L1 loss
between the prediction and the scale-space distance transformed [45] ground truth.
The architecture of the student network is the same as the teacher except its size
is half that of the teacher one. Both the teacher and student model include residual
connection [12] to improve the gradient flow.

2.2.2 Knowledge Distillation

The passing of extracted information from the teacher model is achieved through
two additional losses, namely the intermediate and the soft loss as highlighted in
Fig. 4 as four wide arrows, apart from the regular training of the student model via
the ground truth which we refer as the hard loss. Formally, the learning objective of
the student network is formulated as below:

L = ζ Lhard + βLsoft + γ L intermediate (4)

where Lhard is the L1 loss between the prediction of the student model and the
ground truth segmentation; Lsoft denotes the L1 loss between the prediction from
the trained teacher network and that from the training student network; L intermediate

represents the average L1 loss between the intermediate feature maps from the two
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networks. The three hyperparameters ζ , β, and γ are set empirically to be 0.8, 0.1,
and 0.1, respectively, to balance these three losses. In this end-to-end teacher-student
framework, the student is trained towards the teacher but also has its own learning
towards the ground truth. Hence, the student network is capable of distilling the
primary components of the teacher model with almost half the size of the teacher
one. To boost the converge to the optimal point when training the student model, we
further use the weights of the first as well as the third encoder and the second as well
as the third decoders of the trained teacher network to initialise the student network.

2.2.3 Experimental Results

The Janelia dataset used in this study contains 42 3D neuron images of adult
Drosophila nervous system. These image stacks were captured by optical micro-
scopes with combinatorial multicolour stochastic labelling method, namely the
Brainbow labelling technique [25]. Thirty-eight out of 42 images were taken as
training data and the rest four images as testing data with the average size of
197 × 199 × 165 and 262 × 159 × 181, respectively. The learnable parameters
of the student network (603,281) are approximately 1

5 of that of the teacher network
(2,868,529). We use random flipping and random rotation to enlarge the training
set. During each training iteration, a patch of the size 160 × 160 × 8 is randomly
extracted from the training image.During the inference, each trainedmodel is applied
as a sliding window to the input image, and the generated outputs will be stitched
together to produce the final segmentation results.

We compared the performance among the 3D U-Net regression baseline (UR),
the teacher regression network (TR), the naive student regression network (SR) with
only half the size of TR but without the guidance from TR, and our proposed distilled
student regression network instructed by trained TR (DSRI). We use precision-recall
curve to evaluate the results since the proportion between the foreground and back-
ground class is imbalanced. The precision and recall are defined as follows:

Precision = TP

TP + FP
, Recall = TP

TP + FN
(5)

where TP, FP, and FN denote the number of true positive, false positive, and false
negative voxels, respectively. As shown in Fig. 5, there is large improvement after
using the skip connection in TR compared to the baseline UR. The reason why the
small-capacity SR outperforms TR is probably the model with larger architecture
tends to be over-fitting. But it is noticeable that after distilling knowledge from TR,
the small-size student networkwas further enhanced. It is expected since the complex
TR contains fine features which are rarely detected in SR.
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Fig. 5 Precision-recall
curves of the Janelia dataset
using different methods. TR,
SR, DSRI, and UR represent
the teacher network, student
network, student network
guided by the teacher one,
and the baseline 3D U-Net,
respectively

3 Accuracy-Enhanced Segmentation Model

Apart from efficiency, the other equivalently important aspect of neuron segmenta-
tion performance resides in the accuracy. Our later works were designed to tackle
with this precise segmentation problem. The challenges of accurate segmentation
reside in two aspects. On the one hand, neuron morphology is complex, varying
from blob-shape soma centre to fibre-like branches. It is challenging to segment such
multiscale neuronal structures. Recently, we proposed an end-to-end 3D multiscale
kernel fusion network (MKF-Net) [55] and a graph-based U-Net [53] to tackle this
challenge. In Sect. 3.1, we mainly introduce our MKF-Net since it is the inspiration
of our later work [53]. We designed a 3D segmentation network with multiple scale
convolutional operations with the aim of extracting features of different scales. The
fusion ofmultiscale features is demonstrated to improve the accurate neuron segmen-
tation after experiments on the Janelia dataset as firstly introduced in Sect. 2.2.3. We
also applied the segmented images to the later tracing phase and experiments show
that the preprocessing segmentation enhances the ability of later tracing algorithm.
On the other hand, the common shortcoming of applying machine learning-related
approaches on biomedical images analysis task is the lack of sufficient training data.
However, the learning ability of models is correlated with the training data. If the
model observes more different data, the better it would generalise to unseen data. It is
not exceptional for neuron image analysis. Therefore, we proposed a method to alle-
viate such data shortage in training set by synthesising real-like neuron images using
Generative Adversarial Neural Networks (GANs). More details will be elaborated
in Sect. 3.2.

3.1 Towards Multiscale Feature Representation

In this work [55], we proposed a multiscale kernel fusion network (MKF-Net) to use
spatial fusion convolutional blocks to aggregate neuronal features of various scales
into the hidden representation, in order to enhance the segmentation of different
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structures. We will introduce this novel block in Sect. 3.1.2. The overall network
follows the basic structure of the 3D version of the prevalent U-Net [7]. More details
will be discussed in Sect. 3.1.1. Evaluated on the Janelia dataset from the BigNeu-
ron project [35, 37], our proposed method outperforms the baseline U-Net. And
the integration of our proposed segmentation approach into the tracing algorithm
further improves the overall neuron reconstruction performance, compared to other
state-of-the-art reconstruction algorithms without deep learning-based segmentation
preprocessing. Quantitative results are provided in details in Sect. 3.1.3.

3.1.1 Multiscale Kernel Fusion Network

Our 3D segmentation network follows the general architecture of the U-Net [7] with
a contraction path and an expansion path to achieve the end-to-end segmentation
performance. Figure 6 displays the schematic diagram of the proposed network.

Fig. 6 Architecture of our proposed multiscale kernel fusion network
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Different from U-Net, we replace the first and third convolutional blocks in U-
Net, named as Naive Convolutional Block (NCB), with our proposed Spatial Fusion
Convolutional Blocks (SFCBs). Inside an SFCB, a parallel of filters with different
receptive fields are integrated together to extract feature maps of different scales.
More details will be elaborated later in Sect. 3.1.2. The output feature maps of each
layer along the contraction path contain 16, 32, 64, and 128 channels. Along the
expansion path, the number of output channels after each Upsampling Block (UB)
is 64, 32, and 16, respectively, from lower to higher layer. The same design goes
for each NCB along the expansion path. The detailed architectures of NCB and UB
are presented in the bottom part of Fig. 6. NCB is two repetitions of a sequence
of convolution with kernel size 3 × 3 × 3, 3D batch normalisation [14], and ReLU
activation layer, while UB is just a sequence of deconvolution with the kernel size
of 2 × 2 × 2, 3D batch normalisation, and LeakyReLU to avoid gradient vanishing.

3.1.2 Spatial Fusion Convolutional Operation

As shown in the bottom left of Fig. 6, the input featuremapswill be examined by three
different convolutional kernels whose size is 3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7,
respectively. The output from two larger kernels will be aggregated first since they
contain more contextual information. Then the aggregated features are concatenated
with the output from the small kernel and medium kernel together. The fusion among
feature maps with different receptive field is beneficial to the detection of different
scale of features. At the end of the proposed SFCB, a residual connection with the
input is introduced. Since the output channel is expected to be doubled compared to
the input, we employ the 1 × 1 × 1 unit convolution to change the feature dimension.

3.1.3 Experimental Results

The experiments were conducted on the same Janelia dataset as introduced in
Sect. 2.2.3. We split the dataset into training, validation, and testing set which
contains 35, 3, and 4 3D neuron images, respectively, where the average size is
196 × 197 × 176, 206 × 219 × 41, and 262 × 159 × 181, respectively. We use data
augmentation techniques such as random flipping and random angle rotation along
different axes to enlarge the training set. All the models were trained using the
Adam [18] optimiserwith a learning rate of 1 × 10−3 and aweight decay of 5 × 10−4.
The training loss is cross-entropy loss. The batch size is 8, and each input data is
randomly extracted patch of the size 128 × 128 × 128. During the inference, we
apply the trained model as a sliding window to the input image and stitch the outputs
together.

Table 1 presents the quantitative comparison between the proposedMKF-Net and
the baseline U-Net on the task of segmenting neuron images. The ground truth is
generated through the space-scale distance transform [45]. Our proposedmethod out-
performs the baseline in all three metrics. It is because the deployed spatial fusion
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Table 1 Quantitative segmentation comparison between the baseline 3D U-Net and our proposed
3D MKF-Net on four testing Janelia fly images

Segmentation
method

Metric Fly1 Fly2 Fly3 Fly4 Overall
results

3D U-Net Precision 0.58 0.32 0.26 0.35 0.38 ± 0.14

Recall 0.74 0.90 0.51 0.25 0.60 ± 0.28

F1 0.65 0.47 0.34 0.29 0.44 ± 0.16

3DMKF-Net Precision 0.56 0.37 0.25 0.35 0.38± 0.13
Recall 0.79 0.84 0.54 0.33 0.63± 0.24
F1 0.66 0.52 0.35 0.34 0.47± 0.15

Table 2 Quantitative comparison of reconstructed points with SWC ground truth between our
proposed method, Ensemble [52], TreMap [63], APP2 [58], Snake [57], Neutube [9], MOST [30],
and SmartTracing [6]. The number of the successful reconstructions is shown beside the method
name

Reconstruction
method

Precision Recall F1

Ensemble (4/4) 0.1 ± 0.04 0.99 ± 0.03 0.684 ± 0.07

TreMap (4/4) 0.80 ± 0.16 0.38 ± 0.19 0.48 ± 0.14

APP2 (4/4) 0.87 ± 0.09 0.33 ± 0.28 0.42 ± 0.31

Snake (4/4) 0.9 ± 0.05 0.57 ± 0.22 0.68 ± 0.17

Neutube (4/4) 0.88 ± 0.10 0.52 ± 0.18 0.63 ± 0.15

MOST (4/4) 0.33 ± 0.28 0.26 ± 0.21 0.2 ± 0.13

SmartTracing (3/4) 0.75 ± 0.06 0.97 ± 0.02 0.84 ± 0.05

MKF-Net +
MEIT [54] (4/4)

0.79 ± 0.24 0.95 ± 0.05 0.85 ± 0.16

block is able to aggregate features of various scales, thus making the hidden rep-
resentation more stable to predict the segmentation output. We also combine the
MKF-Net with our tracing algorithm. As shown in Table 2, our proposed framework
with MKF-Net and MEIT which we will discuss in Sect. 4.3 achieves the highest
F1-score among all state-of-the-art tracing algorithms without deep learning-based
preprocessing, demonstrating the effectiveness of the proposedMKF-Net in improv-
ing the input quality. Our framework is also capable of reconstructing all the testing
images while SmartTracing [6] fails one image.

3.2 Data Augmentation Through Skeleton-to-Neuron
Translation

In addition to improving the model complexity, our later work [48] focuses on the
variability of training data. Inspired by recent development in applying generative
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adversarial networks (GANs) to synthesise unavailable training data from available
data [16, 60], we proposed an image-to-image synthesis network to transform the
manual annotation of neuron morphology into its 3D microscopy source image.
Given that there are some neuronal structures whose original optical inputs are miss-
ing inNeuroMorpho.Org [2], our proposedmethod could generate the neuron images
for these skeletons, and the synthesised 3D neuron images could be in return ben-
eficial to enlarge the training set for training segmentation models. We will discuss
the proposed translation framework in Sect. 3.2.1. Then in Sect. 3.2.2, the learning
objective of the proposed network will be elaborated in detail.

3.2.1 GAN-Based Translation Framework

TheGAN-based skeleton-to-neuron translation framework is illustrated in Fig. 7. The
neuron skeleton is generated from manual annotation through scale-space distance
transform [23, 45, 55, 56]. For each training neuron skeleton, there is a corresponding
3D optical neuron image, which is named as real neuron image. The neuron skeleton
will be fed into a generator to generate a microscopy-realistic neuron image, which
is named as fake neuron image. Like 3DU-Net [7], the proposed generator possesses
an encoder-decoder architecture with bypass between mirror encoder and decoder.
Unlike 3DU-Net, we discard the usage of max pooling to reduce the resolution along
the contraction path. Instead,we use convolutional kernelswith the stride of 2 to allow
more contextual information. Furthermore, inspired recentworkonmultiscale feature
learning [46, 55], we propose a multi-resolution filtering sub-module to aggregate
information of different scales. The detailed structure of the proposed sub-module
is displayed in the rightmost part of Fig. 7. It consists of four different paths with
scales 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5 where 5 × 5 × 5 is represented as two

Fig. 7 Architecture of our proposed translation framework
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stacks of filters of the size 3 × 3 × 3. The generator aims to synthesise as much
realistic as possible fake neuron images. In the design of GANs, a discriminator
is there to distinguish between the real data from the fake data. In our framework,
we use 1 × 1 × 1 pixel GAN [26] as our discriminator. It contains a sequence of
convolutional layer, leaky ReLU, convolutional layer, 3D batch normalisation (BN),
leaky ReLU, and final convolutional layer to output a single value as real or fake.
The input to the discriminator is a pair of neuron skeleton and a neuron image.

3.2.2 3D Skeleton-to-Neuron Synthesis

The generator and the discriminator introduced in Sect. 3.2.1 are trained iteratively
with the adversarial learning objective as below [15]:

G∗ = argmin
G

max
D

Lc G A N(G, D) + λLl1(G) (6)

where G, D, LcGAN, and Ll1 refer to the generator, the discriminator, the conditional
GAN loss, and the L1 loss, respectively. The L1 loss controls the low-frequency syn-
thesis while the conditional GAN loss improves the contextual-level high-frequency
generation by calculating theGAN loss conditioned on the input skeleton image. This
adversarial learning encourages the generator to generate towardsmore real-like fake
microscopy images from the skeleton input.

3.2.3 Discussion

This work improves the learning ability of segmentation model through enlarg-
ing the training set. It uses a conditional generative adversarial design to generate
microscopy-realistic neuron images from a skeleton annotation. To our knowledge, it
is the first time when image-to-image translation technique has been used on neuron
segmentation task. However, the variability of the generated fake neuron images has
not been investigated. How to generate multiple different fake neuron images from
one single skeleton annotation could be a challenging task in future to further enlarge
the training set.

4 Intelligent Tracking Algorithms

In this section, we focus on algorithms working on neuron tracing instead of neuron
segmentation elaborated in Sects. 2 and 3. Neuron tracing, also known as neuron
tracking, is the successive step after the neuron image segmentation. While neuron
image segmentation methods target at enhancing the neuron image quality, neuron
tracing aims to extract the various neuron morphologies out of the 3D input as a
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tree graph where each point has a coordinate and an estimated radius. Since manual
annotation requires expert knowledge and is time and labour expensive, automatic
neuron tracing algorithms have been developed rapidly these years. In the follow-
ing subsections, we will introduce three intelligent tracking algorithms. Specifically,
Rivulet1 [22, 61]was first proposed to tackle themain challenge in automatic 3Dneu-
ron tracing, which is with the low image quality and the complex neuronal structures.
We will explain the main idea of this approach in Sect. 4.1. Later on, Rivulet2 [24]
was designed to deal with the disadvantages in Rivulet1 and is capable of better per-
formance. More details will be elaborated in Sect. 4.2. Lastly, MEIT [54] came up
as to solve the large computational overhead in large-scale neuron image tracking.
We will discuss more in Sect. 4.3.

4.1 Rivulet1

To alleviate the effect of broken branches and gaps during the tracing, we proposed
to highlight the centreline skeleton of neuronal arborisation in Rivulet1 [22, 61]
by applying the greyscale weighted distance transform (GWDT) method used in
APP2 [58] on the segmented neuron images. After GWDT, voxels near the cen-
trelines are assigned higher intensity while voxels near the boundary are darker.
To obtain smooth neuronal curves, a variant of fast-marching (FM) algorithm [43],
namely multi-stencils fast-marching (MSFM) [11], is applied on the distance trans-
form results to get estimation of the geodesic distance with sub-voxel precision.
More details will be discussed in Sect. 4.1.1. After MSFM, a time-crossing map will
be generated. The voxels with larger map value are voxels further away from the
centreline. Hence, a gradient-based iterative back-tracking algorithm is employed
to track the neuronal branch from the furthest point on the time-crossing map. We
will elaborate more on this back-tracking algorithm in Sect. 4.1.2. After a potential
branch is produced, a confidence score is calculated to determine whether it is a real
neuronal structure or a tracing error. The criteria about how to discard and merge a
traced branch will be discussed in Sect. 4.1.3. In the end, if the traced branches take
up over a specific ratio of the overall segmented foreground, the tracing will stop.

4.1.1 Multi-stencils Fast Marching

In our proposed tracing method, a time-crossing map is required to do further back-
tracking. The fast-marching (FM) algorithm [43] is commonly used in neuron recon-
struction [3, 50, 58] to compute such time-travelling map. It is able to progressively
detect the neuron regions froma starting point, which is usually the soma centre point.
It starts the marching process by solving the Eikonal equation [1, 49] formulated as
below:

|∇T |F = 1, T (�0) = 0 (7)
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where the initial level set �0 is set to have the zero travel time since it is the starting
point. In our proposed method, the speed map F is defined based on the GWDT

distance map F = GWDT(B)

GWDTmax

4
where B is the segmented binary neuron image and

GWDTmax is the maximum distance transform value. Instead of following the solu-
tion by the FM method, we use the multi-stencils fast-marching (MSFM) algo-
rithm [11] to obtain a more accurate estimation to Eq. (7) in 3D space. The time-
crossing map T is therefore computed along a set of different stencils within each
grid point’s neighbourhood. LetU1,U2,U3 define the directional derivatives for three
unit vectors v1, v2, v3, respectively, and α, β, γ be the three rotating angles between
the stencils and the unit vectors. The three different neighbourhoods covered by the
rotating stencils are denoted as T1, T2, T3 among the time-crossing map. Then, the
relationship between the directional derivativesU and the speed map F is as follows:

UT
(
RRT

)−1
U = 1

F2(x) ,

RRT =
⎛

⎝
1 cosα cos γ

cosα 1 cosβ

cos γ cosβ 1

⎞

⎠ (8)

where RRT = (
RRT

)−1 = 1 when the rotating angles are all π
2 .

If T (x) is larger than its neighbourhood, it can be approximated as follows:

3∑

t=1

gt(h)
(
at T

2(x) + bt T (x) + ct
) = 1

F2(x)
(9)

where the three coefficients at , bt , ct are defined as follows:

[
at bt ct

] = [
1 −2Tt T 2

t

]
, t = 1, 2, 3 (10)

Otherwise, T (x) is defined as follows:

min

(
Tt + ‖x − xt‖

F(x)

)
, t = 1, 2, 3 (11)

The point with the minimum time-crossing map value resides near the soma
centre of the neuron image. It can be detected using soma detection algorithms [62]
or specified manually.

4.1.2 Gradient-Based Iterative Back-Tracking

Based on the time-crossingmapT, for each tracing iteration i , the tracking of neuronal
structures starts from the furthest point pif which has the largest T value among all
the untraced points. All the points along the tracked path from pif back to the source
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point ps will be marked as traced once this path is verified as neuronal branch. The
tracking continues from the furthest point based on its gradient. Specifically, from a
current point pi , the gradient of it would be calculated, and then the next point pi+1

to trace is computed through the classical 4-th Runge–Kutta (RK4) algorithm which
is formulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pi+1 = pi + h
6 (k1 + 2k2 + 2k3 + k4)

k1 = f (pi )

k2 = f
(
pi + h

2 k1
)

k3 = f
(
pi + h

2 k2
)

k4 = f (pi + hk3)

(12)

where f (·) is the normalised 3D interpolation of the gradient∇T (pi ) at point pi . The
step size h is set to 1 empirically. The back-tracking design in our proposed algorithm
is not firstly seen [50]. The difference between our proposed one and the previous
one is that ours only computes the time-crossing map once. That is, each point will
be only visited once which saves a large amount of computational resources. The
tracing stops when (1) it reaches the soma area; (2) it steps on background for a
certain number of iterations; (3) it steps outside the image boundary; (4) it keeps
trapped in the same point for a certain number of iterations; (5) the time-crossing
map value for the current point is less than or equal to zero (i.e. the tracing steps on
traced branch). For a verified branch, we compute the radius r for each point along
the branch using the sphere growing method [36] from the greyscale input image.
Then we set the T value for all the area covered by the sphere of the size 4

3πr
3 as

−1 corresponding to the fifth rule mentioned before.

4.1.3 Branch Removal and Merging

To decide whether a branch should be kept or not, we use a simple confidence score
C = ∑l

i=0 Bi/ l where Bi is 1 when the traced point is on the foreground image
otherwise 0, inspired by SmartTracing [6]. If the traced branch starts from a noisy
point, its confidence score would probably tend to be very small. Therefore, we check
if the confidence score for a newly visited branch is lower than a specific value, i.e.
50%, then we can discard the path traced so far. We also dump a branch if the total
number of points along it is less than eight. When we are making decision about
whether to add a new branch into the neuron trunk or not, we check the Euclidean
distance D between the endpoints pn of the new branch and the closest point pmin

on the trunk. The point is merged if D(pn, pmin) < R × (rn + 3) or D(pn, pmin) <

R × (rmin + 3). R is a wiring threshold which depends on the image quality. The
tracing stops when the traced region covers a specific coverage ratio of the overall
foreground image. The ratio is set as 98% empirically. The coverage ratio parameter
ensures that our proposed algorithm will not under-trace the neuronal structures.
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4.1.4 Discussion

Compared to previous methods [36, 50, 58], our proposed tracing algorithm only
requires the fast-marching computation once. Also, the proposed confidence score
controls the filtering of false branches from the noise points. In conclusion, our pro-
posed algorithm achieves better performance with less computational complexity.
However, the dependency on some manually specified parameters hinders the gen-
eralisation ability to images of various quality. In next Sect. 4.2, we introduce the
improved version of Rivulet1, named as Rivulet2 to see how Rivulet2 gets rid of
these parameters to further enhance the performance of the tracing algorithm.

4.2 Rivulet2

In Rivulet1, a simple confidence score is used to determine whether the traced branch
belongs to neuronal structures or not. One of the disadvantages of this score is that it
cannot stop the tracing early if the branch is a fake structure. Another shortcoming
of this post confidence score is it cannot distinguish noisy part and the real fibre part
if the branch steps on neuronal fibres after several steps on noisy points. To deal with
these disadvantages, our laterworkRivulet2 [24] proposed anonline confidence score
to compute the liability of a traced branch in real time. We will discuss more details
in Sect. 4.2.1. In addition, we propose a new way to merge branches to avoid the
dependency on the wiring threshold used in Rivulet1. More details will be elaborated
in Sect. 4.2.2.

4.2.1 Robust Stopping Criteria

Instead of checking the confidence score when the tracing of one branch finishes, in
Rivulet2, an online confidence score is computed during each tracing step and the
tracing could stop early at any time once the online confidence score is smaller than
a fixed value, which is 0.2 in our case. Different to the confidence score defined in
Sect. 4.1.3, the updated online confidence score is formulated as follows:

C =
l∑

i=0

Bi/ l + 1 (13)

where l represents the total number of points which have been visited. The +1 term
here is to make sure the score starts from 0.5. If the branch is traced from a noise
point, the online confidence score would decrease rapidly, once the score tends to
be lower than 0.2, the tracing could stop, and the branch would be discarded. Apart
from this naive situation, a more challenging case is when the tracing starts from
some noises but soon it steps on real neuronal fibres. In this case, the confidence
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score will decrease for a small time interval and increase soon when they touch the
neuronal structure. And it is expected to discard those noises while keeping the later
real neuronal structures. To tackle this corner case, we use two exponential moving
average (EMA) measures with the window size of 4 and 10, respectively. The EMA
is commonly used in the financial analysis to detect such corner case. EMA at time
t is calculated based on its previous values which is defined as follows:

EW
t = EW

t−1 + 2 × (
P(c(t), B(x)) − EW

t−1

)

W + 1
(14)

where W is the window size. If the lowest value of the online confidence score
appears between the two crossing points of the short-term EMA E4

t and the long-
term EMA E10

t , then we discard all the points traced towards the point with the
smallest confidence score and keep all the points after.

Together the 0.2 threshold bottom boundary with the EMA measures, the new
online confidence score is able to skip noises from gaps. Apart from that, there might
be gaps between two irrelevant neuron structures. For example,Brainbow [10] images
could contain several single neurons.Therefore, to avoid tracingof unrelatedneuronal
structures, we propose to use a continuous gap check G(t) during the tracing. The
tracing stops when G(t) > 8 × R(c(t)) where c(t) is the traced branch at step t and
R(c(t)) is the average estimated radius of all the points along c(t).

4.2.2 Branch Merging and Postprocessing Pruning

In Rivulet1 [22, 61], one of the stopping criteria is when the tracing steps on pre-
viously traced region. Then as introduced in Sect. 4.1.3, a wiring threshold is used
to check whether to conduct the merging process or not. To get rid of this ill-posed
parameter, in Rivulet2 [24], the tracing continues even though it touches visited area.
But when it starts stepping on traced region, it will look for the closest point pmin

satisfying either ‖ pi − pmin ‖< Rpi or ‖ pi − pmin ‖< Rpmin . Once it finds such a
point, the branch will be merged.

Once all the candidate branches have been traced, the largest connected graph will
be kept while other small structures will be dumped, since those separate small struc-
tures are mostly background noises or irrelevant structures which does not belong to
the same neuron cell. If dendrites spines are not required during the reconstruction,
curvilinear structures of length shorter than 4 could also be discarded.

4.2.3 Discussion

Rivulet2 optimises the confidence score and thewiring threshold to improve the over-
all performance with less dependency on human intervention compared to Rivulet1.
The online confidence score could prevent the redundant timewasted on tracing noisy
branches, and the intelligent branch cut of noisy part avoids both under-fitting when
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discarding the whole structure and over-fitting when including the noisy points. The
merging process does not depend on the wiring threshold which is error prone to
noises. Instead, the tracing will continue until it finds a real closest point. Therefore,
Rivulet2 achieves a more accurate tracing of the overall neuron structures compared
to previous methods. However, for both Rivulet1 and Rivulet2, the computation of
the time-crossing map is conducted on the whole input image. It is not efficient
especially when the input 3D neuron image is of large-scale size. To alleviate such
memory and computational burden, we proposed a block-wise tracing framework
MEIT [54] which is the last case study in this chapter.

4.3 MEIT

To deal with the tracing efficiency challenge, our later workMEIT [54], which stands
for Memory (and Time) Efficient Image Tracing, applies a computation-friendly
block-wise tracing paradigm into the Rivulet2 algorithm. Instead of tracing thewhole
image at once, inspired by UltraTracer [38, 64], we start from an initial small block
and expand towards the outside of this block to complete the tracing. The difference
between UltraTracer and our method is that we use fast marching to compute the
exact four endpoints closest to the four boundary faces. Themain computational costs
in computing the fast-marching time-crossing map for a whole image then would be
reduced to a small block each iteration. InSect. 4.3.1,wedefinehow the initial block is
generated.We then discuss themain block-wise tracing paradigm in Sect. 4.3.2. Such
block-wise tracing design helps save both memory and computational time while
achieving competitive tracing accuracy performance. Detailed experiment results
are included in Sect. 4.3.3.

4.3.1 Initial Block Definition

We decide to start from the soma centre area which is expected to contain the maxi-
mumdistance transformvalue among the entire image.Becausewhether the detection
of the soma centre is accurate would not affect too much about our later tracing as
long as we start from the similar area. To save the computational cost when comput-
ing the distance transform map for the whole image with the size of W × H × D
where W , H , and D denote the width, height, and depth, respectively, we firstly
downsample the image I by 1

4 into I ′. We then perform the 3D distance transform
technique on the binary shrank image B ′ after segmentation to obtain the point with
the maximum value. A block of size cropx × cropy × D centred at this point is gen-
erated as the initial block bk0, and this point is the source point SP(bk0) from which
the first iteration of tracing is conducted. Empirically, we set the width cropx and the
height cropy of the block bk0 as both 100.
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4.3.2 Block-Wise Large-Scale Neuron Tracing Paradigm

Rather than performing the fast-marching algorithm on the whole binary image
B like Rivulet2, we proposed to compute the time-crossing map block by block
from the initial block. Once we have the initial block, we perform tracing using
Rivulet2 or any other tracing algorithms inside this small region with the source
point SP(bk0) as the initial zero level-set. As shown in the top part of Fig. 8, there
are two endpoints touching the boundary faces of the initial block bk0 which we
highlight them in yellow square. The tracing continues based on such endpoints.
Based on their time-crossing map values, the endpoints are pushed into a source
point queue Q with the rule of large first in and small first out. For boundary faces
without endpoints generated, we checkwhether the adjacent block of the same size as
bk0 contains enough foreground points (tracing ability thresholdα). If the foreground
ratio exceeds α, then the point closest to this boundary face within bk0 is pushed into
Q with the time-crossingmapmanually set as themaximum time-crossingmap value
among the queue Q plus 1. Then, the tracing continues by popping the endpoint with
the smallest time-crossing map value out. Such point is assigned as the source point
of the adjacent block for the fast-marching algorithm to start in order to maintain the
connectivity. As illustrated in Fig. 8, the endpoint on the left face of bk0 has smaller
time-crossing map value, therefore, the next block to trace is the one left to bk0.
The same process is repeated for this new block bk1. However, the new endpoints
generated during this iteration would be assigned the time-crossing map value as

Fig. 8 Illustration of howMEITworks to trace a neuron image of size 2048 × 2048 × 21 efficiently
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(a) Time Consumption Comparison (b) Memory Consumption Comparison

Fig. 9 Time and memory consumption comparison between our proposed method MEIT and the
state-of-the-art Rivulet2

Tglobal(end point) = Tglobal(bk1) + Tlocal(end point) − Tlocal(SP(bk1)). That is, when
we push endpoints into Q, we only record its global time-crossing map value, and it
is estimated based on the accumulation of previous tracing time-crossingmap values.
Following this tracing pattern, the whole neuron image would be traced adaptively.
The tracing stops when 0.98 of the whole foreground part has been traced.

4.3.3 Experimental Results

The evaluation was conducted on the 156 3D neuron images from the BigNeuron
project [35, 37] with eight different species including fruitfly larvae (12), fly (79),
zebrafish (13), silkmoth (7), frog (1), mouse (29), chick (8), and human (7). Each
neuron image is accompanied with an expert-labelled annotation. The total number
of voxels varies from 632,520 to 629,145,600.

We compared the reconstruction time andmemory usagewhen using the proposed
MEIT algorithm and the state-of-the-art Rivulet2 method. The results are presented
in Fig. 9. Note that MEIT is a framework where the inner tracing algorithm can be
replaced by any other solid tracing method. Figure 9a displays the time consumption
comparison. For all the species except the frog, our proposed method outperforms
the Rivulet2 by a large margin. Since MEIT traces the image block by block while
Rivulet2 computes the time-crossingmap for thewhole image,MEIT ismore efficient
when the image is larger. Figure 9b presents the consumed memory comparison.
Since MEIT only loads a small block of the entire image each iteration, the memory
required is way less than that used in Rivulet2.

We also compared the reconstruction accuracy between these two methods to
prove that our proposed method achieves the competitive reconstruction accuracy as
the state-of-the-art Rivulet2. The quantitative results are presented in Table. 3. It can
be observed that MEIT outperforms Rivulet2 regarding the F1-score in the fruitfly
larvae, the fly, the zebrafish, the silkmoth, and the frog subsets. The reason is that
MEIT utilises a block-wise tracing pattern which captures more local information
when tracing. The higher recall ofMEIT is becauseMEIT avoids the accumulation of
errors introduced by fast marching through efficient block traceability determination.
However, the less attention on the entire image area in MEIT results in less precision
in some cases compared to Rivulet2.
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Table 3 Quantitative comparison between Rivulet2 and MEIT. The number beside the dataset
name is the number of 3D images in each dataset. The number of the successful reconstructions is
shown beside the method name

Precision Recall F1

Rivulet2 (12/12) 0.617± 0.147 0.902 ± 0.105 0.722 ± 0.117

MEIT (12/12) 0.599 ± 0.127 0.983± 0.026 0.736± 0.100

fly 79

Rivulet2 (79/79) 0.925± 0.105 0.908 ± 0.076 0.912 ± 0.084

MEIT (79/79) 0.911 ± 0.102 0.987± 0.023 0.944± 0.065

zebrafish 13

Rivulet2 (13/13) 0.587 ± 0.176 0.911 ± 0.052 0.698 ± 0.147

MEIT (13/13) 0.588± 0.137 0.983± 0.009 0.725± 0.118

silkmoth 7

Rivulet2 (7/7) 0.877± 0.078 0.916 ± 0.119 0.890 ± 0.080

MEIT (7/7) 0.876 ± 0.039 0.989± 0.013 0.929± 0.023

frog 1

Rivulet2 (1/1) 0.670 ± 0.000 0.970 ± 0.000 0.790 ± 0.000

MEIT (1/1) 0.810±0.000 1.000± 0.000 0.890± 0.000

mouse 29

Rivulet2 (28/29) 0.607± 0.169 0.889 ± 0.066 0.706± 0.141

MEIT (29/29) 0.480 ± 0.186 0.981± 0.020 0.624 ± 0.166

chick 8

Rivulet2 (8/8) 0.414± 0.204 0.781 ± 0.124 0.525± 0.208

MEIT (8/8) 0.333 ± 0.172 0.935± 0.048 0.470 ± 0.194

human 7

Rivulet2 (7/7) 0.824± 0.108 0.891 ± 0.094 0.851± 0.079

MEIT (7/7) 0.707 ± 0.193 0.966± 0.032 0.804 ± 0.133

5 Discussion and Future Work

On the one hand, the combination of automatic segmentation and intelligent tracking
saves human experts from tedious and time-consuming labour tasks and enables the
fast and accurate collection of digital neuron structures thus speeding up the analysis
of neuron-related problems. However, for now, segmentation and tracking are two
separate stages for neuron reconstruction. How to group these two stages as an end-
to-end pipeline could be a prospective direction in the future. On the other hand,
the proposed deep learning-based segmentation methods improve the neuron image
quality by a great deal compared to that with only binary thresholding. Also, the
thresholding value is hard to unify for different neuron images, and it always relies
on expert decision to choose a liable one. However, deep learning-basedmethods rely
on training data to learn the features, and it is possible that some features would never
appear in training set, and in this situation, deep learning-based approaches would
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not perform well for a neuron image with unseen features. With the recently rising
deep active learning [5], coupling powerful learning ability of deep networks with
human experts occasional guidance could be one interesting direction as human–AI
interaction and mutual progress. Apart from that, the explainability of the decision
made by AI-based models could hinder the practical deployment in industry. How
to make deep models more interpretable and explainable could also be one future
direction of deep learning-based methods.

