Forth:

The NEXT Step
[

Ron Geere

—

f

SHFALL
COMFUTER

Forth:
The NEXT Step

SMALL COMPUTER SERIES

Consulting Editors Jan Wilmink
ORMAS by, The Netherlands

Max Bramer
Thames Polytechnic

Forth:
The NEXT Step

Ron Geere

A

vy

ADDISON-WESLEY PUBLISHING COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park, California
Don Mills, Ontario - Amsterdam - Sydney -Singapore - Tokyo - Madrid
Bogota - Santiago - San Juan

© 1986 Addison-Wesley Publishers Limited
© 1986 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the publisher.

The programs presented in this book have been included for their instructional value
They had been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Cover design by Ken Arlotte.
Typeset by Leaper & Gard Ltd.
Printed in Great Britain by The Hollen Street Press.

Library of Congress Cataloging in Publication Data

Geere, Ron.
FORTH, the next step.

(Small computer series)

Bibliography: p.

Includes index.

1. FORTH (Computer program language)
L. Title II. Series.
QA76.73.F24G44 1986 005.13'3 85-30805
ISBN 0-201-18050-2 (pbk.)

British Library Cataloguing in Publication Data

Geere, Ron
Forth: the next step.—(Small computer series)
1. FORTH (Computer program language)
L. Title IL Series
005.13'3 QA76.73.F24

ISBN 0-201-18050-2

ABCDE 89876

Preface

Most computer languages appear to have a field of use for which they are
most appropriate. Forth is no exception and has become the standard
language of the International Astronomical Union and is used for the control
of radio telescopes. Forth naturally finds its way into other control appli-
cations such as process control, machine tool control and robotics. In addition
it has been used in diverse applications such as video games, spreadsheets and
the space shuttle aft flight deck simulator. A major advantage of Forth is that
it can be tailored to the application, rather than the converse. In essence,
Forth provides us with the tools to do the job.

Like the English language, Forth is extensible. What is meant by that?
Suppose by way of example we invent a completely new item, we will there-
fore need to call it something, say a ‘whatsit’. We can now define what we
mean by a ‘whatsit’ in terms of other words that we already know. To find the
meaning of these other existing words we can look them up in a dictionary,
although this presupposes that we already know a minimal pumber of words.
In principle this is what we do in Forth.

There are many books on Forth which go to great pains to explain the mini-
mum required word set and give a few examples of their use. However when
it comes to progressing beyond this stage it depends very much on one’s own
ability. At this point if the programmer does not take to Forth naturally, as
can happen when weaned on a more conventional procedural language, it is
tempting to say, ‘Hmm, very interesting’ and then go back to one’s familiar
language. After all, compared with a level-2 BASIC, Forth lacks the comfort-
able line numbers, floating point arithmetic, trigonometric functions, strings
and arrays. But Forth is extensible. If the user finds it necessary the required
features may be added in a form most suited to the application.

In this book some common extensions are presented, together with some
programs that have been found either useful or entertaining. It is hoped that
in so doing the methods will stimulate readers to see solutions to their own
programming problems. The extensions are commonplace and may be stand-
ard in some Forths but lacking in others. Inevitably when seeking a missing
definition in a hurry, one never seems able to find it readily when it is most
needed. Hopefully the collection in this book will fulfil that need.

One of Forth’s many virtues is that it is far more portable than languages
such as BASIC, the latter having over 100 differing dialects. This portability is
achieved by first defining a virtual Forth computer for a given machine. This

v

vi Preface

simulated computer now looks the same for every computer so that the same
Forth language will run on it. There are, however, variants in the language
and some word definitions can be in the native code of the machine in use and
probably will not transfer directly to a different processor type. These Forth
dialects are usually not too different but where a difference is known to exist,
this has been noted in the text. Additionally most differences are between
FigForth and the *79-standard and are listed in Chapter 1. At the time of writ-
ing these two standards, although superseded, are still dominant in number.
Variants considered are FigForth, *79-standard and ’83-standard. Com-
mercial variants such as MMS-Forth and PolyForth are not covered in this
book because their comprehensive vendor support renders it unnecessary.
Where CODE definitions are used, 6502 code is used with high-level Forth
equivalents also included where applicable. Although machine-specific, this
processor was chosen because it is used by Apple, Atari, Commodore and the
BBC computers.

Finally the author would like to express appreciation to all who have put so
much effort into publicizing Forth and putting it to work on an ever increasing
range of tasks.

Ron Geere Farnborough

Contents

Preface

Chapter 1

1.1
1.2
1.3
14

Chapter 2
2.1

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Chapter 3

31
3.2
33
34
35

Chapter 4

4.1
4.2
4.3

Getting Organized

Error handling

Planning for readability

Differences between FigForth and *79-standard Forth
Avoiding the assembler

References

Some Forth Extensions

Counter-rotate (=ROT or <ROT)
Tuck

Looking at the stacks

Loop variables

Recursive routines

Memory usage

Testing parameters

Rounding

Signum

NOT what it seems

Having done

Family of words to manipulate bytes in a cell
A complement of twos
References

Double Number Definitions

Double number storage
Double operators
Mixed operators

Mixed number division
Miscellaneous

Formatting

- HMS — print hours, minutes and seconds
LAT/LONG
Navigation calculations

CNAWN =

10
10
10
12

14
14
15
15
15

16
17
19

20

21
22
23
23
24

26

26
27
28

viii Contents

Chapter 5

5.1
5.2
53
5.4
5.5

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Chapter 7

71
72
7.3

Chapter 8

8.1
8.2
8.3
8.4
8.5

Chapter 9

9.1
9.2
9.3

Chapter 10

10.1
10.2
10.3
10.4

The Real World

Looking at a port
Which bit?
Scanning two ports
History

Labelling the 6522 VIA Chip

Mathematics

Trigonometric functions
Inverse functions
Powers

Exp(X) or e*
Binomials

Square and cube roots
Polar coordinates
MODVARIABLE
References

Calendar Functions

Julian date
What day is it?
Calendar

Factors and Multiples

Factors

Prime number generation
Highest common factor
Lowest common multiple
Factorials

References

‘When 10 Digits Are Not Enough

Large factorials
Multiplication
Division
References

Pot-pourri

Sort and search

Egyptian and rational fractions

Matrices and arrays
Tools
References

31
31
31

33
34

36
36

44
45
46
47

50
51

52

52
53
54

62

62
64
66
68

69
69
73

74
76

Glossary

Bibliography

Index

Contents

77

85

87

1 Getting Organized

Mass storage is a key element in Forth and is sometimes referred to as ‘virtual
memory’. This is a concept whereby the computer is led to believe that it has
more memory than it really has. It works by storing the program or data on a
mass storage device, such as a floppy disk drive, and transferring only part of
the total storage available into the computer’s memory space at any one time.
Historically this came about so that Forth could be used on small micro-
processor systems with limited memory capacity. Recent 16-bit machines have
ample memory for Forth and versions exist which have dispensed with the
virtual memory arrangement. At the other extreme some low cost systems
dispense with disk storage in favour of cassette storage. Such systems are
perhaps adequate for learning and experimentation, but cannot be considered
for serious program development.

A ‘bare bones’ disk-based Forth system will require some initial preparation
of the disk itself. Starting off with a totally unused diskette, the first job will be
to format it with tracks and sectors. This is not specific to Forth, but a charac-
teristic of ‘soft-sectored’ disk usage. To do this from Forth, you will need to
refer to your user handbook. If your Forth is a ‘home brew’ system, you will
have to home brew your own method of doing this also!

The next step is to put the following Fig and *79-standard error messages
on screens 4 and 5 using the EDITOR. The text of line number 15 of screen 4 is
printed at the foot of each page by TRIAD and is usually modified to contain a
copyright message or some personal identification.

SCR #4

0 (ERROR MESSAGES)

EMPTY STACK

DICTIONARY FULL

HAS INCORRECT ADDRESS MODE
ISN'T UNIQUE

DISK RANGE ?
FULL STACK
DISK ERROR !

IR - I - IRV IR- N PPN Y

4 Forth: The NEXT Step

to be inserted into the sequence. One way round this problem is to keep the
chained blocks to perhaps two or three related blocks and to call the head of
each chain from a ‘load block’.

The purpose of a load block is to call up and load all the blocks required for
a specific application. It is convenient if the block/screen number used is
numbered relative to the load block. To do this we define RLOAD (or perhaps
+L0AD) which will load a block calculated from the number of the load block
plus a signed offset on the stack. The definition is also arranged to print the
header (line 0) of the block at the head of each chain, spaced for an 80-
column VDU.

: RLOAD (N === /Load scr+N *)
BLK @ + CR 8 SPACES 0 OVER .LINE
CR 2 SPACES LOAD ;

A hypothetical load block might have some of the following information.

3 RLOAD (editor extensions)
8 RLOAD (Forth extensions)
12 RLOAD (2% 2/ etc.)
15 RLOAD (double word set)
29 RLOAD (trig functions)
45 RLOAD (application constants)
57 RLOAD (system input routines)
43 RLOAD (data validation)
33 RLOAD (output formatting)

You will see that each subsection is commented. It also makes life easier if the
load block is at an easily remembered number - 10 LOAD is easier to remember
than, say 19 LOAD. One could even go a step further and define a constant for
each of several load screens using the application name for each as a label. As
previously mentioned, the first screen line is displayed as each RLOAD is
executed, so that when the application loads it might look like this:

(editor extensions - 1 of 4 search replace RDG-820211)
size ?isn't unique
(extensions - 1 of 2 ascii $xx ctrl-x RDG-830115)
(code for 2s = 1 of 3 2% 2/ 2%+ RDG-820224)
(double word set - 1 of 3 RDG-830507)
(trig functions - 1 of 4 sin cos etc. RDG-830515)
(constants - 1 of 1 RDG-830521)
(system input - 1 of 2 RDG-830522)
(data validation - 1 of 2 RDG-830630)
(formatting - 1 of 3 RDG-830702)

If the hard copy printer supports 132-column output it is useful to be able to

Getting Organized 5

print two screens side by side. This is especially so if shadow blocks are being
used since the description can be adjacent to the definition. Blocks can be
listed in pairs by using PLIST defined in Chapter 10.

A number of useful Forth words have been published which enhance the
readability of a program: for example, how much more readable it is if one
defines the words:

: TRUE 1 ; : FALSE 0

or perhaps replaces 3 EMIT with CTRL-C EMIT or 42 EMIT with ASCII % EMIT -
such words are a prerequisite in any sizeable application.

: ASCIT (=== N /Leave ASCII value of next in-line char. *)
BL WORD HERE 1+ (@ [COMPILE] LITERAL ; IMMEDIATE

ASCII leaves on the stack the ASCII number equivalent of the following
character [1]. When compiling, the next input-stream WORD delimited by BLank
is placed at HERE and the first character fetched to the stack for use by LITERAL
whose compilation is forced by [COMPILE]. A similar, shorter, but less readable
word is 8 where X = the character [2],[3]. In this case the parameter follow-
ing is not passed via the stack but by way of the header with the WIDTH reduced
to one. $XX simplifies hexadecimal notation since the base can remain
unchanged and the sequence 8 16 32 64 may be better expressed as $08 $10
$20 $40 in some instances. Likewise addresses are usually best expressed in
hexadecimal as $E000 for example, without perforating the text flow alter-
nately with the words HEX and DECIMAL. HERE should be included only for
FigForth.

(&X $XX $XXXX CTRL-X)
32 CONSTANT & 1 WIDTH !
HEO HERE 2+ C@ [COMPILE] LITERAL ; IMMEDIATE

0

1

2

3

4ot $XX BASE @ HEX 0 0 HERE 1+ (NUMBER) SWAP DROP ROT BASE !
5 Cd BL - 0 ?ERROR [COMPILE] LITERAL ; IMMEDIATE
6

7

8

T OSXXXX
CCOMPILE] $XX ; IMMEDIATE

9
10 5 WIDTH !
11 ¢ CTRL-X
12 HERE 6 + C@ 64 - [COMPILE] LITERAL ; IMMEDIATE
13 31 WIDTH !
14
15

In later standards (NUMBER) should be replaced by CONVERT. Additionally
FigForth users may want to add definitions which are required in later stand-
ards but which are lacking in FigForth, such as U. M+ followed by some of the
extensions defined in later chapters.

6 Forth: The NEXT Step

1.3 DIFFERENCES BETWEEN FIGFORTH AND '79-STANDARD FORTH

Forth originated from the ideas of one man but as the language has matured
several standards have evolved. Unfortunately it is not practicable to give
cross-conversion between any two of the major dialects. At the time of writ-
ing, FigForth and the *79-standard are numerically the most popular and,
therefore, if you are using Forth based on the early Forth Interest Group (Fig)
standard you may have to make changes to a program written to the '79-
standard. In general a simple conversion process is all that is involved, but
some words such as DOES> behave differently and are perhaps best handled by
an amendment to the program if necessary.

SCR #133

0 ('79 STANDARD CONVERSION TO FIGFORTH)
1 CODE J

2 XSAVE STX, TSX,

3 R 4 + LDA, PHA, R 5 + LDA,

4 XSAVE LDX, PUSH JMP,

5

6 CODE Rd

7 FORTH ' R CFA @ ' R3 CFA!

8

9 CODE EXIT

10 ' ;S CFA @ ' EXIT CFA !

"

12 -=>

13

14

15

SCR #134

0 ('79 STANDARD CONVERSION TO FIGFORTH)

1

21 MOVE (ADT AD2 N ===)
3 2 % CHOVE ;
4
5 : VARIABLE

6 0 VARIABLE ;
7
8 : CREATE

9 VARIABLE -2 ALLOT ;
10 -=>

Getting Organized 7

SCR #135

0 ('79 STANDARD --> FIGFORTH)
1 0. 00. ;

2: 0 0>
3= 1-
41 2- 2-

5 : >IN IN ;

6 : 7DUP -DUP

7 : CONVERT (NUMBER) ;
8 : DNEGATE DMINUS ;

9 : NEGATE MINUS

10 : NOT 0=

11 : SAVE-BUFFERS FLUSH

12 @ U/MoD v

13 : SIGN 0< IF 2D HOLD THEN
14 : WORD WORD HERE ;

15 1 79-STANDARD ;

The '83-standard may present further problems with a different behaviour
associated with important words such as CREATE, LEAVE, EXPECT, WORD, FIND,
PICK and ROLL. As a result conversion to or from Forth-’83 is far more
complicated. For further information you should refer to the appropriate
Forth standards [4] or the articles by Berkey [5],[6]. Reference [7] explains
the differences in some detail.

*All changes to a computer programming language degrade its quality’
- Professor A. Sale

1.4 AVOIDING THE ASSEMBLER

Sometimes it is necessary to produce a definition in the native code of the
processor. To do this on a small system for perhaps only one definition is
somewhat inefficient in memory usage, since the entire assembler must be
loaded for just that one item. Alternatively, on a small system, there may not
even be an assembler available!

So how can we avoid using the memory space required by the assembler,
yet include CODE definitions in our vocabulary? Suppose we want to use the
word RVS to invert the video of a memory-mapped CRT screen. Using a
typical assembler the word could be defined thus:

CODE RVS (--- /Invert 2K of video RAM starting at $8000 *)

XSAVE STX, $08 STY, 83 # LDA, 09 STA,
BEGIN, 09 DEC,

BEGIN, 08)Y LDA, 80 # EOR, 08)Y STA,

DEY, 0=

UNTIL, 09 LDX, 80 # CPX, 0=
UNTIL, XSAVE LDX,
NEXT JMP, END-CODE

8 Forth: The NEXT Step

This would compile into the dictionary a header containing the name RVS and
a parameter field containing bytes corresponding to the assembled code. The
same effect could be achieved by the following method:

(UTILITY - RVS INVERTS SCREEN VIDEO RDG-830729)
HEX
CREATE RVS (-=- /Invert $8000 to $7FFF *)

0586 , 0884 , 88A9 , 0985 , 09C6 , 0881 , 8049 , 0891 ,
88 C, F7DO , 09A6 , 80EQ , EFDO , 05A6 , 4C C, 0642 ,
SMUDGE DECIMAL

The word CREATE creates a dictionary header containing the name RVS. The
succeeding numbers are then compiled into the dictionary and examination
will reveal that they correspond to the same numbers that would be generated
by the assembler. Obviously some manual conversion must be undertaken,
especially with branch offsets, for this is what assemblers are intended to
eliminate. One needs, therefore, a table of op-codes for the processor con-
cerned (in this example the 6502) and also the address of the word NEXT.

If you are interested in using RVS you are probably aware that it was written
for the Commodore 8032 which has 2K of video-mapped RAM from $8000
to $87FF and the routine uses an address pointer at $08/09. A word of
caution: this definition is even more unreadable than the version using the
assembler. Do document how it works on the disk or you will waste a lot of
time someday trying to fathom it all out. Even with a disassembler to convert
back to assembly language, some additional notes will not go amiss.

The definitions :CODE and ;NEXT make the creation of these hand assembled
definitions neater and easier to read at a later date.

0 (WORDS IN LIEU OF ASSEMBLER RDG-841014)

1
2 HEX 0642 CONSTANT NEXT-LINK (the address of NEXT)

3

4+ :CODE (=== N /CREATE HEADER WITH CFA

5 POINTING TO BODY OF WORD *)
6 BASE @ HEX CREATE ;

7

8 : ;NEXT (N --- /Terminate body of word with jump to NEXT *)
9 4C C, NEXT-LINK , SMUDGE BASE ! ;

10 DECIMAL

"

12

13

14

15

If you have the source listing of an assembler for your system, you may be able
to find the address of NEXT from that. Alternatively, other related words may
be required and to find them on a typical 6502-based system you can try these
assumptions and leave the address on the stack.

Getting Organized 9

HEX ' LIT 11 + CONSTANT PUSH (push lo in A, hi in P)
LIT 13 + CONSTANT PUT (drop top & PUSH)
LIT 18 + CONSTANT NEXT

EXECUTE NFA 11 - CONSTANT SETUP

(DO) OC + CONSTANT POPTWO (remove 2 items)
(DO) OE + CONSTANT POP (remove 1 item)

They are correct for FigForth, and the addresses are assumed to be fixed
offsets from known landmarks in the dictionary kernel. However, should the
source code differ in some respect from the FigForth source the assumption
may not be valid. In addition, the FigForth word tick (') which returns the
parameter field address of the following word may need to be replaced by
FIND. Since also in FigForth, FIND returns the code field address the figures
will also need adjustment.

It is a wise precaution before testing that the code definition operates as
intended to first check the compiled code using DUMP. The most likely error
with 6502 code is to have hi/lo byte pairs transposed or perhaps relative
branch/offset values reversed.

CREATE is a *79-standard word and may not be in a FigForth implementa-
tion; as an alternative to re-defining it (see SCR 134 in Section 1.3) CREATE can be
replaced by:

0 VARIABLE <name> -2 ALLOT

Project

Explore your dictionary to find the addresses for NEXT etc. Expand the
pseudo-assembler to include ;PUSH ;PUT ;POP - can a defining word ENDING
(created with CREATE. .. DOES>) be used for this family of words? e.g. NEXT-LINK
ENDING ;NEXT

REFERENCES

[1] Weisling, R. Forth Dimensions, II1, No. 3, p72

[2] $XX etc., Forthwrite 2, No. 5, U.K. Forth Interest Group. Originally from L.A. Fig
Users.

[3] Huang, T. ‘In-word Parameter Passing’ Forth Dimensions, V, No. 3, p19

[4] The Forth-'83 Standard. Forth Interest Group, P.O. Box 1105, San Carlos,
CA94070, US.A.

[5] Berkey, R. ‘Upgrading Forth-"79 Programs’ Forth Dimensions, VI, No. 3, p26

[6] Berkey, R. ‘Forth-'83 Program to Run Forth-"79 Code’ Forth Dimensions, VI,
No. 4, p28

[7] McCabe, K.C. August 1984. ‘Forth-'83: Evolution Continues’ BYTE Magazine,
pl137

2 Some Forth Extensions

There are many definitions that are commonplace but do not form part of the
minimum required word set. In this section an assortment is presented that
you may find useful.

2.1 COUNTER-ROTATE (-ROT OR <ROT)

This is often required after operating on the third stack item. ROT brings it to
the top and ROT ROT reinstates it. One could define -ROT as ROT ROT, but this
version is more efficient.

1 -ROT (N1 N2 N3 --- N3 N1 N2 /Counter-rotate top three *)
SWAP >R SWAP R> ;

2.2 TUCK

A combination of words that occurs frequently gives rise to the definition
TUCK. This puts a copy of the top stack item under the top two. It could be
considered as the converse of OVER, so perhaps it ought to be called UNDER?

: TUCK (N1 N2 === N2 N1 N2 /Copy TOS under top two *)
SWAP OVER ;

2.3 LOOKING AT THE STACKS

DEPTH appears in some systems; if not, the following definition will return the
number of items on the stack that were there before DEPTH was executed. Note
that this definition is system dependent. The numbers 136 and 134 are related
to the base address of the stack of a 6502 system. The 136 could be replaced
by 50, the contents of user variable SP0. Some implementations have S0 and/
or SP0 missing, and even if it is available, the detail of its operation may vary
across different Forth standards. Entering

SP! DEPTH

should print 0; otherwise adjust these values until it does.

Some Forth Extensions n

: DEPTH (--- N /Leaves number of items on the stack *)
SPQ 136 SWAP - 2/ ;

There are some Forth systems that use 'S instead of SPa to return the address
to the top of the stack as it was before the address was added.

