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PREFACE

One of the latest entries to surface in the
ever chanding universe of programming landuages is
FORTH - a crisp straightforward Jlanguade that
conveniently lends itself to the eprogramming of
microcomputers, The FORTH erogramming landuade,
however, is not limited to microcomputer
applications and would bhe egsually useful for
"larder” computers. In facts the size or tyrpe of
computer 1is not at all significant to a prospective
user of FORTH. It is the availability of languade
processing facilities that counts and currentiy:
most FORTH activity is centered in the
microcompPuter areaq.

FORTH is more than another name in the already
long list of erogramming landuages. FURTH is a
lansuage for doing functional programming with a
specific orientation towards productivity;
reliabilitys and efficiency. Some of the concerts
assaociated with FURTH are structured prodramming:
tor-down develorments and virtual memory. However,
FORTH is not simply a focal point for popPular
concepts. It represents a modern way of approaching
Prodramming.,

The structure of a FORTH program and the FORTH
landuagde itself is bhased on reverse Polish notaticn
- or vpostfix notations as some computer scientists
cal) it. This basic philosophy combhined with an
effective definitional structure rpermits a high
degree of landuade flexihility and the ability to
customize the landuade to the reaquirements of a
particular application environment.

This book provides an introduction to the FORTH
language and 1is primarily intended for persons who
will Program in the languade, for persons who will
design systems and arpplications around the



languades and for persons that want to stay abreast
of recent advances in computer technology. The
subdect matter includes a small amount of
bacKkground material hbut otherwise pPlundes right
into the FORTH landuade since it is the primary
subJdect of the hook.

The book is composed of ten charters, outlined
as follows:

Charter 0: THE FORTH CONCEFT gives the basic
idea of the landuasge.

Chapter 1: COMPUTER FUNDAMENTALS dives a review
of hasic microcomputer concerts.,

Charter 2: SOFTWARE TECHNOLOGY covers the
fundamentals of Praogramming, software systems:
and the development of computer applications.

Charter 3: REVERSE FOLISH NOTATION dgives an
overview of reverse Folish notations the
concert of a stacks and interpretive execution.

Charter 4: ELEMENTARY CALCULATIONS AND STACK
MANIPULATION covers the torpics of arithmetic

orerators, number hasess stack orerations:
mathematical functions: and complement
arithmetic,

Charter 5: CONSTANTS, VARIARLESs AND STORAGE
OPERATIONS covers how constants and variables
are defined and used in FORTHy along with
associated fetch and store operations.

Charter é: DEFINITIONS AND TERMINAL OFERATIONS
covers the definitional facility in FORTH and
the outPut orerations provided to display
information from within the computer.

Charter 7: CONTROL STRUCTURES covers structured
Programming control structures and their
representation in FORTH.



Charpter 8: DOURLE FRECISION covers FORTH
carability for handiing doubie precision values
and includes relevant operations delineated
throughout the landuage.

Chapter 9: INFORMATION MANAGEMENT covers FORTH
landuagde featwres for storade ordanization and
allocation: disk inPut and output, program
managements character manipulation and Keyhoard
operations: and outrput formatting and
conversion.,

The underlying obJective of this bookK is to promote
understanding of the FORTH concert. With this
obdective clearly in minds, the subdect matter is
Presented throush easy-to-read textual material
liberally intersrersed with examples. No
particular hackground in either computers or
programming is needed to completely understand the
hook and to learn the FURTH landuade. A deneral
overview of computers, howevers would be especially
useful for recognizing the power and flexibility of
the FORTH languade. Moreover, the various torics
are develored so that the reader can learn the
FORTH landuade without necessarily having FORTH
comruter facilities at his or her disposal.
Vocabulary lists are included for review:s and
exercises and arswers are provided for each of the
chapters.,

This hook should serve as a complete
introduction to the FORTH ianduade for computer
professionalss engineerss, business analystss and
the creative and enerdetic group of microcomputer
enthusiasts., For rather obvious reasanss the
systems-related aspects of FORTH were not covered
and this includes the FORTH landuage processar, the

editor the run-time environment, and the
extensibility features of the landuage. For
information on these subdectsy the interested

reader should consult the FORTH Interest Grours
P.0. Box 1105, San Carlos, California 94070,

The full potential of FORTH has really not bheen
publicized and the language 1is continually



evolving, Therefores this hook is being offered
only as an invitation to a productive future. The
user’s dguide for a particular imrlementation of
FORTH should serve as the definitive reference for
the construction of actual programs.

As much as pPossibles this book was eroduced
usindg microcomputer text-processing facilities, and
is a dgenuine effort to provide timely information
on an important toric for interested peorle. The
author and the publisher have thoroughly enidoved
producing the book and sincerely hope the reader
will endoy learning the FORTH languagde as much as
we have endoved bringing it to vou. Harpy
Programming!

It is a pleasure to acknowledde the cooperation
and assistance of several rpeorle: to Mr. O.R.
Petrocelli, the publisher, for useful suddestions
and the foresight and courage to publish a bookK on
the dgroundbreaking subdect of the FORTH )languades’
to Bruce Tucker for timely information when it was
neededy and to my wife, Mardaret, for handling the
word-Processing aspects of the Johs for spending
long tedious hours on the production of camera
ready copys and for being a good partner during the
entire prodect.

Harry Katzan, Jr.
Stillhouse Road
Freeholds» N.J, 07728
January, 1981
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FORTH is a crisp easy-to-learn landuagde that
makes the otherwise complex process of computer
programming very straightforward and very simple.
FORTH is efficients which means that Pprograms
written in the FORTH ianduage execute quickly on
the compPuter. FORTH is also user friendly, which
means that once vyou learn the fundamental languadge
concertss it helps vyou write a program rather than
getting in vyour way., Using FORTH can be as simple
as using a hand calculator, bhut programs written in
the landuade can represent complex algorithmic
processes normally requiring a programming language
much more difficult to learn than FORTH.

CALCULATORS AND FORTH

The everyday hand calculator is a convenient
means of simplifying calculations and achieves its
dgreatest value from compactnesss mobility,
simplicity of uses and relevance to a particular
class of problems, An automatic computers on the
other hand, has a different probhlem domain, so that
its characteristics are quite dissimilar from that
of a calculator, A computer has a high dedree of
flexibility and denerality of uses but at the same
time is orerationally complex. In fact, many
prodramming languades have been develored to span
the man-machine interface and to take advantade of
the versatility and speed of automatic computers.
The FORTH eprogramming Janduade comhines the two
concepts in such a manner that the user has
available the power and flexibility of an automatic
computer with the convenience of a hand calculator,

MATHEMATICAL NOTATION

Mathmatical notation for arithmetic operations
in calculators usually takes either of two familiar
forms:
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0 Algebraic entry notation
o Reverse Polish notation

Algebraic entry notation is characterized by the
fact that arithmetic calculations are rerformed
when they are entereds as demonstrated in the
following Key sequence:

7 +12 =

that would display a result of 19, Whereas» a Key
sequence of

2+3X4-=

would vyield a result of 20, The result may be
surerisings howevers it should he remembered that
the addition is executed first because it is
entered first, The calculations taKe place in an
"accumulator” which holds the result displaved. In
some calculators with aldehraic entry notations
parentheses are allowed» as in the evaluation of
(6-3)X(10-5) that would bhe Keved in aldehraic
notation as

(6 -3)X((10-5) =

This Key sequence would vield a result of 15,
Algebhraic entry notation is characterized by the
fact that the arithmetic operator symbol is placed
hetween the numhers, as in 2+2,

Another approach to the representation of
arithmetic expressions 1is to use Reverse Polish
Notation (RPN), wherein the arithmetic orerator
follows both memhers of a two-number oreration, as
in

3 ENTER 2 +

which is a representation of 3+2. One of the
advantages of RPN is that fewer Keystrokes are
required for complex operations. The evaluation of
(4-3)X(10-5) would be Keved in RPN as:
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4 ENTER 3 - 10 ENTER 5 - X

The use of Reverse Folish Notation is similar to
the way arithmetic is performed on some calculators
and with many adding machines. The FORTH system
employs Reverse Folish Notation, which is covered
in charter three. If you already Know its then vou
can skip that charter.

OPERATIONAL ENVIRONMENT

FORTH is an interactive Jlanduade which means
that as soon as FORTH comes uP on your screens you
can hedin to interact with the system. There are
two modes of operation in FORTH:

o The execution mode
o The definition mode

In the execution mode, you det action whenever you
enter a series of calculations or a Pprocedure
reference. In the definition modes a series of
commands are saved for subsequent reference. Thus,
FORTH can be used with equal ease for simele
calculations and for complex Programs.

THE STACK

A stack is a nmeans of organizing data so that
the Jast item entered is the first item retrieved.
Several means of concertualizing a stack are
possihle:

o As a stack of dishes in a cafeteria
o As a rile of documents

The notion of a stack is not uncommon in the
computer field. Some computers and a fair amount
of software are desidgned around the stack concept.
In many cases» a computer user is not even aware of
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the fact that a stack is heing employed., In other
wordss the stack is transeparent to the user,

FORTH uses a stack to hold items of data and it
is not transparnt to the user. Data items are
entered into the stack directly. Then when an
orperation or a procedure reference comes alonds it
is always executed on values from the stack., In
FORTH» the programmer controls the stack and
explicitly places values in it,

FORTH OFPERATIONS
In FORTHs an expression such as:
4+3

is written in reverse Polish notation so that it
becomes:

4 3 +

FORTH executes the reverse Folish expression from
left to right. When a data value is encountered,
it is placed in the stack by "pushing down" values
that are below it, This is why a stack is commonly
referred to as a "pushdown stack.” The use of the
word “pushdown” is clearly redundant since a stacks
by its very natures is a pushdown device.

The following dgrarphics derict the operation of
a stack with the reverse Polish expression given
above:

TOP - 4 3 7

STACK - - 4 -

EXPRESSION (Empty) 4 3 +



The FORTH Concert Page 7

One fact about the use of a stack is ohvious from
this examprle. When an oreration is performed; it
uses up the needed values from the top of the stack
and "pushes"” the result back on the stack.

EXECUTION MODE

When an expresssion 1is entered into the FORTH
system» the characters are typed as in the examrple.
When the RETURN Key is presseds FORTH performs the

specified computer operations and denerates
whatever outeut is specified, FORTH then looks for
the next user input., Here is an example as you

would actually see it on the computer’s screen:

4 3 + 0K

The underlined material represents what the user
would type in and the remainder of the line is
generated by the FORTH system. In this case, the
calculation did not vield any output so FORTH
responded with an OK indicating that the last
command was successfully completed and FORTH is now
ready for additional commands. In case you
wondered what harrened to the result in the last
exampler FORTH left it on the tor of the stack, In
order to have it displaveds a {.} » pronounced
“dot”s would have to be used as follows:

43 + .7 0K

(Note: Braces {2} are used to isolate FORTH words in
the text when their meaning could otherwise he
confusing,) The dot command simply displays the
tor value on the stack. After the display, the
value is removed from the stack, as shown by the
following example:
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7394, ...4937 0K

This examp)e reflects the last-in-first-out
prorerty of a stack. The number 4 was entered last
and displaved first. After it was displayved and
removed from the stack, then 9 was displaved: and
so forth, Values are lJleft in the stack between
FORTH statements:s as demonstrated in the following
script:

592 0K

e + + 750 EMPTY sSTACK

In the Jatter cases the final O was displaved
because the stack was emety when FORTH encountered
the final dot command. This fact is explicitly
indicated with the message EMPTY STACK.

DEFINITION MODE

A eprocedure in the FORTH language is actually a
command that is executed when it is encountered in
an input line. When a procedure is defined, it is
given a name. That name is used to execute the
Procedure.

A procedure definition begins with a colon {:2
and ends with a semicolon {32+ In between is the
procedure name followed hy the commands and values
that comprise the procedure. Because procedures
always start with a {3}y they are Known in FORTH as
“colon definitions.”

A colon definition of a simple procedure that
multirlies the value on top of the stack by 2 is
diven as follows:

: DOUBLE 2 *# 3 OK

DOUBLE, when executeds places the value 2 in the
stack rpushing down the value currently on top. The
operator {#}y which reeresents multiplication,
forms the product of the top two stack entries:
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removing them» and eplacing the product in the
stack. In the following example:

125 DOUBLE . 250 0K

the following sequence of steps is executed: (1)
The value 125 is placed on the stack. (2) The
procedure DOUBLE is invokKed, which pushes the value
2 into the stack: multirlies the two top stack
items - also removing them - and placing the
product of 250 on the stack. (3) The top item on
the stack - i.e«s 250 - is displaved and removed
from the stack.

Colon definitions are a powerful tool for the

FORTH programmer, One colon definition can
reference another colon definition and this nesting
Process can effectively be used to implement
tor-down development and modular eprogramming. Most
procedures or commands - defined by colon
definitions or existing as a primitive in the FORTH
language - work exactly the same as commands

entered in the execution mode or as components in
other colon definitions.

ADDITIONAL FORTH CAPABILITY

The rpreceding information gives only the FORTH
concept and the reader is cautioned adainst
thinking that this is all there is to the lansuage.
The subhiject matter presented in this chapter dives
only a taste of the language and does not even
serve as an overview. Subsequent charters cover
the following Key topics:

o Computer Fundamentals

o Software Technology

0 Reverse Polish Notation

o Elementary Calculations and Stack
Manipulation

Constants, Variables, and Memory Operations

Definitions and Terminal Operations

(= =
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o Contro! Structures
o Double Precision
o Information Manadement

For each topics» the structure of the various FORTH
commands and statements and the manner in which the
FORTH system responds to this input are covered in
detail.

VOCARULARY

A deneral familiarity with the following terms
wil) helr in learning the FORTH landuade:

Aldebraic entry notation
Colon definition
Definition mode
Execution mode

0K

Reverse Polish notation
Stack

EXERCISES

1, Evaluate the followind expressions
in reverse Polish notation:

2+

Wwo

1

S*® 2 4+

3% 44 % 4+

2. Execute the following FORTH state-
ments:

www
o O N
NN %
+ 0~

+ + +

9 + * +

3+ Given the following colon defini-
tions:
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t DOUBLE 2 * 3
t 4TIMES DOUBLE DOUBLE 3

Execute the following FORTH state-
ments:

4 5 DOUBLE + .

3 4TIMES 1 +
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Computers are fresuently regarded as “black
hoxes” by reople who use them. With the black box
concert» the mador concern is over the inpPut,
outputss and functions of a system. Knowledde of
the components within the black box is normally
left to specialists, The approach is not unusual
in today’'s world of advanced technology. Clearly:
computers are not heing singled out here, and the
concert applies equally well to automobiles,
television receivers: radars:s powerful hand
calculators: many household appliances» and so
forth, One of the factors contributing to the
microcomputer revolution, howevers is the simple

fact that a Pperson does not have to be an
electronics exeert in order to utilize a comPuter
effectively, The FORTH landuage continues in the

above direction by making it relatively easy to
Program a computer without rpossessing full detailed
Knowledge of the computer being used. O0On the other
hand:s some computer background is needed to fully
utilize the features in FORTH. This chaprter
provides a survey of computer fundamentals. Many
endineers and computer peorle already Know
everything presented in this charter, and they can
skir it, Others may wish to browse through the
charter filling in their hackdround as needed. The
subdect wmatter of this chapter has been specially
selected for this book on the FURTH languade., For
examples microcomputer organization, the
microerrocessor, stack oreration, and disk storade
technolody are included because they are the torpics
with which the FORTH eprogrammer will deal most
frequently. Other toricss such as video displays
and printer technolodys, are not covered at all
because detailed Knowledge of those subiects does
not specifically help in writing FORTH programs.

COMPUTER PHILOSOPHY

At this time» two rhilosorhies exist for the
desidgn and construction of digital! computers:
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o The Harvard architecture
o The Princeton architecture

In both forms of computer architecture, the machine
features contain the same hasic elements:

The INPUT MECHANISM used to enter programs and
data into the computer

The MEMORY CONCEPT used to store instructions
and data while the computer is in operation

The ARITHMETIC/LOGIC UNIT for performing
calculations

The CONTROL UNIT for allowing the computer to
grerate automatically by interpreting
instructions, 4doing from one instruction to its
successory and by pPermitting the computer to
select alternatives based on computed results

The OUTPUT MECHANISM used to transfer data from
the computer to the external world

The difference between the two philosophies exists
in the "memory concept.” In a Harvard machines the
prodram memory and the data memory are serparate.

In fact, the Harvard Mark I calculator was
contraolled by a erogram on punched parer tare and
contained an internal electromechanical data

storadge capacity of only sixty 23-digdit numbers.
Subsequent wmachines in the Harvard class were
controlled by either electromechanical switches or
by electrical connectors called plug boards.

In a Princeton machine - also Known as the von
Neumann machine - instructions and data are stored
in the same form in the same computer memory. The
potential benefit from this philosoprhy is obvious.
With the Princeton machines a high degree of
flexibility is achieved because a computing machine
can then chande the very instructions that control
it,

Most existing computers are Princeton machines.
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However, the widespread use of high-level
programming landuades and the lodgical seeparation of
a PpProgram into a “program part” and a "data part”
have diminished the primary advantage of the
Princeton architecture, Modern microcomputers have
taken a big ster toward combining the two
philosorhies by wutilizing more than one Kind of
Memory .

COMPUTER MEMORY

The primary function of the computer memory is
to hold instructions and data so that they can be
recalled when necessary during the execution of the
computer., We are talking here abhout internal
memory (also called main memory or main storage)
and not about external storade mechanisms, such as
tare cassettes or revolving disk mediums. Computer
memory is divided into two closses: ROM and RAM,
ROM stands for Read-Only Memory and it is used to
hold programs and a small amount of data that do
not chandge during the course of computer oreration.
When you turn on a microcomputer, for example, it
responds immediately. This feat happens because
the computer 1is bheing controlled by a program in
ROM. (In larde computers, ROM is Known as control
storage, bhut is used in a different maner than
with microcomputers.) ROM memory cannot be
modified hy a user perogram and when the power to
the computer is turned off, the contents of ROM
remain intact., Information is placed on a ROM chir
when the chir 1is fabricated, PROM, which stands
for prosrammable read-only memory, is a variation
to ROM which can bhe loaded by the user either
through special programming or by unique electrical
or optical equirment., When information is placed
on a FROM chir, it is said to be "hurned ins," and
the rortion of the PROM chirp that has been altered
cannot bhe changed. It is possibhle to prodram one
part of a PROM chir at one time and other parts at
later times, Regardless of whether ROM or PROM is
beind used» it cannot be chanded after it is
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written, A third type of read-only memory is
EPROM» which stands for Erasable Programmable
Read-Only HMemory. An EPROM can be programmed)
erasedr and then reprogrammed, EPROMs, however,
are relatively inexpensive, In this book, ROM,
PROM, and EFROM are referred to collectively as
ROM, Regardless of whether ROM, FROM, or EPROM is
heing useds the arpearance to the user is exactly
the same: the computer responds immediately to the
user through its collection of "huilt-in" programs.,

RAM, which stands for random-access memorys is
used to hold the user’s prodgram and data, The name
“random access wmemory" refers to the fact that the
speed of the memory is independent of the location
being referenced» and this property holds for ROM,
as well., When the power to the computer is turned
offs the contents of RAM are lost,

RAM comes in two varieties: static and dynamic,
With static RAM, information is stored by setting
“flir flor" electronic devices. Information in
static RAM is retained until it is either changed
by a eprodgram or the power to the computer is turned
off., With dynamic RAM, information is stored
through electrical chardes that dissipate and must
be refreshed - hence the name "dynamic” RAM, In
most casess dynamic RAM is preferahle bhecause fewer
electronic components are needed resulting in a
smaller and less expensive pacKkade., Dynamic RAMs
are also faster and use less power on the averasge.
The refreshing operation is normally handled by the
microprocessor or by special circuitry and is
transparent to the user,

The amount of computer memory referenced during
one memory access is called EANDWIDTH,.
(Frequentlys bandwidth is used synonomously with
the term “word size.") In the design of ROM and
RAM, the bandwidth is wusually set at an optimum
trade-off level for instructions and data. One of
the options available to computer designers is to
have separate memories for instructions and data,
allowing an ortional bandwidth for each case., This
is another instance of Harvard architecture., For
examples consider an arpplication domain - such as
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automobile electronics - where the microcomputer is
to operate on 4 hit quantities, The use of memory
can be ortimized by having a word size (i.e.s
bandwidth) for instructions of 8 bits and a word
size for data of 4 bits., This subdect has been
discussed mast recently (see Crazon [1]) for the
design of sindgle chip microcomputers., Another fact
reported by Crazon that may be surerising to many
microcomputer users is that a microcomputer needs
from 14 to 32 times more memory for instructions
than for data, This is obviously the case because
of the apeplications for which microcomputers are

used. The need for large tables and arrays is not
common and in the few cases where larde memory
requirement do exist - say in the area of hish
resolution grarhics - the programs are
correspandingdly large. Also» the cost of RAM to

ROM ranges from 4:1 to 8:1, The result is obvious:
it pays to conserve RAM,

The Key point to he recognized here is that the
FORTH languade is "“"right on the button” for

microcomputer arplications., FORTH contains
extensive and efficient facilities for data
manipulation, hut has a relatively limited

capability for handling tables and arrays and
high-volume input/output orerations.,

HARDWARE, SOFTWAREs AND FIRMWARE

Three terms are emploved to identify facilities
inherent in a computer system: hardware, software:
and firmware. Hardware designates the physical
components of the system - such as microrrocessors:
memories, disk drives, and tare units. Software
designates the various sets of instructions used to
contro! the operation of the compPuter. Software is
usually recorded in the comPuter system as
electrical impulses in one form or anothers but it
is not a physical device - hence the name software.
Firmware designates instructions, normally stored
in ROM or executed out of ROM, that determine how
the hardware orerates or greatly facilitates using
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the computer, The name firmware apparently stems
from the notion of software that is “firmly"” stored
in RON.

The origin of the term firmware comes from
large-scale computers wherein the control unit of a
computer is programmed to use the other components
in a prescribhed fashion. This process: Known as
microprodramming, is emploved to synthesize machine
instructions from basic hardware components such as
switchesy adderss registerss and control circuits.,
The use of firmware and microprodramming is an
alternative in computer design to “"hard wiring” the
computer, The Key vpoint 1is that instructions
stored in ROM were redarded as firmware and the
concert has heen extended through normal usage to
arply to microcomputer instructions stored in and
executed out of ROM.

MICROCOMPUTER SYSTEMS ORGANIZATION

A microcomputer system 1is a set of compatible
components that orerate under the control of a

microrrocessor, The microprocessor is the main
component in the system and also performs the
Processing, The total ordanization of the system
is sugdested by Figure 1.1, which gives a bhlock
diagram of a tyrpical microcomputer system

containing the following components:

Microprocessor
Read-only memory
Random-access memory
Keyboard interface
Video display interface
Disk system controller
Printer interface
Cassette interface

The wmicroerocessor is commonly Known as “the
computer on a chirs” although in reality, it is
only the vprocessing element that resides on that
chir, A single chip can contain thousands of
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transistors and other discrete devices - hence the
name intesrated circuit, Modern intedrated
circuits are densely packed and Known as Large
Scale Intedrated circuits(LSIs). Each of the other
components in the system is synthesized from one or
more intedgrated circuit chirs,

Another important element in a microcomputer is
the bus used to transport information between
components of the computer and usually exist in
microcomputers as either 8-hit and most recently
16-bit data lines. The address bus sends "address"”
information from the microprocessor to the various
components while the data bus is used to transfer
data bhetween the components and the microprocessor,

In Figure 1.1, the memories and the
inPut/output units share the same bus, so that the
microprocessor can treat an input/output device as
another memory device. In other microcomputer
systems:» there is a serarate bus for the memory and
for the input/output units,

MICROPROCESSOR ORGANIZATION AND OPERATION

A microprocessor orperates by executing
instructions held in RAM or ROM, HNormally, RAM and
ROM have the same address space so each responds in
exactly the same manner to the microprocessor. In
a dgeneral fashion, the oreration of a
microprocessor proceeds as follows:

1. An instruction is fetched from either RAM or
ROM

2., The 1instruction is decoded to determine the
operation and the orerands

3., The orperands are retrieved from either RAM
or ROM

4, The specified orperation is executed

In order to rerform the above taskss the
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microprocessor resuires internal read/write memory
for its operation. This internal read/write memory
is divided into "registers” - each with a specific
PUrPOSe. They are described later. During the
performance of these tasKss the operation of the
microprocessor is organized into two cvcles:

o The instruction cycle (I-cycle)
o The execution cycle (E-cycle)

Sters 1 and 2 take rplace during the instruction
cycles steps 3 and 4 taKe rlace during the
execution cycle, Clearlys» one occurrence of each
cycle is needed to execute one machine instruction
so that a machine cvycle is defined as an I-cycle
followed by an E-cycle.

The implementation of machine cycle processing
within a microprocessor requires three mador
elements: a control unit, an arithmetic/lodic unit,
and a set of machine redisters. A hlock diagram of
a tyeical microprocessor is given in Figure 1.2,
which shows the interrelationshir of the various
elements.

The microprocessor redisters are usually
configured as static RAM within the microprocessor.
Some redisters can be addressed by an executing
Programs others are under the control of the
microprocessor and are normally not referenced
directly by a program,

Registers not normally addressed directly by
the user are the instruction redister, the prosram
counters the stack pointer, the memory address
register, the memory data register, and the memory
refresh redister. The INSTRUCTION REGISTER is used
by the control unit of the microprocessor to decode
and interpret an instruction., After an instruction
is fetched from RAM or ROM, it is routed via an
internal data bus to the instruction register,
where the fields in an instruction word are
isolated by the circuitry of the control unit. The
PROGRAM COUNTER <(often referred to as the CURRENT
ADDRESS REGISTER) is wused by the contro) unit to
Keer track of the address in RAM or ROM of the
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current instruction. When it is time to fetch an
instructions the control unit does to the program
counter to determine its location., During the

execution of an instruction by the microrrocessor,
the eprogram counter is incremented by the length
attribute of the instruction so that the succeeding
instruction is executed next., The STACK POINTER is
a resdister that holds the address of the current
position of the tor of the stack. Normally, the
stack is not Jlocated in the read/write memory of
the microerrocessor but in RAM memory external to
the microrrocessor. Two regdicters are needed to
reference RAM and ROM, The Memory Address Register
(MAR) contains the address of the word to be
written to or read from memory. The Memory Data
Register (MDR) holds the data word before it is
written to memory or after it is read from memory.
As reflected in the block diagram of a typical
microprocessor (Figure 1.2)s» the memory address
redister deals with "data address control” and the
memory data register deals with “data bus control.”
Figure 1.3 4dgives the flow of instructions and data
within the microerrocessor. Some microrrocessors
also include a MEMORY REFRESH REGISTER for Keering
count of the refresh oreration for dynamic RAM,
When a memory refresh redister is present in a
microprocessory it can be loaded under Prosgram
control for hardware testing purposes but is
normally not used by the programmer,

Redisters addressed directly by the user are
the accumulator:, index registers: and
general -purpose registers. The ACCUMULATOR holds
results of arithmetic and log9ical operations by the
arithmetic/logic unit and serves as one of the
inPuts to the arithmetic/logic unit for most
microprocessor orerations. The INDEX REGISTERS are
used for addressing - usually with array data.
GENERAL PURPOSE REGISTERS hold addresses and data
during eprocessing and freauently serve as a second
inrut to the arithmetic/lodgic unit, Figure 1.4
gives a block diagram of data flow during the
operation of the arithmetic/logic unit.