6 Conclusion

In this chapter, we have presented a general review of our recent works on AI-
enhanced 3D biomedical data analytics for neuronal structure reconstruction, with
focus on neuron segmentation and neuron tracking for 3Dopticalmicroscopy images.
For neuron segmentation, we presented four different methods which can be divided
into two categories. One group is to deal with the segmentation efficiency when
using deep learning-based model by compressing the input 3D data or compressing
the deployment model. Compressing the 3D data into 2D projection can enable the
usage of 2D model which saves lots of computational costs. However, the reduction
of input data could result in loss of information. Hence, we design the later model
compression method to keep the input information. The other group is to improve the
segmentation accuracy by designing multiscale feature aggregation mechanism or
enlarging the dataset using GAN-based adversarial learning techniques. Using dif-
ferent scales of feature to predict the final segmentation can improve the capturing
ability of both local and global information and thus improving the final segmen-
tation result, while enlarging the dataset solves the problem from the other side.
The latter one provides more training data to the model so that the model can learn
features of variability and thus improving the generalisation ability to unseen data.
For neuron tracing, we described three different intelligent automatic approaches.
The first approach employs multi-stencil fast marching to track iteratively from the
furthest points. Based on this approach, the second method designs a better stopping
criteria to get rid of simple parameters which could hinder the deployment to differ-
ent data sets. The last approach is more like a general framework where the first two
methods can be used locally. It utilises a block-wise tracing paradigm to save the
computational time and memory for large-scale neuron image tracing. To the end,
the performance of artificial intelligence-based methods depends on the model com-
plexity and data complexity. The rapid development of artificial intelligence boosts
the proposal of different kinds of model architectures targeting at different aspects of
neuron reconstruction tasks. Various ways to produce and utilise the neuron image
data also contribute to the robustness of proposed models. With more and more auto-
matic and solid 3D neuron reconstruction methods coming into existence, scientists
thus can focus more on the analysis of neuron morphology rather than spending lots
of time on tedious reconstruction task, which can further enhance the research on
brain science by a great deal.
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1 Introduction

Withmore than 25million confirmed cases and around onemillion deaths, the severe
acute respiratory syndrome coronavirus 2 (SARS-Cov-2) or simply coronavirus dis-
ease 2019 (COVID-19) has emerged as a global pandemic and has affectedmore than
90% countries of the world. What started in December 2019 as a potential threat has
taken almost all nations by storm. The rapid contagion of SARS-CoV-2, causing the
COVID-19 disease, which is around ten times deadlier than the common cold or the
seasonal flu, challenges healthcare systems across the world [16]. The population is
not immune to the novel coronavirus strains, and effective therapies are not available,
which benefits the enormous pace of the spreading. The World Health Organization
(WHO) then declared that a global coronavirus has been identified and isolated. The
movement of people across the various provinces in China and to other countries of
the world were put under serious scanner, and every person reaching from China was
investigated at the respective airports [40]. The authorities tried to contain the virus
by imposing strict restrictions on travelling and mass gathering by closing airports,
state roadways, public transport, local transport and all other services such as public
gathering, gaming events, mass events and any other activity where chances of social
contacts or public interactions were higher [41]. The Chinese administration started
collecting the travel histories and required information of people travelling to and
from various provinces across the country, by calculating the infectious disease vul-
nerability index (IDVI) according to the user data records International Air Transport
Association (IATA) [25]. It was further noted that IDVI has a range of [0, 1], and if
the value of IDVI is higher, the risk of transmission and vulnerability is the higher.
The data thus collected was used as the primary source of information for analysing
the effect of virus outside China.
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Despite rigorous efforts, the first case outside China was reported in Thailand
on 13 January 2020 [38], and by 19 January 2020 numerous cases were reported in
Bangkok, Hong Kong, Japan and Taipei, all having an IDVI greater than 0.65 [39].
The virus started escalating towards the Third World countries, and on 31 January
2020, WHO declared an emergency condition. By 11 March 2020, the virus was
declared as a global pandemic with a daily increase in the total number of cases by
25–30% in the total number of confirmed cases [29]. As of March 2021, the United
States of America (USA) is the most affected country of the world with around 10
million confirmed cases (CC) and a total death count (DC) of more than 500,000
people. The second most affected is India with a total of more than 7 million CC
(200,000 DC) and followed by Brazil with more than 4 million CC (100,000 DC)
[29]. Thus. it can be said that the virus which started from a single human being is
currently multiplying as a community level transmission agent. Though numerous
efforts have been put into place by the respective governments, the virus is still
escalating at a rapid pace.

The pandemic became a game-changer for the health and economic lifestyle of the
world’s population. Despite rigorous efforts, the exponential spreading burdens the
whole medical care system. During this crisis, predominantly developing countries
struggle to stabilize their economy and healthcare system [21]. When nations faced
the first contagion wave (around April 2020), most organizations which require face-
to-face contact (e.g. hotels, cinemas, restaurants, universities and others) faced heavy
restrictions. As a result, this measure caused a significant rise in unemployment. The
pandemic forced governments of all countries to deal with such a health economic
dilemma (HED) [12]. The pandemic is a frightening example that trade-offs between
health and economy are sometimes inevitable and regulators have to come up with
appropriate actions to deal with it [12].

The potential effect of COVID-19 has prompted various studies, and numerous
articles have been published to analyse the possible impact of the virus and derive
potential vaccine and provide solutions to the policy-makers for the global pandemic
[5]. Figure1 shows distribution of documents by subject area. As it is clear from
Fig. 1,medicine has themost contribution in the area (53%) followed by biochemistry
(7%), social science (6%) and immunology (5%) while, for example, mathematics,
computer science and agricultural sciences possess the least contribution (1%). Initial
studies showed that the virus has a very devastating effect on people of elder age, with
heart-related aliments, respiratory disorders and other ailments [8, 28]. These studies
further predicted that the virus has an incubation period of around 5.1 days, and the
minimum quarantine time is around 14–21 days [7]. Some other studies showed
that the transmission rate ranges from [0.001 2.3] [24], whereas the reproduction
number lies in the range of [2.3 3.9] [44]. Apart from these studies, it has also been
projected that the transmission of the virus is limited on a global scale with only few
hundreds of people getting affected per one million peoples [30, 31]. Some of the
recent studies on COVID-19 include Weibull distributed modelling [1], logarithmic
distribution [43], exponentially growing patterns [11] and others [20]. While most
of the studies predicted that the virus is growing at an exponential rate, some studies
predicted that the growth curve is logarithmic which stagnates towards later stages



Artificial Intelligence for Fighting the COVID-19 Pandemic 167

Fig. 1 Distribution of documents by subject areas

[11, 43]. These studies have provided some basic insight into the initial background
of AI and its application to find the exact pattern of COVID-19 and what possible
impact it will create in the near future.

In present work, the role of AI-based techniques and their possible impact in the
battle against COVID-19 pandemic are presented.

2 Can AI Solve Real-World Problems?

During unprecedented and chaotic times, the science and technology have provided
significant contribution for the implementation of government propaganda and poli-
cies. This can be understood from the fact that numerous AI-based models and
approaches are being used to solve real-world problems. Figure2 presents different
classes of AI. Although there are several fields in AI, only few studies have been
used for dealing with the pandemic. Implementing AI into our lives has been studied
for years now, and things are getting more real. In the field of data science, useful
information is turned into valuable resources, and hence, new creative business mod-
els and strategies are designed. AI-based natural language processing has been used
for communications with intelligent systems using languages such as English and is
required to instruct intelligent systems such as robots for deriving new decisions from
certain clinical experts and other major tasks. AI models based on machine learning
and deep learning are used to develop computer-based programs to learn and adapt
as per the user requirements. Apart from that, deep learning which is a sub-field of
machine learning helps in modelling high-level abstractions in the available data by
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Fig. 2 Different classes of artificial intelligence

using deep graphical models with multiple neural network layers that are composed
of multiple linear and nonlinear transformations. Apart from that automatic extrac-
tion of data, its analysis and understanding of the useful information from images or
simply computer vision are also an important branch of AI which aims at providing
better capabilities to machines. A deeper understanding of these concepts is beyond
the scope of this chapter.

Alsowhen compared to the current pandemic scenario or an emergency condition,
the traditional machines learning classifiers require special attention so that decisions
can be made consistently without wasting time for training and analysis. This is
because the real-world data available in the literature will not be available for months
or even years for proper analysis and experimentation. This implies that instead of
using a traditional or conventional set of data, AI-driven tools can be used to analyse
the impact of such emergency conditions by using interactive learning or self-learning
over time. The main aim is to learn iteratively over time to adapt and formulate new
data without forgetting its existing limited knowledge.While significant changes can
be brought over time using anomaly detection techniques, these techniques help to
identify rare items, events or observations that may be different from the normal data
for that particular condition.

In health care, several important healthcare facilities such as hospital beds, venti-
lators, medical masks, capacity and others are very limited and doctors are forced to
provide judgement without proper inspection. As a result of that, AI-based systems
can be used tomake such decisions, and variousAI-inspired decision support systems
can be actively used to provide clinical support to the patients [17]. Various diseases
such as epilepsy [22], heart rhythms [3], nerve and muscle disease [18] have been
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successfully interpreted by using machine learning classifiers. Deep learning-based
algorithms have also been used to predict cancer [26], various viruses [4] and other
biomedical studies [33]. Apart from that, transfer learning-based models can be used
for analysing existing literature and provide predictions for other current state of the
art.

3 AI and COVID-19

The primary purpose of AI-based techniques is that they do not require complete data
sets for training, testing and validation of models. Instead, these can be implemented
from the initial data collection scenario, in conjugation with the experts from the
domain research where active learning is required. To achieve higher accuracy level
during decision-making, rather than relying on single type of data, several different
types of data are employed. Apart from testing, training and validation for prediction
analysis, AI-based models can be used for detecting viruses with high sensitivity and
speed. Neural network-based classifiers can be used for screening and monitoring of
patients overtime. In this section, a detailed study on the role of AI in tackling the
problem of COVID-19 is highlighted with respect to the existing literature. Figure3a
presents network, and Fig. 3b presents density visualization found by VOSviewer
software [35]. From Fig. 3, it can be seen that forecasting and deep learning are the
most interested areas of artificial intelligence applied to COVID-19. Figure3 has
been provided based on clustering algorithm that 1000 items are distributed in the
different clusters (Table1 shows the top items with the most occurrences in each
cluster).

Various efforts have been made to develop novel diagnostic approaches using
deep learning, neural networks and machine learning algorithms. Transfer learning-
based SARS-CoV-2 assay design for screening of patients has been designed using
CRISPR-based virus detection system [23]. In an enhanced version, neural network-
based classifiers were developed for screening on large scale. This type of sys-
tem is based on the respiratory patterns of the patients [37]. Deep learning-based
enhancements have also been proposed for automatic detection and monitoring of
COVID-affected patients by analysing systematic thoracic CT-scanned images [15].
It has already been known that the hallmark of COVID-19 is patchy shadows and
opaque ground glasses distributed bilaterally within the respiratory system. So deep
learning-based methods were used to extract the radiological graphical features for
diagnosing the coronavirus [36]. Similarly, chest images classification using multi-
objective differential evolution-based convolution neural networks has also been
done [34]. These studies not only pave way for increased accuracy and speed but can
also help in reducing the total number of healthcare workers required to complete the
same task. Apart from that, contactless healthcare system will minimize or reduce
the chances of disease transmission to the healthcare workers.

A second aspect where AI has played a significant role in combating the COVID-
19 pandemic is the prediction and forecasting of expected rise in the number of
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(a) Network visualization

(b) Density visualization

Fig. 3 Visualization found by VOSviewer software
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Table 1 Top keywords in each cluster

Clusters 1 2 3

Item 1 Accuracy Automation Artificial ventilation

Item 2 ARIMA Chest CT Consensus

Clusters 4 5 6

Item 1 Body temperature China Analysis

Item 2 2019 novel
coronavirus

Coronavirus Biotechnology

Clusters 7 8 9

Item 1 Anorexia Case series Anxiety

Item 2 Case series Chest X-ray image Artificial intelligence

Clusters 10 11 12

Item 1 Drug targeting Big data AI applications

Item 2 Gen ontology Clinical feature Computer scientist

Clusters 13 14 15

Item 1 Climate Metabolism Deep learning

Item 2 Environment Molecular dynamics Medical Imaging

Clusters 16 17 18

Item 1 Climate Metabolism Chest CT

Item 2 Environment Molecular dynamics Image recognition

cases in any particular region. Initial studies included adaptive neuro fuzzy inference
system using flower pollination algorithm and salp swarm algorithm for forecasting
total new cases in mainland China [2]. Deep learning-based long short-term mem-
ory (LSTM) networks were used to predict ending point of outbreak without using
loosing temporal components [9] . Wide range of mathematical and statistical mod-
els such as autoregressive moving average (ARIMA), moving average and others
have also been used to model the transmission dynamics of COVID-19 pandemic
[10]. Genetic programming-based models have also been proposed to analyse and
forecast the impact of virus in different countries of the world [30, 31]. Also, along
with epidemiological data, environmental factors have also been studied to analyse
and forecast the possible effect of temperature, humidity and other factors on the
increase in COVID-19 cases [24]. Apart from that, various other algorithms such
as krill herd [13] and naked mole rat [5] can be used for analysis and prediction
of COVID-19 case. These studies have helped to predict and forecast the possible
effect of COVID-19 in coming days and helped the authorities to come up with
certain solutions such as imposing lockdown, strict travel restrictions, limiting mass
events and others. Also transfer learning-based techniques can be used to analyse
the possible impact of COVID-19. As an example, the possible impact of COVID-
19 in China, Italy, USA, Brazil and India can be used and extended to analyse and
predict the effect in other countries. It means a model trained in Italy or China or
India can be used to automatically detect coronavirus in Singapore or Australia. In
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other words, for a respiratory syndrome such as COVID-19, cross-population train-
ing and testing-based AI models must be designed so that automated detection can
be processed. In parallel, the COVID data sets generated by AI-based models can be
used for decision-based training without the formal requirement of whole data. In
the next section, a detailed study of AI-based techniques with respect to COVID-19
is presented.

Instead of diagnostic, monitoring and forecasting studies, there is a need of effec-
tive therapeutic strategy to treat COVID-19-affected patients at a rapid pace. As
clinical trials for various drugs are under way, there is an urgent need to analyse
previous potential drug candidates against the deadly virus. A machine learning-
based positioning and purposing strategy has been designed to prioritize existing
drugs against COVID-19 for clinical trials [14]. Also, novel drug like compounds
have been discovered by using deep learning-based drug discovery pipelines [42].
Google platform DeepMind has also come up with the protein structure associated
with the COVID-19, which if done by traditional experimental formulations may
take months to compile [33]. A reverse vaccination tool using integrated technology
and machine learning has also been proposed in [27] to tackle the ongoing scenario.
Molecular transformer drug target interaction-based deep learning model has been
used to identify commercially available antiviral drugs to potentially reduce or dis-
rupt the effect of viral component such as proteinase, polymerase and helicase from
the SARS-CoV-2 viral component [6]. Thus, tremendous efforts are being carried
out to produce a potential vaccine for COVID-19 as the earliest possible, and AI is
playing a very significant role to subsequently transform minimal available informa-
tion into useful resources for easy access and implementation. Figure4 shows the
citation network based on authors. The minimum number of documents and citation
of an author has been set 1 resulted in 422 authors selected. Selda- Enriquez G., Sola
Ortigosa J., Ruiz- Villaverde R., Roncero Riesco M. are among top cited authors
in the field. AI also plays significant role in helping humanity on a whole by pro-
viding a general framework for health, economy and policy-making in order to deal
with the pandemic. This can be better understood from the fact that AI is considered
as the major non-pharmaceutical interventions and the most effective tool to con-
tain pandemic. This can help the whole population to reach herd immunity. These
containment measures have a prominent effect on reducing the spreading speed of
the virus, although it is necessary to find an optimal strategy to implement them
[32]. Generally, there are two tactics: a restrictive one, using a protective approach
to handle the population by imposing lockdowns and self-isolation (e.g. Japan or
South Korea), and a relaxed approach, for not taking any precautions at all to reach
herd immunity faster (e.g. Sweden or the UK in the early phase of the pandemic). A
protective strategy prevents healthcare systems from collapsing while putting large
pressure on the economy. Contrary, the second approach helps to provide a stable
economy. However, the number of case fatalities would rise dramatically. Thus, the
top priority is to not overstrain the capacity of the healthcare system and simultane-
ously keeping the economy going. This shows a need for a trade-off strategy between
the containment of the pandemic and economic health [19]. Overall in this scenario
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Fig. 4 Citation network

also, AI can be used to find optimal trade-off between both health and economic
constraints [21].

Apart from the above discussed advantages of AI in handling the COVID-19
pandemic, there are some points that need to be dealt with, and in most of the cases,
human needs to be in the loop to make final decisions. This can be better understood
from the health economic dilemma problem which is highlighted by the fact that
whatever the scenario is, policy-makers and involved persons work in collaboration
to deal with the pandemic. For example, the AI-based models can provide numerous
possible solutions to deal with the health and economic aspect of pandemic. Based
on these solutions, the policy-makers can decide how to deal with the whole scenario
in an organized manner.
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4 Insightful Implications and Future Direction

Healthcare organizations are in urgent need of decision-making or more precisely
multi-criteria decision-making to handle the coronavirus and get proper suggestions
to limit its spread. AI plays a very significant and vital role in an efficient way to
mimic human like intelligence. It may also provide possible understanding of the
basic protein structure of COVID-19 and hence suggesting the development of a
potential vaccine. Overall, important conclusions and some insightful implications
can be drawn as follows:

• For forecasting prediction analysis, various models can be integrated including
ARIMA models, Weibull function, evolutionary approaches and others. These
models have already been used for analysis of various diseases, and integration of
these into one another can make the system more convenient and reliable.

• Predicting protein structure of COVID-19 and their interaction with host human
proteins and the cellular environment is another important aspect which can be
dealt by using AI-based techniques. This may help to analyse the basic structure
of the virus, and hence, potential vaccine can be derived.

• Incorporating indicators such as population density, age distribution, individual
and community movements, healthcare facilities available can be included in
regression or computational models to enhance prediction accuracy.

• AI-based real-time forecasting, wireless sensors, camera for surveillance, visual
tracking of symptoms from the affected persons and using apps such as Arogya
Setu, worldometer and others to keep a check on the number of infected cases.

• Analysis of social media data sets from platforms such as Twitter, Facebook and
others for real-time collection of epidemiological data.

• Contactless treatment using AI-based robots, for drug delivery, treating patients
at remote locations without the involvement and direct contact of medical staff.

• Risk assessment with different age grouped person can be analysed and predicted.
This will help to find which section of the population is most vulnerable and needs
to be given more intensive care.

Overall, there are numerous factors where AI plays a significant role in keeping a
check on the spread of the virus, providing primary care to patients and searching a
potential vaccine for curing the disease. The research is still on, and as compared to
traditional testing mechanisms, AI has contributed significantly towards its advance-
ments. Research data from diseases such as pneumonia and others has been used as
basic preliminaries to formulate new hypothesis for COVID-19 pandemic and anal-
yse its effect. Apart from that, models have been made to make a possible vaccine
using deep learning epidemiological data. Thus, we can say that, with the advent of
AI, even diseases such as COVID-19 can be brought under scanner, and possible
solutions can be obtained.
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5 Conclusion

In this study, we analyse the overall significance of AI-based techniques in order to
fight with the COVID-19 pandemic. Typically, AI-based tools can assist mankind
in various forms from detection of various infections to treating infected patients
and from forecasting of the total number infections to keeping track of the various
advances for proper policy-making. Detailed discussed study shows that AI can track
the COVID-19 crisis under various constraints such as medical, climatic conditions
and others. AI can also be used to facilitate research by analysing already available
literature. Apart from that, it can serve as the basis for providing proper treatment to
patients, prevention, vaccine development, policy-making and other tasks for humans
to make the final decision.
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Sewer Corrosion Prediction for Sewer
Network Sustainability

Jianjia Zhang, Bin Li, Xuhui Fan, Yang Wang, and Fang Chen

1 Introduction

Sewer corrosion is a key issue in wastewater systems worldwide, particularly in
warm climate countries such as Australia. As seen in Fig. 1, sewer corrosion results
in concrete loss, sewer pipe cracks and ultimately structural collapse [8]. It gradually
deteriorates sewer network, which is one of the most critical infrastructure assets
for modern urban societies [7], and as a result of this, the value of public assets
is being significantly diminished. The mitigation and renewal of corroded sewer
pipes are highly costly. The cost of sewer corrosion in Australia is estimated to be
hundreds of millions of AUD per year [20] (http://www.score.org.au)—This has not
included those indirect costs, e.g. lost time and productivity caused by corrosion-
related outages, delays, failures and litigation [10]. Moreover, the cost is expected to
increase in future as the ageing sewer pipes continue to corrode. Besides economical
costs, sewer corrosion may also lead to other issues, e.g. odour complaints and traffic
blockage.

Considering the serious negative effect of sewer corrosion, measures should be
taken to mitigate the corrosion process, e.g. dosing chemicals [3, 6, 7] or using
protective coatings and liners [2, 14, 16, 19]. A preliminary requirement of these
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(a) Corroded handlers (b) Corroded roof (c) Concrete loss (d) Structural collapse

Fig. 1 Examples of sewer corrosion effects on the sewer network

preventive operations is to know the corrosion status of the sewer network. However,
inspecting the corrosion status of all pipes is infeasible in practice. Firstly, there are
a large number of sewer pipes (e.g. several thousands in Sydney) in a modern city.
Vast human and material resources are required to inspect all these pipes, making
it unaffordable for water utilities. Secondly, many pipes are not easily accessible
because of their sizes, locations or hazardous conditions. Therefore, a water utility
expects to inspect a small portion of the sewer pipes which are at high corrosion risk.

In this case, predicting sewer corrosion on the entire sewer network is a critical
task for water utilities around the globe in order to improve efficiency and save
costs in chemical dosing and sewer pipe rehabilitation. The water utility requires a
corrosion prediction model built on influential factors that cause sewer corrosion,
such as hydrogen sulphide (H2S) and temperature. However, reliable prediction of
sewer corrosion has often been hampered by insufficient observations of influential
factors (e.g. H2S and temperature) and inspections of corrosion status as ground truth
for accuratemodelling. As aforementioned, increasing the number ofmonitoring and
inspection sites may be infeasible due to cost and accessibility. Therefore, modelling
of sewer corrosion on the entire sewer network with a limited number of monitoring
sites is non-trivial. Current study of corrosion rate prediction for concrete sewers is
mainly conducted in very few testbeds deployed in the sewer system, with an array of
coupons installed along with a variety of sensors for measuring different influential
factors. However, the physical model [20] is calibrated in a certain testbed, and it may
not be versatile in any sewer system of any city due to very different environments
and lack of measurements of the required factors.

This chapter attempts to leverage a Bayesian nonparametric method to predict the
sewer corrosion risk on the entire sewer network with a limited number of observa-
tions. Specifically, this is achieved in two steps: (1) Gaussian process [13] is used
to estimate the distributions of the two influential factors, H2S and temperature, on
the entire sewer network; (2) based on the estimation results of influential factors,
a second-level Gaussian process is used to further predict the corrosion risk levels
on the entire sewer network. Thanks to the Bayesian nonparametric method, the
corrosion prediction model based on Gaussian process is able to integrate the physi-
cal model developed by domain experts, the sparse H2S and temperature monitored
records and the sewer geometry to predict corrosion risk levels on the entire sewer
network. Because of incorporating physical model as prior knowledge, the hypoth-
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esis space of the model parameters can be regularized, and the issue of insufficient
observations can be mitigated.

The proposed method has the following desirable properties: (1) the proposed
method is able to integrate expert domain knowledge (physical model) into the pre-
diction model to alleviate the issue of insufficient data. The adopted data analytics
technique is a Bayesian nonparametric method which provides a way to regularize
the prediction with domain knowledge; (2) the proposed method is flexible. The
prediction model in this work can readily incorporate more factors related to sewer
corrosion. Therefore, the model can be easily improved by employing additional
data collected in the future. In addition, the proposed model could well handle large-
scale sewer networks, making it widely applicable; (3) the proposed model built on
Gaussian process not only predicts the sewer corrosion level quantitatively, but also
estimates the uncertainty of the prediction. This uncertainty is an important measure
in decision-makings and cost-effective sewer operations. For example, it can be used
to prioritize high corrosion areas, recommend chemical dosing locations and suggest
deployment of sensors.

A case study is conducted on real data set from a water utility in Australia.
The empirical study demonstrates that the proposed method could achieve promis-
ing sewer corrosion prediction results. The results admit several promising further
applications for water utilities, including prioritizing high corrosion areas and rec-
ommending chemical dosing profiles.

2 Case Study

This work is to collaborate with an Australian water utility to make use of data
analytics techniques for sewer corrosion prediction. Thewater utilitymanages around
24,000km of sewers, of which approximately 900km is large concrete trunks up to
2m in diameter. Sewer corrosion is a serious concern for the water utility, who
spends about 40 million AUD per year on the rehabilitation of corroded sewer pipes.
Therefore, predicting sewer corrosion is a critical task for the utility to improve
efficiency and save costs in sewer pipe rehabilitation and chemical dosing. This
motivates a collaborative project between the utility and Data61, aiming to assess
the feasibility of predicting corrosion in sewer network using data analytics. The data
provided by the water utility includes

• Sewer network geometry data: including the length and GPS coordinates of the
sewer pipes in the sewer system;

• H2S Observation data: including GPS coordinates of 17 observation sites the
sewer system, as shown in Fig. 2 (left), and the H2S records of these sites from
January 2011 to December 2015 with a sampling frequency of 15min;

• Temperature observation data: including GPS coordinates of 13 observation
sites, as shown in Fig. 2 (right), and the temperature records of these sites from
January 2011 to December 2015 with a frequency of 15min;
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(a) H2S observation sites. (b) Temperature observation sites.
(represented by red asterisk). (represented by blue square).

Fig. 2 H2S (Left) and temperature (Right) observation sites on the sewer network

• Traverse reports: including two batches of traverse reports conducted during
2007–2010 and 2011–2016, respectively. In each period, a set of sewer pipes are
inspected, and their corrosion risk levels (1–5) were recorded. The corrosion risk
levels in the reports are shown in Fig. 3a, b.

With the data provided above, sewer corrosion prediction aims to construct a
mapping from two influential factors, H2S and temperature, as input to the corrosion
risk level as output. The challenge lies in the data sparsity, that is, the data sampling
points on the sewer network are very sparse. Thus, developing a robust sewer corro-
sion prediction model requires techniques suitable for this particular problem. This
study is an attempt to construct a prediction model for sewer corrosion on the entire
sewer network.

3 Preliminaries

3.1 Related Work on Sewer Corrosion

In the last decades, extensive research has been conducted on understanding and
managing sewer corrosion [4, 5, 7, 11, 22]. It has been verified that the production
and emission of hydrogen sulphide (H2S) are a major cause of corrosion in sewer
systems [1, 15]. Sulphate-reducing bacteria residing in the sewer system could turn
sulphate in the wastewater into sulphidewhen anaerobic conditions prevail in a sewer
system. During this process, H2S emits into the sewer atmosphere [8]. In a later stage,
H2S present in the sewer systemwill be consumed by bacteria, and sulphuric acidwill
be generated in biological oxidation of H2S [12, 18]. The sulphuric acid generated in
this stage causes internal cracking and pitting in the sewer pipe, which exposes more
pipe surface for acid attack [8]. Step by step, mass corrosion of sewer pipe happens.
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Also, it has been found that the conversion rate of sulphuric acid in the sewer system
from H2S is proportional to the concentration of H2S in the sewage [12].

Besides H2S, temperature is also a marked factor affecting the rate of sewer cor-
rosion since sulphuric acid generation is a biological phenomenon. Specifically, tem-
perature plays an important role in the emission of H2S from liquid to gas phase [21]
and can affect various abiotic and biotic reaction rates important for corrosion [9]. It
has been found in [9, 12] that the generation rate of sulphide increases with the rise
of temperature.

The findings above motivate this work to first conduct estimation of H2S and
temperature on the entire sewer network; and based on the estimation results, pre-
diction of corrosion risk level on the entire sewer network is further carried out.
This is because (1) both H2S and temperature are well-verified influential factors to
sewer corrosion in the literature, and (2) in comparison with inspecting corrosion
status of the sewer network, H2S concentration and temperature can be more conve-
niently monitored and collected by using electronic sensors and telecommunication
techniques.

3.2 Brief Introduction to Gaussian Process

Gaussian process (GP) is a generic supervised learning method designed to solve
regression and probabilistic classification problems. The general idea behind GP for
regression is illustrated in Fig. 3c. As seen, the unknown value of a certain type of
measurement (in the following, we take H2S for example) at siteU can be estimated
as a weighted combination of values collected at the observation sites A, B and C .

V (U ) = wA→UV (A) + wB→UV (B) + wC→UV (C) (1)

where V (U ) denotes the predicted H2S at any unknown point U (the green dot in
Fig. 3c) on the sewer network while V (A), V (B) and V (C) denote those points
with observed H2S (the three red dots in Fig. 3c). The weights wA→U , wB→U and
wC→U are learned automatically through the GP. By repeating this prediction for any
unobserved point on the network, the estimation of H2S on the entire network can
be obtained, as shown by the red line in Fig. 3c.

GP has several advantages: (1) GP enables integration of prior knowledge, such
as the physical model developed by domain experts of sewer corrosion. This prior
knowledge could regularize the hypothesis space of the prediction model; (2) the
prediction of GP is a Gaussian distribution, such that one can compute empirical
confidence interval using thevarianceof theGaussiandistribution andmakedecisions
based on these confidence intervals. The confidence interval is illustrated in Fig.3c.
As seen, the farther the prediction point away from the observation points (red dots),
the more uncertain the prediction result is; (3) GP is flexible and versatile. Different
regression objectives can be achieved by simply specifying different kernels (will be
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Fig. 3 a and b Two batches of traverse reports in (2007–2010) and (2011–2016). Five different
colours denote five levels of corrosion risk 1–5 (1 for lowest risk and 5 for highest risk) while black
lines denote those pipes without a traverse report. c Illustration of the prediction and the associated
prediction uncertainty of a Gaussian process on a segment of sewer. The red curve denotes the mean
value of the prediction, and the bandwidth denotes the uncertainty. The farther the prediction point
away from the observation points (red dots), the more uncertain the prediction result is

introduced in the following section). This enables both influential factor estimation
and corrosion prediction on the entire sewer network in a similar framework.

A GP is a generalization of the Gaussian distribution in the infinite dimensional
space. Similar to a Gaussian distribution, a GP is also fully specified by a mean
function and a covariance function (also known as a kernel function). Therefore, the
key to use GP is just to specify these two functions for our goals. The design of two
functions for influential factor estimation and corrosion prediction will be introduced
in the following section.

4 Methodology

The aim of this work is to develop a prediction model based on a Bayesian nonpara-
metric method. A typical Bayesian model is in the form of “Prediction (posterior
distribution) = Domain Knowledge (prior distribution) × Data Fitness (likelihood)”,
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where “Domain Knowledge” provides a hypothesis space to the model such that the
model is not only driven by the data (in terms of “Data Fitness”) when data is suf-
ficient, but also does not deviate too far from the domain expert’s hypothesis when
data is insufficient.

Through Bayesian modelling, we can thus (1) integrate domain experts’ knowl-
edge, for example, using the existing physical model as prior knowledge and (2)
conduct prediction as a posterior distribution, whose variance can be viewed as
the uncertainty of the prediction. In the following, we first introduce the Gaussian
process-based prediction model and then elaborate how it is adapted to H2S, tem-
perature and corrosion prediction on the entire sewer network.

4.1 Gaussian Process-Based Prediction Model

The prediction problem introduced above is essentially a regression problem on a
network. To address this problem, we adopt a Bayesian nonparametric method—
Gaussian process (GP) [13] to achieve this goal due to its outstanding performance
and desirable properties aforementioned. In order tomake this chapter self-contained,
this section briefly introduces GP. GP assumes that all the training (observed) and test
(unobserved) data can be represented as a joint multivariate Gaussian distribution:

[
yO
yU

]
∼ N

([
µO

µU

]
,

[
KOO KOU

K�
OU KUU

])
(2)

where µO and µU denote the means of training and test points, respectively; KOO

denotes the covariance matrix of the training set, KOU denotes the covariance matrix
between the training set and the test set, and KUU denotes the covariance matrix of
the test set.

Given the values of the training set yO , the conditional distribution of the test
value yU can be expressed as follows:

yU |yO ∼ N
(
µU + K�

OUK
−1
OO

(
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)
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−1
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)
(3)

The optimal estimation of yU is the mean of the above Gaussian distribution:

ŷU = µU + K�
OUK

−1
OO

(
yO − µO

)
(4)

and the uncertainty of the estimation is reflected in its variance:

var(yU ) = KUU − K�
OUK

−1
OOKOU (5)

As discussed above, a GP is fully specified by its mean function to obtain µO and
µU and covariance function k(·, ·) to calculate KOO , KOU and KUU . Please refer
to [13] for more details about GP.
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In our case study, µO and µU can be the observed and unobserved values of a
factor (e.g. H2S and temperature) or the corrosion risk level, respectively;KOO ,KOU

and KUU are the covariance matrices between these observed and unobserved sites.
The specification of these functions will be introduced in the following.

4.2 Factor Estimation

This section introduces how mean and covariance functions of the GP-based predic-
tion model are specified to estimate H2S concentration and temperature on the entire
sewer network.

4.2.1 Mean Function

The mean function for estimating H2S is the output of the absorbing state random
walks (ASRW)1 [17]. ASRW is a widely used algorithm for interpolation and extrap-
olation on a network (e.g. electricity network). The input of an ASRW algorithm is
the network structure represented as a directed graph and the values of some observed
points on the network; the output of the ASRW is the interpolation and extrapolation
results on the entire network. Since the interpolation and extrapolation are based on
smoothing, the results can be naturally viewed as a coarse estimation of the mean
values of H2S (assigned with the results of ASRW), with the assumption that the real
distribution of H2S will not be far away from the mean function.

ASRW is adopted as the mean function of the prediction model for the following
reasons: (1) ASRW has no specific assumption on the underlying graph structure,
and it can be easily applied to sewer networks, which usually have complicated graph
structures; (2) the interpolation and extrapolation results of ASRW are smooth on
the network, and this coincides with the status of gas phase H2S, which is smoothly
distributed in sewer networks due to diffusion; (3) ASRW is very efficient to compute
which makes it applicable to large sewer networks.

4.2.2 Covariance Function

The commonly used exponential kernel function is employed as the covariance func-
tion of theGP-based predictionmodel.Due to the constraints of the network structure,
H2S can only diffuse along the sewer networks. Instead of the traditional Euclidean
distance used in the exponential kernel, this work argues that geodesic distance
should be used in the kernel function to incorporate the underlying network struc-
ture. Therefore, we need to first compute the shortest geodesic distance, denoted as

1 The introduction to ASRW is out of the scope of this chapter. Interested readers are referred to [17]
for details.
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di j , between any two points i and j on the network as the distance between these two
points. Then, the exponential kernel can be defined in terms of the shortest geodesic
distance as follows:

K i, j = exp

(−d2
i j

σ 2

)
(6)

where K i, j denotes the i-th row and j-th column of the kernel matrix and σ is
the bandwidth of the exponential kernel. With this kernel function, the covariance
matrices KOO , KOU and KUU in Eq. (2) can be computed using training–training,
training–test and test–test data sets, respectively. Then the mean and variance of the
H2S concentration on the entire sewer network can be estimated by applying Eqs. (4)
and (5), respectively. In this way, the spatial H2S estimation is achieved. By repeating
this process for the unknown points at any time point, the estimation of H2S is finally
obtained.

Similar to the H2S estimation introduced above, the estimation of temperature
on the entire sewer network can be obtained in the same manner with the observed
temperature.

4.3 Corrosion Prediction

This section introduces how mean and covariance functions of the GP-based predic-
tion model are specified to predict sewer corrosion rate on the entire sewer network.

4.3.1 Mean Function

The mean function, i.e. µO and µU in Eq. (2), is set as the physical model derived
from [20]:

Rm = A · H 0.5 · 0.1602η − 0.1355

1 − 0.977η
· e −45,000

RT (7)

where A is a constant calibrated empirically using the training data (coupons on the
testbed), H denotes the H2S concentration, η denotes the fractional relative humidity
of the sewer atmosphere, which is set as the average humidity of several coupon sites
in the sewer network, R denotes the universal gas constant, T denotes the absolute
temperature, and the result Rm denotes the corrosion rate.

As aforementioned, Eq. (7) was developed by the domain experts of sewer corro-
sion research [20] based on the coupons. Therefore, this mean function represents a
hypothesis space of the corrosion rate based on domain knowledge such that the pre-
diction of the proposed prediction model will not deviate domain experts’ hypothesis
too far. In other words, the mean function is used as prior knowledge to regularize
the hypothesis space of the proposed prediction model.
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4.3.2 Covariance Function

Considering the fact that the sewer corrosion rate is closely related to the sewer
network geometry, H2S concentration and temperature [1, 9, 12, 15], the kernel
function of the GP-based prediction model for sewer corrosion is set as a linear
combination of three kernels corresponding to these three factors, respectively:

K = α1KG + α2KH + α3KT (8)

whereKG is the exponential kernelwith pairwise geodesic distance defined inEq. (6),
KH is an exponential kernel with pairwise difference of H2S concentration between
two points as the distance, KT is another exponential kernel with pairwise difference
of temperature between two points as the distance, and αi s are the linear combination
coefficients for the three kernel matrices.

With the mean and kernel functions defined above, the corrosion rate prediction
can be performed by applying Eqs. (4) and (5) on the entire sewer network at each
time point, by assigning µL with the observed corrosion rate calculated based on the
two batches of traverse reports.

5 Case Study

In this section, a case study is conducted to evaluate the proposed corrosion prediction
model using the data provided by the water utility introduced in Sect. 2.

5.1 Evaluation

In order to predict the sewer corrosion,wefirst estimateH2S and temperature distribu-
tions on the entire network over five years (2011–2015) using the method introduced
in Sect. 4. The training data used in this estimation procedure is the H2S and temper-
ature records as described in Sect. 2. The hyper-parameters, including σ in Eq. (6),
A in Eq. (7) and αi in Eq. (8), are all tuned automatically by maximizing the log
marginal likelihood [13].

The estimation of monthly average H2S and temperature along with the sewer
geometry data are then used as the input to predict corrosion rate as in Sect. 4.3. The
ground-truth corrosion rates are derived from the two batches of traverse reports.
Specifically, there are 17 sewer pipes having corrosion risk level records in both peri-
ods of traverse reports. This enables calculating the ground-truth average corrosion
rates, denoted as Rg , of these 17 pipes using the following equation: Rg = C(t2)−C(t1)

t2−t1
,

where C(t) denotes the corrosion risk level record at time t in the traverse reports.
The case study adopts the commonly used leave-one-out (LOO) evaluation

method. Specifically, the 17 sewer pipes with known corrosion rates are used in
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the evaluation. At each time, one of these 17 pipes is reserved for evaluation, and
the remaining 16 sewer pipes are used for training the GP-based prediction model.
The trained model is then used to predict the corrosion rate of the reserved pipe. The
evaluation is conducted in turn on each of the 17 sewer pipes, and the final prediction
accuracy is averaged over the 17 prediction results.