To print out the stack contents non-destructively, the definition .S has
proved itself useful. Again, it is system dependent:

HIN (--- /Prints the stack contents *)
CR DEPTH IF SP@ 2 - 134 DO I @ . -2 +LOOP
ELSE ." Empty"” THEN ;

The Forth-"79 and subsequent standards prohibit access to Forth’s innards so
that RP@ which returns the current value of the return stack pointer is no
longer part of the required word set. However, it is a useful word when de-
veloping utilities which hook into Forth’s inner workings:

CODE RP@ XSAVE STX, TSX, TXA, XSAVE LDX, PHA, 01 # LDA,
PUSH JMP, END-CODE

which without the assembler is equivalent to:

HEX

CREATE RP@ (--- N /Returns address in return stack reg1ster *)
0586 , BA C, 8A C, 05A6 , 48 C, 01A9 ,
4C C, 063B , (PUSH) SMUDGE DECIMAL

PICK is not included in the required word set of FigForth, although extensive
use of this word may imply that perhaps there are too many items on the stack
for good Forth style.

: PICK (N1 --- N2 /Pick the N1th stack item & copy to top %)
DUP + SPA + @

Be careful of programs written for the '83-standard where the value of N1 is
zero-based. In Fig and '79-standards the top stack item is number one. An
example of the use of PI(K is in 3DUP which duplicates the top three stack
items.

: 3pUP (N1 N2 N3 --- N1 N2 N3 N1 N2 N3 /DUPlicate top 3 *)
3 PICK 3 PICK 3 PICK ;

or alternatively:
DUP 20VER ROT ;

A further definition of 3DUP appears in DSQRT in Chapter 6. One should of
course be less specific and define a more general purpose version called NDUP
which replicates the top N stack items:

1 NDUP (N --- /Replicate top N stack items *)
1+ DUP 1 DO DUP PICK SWAP LOOP DROP ;

12 Forth: The NEXT Step

2.4 LOOP VARIABLES

With the more recent microprocessors it is possible that DO...LOOP para-
meters have their own independent stack and the following system dependent 4
definitions will need to be rewritten. They assume that the loop stack and the
return stack are the same. This is why the words I and R (or R@) are not neces-
sarily identical.

The word I' is commonly used to retrieve the loop limit from within the
loop.

HR S (==-=N)

FORTH R> R> R -ROT >R >R ;

The top item on the return stack is the address of the next definition to be
executed (usually, but not always) and the second item is the loop variable.
R or Ra fetches a copy of the loop limit. -ROT puts this limit under the other
two values which are then restored to the return stack. See Figure 2.1.

I 1
K] 1])
1 1 1 1
[- |
Outer [} 1
loop] 1
limit ! !
?uter Loop
J oop limit
index
r Loop Loop
limit index
Loop : Return |
! index | address
| Rpp————
Normal Deferred
nested loop
loop

Figure 2.1 Loop parameters on the return stack.

-

An alternative use for I' is to obtain the loop variable from another defini-
tion used within the loop. For example:

S (TEST) (R I' 3.R ;
: TEST 5000 (TEST) LOOP ;

J returns the value of the outer loop variable of a nested DO...LOOP:

Some Forth Extensions 13

HEX
CREATE J 0586 , BA C, BD C, 0105 , 48 C, BD C, 0106 ,
05A6 , 4C C, 0638 , (PUSH) SMUDGE DECIMAL

which in assembler is:

XSAVE STX, TSX, RP) 4 + LDA, PHA,
RP) 5 + LDA, XSAVE STX, PUSH JMP,

This could be coded in high-level thus:
HI R> R>R> R SWAP >R SWAP >R SWAP >R ; (=== N)

The high-level version respectively removes from the return stack the cfa
arising from J itself, inner loop variable I, inner loop end limit and then copies
the outer loop index. These are then in turn each SWAPped and returned so
that the stack may be correctly restored. Take care not to confuse R> and >R —
the result would be catastrophic!

BOUNDS will convert the count N at the given address to start and end values
ready for a DO...LOOP.

: BOUNDS (addr N --- addr+N addr /Make start & end values *)
OVER + SWAP ;

2.5 RECURSIVE ROUTINES

Recursion requires a routine to call itself. In some computer languages this
cannot be done, but Forth is not so constrained. Recursion makes demands on
the return stack and in extreme cases this could be a limitation.

In Forth, the word currently being compiled is not ‘seen’ to be in the vocab-
ulary unti] its definition is complete. Many of you will know that the purpose
of the ‘smudge bit’ is to identify this situation. The problem is to compile the
cfa of a word which has yet to be SMUDGEd. Fortunately the solution is simple
because LATEST returns the name field address (nfa) of the latest definition
without reference to the smudge bit. To convert this address to the compila-
tion or code field address (cfa) we must first convert the nfa to a parameter
field address (pfa) and this in turn to the cfa which is subsequently compiled.
Finally the definition is made IMMEDIATE so that it acts during the compilation
process.

: MYSELF (--- /Calls current definition from within itself *)
LATEST PFA CFA , ; IMMEDIATE

Sometimes this word is named RECURSE. As an example of its use, here is a
recursive definition of ROLL [1].

@ ROLL (Rotate the top N stack items *)
DUP 2 < IF DROP
ELSE SWAP >R 1 - MYSELF R> SWAP
THEN ;

14 Forth: The NEXT Step

The definition of ROLL sets out to eliminate the trivial case where N=1 or less.
It then moves in turn each former stack item to the return stack and decre-
ments N by one each time. The process is repeated by calling itself (remember
MYSELF compiles the cfa of ROLL) until the conditional becomes true (N << 2)
and MYSELF is no longer called. The expression following MYSELF restores each
stack item, but SWAP the Nth item to the top until the return stack is restored.

The same comments apply to ROLL as to PICK regarding the stack parameter,
but then an '83-standard implementation should already have both PICK and
ROLL.

2.6 MEMORY USAGE
To determine the amount of available memory use:

: FREE (--- /Return bytes free in dictionary *)
FIRST HERE - . ." BYTES" (R ;

since this is simply the difference between the first disk buffer and the current
top of the dictionary. However it is dependent on the layout of the Forth
model for the system in use and takes no account of space occupied by PAD for
example.

2.7 TESTING PARAMETERS

While Fort’s do-it-yourself nature can be one of its virtues, it can lead to a
proliferation of variations on the same theme. The definition of WITHIN in
various guises has appeared from time to time [2] and is used to test that a
parameter lies WITHIN a specified range. The input stack parameter sequence
may be different, and the limits may be equal or exclusive to the value of N. Of
course the polarity of the output flag could also differ! The example shown
was chosen for its brevity. It is not the most efficient because most of the
coding is hidden within the words MIN and MAX.

: WITHIN (Lo hi N --= f /True flag if N is = or within lo-hi *)
DUP >R MIN MAX R> = ;

My personal preference is for TWIXT which leaves a true flag if lo <N < hi.

@ TWIXT (N lo hi ==~ f /flag is true if N is twixt lo & hi %)
3 PICK < 0= =-ROT < 0= AND ;

On occasions it is necessary to constrain a value to within certain limits.
LIMITS is neat and simple, most of its work being hidden inside MIN and MAX.
An alternative name would be CONFINE.
: LIMITS (N1 lo hi === N2 /N2 is N1 limited to lo & hi *)
ROT MIN MAX ;

Similar to LIMITS is <M0D> except that a wrap around effect occurs as with M0D,

Some Forth Extensions 15

although the behaviour is different. The table illustrates the action of <M0D> for
N2 =5:

Input: 1

-1 0 2 3 45 6 7 8
Output: 4 5::1 2 3 4 5::1 2 3 etc.
A likely use for such action is to increment or decrement the index to an array
or table with wrap around. Index nosition zero in each of several such tables
contains the modulus N2. <MOD> then constrains N1 to the index limits of that

table.

1 <MOD> (N1 N2 --- N3 /limits N1 to range 1 - N2 as value N3 %)
SWAP 1 - QVER MOD DUP 0<
IF + ELSE SWAP DROP THEN 1+

2.8 ROUNDING

Errors often occur as a result of integer division where the effect is to truncate
the fractional part. The error may be reduced by scaling the numerator by 10
if possible and applying ROUND to the result. The effect is to round up 175 to
180 and round down 174 to 170. The scaling factor may be removed later.
Notice that with negative values —175 goes to —180 and —174 rounds to
—=170. !

: ROUND (N1 --- N2 /Leaves N2 as N1 rounded to nearest 10 *)
10 /MOD SWAP 5/ + 10 % ;

2.9 SIGNUM
This function returns the sign of a number, or zero if the number is zero.

: SGN (N1 --- N2 /Return sign if non-zero, else zero *)
DUP IF 1 SWAP +- THEN ;

If zero is on the stack, the condition is false and the zero remains, otherwise +-
applies the sign of the stack item to 1 which is left instead.

2.10 NOT WHAT IT SEEMS

Boolean values are either false or true, i.e. represented by 0 for false and
either +1 or —1 for true. The logical operators AND OR and XOR act on all
corresponding bits in a 16-bit value (or ‘cell’ in Forth terminology). In so
doing they leave a 16-bit value as opposed to a two-valued Boolean flag.

In some Forths, NOT is defined identically to 0= but in practice this is not
always so. NOT is sometimes defined to perform a one’s complement operation
in which case NOT applied to a positive number which is a Boolean true leaves
a negative number which is also a Boolean true - NOT what was intended. It
is safer to use 0= which is what it says, true if non-zero, else false. The comple-

16 Forth: The NEXT Step

ment of this is 0<> and is defined simply:
1 0o 0= 0= ;

Suppose we have the situation where we want a true flag to result from a logi-
cal AND of two given non-zero numbers. It is tempting to assume that each
number is a Boolean true and therefore the logical AND of the two numbers
will suffice. A moment’s thought will show that a statement such as: 4 2 AND is
false. The bit patterns for 4 and 2 do not have any 1Is in common. What is
required is 0<> after each number to convert the non-zero number to a Boo-
lean true flag. The logical AND may then be correctly performed on the flags.

Note also that while a Boolean false is zero, a true flag may be 1 in early
standards and —1 (all bits set) in later standards. Finally, you should never
mix logical ‘values’ with arithmetic values in computations. Such attempts would
probably not work correctly on all Forth systems and would be difficult to
understand at a later date.

2.11 HAVING DONE

Use of the word EXIT is not considered to be good programming practice since
this unstructured word will leave a definition prematurely. However, it has its
uses and can sometimes make a neater job of a complex multiple structured
word. It may not be used in a DO... LOOP where the use of LEAVE should be
considered instead.

@ EXIT (--- /Exit immediately from the current definition %)
R> DROP ;

By simply dropping the address on the return stack, after £XIT the interpreter
goes to the next word after the semicolon of the word using EXIT. Use it, if
vou must, with caution. Make sure that the return stack does contain what is
expected on top, not something arising from >R or a loop. Note also that in
'79-standard and later standards EXIT is sometimes used outside a definition
instead of \$ or FigForth’s ;$ to signify when to stop compiling a screen.

2.12 FAMILY OF WORDS TO MANIPULATE BYTES IN A CELL

These words are useful for data packing, sorting, and graphics byte manipul-
ations. The first here - CSWAP — interchanges the high and low bytes of the top
stack value.
CODE CSWAP TOP LDA, TOP 1+ LDY, TOP 1+ STA, TOP STY,
NEXT JMP, END-CODE

Defined without the assembler, this becomes:
HEX
CREATE CSWAP (N1 === N2 /Swap hi & lo bytes *)
0085 , 01B4 , 0195 , 0094 , 4C C, 0642 , SMUDGE
DECIMAL

Some Forth Extensions 17

The word CSPLIT takes the high and low bytes of the top stack item and leaves
them on the stack as two separate items:

: CSPLIT (N -=- HI LO /SPLIT HI & LO AS TWO ITEMS *)
0 256 U/ swap ;

Firstly it is necessary to make it an unsigned double precision number so that
the high order bit is not regarded as the sign. U/ leaves a remainder and quo-
tient corresponding to the two bytes concerned. Alternatively CSPLIT may be
defined in code:

CODE CSPLIT DEX, DEX,
TOP 2+ LDA, TOP STA,
TOP 3 + LDA, TOP 2+ STA,
TOP 3 + STY, TOP 1+ STY, NEXT JMP, END-CODE

Naturally if there is a need to split a word, it follows that there will be a
requirement sometime to join two separate values each less than 256 and rep-
resenting the required high and low byte values of the joined word.

: CJOIN (HI LO -=- N /JOIN TWO WORDS AS ONE *)
SWAP 256 * OR ;

In most instances the sequence of split bytes is quite arbitrary, so that if lo/hi
is preferred, both occurrences of SWAP can be omitted. However, if the CODE
definition is being employed, some rewriting will be necessary.

When values are stored in variables or arrays, the contents of two addresses
may need to be swapped as is done in some sort routines. VSWAP will exchange
the two values.

: VSWAP (addr1 addr2 --- /Swaps the address contents *)
DUP >R @ SWAP DUP @ R> ! ! ;

The operation of VSWAP is straightforward.

2.13 A COMPLEMENT OF TWOS

Frequently definitions are required that involve the figure 2. This section
covers an assortment of such definitions.

Do2% (N --- 2xN /Doubles top of stack value *)
WP+

The above definition simply doubles the top stack value, be it positive or
negative. However there are occasions when an ‘arithmetic shift left’ is
required and the high level definition becomes more complicated and too
slow. The following C0DE definitions are presented as an alternative:

CODE 2% (U --- 2*%U /does arithmetic shift left *)
TOP ASL, TOP 1+ ROL, NEXT JMP, END-CODE

Or without requiring the assembler:

18 Forth: The NEXT Step

HEX

CREATE 2% (U --- 2%U /Return unsigned times 2 [ASL] *)
0016 , 0136 , 4C C, 0642 , SMUDGE DECIMAL
(TOP ASL, TOP 1+ ROL, NEXT JMP,)

In arrays and look-up tables, not only do we require the multiplication by two
but also an offset, or base address must be added. Table look-up is consider-
ably faster if these computations are combined and performed in code.
2%+ does this.

CODE 2%+ (addr N --- addr+2*N /mult by 2 & add base address *)
TOP ASL, TOP 1+ ROL, CLC, TOP 2+ LDA, TOP ADC,
TOP 2+ STA, TOP 3 + LDA, TOP 1+ ADC, TOP 3 + STA,
POP JMP, END-CODE

The converse of 2 is 2/ which performs an arithmetic shift right. Note that
this may not be the same as signed integer division if the number is negative.

CODE 2/ (U --- U/2 /does arithmetic shift right *)
TOP 1+ LSR, TOP ROR, NEXT JMP, END-CODE

Alternatively, using the hand assembler definitions:
:CODE 2/ 0156 , 0076 , ;NEXT

Powers of two, although having computational value, are also required to
control specific bits of a port. Unsigned operations are necessary for this
purpose and the definition of 2! meets this need.

2t (U --- 21U /Arithmetic shift left 1 U times *)
32768 SWAP -1 DO 2% LOOP ;

Alternatively in code:

CodE 2% (U --- 28U /given U [0-151, leaves 16-bit 21U *)
TOP LDA, TOP STY, TAY, (set count of shifts left)
SEC, BEGIN, TOP ROL, TOP 1+ ROL, CLC, (do shift)
DEY, 0< UNTIL,
NEXT JMP, END-CODE

Without the assembler this becomes:

0 (codE FOR 2%V RDG-831106)
1 HEX

2 CREATE 28 (U --- 2%U /RETURN UNSIGNED POWER OF 2 *)
3 00B5 , 0094 , A8 C, 38 C, 0036 , 0136 ,

4 18 C, 88 C, F810 , 4C C, 0642 , SMUDGE

5 DECIMAL

6 (LDA 00,X GET LSB TO ACC

7 STY 00,X CLEAR LSB TO 0

8 TAY SET SHIFT COUNT

9 SEC GET A '1'

10 LOOP ROL 00,X INTO LOW

Some Forth Extensions 19

" ROL 01,X DO 16-BIT SHIFT

12 CLC GET A '0' FOR REMAINING BITS
13 DEY COUNT SHIFTS

14 BPL LOOP

15 JMP NEXT)

The complement of 2t I have called /2%. It is equivalent to 2N, but with N
negative.

vy (U1 U2 --- U1/2%U2 /does U2 right shifts of U1 *)
-DUP IF 0 DO 2/ LOOP THEN ;

b/2t is a double-precision version which enables logical right shift to cross the
16-bit boundary.

: 0/2t (UD U --- UD/2%U /LOGICAL SHIFT RIGHT U TIMES *)
0D0 0 2U/ -ROT 2 U/ SWAP DROP SWAP LOOP ;

The implementation in code for this is given below using the hand assembler
definitions:

:CODE D/2% (UD U --- UD/2%U /DIVIDE BY 2 FOR U TIMES *)
00B5 , OCFO , 0356 , 0276 , 0576 , 0476 , 0006 ,
F4DO , ;POP
Project

Write a definition to print non-destructively the contents of the return stack.
Modify your definition to display additionally the corresponding name with
1D. Incorporate a test to restrict printing to colon definitions only.

REFERENCES

[1] Lawrence, P. ‘Recursive PICK and ROLL’ Forthwrite No. 19, U.K. Forth Interest
Group
[2] Nemeth, G. ‘Within WITHIN’ Forth Dimensions, V, No. 5, p31

3 Double Number Definitions

Some controversy exists in Forth circles as to whether the double number
word extensions should be prefixed with a 2 or d. Originally the prefix was 2
because they were meant for operation on pairs of 16-bit numbers, but later
opinions have mooted D for Double numbers, i.e. 32-bit. It follows therefore
that you may need to change 2s to Ds according to the implementation in use.
In general, standards appear to have 2s for stack manipulations and Ds for
arithmetic operations, although there are no solid rules. What is preferred is
that d should apply only to double-precision numbers and 2 to both double
numbers and to two single-precision numbers.

Double numbers are represented by pairs of 16-bit integers, which them-
selves are pairs of bytes on 8-bit microprocessors. The number range spanned
is —2 147 483 648 < b < +2 147 483 647. The stack sequence is: low number
(hi/lo). high number (hi/lo), the high number holding the sign and being on
top.

The first batch of definitions are fairly commonplace:

: 2SWAP (01 D2 --- D2 D1 /SWAP TWO DOUBLE NUMBERS *)
ROT >R ROT R>

or alternatively:

4 ROLL & ROLL

: 2ROT (D1 D2 D3 --- D2 D3 D1 /DO A ROTATE WITH DOUBLES *)
>R >R 2SWAP R> R> 2SWAP

: 2DROP (b --- /DROP DOUBLE OR TWO SINGLE NUMBERS %)
DROP DROP

: 20UP (D === D D /DUPLICATE TOP DOUBLE NUMBER)
OVER OVER ;

: 20VER (D1 D2 --- D1 D2 DY /COPY SECOND DOUBLE TO TOP *)

4 PICK & PICK

If your implementation is pre-"79-standard, and PICK is missing, you could for

20

Double Number Definitions 21

this specific instance define 4PICK thus:

T 4PICK (COPY 4TH STACK ITEM TO TOP *)
>R >R OVER R> SWAP R> SWAP ;
and hence define 20VER as 4PICK 4PICK;. Defining 20VER in this manner does,
however, lead to far more stack manipulations and hence a slower version
than is necessary. By rethinking the problem a more suitable alternative
results:
1 20VER (D1 D2 === D1 D2 D1 /COPY SECOND DOUBLE TO TOP *)
>R >R 2DUP R> R> 2SWAP ;

DMAX and DMIN are the double number equivalents of MAX and MIN. They
operate on pairs of double numbers. D< is '79-standard and is defined later.

1 DMIN (D1 D2 === D3 /LEAVE MINIMUM OF TWO DOUBLE #'S *)
20VER 20VER D< 0= IF 2SWAP THEN 2DROP ;

: DMAX (D1 D2 --- D3 /LEAVE MAXIMUM OF TWO DOUBLE #'S *)
20VER 20VER D< IF 2SWAP THEN 2DROP ;

3.1 DOUBLE NUMBER STORAGE

Double number variables and constants are not included in earlier standards.
The definitions are straightforward and should be self-explanatory.

120 (ADDR --- D /FETCH DOUBLE NUMBER FROM ADDRESS *)
DUP 2+ @ SWAP 3 ;

22! (D ADDR --- /STORE DOUBLE NUMBER AT ADDRESS *)
DUP >R ! R> 2+ !

¢ 200N (defines 32-bit double constant *)
CONSTANT , DOES> 23 ;

1 2VAR (Defines 32-bit double number variable in Figforth *
VARIABLE , ;

1 2VAR (Defines 32-bit double number variable '79-std *)
VARIABLE 2 ALLOT ;

It may be preferable to use the names 2CONSTANT and 2VARIABLE for compati-
bility with later standards. The stack behaviour for 2VAR is similar to VARIABLE,
i.e. early standards require the default value on the stack when the variable is
defined. Versions using <BUILDS or CREATE do not usually require the default
value.