Most microprocessors also contain a variety of
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status registers and "flag"” redisters that are set
during normal computer oreration by the hardware
and can be tested and cleared by a user’'s program.

STACK OPERATION

A stack is a set of redisters whose contents
are manased on a last-in-first-out (LIF0) basis.
As mentioned previously: the stack can be
imrlemented in the microrrocessor itself or in RAN
memory. Two aspects of a stack are important:

o The size (lendth) of the stack
o The stack pointer

The two entities 90 todether. The number of hits
in the stack pointer determines the maximum
caracity of the stack. For example, if the width
of the stack pointer is 3 bits, then the stack can
hold eight entries» numbered O through 7. Two
compPuter operations are normally designed to
manipulate the stack: push and ror., The PUSH
operation places an entry in the stacks, and as an
entry is mades the previous entries are pushed
down. The FOP oreration removes an entry from the
stack and as the removal is rperformed, the
previous entries are pushed up, Figure 1.5 gives a
concertual view of stack orperation.

A stack is commonly used with arithmetic and
logical operations and for saving the return
addresses for calls to subprograms. Because a
stack is finite in sizes, the stack can overflow if
too many entries are pushed into it. When this
occurssy the "earliest" entry is lost, aa described
in Fisure 1.6,

When a stack is implemented in RAM, the stack
pointer moves up and down as PUSH and POP
operations are executed, This method of
implementing a stack is demonstrated in Figure 1.7
and Figure 1.8 gives Pascal procedures for the PUSH
and FOP orerations. In the proceduress STACK is an
array of inteders whose subscripts rande from 0 to
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PROCEDURE FUSH(VALUE: INTEGER)S
REGIN
PT:= PT+13
IF PT)7 THEN
PT:=03
STACKCPTJ:=VALUE
END3

PROCEDURE POP (VAR ENTRY: INTEGER);
BEGIN
IF PTCO
THEN
BREGIN
ENTRY:=03%
WRITE('STACK IS EMPTY’)
END
ELSE
BEGIN
ENTRY :=STACKLPTI3
PT:=PT-13
IF PT(0 THEN
PT:=7
END
END3

Figure 1.8
Pascal procedures for stack operations.
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7 and PT is a stack pointer. BRoth STACK and FPT are
declared as dl!chal variables. The following
procedure calls would vield the results indicated:

CALL RESULT

PUSH(8) Places 8 in the stack

PUSH(-7) Places -7 in the stack

PUSH(5) Places 5 in the stack

POP(I) Removes 5 from the stack and
places it in I

Stack oreration and reverse Polish notation are
covered in more detail in charter 3.

DISK STORAGE TECHNOLOGY

The rprocessing capability of wmodern computer
systems is directly related to the speed with which
data can be transferred in and out of the computer,
The transfer rate with serial devices, such as
tapes 1is inherently limited because it is usually
necessary to pass over precedindg information hefore
the needed information can be accessed., With disk
storages data can be accessed directly without
having to space over preceding information while at
the same time vproviding the carability for
sequential access.

A magnetic disk recording medium is a circular
disc coated with magnetic recording material. The
concept is similar to that of a phonograrh record,
because data is recorded on tracks and is read or
written as the disk rotates. The tracks on a
magnetic disk are concentric» whereas on a
phonograrh records they are sepiral. The speed of a
magnetic disk unit stems from the manner in which
data are accessed, A read/write head moves to the
correct track and only then does a data transfer
operation take place., (This oreration is Known as
direct access.) Disk storade comes in two
varieties: hard disk and soft disk., HARD DISK is
characterized by the fact that the recording medium
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is a set of metal disks) coated with masnetic
material, and mounted on a rotating spindle. A
single disk is arproximately 14 inches in diameter.
The stack of disks is referred to as a DISK VOLUME,
and if the volume is removables it is called a DISK
PACK., Data are recorded on bhoth surfaces of a disk
(excert perhars the top and bottom surfaces of a
volume, which are used for protection) and a sinsle
arm controls two read/write heads - one for the
upper surface and one for the lower surface. The
access arms for a comb-type assembly move in and
out todether» and a sindgle read/write head is used
to access an entire surface. If the access arms
and read/write heads are in a sealed assembly with
the magnetic disks)» then the unit is Known as a
WINCHESTER DISK. Hard disks are predominantly used
with medium to large-scale compPuters.

A SOFT DISK is flexible and is usually called a
FLOPPY DISK or a DISKETTE. A diskette is either an
eight-inch or a five-inch circular piece of flat

Mylar [TH) rolyester sheathed in a polyvinyl
chloride protective Jacket - resembling a 45 rem
phonodgrarh record., The eight-inch variety is
commonly used with small business computers., The
five-inch variety is frequently used with
development systems and with rpersonal/home/hobby
computers, Each recording track on a diskette is

divided into equally-sized zones called SECTORS.
Thus» an area of a diskette is identified by a
track number and a sector numbher.,

A diskette can be hard sectored or soft
sectored., A soft-sector formatted disKette has
magnetically recorded sector locations, whereas a
hard-sector formatted diskette has sector locations
indicated with holes actually punched throush the
disk surface.

A typical five-inch diskette has the following
characteristics:

Number of tracks: 35

Number of sectors per track: 13

Number of bytes per sector: 250

Total capacity: approximately 116,000 bytes
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Figure 1.9 gives a diagram of a tyrpical diskette.

Disk storade is used in a uniaue way in FORTH.
An entire disk is divided into blocks of 1024
bytes., The blocks are called SCREENS because each
can be displaved as sixteen é4-character lines on a
video display device. This philosorhy Permits any
screen on a diskette to be read or written with one
access.

index-access read/write
hole head opening
T diskette
/ cover
diskette
53" | opening for
device hub

Figure 1.9
Typical diskette

VOCABULARY

A general familiarity with the followins terms
will helr in learning computer fundamentals:

Accumulator
Arithmetic/logic unit
Bandwidth

Bus

Contro! unit
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DisKette

Disk pack

Disk storade

Disk volume

Dynamic RAM

Erasable prodrammable read-only memory (EPROM)
Execution cycle (I-cycle)
Firmware

Floppy disk

General -purrose regdisters
Hard-sector disk

Harvard architecture
Hardware

Index resister

Instruction cycle (I-cycle)
Instruction register
Memory-address register
Memory-data register
Memory refresh redister
Microcomputer
Microprocessor

Princeton architecture
Program counter
Programmable read-only memory (FROM)
Random-access memory (RAM)
Read-only memory (ROM)
Register

Screen

Sector

Soft disk

Soft-sector disk

Software

Stack

Stack pointer

Static RAM

von Neumann machine
Winchester disk

EXERCISES

1, List a couple of items normally treated as
“black boxes."”
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2, Does a modern programmable calculator adhere
to the Harvard or Princeton architecture?

3. Some compPuter engineers refer to ‘“read
write” memory. Would that he ROM or RAM?

4, Create a scenario wherein bandwidth would
contribute to less than optimal performance.

5. What common computer functions would be
describhed by the following procedures:

(a) FPlace address in memory uddress
register (MAR)
Issue read command
Take word from memory data redister
(MDR)

(b) Place address in memory address
redgister (MAR)
Place word in memory data register
(MDR)
Issue write command
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Charter 2. SOFTWARE TECHNOLOGY

Reasons for Using Software
Catedories of Software

The Concert of an Algorithm
The Concert of a Program
Assembler Lansuage
Prodramming Landuages
Program Structure

Landuade Processors
Assembler Prodgrams

Compiler Prodrams
Interprreter Prodrams
Monitors and Operating Systems
Utility Systems

Development Systems
Vocabulary

Exercises
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Computer software can be viewed collectively as
the set of instructions necessary for using the
computer. Howevers the concept is mnot as
well-defined as one wmight imagine., Some rPeorle
view software as only those elements that "90 with”
the wachine. Anything that deals with the user’s
applicationss, therefore, would he outside the score
of software and Known as “application prosrams.”
Other preorle view software in the collective sense
to include "all of the above.” Redardless of one’s
point of view, software is a more tractable medium
than hardware and much of the rower of modern
computers is available through effective software.
As an examrle, the FORTH lansuage is available to
the user as an element of software.

REASONS FOR USING SOFTWARE

Software 1is one of the most ropular topics in
the computer field. This is so for a variety of
reasons. Firsty a software program is the Key
interface in wmost cases between a person and a
computer, Throush the use of arpropriate software,
almost anyone can use a comPuter. Without
software, specific technical training is needed to
use a computer, Second, programming lansuases and
orerational software make it relatively
straightforward to do programming so that the time
and costs necessary for program develorment are
decreased, Third, the use of a machine-inderendent
programming landuade allows a program to be run on
several! compPuters, Lastly, software rermits the
computer to be used efficiently and effzctively,
and rermits a computer system to be tailored to a
particular application domain.

CATEGORIES OF SOFTWARE

Computer software 1is conveniently sroupred into
four wmador classes for the purposes of this book:
Programming languades, language PIrOCeSSOrs:
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monitors and operating systemss and utility
systems, A fifth classy "Data Management and
Database Systems»"” is also recognized., This class
is outside the scope of the FORTH lansuade and is
not covered further. Another software related
toric is "Develorment Systems,"” which is also
briefly discussed in this charter,

PROGRAMMING LANGUAGES include assembler

landuage and higher-level landuages. FORTH is a
hisher-level! lansuase. LANGUAGE PROCESSORS include
assemblers, compilers: and interrreters,
Prosramming languades are available to the user
through language Processors, MONITORS AND
OPERATING SYSTEMS are the set of routines that
control the oreration of the computer through
facilities for system management, program

managements and data management. Closely related
to the previous category are UTILITY SYSTEMS, which
supply the caracity for editing and debugging
Prosrams.

DEVELOFMENT SYSTEMS rermit a prodram to be
prerared and tested on one microcomputer system for

use on a distinct system. Many typical
applications of wicroprocessors and microcompPuters
require a develorment system bhecause the

arplication itself does not involve a complete
computer system.

THE COUNCEPT OF AN ALGORITHM

Generally speaKings, an ALGORITHM is a set of
procedures to be followed in solving any problem of
a gdiven Kind, Procedures of this Kind can be
specified in a variety of ways ranging from concise
mathematica) formulation to description in a
natural languages such as English. For examrles a
mathematical algorithm for computing the square
root r of a number x is given as follows (where e
is a small value):
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STEP INSTRUCTION

1 Set r equal to 1

2 Compute r=.5(x/r+r)

3 If |(r -x)l(e, then r is the

desired result’s otherwise o to step 2

Similarlys a less formal algorithm for computing
the dreatest common divisor of two nonzero inteders
A and B is given as follows:

i1, Compare the numbers A and By if they are
equal, then each is the desired result.

2, If B is larger than A, exchande their values
so0 that A always contains the larger value.

3. Compute A-B and replace A with the result.
Continue with ster 1,

From these examrles, an idea of the characteristics
of an algorithm can be determined:

THE DETERMINISTIC NATURE OF AN ALGORITHM. An
algorithm must be given in the form of a finite
list of instructions diving the excct procedure
to be fo)llowed at each ster of the calculation.,
Thus, the calculation does not deerend on the
calculatory it is a deterministic eprocess that
can be repeated successfully at any time and by
anyone.

THE GENERALITY OF AN ALGORITHM. An aldorithm
is a single list of instrucrtions defining a
calculation which may be carried out on any
initial data and which, in each case, gives the
correct result, In other words, an algorithm
tells how to solve not Just one particular
problem; hut a whole class of similar probhlems.
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In spite of the specificity of an algorithm, it can
also be seen that the actual number of instructions
that must be executed in solving a particular
problem is not Known beforehand, and is dependent
uron the input data. The number is discovered only
during the course of computation.

THE CONCEPT OF A PROGRAM

One of the most straightforward definitions of
Programming was 4given in 1958 by John von Neumann
[21]:

“+es any computing machine that is to solve
a complex mathematical problem nmust be
‘programmed’ for this task. This means
that the complex operation of solving that
rroblem must be replaced by a comhination
of the basic orerations of the machine.”

A CONFPUTER FPROGRAM (usually referred to simply
as a PROGRAM) is & series of statements that

specifies a computer representation of an
algorithmic Process, When the <ctatements are
executed, the algorithm is performed. The

"statements” are the Key entity and always adhere
to the specifications for a diven eprogramming
languade.

Informally, a statement is a series of
characters punched on a card: recorded on disk or
tares or entered at a terminal or diseplay device.
To he wusefu)ls however, a diven statement must
adhere to the SYNTAX (rules) and utilize the
SEMANTICS (orperational meaning) of the lansuage
being used. Some examples of languages and
prodrams are included in the following sections.

ASSEMBLER LANGUAGE

Assembler landuade is closely related to the
machine language of the computer: orPeration codes:



Software Technology Page 41

operandsy and modifiers are simply reeresented by
symbolic equivalents, Consider the assembhler
landuade program (listed as Figure 2.1) that
computes the dreatest common divisor of numbers A
and By as descrihed above, Each statement is
written according to a format consisting of a
"location” field, an ‘“operation code” field, an
"operand"” feld» and a “comments"” field. The
LOCATION FIELD is used to reference the
corresponding machine instruction or data field,
The contents of the OPERATION CODE and OPERAND
fields are used to construct machine instructions:
to establish storade areas, and to specify program
constants., Assembler landuade is not denerally
considered to be a higher-level languade, so that a
prodram written in assembier landuade is not as
readable as one written in a modern programming
landuade such as BASIC or FORTRAN. As a landuade:
FORTH is more readable than assembler landuagdes but
probably not as readable - at least to the bedinner
- as some other prodramming languades.

PROGRAMMING LANGUAGES

As an exameple of a Pprodgram in a programming
lansuades consider the BASIC program in Figure 2.2
that comrputes the drectest cunmon divisors as
introduced in the previous algorithm and assembler
landuade prodgram, Each statement is identified by
a line number that is followed by a statement that
performs a computer function., Even thoush you may
not be familiar with the BASIC Ilanguade, it is
still possihle to follow the flow of the prosram
sedment by referring to the algorithm. Similarly,
the FORTRAN prodram in Fidure 2.3 computes the

square root of x. Alsos by following the
algorithm, this program is reasonahly easy to
comprehend., The essence of programming languages

is readability, writeability, and efficiency.

FORTH is a Pprodramming Janduade and several
examples of how it is used were given in the first
chaprter. FORTH and other rPopular programming
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10 IF A=R THEN GOTO 80

20 IF AXE THEN GOTO 60

30 T=A

40 A=B

50 B=T

40 A=A-B

70 GOTO 10

80 (continuation of prodgram)

Figure 2.2
A BASIC program segment that computes the greatest
common divisor of A and B.

E= 0001
R=1.0

2 R=,5%(X/R-R).GE.E) GOTO 2
(continuation of prosgram)

Figure 2.3
A FORTRAN program segment that computes
the square root of x.

landuades in this catedory are designed primarily
to aid in the preraration of comruter programs for
subsequent execution on a digital! computer., These
languagdes are normally referred to as
"higher-level” or "procedure-oriented” Ilansuades.
The implications are twofold: (1) A program can bhe
written in one of these landuages without the user
necessarily Knowing the specific details of the
particular computer on which the program is to be
runy and (2) When writing a program in one of these
landuagess the user descrribes the steps to bhe
performed by the computer as compared to a case in
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which a languade is used to describe the problem to
be solved,

While a user must state the sters to be
followed in the execution of the computer programs
many of the details ordinarily associated with
"machine-level” pProgramming are eliminated. The
significance of the preceding concepts is
demonstrated in the following programs written in
the BASIC languagde, that computes a table of even
numbers less than or esual to 100 and their
squares:

10 FOR I=2 TO 100 STEP 2
20 PRINT I, I 2

30 NEXT I

99 END

The statement numbered 10 marks the beginning of a
series of statements that are to be executed
reretitively while "I" successively takes on the
values 2141654449100, The statement numbered 20
specifies that the values “I" and "I squared”
should be printed on the same line. In the case of
"I squareds” a numerical calculation is required
throush the use of the operator, which represents

exponentiation. The statement numbered 30
specifies that the loop should he rerpeated for the
next value of I. Lastly, statement numbered 99

ends the eprogram. When the program is executed, a
single line is printed for each triep through the
loops The outrut would look somewhat as follows:

2 4
4 16
[ 36
8 64
10 100

and so forth,
Some of the other well Known programming
languages and their maJor applications are:

FORTRAN for scientific computing
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COBOL for data processing
Pascal for dgeneral programming

In fact a Pascal program for the "I sauared”
prodgram is 9diven as Figure 2.4, Pasca) arpears to
be more complicated than RASIC or FORTRAN, but the
difference is only surerficial. In facts the
structure of the Pascal language makes it easier to
write correct eprograms. The same philosoprhy would
arrly to FORTH., The languade demands an investment
in learning but the result is certainly worthwhile
in terms of efficiency and flexibility.

PROGRAM TABLE(INPUT, OUTPUT)S
VAR
I:
INTEGERS
REGIN
FOR I := 1 TO 50 DO
WRITELN(2#I,SQR(2%]1))
END,

Figure 2.4
A Pascal program that computes a table of “I’’ and “‘l squared.”

Each pProgramming language is designed with a
specific pPurpose in wmind. The FORTH language is
particularly suited for the programming of
microcomputers,

PROGRAM STRUCTURE

Statements in a Pragram are executed
sequentially until a statement ics executed that
alters the normal sequence. The IF and GOTO

statementsy in eprevious examples» were statements
in this catedory.
Most computer programs are designed so that
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certain orperational functionss, such as the sauare
roots are repeated freauently in the execution of
the Program, Thusy the machine instructions
necessary for computing the sauare root (in this
case) would be duplicated many times - an
inefficient means of using valuable RAM mumory. An
alternate method and the one that is wmost
frequently used is to include the sauare root
function in the program only once as a "subprodram”
and branch to it when needed. The process of using
a "subprogram”™ is depicted conceptually in Fidure

2.5, Thus, a eprogram is effectively structured
into a MAIN PROGRAM and rossibly one or more
SUBPROGRAMS , A wmain program can reference
subprodrams, a subprodgram can reference other

subprograms, and so forth.

A subprogram is roushly edquivalent to the
definition mode in FORTH. This is how programs are
synthesized in FORTH: as successive lavers of
subpPrograms,

LANGUAGE PKROCESSORS

One of the Key factors in the widespread use of
prodramming languades is the fact that much of the
detail ordinarily associated with "machine-level"”
programming is subordinated to another computer
Program: termed a "lang:ade PpProcessor,” More
specificallys, a LANGUAGE FROCESSOR is a program
that accerts another erogram as input3 the output
of a landuade processor either is a translated
version of the input program or a set of computed
results.

A LANGUAGE TRANSLATOR is a landuade processor
that produces an output prodram. Some terminolody
relevant to the use of languade translators is
shown in Fisure 2.4, The program as expressed in
assemhler landuade or in a higher-level landuage is
referred to as a SOURCE PROGRAMS it is read into
the language translator from cardss tarer a
direct-access devices or from a terminal or display
device. The output from the landuagde transiator is
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//m
[SQRT] —
(1)

_ 2/ ),/ SUBPROGRAM
_4 SQRT
[B]

_ \ [SQRT] /]

MAIN SUBPROGRAM
PROGRAM B

Figure 2.5
Conceptual view of the process of structuring a program into a
main program and one or more subprograms

Object
Program

Source Language
Program Translator
(Input to the {Assembler or
TLanglu:ge) Compiler) Program
ransiator Listing
(Output from the
Language Translator)
Figure 2.6

Conceptual view of the process of language translation.



Software Technology Page 48

a translated version of the Pprograms termed an
OBJECT PROGRAM, and a listing of the progiam. The
obdect eprogram 1is recorded on cards, tares or a
direct-access device for subsesuent inPut to the
comrputer for execution. Landuage translators come
in two forms: assemblers and compilers.,

ASSEMBLER FROGRAMS

An ASSEMBLER PROGRAM (usually referred to
simply as an ASSEMBLER) converts a eprodram written
in assembler langducgde to an eauivalent prodgram in

machine lansuage. The translation process is
usually referred to as ASSEMBLY or the ASSEMBLY
PROCESS., Assembly is wusually rperformed in two

passes over a source program. In the first rass»
relative addresses are assigned to symbols in the
location field. In the second pass over the source
prodrams symbolic oreration codes are reelaced by
internal wmachine codes and symbholic operands are
rerlaced by corresponding addresses that were
determined during rpass one. The obhdect program and
the prodgram listing are also produced during pass
two. Various forms of error checking and analysis
are rperformed during both passes.

COMPILER PROGRAMS
A COMPILER PROGRAM (usually referred to simply

as a COMPILER) converts a prodram written in a
higher-level landuade to either machine language or

to assembler landuage. In the second rase» the
resulting assembler lanfuage eprodgram must then be
processed by the assembler. Fidure 2.7 dericts

sample assembler languade statements that would be
generated by a sindle statement in a higher-level
languade.
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HIGHER-LEVEL ASSEMBLER LANGUAGE
LANGUAGE
I=J®K+L L é+J (Load 6 with J)
M 5/K (Mult.reds, 5-6 by K)
A 6)L (Add L to reg., 6)
ST 46,1 (Store reg, 6 in I)

Figure 2.7 Samprle assembler languade statements
dgeneruted by a compiler.

In contradistinction to assembly where one machine
instruction is usually generated for each assembler
languagde source statement: the compiler usually
denerates several machine instructions for each

source statement in a higher-tevel languasge.
Comrilation is dgenerally considered to be more
complicated than assembly since higher-level

languade structure tends to be more complex than
assembler landguadge structure. Although a compriler
is necessarily derendent on the languade being
compiled, the following sters are usually involved:

1. The compiler reads the source program on a
statement-by-statement basis and rperforms the
following processing for each statement:

(a) Lexical analysis to identify Keywords:
namess constants, punctuation characters,
etc.

(b) Syntactical analysis to identify the
tyre of statement and determine that its
structure is admissible

(c) Placing the constituents of the
statement in lists and tahles to facilitate
the deneration of machine code and to allow
a givbal analysis of the program.

2, A flow analysis of the program is performed
to check for interstatement errors and to
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Pprovide information on how machine registers
should be assigned.

3. Program ortimization is performed and
machine instructions are dgenerated.

4, An obdect program and a prodgram listing are
Produced.

A compiler and an assembler have one important
feature in common. That is,. each has the complete
source Prodrram at its disposal so that the various
sters in the assembly and compilation processes can
be executed at the discretion of the prerson
designing the assembler or the compiler. Only
after a source program has heen completely analyzed
by an assembler or compiler and an obdect erogram
produced is that ohdect program actually executed.,

INTERFRETER FROGRAMS

One tyre of landuade processor that allows
prodgram modification during execution is the

interpreter. The INTERPRETER is a languade
processor that executes a source program without
producing an ohdect Prodgrame. An interpreter

operates as follows:

1, The interrreter reads the source program on
a statement-by-statement basis and performs the
following processing for each statement:

(a) The statement is scanned, identified,
analyzedy, and interrreted to determine he
operations that should be performed.

(b) The required orerations are executed by
the interereter and the intermediate results
are retained.

2. The next statement that is interrreted
depends on the results of the statement Just



Software Technology Fage 51

executed (such as in the case of a GOTO
statement).,

Interpreters vary in internal design, Some
interpreters convert a source Prosram into an
intermediate function languagde and then
interrretively execute the statements in the

intermediate form., The Key point is that an obdect
prodram is not produced and that al) statements are
not necessarily processed by the interpreter.

Interestingly enough, the FORTH concert employs
both a compiler and an interpreter, Statements
entered in the definition mode are compiled into an
internal form. In the execution mode, statements
are then handled interpretively.

MONITORS AND OPERATING SYSTEMS

The title "monitors and orPerating systems”
refers to a set of systems pPrograms that provide
three mador functions:

1, A logical interface between the hardware and
the software

2, A logical interface between the user and the
software

3., A logical interface between the user and
data stored on "external” storade devices:» such
as tare or diskette

If the set of systems programs are stored in ROM
and only ROM, then it is called a MONITOR that
normally controls the execution of all programs.
Moreover all programs use the monitor during
execution. Typical monitor carabilities are:

1, Automatic startur from ROM

2, Handling standard input from the Keyboard
and output to the video display



Software Technology Page 52

3. Examining, changing, moving, and comparing
the contents of memory

4, Examining and changing the contents of
registers
Se Saving the contents of memory on tare and

reading the contents of memory from tare
é, Running and listing programs
7. Loading and saving programs from tare

Monitors are normally associated with reasonably
small microcompPuter systems that utilize tare
cassettes for storing programs and data.

When the set of systems rprograms are stored on
disk storage and utilize a disk or diskette for
storing prodgrams and datar then it is called an
OPERATING SYSTEM. Like a wmonitor, an operating
system controls the execution of al) programs, and

all programs use the orperating system during
execution. Tvpica) orerating system carabilities
are classed into thiree catedories: program

management: data wmanagements and user services.
PROGRAM MANAGEMENT facilities concern the following
functions:

1. Loading programs from disk

2+ Running programs from disk

3. Saving programs on disk

DATA MANAGEMENT facilities involve the followinsg:

1. Storing data files and programs on disk by
name

2., Copying files

3+ Erasing files from disk
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4, Renaming files
S+ Providing disk input/output orerations
USER SERVICE facilities involve the following:

1. Managing the catalog of program and data
file names

2, Initializing disk
3. Establishing system parameters

In disk based wmicrocomputers, both wmonitor and
orerating system facilities are commonly available
to the user» providing the convenience of a ROM
based system with the power of a disk operating
system.

UTILITY SYSTEMS

Two software elements are available in most
computer systems to aid the user in writing and
debudging programs: an editor and a debus packadge,
An EDITOR is a text processing system that permits
a pProdram to be entered into the systems changed,
and listed with a minimum of inconvenience. Once
the eprogram file is constructed, editor commands
permit textual wmodifications to be wade to the
Prodgram text at the statement level without
requiring that the user re-enter a complete prodram
line,

A DEBUG PACKAGE assists the user in correcting
prodram errors by suepplying a means of tracing
program flow and displaying intermediate results on
a conditional hasis.