As the input of the GP-based corrosion prediction model is corrosion rate, the
direct output of the model is also the corrosion rate, denoted as Rp. In order to
obtain the corrosion risk level at a certain time, the following equation can be used:
C̃(t) = C(t0) + Rp · (t − t0), where C(t0) denotes the known corrosion risk level at
time t0 while C̃(t) denotes the predicted corrosion risk level at time t . Figure4 plots
the predicted corrosion risk levels (in green) for the 17 sewer pipes in comparison
with the ground truths (in blue). One can see that themajority of predictions have less
than 10% difference comparing to the corresponding ground truths. In average, the
prediction error is less than 10% (0.49/5 = 9.8%). The absorbing state random walks
(ASRW) are also applied for a comparison with the proposed method. As seen in
Fig. 4, ASRW (in yellow) has larger prediction errors than the proposed method for
most pipes. Statistically, ASRW has an prediction error of 17.6% (0.88/5 = 17.6%).

The proposed GP-based prediction model is able to perform corrosion prediction
at any time on the entire sewer network as long as there are some observed H2S and
temperature records. The prediction results from January 2011 to December 2015
are illustrated in Fig. 5 for example. As seen, the corrosion risk levels are gradually
increased from January 2011 to December 2015. It can also be found that the pipes
in the same area often share similar corrosion risk levels while the pipes in different
areas could vary much. This is probably because the corrosion rate of the pipes in the
same area is similar since the two influential factors, H2S and temperature, are likely

Fig. 4 Evaluation of sewer corrosion prediction
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Fig. 5 Example sewer corrosion risk maps in January 2011 (left) and December 2015 (right). The
corrosion risk levels on the maps are the prediction results of the proposed corrosion prediction
model

to be similar; while these two factors could be significantly different in different
areas. For example, the organic or chemical components in the wastewater released
in industrial areas could accelerate the generation of H2S and in turn lead to higher
corrosion rates in comparison with residential areas.

5.2 Discussion

The above evaluation results have well demonstrated the high prediction accuracy of
the proposed corrosion prediction model. Nevertheless, the model still has space to
be improved in the following aspects: (1) the temporal patterns of H2S or tempera-
ture; (2) installing more H2S and temperature sensors and collecting more H2S and
temperature records and (3) collecting several other factors, e.g. humidity or pH.

Besides improving the model, more applications can be built on the corrosion
prediction results. For example, smart chemical dosing is an on-going project tacking
advantages of the H2S and corrosion prediction results. A set of chemical dosing
unites are installed to dose certain chemicals, e.g. ferrous chloride, to reduce H2S
concentration and sewer pipe corrosion. However, how much chemical should be
dosed at each site to maximally reduce H2S is a challenging issue. The H2S and
corrosion prediction play an important role in optimizing the dosing strategy.Another
example application is odour complaint control. Knowing H2S on the entire network
could enable taking preventative measures to reduce H2S-caused odour complaints.
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6 Conclusion

Data analytics and machine learning techniques are commonly used in many appli-
cations and shown great success especially in situations where it is highly complex to
analytically model. As a data-driven machine learning technique, Gaussian process
(GP) has been successfully used in many applications. Therefore, utilizing Gaus-
sian process to model highly complex aspects of sewer environments is a reasonable
approach.

H2S content in sewers varieswith time aswell as throughout the network,meaning
it has spatiotemporal variations. GPs are proven to capture such trends reasonably
well. However, as it is a data-driven approach, the quality of the models is going to be
dependent on the quality of the data. Limited and less informative data canweaken the
accuracy of themodel predictions.On the other hand, analyticalmodels andheuristics
maybe incorporated in theGP framework to somewhat address the issue of sparseness
of data. The GP model proposed by this chapter tries to capture the H2S distribution
reasonably well given the limited number of spatial data points and their locations.
In the current Sydney water sewer systems, the number of measurements and their
locations might not have been chosen by optimal sampling strategies. Therefore, GP
predictions can have reasonably large errors and associated higher uncertainties at
some locations. However, the model seems to capture the trends reasonably well.

The corrosion process is highly complex, and accurate modelling of a large net-
work is non-trivial. Currently, the predictions of the model proposed by this chapter
are less than 10% difference to the ground truth. The GPs have a reasonably good
chance of evolving over time due to availability of more informative data. Both the
H2S predictions and corrosion prediction outputs can be used for developing dosing
strategies.

Inputs to the corrosion prediction models are, H2S, temperature, relative humidity
and geometrical distanceswhile its output is the deterioration rate of a pipe. Currently,
the H2S is sampled from a separate GP prediction model or direct observations.

In sum, this chapter proposed a corrosion prediction model based on a Bayesian
nonparametric method, named Gaussian process, on the entire sewer network with
confidence. The proposed corrosion prediction model was evaluated on a real data
set of a water utility in Australia. The evaluation results have demonstrated the
high prediction accuracy of the proposed model, with average corrosion risk level
prediction error 9.8%, which has been well received by the domain expert in the
water utility.
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1 Introduction

Exposure to pollution in the environment is a major contributor to disease globally
and has economic impacts on the order of billions of dollars each year [45]. Related
to this, the field of environmental health aims to monitor and understand factors
in the environment that affect human health and disease. This chapter examines
the challenges related to understanding airborne chemical dispersion and human
exposure along with the resulting adverse health outcomes and discusses how AI
contributes to these tasks.

One of the first challenges in environmental health is understanding which air-
borne chemicals are present and at what levels. Physical pollution models are a
standard method to estimate these quantities. Physical models are developed from
domain expertise, along with data on the emission sources and chemicals of interest.
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These are combined with atmospheric and meteorological factors that determine the
transportation and evolution of the pollutants in the environment. Models of this
nature are limited by the complexity in their design and prediction errors resulting
fromabstraction.Alternatively, geo-statistical approaches rely onmulti-variate linear
models that require large-scale spatial monitoring and geographic information sys-
tems (GIS) data to model and predict pollutant concentrations. The GIS parameters
needed formodel development and application are often available on a limited spatial
scale, and models cannot generalise across cities [82]. In cases where the necessary
data does exist, it is often held by separate institutions and corporations with distinct
legal, moral and financial obligations. As a result, the datasets are often small, and
the replications of studies are difficult. Nonetheless, there is a growing awareness in
the environmental health community about the need for high-quality, accessible data
[83]. This shift has opened the door for new and more power data-driven AI methods
to play a role.

In addition to air pollutionmodelling and prediction, there is great need to advance
the understanding of the health consequence of exposure to airborne pollutants. The
chemicals in the atmosphere co-occur and exist as mixtures that interact with each
other. Once inhaled, they persist in the body for varying lengths of time, which,
amongst other things, depends on the chemical makeup. Recent evidence suggests
that mixtures of chemicals can have a toxicological behaviour that differs from the
toxicity of the individual chemicals [20, 77] and may produce greater adverse health
outcomes [64, 71]. As a result, there is a growing movement in the environmental
health community, including regulators, epidemiologists and health practitioners, to
encourage the development of new paradigms of analysis to explore the impact of
exposure to mixtures of airborne chemicals on health outcomes [24, 41, 57, 68]. The
authors in [13, 57, 75] noted that the traditional tools of analysis are often insufficient
to assess the impacts ofmixtures of pollutants. There is a strong need formethods that
can address the unique challenges presented by high-dimensional (multi-chemical)
environmental health data [56]. In addition, there is a need for creative methods to
fill the persistent data gaps related to movement and exposure, along with methods
that can be applied in rural areas where data is even more sporadic.

Artificial intelligence (AI) is the computational process inwhich algorithms learn-
ing from data or experience, and are applied to analyse large datasets, discover pat-
terns, extract actionable knowledge andpredict outcomes of future or unknownevents
[5, 30]. Methods used in this process come from a combination of computational dis-
ciplines including statistics, mathematics, machine learning and database systems.
Prior to the application of the AI algorithms, processing steps are often applied to for-
mat and clean the data. In addition, a post-processing stage is typically employed to
visualise the results of the analysis in an intuitive and easy-to-communicate manner.

AI provides awide array of scalable and reliablemethods that have performedwell
in complex domains with similar challenges to those in environmental health. When
paired with accurate data and domain expertise, AI algorithms have demonstrated
a strong potential to support the advancement of knowledge and understanding in
applications such as in science, engineering and medicine [35, 53, 69]. Moreover,
new frontiers for the application ofAI, which often inspire novel algorithms, analyses



AI Applied to Air Pollution and Environmental Health … 197

and evaluation methods, are being explored everyday. This has inspired collabora-
tions between AI and environmental health researchers aimed at the adapting AI
methods to analyse modern, big datasets in air pollution epidemiology [10, 61, 79,
82]. Researchers are now utilising the unique abilities of AI to incorporate new data
sources, such as satellite and street view images, and social media posts into the
analysis [67, 82]. The flexibility of AI has also been used to develop a better under-
standing of the impact of exposure to airborne chemical mixtures. A recent survey
on machine learning applied environmental health found that 52% of the identified
studies employed machine learning methods to analysing chemical mixtures [61].

The remaining of this chapter is laid out as follows. Section2 presents four areas
of environmental health related to air pollution in which AI has great potential.
Specifically, air quality prediction and forecasting, health outcome analysis, source
apportionment, and decision support. A case study of the use of AI to support the
advancement of a particular application of environmental health is provided inSect. 3.
In particular, result from the DataMining &Neonatal Outcomes (DoMiNO) project1

is presented to illustrate how geo-spacial data mining and data visualisation can be
combined with GIS and traditional epidemiological analysis to generate hypothe-
ses about which mixtures of airborne chemicals negatively impact birth outcomes.
Finally, Sect. 5 discusses implication, future work and challenges related to the use
AI in environmental health related to air pollution and Sect. 6 summarises the finds
of this chapter.

2 AI in Environmental Health

This section highlights four areas of environmental health related to air pollution in
which AI has great potential. These include air quality prediction and forecasting,
health outcome analysis, source apportionment and decision support.

2.1 Air Quality Prediction and Forecasting

A significant portion of the research onAI applied to environmental health deals with
the challenge of forecasting and predicting airborne pollution levels. This includes
predicting the current air quality or pollution levels, forecasting the future values,
given some local or regional input variables, and forecasting the geo-spatial distri-
bution of air quality or pollutants. Predictions of this nature serve to support public
policy, planning and health research by simplifying and improving the accuracy of
pollution estimates and contributing to the understanding of the impact of a potential
future events, such as new highways and factories.

1 Data MIning and Neonatal Outcomes: https://sites.google.com/a/ualberta.ca/domino/.

https://sites.google.com/a/ualberta.ca/domino/
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Some examples of the application of AI in air pollution prediction include [17,
46, 66, 86]. The authors in [66] compared traditional methods, such as generalised
additive models, to the AI methods such as random forest (RF) and support vector
machine (SVM) for predicting PM2.5 during wildfire events. In [46], the authors
evaluated the effectiveness of RF, SVM and artificial neural network (ANN) for
estimating the daily distributions of PM2.5. An ANNwas employed in [17] to predict
the indoor air quality based on data recorded at outdoor air monitors, and the authors
in [49] employed boosted regression trees to improve the accuracy of common low-
cost air pollution sensors.

PM2.5 studies are typically limited to ground-based measurements. As a result,
they often utilise land-use models to estimate the spatial distributions and exposure.
Satellite-based data is expanding the spatial scope of the accessible data and enabling
the incorporation of temporal analyses. Aerosol optical dept (AOD) data, collected
as a part of NASA’s earth observation program, has been used in combination with
meteorological, atmospheric and land-use data to develop spatial-temporal PM2.5

models [14]. In this work, RFmodels were trained to predict daily PM concentrations
at a resolution of 1 × 1km throughout the metropolitan area of Cincinnati, USA.

Whilst the majority of the previous work utilised traditional AI techniques from
supervised and unsupervised learning, the power of deep learning is increasingly
being recognised and exploited in state-of-the-art public health research [82]. Unlike
physical and statistical models, classical methods from machine learning and deep
learning methods have the potential to scale up to global coverage by exploiting
the increasing supply of ground-based and satellite-based imagery, along with other
remote sensing data. This is facilitated by deep learning’s unique ability to efficiently
generalise from large datasets composed of multiple data formats, such as image,
text and sensor. Recently, researchers have utilised deep learning for haze prediction
[52, 54] and for PM2.5 and PM10 classification and exposure prediction [16, 22, 23]

The authors in [51] proposed the deep learning-based long short-term memory
(LSTM) method to predict air pollutant concentrations at fixed locations based on
historical air pollutant concentration data, meteorological data and other time series
data. Their results suggest that the method can more effectively capture spatio-
temporal correlations and incorporates auxiliary data to improve predictive perfor-
mance. In addition to predicting outcomes, the proficiency of deep learning from
image data provides the potential to identify prevalent co-occurring exposure “net-
works” through image recognition and unsupervised learning [62].

2.2 Health Outcome Analysis and Characterisation

Amajor challenge in environmental health is understanding the relationship between
exposure to airborne chemicals and health outcomes. This challenge is exacerbated
by the complexity of co-occurring airborne chemicals, the persistence of chemicals
in the body for varying lengths of time and other risk factors.
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In order to shed more light on the complex relationship between exposure and
health outcomes, researchers are increasingly looking to existing and novel AI meth-
ods for help. The availability of pollutant release data, transfer registries and chem-
ical biomonitoring data has opened the door to the application of AI to analyse
large datasets of chemical exposures. The authors in [7], for example, used frequent
itemset mining to efficiently and comprehensively evaluate relationships between
chemicals and health biomarkers for diseases in the NHANES biomonitoring sur-
vey. In [39, 70], the authors developed a new co-location pattern mining algorithm
AGT-Fisher (Aggregated Grid Transactionization) to discover spatial associations
between mixtures of chemicals and adverse birth outcomes. In [77], an associa-
tion rule mining-based methodology is used to discover patterns with relevant odds
ratios whilst limiting redundancy and control for statistical significance. The author
proposed a combined approach that first used AI to identify a subset of interesting
associations between air pollutant exposure profiles and children’s cognitive skills,
and secondly, the approach utilised traditional statistical methods adjusted for con-
founders in order to estimate the magnitude. The two-stage approach is particularly
effective for generating meaningful hypotheses within high-dimensional exposure
data.

Unsupervised clustering algorithms are another effective method to help under-
stand the relationship between airborne chemicals and health outcomes. The authors
in [63] utilised self-organising maps (SOM) to identify pollutant profiles within the
ambient air and associate themwith health outcomes. This work improved the under-
standing of long-term spatial distributions of multiple pollutants and demographic
characteristics of populations residing within areas with distinct air quality. Alter-
natively, K-means and hierarchical clustering were employed to group days with
similar chemical profiles at a single site in Boston, USA [6]. The clusters described
unique physical and chemical characteristics and are utilised to investigate physical
and chemical conditions posing higher health risks. Bayesian clustering techniques
are particularly interesting in the context of environmental health as they attempt to
account for uncertainty in the data. The authors in [58] utilise Bayesian clustering to
characterise the spatial distribution of multiple pollutants and populations at risk in
Atlanta, USA.

2.3 Source Apportionment

Manycountries regulate and require the reporting of chemicals emitted to the environ-
ment. Once released into the atmosphere, however, complex physical and chemical
processes determine their fate. In addition, many chemical emissions, such as those
frommotor vehicles and aeroplanes, are not directly tracked. As a result, it is difficult
to accurately associate local air quality measurements with the factors causing them.
Source apportionment aims to trace a given decrease in air quality or increase in a
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given pollutant back to its emission source. Amongst other benefits, the ability to
do so accurately can enable regulators to monitor emitters and is helpful for updat-
ing laws and taking steps towards mitigating the impact on humans and the broader
environment.

Existing studies largely focus on outdoor and urban air pollution and apportioning
particular airborne pollutants to potential sources, such as industrial sites, regions
and major intersections. Clustering and data analysis methods have been applied
to identify correlations and the importance of particular meteorological parameters,
traffic, fuel fired equipment and industries to air pollution [18, 19, 73, 76, 80]. The
authors in [87] utilised sequential pattern mining technique to investigate spatial-
temporal patterns of PM2.5.

2.4 Decision Support

As previously stated, accurate predictivemodels have the potential to support science
and drive decision-making related to regulations and urban planning. Given its ability
to incorporate multi-modal data, deep learning may serve as an efficient means of
predicting past and future exposures based on known or anticipated changes in land
use, traffic and the built environment. In addition, it may serve to identify areas to
be prioritised for detailed monitoring and/or surveillance [82].

Existing work focused on discovering associations between chemical mixtures
and health outcomes combined with source apportionment can serve to guide public
policymakers to increase regulations on chemicals association with adverse health
outcomes,workwith neighbouring regions to reduce the impacts of upwind emissions
and change industrial zoning to reduce the risk of the co-occurrence of chemicals that
would formharmfulmixtures. In addition, predictivemodels can be used to determine
staffing and other public health needs. In [25], the authors use data from PMmonitors
to predict hospital admission for cardiovascular and respiratory diseases. Multiple
data sources, including Twitter and Google searches, are utilised in [65] to predict
asthma-related emergency department visits and can guide staffing levels.

3 Case Study: DoMiNO

This case study presents our interdisciplinary research with Data Mining & Neona-
tal Outcomes (DoMiNO) project.2 This work serves to bridge the knowledge gap
between exposure to airborne chemical mixtures during pregnancy and the occur-
rence adverse birth outcomes (ABOs). To achieve this, we utilise state-of-the-art
methodologies from data mining and knowledge discovery. The developed spatial
co-location pattern mining algorithm AGT-Fisher involves transforming the geo-

2 Data MIning and Neonatal Outcomes: https://sites.google.com/a/ualberta.ca/domino/.

https://sites.google.com/a/ualberta.ca/domino/
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spatial pollution and birth outcome data into transactions for pattern mining with the
Kingfisher algorithm. The Kingfisher algorithm discovers dependency rules of the
form A → B, where A is a set of airborne chemicals, and B is a birth outcome [38,
39, 50, 70].

In data-intensive applications, the data mining process often discovers a larger
volume of patterns. The number of discovered patters is often greater than can be
analysed and understood by the knowledge users. This poses a significant barrier to
the effective utilisation of the mining results. In our work, for example, data mining
with the AGT-Fisher algorithm [39] produced over 1700 statistically significant co-
location patterns on our data with antecedents up to the size of three chemicals.
Metrics of interestingness applied to sort the discovered patterns can only partially
address this issue.

In order to facilitate the efficient use of the discovered patterns, we created the
visualisation tool, Visualisation of Association Rules (VizAR). This tool advances
upon the previouswork bydeveloping an interactiveWeb-based software platform for
post-patternmining, exploration and visualisation. Similar to thework of Ltifi et al. in
[55], our goal is to support human intelligence with machine intelligence. Our work,
however, focuses on geo-spatial environmental health data and the identification of
valuable knowledge in mined co-location patterns.

VizAR serves as the final step in the data mining process, as illustrated in Fig. 1.
The essential features of VizAR are (a) interactive exploration and (b) visualisations
at multiple levels of geo-spatial abstraction. It operates on the mined patterns,end
thereby alleviating the end-user from making complex technical decision regarding
algorithms and metrics. It enables users to interactively search, sort, filter, explore
and visualise the patterns and their geographic distribution at multiple levels of
abstraction.

From a domain perspective, VizAR facilitates knowledge translation by enabling
the users to connect the discovered patternwith its roots in themined data. The results
of this can both inspire new research questions and hypotheses and drive new public
policy directions. In our results, we present two use-cases for theVizAR software that
illustrate its ability to identify interesting and epidemiological significant patterns.

Data
Target data

Processed
data

Transformed
data

Patterns
Interactive pattern

analysis

Hypothesis generation

Actionable  outcomes

Pattern visualization

Traditional focus Our focus

Fig. 1 This work focuses on the final step of the data science process. Specifically, the translation
of patterns to actionable user knowledge. This image was inspired by one first appearing in [26]
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We evaluate the meaningfulness of a subset of these patterns using the odds ratio,
which is a standard approach in epidemiology.

Our evaluation demonstrates that the framework enables users to identify patterns
that are pertinent to their work and chemical combinations for which the exposed
group is at a greater risk than the unexposed according to the odds ratio. More
generally, our user-base finds that pattern discovery via AGT-Fisher and presenting
in VizAR enables them to identify new associations that have the potential to initiate
research that could lead to healthier births in the future.

3.1 Related Work

In this work, we are interested in association rules, A → B, where A is a set of
airborne chemicals (i.e. antecedents), and B is an adverse birth outcome (i.e. con-
sequent); in the geo-spatial context, these are referred to as co-location patterns.
A co-location pattern is a set of spatial features whose instances are often located
together in spatial proximity. Due to the significance in multiple fields of study, co-
location pattern mining has gained significant importance recently [48]. We address
the challenge of co-location pattern mining by transforming the geo-spatial data to
a tabular format via aggregated grid transactionization. Transactionization enables
the patterns to be discovered with standard association mining algorithms [4, 33].

Measures of interestingness play an essential role in the data mining process.
These measures are intended for selecting and ranking patterns according to their
potential interest to the user [40]. In addition, they are helpful for saving time and
space costs associatedwith the datamining process [29].Most of the existing associa-
tion mining techniques rely on frequency-based prevalence or statistical significance
to measure interestingness [4, 33, 85]. These include metrics such as support, con-
fidence, lift and the p-value [29]. Because of the exploratory and interdisciplinary
nature of data science, it is often challenging to select a metric that will accurately
rank the patterns according to the users subjective preferences. Thus, to avoid prun-
ing rules that may be of interest to the users, a low selection threshold is often used.
The result of this is a large number of potentially noisy patterns which are deemed
strong or interesting according to the data mining process. A personalised and inter-
active process is essential to support users in identifying the so-called nuggets of
knowledge that are embedded in the discovered patterns.

Visualisation effectively communicates complex ideas and experimental results
across disciplines.A significant number of general purpose data visualisation systems
have been proposed [12, 34, 81]. These are generic approaches that enable users to
load data, cluster it and visualise it in low-dimensional projections. These are limited
by their generality, the need to understand algorithms and computer programming and
are not designed for searching, exploring and visualising the geographic distribution
of mined patterns. Pattern mining researchers have developed some visualisation
tools, however, few of these have been proposed for co-location patterns [21], and
there is no work in the literature on visualising spatial contrast nor common sets
discovered in data mining.
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In general, the AI research into pattern visualisation only offers a static per-
spective on the discoveries; specifically, the user does not have the opportunity to
interactively produce the visualisations that are relevant to them in various levels of
abstractions. Recent application of data science has noted the importance of interac-
tive and exploratory tools for knowledge discovery and decision support in genetic
data and temporal medical data [55, 72].

3.2 Methodology

In this section, we present the datasets, software and evaluation process used in our
work.

3.2.1 Data and Preprocessing

The adverse birth outcomes datasets used in this research were acquired from the
Alberta Perinatal Health Program (APHP)3 and the Canadian Neonatal Network
(CNN).4 In each dataset, there are three main adverse birth outcomes: (1) Preterm
birth (PTB)—abirth that takes placemore than threeweeks before the baby is due; (2)
Low birth weight at term (LBW)—a birth in which the weight of the baby is less than
2500g and the gestational age is on or above 37 weeks and (3) Small for gestational
age (SGA)—birth in which the baby’s weight is in the lower 10th percentile for the
gestational age according to Kramer’s Canada-wide statistics [42].

The APHP database is a rich dataset including mother’s geolocated reported res-
idence by postal code for all live births during the period of 2006–2012 for the
province of Alberta, Canada. Specifically, the dataset contains the birth outcome
(non-ABO, PTB, SGA, LBW) mother’s residence location of 333,247 births. The
distribution of the adverse birth outcomes in this dataset is as follows: (1) PTB 22,733
cases; (2) LBW 5,485 cases and (3) SGA 29,679 cases. The CNN data is collected
from 19 Census Metropolitan Areas (CMAs) in all provinces across Canada through
Neonatal Intensive Care Units (NICUs). This contains mothers admitted to NICUs
during the time period of 2006–2010. In particular, the CNN dataset has the geolo-
cated reported residences of 32,836 mothers along with their birth outcomes. The
distribution of the adverse birth outcomes in this dataset is as follows: (1) PTB 17261
cases; (2) LBW 1476 cases and (3) SGA 5465 cases.

The industrial air pollutant emissions datawere accessedvia theNational Pollutant
Release Inventory (NPRI) ofCanada for the timeperiod of 2006–2012.The emissions
dataset includes estimates of yearly releases of 136 industrial chemicals.

The NPRI map in Fig. 2 shows the distribution of the 6279 industrial facilities
for the province of Alberta. The subsequent maps help demonstrate the distribution

3 Alberta Perinatal Health Program. http://aphp.dapasoft.com/Lists/HTMLPages/index.aspx.
4 http://www.canadianneonatalnetwork.org/portal/.

http://aphp.dapasoft.com/Lists/HTMLPages/index.aspx
http://www.canadianneonatalnetwork.org/portal/
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Fig. 2 From left to right, this figure shows the distribution of NPRI sites and the rates of PTB,
LBW and SGA for in Alberta during the study period

of births by ABO. To protect individual privacy, the actual locations of residences
cannot be shown; therefore, the categories are based on smoothed Bayesian rates
that indicate areas of relatively lower (purple) and higher (orange) than the average
(yellow) provincial rates of PTB, LBW and SGA. The maps were made available in
the Web Mercator projection for knowledge users to access in the visualisation tool.

3.2.2 Transactionization

The above adverse birth outcomes and chemical emission datasets were integrated
and tabulated via the transactionization process [39, 50]. To determine the overlap-
ping regions of chemicals and births, we utilised historic weather data from Envi-
ronment Canada and the Alberta Agriculture weather stations to simulate the atmo-
spheric transportation of airborne chemicals from their point sources. We generated
the dispersion region of an air pollutant from an emission point (facility) as a circular
buffer where the centre was the emission point, and the radius was defined based on
the amount of chemical released. To better reflect the dispersion area, we transform
the circular region into an elliptical buffer region based on the average wind speed
and direction. The lengths of the major axis and minor axis (a and b, respectively)
were computed as follows: a = r + γ |ν|; b = r2/a, where r was the radius of the
initial circle, and it was equal to the natural logarithm of the amount of chemical
released at a given location [r = ln(amounts)]; ν was the wind speed, and γ was
the stretching coefficient (=0.3). Detailed information about this process has been
published by [39].

As a surrogate of the maternal mobility range during pregnancy, a 5km radius
circles centred on the postal code location of the maternal residence are defined.
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Fig. 3 This figure is recreated from [70]. It presents the process of transactionization. The geo-
spatial region includes the maternal residences and mobility buffers, along with the chemical emis-
sion sources and downwind dispersion areas. Transactions record the birth outcomes and chemical
occurrences for each grid point on the map according to the overlapping mobility and dispersion
regions

This is overlaid with the region of interest (map) with a set of uniformly distributed
grid points (1-km grid). This is illustrated in Fig. 3. Each grid point recorded the
occurrence or absence of each event (ABOor non-ABO) and each industrial chemical
at its location. Thus, an example transaction for a grid point is {SGA = True, LBW =
False, ... , benzene = True, chlorine = False, PM = True, ...}. Each grid point is added
to the transaction database for co-location pattern mining. As an example, the grid
point highlighted in the figure records the co-occurrence of chemical C1, C2 and
the ABO. Furthermore, through a transaction aggregation process, this algorithm
also captures more complex scenarios where the mother was exposed to multiple
chemicals, each with non-overlapping buffer regions.

3.2.3 Data Mining with AGT-Fisher

After the transaction dataset of birth outcomes is created, pattern mining with the
Kingfisher dependency rule search technique is applied. Our previous work [39]
demonstrated that the Kingfisher algorithm [33] finds non-redundant statistically
significant co-location patterns between chemical mixtures and ABO. Kingfisher
judges the statistical significance of the association between chemical mixtures and
ABO using Fisher’s exact test.

The Kingfisher algorithm enumerates trees to search and prune the co-location
patterns, thereby discovering likely patterns in a computationally efficient manner.
The AGT-Fisher algorithm discovered a set of co-location patterns of the form chem-
ical set → ABO or chemical set → non-ABO, where the pattern satisfied a p-value
threshold. A p-value cut-off of 0.05 is used in this work. As previously stated, a
common challenge in data mining is that the list of discovered associations remains
large (i.e., hundreds). Moreover, it is highly likely that only a small subset of these
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patterns is of interest to knowledge users. As a result, a subsequent interactive and
exploratory processes is needed to enable end-users to understand and isolate the
most valuable knowledge in the discovered associations.

3.2.4 VizAR

VizAR is a formalisation for personalised rule identification that enables users to
interact with, explore and visualise the discovered co-location patterns at three levels
of abstraction:

1. Overview level
2. Pattern level
3. Instance level.

System Architecture: The architecture of VizAR is presented in Fig. 4. VizAR com-
municates with a central database that stores the previously mined patterns. By min-
ing and storing the patterns in advance, we achieve three desirable outcomes: (a)
the technical complexity of data mining is removed from the end-user, (b) the user
experience is separated from the time complexity of the data mining, and (c) patient
data is securely kept offline. In addition to the patterns, the pattern database includes
the anonymised transactions on which the patterns were mined, the corresponding
measures of interestingness and meta-data that enables geo-spatial visualisation and
exploration of the discovered patterns. VizAR interacts with cloud services to access
various kinds of resources such as maps and customised context on adverse birth
outcome rates and socio-economic status.

Fig. 4 System architecture of the VizAR framework
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VizAR Data Views: The overview level has two components. Users can visualise the
geo-spatial distribution of all of the co-location patterns and/or search, sort and filter
for a subset of co-location patterns.

The geo-spatial distribution is depicted in the form of an interactive bubble chart
in Fig. 5. It enables policymakers and other users to identify common or contrasting
trends in sub-regions (CMAs). The CMAs are listed on the y-axis with spacing
approximately scaled to the distance between their physical locations. The x-axis
specifies the unique identifier of each discovered co-location pattern.

The occurrence of a pattern at a CMA is represented by a circle. In cases where
an individual pattern (rule x) is discovered at multiple CMAs, circles are drawn at
the intersection of the rule ID on the x-axis and the CMA on the y-axis. For each
CMA, the size of the circle indicates the support in the dataset for that rule at that
CMA. The colour indicates the statistical significance of the pattern at the CMA in
terms of Fisher’s exact test (log(pF )) [39].

EX1 in Fig. 5 illustrates an example of contrasting regions (cities in this case) that
can be discoveredwith this view. In this example, Toronto andMoncton are identified
as contrasting regions because Toronto has significantly more co-location patterns
associated with it than Moncton does. In a similar manner, users can easily identify
regions that have association rules in common, such as Toronto and Montreal. We
refer to these as geo-spatially common regions, which occur when regions have simi-
lar sets of rules. Policymakers can, for example, use this view to identify CMAs with
similar issues and initiate working groups to develop focused research on specific
chemicals and mixtures in order to support future development of solutions.

Co-Location Pattern Number

Log

,
(p-value)

EX1

52

EX2

32

EX3

Fig. 5 Regional level visualisation: Bubble sizes represent the support of a rule in a particular
spatial region, and the color code represents the log(pF ) range
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Fig. 6 Search, sort and filter view. This enables the user to find patterns involving chemicals and
birth outcomes related to their research

EX2 and EX3 in Fig. 5 demonstrate that users can discover common or contrast-
ing patterns. For instance, EX3 depicts a pattern which is uniformly statistically
significant in multiple sub-regions (i.e. common set), whereas EX2 has divergent
degrees of significance in different CMAs. Specifically, pattern 52 (i.e. EX2) has
strong support and significance in Toronto and weak support elsewhere; thus, it is
a contrasting pattern. This can lead policymakers to address the question, why is it
prominent in Toronto and nowhere else? Alternatively, pattern 32 is a geo-spatially
common pattern with significance and support similar across many CMAs.

The tabular frame in the overview level enables users to find and analyse the
occurrence of patterns involving subsets of chemicals and/or adverse birth outcomes.
It is shown in Fig. 6. Users can use this feature to reduce the scope of the bubble chart
prior to analysis or drill down into the distribution of a specific pattern. In addition,
summary statistics describing the number of patterns meeting a search requirement
are produced. This includes the bar chart showing the number of patterns of each size
that were found. Here, the pattern size refers to the number of chemicals involved.
This is depicted on the right-hand side of the view.

Pattern Level Visualisation: Users can drill down to the pattern level view, depicted
in Fig. 7, by selecting a pattern of interest at the overview level. This view presents
a map of the entire geo-spatial region of interest annotated with the existence of the
selected pattern. This gives a perspective on distribution of the pattern of interest
across the CMAs in Canada. Once again, the occurrence of the pattern is depicted as
a circle, where the support and significance are represented by size and colour. The
example in this figure presents another way of identifying geo-spatially common and
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Fig. 7 Visualising a pattern’s prevalence/significance in different CMA regions. Size of the bubbles
represents the support for the pattern in a particular region, and colour code represents the log(pF )
(i.e. log of the Fisher’s p-value) range

contrasting pattern. In this case, the pattern hasmuch greater support and significance
in Vancouver than the other CMAs (i.e. a contrasting pattern/set).

In addition to themap-based analysis, strategies for pattern level analysis based on
wind rose plots are provided. A wind rose is typically used to visualise the relative
frequency of wind speed at a specific location. It is used here to emphasise the
disagreements in the support or significance of a particular pattern across the CMAs.

A spatial-temporal perspective on the patterns is also possible and very useful.
This can be achieved using the wind rose plot. Figure8, for example, demonstrates
the visualisation of a pattern across spatial regions in different months. With this
visualisation, users can, for instance, discover temporal changes and population shifts
leading to a change in the distribution of the pattern.

Instance Level Visualisation: The lowest level of abstraction is formulated as the
instance level view. It focuses on exploring a specific pattern in a specific CMA.
This view presents the individual occurrences of the pattern on an interactive map.
Figure9 depicts the distribution of the occurrence of the pattern (PM2.5, Methyl
ethyl keyton, Xylene) → PTB in the Edmonton, Canada CMA. Users can zoom in
and out on the map in order to gain perspectives on the distribution of the pattern
down to the neighbourhood level. In addition, the view allows users to overlay other
pertinent information, such as location of the emitting facilities, the interpolated
dispersion regions of the chemicals, along birth outcome rates and socio-economic
informationbrokendownbydenomination area. These help users to better understand
the population under study.

4 Results

In order to demonstrate the efficacy of our framework, we present a summary of
patterns identified through VizAR by our user-base. In addition, we describe two
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Fig. 8 Demonstration of spatial-temporal analysis by geography and birth month with wind rose
plots. This shows a mock-up of the support distribution of contrast sets for January (top left),
February (top right), December (bottom left) and annual average (bottom right)

exploration strategies employed by our users and conduct a thorough epidemiological
assessment of one of the identified patterns. This is done by calculating the odds ratios
of exposure and the outcome [70].

4.1 Identified Patterns of Interest

The user-base includes researchers in environmental health, epidemiology, neona-
tology, paediatrics and public health. Users were trained to use VizAR and given
an opportunity to use it to explore the co-location patterns discovered by our AGT-
Fisher algorithm on the datasets. A summary of the chemical mixtures of interest
identified by the users via VizAR is provided in Table1.
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Fig. 9 Instances level visualising of the co-location pattern (PM2.5, Methyl ethyl keytone, Xylene)
→ PTB in the Edmonton CMA. Green colour bubbles represent the places where only the
antecedents exist (i.e. air pollutants), whereas the red bubbles represent the places where both
the ABO and air pollutants coexist

Table 1 This table presents some chemical mixtures discovered to be associated ABOs via VizAR

Cmemicals Outcome

Lead + Toluene ABO

Lead + Xylene ABO

Lead + Nitrogen dioxide + Particulate matter ABO

Mercury + Phenanthrene PTB

Metals + Polycyclic aromatic hydrocarbon ABO

Toluene + Xylene + Methanol + Carbon
monoxide

ABO

Ethylbenzene + Methyl isobutyl ketone ABO

PM2.5 + Methyl ethyl ketone + Xylene PTB

Themixtures are either associatedwith general adverse birth outcomes (ABO), or a specificoutcome,
such as PTB
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4.2 Discovery Techniques

Use-case 1 (geo-spatial exploration): This use-case is focused on identifying patterns
of the form (chemical mixture) → ABO that have high lift values at multiple CMAs
(geo-spatial common patterns). The discovery process analyses the bubble chart to
find the rule with greatest significance for each CMA. The rules for each CMA
are tabulated, and the most frequently occurring pattern is identified as a significant
common pattern. In this case, it identifies that the pattern Lead→ SGA to is the most
significant common pattern of size one. It has the highest lift in 13 out of 19 CMAs.
This indicates that the association between lead and SGA should be a significant
question of interest in the majority of cities in our study area.