22 Forth: The NEXT Step

3.2 DOUBLE OPERATORS

HE (D1 D2 --= D3 /DOUBLE NUMBER SUBTRACTION *)
DMINUS D+

: D0= (D1 --- F /LEAVE TRUE FLAG IF DOUBLE NUMBER IS ZERQ *)
R = ;

VIS (D1 =-- F /LEAVE TRUE FLAG IF DOUBLE NUMBER -VE *)

SWAP DROP 0< ;

HS (D1 D2 --- F /LEAVE TRUE FLAG LF BOTH EQUAL *)
p- 00= ;

HIDNS (D1 D2 --- F /'79-STANDARD DOUBLE COMPARE *)
pD- DO<

H g (D1 D2 --- F /LEAVE TRUE FLAG IF D1 > D2 *)
2SWAP DS

HIVAS (UD1 UD2 --- F /COMPARE UNSIGNED DOUBLE NUMBERS *)

32768 + ROT 32768 + -ROT D< ;
or alternatively a longer, but faster version is:
SR >R 32768 + R> R> 32768 + D< ;

The arithmetic shift left of 2% can be extended across a second word using the
coded version D2x:

HEX

CREATE D2+ (UD --- 2%UD /RETURN UNSIGNED TINES 2)
0016 , 0136 , 0236 , 0336 , 4C C, 0642 , SMUDGE
(TOP ASL, TOP 1+ ROL,
TOP 2+ ROL, ROL 3 + ROL, NEXT JMP,)

DECIMAL

Although d+- is a required word, it may be lacking in some implementations.
DMINUS may need replacing with DNEGATE.

HEA (D1 N =-- D2 /APPLY SIGN OF N TO D1 AND LEAVE AS D2 *)
0< IF DMINUS THEN ;

Finally, multiplication of two double-precision numbers need not require a
quadruple-precision, or even triple-precision result since quite large numbers
can be handled before overflow occurs. It may be essential to retain double-
precision throughout in an iterative procedure or other looping condition and
if so D will fulfil this need.

HEL (D1 D2 --- D3 /DOUBLE NUMBER MULTIPLY *)
OVER 5 PICK Ux 6 ROLL &4 ROLL * + 2SWAP * + ;

)
@

ubte Number Definitions

b* works using the relationship
(a+b)(c+d) = ac+ad+bc+bd

to calculate the result, where b and d are the high bytes. Third and fourth

order terms are ignored because they represent cvertiow, hence bd, s fourth
order term, is omitted as are the high bytes of ti oducts ad and be which
are third order. One could check these terms befo nd and v of them

Tow

d-

are non-zero then performing the multiptication wii € rise 10 over
error. Note that in Forth-"83 standard PICK and ROLL w

ing number to be decreased by one.

equire the p

3.3 MIXED OPERATORS

Labelling conventions for double numbers were discu mentoning the
two schools of thought. With mixed number definitions, no such thought
appears to exist. There are no formal standards for mixed numbers and so
combinations of U, M, b and an operator are often used with only a passing
resemblance to logical naming conventions. To make matters worse,
Forth-"83 standard renames U as UM ~ oh dear!

L (DT N === D2 /ADD SINGLE TO DOUBLE PRECISIGH

$->D D+ .

This simply converts the single-precision number to doubie and then performs
a double-precision addition.

it

o UM (U DV -== D2 /MIXED NUMBER MULTIPLICA
>R OVER Ux ROT R> * +

is:

An alternative definition using a different stack sequenc

: UMx (D1 U --- D2 /MIXED NUMBER MULTIPLICATION *)
DUP ROT % =-ROT Ux ROT + ;

T

The above two definitions work with U up t¢ 63 , but the resulting product
must be less than 27! (+2 147 483 647) or overflow will occur.

3.4 MIXED NUMBER DIVISION

The normal Forth operators for division include / and the primitive U/, Both
of these leave a single-precision resuit, but if a large number is divided by a
small number, the result is still a large number. If the nuwmeraior is double-
precision, then we require a double-precision quotient.

o UM/ (D1 U =-- D2 /MIXED NUMBER DIVISION)
SWAP QVER /MOD >R SWAP U/ SWAP DRO® R>

UM/ works with U < 32768, but above that it depends on the numbers
presented to U/ which treats values as unsigried. in '79-standard, U/ becomes
U/M0D and is renamed UM/MOD in *83-standard. If you find that using, here

24 Forth: The NEXT Step

is a definition for M/MOD which divides an unsigned double-precision number
by an unsigned single-precision number, leaving a remainder U2 and a double-
precision quotient.

S M/MOD (UDT U1 --- U2 UD2 /DIVIDE & LEAVE REM & D-QUOT %)
SR OR CorRa) U/ R> SWAP >R U/ R>

The same comments regarding standards and naming conventions apply.

The double scalar word Mx/ performs one of the more useful mixed
operations. It is similar to */ in its action, but acts on a double number using
an intermediate triple-precision result. It will occur frequently in later chap-
ters.

(DOUBLE SCALAR Mx/ RDG-831214)

0

1

2 1 Mx/ (D1 N1 N2 --- D2 /AS FOR */ BUT OPERATES ON DOUBLES *)
3 2DUP XOR SWAP ABS >R SWAP ABS >R

4 OVER XOR -ROT DABS SWAP R Ux ROT

5 R> Ux ROT 0 D+ R U/ -ROT R> U/

6 SWAP DROP SWAP ROT D+- ;

7

In some Forths R will need to be replaced by Ra. -ROT is a word previously
defined which rotates the top three stack items, like ROT, but in the other
direction.

3.5 MISCELLANEOUS

Some definitions are difficult to quantify under any specific heading and so a
‘miscellaneous’ heading becomes inevitable. For example, to transpose the top
three stack items most readers will use SWAP ROT but to transpose the top four
is a little more complicated. Further than this it would be worth considering a
more general definition to transpose the top N items.

: LSWAP (N1 N2 N3 N& === N& N3 N2 N1 /TRANSPOSE TOP FOUR *)
SWAP 2SWAP SWAP

This apparent simplicity of 4SWAP has hidden within 2SWAP several SWAP and
return stack moves which, if factored out in full, show a similarity to SWAP ROT
when ROT is factored likewise.

Another oddment here called A-B/A+B (for that is what it does, brackets
notwithstanding) is used in a number of mathematical functions, e.g. loga-
rithms of large numbers. Since the function is always less than unity for
positive B, it is scaled by 10 000.

. A-B/A+B (N1 N2 --- N3 /Compute difference/sum * 10K *)

20UP - -ROT + 10000 SWAP */ ;

The numerator is generated by 20UP - and then moved by -R0T under the orig-
inal two stack values. The addition is performed followed by the scaled
division using */ to leave the result, times 10000, on the stack.

Double Number Definitions 25

Projects

1. Write a definition b/ to complement D* to perform division (D1 D2 ===
03). What are the limitations, if any, on the values of D1 and b2?

2. Rewrite the definition of UM/ to handle a signed denominator (if you
are stuck, try simplifying Mx/ by making N1=1).

4 Formatting

.
The simplest formatting definition that I know is:

H'N (U --- /Print the top stack number as unsigned *)
0 0.

U. is a required word in ’79-standard and later versions, but does not appear
in FigForth. It prints the top stack item as unsigned, i.e. 0<U < 65 536 and is
useful for printing 16-bit addresses, either in hex or decimal. Following on
from this is U. R which is similar to U. but will right-justify the number in a field
width of N.

: U.R. (UN=---/0UTPUT U IN FIELD-WIDTH N *)
0 SWAP D.R ;

UD.R is the double-precision version which is totally different in its definition:

: UD.R (UD'N === /OUTPUT UD IN FIELD-WIDTH N *)
' >R <# #S #> R> OVER - SPACES TYPE ; .

This operation gives the following interesting result:

-1. 12 CR UD.R
4294967295 0K

Explanation of Forth’s inherent formatting words, <# ... #> and the like,
together with .R and D.R etc. are well documented in the literature. These give
tremendous flexibility in the presentation of output values without too much
difficulty. In this section we shall look at some particularly useful or interest-
ing applications.

4.1 _HMS - PRINT HOURS, MINUTES AND SECONDS

The definition .HMS takes the contents of the variables MINS and SECS and
formats the values in the form HH.MM.S$S but SECS should be modulo 60 and
MINS modulo 1440 (24 X 60). Normally control of the modulus is invested in
the mechanism for incrementing or decrementing the variables.

SCR #116
0 (FORMATTING RDG-840818)
1

26

Formatting 27

2 0 VARIABLE MINS 0 VARIABLE SECS

3

[1) (CONVERT DIGIT AS BASE 6 *)
5 6 BASE ! # DECIMAL

6

7 ##. (CONVERT TWO DIGITS AS BASE 60 *)
8 46 HOLD # #6 ;

9

10 : .HMS (=== /PRINT THE TIME AS HH.MM.SS *)
1" MINS @ 0 <# ##. ##. #> CR TYPE

12 SECS @ 0 <# # #6 #> TYPE (R ;

13 -=>

14 MINS SHOULD BE MODULO 1440 FOR CORRECT OPERATION ...

15

4.2 LAT/LONG

Much of the above is similar to the formatting of angles as latitude and longi-
tude in the form DD.MM.Mn or s and DDD.MM.Me or w from a double number
representing degrees X 65536. This format enables the degrees to go up to
65535 and the minutes of arc to be resolved to one 65536th part of a degree.
For astronomical calculations it may be preferable to employ minutes of arc X
65536 as a more useful scaling factor. In the examples, the appropriate
compass quadrant is appended at the end.

SCR #117

0 (FORMATTING . RDG-840818)
1

2 : GETDEGS (D --- SGN LO HI /PREPARE DEGREES *)
3 SWAP OVER DABS 55. D+ ;

4

5 : MINSOUT (U --- /FORMAT MINUTES *)
6 46 EMIT 0 150 16384 M%x/ (TO 1/10 MINUTES)

7 <# # ##. # TYPE ;

8

9 : N-S (F === /OUTPUT N OR § *)
10 IF 83 ELSE 78 THEN EMIT ;

"

12 1 7E-W (F --- /OUTPUT E OR W *)
13 IF 87 ELSE 69 THEN EMIT ;

14

15 -=>

SCR #118

0 (FORMATTING RDG-840818)
1

2 1 2NUMS (U --- /OUTPUT U FORMATTED AS TWO DIGITS *)

28 Forth: The NEXT Step

0 <# # # # TYPE ;

3

4

5 : 3NUMS (U --- /OUTPUT U FORMATTED AS THREE DIGITS)
6 0 <# K K # # TPE ;

7

8 : LAT (D --- /DISPLAY DEGREES LATITUDE)
9 GETDEGS 2NUMS MINSOUT 0< N-S ;

10

11 : LONG (D --- /DISPLAY DEGREES LONGITUDE *)
12 GETDEGS 3NUMS MINSOUT 0< ?E-W ;

13

14 ¢ +MINS (U1 U2 --- D /CONVERT DEG & MINS OF ARC TO D-DEG *)
15 >R 0 SWAP O R> 60 U/ SWAP DROP (rem) 0 D+ ;

GETDEGS extracts the sign and rounds the angle to 1/10 minute of arc. MINSOUT
converts the fractional part of the degrees to tenths of minutes and then out-
puts the resulting number formatted with stops.

N-$ outputs N or $ according to the state of the flag on the stack. Similarly
with 2E-W. 2NUMS and 3NUMS print the appropriate number of digits, two for lati-
tudes and three for longitudes.

LAT and LONG are the keywords which use the foregoing to process the
double number in degrees X 65536 and produce a formatted printout of
angle.

+MINS is used to create the double number degrees from the degrees U1 and
minutes U2. U1 is multiplied by 65536 by the action of 0 SWAP and U2 is effect-
ively multiplied as a result of the second zero and then reduced by a factor of
60. The remainder from the division is dropped and the quotient made
double-precision before adding to the degrees. The polarity may then be
adjusted if necessary by DMINUS or DNEGATE as appropriate.

Tenths of degrees may be suppressed by leaving out the # before ##. in
MINSOUT and by changing the scaling factor. The 150 becomes 15 and in
GETDEGS, 55. becomes 546. as the rounding correction. The latter figures come
from 0.5 or 0.05 minutes multiplied by 65536 and then divided by either 60
or 600 accordingly.

It may be that alternative and possibly simpler ways of achieving the same
ends exist, but as part of a larger application, many words used here are
common to other definitions not included. The example has been explained at
some length, not because it is particularly useful, but more to illustrate the
principles involved.

4.3 NAVIGATION CALCULATIONS

Now that the concept of using a double number representation for latitude
and longitude has been introduced it is appropriate to look at some practical
examples for navigation.

Formatting 29

4.3.1 Range and bearing

It is at times like this that the Flat Earth Society have an advantage. Calcu-
lations relating to movements over the earth’s surface invariably involve some
compromise in order to yield an approximate formula. The earth is not flat; it
is not even spherical. Many bodies get fatter around the waistline with age,
and the earth is no exception! The reason that the earth has an equatorial
diameter greater than across the poles is due to the forces of rotation acting
on its mass. This difference is ignored for short distance calculations. If travel
is not over the earth’s surface, but in an aircraft, the earth’s mean radius is
increased by the aircraft’s height but this effect can often be ignored.

A formula which takes into account all of the factors in the calculation
requires a very complex piece of 3-D trigonometry. However, for modest
distances, not only can the earth be considered spherical, but the surface of
interest is approximately flat. The formula for the distance between two points
on the surface can then be calculated from the latitude and longitude of the
point relative to the point of interest, often one’s present coordinates. The
formula used is:

Range = 60 X \/ (lat0 — lat1)* + ((long0 — long1) cos (lat0))?

and is simply applying Pythagoras’ theorem on a flat earth’s surface. One
degree of latitude is equivalent to 60 nautical miles, but going in the east/west
direction it is reduced by the cosine of the latitude. Obviously if the north/
south direction is large, the cosine will be significantly different at the two
places.

Having determined the range, the other parameter required is the bearing
relative to true north. If one uses the more obvious solution:

longl — long0)

Bearing = arctan
lat]l — lat0

there is a divide-by-zero problem if the two latitudes are the same, a not
unreasonable situation. This may be avoided by using:

(1at0 — lat1) X 60)

Bearing = arccos
range

The divide-by-zero problem has not gone away, but now only arises if the
range is zero, which is not such a likely event.

In implementing these formulae in Forth the latitudes and longitudes are in
the double-precision degrees format previously described. For a Forth defini-
tion of ARCCOS see Chapter 6.

SCR #74

0 (RANGE/BEARING CALCULATIONS RDG-841002)
1

2 1 N> (D === N /CONVERT DEGS * 65536 TO NAUTICAL MILES %)

30 Forth: The NEXT Step

3 15 16384 Mx/ DROP ; (15 -> 150 FOR TENTH OF NM)
4

S : RANGE (DLATO DLONGO DLAT1 DLONG1 --- N /RANGE IN NM *)
6 2ROT D- NM> >R 20VER DCOS

7 DUP M+ 10K M/ SWAP DROP R> ABS DUP Ut

8 ROT 10K Mx/ >R >R D- NM> ABS DUP Ux

9 R> R> D+ DSGRT ;

10

11 : BEARING DLATO DLONGO DLAT1 DLONG1 N --- D /DEGREES %65536 #)
12 SR 2ROT D= DO< R> SWAP >R >R (SAVE SIGN, RANGE)
13 D- 60 R> (RANGE) Mx/ 2500 16384 Mx/ (10K/65536)
14 DMINUS DROP ARCCOS R> (GET SIGN FLAG)

15 IF 0 360 2SWAP D- THEN

The equation holds good for distances of a few hundred nautical miles, but
using integers this limits resolution to two or three figures. This can be
improved by scaling by a factor of 10 or even 100. For example, in line 3, the
15 can be replaced by 150 and in line 13, the 60 by 600 to give tenths of
nautical miles.

The Forth definitions are a straightforward implementation of the equation,
except for scaling down the cosine by 10000 and the degrees by 65536. The
expression ABS is necessary before squaring because U would otherwise ignore
the sign and treat the number as greater than 32767 and the last line is to
convert the angle to the correct hemisphere. DHINUS may need replacing with
DNEGATE and of course DUP Ux may have been factored out.

Here are some example figures:

origin: 51°30'N 0020'E

object: 52°30'N 0120'E
Range = 70.68 NM Bearing = 031°54.2'

To convert degrees of arc to nautical miles at the earth’s surface, 1 degree is
. equivalent to 60 nautical miles and if the degrees are to be in the format
described, NM2DEG will perform the conversion.

0 (NM TO LAT/LONG IN DEGREES * 65536 FORMAT RDG-841002)
1

2+ MS2DEG (N --- D /NM TO DEGREES LAT [LONG AT EQUATOR ONLYI %)
3 0 SWAP (N->D) 160 Mx/ ; (60NM = 1DEGREE)
4

If N represents tenths of nautical miles, then 60 in line 3 should be made 600
for correct conversion.

Project

Write another set of definitions to display time, but on this occasion from a
double-precision variable containing seconds (modulo 86400). Examine the
problems of extending the time cycle from 24 hours to one week.

5 The Real World

5.1 LOOKING AT A PORT

In the real world the basic computer system connects to an interface of some
sort. In a situation where the computer is monitoring an input, say 8 or 16
input lines, it is useful to be able to ‘see’ the status of those lines as a pattern
of zeros and ones. BITS formats the 16-bit binary pattern into four groups of
four. It follows that for an 8-bit port this could be modified to two groups of
four.

0 (BIT FORMATTING RDG-841014)
1

21 44 BL HOLD 4 0 DO # LOOP ;

3

4 1 BITS (N === /PRINT N FORMATTED AS BLOCKS OF FOUR BITS %)
5 BASE @ SWAP 2 BASE !

6 0 <# 40 D0 4F LOOP #>

7 CR TYPE BASE !

8

9 : ?1BIT (N --- F /FLAG IS TRUE IF ONE & ONLY ONE BIT SET *)
10 DUP DUP MINUS (NEGATE) AND = ;

"

Although BITS outputs in binary, the original number base is saved and
restored afterwards. A typical format would be:

63318 BITS
1111 0111 0101 0110 0K

?1BIT relies on the property of two’s complement arithmetic. The least signi-
ficant bit which is set, is the only bit that is set in both a number and its two’s
complement. Now if that bit happens to be the only bit set in the original, the
two numbers are equal and ?1BIT returns a true flag.

5.2 WHICH BIT?

The purpose of L062. N is to convert the state of an input port to a bit number.
In practice more than one bit could be simultaneously active and the arbitrary
choice was to make the lowest numbered bit the one of interest.

31

32 Forth: The NEXT Step

0 (LOGARITHM TO BASE 2 RDG-840509)
1

2 : L0G2.N (2N --- N /Return bit # of lowest bit set *)
3 0 BEGIN OVER 1 AND 0=

4 WHILE 1+ >R 2/ R>

5 REPEAT SWAP DROP . ;

6

As a means of finding the logarithm of a number its usefulness is limited to
rather coarse increments. However, in case this is satisfactory

log;yN = log,N X log, 2
or
log,N X 0.30103

5.3 SCANNING TWO PORTS

Quite often the signal presented to an input port has an active low state and
needs to be inverted for positive logic. The definition -3 fetches a 16-bit value
and logically inverts it. When continuous monitoring of the port’s address is
required it is a simple matter to put it in a loop until -@ returns a non-zero
value. However, life isn’t always that simple and to look at two ports where
the addresses are not consecutive is more complex. The definition 323 looks at
two 16-bit addresses and returns a value in the range 0 to 31.

SCR #111

0 (PORT READING DEFINITIONS RDG-840509)
1

2: -9 (ADDR --- N /READ THE ADDRESS, INVERT CONTENTS %)
3 a -1 XR ; (-1 = SFFFF)

4

5 : 329 (ADDR1 ADDR2 --- N /POLL ADDR1 & ADDR2, GIVE 0-31 %)
6 0 SWAP BEGIN DUP -3 DUP 0=

7 WHILE DROP SWAP 0= ROT

8 REPEAT LOG2.N ROT 0= IF 16 + THEN

9 >R 2DROP R>

10

L

12

13

14

15

Operation of 323 relies on alternately examining the contents of addresses 1
and 2 while both return a zero from -3. As soon as a non-zero is found the
looping around ends and the contents are converted to a bit number. In order
to determine which of the two addresses yielded a response, a flag is alter-

The Real World 33

nated between 0 and 1 and is used to shift address 1’s contents to number 16
to 31.
When the loop is entered at BEGIN the stack contains

ADDRT O ADDR2
and just before WHILE the sequence is
ADDR1 O ADDR2 (ADDR2) f

where (ADDR2) is the contents of address 2 as inverted by -3 and f is an exit
flag which is true if no active low input is present. If true then the contents are
discarded, and the stack is shuffled to present:

ADDR2 1 ADDR1

by the time REPEAT is encountered, so that when returning to BEGIN the
addresses have changed places and the address flag Boolean value is inverted
(next time round 0= will change the 1 to 0).

If -8 returns a non-zero value the flag preceding WHILE will be zero and
L062. N will convert the value to a number in the range 0 to 15 according to the
lowest bit set. If the address flag is true then an offset of 16 is added to the
number from address 2 to distinguish the signals from address 1. Finally the
two addresses are dropped from the stack leaving just a number in the range 0
to 31. .

5.4 HISTORY

In order to keep a record of past values of, for example, an input port, a
buffer store is used. The store is required to remember the last N values of
interest. To do this a buffer is created such that before entering a value, all
previous values are moved up with the earliest being lost. The latest value is
then entered. No provision has been made to initialize the buffer; it depends
on its use as to what default values, if any, are required.