Editors and debud rackages are commonly
regarded as part of the orerational environment for
prodgram develorment.,
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DEVELOPMENT SYSTEMS

Many microcomputer systems cannot support the
Progran develorment Process. A microcomputer
system in an automobile, appliance, or other
machine is relatively limited in functional
carability because of the specialized nature of the
arplication, Some of the necessary hardware
elements (such as large RAM memory, printer, tare,
or disk) simply do not exist. In cases such as
thiss programs are develored on a “develorment
system” and then transferred to the specialized
system.

There is nothing special about a develorment
systemy other than the fact that it can surport the
program develoement prrocess through the following
hardware and software elements (see Figure 2.8):

o Editor

o Debus package

o Landuade processor

o Monitor or orerating system
o Printer

o Tare or disk storadge

o Sufficiently large RAM

Each of these elements has been rresented
Previously.

A develorment system need not be the same model
of computer as the tardet system. Freauently, mini
or larde-scale computers are used to develor a
eprogram for o microcomputer system. When assembly
is done on one computer (i.e.» a develorment
system) for another computer (usually a
microcomputer)s the languade processor is called a
CROSS ASSEMBLER. Similarly, compilation on one
system for another computer is called a CROSS
COMPILER.
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Editor

Source
Program

Language
Processor

Monitor or
Operating
System

Execution

Compile or
Assembly Error

Execution
Error

Debug
Package

Completed
Program

Figure 2.8
The program development process
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VOCABULARY

A deneral familiarity with the following terms
will helr in understanding software technolody:

Aldgorithm

Assembler landuade
Assembler program
Compiler program
Cross assembler
Cross compiler

Debug package
Develorment system
Editor

Higher-level languade
Interpreter pProdram
Landuade riocessor
Language translator
Main Prodgram

Monitor

Operating system
Procedure-oriented language
Prodgram

Programming landuage
Subprogram

Utility system

EXERCISES

1, What do an aldorithm and an ordinary Kitchen
recire have in common?

2, How many steps are in the gdreatest common
divisor algorithm given in the charter? Arply this
algorithm to the values 35 and 21. How many sters
are actually executed?

3. Name the fields in an assembler languade
statement,

4, Give the output from a landuadge translator.
Give the output from an interpreter.
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Charter 3, REVERSE POLISH NOTATION

Mathematica! Forms
Structure of Expressions

Conversion Between Infix Notation and
Postfix Notation

Interpretive Execution of Infix Notation
Vocabulary

Exercises
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A dood working Knowledge of the FORTH langduade
requires that a user have a dgood backdground in
reverse Polish notation and the use of a stack.
Both torics have been introduced eireviously. This
chapter does into wmore detai)l so that a user can
easily convert expressions to reverse Folish
notation and understand how they are executed in
FORTH. Clearlys a user can do simple things in
FORTH without possessing any special Knowledde. As
the level of complication increasess however:
background information is iwmportant for effective
programming., This charter does not have any
specific orientation to FORTH or any other
programming language. The subdect matter is simpPly
rresented to assist the programmer whenever needed.

MATHEMATICAL FORMS

Ordinary mathematical notation 1is referred to
as INFIX NOTATION, which means that the crerator
symbol for an operation requiring two orerands
separates the orerands, Examples of infix notation
are: x+y» which means “add the value of vy to the
value of x»" and -a» which means "taKe the negative
of a.” When an expression includes more than one
operation» then an operational convention is used
to determine the order in which the orerations are
executed, The wmost widely used convention is to
establish a hierarchy amond orerators, such as the
following:

OPERATOR HIERARCHY OPERAT IONAL MEAMING

SYMBOL
*# High Exponentiation
* or / Multiplication or division
+ or - Low Addition or subtraction
and then to execute orerators by order of

hierarchy. Thuss an expression such as
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a
X+y

requires the use of parentheses, that is
A/ (X+Y)
to sepecify the intended meaning.

A notation that does not reauire parentheses
for expressions of this sort is called Polish

notation: after the Polish wmathematician J.
Lukasewicz, who used it for reeresenting
well-formed formulas in losic, In facts Polish
notation never reduires parentheses and is Known as
a “parenthesis-free"” notation. Polish notation

comes in two varieties:s PREFIX NOTATION, which is
also called simply Polish notations and FOSTFIX
NOTATION, which is also called reverse Polish
notation, In prefix notation: the orerator always
precedes its orerands (reading from left to right),
so that an expression such as A+B is denoted by

+AB, More complex expressions are constiructed by
rereated arplication of the concept in a similar
manner., Additional examples of wmathematical

exrressions rerresented in prefix notation are
diven in Table 3.1,

Table 3.1

Examples of Polish Notation

Infix Notation Prefix Notation Postfix Notation
A*B *AB AB*

A*X-B -*AXB AX*B-
A*(X-B) *A-XB AXB-*
A+(B/C-D) +A-/BCD ABC/D-+

A*(B/(C-D)+E) *A+/B-CDE ABCD-/E+*
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POSTFIX NOTATION is the wmost ropPular form of
Polish notation and is characterized by the fact
that the orperands rrecede the orperator (again
reading from left to right), so that the infix
expression A+B is represented by AB+. Additional
examrles of postfix notation are 9given in Table
3.1, The mador advantages of postfix notation are
inherent in the relative simplicity of the
processes reauired to: (1) convert an expression
from infix notation to postfix notations and (2)
execute the postfix notation interpretively or
convert it to a set of equivalent machine langduade
instructions. A descrirtion of the conversion
rrrocess from infix notation to postfix notation is
given in a subseauent paragrarh.

STRUCTURE OF EXPRESSIONS

One means of showing the relationshir between
operators and operands in an expression and
exhibiting the order in which operations should be
executed is to use a STRUCTURAL DIAGRAM, In a
diagram of this types orerators and orerands are
regarded as points (or nodes)» and the relationshir
between them is denoted by lines» as shown in
Figure 3.1, A structura) diagram rprovides two
important items of inforaation about an expression:
(1) its forms and (2) its structural meaning, In
general, a structural diagram is inderendent of the
syntactic structure of a programming landuage,

A structural diagram can be regarded as an
upside-down tree. The tormost node is the "root™
and operands are always terminal nodes or "leaves”
of the tree., Another way to look at a structural
diagram is to view it as a hierarchical collection
of subtrees,» where each operator is the root of a
subtree and the orerands (to that orerator) are
leaves of that subtree. Thuss» an orerator is
always the root of a subtree., A binary operator
has two subtrees, corresponding to each of its
orerands., A unary orerator has a sindle subtree:
correseonding to its single operand. Figure 3.2
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(A) Structure diagram for A*X-B (B) Structure diagram for A*(X-B)
Figure 3.1

Structure diagrams used to exhibit the relationship between operators
and operands in an expression.

(A) Representation of a binary operator (B) Representation of a unary operator

Figure 3.2
Structural forms for binary and unary operators.
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gives structural forms for binary and unary
orerators.,

Trees (or structural diagrams) do not lend
themselves to representation 1in the comruter, for

obvious reasonsy and are stored as a linear
sequence of symbols. The process of converting a
tree to a linear sequence of symbols is

accomplished by traversing (or walking through) the
tree, Knuth [14] defines three methods that are
applied by systematically dividing a tree into
subtrees., The three methods (modified to meet our
needs) are given as:

FREORDER TRAVERSAL

Visit the root

Traverse the left subtree
Traverse the right subtree
or

Visit the root

Traverse the singdle subtree

POSTORDER TRAVERSAL

Traverse the left subtree
Visit the root

Traverse the right subtree
or

Visit the root

Traverse the single subtree

ENDORDER TRAVERSAL

Traverse the left subtree
Traverse the right subtree
Visit the root

or

Traverse the single subtree
Visit the root
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The three forms of traversal are depicted in Figure
3.3, Figure 3.4 gdives additional examples, of
which the last includes unary operators,

An interestins relationship exists between the
structural diagram (or tree form) of an expression
and infix, prefixs» and postfix notation., If the
"tree of an expression” is denoted by TOE, then

PREORDER (TOE) - prefix notation

ENDORDER (TOE) - postfix notation

POSTORDER (TOE) - infix notation without
rarentheses

In the last cases the relationshiep has validity
only for expressions without parenthesess but is a
useful conceptual tool, As an examprle of these
conceptsy consider the tree named Q@ in Figure 3.5.
Application of the three forms of traversal gives

FREORDER(R) =A+%*BC/DE» which is prefix
notation

POSTORDER A=R#C#D/E» which is infix notation

ENDORDER(Q) ABC*DE/+=» which is postfix
notation

This last example incorrorates the conventional
rerlacement oreration of the form

v=e

where v is a variable and e is an expression. This
can be regarded as a binary orperation that takes
the form =ve in prefix notation and ve=z in postfix
notation,

It should be emphasized here that another symbol
is used for the "store" operation in FORTH. If it
were desired to replace the contents of variable A
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Preorder traversal

e ° *+XY-/ZWA

Postorder traversal

e 0 X+Y*Z/W-A

Endorder traversal
e o XY+ZW/A-*

Figure 3.3
Preorder, postorder, and endorder traversal of the structural diagram
of the expression (X+Y) *Z/W-A).
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preorder (T)-> A*XB
postorder (T)->A-X*B
endorder (T)>-AXB*-

preorder (G)>ABDGECFHI
postorder (G)->DGBEACHFI
endorder (G)>-GDEBHIFCA

Figure 3.4
Examples of preorder, postorder, and endorder traversal.
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with the value 5 in FORTH, one would enter:
5A!

where {!} rerresents the store operation.

Figure 3.5
Structural diagram of the statement A=B*C+D/E. This example is used
in the text to show the relationship between traversal and
mathematical forms.

CONVERSION BETWEEN INFIX NOTATION AND POSTFIX
NOTATION

The conversion eprocess from infix notation to
postfix notation is diven here as a basic method
that a wuser can apply to complex expressions. The
description of the method utilizes operands that
are single letters and does not permit subscrirted

variables. Methods for interpretively executing
postfix notation follow this section.
Conversion from infix notation to rpostfix

notation uses a set of procedures and a hierarchy
(or eriority) among orerators. The overall process
is depicted in Figure 3.6, The terms SOURCE STRING
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J (.
1 -

e
1

Source string Target string
(infix notation) {postfix notation)
Operator
stack
Figure 3.6

Basic diagram of the conversion process from infix and postfix notation.

and TARGET STRING are earticularly arpropriate
because the expression can be redarded as a string
of characters., After conversion from infix to
postfix notations» the order of operands (that is»
variables) remains the same. During conversion, an
OPERATOR STACK 1is wused to rearrange the orerators
s0 that they occur in the tardet string in the
order in which they should be executed. The
priority of operators is as follows:

PRIORITY OPERATOR NOTE
OR SYMBOL
High ( OQutside the orerator
stack
* or /
+ or -
Low ( Inside the orerator

stack
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A smal) subset of oreratorss including eparentheses,
is selected to simplify the conversion process.
Rules for wmanipulating the source and target
strings and the orperator stack can now be given:

1, The source string is scanned from left to
right. Similarly, the target strindg is formed
from left to right.,

2, Operands (that iss» variables) from the
source string bypass the Orerator stack and are
passed to the tardet string directly.

3. If the scan of the source string encounters
an orerator with a epriority greater than the
priority of the orerator at the top of the
orperator stacks then the orerator from the
source string is entered into the operator
stack., If the priority of the orerator in the
source string is not greater than the priority
of the operator at the top of the orerator
stacks then the oeperator at the toep of the
operator stack is moved to the tardet string
and this ster is rerpeated., (Note: a left
parenthesis always enters the orerator stacK.)

4, 1If a right parenthesis is encountered during
the scan of the source string, then the
operators in the orerator stack are moved to

the target string, This process continues
until a left parenthesis is encountered in the
operator stacks then the left and right

parentheses are both discarded.

S When the end of the source strindg is
reacheds all operators in the orerator stack
are moved directly to the tardet strind.

Figure 3.7 9dives a detailed "walK-through" of the
conversion process usind the above rules and
orerator priorities.
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Source String Operator Stack Target String
+A+B*C-D)/E
++(B*C-D)/E A
+(B*C-D)/E + A
+B*C-D)/E ( A
+
+*C-D)/E ( AB
+
4+C-D)/E * AB
(
+
4+-D)/E * ABC
(
+
+D)/E - ABC*
(
+
+)/E - ABC*D
(
+
+/E + ABC*D-
+E / ABC*D-
+
1 / ABC*D-E
+
(4 Denotes scan ABC*D-E/+
pointer)
Figure 3.7

Conversion from infix notation to postfix notation.
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INTERPRETIVE EXECUTION OF INFIX NOTATION

Interpretive execution of an expression in
postfix notation involves a left-to-right scan and
the use of an operand stack. If an orerand is
encountered during the scan, its value is placed in
the opPerand stack. If an oPerator is encountered
during the scans the resuired number of values
(i.ees» two operands for binary orerators and one
oprerand for unary opPerators) are taken from the

orerand stacK. The specified orperation is
rerformed on the orperand(s) and the result is
placed back in the stack. An example of

interpretive execution is diven in Figure 3.8,
When the pirocess is complete, the computed value of
the expression is at the topr of the orerand stack.

In FORTH, elacing the value of a variable in
the stack is not as straightforward as the above
examples might imply, If a user wished to compute
A+5» for example» and entered the following FORTH
input line:

SA+

the “address" of A would be added to 5 since a
variable reference puts the address of a variahbhle
in the stacK in the FORTH languavye. The following
inPut lines

5A0 +

would bhe needed to add the contents of A to 5. The
symbol {8} is a FORTH word that fetches the
contents of the address on the tor of the stack and
pushes the value into the stack,
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Postfix String
XY+2ZW/A-B+Y/

Y+2ZW/A-*B+Y/
+ZW/A-*B+Y/

ZW/A-*B+Y/

W/A-*B+Y/

/A-*B+Y/

A-*B+Y/

-*B+Y/

*B+Y/

B+Y/

+Y/

Y/

/
Value of Operands
Symbol Value
2
3

m>» S N<X

12
4
1
5

Operand Stack

b [

py -
QWO N IO N

U'IN|U1(AJ—!

&

|OU1

E

pry
oo W
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Note
Prior to scan of postfix
string; stack empty
Value of X is pushed into stack
Value of Y is pushed into stack

+ operator; two operands (3 and
2) are pulled from top of stack
operation is performed on them;
result is pushed into stack
Value of Z is pushed into

stack
Value of W is pushed into stack

/ operator; two operands (4 and
12) are pulled from top of
stack; operation is performed
on them; result is pushed into
stack

Value of A is pushed into stack

- operator; two operands (1 and
3) are pulled from top of
stack; operation is performed
on them; result is pushed into
stack
* operator; two operands (2 and
5) are pulled from top of
stack; operation is performed
on them; result is pushed into
stack

Value of B is pushed into stack

+ operator; two operands (5 and
10) are pulled from top of
stack; operation is performed
on them; result is pushed into
stack

Value of Y is pushed into stack

/ operator; two operands (3 and
15) are pulled from top of
stack; operation is performed
on them; result is pushed into

Execution of postfix string is
complete; result is in the
operand stack

Figure 3.8
Interpretive execution of the postfix expression XY+ZW/A-*B+Y/
that corresponds to the infix expression ((X+Y)*(Z/W-A)+B)/Y.
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VOCABULARY

A deneral familiarity with the following terms
wil]! help in learning the concerts of reverse
Polish notation:

Binary operator
Endorder traversal
Infix notation
Operator hierarchy
Postfix notation
Postorder traversal
Frefix notation
Preorder traversal
Structural diagram
Unary orerator

EXERCISES

1, Convert the following expressions to postfix
notation:

A+B-C

(A+B)xC

A*B-C/D+E
(A+B)/(C-D)-E
(A*Y+B)#Y+C

(A% (B+C)-D)%E
((A%¥Y+B)#Y+C)%Y+D

2, Draw structural diagrams for the following:

A%B-C/D+E
(A%Y+B)*Y+C

3+ Interpretively execute the following expressions
in postfix notation:

ABC#-
ABC+%D-E¥%
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ABR*CD/-E+
using the following values:

VARIABLE VALUE

A 10
B 2
C 4
D 5
E 3

4, Traverse the following tree

in preorder, postorder, and endorder form.
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Chapter 4, ELEMENTARY CALCULATIONS AND STACK
MANIFULATION

FORTH Words
Punctuation
Looking at the Stack
Elementary Arithmetic Operations
Number Bases
Stack Manipulation Operations
Mathematical Functions
Comp)ement Arithmetic
Vocabulary

Exercises






Elementary Calculations Page 77

In order to do elementary calculations in
FORTHy a person needs a Knowledge of the command
stiructure and the orerational conventions of the
system., While the FORTH system takes on the
outward arpearance of a calculator at the
elementary level, the vprimary obdective of the
languade is for conventional computer programming -
especially at the nmicroprocessor level - so that
the Jlanduage has considerably more expressive power
than an ordinary calculator., It must be
emphasized, howevers that to =ome extents FORTH
carability is supported and also limited by the
underlying hardware. This fact wil) become evident
with regard to the data types and associated
arithmetic operations that are available to the
user via the FORTH landuage.

FORTH WORDS

Any symbol or seaquence of characters that has
meaning to the FORTH system 1is called a "word."
8o, for example, the symbo! {+} and the word {DUP}
are called FORTH WORDS. Recall here that items
enclosed in braces are FORTH words. Normally the
braces are used when the inclusion of a FORTH word
in a sentence might cause confusion to the reader.
The braces are also used for emphasis., There is no
connection between a FORTH word and a computer

word. In the Jlatter case» a computer word is a
hardware memory cell used to store an element of
data.

In the first charter, the stack was introduced
as the place where numbers are held during computer
operations, In this case» numbers include data
values and also address values in the computer.
FORTH words cannot be placed in the stack. In the
execution modes a FORTH statement is "generally”
processed in the following manner:

o When a value is encountered, it is placed in
the stack
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o When a FORTH word is encountereds it is
executed

In the definition mode,» numbers and words are
stored as part of the definition for subsequent
execution,

Some caution must be taken with punctuation
charactersy such as {.} and {'!'2}» which are in fact
FORTH words., To FORTH» they are not punctuation
charactersy, but command the FORTH system to execute
the respective computer orperation, There are no
lexical restrictions on FORTH words. A FORTH word
can be cowposed of any character or grour of
characters from the Kevboard.

The concert of a word is so general in FORTH
that there is no need to specify the system’s
character set. Minimally, it can be expected to
include the letters (A throush Z), digits (0
through 9)» and a largde selection of orerators and
punctuation symbolsy suchas { + - */ , I @ 2§ "
e )y 07 C ) 2 3 Almost every symbo)l -
sometimes referred to as a special character in
other Janguages - has an operational meaning as a
FORTH word.

PUNCTUATION

There is one punctuation rule: FORTH WORDS MUST
BE SEFARATED BY AT LEAST ONE SPACE. This rule
stems from the need for visual fidelity and the
extreme lexigrarhic denerality of FORTH words.
Thuss a user may define any seauence of characters
as a FORTH word and it wil) not cause any confusion
to the FORTH system.

LOOKING AT THE STACK

It is freauently necessary to visualize the
stack in order to describe how a particular FORTH
oreration works. The FORTH convention for doing
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this is to epicture the stack as a series of tokens
with the top of the stack on the right and the
bottom of the stack on the left, Ordinary addition
can be used as an examrle. Recall that in
conventional mathematical notations an addition
operation is exrressed as ''nl+n2"” vyielding the
result “sum3” you might write this as "nl+n2 sum,”
where the right arrow denotes "vields.” Clearly:
in reverse Polish notations the expression would be
rerresented as "nl n2 + sum.”

To visualize the stack: simply i9nore the
operator symbol and picture only the stack. For
the above addition operation the stack would be

visualized as:

STACK
Before After

nl n2 sum

In this cases» n2 is on the top of the stack because
it is on the right. The addition operation takes
the top two values from the stack and returns the
SUM.

ELEMENTARY ARITHMETIC OPERATIONS

The elementary arithmetic operations in FORTH
and their respective orperator symbols, recognized
as FORTH wordss are:

OPERATION FORTH WORD
Addition +
Subtraction -
Multiplication *
Division /
Modulus MOD
Divide Modulus /MoD

These operations are defined on 16-bit integder
values that have a rande of -32768 to +32767.
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Double precision oeerations are covered in a
serparate charter,

Al)l arithmetic orperations are defined on values
held in the stack., It does not matter whether the
values were placed in the stack directly or the
values in the stacK resulted from a previous FORTH
operation., Terminology for the four basic
arithmetic operations may be recalled as follows:

H (addend) M (minuend)

+N (augend) -N (subtrahend)
M+N (sum) M-N (difference)

M (multirlier) M (dividend)
*M (multiplicand) /N (divisor)
M*N (product) M/N (auotient)

In ordinary arithmetics the division operation
vields a remainder, described as follows:
"dividend = divisor # quotient + remainder.,”

The ADDITION operation in FORTH is described
symbolically as:

nl n2 + —ssum

where "n1" is the addend and "n2" is the augend.,
When the word {+} is encountered by FORTH, it adds
the top two values in the stack (i.e.» nl+n2)
removes thems and places the sum in the stack. The
values can be placed in the stack directly or may
result from a previous computation. The following
examples demonstrate addition:

23+ .5 0K
41+8+ ., 13 0K

143 +25+ + .24 0K
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Recall that the underline denotes what the user has
entered., The "0K" denotes that the computation was
rerformed successfully and that the system is ready
for additional inpPut.

The SUBTRACTION operation in FORTH is described
symbolically asz:

nl n2 -—sdifference

where “nt1" is the winuend and "n2" is the
subtrahend., When the word {-} is encountered by
FORTHs it subtracts the wvalue on the top of the
stack from the wvalue below it (i.ess» nl-n2),
removes them» and prlaces the difference in the

stack. As with other FORTH operationss the values
can be placed in the stack directly or may result
from a Pprevious computation. The following

examples demonstrate subtraction:

53-.2 0K

20 10 -5 - .5 OK

85-1610- -, -3 0K

It is important to remember with subtraction that
the subtrahend is always on the tor of the stack.

The MULTIPLICATION orperation in FORTH is
described symbolically as:

nl n2 #—product

where "n1" is the wmultirlier and "n2" is the
multirlicand. When the word {#} is encountered by
FORTHs it multiplies the top two values in the
stack (i.e.» nl1*¥n2), removes them, and places the
product in the stack. The fol)lowing examples
demonstrate multiplication:

32% ., 6 0K
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742 % %, 56 0K

65 %3 -1x%x, -90 0K

Because the basic arithmetic orPerations in FORTH
are defined on 16-bit inteder values, a value
outside of the range -32768 to 32747 can be
produced from the arithmetic orerations. The value
will be correctly computed but may vield unexpected
results, because FORTH uses binary two’s comrlement
notation for internal data values. This subdect
will be covered later in two sections: complement
arithmetic and double precision arithmetic.

The DIVISION oreration in FORTH is described
symbholically as:

nl n2 /—equotient

where "nl1" is the dividend and "n2" is the divisor,
When the word {/} is encountered by FORTH, it
divides the value on the tor of the stack into the
value below it (i.e.» n1/n2)» removes them,» and
Places the inteder quotient in the stack. Since
the oreration is integer division, the remainder is
lost., The following examples demonstrate inteder
divisions:

62/ .3 0K
537 .1 0K

18372/ .3 0K

1127157/ .2 0K

112715 -7/ 7/ . -2 0K

The wathematical! sign of the suotient is the sign
that results from the division oreration. Two
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related orerations, {MOD> and {/MOD} can be used to
obtain the remainder from inteder division.

The MODULUS oreration in FORTH is described
symbolically as:

ni n2 MOD —remainder

where "“nl1" is the dividend and "n2" is the divisor.
When the word {MOD} is encountered by FORTH, it
divides the value on the top of the stack into the
value below it (i.es.» ni/n2),» removes thems» and
places the remainder in the stack. The following
examp les demonstrate the modulus oreration:

11 3 mob . 2 0K
4 2 MOD ., 0 OK

-11 3 mob . -2 OK

The algebraic sign of the remainder always is the
same as the algebraic sign of the dividend.

The DIVIDE-MODULUS operation in FORTH is
described symbolically as:

nl n2 /MOD —remainder suotient

where "nl1" is the dividend and "n2" is the divisor.
When the word {/MOD} is encountered by FORTH: it
divides the value on the top of the stack into the
value below it (i.e.» ni1/n2)s» removes them, and
places the quotient on the top of the stack and the
remainder below it, More sepecificallys FORTH
pushes the remainder into the stack and then pushes
the auotient into the stack so that the quotient is
on the tor. The following examples demonstrate the
divide-modulus operation:

11 3 /M0OD « + 32 OK
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42/mMD. .20 OK

-11 3 /MOD . . -3 -2 OK

The mathematical sign of the quotient is the sign
that results from the division orerations the
arithmetic sign of the remainder is always the same
as the arithmetic sign of the dividend.

NUMBER BASES

When FORTH comes urs» the system automatically
orerates in the decimal system (i.e.» base 10).
What this means is that numbers can be entered in
decimal and the resuits are diseplaved in decimal.
A user wmay change the number system used for entry
and display and thereby adart the FORTH system to
the needs of a particular arplication. The
hexadecimal number system 1is built into FORTH and
it wmay be invoked by entering the FORTH word {HEX2.
With relative ease, the user may also define other
number systemss such as octal or binary.

To change to the hexadecimal, the user simply
enters the word HEX. demonstrated as follows:

12 oK
HEX 0K
. C OK

To return to the decimal system» the user Just
enters the word DECIMAL, demonstrated as fol lows:

DECIMAL OK

1234 . 1234 0K
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1234 HEX . 4D2 OK

4D2 DECIMAL . 1234 0K

Once a number system is entereds FORTH stays in
that system until the number base is chanded.

A number system is defined throush a colon
definition that assigns a value to the system
variable BASE, as follows:

: BINARY 2 BASE ! 3

Thens to put FORTH into the binary system: all the
user has to do is to enter the word BIMNARY:

: BINARY 2 BASE ! § OK

BINARY OK

11 10 + , 101 0K

Similarly, the octal system can be defined with an
analogous statement:

t OCTAL 8 BASE ! 3 0K

OCTAL 0K

57+ .14 OK

Onces several! number bases are defined, it is
possible to switch bhetween them almost at will:

DECIMAL 12345 HEX . 3039 0K

DECIMAL 12345 OCTAL . 30071 OK
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DECIMAL 12345 RINARY . 11000000111001 OK

DECIMAL OK

Al)l interna) calculations in FORTH are performed in
the binary number system. The number bases;
introduced ahove, only affect input and output,

STACK MANIPULATION OPERATIONS

The FORTH landuage rermits the stack to be
manirulated directly to facilitate the construction
of Programs. In many cases:» a single stack
maniepulation oreration can simplify a program and
decrease its execution time.

