

invitation to FORTH

Invitation to

FORTH

by Harry Katzan, Jr.
Consultant

Katzan International

Computer Consulting, Inc.

IPBI
q petrocein

book

new yor k /prlnceton

Copyright© 1981 by Petrocelli Books Inc.

All rights reserved

Printed in the United States of America

1 2345678910

Prepared on an Apple Computer

Library Card No.: 81-2466

To Margaret> Kathy* and Kartn

PREFACE

One of the latest entries to surface in the

ever chansfinsf universe of programming languages is

FORTH - a crisp straightforward lan*ua*e that

conveniently lends itself to the programming of

microcomputers* The FORTH programming lan*ua*e*

however* is not limited to microcomputer

applications and would be equally useful for

"larger" computers* In fact* the size or type of

computer is not at all significant to a prospective

user of FORTH* It is the availability of lan*uatfe

processing facilities that counts and currently.*

most FORTH activity is centered in the

microcomputer area*

FORTH is more than another name in the already

Ion* list of programming lan*ua*es* FORTH is a

lansfuatfe for doin* functional programming with a

specific orientation towards productivity*

reliability* and efficiency* Some of the concepts

associated with FORTH are structured programming*

top-down development* and virtual memory* However*

FORTH is not simply a focal point for popular

concepts* It represents a modern way of approaching

programming*

The structure of a FORTH program and the FORTH

lansrua^e itself is based on reverse Polish notation

- or postfix notation* as some computer scientists

call it* This basic philosophy combined with an

effective definitional structure permits a hisfh

decree of lan*ua*e flexibility and the ability to

customize the lan*ua*e to the requirements of a

particular application environment*

This book provides an introduction to the FORTH

lantfuatfe and is primarily intended for persons who

will program in the lan^uasfe* for persons who will

design systems and applications around the

lansfuasfe* and for persons that want to stay abreast

of recent advances in computer techno)o$y* The

subject matter includes a small amount of

background material but otherwise plunges ritfht

into the FORTH language since it is the primary

subject of the book*

The book is composed of ten chapters* outlined

as follows:

Chapter 0: THE FORTH CONCEPT *ives the basic

idea of the lan^uatfe*

Chapter 1: COMPUTER FUNDAMENTALS Sives a review

of basic microcomputer concepts*

Chapter 2: SOFTWARE TECHNOLOGY covers the

fundamentals of programming software systems*

and the development of computer applications*

Chapter 3: REVERSE POLISH NOTATION *ives an

overview of reverse Polish notation* the

concept of a stack* and interpretive execution*

Chapter 4: ELEMENTARY CALCULATIONS AND STACK

MANIPULATION covers the topics of arithmetic

operators* number bases* stack operations*

mathematical functions* and complement

arithmetic*

Chapter 5: CONSTANTS* VARIABLES* AND STORAGE

OPERATIONS covers how constants and variables

are defined and used in FORTH* alon* with

associated fetch and store operations*

Chapter 6: DEFINITIONS AND TERMINAL OPERATIONS

covers the definitional facility in FORTH and

the output operations provided to display

information from within the computer*

Chapter 7: CONTROL STRUCTURES covers structured

programming control structures and their

representation in FORTH*

Chapter 8: DOUBLE PRECISION covers FORTH

capability for handlin* double precision values

and includes relevant operations delineated

throughout the lantfuatfe*

Chapter 9: INFORMATION MANAGEMENT covers FORTH

lan«rua*e features for storage organization and

allocation* disk input and output* program

management* character manipulation and keyboard

operations* and output formatting and

conversion*

The underlying objective of this book is to promote

understanding of the FORTH concept* With this

objective clearly in mind* the subject matter is

presented throusfh easy-to-read textual material

liberally interspersed with examples* No

particular background in either computers or

programming is needed to completely understand the

book and to learn the FORTH Ian3ua*e* A General

overview of computers* however* would be especially

useful for recognizing the power and flexibility of

the FORTH iansfuasfe* Moreover* the various topics

are developed so that the reader can learn the

FORTH lansfuasfe without necessarily having FORTH

computer facilities at his or her disposal*

Vocabulary lists are included for review* and

exercises and answers are provided for each of the

chapters*

This book should serve as a complete

introduction to the FORTH ianafua^e for computer

professionals* engineers* business analysts* and

the creative and energetic sfroup of microcomputer

enthusiasts* For rather obvious reasons* the

systems-related aspects of FORTH were not covered

and this includes the FORTH)an*ua$e processor* the

editor* the run-time environment* and the

extensibility features of the lan*ua*e* For

information on these subjects* the interested

reader should consult the FORTH Interest Croup*

P*0* Box 1105* San Carlos* California 94070*

The full potential of FORTH has really not been

publicized and the lan^uasfe is continually

evolving* Therefore* this book is bein* offered

only as an invitation to a productive future* The

user's Guide for a particular implementation of

FORTH should serve as the definitive reference for

the construction of actual programs*

As much as possible* this book was produced

usinG microcomputer text-processing facilities* and

is a Genuine effort to provide timely information

on an important topic for interested people* The

author and the publisher have thoroughly enjoyed

producing the book and sincerely hope the reader

will enJoy learning the FORTH lanGuaGe as much as

we have en Joyed brinGinG it to you* Happy

proGramminG!

It is a pleasure to acknowledge the cooperation

and assistance of several people: to Mr* 0*R*

Petrocelli* the publisher* for useful suggestions

and the foresight and courage to publish a book on

the Groundbreaking subject of the FORTH lanGuaGe?