Use-case 2 (tabular search, sort and filter): The objective of this use-case is to
efficiently find subsets of airborne chemical mixtures for which the exposed group
has a significantly greater risk of having an adverse birth outcome than not having it.
This requires searching and sorting to produce two ordered set P and N . P is a set
of patterns X → A = a that is sorted according to lift, where the birth outcome is
always A = a, and X is a set of chemicals. Alternatively, N is a sorted set of negative
patterns Y → A = a. A score of the exposure risk is calculated from these sets using
the lift ratio:

LR(X, A = a) = lift(X, A = a)/lift(X, A = a) (1)

The lift ratio utilises the intuition that all of the mothers in the CMA are exposed to
the chemicals X . Thus, the larger the lift ratio, the more significant the association
between the exposure and the ABO. The lift ratio is calculated for each pattern in
Pi , {Pi : Xi → A = a} ∈ P that has a corresponding pattern N j , {N j : Y j → A =
a} ∈ N , such that the chemical mixtures are equivalent, Xi = Y j .

Five patterns were discovered using this method, and the pattern (PM2.5, Methyl
ethyl ketone, Xylene) → PTB was selected to evaluate using odds ratio, which is
a standard metric for risk assessment in epidemiology. The odds ratio is defined as
the ratio between odds of adverse birth outcome among exposed versus unexposed
groups. Thus, an odds ratio greater than 1 indicates a positive relationship between
the exposure and the adverse birth outcomes. This pattern has an odds ratio of 1.14,
which means that the exposed group is at greater risk than the unexposed group.

Figure10 gives a relative perspective on the significance of this pattern. It shows
the odds ratios, with 95% confidence intervals5 for smoking and PTB, low socio-
economic status (SES) and PTB, our discovered chemical mixture and PTB, along
with the combination of all three (smoking, lowSES status, rule 1) and PTB.The odds
ratios for smoking and SES were calculated using maternal data form the APHP and
Census data. In addition to showing that this chemical mixture poses a similar risk as
other known factors, it demonstrates that the combination of the chemicals, smoking

5 Adjusting for maternal confounders including smoking, substance use, past-preterm, mothers’
age, socio-economic status, etc.
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Fig. 10 Comparison of odds ratio (adjusted for relevant maternal confounders and socio-economic
status) for an association discovered for preterm birth with other risk factors

and low SES status poses an even greater risk than the individual components. This
finding has, in fact, inspired future work and a grant proposal.

5 Discussion

There is a growingbodyof literature andpractical examples that demonstrate the great
potential for AI to support the advancement of environmental health. Nonetheless,
numerous challenges exist, such as access to a sufficient amount of high-quality data,
how optimally pair AI with existingmethods in environmental health, appropriate AI
algorithm evaluation and parameter tuning methods and techniques to report results
in manner that is understandable and reproducible by an interdisciplinary audience.
These and related topics are discussed in the subsections below.

5.1 Pattern Filtering and Hypothesis Generation

As demonstrated by the DoMiNO case study, data mining is particularly powerful
in contexts involving mixtures of airborne chemicals. The number of patterns dis-
covered by data mining methods, however, can be large and intractable for human
analysis. As a result, pattern filtering and visualisations approaches are needed to
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reduce the volume of discovered patterns. In the DoMiNO project, the lift ratio is
utilised to filter the output of the AGT-Fisher algorithm, and hypothesis generation
is performed via the interactive visualisation provide by VizAR. The authors in [77]
developed two post-pruning criteria to filter the output of the basic Apriori algorithm.

The exploratory nature of data science implies that users are often looking for
new insights without a-priori knowledge of the form that the patterns might take.
When filtering is applied, it is important to recognise that it risks removing asso-
ciations between rare, but critical, mixtures and outcomes [62]. Researchers must
be careful to achieve the satisfactory balance between reducing the number of pat-
terns and maintaining good sensitivity. The combination of filtering and interactive
visualisation can facilitate a better in this respect. Viewing data mining results with
GIS tools has also been demonstrated to be a effective way to discover meaningful
patterns [63]. Nonetheless, additional research on best practices for pattern filtering
and hypothesis generation in the context of environment health is needed.

Because the AI algorithms generally find associations rather than causation, they
are better suited to serve as the first step in the hypothesis generation process. The
authors in [75] demonstrate AI coupled with traditional methods to narrow the search
space. The benefit of such a combined system is that the AI can be applied to
high-dimensional, continuous exposure variables, and traditional epidemiological
methods control for confounding, assess effect size, investigate various contrasting
exposures and identify chemical mixtures of interest.

5.2 Data

Exposome [83] and other ambitious projects are expanding the size and scope of
what is traditionally studied in environmental health. To support the characterisation
of the breadth of exposures that humans encounter from birth to death necessitates
the design and evaluation of novel AI methods for exceptionally high-dimensional
spatial-temporal datasets. Advancements, such as those seen in natural language
processing with LSTM and transformer networks, are needed in order to discover
critical links between events with significant temporal separation.

Regardless of the above-mentioned efforts, the authors in [62] note that the pub-
licly available data remains a significantly limited. Challenges with respect to data
access include the cost and complexity of pollution monitoring and dispersion mod-
elling, along with inconsistent collection and privacy concerns related to health
records. Whilst the number of potential exposure combinations is immense, the
pollution monitoring and health outcome data remain sparse. As a result, the authors
claim that the current data may not allow for reproducible findings. New research
focused on the application ofAI to small, high-dimensional and sparse environmental
health data is needed.

Moreover, the quality of the available data is an issue that requires attention. The
accuracy of the available data can be compromised on many fronts. This includes
due to human error and the accuracy of sensors or the dispersion models used. In
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addition, the imperfect output of AI algorithms is used as the input to subsequent AI
models. This can add a degree of uncertainty to the data that most AI methods cannot
account for [74]. AI algorithms that are robust to noise and provide well-calibrated
confidence scores will be a great use.

5.3 Robustness and Validity

Unlike traditional statistics, the focus in much of AI is on designing and develop-
ing accurate predictive models and discovering frequent, but unknown, patterns. It
is critical that collaborators in interdisciplinary application, such as environmental
health, understand the implicit assumptions and objectives being optimised by the
AI algorithms used (e.g. finding associations versus causal relationships). In many
cases, terminology may be used or understood differently between fields. For col-
laborations to be successful, issues of this nature should be identified in advance and
clarified in subsequent publications.

As discussed in [84], interdisciplinary collaborations betweenAI and environmen-
tal health researchers can serve as a gateway to new results and discoveries. These
collaborations require that the participants commit time to relationship building,
continuous learning and engagement in order to mitigate conflicts and misunder-
standings. DoMiNO utilised an iterative process of learning and familiarisation to
establish a common ground with regards to data mining methodologies and termi-
nologies. This was found to increase the likelihood of success by providing collab-
orators from across disciplines with the skill set necessary to proactively participate
in the design and undertaking of the data mining process.

In order to promote robust and appropriate use of AI in environmental health, it is
advised that practitioners explicitly state the goal of the study in advance, explainwhy
AI is needed and what the assumptions and risks are. Simulation studies and analyses
of the AI on artificial datasets that replicate key properties of the target domain are an
excellent means of building trust in and understanding of the proposed method. The
authors in [44] used a simulated study to assess boosted regression trees’ ability to
detect relationships between chemicalmixtures andmetabolic syndrome. This serves
to simplify the identification of the limitation of the method, evaluate its robustness
to training sets size, noise and correlated exposures.

Results of the AI algorithms and the hypotheses generated from them ought to be
considered in the context of the representativeness of the data used.Much like science
and society in general, it has been shown that the results of AI algorithms suffer from
bias [11, 15]. Recent work has also discussed racism in algorithms deployed in health
care [60]. Whilst the representativeness of the data is a major point of consideration
in environmental health, it is often overlooked in AI where the academic focus has
typically been on theoretical considerations of algorithmic learning. It is only now
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becoming a critical point of consideration in academic and industrial AI [88]. In
the context of AI applied to environmental health, spatial variability in exposure
profiles, demographics and contextual characteristics of the subjects in the data must
be considered.

5.4 Transparency and Trust

Transparency and trust play an important role when it comes to health and medical
applications. The most powerful AI algorithms tend to be complex and are less
transparent. This is particularly the case formodern end-to-end deep learning system.
Hence, achieving transparency and maintaining trust whilst building a successful
AI system is a challenging task, especially in an interdisciplinary setting. In part,
the DoMiNO project accomplished this through dialog and mutual learning, but
also by facilitating a human-machine interactive process where end-users actively
become part of the knowledge discovery process with VizAR. Rather than passively
consuming patterns/knowledge provided by the algorithm, the users interactively
explored them to understand their foundation and meaningfulness.

5.5 Deep Learning

Artificial neural networks date back to the 1960s. As a result of significant improve-
ments in computing power and dataset size, along with refinements in the learning
algorithms, the modern incarnation of artificial neural networks (deep learning) can
achieve human-level performance in a wide variety of applications including health
[30, 36].

In environmental health, deep learning algorithms designed for object recogni-
tion tasks, such as convolutional neural networks (CNNs), have a great potential [43].
Supported by the growing availability of ground- and satellite-based imagery, CNNs
provide the potential to simplify and improve large-scale pollution modelling and air
quality prediction [82]. A large portion of environmental health data, including that
from air pollution senors and medical records, is sequential. Like image recogni-
tion, deep learning has made significant breakthroughs in modelling and predicting
sequential data, such as natural language [32, 78]. With the growing availability of
sequential environmental health data, deep learning architectures, such asLSTMsand
transformers, have a great potential to improve the predictive performance beyond
the current standard.

Missing data is a common problem in both statistics and AI. In general, it may be
handled by removing records with missing values or filling the missing values with
estimates and data imputation [5]. However, domain-specific approaches may be
devised that produce better results. Missing values, for example, occur in AOD data
due to cloud cover and other atmospheric conditions. In [14], the authors addressed
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this by training two deep learning models, one with and one without AOD data. In
other settings, however, training two models may not provide satisfactory perfor-
mance in all conditions. Deep generative networks, such as generative adversarial
networks (GAN) [31], can serve as more powerful data imputation and augmentation
methods [37, 47].

Other important challenges in environmental health relate to limited, sparse and
class imbalanced data. This includes the lack of pollution data from rural areas
and in marginalised and low-income communities. As a result, there is a dearth of
knowledge about health issues that are specific to these communities. It is critical
that the growing potential of AI in environmental health is utilised to benefit these
communities that have traditional been under-served. In addition to new algorithms
and data sources, this will require working with communities to better understand
their environmental health wants and needs.

Learning from limited data is a challenge that transcends many deep learning
applications. It is a quickly developingfield of study that has generated a great amount
of interest [1–3]. Some exemplary methods with potential in environmental health
include data augmentation, transfer learning, domain adaption, few-shot learning
and meta-learning. Data augmentation methods serve to correct for class imbalance
and artificially inflate the number of samples from underrepresented populations [8,
9, 59]. Few-shot learning and meta-learning aim to utilise knowledge from earlier
phases of training to quickly learning new predictive capabilities [27, 28]. In the
context of environmental health, this offers the potential for the model to quickly
adapt to new health outcomes and new prediction settings. Transfer learning and
domain adaption, on the other hand, are techniques that enable models pre-trained
one dataset to be quickly refit to new, but typically related, dataset. This can enable
better generalisation in the transferred domain and faster learning [30]. A possible
application is to develop models for cities with limited data by pre-training on data
from cities with a large, representative network of air quality sensors.

6 Summary

Exposure to pollution in the environment is a major contributor to disease globally.
There remains, however, a dearth of knowledge about the levels, distribution and
types of airborne pollutants in the environment, along with how exposure to complex
mixtures of airborne chemicals impacts health outcomes. Research in environmental
health aims to monitor and understand factors in the environment that affect human
health and disease. Recent collaborations between AI researchers and environmental
health have demonstrated a great potential to help advance the science of air pollution
epidemiology, urban planning and public policy.

In this chapter, we discussed AI in the context of environmental health related to
air pollution. We outlined the importance of the field of study, the challenges that it
currently faces and the opportunity for AI to contribute to the advancement of the
field. In addition, we presented a case study on the DoMiNO project, which utilised



218 C. Bellinger et al.

AI algorithms in combination with pattern visualisation via VizAR and traditional
epidemiological analysis to generate hypotheses about which mixtures of airborne
chemicals have the greatest impact on birth outcomes. Our results highlight both
the great potential for AI in this field along with some interesting challenges for AI
researchers to address in future work with environmental health researchers.
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SharkSpotter: Shark Detection
with Drones for Human Safety
and Environmental Protection

Nabin Sharma, Muhammed Saqib, Paul Scully-Power,
and Michael Blumenstein

1 Introduction

Marine animals (sharks, dolphins, rays, etc.) are key to the biodiversity and integrity
of the marine ecosystem. Marine animals exhibit complex behaviour. Thus, exten-
sive use of the ocean for recreational activities is causing the animals, in particular
sharks, attacking humans more frequently than ever before. According to the statis-
tics published by Australian shark statistics for 2015 [1], it recorded 33 unprovoked
cases, including two fatal cases and 16 cases with injuries. The statistics show that
risk is associated with the ocean when recreational activities are carried out without
supervision. However, manual supervision of the beach by a human may miss some
of these critical and life-threatening situations.Moreover, manpower for shark detec-
tion and deterrence is costly, inaccurate and inadequate. There is a call for effective
management of the marine environment using aerial surveillance. However, heli-
copter and fixed-wing aircraft aerial surveillance are not designed for long flights,
and their flights typically last for 5–10 min with tens of thousands per flight. Another
concern is their lower accuracy [2, 3], such as 17.1% and 12.5% for analogue sharks
observed from helicopters and fixed-wing aircraft, respectively. The accuracy for a
human observer to analyse the aerial images is approximately 38% (drone pilot) and
50% (post-flight video analysis) [4], which is not adequate for effective beach safety
management and shark detection.
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Traditionally manned aircraft with experienced crew has been used for aerial
surveys and monitoring of beaches. Although the aircraft provides a very good view
of the ocean from the sky, the process is manual, time consuming and expensive and
requires the constant attention of human observers [2]. This process is susceptible
to human error. Hence, automating the whole process is a way forward for such
monitoring as it requires high precision and prompt action in case of any emergency.
The recent advancement in drone technology has made possible the availability
of cheaper drones for videography and entertainment. These drones are equipped
with high-resolution cameras capable of capturing images and videos with excellent
quality in real-time. Moreover, combined with the advancement in an intelligent
system using computer vision and deep learning, the UAVs are an excellent choice
for the identification of sharks or other potential threats from the live video stream.

The increase in shark attacks canbe attributed to the frequent interactionof humans
with the marine ecosystem [5]. Several shark control programmes [6–9] have been
widely adopted around the world to decrease the risk by removing/restricting the
sharks from areas used for recreation purposes. However, these programmes, in gen-
eral, do not discriminate sharks from other marine life, which results in interference
with the marine ecosystem and can be harmful [10, 11]. Hence, there is a need to
explore alternate solutions that facilitate the coexistence of marine life and humans
without compromising the safety of humans and marine animals.

Thus, providing safety and security around beaches is essential. Furthermore,
safety for both human beings and marine life (e.g. sharks, dolphins, etc.) in general
is critical while people continue to use the beaches heavily for recreation and sport.
Hence, an efficient, automated and real-time monitoring approach on the beaches for
detecting sharks and overall beach surveillance is necessary to avoid unexpected acci-
dents and human/marine life loss. The drone surveillance equipped with advanced
computer vision techniques provides an excellent solution for the awareness of sur-
roundings and has obvious advantages in drone search and rescue. This chapter
will discuss the application of drones for detecting sharks, deployment as a system,
the challenges associated with their operation and their effectiveness in a maritime
environment.

2 Critical Challenges in Automatic Shark Detection

Ocean is already a challenging environment, and exploring a potential technology
solution for detecting sharks automatically and performing beach surveillance pose
additional challenges and open research problems. Quite a few techniques were
proposed and used a part of the shark mitigation strategies, which includes shark net,
aerial patrols using helicopters, electronic shark deterrents, etc., to mention a few
significant ones. Although the shark deterrents [12] are effective, it still has a hidden
risk involved as there are various shark species available and some may not respond
to the pre-defined frequencies. Moreover, the devices are invasive in the context that
they are wearable, and the discharge frequencies can be harmful to both human and
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sharks or marine life in general. Hence, a technology solution which is non-invasive
to the marine ecosystem is desired.

Drones or UAVs equipped with a camera have received a lot of attention due to
their low cost, availability and potential usefulness in a wide range of applications,
including aerial photography, surveillance, delivery of parcels, agriculture, etc. Intu-
itive understanding of the streaming visual data becomes vital in such applications for
the practical usage of drones. Therefore, the use of computer vision algorithms plays
amajor role in the successful deployment of drones. Despite the great advancement in
general computer vision algorithms for object detection, tracking and segmentation,
these algorithms are not optimal for drone-based applications and need customization
based on specific requirements.

This section will discuss some of the major challenges in the development and
deployment of an automatic shark detection system for visual analysis of marine ani-
mals using drone/aerial imagery. The challenges have been categorized into unavail-
ability of datasets, environmental challenges and software & hardware challenges
and are discussed below.

2.1 Unavailability of Dataset

The first challenge was the lack of a publicly available dataset for marine animal
detection using aerial images. The dataset was collected using drones from different
beaches under a variety of conditions over a year. Development of SharkSpotter
required a large amount of footage with sharks in different environmental conditions
and locations. This was a time-consuming task as it is highly unlikely to spot sharks
during every drone flight. Machine learning algorithms and deep learning models, in
particular, require a huge amount of data for training and testing. Appropriate videos
were selected from large sequences of captured data for data preparation. Annotation
of videos, in particular, was a very time-consumming task. A trained human was
required to manually draw bounding boxes around the different objects of interest
present in video frames, and the informationwas stored in a particular format required
by the deep learning algorithms. The collection, pre-processing and annotations were
laborious and challenging before the project’s actual start. Moreover, the dataset
collection involved approval from government agencies to capture images and videos
for research and development. The aim was to cover as many scenarios as possible
in the data collection phase. However, classes were added regularly for new marine
objects, which enables the machine learning model to detect a variety of objects.
Major challenges related to data collection include the following:

• Optimal speed of UAV/drone, altitude, camera resolution for data capture and
actual deployment.

• Unconstrained lighting conditions while capturing real-time videos of beaches
using the UAV/drone.
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2.2 Environmental Challenges

The ocean is a completely unconstrained environment that poses myriads of chal-
lenges to the deployment of an automatic shark detection systemusing a deep learning
model. The change in weather conditions such as rain and the low-light condition
causes illumination that affects the object detector’s performance. Similarly, high
tides of water cause the object of interest to be hidden from the object detector caus-
ing occlusion. Moreover, power and Internet connectivity are also major bottlenecks
when flying drones on remote beaches for rescue and surveillance. Salty water and
sandy environment near the beaches are also of major concern as this might damage
the computer hardware.

Noisy backgrounds in data due to ocean waves, muddy water, human activities,
surf boards, boats, sun glare, etc., make it more complex to design an efficient shark
detection system using drones and are the major environment challenges.

2.3 Software and Hardware Challenges

The aim of the SharkSpotter project or an automatic shark detection system is to pro-
vide real-time alert for shark detection and other marine species with a significantly
high accuracy. Moreover, the challenge is to optimize the deep learning model that
can be deployed with limited resources and hardware. The deeper the architecture
of the model, the more accurate the model in general. However, the real-time per-
formance considerably decreases with deeper models. Therefore, a trade-off has to
be made between the type of model, accuracy and real-time performance keeping
in view the capacity of the hardware. On the software side, a wide range of deep
learning-based object detection algorithms are available and choosing the appro-
priate one for the task considering the real-time performance requirement. Ease of
deployment of the deep learning model on small form factor hardware is also a
challenge given the high performance and real-time processing requirements. Harsh
environment near the beach requires a rugged hardware which can withstand high
operating temperature while delivering expected performance.

Developing the software (machine/deep learning model, intuitive interface, etc.)
involved the following major challenges:

• Tracking and identifying/distinguishing sharks from other large fish/marine life.
• Distinguishing sharks from other objects, namely surfer, swimmers, drone shad-
ows, etc., in noisy background/environment.

• Detecting potentially unusual activities indicating shark attacks.
• Noisy backgrounds due to ocean waves, human activities, surf boards and other
objects.

• Real-time alarms for surf life-saving clubs/teams in case of a shark detec-
tion/attack.
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Major hardware challenges include the following:

• Choice of hardware for deploying the machine/deep learning model without com-
promising with real-time performance and high accuracy.

• Finding a rugged small form factor hardware for deployment with software opti-
mization.

• Estimating the extreme operating conditions (e.g. harsh environment) to determine
the hardware failure situations.

Figure 1 highlights some of the challenges involved in processing the aerial video
of the ocean. Among the above-mentioned challenges, some of them required human
intervention to potentially find a solution, whereas for others artificial intelligence
(AI) can potentially assist in developing an efficient/effective solution. More specif-
ically, tracking and identifying sharks from other marine animals, distinguishing
sharks from other objects, unusual activity detection, real-time alerts in case of shark
attack are some of the critical challenges which can be solved using AI with high
performance. Another important factor for the potential AI solution is to ensure that
it does not interfere with the marine ecosystem.

3 Related Approaches Towards an AI Solution

In this section, the recent works on automatedmarine animal detection are discussed.
Not much work has been reported in the literature to address the problem of

automatic marine animal detection [13–15], in general, and shark [16–20] detection
in particular. Among the recent work, Mejias et al. [21] presented two algorithms to
detect marine species automatically. They focus on detecting dugongs from aerial
images, in order to automate the aerial surveys. Two algorithms were proposed;
morphological operations and combined colour analysis for blob detection were
used in the first algorithm. The second algorithm used a shape profiling method on
saturation channel from HSV colour space. The reported result showed very low
precision rate and high false positives.

Maire et al. [13] also presented an algorithm for detecting dugongs from aerial
imagery. Their approach consisted of two stages. Regions-of-interest are determined
in the first stage using colour and morphological filter. In the second stage, shape
analysis is performed on the candidate blobs identified from the first stage.A template
matching technique is used for finalizing detection results. The system performed
better when the sea surfacewas calm, but the performance degraded as the sea surface
became rough.

Shrivakshan [16] presented an analysis of Sobel and Gabor filters for classifying
different shark types. The analysis shows that Gabor filters performed better than
Sobel filter. Use of multi-spectral imaging for automatic detection of marine animals
was studied by Lopez et al. [14]. To the best of our knowledge, the first study on
automatic shark detection using deep learning [22–25] was reported by Sharma et al.
[17]. Three different CNNs (ZF [26], VGG16 [27] and VGGM [28]) architectures
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(a) Shark, blurry image & sun glare (b) Shark, high altitude of UAV

(c) Shark & Surfer, low illumination &
murky water

(d) Shark, complex background

(e) Whale, good illumination (f) Whale, low illumination & murky water

(g) Dolphins, sun glare (h) Rays, murky water

Fig. 1 Sample aerial images of shark, whale, dolphin, ray and surfer
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were used in the study, and a comparative analysis of the performance was presented.
Five different objects, namely shark, surfer, large fish, whale and boats, were con-
sidered for the experiments. Mean average precision(mAP) of 90.1% was reported
using VGG16 architecture.

Recently, Gorkin et al. [18] proposed the Sharkeye system/platform, a personal
shark alert system used by the beach goers. The authors used a deep learning-based
method. The CNN architecture used by the authors was based on the You Only
Look Once (YOLO) methodology. Shark, surfer and ray were considered for the
experiments, and an accuracy of 68.7% was achieved during the trials.

To summarize, although global shark attacks in the recent years were quite high,
not many works have been reported towards the automation of the detection pro-
cess, as compared to the severity of the consequences. Most of the works found in
the literature used traditional machine learning approach and were quite slow with
unacceptable precision. Real-time performance and high precision are an essen-
tial requirement for an acceptable solution, which were missing in the discussed
approaches. Few of the recent works [17, 18] used deep learning methodologies or
CNNs, but extensive experiments are still needed for the development of a commer-
cial grade system.

3.1 The SharkSpotter c© AI Solution

SharkSpotter c© is the world’s first non-destructive and non-invasive technology that
uses a deep learning algorithm to detect sharks and other potential threats using real-
time aerial video imagery. Operating via cameras attached to drones that fly over the
surf, SharkSpotter improves the safety of Australia’s beaches by identifying sharks,
providing early warnings and protecting sensitive marine ecosystems. It provides
90% accuracy, compared to current shark detection methods that have an accuracy
rate of >30%. It is also a highly cost-effective approach to beach safety, costing
substantially less than current methods. Deployment of SharkSpotter has gained
beachgoers’ confidence and reinvigorated beach tourism in areas that have struggled
due to a high incidence of shark attacks.

Use of deep learning architecture resulted in an AI-driven algorithm with a high
confidence score. Data was prepared by manually annotating drone footage, and the
algorithm is trained to detect, identify and classify sharks and other marine objects.
Deployment of SharkSpotter across Australian beaches occurred after successful
trials and fine-tuning, including improving the user friendliness of the graphical
user interface. Field trials and milestone reports were used to assess performance,
users were trained, and user manuals were created to ensure SharkSpotter’s seam-
less deployment. SharkSpotter received significant media attention and won several
awards in recognition of its important contribution to shark detection and mitigation
strategies.

SharkSpotter’s capabilities far exceed those of aerial spotters, which make little
sense of the dynamic, cluttered ocean environment where sharks and other marine
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Fig. 2 Sample image of a shark (marked in red) annotation

objects are seen only as moving shadows. SharkSpotter has revolutionized shark
detection by using deep learning to distinguish between these shadows—essentially
‘seeing’ sharks under the water. SharkSpotter’s cameras relay these images to life-
savers at a control centre on the beach and provide a visual indication and audible
alert when a shark is spotted. The image relay occurs in real-time, with a latency of
just one second, quickly alerting lifesavers and beachgoers to the danger of nearby
sharks. SharkSpotter relies on lifesavers to make decisions based on the data they
are given. They can sound an alarm broadcast by the drones to alert swimmers and
surfers to a shark’s presence and direct them to leave the water. The deployable life-
saving flotation pod and electronic shark repellent attached to the drone can also be
dropped to swimmers and surfers when sharks are nearby.

Over two years, the teamused video and image processing, pattern recognition and
machine learning techniques to develop SharkSpotter’s object detection, identifica-
tion and classification capabilities. They overcame challenges associated with using
the technology in complex environments such as optimal altitude range, potential
camera resolution, illumination conditions, the infrequency of shark sightings and
the difficulties of distinguishing sharks from other large fish/marine species and
surfers, swimmers, boats and other large objects.

The UTS team collected real-time data from Westpac Little Ripper drones flown
over Australian beaches and manually annotated the resulting videos by identifying
sharks and othermarine objects. An example of annotation alongwith its correspond-
ing video frame/image is shown in Fig. 2. Pascal VOC [29] format was used for creat-
ing the corresponding XML files for annotation. Sixteen different objects/categories
were considered in the development of SharkSpotter, namely shark, surfer, swim-
mer, whale, dolphin, eagle ray, turtle, person, drone, kayak boat, paddle boat, single
paddle boat, tent (on beaches), boat(generic category), large fish (generic category)
and unknown(generic category). The generic boat category represents different types
of boats as enough samples were not available to form separate categories/classes.
Additionally, the large fish and unknown categories were used to represent large
marine animals which are not having clear shape (e.g shadows) in the video/image
due to low resolution, glitter, etc., but could be of potential interest or can pose threats
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Fig. 3 SharkSpotter c© framework version-1

to the beach users. The generic categories were defined to reduce the confusion with
sharks and enhance the performance of the system. It also enables the system to
detect a broad range of objects in the dynamic ocean environment, which can be
verified by the lifeguards/operators.

The team then used cutting-edge deep learning and the transfer learning tech-
nique [30] to fine-tune the system, accelerating the algorithm training process and
achieving better performance and accuracy. Various convolutional neural network
(CNN) architectures were evaluated, and their performance formed the basis of the
development of the custom model for SharkSpotter. A high-level framework of the
SharkSpotter solution version-1 is shown in Fig. 3. The final algorithm had a high
confidence score and efficiently and effectively identified sharks and other marine
objects in real-time using image processing techniques, state-of-the-art sensors and
AI software. It was then applied to detect, identify and classify sharks via a camera
on board a Westpac Little Ripper Lifesaver drone. A simple and intuitive graphical
user interface was designed and developed that would relay images from the camera
to lifesavers at the control centre on the beach. The aim was to provide a better end
user experience, whereby lifesavers could quickly and easily recognize and respond
to the presence of nearby sharks after SharkSpotter provided a visual indication and
audible alert.

The dataset used for developing the SharkSpotter version-1 solution comprises
more than 13K aerial video frames/images. The dataset consists of videos fromUAV
trials conducted on popular Australian beaches. The dataset was divided in three
subsets: for training, validation and testing, with random sampling. The train set
consists of 70% of the total dataset, whereas validation and test set consist of 15%
each of the total samples, respectively. Based on the initial experiments [17], a custom
CNN network architecture was designed and trained. The model was trained with
2 × Nvidia Quadro P6000 GPU, 24 GB, on a Ubuntu server (Core i7 processor,
64 GB RAM). In the training phase, the snapshot of trained models was saved at an
interval of 10k iterations. Detections with overlap greater than the 50% intersection
over union (IOU) threshold with the corresponding ground-truth bounding box are
considered as true positive and all other detections as false positive as shown in Eq. 1
[29].
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IOU = area
(
BBoxpred ∩ BBoxgt

)

area
(
BBoxpred ∪ BBoxgt

) (1)

where BBoxpred and BBoxgt are the predicted bounding box and ground-truth bound-
ing box, respectively. Average precision (AP) is calculated from the area under the
precision–recall (PR) curve [29] to evaluate the detection performance.Mean average
precision (mAP) is the average of AP over all classes/categories.

The mAP of SharkSpotter was ≈0.81 with an average precision of >0.90 for the
shark category. The performance of large fish category detection was also compara-
ble with an average precision of >0.88. High precision for large fish class justifies
its formation to represent a generic class of marine animals which are large in size
and could be of potential danger to the beach users. Additionally, large fish cate-
gory helped in minimizing the confusion with shark and whale categories. Sample
detection results are shown in Fig. 4. The resultant images show the robustness of
SharkSpotter in detecting shark under different environmental conditions along with
other objects such as whales, eagle rays, dolphin, boats, surfer and swimmer.

4 Implications of the SharkSpotter Solution

SharkSpotter was developed with an intention to create a technology solution for
shark mitigation, which is more efficient than the existing techniques, cost effective,
eco-friendly and easy to use, and can assist the lifeguards in better decision-making
in a highly dynamic ocean environment with limited visibility. The SharkSpotter
solution achieved majority of the targets with high accuracy and real-time perfor-
mance.

SharkSpotter’s economic impacts are also significant, reducing typical costs asso-
ciated with patrolling Australian beaches, which exceed $25 M per annum [31]. The
cost of deploying theWestpac Little Ripper Lifesaver drone is substantially less than
aerial detection by helicopters. A study was conducted by the Ripper Group over a
five-month period (January–May 2018) across 11 beaches in Northern NSW, mon-
itoring high beach-going activity. Using helicopter patrol for 600 hours, spending
5–10 minutes per beach per day, the cost was approximately $360 K. For around the
same cost ($363 K), Westpac Little Ripper Lifesaver drones could patrol 11 beaches
consistently for 5775 hours across the five months and could reliably monitor those
beaches via SharkSpotter for an entire day. Secondly, SharkSpotter has had impor-
tant economic outcomes for the tourism industry. SharkSpotter and Westpac Little
Ripper Lifesavers have regained the confidence of tourists and locals in struggling
beach locations. For instance, in Ballina, northern NSW, SharkSpotter has shifted
the public’s view of the town as the ‘shark capital of Australia’. This dubious title
contributed to a decline in tourism and significant losses for hotels, restaurants and
other infrastructure. A 2018 survey by the Ripper Group found that more than 95%
of people felt safer due to Little Ripper drones patrolling the beaches they visited.
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Fig. 4 Sample detection results obtained using SharkSpotter model
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InDecember 2017, 17WestpacLittle Ripper Lifesavers trialled SharkSpotter at 15
different Australian beaches to assess performance with respect to various parame-
ters including camera resolution, height above sea level, speed and flight duration, all
of which affected the performance of both the drone and the algorithm. Weekly and
fortnightly meetings were arranged between UTS and the Ripper Group to monitor
progress and maintain the collaboration. The UTS team closely participated in field
trials conducted by The Ripper Group to understand operational conditions and chal-
lenges, and field trial reports were used to improve system performance and increase
user friendliness. Milestone reports were also produced and discussed periodically
to mitigate the risks associated with the research.

SharkSpotter also has significant environmental impacts. The increased sense of
security has changed beachgoers’ emotional relationships with sharks, leading to
a reduction in reactionary shark culls in areas of high shark activity. Further, the
technology can reduce damage to marine ecosystems by replacing shark nets, which
are destructive to the marine environment and costly at approx. $50m per annum.

5 Future of Beach Safety and Surveillance

Australian beaches are well patrolled by volunteer lifesavers who monitor swim-
mers who swim ‘between the flags’. However, many of the fatalities occur ‘beyond
the flags’. It is therefore intended to develop the ‘beach of the future’ where an
entire beach will be ‘patrolled’ by the latest high-tech drones—Mini Ripper surveil-
lance drones, Little Ripper fast-reaction rescue drones, tethered drones for contin-
uous surveillance, and Ripper Ranger Coastwatch drones covering several beaches,
together with Ocean Guardian electronic shark-repellent buoys. It is also intended
to expand the suite of ‘Spotter’ technologies to include RipSpotter and PeopleSpot-
ter and DistressSpotter to detect people in distress. And further work will address
multi-spectral and hyper-spectral to get penetration in water below the surface, cou-
pled with polarization filters for sun glitter removal. It is also intended to expand the
suite of ‘deployables’ from drones for search and rescue (SAR) operations, including
flotation devices, emergency packages, defibrillators, medical supplies, etc., which
may require parachutes for deployment. And finally, our infrared sensor capabili-
ties for bushfires and night detection will be enhanced, together with algorithms to
quantify damages to structures in disaster areas.

6 Summary

Shark attacks have been a very emotive issue in Australia and across the globe.
Although numerous shark management programmes are implemented and running
globally, the risk of shark attacks is still high and is a serious threat to beach recre-
ation. The existing solutions are invasive to the marine ecosystem, costly and not
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very effective in terms of performance/accuracy. Although non-lethal shark deter-
rents are commercially available, they are not extensively tested on all species of
sharks and other marine animals, which can still pose potential risk to ocean users.
Hence, a technology solution, SharkSpotter, is presented in this chapter. To the best
of our knowledge, SharkSpotter is the world’s first AI solution for detecting sharks.
A deep learning-based approach has been used to develop the AI solution. Trained
and tested using a large dataset comprising 16 different categories of objects are
commonly found in a beach environment. SharkSpotter solution has been trialled
and deployed across several Australian beaches with high user acceptance. It is
cost-effective, highly accurate and an eco-friendly alternative to the existing shark
mitigation techniques. Moreover, it works in real-time and is able to detect sharks
with ∼90% accuracy. SharkSpotter paired with drone/UAV can provide both bet-
ter visibility (aerial view) and an efficient decision-making companion to the life-
guards and assist them to make the beach recreation much safer. Further reseach is
in progress to build a multiple sensors (multi-spectral, thermal)-based AI solution,
in order overcome the existing issues and making the beaches smarter and safer.
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Learner Engagement Examination Via
Computer Usage Behaviors

Kun Yu, Jie Xu, Yuming Ou, Ling Luo, and Fang Chen

1 Introduction

The rapid development of technologies has been revolutionizing various aspects of
education, including teaching and learning. Traditional learning involves a teacher
and students gathering in the same space, where the teacher and the books are the
primary sources of knowledge.With the aid of computers, learning has beengradually
shifting from using static materials, such as books, to interactive media in computer-
aided learning (CAL) and online learning that can provide personalized content and
feedback.

During the course of CAL, learners naturally develop their own interaction style
with computers which involves the movements and clicks of mouse, usage of key-
boards and the way they look at the screen. Such interaction styles can be translated
into quantifiable patterns to characterize learners’ behavior during learning. These
patterns allow teachers to understand learners’ engagement, which is crucial to the
learning outcome [1].
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Online learning provides and facilitates unlimited participation and open access to
learners.MassiveOpenOnlineCourse (MOOC) is a good example of online learning.
Most MOOC courses allow for self-paced learning, featured with the convenience
and feasibility for people that are not able to attend the course at fixed times,which are
generally required by the traditional teaching and learning in classroom. However,
criticism has never ceased for online learning, and a recent investigation suggests that
around 90 percent registrations of self-paced online courses have not been finished.
Furthermore, subjective engagement has become a challenge for online courses,
as the lack of classroom environment decreases the opportunities of communication
between teachers and learners, which negatively impacts the attention of the learners.