SCR #144

0 HISTORY STORE RDG-841210)
1

25 CONSTANT LENGTH

3 0 VARIABLE HISTORY LENGTH 2 - ALLOT

4

5:cl! (¢ --- /STORE PAST CHARACTER HISTORY *)
6 HISTORY DUP 1- DUP LENGTH + 1-

7 D0 ICd I 1+l -1+L00P C! ;

8

9

10

(il

12

13

34 Forth: The NEXT Step

¢!! moves each byte stored up one, losing the oldest value, and stores the
latest byte. A 16-bit word version would be similar, but with 2s instead of 1s
and using 16-bit store and fetch words. Operation is straightforward, but care
is needed in the definition to avoid an ‘out by one’ error in the store address-
ing. According to the standard in use define HISTORY in the form:

CREATE HISTORY LENGTH ALLOT

5.5 LABELLING THE 6522 VIA CHIP

The processor dependent software in this book has been orientated towards
users of the 6502 processor and a commonly used peripheral chip with this
processor is the 6522 Versatile Interface Adapter (VIA). Control of bits in
the 6522 registers using Forth can lead to some fairly unreadable statements.
For example, rather than writing:

59437 €@ 127 AND 59437 C!
a more readable version would be
2VIA IFR 7 BIT-OFF

This may be realized by assigning a name to the VIA base address and suit-
ably naming the addresses of the internal registers as in the 6522 data sheet
and defining them as offsets.

SCR #149

0 (6522 VIA CHIP CONTROL DEFINITIONS RDG-840523)
1

2 $E800 CONSTANT 1VIA

3 $E820 CONSTANT 2VIA

4

5 (ADDR1 =--- ADDR2 /AI)D OFFSET FOR VIA REGISTER *)
6 : ORB ($0F +) ; : ORA $01 +

7 : DDRB $02 + : DDRA $03 +

8 ¢ TIC-L $06 + : T1C-H $05 +

9 TIL-L $06 + @ TIL-H $07 +

10 @ T2C-L $08 + ; s T2C-H $09 +

11 : SR $0A + 1 ACR $0B +

12 : PCR $0C + : IFR $0D +

13 5 IER $0E +

14

15

The ORB register appears as two discrete addresses, one with zero offset, the
other with $0F offset. If you need further details of the VIA and its operation,
you should refer to the data sheet since the object here is to explain a defining
technique for program readability.

After the register addresses come the individual bits within those registers.

The Real World 35

Four words are defined which yield an individual bit’s status, set or clear a
specified bit, or toggle a specified bit. The bit number ranges 0 to 7 as defined,
but may be readily changed to 0 to 15 as required.

SCR #148
0 (BIT-MANIPULATION, C = 0 TO 7

15

: BIT?

i BIT-ON

1 BIT-OFF

(CADDR === F /1 = ON 0 = OFF
Ca SWAP 2% AND 0= 0= ;

(C ADDR --- /SET SPECIFIED BIT ON
DUP >R Ca SWAP 2% OR R> !

(C ADDR --- /TURN SPECIFIED BIT OFF
DUP >R €@ SWAP 2% 255 XOR AND R> (!

¢ BIT-TOGGLE (C ADDR --- /TOGGLE SPECIFIED BIT

SWAP 2% TOGGLE ;

RDG-830405)

*)

*)

*)

*)

The word 2 may be high-level or code as desired. We may now turn off bit 7
of the interrupt flag register of the second VIA chip with 2VIA 1FR 7 BIT-0FF
as before.

Project

Define a word SEE. HISTORY to reveal the current byte contents of the ‘history’
store. Test it thoroughly to avoid an ‘out by one’ error. Write the equivalent
definitions for 16-bit data. What are the problems in identifying initial
garbage from valid data?

6 Mathematics

6.1 TRIGONOMETRIC FUNCTIONS

The philosophy that is adopted here for trigonometric functions is that for any
given application, only one such function is required. As a result that function
must as far as possible be a ‘stand-alone’ definition which does not depend on
other trigonometric functions being present for its operation. There are a
number of ways of implementing ‘trig’ functions in Forth and each has its
particular advantages and disadvantages. Assuming that a floating point pack-
age is not available, it comes down to making the best use of integer arith-
metic. The final choice is from a trade off between speed, memory space and
resolution.

Where resolution is required, it is not sufficient to use degrees of arc alone.
Here the previously mentioned method of employing a double number is
used. The high digit is still degrees, but times 65536. The low order digit is
the fractional part, although this too is times 65536. To convert this format
back to signed single-number format you should use 0->S:

1 D=>§ (D --- N /CONVERT D-DEGREES TO N WITH ROUNDING *)
32768 0 D+ SWAP DROP ;

When using sines and cosines the result obtained is within the range plus or
minus one. To overcome this fractional problem a scaling factor must be
introduced: typically 16384 and 10000. The former gives slightly more
accuracy, while the latter gives a more readable result and is used here.

6.1.1 Sine function

The usual method of producing a sine function in Forth is by look-up table.
This has the advantage of speed, but at the expense of memory. The finer the
increments, the more storage is required. An alternative is to evaluate a series.
This is the technique used by Bumgarner [1].

0 (SCALED INTEGER SIN FUNCTION JOB-82MAR31)
1
2 10000 CONSTANT 10K (THE SCALING CONSTANT)

0 VARIABLE XS (THE SQUARE OF THE SCALED ANGLE)

3

4

5 1 KN (A B =-- M /M=10000-AX*X/B ..A COMMON TERM IN SERIES *)
36

Mathematics 37

6 XS @ SWAP / MINUS 10K */ 10K + ;

7

8 : (SIN) (THETA --- 10K*SIN /-15708<THETA<15708 RADIANS * 10K *)
9 DUP 10K */ XS ! (save xt2) 10K (start series)
10 72 KN 42 KN 20 KN 6 KN 10K */ (times x)
1"

12 1 SIN (THETA --- 10K*SIN / 0 - 90 DEGREES ONLY *)
13 17453 100 */ (SIN) ; (DEG TO RADIANS*10K)

14 ;S

15 SIN(X) = Xx(1-Xt2/6 (1-X12/20 (1-x12/42 (1-x42/72)))) APPROX.

Depending on your implementation, MINUS may need replacing with NEGATE
(’79-standard and later) and VARIABLE will not need the preceding zero.

6.1.2 Cosine function

The usual method of producing a cosine function is to convert the angle so
that the sine table can be used. The expression is

cos(A) =sin(90—A4)

If the cosine function is all that is required, it may be obtained by using a
series which has similarities to that used for sine.

0 (SCALED INTEGER COS FUNCTION - after J.0.B. RDG-840525)
1

2 10000 CONSTANT 10K (THE SCALING CONSTANT)

3 0 VARIABLE XS (THE SQUARE OF THE SCALED ANGLE)

4

5: KN (AB=---M/N=10000-AX*X/B ..A COMMON TERM IN SERIES *)
6 XS @ SWAP / MINUS 10K */ 10K + ;

7

8 1 (COS) (THETA === 10KxCOS /-15708<THETA<15708 RADIANS * 10K *)
9 DUP 10K */ XS ! (SAVE Xt2)

10 10K (Start series) 56 KN 30 KN 12 KN 2 KN ;
1

12 : [COSI (THETA --- 10K%COS / 0 - 90 DEGREES ONLY *)
13 17453 100 */ (C0OS) ; (DEG TO RADIANS*10K)

14 ==>

15 €0S(X) = (1-xt2/2 (1-x*2/12 (1-x42/30 (1-X42/56)))) APPROX.

6.1.3 DCOS

If the angle is presented in the format degrees X 65536, then DC0S will return
the cosine X 10000.

0 (DCOS - DOUBLE COSINE B RDG-840606)
1 —
22 C0S (N --- 10K*COS /GIVES COS FOR ALL DEGREES *)

Mathematics 37

6 XS @ SWAP / MINUS 10K */ 10K + ;

7

8 1 (SIN) (THETA --- 10K*SIN /-15708<THETA<15708 RADIANS * 10K *)
9 DUP 10K */ XS ! (save xt2) 10K (start series)
10 72 KN 42 KN 20 KN 6 KN 10K %/ (times x) ;
1"

12 : SIN (THETA =--- 10K*SIN / 0 - 90 DEGREES ONLY *)
13 17453 100 %/ (SIN) ; (DEG TO RADIANS*10K)

14 ;8

15 SINCX) = Xx(1-X42/6 (1-x12/20 (1-X12/42 (1-X42/72)))) APPROX.

Depending on your implementation, MINUS may need replacing with NEGATE
(’79-standard and later) and VARIABLE will not need the preceding zero.

6.1.2 Cosine function

The usual method of producing a cosine function is to convert the angle so
that the sine table can be used. The expression is

cos(A) = sin(90—A)

If the cosine function is all that is required, it may be obtained by using a
series which has similarities to that used for sine.

0 (SCALED INTEGER COS FUNCTION - after J.0.B. RDG-840525)
1

10000 CONSTANT 10K (THE SCALING CONSTANT)
0 VARIABLE XS (THE SQUARE OF THE SCALED ANGLE)

2
3
4
5 1 KN (A B =--- M /M=10000-AX*X/B ..A COMMON TERM IN SERIES *)
6 XS @ SWAP / MINUS 10K %/ 10K + ;

7

8

+ (C0S) (THETA --- 10K*COS /-15708<THETA<15708 RADIANS * 10K *)

9 DUP 10K */ XS ! (SAVE xt2)

10 10K (Start series) 56 KN 30 KN 12 KN 2 KN ;
"

12 : [C0S] (THETA --- 10K*COS / 0 - 90 DEGREES ONLY *)
13 17453 100 */ (C0S) ; (DEG TO RADIANS*10K)

14 -=>

15 €os(x) = (1-xt2/2 (1-x42/12 (1-x42/30 (1-X42/56)))) APPROX.

6.1.3 DCOS

If the angle is presented in the format degrees X 65536, then dC0S will return
the cosine X 10000.

0 (DCOS - DOUBLE COSINE RDG-840606)
1
23 C0S (N --- 10KxCOS /GIVES COS FOR ALL DEGREES *)

38 Forth: The NEXT Step

360 MOD ABS DUP 270 > IF 360 - THEN DUP
90 > IF 180 SWAP - [COS] MINUS ELSE [COS] THEN ;

3
4
5
6 : [DCOST (D --- 10K*COS /GIVES COSINE FOR DEGREES * 65536 *)
7 20 7510 Mx/ DROP (COS) ;

8

9 : DCOS (D --- 10K*COS /GIVES COSINE FOR DEGREES * 65536 *)

10 360 MOD DABS DUP 270 > IF 0 360 D- THEN DUP
" 90 > IF 0 180 2SDWAP D- [DCOS] MINUS

12 ELSE [DCOS] THEN ;

13

14

15

The fraction 20/7510 is a simplification of 7/180/65536 scaled by 10K.
Do not reduce this to 2/751 or there will be a loss of accuracy. Most errors
arise from the division in KN causing truncation and then the summing of a
number of such errors. It may be possible to squeeze some improvement by
multiplying the KN coefficients by 10 and using ROUND 10 / after the division.
As it stands the error is less than 2 in 10%.

Since DCOS uses the ‘infinite’ series of (C0S), the look-up table alternative
may be preferred. This is based on the expansion:

cos(A + B) = cos(A) cos(B) —sin(A) sin(B)

If we make A = degrees and B = minutes, then B is less than one’degree and
the following approximations may be used: cos(B)—1 and sin(B)- B.
Therefore we can say

cos(A+ B) = cos(A) — Bsin(A)

where B is in radians, hence the second definition of DCOS:

0 (DOUBLE NUMBER COSINE RDG-840927)
1

2 :DCOS (D --- N /Gives COS * 10K for degs * 65536 *)
3 DUP COS ~-ROT SIN 0O SWAP

4 720 Mx/ 31416 10000 M«/ 1 16384 Mx/ DROP - ;

The numbers in line 4 arise from the conversion of the angle in double
degrees format to radians, i.e. ©/180/65536.

Both the sine and cosine series could be evaluated using the definitions 1+DX
and 1+SX which are defined later for the arctan function.

6.1.4 Quick and dirty methods

Suppose we sum an infinite series to, say, 10 or 12 terms we may find that it
involves terms that no longer contribute anything to accuracy, and yet can
take a lot of unnecessary time. If the series is aborted after only a few terms a
lot of accuracy is lost, but if the coefficients of the series are adjusted, we can

Mathematics 39

improve the accuracy without extensive computation. Normally SIN and 0S
functions are expressed in terms of Maclaurin’s series, but Chebyshev poly-
nomials can be used to give a ‘best fit' over a limited range of values. For
sin(A) where A is in degrees the following approximation may be used:

. 634 A?
sin(4) = 3340 ~ 0800
This expression is easy to implement in Forth and is simply:
0 (SIN OF ANGLE BY CHEBYSHEV RDG-841103)
1
2 10000 CONSTANT 10K
3
4 : SIN (Nt --- N2 /RETURN SIN*10K APPROX *)
5 DUP DUP Ux 10K 10800 M%/ DMINUS
6 ROT 1000 Ux 630 3240 Mx/ D+ DROP ;
7
8
9
/10
"
12
13
14
15

So what is the catch? Firstly, the expression is only valid for 0< 4<90 and
secondly it is only correct at 0, 30 and 90 degrees. For intermediate values,
the second digit may be out by one or two. Typical error figures are

30<A<90 less than 3.8%
0<A<30 approaching —11.4% as A—0

Another, more complex expression, called a rational polynomial approxima-

tion, gives much better accuracy and requires the angle in radians:
- 3
sin(X) = X—17X%/60
1+ X2/20

and this too may be readily implemented in Forth by:

SCR #130

0 (SINLX] BY RATIONAL POLYNOMIAL RDG-841103)
1
10000 CONSTANT 10K

: SIN (N1 --- N2 /RETURN SINE OF N1 RADIANS - N2 IS *10K %)
20000 OVER DUP Ux 7 30 Mx/ 10K U/
SWAP 5000 > + (round) -
OVER DUP Uk 110 Mx/ 10K U/

~No U s W

40 Forth: The NEXT Step

8 SWAP 5000 > + (round) 20000 +
9 0 -ROT (make N double) Mx/ DROP ;

This version has been scaled to reduce loss of accuracy by truncation and to
avoid resorting to triple-precision division and other complexities. The out-
come is a word which gives a result within one digit of the values obtained
using the algorithm with floating point arithmetic. The error is greatest at 90
degrees (1.5708 radians) where the result is:

15708 SIN . 9958 0K

The expression is scaled by 20000 and X (radians) by 10 000. The expression
10K U/ SWAP 5000 > + adds one (rounds) the quotient if the remainder is more
than half the denominator (10000). This is rather naughty because it assumes
that the true flag from the comparison will be +1 whereas in many systems it
is —1. To be portable the + should be replaced by IF 1+ THEN in both occur-
rences of the expression. Some factoring of the definition could be made, but
little is gained in so doing in this instance unless the factored definitions can
be used in further expressions.

6.2 INVERSE FUNCTIONS

The series for inverse functions are somewhat more complex to evaluate and
you may prefer to use a successive approximation technique, i.e. ‘trial and
error’. The expression trial and error is used advisedly since errors will arise
from the error in the expression to evaluate the sine/cosine/tangent of each
trial, plus the difference between the final try and the actual submitted value
before ‘calling it a day’. This is related to the smallest number that can be
resolved. In addition there may be computational errors.

6.2.1 Arccos
(ARCCOS BY SUCCESSIVE APPROXIMATION RDG-840930)

0

1

2 : ARCCOS (N --- D /CONVERT TOS [0-10K] TO DEGREES * 65536 *)
3 0 90 ROT 0 90 ROT 23 0

4 DO >R

5 2SWAP 1 2 Mx/ 2SWAP

6 2DUP DCOS R <

7 >R 20VER R>

8 IF DMINUS THEN D+ R>

Mathematics 41

9 Loop DROP 2SWAP DROP DROP ;
10

ARCCOS sets up two double-precision numbers on the stack, both equivalent to
90 degrees with N manipulated to the top. The DO...LOOP is then set up for
23 iterations. Line 5 divides the second double number by two. This is then
added to or subtracted from the top double number depending on whether
the top item produces a bC0S value which is too high or low. The flag for this
comparison is stored on the return stack at line 7 and line 8 decides whether
to add or subtract the second double number. On leaving the LOOP the stack is
then tidied to leave the result.

The routine requires dC0S to be defined first, which goes against the previ-
ously defined objectives. It is also slow because of bC0S in the loop, and there
are errors due to Mx/ always rounding down through the closing iterations.
Don’t be alarmed by all these errors; they are not huge, and the accuracy may
be sufficient. You may wonder why there are 23 iterations through the loop,
why not 32? Since the largest number is 90 degrees (i.e. 90 X 65536) after 23
right-shifts (128 X 65 536), there is nothing left! Finally, as before, DMINUS
may need to be replaced by DNEGATE.

6.2.2 Arctan
The series to evaluate arctan (X) is given by:

3 5 7
arctan(X)=X*§ +%(- %(+ ...

and is the one used in the next example. However, as an infinite series, it has a

serious limitation in that it is slow to converge.

For this reason ATN has been arranged to compute as many terms as are
required with a limit of 50. This can be raised as desired if you don’t mind
waiting for the answer. In fact for X > 1 the series does not converge at all!

As an example of this shortcoming, arctan (0.5) = 0.46365 and 5000 ATN
leaves 4637 after summing 6 terms. 9000 ATN requires 26 terms to give 7328,
but 9600 ATN requires 50 terms and 10000 ATN requires well over 500 terms.
Above this, forget it, you're heading towards infinity and integer arithmetic
cannot cope! It is included here as an academic exercise.

0 (ATN BY SERIES RDG-840916)
2 0 VARIABLE (ATN)

3

4 1 ATN (N1 --- N2 /CONVERT STK TOP TO ANGLE IN RADIANS *)
5 (ATN) ! DUP DUP 10K %/ XS ! (save X#2) 1 (coefft)

6 51 1 DO OVER QVER / DUP (ATN) +!' 0= IF LEAVE THEN

7 SWAP XS @ 10K */ SWAP

8 DUP ABS 2+ SWAP MINUS +-

9 LOOP DROP DROP (ATN) @ ;

ATN uses the variable (ATN) to accumulate terms in the series until either the

42 Forth: The NEXT Step

next term is insignificant or 50 terms have been summed. The manipulations
in line 8 are to cause each successive term to alternate in sign.

ATN uses VARIABLE and MINUS which have been mentioned earlier, but LEAVE
may act differently in more recent Forth standards. It should have little effect
on ATN’s operation.

6.2.3 Arctan by successive approximation

The problem here is that the method requires TAN which must be defined,
cither in terms of SIN and C0S, or as a series. Since the philosophy of this
chapter is to have each function as a stand alone item, to use both sine and
cosine functions is inadmissible. If TAN is to be defined using a series simply to
obtain the arctangent then we might as well use an appropriate series for arc-
tan directly.

6.2.4 Arctan by rational polynomial approximation
Another expression which approximates to arctan(X) is the rational poly-
nomial (Pade approximation) thus:

7x1+ﬂXﬂ

Xty 945

arctan (X) = ——————

1440 x2 4 5 x4
9 21

where again X < 1. To implement this using Forth’s integer arithmetic, we

must again scale and factorize the expression.

SCR #127

0 (ARCTAN BY RATIONAL FRACTION RDG-841202)
1

2 1 3PICK 6 SPA + Q@ ; ('Cos I don't have PICK)

3

4 1 140X ¢ X D1 N1 N2 === X D2 /CALCULATE NEXT TERM *)
5 Mx/ 10K 0 D+ 3PICK 10K Mx/ ;

6

7 148X (X D1 N1 N2 --- N3 /CALCULATE FINAL TERM *)
8 Mx/ 10K O D+ DROP SWAP DROP ;

9

10 : ATN (N1 --- N2 /RETURN ARCTAN * 10K -t X < *)
1" DUP DUP M* 10K M/ SWAP DROP DUP S->D

12 3PICK 3PICK 3PICK 3 14 14DX 10 9 148X

13 >R 64 735 14DX 7 9 14SX Mx R> M/ SWAP DROP ;

14

15

Accuracy is surprisingly good considering the ‘swap drops’ and the number of
divisions. The error in the equation is greatest when X = 1 and increases at
lower values for the calculation in Forth. Table 6.1 gives some sample figures.

Mathematics 43

Table 6.1 Accuracy of arctan figures obtained from rational polynomial

approximation.
X arctan equation Forth approx. error
10000 0.785398 7855.86 7855 .013%
8423 0.700007 7000.53 7000 .001%
6842 0.600043 6000.51 6000 .007%
3094 0.300058 3000.58 3000 .019%

The figures are the same for positive or negative values and the greatest error
is some 0.013%. The problem is knowing how accurate the ‘correct’ figures
are: they come from a computer using floating point calculation of another
approximation to find ATN(X)!

6.2.5 Arcsin

The usual series for arcsin is derived from an integrated binomial expansion of
the first derivative, but then you already knew that, didn’t you? In short the
series runs thus:
arcsin(X) = X+ x4 Zs+ o+ P20+

which can be factored out to repeated sum and product terms so that we can
reuse the definitions for ATN, but with different coefficients. Like a lot of infi-
nite series, the end result is only accurate for an infinite number of terms.
Happily in practice a lesser number of terms can be used with some sacrifice
in precision. With arcsin (X) sufficient accuracy may be obtained using only
the first four terms above, although five are included in ARCSIN as defined.