Recall the method of visualizing the stack»
dgiven previously, wherein the item on the right
denotes the top of the stack. For examrle, in the
following list:

nl n2 n3

"n3" denotes the top of the stack: “n2" represents
the number directly below ity and “ni" denotes the
third number down.

The stack manipulation operations in FORTH and
their respective FORTH words are:

OPERATION FORTH WORD
Duplicates the tor DUP
value on the
stack
Exchandes top two SWAP
values in the
stack
Removes top value DROF

from the stack



Elementary Calculations Pase 87

Cories the second OVER
number in the
stack and puts it
on the tor

Rotates the third ROT
number in the
stack and puts it
on the tor

Rotates the topr N ROLL
stack entries

Duplicutes the torp -DUP
value on the stack
only if it is non-
zero

Duplicates the tor ?DUP
value on the stack
only if it is non-
zero (Same as -DUP)

Copies the nl-th stack FICK
item to the tor

Counts the number of DEFTH
items on the stack

These orerations are defined on 16-bit integer
values that have a rande of -32768 to 32767,
Corresponding stack wmanipulation orerations exist
for double Precision values and are introduced in a
serarate charter.,

The DUP oreration takes the top value on the
stack» duplicates it» and pushes the durlicated
value into the stack. The stack contents before
and after the execution of the DUP oreration are:

Operation: DUP
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Stack before: nl1 n2 n3
Stack after: nl n2 n3 n3

The SWAF orperation exchanges the tor two values
on the stack without disturbing the other stack
values, The stacK contents before and after the
execution of the SWAP operation are:

Dperation: SWAF
Stack before: nl n2 n3
Stack after: nl n3 n2

The DROP operation removes the value on the tor
of the stacK so that all of the values below it are
moved ur, The stack contents before and after the
execution of the DROP oreration are:

Operation: DROP
Stack before: nl n2 n3
Stack after: nl n2

The OVER opPeration takes the second number in
the stack, duplicutes ity and pushes the durlicated
value into the stack. The stack contents before
and after the execution of the OVER oreration are:

Operation: OVER
Stack before: nl n2 n3
Stack after: nl n2 n3 n2

The ROT orperation works with the top three
values in the stack. The value that is third from
the top is rotated to the top and the two values
above it are pushed down. The stack contents
bhefore and after the execution of the ROT oreration
are:
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Operation: ROT
Stack before: nl n2 n3
Stack after: n2 n3 ni

The ROLL operation is similar to the ROT
operation» but uses the value on the top of the
stack to determine the "“depth" of the roll. The
statement {3 ROLL> is the same as the ROT
operation. The stack contents before and after the
execution of the ROLL oreration are:

Operation: ROLL
Stack before: nl +.v n(i-1) ni n(i+l) +os nK n
Stack after: nl +.¢ N(i-1) n(i+l) +oe nK ni

where 1i=K-i+1., The value on the top of the stack
that determines the depth of the roll is removed.

The <{-DUFP}> oreration inspects the top value on
the stack. If it is zeros» then the <{-DUP}
oreration does nothing, If it is non-zeros then
FORTH takes the value on the top of the stack,
duplicates it» and pushes the duplicated value into
the stack, The stack contents before and after the
{-DUF} oreration are:

Oreration: -DUP

Stack before: nl n2 n3

Stack after: nl n2 n3 n3, if n3 is non-zero
Stack after: nl n2 n3» if n3 is zero

The FORTH word {?DUP} is synonymous with {-DUP} and
is pronounced “auery dup.,” The meaning is that the
tor item on the stack is inspected and duplicated
only if it is nonzero.

The FPICK operation copies a stack entry to the
tor of the stacKk without disturbing the relative
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order of the values. This operation uses the
number on the top of the stack to determine the
"derth" of the pick oreration. The statement {1
PICK} is the same as the DUP orerations and the
statement {2 PICK} is ¢the same as the OVER
operation. The stack contents before and ufter the
execution of the PICK orperation are:

Operation: FICK
Stack before: n1 ... n(i-1) ni n(i+l) +4s nK n
Stack after: nl 4. n(i-1) ni n(i+l) +4s NK ni

where i=K-n+1, The value on the top of the stack
that determines the derth of the PICK oreration is
removed .,

The DEFTH oreration counts the numbher of items
in the stack and pushes that value into the stack.
This operation is described symbolically as:

nl n2 DEPTH —enl n2 n
where “n" 1is the number of items in the stack and
"n1" and "n2" are residual values. After the DEFTH
operation is executeds the stack contains "n+1"
items.

Figure 4,1 gives several examples of
single-precision stack manipulation operations.
The examples are routine cases to demonstrate the
manner in which the stack manipulation orperations
function, The 1last two examples in Figure 4.1
perhars need further clarification. The following
FORTH statement:

3 4 DUP » SWAF DUP * + .

is a wmeans of computing the expression (in ordinary
mathematical notation): (H*H)+(B*R), The leftmost
DUP oreration corpies the top stack item diving 3 4
4 and the succeeding {#} operation multirlies the
tor two numbers diving 16, The SWAP oreration
exchanges the torp values diving 146 and 3. The
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buPp . + 55 OK

3 SWAP . . 7 3 OK

8 DROP . 1 OK

9O0VER .. . 494 0K

-739ROT .+ . -793 0K

-17 23 6 10 4 ROLL + + + + -17 10 6 23 0K

-11 4 -DUP . + 4 4 OK

-11 0 -DUP . . 0 -11 OK

-17 23 4 10 4 PICK + + + +» +» -17 10 6 23 -17 OK
3 4 DUP % SWAP DUP * + . 25 OK

: SOGR DUP # 3 OK

5 8GR . 25 OK

5
7
1
4

Figure 4.1
Examples of stack manipulation operations.

rightmost DUP orperation adain cories the tor entry
in the stack giving 16 3 3 and the following {*}
multiplies the top two numbers giving 146 9. The
final <{+} orperation computes the sum of the top two
values on the stack, giving 25, and the final dot
disrlays the result of 25,

The following colon definition:

: S@R DUF * 3

is a procedure that “squares"” the top value on the

stackK: removing the value and derositing its
square., The procedure is straightforwards the tor
value on the stack is duplicated and then

mu'tiplied hy itself.

MATHEMATICAL FUNCTIONS

A set of mathematical functions are included in
the FORTH language to increase the efficiency of
the system. The functions could be programmed
using colon definitionsy however, the execution
sreed would be 9greater than with the use of
built-in functions, The following functions are
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defined on 16-bit inteder values:

FUNCTION FORTH WORD

Absolute value ABS

Maximum MAX

Minimum MIN

Times divide *®/

Times divide modulus *#/M0D

Sign +-
Double precision functions are covered in a
serarate charter,

All nathematical functions are defined on

values held in the stack, It does not matter
whether the values were placed on the stack

directly or the values in the stack resulted from a
previous FORTH operation.

The ARSOLUTE VALUE function in FURTH is
described symbolically as:

nl ABS n2

where "n2" is a positive integer. When the word
{ABS} is encountered by FORTH: it removes the tor
stack entry, computes its absolute value, and
places the result in the stackK. The following
exaarles demonstrate the absolute value function:

-17 ARS . 17 OK

75 ABS , 75 0K

There is a related mathematical oreration in FORTH
that computes the two’'s comrlement of the tor value
in the stack. This operation, termed "minus” is
covered in the following section on complement
arithmetic.

The MAXIMUM function in FORTH is described
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symbolically as:
nl n2 MAX—en3

where "“n3" 1is the maximum of "nl" and “n2," More
specifically, the MAX function removes the tor two
values from the stack: computes the value that is
mathematically larger, and places the result in the
stack. The following examples demonstrate the
mar¥imum function:

10 5 MAX . 10 0K
-9 43 MAX . 43 0K
-34 -6 MAX .+ -6 OK
The MINIAUM function is FUORTH is described
symbolically as:
nl n2 MIN—n3
where '"n3" is the minimum of "nl1"” and "n2." More
specifically, the MIN function removes the top two
values from the stack: computes the value that is
mathematically smallers and places the result back
in the stack. The following examples demonstrate
the minimum function:
10 5 MIN . 5 0K
-9 43 MIN . -9 OK
-34 -6 MIN , -34 0K
The TIMES DIVIDE function computes the value of

the expression ni*n2/n3 and is described
symbolically as:
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nl n2 n3 #/—=quotient

When the word {#/} is encountered by FORTH, it
removes the top three values from the stack and
rerforms the computation of the function in the
following order:

1. "nl1" is multirlied by "n2" and a double
Precision product is retained.

2, The double precision product is divided by
“n3" vielding the sindle precision quotient.,

3+ The quotient is placed in the stack.

The remainder from the division operation is lost.,
The following examples demonstrate the times divide
function:

342%x/ .6 0K

-7 54% ., -8 0K

It should be noted that the times divide function
is more accurate than the sequence {nl n2 * n3 7/}
because of the double e,recision intermediate
Product,

The TIMES DIVIDE MODULUS function performs the
same calculation as the TIMES DIVIDE function
excert that both the remainder and the auotient are
stored, It is described symbolically as:

nl n2 n3 #/HOD —remainder auotient
The a4quotient is placed on top of the stack and the

remainder bhelow ity as demonstrated in the
fo)lowing examples:

532 %/MOD ., ., 71 OK
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-7 54 »/MOD , . -8 -3 0K

Agains, the times divide modulus function is more
accurate than the sequence {nl n2 * n3 /HOD}
because of the double precision intermediate
product.

The SIGN function arpplies the arithmetic sign
of the value on the tor of the stack to the value
helow it. This function is described symbolically
as:

nl n2 ¢+-—=n3

where n3=sign(n2)#*ni., The wvalues nl and n2 are
removed from the stack and the result is placed in
the stack» as demonstrated in the following

examples:

4-54+-, -4 0K
-4 -5 +- . 4 OK
-45 +- , -4 0K

-45 +- .+ ., -4 0 EMPTY STACK

The wmathematical functions in FORTH represent a
basic set that can be expanded by the user throush
the definitional facility. When a function is
defined in FORTH, it 1is used in exactly the same
manner that built-in functions are used.

COMFLEMENT ARITHMETIC

During internal computer orerations» FORTH
recognizes 16-bit or 32-hit numbers stored in
binary two’'s complement notation, What this means
is that a Ppositive inteder is stored in true form
and a negative inteder is stored in two's
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comp l ement form. This section covers 1é-bit
operationsy 32-bit orerations are covered in the
charter on double-precision arithmetic.

In a computers inteder values can be stored in
either "signed mwmagnitude” rerresentation or “"two’'s
complement"” form, In SIGNED  MAGNITUDE
REPRESENTATION» a numeric value 1is expressed in
true form to which is prefixed a sign digit, as in
the following sKeleton:

S Value

S refers to the sign and Value is the computer
representtion of the number. Normally, the digits
0 for + and 1 for - are used as signs so the
signed-magnitude rerresentations of +5 and -5 are:

Representation of +5: 0000000000000101

Representation of -5: 1000000000000101

When numbers are stored in signed-magnitude
representations the methods used for internal
computer orperations must take the sign into

consideration, FORTH does not use signed-magnitude
rerresentation!

With TWO'S COMPLEMENT arithmetic, negdative
numbers are stored in two’'s complement form and the
internal Jlogic of the microprocessor is simplified
by takKing this fact into account.

The BASE COMFLEMENT of a number N is defined
as:

Comrlement of N=b" -N

where "b" is the base and "n" is the number of
digits in N, More specifically, b" -1 is the
largest number that can be represented with n
digits, Thusy the ten’s complement of 435 is 545
and the two’'s cowmplement of 1010 is 0110, In the
computer, numbhers are stored in fixed-length memory
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locations or arithmetic redisters, so the number of
digits in a number is fixed. In the binary number
system» the two’'s complement of a number can be
develored by inspection. All zeros are converted
to ones» all ones are converted to zerossy and 1 is
added to the resulting value. For examples the
two’s complement of the binary number 101 is
computed as follows:

0000000000000101 (original value)

1111111111111010 (convert 1 to O and 0 to 1)
+1 (add 1)

1111111111111011  (two’s cowmplement)

The primary advantades of using comrlement
arithmetic are: (1) It is relatively simple to
develor the two’'s complements and (2) Arithmetic
operations are executed without regard to the size.

Typical addition oPerations using complement
arithmetic are:

0000000000000110  (6) 0000000000000110 (6)
+0000000000001101 +(13)  +1111111111110011 +(-13)
0000000000010011  (19) 1111111111111001 (-7)

1111111111111010  (-6) 1111111111111010 (-8)
+0000000000001101 +(13)  +1111111111110011 +(-13)

1 0000000000000111 (7) 1 1111111111101101 (-19)

Carry is discarded Carry is discarded

Subtraction has similar advantages and is performed
by taKing the two’'s comp!ement of the subtrahend
and adding it to the minuend,» as demonstrated in
the following examrles:
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0000000000001101  (13) 0000000000000110 (8)
-0000000000000110 -(6) -0000000000001101  -(13)
0000000000001101  (13) 0000000000000110 (6)

+1111111111111010 +(-6) +1111111111110011 +(-13)
1 0000000000000111 (7) 1111111111111001 -7)

Carry is discarded

0000000000000110 (6) 1111111111110011 (-13)
-1111111111110011 -(-13) -1111111111111010 -(-6)
0000000000000110 (6) 1111111111110011 (-13)
+0000000000001101 +(13) +0000000000000110 +(4)
0000000000010011 (19) 1111111111111001  (-7)

To sum urs two’'s complement arithmetic provides the
bhenefits of other methods of representation, while
at the same time simplifying internal computer
operations, The leftmost hit can also he regarded
as a sign bits since a nedative value always begins
with a one bit and a positive value always hegins
with a zero bit.

The MINUS operation in FORTH chandes the sign
of the value on the topr of th stack and is
described symholically as:

nl MINUS —=-n2

where “nl" is the wvalue on the top of the stack.
When the word <{MINUS} is encountered by FORTH, it
removes the top value from the stack, taKes its
two’'s complements and places the result in the
stack., Figure 4,2 demonstrates the MINUS
operation» as well as other aspects of complement
arithmetic,

In some versions of FORTH, the word MNEGATE 1is
used in place of MINUS, This is simply the process
of evolution, wherein specificity is incorporated
into the landuade definitions.,

Many computers incorporate facilities for
comp)ement arithmetic and for storind negdative
numbers in two’'s comelement notation. That is the
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primary reason that this section of the charter
exists, Other computers do not utilize comp)ement
arithmetic. The meaning of a FORTH prodram is not
necessarily dependent upon a particular tyre of
hardwares excert when "bit level" programming is

involved., Howevers it is useful to note that the
FORTH concert embodies two’s comp lement
rerresentation.

-3 MINUS « 3 OK

175 MINUS . -175 0K

5 BINARY . 101 0K

DECIMAL -5 BINARY . -101 0K
111111111111111 DECIMAL . -32767 0K
BINARY 0K

1000000000000000 DECIMAL . -32768 0K
BINARY 0K

1111114111111111 » -1 0K
1111111111111111 DECIMAL . -1 0K
BINARY 0K

111111111111111 1 + » -1000000000000000 0K

Figure 4.2
Examples of complement arithmetic.
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VOCABULARY

A familiarity with the following terms and

FORTH words is necessary for learning the FORTH
languade:

1.

N%x 1+

-
»/

ABS

Complement arithmetic
DEPTH

DROP

DUP

-DUP

?DUP

MAX

MIN

MINUS

MOD

/M0OD

*/M0D

NEGATE

Number base

OVER

PICK

ROLL

ROT

Signed magnitude rerresentation
SWAFP

Two’'s complenent
Word

EXERCISES

Write FORTH statements to perform the following

calculations:
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a. Evaluate ax+h, for a=2, b=3, and x=5,
b. Evaluate 2(n+1)(n+1) for n=4,

c+ Evaluate n(n+1)(n+2) for n=5.

d+ Evaluate ax/b for a=4, b=z2, and x=3.
e+ Evaluate aa+bhbh for a=3 and b=4,

2, Give the result from performing the following
operations:

-4 13 +

6 -5 -

-9 -3 %

-11 2/

17 -8 MOD

-19 4 /mOD

2 1 DUP

9 3 7 SWAP

16 3 -8 DROF
9 3 7 OVER

-1 63 -8 ROT
-1 463 -8 2 ROLL
6 -2 -DUP

4 -1 ABS

-13 -63 MAX
14 -6 MIN

7 43 %

-11 3 2 »/M0OD
63 -37 +-

3+, Give the results from executing the following
FORTH statements:

a. 16 MINUS 5 + 2 mOD .

b+ 6 3 DUP ROT 4 %/MOD DROP + .

c. 23 3 /HOD SWAP / DUF # .,

d. 15 4 MINUS 11 #/MOD * 2 + ,

e. 47 13 MINUS /MOD MAX ABS DUP + .
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Charter 5, CONSTANTS, VARIABLES, AND MEMORY
OPERATIONS
Constants
Variables
Fetch Orperation
Store Operation
Add to Memory
The Dictionary
Vocabhulary

Exercises
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A FORTH pProgram is develored as a set of
"function"” calls, New words are defined from old
words (i.ess» words already defined) until! a single
definition represents the whole program. Since it

is relatively easy to split a function into
subfunctions, there is a lesser need in FORTH to
utilize nemed variables than in conventional

programming )ansuages. The stack is normally used
for temporary storade., When the number of entries
in the stack is too many to Keep track of, then a
function is wusually subdivided. There are times,
however, when named variables are necessary for a
particular arplication or for implicit commenting
available throush meaningfu)l variable names. The
FORTH languade includes facilities for defining
constants and variables and for executinsg "store”
and “"fetch" operations.

CONSTANTS

A CONSTANT is a value that does not chande
during the execution of a erogram. If the same
value is used several places in a rprograms» it saves
memory space to define it as a constant. Another
advantade of using a constant is that its value is
specified in only one rlace in a prodgram. If a
change to the constant were necessary: it would
only have to be changed once. If a constant
definition were not used» then values would be
scattered throughout the program. If a chande were
then necessary: the programmer would have to search
out each value. Invariably, one or two occurrences
are missed resulting in less software reliability.

A constant is defined in FORTH with a statement
of the form:

value CONSTANT name

where “value” is the value of the constant and
“name” is the name by which it is referenced. The
following examples demonstrrate the definition and
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use of a constants:

6 CONSTANT SIX OK

SIX . 6 OK

SIX 2 = , 12 OK

The word CONSTANT is an executable oreration in
FORTH in comparison to nonexecutable declarations
in some programming languades. When the word
CONSTANT is encountered by FORTH, the value on the
tor of the stack is used as the constant’'s value.
The word following CONSTANT is the name of the
constant., The value on the top of the stack is
removed.,

A constant is referenced by using its name, as
demonstrated in the rpreceding example. When the
name of a constant 1is encountered by FORTH, the
value of the constant is pushed into the stack.
Figure 5.1 gives several erxamples of the definition
and use of constants.,

80 CONSTANT LINESIZE OK

460 CONSTANT PAGESIZE OK

LINESIZE PAGESIZE # . 4800 0K

LINESIZE PAGESIZE # CONSTANT BUFSIZE OK
BUFSIZE . 4800 OK

Figure 5.1
Definition and use of FORTH constants.

VARIABLES

A VARIARLE is a aquantity that can change during
the execution of a program. When a variable is
defined: its location is established and its
initial value is specifieds A variable’s location:
specified as a memory addresss does not change,
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The value of a variahle 1is changed when a store
operation is made to its memory address.

A variahle is defined in FORTH with a statement
of the fora:

value VARIABLE name
where "value” 1is the initial value of the variable
and “name” is the name by which it is referenced.

The following examples demonstrate the definition
of a variabhle:

16 VARIABLE PCL 0K

10 VARIABLE DX 0K

-173 VARIABLE RIMIT OK

The word VARIABLE 1is an executahle operation in
FORTH that uses the value on the top of the stack
as the initial value of the variable, When the
word VARIABLE is encountered by FORTH: the value on
the top of the stack is removed as the initial
value of the variable and the word following
VARIABLE is the name of the variable.

Each time the word VARIABLE is encountered by
FORTH» a new variable is defined., Therefore, the
word should not be used to chanse the value of a
variable. VARIARLE should only be used to declare
a variable initially.

When the name of a variable is encountered by
FORTH:, the address of the variable is eplaced on the
stacK., The address is used with store and fetch
orerations.,

FETCH OPERATION

The FETCH oreration uses the value on the tor
of the stack as an address and is described
symboliclly as:
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addr @ —en

where "addr” is a memory address and “n" is the
value stored at the specified address. The
following examples demonstrate the fetch oreration:

5 VARIABLE A OK

AB®,5 OK

25 CONSTANT TX OK

TXA@+ . 30 0K

When the word {8} is encountered by FORTH, it
removes the wvalue on the top of the stack
interrreting the value as an address. The contents
of the specified address location are "fetched"”
from memory and pushed into the stack.

The fetch operation can he used to examine the
contents of any location in memory, and is not
limited exclusively to variables. In fact,
absolute memory locations can be specified with the
fetch oreration diving the user complete access to
the contents of ROM and RAM. For examrle, if the
user wished to display the contents of binary
location 1011011, the following statements would do
the Joh:

BINARY 0K
1011011 @ , -100011111000 OK

The fetch orperation should not be used with a
constant bhecause a reference to the name of a
constant vields the value of the constant and not
its memory address. The only case wherein a fetch
oreration to the value of a constant would be
meaningful is when the constant value rerresents a
memory address.
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STORE OPERATION

The STORE operation is used to place a value in
memory at a specified address and is described
symbholically as:

n addr !

where "“n" 1is the value to be placed in memory and
"addr” is the memory address where the value should
he rplaced. The address is on the topr of the stack
and the value is directly below it, When the word
{!} 1is encountered by FORTH, the two tor vclues are
removed from the stack and the store operation is
performed., The following statements demonstrate
the "store” oreration:

3 VARIABLE TEMP OK

25 TEMP ! OK
TEMF @ . 25 OK

When a store oreration to a memory location is
performed, the previous contents of that Jlocation
are lost,

As with the fetch operation, the use of the
store oreration is not limited exclusively to
variabhles, The contents of any memory location in
RAM can be changed with the store oreration. For
examrle, if the user wished to rlace a 1 in
hexadecimal location A3FE, the following statements
would do the Job:

HEX OK
1 ASFE ! 0K
ASFE @ . 1 0K
As with the fetch orerations, the store orperation

should not be used with a constant because a
reference to the name of a constant vields the
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value of the constant and not its memory address.
The only case wherein a store oPeration to the
value of a constant would he meaningful is when the
constant value represents a memory address.

Figure 5.2 gives several exameles of the
definition and use of variables and the fetch and
store orperations.

8 VARIABLE A 0K
45 VARIABLE B OK
AR@BRPEPSWAP B! A ! OK

A®@, 45 0K
Be., 8 0K
Figure 5.2

A set of FORTH operations that exchange
the values of variables A and B.

ADD TO MEMORY

The ADD TO MEMORY operatiion can be used to add
a value to the contents of a memory location,
While this oreration can be prosrammed as a series
of FORTH operations, it occurs freauently enoush to
warrant a seecial built-in function,» which is
described symbholically as:

n addr +!

where "n" is the value to he added to the contents
of the srecified memory address and “addr” is the
menory address., The address is on the top of the
stack and the value is directly below it. When the
word {+!} 1is encountered by FORTH, the two tor
values are removed from the stack. The contents of
the specified address are fetched from memory, the
given value is added to ity and the result is
stored in the memory location indicated by the
address., The followind example demonstrates the
“add to memory" oreration:
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3 VARIABLE BETA 0K

2 BETA +'! DK
BETA @ . 5 OK

The "add to memory"” oreration is rerresentative of
a class of orperations that a user can define to
extend FORTH to a particular aeplication
enviraonment.

THE DICTIONARY

The heart of the FORTH system is a dictionary
that contains all FORTH words and their
definitions., Whenever an entity is defined by the
user, it is placed in the dictionary. The
dictionary entries that have heen covered thusfar
ares

0 FORTH words

o Colon definition names
o Constant names

o Variable names

A dictionary entry name can consist of ur to
any 31 Keyboard characterss excludiny the space
character., The VLIST command can be used to list
the contents of the dictionary and Fisure 5.3 gives
a sample listing,

The complete listing of the dictionary is
lengthy and it 1is cumbersome to search through it
to determine if a particular entry is in the table
or not, The "ticK” comand, described symbolically
as?

word—addr
where “word” is the name of the entry and "addr"” is

its address in the dictionary, can be used to find
out if the serecified word is in the dictionary. If
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VLIST
TASK SEARCH SRCH ST SW
COUNT-CHRS EFL #CHRS SLINE
SCAN  EDIT EDITOR MON  DEMO
LS VLINE HLINE SCRN PLOT
COLOR TEXT GR CLEAR (TXT)
(GR) L SCOPY BSTR SBTR
CODE  ASSEMBLER  RAND  URAND
RSEED  BUFFERS BACKUP  DUMF
+ROW  .ASCII  .VALUES .ADDRESS
SAVETURNKEY  INITIALIZEDISK
SAVESYSTEM  &SIZE  &DUMP-FORTH
&DUMP-RWTS  &DISK-DUMP  &RWTS-FHMT
SECTORS GET LOAD LK JOIN
VLIST INDEX LIST VHTAR
Y/NQUERY WHERE IND PR  ?CARD
D= DO= D? DMAX DMIN D)
D¢ D- 2ROT  2SWAF  2DUP
20VER  2DROF --)> 7 . ‘R
u URrR D. DR 85 ® SIGN
#) (# SPACES &R/WSECT  FORGET
* WHILE ELSE IF REPEAT
AGAIN END  UNTIL +LOOP LOOF
DO THEN ENDIF BEGIN  BACK
MYSELF  REBOOT  ({COMPILE))
CCOMPILE] &R/W &I/0 &DRV
DRIVE2 DRIVE1 ERRMSG CALL
&RWTS  LOAD  MESSAGE LINE
(LINE) BLOCK EMPTY-BUFFERS
FLUSH RUFFER DRO  UFDATE  +BUF
M/MOD %/  #*/MOD MOD /  /MOD
* M/ M MAX MIN DABS  ABS
D+- +- S§-)D COLD COLD1
HOME  ABRORT QUIT (
DEFINITIONS FORTH  VOCABULARY
IMREDIATE  INTERFRET  ?STACK
DLITERAL LITERAL CREATE ID.
EFROR  (ARORT)  -FIND  NUMBER
(NUMEER) WORD FPAD  HOLD
BLANKS  ERASE QUERY  EXFECT
G -TRAILING TYPE  COUNT
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DOES) (BUIL.LDS sCODE (3CODE)
DECIMAL HEX  SHMUDGE ] L
COMFILE  ?LOADING  7CSP ?PAIRS
7EXEC  ?7COMP  ?ERROR ICSP PFA
NFA CFA LFA LATEST TRAVERSE
u« -DUP  SPACE ROT ) = -
C ’ ALLOT  HERE 2+ 1+
DISKMAX SLOT HLD R# CSP

FLD DPL BASE STATE CURRENT
CONTEXT OFFSET SCR 0OUT IN
BLK C/L PREV USE LIMIT

FIRST VOC-LINK DF  FENCE
WARNING WIDTH TIB cv CH
+0RIGIM  B/SCR  R/BUF  BL 3 2
1 0 USER  2CONSTANT 2VARIABLE
2! 2@ UVARIABLE CONSTANT  EMIT
3 H BRCALC -TEXT ROLL FICK
c! ! ceR @  TOGGLE  +! DUP
SWAP DROP OVER DMINUS MINUS
D+ + 4 o< 0= R R )R
LEAVE S RP! SP! SFR  XOR
OR AND U/ Ux FILL CHMOVE
KEYESCL CR  ?TERMINAL KEY
(ENIT) ENCLOSE (FIND) DIGIT
I (D0) (+L0OOP) (LOOP)
OBRANCH  BRANCH  EXECUTE  CLIT
LIT

(1].4

Figure 5.3
A sample listing of the dictionary generated with
the VLIST command.
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the word is in the dictionary, then FORTH places
its address on the stack. If the word is not in
the dictionary, then FORTH resronds with the word
followed by a a4question mark, Fisure 5.4 contains
an example of the tickK command.