Researchers have compared traditional classroom learning with online learning.
In the research of Carlsson et al. [2], studying at school significantly raises scores
of students in terms of knowledge usage. Based on a comparative study, Norton and
Hathaway [3] have found the role of a student as a group member had a significant
impact on teacher–learners’ perception of the learning environment. The group was
sometimes seen as a powerful source of support, insight, and collaboration. Lavy’s
examination outcome [4] also aligns with this finding to some extent, which echoed
that more hours spending in schools help to increase the test scores. These findings
could be attributed to the decreased motivation of students for learning when they
are absent from school or limited methods that could be used to encourage their
engagements. The school lockdowns during the pandemic period could be used as a
test for the education technology available for remote online learning. Unfortunately,
fewsystems arrived at this point are fully prepared, inmanyaspects including learning
material development, student engagement awareness, and student assessment.

In this chapter, we investigate learner engagement modeling under the modern
learning environment. In particular, we study how to model learning engagement by
using computer usage behaviors. This chapter is organized as follows: Related work
is reviewed in Sect. 2, followed by the method in Sect. 3. Section 4 presents the
experiment results, which is discussed in Sect. 5. Section 6 draws the conclusions.

2 Related Work

The advance of technologies has significantly reshaped learning. As engagement is
a vital part of learning, we first review in Sect. 2.1 how technologies have impacted
engagement measurement in learning. Since learning materials have evolved in tan-
dem with technologies, we then study in Sect. 2.2 how learning materials should
develop to meet the needs of students, assisted by current technologies. Lastly, we
discussed how technologies can help to assess the learning in Sect. 2.3.
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2.1 Engagement

Engagement has been widely recognized as the holy grail of learning by researchers
and practitioners. Researchers have put enormous effort in conceptualizing student
engagement, or academic engagement, as a complex multi-dimensional construct
that captures a diverse range of states, such as behavioral, cognitive, and emotional
states [5]. Unfortunately, practical advances have lagged behind theoretical progress.
Traditional measures of engagement often take a uni-modal approach to source either
sensor-free student interaction data or uni-modal behavioral data [6]. Examples of
them include questionnaires, teacher ratings, video coding, etc. [7].

The advance of technology has enabled researchers to adopt a multimodal
approach. This approach employs advanced computational techniques for record-
ing the measurement of multiple aspects of engagement. It is emerging as a vial
complement to the uni-modal approach. One such example is the AutoTutor [8], a
multimodal affect detector that aggregated conversational cues, gross body language,
and facial features. Features from those sensory channels were combined to discrim-
inate among boredom, engagement/flow, confusion, frustration, delight, and neutral.
Experiment results indicated that combination of channels yielded super-additive
effects for some affective states. Similarly, the Student Engagement Analytics Tech-
nology (SEAT) [9] used student appearance and interaction logs as two modalities
to detect engagement in real time. SEAT was able to support various usage scenarios
including providing engagement states to (1) students for improving self-awareness;
(2) integrating this information in educational platforms; and (3) providing input to
teachers for implementing personalized interventions. Related to SEAT, [10] com-
bined the information from the learning context and the students’ appearance to
examine the affective states with an 8-s window. However, to achieve real-time
tracking of students’ engagement, more refined examination is required, as a few
different tasks can be conducted within an 8-s time frame. In consequence, the spe-
cific behaviors of learnerswith higher temporal resolution, e.g., mouse usage, gazing,
etc., could be potential solutions for student engagement tracking. The keyboard and
mouse usage have been identified as feasible indicators of human emotional states
[11–13], . However, to our knowledge, very few has been done to understand their
relationship with subjective emotions or learning outcome.

2.2 Learning Material Development

In addition to traditional course materials, such as filmed lectures, readings, and
problem sets, many MOOCs provide interactive courses with user forums or social
media discussions to support community interactions among students, professors,
and teaching assistants (TAs), as well as immediate feedback to quick quizzes and
assignments.
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However, different learning materials and teaching formats should be developed
to meet the needs of students with different learning styles, so that learners can select
appropriate activities based on their preference. In the work of Ally, different learn-
ing styles have been mentioned with their special needs [14]. Concrete experience
learners work well with specific examples in which they can be involved, and they
like group work and peer feedback. The instructor is considered as a coach or helper.
In comparison, reflective observation learners like to observe carefully before taking
any action. They prefer that all the information be available for learning from the
instructor instead of other peer learners. Abstract conceptualization learners like to
work more with things and symbols and less with people. They like to work with
theory and to conduct systematic analyses. Active experimentation learners prefer to
learn by doing practical projects and participating in group discussions. They prefer
active learning methods and interact with peers for feedback and information. They
tend to establish their own criteria for evaluating situations. Ally and Fahy found
that students with different learning styles have different preferences for support.
For example, the assimilator learning style prefers high instructor presence, while
the accommodator learning style prefers low instructor presence.

2.3 Assessment

Assessment could be one major challenge for online learning and home schooling.
The common way is to use quiz or other tests in the online modules at the end of
learning, which is convenient and provides instant feedback to the learner. However,
quite a few disadvantages exist for the quiz. Firstly, to facilitate the generation of
scores, most questions in a quiz are monotonous that only require user to make
a choice between a few options. The lack of free-form questions has limited the
capability and scale of assessment to a great extent. Secondly, students may take the
shortcuts to pass the course rather than to learn the knowledge. It is often observed,
for an online course, that the student checks the final questions first before start
learning, and afterward seeks answers to the questions directly. Although it could
be an efficient way to pass the exam, the student barely learns anything during this
course. Thirdly, the assessment could be non-objective, and this disadvantage also
exists for the traditional ways of assessment based on exams. Consider one student
spending an hour exploring the related literature to gain in-depth understanding
of the answer to a question, but another student just remembering the answer in
half a minute. They may provide the same answer to the same question, although
the first student should be accredited with the effort and exploration. Finally, very
limited customized assessment method is available, which should take into account
the different characteristics, learning profile, progress and interest of the students.

Although very limited literature has been identified on direct assessment of student
learning progress using signal processing andmultimodal analytics techniques, a few
relevant research on the learning strategies have been spotted. Hu et al. investigated
information-processing strategies in solving two types of complex problems [15].
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They collected eye activities using the Tobii T120 eye tracker and found that dif-
ferent eye movement patterns exist between high and low performance students.
Similarly, Khedher et al. proposed a twofold approach to assess students’ reasoning
process using static fixation and scan path with Tobii Tx300 eye tracker [16]. Their
results revealed associations between eye movement metrics and students’ reason-
ing capabilities. However, the challenge still exists that the expensive and specialized
eye tracking devices prevent the technique from being deployed in a large scale in
practice.

3 Method

In this chapter, we investigate the issue of measuring engagement in the setting
of online learning. The challenge is to obtain a dynamic measure which can accu-
rately reflect the learner’s engagement level during learning. Conventional uni-modal
approaches are limited in their delayed feedback and interaction data. As such, we
adopted amultimodal approach and designed a case study formeasuring engagement
via computer usage behaviors.

We have designed and implemented an online learning analytic system in the
Predator Lab, University of Technology, to examine the learners’ progress and learn-
ing outcome via multimodal signals including mouse movements, keyboard tapping,
together with eye gaze from the webcam. Those signals were sourced from related
computer peripherals in a non-intrusive way. Our system can identify in real time
what the learners are working on and where they are looking at, infer their engage-
ment levels, and assist in student learning assessment as well as learning material
development.

We designed an online course about food variety and healthy diets, with a quiz at
the end. We collected the user behavior data during the course of learning, together
with the learners’ scores in the quiz as an objective criterion of learning outcome.

3.1 Participants

Twenty-two volunteers, including eight females, from the University of Technology
Sydney participated in the study, with an age range of 20–42 years old. All the
subjects had good computer skills as they were from School of Computer Science or
undertaking related courses, but very few of them had taken courses on health and
food before, which was the reason that we utilized food and health material for the
study. Ethics approval was obtained for this research, and all the subjects confirmed
their consent and understanding of the nature of the study before the experiment.
They were unpaid but the best performer who answered all the questions in the quiz
correctly with the shortest time would get a movie voucher as an award.
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3.2 Learning Material and Procedure

The learning material was focused on food and health, the content of which was
adapted from the nutrition Australia online information [17]. We used the learning
material to design a short online course, including the following key elements: user
registration (the first page), information for learning (eight pages), and a quiz (the
last page). This short course was implemented with Google Forms. Images were
shown in two out of the eight information pages, and the rest of the information
pages was purely text based. Eight single selection questions were asked in the quiz,
each corresponding to one information page. A correct answer to one question gained
one point, so the highest score would be eight points.

Examples of the learning materials are shown in Figs. 1 and 2.
The subjects were required to register with a valid email at the onset of the study,

and afterward they were asked to finish the online course aiming to achieve the
highest score with the shortest time. All the subjects spent less than 20 min to finish
the designed course.

Fig. 1 Examples of the
learning information pages,
with text
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Fig. 2 Examples of the
learning information pages,
with image

3.3 Data Collection

Wedeveloped aweb service server and a client-side application to collect user behav-
ior data. Both are deployed on Acer Spin 5 laptop computers with embedded 720p
webcams. The client-side application was responsible for collecting data including
keyboard and mouse usage, as well as the face images of the subject. Every single
user activity, including keyboard typing, mouse clicking and cursor movement while
the left mouse button was pressed, would trigger a data recording event, i.e., the
system would log the user activity with a time stamp, together with the screenshot
of the screen. In comparison, face data was collected at a fixed rate of one sample
per second. Detailed data collected was illustrated in Table 1.

On the other hand, the learning outcome is evaluated via the quiz following the
learning material as introduced in the previous section. It can be quantified as the
number of correct answers out of the eight questions in the quiz.

3.4 Face and Eye Gaze Detection

We applied the face detection algorithm to determine the existence of subjects’ faces
in the captured webcam images. The approach is based on Adaboost [18], with a
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Table 1 Data collected by the system with time stamps

Data category Data attributes

Triggered by user behaviors Keyboard typing Key pressed

Mouse clicking Button clicked, cursor
coordinates (x, y)

Mouse wheel scrolling Rotation direction, rotation
speed, and cursor coordinates
(x, y)

Mouse dragging while button
pressed

Cursor coordinates (x, y)

Screenshot Contents on the screen

Fixed rate Face Face images

The data triggered by user behaviors was recorded whenever a corresponding user behavior was
detected, while one face image was captured per second

Fig. 3 Detected face (blue
box) and detected eyes
(green boxes)

cascade structure to boost the speed of face detection by focusing on more face
like sub-windows on the image. Further details of this method can be found in the
work of Viola and Jones [19]. This machine learning approach was adopted because
it is capable of processing images rapidly with high detection rates. Based on the
detected face, we could further locate the eyes in the image and infer their eye
gaze. We employed the implementation of OpenCV [20] for our experiments, and
an example of face and eye detection is shown in Fig. 3.

Based on the eye detection results, we derived the variable Re, which indicates
the relative level of engagement when reading the learning materials in one page:

Re = Te
Tp

, (1)
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Fig. 4 Mouse behaviors from a typical subject: the red dots indicate that the left button of the
mouse was pressed, and the green traces indicate mouse dragging while the left button was pressed.
The text in blue resulted from the last selection action of the mouse

where Tp indicates the time spent on a specific page of the learning material, while
Te indicates the total time that the subject’s eye gaze was detected with a focus on
the screen.

3.5 Mouse and Keyboard

Based on the collected mouse usage data, we were able to retrieve the mouse behav-
iors of subjects and identify interesting mouse usage patterns. In the example shown
in Fig. 4, a typical subject dragged the mouse to select a block of text while read-
ing, which was followed by a quick single click to cancel the selection. This mouse
operation was repeated during the whole course of reading and learning. However,
for other subjects who rarely used the mouse clicks or such behaviors to assist the
learning, the information we could gather was very limited. Similar to the eye gaze
analytics, a variable Rm was derived with

Rm = Tm
Tp

, (2)

Due to the nature of the study, very few subjects used the keyboard when they were
working on the course, so the keyboard data was insufficient for further examination,
and hence our focus of examination was on the mouse usage.
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4 Results

4.1 Learning Outcome

The final learning outcome is shown in Fig. 5. Except for three subjects, all the others
have made one or more incorrect answers to the questions. On the other hand, except
for the last question, incorrect answers were made to any of the first seven questions.

4.2 Engagement

As discussed earlier, this study focuses on the relationship between learning outcome
andengagement characterizedby learningbehaviors. The learningoutcome is charac-
terized by whether a specific question is answered correctly, while the engagement of
subjects was examined via the eye gaze detection result Re andmouse usage ratio Rm.

For the 19 subjects who made wrong answers to the questions in the quiz, Re

and Rm were calculated as the indicators of engagement level, for all the informa-
tion pages of the learning material. A paired t-test was used to compare Re and Rm

between correct answers and incorrect answers. For the mouse behaviors Rm , there
was significant difference identified (t (18) = 1.87, p < 0.05), suggesting that the
engagement level represented by mouse usage accounts for the learning differences
between correct and incorrect answers: the higher the engagement on the information
page reflected by mouse usage, the higher the chance that the subject answered the
questions correctly. Examining the eye gaze detection results Re, significant differ-
ence was found as well (t (18) = 1.91, p < 0.05). This implies engagement levels,
as suggested by the eye fixation time on the screen, can be used to infer the learning
outcome. A further examination for Re and Rm across all the 22 subjects showed
that there was a positive correlation between the two variables (r = 0.46, p = 0.05),
which further confirmed that data from both channels could be used for engagement
examination.

Fig. 5 Learning outcome of the subjects: (left) points scored from individuals and (right) correct
answer rate of each question
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5 Discussion

In this work, we utilized a multimodal approach to examine the engagement of
learners and link the observations to the learning outcome. The developed system
may assist teachers to understand the learning engagement under online learning
settings. This will help the teacher to ensure teaching quality.

As a preliminary study, our results suggest that the eye fixation and mouse usage
patterns are feasible indicators of engagement and can be used to infer the learning
outcome, in particular, to diagnose when a learning issue might occur. As all the
signals we have captured are naturally available from most e-learning systems, the
learning process can be tracked in a non-intrusive way. We also identified the corre-
lation between the gaze and mouse behaviors, which suggests that this technique is
still applicable if only one modality is available in certain learning context.

Some interesting behavior patterns were observed during the course of the study,
which we believe will bring insights into other researchers as well as improve our
future work to refine the engagement measurement:

• We have found that some subjects had the habit of resting hands on their cheeks
while thinking, resulting in inaccurate face detection and poor eye detection. Also
the webcam might be placed at a different angles toward the face, which captured
face partially, and hence brought new challenges for eye location detection.

• We captured mouse behaviors only when a button was pressed or when the scroll
wheelwas used; however, themouse cursormovementswithout any button pressed
were not recorded, which could be another potential indicator that the learner is
highly engaged in learning.

• Some subjects used the mouse to direct and assist their reading but others did not
use mouse as much.

The findings may be incorporated into more advanced computer vision modules,
e.g., face expression recognition systems to better measure the learning engagement.

Starting from the onset of 2020, online learning has suddenly become the only
option for many students, due to the pandemic of COVID-19. Its implication to the
education is dramatic: The nationwide school closures are impacting over 91% of
the world’s student population. To increase physical distancing across the population
and slow down the spread of the virus, remote and flexible learning has been adopted
in many countries. In a short term, we will see the booming of online education
and learning as a necessary means to replace traditional classroom education. The
method introduced in this study will be able to assist the teachers and students in
different learning setting: Using non-intrusive and automatic behavior data analytic
methods, the learning progress, outcome and potential means to improve the learning
process could be conveniently shared between teachers and students.

Last but not least, the multimodal approach presented in this chapter will benefit
the broad e-learning domain and more general human learning performance. For
example, from this approach we may effectively learn the performance of learners
with expression difficulties, as we can capture different signals for measurement.
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6 Conclusions

Wepresent our study that utilizes user behaviors to characterize learning engagement
and further identify their links to the learning outcome. The results indicate that
analyzing themouse usage and eye gaze information is a feasiblemeans of diagnosing
learning outcomes.We also discuss the challenges of using laptop webcam to capture
human face and habits of mouse use from different individuals, which is essential for
the development of techniques for tracking learners’ engagement in real time. Our
study adds to the general understanding of e-learning analytics and provides new
ways to examine, understand and improve the learning process of different people.
Our future research will take different factors mentioned in the discussion section
into consideration, and new methods that are able to fuse the data from different
modalities will be developed for a personalized engagement examination system.
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helpful advice to this study. We would appreciate ACER Australia as well for their support and
collaboration in the research project.
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Virtual Teaching Assistants:
Technologies, Applications and
Challenges

Jun Liu, Lingling Zhang, Bifan Wei, and Qinghua Zheng

1 Introduction

AI brings surprising evolution in many industries, including transportation, health
care, stocks, etc. In recent years, some educational tools enabled by artificial intel-
ligence (AI), called virtual teaching assistants (VTAs), have emerged and attracted
more attentions because of their great potential to improve education quality and
enhance online learning efficiency [69].

VTAs are a special kind of online learning system with some intelligent com-
ponents, which provide the intelligent interactive learning environment outside the
lecture period for the learners. Previous online learning is a simple human–machine
interaction mode that overcomes the geographical and time constraints, provides
learners with abundant learning resources and realises basic functions such as atten-
dance and homework checking. This is a virtualization of one-to-many teaching with
the semi-separate state of students from their teachers. However, the teaching con-
tents and assignments of one teacher cannot meet the requirements of multiple stu-
dents due to their different knowledge levels, learning abilities and interests. And the
teacher cannot always capture the gaps in their lectures that make students confused,
with little communication between them. To solve these issues, VTAs are designed to
simulate the process of one-to-one teaching, so as to provide special intelligent ser-
vice in three aspects: personalised teaching, personalised guidance, and proficiency
assessment. The goal of personalised teaching is to tailor learning materials, plans,
paths and difficulties according to learners’ learning progress and different require-
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ments [27]. For example, when the online learner submits a wrong answer to an
assignment, VTAs will recommend related teaching materials and assignments for
him to practise repeatedly. For personalised guidance, VTAs act as tutors who engage
in dialogue, answer questions and provide feedback to online learners [53]. This type
of service often occurs when learners are confused about a certain knowledge point
or assignment. Proficiency assessment refers to understanding the learners’ level of
knowledgemastery based on theirmulti-channel learning records, such as the learned
courses, class status and assignments [8]. The accurate proficiency assessment for
online learners is helpful to provide higher-quality personalised teaching and guid-
ance for them. The above three intelligent services are often integrated with each
other in VTAs, and they fully reflect the humanised characteristics of VTAs.

The various products of VTAs have emerged under the support of many critical
AI technologies. The navigation learning system1 developed by Xi’an Jiaotong Uni-
versity integrates the graph-data mining and natural language processing (NLP) to
construct a novel education knowledge graph. Given a learning goal, this product
exploits a personalised learning path for the online learner to avoid the problem of
learning lost [86]. The typical chatting robot Xiaomu2 proposed by Tsinghua Univer-
sity and XuetangX understands the learners’ questions about the difficult knowledge
concepts and answers them in the form of texts, images and videos [81]. Except for
NLP, Xiaomu involves the hot AI techniques such as learning analytics, question
answering, image and video understanding. Many well-known companies including
Knewton,3 DreamBox,4 Cerego,5 also specialise in the development of virtual teach-
ing products. Further improvement on humanised service ofVTAs needs to overcome
more intractable AI challenges, such as knowledge tracing, diagram understanding,
interpretable visual reasoning and the extraction of logic rules.

VTAs are in a stage of rapid development and will create high value for education.
On the one hand, VTAs improve the education quality. Personalised teaching devel-
ops individualised learning plans according to learners’ different goals and effectively
trains their independence and creation [16]. Personalised guidance further stimulates
learners’ interests and provides them with immediate feedback without waiting for
the reply from teachers. On the other hand, VTAs are conductive to boost educa-
tion efficiency. VTAs create a virtualized and intelligent learning environment for
learners. They not only reduce the management cost of the school, but also save
the communication time between teachers and learners, so that teachers can concen-
trate on better teaching resources. In summary, VTAs play an important role in the
intellectualisation of education.

1 http://zscl.xjtudlc.com:888/studytool/.
2 https://www.xuetangx.com/learn/THU08091000247/THU08091000247/5430764/video/
7472198.
3 https://www.knewton.com.
4 https://www.dreambox.com.
5 https://www.cerego.com.
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2 Key Technologies

Much attention has been paid to VTAs with the development of techniques in AI,
and many proposed AI technologies support the humanised service of recent VTAs.
In this section, some key technologies of VTAs that mimic the human thinking and
behaviour are introduced, including the education knowledge graph, natural language
question answering, visual question answering and learning analytics.

2.1 Education Knowledge Graph

A knowledge graph is a semantic knowledge base composed of nodes and edges,
which was first proposed by Google [56] for optimising searching results of search
engine. The nodes in knowledge graph represent entities in the real world, and the
edges represent the semantic relations between entities. The knowledge graph is
usually stored in the knowledge base as a resource description framework (RDF)
form. For example, the RDF 〈YaoMing, placeO f bri th, Shanghai〉 expresses the
fact “Yao Ming was born in Shanghai”. The education knowledge graph (EKG)
organises large-scale learning resources according to their cognitive relations. A
node of EKG represents a knowledge unit from one course or subject [38]. The edge
between knowledge units indicates the cognitive relation. For example, Fig. 1 is a
partial view of an EKG of the course “data structure” proposed by Xi’an Jiaotong
University [86]. This EKG consists of facet trees and learning dependencies for
solving the knowledge fragmentization problem. The fact contained in Fig. 1 can
be expressed as 〈linearlist, learning dependency, binary tree〉. Many popular
massive open online course (MOOC) platforms such as Khan Academy and MOOC
China use the technology of EKG to visualise course concepts for learners [12]. Two
key points of EKG are construction and embedding, and they are described in the
following subsections.

2.1.1 Construction of Education Knowledge Graph

The construction of EKG includes three parts: knowledge unit extraction, attribute
extraction and cognitive relation extraction.

The extraction of knowledge units from structured or unstructured data is the
basis of the EKG construction. In different courses and subjects, the meaning and
granularity of knowledge units are not uniform. Therefore, this procedure needs to
consider the characteristics of different domains. One of the main methods is based
on conditional random field (CRF), which transforms the knowledge unit extraction
task into a sequence labelling. For example, Tang et al. [60] defined three types of
token features and integrated them into CRF model to identify knowledge units in
researcher profiles. Another kind of method uses neural networks to automatically
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Fig. 1 Partial view of EKG of course “data structure”, which includesmany facet trees and learning
dependencies between trees

discover the features of knowledge units in unstructured text. Chen et al. [12] defined
three labels for knowledge unit extraction and applied neural sequence labelling
technique to extract instructional concepts for a subject or course.

The attributes of one knowledge unit describe its characteristics from multiple
perspectives. Yahya et al. [73]mined attributes bymeta patterns, which first construct
seed attributes, then mine the patterns between attributes and entities and finally
obtain attributes by the generated patterns. Wei et al. [67] proposed DF-Miner to
discover domain-specific attributes. DF-Miner first constructs a hyperlink graph from
the Wikipedia article pages, then detects the motif feature of the digraph and finally
groups the terms of a domain into multiple attributes based on community detection.
Guo et al. [28] regarded attributes as the labels of entities, which extracts initial
attributes set from Content sections of Wikipedia and runs a propagation algorithm
based on an assumption that similar entities have similar attributes. Zhang et al.
[85] proposed a joint model to extract entities and attributes simultaneously, which
considers that there are relations between the qualities of entities and attributes.
This method constructs a weighted bipartite graph firstly and then runs a mutually
recursive algorithm to obtain the importance of entities and attributes iteratively.

Cognitive relation extraction refers to identifying cognitive relations between
knowledge units from texts. Specifically, cognitive relations include hierarchical rela-
tions, prerequisite relations, hypernymy relations, etc. Wang et al. [63] captured the
hierarchical relation based on the local relatedness andglobal coherence of the knowl-
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edge units from the texts. Talukar and Cohen [58] exploited graph-based features
and content-based features on Wikipedia to explore prerequisite relation between
concepts. Wang et al. [62] proposed an attention-based model that focuses on the
difference between compound entities to extract the hypernymy relation between
symptoms and diseases in medical areas. Among the various relations mentioned
above, the prerequisite relation is the basis for teachers to specify the instructional
design and teaching strategies, as well as the premise for the resource recommenda-
tion and navigation learning.

2.1.2 Embedding of Education Knowledge Graph

The embedding of EKG aims to map all nodes and edges into a low-dimensional
continuous vector spaces while preserving the structure of the graph. The embedded
nodes and edges can be applied to downstream tasks, such as link prediction [6] and
node classification [45]. At far aswe know, there is no research on specific embedding
of EKG, and this task is achieved by the common embedding models of knowledge
graph, including translational distance models and semantic matching models.

The translational distance measures the plausibility of each fact based on the
distance between two entities. TransE [6] is the first translational distance measure,
which is the most basic method of knowledge representation and has derived many
variants. TransE considers that the offsets among entities with relations are similar
and constructs positive and negative samples to train model. TransH [65] is proposed
to alleviate the difficulty of modelling one-to-many, many-to-one and many-to-many
relations in TransE. TransH projects the entities and relations onto the hyperplane
and optimises it in the similar method as TransE on the hyperplane. TransH also
designed a better negative sampling method to train model effectively. TransR [37]
is a further promoted model of TransH. Different relations in TransR have different
semantic spaces because they focus on different attributes of entities.

The semantic matching model uses similarity-based scoring functions to measure
the plausibility of each fact. RESCAL [45] uses matrix factorization to decompose
the graph matrix into entities embeddings and relation embeddings. The original
graph can be refactored by multiplying the obtained embedding matrices. Although
this method is effective, it is time-consuming to calculate. To overcome the time-
consuming problem of RESCAL, DistMult [74] optimises the model by restricting
the relation embedding matrix to a diagonal matrix. DistMult is a very effective
method, but this method is oversimplified and cannot generalise to a normal knowl-
edge graph. HolE [44] combines the effectiveness of RESCAL and the efficiency of
DistMult, which uses the circular correlation operation to create compositional repre-
sentations. By using the correlation as the compositional operator, HolE is effective,
and it outperforms RESCAL and DistMult.
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2.2 Natural Language Question Answering

Natural language question answering (QA) aims to automatically answer questions
posed by humans in a natural language, which can be grouped into two paradigms:
information retrieval (IR)-based QA and knowledge-based QA.

2.2.1 IR-based QA

IR-based QA systems refer to answering the questions depending on vast amount of
text from Websites or documents. Figure2a shows an example of IR-based QA in
which the answers are given based on the questions and natural language articles.
The answers “France” and “10th and 11th centuries” are results of retrieval from
the articles, which are highlighted in red. The basic process of IR-based QA is
divided into three parts, which are question analysis, information retrieval and answer
generation. The question analysis intends to understand and represent the natural
language questions for further extraction of corresponding answers. Basic strategies
and some effective deep learning models for NLP are utilised in this process for
textual representations. For example, Joulin et al. [30] proposed a FastText system
for rapid processing onmillions of question sentences, which incorporates additional
statistics such as bags ofN-grams to increase the accuracy of linearmodels by solving

Fig. 2 Examples for two paradigms of QA: IR-based QA and knowledge-based QA. For the IR-
based QA paradiagram, it refers to answering the questions depending on the text paragraph. For
the Knowledge-based QA paradiagram, the answer lies in the knowledge base
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the issue that linear classifiers do not share parameters between features and classes.
Yang et al. [78] employed the hierarchical attention network in representations of
text, which utilises GRU to encode the words and sentences, and the two encoders
own corresponding attention models to increase the accuracy.

The information retrieval process intends to obtain relevant documents by the
given queries from questions. For the QA from websites, the system could be easily
transmitted to a search engine implementing the retrieval, but for the sets of docu-
ments, IR-basedQA needs other approaches. For example, Chen et al. [11] employed
a system named DrQA, helping compute TF-IDF over unigrams in the texts. When
handling the information from corporate pages, like the documents fromWikipedia,
the questions and articles are compared by the standard method, generally TF-IDF
cosine matching. In addition, the unsupervised algorithms like TextRank [42] could
extract topics from the set of documents, which utilises the relationship between
local words by the co-occurrence window for subsequent keywords ranking.

The last phase of IR-based QA is the answer generation from the specific para-
graphs. Some systems employ the features of the questions and answers in extraction
process. For example, Tan et al. [59] built hybrid neural networks for better repre-
sentations of both questions and answers. In the answer generation part, the answer
candidates are ranked by the cosine similarity to the specific question. The QA sys-
tem generally provides answers from the retrieved documents or passages by utilis-
ing reading comprehension algorithms in some studies. Devlin et al. [17] proposed
BERT for the span-based QA, which adds two embeddings, span-start embedding
and span-end embedding in the pretrained model. In the answer generation process,
the system calculates the span-start and span-end possibilities of each output token
and then sets the sum of the log-likelihoods of the correct start and end positions for
each observation as the training objective for fine-tuning.

2.2.2 Knowledge-Based QA

For the tasks in natural languageQA, the information could also exist in the structured
forms and map the question in natural language to a query over a knowledge base as
shown in Fig. 2b. The answer “Cell” is provided based on the question and knowledge
base, especially the regionwithin the red line.Oneof themethods to solve knowledge-
based QA is by the symbolic representation, which is a traditional semantic parsing
strategy. The system transforms natural language questions into the logical form to
represent the semantics and obtain the answers by corresponding queries. Berant et
al. [5] used a semantic parsing strategy to structure the logic form for the questions.
The answers are obtained by corresponding queries with lambda-calculus searching
in the knowledge base. Yih et al. [80] proposed a framework for knowledge-based
QA, which defines query graphs similar to subgraphs in knowledge bases mapping
to the logical forms. Then, the semantic parsing is treated as a search problem in
the query graph representing a question, and it determines the core inference chain
by calculating the similarity between the representations of the question and the
candidate chains.
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Fig. 3 Example of visual question answering. The second column denotes an/a image/diagram and
a question about the image/diagram. The third column denotes the external knowledge. The fourth
column denotes the answer

Another strategy for knowledge-based QA is by learning representation which
considers the QA as a semantic matching process. The system obtains the embedding
representations of knowledge bases and questions in natural language and finds the
answer by calculating their similarities. Dong et al. [19] proposed the multi-column
convolutional neural networks (CNNs) to understand questions from three different
aspects (answer path, answer context and answer type) and compared the jointly
learned vector representations of the question and the three features of candidate
answers. Xu et al. [72] presented a model named SDP-LSTM to classify the relations
via shortest dependency paths represented by the embedding vectors in increasing
the accuracy of knowledge-based QA.

2.3 Visual Question Answering

Visual question answering (VQA) requires a machine to provide a natural language
answer, given an image and a natural language question about the image [3], as
shown in Fig. 3. It has extensive applications such as blind people assisting, young
children education and intelligent drive and therefore has become a hot research
topic in recent years. We present the VQA methods through three categories: joint
embedding based, attention mechanism based and explainable.

2.3.1 Joint Embedding Based VQA

This kind of methods uses CNNs and recurrent neural networks (RNNs) to obtain
image and question representations, respectively, and then projects them into a com-
mon space to perform inference. Deeper LSTM Q + Norm I [3] uses a two-layer
LSTM, the last hidden layer ofVGGNet [55] to encode questions and images, respec-
tively. Then, it applies point-wise multiplication to fuse the features and projects the
fusion features into the answer space by fully connected layers. Fukui et al. [25]
assumed approaches to multi-modal pooling such as element-wise product, and sum
and concatenation are not as expressive as outer product. This work first uses multi-
modal compact bi-linear method to obtain the image features that fuse attended
question features and then applies this method to obtain the features that fuse the
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image and question features. Finally, it projects the fusion features into the answer
space to obtain the answer. Kim et al. [33] proposed a low-rank bi-linear pooling
method with Hadamard product to replace multi-modal compact bi-linear pooling
that has complex computations. Yu et al. [83] proposed a multi-modal factorised
bi-linear pooling method to fuse the image features and question features effectively
and efficiently based on the multi-modal low-rank bi-linear pooling. The principles
of joint embedding-based approaches are straightforward, which are the basis of cur-
rent VQAmethods [70]. However, there still exist potential improvements in feature
extraction and projection into the embedding space.

2.3.2 Attention Mechanism-Based VQA

This kind of methods uses attention mechanisms to assign different importance to
features before information fusion. They aim at addressing the limitation caused by
joint embedding-based methods, i.e. irrelevant or noisy information feeding during
the prediction stage. Yang et al. [77] devised stacked attention networks, which first
use the LSTM and VGGNet to obtain the question and image features and then apply
the semantic representation of a question as a query to search for the attended regions
in an image that are relevant to the answer. Lu et al. [39] proposed a co-attention
model that jointly reasons on the answer space using the image-guided and question-
guided attentions.However, the abovemethods have not considered how to determine
the image regions or objects to be attended. To address this issue, Anderson et al.
[2] first proposed a combined bottom-up and top-down attention mechanism that
computes attention at the level of objects and other salient image regions, where the
bottom-up attention is implemented by faster R-CNN [49]. Kim et al. [32] devised
bi-linear attention networks that consider bi-linear interactions between regions of
images and words of questions based on the low-rank bi-linear pooling architecture.
Shrestha et al. [54] devised a recurrent aggregation of the multi-modal embeddings
network that consists of three phases: early fusion of vision and language features,
learning bimodal embeddings via shared projections and recurrent aggregation of
the learned bimodal embeddings using a Bi-GRU [29]. Li et al. [35] proposed a
relation-aware graph attention network that encodes image regions into a graph and
models the inter-object relations via a graph attention mechanism to learn question-
guided relation representations. Yu et al. [82] devised a deep modular co-attention
network that not only uses the self-attention of questions and images, but also the
question-guided attention of images to perform reasoning on the answer space based
on transformers. Although attention mechanism-based methods play key roles in
improving the VQA performance, they still need developing in explainability and
complex reasoning.
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2.3.3 Explainable VQA

This kind of methods gives learners the explainability with the help of specific means
such as external knowledge and symbolic reasoning. Wang et al. [61] proposed a
fact-based VQA dataset that requires much deeper reasoning. They also proposed a
baseline consisting of four modules: unified knowledge base constructing, support-
ing fact finding using question-query mapping, fact retrieving and answer obtaining
according to the retrieved fact. Yi et al. [79] proposed a neural-symbolicVQAmethod
that first recovers a structural scene representation from the image and a natural pro-
gramme from the question and executes the programme to obtain an answer. Based
on this work, Mao et al. [41] proposed a neuro-symbolic concept learner that first
learns the object-based scene representation and parses questions into executable,
symbolic programmes and then performs reasoning on the scene representation to
obtain the answer. However, these two methods need to design the domain-specific
language manually. Ma et al. [40] devised a architecture towards span-level explana-
tions of the textbook question answering. This method can give students not only the
answer but also the evidences to choose them. We argue that explainable methods
should consider the audience as a key aspect [4, 40], and this direction is worthy of
further study.

2.4 Learning Analytics

Learning analytics (LA) is the measurement, collection, analysis and reporting of
massive, diverse and heterogeneous data generated by learners in their learning pro-
cess. The purpose of LA is to promote the understanding of the learning process
and to optimise learning as well as the learning environment.6 LA provides a new
model for university administrators and teachers to improve teaching, learning and
to predict teaching effects. It also plays an important role in the reform of the educa-
tion systems, which is helpful to optimise educational decision-making, educational
assessment and curriculum setting.

As shown in Fig. 4, an LA cycle includes four phases: understanding learners,
collecting data, defining metrics and deriving interventions to optimise education
[20]. Using the LA technology, the VTAs can obtain the learning state, learning
progress and other data of learners and provide personalised guidance to online
learners through the analysis of these data.

6 https://tekri.athabascau.ca/analytics/.

https://tekri.athabascau.ca/analytics/
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Fig. 4 Learning analytics cycle, which includes four phases: understanding learners, collecting
data, defining metrics and deriving interventions to optimise education

2.4.1 Learning Analytics Methods

LA can extract implicit and potential information from massive data and provide
intelligent and personalised learning guidance for learners. According to the different
data sources, we divide the methods of LA into three categories.

Social Learning Analytics (SLA). SLA is an important sub-domain of LA
because learners acquire knowledge and thinking through social interaction. SLA
includes social network analytics, discourse analytics and content analytics. Ouyang
et al. [24] used social network analytics to examine the attributes and development
processes of the online learning community. The results show that all the partici-
pants formed a high frequency of interaction and reciprocity. Discourse analytics
encompasses processing of open response questions in educational contexts, analy-
sis of discussions occurring in discussion forums, blogs and even web pages [51].
Content analytics focuses on the analysis for different forms of educational con-
tents. AlteredVista [34] is a collaborative system for discovering useful educational
resources. It can recommend course notes and solutions to students based on their
document browsing patterns and learning tasks, respectively.