SCR #124

0 (ARCSIN BY SERIES RDG-841202)
1

2 : 3PICK 6 SPR + @ ;

3 /

&1 14DX (X D1 N1 N2 --- X D2 /CALCULATE NEXT TERM *)
5 Mx/ 10K O D+ 3PICK 10K Mx/ ;

6

7 1 148X (X D1 N1 N2 --- N3 /CALCULATE FINAL TERM *)
8 Mx/ 10K 0 D+ DROP SWAP DROP ;

9

10 : ARCSIN (N1 =-- N2 /RETURN ARCSIN * 10K -1 <X < H *)
" DUP DUP M* 10K M/ SWAP DROP DUP S->D

12 8757 17280 1+DX 600 10008 1+DX 18 40 1+DX 1 6 1+SX
13 M* 10K M/ SWAP DROP ;

14 d

44 Forth: The NEXT Step

The fifth term has little effect if X is small, but as X approaches 1 (10000
when scaled), the series converges more slowly and the extra term may be
considered useful. The degree of accuracy obtained is shown in Table 6.2.

Table 6.2 Accuracy of arctan figures obtained by series.

X arctan series Forth error
1.0000 1.570796 1.24616 12461 20%
0.9000 1.119769 1.06794 10678 5.18%
0.8000 0.927295 0910852 9108 1.76%
0.7000 0.775398 0.770142 / 7700 0.67%
0.6000 0.643501 0.641958 6419 0.25%
0.5000 0.523599 0.523212 5232

If greater accuracy is required as X approaches 1 perhaps the method of look-
up table should be used, especially since the Nth term becomes increasingly
difficult to determine. Alternatively one could ‘adjust’ the coefficients of the
higher order terms.

6.3 POWERS

It is not difficult to write a routine to raise a number X to a power N. One
simply multiplies X by X for N— 1 times. The following definition ** does just
that, but filters out the special cases where N is one or zero. Negative values
are not catered for.

SCR #122

0 (*% - PERFORM XN BY REPEATED MULTIPLICATION RDG-841117)
1

2t w4 (XN --- XIN /RAISE X TO POWER N - N POSITIVE *)
3 DUP 0= IF DROP DROP 1

4 ELSE DUP 1 =

5 IF DROP

6 ELSE OVER SWAP 1 -

7 0 DO OVER * LOOP

8 SWAP DROP

9 THEN

10 THEN

1

12

13

14

15

Line 3 handles the case where N=0 by clearing X and N from the stack and
leaving the known result of 1. Lines 4 and 5 handle N=1 by dropping N and

Mathematics 45

leaving X. Line 6 sets up the parameters for a DO...LOOP to give the correct
number of times to multiply by X. Line 8 then drops X to leave X"

This method can be rather limiting. Firstly X and N need only be fairly
small before overflow occurs, e.g. 10* and 2" are obviously near the limit.
Secondly having multiplied X by X to get X squared, why not obtain X* by
squaring X squared? By generating terms in X, X%, X*, X* and including
them as required in the product according to the bit pattern of N when
expressed in binary form, the number of multiplications is minimized [2].
Screen 120 shows the principle and D+ is a double number version. Try 10°
or 2°! for example.

SCR #120
0 (X*%N - EXPONENTIATION RDG-841021)
1
2%k (XN --- XxN /RAISE X TO POWER N *)
3 SR 1 SWAP
4 BEGIN R 1 AND IF SWAP OVER * SWAP THEN
5 R> 2/ -DUP
6 WHILE >R DUP *

7 REPEAT DROP
8
9 : D*x (N1 N2 === D /RAISE X TO POWER N DOUBLE # RESULT *)

10 >R 1. ROT O :

1 BEGIN R 1 AND IF 2SWAP 20VER D* 2SWAP THEN

12 R> 2/ -DUP

13 WHILE >R 20UP D*

14 REPEAT 2DROP ;

15

The definition of 2/ could readily be in code in applications where speed is
important. R is the FigForth word to fetch the top number on the return stack.
This is called R@ in some Forths. The definition d* multiplies two double-
precision numbers and leaves a double-precision result. A suitable definition
appears in Chapter 3.

6.4 EXP(X) ORe*

The conventional series for e is an infinite series which is not a suitable
choice to use in Forth. A shortened series for e¥ is given by:

xo 143835, 1

e'=1+ 38 4X +35

In Forth it can be realized by the following, where X and e* are both scaled by
10000.

SCR #129
0 (EXPONENTIAL FUNCTION RDG-841103)
1

1733 4 Lya
XZ+96X +X

46 Forth: The NEXT Step

2 1 3PICK 6SPa+a ;

3

4 14DX (X D1 N1 N2 === X D2 /CALCULATE NEXT TERM)
5 M/ 10K 0 D+ 3PICK 10K M¥/

6

7 : 148X (X D1 N1 N2 === N3 /CALCULATE FINAL TERM *)
8 Mx/ 10K 0 D+ DROP SWAP DROP ;

9

10 : EXP (N1 === N2 /RETURN EXPONENTIAL* 10K =1 < X < +#1 *)
11 DUP §->D 4 17 14DX 17 48§ 14DX 192 383 1+DX

12 383 384 148X

13

14 (EXPLX] = 1 + 383/384.X.[1+192/383.X. [1417/48.X. [1+4/17.X111)
15

The definition of EXP is not unlike ATN in that it uses the same building blocks,
but like ARCSIN is a lot simpler because only one polynomial is involved. The
series is not infinite, but is an approximation valid for ABS(X) less than 1. See
Table 6.3.

Table 6.3 Values of ¥

X e series Forth
1.0000 2.718282 27161.5 27160
0.1 1.10517 11049.2 11048
0 1.000000 10000 10000

—0.1 0.904837 9050.88 9052
—1.0000 0.367879 3671.88 3672

For a treatment of logarithms in Forth see reference [3].

6.5 BINOMIALS

The binomial series gives the value of numbers near to unity raised to a
power. The form of the series suitable for expressing in Forth is:

(1+X) =1+ kX.(X(k_l) .(1 + X2 (1 + X(k=3) ())))
2 3 4

where =1 < X < +1.

The behaviour of the series varies according to the value of k as X approaches
its permissible limits. Generally accuracy deteriorates because the series fails
to converge to a sensible value with a modest number of terms. If X is near to
—1 the expression behaves bad]y with negative powers.

SCR #131

0 (BINOMIAL FUNCTIONS

1
: (14X).5

2
3
4
5
6 : 1/(14X).5
7

8

15

N1
bUP
-4

N
buP
=34

Mathematics 47

RDG-841103)

--- N2 /RETURN BINOMIAL*10K -1 < X < +1 %)
$->D =7 10 14DX =5 8 1+DX -1 2 14DX
1+DX 12 145X

-== N2 /RETURN BINOMIAL*10K -1 < X < +1 %)
$=>D =9 10 14DX -7 8 1+DX -5 6 1+DX
14DX =12 148X ;

The polynomial is evaluated as before using the appropriate coefficients, the
only difficulty being to find a suitable name for each word! See Tables 6.4(a)

and (b).
(a) Table 6.4 Behaviour of the binomial series.
X (1+x)” series Forth
1.0 1.414214 1.42588 14258
0.5 1.22475 1.22412 12249
0 1.000000 1.00000 10000
—0.5 0.707107 0.707642 7077
—0.75 0.500000 0.509472 5095
(b)
X 1/(1+X)" series Forth
1.0 0.707107 0.589811 5899
0.5 0.814087 0.814087 8141
0 1.000000 1.000000 10000
—0.75 2.000000 1.86269 18626
~

6.6 SQUARE AND CUBE ROOTS

Various methods exist to calculate the square root of a number, at least one of
these being introduced in one’s school days. However, some methods are
more amenable to computer implementation than others, particularly where
integer arithmetic is concerned.

48 Forth: The NEXT Step

6.6.1 Square roots

The first version here uses a successive approximation technique to produce a
square root value of a 16-bit integer (actually 15-bits since it must be a posi-
tive number). It uses the equation:

xo (E)

2
to give a second approximation X’ to the square root of N from a first
approximation X. Mathematicians will recognize this equation as the Newton-
Raphson method. The first approximation chosen in the example is purely
arbitrary and the number of iterations used is adequate. No mathematical or
scientific basis has been used to opitimize them except to test that they suffice.

0 (SQUARE ROOT 16-BIT RDG-840804)

2 : APPROX (N X === N X' /COMPUTER NEXT APPROXIMATION %)
3 OVER OVER / + 2/ ;

4

55 SQRT (N1 --- N2 /RETURN SQUARE ROOT OF N [32767 MAX1 %)
6 60 50 D0 APPROX LOOP SWAP DROP ;

7

8 :30UP (N1 N2 N3 --- N1 N2 N3 N1 N2 N3 /DUP TOP 3 ITEMS +)

9 (=3 PICK 3 PICK 3 PICK)
10 >R OVER R SWAP >R OVER R> SWAP R> ;

15

The number that we wish to find the square root of is often the result of the
product of two numbers, for example the geometric mean. It follows therefore
that it is likely to be a double number, hence DSQRT:

0 (SQUARE ROOT OF 32-BIT DOUBLE NUMBER RDG-840804)
1

2 : DSQRT (D =--- N /RETURN SQUARE ROOT OF DOUBLE NUMBER D *)
3 127 7 0 DO 3DUP

4 M/MOD ROT DROP ROT 0 D+ 2 U/

5 SWAP DROP

6 LOOP >R DROP DROP R> ;

7
8

9
10
"
12

Mathematics 49

DSQRT works with the full 32-bit unsigned value. Since some implementations
do not have PICK, the author’s included, it has been coded without. The defi-
nition of 3DUP is equivalent to 3 PICK 3 PICK 3 PICK and duplicates the top
three stack items. 20R0P may be used instead of DROP DROP. (*83-standard has
PICK and for this 3 should be 2.)

6.6.2 Cube roots

The process of finding the cube root is similar to that used for square roots
but the second approximation X" is given by:
N
PG
3

Newton’s method is in fact a general method for the Nth root of a number
and this is the specific approximation for the cube root. Without a floating
point arithmetic package, going beyond the cube root has little value (the
fourth root of a double-precision integer can only have at best 3-digit resolu-
tion). Even for the cube root it should be fairly obvious that if N is only a 16-
bit value, the cube root is less than 32 and is of only 1 or 2 significant figures,
not a lot of use. Ideally, N should be a triple-precision number to yield a
single-precision result. The more dedicated among you may be inclined to
write a triple number version, but for the less ambitious the double number
version will theoretically handle numbers up to 277, but in practice this
becomes 168° = 4787099 because of liberties taken in calculating X". In
particular, Ux produces a double number result which is not utilized. This is to
avoid performing a division with two double numbers.

In CUBEROOT it has been attempted to optimize the number of iterations and
the first guess. The optimum first guess is, of course, the correct result, but
since this is unknown, a value has been chosen which is a compromise
between 1 and 168. If CUBEROOT is to be used for a smaller range of results,
then the first guess could be changed and the number of iterations reduced.

0 (CUBEROOT RDG-841029)
2 : (CUBE) (D N1 --- D N2 /DERIVE APPROXIMATION N2 FROM N1 *)
3 3DUP DUP Ux DROP (hi) M/MOD ROT DROP (rem)

4 ROT 2% 0 D+ 3 U/ SWAP DROP ;

5

6 : CUBEROOT (UD --- N /LEAVE CUBE ROOT OF UD *)
7 8 10 0 DO (CUBE) LOOP

8 SWAP DROP SWAP DROP ;

9

10

"

12

50 Forth: The NEXT Step

(CUBE) is the inner routine to derive a new approximation from the previous.
3DUP replicates the top three stack items, i.e. the double number and single-
precision approximation, the remainder of the definition is the straightforward
evaluation of the equation.

CUBEROOT uses an initial guess of 84. Even if as a first guess this value is
wildly out, 10 iterations are sufficient to handle the worst case.

6.7 POLAR COORDINATES

As an example of using the double-precision square root, conversion from
cartesian to polar coordinates is given by:

Modulus R =/ (X? + Y?) and argument § = arctan (Y/X)

In Forth the modulus is simply defined by:

: MODULUS (N1 N2 =-- N3 /Do SQRT of sum of squares *)
DUP Ux ROT DUP Ux D+ DSQRT ;

In MODULUS the expression DUP U* simply squares the top stack item each time
and the two respective double-precision results are added before being
presented to DSQRT. It is possible to extend the concept to calculate rms (root-
mean-square) values for N items. If squares are likely to be commonplace in
an application, then it will be worth factoring out DUP Ux into a separate
definition. It could then be included in the definition to find the area of a
circle given the radius. As with any limited precision calculation, the radius
may need to be scaled before the calculation is performed. The ratio 355/113
is a close approximation to T.

: AREA (N ---D /GIVES AREA OF CIRCLE FROM RADIUS *)
DUP Ux 355 113 Mx/ ;

6.8 MODVARIABLE

The range of values of a variable can be constrained using the word M0D as, for
example, when an index to an array is to be constrained to the array limits. If
several arrays or memory segments are to be indexed, it can be an advantage
to define a family of such words. MODVAR is a defining word which will do this.

0 (MODVARIABLE RDG-840703)
1

2 : MODVAR (N1 N2 --- /VARIES AS MODLN2] + N1 *)
3 (N3 <name> === N&)

4 <BUILDS [COMPILE] LITERAL ,

5 [COMPILE] LITERAL ,

6 DOES> DUP @ ROT SWAP MOD SWAP 2+ @ + ;

7

Mathematics 51

8 (eg: 3 7 MODVAR INDEX)
9

The action of MODVAR is to constrain the function so defined (INDEX in the
example) such that N INDEX varies between 3 + (0 to 6) as N varies over (0 to
6) + 7 K where K is an integer. You may wish to experiment with the action
of replacing MOD in line 6 with <M0D> as defined earlier in Chapter 2.

You may recall that <BUILDS is the FigForth equivalent of CREATE and deter-
mines what compiling action will occur when words defined by MODVAR are
compiled into the dictionary. MODVAR works by twice compiling the cfa of
LITERAL followed by the top stack item during the <BUILDS action. When a
word defined by MODVAR, such as INDEX, is executed it uses these two numbers
at run time in accordance with the actions following DOES> to determine the
resulting value left by INDEX.

Projects

1. What are the problems in producing a definition to evaluate log(X) in
Forth?

2. Write and test a definition for exp(X) scaled by 10000 using the
approximation:

Yo xY
e <1+N>

for —1 < X < 1 where the integer N determines the accuracy. Take care
when applying the scaling to avoid errors due to rounding or overflow.
How does the resulting method compare with the version given in the
text for speed and accuracy?

REFERENCES

[1] Bumgarner, J.O. ‘Fixed-Point Trigonometry by Derivation’ Forth Dimensions, IV,
No. 1, p7

[2] **i.e. X"is from Forth Dimensions, IV, No. 3, p31

[3] Grossman, N. Jan/Feb 1984. ‘Fixed Point Logarithms’ Forth Dimensions, V, No.
5, pll

7 Calendar Functions

7.1 JULIAN DATE

Astronomers require a convenient calendar that covers long periods of time
before and after the present day and which can also allow for the 11 days lost
in changing from the Julian calendar to the present Gregorian calendar. The
Julian day number is the number of days counted from 1 January 4713 BC
since this was originally thought to be roughly when the world began.

The program definition JULIAN leaves the Julian day as a double number,
given the date in the new style (Gregorian) calendar.

0 (JULIAN DATE FROM ASTROPHYSICAL J. SUPPL. V41/3 11/79)

1

2 :JULIAN (DAY MONTH YEAR --- D /LEAVES JULIAN DATE AS DBLE # *)
3 >RDUP 9+ 12/ R+ 7% &/ MINUS

4 OVER 9 - 7/ R+ 100/ 1+ 3% 4/ - SWAP

5 ‘ 275 9 %/ + + $->D 1.721029 D+ 367 R> Mx D+ ;

6
7

(E.6. 511 1888 JULIAN D. 2410947 OK)
8

MINUS should be replaced by NEGATE if necessary. The routine will cope with
dates BC if they are input as negative and will go back to circa 4600 BC. Day
one BC is entered as 31 12 —1 and is one day before 110000 (J=1721060).
Beware of placing too much reliance on negative years as discrepancies
of a few days have been noted. For example the equation appears to give day
one as 25 November —4713 and JULIAN fails at around 1 3 —4682.

The definition of JULIAN uses the formula

J = 1721089 + D + INT(367((M-2)/12+x))
+ INT(INT(365.25(Y-x))=0.75k)
where
x=1ifM=1or2

k = 2 for the old style Julian calendar
k = INT((Y-x)/100) for the new style Gregorian calendar.

Both systems give the same Julian day number, but remember that JULIAN as
defined here computes the equation based on the Gregorian calendar. And

52

Calendar Functions 53

yes, the numbers in JULIAN (1.721029) and in J (1721089) are supposed to
be different.

7.2 WHAT DAY IS IT2

Several algorithms have been published to calculate the day of the week from
the date for a limited range of years. Most of them appear to be some simpli-
fication of an algorithm known as Zeller’s Congruence. Screens 137 to 139
are for a program to print a calendar for the given month and year and
screens 137 and 150 are for the day of the week.

For the day of the week the date can be entered as the day number, month
as the first three characters and the year in full, for any year in the Gregorian
calendar system from AD1 to the year 4902. Since the Gregorian calendar was
not introduced until 15 October 1582, before this you will need to make a
correction. Years less than one are inadmissible.

SCR #137

0 (CALENDAR - 1 OF 3 RDG-821022)
1

2 : DATA <BUILDS , , DOES> DUP @ SWAP 2+ 3 ;

3 31 1 DATA JAN 28 2 DATA FEB 31 3 DATA MAR

4 30 4 DATA APR 31 5 DATA MAY 30 6 DATA JUN

5 31 7 DATA JUL 31 8 DATA AUG 30 9 DATA SEP

6 31 10 DATA OCT 30 11 DATA NOV 31 12 DATA DEC

7

8 : ->DAYS (MO YR === D /CONVERT TO DAYS SINCE JAN OF YR 0 *)
9 OVER OVER 365 Mx ROT 1- 31 M%x D+ >R >R SWAP DUP 3 <

10 IF DROP 1- 0 ELSE 4 * 23 + 10 / MINUS THEN

" SWAP DUP & / SWAP 100 /

12 4 34% -+ 0 R>R D+ ;

13

14

15

SCR #150

0 (DAY OF THE WEEK RDG-821220)
1

2 : 00 ." SATURDAY" D1 ." SUNDAY" ;

3 : D2 ." MONDAY" ; : D3 ." TUESDAY"

4 1 D4 " WEDNESDAY" ; : D5 ." THURSDAY"

5: D06 ." FRIDAY"

6

7 : .DAYN (--- /PFA IS A LIST OF CFAS TO PRINT DAY *)
8 DO D1 D2-D3 D4 D5 D6 ;

9

10 : DAY? (N --- /PRINT DAY FROM DAY NUMBER *)

54 Forth: The NEXT Step

" ' .DAYN SWAP 2 % + @ EXECUTE ;

12

13 : DAYOWEEK (DD <mth> YYYY --- /PRINT DAY OF WEEK FROM DATA *)
14 SWAP DROP ->DAYS ROT 0 D+ 7 M/MOD DROP DROP

15 LIS A" DAY? (R

Here is an example of its use:

1 JAN 1985 DAYOWEEK IS A TUESDAY
0K

The program uses a variation of Zeller’s congruence to calculate the number
of days elapsed since year dot. Zeller’s expression involves some clever foot-
work to account for leap years and their occasional absence at the turn of
certain, but not all centuries. To keep the arithmetic simple, two expressions
are used:

Days = 365(YYYY) + DD + 31(MM-1) - INT(O.4%MM + 2.3) + INT(YYYY/4)
- INT(3/4(CINTCYYYY/100)+1))

for March to December or

Days = 365(YYYY) + DD + 31(MM-1) + INTC(YYYY-1)/4) -
INT(3/4CINTCCCYYYY=1)/100) + 1))

for January to February.

These expressions are evaluated as a double-precision number by ->DAYS
and M/MOD converts them to a number modulo 7 for the day of the week. The
parameter field of . DAYN contains a list of cfas which are addresses of words to
print each’'day of the week. DAY? uses the stack value left by the remainder
from M/MOD as an index to the list, fetches the indexed cfa and executes it.
Note that the word ' (tick) must return the pfa of . DAYN because it may differ
in some dialects of Forth.

To enable the month to be entered as text, a defining word DATA is defined
which will create a new family of words whose characteristics are similar to a
double-precision constant. When the month is called by name, it returns its
month number and last day. The last day is discarded by DAYOWEEK but is used
in CALENDAR which follows.

7.3 CALENDAR

The calendar definition is called by name of month and year, for example NOV
1888 CALENDAR will result in the calendar for that month being displayed on the
terminal.

SCR #138

0 (CALENDAR - 2 OF 3 RDG-821022)
1

2 : HEADER (--- /PRINT THE HEADER *)

3 CR CR ." SUN MON TUE WED THU FRI SAT"

Calendar Functions 55

CR SPACE 27 0 DO 45 EMIT LOOP ;

4
5
6 : 1STDAY (N1 N2 --- N3 /MTH YR TO DAY OF WEEK, 0 = SUNDAY %)
7 ->DAYS 7 M/MOD DROP DROP ;

8

9 : WEEK1 (N --- N+7 /FORMAT 1 WEEK IF N RANGES 1 TO MTH.END *)

10 CR700D0 DUP 1T <

1" IF 4 SPACES

12 ELSE SPACE DUP 10 <

13 IF SPACE THEN DUP MTH.END @ >

14 IF 4 SPACES ELSE DUP . THEN

15 THEN 1+ LOOP ; -=>

SCR #139

0 (CALENDAR - 3 OF 3 RDG-821022)

2 : ?LEAP (N --- /MAKE MTH.END = 29 IF N = LEAP YEAR *)
3 DUP 0 4 M/ DROP 0=

b IF DUP 0 400 M/ DROP 0=

5 IF 29 MTH.END !

6 ELSE DUP 0 100 M/ DROP 0= 0=

7 IF 29 MTH.END ! THEN

8

THEN
9 THEN
10
11 : CALENDAR (<mth> N --- /CALENDAR FROM 3 CHAR MONTH & YYYY %)
12 SWAP DUP MTH.END ! 28 = IF °?LEAP THEN
13 HEADER 1STDAY DUP MINUS 1+
14 SWAP MTH.END @ + 6 + 7/
15 0 DO WEEKT LOOP DROP CR CR CR ;

NEGATE should be used instead of MINUS in *79-standard or later. An example
format is shown for February 2000 which occurs in a leap year.