As with al) FORTH words: the "tick™ symbol! must
always bhe followed by a space.

The FORGET command can be used to delete an
entry from the dictionarys it is written as
follows:

FORGET wonrd

where "word” is the name of the entry to be
deleted., Figure 5.4 additionally includes examrles
of the FORGET command.

Caution should be taken when using the FORGET
command because it deletes the serecified entry and
all entries defined after it was defined.

SQR . SGR 7
SAR DUP * 3 0K
SGR + ¥ OK

SAR . 15692 0K
VARIABLE A 0K
21 VARIABLE B 0K
‘A . 15704 OK
‘B . 15712 OK
FORGET B OK
‘R +B 7
FORGET SGR OK
‘8GR .+ SQR 7
A, 7

Figure 5.4
Examples of the use of the tick
operation and FORGET command.

[« SN 7% BPPY
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A deneral familiarity with the following terms
and FORTH words is necessary for learning the FORTH

languade:

+!
CONSTANT
Dictionary
@ (fetch)
FORGET
! (store)
(tick)
VARIABLE

EXERCISES

1. Define the following constants:

Name Value
ONE 1

TWO 2

DX 15

DY 2%DX-1

2, Define the following variahles:

Name Value

X 321

Y -4

W X+Y-173

3. Write FORTH statements for the
statements using variabhles:

A=A-1
Y=AxX#%%2-BxX+C

where ¥% denotes exponentiation.

fol lowing
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Charter 46, DEFINITIONS AND TERMINAL

OPERATIONS

Colon Definitions

Comment Lines

Dot Operation

Dot-R Orperation

Carriade Return

Character Literals

Screen Operations

Sepace Characters

Unsigned Output

Display Contents of Address

Vocabulary

Exercises
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Programming in FORTH is essentially the process
of extending the Ilanguade. Every time a new
operation is defined in FORTH, the definition is
placed in the dictionary and hecomes part of the
language. Throush this process, a programmer can
build ur a sophisticated set of orerations that
pertain to a Particular application environment,
This charter covers colon definitions, which are an
essential part of FORTH eprodramming, and terminal
infPut/outrut orerations,

COLON DEFINITIONS

A colon definition is used to define an
operation in FORTH and consists of the following
elements:

o The initial colon {22}

o The name of the operation
o The body of the definition
o The termina) semicolon {32

The 1initial colons the name of the orerations and
the termina) semicolon are mandatory., The bhody of
the definition is optionalsy if present, however, it
must contain elements in the FORTH dictionary:
numerical valuess or character literals.

The structure of a colon definition is:

: name
body of definition
3

wherein the textual structure is intended only to
improve readability,» since FORTH is a free form
languade. The following definition illustrates the
preceding concerts:

: INITIALIZE
1 CONSTANT ONE



Definitions Fage 120

2 CONSTANT TWO
10 VARIARLE DX
1000 VARIABLE LIMIT

y OK
When a colon definition is entered into the FORTH
system, it is placed in the dictionary for
subsequent use in a FORTH statement., The initial
colon and terminal semicolon must always be
preceded and followed by at least one sprace
character.

A colon definition is not executed until its
name 1is pPresent in a FORTH statement that causes
the body of the definition to be invoked. Figure
4.1 dives examerles of colon definitions and their
invocation.

COMMENT LINES

A comment Jline can be entered at the Keyboard
in the execution or the definition mode by
enclosing the comment line in parentheses: as
follows:

( THIS IS A COMMENT LINE )

The initial left parenthesis must be followed by a
space character, The right parenthesis ends the
comment,

If a comment line is entered in the execution
modes» FORTH responds immediately with the word 0K.
In this modesr a comment Jine can be used to
annotate a listing of the display screen.

In the definition mode» a comment line is
stored with the definition in which it is enclosed.
When the defined orPeration is executed by FORTH,
the comment line is ignored. However, the comment
line serves to inform the reader of the meaning of
the definition when it is listed. Figure 4.2 gives
an example of comment lines in a function that
exchanges the values of two variables.
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VARIABLE X OK
VARIARLE Y OK
VARIABLE Z 0K
LOAD-XYZ

z!

. o000

10 20 30 LOAD-XYZ 0K
LIST-XYZ 10 20 30 OK

Figure 6.1
Colon definitions and their invocation.

: EXCHANGE ( VALI'ES OF A AND B)
( STACK CONTENTS: A B)

Dup ( ARR)
a ( A B VR
ROT ( B VE A)
DUF ( BVB AA)
e ( B VB A VA)
4 ROLL ( VR A VA R)
! ( VB A - A STORED)
! ( B STORED)
s 0K

24 VARIABLE TIME OK

6 VARIABLE MONEY OK
TIME MONEY EXCHANGE 0K
TIME @ . &4 OK

MONEY @ . 24 OK

Figure 6.2
Colon definition that exchanges the values of two variables and
demonstrates the use of comment lines.
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DOT OPERATION

The DOT OFERATION outruts a number, followed by
a spacer to the pPrinter or display. The dot
operation uses the period (i.e.s» {+}) as a FORTH
word and is described symbolically as:

n .

where "n” 1is the value to be displaved. The value
is always placed on the output medium with a
trailing space character. When the word {.} is
encountered by FORTH, the top value is removed from
the stack and the output oreration is performed.
The following example demonstrates the “dot”
operation:

-13 173 DUP . . + 173 173 -13 0K

The dot oreration is limited exclusively to the
output of numerical values.

The dot oreration displays a nesdative number in
true form with a preceding minus sign., Positive
values are displaved without a preceding plus sign.,

The number to be displaved is converted from
binary to an external form using the number base
stored as a variable named BASE., A value can he
entered in one number system whereby it is stored
internally in binary. Qutput conversion can be
made according to another base as follows:

DECIMAL 0K
138 HEX . 8A OK
8A DECIMAL . 138 OK

The number displaved with the dot operation can be
entered into the stack directly or result from a
Previous computation. the dot oeeration always
outputs the value on the topr of the stack.
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DOT-R OPERATION

The DOT-R OPERATION displays a value while
permitting the prodgrammer to specify a field width.
The dot-r orperation uses the FORTH word {.R} as an
operator symbol and is descrihbed symholically as:

n width R

where "n" is the value to be displayed and "width"”
is the field width., Both values are in the stack.
The field width is on top and the value to bhe
displaved is directly below it. When the word {.R}
is encountered by FORTH, bhoth values are removed
from the stack and the output oreration is
rerformed. The output value is always right
Justified in the fields» as follows:

( THIS LINE IS FOR ALIGNMENT ) OK
-13 6 173 8 .R R 173 -13 0K
12345 2 .R 12345 OK

-125 3 +R -125 0K

If the number of characters in the number is less
than the field widths then it is padded on the left
with spaces, If the number of characters in the
nusmber including the algebraic sign, is dgreater
than the field width, then the field width is
extended as demonstrated ahove.

The dot-r oreration adheres to the same output
conversion rules as the dot operation. Numbers are
always stored internally in bhinary and converted
for output according to the existing number base.

CARRIAGE RETURN

During a terminal output operations FORTH fills
the output line wunti! it is fully, and then
continues on the next line. If it is desired to
resume the display on the next )line, the programmer
should insert a CARRIAGE RETURN into the FORTH
statement or colon definition, The carriade return
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is represented by the FORTH word {CR}» which must
be preceded and followed by a space character,
Figure 4.3 dives some examples of the use of the
carriage return.

CHARACTER LITERALS

A CHARACTER LITERAL may be displaved by
enclosind it in the FORTH words {."> and {"} as
follows:

+" THIS IS A CHARACTER LITERAL"
where the word {.”"> must be followed by a space

character. The terminal word {"} ends the literal.,
If a character literal is entered in the

execution mode, FORTH reseponds immediately by
displaying the litera! without the enclosing FORTH
words., In the definition mode» the character

literal is saved as part of the colon definition.
When the defined function is subseauently executed:
the literal is displaved without the enclosing
FORTH words when it is encountered by FORTH,
Figure 6.4 contains examples of character literals,

FORTH words rlaced hetween the quotation marks
in a character literal are not interpreted as FORTH
words, but rather as Keyvboard characters to be
routinely displaved.,

SCREEN OPERATIONS

Some versions of FORTH include a vertical and
horizontal tabbing feature that allows the cursor
to be moved to a specified position on the screen.
Once the cursor has been moved to the desired
position, the next inPut or output operation
proceeds from that point, The tabhing feature uses
the FORTH word {VHTAR}, described as follows:

nl n2 VHTAB
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-13 173 . CR . 173

-13 0K

s CUBE
DuUpP
CrR 3

( OF N ON THE STACK)
( PREFARE TO PRINT N)
( PRINT N)

DUP DUP # ¥ ( COMPUTE CUBE)

6 R
y OK
12 CUBE

12 1728 0K

25 CUBE

( PRINT CUBE)

25 15625 0K

Figure 6.3

The carriage return {CR ! is used to begin output on a new line.

+" THIS IS A TEST" THIS IS A TEST UK
0 VARTABLE PAGECOUNT 0K

FAGENUMBER

FAGECOUNT DUP ( ADDR OF PAGE COUNT)

@1+
DUP CR
+" PAGE"
3 .R
SWAP !
§ 0K
PAGENUMBER
PAGE 1 0K
PAGENUMBER
PAGE 2 0K

( ADD 1 TO COUNT)

( DUP COUNT, START LINE)
( CHARACTER LITERAL)

( PRINT COUNT)

( STORE COUNT)

Figure 6.4

Use of a character literal in the execution and definition modes.
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where "nl1" is the vertical screen position and "n2"
is the horizontal screen position., When VHTAB is
encountered by FORTH» "nl1” and "n2" are removed
from the stacky where "nl" 1is on the tor of the
stack and "n2"” is directly below it. The cursor is
then moved to the specified position.

Another feature included in some versions of
FORTH ies the HOME command that clears the screen
and moves the cursor to the urper left hand corner.
Figure 4.5 lists a colon definition that includes
the HOME and VHTAB orerations.,

TITLE

HOME

10 20 VHTAR

+" CHAFTER 7. CONTROL STRUCTURES"
i 0K

Figure 6.5
Examples of the HOME and VHTAB operations.

SPACE CHARACTERS

A space character can be inserted into the
output line by using the FORTH words {SFACE} or
{SFACES>., The FORTH word {SPACE> inserts a sindle
space at the current line rposition. The word
{SPACES} uses one value, described as follows:

n SPACES
where '"n" 1is the number of spaces to bhe placed in
the output line. For example» the following
statement:
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5 SPACES

would insert 5 spaces in the outeut line.

UNSIGNED OUTFUT

An unsigned number is one in which al) of the
bhits in o word are interpreted as data bits. In a
single-precision valuer» al) sixteen bits represent

data without an aldebraic sign. In a doubl
precision value all thirty-two bits represent data
without an algebraic sign. This section covers

unsigned output of single precision values,

Two orerations are included in FORTH that give
the Prosrammer the carability of displaving
unsigned numbpers: the “u-dot" orperation and the
“u-dot-r" oreration, The U-DOT OPERATION is
similar to the dot oreration except that all hits
in the single precision value are treated as
unsigned data bits. Thus all unsigned data values
are effectively positive, The u-dot oreration uses
the FORTH word fU.2} and is described symbolically
as:

n U,

where "n" is the value to be displayved. As with
the dot operations the value is always placed on
the output medium with a trailing sepace character.
When the word {U.>} is encountered by FORTH, the top
value is removed from the stack and the outrut
operation is rperfurmed, The following examprle
demonstrates the u-dot oreration:

-13 173 U, U, 173 45523 0K

The u-dot operation is limited exclusively to the
output of numerical values,

The U-DOT-R orperation is similar to the u-dot
oreration with the excertion that it permits field
width to be specified. The u-dot-r orerations uses
the FORTH word {U.R2> and is described symbolically
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as3

n width U.R

where "n" 1is the value to he displaved and "width"
is the field width. Both values are in the stacK.
The field width is on toer and the value to he
displayved is directly below it, When the word
{U.R} 1is encountered by FORTH, both values are
removed from the stack and the output orperation is
performed., The output wvalue 1is always right
dustified in the field,» as follows:

( THIS LINE IS FOR ALIGNMENT ) OK
-13 6 173 8 U.R U.R 173 65523 0K

The same conversion rules that arply to signed
output also apply to unsigned output. The number
to he displayed 1is converted from internal bhinary
to the existing number base and then translated to
character form for output,.

If the number uf characters in a number exceed
the field width specified with the u-dot-r
operation, then the field width is extended to
accomodate the actual value.

DISPLAY CONTENTS OF ADDRESS

One of the aost common seauences of FORTH
orerations is {addr @ ,}» which is used to display
the contents of an address., This hasic oreration
occurs freaquently enoush in FORTH prodramming to
warrant a symhol of its own, described as follows:

addr ?

where "addr” is the address of the location whose
contents should be displaved. When FORTH
encounters the word {7} the tor entry is removed
from the stack, This is the address. The contents
of the indicated address are fetched from memory
and displaved in the form of a dot oreration: as
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indicated in the followind exameple:

3 VARIABLE DELTA 0K

DELTA ? 3 0K

The *“display contents of address"” operation does
not alter the contents of the stack after the
specified address is removed.

VOCARULARY
A dgeneral familiarity with the following terms

and FORTH words is necessary for learnindg the FORTH
landuage:

® N m, PP g

?

+R

Carriade return
Character literal
Colon definition
Comment line

CR

HOME

SPACE

SPACES

u.

U+R

VHTAB

EXERCISES

1, Write a colon definition to raise a number to
the fifth power.
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2, Write a colon definition to print a title and
pade numher across the top of the screen,

3. Write a colon definition to add one to the value
of a variable in memory.
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Charter 7. CONTROL STRUCTURES

Logical Values

Comparison Orerations
Losical Operations

DO Loor

IF Statement

EXIT and LEAVE Operations
Indefinite Loors
Vocahulary

Exercises
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The control structures in FORTH provide the
carability for eprogram loorping and conditional
operations., Program looring facilities include the
DO loors» the UNTIL loops and the WHILE loop. The
conditional operation in FORTH is the IF statement.
Several of the control structures use lodgical
values, comparison orerations, and logical
operations, which are covered initially,

LOGICAL VALUES

A number has a lodgical value of "true" if its
value 1is nonzero and has a logical value of "false”
if its value is zero. Accordingly, a binary value
of 1 represents true and a binary value of 0
reeresents false, A logical value can he rplaced in
the stack directly or result from an arithmetic,
comparison, or logical operation,

A logical value is referred to as a "flag"” in
FORTH terminalogy.

COMPARISON OPERATIONS

The comparison operations in FORTH and their
respective orerator symbols» recodgnized as FORTH
words are:

OFERATION FORTH WORD
Less than 4
Greater than )
Eaua) to =
Unsigned less than (114
Less than zero o<
Greater than zero 0>
Eaua! to zero 0=

These orerations are defined on 14-bit inteder
values, Douhble precision operations are covered in
a separate charter.,
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The LESS THAN orperation in FORTH is described
symbolically as:
nt n2 (—flasg

where "nl1" 1is the leftmost operand and “n2" is the
rightmost operand in the wmathematical expression

ni{n2. The operands are entered in the same order
as they would be entered in ordinary mathematical
notation. When FORTH encounters the word {{3>» the

tor two values are removed from the stack and the
comparison orperation (i.e,s nl{n2) 1is performed.
If the value of nl is less than the value of n2,
then a “true"” value of 1 is pushed into the stack.,
Otherwises a “false" value of 0 is pushed into the
stack. The following examrles demonstrate the less
than oreration:

23<(.1 0K
173 -13 ¢ . 0 0K
-43 6 ( + 1 OK
The GREATER THAN operation in FORTH is
described symbolically as:
nl n2 )—=flag

where "nl1" 1is the leftmost operand and "n2" is the
rightmost orperand in the mathematical expression

ni’n2. The operands are entered in the same order
as they would be entered in ordinary mathematical
notation. When FORTH encounters the word {)), the

tor two values are removed from the stack and the
comparison oeperation (i.e.» n1’n2) 1is performed.
If the value of nl is dreater than the value of n2,
then a “true"” value of 1 is rushed into the stack,
Otherwisey a "false" value of 0 is pushed into the
stack., The following examples demonsirate the
greater than oreration:
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173 -13 > . 1 0K
248 > ., 0 OK
-4 -59 ) . 1 0K
The ERUAL TO orperation in FORTH is describhed
symbolically as:
nl n2 =—»flag

where "nl1” 1is the leftmost operand and "n2" is the
rightmost orperand in the mathematical expression

ni=n2, The orerands are entered in the same order
as they would be entered in ordinary mathematical
notation. When FORTH encounters the word {=3}, the

tor two values are removed from the stack and the
equal to oreeration (i.e.» nl=n2) is performed. If
the value of nl is equal to the value of n2s then a

“true” value of 1 1is pushed into the stack.
Otherwise, a "false"” value of 0 is pushed into the
stack., The followins examples demonstrate the

equal to oreration:

54 54 = , 1 0K
23 -23 =, 0 0K
-31 -31 =, 1 OK
The UNSIGNED LESS THAN operation in FORTH is
described symbolically as:
ul u2 U¢<——flag
where "ul” is the leftmost crerand and "u2" is the
rightmost orperand in the mathematical expression

uldu2. This operation is the same as {(} excert
that the aldebraic sign of the operands is ignored
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and the full sixteen bits of the sindle precision
value are interpreted as data bits. The orerands
are entered in the same order as they mould he
entered in ordinary mathematical notation. When
FORTH encounters the word {U(2}, the tor two values
are removed from the stack and the cowmparison
operation (i.e.» ul{u2) 1is rperformed. If the
absolute value of ul is less than the value of u2
then a "true” value of 1 is pushed into the stack.
Otherwise, a "false” value of 0 is pushed into the
stack. The following examples demonstrate the
unsigned less than orperation:

23U .1 OK
2-3U¢.1 OK

-3 -2U¢ .1 OK

The LESS THAN ZERO oreration in FORTH is
described symbholically as:

n 0(—flas

where “n" is a value to be compared with zeros as
in the wathematical expression n{(0. When FORTH
encounters the word {0(}, the tor value is removed
from the stack and its value is compared with zero.
If the value of n is less than zero,» then a “true”
value of 1 is pushed into the stack. Otherwises a
“false” value of O is pushed into the stack., The
following examples demonstrate the "less than zero"
operation:

-130¢ . & 0K

139 0¢ « 0 OK

The GREATER THAN ZERO orperation in FORTH is
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described symbolically as:
n 0)—flag

where "n" 1is a value to be compared with zero: as
in the mathematical expression n)O0, When FORTH
encounters the word {0)}, the top value is removed
from the stack and its value is compared with zero.
If the value of n is greater than zero:. then a
“true” wvalue of 1 is pushed into the stack., The
following examples demonstrate the "dgreater than
zero"” oreration:

139 0> . 1 0K

-13 0> . 0 OK

The EQUAL TO ZERO oreration in FORTH is
described symbholically as:

n 0=—=flaye

where “n” is a value to be compared with zero, as
in the wmathematical expression n=0. When FORTH
encounters the word (0=}, the tor value is removed
from the stack and its value is compared with zero.
If the value of n is equal to zero, then a "true"”
value of 1 is pushed into the stack. Otherwise, a
"false” value of O is pushed into the stack., The
following examples demonstrate the "esual to zero"
oreration:

-13 0= , 0 OK

10=.,0 0K

00=.,1 0K

The "equal to zero" operation performs the Boolean
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NOT operation on binary values.

LOGICAL OPERATIONS

The logical operations in FORTH and their
respective orerator symbols,» recodgnized as FORTH
words are:

OPERATION FORTH WORD
Logical and AND
Logica) or OR
Logica) exclusive or XOR
Logical not NOT

Logical operations in FORTH are arplied in a
bitwise fashion to 32-bit orerands held in the
stack. Each logical oreration vyields a 32-bhit
result which is placed in the stack.

The AND operation in FORTH is described
symbolically as:

ni n2 AND —n3

where "nl” and "n2" are the orerands in the
mathematical expression ni n2 and "n3" 1is the
logical result. When FORTH encounters the word

{AND},» the top two values are removed from the
stack and the "and"” oeeration (i.e.» ni n2) is

executed. The operation is performed on a
bit-by-bit fashion according to the followinsg
tahle:

~10 1

0(0 O

110 1
The fol lowing exameples demonstrate the “and"

operation:
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BINARY 0K

10AND ., O OK
11AND . 1 0K
0CAND . O OK

101011001 100110011 AND , 100010001 OK

The OR operation in FORTH is described
symbolically as:

nl n2 OR—n3

where "n1" and "“n2" are the orerands in the
mathematical expression nivn2 and "n3" is the
logical result, When FORTH encounters the word

{0R>» the tor two values are removed from the stack
and the "or"” oreration (i.e.» nlvn2) is executed.
The oreration 1is performed on a bit-by-bit fashion
according to the following table:

v]i0o 1
0[O0 1
1(1 1
The fol lowing examples demonstrate the ‘"or”

orperation:

BINARY OK
100R .1 OK
110rR .1 O0OK
0O0OR ., 0 OK

101011001 100110011 OR . 101111011 OK
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The EXCLUSIVE OR orperation in FORTH is
described symbolically as:

nl n2 XOR—en3

where "n1" and "n2" are the orerands in the
mathematical exeression “(ni=n2) and "n3" is the
logical result. When FORTH encounters the word

{XOR}» the top two values are removed from the
stack and the "exclusive or" operation is executed.
The orperation 1is performed on a bit-by-bit fashion
according to the following tabhle:

+
0
1

- Olo
O

The following examples demonstrate the "exclusive
or"” operation:

BINARY 0K

1 0X0R .1 OK
00 XOR . 0 OK
11X0R . 0 OK

101011001 100110011 XOR . 1101010 0K

The NOT operation in FORTH 1s described
symbolically as:

nl NOT—en2

where "“nl" is the orerand and "n2" is the losical
result, When FORTH encounters the word {NOT}, the
tor value is removed from the stack and the "not"”
oreration is executed. The operation is rerformed
on a bit-by-bit fashion according to the following
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table:

v | 0 1
1 0

The following examples demonstrate the ‘“not”
operation:
BINARY 0K

1 NOT U, 1111111111111110 OK
0 NOT U, 1111111111111111 0K

101011001 NOT U. 1111111010100110 OK

The logical orerations are conveniently used
for maskKing operations, wherein it is desired to
Keer or eliminate specified bits in a field. The
following example demonstraotes a case where it is
necessary to Keep the low-order four bits of a
hinary field and make the other high-order bits
zero:

BINARY OK

101011001 VARIABLE DATA 0K

DATA @ 1111 AND DATA ! OK

DATA ? 1001 0K

Unlike the logical bit-by-bit orperations: the
control structures in FORTH inspect a stack item
for a zero or non-zero condition when performing
conditiona) orerations.,
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DO LOOP

Many algorithms resuire that a sequence of
sters be rereated a fixed number of times. An
algorithm of this type is usually programmed in one
of two ways: (1) The prodram steps are replicated
the required numbher of timess and (2) the prodgram
is written so that the same rprodram steps are

executed reretitively. The second method is
preferred for complex or lensthy programs.
A series of statements to be executed

repetitively is termed a LOOP3S the statements that
comprise the loor are termed the BODY OF THE LOOPS
and one pass throush the loor is termed an
ITERATION. The rumber of iterations is governed by
three control values: the initial value, the limit
value,» and the increment value, and the process
usually operates as follows:

1, A CONTROL VARIABRLE is set to an initial
value,

2+ The body of the loop is executed.

3. The value of the control variable is
increased by the increment value.

4, The value of the control wvariable is
compared with the limit value. If the limit
value is reached or is exceeded, then the first
executahle operation following the body of the
loor is executed.

5+ Execution of the loop continues with step 2,

In FORTH: a loop of this Kind is called a DO LOOP,
Fidure 7.1 dgives an eynmple of a DO loop that
Prints the numbers 0 througsh 9. The components of
the DO loop in Fidgure 7.1 are identified as
follows:



Control Structures Page 143

10 0 Limit values initial value
1]

CRI. DO loor
LOOP

where

Limit value: 10

Initial values: 0

Body of loop: CR I .

Increment value: set implicitly to 1

The control variable is maintained internally hy
FORTH, and the FORTH word {I} places the value of
the control variable in the stack., The word (I} is
not an ordinary variable. It is a command to FORTH
to place the current value of the control variable
in the stack. The limit value should always be set

at one more than the intended limit by the
Programmer.

: TOTEN
10 0 ( CONTROL VALUES)
Do ( BEGINS LOOF)

CRI . ( BODY OF LOOP)

LOooP ( ENDS LOOF)

3 0K

TOTEN

0

1

2

3

4

5

4

7

8

Y OK

Figure 7.1

A DO loop that prints the numbers O through 9.
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It should be noted that one pass is always made
throush the Iloor before the value of the control
variable is compared against the limit, Figure 7.2
gives a DO loor in which the initial value is
greater than the wvalue bhut is still executed one
time.,

: ONETIME
510 ( LIMIT VALUE = 3)
DO ¢ INIT VALUE = 10)

CRI.

LOOF

3 0K

ONETIME

10 0K

Figure 7.2
One pass is made through a DO loop even if the initial value
is greater than the limit value.