MultimodalLearningAnalytics (MLA).MLA focuses on extracting traces from
the different modes of communication. Learning traces is combined from log-files,
pen strokes, position tracking devices and any other modality that could be useful
for understanding or measuring the learning process. Ochoa [46] used an array of
cameras to record the head and eyes of the subjects, and then computer vision tech-
niques are used to extract the gaze direction information and motion from the video
recording. Oviatt et al. [47] used digital pens to capture the position, duration and
pressure of writing and sketching with different people. By digitising these data,
they explored the contribution that writing and sketching modes could have in the
prediction of expertise.
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Emotional Learning Analytics (ELA). Emotion is produced in the interaction
between organism and environment, and its influence on learning is important and
universal. D’Mello [18] studied the affective experience of students during their first
programming session. All instructional activities including the videos of student’
faces and computer screens were recorded. The authors examined how interaction
events give rise to affective states and how affective states trigger various behaviours.
Similarly, Yang et al. [75] developed a method to automatically identify discussion
posts that indicate students’ confusion. Their research shows that confusion will
accelerate forgotten, but this status can be alleviated by providing clarification or
other interventions.

2.4.2 Learning Analytics Tools

In terms of learning, learning analytics tools can provide learning paths according
to individual needs by integrating background information and learning process data
related to learners. In terms of teaching, learning analytics tools can evaluate and
optimise the curriculum and provide a reliable basis for teachers and managers to
carry out targeted teaching interventions. The learning analytics tools can be divided
into three groups for different audiences [68]: teachers, students and schoolmanagers,
so the design of learning analytics tools should follow different principles.

Teachers-oriented Tools (ToT). ToT can be used in the teaching activities
to improve the teaching practise in a targeted manner. For example, the BoSCO
browser tool [21] can be used by teachers to explore students’ performance in differ-
ent courses, assignments and semesters and analyse the correlation between them.
Another exploratory learning analytics toolkit [22] can help teachers monitor and
analyse teaching activities and explore, bore and evaluate teaching interventions
based on their own interests.

Manager-oriented Tools (MoT). MoT conducts statistical analysis on school
institution data, combines with predictive models and helps management behaviour
through a visual system. Campbell et al. [7] studied the use of learning analytics tools
for managers in several universities. Among them, the University of Alabama tried
to predict and improve the retention rate of students from freshman to sophomore
through learning analytics. Baylor University has created and perfected data analysis
of potential applicants for its admission strategy. It has identified eight best predictive
models that affect the final admission of the Texas group.

Student-oriented Tools (SoT). SoT can stimulate students’ internal motivation
and realise the function of students to understand their own learning-related data in
real time. CanvesNet [9] is a learning analytics toolkit for students, which aims to
promote students’ online classroom discussions and transform the data from discus-
sion forums into information for students to reflect on. Kiwi system [50] is a social
network monitoring tool that collects social information from students and feeds
back their interaction patterns.
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3 Challenges

There are many technical challenges for the further development of humanised ser-
vices provided byVTAs. In this section, wemainly analyse from four aspects: knowl-
edge tracing, diagramunderstanding, explainable visual reasoning and extraction and
representation of first-order logic.

3.1 Knowledge Tracing

Knowledge tracing (KT) models learners’ knowledge states according to their
historical response, so as to predict their performance on new questions. For the
example shown in Fig. 5, if a learner can answer “18 − 72 ÷ 12” correctly, he might
master the concept of both subtraction and division and have a high probability of
providing right answer to “6 ÷ 3 − 2”. KT is one of the essential tasks in person-
alised guidance, which helps VTAs provide assistance in accordance with learners’
aptitude. Accurate and reliable knowledge tracing means suitable exercises can be
recommended to learners based on their current knowledge states. But the learning
process is complicated by both learners’ knowledge and learning environment, which
leads to many challenges in KT.

The Sparsity of Exercise Data. In online learning, learners’ visiting to those
platforms can be very infrequent, and they tend to take as few exercises as they can
complete task. Therefore, for those huge question banks, only a few questions were
answered, and for each questions, only few or no learners have attempted them.

Fig. 5 Given a sequence of students’ test results, KTpredicates their performance on newquestions.
The green lines represent the concept requirements of each question
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Those situations lead to data sparsity, which makes existing KT models based on
deep neural networks suffer from under-fitting issue [48]. To handle these challenges,
deep hierarchical KT models hierarchical information between items and concepts
by embedding them and calculating their hinge loss of the inner product [64]. In
addition, Chen et al. [13] proposed the hypothesis that learners master a concept
after mastering its prerequisite concepts and then used prerequisites as constraints to
relief data sparseness. Although the researchers have many attempts, the sparsity of
exercise data is far from solved, which needs further research.

Heterogeneous Data in Learning Environment. Real environment of learning
process generally contains different data forms. For example, there is text informa-
tion, voice for listening and a small amount of pictures during English exams, and
there are various types of interactive information between students and platforms in
MOOC. These situations make the learning environment complex. Since learning
effect is affected by many factors, the heterogeneous data should be considered by
fusing multi-model information in the process of KT. Therefore, many knowledge
fusion methods can be introduced to enhance KT. By embedding heterogeneous data
into a common space, it is convenient to integrate multiple factors to track learn-
ers’ knowledge. For example, exercise-enhanced RNNs [57] not only use exercising
records as input but also introduce Bi-LSTM to encode the representation of topic
information. Until now, researches on dealing heterogeneous data in KT are still
scarce, and few data sources are considered.

3.2 Diagram Understanding

Diagrams are kinds of special images widely utilised in the teaching scene, which are
existing in textbook and encyclopaedias. For example, the atmospheric circulation in
geography and cellular structure in biology are usually represented with diagrams,
which consist of simple lines and colour regions. Diagram understanding [31, 66]
aims to fully understand the fine-grained objects and their relations in the diagrams,
and this task has great significance in practical applications such as VQA, reading
comprehension and so on. However, most researches focus on the nature images like
in ImageNet [52] and MSCOCO [36] datasets to complete the image analysis tasks,
and there are few researches on the diagrams because there exists two challenges for
the diagram understanding.

The Lack of Annotated Data. Abundant annotations assist the deep models
to achieve satisfactory results in image analysis, which are labour-intensive tasks.
However, due to the lack of sufficient annotations for diagrams, it causes great dif-
ficulties to the diagram understanding. As shown in Fig. 6, non-professionals could
only annotate coarse information of the Animal cell, which cannot convey the profes-
sional knowledge in diagrams. To fully understand the semantics of these diagrams,
more fine-grained annotations are required by the professional annotators. See as the
right of Fig. 6 [31], annotators with biological background can label the objects such
as centrioles, nucleolus and lysosome, which are conducive for the accurately under-
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Fig. 6 Comparison of coarse- and fine-grained annotations for an animal cell diagram

standing of the diagrams and could improve the performance of downstream tasks.
In addition, the diagrams are usually drawn by professional software, involving the
domain knowledge of different subjects, and they are expensive to obtain, resulting
in the more lack of training samples.

The Semantic Abstraction of Diagrams. Diagrams are kinds of highly abstract
representations for knowledge. They are expressed as visual objects, arrows and lines,
which bring two difficulties for diagram understanding. On the one hand, the same
visual elements could represent different semantics, which may lead to the object
confusion. As shown in Fig. 7a, understand the diagram from different perspectives,
in which the orange and blue circles may express different semantics. Concretely,
when this diagram shows the solar system, the orange circle represents the sun,
while the surrounding blue circles indicate the planets in their respective orbits. If
this diagram depicts an atom, the orange circle represents the nucleus, and the blue
circles represent the electrons. On the other hand, the same semantics may have
various forms of expression. The diagrams Fig. 7b and Fig. 7c depict the life cycle
for a butterfly, and the arrows that represent the timeline are very different in visual
sense [31]. Specifically, the arrows in Fig. 7b consist of dotted lines and arrow heads,
while the red heads are in the middle of the whole arrows. The arrows in Fig. 7c are
completely different forms, which are composed of green regions with certain width.

3.3 Explainable Visual Reasoning

Although these methods [40, 41, 79] make progress on the explainable visual rea-
soning, there still exist the following three challenges on the explainability.

The confusion of the definition and vocabulary. There is no agreement on
the definition and vocabulary of the explainable visual reasoning [4]. For example,
feature importance/relevance and explainability/interpretability are always referred
to the same concept, respectively. This is more obvious for visualisation methods,
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Fig. 7 Sample analysis of the semantic abstraction for diagrams. a shows the semantic confusion
of the circles; b and c show the various expressions of arrows

in which the so-called saliency maps, salient masks, heat maps, neuron activations,
attributions and other similar methods are completely inconsistent [4].

TheDifferenceof theStudyObject. There is no agreement on the objects focused
by researchers. Someworks [10, 84] use the post-hoc technologies such as visualising
feature map and attention map to analyse the decision of models. However, some
works [40, 41, 79] aim to give human observers explainability such as symbolic
reasoning processes. The former focuses on the specific module of a model, and the
latter focuses on giving reasons that make it easy for human observers to understand.
We think that the explainable visual reasoning methods especially for the VTAs may
place the students/human observers as a key aspect to be considered. In other words,
these methods should give audiences the details and reasons to make their function
clear or easy.

The Lack of the Evaluation Metric. There is no perfect evaluation metric for
the explainable visual reasoning method. Generally speaking, the metrics should
evaluate the goodness, usefulness and satisfaction of explanations, the improvement
of the audience psychology induced by the explainable visual reasoningmethods and
the influence of these methods on the performance [4]. Miller et al. [43] argued that a
good explanation should be constrictive, i.e. a prerequisite for the good explanation
is that it shows not only why a model made decision X, but also why the model
made decision X rather than Y. Regrettably, there is no convincing metric to evaluate
the explainable visual reasoning methods, which may hinder the development of this
direction. Therefore, it is important to designmetrics for comprehensively evaluating
explainable visual reasoning methods.

3.4 Extraction and Representation of First-Order Logic

First-order logic plays a foundational and significant role in education, as its highly
expressive and well-structured nature for logical knowledge. By extracting and rep-
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resenting it efficiently, VTAs can realise interpretable process through reasoning to
preferably assist learners. However, both extraction and representation of first-order
logic are challengeable.

The Complexity of the Extraction Process. The logic of education field is com-
posed of domain atomic formula, including special predicates and arguments trans-
formed by different types of entities. For example, the logic of triangle postulate in
Euclidean geometry is formalised as Eq.1, which means that the sum of three inner
angles of each triangle is 180◦:

∀X Triangle(X) ⇒ equal(add(∠X1,∠X2,∠X3), 180
◦). (1)

In this logic formula, Triangle, equal and add are predicates. Meanwhile X , ∠X1,
∠X2, ∠X3 and 180◦ are all arguments of atomic formulae. In general, the challenge
of first-order logic extraction mainly lies in its complexity [15, 26]. Referring to
Eq.1, we further summarise the complexity challenge of the extraction process into
two points: the diversity of predicates and arguments and the combination explosion
in the formation of the logic. First, predicates and arguments in a discipline express
multi-level and multi-granularity knowledge concepts, which are difficult to define
and extract by unified standards. Such as the Triangle versus add and X versus
180◦ in Eq.1. Furthermore, the diversity is more obvious among different disciplines,
leading to enormous difficulty of using unified neural networks for extraction. For
example, there is a remarkable gap between Triangle in geometry and stack or
push in data structure. Second, there is the problem of combination explosion in
the formation of logic from atomic formulae [76]. If the number of extracted atomic
formulae is n, then the candidate logic increases exponentiallywith the increase of the
length, reaching nm with the maximum length m regardless of recursion or nesting.
In conclusion, the above complexity makes the training and prediction process of
extractionmodel cost huge space and time, causing it difficult to provide high-quality
results for subsequent tasks efficiently.

The Semantic Intractability of Representation. The representation of first-
order logic refers to embedding its logical formulae into a low-dimensional space,
by which some calculation or reasoning tasks based on logic can be carried out
through technologies of deep learning. Currently, representation methods of logic
can be roughly divided into three categories: sequence-based [1], tree-based [14] and
graph-based [71]. Although these methods have achieved some progress, they are
all focusing on implementing discriminative representations at the syntactic level for
logical formulae. There is a lack of research on semantic level. However, it is critical
to the accuracy and intelligibility of downstream tasks to retain semantic information
in representation of first-order logic. The semantics of logic equivalence theorems,7

such as distributive laws andDeMorgan’s laws, should be reflected in logical repre-
sentations. Meanwhile, as discussed by Evans et al. [23], the intrinsic semantics of
logical knowledge is independent of arguments used in its formulae. Furthermore,
Xie et al. [71] argued that small changes in syntax of logic formulae could lead to

7 https://en.wikipedia.org/wiki/Logical_equivalence.

https://en.wikipedia.org/wiki/Logical_equivalence
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great changes in semantics. For example, comparing ∀x (p(x) ∧ q(x)) ⇒ p(x) and
∀x ¬(p(x) ∧ q(x)) ⇒ p(x), an extra negation symbol makes a great difference to
intrinsic semantics. All these properties should be explicitly or implicitly embedded
into representations as much as possible. But because of the large quantity and high
complexity of them, it is intractable to design a unified framework for the semantic
representation of first-order logic. As far as we know, there is no related research
towards to this challenge.

4 Conclusion

VTAs enabled by AI technology create a novel learning pattern with personalised
teaching and guidance, which play an important role in the development of intelligent
education. In this chapter, we give a survey about the technologies and challenges
of VTAs. We introduce four key technologies, namely education knowledge graph,
natural language question answering, visual question answering and learning analyt-
ics for VTAs. VTAs have a good prospect for development, but they also face some
challenges, such as knowledge tracing, diagram understanding, explainable visual
reasoning and the extraction of logic rule.
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Artificial Intelligence and People
with Disabilities: a Reflection
on Human–AI Partnerships

Jason J. G. White

1 Introduction

Having a disability gives rise to specific practical needs, related for example to
mobility and transport, communication, learning, or access to information. It is an
essential insight of the socialmodel of disability [46] that the impairment of a person’s
capacity to function in a certain respect only becomes problematic in conjunctionwith
specific physical or social environments. It is the combination of an impairment—
for example, a sensory, physical, or cognitive limitation of the individual—with the
demands of an environment that raises barriers to autonomy and social participation.
Thus, byway of illustration, a physical disability that necessitates use of a wheelchair
only creates difficulties if the built environment is not conducive to this mode of
travel, for instance by requiring the use of stairs. Communication only poses inherent
difficulties to a person who is deaf, for example, under circumstances in which the
auditory mode is offered as the exclusive channel. Likewise, dyslexia only poses
challenges in so far as reading is required to complete a task and suitable supports
or alternatives are not available. Correspondingly, written text is problematic to a
person who is blind only in the absence of a familiar, non-visual representation, such
as braille or speech. Color blindness introduces challenges in so far as distinctions of
color alone are used to convey information. This analysis, and the social model more
generally have been criticized for offering an incomplete and inadequate conception
of disability [45]. Nevertheless, its shifting of attention away from impairment as
a problem of the individual that ought to be cured or alleviated as proposed by the
medical model of disability, and toward the social determinants of inclusion and
exclusion, is both historically and conceptually fundamental.

For this reason, much policy and advocacy in recent decades have focused on
overcoming barriers to full participation in society by people with disabilities that
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are the product of inadequacies in the design and construction of physical, social,
and digital environments. The installation of ramps in buildings as alternatives to
stairs and the use of braille and large print signage are among the most prominent
accessibility features now increasingly found in public spaces.

Consistently with the insights derived from the social model,1 article 1 of the
United Nations Convention on the Rights of Persons with Disabilities (CRPD) [55]
asserts that

[p]ersons with disabilities include those who have long-term physical, mental, intellectual,
or sensory impairments which in interaction with various barriers may hinder their full and
effective participation in society on an equal basis with others.

As this characterization indicates, people with disabilities are highly diverse—an
observation that will be of crucial importance in later discussion. According to the
World Health Organization [59], more than one billion people, comprising approx-
imately 15% of the global population, live with disability, and a continued increase
is expected to result from the effects of aging as well as changes in the incidence
of chronic health issues. Although the total population subject to disability is large,
its great diversity with regard to the nature of impairments, capabilities, resources,
experiences, and life circumstances undermines the reliability of naive generaliza-
tions or simplifying assumptions. Two people who appear to have a similar kind
and degree of impairment may nevertheless differ greatly in their capabilities, needs,
and experiences of disability. This heterogeneity is attributable to variation in the
social conditions which have become the focus of critical attention by the disabil-
ity rights movement and in disability studies scholarship. Indeed, the variability
and complexity of the interactions between a person’s impairment, development,
and social conditions lie at the core of arguments against the received view that
having a disability is in general bad for well-being [10].2 Thus, for example, dif-
ferences in educational opportunities can exercise a profound, long-term influence
over the capacity of individuals not only to participate meaningfully in society, but
also to address the practical needs that emerge from disability itself in such every-
day contexts as employment, family life, and community activities. The quality of
one’s educational prospects depends significantly on socially determined conditions,
including for example the availability of appropriate support, and the incidence of
discriminatory treatment. The same is true in other domains of life activity.

Artificial intelligence has long served a valuable function in enhancing access for
people with disabilities. Text-to-speech technology has been used as an alternative
means of communication by those with speech-related disabilities. Speech recogni-
tion can function as an alternative to keyboard or pointer input, thus allowing those
with certain physical disabilities to interact with software independently. From the
1970s onward, [30] people who are blind have benefited from the combination of
optical character recognition with text to speech, enabling printed text to be read

1 According to Degener [14], the CRPD acknowledges but then extends considerably beyond the
conception of the human rights of people with disabilities recognized by the social model.
2 The authors instead regard most forms of impairment as neutral traits that do not in themselves
negatively affect quality of life.
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aloud automatically. Each of these examples is an application that arguably engages
capabilities that have traditionally required human intelligence. Consequently, they
all amount to applications of AI, and indeed historically have constituted difficult
computational problems. Each of these applications also stands to benefit greatly
from recent advances in machine learning, notably deep neural networks.3 It is rea-
sonable to anticipate continued improvements in the accuracy of speech recogni-
tion and optical character recognition, as well as enhancements in the quality of
text-to-speech synthesis. To this extent, the ongoing development of AI, including
its shift toward machine learning, is likely further to improve the capabilities of long
established applications valuable to people with disabilities.

These advances also open possibilities that have not been feasible with previous
technologies. The World Institute on Disability [60] envisions automatic captioning
for people who are deaf, autonomous vehicles for individuals who are unable to
drive, image and facial recognition for those who are blind, language generation to
support comprehension by people with cognitive disabilities, and technologies that
support people with disabilities in pursuing and retaining employment. Desirable
though these applications are in improving accessibility, each of them raises a variety
of design challenges and ethical issues. Together, these and associated examples
are taken up in Sect. 2 as suitable starting points for briefly considering some of
the questions that emerge in the use of AI in overcoming barriers to access and
participation. These areas of potential application focus on improving well-being
by addressing challenges specifically arising from the needs and circumstances of
people with disabilities.

AI presents a risk to people with disabilities in addition to opportunities. Although
concerns about its potential role in discrimination have received sustained public and
scholarly attention in recent years, the disability-related dimension of the problem
is only beginning to be explored. Nevertheless, central issues have already been
identified, and there is ample scope for further research. With this in mind, Sect. 3
offers an exploration of the problem and of some potential strategies for addressing
it, emphasizing the role of the social and policy contexts. The scope of the discussion
is here broadened to applications of AI in general, by which people with disabilities
are affected, for example as users of a system or as individuals who are subject to
decision-making processes that AI at least partly automates. Failing to address chal-
lenges of bias, discrimination, or exploitation of personal information can directly
and negatively affect human well-being. There is thus a welfare-related dimension to
the moral argument for establishing policies and for creating human-AI partnerships
that address the potential of AI technologies to contribute to injustice. The discussion
in this chapter also suggests that the concept of partnership should be understood in
the current context as having social as well as technical aspects, as embracing the
normative arrangements and practices in which the technology operates in addition
to more narrowly conceived elements of its design and implementation.

3 For an overview of these technical developments, see LeCun, Bengio and Hinton [31].
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2 Use of AI to Enhance Accessibility and Inclusion

In this section, the potential of AI to contribute to the solution of practical prob-
lems arising in the lives of people with disabilities is explored. Ethical issues are
raised that motivate consideration of the proper role of AI systems in given social
contexts which affect design and development decisions. The general conclusions
are informed by discussion of cases based on the domains of application noted by
the World Institute on Disability [60]. Each of these examples is considered in turn
(Sect. 2.1) to illuminate issues that it introduces. This analysis of the examples then
leads in Sect. 2.2 to a reflection on the important contributions of design processes
and policy incentives in influencing the fit between AI applications and the needs
and values of users with disabilities.

2.1 Identification of Ethical and Design Issues Through
Analysis of Examples

The examples considered here, which elaborate those put forward by the World
Institute on Disability [60], serve multiple purposes. First, they are illustrative of
applications of AI that have evident potential to solve practical problems which arise
for people due to living with a disability. Second, considerations are introduced that
demonstrate the contingency of these benefits on appropriate decisions in the design
and deployment of the technologies. Such issues are the focus of the discussion in
this section. Third, the examples motivate a more general treatment in Sect. 2.2 of
approaches which can be taken to developing applications of AI that are genuinely
and effectively responsive to the needs of people with disabilities.

2.1.1 Speech, Sound, and Image Recognition

Captions are a well-establishedmeans of providing access for people who are deaf or
hard of hearing to information conveyed in the auditory content of online video and
broadcast media. Although captions have traditionally been created manually and
synchronized appropriately with the video content, speech recognition and natural
language processing enable thiswork to be increasingly automated, as the example by
the World Institute on Disability [60] acknowledges. Automatic caption generation
is only useful in so far as the speech recognition system is sufficiently accurate,
and the degree of accuracy that ought reasonably to be required varies according
to context. Thus, speech recognition could be applied as the first step of adding
captions to a video as part of the production process. In this scenario, a skilled
human operator is responsible for editing the captions to correct speech recognition
errors. The speech recognition system need only be sufficiently accurate that it is
more efficient to correct its output than to write the captions manually. However, if
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the caption generation tool is used directly by a person who is deaf, for example in a
live meeting, there may be inadequate opportunity to correct errors; and, plainly, the
original audio is entirely inaccessible to the user. In such a situation, it is inequitable
to impose the burden of dealing with the consequences of recognition errors solely
on the person with a disability, except, perhaps, under conditions in which a high
level of accuracy equivalent to that of human captioning can be assured. A better
alternative would be to design the captioning application, or the context of its use,
to facilitate manual, corrective intervention, for example by the producer of the
communication or by a third party employed for the purpose, or to insist that captions
be written manually by a skilled service provider. On the other hand, there may be
circumstances in which a desire for privacy is best served by placing the speech
recognizer under the control of the person with a disability. Whether this is the case
additionally depends on privacy-related aspects of the system’s design, as there is
potential for disclosure of information both from the user who is deaf, and from
other parties to communication. The user interface of the system could also provide
notification of probable recognition errors, a capability that at least provides the
user with means of judging its reliability and suitability for a given purpose in a
specific context. Preliminary research investigating the styling of caption text to
indicate the confidence level of the speech recognizer in the accuracy of each word
suggests that this practice may be distracting to users who are deaf or hard of hearing,
particularly the uninitiated [5]. It may also increase cognitive load, as the user is
implicitly encouraged to interpret the confidence indicators in reading the content of
the captions. There is also disagreement over whether captions should be given as full
transcripts of the dialogue presented in the audio track or instead edited in the hope of
reducing the required reading rate and facilitating comprehension by simplifying the
vocabulary and syntax [51]. Text simplification combined with speech recognition
would further increase the opportunities for error, while considerably complicating
the design and development of an AI system. A decision to use automated captioning
would thus tend to favor the use of full transcripts of the dialogue rather than the
creation of simplified captions. In general, the appropriate course of action in deciding
whether to offer automated captioning, and how the software should be designed,
verymuch depends not just on the capabilities of the AI, but also on the social context
of its proposed deployment.

The use of AI to recognize non-speech sounds and to report them via visual or
tactile cues could also benefit people who are deaf or hard of hearing. However, it
would evidently be inappropriate to rely on such an application in the circumstances
of an emergency, for example as a substitute for providing an accessible alarm system
in a building. Designing a general sound recognition tool also inherently involves
making decisions about what sounds should be recognized, and what information
about them should be presented to the user [18].

Similar observations apply to the use of object, face, and scene recognition by
people who are blind. The question arises of under what circumstances it is appropri-
ate to expect the person with a disability to use the technology without any effective
opportunity for correction of errors, and in what conditions alternative solutions
meeting the need for accessibility should be put in place. There is a risk that, unless
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image recognition systems become as reliable as human observers under a wide
variety of conditions, their availability will be seen as an opportunity to reduce labor
costs and to impose the responsibility for addressing the effects of their limitations
directly on the ultimate beneficiaries. There are also circumstances in which decid-
ing not to use image recognition is preferable to running the risk of being misled
by it. Educating users in the limitations of the technology is clearly indispensable to
informing decisions about its appropriate application, whether those users are peo-
ple with disabilities themselves, or other parties responsible for ensuring equitable
access and inclusion, such as educators or employers. For example, misidentification
of people and objects could be at least embarrassing and at worst result in ill-advised
decision making—as when a stranger at the door is mistaken for a friend [18]. As
with speech recognition, questions of privacy emerge, not only for the person who
has a disability, but potentially for others whose information is placed at risk of inap-
propriate disclosure. Analogously to the case of captions, there are applications of
image recognition that do not raise all of the foregoing issues. For example, it could
serve as a component in an authoring tool for the development ofWeb sites, in which
the automatically generated descriptions are supposed to be manually reviewed and
corrected.4 Again, however, proper application of the AI technology depends on
users’ knowledge of its limitations, which can be reinforced through features of the
application’s user interface, for example by prompting document authors to verify
textual descriptions produced by image recognition.

2.1.2 Text Simplification and User Interface Adaptation

AI-based text simplification and summary generation tools could be valuable to
people with learning or cognitive disabilities that affect linguistic understanding.
However, with every simplification or summarizing strategy, there is an associated
risk of misinforming and misleading the recipient, or of producing information that
is more rather than less difficult to comprehend. A twofold question arises: first, how
best to control this risk in the design and use of such systems, and, second, in what
contexts it is appropriate to deploy these language processing technologies. As in
the previous examples, AI could here be used to empower people with disabilities
and to promote individual autonomy, but it could also be relied on in circumstances
to which it is unsuited. The task of system designers is further complicated by the
observation that the objective should be not primarily to simplify natural language as
such, but rather to ensure the simplicity of the tasks that users are expected to perform
with the information to be provided. As Lewis [32] has argued, simplicity should be
understood as a relation between the cognitive demands of using a system, and the
cognitive capabilities of the user. Thus, a system that is simple for one individual
may not be so for another whose cognitive abilities are relevantly different, as Lewis
[32] illustrates by analyzing the trade-offs between breadth and depth of control

4 For further discussion of issues raised by sound and image recognition systems designed for use
by people with disabilities, including some of the concerns introduced here, see Findlater et al. [18].
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presentation in graphical user interface design. A deeper hierarchy, for example in
a menu structure, is simpler for users who are more easily distracted, for instance,
but more complex for those who have difficulty holding attention throughout a long
sequence of actions. The proper role of language simplification in designing tasks
that are more cognitively tractable is thus likely to be highly dependent not only on
the tasks themselves, but also on the user’s capabilities and on the surrounding social
context.

The diverse and sometimes conflicting needs of people with disabilities regard-
ing what constitutes an accessible user interface, as illustrated by the preceding
example, have motivated efforts to develop systems that can be configured appropri-
ately according to each individual’s personal needs and preferences. Significantly,
the Global Public Inclusive Infrastructure (GPII) project [57] has created software
that maintains a profile of the user’s needs and preferences, on the basis of which
any supported system that the individual with a disability wishes to access can be
automatically configured to satisfy accessibility requirements. This is achieved by
matching the profile with an appropriate set of configuration choices at the operating
system, assistive technology, and application levels, and then setting those param-
eters accordingly. The benefits of AI can be seen in the ‘matchmaking’ process by
which the user’s profile, possibly also taking into account environmental conditions
such as ambient light and noise characteristics, is used to infer a suitable system con-
figuration [27]. Two approaches to matchmaking have been developed, the first of
which is a system of rules based on knowledge representation [34], whereas the sec-
ond employs statistical techniques to derive a configuration by analyzing the profiles
and settings of other users who have similar needs. These rule-based and statistical
techniques are not mutually exclusive, and may therefore be implemented in a com-
plementary, hybrid solution [27]. So long as privacy is preserved, this application
of AI has the potential greatly to simplify and to facilitate the adaptation of user
interfaces to individual access needs.

2.1.3 Autonomous Vehicles

As the World Institute on Disability [60] recognizes, autonomous vehicles must be
universally designed if they are to satisfy the needs of users with disabilities. The
features needed for a vehicle to be accessible depend on the nature and extent of
its autonomy. Notably, if human participation is required in aspects of driving, as is
true of all but the most fully autonomous of systems, controls and sensory feedback
arrangements need to be developed which can be used effectively by people with
a wide variety of abilities. While a highly accessible autonomous vehicle does not
appear to have yet been created, some aspects of the problem have been the subject
of preliminary research. For example, the design of tactile and auditory interfaces to
enable driving decisions to be made by a person who is blind or vision-impaired has
been explored [9].

The prospect of a fully autonomous vehicle occupied by a person with a disability
who cannot intervene in driving to override the decisions of an AI system, raises legal
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and moral concerns. Clearly, questions of safety are of paramount importance, both
for the vehicle’s occupant and for other road users, as are issues of ethical and legal
responsibility in the event of accidents. As noted by Bradshaw-Martin and Easton
[8], the use of autonomous vehicles by people with disabilities who are unable to
take direct control departs from the long-standing legal assumption that a human
being is responsible for driving decisions at all times. Bradshaw-Martin and Easton
[8] suggest that such cases should be considered acceptable only if the operation
of ‘empty’ autonomous vehicles (i.e., those without human occupants) on public
roads is also acceptable. An alternative approach would be to enable the function-
ing of the autonomous vehicle to be overseen by a remote human observer who
is able to assume manual control of the driving in potentially dangerous situations
[8]. Although this solution introduces challenges of privacy and security, it could
overcome risks to safety without greatly diminishing the independence of the person
with a disability. If fully autonomous vehicles ultimately become commonplace, the
skill and readiness of their human occupants to intervene can be expected to decline.
Further, manual intervention is likely to be most difficult and risky in situations that
pose the most danger. The problems of safety and accessibility are especially com-
plex under conditions of mixed traffic, in which some vehicles are driven by humans
and others are under the control of AI systems. In these circumstances, anticipating
the actions of other ‘drivers,’ some ofwhich areAI agents, can become difficult—and
possibly more so for a person with a disability who is interacting with a vehicle via
an assistive technology.5 Fulfilling the promise of autonomous vehicles for people
with disabilities thus necessitates the development of novel user interfaces, as well
as a combination of technological and legal measures that can fairly allocate the risk
of accidents, while reducing it to an acceptable level.

2.1.4 Employment and Education

The potential applications of AI that could enhance employment of people with dis-
abilities are diverse, and capable of operating at all stages of the process from educa-
tion and training to improving accessibility in the workplace.6 Whether education is
offered by educational institutions or directly in the work environment, there is the
possibility of using AI to improve its efficacy. Intelligent tutoring systems, for exam-
ple, are AI-based applications that can adapt the delivery of educational content to
the learning needs of the individual. AI has also been introduced into the recruitment
of employees, raising questions about the possibility of bias against candidates with
disabilities. Employees may also take advantage of AI systems, including technolo-
gies supporting accessibility as considered elsewhere in this chapter, in performing
theirwork. There are nevertheless issues of ethics and privacy to be taken into account
in deciding what the capabilities of these applications should be, and in arriving at
appropriate design decisions.

5 Solutions to the general problem of mixed traffic are developed in Nyholm and Smids [38].
6 See generally Employer Assistance and Resource Network on Disability Inclusion [16].
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An ‘intelligent’ educational application could, in principle, adapt the presentation
of material and its evaluations of the learner’s responses according to needs arising
from a disability. For example, it could offer additional explanations of geometric or
spatial concepts to a student who is blind andwhose knowledge of the relevant spatial
relationships is found to be in needof consolidation. Thepossibility of individualizing
the delivery of education based, in part, on a person’s disability has genuine potential
to improve learning, leading ultimately, in the present context, to greater success in
a career. However, it also has the potential to perpetuate misconceptions about what
people with disabilities can do and to entrench stereotypes. For example, whether
a student who is blind would benefit from additional support in performing tasks
requiring geometric knowledge ought not to be inferred from the disability category,
but should instead be ascertained with respect to each person individually. Similarly,
whether sign language interpretation should be provided for multimedia content
(for instance, in a tutoring system) depends on the individual’s knowledge of and
preference for a sign language—factors that are not captured by the classification of
the individual as a student who is deaf. There is thus a risk of drawing inappropriate
generalizations from a disability classification, instead of attending to the specific
needs of each learner. Adaptive AI systems developed as educational technologies
could exacerbate this problem, unless suitable design choices are taken.

Further cause for concern emerges from thepossibility of building educational sys-
tems that use AI-related techniques in an attempt to determine whether a person has
a disability. For example, an arithmetic tutoring application might be equipped with
the ability to flag a student as possibly having dyscalculia—a learning disability. The
negative personal and social consequences that could result from a misclassification
are considerable, including stigmatization and inappropriate educational interven-
tions.7 The same could also occur in the event of a correct classification, particularly
in the absence of knowledgeable and skilled educators who understand the nature of
the disability and the needs of the student. Depending on the design of the system
and the conditions of its use, individual privacy rights could also be infringed in this
scenario. In general, the design of AI systems to detect a disability—particularly
a disability of which the individual may be unaware—is fraught with ethical diffi-
culties, while also giving rise to legal issues. For example, the European Union’s
General Data Protection Regulation (GDPR) ([17], article 5(1) (b)) constrains the
processing of personal information for purposes that are incompatible with the ‘spec-
ified, explicit and legitimate’ purposes for which the data are collected, and consent
to which is among the permissible bases of authorization ([17], article 6(1) (a)).8

In addition, the creation and disclosure of health-related information is a sensitive
matter that is appropriately subject to legal safeguards which vary by jurisdiction.

7 The risks of using AI as a tool of medical diagnosis in relation to people with disabilities is
discussed in Trewin et al. [54].
8 The limitation of data processing to specified, explicitly stated purposes is an aspect of European
data protection law that raises difficulties for machine learning-based AI applications generally. See
Marsch [37] for treatment of the relevant human rights obligations.
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A further case which well illustrates the importance of preserving privacy is that
of a hypothetical recommender system designed to match prospective employees
with available employment opportunities. Under readily foreseeable conditions, vol-
untary disclosure of an individual’s disability status to the system could be beneficial.
For example, in some countries, there are policies in place which establish quotas
to improve the employment rate of people with disabilities, who are expected to
comprise a specified proportion of each employer’s workforce [22]. A recommender
system could take an individual’s disability status into account, together with qual-
ifications and experience, to suggest opportunities offered by employers who are
likely to have unfilled quotas. Of course, this would require informed consent, as
some people with disabilities may object to having their disability status operate as a
factor in an employment decision. On the negative side, however, any disclosure of
disability status to employers by such an AI system not only raises privacy issues, but
also creates a risk of discrimination in the selection process. Such a case is thus illus-
trative of the value of statutory protection of privacy, and of requiring consent for the
purposes for which data are collected. Controlling the disclosure of information—in
this case, about a person’s disability—thereby limits the opportunities for its misuse.

2.2 Observations

Drawing on a recent paper [47] that connects technological choices with social
assumptions revealed by the contrasting models of disability introduced in Sect. 1, it
is argued in Sect. 2.2.1 that a collaborative and participatory approach is necessary,
which engages people with disabilities directly in the development of AI systems
designed to meet their needs. This position is supported by further comments on
examples considered in Sect. 2.1. Section2.2.2 takes up the suggestion, advanced in
a recent contribution to the literature on AI and people with disabilities [54], that
theoretical and methodological traditions in design thinking have much to contribute
to an elaboration of what constitutes appropriate participation. This scholarship also
offers a framework—value-sensitive design—inwhich to address themoral questions
raised by AI-related projects. In Sect. 2.2.3, it is maintained that such design-based
approaches, though valuable, should also be complemented by supporting norms and
incentives grounded in policy. The principal conceptual relations developed in this
section are depicted in Fig. 1.

2.2.1 The Need for an Inclusive Collaboration

Each of the examples in Sect. 2.1 is a good illustration of the potential benefits
that AI can bring to people with disabilities. It can serve a positive function by
helping to overcome problems of access to information, communication, education,
employment, and transport. Nevertheless, as has been shown in each case, there
emerge important questions to be considered in decidingwhat AI applications should
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Fig. 1 Examples of AI applications intended to benefit people with disabilities (in accessibility,
transport, education and employment), together with the medical and social models of disability,
raise ethical issues. These issues give rise to the need for an inclusive development process, sup-
ported by design methods such as inclusive design, participatory design, and value-sensitive design.
Consideration of these design methods illuminates the need for policy constraints

be built, and in arriving at appropriate designdecisions.As has been emphasized in the
discussion, these issues are concerned not only with the AI system as a technological
artifact, but also with the wider social environment in which it is likely to be deployed
and used. Choices about design and implementation should thus be made from a
perspective that is informed by knowledge of how a proposed system would actually
function in the specific life circumstances of people with disabilities.