FEB 2000 CALENDAR

SUN MON TUE WED THU FRI SAT

12 3 4 5
6 7 8 9 10 1M 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26

Note that a year is a leap year if it is divisible exactly by 4, or 400, but not if
by 100 (or 40007?). This complex correction factor is to make a calendar year
equal to 365.2425 days. A year is defined as the time of one earth orbit round
the sun and a day to be one rotation of the earth about its axis. The ratio of

56 Forth: The NEXT Step

these two, i.e. the number of days in a year, is 365.2422 ..., an irrational
number, the value of which is also complicated by other factors, not to mention
the earth’s rotation very gradually slowing down!

Project
Investigate the limitations of the JULIAN definition for BC dates. Determine at
what future date JULIAN will fail.

8 Factors and Multiples

8.1 FACTORS

Much fun was had playing with the factors routine, for example the highest
prime number that the author could find was 32749, whereas 32738 = 2 X
16369 and 30030 is the product of the first six primes.

There are several methods for finding factors, the one here works by trial
and error trying each prime in turn. Typical formats are:

5600 FACTORS = 1 % 245 x 512 % 7
5601 FACTORS = 1 % 3 * 1867

The leading 1 serves to remind one that it is also a factor, but its real purpose
is to avoid the difficulty of suppressing the leading *.

0 (FACTORS - 1 OF 2 RDG-840528)
1

2 1 PRINT (N1 N2 QUOT COUNT =--- N1/N2 OR N1 /N1 IF COUNT=0 %)
3 =DUP IF ROT ." %", (N2) DUP 1>

4 IF ." A" . (Count) ELSE DROP THEN DROP

5 ELSE DROP DROP (Lleave N1)

6 THEN ;

7

8 : TOTHE (N1 N2 --- N3 /LEAVES N1/N2 OR N1 IF NOT INTEGRAL %)
9 0 BEGIN >R OVER OVER /MOD R> ROT
10 (N1 N2 quot count rem) 0=
" WHILE 1+ >R >R SWAP DROP R> SWAP R>

12 REPEAT

13 PRINT ;
14 -=>
15

0 (FACTORS - 2 OF 2 RDG-840528)
1

2 1 CVECTOR (N -~ /Compile N bytes off stack *)
3 <BUILDS 0 DO C, LOOP

4 DOES> + €3

5

57

58 Forth: The NEXT Step
6 31292319 17 1311 7 8 CVECTOR TRIAL

8 : FACTORS (N --- /PRINTS OUT ANY FACTORS OF N 32767 MAX. %)
9

=

10 2 TOTHE 3 TOTHE 5 TOTHE

" DUP 1 = IF CR DROP EXIT THEN

12 DUP 0 DO 8 0 DO I TRIAL J + TOTHE LOOP
13 DUP I < IF LEAVE THEN 30

1% +L0OP DROP

15

The single dimension byte array TRIAL contains numbers which are not multi-
ples of 2, 3 or 5, i.e. the prime numbers from 7 up to 31. These numbers are
used as trial divisors in TOTHE. However, they do not all have to be prime and,
in fact, the series is repeated with 30 added each time. This will result in
occasional wasted trials, e.g. 30+ 19=49 may be tried, even though 7 will
have already eliminated it as a factor.

PRINT handles the format of the printed output and adjusts the stack
parameters ready for the next trial. TOTHE extracts as many as possible of a
given trial and raises the count used by PRINT. CVECTOR creates a self-loading
byte array and is used to create TRIAL which returns the byte indexed into the
array. FACTORS then tries 2, 3 and 3 before using the trials in TRIAL. By success-
ively adding 30, the numbers in TRIAL are reused until the trial is no longer
less than the number to be factored.

8.2 PRIME NUMBER GENERATION

Now that you have a program to factorize numbers, how about some numbers
that do not factorize? One of the classical methods of generating prime
numbers is by using the Sieve of Eratosthenes [1], [2]. The first four numbers
0, 1, 2, and 3 are known to be primes and this is assumed, together with the
fact that all even numbers are not prime, neither are all multiples of primes.
The program uses these facts to successively work through an array of flags.
At line 8, for each position corresponding to ‘twice the current array index
plus 3’ the content is cleared from true to false. In addition, for each index, it
clears other flags that cannot yield a prime. As can be imagined, if you want a
lot of prime numbers, the array needs to be quite large. In the program shown
a size of 1200 odd bytes yielded 2399 as the highest prime. Obviously if you
have more memory at your disposal (and more time for program execution)
then a greater number can be generated. Using 8190 for SIZE will yield primes
up to 16381. The word PRIME searches through the array and prints out the
number corresponding to the array index if its flag is still set.

0 (SIEVE OF ERATOSTHENES - PRIME NUMBER PROGRAM. RDG-841006)
1 1200 CONSTANT SIZE (2399 HIGHEST PRIME)

2 0 VARIABLE FLAGS SIZE ALLOT

3 & SIEVE (=== /SET STATE OF FLAGS IN ARRAY *)

Factors and Multiples 59

4 FLAGS SIZE 1 FILL (set array) 0 (count = 0)
5 SIZE 0 DO FLAGS I + (@

6 IF I DUP+ 3+ DUPI +

7 BEGIN DUP SIZE <

8 WHILE 0 OVER FLAGS + C! OVER +

9 REPEAT ~ DROP DROP 1+

10 THEN

1" LOOP . ." PRIMES" ;

12

13 : PRIMES (--- /DO PRIME NUMBERS ACCORDING TO ARRAY FLAGS *)
14 CR SIZE 0 DO FLAGS I + C@

15 IF I DUP+ 3+ 5.R THEN LOOP ;

The action of SIEVE is sufficiently time consuming to form a useful benchmark
program [2], although it is wise not to attach too much importance to bench-
marks.

8.2.1 Test for prime

Sometimes it suffices to know that a number has no factors, i.e. is prime.
Basically the technique puts a true flag on the stack and then looks for factors
in N. If the search fails the number is prime and the true flag remains. If a
factor is found, the flag is dropped and replaced by a false flag and then the
search is terminated.

1 ?PRIME (N --- /LEAVE TRUE FLAG IF N IS PRIME *)
TRUE OVER 2 / 1+ 3
DO OVER 1 MOD 0= IF DROP FALSE LEAVE THEN
LOOP SWAP DROP ;

For ’83-standard TRUE should be —1, for other standards +1 is more common.

It should be the same as returned by the standard in use in the interests of
consistency.

8.3 HIGHEST COMMON FACTOR

Given two numbers, the highest common factor is the greatest number that
will divide exactly into both. On the American continent it is called the
greatest common divisor (GCD).

: HCF (N1 N2 --- N3 /N3 IS HCF OF BOTH N1 & N2 *)
BEGIN SWAP OVER MOD ~-DUP 0= UNTIL ;

: JHCF HCF CR ." The HCF is " . ;

The HCF presented here performs three operations known as Euclid’s algo-
rithm and is one of the earliest known algorithms, dating back as it does to
¢.300 BC. The steps are:

60 Forth: The NEXT Step

1. Divide N1 by N2 and leave the remainder.
2. If the remainder is zero leave with N2 as the answer.
3. Replace N1 with N2, N2 with the remainder and go back to 1.

You should have little difficulty relating these steps to the program once you
realize that step 3 is performed first! In the example -DUP should be replaced by
?DUP in later standards.

8.4 LOWEST COMMON MULTIPLE

Following naturally from HCF is LCM, and the lowest common multiple is given
by:
H] (N1 N2 --- D /Leave lowest common multiple *)
>R 0 OVER R SWAP R> HCF Mx/ ;

.LCM (N1 N2 --- /Print LCM *)
LCM CR " LCM =" D, ;

The LCM is given simply by N1*N2/HCF, but since N1 and N2 could both be prime,
the result could be a double number. The definition above accommodates this
possibility.

8.5 FACTORIALS

Factorials occur in many mathematical expressions, such as formulae for
permutations and combinations. Factorial N grows large very rapidly with
increasing N.

: N (N --= N! /Compute factorial N - [8 max] *)
17 SWAP 1+ 1 D0 I % LOOP ;

The maximum permissible number is 8 since 8! = 40320 but this can be
increased by using double-precision arithmetic to leave a 32-bit result.

: DN! (U =--0D /Compute factorial N leave double # *)
1. ROT 1+ 1D0 I UMx LOOP ;

The double number version, DN!, will work with N up to 12 before the result is
too large. Both definitions return 1 for a negative number. UM% requires a
double number with a single number on top and leaves a double number
product.

Factorials are an obvious candidate for recursion, or so we are told, but in
Forth we can actually lose out due to the necessary stack manipulations.
Recursive versions of the above require the previously mentioned word
MYSELF which compiles the current definition’s compilation address into itself.
In addition the double number version requires the version of UM* which
multiplies a double number on the stack by a single-precision number on top.
Line 9 corresponds to UM* and may be factored out if UM is already defined.

Factors and Multiples
SCR #136
0 (FACTORIAL-RECURSIVE VERSION RDG-841019)
1
2 : MYSELF LATEST PFA CFA , ; IMMEDIATE
3
41 FACT (U1 === U2 /RETURN FACTORIAL OF TOS VALUE *)
5 DUP 1> IF DUP 1- MYSELF Ux DROP THEN ;
6
7 DFACT (U --- D /GIVES FACTORIAL OF TOS AS DOUBLE # *)
8 DUP 1> IF DUP 1- MYSELF ROT
9 DUP ROT * -ROT U ROT +
10 ELSE 0 THEN ;
"
12
13
1%
15

61

The recursive version puts on the stack N, N—1,...3, 2, 1 by successively
repeating DUP 1- until failing the ‘greater than one’ test. The ELSE branch
converts the 1 on top to double-precision by capping it with a zero. The
definition now unwinds by resuming with the words following MYSELF. ROT
moves in turn each stack item over the double number, where line 9 (UMx)
leaves a double product ready for the next item. Finally there is nothing left
but the double-precision result. The limiting values are as before, but negative
values behave differently. If U is negative, DFACT returns U 0, i.e. U converted to

double-precision.

Project

Redefine FACTORS ?PRIME and HCF to handle double-precision numbers.

REFERENCES

[1] Sept. 1981. BYTE Magazine, p180
[2] Gilbreath, J. and Gilbreath, G. Jan. 1983, BYTE Magazine, p283

9 When 10 Digits Are
Not Enough

The absence of floating point arithmetic is normally no disadvantage when
Forth is appropriate to the task in hand. Even so, the ease with which Forth
lends itself to many applications does sometimes result in an apparent
requirement for floating point operation. In fact what may be required is
simply extended arithmetic precision for certain calculations. The technique is
to perform the calculation as you would long hand, but using Forth to do the
spadework. For this Forth will need an accumulator or buffer to use for
intermediate calculations and for the final result.

9.1 LARGE FACTORIALS

We saw in Chapter 8 how quickly factorials outstripped single- and double-
precision calculations. By defining an accumulator as long as is required, we
can store product terms without limit (memory permitting). In the example an
accumulator of 200 digits enables factorials up to 120! to be calculated. On an
average Forth system, the 158 digits of 100! took nearly 50 seconds to calcu-
late and display.

SCR #140

0 (LARGE FACTORIAL - 1 OF 3 RDG-841227)
1

2 : C.ARRAY <BUILDS ALLOT

3 DOES> +

4

5 200 CONSTANT SIZE (120! MAX)
6 SIZE C.ARRAY !BUFF

7 0 VARIABLE LAST

8

9 -=>

10

"

12

13

14

15

62

When 10 Digits Are Not Enough 63

SCR #141

0 (LARGE FACTORIAL - 2 OF 3 RDG-841227)
1

2 1 *N (N --- /COMPUTE NEW PRODUCT IN !BUFF *)
3 0 (initial carry) LAST @ 1+ 0

4 DO OVER I !BUFF (@ * + (times N, add carry)

5 10 /MOD SWAP I !BUFF C! (new carry)

6 LooP

7 BEGIN -DUP (handle final carry)

8 WHILE 10 /MOD SWAP 1 LAST +! LAST @ DUP 1+

9 SIZE > IF ." Overflow" QUIT THEN

10 !BUFF C!

" REPEAT DROP ;

12

13 : SETUP (--- /INITIALIZE FACTORIAL BUFFER AND POINTER *)
14 10 !'BUFF C! (SET BUFFER T0 1)

15 0 LAST ! -->

SCR #142

0 (LARGE FACTORIAL - 3 OF 3 RDG-841227)
1

2 ¢ JFACT (--- /SHOW FACTORIAL IN !BUFF WITH COMMA PER K %)
3 LAST @ 1+ 0

4 DO LAST @ I - DUP 1+ 3 MOD 0=

5 I 0= 0= AND IF 44 EMIT (comma) THEN

6 IBUFF €3 1 .R

7 Loor CR ;

8

9 : FACT (N --- /COMPUTE FACTORIAL IN !'BUFF *)
10 SETUP 1+ 1 D0 I *N LOOP ;

1"

12 ¢ N.FACTS (N =--- /DISPLAY ALL FACTORIALS UP TO N! *)
13 SETUP 1+ 1

14 DO I *N CR ." FACTORIAL"

15 I3.R ." =" .FACT LOOP CR ;

Screen 140 defines a word to create a byte array and this is done in line 6
where the factorial buffer !BUFF is created. <BUILDS is a FigForth word and
should be replaced by CREATE for *79 and later standards. The variable LAST
points to the last product term in the buffer. The word *N on screen 141 does
most of the work. It multiplies the contents of !BUFF by the number on the
stack. This number should not exceed about 3200 (3200! requires a lot of
memory) because the carry on some digits may exceed 32767. A fully imple-
mented multiplication routine should be used to overcome this limitation. *N
uses a simple multiply and add sequence. The carry comes from the division
by 10, the result of which may leave a carry greater than 10. The final carry is
handled by the BEGIN/WHILE/REPEAT loop which extends the buffer by

64 Forth: The NEXT Step

as many digits as required. If this results in exceeding the length limit of the
buffer, the calculation is abandoned by QUIT following the error message.
Otherwise -DUP (or ?DUP) generates a true condition, the buffer is extended
until the carry is reduced by division to zero whereupon the loop terminates.

SETUP puts 1 in location 0 of the buffer and LAST is set to index to it. The
factorial is calculated by FACT which repeatedly calls *N to accumulate the
product terms. At any time . FACT can be called to print the buffer contents. It
does so from the high digit down, inserting a comma as required to partition
each thousand by the words 3 MOD 0= with I 0= 0= AND preventing a comma
occurring at the end.

Finally, N. FACTS will print out all the factorials up to that on the stack. This
operation is made simple because . FACT prints out the buffer contents non-
destructively.

9.2 MULTIPLICATION

If the numeric operation of multiplication is broken down into its step by step
procedure, as if one were doing it by hand, then no number is involved which
is too large for integer arithmetic. It follows that if the two numbers are stored
as a digit sequence in a work area, then the individual digits may be manipu-
lated at will. As when using a slide rule (remember them?), in the program
that follows no attempt has been made to account for negative values, nor to
handle decimal points.

SCR #86

0 ("INFINITE' PRECISION MULTIPLY - 1 OF 4 RDG-841228)
1

2 : C.ARRAY <BUILDS ALLOT

3 DOES> +

4

5 20 CONSTANT <LEN>

6 <LEN> C.ARRAY 1BUFF

7 <LEN> C.ARRAY 2BUFF

8 <LEN> 1+ C.ARRAY *BUFF (PART PRODUCT)

9 <LEN> <LEN> + C.ARRAY RESULT (ACCUMULATOR)

10

11 : LEN (ADDR --- N /LEAVE LENGTH OF STRING AT ADDR *)
12 DUP DUP BEGIN (@ 0= 0= (NULL CHAR?)

13 WHILE 1+ DUP (NEXT ADDR)

14 REPEAT SWAP - (PTR-BASE = LEN) ;

15 ==>

SCR #87

0 ('INFINITE' PRECISION MULTIPLY - 2 OF 4 RDG-841228)
1

2 : ENTRY (ADDR --- F /GET INPUT TEXT TO ADDR AS BINARY *)

3 PAD <LEN> 1 - EXPECT PAD LEN OVER C! COUNT 0

When 10 Digits Are Not Enough 65

4 DO PAD I + C@ BASE @ DIGIT

5 IF OVER I + ! (STORE DIGIT)

6 ELSE DROP O (LEAVE FF) LEAVE THEN

7 LooP

8

9 : SUM (N --- /ADD *BUFF * BASEAN TO RESULT *)
10 0 (CARRY) 0 RESULT C@ 0 *BUFF €3 MIN 0 (LIMS)
" Do OVER I + 1+ REUSLT DUP €@ (CONTENT) ROT

12 I 1+ *BUFF €@ (CONTENT) + +

13 BASE 8 /MOD SWAP ROT C! (LEAVE CARRY)

14 LOOP SWAP 0 *BUFF Ca + 0 RESULT C! -DUP

15 IF 1 0 RESULT +! O RESULT C@ RESULT C! THEN ; -->
SCR #88

0 ("INFINITE' PRECISION MULTIPLY - 3 OF 4 RDG-841228)
1

2 : PRODUCT (N --- /LEAVE IN *BUFF NUMBER-IN-1BUFF * DIGIT N %)
3 0 (CARRY) 0 0 *BUFF C! (INIT) 0 1BUFF C3 0

4 DO OVER 0 1BUFF Ca I - 1BUFF Cd

5 * + (TIMES N, + CARRY)

6 BASE @ /MOD SWAP I 1+ *BUFF (!

7 LOOP SWAP DROP 0 1BUFF Ca 0 *BUFF C! -DUP

8 IF 1 0 *BUFF +! 0 *BUFF C@ *BUFF C! THEN

9

10 : PROMPT (=== /PROMPT FOR TWO NUMBERS *)
" BEGIN CR ." 1ST NUM ? " 0 1BUFF ENTRY UNTIL

12 BEGIN CR ." 2ND NUM ? " 0 2BUFF ENTRY UNTIL ;

13 -->

14

15

SCR #89

0 ¢ "INFINITE' PRECISION MULTIPLY - 4 OF 4 RDG-841228)
1 ¢ INIT (--- /INITIALIZE THE RESULT BUFFER *)
2 <LEN> <LEN> + 1 - 1 RESULT OVER ERASE 0 RESULT C! ;

3

4 : TIMES (--- /MULTIPLY 1BUFF & 2BUFF CONTENTS

5 0 2BUFF Ca DUP O DO DUP I - 2BUFF Cd (GET MULT)

6 -DUP IF PRODUCT I SUM THEN LOOP DROP ;

7

8 : .ANS (ADDR --- /GET COUNT AT ADDR & PRINT DIGITS *)
9 COUNT SWAP OVER 0 (R

10 DO OVER I - 3 MOD 0= I 0= 0= AND IF 44 EMIT THEN

" DUP1-Cd I - OVER+ 1- Ca 1.R

12 LOOP DROP DROP ;

13

14 2 MULT (--- /INPUT TWO NUMBERS, LEAVE RESULT IN BUFFER *)
15 INIT PROMPT TIMES 0 RESULT .ANS ;

66 Forth: The NEXT Step

C.ARRAY is a defining word to create and determine the action of the work
areas required. At compile time it allots the specified amount of memory. At
run time the stack value is used as an index to the buffer by adding its value to
the base address.

LEN is used by ENTRY to determine the length of the input string. It works by
examining each character from the first until a zero is found.

ENTRY accepts characters into PAD and converts from ASCII to numbers in
the current base using DIGIT. Conversion stops at zero or the first invalid
character. A false flag is left if the conversion fails so that PROMPT can request a
retry. Note that in Forth-’83 standard, EXPECT does not put a zero (required by
LEN) at the end of the string, but leaves the character count in SPAN.

PRODUCT multiplies the number 1BUFF by the given digit and leaves the result
in *BUFF. Since numbers are entered Most Significant Digit (MSD) first, and
we require the LSDs aligned, the result is written to *BUFF Least Significant
Digit first.

SUM accumulates the contents of *BUFF in RESULT. The value of *BUFF can be
offset by the stack value N to allow for the numeric significance of the number
in *BUFF, i.e. the number is multiplied by the current base to the power N.

INIT initializes only the result buffer, the others are simply overwritten and
the count updated accordingly. TIMES does the real work of multiplying the
two numbers and . ANS simply prints the answer. MULT does the whole thing,
prompting for input and displaying the answer.

9.3 DIVISION

The same technique used for multiplication can be applied to division. In this
case marking the decimal place is of more value. The basis of the routine was
published in COMPUTE! magazine [1] but was revised to output to a work-
space called WKSPC in addition to the terminal device.