When the DO loop is executedr, the value on the
tor of the stack is taken as the initial control
value and the value directly below it in the stack
is taken as the limit value plus one. The
increment value is automatically set to one. The
operations between the FORTH words (D0} and {(LOOP)}
constitute the body of the loop that are executed
during each iteration, The DO loor executes hy
increasing the value of the control variable by one
after each rass through the loor until the limit
value is reached or exceeded.

A Fihonarci series 1is a set of numbers of the
form:

1123581321 3455. ..

where the Ith number is the sum of the previous two
values., Figure 7.3 dives a colon definition
containing a DO Joop that computes Fihonacci
numbers., In this cases the control variable is
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used only as a counter since it is not referenced
in the body of the loop. Fidure 7.4 dives a colon
definition, containing a DO loor» that computes N
factorial, In this cases the control values are
not entered directly» but a minor computation is
performed to place the desired value» i.e«» N+1l, on
the stack.,

: FIRONACCI
1 DUP DUP DUF ( SET UP INIT VALUES)

CR + » ( FRINT FIRST 2 VALUES)
11 1 ( LOOP 10 TIMES)
DO
DUP ROT + ( COMPUTE NEXT ELEMENT)
DUF . ¢ FRINT IT)
LOOP
3 0K
FIRONACCI
1123581321 3455 89 144 0K
Figure 7.3

A loop that generates Fibonacci numbers.

A variation to the DO loor structure permits
the increment value to be estabhlished by the

programmer., As an indication of how this facility
worKs, ccnsider the DO Joop in Figure 7.5 that
Prints the even inteders bhetween 2 and 20
inclusive. The structure is the same as the

conventional DO ‘'oor exceprt that the FORTH wonrd
{+LO0OF> is used to close the loop and the vaiue of
2 1is pushed into the stack Just prior to the word.
The <{+LOOF} oeeration uses the value on the top of
the stack as the increment value,

A “varying"” increment can be used to make the
value of the control variable g0 backwards, as in
Fidure 7.6 that denerates o number and its ssuare
as the index 9goes from 10 to zero., This program
demonstrates a case where the loop index is
referenced twice in the same loop. In each case,
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L1

FACTORIAL

1+
1
SWAF 2
DO

I =
LooP

§ 0K
5 FACTORIAL
7 FACTORIAL

Page 144

( OF N)

( DISFLAY EQUALS SIGN)
( LOOP N TIMES)

( RUNNING PRODUCT)

( SET UP: 1 N+1 2)

( COMPUTE FACTORIAL)
( DISFLAY RESULT)

120 0K
5040 OK

Figure 7.4

Do loop using a control variable to compute N factorial.

2L00P
21 2
DO

(]

CRI.

2
+L0OOF
s 0K
2L00P
2
4
é
8
10
12
14
16
18
20 0K

( LINIT=20, INIT=2)

( PRINT NUMRER)
( INCREMENT=2)

Figure 7.5

A DO loop illustrating an increment value of 2. Note that
+LOOP is used to close the loop.
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: RSQUARE
010 ( LIMIT=1, INIT=10)
Do
CR I . ( PRINT MUMBER>
I DUP * , ( FRINT SQUARE)
-1
+L0OOP
3 0K
RSQUARE
10 100
9 81

0K

Figure 7.6
A DO loop with an index running backwards.

it vields the same value, because it is an
operation that simply pPlaces the current index on
the stack. This fact is further demonstrated in
Figure 7.7 that contains a nested loor,

When loors are nestedy it is sometimes
desirable to reference the index of the next outer
looP., This operation can he performed throush the
use of the word {J3. When the word {J) Iis
encountered by FORTHs it pushes the current value
of the index nf the next outer loop into the stack.

When a loor index runs in the rprositive
direction, the 1limit value should be set at one
more than the intended 1limit. When a loor index
runs in the nedative direction, the limit value
should be set at one less than the intended )imit,
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: NESTEDLOOP

10 0
DO
CRI..
03
DO
-1
+L00OP
2
+LOOP
¥ OK
NESTED LOOP
0
3
2
1
2
3
2
1
4
3
2
1
&
3
2
1
8
3
2
1 0K

CR 5 SPACES I .

Figure 7.7
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636 96 36 36 36 3¢ 3 3 3¢ )
*)

*)

3% % % 3 % *)
* *)

* *)

36 9 % % *)
#*)
26966 96 06 96 3 36 3 % )

Nested loops demonstrating the use of the FORTH word {I1}.
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IF STATEMENT

The IF statement permits a series of FORTH
orerations to bhe executed on a conditional basis,
as suddgested by the followind structure:

IF

FORTH orerations
ELSE

FORTH orerations
THEN

The IF statement tests the value on the tor of the
stacks removing it, If it is true (i.e.» nonzero),
the orperations following the word {IF} ur to the

word {ELSE} are executed, Thens control rpasses to
the statement following the word {THEN}. If the
value on the tor of the stack 1is false (i.e.s
zero)s the orerations following the word {ELSE} ur
to the word {THEN} are executed, and control passes
to the statement following the word {THEN>. The
following IF statement, for examrle, tests a number
on the top of the stack and prints whether it is
Zero or naonzero:

IF

+" NONZERO"
ELSE

+" ZERO"
THEN

This statement is included in Figure 7.8 that
dericts it in an operational setting.

The ELSE part of an IF statement is optional.
If it 1is not present, then the "false” case simply
drops througsh to the word THEN, where execution
resumes. This option is demonstrated in the
program in Figure 7.9» which tests the value on the
tor of the stack and chandes its sign if it is
negative,
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: TESTIT
IF
CR ." NONZERO"
ELSE
CR ." ZERO"
THEN
3 0K
0 TESTIT
ZERO OK
-1 TESTIT
NONZERD 0K

Figure 7.8
An example of the If-ELSE-THEN statement that displays
whether a number is nonzero or zero.

IF statements can be nested as sugdested by the
following skeleton:

IF (==nn)
A 1
B |
IF  (---1 ]

c 1
D 1
ELSE 1
E 1)
F 1
THEN (---1 1

ELSE )
c l
H 1

THEN  (------ l

Statements can be organized in this fashion as long
as one statement 1is wholly contained in another
one’s they may not overlapr.

Figure 7,10 9gives a program to "make chandes”
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that demonstrates the use of nested |oors.

s MAKEFO0S
bup ( DUP VALUE FOR TESTING)
o< ( TEST IF NEGATIVE)
IF
MINUS ( CHANGE SIGN)
THEN
$ OK

5 MAKEFOS « 5 OK
-73 MAKEPOS . 73 0K

Figure 7.9
An example of the IF-THEN statement that makes the top
value on the stack positive.

EXIT AND LEAVE OPERA7 IDNS

The MAKECHANGE rprogram 1n Figure 7.10 includes
the EXIT operation that can be used to exit from a
colon definition., When the word <{EXIT)> is
encountered by FURTHs an exit is wade from the
defined erocedure in which it 1is included. The
exit operation may not be used from within a DO
loor .

The LEAVE oreration forces an exit from a DO
loor by setting the index value equal to the limit
value. When the respective {LOOP} or {+LOOP} is
encountered by FORTH: a normal exit from the loorp
is performed, Figure 7.11 contains a program that
computes the lardest factor of a number’y it
demonstrates the LEAVE operation.

INDEFINITE LOOFS
With many aldorithms, the numbher of iterations

is not Known beforehand and is discovered only
during the course of computation. A loor of this
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+ MAKECHANGE
-DUP
IF
50 /MOD
-DUP
IF
CR + +" HALVES"
THEN
-DUP
IF
25 /mMoD
-DUP
IF
CR + +" QUARTERS"
THEN
-Dup
IF
10 /mM0OD
-DUP
IF
CR + +" DIMES"
THEN
-DUP
IF
5 /M0OD
-DUP
IF
CR ., " NICKELS"
THEN
-DUP
IF
CR .+ +" PENNIES"
THEN
THEN
THEN
THEN
ELSE
CR " NO CHANGE"
THEN
CR " #xx THANK YOU xxx"
y OK
63 MAKECHANGE

Pade 152
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1 HALVES

1 DIMES

3 FENNIES

xxx THANK YOU x»xx 0K

Figure 7.10
A program to ““make change’’ that demonstrates the
use of nested |IF statements.

0 VARIABLE N OK
0 VARIABLE NOTDONE 0K
+ LGFACTOR ( OF N)
DUF DUP
CR ." LARGEST FACTOR OF " ., ." IS "
N !
1 NOTDONE ! ( SET NOT DONE FLAG)
1 ( FINAL LOOP VALUE)
SWAF 2 / ( N/2 IS INIT VAL)
DO
N @ I MOD ( N/I -> REM)
0=
IF
I. ( PRINT FACTOR)
0 NOTDONE !
LEAVE
THEN
-1
+L0OOP
NOTDONE @
IF
1.,
THEN
3 0K
51 LGFACTO
LARGEST FACTOR OF 51 IS 17 OK
Figure 7.11

A program that computes the largest factor of a number
and demonstrates the LEAVE operation.
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Kind is Known as an INDEFINITE LOOP.
FORTH includes two looping facilities to handle

indefinite loopss and these facilities correspond
to the "do while” and "do until” structures in
structured prodgramming, Fidure 7.12 depicts the do
while and do wuntil structures, With the DO WHILE
loors the test is performed beforehands and the
block of code is executed only if the conditional
test vyields a true value. With the DO UNTIL loor:.
the test is performed afterwards, and continued
execution of the loor is performed only if the
conditional test vyields a false value. In other

words: the loop is executed until a prespecified
condition is met, With the DO UNTIL loops the
block of code is always executed at least once:
whereas with the DO WHILE loor, the block of code
may not be executed at all,

Do while:
A/

False

Block
Do until: ‘ of

Code True

Figure 7.12
The “do while” and ‘“do until” structures in structured programming.
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The BEGIN..WHILE..REFEAT statement structure in
FORTH rerfurms the do while lowe and has the
following structure:

BEGIN

Operations for the conditional test
WHILE

Operations for the loorp
REPEAT

When FORTH encounters the HEEGIN,.WHILE..REPEAT
structures the operations between the FORTH words
{BEGIN} and {WHILE} are executed, This is intended
to be the conditional epart of the loor. The FORTH
word <{WHILE} then tests the value on the tor of the
stack. If it is true (i.e.» nonzero)s then the
orerations between the FORTH words {WHILE} and
{REPEAT} are executed. Upon encounterind the word
{REFEAT>» FORTH 1loops back to {BEGIN} and the
Process continues, If the value on the top of the
stack is false when the word {WHILE} is encountered
by FORTHs then FORTH continues exzecution with the
operation followming <{REFEATZ}. When using the
BEGIN. .WHILE. .REFPEAT structure, it is the
Prodrammer’'s responsihility to place the needed
conditional operations between BEGIN and WHILE.,
Figure 7.13 dives a simple erogram to
illustrate the idea of a BEGIN..WHILE..REPEAT looP.
The Program prints a list of odd numbers and their
squUAares., Statement numbered (1) sets the initial
value for the loop counter. Statement numhered (2)
bedins the loop. Statement numbered (3) durplicates
the Jloop counter for a conditional test and then
rperforms a comparison operation with the ltimit of
20, Statement numbered (4) performs the WHILE
test, If the result of the comparison is true:
then execution continues with the oreration after
the FORTH word {WHILE}., If it is falses execution
continues with the operation that follows the FORTH
word {REPEATI. Statement numbered (5) prints the
loor counter and 1its sauares, Statement numbered
(6) adds an increment of I to the loop counter:
which 1is on the toer of the stack., Statement
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numbered (7) passes control to the first operation
after the FORTH word <{BEGINMN}» and statement

numbered (8) removes the final loop value from the
stack.

: ODDSQUARES

1 (1)
BEGIN (2)
DUP 20 ( ( 3)
WHILE . ( 4)
CR DUP . DUP DUP % ., ( 5)
2 + ( 6)
REFPEAT (7))
DROP (8)
3 OK
ODDSQUARES
11
39
525
7 49
9 81
11 121
13 149
15 225
17 289
1y 361 OK

Figure 7.13
A program that lists odd numbers and their squares to
demonstrate the BEGIN. WHILE. .REPEAT loop.

A second form of the GREATEST COMMON DIVISOR
algorithm involves the modulus function. The
aldorithm, which cowmputes the dJreatest common
divisor of A and B, is listed as follows:

1, Enter A and B

2, If B is greater than A, exchange them



Control Structures Fage 157

3, Divide A by B giving the remainder R.
4, Replace A by B (i.e+r A R)
5. Replace B by R (i.ev» B R)

é, If R)0y» continue with ster 3. Otherwises A
is the dreatest common divisor.

The actual calculations can be listed as follows:

GCD of 44 and 28 CD of 10 and 8
A B R A B R
44 28 14 10 &8 2
28 16 12 8 2 0
146 12 4 2 0 0

4 0 0 Result is 2

Result is 4

Figure 7.14 dives a prosram that computes the
dreutest common divisor using this aldorithms it
demonstrates the BEGIM..WHILE..REFEAT loor. It
should be emphasized that the WHILE oreration tests
any value that 1is on the top of the stack. If it
is true (i.e,» nonzero), then execution of the loor
continues. Dtherwises as covered previously:
execution of the indefinite loor is terminated.

The dreatest common divisor program in Fisure
7.14 demonstrates the use of a “subprogram” named
P?EXCHANGE that verifies that variable A is greater
than variahle B, The rest of the program
essentially durlicates the diven aigorithm.

The BREGIN,.UNTIL statement structure in FORTH
rerforas the do wunti]l structure and has the
following structures
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0 VARIABLE A 0K
0 VARIABLE B 0K
: 7EXCHANGE ( A B)
SWAF ( B A)
DUFP ( BAA)
ROT (AABR
DUF ( AABB)
ROT ( ABBRA)
) ( ARF)
IF
SWAP (A)B
THEN
3y 0K
: GCD1
EXCHANGE ( A)>B)
B! Al
BEGIN
B @ ( TEST R)
WHILE
AREBEG@
mMoD ( A MOD B)
BR@A! ( A (-BR)
B! ( B (- REM)
REPEAT
AR ( A IS RESULT)
CR . ( FRINT RESULT)
y 0K
38 57 GCD1
19 0K
Figure 7.14

A program to compute the greatest common divisor
demonstrating the BEGIN. WHILE. .REPEAT loop.
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BEGIN
Operations for the loop
Operations for the conditional test

UNTIL

When FORTH encounters the BEGIN..UNTIL structure:
the orerations between the FORTH words {BEGIN} and
(UNTIL} are executed., This is intended to bhe both
the operational and conditional parts of the loor.

It should be noted that the loop is always executed
at least once because the conditional test wil) be
at the end of the loor. The FORTH word {UNTIL}

then tests the value on the top of the stack. If
it is true (i.e.» nonzero), then the execution of
the loor has been completed and FORTH continues
execution with the operation following {UNTIL}. If

the value on the top of the stack is false when the
word {UNTIL} is encountered by FORTH, then FORTH

continues execution with the operation following

the initial BEGIN. Essentially, this is the
looring facility available with the BEGIN,..UNTIL
looring structure. It is the eprogrammer’s

responsibility to pPlace the needed conditional
orerations between BEGIN and UNTIL and in the
appPropriate orerational sequence.

Fidure 7.15 dives a simple program to
illustrate the idea of a BEGIN..UNTIL loor. The
rprodram prints a list of even numbers and their
squares and cubes. The two subprograms named SQR
and CUBE compute the square and cube orerations:
respectively, of the value on the top of the stack.
Statement numbered (1) sets the initial value for
the loor counter. Statement numbered (2) bedins
the loor., Statement numbered (3) returns the
carriage (to the printer) so that each value bedins
on a new line., Statements numbered (4), (5), and
(6) diseplay the loop counter, its squaresr and its
cuhes respectively. Statement numbered (7)
increases the value of the loop counter by 2 and
statement numbered (8) compares its value against
the limit of 20, Statement numbered () tests the
condition, If its value is false, execution of the
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SQGR
DUP *
K
CURE
DUF DUP
* %
0K
EVENS
2
BEGIN
CR
DUP
DUP SQR .
DUF CUEE .,
2 4+
DUF 20 =
UNTIL
DROF
y OK
EVENS
248
4 16 64
& 36 216
8 64 512
10 100 1000
12 144 1728
14 1946 2744
16 256 4094
18 324 5832 0K

[

s P

P R N B S N
=0 NV LWy =

N N e W W W W

Figure 7.15
A program that lists even numbers, their squares, and
their cubes to demonstrate the BEGIN. .UNTIL loop.
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loor continues. Otherwise, control drops through
the loop to the next oeeration. Statement numbered
(10) removes the final loop value from the stack.
Figure 7,146 dives another rrodram for the
dreatest common divisor algorithm presented earlier
in the chartery it demon:trates the BEGIN..UNTIL

loor. The user should compare this program with
the eprogram named GCD1 in Figure 7.14 to obtain the
subtle difference between the two types of

indefinite looPrs.

: GCD2
PEXCHANGE (A)D>R)
B!A!
BEGIN
ARERG@ ( SET UP A AND E)
moD DUF ( A MOD B)
B@aA! (A(-BR)
B! ( B (- REM)
0= ( TEST FOR ZERO)
UNTIL
A @ ( A IS RESULT)
CR . ( FRINT RESULT)
5 0K
38 57 GCD2
19 0K

Figure 7.16
A program to compute the greatest common divisor
demonstrating the BEGIN. .UNTIL loop.
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VOCABULARY

A deneral familiarity with the following terms
and FORTH words is necessary for learning the FORTH

language:

And

BEGIN

Body of the loop
Control variable
DO

DO loor

Do until loor

Do while loor
ELSE

Equal to

Equa) to zero
Exclusive or
EXIT

False

Greater than
Greater than zero
I

IF

Increment value
Indefinite loor
Initial value
LEAVE

Less than

Less than zero
Limit value
LOOP

Not

Or

REPEAT

THEN

True

Unsigned less than
UNTIL
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1, Give results for the following comparison

operationss:

(a) 6 -43 ( .
(b) -1 5
(c) 10 0 =
(d) -4 0¢
(e) -1 -6 UC
(f) 5 0)

(g) 3 0=

*
*

24 Give results for the following
operations:

(a) 1 0 AND .
(b) 0 0 XOR .

(c) 0 NOT U.

logica)l

(d) 111010011100001 001111100010110 XOR .
(e) 111010011100001 001111100010110 AND .

3. Give the results of the following loors:

(a) 5 10
DO
CRI.
Loop

(b) 3 2
DO
CR I DUP + .
LoopP

(c) 510
DO
CR1I.
-1
+L0OO0OP
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4, What operation does the following colon
definition perform?
r 7?7
DUP
-
3

S Write a program to add the inteders from 57 to

139 using each of the following constructs:

(a) DO loor
(b) BEGIN ..UNTIL loop
(c) BEGIN, .WHILE..REFEAT loor
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Charter 8, DOUBLE FRECISION

Representation

Arithmetic Operations
Stack Manipulation
Mathematical Functions
Comrarison Operations
Mixed-Magnitude Operations
Terminal Orerations
Constants and Variables
Memory Operations
Vocabulary

Exercises
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Many computer apPplications resuire a level of
arithmetic precision 9greater than is available
through the use of 14-bit vilues. In facts routine
tahulations commonly involve totals that exceed the
maximum representahle single precision value of
32:767, The DOURLE PRECISION facilities in FORTH
rpermit calculations involving double length
quantities with the same relative ease with which
sindgle precision calculations can be rperformed.
This charter introduces double precision concerts
and covers the FORTH operations that apPpPly to
double precision wvalues. The bhasic conceets
underlying double pPrecision operations are the same
as for sindle precision oeerations. The primary
difference 1is that alternate FORTH words are used.
Therefore: most torics are presented with a minimum
of introductory material.

REFRESENTATION

A double precision number in FORTH occuries two
14-hit positions in the stack and in memory., In a
double pPrecision number, the left half is called
the "high order"” part and the right half is called
the “low order" part. In the stack and in memory:
the high order part of a double precision number is
placed directliy above the low order rart.

A double precision integer 1is seecified by
placing a period anvwhere in the number.
Regardless of where the period is placed the value
stored in the comPuter is the same. The oreration
{D.>» pronounced "d dot»" is used to display a
double precision number as follows:

47381, D. 47381 0K
47,381 D, 47381 0K
If the parts of a double precision nrumber are

displaved separately, unusual results are obtained:
as in the following examples:
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3 5 D. 3274683 0K
327683, + + 53 0K

In the first line, two single prerision numhers are
routinely entered into the stack and then disrlaved
as a double precision nunber. In the second line»
the Process 1is reversed. If the binary bit
patterns are analyzed, then the previous results
maKe dood sense:

HIGH ORDER PART  LOW ORDER PART

Binary 0000000000000101 0000000000000011
5 3

When a double precision value 1is displaveds the
high and low order parts are concatenated to form
one long word.

The leftmost hits of both the high and
low-order parts of a double precision number are
significant when the parts are displaved separately
because they determine the algebraic signs of the
values diselaved., As a double precision number,
FORTH determines the algebraic sign of the value
from the leftmost-hit of the high-order part of the
number, Figure 8.1 gives some indication of double
precision hit patterns.

Another means of entering a double precision
value into the otack is by extending a singdle
precision value throush the use of the following
FORTH oreration:

S->D

where the characters are entered without
intervening spaces., When FORTH encounters the word
{S->D}» it removes the sindle precision value from
the top of the stacks extends it to a double
precision valuer and pushes the result hack into
the stack. A double precision value is created hy
proradating the sign bit of a sindle precision
value across the high order part of the dgenerated
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-3 5 D, 393213 OK
-3 5 BINARY D. 1011111111111111101 0K

DECIMAL OK
-3 5 BINARY U. U, 101 1111111111111101 OK
DECIMAL OK

-3 -5 D. -262147 0K
-3 -5 BINARY D. -1000000000000000011 0K

DECIMAL OK

-3 -5 BINARY CR U. CR U.
1111111111111011
1111111111111101 0K

Figure 8.1
Representation of double precision values.

double precision word. Megative double Precision
values are stored in two’'s complement form.

ARITHMETIC OPERATIONS

The double eprecision arithmetic operations in
FORTH and their respective orerator symbols:
recodgnized as FORTH words are:

OPERATION FORTH WORD
Double Precision Addition D+
Double Precision Subtraction D-
Double Frecision Negative DMINUS

These operations are defined on 32-bit inteder
values.,

The double precision addition operation in
FORTH is described symbholically as:

dl d2 D+ —esum

where "dl1" 1is the double precision addend and "d2“
is the double precision augend. When the word {D+2
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is encountered by FORTH, it adds the top two double
precision values in the stack f(i.e.» di+d2),
removes them» and prlaces the double precision sum
in the stack. The values can be placed in the
stack directly or may result from a previous
computation., The following examples demonstrate
double precision addition:

43214, 1. D+ D. 43217 0K

3000, 60000, -10000. D+ D+ D, 55000 OK

-35123. 5000, D+ 123, D+ D. -30000 OK

123 S->D 90000, D+ D. 90123 0K

The double precision subtraction orperation in
FORTH is described symbholically as:

dl d2 D-—edifference

where "d1” and "d2" are the double precision
minuend and double Precision subtrahend,
respectively. When the word {D-} is encountered by
FORTH, it subtracts the value on the tor of the
stack from the value below it (i.e.» d1-d2),
removes them» and rplaces the double precision
difference in the stack, As with other FORTH
operationsy the values may be placed in the stack
directly or may result from a previous computation.
The following examrles demonstrate double precision
subtraction:

75123, 5123, D- D. 70000 OK

67887, -2113. D- D. 70000 OK

90000, -123 S-)D D- D. 90123 0K

With double eprecision subtraction, the subtrahend
is always on the top of the stacK. Figure 8.2
depicts a simple FORTH !oop that demonstrates a
double precision arithmetic oreration.
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: SUM

1

DO

D+

LOOP

CR ." SuUM IS “ D,
s 0K
32748, 50000, 2. 3 SUM
Sum IS 82770 OK

Figure 8.2
A FORTH loop demonstrating a double precision
arithmetic operation.

The double precision negation operation in
FORTH changes the sign of the double precision
value on the top of the stack and is described
symbolically asz:

d1l DMINUS —=d1
where “di1" is the double precision value on the top
of the stack. The following examele demonstrates

the DMINUS oreration:

-141289, DMINUS D. 161289 OK

When the word {DMINUS} is encountered by FORTH, it
removes the double precision value from the stack:,
takes its two’'s complement» and places the result
in the stack.

Double rprecision multiplication and division
are availahle as mired-magnitude operations.

STACK MANIFULATION

The double precision stack wmanipulation
operations in FORTH and their respective FORTH
words are:
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OPERATION FORTH WORD
Duplicates the top 2DUP
two double

precision values
on the stack

Exchanges the torp 25WAP
two double
precision values
on the stack

Removes the torp 2DROP
double precision
value from the
stack

Copies the second 20VER
double Precision
value in the stack
and puts it on the
top

Copies the ni-th 2FICK
double rrecision
stack item to the
top

Rotates the third 2ROT
double precision
value in the stack
and puts it on the
top

Rotates the top N 2ROLL
double precision
stack items

It should be recalled that when visualizing the
stacks the item on the right denotes the tor of the
stack., The ellirsisy i.049 {eee2r 1is used to
indicate that items lower in the stack may exist



Double Precision Page 173

but they are not restricted to double precision
values,

The 2DUP oreration takes the top double
precision value on the stacks duplicates it, and
pushes the duplicated value into the stack. The
stack contents before and after the oreration are:

Orperation: 2DUF
Stack before: eoedl
Stack after: eoedl dil

The 2SWAP orperation exchandes the top two
double precision values on the stack without
disturbing the other stack values. The stack
contents before and after the 2SWAF oreration are:

Operation: 25WAP
Stack before: +..d1 d2
Stack after: .+..d2 di

The 2DROFP orperation removes the double
precision value on the top of the stack so that all
of the values below it are moved up, The stack
contents before and after the execution of the
2DROF creration are:

Orperation: 2DROP
Stack before: +.odl d2
Stack afters: eeedl

The 20VER operation takes the second double
precision value in the stacks duplicates it and
pushes the durlicated value into the stack. The
stack contents before and after the execution of
the 20VER oreration are:

Operation: 20VER
Stack before: .+..dl d2
Stack after: veedl d2 di

The 2PICK oreration copies a stack entry to the
tor of the stacKk without disturbing the relative
order of the values. This operation uses the
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single precision number on the top of the stack to
determine the “depth” of the pick operation. The
stack contents before and after the execution of
the 2PICK oreration are:

Operation: 2FI1CK
Stack before: dl...d(i-1) di d(i+1)s..dK n
StackK after: dlseed(i-1) di d(i+1)ssedK di

where i=K-n+l., The value on the top of the stack
that determines the depth of the 2FICK operation is
removed, The statement {1 ZPICK} is the same as the
2DUF orperations and the statement {2 2PICK}> is the
same as the 20VER oreration.