In deciding what problems AI should be used to solve, and what constitute ade-
quate solutions, there is a risk of introducing prejudiced assumptions about the lives
of people with disabilities. Shew [47] warns of this danger, noting examples of tech-
nologies that perpetuate problematic assumptions about disability, particularly the
notion central to the medical model that the shortcoming essentially resides in the
bodily limitations of the individual, whichmust be ‘treated’ orminimized, rather than
in the physical and social context. Narratives about the benefits of technology for
people with disabilities are connected with notions of independence, which, Shew
points out, downplay the extent to which people in general are interdependent in
a multiplicity of respects. Thus, the promise of autonomous vehicles as enhancing
independence for people with disabilities reinforces these narratives, situating the
problem in the individual’s inability to drive, rather than in a social responsibility to
provide effective and accessible means of transport [47].9 A more careful analysis
would recognize that although autonomous vehicles would increase independence in
some respects, they would also create a less obvious dependence on the developers

9 Shew further develops the point in a brief discussion of additional examples, including the rationale
for using companion robots, which may serve the interests of human care givers more than those
of the person with a disability whose needs are to be met.
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and maintainers of the technology—designers, implementers, trainers, and service
personnel among them. Thus, the central question is concerned not with a greater or
lesser degree of independence as such, but instead with the type of interdependence
that is desired. An autonomous vehicle offers freedom to choose when and where
to travel, without having to coordinate with other people (namely human drivers or
public transport operators). However, it also requires the person with a disability to
entrust his or her safety to the creators and maintainers of a complex AI system.

The discussion of speech, sound, and image recognition in Sect. 2.1.1 directs atten-
tion to issues of societal responsibility for making information and communication
accessible, as well as associated questions of privacy and confidentiality. Clearly,
imposing responsibility for using AI to solve problems of information access princi-
pally on the individual who is faced with accessibility barriers is consistent with an
individualistic, medicalized concept of disability. Also, as has been noted, it shifts
the burden of the technology’s shortcomings onto the person who is least able to
overcome them. This is not to suggest, however, that people with disabilities should
be deprived of opportunities to gain the full benefit of such technologies and to use
them independently. Rather, the point is to acknowledge the need for informed deci-
sion making about appropriate application, both at the individual level and in policy
decisions regarding the overcoming of obstacles to access and inclusion.

Shew emphasizes the importance of ensuring the agency and autonomy of people
with disabilities, and of fully recognizing their expertise in their own needs, lives, and
experiences. This can be achieved, in part, by bringing the knowledge and experience
of people with disabilities directly into the process of making decisions about the
development and use of AI applications. User participation in design is thus of crucial
value, as is educating decision-makers and developers about disability.

The concept of human–AI partnership can be extended to acknowledge the impor-
tance of social practices and institutions in shaping the creation and application of
AI-based technologies. What is proposed here is that technological decision making
ought to be sensitive to this social context, and, ideally, not isolated from choices
about the social practices in which technologies are developed, maintained, and used.
Questioning implicit presuppositions, as well as gaining a greater understanding of
the lives, desires, and needs of people with disabilities are essential aspects of this
approach. The slogan put forward by the disability rights movement, ‘nothing about
us without us’, aptly conveys the importance of involving people with disabilities
directly in making decisions that affect them, including choices about appropriate
uses of AI technologies [58].

The considerations advanced so far build a case for engaging people with disabil-
ities directly in problem identification and definition, as well as in determining what
constitute appropriately designed solutions capable of meeting their practical needs
effectively. To be clear, it is not argued here that only people with disabilities are
appropriately qualified to conceive and to plan suitable AI-based solutions. Rather,
the claim is that the design and development of these systems should be carried
out in close collaboration with people who have disabilities and should preferably
be undertaken by developers who are personally interacting with disability-related
communities in non-trivial ways. Through a genuine and mutual understanding of
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the problems to be solved and of the design possibilities, informed decisions can be
madewhich lead toAI projects that are successful in enhancing equity and life oppor-
tunities. The risks of perpetuating prejudiced assumptions, and of devising systems
which attempt to solve the wrong problems, can thus be minimized by establishing
an inclusive collaboration in which prospective users and beneficiaries play a cru-
cial role. This collaboration should persist throughout a project, from its inception
through to the evaluation and refinement of the delivered AI system.

2.2.2 The Role of Users in Application Design

As discussed by Trewin et al. [54] in connection with the development of AI systems
that avoid algorithmic bias against people with disabilities, there are traditions of
research and practice in which the users of a technology play a central role in the
design process. Among these traditions, the authors emphasize the contributions of
‘inclusive design,’ ‘participatory design,’ and ‘value-sensitive design’ in particular.
Such approaches are clearly germane not only to the design of AI applications gen-
erally, but also to the development of applications which, in their over-all purpose or
via the inclusion of certain assistive technologies and accessibility-related features,
aim to satisfy needs specific to certain users who have disabilities. In these cases, the
potential users with disabilities who are intended to benefit from a proposed project
(an automated captioning application, for example) can be identified, and efforts can
then be made to engage representative individuals. Drawing on design methods that
privilege the user’s perspective in decision making or which make explicit the value
judgments inherent in technical choices has the potential to improve the quality and
suitability of the resulting AI systems. Nevertheless, the limitations of these methods
should also be kept in mind in relation to the project at hand.

In participatory design, for example, the users are genuine partners in decision
making. Participatory design approaches originated in the Scandinavian industrial
democracy movement, and were substantially motivated by resistance to taylorism
in the workplace.10 There thus arose a tradition that recognizes the value of the tacit
knowledge possessed by users (in the original context, industrial workers) in per-
forming tasks and solving problems. Instead of seeking to analyze, formally describe
and optimize this tacit, practical knowledge, participatory design develops and builds
upon it in ways that are meant to empower the users and to preserve their autonomy.
Moreover, participatory design methods are intended to be applied to the entire work
process, not merely to the creation of technological artifacts. The emphasis placed
on preserving and enhancing users’ tacit knowledge gives rise to a tendency toward
solutions that retain instead of radically reconfiguring established practices—a favor-
ing of evolutionary over revolutionary change.11 These aspects of the approach have

10 For an overview of the history and the guiding ideas, see Ehn [15]. A more recent introduction
to participatory design appears in Spinuzzi [49].
11 This consequence of the value placed on preexisting tacit knowledge is acknowledged as a
limitation of participatory design in Spinuzzi [49].
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the potential to contribute to improving the design of AI systems intended for use
by people with disabilities. However, they may also discourage more fundamentally
innovative, long-term projects.

Development of an AI system to facilitate indoor navigation by people who are
blind, for example, would begin with an understanding of existing, formal and infor-
mal practices of orientation andmobility. It would tend to favor extending established
approaches, such as those centered on the white cane and the guide dog, instead of
proposing the development of robots as substitutes. It would also seek to preserve
existing mobility skills. This could be achieved, for instance, by further developing
orientation applications suitable for use with mobile phones or wearable devices that
could give information and directions to the user, especially in unfamiliar, indoor
settings, and ideally without requiring the installation of specialized infrastructure
such as radio beacons that enable precise locations to be identified. On the other hand,
developing robots capable of navigating and of guiding their users in a wide vari-
ety of environments is arguably a valuable, long-term objective, notwithstanding the
practical limitations of current prototypes. The state-of-the-art prototype described
byGuerreiro et al. [23] is largely limited to flat, indoor environments in virtue of tech-
nical constraints, including weight and battery capacity. If these constraints could be
overcome and the capabilities of the AI system responsible for navigation improved,
the technology could manifestly be advantageous to users, at the risk of their placing
too much reliance on a robotic guide to the detriment of existing skills. The shortfall
in the user’s orientation andmobility skillswould then become problematicwhenever
robotic assistance was unreliable or unavailable. The principal benefits of robots—
effective navigation in unfamiliar settings, and avoidance of hazards or obstacles that
conventional mobility aids would miss—could be obtained by developing solutions
that extend rather than supplant current tools and strategies. The robots, however,
may in the long-term offer usability advantages that would not be achieved via more
evolutionary approaches.

Respect for users’ tacit knowledge in the design of new technological solutions
is thus autonomy-preserving, enhancing the individual’s control over the manner in
which tasks are performed and capacity for decision making. It operates also as a
constraint onmore radical forms of innovation. Participatory design offers the advan-
tage of making the practical knowledge and skills possessed by users conspicuous,
and therefore of raising questions about the role it should continue to occupy in the
application of new, AI-based systems. The fostering of user involvement in design
decisions also provides practical means of negotiating these issues, among others, in
arriving at appropriate technical solutions.

The design problems that have here been discussed all introduce questions of
value, broadly construed. Value-sensitive design seeks to bring investigation of the
values implicated by technological choices directly into the development process.12

Importantly, value-sensitive design attends to the salient moral considerations that

12 The approach is articulated and illustrated in Friedman, Kahn and Borning [20]. For a recent
treatment of the underlying concepts and design methods, see Friedman and Hendry [19] (Chaps. 2
and 3).

http://dx.doi.org/10.1007/978-3-030-72188-6_2
http://dx.doi.org/10.1007/978-3-030-72188-6_3
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may otherwise be overlooked or disregarded in technological projects. It accord-
ingly has potential to serve as a useful tradition to draw upon in building AI sys-
tems for people with disabilities. Through ‘conceptual,’ ‘empirical,’ and ‘techni-
cal’ investigations, value-sensitive designers identify and engage direct and indirect
stakeholders—people whose interests are affected by a project. The values of the
stakeholders and of the designers themselves with respect to the design problem are
investigated and incorporated into technical decisions. Of particular significance in
relation to the role of AI in enhancing the lives of people with disabilities is the con-
cept of ‘value tensions’ [19] (Chap. 2) among and even within stakeholders. Recog-
nition of these value tensions can lead to creative solutions that reconcile apparently
conflicting priorities. For instance, [19] (Chap. 2) an energy-efficient design may be
agreed upon both by stakeholders who prioritize cost minimization and by those who
favor environmental sustainability, without requiring resolution of their underlying
moral disagreement. Of course, this is only possible if the proposal contains costs
while also reducing energy consumption from sources that are ecologically harmful.

Opportunities for creatively overcoming value tensions can and indeed should be
sought in cases such as those discussed in this chapter. As an illustration, the choice
between providing captions that give a full transcript of the dialogue in a video,
and providing captions as simplified summaries of the dialogue, can be understood
as a value tension that may arise not only between users but even within a single
individual. As is evident from the discussion in Szarkowska et al. [51], unsimplified
captions offer the user full access to the dialogue, without interposing another per-
son’s interpretation of it, whereas simplified captions can improve readability and
comprehension, which are also valuable to and valued by users, at the cost of preclud-
ing equal, unmediated access to the spoken content. If sufficiently reliable speech
recognition and summary generation technologies were available, this value tension
could be overcome simply by generating both types of caption. The user could then
choose which type of caption to read in each particular situation. Though attractive,
this solution also exacerbates a second value tension—that between the quality and
availability of captions, on the one side, and the desirability of containing production
costs by reducing the human labor associated with editing and verifying captions,
on the other. Much of the appeal of automating caption creation derives from the
desire for improved cost efficiency. Generating two sets of captions for video con-
tent obviously runs contrary to this objective. The resulting tension can be resolved
by a technological solution if the automatic speech recognition and text simplification
algorithms are sufficiently accurate to maintain labor costs that are acceptable to the
producers. This places a heavy demand on AI researchers and software developers.
In the absence of a technical solution, the value tension should instead be regarded
as a value conflict. The wider question, then, is how to address such value conflicts
if, as in the current example, the human rights of people with disabilities are at stake.
In this case, the right of access to information and communication [55] (article 9) is
implicated.
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2.2.3 Commentary

Engaging users appropriately in the design process has genuine potential to encour-
age the development of technologies that are well aligned with the needs and values
of people with disabilities. However, treating the resolution of value tensions largely
as a design question for negotiation among designers and stakeholders in individ-
ual technical projects would risk the formation of compromises that undermine the
rights and interests of those whom it is supposed to benefit. For this reason, poli-
cies, ultimately established by governments, have a necessary and important role.
Indeed, the presence of deeply entrenched practices of social subordination oper-
ating against people with disabilities, manifested in technological choices as Shew
has described, justifies skepticism toward the ability of designers and stakeholders to
resolve value conflicts appropriately in the absence of incentives created by policy. In
AI, as elsewhere, one can plausibly argue that regulation and oversight are indispens-
able elements of upholding a moral commitment to social equality for people with
disabilities. Trewin et al. [54] do not suggest otherwise. Nevertheless, this conclusion
is important in understanding the complementary role that design methods occupy to
policy considerations in relevantly shaping the future of AI development.13 Further-
more, design procedures centered on the participation of users and other stakeholders
are expensive, raising doubts about whether organizations responsible for building
AI-based technologies will deploy them sufficiently in the absence of externally
imposed incentives. True power sharing among stakeholders in the design process
challenges existing structures of authority in addition to creating participation costs.
These factors suggest that its widespread application to AI development will require
policy-based interventions. In evaluating current policies and planning future regula-
tory approaches, there also arises the challenge of promoting the rights of people with
disabilities while allowing suitable flexibility for stakeholders to arrive at creative
solutions to technological problems, including mutually advantageous responses to
value tensions.

The development of human-AI partnerships that respect the rights and satisfy the
needs of people with disabilities thus requires an interplay of technical and social
choices. The social aspects of these choices bring to the fore issues of morality,
including questions of justice and human rights. Adequate resolution of these con-
siderations in technological projects depends on the nature of the design process, the
motivations and skills of the participants, as well as the internal and external incen-
tives that influence decisions. There is an important role for policy in establishing
appropriate incentives. Traditions emerging from design research can also be applied
and refined to support meaningful participation by direct and indirect stakeholders
with disabilities. Addressing value tensions can be regarded as partly a function of the
design process, and in large measure as lying in the domain of overarching policies.

13 Interestingly, Friedman and Hendry [19] (Chap. 2) regard policy as a kind of technology for the
purpose of applying value sensitive design methods.

http://dx.doi.org/10.1007/978-3-030-72188-6_2
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Fig. 2 Mutually related problems of bias and privacy give rise to technical and social responses.
Technical responses concern treatment of outliers and inclusive development processes. Inclusive
processes engage appropriate design methods (as described earlier in the chapter), while also inter-
acting with privacy issues. Policy responses concern antidiscrimination (practical barriers as well as
normative issues of proxy discrimination) and questions concerning the appropriate degree to which
decisions should be automated. The latter questions, in turn, raise issues regarding the advantages
of human decision making, and the transparency and auditability of machine learning algorithms

3 Disability as a Site of Algorithmic Bias

Whereas the previous section examined respects inwhichAI systems can be designed
to benefit people with disabilities by solving specific, practical problems, the follow-
ing discussion addresses the more general issue of the role of AI in perpetuating,
and even amplifying, discrimination against them. The disability-related aspects of
the problem of algorithmic bias are introduced (Sect. 3.1) and briefly illustrated by
citing examples presented in recent literature (Sect. 3.1.1). Closely related issues of
privacy are discussed in Sect. 3.1.2. The difficulties associated with technical, social,
and policy-related remedies are then explored (Sect. 3.2), enabling the identification
of open questions pertinent to research and practice. Even more so than in the pre-
ceding section, the purpose of this commentary is to pose questions rather than to
recommend solutions and to offer a conceptual approach to thinking about the prob-
lems rather than to give concrete guidance. The accumulation of multidisciplinary
research and evidence derived from actual cases of AI applications in subsequent
years can be expected to clarify the issues, while strengthening the guidance available
to practitioners. Figure2 presents a conceptual overview of the issues considered.

3.1 Introduction to the Problem of Bias

It has long been established that software, including AI applications, can reinforce
biases already present in the social context, while introducing new sources of bias of
its own [21]. The growing utility and increasingly diverse applications of AI systems
based on machine learning which have emerged in recent years greatly expand the
potential for biases to be introduced and extend the range of possible harms that
may result. As decision making becomes increasingly automated in a wide variety
of domains, all the more opportunities arise for biased algorithms to contribute to
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social injustice,14 includingdiscrimination against peoplewith disabilities.Questions
concerning algorithmic bias with respect to disability are necessarily part of a larger
discussion of the role of AI in discrimination generally.What distinguishes disability
from other social categories subject to algorithmic bias, such as gender and national
or ethnic origin, consists in the nature of the diversity that disability represents. As
introduced in Sect. 1, impairments can affect a broad range of human functioning,
including sensory, physical, psychological, and cognitive aspects. A given individual
can have one ormore impairments of different kinds and degrees, whichmay occur at
different stages of life and vary over time. These impairments can then combine with
highly variable, socially mediated conditions to constitute disabilities that present
practical challenges to the individual. As with other social categories of interest in
connection with algorithmic bias, societal practices of subordination and exclusion
can have a large role in limiting a person’s well-being and the life opportunities that
can effectively be pursued. As has been recognized in recent literature, [53, 54, 58],
the great diversity of impairments, social circumstances, resources, and experiences
among people with disabilities creates an associated diversity in the ways in which
they can be subjected to biases in AI systems.

3.1.1 Potential for Bias

Scholars and practitioners have reported on the findings of workshops that have
identified a variety of AI applications in which such biases have real potential to
occur [54, 58]. These examples are not exhaustive, as the range of AI applications
is large and becoming more so. Nor are all of the examples reviewed here, as the
discussion which follows can be sufficiently motivated by a brief overview.15 It
is clear from the actual and hypothetical cases discussed in the literature that the
biases in question tend to operate against people with specific circumstances and
types of disability, rather than against people with disabilities as a general category.
Moreover, an AI system exhibiting bias may do so to different extents and in different
ways to different individuals. This is a product of the many dimensions of diversity
characteristic of people with disabilities. A clear illustration of the specificity and the
danger of algorithmic bias is given by Treviranus, who presented machine learning
models designed to control autonomous vehicleswith images of a friendwho ‘propels
herself backwards in her wheelchair’ [52, 1]. The models would have directed the
vehicle to run her over at an intersection, and, worse, they reached this decision
with even greater confidence after having been trained with data depicting people in
wheelchairs [52].

AI systems designed to draw inferences from the behavior or appearance of a
person are problematic, since people with disabilities can differ in many respects
from the relatively homogeneous populations likely to be used in training. Examples

14 An informative overview of how discrimination can occur is presented in Barocas and Selbst [3].
15 The cited references should be consulted for more detailed illustration and discussion of appli-
cations in which bias against people with disabilities can reasonably be foreseen.
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of these applications, and the ways in which they may adversely classify people due
to a disability, have been noted in domains such as partially automated job interview
assessment, and public safety systems meant to detect suspect behavior [54, 58].
The monitoring of a person’s interactions with a user interface, for example in an
educational measurement application such as a test or an interactive learning tool,
raises similar concerns [54, 58]. More generally, machine learning algorithms have
been applied to various tasks in which people are ranked or categorized to determine
their eligibility for an opportunity or benefit, or their liability for a sanction. In
employment, for example, AI has been applied at every stage of the process from
decidingwhom to select for targeted advertising of open positions, to the screening of
job applications, and ultimately the monitoring of the employee’s work performance
[7]. In such cases, biases could occur against people with disabilities for different
reasons and to varying extents, depending on details of the interactions between
disability-related circumstances and the factors taken into account by the machine
learning algorithm. Such algorithmic bias may then be reflected in adverse decisions
with discriminatory effects [54, 58]. For instance, an individual’s job application
may be automatically excluded from further consideration or an employee’s work
performance may be automatically flagged as likely to be inadequate.

As an additional example, AI systems have the potential to be used extensively
by governments to determine eligibility for welfare benefits.16 This prospect raises
the possibility of algorithmic biases that could disadvantage people with disabilities,
especially those who are in greatest need of public support. A formula used by soft-
ware to calculate individualized budgets for government-funded services needed to
support the independent living of adults with developmental disabilities has become
the subject of litigation in the USA on grounds of due process [56]. Although this
case does not appear to be an example of anAI technology, it is indicative of the types
of welfare-related decisions that could be readily carried out by machine learning
applications.

3.1.2 Privacy and Bias

There is also a complex relationship between privacy and the problem of bias in AI
applications. Inclusion of data obtained from people with disabilities is often neces-
sary to the construction and evaluation ofmachine learning systems that avoid ormin-
imize bias. However, the acquisition of information that reveals a person’s disability
also introduces opportunities for exploitation, or for unintended but nonetheless sub-
stantive discrimination, whether carried out by the data collector or by third parties
to whom details are disclosed. As noted in Trewin et al. [54], this problem is further
complicated by diversity among people with disabilities. The exclusion of obviously
identifying information from data collections may not be sufficient to anonymize
them. Knowledge of the person’s disability, combined with other attributes, may be
enough to enable the individual to be uniquely identified, for example as the only

16 See Alston [1] for an overview of human rights-related concerns about this practice.
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wheelchair user who lives in a given locality [54]. Some individuals, such as those
with cognitive disabilities that preclude the requisite understanding, may be unable
to give informed consent to the acquisition and use of their data. Yet, these data could
be highly valuable and indeed indispensable to the development of AI applications
designed to enhance the well-being and to improve opportunities in life for such
populations.

An additional risk of discriminatory treatment is created by what Marks [35]
refers to as ‘emergent medical data,’ namely health-related information about an
individual that is inferred at a high degree of probability from diverse sources of
evidence. The distinctive characteristic of emergent medical data is that none of the
sources of evidence is overtly health-related. Consequently, no voluntary disclosure
of medical information is involved. For example, a person’s purchasing history could
be combined with indicators gleaned from online communications and interactions
with social media applications to infer the nature of the individual’s disability [36].
This disability classification,whether or not it is accurate, could then serve as a ground
for unjustly denying a benefit or opportunity. Marks is essentially concerned with the
deliberate inferring and later exploitation of disability-related information. However,
as noted in Sect. 3.2.2, this process could also take place unintentionally. Whereas
intentional derivation and misuse of medical data can be regulated by privacy laws as
Marks [36] discusses, the possibility that a machine learning system could detect and
respond adversely to disability in a completely autonomous fashion raises additional
difficulties.

3.1.3 Summary and Comments

Thus, it is clear that the nature of the diversity manifest among people with disabili-
ties opens the possibility of bias in a variety of AI applications, especially those built
on machine learning. Being a statistical outlier–one who is significantly different in
a relevant respect from most of the population—can readily lead to misrecognition
or misclassification of a person by a machine learning model. For this reason, tech-
nical measures that have been proposed to address the problem of AI bias against
people with disabilities focus largely on improving the ability of machine learning
systems to treat outliers appropriately [53, 54]. The distinct but related problem of
maintaining adequate privacy protection for information that reveals aspects of a
person’s disability also calls for technical and regulatory solutions. These solutions
are necessary to support the acquisition of data enabling people with disabilities to
be included in the development of machine learning systems, thereby alleviating bias
and consequent discrimination. However, privacy controls can also reduce the risk
of biases that result from the exploitation of emergent medical data.
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3.2 Responses to the Problem of Bias

By reviewing some of the potential measures that can be taken to avoid or to mitigate
bias in AI systems, it is possible to identify research problems of particular relevance
in the context of disability.What follows is not therefore intended as a comprehensive
survey of possible interventions, but rather as a discussion of starting points in this
direction which illuminate issues worthy of further investigation.

Technical approaches to overcoming bias suitable for adoption in software devel-
opment projects are briefly noted in Sect. 3.2.1. Attention is then turned in Sect. 3.2.2
to the limits of antidiscrimination law as a regulatory solution, emphasizing the chal-
lenges introduced by proxy discrimination and its relevance to decisions affecting
people with disabilities. In determining which practical problems to solve by means
of AI and in weighing the adequacy of proposed solutions, choices often need to
be made concerning whether, how and to what extent decision making in the rel-
evant domain of application should be automated. Issues concerning the strengths
and weaknesses of human and algorithmic decision making are raised in Sect. 3.2.3
as they arise in relation to the automation of decisions involving a highly diverse
population. Concluding remarks appear in Sect. 3.2.4.

3.2.1 Technical Measures

The advice for developers of AI systems put forward in Trewin et al. [54] is aligned
with the typical process of building a machine learning application. Emphasis is
placed on systematically identifying people with disabilities who constitute potential
outliers for purposes of the application under development, and including them at
all stages, beginning with the planning of the project and progressing through to
testing of the delivered product. Once the application is deployed, monitoring of its
outcomes and remediation of any discovered biases are recommended. Crucially, the
inclusion of people with disabilities consists in both engaging them directly as part
of the project and incorporating their data into the design and training of machine
learning models. Attention is paid to questions of privacy, noting standardization
efforts toward developing technical controls that can be implemented to enable users
to specify their privacy-related preferences. Aswas discussed in Sect. 2.2, the authors
recommend drawing on traditions of design practice in which the involvement of
users and other stakeholders is accorded a central role. The guidance offered in
Trewin et al. [54] serves as a valuable point of reference for anyone who is concerned
with the practical challenge of designing machine learning applications which are
inclusive of people with disabilities.

There are practical limits to the number and therefore the diversity of users or
other stakeholders who have disabilities that can be meaningfully included in a
software project. The people with disabilities who are introduced into the process
should therefore be regarded as having a representative function. Their contributions
of data and insight derive from their own personal circumstances and experiences
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of disability. They may also be able to deploy personally or professionally acquired
knowledge concerning others who have disabilities and whose backgrounds differ
relevantly from their own. The knowledge possessed collectively by participants in
a project, including people with disabilities themselves, can thus vary substantially,
even if systematic efforts aremade to include appropriate stakeholders. Howwell this
knowledge represents the actual diversity of the population who will ultimately be
subject to theAI systemmay be decisive in determining the extent to which biases are
avoidedorminimized. For example, it is entirely plausible that an autonomousvehicle
development project which effectively and meaningfully engaged wheelchair users
at every stage could nonetheless overlook individuals such as the friend described by
Treviranus [52]. The diversity among people with disabilities thus creates a challenge
of representativeness and of collective expertise in AI-related software projects, even
under favorable conditions inwhich inclusive development practices are followed. To
what extent and under what circumstances engagement of suitable stakeholders with
disabilities can effectively mitigate bias in machine learning systems should hence
be regarded as an open research problem. It is also a strategy that holds considerable
promise. The recognition that it raises unresolved research questions by no means
diminishes its practical importance.

3.2.2 The Role and Limits of Antidiscrimination Law

Technical approaches can thus be taken to avoid the introduction of bias and to
remediate it if it is detected in operational applications. Of course, these techni-
cal solutions are only likely to be implemented if appropriate social conditions are
established, including incentives to undertake the necessary design and develop-
ment work, and to do so competently. Antidiscrimination law is a major source of
this incentive. However, there are also grounds for skepticism about the ability of
antidiscrimination law effectively to regulate algorithmic bias against people with
disabilities. The first consideration is practical: antidiscrimination laws are typically
enforced only in response to proceedings brought by people who claim to have been
subjected to unlawful discrimination. Bringing such a complaint requires one to
engage considerable expertise and resources in challenging decisions made by or
with the support of an AI system. Such advocacy may be problematic due to an indi-
vidual’s circumstances—for example, socioeconomic disadvantage and shortfalls in
the availability of free or low-cost legal representation. Disability, including past
practices of discrimination, can readily exacerbate difficulties that operate against
bringing an antidiscrimination claim. In addition, individuals who, due to the nature
of their disability, cannot participate directly in bringing a claim depend completely
on others to assert their rights and to represent their interests. A public authority
empowered to monitor potentially discriminatory AI systems, to investigate their
operation, to respond to complaints, and to require adherence to legal standards of
non-discrimination, could overcome the limitations of relying entirely on individ-
ual claims as an enforcement mechanism. Indeed, such a regulator—a ‘neutral data
arbiter’—has been proposed to address privacy-related harms associated with the
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use of data analytics [12, § III]. Its role could readily be extended to questions of
non-discrimination, including those associated with disability.

The second consideration is that machine learning can be biased in ways that
raise difficulties for regulation by antidiscrimination law. These difficulties also cre-
ate practical challenges for designers and developers of AI applications in avoiding
bias.17 According to Prince and Schwarcz [41], machine learning applications that
combine data from a variety of sources have a propensity to lead to proxy dis-
crimination. Proxy discrimination occurs under circumstances in which a protected
characteristic such as race, gender, or disability status is actually predictive of the
legitimate outcome of interest to the discriminator, in ways in which other variables
are not. The authors argue that, since the goal of machine learning is to optimize
predictive accuracy with respect to the target variable based on the input data,18 it
can be expected to ‘discover’ unobvious correlates of protected characteristics even
if those characteristics and their obvious correlates are excluded from the data in an
attempt to prevent bias. Thus, they suggest, [41, § I] a person’s membership in an
online forum devoted to a particular genetic medical condition could lead a machine
learning algorithm to recommend a higher insurance premium. In this case, mem-
bership in the forum is predictive of the target variable, namely insurance risk. There
is a causal connection that runs from having the medical condition or a close relative
who does, to both joining the online forum and having an elevated risk of disease.
These correlations are of course far from perfect, but the point is that they are causal
and sufficiently significant to be predictive. Forummembership is thus an unobvious
proxy for sensitive health information that is excluded from the data supplied to the
machine learning algorithm. One may further suppose that the medical condition
could in turn be predictive of acquiring a disability.19

The fact that proxy discrimination is taking place may be entirely unknown to
the discriminator and indeed to all the developers and users of the machine learning
system [41]. Furthermore, due to the great diversity among people with disabilities
and the unobvious correlates of disability-related information that may be present in
data used by machine learning algorithms, the problem presented by proxy discrim-
ination has the potential to be particularly difficult in this context. Identifying and
excluding or otherwise addressing unobvious proxies for disability-related informa-
tion that is genuinely predictive of the target variable stands as a technical challenge.
Unlike Marks’s concern with emergent medical data (Sect. 3.1.2), which are derived
and used intentionally, the probabilistic inferences that lead to proxy discrimination
arise internally to and as the product of the ‘normal’ operation of machine learning
systems. They may be unintended, and they may also be difficult to detect. There is

17 Trewin et al. [54] acknowledge the practical dimension of the problem, and recommend consul-
tation with stakeholders as part of the development process.
18 The target variable is that which the machine learning model is designed to predict. It is assumed
here to be in the legitimate interest of the discriminator, such as the probability that a person would
be an effective employee.
19 Hoffman [24] argues that anti-discrimination law should be extended to address decisions based
on predictions of a person’s likelihood of developing a disability, and to require disclosure of the
use of data in making such decisions.
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thus an open research problem concerning the extent to which and the respects in
which proxy discrimination is a particular difficulty in machine learning applications
affecting people with disabilities, as well as what measures can be taken to control it.
The diversity of impairments and the variable social conditions that affect the lives of
people with disabilities provide a good ground for hypothesizing that proxy discrim-
ination could here pose a substantial challenge. This challenge is further complicated
by intersectional considerations that result from the multiplicity of legally protected
social categories to which a single individual may belong. To extend the example,
suppose not only that a person’s online forum membership is a proxy for having a
given medical condition associated with a disability, but also that there are linguistic
indicators in her or his contributions to social media which function as proxies for
belonging to a marginalized ethnic minority in the country in which he or she lives.
Suppose further that, due to discrimination in the provision of early diagnosis and
treatment services, the conjunction of having the medical condition and belonging to
the ethnic minority is strongly predictive of adverse health effects of interest to the
insurer, whereas neither circumstance is significant alone. Under such conditions,
the disability is an essential factor in the proxy discrimination, but it only operates in
combination with other category memberships. Apart from the technical and prac-
tical difficulties that such possibilities raise, there may also be legal obstacles, for
example if the law requires one to choose which ground of discrimination to assert.
In the current example, a choice may need to be made between alleging disability
and racial discrimination, neither of which is well suited to the case.20

The legal difficulty which proxy discrimination creates is not confined to the
empirical issue of establishing sufficient evidence of discrimination. Proxy discrim-
ination also entails that eliminating variables which explicitly represent disability-
related information as well as obvious proxies for them from the input data is inad-
equate to prevent bias [41]. Alleged discriminators can also seek to justify their
practice by arguing that, since the proxies relied on by the machine learning model
are truly predictive of the outcome of interest, and the model has been optimized
for predictive success, no less discriminatory alternative is available that would be
equally effective in achieving the defendant’s legitimate objective. As Prince and
Schwarcz [41](§ IV.A.2) argue in relation to disparate impact doctrine in the USA,
this reasoning, if it is found to hold according to the facts of a particular case, can
serve as an adequate defense against a claim of unlawful discrimination. Clearly,
whether this is so depends on the details of the antidiscrimination law applicable in
each jurisdiction.21 There thus arises a research question with respect to disability

20 An insightful discussion of intersectionality, noting the risk of over-simplifying its effects in
responding to problems of injustice that result from machine learning technologies, appears in
Hoffmann [25].
21 The law concerning liability for disparate impact (often referred to outside the USA as indirect
discrimination) has evolved differently between common law countries. See Khaitan [28] for a
discussion.
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discrimination in different legal and jurisdictional contexts regarding the implications
of proxy discrimination, and what reforms, if any, should be introduced.22

At the core of the policy question raised by proxy discrimination is an ethical
issue: under what circumstances is it morally permissible to discriminate against
people based on a protected characteristic such as disability, if this characteristic
is genuinely predictive of an outcome which is legitimately in the interests of the
discriminator? This is a problem concerning the ethics of statistical discrimination
[43]. Assuming that the costs of avoiding the discrimination by opting for a fairer but
less predictively accurate AI solution are more than negligible, is the discriminator
morally obligated to bear the costs and to choose the less discriminatory alternative?
Depending on one’s preferred normative analysis, the answer may be sensitive to
details of the case at hand, for example whether the statistical relationships which
purportedly justify the discrimination are in turn attributable to underlying social
patterns of discriminatory practice [33].23 In deciding what policy the law should
reflect, and what choices should be made by developers and users of potentially
discriminatory AI technologies, these moral issues are of central importance.

3.2.3 Human and Automated Decision-Making

Technical and policy measures that aim to reduce the discriminatory effect of a
machine learning system are valuable, but they also presuppose a choice to develop
the system for a specific purpose in the first place. This prior decision to use AI
in a given context and the determination of what its role should be, if constructed,
should also be examined in relation to the potential for discrimination against people
with disabilities. It might on balance be preferable not to build the system at all, or to
envision its role differently, thus shaping the character of the human–AIpartnership.24

Evidently, AI technology can be designed partly or completely to substitute for
human judgment in making a specific kind of decision. What role, if any, the AI
should have in a particular social situation is a choice that ought to be both well

22 Prince and Schwarcz [41](§ IV.B) consider potential reforms, such as restricting the variables
that may be used by AI systems in making certain kinds of decisions to a prescribed list of permitted
factors.
23 Selbst andBarocas [44](§ III.B) insightfully discuss difficulties resulting from the role of intuition
in the reasoning required for the application of norms of non-discrimination. If the relations among
variables apparently revealed by a machine learning systemmanifestly treat people with disabilities
unfavorably, for example, but there is no coherent or plausible explanation of why this is the case,
then evaluation of the grounds of these unequal outcomes becomes problematic. In some instances,
techniques of ‘interpretable’ or ‘explainable’ machine learning may facilitate the emergence of a
suitable explanation.On the other hand, and as the authors recognize, it would be naive to presuppose
that social and natural phenomena are always amenable to explanations that cohere with human
intuitions.
24 An interesting further possibility is for a machine learning system to give an ‘explanation’ of
its output that would enable an adversely affected person to change his or her situation sufficiently
to achieve a more favorable classification. The difficulties of two promising approaches to such
explanation are considered in Barocas, Selbst and Raghavan [4].
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informed, and sensitive to the circumstances of the people involved as well as the
rights and interests affected. It also raises issues that, if better understood, would
allow for more effective policies and practices in deciding what part AI should play
in different decision-making situations.