SCR #125

0 (0/P AS FLPT, DIVISION OF TWO NUMBERS - 1 OF 2 RDG-840928)
1 (AFTER MG-AUG 1983)
2

3 0 VARIABLE WKSPC 15 ALLOT (DEFINE A WORKSPACE)

4

5 : FRESH (--- /FILL BUFFER WITH SPACES *)
6 WKSPC 16 OVER C! (PUT COUNT IN 1ST POSITION)

7 COUNT ERASE

8

9 : C.EMIT (C === /OUTPUT CHARACTER TO WKSPC & TERMINAL *)
10 DUP EMIT WKSPC DUP >R €3 1+ DUP R C! R> + C! ;

"

12 : 1703 (N1 N2 N3 --- N1 N3 N2 N3 /DUP TOS INTO 3RD POSN %)
13 DUP ROT SWAP ;

14 ==>

15

When 10 Digits Are Not Enough 67

SCR #126

0 (0/P AS FLPT, DIVISION OF TWO NUMBERS - 2 of 2 RDG-840928)
1

2 @ auot (N1 N2 --- /COMPUTE & OUTPUT N1/N2 AS FLTPT *)
3 1703 /MOD 0 <# #S #> DUP WKSPC ! 2DUP TYPE

4 WKSPC 1+ SWAP CMOVE 10 * SWAP 1703 46 C.EMIT ;

5

6 : REMAIN (N1 N2 --- /OUTPUT NEXT DIGIT OF REMAINDER *)
7 /MOD 48 + C.EMIT 10 * SWAP 1T03 ;

8

9 1 FP/. (NUM DENOM --- /QUTPUT 10 DIGITS OF REMAINDER *)
10 DECIMAL FRESK auoT

1" 10 0 DO REMAIN LOOP DROP DROP DROP ;

12

13

14

15

WKSPC is a buffer created by a FigForth definition. Other standards may use
CREATE WKSPC 17 ALLOT as an equivalent.

FRESH clears the buffer ready for use. C.EMIT outputs the character on the
stack to the terminal and additionally stores it in WKSPC. 1703 is a factored
definition to rearrange the stack contents. QUOT handles the whole number
portion of the result and REMAIN is called for each digit of the fractional part.
FP/. does the work of getting it all together.

The three routines given for multiplication, division and factorials have
come together in this chapter from three different thought directions. As a
result they do not form a neat set of definitions, they are not very good Forth
and they have plenty of room for improvement. They have been left in the
raw state in order to illustrate what improvements should be made and to save
the author from having to rewrite them all! Now for the critique:

1. Each routine has its own dedicated sets of working space, when in prac-
tice they could share that of, for example, the multiplication routine. It
follows that the three different initialization words could be commoned
and *N and PRODUCT become the same thing and . FACT and . ANS are essen-
tially the same.

. The multiplication and division routines keep a count of the numeric
string length, whereas the factorial uses pointers.

3. Multiplication uses the numeric equivalent of each digit, whereas division

uses ASCII characters.

4. The use of dedicated buffers prevents the routines from being used to
process numbers in other parts of a system without having to move them
first.

5. In the multiplication routine, TIMES does not perform the product and
sum if the digit in question is zero, but if the digit is one, the product is
superfluous and only the sum need be performed.

N

68 Forth: The NEXT Step

6. The multiplication routine will work with any reasonable base and this
facility could readily be incorporated in the other two. In which case one
should consider factoring out BASE @ /MOD SWAP as a separate definition.

7. The choice of names could be improved as part of the tidying up process.
The above points illustrate a Forth programming rule: ‘write the general, not
the specific’. Each routine described came from a different application and
was specifically tailored to that application, whereas had they been written in
a more general form they would not have come together as such complete
strangers.

Project

Respond to the above critique. From the examples in this chapter create a
revised set of definitions to handle ‘unlimited’ precision arithmetic in the
current base.

REFERENCES
[1] Ganis, M. August 1983. ‘Floating Point Division’ COMPUTE! p249

1 0 Pot-pourri

10.1 SORT AND SEARCH

The subjects of search and sorting are sufficiently large to warrant a text of
their own [1]. Few routines of this nature have appeared written in Forth.
Numbers may be sorted recursively on the stack [2], but this precludes using
the stack for anything else during the sort. The standard quicksort routine has
been implemented in Forth [3] and it is included here primarily because the
search routine chosen requires a sorted list! One search and one sort have
been selected by way of example.

10.1.1 Quicksort routine

The quicksort technique is to divide the array into two and compare the
middle value with each item in the lower end of the array until a value greater
than the mid-value is found. The high end of the array is then searched from
the end downwards for a value less than the mid-value. These two numbers
are then swapped. The process continues until the middle is reached. At this
point we have an array of values less than the mid-value and another of values
greater than the mid-value. The process is repeated on the two arrays and
again on the four arrays, continuing until an array fragment is so small it is
only one item long. With only one item it no longer requires sorting. The pro-
cess is complete when all pieces have been sorted.

0 (QUICK SORT - SORTS BYTE ARRAY - 4TH DIM V/5 P29 MP-840100)
1

2 0 VARIABLE MIDDLE

3 : EXCHANGE (ADDRT ADDR2 =-- /SWAP BYTES AT ADDRT & ADDR2 *)
4 2DUP €@ SWAP CQ ROT C! SWAP C! ;

5

6 : SORT (START.ADDR END.ADDR --- /SORTS BYTE ARRAY *)
7 2DUP 2DUP QVER - 2/ + C@ MIDDLE ! (pick middle one)
8 BEGIN SWAP BEGIN DUP (@ MIDDLE @ < WHILE 1+ REPEAT
9 SWAP BEGIN DUP CQ MIDDLE @ > WHILE 1- REPEAT
10 2DUP > 0= IF 2DUP EXCHANGE 1 -1 D+ THEN

" 20UP > (until partitions cross)
12 UNTIL SWAP ROT (sort both pieces)
13 20VER 20VER - =-ROT - < IF 2SWAP THEN

69

70 Forth: The NEXT Step

14 2DUP < IF MYSELF ELSE 2DROP THEN
15 2DUP < IF MYSELF ELSE 2DROP THEN ;

EXCHANGE is similar to VSWAP but operates on bytes, not 16-bit values. Lines 7
to 11 perform one dividing pass and leave four addresses on the stack repre-
senting the ends of the two smaller arrays. Lines 12 and 13 arrange that the
smaller of the two arrays is sorted first to prevent the recursion from going too
deeply. Finally, lines 14 and 15 of the sort repeat the process on both arrays
by recalling SORT until done. The action can be seen pictorially on computers
using memory-mapped video.

10.1.2 Binary search

The binary search is similar in operation to the sort and is a fast way of look-
ing for a given value in a sorted array. Again the middle element is selected. If
this is larger than the desired value, then the upper half of the array is ignored,
otherwise the lower half is ignored by simply adjusting the array pointers. As
can be guessed the halving process is continued until either the required value
is found, or the pointers cross paths. In the latter case the search has failed.
Note that to search a 4000 element array any item can be found or deter-
mined to be absent by examining only 12 elements. An element can be a byte,
cell or 32-bit double-precision value without affecting the number of
operations.

SCR #79

0 (BINARY SEARCH ROUTINE RDG-841230)
1 0 VARIABLE LOWER 0 VARIABLE UPPER

2 0 CONSTANT FALSE 0. = CONSTANT TRUE

3

4 : SEEK (VL U-=--NF /SEARCH FOR V BTWN LOWER & UPPER ADDR *)
5 UPPER ! LOWER !

6 BEGIN LOWER @ UPPER @ 2DUP > DUP >R

7 IF DROP

8 ELSE 0 SWAP O D+ 2 U/ SWAP DROP

9 20UP Cd 20UP =

10 THEN R> SWAP QVER OR 0=

1" WHILE DROP > IF 1+ LOWER !

12 ELSE 1- UPPER ! THEN

13 REPEAT IF FALSE

14 ELSE 2DROP SWAP DROP TRUE THEN ;

15

SEEK requires on the stack the value sought, the lower address and on top the
upper address. The variables LOWER and UPPER are pointers to the array and are
initially set to the end points of the array. Line 8 calculates the mid-point, and
9 tests the byte for equality with the sought value. Lines 11 and 12 move the
end pointers to their new positions and if or when found, lines 13 and 14 tidy
the stack and leave a condition flag. TRUE is defined to leave a true value

Pot-pourri 71

appropriate to the system in use. In other words this definition is portable to
any Forth standard!

10.2 EGYPTIAN AND RATIONAL FRACTIONS

10.2.1 Egyptian fractions

An Egyptian fraction is a fraction which has a numerator of 1 and is so named
because the ancient Egyptians lacked practical methods for handling other
types of fractions. A fraction whose value is less than 1 is known as a proper
fraction and EFRAC is a definition which will partition a proper fraction into a
sum of Egyptian fractions. It uses the Fibonacci maximal algorithm published
in the year 1202 to do this.

Suppose our fraction is A/B, we first need the largest Egyptian fraction
which is less than A/B. The difference is taken and the process continued until
the difference is zero. In practice a small number can give a fraction whose
denominator will exceed 32767 and we then terminate the series with an
overflow message. It may be inconvenient in Forth to handle a ratio such as
3/7 but using EFRAC we can see

3/7 =173 + 1/11 + 1/231

EFRAC is rather complex to explain in words and reference should be made to
the flowchart shown in Figure 10.1.

SCR #143

0 (EGYPTIAN FRACTIONS RDG-841228)
1

2 : EFRAC (N1 N2 --- /PRINT THE EGYPTIAN FRACS = N1/N2 *)
3 OVER OVER < IF ." ="

4 BEGIN OVER 0= IF DROP DROP EXIT THEN OVER 1>

5 IF OVER OVER SWAP /

6 BEGIN >R OVER R * OVER - R> OVER 0<

7 WHILE ~ SWAP DROP 1+

8 REPEAT >R -ROT SWAP DROP R Ux R>

9 ELSE SWAP DROP 0 SWAP OVER (0) OVER (C)
10 THEN "+ 1 /" U,

1" UNTIL ." + OVERFLOW" (R

12 THEN DROP DROP ;

13

14

15

10.2.2 Rational fractions

The handling of rational fractions in Forth has been comprehensively covered
by Grossman [4] and will not be discussed in detail here. Rational fractions
are useful in Forth’s integer arithmetic for handling numbers such as 7 or the

72 Forth: The NEXT Step

Print "="

C=INT(B/A)

BEGIN

Print "+ 1/*
Print C

REPEAT

UNTIL

Figure 10.1 Flowchart for EFRAC.

Pot-pourri 73

square root of two. The ratios are sufficiently accurate for single-precision,
and are generally adequate for double-precision. Some examples are given
below.

180 _ 57295779 573078 — 4998

71
29113

J2 =1414213562373 =

/3 =1.732050807 5689 = 5042

10.3 MATRICES AND ARRAYS

Matrices and arrays come in many shapes and sizes and are added to Forth as
required. Several examples have already appeared but three FigForth defini-
tions are given here to illustrate the principles. In later standards <BUILDS
should be replaced with CREATE. The first is a defining word which at compile
time creates a header. At run time the DOES> portion fetches the 16-bit
contents of the array element addressed by the index on the stack. The 2+
was defined as code in Chapter 2 but 2 * + will suffice if speed is not impera-
tive.

: TABLE (--- /Defines a look-up table of 16-bit elements *)
(N1 --- N2 /Return contents N2 of index N1)
<BUILDS

DOES> SWAP 2%+ @ ;

An example of usage might be as a look-up table where there may not be a
simple algorithm to relate the values. Alternatively, for speed, it may be
preferred in complex calculations, such as sines and cosines. Rather than type
out the whole sine table the problem can be illustrated to perform cubes:

TABLE CUBED 0 , 1,8, 27, 81,125, 216 , (asrequired)
CR 3 CUBED
27 0K

CMATRIX defines an array M by N, each element being a single byte. At run
time the address is returned of the element m,n which can be used with (3 or
¢! to fetch or store a single byte.

: CMATRIX (M N --- /Matrix of 1-byte elements *)
(M N --- addr /Return address of element m,n)
<BUILDS 1+ SWAP 1+ DUP , * ALLOT
DOES> DUP 2+ >R @ * + R> +

An example might be for a noughts and crosses game where one defines:
2 2 CMATRIX 3X3

Note that the addressing of rows and columns goes from 0 to 2 for a 3 by 3

74 Forth: The NEXT Step

matrix. Consecutive addresses are given by
003x3 1033 2033 013%X3 113X3... 22 3X3

MATRIX is similar to CHATRIX but being twice the size returns alternate addresses
to handle 16-bit cells. A definition such as this would be used for a 3 by 3
matrix for use in graphics manipulations.

: MATRIX (M N --- /Matrix of 2-byte elements *)
(M N --- addr /Return address of element m,n)
<BUILDS 1+ SWAP 1+ DUP , 2% * ALLOT
DOES> DUP 2+ >R @ *+ 2 R> + ;

10.4 TOOLS

It is axiomatic that several special purpose tools are better than one general
purpose item. In Forth this is especially so since each or all can reside in
memory and may be called upon as required. In addition, being specialist they
are often, but not always, simpler routines and can be written as required.
Some simple examples are included here, but large applications require
complex tools and these are best obtained via vendors.

The first special tool here is PLIST which prints two consecutive screens side
by side using a 163-column 12-pitch printer and thus allows six screens to be
printed per page of 15+ inch listing paper. The words PRT-ON and PRT-OFF
must have previously been defined to set and respectively restore printer
output.

0 ¢ PLIST - PRINTS 2 SEQ. SCREENS SIDE BY SIDE RDG-830221)
1

2 : PLIST (SCR# --- /PRINT THIS SCREEN & NEXT ONE *)
3 PRT-ON CR DUP SCR ! ." SCR #" 4 .R

4 71 SPACES SCR @ 1+ ." SCR #" 4 .R

5 16000 CRI3.RSPACE I SCR@ (LINE) TYPE

6 12 SPACES

7 13 .R SPACE I SCR @ 1+ (LINE) TYPE

8 2TERMINAL IF LEAVE THEN

9 LOOP CR CR PRT-OFF ;

10

1

12

13

1%

15

The word (LINE) takes the line number and screen and converts it to an
address and count ready for TYPE to output the line. The number of spaces (71
and 12) may need fine tuning according to the exact number of columns avail-
able on the printer.

Pot-pourri 75

10.4.1 Cross-reference

It is a useful practice to terminate each line containing a colon definition with
a comment marked with an asterisk in a consistent manner. By so doing it
enables a simple utility to search the disk and print out all such definitions
along with their block and line numbers. The cross-reference utility is repro-
duced below.

0 (CROSS-REFERENCE, SEARCH FOR STAR-MARKED COMMENTS RDG-830519)
1

2 : CROSSREF (N1 N2 === / .evnvennnnn SEARCH SCREEN RANGE FOR %)
3 1+ SWAP DO 160

4 50 FORTH I J (LINE) C/L =

5 IF 62 +4a 10538 =

6 IfF CRJ4.R T4 .R I J.LINE THEN
7 ELSE DROP

8 THEN

9 LOOP

10 LOOP (R ;

1

12

13 \ LINE MUST END WITH) IN COLUMNS 63,64 OF LINE.

14

15

The 62 + modifies the address left by (LINE) from the first to the 63rd column
in the buffer and if the contents equals 10538 then *) is present at the end of
line. Note that 10538 = 42 + 256 X 41 where 42 = ASCII * and 41 = ASCII
). The comment on line 13 must not be inside brackets since a closing bracket
is required within the comment.

10.4.2 Address information

INFO gives details of the address parameters of a colon definition formatted as
hexadecimal. Used in conjunction with DUMP it is useful for checking that
compilation is as expected. INFO expects the name of a definition to follow it.
It came originally, the author believes, from Paul Bartoldi, around 1981.

0 (INFO - GIVES NFA, LFA, CFA PFA & CONTENTS RDG-830519)
1
T #H##E (N --- JOUTPUTS TOS AS $XXXX *)
S->D <# # # # # 36 HOLD #> TYPE 2 SPACES ;

2

3

4

5 : INFO -FIND CR HEX (GIVE PARAMETER DETAILS *)
6 IF DROP DUP NFA ." NFA=" (2113

7 DUP LFA ." LFA=" HiHH

8 DUP CFA ." CFA=" Hi#

9 DUP " PFA=" #H#e (R

0

76 Forth: The NEXT Step

1" DUP NFA ." @:" @ H#K#

12 DUP LFA ." @:" @ HikH

13 DUP CFA ." Q:" @ HikH

14 St HEHE (R

15 ELSE ." CAN'T FIND IT ! " CR THEN DECIMAL ;

A typical format for the word #### might be:

INFO ####

NFA=$3197 LFA=$319C CFA=$319E PFA=$31A0
2:$2384 2:83174 2:30887 2:8166F
0K

-FIND is FigForth and returns the parameter field address. FIND is almost the
same but returns the code field address. In ths instance some minor adjust-
ments (such as inserting 2+) will be required before use.

Further examples of software tools can be found in references [5] and [6].

Project

Write a short decompiler which will display the cfa in hexadecimal and the
corresponding name for each word compiled into the parameter field of a
colon definition. Use the form SHOW <name> for the definition and incorporate
a check to ensure the word <name> to be decompiled is a colon definition and
not some other form. Investigate the problems of extending the idea to cover
other types of definition, e.g. variables and constants.

REFERENCES

[1] Knuth, D.E. 1973. The Art of Comp Prog ing, Vol. 3, hing and
Sorting’. Addison-Wesley.

[2] Turpin, R.H. July/August 1983. ‘Recursive Sort on the Stack’ Forth Dimensions,
V,No.2

[3] Perkel, M. January/February 1984. ‘Quick Sort in Forth’ Forth Dimensions, V,
No. 5.

[4] Grossman, N. ‘Long Divisors and Short Fractions’ Forth Dimensions, VI, No. 3,
pl0

[5] Anderson, A. and Tracy, M. 1984. Mastering Forth. Bowie: Robert J. Bradie Co.
[6] Feierbach, G. and Thomas, P. Forth Tools and Applications.

Glossary

The glossary is an alphabetical list of the words defined in this book.

! BUFF

$XXXX

&X
(14X).5
(ATN)
(cos)

(CUBE)
(SIN)
*%
*BUFF
*N
+MINS

->>
->DAYS

-9
-ROT

. ANS

. DAYN
LFACT

A buffer used for storing the result of the factorial generated by
FACT.

(n ---) Outputs n formatted as $XXXX

Converts two digits as based 60, used by . HMS

A formatting word in ##. used by . HMS

(--- n) Leaves the hex value of the characters XX without
changing the current base.

(--- n) Leaves the hex value of the characters XXXX without
changing the current base.

(--- n) Leaves the ASCII value of the character X.

A particular form of the binomial series expansion.

A variable used by ATN to accumulate terms in a series.

(n1 === n2) Returns the cosine (scaled by 10000) of n1 where
nlis in radians in the range +7/2 (also scaled by 10000).

(d n1 --- d n2) Leaves a second approximation n2 from a first
guess n1 of the cube root of double number d.

(n1 --- n2) Leaves sine (scaled by 10000) of given angle in
radians (also scaled by 10000) for 0 to £7/2.

(n1n2 --- n3) Leavesn1 raised to power n2.

A buffer used by MULT to store partial products.

(n ---) Multiplies content of ! BUFF by n. Used by FACT

(u1 u2 --- d) Converts ul degrees and u2 minutes of arc to a
double number representing degrees times 65 536.

When loading causes loading of next but one screen.

(month year --- d) Returns number of days since January of
year 0.

(addr --- n) Leaves inverted contents of address.

(n1n2n3 --- n3 n1 n2) Rotates top three stack items
counter-clockwise.

(addr ---) Used by MULT to print out the contents of the RESULT
buffer.

Compiles.a list of cfas to print the day of the week.

(=--) Outputs the factorial in ! BUFF formatted with a comma
separator every thousands digit.

77

78 Glossary

HCF (n1n2 ---) Prints the highest common factor of n1 and n2.

. HMS (---) Prints the time as HH. MM. SS

.LCH (n1n2 ---) Prints lowest common multiple of n1 and n2.

.S Prints the stack contents non-destructively.

12t (ul u2 --- u3) Returns u1 right shifted u2 times.

0<> (n --- f) Returns true flag if n is non-zero.

1+DX A factored definition to evaluate the next term in a rational
polynomial.

148X Similar to 1+DX but for the final term of the series.

1/(1+X).5 A particular form of the binomial series expansion.

10K A constant defined = 10000

1BUFF First number input buffer used by MULT.

1STDAY (n1n2 --- n3) Converts month number n1 and year n2 to day
number of the week for CALENDAR.

1703 (n1n2n3 ---n1n3n2n3)Used by fFP/. to rearrange the stack.

VIA An address defined as a constant.

e! (d addr ---) Stores double number at address.

2% (u === ux2) Can be defined to double top stack item or perform
arithmetic shift left (unsigned times two).

2%+ (addr n1 --- n2) A code definition which leaves address + 2#n
for use with arrays.

2/ (u --- u/2) A code definition to perform an arithmetic shift
right.

2t (u --- 2%u) Returns the bit significance of the bit number, i.e. 2¢
(range 0 to 15).

20 " (addr --- d) Fetches double number from address.

2BUFF Second number input buffer used by MULT.

200N Defines a 32-bit constant.

2DROP (d ---) Drops a double number.

20UP (d --- d d) Duplicates a double number.

2NUMS (u ---) Outputs u formatted as two digits.

20VER (d1d2 --- d1 d2 d1) Copies the second double number to the
top of stack.

2ROT (d1 d2 d3 --- d2 d3 d1) Does rotation with three double
numbers.