The 2ROT orperation works with the top three
double eprecision values in the stack. The double
precision value that 1is third from the tor is
rotated to the top, and the two values above it are
pushed down. The stack contents before and after
the execution of the 2ROT oreration are:

Operation: 2ROT
Stack before: +..dl d2 d3
Stack after: veed2 d3 dl

The 2ROLL operation is similar to the 2ROT
orerationy but uses the sindle rrecision value on
the top of the stack to determine the “depth" of
the roll., The statement {3 2ROLLY is the same as
the 2ROT operation. The stack before and after the
execution of the 2ROLL operation are:

Operatrion: 2ROLL
Stack before: dis. .d(i-1) di d(i+1)essdK n
Stack after: dl.sed(i-1) d(i+l)e.edk di

where izK-n+l. The value on the top of the stack
that determines the depth of the roll is removed,
Figure 8.3 9dives several examples of double

Precision stack manipulation opPerations. The
examp les are routine cases to demonstrate the
manner in which the double precision stack

manirpulation operations function.
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32748, 2DUP D. D, 32768 32768 0K

40000, 50000, 25WAP D. D. 40000 50000 OK
40000. 50000. 2DROP D. 40000 OK

65535, -14, 20VER D. D. D. 65535 -14 45535 OK
'70 30 90 ZRDT D. Do Do -7 9 3 OK

'170 230 60 100 4 2ROLL CR Do Dc Do D.

-17 10 6 23 0K

Figure 8.3
Examples of stack manipulation operations.

MATHEMATICAL FUNCTIONS

The double precision mathematical functions in
FORTH comrplement the single precision functions and
have the same mathematica)l meanindg. The following
double precision mathematical functions are
included in FORTH:

FUNCTION FORTH WORD
Double precision absolute value DAES
Double precision maximum DMAX
Double precision minimum DMIN
Double precision sign D+-

All double precision mathematical! functions are
defined on double Pprecision values held in the
stack.

The double precision absolute value function in
FORTH is described symbolically as:

dl DABS d2

where d2 is a positive double precision inteser.
When the word <{DABS} is encountered by FORTH, it
removes the top double Precision stack entry:
computes its absolute value, and places the resuit
in the stack. The following examples demonstrate
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the absolute value function:

-1712é4., DABS D. 171264 OK

41390. DABS D. 41390 0K

The double erecision maximum function in FORTH
is described <ymbolically as:

dl d2 DMAX—d3

where d3 is the wmaximum of dl and d2. The DMAX
function removes the top two double precision
values from the stack: computes the value that is
mathematically lurger, and places the result in the
stack., The following examerles demonstrate the
maximum functions

-63152. -59004. DMAX D. -59004 0K

35190, -14. DMAX D. 35190 OK

The double precision minimum function in FORTH
is described symbolically as:

dl d2 DMIN—ed3

where d3 is the minimum of dl and d2., The DMIN
function removes the tor two double precision
values from the stacks, computes the value that is
mathematically smallers and places the result back
in the stack. The following examples demonstrate
the minimum function:

-63152., -57004, DMIN D. -4A3132 0K

35190, -14, DMIN D. -14 0K

The double Pprecision sign function arplies the
arithmetic sign of the single precision value on
the top of the stack to the double precision value
below it, This function is described symbolically
as?:
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dl n D+- —=d2
where d2=sign(n)xdl. The values dl and n are
removed from the stack and the result is placed in
the stack as demonstrated in the following

examrles:

50000. -1 D+- D+ -50000 OK

-50000. -1 D+- D. 50000 OK

-30000. 1 D+- D. -50000 OK

The mixed-mode oPerations on single and double
Pprecision values constitute other wmathematical
functions. They are covered in a serparate section,

COMPARISON OPERATIONS

The double pPrecision comearison operations in
FORTH and their respective orperator symbols:
recodnized as FORTH words ares

OPERATION FORTH WORD
Less than D¢
Greater than D)
Eaual to D=
Equal to zero DO=
Unsigned less than DU«

These operations are defined on 32-bit inteder
values,

The double rprecision less than oreeration in
FORTH is described symbholically as:

di d2 D{—=flag
where "d1" is the leftmost orperand and "d2" is the

rightmost operand in the mathematical expression
di{d2. The operands are entered in the same order
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as they would be entered in ordinary mathematical
notation. When FORTH encounters the word {D{J}, the
tor two double Precision values are removed from
the stack and the comparison oreration f{i.e.s
d1(d2) 1is prerformed, If the value of dl is less
than the value of d2y» then a "true” value of 1 is
pushed into the stack., Otherwise, a "false" value
of 0 is pushed into the stack, The following
examrles demonstirate the double precision less than
oreration:

40000, 50000, D¢ . 1 OK

50000. 40000, D¢ . 0 OK

‘1730 00 D( [ 1 OK

The double eprecision greater than oreration in
FORTH is described symbolically as:

di d2 D)—=flayg

where "d1" is the leftmost operand and "d2" is the
rightmost operand in the mathematical expression
d1>d2, The operands are entered in the same order
as they would be entered in ordinary mathematical
notation. When FORTH encounters the word (D>}, the
tor two double precision values are removed from
the stack and the comparison operation (i.e.»
d1>d2) is rperformed. If the value of dl is greater
than the value of d2, then a "true" value of 1 is
pushed into the stack. Otherwise: a "false" value
of 0 is pushed into the stack. The following
examprles demonstrate the double rrecision greater
than operation:

0. -173. D) + 1 OK

69145, 32961, D> . 1 OK

9999, 89423, D) . 0 OK

The double precision esual to operation in
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FORTH is described symbolically as:
dl d2 D=—>f)ayg

where "d1" is the leftmost operand and “d2" is the
rightmost operand in the mathematical expression
di=d2, The orerands are entered in the same order
as they would be entered in ordinary mathematical
notation., When FURTH encounters the word (D=2, the
tor two double precision values are removed from
the stack and the esual to operation (i.e.,» d1=d2)
is rperformed. If the value of dl is equal to the
value of d2» then a "true" value of 1 is pushed
into the stack. Otherwise» a "false” value of 0 is

pushed into the stack. The following examples
demonstrate the double Pprecision eaual to
oreration:

72689, 72689, D= . 1 OK

-4365, 4345, D= ., 0 0K

-0, 0. D= .+ 1 0K

The double precision eaual to zero operation in
FORTH 15 described symbolically as:

d DO=—=Flag
where "d" is a double precision value to be
compared with zeros as in the wmathematical
expression d=0. When FORTH encounters the word

{D0=3}+» the double precision value on the top of the
stack is removed and compared with zero., If the
value of d is equal to zero, then a "true” value of
1 is pushed into the stack. Otherwises a "false”
value of 0 is pushed into the stack. The following
examples demonstrate the double precision equal to
zero oreration:

95222, D0= , 0 OK

0. DO= + 1 OK
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00D0= .1 OK

The double precision unsigned less than
operation in FORTH is described symbolically as:

udi ud2 DU(—=flag

where "udl"” is the Jleftmost orerand and "ud2” is
the rightmost orerand in the mathematical
expression udidud2, This operation is the same as
{D{(} excert that the sign bit of the orerands is
interrreted as a data bhit, The orerands are
entered in the same order as they would be entered
in ordinary mathematical notation. When FORTH
encounters the word {DU{(}, the two double precision
values are removed from the stack and the
comrarison oeeration (i.e.» udi{ud2) is performed.
If the value of udl is less than the value of ud2,
then a "true" value of 1 is pushed into the stack.
Otherwises a "false" value of 0 is pushed into the
stack., The following examples demonstrate the
double precision unsigned less than operation:

40000. 50000, DUC + 1 OK

40000, -50000., DUC . 1 0K

-50000. -40000. DUC . 1 OK

Al double precision comparison orerations
vield single eprecision "flag" values that can be
used as operands in logical orerations.

MIXED MAGNITUDE OPERATIONS

Mizred magnitude orPerations provide a means of
utilizing the multirlicative operations in computer
integer arithmetic. In generals the product of two
sindle Precision inteders vields a double precision
product and the division of a double precision
dividend by a single rprecision divisor vields a
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single precision 4quotient and a single precision
remainder, Mixed-magnitude multieplication in
FORTH is described symbolically as:

nl n2 Mx—=d

where "n1" and “"n2" are the single precision
multirlier and multirlicand, respectively, and "d"
is the double precision product. When the word
{M*} is encountered by FORTH, it removes the tor
two single rprecision values from the stack:
multirlies them forming a double precision product
(ive.» ni¥n2), and pushes the result into the stack
as a double precision value. The following example
demonstrates mixed-magnitude multirplication:

20000 30000 M* D, 600000000 OK

Mixed-magnitude division in FORTH is described
symbolically as:

d n1 I/—=n2 n3

where "d" is the double precision dividend, "ni1" is
the single precision divisors "n2" is the sindle

Precision remainder, and "n3" is the sindle
precision quotient, When the word {M/} is
encountered by FORTH» it removes the sindle
precision value from the top of the stack and the
double precision value bhelow 1it, The division
oreration (i.e.» d/nl) is rerformed» and the

remainder (i.esr» n2) and the suotient (i.e.,» n3)
are prushed into the stack. The following examrle
demonstrates mixed-magnitude division:

600000001, 20000 M/ . . 30000 1 OK

The unsigned mixed-magnitude multiplication
operation in FORTH is described symbolically as:

ul u2 U¥—sud

where “"ul" and “u2” are the unsigned sindle
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Precision multirlier and multirlicand,
respectively and “ud” is the unsigned double
eprecision Product. When FORTH encounters the word
{U%}y» the topr two sindle precision values are
removed from the top of the stack and multirlied
todether (i.e.» wl#u2) wusing all) 16 bits of each
orerand with the sign bit interpreted as a data

bit, The unsigned double precision result is
pushed into the stack. The following example
demonstrates unsigned mixed -magnitude

multirlication:
-5 -3 Ux D, -524273 0K

The unsigned mixed-magnitude division orperation
in FORTH is described symbolically as:

ud ui U/—su2 u3
where "ud" is the unsigned double precision

dividend» "ul" 1is the unsigned sindle precision
divisor, "u2" 1is the unsigned sindgle rprecision

remainders and "u3” is the unsigned sindle
Precision quotient, When the word {U/} is
encountered by FORTH, it removes the top two values
from the stack., The first value which is on the

tor of the stack is the unsigned single erecision
divisor and the value below it is the unsigned
double precision dividend. The division oreration
(i.ev» ud/ul) is executed and the unsigned sindle
precision remainder and quotient are pushed into
the stack., The following example demonstrates the
unsisned mixed-magnitude division operation:

-600000001, -30000 U/ U. U, 43546 32991 OK

The unsigned wixed-magnitude divide modulus
operation in FORTH is described symbolically as:

udl u2 M/MOD—>u3 ud4

where "udl” is the unsigned double Pprecision
dividends "u2"” is the unsidgned single pPrecision
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divisor, "u3" is the unsigned sindle precision
remainder, and "ud4"” 1is the unsigned double
precision aquotient. When FORTH encounters the word
{M/MOD}» the single precision divisor and double
precision dividend are removed from the stack and
the division oreration (i.e.» udi/u2) is executed.
The unsigned sindle precision remainder and the
unsigned double precision Juotient are pushed into
the stack. The followingd ezample demonstrates this
oreration:

-600000001. -30000 M/MOD D. U. 103978 5087 OK

In deneral the unsigned vciues selected as
orerands for mixed-magnitude operations permit the
full word capability to be used for applications
that require it.

TERMINAL OFPERATIONS

The D-DOT OPERATION represented by the word
{D.? outputs a double precision value to the
printer or display. This oreration was presented
earlier in this charter, The d-dot operation is
described symbolically as:

d D.

where "d" is the double precision value to be
displayeds which is always placed on the output
medium with a trailing space character., When the
word {D.}> is encountered by FORTH, the double
precision value on the tor of the stack is removed

and displayed. The d-dot orperation displays a
negative number in true form with a preceding minus
sign, Positive values are displaved without a

preceding plus sign, The value is converted from
internal binary to external form according to the
number bhase stored in BASE.

The D-DOT-R OPERATION displays a double
precision value while permitting the programmer to
specify a field width, The d-dot-r operation uses
the FORTH word <{D.R} as an orerator symbol and is
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described symbolically as:
d width D.R

where "d” 1is the double rrecision value to be
diseplayed and “width” is a single precision value
rerresentind the field width. Roth values are in
the stack with the width on top and the double
precision value below it. When the word {D.R} is
encountered by FORTH, both values are removed from
the stack and the output operation is performed.
The output value is always right Justified in the
field, The d-dot-r orerution adheres to the same
output conversion rules as the d-dot oreration.

CONSTANTS AND VARIABLES

A double precision constant is defined in FORTH
with a statement of the form:

value 2CONSTANT name

where ‘“"value” 1is the value of the double precision
constant and “name” is the name by which it is
referenced, The foilowing examples demonstrate the
definition and use of a double precision constant:

75301, 2CONSTANT LMT OK

LMT D, 75301 OK

The word <{2CONSTANT} is an executable oreration in
FORTH. When it is encountered by FORTH» the double
precision value on the torp of the stack is used as
the value of the double precision constant. The
word following 2CONSTANT is the name of the
constants and the double precision value on the top
of the stack is removed during the execution of the
operation,

A double precison constant 1is referenced by
using its names as demonstrated in the preceding
example. When the name of a double precision
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constant is encountered by FORTH: the value of the
double precision constant is pushed into the stack.

A double precision variable is defined in FORTH
with a statement of the form:

value 2VARIAELE name

where "value" is the initial value of the double
precision variable and "name" is the name by which
it is referenced, The following examrles
demonstrate the definition of a variable:

-131294, 2VARIABLE CTL 0K

0. 2VARIABLE DSUM OK

5. 2VARIABLE DFIVE 0K

The word 2VARIABLE is an executable operation in
FORTH that uses the double precision value on the
tor of the stack as the initia)l value of the double
precision variable. When the word 2VARIABLE is
encountered by FORTH, the double precision value on
the tor of the stack is removed as the initial
value of the variabhle and the word following
2VARIABLE is the riame of the variabhle.

Each time the word 2VARIARLE is encountered by
FORTH» a new double precision variable is defined.,
Therefore,» the word should not be used to change
the value of a wvariable, The FORTH word
{2VARIABLE> should only be used to declare a
variable initially,

When the nume of a double precision variable is
encountered by FORTH)» the address of the double
precision variable is placed on the stack. The
address is used with the double precision store and
fetch orerations.

MEMORY OPERATIONS

The double precision fetch oreration uses the
value on the top of the stack as the address of a
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double precision value and is described
symbolically as:

addr 20 —d

where ‘"addr” is a wmemory address and "d" is the
double rprecision value stored at the srecified
address., The following examples demonstrate the
double precision fetch oreration:

30000. 2VARIABLE FAY 0K

PAY 2@ D. 50000 OK

3000. 2CONSTANT RAISE OK

RAISE PAY 2@ D+ D. 35000 OK

When the word {28} is encountered by FORTH, it
removes the single Pprecision value on the top of
the stack interpreting the value as an address,
The double precision value at the specified address
location is “fetched"” from memory and pushed into
the stack.

The double precision fetch oreration should not
hbe used with a double precision constant because
reference to the name of a constant always vields
the value of the constant and not its memory
address.,

The double precision store operation is used to
place a double precision value from the stack into
memory at a specified address and is described
symbolically as:

d addr 2!

where "d" 1is the double rrecision value to be
placed in wmemory and "addr"” is the memory address
where the value should be placed. The address is
on the top of the stack and the double precision
value is directly below it. When the word {2!} is
encountered by FORTHs the top two stack entries -
one for the address and one for the double
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precision value - are removed from the stack and
the double Precision store operation is performed.
The following statements demonstrate the double
precision store oPeration:

69999. 2VARIABLE TOF OK

70000. TOP 2! OK

TOF 2@ D. 70000 OK

When a double pPrecision store oreration to a memory
location is rperformed, the previous contents of
that location are lost,

As with the double precision fetch oreration:
the double precision store operation should not he
used with a double precision constant because a

reference to the name of a double Precision
constant vields the value of the constant and not
its wmemory address. Figure 8.4 4gives several

examples of the definition and use of double
precision variables and the double precision fetch
and store operations.

50000, 2VARIABLE DA OK
100000, 2VARIABLE DB 0K
: EXCH
DA 28 DB 2@
2SWAF DB 2! DA 2!
i 0K
EXCH OK
DA 2@ D. 100000 OK
DB 20 D. 50000 OK

Figure 8.4
A set of double precision operations that exchange the
values of double precision variables DA and DB.
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VOCABULARY

A deneral familiarity with the following terms
and FORTH words is necessary for learning the FORTH
language:

2!

20
2CONSTANT
2DROF
2DUP
20VER
2PICK
2ROLL
2R0OT
25WAP
2VARIARLE
D,

D+

D..

D+-

D«

D>

D=

DO=

DABS
DMAX
DMIN
DMINUS
Double-precision value
D.R

DU

Mx

M/

M/MOD
Mixed-masnitude oreration
S->D

Un

u/
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EXERC!SES

Develor colon definitions for the
double-precision functions:

1. Double Plus store

Operation: D+!

Stack before: ++. d addr

Stack after:z .,

Result: d is added to the double
precision value at addr

2. Double one plus store

Operation: Di+!

Stack before: +.. addr

Stack after: voe

Result: 1 is added to the double
precision value at addr

3. Double one minus store

Operation: D1-!

Stack before: ... addr

Stack after: tee

Result: 1 is subtracted from the
double Precision value at
addr

4, Double one plus

Operation: D1+
Stack before: ... di
Stack after: vee d2
Result: d2 dil+l

5. Double one minus

Operation: D1-
Stack before: .+.. dil
Stack after: ves d2
Result: d2 di-1
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é, Double two Plus

Operation: D2+

Stack before: ... dl
Stack after: vee d2

Result: d2 d1+2
7. Double two minus

Orperation: D2-

Stack befure: ... di
Stack after: ves d2

Result: d2 di1-2

Page 190
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Charter 9. INFORMATION MANAGEMENT

Memory Organization

Allocation

Disk Inerut and Output

Program Management

Kevhoard Operations

Character Movement

Output Formatting and Conversion
Vocabulary

Exercises
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Information in FORTH is organized around the
concert of a SCREEN, which is a 1024-byte block of

memory. Disk storade is divided into screens and
the FORTH system contains a fixed number of
screen-sized buffers for worKing memory and for
disk input/outeput, The word "screen” corresponds
to a virtual display screen consisting of sixteen
é4-character lines., Programs are also ordanized

into screens and languade features are available
for Jloading and executing screens on a static or
dynamic hasis.

MEMORY ORGANIZATION

The FORTH system contains a fixed number of
screen buffers that are manased on a dynamic basis,
When the user requests memory by employing one of
several well-defined methodss a screen buffer is
assigned on a "least recently used” bhasis. If, for
examples the assigned buffer holds a disk
inPut/output screen that has heen urdated, the
current buffer contents are resritten to disk
storadge hefore the screen buffer is reassigned.

The number of screen buffers in a particular
FORTH system 1is implementation-derendent and is
assigned by default. This number can be changed,
providing a truleoff between buffer space and
dictionary space.

ALLOCATION
A screen buffer can be al)located exelicitly or
implicitly. Explicit allocation is made with the
BUFFER oreration. Implicit allocation is made with
the LOAD or BLOCK operations. Explicit screen

buffer allocation is covered here.
The BUFFER operation is described symbolically
as:

n BUFFER—s addr
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where n” is a screen number and "addr” is a buffer
address., When FORTH encounters the word {BUFFER},
it removes the screen number from the top of the
stack and assigns a buffer to it., If the screen
buffer has been marked for updating, the contents
of the buffer are written to disk. The address of
the buffer is returned by pushing it into the
stacK. The allocated buffer can then be used as a
1024-hyte storade area in memory.

DISK INFPUT AND OUTPUT

A screen is read frrom disk to memory with the
BLOCK operation which takes the following form:

n BLOCK— addr

where "n" is a screen number and “"addr"” is a buffer
address., When FORTH encounters the word {BLOCK},
it removes the screen number from the topr of the
stack and assigns a buffer to it on a least
recently used basis. If the screen buffer has been
marked for updating, the contents of the huffer are
written to disk. Then, the contents of disk screen
numbered "n" are read into the assigned screen
buffer in wmemory from disk and its address is
pushed into the stack. The RLOCK operation employs
implicit screen buffer allocation since allocation
is rerformed in support of a distinct FORTH
operation, A screen buffer is marked for
updating with the UPDATE oreration, When FORTH
encounters the word <{UPDATE}» the screen buffer
last referenced is marked for updating,

The contents of a screen buffer that have been
marked for -updating are written to disk under two
circumstances:

o The screen bhuffer is re-allocated
o The SAVE-BUFFERS oreration is executed

When the word <{SAVE-BUFFERS) is encountered by
FORTH» all screen buffers marked for updating are
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written to disk. The FORTH word {SAVE-BUFFERS} is
synonymous with the word {FLUSH}, which is used in
some FORTH systems.,

The EMPTY-BUFFERS operation is used to mark all
screen buffers as empty. When a subsesuent
EMPTY-BUFFERS operation is encountered by FORTH,
the effect of the UPDATE oreration is nullified so
that the contents of the screen huffers are not
written to disk.

PROGRAM MANAGEMENT

Programs in FORTH can be entered into the
system via the Keyhoard or through the use of a
disk screen. From the Keyboard, statements are
Keved in the execution or definition mode and FORTH
responds immediately. This topic was covered
earlier,

Another facility for prosram management is to
use a screen editor to construct a display screen
containing FORTH statements and to store it on disk
as a screen. A disk screen can be )oaded for
execution and FORTH responds as though the
statements were entered from the Keyboard.

The LOAD oreration in FORTH is described
symbholically asz:

n LOAD

where "n" is the number of a disk screen., When the
word <{LOAD} 1is encountered by FORTH, the screen
numher is removed from the stack. A screen buffer
is implicitly assigned» as covered previously: and
the disk screen is read in. FORTH treats the
contents of the screen buffer as though it were
entered via the Keyhoard. LOAD orperations can bhe
nested, which means that one disk screen may
contain another LOAD operation» and so forth.

The NEXT SCREEN operation is described
symbolically as:

--)



Information Management Page 196

which commands FORTH to continue interpretation
with the next disk screen in numerical sequence.

The interpretation of a screen can be
terminated with the following FORTH word:

S

allowing the remainder of the screen to be used for
comments.,

When FORTH encounters the word {3S} or comes to
the end of a screen, interpretive execution resumes
with the FORTH oreration immediately following the
last LOAD oreration that was executed, Thus, in
effect, a "return” is made to the "calling screen.”

The LIST oreration is used to display the
contents of a screen and is described symbholically
as?

n LIST
where "“n" 1is the screen number of the text to be
displaved. If the srpecified screen is in memory,
it is displavyed without disk inpPut, If the

specified screen is not in memory» a screen buffer
is allocated and the specified screen is read into
memory and displayved.

The SCR command returns the address of a
variable containing the number of the screen most
recently listed, This orperation is described
symbolically as:

SCR—s addr

where “"addr"” is the address of the variable that
contains the screen number. The address would then
be followed with a fetch operations such as {SCR
8}y to obtain the screen number. This oreration
would normally be used when listing several screens
in succession under rrogram control or when the
user simely forgot the numher of the screen that he
or she most recently listed. In some versions of
FORTHs» the orperation SCR is also used with editor
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related commands,

KEYBOARD OPERATIONS

Through the use of Kevhoard orerations, strindgs
of characters can be entered directly into memory
and can he displaved from memory.

The EXPECT orperation is used for data entry and
is described symholically as:

addr n EXPECT

where “addr” is the bedinning memory address and
"n" 1is the number of characters to be transmitted.
When FORTH encounters the word {EXPECT}» characters
entered from the Keyboard are placed in consecutive
bhyte locations in memory until “n" characters or
the carriage return is entered, Two nulli
characters are arpended to the end of the string,
and sufficient space should be available in the
memory buffer for these characters,

The TYPE orperation is used to display character
strings from memory and is describhed symbolically
as:

addr n TYPE

where “"addr"” 1is the beginning memory address and
"n" is the character count., When FORTH encounters
the word {TYPE>» “n" characters from consecutive
memory locations starting with the specified
address are displaved. Figure 9.1 demonstrates the
use of the BUFFER, EXPECT: and TYPE operations,

The KEY orperation permits the ASCII code of a
character entered at the Keybhoard to be entered
into the stack., This opPeration 1is described
symbolically as:

KEY —c

where "c" 1is the ASCII code of the character
entered. When FORTH encounters the word {KEY}, it
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0 VARIABRLE STRING OK
IN-OUT

50 BUFFER

STRING !

CR ." ENTER 5 CHARACTERS "
STRING @ 5 EXPECT

CR ." YOU ENTERED: "
STRING @ 5 TYPE

CR ." END OF IN-OUT *
3 0K

IN-OUT

ENTER 5 CHARACTERS FORTH
YOU ENTERED: FORTH

END OF IN-OUT OK

Figure 9.1
A sample colon definition demonstrating the
BUFFER, EXPECT, and TYPE operations.

waits until a character is entered from the
Keyhoard and then pushes its ASCII code into the
stack.

The EMIT oreration reverses the effect of the
Key operation by taKing an ASCII code from the
stack and displaving its correseondirid character,
This oreration is described symbolically as:

c EMIT

where "“c" 1is the ASCII code to be displaved, When
FORTH encounters the word {EMIT}» the ASCII code on
the tor of the stack is removed and the
corresponding character is displaved.

The ?TERMINAL oPeration is used to break a
continuous opPeration» such as a listing, and is
described symbolically as:

?TERMINAL— flag

where "flagd" 1is either a 1 or a 0. When FORTH
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encounters the word {?TERMINAL}, it tests whether a
Key has been struck. If a Key has been struck, a
value of 1 is pushed into the stack, Otherwise, a
value of 0 is pushed into the stack.

CHARACTER MOVEMENT

Character movement orerations in FORTH permit
character data to be moved from one area of memory
to another. Also included in the set of orerations
are a variety of "utility” oreerations that
facilitate FORTH programming.

The character movement orerations in FORTH are
summarized as follows:

DESCRIPTION FORTH WORD
Store 8 bits c!
Fetch 8 bits ce
Character movement CMOVE
Suprress trailing blanks -TRAILING
Fil) memory with specified FILL

bhyte

Fil) memory with hlanks BLANKS
Move 1é6-hit memory cells MOVE

When a byte is specified as an orerand, it occuries
the low-order byte position of a stack entry, The
high-order bits of that stackK entry are not used.