Competent and well-informed human decision-makers have capabilities of prac-
tical and moral reasoning that far surpass what is achievable by any AI technology
yet devised. Human judgment can weigh and interpret the applicable ethical or legal
norms, then apply them to the facts of a case to arrive at a just decision. The consid-
erations taken into account need not be prescribed exhaustively in advance. General
arguments have been developed in support of the view that, in the application of legal
rules, each person has a moral claim for her or his case to be decided individually by
the exercise of human judgment rather than to be determined algorithmically [6].25

This position is supported by a number of independent philosophical arguments, for
example regarding limitations on prior knowledge of uncertainties in the application
of rules, the value of exercising discretion in decision making, and respect for each
person’s individuality [6](§ 3).26

An interesting further question suggested by this broader claim is whether a high
degree of diversity present in a population, coupled with the need to make decisions
based on disparate facts and norms that affect rights and interests, should be regarded
as an additional ground for limiting the role of AI, even excluding it altogether, in
reaching decisions. To develop the point more specifically, one may consider a hypo-
thetical proposal to construct an AI system for determining, based on supplied data,
whether specified support services requested by a person with a disability are likely
to meet her or his needs. Such a system could be used either alone or, more proba-
bly, in combination with human review, by a government welfare program or in an
educational setting. Arguably, the diverse nature of the population which would be
subject to the proposed AI application, and the uniqueness of individual needs and
circumstances, establishes a case for exercising human judgment that extends beyond
the general arguments already cited. In a population that can reasonably be expected
to contain many outliers, there is ample reason to be skeptical of efforts to formalize
the decision-making problem and to develop algorithms capable of reaching just out-
comes in most, let alone all cases. The diverse needs and circumstances of the people
whose entitlements are to be determined establish a condition in which uncertainty
in the interpretation and application of the relevant rules calls for modes of reason-
ing and consideration of unanticipated factors that only human decision making can
provide. Justice may foreseeably require a degree of individual treatment of cases
that current technology is unable to automate.

25 Article 22 of the GDPR [17] establishes a limited right not to be subject to legally significant,
fully automated decisions. For an argument against recognizing such a right to human involvement
in individual decisions, which does not entirely address the philosophical grounds summarized in
Binns [6], see Huq [26].
26 Citron [11](§ III A and B) discusses the tendency of automation to substitute precise rules for
more general legal standards that allow for the exercise of human discretion. This trend, Citron
argues, prioritizes cost efficiency over justice.
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Human judgment, however, is known to be fallible and prone to biases. Beyond
intentional discrimination, which at least is under conscious control, prejudices
against out-groups such as people with disabilities can be held and may influence
behavior unconsciously [13]. Decision making can also be distorted by cognitive
biases. If AI is combined with human involvement to reach decisions, automation
bias [48] can limit the vigilance and effectiveness of the human decision-maker in
identifying and compensating for erroneous findings of the AI technology. Invoking
evidence from cognitive science and social psychology, Kleinberg et al. [29](§ 3)
argue that human decisions are not only open to social and cognitive biases, but also
that the true motivations are often not transparent to the agent.27 Machine learning
algorithms, they argue, can on the contrary be rigorously audited to ascertain the
sources and extent of bias [29](§ 5). An appropriately designed algorithm can also
be demonstrably less discriminatory than human judges, for example in criminal risk
assessment [29](§ 6.2). They accordingly maintain that algorithmic decision mak-
ing has distinctive equity-promoting advantages, noting [29](§ 6.1) the difficulty of
determining the effectiveness of efforts to train humans to overcome biases.28

3.2.4 General Comments

Having regard to the unparalleled advantages of human judgment inmaking decisions
in novel cases, and the potential of algorithms for auditability and bias mitigation,
there is a need to develop a greater understanding of how best to gain the bene-
fits of both in the service of social equality. Whereas technical measures can be
taken to reduce biases in machine learning algorithms, social interventions can be
made in an effort to overcome the more fundamental problem of human biases. The
extent to which algorithmic bias can be detected and corrected in the face of a very
diverse population of people with disabilities is an important question on which the
potential of AI as a force for greater equality depends. If auditing is to be relied on
as the principal mechanism, as proposed recently in Rambachan et al. [42](§ 1),29

much depends on developing effective strategies for identifying and overcoming
potentially context-specific manifestations of bias. Intersectional effects involving
disability together with other protected characteristics, and the occurrence of proxy
discrimination against possibly small subsets of the population, present two sources
of difficulty. More generally, the many facets of diversity characteristic of disability
constitute a challenge for overcoming the problem of algorithmic bias.

27 A clear summary of the authors’ position appears in Sunstein [50].
28 A much discussed strategy for seeking to overcome human biases against social out-groups is
the contact hypothesis. See, for example, Pettigrew and Tropp [39] and Pettigrew et al. [40].
29 Under this proposal, the auditing is to be carried out by a regulator with the authority to compel
changes that address discrimination. A more skeptical view of transparency as a means to greater
accountability of machine learning systems is elaborated in Ananny and Crawford [2].
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4 Conclusion

Developing AI technologies that facilitate equality while furthering the well-being
and aspirations of people with disabilities is at least as much a social as it is a techni-
cal challenge. The concept of partnership between human beings and AI systems is
useful in characterizing what ought to be built—amutual interplay of social arrange-
ments and software-based systems that promote morally good human ends through
meeting practical needs. Devising meaningful approaches to including stakehold-
ers who have disabilities (whether they be users or indirectly affected parties) in AI
development projects is clearly a necessity. This participation should extend from the
initial identification and clarification of the problem that is to be solved, through to
the ultimate design, development, implementation, and maintenance of an AI-based
solution. Further research and practical experience are vital to creating more specific
guidance as to how this should be done, and as to what comprises an inclusive AI
software development process. Promising approaches to design have emerged which
empower potential users of the technology as well as indirect stakeholders whose
interests are affected by its implementation, and which encourage reflection upon the
value-dependent judgments associated with technical decisions. Such design-related
scholarship offers valuable insights and methods, but treating the relationship of AI
to people with disabilities as purely a design problem is not sufficient. Equally vital
is the shaping of norms and policies associated with the development and use of AI.

The challenge of algorithmic bias raises technical, social, legal, and moral ques-
tions of importance in overcoming disability-based forms of discrimination that AI
systems risk reinforcing. Many of these questions also apply to the problem of bias
in machine learning generally, but there are disability-specific aspects and implica-
tions of these issues that have been emphasized here. Although technical means of
mitigating or preventing bias have been proposed in recent literature, the perspective
taken in this chapter suggests that any such measures should be applied in the con-
text of a larger, policy-oriented approach to the problem. To a considerable degree,
developing appropriate policy responses to issues of bias depends upon answering
as yet unresolved research questions, some of which are identified in the preceding
discussion.

Antidiscrimination law, at least in its predominant, adversarial and complaint-
oriented form, seems inadequate, by itself, to redress harms resulting from algorith-
mic bias. There may thus need to emerge a complementary role, alongside antidis-
crimination law, for proactive regulatory mechanisms which do not rely on people
with disabilities who claim to have been adversely affected by algorithmic decisions
to furnish the resources to sustain litigation. Proxy discrimination not only introduces
practical difficulties for the removal or prevention of bias. It also raises moral and,
depending on the applicable antidiscrimination regime, potentially also legal argu-
ments purporting to justify discriminatory decision-making practices on the basis that
an unbiased algorithmwould be less effective in accomplishing a legitimate purpose,
and, to that extent, more costly to the discriminator. The multiple social categories to
which individuals belong may have unobvious intersectional consequences, involv-
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ing disability together with other factors, which create additional sources of bias.
Developing a deeper understanding of whether and to what extent this issue com-
plicates efforts toward non-discrimination in the design and use of AI applications
seems justified. Although acquiring data from people with disabilities is necessary
to mitigate bias and to design AI applications that meet their needs effectively, it also
risks compromising privacy and thus opens opportunities to exploit knowledge of
an individual’s disability. This is especially problematic for those who have limited
capacity to give voluntary and informed consent to the use of their information, and
under conditions in which the law allows data to be processed for the purpose of
drawing inferences about a person’s disability without the individual’s knowledge
or agreement.

The problem of bias also raises important research and policy questions concern-
ing the appropriate roles to be accorded, respectively, to algorithmic and human
decision making, particularly in application to the highly diverse circumstances
of people with disabilities. Greater understanding is needed of how best to forge
human-AI partnerships that overcome tendencies toward prejudice, biases, and dis-
crimination as they manifest themselves in human decisions generally, as well as in
the development and use of machine learning systems. Combining uniquely human
capacities for practical reasoning and moral judgment appropriately with insights
that can be derived from the operation of machine learning algorithms on large and
diverse collections of data remains a challenge both in principle and in practice.
An adequate response would proceed from an understanding of how biases occur in
human judgment and in AI systems, while seeking to develop solutions that shape
the social and policy-related aspects of the environments in which the technologies
are developed and deployed, in addition to the technical design of the applications
themselves.

Addressing these issues adequately in connection with disability can most effec-
tively be pursued as part of a broader response to the potential for bias introduced
by AI, and in particular by applications of machine learning. Devising appropriate
human–AI partnerships should be regarded as a problem of putting in place effec-
tive policies, practices, technical expertise, and participatory processes throughout
the development and maintenance of software projects. This is a large and complex
undertaking, involving regulators, researchers, developers of AI technology, and, in
the context at hand, people with disabilities.
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1 Introduction

AI technology is boosting personalized healthcare services and significantly improv-
ing the quality of services and accessibility of information for patients. The appli-
cation of AI in medicine covers a wide area, including AI robots assisting critical
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microsurgeries, chatbots in patient care, AI-assisted health monitoring with wear-
ables to public health studies and different life science research areas such as com-
putational biology and drug development. In precision medicine and companion
diagnostics, AI-based clinical decision support systems (CDDS) and deep learning
in medical image processing will be a big game changer in various fields such as
the detection of skin cancer [2], AI support for “perception” and “reasoning” in
radiology [25], ophthalmologic diagnosis of diabetes-associated changes [21], and
in assisting pathologists in the detection and grading of cancer [30], finding small
tumour deposits within lymph nodes, quantification of immunohistochemistry reac-
tions and prescreening of Papanicolaou-stained gynaecological cytology in cervical
cancer screening, just to name some of the most recent AI solutions in computational
pathology [28].

However, AI solutions in medicine and in particular in computational pathology
face also a number of challenges [8]. One of them is the fact that machine learning
(ML) and specifically deep learning solutions are hard to interpret, to understand and
to explain [6], which is a central issue for trustworthiness, validation and acceptance
[32]. There is some work addressing user interface solutions for digital pathology [1]
and explainable AI topics on computational pathology [26]. However, a systematic
taxonomy for the whole chain from algorithmic development to validation and usage
of AI solutions is still missing. We, therefore, aim to define a taxonomy for

• Stakeholders of AI solutions in computational pathology (Sect. 2)
• Types of AI solutions (Sect. 3)
• The interface between the stakeholders and the AI solutions (Sect. 4)
• Varieties of explanations (Sect. 5), and finally
• Methods to measure the quality of explanations (Sect. 6).

Such a comprehensive taxonomy is necessary, because (as depicted in Fig. 1) only
if we know who used which type of AI solution for what purpose and how the
human–AI interface was designed, we can judge the efficiency and effectiveness of
an explanation component.

Fig. 1 Integration of AI solutions in computational pathology
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2 Stakeholders in Computational Pathology

Pathologists working in clinical diagnostics are probably the most obvious users for
AI solutions in computational pathology. However, the list of stakeholders for AI
solutions in computational pathology is much longer and comprises:

• Pathologists in diagnostics
• AI laboratory technician
• Quality managers at pathology institutes
• Researchers in medicine/molecular biology
• Researchers in data science/AI
• AI solution providers’ staff responsible for requirement analysis, software devel-
opment, quality assurance, sales, marketing or technical support

• Staff of organizations assessing market conformity of medical software solutions,
such as for example notified bodies designated under the EU In-Vitro Devices
Regulation (IVDR) [24].

Depending on the status of an AI solution in computational pathology, different
stakeholder groups are relevant, as shown in Fig. 2.

These stakeholder groups have different levels of domain knowledge and expertise
in the field of medicine or molecular biology, as well as different levels of computer
literacy, as shown in Fig. 3. Specific knowledge levels and expertise of a user group
are important aspects that must be taken into account when looking at interfaces

Fig. 2 Relevant stakeholders in different states of an AI solution for computational pathology and
their level of expertise in medicine/molecular biology
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Fig. 3 Schematic overview of the expertise of stakeholders in computational pathology

between these stakeholders and AI solutions (see Sect. 4) and assessing the quality
of explanations (see Sect. 6).

In the following paragraphs, the stakeholder groups relevant for AI solutions in
computational pathology are described in more detail.

2.1 Pathologist in Diagnostics

A pathologist is a medical practitioner, who diagnoses and monitors diseases by
looking at changes in human tissues, cells, and body fluids. The tasks of a pathologist
are, on the one hand, to make an exact diagnosis and classification of the lesion, and
on the other hand, to assess the prognosis of the disease and predict the expected
outcome of a specific therapy.

In pathology, a pathologist examines glass slides or their scanned representations
called whole-slide images (WSI), of formalin-fixed paraffin-embedded (FFPE) tis-
sues or frozen sections, under the microscope or on the screen, respectively. These
tissue samples have been pre-processed in the histopathology, immunohistochem-
istry or molecular-pathology laboratory with different staining/marker techniques
for detecting cellular components and molecules. However, to come up with a diag-
nosis, a pathologist does not only take into account the findings from microscopic
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examination of the specimen, but applies a holistic view and considers also the
case history and the results of other laboratory tests such as for example molecular
pathology.

Therefore, a pathologist needs a fundamental medical education followed by a
discipline-specific education/training. Furthermore, a pathologist has got a compre-
hensive understanding of laboratory medicine, including management, safety and
quality issues for the laboratory, as well as knowledge on how to interpret complex
patterns of test results and what further testing may be appropriate to help making
correct diagnoses. A pathologist works in close cooperation with other staff in the
laboratory (technicians, scientists) and communicates with other pathologists and
clinical specialists to seek and provide referral opinion on difficult cases.

The expectations of a pathologist towards computational methods in general and
in particular AI algorithms include increasing quality and accuracy, time savings
and getting new insights in unexplored fields. Examples for these general principles
are AI support in finding small tumour deposits within lymph nodes, detection and
grading of cancer, quantification of cells (e.g. in immunohistochemistry) and several
prescreening algorithms for the detection of atypical cells and architectural structures.

2.2 AI Laboratory Technician

An AI laboratory technician is the main applicant of the AI solution for diagnos-
tics within the pathology institute/medical institution. The AI laboratory technician
applies the algorithm on the samples, prepares a first analysis and evaluation of the
findings, adjusts, if needed, the parameters in a preconfigured AI solution environ-
ment and transfers the results from a technical language to a more understandable
way to and for the pathologists. These tasks require intermediate IT knowledge and
medical know-how.

2.3 Quality Manager at a Pathology Institute

The quality manager at the pathology institute usually comes from the medical area
or has gained experience in quality management or economics. The main task of the
quality manager is to have insight into the local workflows and medical processes of
the medical institution. The quality manager ensures the quality management system
is established, implemented and maintained. The quality manager’s responsibilities
include development and monitoring of key quality indicators, key performance
indicators, audit schedules, contingency plans, assessing risks and risk mitigation,
as well as ensuring compliance with relevant legislation, standards and guidance.
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2.4 Researcher in Medicine, Molecular Biology

Beside its diagnostic work, a medical expert usually works on research tasks as well.
This is in particular the case in a research hospital, which is often connected to amed-
ical university. Research work differs in several aspects from routine diagnostics: (1)
it is multidisciplinary bringing together experts from medicine, biology, pharmacy,
biochemistry and bioinformatics; (2) it aims to go beyond current medical state of
the art and introduces new approaches; and (3) it can spend more time and resources
on a single case and/or question compared to routine diagnostics. Researchers with
a university degree in medicine, biology, biochemistry or pharmacy either work
in a (medical) university, a public institution (e.g. the World Health Organization
(WHO)), or in the research department of a company (e.g. in the pharmaceutical
industry).

Medical researchers are usually not trained IT experts, so they need either AI
solutions that are easily accessible (available and affordable) and easily adapt-
able/extendable to fit their specific research question or have to work in an interdisci-
plinary environment. A pathologist in research naturally has different requirements
for AI solutions than a pathologist in their role as a diagnostician. The explanatory
information for this stakeholder group should be much more comprehensive in order
to allow the generation and validation of new hypothesis.

2.5 Researcher in Data Science/AI

Researchers in data science/AI often have a background in software engineering,
mathematics or computer science and are skilled in translating real world into
machine learning problems and design of complete AI solutions. They are, therefore,
involved in the developmental part of AI solutions from the early stages on. Data sci-
ence researchers are supposed to have specific knowledge in configuring and adjust-
ing the AI solution and attempting to discover patterns in data. A researcher in data
science/AI is on the developmental side but also a user on the application/customer
side of AI solutions.

2.6 Provider of an AI Solution

Within the provider of an AI solution, typically a commercial company, we can
identify several stakeholder roles with different technical skills and needs towards
explainability.

The Requirement Analyst performs market analyses (needs and demands), com-
bines them with the company policy and thus defines requirements for the to-be
developed software. A basis for these tasks is a profound background in economics
and medical knowledge in the particular field, but only little IT skills.
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The AI Engineer has in-depth knowledge in IT and computer science, based on an
education in informatics or software engineering. However, software developers/AI
engineers usually have only little know-how in medicine. Being involved in the
process of developing AI solution tools from the beginning, software developers/AI
engineers implement software based on needs and requirements of the end-users,
which were collected by the requirement analyst.

The Sales & Marketing Division brings the product to the market and finally to
the end-user/customer. They are the first contact for the (potential) applicants of
the software. The people working in sales & marketing usually do not have a lot
of knowledge in IT and the medical domain. However, they have a marketing and
sales background and the skill of persuasiveness to present the AI solution to the
end-user/applicant.

The Technical Support staff of the provider of an AI solution normally has an
education in informatics or computer science in order to solve first- and second-level
problems. The technical support is in direct contact with the customer/end-user of
the AI solution and usually does not need to have medical knowledge at all.

Quality Assurance Manager of the provider of an AI solution have either a back-
ground in software engineering or quality management/economics which gives them
insight into the development processes and a high awareness of quality standards [17].
According to the EU IVDR, manufacturers of medical AI solutions, which shall be
used in diagnostics, must have a so-called Person Responsible for Regulatory Com-
pliance (PRRC), with a degree in law/medicine/pharmacy/engineering or another
relevant scientific discipline or four years of experience in regulatory affairs or qual-
ity management systems relating to medical devices [24]. It is the task of the PRRC
to establish, document, implement and maintain a quality management system that
ensures compliance with the EU IVDR.

2.7 IVDR/MDR Expert/Staff of Notified Body

The IVDR/MDR expert is an independent auditor from a notified body who is
restricted by regulations and norms. The IVDR/MDRexpert probably has knowledge
of the solution provider’s processes and work flows but mainly should have expertise
in the markets current demands and knowledge of other state-of-the-art AI solutions.
An IVDR/MDR expert will use the explanatory components in the evaluation of the
scientific validity, analytical performance (together with the AI solution provider)
and clinical performance (together with the pathologist and quality managers).

3 AI Solutions

This section briefly explains what we understand by the term AI solution, and how
they are developed in computational pathology. As described by Regitnig et al. [22],
there exists a large variety of applications for the analysis of histopathological images,
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comprising a wide range of methods and tasks including image-enhancing, measur-
ing and quantification, highlighting/preselection of regions of interest (RoI) and
fully automated assessments, but there are a lot of expectations to digital pathology.
Currently, there is a lot of ongoing research in this area [15, 23, 29], which will
presumably lead to a plethora of new applications for histopathological imaging in
the near future.

In order to facilitate establishing a common understanding of histopathologi-
cal imaging applications, we propose a set of aspects constituting the minimum
information, which can be used to profile, compare and categorize applications in
histopathological imaging. Furthermore, this minimum information can act as a basis
for developing explainability interfaces for different categories of applications and
different types of users. In the next section, we introduce such a taxonomy.

The proposed set of aspects, which can be used to profile, compare and categorize
applications in histopathological imaging, comprises administrative and technical
aspects as well as aspects related to the application field, as shown in Fig. 4. This
template can help to describe any such application in a nutshell.

In the following paragraphs, each of these aspects listed in Fig. 4 is described
briefly.

Fig. 4 Template for categorization of histopathological imaging applications
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3.1 Administrative/Economic Aspects

Market Admission—Any software intended to be used for In-Vitro Diagnostics in
the EU/EFTAmust bear theCE marking to indicate its conformitywith the regulation
2017/746 of the European Parliament and of the Council on In-Vitro Diagnostic
medical devices (CE-IVDR) [24]. Similar regulations are in place in other countries.
For example, before a medical device product (including software as a medical
device) may be legally sold in the USA, it must gain approval by the US Food and
Drug Administration (FDA).

Cost Model—Ahistopathological imaging applicationmay be available as so-called
freeware without monetary cost, or it may be sold as a commercial product with a
time-based fee, analyses-based fee or lifetime license. Furthermore, users may have
to pay a fee for support.

Availability—A histopathological imaging application may be a stand-alone appli-
cation, it may be included in a closed system of a vendor, or the application may be
bundled with several vendors’ systems.

3.2 Aspects Related to the Application Field

Application Context—Histopathological imaging applications are mainly used in
three distinct fields: in biological/pharmaceutical/medical research, in clinicalquality
assurance and in routine diagnostics, where they can be applied for clinical decision
support or provision of a second opinion.

Scope—Histopathological imaging applicationsmay be dedicated to a specific prob-
lem (e.g. PD-L1 scoring in lung cancer…), specific organ(s) (e.g. prostate, breast…)
or specific staining(s) (e.g. H&E, HER2 IHC…), or may be applied in a generic
scope (e.g. solutions for image pre-processing).

Existence of Ground Truth for the Result—When we look at the result of
histopathological imaging applications, we can distinguish two cases: either ground
truth exists and the result can be verified by experts or the result is prognostic and
no ground truth exists.

Purpose—A histopathological imaging application may be used for a variety of
histopathological tasks such as quantification, classification or prediction.

Benefits—The histopathological imaging application may bring about different ben-
efits for the user: time saving, reduction of tedious routine work, lower error rates,
facilitation of diagnoses (e.g. by better visualization of important aspects) or new
insights (e.g. by visualization of (otherwise) invisible aspects).

Potential Risk/Possible Damage—When assessing the risks associated with a
histopathological imaging application, we must look at the impact an erroneous
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result of the application would have on the diagnosis. We may find that an erroneous
result has a high impact on the diagnosis, might be critical for the diagnosis or has
no impact on the diagnosis.

3.3 Technical Aspects

Type of Algorithm—A histopathological imaging application includes one or
more algorithms, which may be of different types: conventional non-AI/ML algo-
rithms, classical machine learning algorithms (such as decision trees, support vector
machines, k-nearest neighbours…) and deep learning algorithms utilizing neural
networks.

Learning Style of Algorithm—While conventional algorithms need no learning to
function, AI algorithms that use machine learning models must be trained. There
are different learning styles: in supervised learning a large amount of training data
with labels indicating the desired outcome is used, in weakly supervised learning the
training data comes with only incomplete or coarse-grained labels, in unsupervised
learning training data without annotations are used and in transfer learning the
training of the model is split into two stages so that the training of a pretrained model
can be finished with a low amount of training data. In active learning, the algorithm
decides which examples from the training data should be labelled (by the user) next.

Algorithm’s Changes over Time—On the one hand, a histopathological imaging
application may be based on locked algorithms, which always provide the same
output for a given input. Such algorithms, may be updated frequently (i.e. several
updates per year) or have longer update intervals (i.e. one update per year or less). On
the other hand, a histopathological imaging application may be based on adaptive
algorithms, such as for example continuously learning algorithms, which change
their behaviour by using a defined learning process on new or additional input data
[27].

Customizability/User Influence—This aspect describes the ability of the applica-
tion to be changed by the user, but at the same time it gives an indication of the need
of the application to be customized by the user in order to become fully functional.
A histopathological imaging application may be based on ready-to-use algorithms,
without any customization options/obligations by the user. The application may need
a user-defined training of the algorithm to be customized for the specific problem
and work properly. Apart from that, the application may be a modular system, where
users must compose the modules according to their needs in order to build a working
algorithm.

Code Availability—Histopathological imaging applications may be open source
software, with publicly available and modifiable code or closed source software,
where the code is not published and owned by the vendor. Note that open source
does not automatically imply that the code can be modified.
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Fig. 5 Icon visualization of an AI solution

Running Environment—A histopathological imaging application may be run on
premise or it may be run (partially or completely) in the cloud.
The set of all attributes describing an AI solution is quite comprehensive. In order to
give an overview, an iconic representation of the most important aspects (see Fig. 5),
based on the visual summary approach as developed in [16], is used:

• Icon/Image illustrating a typical example of the input data (image, text, etc.) and
the result (segment, classification, number, etc.) of the AI solution.

• 4 main attributes of the AI solution. The selection of these attributes should be
community based.

4 Human–AI Interface

The interface between stakeholders and the AI solution usually consists of a man-
agement and viewer part and specific user interface components of an AI solution.
These in turn can be divided into a visualization and an interaction component for
the primary result and an optional display of the explanatory information. The basic
component of the user interface is (ideally) the same for all AI solutions and should
offer, in addition to the viewer functionality, a dynamic possibility (plugins) for the
presentation of the AI solution’s results. We will, therefore, describe the functional
classes for the base component and the AI solutions interface separately below.

4.1 Case- and Slide Viewer

The “Case Viewer” and the “Slide Viewer” are two software parts that are playing
a major role in the human–AI interface. They can be implemented as a combined
software or as stand-alone products, both as Web application or as locally running
instance.
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Those software parts can be divided into three categories: (1) vendor-specific
solutions: solutions that only offer access to WSI that are digitized with a specific
WSI-scanner, perhaps with the possibility of importing/converting scans from other
vendors. (2) Proprietary vendor neutral solutions: providing a commercial environ-
ment for viewing WSI that are created from different sources (scanner vendors). (3)
Open-source solutions: non-commercial environments, which provide full access to
the source code and can be adjusted by the user.
A “Case Viewer” offers the possibility to access and view a complete set of slides. In
diagnoses, it acts as the layer between the laboratory informationmanagement system
(LIMS) and the actual Slide Viewer, often the entry point to digital pathology for the
pathologist and in research, to manage and organizeWSIs for projects. In diagnostics
for example, a single case can consist of up to 100 slides. The main aim of the “Case
Viewer” is to present those slides in a structured way to the pathologist/researcher
as shown in Fig. 6.
The main functionalities of a “Case Viewer” are related to the organization of whole
cases’ WSIs and metadata enrichment of these cases:

Organization of Whole Cases and Slide Images

• Grouping of slides in cases and blocks—Display of the hierarchical structure of
slides

• Access management to cases—Possibility to define who has access to which cases
• Reordering of slides—Manual and/or automatic reordering of slides
• Prioritization of cases—Task and worklist creation for pathologists
• Report creation—A “Case Viewer” can provide an interface for report creation on
a case-level.

Fig. 6 Example of a “Case Viewer”.
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Metadata Enrichment

• Connection to LIMS—Gathering of information from the LIMS system to show
case relevant metadata

• Connection to AI Solutions—Triggering of AI Solutions to perform analysis of
slides and displaying the high-level results

• Plugin Integration—Possibility to add different additional functionalities, i.e.WSI
pre-possessing to the “Case Viewer”.

On the next level in the stack the so-called Slide Viewer (see Fig. 7) is positioned.
The “Slide Viewer” provides an interface to view the whole-slide images with the
following basic and/or additional functionalities:

• Display of WSI—Visualization of the WSI files (vendor specific or vendor inde-
pendent) in different magnifications

• User annotations—Possibility for user annotations, for example marking of RoIs
(circle, rectangle, polygon, text) and displaying them

• External annotations—Visualization of annotations generated by an AI solution
(RoIs, classifications, quantification, …)

• Z-stacking—Possibility to scroll across different focus-layers of a slide
• Overlay and multislide view—Allows the view of 2 or more slides (e.g. for
immunohistochemistry) at once as overlayed images or in a grid layout

• Autoalignment—Automated translation and transformation to align differentWSIs
• Image correction—Functionality to perform colour correction and channel adjust-
ment of the displayed image

• Tracking—Marking of the viewed areas
• Plugin integration—Opportunity to extend the existing tools with additional third-
party applications such as quantification tools or annotations.

Fig. 7 Example of a “Slide Viewer” displaying the WSI and annotations as well as analysis results
generated by an AI solution
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4.2 User Interface Components of an AI Solution

The human–AI user interface can be divided into two parts: first, the interaction
and visualization functionality supporting the primary research question and sec-
ond the user interface and communication functionality dedicated to the question
“Why”, the explanatory component. We analysed existing workflows in pathology
[11] and developed methods to visualize the process how a pathologist makes a
specific diagnosis [19, 20] as a starting point to define functionality for the user
interface components of AI solutions. Besides the visualization of the whole-slide
image and the appropriate interaction techniques for gigapixel images the following
visualization and interaction techniques are well known:

• Pixel, RoI-based annotations and visualizations
• Heat maps, saliency maps
• Representative tiles
• Statistical values, related to regions
• Textual output (using domain concepts).

Pathologist is trained to look at images and interpret image information, conse-
quently, we should use both for the result and for the explanation whenever possible
as overlays/ heat map/salience map at the source image. If results of an AI solution
are directly related to the whole-slide image, for example by an image segmentation,
there is a natural way to combine the results and explanatory information. Principles
which should be harmonized across different AI solutions are:

• DifferentAI solutions should use the samevisual language (symbols, colour codes)
to visualize the results and explanatory information

• The explanatory component should be optimized for different stakeholder groups.
This is especially true for the algorithm developers, who want to understand what
is going on inside the model, as well as for quality managers, who have to judge
an AI solution according to its analytical and overall clinical performance.

• Even if the same visualization methods (heatmaps, saliency maps,…) are applied,
they have to be carefully adapted and optimized to the needs and prior knowledge
of the different stakeholder groups.

5 Varieties of Explanations

Explaining is a form of purpose driven communication. It requires a recipient (stake-
holder), information about a subject, away (modality, representation) to convey it and
a context in which it takes place. A good explanation supports the purpose and goals
of the task the recipient is confronted with. This is typically achieved by considering
the context, the recipient’s need for information, the recipient’s background knowl-
edge and capability to interpret and understand the explanation (more on this in the
following section). Since explanations require to be specific with respect to a stake-
holder, a context and a task, a large variety of different explanation approaches exists.
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To determinewhich subject of information can provide an appropriate explanation
for the stakeholder, a good start is to analyse the specific task and context in which the
stakeholder requires an explanation. For pathologists, a common task is examining
WSIs (or their analogues form) and finally, based on their findings and medical
criteria, deriving a diagnosis from it. Since this is a visual task, explanations for
AI solutions on images often use visual modalities (geometrical shapes or coloured
overlays such as heatmaps) to represent information. One example for the purpose of
verifying the correctness of anAI-calculated cell ratio is highlighting recognized cells
or RoI. A second example would be highlighting the most relevant parts of the image
that led to a certain outcome of an algorithm (sensitivity/saliency maps). While the
first example uses concepts that arewithin themedical domain or commonknowledge
(e.g. how to calculate a ratio) and therefore are probably easier to understand for
pathologists, the second example is different: first, in this context, it does not help
the pathologist to determine if the calculated ratio is correct; second, interpreting
the coloured areas requires domain knowledge about the inner workings of the AI
solution and probably, about convolutional neural networks. But while this second
explanation is not appropriate for this medical context, within another context and for
another recipient, it might be. Considering a developer who wants to detect “Clever
Hans” (for the Clever-Hans effect see the original source [18]) predictors [12], a
saliency map can be a valuable Explainable Artificial Intelligence (XAI) tool.

While most of the research on explainable AI in the recent years focused on
explaining the behaviour of machine-learned models, embedding explainability into
practical AI applications requires a much broader approach, as typically not just
a single model needs to be explained but also the connections and inner workings
of such AI solutions. We, therefore, suggest the following categories (including
examples, non-exhaustive) when analysing or describing explainability methods and
techniques in the context of AI solutions for pathology:

• Stakeholders—End-users, certifiers/validators, AI developers
• Background Knowledge—Medical, statistical, machine learning, neural archi-
tectures

• Task—Development, validation (scientific validity, analytical performance, clini-
cal performance), certification, application (diagnosis, exploratory research), qual-
ity monitoring

• Subject—Complete AI solution, single learned model, training process, applica-
tion

• Scope—Local (a single decision/single instance), global (general behaviour, over
many instances)

• Source of Information—Intermediate results, intrinsic model, direct post-hoc
derivation (Layerwise relevance propagation (LRP)), post-hoc approximation
(local interpretable model-agnostic explanations (LIME), surrogates), scientific
validation (benchmarks)

• Modality/Representation—Visual overlay (shape, heatmap), text label, interac-
tive dialogue system, figure/chart, example images (counterfactuals).
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6 What Makes an Explanation a Good Explanation?

For an explanation given for anAI solution, we aim tomeasure effectiveness (does an
explanation describe a statement with an adequate level of detail), efficiency (is this
done with a minimum of time and effort) and user satisfaction (how satisfactory was
the explanation for the decision making process). When looking at the explanation
component of an AI solution, we distinguish between

• Explainability, which in a technical sense highlights decision relevant parts of
machine representations and machine models, i.e. parts that contributed to model
accuracy in training, or to a specific prediction. It does not refer to a human model
of the problem domain.

• Causability [9] similar to usability as the extent to which an explanation of a state-
ment to a user achieves a specified level of causal understandingwith effectiveness,
efficiency and satisfaction in a specified context of use. This does refer to a human
model.

In order to measure causability, one can use different approaches [31], via user
surveys and questionnaires, and/or using the System Causability Scale (see next
section).

6.1 System Causability Scale (SCS)

With the help of the System Causability Scale (SCS) [7], we can determine whether
and to what extent an explainable component of an AI solution, its human–AI inter-
face, and the explanation process itself is suitable for the intended purpose. Based on
the Likert attitude method [14], as a standard psychometric scale to measure human
responses, we are examining the following ten statements:

1. I found that the data included all relevant known causal factors with sufficient precision
and granularity.

2. I understood the explanations within the context of my work.

3. I could change the level of detail on demand.

4. I did not need support to understand the explanations.

5. I found the explanations helped me to understand causality.

6. I was able to use the explanations with my knowledge base.

7. I did not find inconsistencies between explanations.

8. I think that most people would learn to understand the explanations very quickly.

9. I did not need more references as medical guidelines and regulations.

10. I received the explanations in a timely and efficient manner.

When applying the SCS, the recipients of the explanation (e.g. pathologists) are
asked to score ten items with one of five responses that range from “strongly agree”
to “strongly disagree”. According to the Framingham model (for a discussion of
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the Framingham model refer to [5]), the following numerical values are used: 1 =
strongly disagree, 2 = disagree, 3 = neutral, 4 = agree and 5 = strongly agree. The final
SCS value is then computed by the sum of all ratings divided by 50. In accordance
with the original System Usability Scale (SUS) [13], a score above 68 is considered
to be above average, however, here further studies are in preparation.

6.2 Causability Laboratory

In such a laboratory, we investigate how pathologists make judgements and decisions
with the goal of finding out how AI can support them in their daily work—towards
an “augmented pathologist” [10]. Key questions include: How do pathologists make
causal judgements? What role, if any, do counterfactual approaches play in this
process? We know from theory that counterfactual theories of causal judgements
predict that people compare what actually happened with what would have happened
if the possible cause had not been present [3]. Common theories say that people
focus only on what actually happened to judge the mechanism linking the cause and
the outcome. To this end, for example, it is important to record pathologists’ eye
movements and compare themwith other evidence relevant to the decision. Here it is
important to analyse in real time the satisfaction of a pathologist when using the AI
solution. This can be done with different methods, e.g. to analyse eye movements,
facial expressions and micromovements such as nodding the head. We combine and
analyse all these sensor parameters and thus get insights in both, the usability and the
mental load of the overall interface and causability, i.e. level of causal understanding.
Ideally, this would need a prototyping laboratory (BYOD, Bring Your Own Data), a
demo space and a human-centred AI testing laboratory to test human–AI interaction
to inspire the design, development and testing of novel human–AI interfaces and to
carry out tests ensuring ethical AI.

7 Conclusion

AI solutions using machine learning and deep learning methods are able to find
correlations in complex data, but there is no guarantee that these correlations are
meaningful and correspond to actual causal relationships. Another problem is that the
complexity of black boxmodels is preventing the inspection and the control by human
operators. We conclude with a quote for the JRC technical report on Robustness and
Explainability of Artificial Intelligence [4], which states three important topics for
the right deployment of human-centred AI:

1. Transparency of models: it relates to the documentation of the AI processing chain,
including the technical principles of the model, and the description of the data used
for the conception of the model. This also encompasses elements that provide a good
understanding of the model and related to the interpretability and explainability of
models;
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2. Reliability of models: it concerns the capacity of the models to avoid failures or mal-
function, either because of edge cases or because of malicious intentions. The main
vulnerabilities of AI models have to be identified, and technical solutions have to be
implemented to make sure that autonomous systems will not fail or be manipulated by
an adversary;

3. Protection of data in models: The security of data used in AI models needs to be
preserved. In the case of sensitive data, for instance personal data, the risks should be
managed by the application of proper organizational and technical controls [4].

All the above-mentioned aspects support the hypothesis that explainability is one
of the most important points to establish trustworthiness to AI. This taxonomy of
explainable AI in the field of computational pathology is an important contribution
for building future human–AI interfaces generally and paving the way for a clearer
and better understanding for working in human-centred AI specifically.
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