2SWAP (d1d2 --- d2 d1) Swaps top two double numbers.

2VAR Defines a double-precision variable.

2VIA An address defined as a constant.

320 (addr1 addr2 --- n) Polls addresses 1 and 2 until a bit is set.
Returns n as the bit number set in the range 0 to 15.

3pup (n1n2n3---n1n2n3n1n2n3)Duplicates the top three stack
items.

3NUMS (u ---) Outputs u formatted as three digits.

3PICK (n1n2n3 ---n1n2n3n1) Copies third stack item to top. A
substitute for 3 PICK.

33 A format conversion word used by BITS.

4PICK (n1n2n3n4 ---n1n2n3 n4 n1) Copies fourth stack item to top.

4SWAP

:CODE
SNEXT
;POP

<LEN>
<MOD>
?1BIT

7E-W
?LEAP
2N-$
?PRIME
A-B/A+B

ACR

APPROX
ARCCOS
ARCSIN

AREA
ASCII
ATN

BEARING

BIT-OFF
BIT-ON
BIT-TOGGLE
BIT?

BITS
BOUNDS

et

C. ARRAY
C.EMIT
CALENDAR
CJOIN
CMATRIX
[N
CROSSREF

CSPLIT

Glossary 79

A substitute for 4 PICK.
(n1n2 n3 n& === né n3 n2 n1) Transposes top four stack items.

Words used in pseudo assembler.

A constant used by MULT.

(n1n2 --- n3) Limits n? to the range 1 ton2 inclusive.
(n --- f) Returns a flag which is true if one, and only one bit ofn
is set.

(f ===) Outputs W if true, otherwise E.

(n ===) Checks for leap year and used by CALENDAR.

(f ---)Outputs s if true, otherwise N.

(n ---) Leaves a true flagif n is prime.

(n1n2 === n3) Leaves the ratio of the difference and the sum of
two numbers, scaled by 10000.

Adds a fixed offset to a 6522 VIA chip base address to leave the
Auxiliary Control Register address.

(n1n2 === n1 n3) Computes the next approximation n3 from the
first guess n2 for the square root ofn’.

(n === d) Returns the angle in degrees X 65536 format whose
cosine is the given value (also scaled by 10000).

(n1 === n2) Returns the angle in radians (scaled by 10.000)
whose sine is the given value (also scaled by 10000).

(n --- d) Returns the area of a circle from its radius.

(<c> === n) Leaves the ASCII value of the next inline character.
(n1 --- n2) Returns the angle in radians (scaled by 10000)
whose tangent is the given value (also scaled by 10000).

Returns the bearing in degrees X 65536 from the latitudes and
longitudes of two points.

(¢ addr ---) Turns off bit ¢ at address.
(¢ addr ---) Turns on bit ¢ at address.
(¢ addr ---) Toggles bit ¢ at address.
(¢ addr --- f) Leaves the status of bit ¢ of given address.

(n -=-) Prints n in binary, formatted in blocks of four bits.

(addr n --- addr+n addr) Returns loop start and end values from
start address and count.

(¢ ===) Stores a byte in an area which operates as a push-down
stack.

Defines a byte array.

(¢ ===) Used by FP/. to output a character.

Prints a calendar given the name of the month and year.

(hi Lo === n)Joins two bytes as one cell.

Defines a matrix of 1-byte elements.

(n1--- n2) Returns cosine of n1 degrees (scaled by 10000).
(n1n2 ---) Searches the range of screens specified and prints
lines ending in *).

(n === hi lo) Splits the top stack item as high and low bytes.

80 Glossary

CSWAP
CTRL-X
CUBED
CUBEROOT

CVECTOR
Dx
Dxx

D4~
D-
0->§

/2t

DO to D6
[JIS

0=

D2*

D<

D=
D>

DATA

DAY?
DAYOWEEK

DCOS
DDRA

DDRB
DEPTH
DFACT
DMAX
DMIN
DN!
DSQRT
DU<

EFRAC
ENTRY

EXCHANGE
EXIT

(n1 ==~ n2) Interchanges high and low bytes of top stack item.
(--- n) Leaves the ASCII value for the control character X.

A table which returns the value of the index cubed.

(ud --- n) Leaves the cube root of the unsigned
double-precision number ud.

A defining word to compile n bytes off the stack. At run time
returns the byte indexed.

(d1 d2 --- d3) Leaves double-precision product of two
double-precision numbers.

(n1n2 --- d) Leavesn1 raised to power n2 as a double-precision
number.

(d1 n---d2) Leaves d1 with the sign of n.

(d1d2 --- d3) Leaves the difference of two double numbers.

(d --- n) Divides double-precision number (degrees of arc) by
65536 to give single number degrees with rounding.

(ud1 u === ud2) Returns ud1 right shifted u times.

Set of words to print the corresponding day of the week.

(d --- f) Leaves a true flag if the double number is negative.

(d --- f) Leaves a true flag if the double number is zero.

(ud1 === ud2) Performs a 32-bit arithmetic shift left.

(d1d2 --- f) Leaves a true flag if the top item is greater than the
one under it.

(d1d2 --- f) Leaves a true flag if the double numbers are equal.
(d1d2 --- f) Leaves a true flag if the top double item is less than
the double number under it.

" A defining word to return the month number and number of days

in that month for use by DAYOWEEK.

(n ---) Prints the day of the week from the day number.

Prints the day of the week given the day, name of the month and
full year.

(d === n) Returns cosine (scaled by 10000) of degrees X 65536.
Adds a fixed offset to a 6522 Versatile Interface Adapter chip
base address to leave the Data Direction Register A address.

As DDRA but for the Data Direction Register B.

(--- n) Returns the number of items on the stack.

(u --- d) Returns factorial of u as a double-precision number.
(d1 d2 --- d3) Leaves maximum of two double numbers.
(d1d2 --- d3) Leaves minimum of two double numbers.

(n1 --- n2) Leaves factorial of n1.

(d--- n) Leaves the square root of double number d.

(ud1 ud2 === f) Leaves a true flag if the top unsigned double
number is greater than the unsigned double number under it.
(n1n2 ---) Outputs n1/n2 as an Eygptian fraction.

(addr --- f) Enters numeric input to address leaving false flag if
number in current base is invalid.

(addr 1 addr 2 ---) Exchanges the bytes at addresses given.

1. Exit immediately from the current definition.

EXIT
EXP

FACT
FACTORS
FALSE
FLAGS
FP/.
FREE
FRESH
GETDEGS
HCF
HEADER
HISTORY
I

IER

IFR
INFO

INIT
J
JULIAN

KN

LAST

LCM

LEN
LENGTH
LIMITS
L0G2.N
LONG
LOWER
Mx/

M+
M/MODd
MATRIX
MIDDLE

MINSOUT
MODULUS

Glossary 81

2. Stop compilation of current screen.

(n1 --- n2) Returns the exponential (scaled by 10000) of n1 for
the range =1 (also scaled by 10000).

(u1 --- u2) Returns the factorial of u1.

(n --=") Prints out the factors of n.

(--- 1) A constant representing the false flag.

A table of flags used by SIEVE.

(n1n2 ---) Outputs n1/n2 as a floating point string.

(---) Outputs the available dictionary space.

(---) Initializes the WKSPC buffer used by FP/.

Atrranges stack contents for LAT and LONG.

(n1n2 --- n3) Leaves the Highest Common Factor of n1 and n2.
Prints the header for a calendar.

(--- addr) Returns the address of the storage area used by (! !
(--- n) Returns DO/LOOP end limit.

Adds a fixed offset to a 6522 VIA chip base address to leave the
Interrupt Enable Register address.

As IER but for the Interrupt Flag Register address.

(<name> ---) Returns address and contents of the nfa, pfa and
cfa of the named word.

(---) Used by MULT to initialize the RESULT buffer.

(=== n) Returns outer loop variable.

(day month year === d) Leaves the Julian date as a
double-precision number.

(n1n2 --- n3) A common term used in series evaluation for SIN
and C0S.

A variable used by FACT.

(d ---) Displays degrees (times 65 536) formatted as latitude.
(n1n2 --- d) Leaves Lowest Common Multiple as
double-precision number.

(addr --- n) Leaves the length of the string at address.

A constant used by C!!

(n1 Lo hi === n2’) Limits n1 to within the limits of lo—hi.

(n1 --- n2) Returns the bit number of the lowest bit set.

(d ---) Displays degrees (65536) formatted as longitude.

A variable used by the binary search routine SEEK.

(d1n1n2 --- d2) Leaves a double-precision number which is
the result of multiplying a double number by the ration1/n2.

(d1 n --- d2) Leaves the double-precision sum of a
single-precision number and a double-precision number.

(ud? v --- u2 ud2) Divides unsigned double-precision number
by unsigned single-precision number leaving an unsigned
reminder with a double-precision quotient.

A defininig word that creates a table of 2-byte elements.

A variable used by the quick sort routine SORT.

Formats minutes of arc for LAT and LONG.

(n1n2 === n3) Leaves the square root of the sum of the squares

82 Glossary

of n1 and n2.

MODVAR A defining word to constrain a number within defined limits.

MULT (---) Outputs the product of two numbers input from the
keyboard.

MYSELF (---) Compiles the cfa of the current definition.

N! (n1 --- n2) Returns the factorial of n1.

N.FACTS (n ---) Computes and displays all factorials up to factorial n.

NDUP Replicates the top N stack items.

NM2DEG (n --- d) Converts nautical miles to degrees latitude.

NM> (d --- n) Converts degrees X 65536 to nautical miles.

ORA Adds a fixed offset to a 6522 Versatile Interface Chip base
address to leave the Output Register A address.

ORB As ORA, but for the Output Register B.

PCR As ORA, but for the Peripheral Control Register.

PICK Picks the Nth stack item and puts a copy on the top.

PLIST (scr ---) Prints two screens side by side.

PROMPT Prompts for two numbers for MULT.

PRIMES (---) Generates prime numbers.

PRINT An internal definition used by FACTORS to print the results.

PRODUCT (n ---) Leaves in *BUFF the value in 1BUFF multiplied by n.

auot (n1 n2 ---) Used by FP/. to output the whole number quotient.

RANGE Returns the range in nautical miles from the latitudes and
longitudes of two points.

REMAIN (n1n2 ---) Used by FP/. to output the next digit of the
remainder.

RESULT * An array used by MULT to accumulate the result.

RLOAD Loads a screen relative to the current value in BLK

ROLL (n ---) Rotates the top N stack items.

ROUND (n1 --- n2) Leaves n1 rounded to nearest 10.

RPY (--- n) Returns the current value of the return stack pointer.

RVS (---) An example to reverse the video of a 2K
memory-mapped display system.

SEEK (n1 n2 n3 === né 1) Searches for n1 between n2 and n3 and
returns index to n1 and true flag if found.

SETUP (---) Sets up the factorial buffer for FACT.

SGN (n1 --- n2) Returns the sign of n1, or 0 if zero.

SIEVE (---) A sieve to filter out numbers with factors used in
conjunction with PRIMES.

SIN (n1 --- n2) Returns sine (scaled by 10000) of angle n1 which,
depending on definition used, may be in degrees or radians.

SIZE 1. A constant used by PRIMES.

SIZE 2. A constant used by FACT.

SORT (n1 n2 ---) Sorts an array of bytes from addressn1 ton2.

SQRT (n1 === n2)) Returns the square root ofnt.

SR Adds a fixed offset for 6522 VIA Shift Register base address to

leave the Shift Register address.
SUM (n ===) Used by MULT to add the partial product. Adds the

UM*

um/

UPPER
VSWAP
WEEK1

WITHIN
WKSPC
XS
[cos1
[dCos1
\

Glossary 83

content of *BUFF offset by n to accumulate in RESULT buffer.
Adds a fixed offset for 6522 VIA Timer 1 Counter register High
byte address.

As T1C-H but for Low byte.

As T1C-H but for Latch register High byte address.

As T1C-H but for Latch register Low byte address.

As T1¢-H but for Timer 2 Counter High byte address.

As T1¢-H but for Timer 2 Counter Low byte address.

A defining word to create a table of bytes.

Loads a range of screens.

(===) Used by MULT to multiply the contents of 1BUFF and 2BUFF.
An internal definition used by FACTORS to apply trial divisors.

A table of primes numbers used by FACTORS.

(-=- tf) A constant representing the value of the true flag.

(n lo hi --- f) Returns true flag if n is twixt low and high.

(u ---) Prints the top stack item as an unsigned number.

(un ---)asU. butwitha field-width of n.

(ud n ---) Prints as unsigned the double number ud in a
field-width of n.

(d1 u --- d2) Leaves a double number which is the product of a
double-precision and a single-precision number.

(d1u --- d2) Leaves a double number which is the quqtient of a
double-precision and a single-precision number.

A variable used by the binary search routine SEEK.

(addr1 addr2 ---) Swaps the address contents.

(n1 === n2') Formats one week for CALENDAR if n1 is in range of
permissible dates.

(Lo hi n === f) tests for N within the limits lo—hi.

(--- addr) Returns the address of a Workspace for use by FP/.
A variable used for storing X-squared in evaluating a series.

As for €0$ but for 0 to £90 degrees.

As for €0s but for 0 to 90 degrees in X 65536 format.
Suspend compilation until next line. Pronounced ‘skip line’.
Generally used to start a comment field.

Bibliography

Anderson, A. and Tracy, M. 1984 Mastering Forth. Bowie: Robert J. Bradie Co.

Armstrong, M.A. 1985. Learning Forth. John Wiley & Sons

Baker, L. and Derick, M. 1983. Pocket Guide to Forth. Reading, Mass:
Addison-Wesley

Bishop, O. 1984. Exploring Forth. Granada Publishing

Brodie, L. 1981. Starting Forth. London: Prentice-Hall International

Brodie, L. 1984. Thinking Forth. London: Prentice-Hall International

Chirlian, P.M. 1983. Beginning Forth. Dilithium Press

Derick, M. and Baker, L. 1982. Forth Encyclopedia. Mountain View Press

Emery, G. 1985. The Students Forth. Blackwell Computer Science Texts

Feierback, G. and Thomas, P. 1985. Forth Tools and Applications

Haydon, G. 1982. All about Forth. Mountain View Press

Huang, T. 1983. And So Forth.

Husband, D. 1983. Advanced Forth. Wilmslow: Sigma Technical Press

Kail, P.A.C. 1985. Go Forth — An Introduction to Forth. Microbooks

Loeliger, R.G. 1981. Threaded Interpreted Languages. London: McGraw-Hill

Martin, T. 1985. Bibliography of Forth References. 2nd edition

McCabe, K.C. 1983. Forth Fundamentals. 1. ‘Language Usage’. Vol. 2. ‘Language
Glossary’. Dilithium Press

Olney, R. and Benson, M. 1985. Forth Techniques. Pan/Personal Computer News

Olney, R. and Benson, M. 1985. Fundamental Forth. Pan/Personal Computer News

Salman, W., Tisserand, O. and Toulout, B. 1985. Forth. New York: Springer-Verlag

Scanlon, L.J. 1982. Forth Programming. Howard Sams

Scanlon, L.J. 1983. Forth Programming. Prentice-Hall International

Ting, C.H. 1981. Systems Guide to FigForth. Offete Enterprises

Ting, C.H. 1984. Forth Notebook. Offete Enterprises

Ting, C.H. 1985. Inside Forth-'83. Offete Enterprises

Vickers, S. 1984. Pocket Guide: Forth. London: Pitman Publishing

Winfield, A. 1983. The Complete Forth. Wilmslow: Sigma Technical Press

85

Index

$xx and $xxxx 5
& 5

->> 3

-ROT 10

s 11

2t 19

0<> 16

2t 21

2x 17

2%+ 18

2/ 18

20 21

200N 21

2DROP 20

20UP 20

20VER 20

2ROT 20

2SWAP 20

2VAR 21

2t 18

3pUP 11,48
3PICK 42
4PICK 21
4SWAP 24
*79-standard 6, 11
’83-standard 11, 14, 59
:CODE 8

SNEXT 8

<MOD> 15
?PRINE 59

A-B/A+B 24
address information 75
ARCCOS
by successive approximation 40
ARCSIN
by series 43
ARCTAN
by rational polynomial approximation
42

by series 41
by successive approximation 42
AREA
of circle 50
arithmetic shift left 17
arrays 73
ASCII 5
assembler, avoiding the 7

Bartoldi, P. 75

BEARING 30

benchmark 59
Berkey,R. 7

binary search 70
binomial expansion 46
bit operations 31
Boolean operators 15
BOUNDS 13

Bumgarner, J.O. 36, 51
bytes, manipulation of 16

CALENDAR 57

CJOIN 17

CODE definitions 7
constant, double precision 21
cosine function 37
counter-rotate (-R0T) 10
critique 67
cross-reference 75
CSPLIT 17

CSWAP 16

CTRL=X 5

CUBED 73

cube roots 49

D* 22
Dxx 45
D+- 22
/2t 19
D0< 22
D0= 22
87

88 Index

D2% 22
D¢ 22
b= 22
D> 22
DAYOWEEK — date from day of week 53
peos 37
DEPTH 10
division 66
DMAX 21
DMIN 21
DO...LOOP variables 12
double number
operators 22
storage 21
DSQRT 48
U< 22

Eratosthenes, Sieve of 58
ERROR 2
error

handling 2

messages 1

overflow 22,45
EXIT 16
EXP(X) 45
exponentials 45
extended precision 62
extensions, common 10

factorials 60
large 62
FACTORS 57
FALSE 5,70
FigForth and *79-standard differences 6
flowchart 72
formatting 26
latitude and longitude 27
of time 26
Forth Interest Group 9
fractions,
Egyptian 71
rational 71
FREE memory space 14

Ganis, M. 68

Gilbreath, J. & G. 61

greatest common divisor see highest
common factor

Gregorian Calendar 52

Grossman, N. 51,76

highest common factor, (HCF) 59
HISTORY of past data 33

' 12
INFO 75

413
Julian date 52

Knuth, D.E. 76

LATEST 13

Lawrence, P. 19

LcH 60

leap years 55

LIMITS 14

LOAD screens 4

loading, relative 4

LOCATE 3

logarithms 32

logical shift right, (LSR) 18,19
loop variables 12

lowest common multiple, (LCH) 60

M+/ mixed scalar operator 24
M+ 23

M/MOD 24

Maclaurin’s series 39
matrices 73

memory available 14
MESSAGE 2

mirror screens 3

mixed number operations 23
MODULUS 50

multiplication 64

MYSELF 13

nautical miles (NM) 29
navigation calculations 28
NDUP 11

Nemeth, G. 19
Newton-Raphson method 48
next block, compile 3

NOT 15

overflow 22,45

Perkel, M. 76
perpetual calendar 54
PICK 11

PLIST — list in pairs 74
polar coordinates 50

polynomials, rational 39

port input/output 32

powers 44

prime numbes 58

prime, test for 59

print two screens side by side 5, 74
PROMPT 65

quicksort 69

range and bearing 29
readability 3, 5,34
RECURSE 13
recursion,
factorials by 60
routines for 13
register labelling of 6522 VIA chip 34
RLOAD 4
ROLL 13
roots, square and cube 47
ROUND 15
rounding 15, 28, 40
RPR 11
RVS — invert screen video 7

scaling trigonometric functions 36
scanning two ports 32
search, binary 70
SEEK 70
series,
arcsinby 43
arctan by 41
cosine by 37
sine by 36
SGN 15
shadow blocks 3
SIEVE 58
signum 15
sine function 36

Index

skip line 3
smudge bit 13
SORT 69
sorting 69
SQRT 48
stack
looking at the 10
non-destructive print-out of the 11
status of input/output lines 31

tables, look-up 73
test for prime 59
testing parameters 14
THRU 3
tools 74
trigonometric functions
scaling of 36
by series 36
TRUE 5,70
TUCK 10
Turpin, DrR.H. 76
TWIXT 14

U.R 26
U.R 26
UMx 23
um/ 23

variable,
double number 21
loop 12
Versatile Interface Adapter (VIA) 34
video, inversion 7
VSWAP 17

WARNING 2
WITHIN 14
WKSPC (workspace) 66

Zeller’s Congruence 53

89

Forth:
The NEXT Step

Ron Geere

Forth, the language of the International Astronomical Union, is
rapidly establishingitself as an important applications
programming language in the professional field, particularly
for control applications such as process control and robotics.
Apart from its adaptability to a number of diverse applications,
Forth has the advantage of being highly portable from one
machine to another. In this book, the author concentrates on
the two dominant standards of the language, FigForth and '79 -
standard, though the recent ‘83 - standard and other variants
are also considered.

Forth, like aliving language, is extensible. New ‘'words’ can be
defined to suit the particular purpose of the user. In this book
the author presents some common extensions to the minimum
required word set along with some programs that have been
found to be either useful or entertaining. These will stimulate
users to discover solutions to their own programming
problems. In particular, solutions are provided to problems not
readily realized in integer mathematics.

This book will be of interest to the growing body of Forth
enthusiasts who, having learned the fundamentals of the
language, wish to take the next step - especially scientists,
engineers and computing professionals who are looking for
‘tools’ to do a particular job. The approach throughoutis
practical, with an emphasis on using the language.

Among the useful topics covered are:

* ' Formatting

% Calendar functions

* Double-number definitions

* Mathematical functions

Additionally, awide range of general purpose and frequently
used definitions and tools are included. A glossary and
bibliography complete this compact and useful reference text.

¥ Addison-Wesley Publishing Company ISBN0-201-18050-2