The STORE BYTE oreration in FORTH is described
symbolically as:

byte addr C!

where “byte" is the data to be stored and "addr” is
the memory address., When FORTH encounters the word
{C!}» the tor two values are removed from the
stack., The toemost entry is the memory address and
the entry below it contains the byte to be stored.
This FORTH oreration is epronounced "“c-store."
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Normallys the specified byte will contain the ASCII
code of a character,

The FETCH BYTE oreration in FORTH is described
symbolically as:

addr C@ —=byte

where “addr” is a memory address and “"byte" is the
data that has bheen fetched. When FORTH encounters
the word {CR>, the torp entry is removed from the
stack., This is the memory address. A fetch
operation is made to the specified byte address in
memory and a stack entry is created, The 8 bits
fetched occupy the low- order position of the stack
entrys which is pushed into the stack, This FORTH
oreration is pronounced "c-fetch.” Normally, the
gspecified hyte will contain the ASCII code of a
character,

The CHARACTER MOVE oreration in FORTH is used
to move a block of characters from one area of
memory to another, This operation is descrihed
symbolically as:

addrl addr2 n CMOVE

where ‘"addrl” and “"addr2” are the from and to
memory addresses, respectively, and "n" 1is the
number of character positions (i.e.» byte
lJocations) to bhe moved, When FORTH encounters the
word {CMOVE), the topr three entries are removed
from the stack representing addri, addr2, and n, in
that order» from the tor. The character movement
is performed from addrl to addr?2 starting with the
lower memory address., If n is less than or esual
to zeros» no movement is rerformed.

The SUPPRESS TRAILING BLANKS oPeration
eliminates trailing blanks by addusting the
character count of a string reference. This
operation is described symholically as:

addr nl1 -TRAILING — addr n2

where "addr"” is the memory address of the character
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string and "nl" is the length of the string., When
FORTH encounters the word {-TRAILING},» it removes
the top two values from the stack, representing the
length and addresss resepectively., Trailing blanks
are eliminated and the old address and the new
character count "n2" are pushed into the stack.

The FILL operation places a specified character
into each bvte location of an area of memory. This
oreration is described symbholically as:

addr n byte FILL
where “addr” is the starting address, “n" is the
number of byte locations to be filleds, and “byte"
is the quantity to be placed in each byte location.
Normallys, byte is an ASCII code of a character,
When FORTH encounters the word {FILL}, the torp

three values are removed from the stack,
rerresenting hyte, n» and addr going from the top
downuwards., The FILL operation is performed from

the starting address wupwards in memory. If n is
less than or esua)l to zeror» no fil) operation is
rerformed,

Figure 9.2 demonstrates the FILL, CMOVE, and
-TRAILING operations.,

The BLANKS orperation in FORTH fills an area of
memory with blanks and is described symbolically
as?

addr n BLANKS

where “addr" is the starting address and "n" is the
number of byte locations to he filled with a hlank
character., When FORTH encounters the word
{BLANKS}s the top two values are removed from the
stacks representing the count and starting address,
resrectively, The specified area of memory is
filled from the starting address upwards with the
ASCII code for the bhlank character, If n is less
than or esual to zero» nOo memory locations are
filled with a hlank.
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VARIABLE FROM OK
VARIARLE TO OK
CHMOVEMENT

40 BUFFER

FROM !

70 BUFFER

TO !

FROM @ 50 192 FILL

CR ." ENTER 5 LETTERS AND 5 SPACES "
FROM @ 10 EXPECT

FROM @ TO @ 10 CMOVE
TO ® 10 -TRAILING

CR ." THE RESULT IS: "

w OO

TYPE

CR ." END OF CMOVEMENT "
3 0K
CMOVEMENT

ENTER 5 LETTERS AND 5 SPACES FORTH
THE RESULT IS: FORTH
END OF CMOVEMENT OK

Figure 9.2
Example of character movement demonstrating the
FILL, CMOVE, and -TRAILING operations.

The MOVE orperation in FORTH moves a srecified
number of 16-hit memory cells from one area of
memory to another, This operation is described
symholically as:

addrl addr?2 n MOVE

where "addrl"” and "addr2” are the from and to
memory addressess respectivelyy, and “n" is the
numher of 1é6-hit memory cells to be moved. When
FORTH encounters the word <{MOVE}, the tor three
valuess rerresenting the count, to address» and
from address» going downwardss are removed from the
stack., The 14-bit memory cells are moved starting

with the specified address upwards. If n is less
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than or esual to zeros no movement is performed.
OUTPUT FORMATTING AND CONVERSION

The FORTH language contains an output formatting

facility to specify the conversion of a
double-precision number into an ASCII character
string, FORTH incoreporates the following words

that deal exclusively with output formatting:
(# # S HOLD SIGN =)

Looking at output formatting conceptually, the wonrd
{(#} puts the system into the output formatting
mode and the word <{#)} is usd to exit from the
outrput formatting mode. The words {#}, {#S),
{HOLD}» and <{SIGN} can only be used between (# and
®),

Output formatting is designed around double
precision numbhers because most husiness
applications require more significant digits than
are availahle with sixteen-bit single rprecision
values, For examprle: the largest single precision
reeresentahle number with dollars and cents would
be $327.47.

Fidgure 9.3 9gives a 9general-purrose double
precision output formatting routine that can be
used with a variety of business apelications. It
is explained in the following eparasgrarhs,

Qutput formatting eroceeds from right to left
and essentially orerates by dividing the number by
the bhase and converting the remainder to an ASCII
code. The formatting procedures utilize an
unsigned double precision number, The steps in the
definition {$.,2 are explained as follows:

a. {2DUP DARS} saves the aldgebraic sign and
creates a positive value.

b, {{(*} puts the system into the outrut
formatting mode.

c. {n #} converts the cents rortion of the word
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placing the ASCII digits in the text strind,

de {46 HOLD> pruts the ASCII code for the
decima) point into the text strind.

e, {#S} converts the remainder of the number.

f. {SIGN DROP}> puts the ASCII code for the
minus into the text string if the original
value was nedative, This oreration uses only
the high-order part so the low order part is
drorred.,

g, {36 HOLD> puts the ASCII code for the dollar
sign into the text strind.

he {#)} exits the output formatting mode and
leaves the addr and count on the stack for the
TYPE oreration

i+ {TYPE SPACE} displays the result,

Since the oreration {(#)} does in fact eput the
address and character count of the text string in

T 8, ( DUTPUT FORMATTING )
2DUP DARS ( SET UP DATA )
(n ( ENTER FORMAT MODE )

4 n ( CONVERT CENTS )
46 HOLD ( PUT IN DEC POINT )
#Ss ( CONVERT DOLLARS )
SIGN DROP  ( FUT IN SIGN )
346 HOLD ( PUT IN $ )
) ( EXIT FORMAT MODE )
TYPE SPACE ( DISFLAY RESULT )
i OK

12345, ¢, $123.45 0K
-46738124, $., $-47381.24 0K

Figure 9.3
General purpose output formatting routine.
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the stacky it can be followed by any FORTH
operation that deals with character movements such
as the CMOVE or TYPE orerations.

There is relatively little need to convert
numbers from ASCII code to internal binary since
numerical data can be entered into the stack from
the Keyboard. However: turnkey svstems freauently
require data verification, so that FORTH operations
are also available for input conversion.

The (NUMEBER) oeperation in FORTH is used to
convert ASCII text into a number. This oreration
is described symholically as:

dil addrl (NUMBER)—>d2 addr?2

where "d1" is a double precision numher into which
the new value is accumulateds “addril” is the
address of the ASCII text, “d2" is the new double
precision value, and "addr2” is the address of the
first unconvertable digit, When FORTH encounters
the word {(NUMBER)}» it removes the address from
the toep of the stack and the double precision value

below it, The ASCII text is converted to binary
starting with the specified address plus one (i.e.»
addri+l) and accumulated into the specified
double-precision value (i.e.» dl). The double

precision result 1is pushed into the stack followed
by the address in memory of the first unconvertable
character in the ASCII text string, Figure 9.4
gdives an example of the use of the (NUMRER)
oreration.
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0 VARIABLE LOC OK

: TEST-NUM
50 BUFFER ( GET STORAGE)
Loc ! ( SAVE ADDRESS)
LOC @ 1 + 8 EXPECT ( ASCII DATA)
0. ( ACCUMULATOR)
LOC @ (NUMBER) ( CONVERT)
DROP ( DROF ADDRESS)
CR +" NUMBER IS: "
D. ( CONVERTED VALUE)
i 0K

TEST-NUM 2376914K
NUMBER IS: 2376914 OK

Figure 9.4
Example of input conversion.

VOCABULARY

A deneral familiarity with the following terms
and FORTH words ic necessary for learning the FORTH
languade:

"

")

ns

--)

(n

38
PTERMINAL
-TRAILING
BLANKS
BLOCK
BUFFER

ce

c!

CMOVE
EMIT
EMPTY-BUFFERS
EXPECT
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Explicit allocation
FILL

HOLD

Implicit allocation
KEY

Least recently used
LIST

LOAD

MOVE

(NUMRER)
SAVE-BUFFERS

SCR

Screen

SIGN

TYPE

UPDATE

EXERCISES

1. Write a FORTH statement to place blank
characters in 100 hyte locations startingd with the
address stored in variable START.

2+ Write a FORTH statement to move 1000 bhytes from
hex location 6FC to hex location FF3.

3, Starting at decimal location 2000 is an 11
character message. Give a FORTH statement to have
the messade displaved.

4, Write a FORTH statement to place the letter "A"
in byte location 10111 (hinary).

5 Write a FORTH prodram to obtain a buffer
containing at least 100 hytes., Flace the character
"@" in odd byte locations and the character “+" in
even byte locations. Then display the result as 10
rows of 10 characters,
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ANSWERS

Charter Zero

1. (a) 18
(h) 17
(c) 25
2, (a) 21 OK
(h) 20 0K
(c) 983 0K
3. (a) 14 0K
(h) 13 OK

Chapter One

1, Devices normally treated as “blacK boxes" in
everyday life are:

o The fuel indection system in an automohile

0 A modern electronic digital wristwatch

0 An “instant” camera

o] A modem or multirlexer for data
communications

0 A "laser disk" recording system

In fact, most devices that utilize advanced
technolody are commonly used as black boxes.

2. The usual eprogrammable calculator would use a
Harvard architecture, since data and Program
memories are separate - 1.e.» at least as far as
the user is concerned.

3. Read-write memory would be RAM.

4, A computer system in which bandwidth is two
bytes and instruction size is four bytes is a case
where bandwidth would contribute to less than
optimal perfourmance. In this examples» two fetches
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from storade would bhe required to access one
instruction.

5. {a) Fetch a word from ROM or RAM. (b) Write a
word to RAM,

Chapter Two

1. They both exist as a finite list of
instructions.,

2, There are three steps in the dreatest common
divisor algovrithm. When arplied to the values 35
and 21, nine steps are actually executed.

3. The fields in an assembler landuade statement
are the location field, operation code field,
orerand field, and the comments field.

4, The output from a language translator includes
the obdect rrogram and the listindg, The output
from an interereter is a set of computed results.

Chapter Three

1, (a) AB+C-
(h) AB+Cx
(c) AB*CD/-E+
(d) AR+CD-/E-
(e) AY#B+Y*C+
(f) ABC+#D-E%
(9) AY*B+Y*C+Y*D4
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(b) ‘H'

3. (a) 2
(h) 1645
(c) 22,2

4, Preorder: +A-/BCD
Fostorder: A+B/C-D
Endorder: ARC/D-+

Chapter Four

1, (a) 25 % 3 +
(h) 2 41 + DUP % ¥
(c) SDUP 1 + DUF 1 + % %
(d) 4 52 %/
(e) 3 4 DUF * SWAF DUP * +

2, (a) 9
(b) 1
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(c) 27
(d) -5
(e) 1
(f) -3 -
(g) 2
(h) ¢
(i) 1
(d) 9
(k) -1
() -1
(m) 6 -
(n) 4
(o) -13
(p) -6

() ¢

(r) -1 -16
(s) -43

3. (a) -1
(b) 5
(c) 9
(d) 27
(e) 146

Charter Five

1, (a) 1 CONSTANT ONE
(b) 2 CONSTANT TWO
(c) 15 CONSTANT DX
(d) DX TWD * ONE - CONSTANT DY
or more succinctly
DX 2 ®* 1 - CONSTANT DY

2, (a) 321 VARIABLE X
(b) -6 VAKIAERLE Y
(c) X @Y @+ 173 - VARIABLE W

3, (a) AR1L - A
or more efficiently
A DUF @ 1 - SWAF !
or still more efficiently
-1 A +!
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(h) AB X @DUP » » RO X @ % -C 0+ Y !

Charter Six .

1. : SPOWER ¢ X)
DUP DUP (X X X)
* ( X X%%2)
bup (X X#x2 X%%2)
* ( X X#%4)
* ( X%#%3)

.
1]

2, The pade number is assumed to be on the tor of
the stack.

: TITLE
1 7 VHTAR
+" INVITATION TO FORTH FPage *

3
or alternately

: TITLE
1 1 VHTAR
6 SPACES
«" INVITATION TO FORTH FAGE "

-
9

3¢ 2 14! ( ADDR )
1 ( ADDR 1 )
SWAF ( 1 ADDR )
+!

o

Chapter Seven

1. (a) 0 OK
(b) 0 OK
(c) 0 OK
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(d)
(e)
(f)
(g)

0K
0K
0K
0K

OO -

2, (a) 0 OK
(h) 0 OK
(c) 1111111111111111  OK
(d) 110101111110111 OK
(e) 1010000000000 0K

3. (a) 10 OK
(h) 4 0K
(c) 10

9
8
7
& 0K

4, Absolute value function

5. (a) @ ADD1

0

140 57

DO
I+

LOOF

3
(h) : ADD2

0 ( sumM)

57 ( INITIAL VALUE)

BEGIN
DUF ( (---1)
ROT (1
+ ( 1 LOOP)
SWAF (1)
1 1)
+ « (---1)
DUP ( (---1)
13y ( 1 CONDITION)
) ¢ {(---1)

UNTIL
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(c)

DROF

o

ADD3

0

57

BEGIN
DUF
140
¢

WHILE
DUF
ROT
+
SWAP
1
+

REFEAT
DROP

b

Chapter Eight

1,

2,

3.

-
.

-0

L1

1]

D+!
DUF
20
5 ROLL 5 ROLL
D+

sum)
INITIAL VALUE)

{---1)
( 1 CONDITION)
(---1)

(---1)
€D
( 1 LOOF)
€
(N
(-=-1)

D1 ADDR)

D1 ADDR ADDR)
D1 ADDR D2)
ADDR D2 D1)
ADDR D1+D2)

ROT D1+D2 ADDR)
21

D1+! ( ADDR)

DUFP ( ADDR ADDR)

20 ( ADDR D)

1. D+ ( ADDR D+1)

ROT ( D+1 ADDR)

2!

D1-! ( ADDR)

DUF ( ADDR ADDR)

Page 21%



Ancwers Fage 220

20 ( ADDR D)
i, D- ( ADDR D-1)
ROT ( D-i ADDR)
2!
3
4, : Di+ ( D)
1. D+ ( D+1)
3
5. ¢ D1- ( D)
i, D- ( D-1)
3
4, * D2+ ( D)
2+ D+ ( D+2)
3
7. ¢ D2- ( D)
2, D- ( D-2)

-

Charter Nine

1., START @ 100 RLANKS

2. HEX AFC FF3 DECIMAL 1000 CMOVE
3. 2000 11 TYFE

4, 193 2 BASE ! 10111 C! DECIMAL
Since ASCII is a 7-bit codes the following is
equivalent:
45 2 BASE ' 10111 C! DECIMAL

5+ 50 BUFFER OK
VARIAEBLE BUFLOC OK
t FILLMAT
100 0
DO
RUFLOC @
I + DUP
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2 moD
IF
192 SWAP C!
ELSE
171 SWAP C!
THEN
LoogpP
OK

o

PRAAT
100 0
DO
CR
BUFLOC @
I + 10 TYPE
10
+LOOFP
0K

.

#5
FILLMAT
FRMAT

3 OK

#5
+R+0+0+0+8@
+0+0+04+04+0
+08+0404+0+R
+0+0+0+0+@
+0+0+0+0+0
+0+@+0+04Q
+0+08+0+0+0
+04+040+0+0Q
+0+0+0+0+0
+0+04+0+2+8 0K

Or the colon definitions can bhe combined for
printing as in:

T #5A
CR
101 1
1]
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I 2 moD
IF
192 EMIT
ELSE
171 EMIT
THEN
I 10 mMOD 0=
IF
CR
THEN
LOOP
3 0K

#5A
R+0+04+P+0+
C+0+R+0+04+
C+0+Q+R+0+
C+0+0+0+0+
R+2+04+R+0+
R+040+0+04+
R+0+0+2+Q+
4+0+04+84+0+
R+2+R+P+R4+
C+0+0+0+0+
0K
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INDEX

(» 120

)y 120

+-(sign)s» 92, 95

+!(add to memory), 110

+(addition), 79, 80

?(display contents of address, 128-129
/(division), 79, 82

. (dot operation), 122

“(end character literal), 124

s(end colon definition)s 11Y

(#({enter output formatting mode), 203, 204
#)(exit output formatting mode), 203, 204
@(fetch)s 108

®#(multirlication) 79, 81

--)(next screen), 195

#(output conversion), 203, 204
+"(start character literal), 124
s(start colon definition), 119
I(store)s 109

-{subtraction), 79, 81

‘(tick), 111

®/(rimes divide), 92, 94

20(double precision fetch), 185-184

2! (double precision store), 186-187
2CONSTANT, 184

2DROF, 172y 173

2DUF, 172, 173

20VER, 172, 173

2PICK,» 172y 174

2ROLL, 172, 174

2ROT, 172, 174

2SWAP, 172, 173

2VARIABLE, 185

-DUP, 87, 89

?DUF,» 87

/moDs 79 83

*/MOD» 92, 94

+R(dot-r operation), 123

#S(output conversion)s 203, 204
$S(terminate execution of screen), 194
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PTERMINAL, 198-199
-TRAILING, 199, 200-201

ABRS, 92

Absolute value function, 92
Accumulator, 24

Add to memory orPeration, 110-111
Addend, 80

Addition operations 79, 80
Address bus, 21

Aldgebraic entry notation» 4
Algorithm, 38-40

Allocation, 193-194

And operation, 138
Arithmetic/lodic unit, 146, 23
Arithmetic operationss 79ff
Assembler languade,» 38, 40
Assembler prodram, 38, 48
Assemblys 48

Augend, 80

Automatic computer, 3

Bandwidth, 18

BASE,» 85

Rase complement, 946
REGIN, 155, 159

Biack bhox,» 15

Binary operators 41
Binary systems, 85
BLANKS, 199, 201
BLOCK: 194

Rody of the loors 142
Rracess 77

BUFFER, 193-194
Buffer allocations 193
Bus, 21

C@(fetch character), 199, 200
C!(store character), 199
Carriage return, 123-124
Character literal, 124
Character movements 199-203
Character set, 78
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CMOVE, 199, 200

Colon definitions, 8-9,» 119-120
Comment line,» 120

Comments field, 41
Comparison operations, 133ff
Comp iement arithmetic, 95ff
Compiler programs» 38, 48
Computer memory, 17

Computer softwares 37
Computer word, 77

CONSTANT, 105

Constant definition, 105-104
Control storades 17

Control units 14, 23

Control variahle, 142, 143
CRy 124

Crazony HiGes» 19, 209

Cross assembler, 54

Cross compiler, 54

Current address register, 23

D.(d-dot operation)s 147, 183

D+(double precision addition), 169
D=(double precision eaual to), 177, 178
D)(double precision greater than)s 177, 178
D{(double precision less than), 177
D+-(double precision sign)» 175, 174
D-(double precision subtraction), 169, 170
DO=(double precision esual to zero)s» 177, 179
DABS, 175

Data bhase, 21

Data management, 52

Data parts 17

Debud packages 38, 53

DECIMAL, 84

Definition modes 5, 8

DEFTH, 87, 90

Develorment systems» 38, 54

Dictionary, 111

Difference, 80

DisKkette, 31

Disk input and outputs, 194-1%5

Disk packs 31



Index

Disk storade, 30

Disk volume, 31

Dividend, 80

Divide modulus oreration, 79, 83
Division operations 79, 82
Divisor, 80

DMAXs 175, 176

DMIN, 175, 176

DMIMUS, 149, 171

DO, 143

Do loopry 142-147

Do until loop,» 154, 157

Do while loops 154, 155

Dot oreration, 122

Dot-R oreration, 123
Double-precision value, 147
D.R{(d-dot-r oreration), 183-184
DROF, 84, 88
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DU((doubhle precision unsigned less than)s 177, 180

DUF, 84
Dynamic RAM, 18

Editor, 38, 53

ELSE, 149

EMIT, 198
EMPTY-BUFFERS, 195
EMPTY STACK, 8
Endorder traversal, 43

EPROM, see Erasable programmable read-only memory

Eaual to operations 133, 135
Eaual to zero operation, 133, 137

Erosable programmahle read-only memory, 18

Exclusive or operation, 18, 140
Execution cycle, 23

Execution modes 5, 7

Expect, 197

Explicit allocations 193

Exit,» 151

False value, 133

Fetch crperation, 107-108
Fibhonacci series, 144
FILL, 199, 201
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Firmware, 19-20
Floppy disk, 31
FLUSH, 195

FORGET command, 114
FORTH word, 77

General -purrose regdisters 24

Greater than orerations 133, 134
Greater than zero orerations 133, 134
Greatest common divisor, 156

Hand calculator, 3

Hard disk, 30
Hard-sector disk, 31
Hardware, 19

Harvard architecture, 16
Harriss, K.» 209

HEX, 84

Higher-level language, 38, 43
Hilburns J.L.s» 209

HOLDs 203, 204

Holders CsL.s» 209

HOME, 126

I, 143

IF, 149

IF statement, 149-151

Implicit allocations 193
Increment values» 142, 143, 144
Indefinite loors 151-161

Index registers 24

Infix notation, 59

Initial values, 142, 143, 144
Input mechanisms 14
Instruction cycle, 23
Instruction register, 23
Integrated circuits, 21
Interrreter program, 38, 50-51
Interpretive execution, 71
Iteration, 142

Jr 147
Jamess J.S.» 209
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Julichs P.M.s 209

Katzans H.» 209, 210

KEY, 197

Keyboard orerationss 197-199
Knuths D.Ess 463, 210

Landuade processors 38, 446-51
Landuage translator, 46

Last in first out, 27

Least recently useds 193
LEAVE, 151

Leiningers S.W.y» 210

Less than oreration, 133, 134
Less than zero operation, 133, 136
LIFO, see Last in first out
Limit values, 142, 143, 144
LIST, 196

LOAD, 195

Location fields 41

Logical orerations, 138ff
Logical valuess 133

Looprs 142, 143

LSI circuits, 21

Lukasewiczs J.» 60

M¥(mixed-magnitude multirlication), 181
M/(mized-magnitude division), 181
Magnetic disk, 30

Main memory, see Computer memory
Main prodgrams 46

Main storades see Computer memory
Mandis M., 210

Manuels T.» 210

Mark I calculators 16

Masking orerations, 141
Mathematical functions, 91ff

MaX: 92, 93

Maximum functions 92

Memory address redister, 24
Memory concerts 16

Memory data redisters 24

Memory organization, 193

Page 228
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Memory refresh registers 24
Memory, see Computer memory
Microcomputers 20
Microrrocessors 20

Millers A.R.» 210

Millers Jo» 210

MIN, 92, 93

Minimum function, 93

Minuend, 80

MINUS, 98

Mixed-magnitude operation, 180
M/MOD(unsigned mired-magnitude divide modulus, 82
MOD, 79, 83

Modulus orperation, 79, 83
Monitor, 38, 51

Moores CsHe» 210

MOVE, 199, 202

Multiplicand, 80

Multieplication orerations 79, 81
Multirlier, 80

NEGATE,» 98

Ne<ted loops 150

Not operations 138, 140
(NUMBER), 205°

Number base, 84ff

Obdect program, 48

Octal systems 85

0K, 7

Operand field,» 41
Operating system, 38, 52
Operation code field, 41
Oeperator hierarchy, 59
Orperator stack, 68

Or orerations, 138, 139
Output mechanisms 14
OVER, 87, 88

PICK, 87, 90

Pollinis S.» 210

POP oreration, 27
Postfix notation, 40-61
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Postorder traversals 463

Prefix notations, 40

Preorder traversal, 43

Frinceton architectures 14
Procedure, 8

Procedure-oriented languade, 43
Product, 80

Prodgrams 40, 45-44

Program counter, 23

Prosram management, 52

Prodgram part, 17

Programmable read-only memory, 17
Prodramming languade, 38, 41-45
PROM, see Programmable read-only memory
Punctuations 78

PUSH orerations 27

Pushdown stacks see Stack

@Quotient, 80

RAM: see Random access memory
Random access memorys 18

Read-only memory, 17-18

Register, 23-27

REPEAT, 155

Reverse Polish notations 4, &, S9ff
ROLL, 87, 89

ROM, see Read-only memory

ROT. 87, 88-89

RPNs see Reverse Polish notation

S->D{convert sindle precision to double precision).,
148

SAVE-BUFFERS, 194-195

SCRy» 196

Screen, 32, 193

Screen editor, 195

Sector, 31

Semantics, 40

SIGN, 203, 204

Signed-magnitude rerresentatons 96

Sign function, 95

Soft disk, 30, 31
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Soft-sector disk, 31
Software, 19, 37

Source programs 44

Source strind, 67

SPACE, 1264

SPACES, 124-127

StacKs 59 279 59 775 79
Stack manipulation, 86

Stack pointer, 24

Statement, 40

Static RAM, 18

Store oreration, 109-110
Structural diagram, 61
Subrrodram, 46

Subtraction orerations 79, 81
Subtrahend, 80

Sum, 80

Suppress trailing blanks, 200
SWAF, 84, 88

Syntaxs 40

Tardet string, 648

THEN, 149

Tick command, 111

Times divide function, 93

Times divide modulus function, 94
True value, 133

Two’'s complement, 95, 96-99

TYFE,» 197

Uer 127

UOR' 128

U/(unsigned mixed-magnitude division), 182
Ux(unsigned mixed-magnitude multiplication), 181
Unary operator, 61

Underlined materials 7

Unsigned less than operations 133, 135
UNTIL, 159

UPDATE, 194

User services 53

Utility system, 38, 53

VARIARLE, 107
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Variahle definition, 106-107
VHTAR, 124

VLIST command, 111

von Neumann: J.» 40, 210
von Neumann machine, 14

WHILE, 155
Williams, G.» 210
Winchester disk, 31
Word, 77-78

Word size, 18

Zakss R.» 210