to Bruce Tucker for timely information when it was

needed? and to my wife* Margaret* for handling the

word-processinG aspects of the Job* for spending

Ion* tedious hours on the production of camera

ready copy* and for beinG a Good partner during the

entire project*

Harry Katzan* Jr*

Stil1 house Road

Freehold* N*J* 07728

January* 1981

CONTENTS

Chapter 0* The FORTH Concept 1

Calculators and FORTH* 3

Mathematical Notation* 3

Operational Environment* 5

The Stack* 5

FORTH Operations* 6

Execution Mode* 7

Definition Mode* 8

Additional FORTH Capability* 9

Vocabulary* 10

Exercises* 10

Chapter 1* Computer Fundamentals 13

Computer Philosophy* 15

Computer Memory* 17

Hardware* Software* and Firmware* 19

Microcomputer Systems Organization* 20

Microprocessor Organization and

Operation* 21

Stack Operation* 27

Disk Storage Technology* 30

Vocabulary* 32

Exercises* 33

Chapter 2# Software Technology 35

Reasons for Usin* Software* 37

Categories of Software* 37

The Concept of an Algorithm* 38

The Concept of a Program* 40

Assembler Lan*ua*e* 40

Programming Lan^uasfes* 41

Proafram Structure* 45

Lansfuatfe Processors* 46

Assembler Programs* 48

Compiler Programs* 48

Interpreter Programs* 50

Monitors and Operating Systems* 51

Utility Systems* 53

Development Systems* 54

Vocabuary* 56

Exercises* 56

Chapter 3* Reverse Polish Notation 57

Mathematical Forms* 59

Structure of Expressions* 61

Conversion Between Infix Notation and

Postfix Notation* 67

Interpretive Execution of Infix

Notation* 71

Vocabulary* 73

Exercises* 73

Chapter 4» Elementary Calculations and Stack

Manipulation 75

FORTH Words* 77

Punctuation* 78

Looking at the Stack* 78

Elementary Arithmetic Operations* 79

Number Bases* 84

Stack Manipulation Operations* 86

Mathematical Functions* 91

Complement Arithmetic* 95

Vocabulary* 100

Exercises* 100

Chapter 5# Constants* Variables* and Memory

Operations 103

Constants* 105

Variables* 106

Fetch Operation* 107

Store Operation* 109

Add to Memory* 110

The Dictionary* 111

Vocabulary* 115

Exercises* 115

Chapter 6« Definitions and Terminal

Operations 117

Colon Definitions* 119

Comment Lines* 120

Dot Operation* 122

Dot-R Operation* 123

Carriage Return* 123

Character Literals* 124

Screen Operations* 124

Space Characters* 126

Unsigned Output* 127

Display Contents of Address* 128

Vocabulary* 129

Exercises* 129

Chapter 7* Control Structures 131

Logical Values* 133

Comparison Operations* 133

Logical Operations* 138

DO Loop* 142

IF Statement* 149

EXIT and LEAVE Operations* 151

Indefinite Loops* 151

Vocabulary* 162

Exercises* 163

Chapter fl* Double Precision 165

Representation* 167

Arithmetic Operations* 169

Stack Manipulation* 171

Mathematical Functions* 175

Comparison Operations* 177

Mixed-Ma*nitude Operations* 180

Terminal Operations* 183

Constants and Variables* 184

Memory Operations* 185

Vocabulary* 188

Exercises* 189

Chapter 9» Information Management 191

Memory Organization* 193

Allocation* 193

Disk Input and Output* 194

Prosfram Management* 195

Keyboard Operations* 197

Character Movement* 199

Output Formatting and Conversion* 203

Vocabulary* 206

Exercises* 207

References 209

Answers 213

Index 223

The FORTH Concept Pasfe 1

Chapter 0. THE FORTH CONCEPT

Calculators and FORTH

Mathematica1 Notation

Operational Environment

The Stack

FORTH Operations

Execution Mode

Definition Mode

Additional FORTH Capability

Vocabulary

Exercises

The FORTH Concept Pci*e 3

FORTH is a crisp easy-to-learn lan*ua*e that

makes the otherwise complex process of computer

programming very straightforward and very simple*

FORTH is efficient* which means that programs

written in the FORTH lansfua^e execute suickly on

the computer* FORTH is also user friendly* which

means that once you learn the fundamental lansfuaflfe

concepts* it helps you write a program rather than

ettin in your way* Usintf FORTH can be as simple

as usin* a hand calculator* but programs written in

the lan*ua*e can represent complex algorithmic

processes normally requiring a programming lan^uatfe

much more difficult to learn than FORTH*

CALCULATORS AND FORTH

The everyday hand calculator is a convenient

means of simplifying calculations and achieves its

Greatest value from compactness* mobility*

simplicity of use* and relevance to a particular

class of problems* An automatic computer* on the

other hand* has a different problem domain* so that

its characteristics are <uiite dissimilar from that

of a calculator* A computer has a hi*h desfree of

flexibility and Generality of use* but at the same

time is operationally complex* In fact* many

programming lan*ua*es have been developed to span

the man-machine interface and to take advantage of

the versatility and speed of automatic computers*

The FORTH programming lantfuaSe combines the two

concepts in such a manner that the user has

available the power and flexibility of an automatic

computer with the convenience of a hand calculator*

MATHEMATICAL NOTATION

Mathmatical notation for arithmetic operations

in calculators usually takes either of two familiar

forms:

The FORTH Concept Pa*e 4

o Algebraic entry notation

o Reverse Polish notation

Algebraic entry notation is characterized by the

fact that arithmetic calculations are performed

when they are entered* as demonstrated in the

following key sequence:

7 + 12 =

that would display a result of 19* Whereas* a key

sequence of

2 + 3X4 =

would yield a result of 20* The result may be

surprising? however* it should be remembered that

the addition is executed first because it is

entered first* The calculations take place in an

"accumulator" which holds the result displayed* In

some calculators with algebraic entry notation*

parentheses are allowed* as in the evaluation of

(6-3>X(10-5) that would be keyed in alsfebraic

notation as

(6 - 3) X < 10 - 5) =

This key sequence would yield a result of 15*

Algebraic entry notation is characterized by the

fact that the arithmetic operator symbol is placed

between the numbers* as in 2+2*

Another approach to the representation of

arithmetic expressions is to use Reverse Polish

Notation (RPN)* wherein the arithmetic operator

follows both members of a two-number operation* as

in

3 ENTER 2 +

which is a representation of 3+2* One of the

advantages of RPN is that fewer keystrokes are

required for complex operations* The evaluation of

(6-3>X<10-5) would be keyed in RPN as:

The FORTH Concept Pa*e 5

6 ENTER 3 - 10 ENTER 5 - X

The use of Reverse Polish Notation is similar to

the way arithmetic is performed on some calculators

and with many adding machines* The FORTH system

employs Reverse Polish Notation* which is covered

in chapter three* If you already know it* then you

can skip that chapter*

OPERATIONAL ENVIRONMENT

FORTH is an interactive lansfua*e which means

that as soon as FORTH comes up on your screen* you

can besin to interact with the system* There are

two modes of operation in FORTH:

o The execution mode

o The definition mode

In the execution mode* you tfet action whenever you

enter a series of calculations or a procedure

reference* In the definition mode* a series of

commands are saved for subsequent reference* Thus*

FORTH can be used with e<*ual ease for simple

calculations and for complex programs*

THE STACK

A stack is a means of or*anizin* data so that

the last item entered is the first item retrieved*

Several means of conceptualizing a stack are

possible:

o As a stack of dishes in a cafeteria

o As a pile of documents

The notion of a stack is not uncommon in the

computer field* Some computers and a fair amount

of software are designed around the stack concept*

In many cases* a computer user is not even aware of

The FORTH Concept Paae 6

the fact that a stack is bein* employed* In other

words* the stack is transparent to the user*

FORTH uses a stack to hold items of data and it

is not transparent to the user* Data items are

entered into the stack directly* Then when an

operation or a procedure reference comes alonsf* it

is always executed on values from the stack* In

FORTH* the programmer controls the stack and

explicitly places values in it*

FORTH OPERATIONS

In FORTH* an expression such as:

4+3

is written in reverse Polish notation so that it

becomes:

4 3 +

FORTH executes the reverse Polish expression from

left to risht* When a data value is encountered*

it is placed in the stack by "pushing down" values

that are below it* This is why a stack is commonly

referred to as a "pushdown stack•" The use of the

word "pushdown" is clearly redundant since a stack*

is a pushdown device*its very nature*

Graphics depict the operation ofThe following

reverse Polish expression *ivena stack with the

by

above:

TOP

STACK

4 3 7

- 4 -

EXPRESSION (Empty) 4 3

The FORTH Concept Pa*e 7

One fact about the use of a stack is obvious from

this example* When (\r\ operation is performedf it

uses up the needed values from the top of the stack

and "pushes" the result back on the stack*

EXECUTION MODE

When an expresssion is entered into the FORTH

system* the characters are typed as in the example*

When the RETURN key is pressed* FORTH performs the

specified computer operations and Generates

whatever output is specified* FORTH then looks for

the next user input* Here is an example as you

would actually see it on the computer's screen:

4 3+ OK

The underlined materia) represents what the user

would type in and the remainder of the line is

Generated by the FORTH system* In this case* the

calculation did not yield any output so FORTH

responded with an OK indicating that the last

command was successfully completed and FORTH is now

ready for additional commands* In case you

wondered what happened to the result in the last

example* FORTH left it on the top of the stack* In

order to have it displayed* a £?> * pronounced

"dot"* would have to be used as follows:

4 3 + ? 7 OK

(Note: Braces {> are used to isolate FORTH words in

the text when their meaning could otherwise be

confusing*) The dot command simply displays the

top value on the stack* After the display* the

value is removed from the stack* as shown by the

following example:

The FORTH Concept Pa*e 8

7 3 9 4 ? * * * 4 9 3 7 OK

This example reflects the last-in-first-out

property of a stack* The number 4 was entered last

and displayed first* After it was displayed and

removed from the stack* then 9 was displayed* and

so forth* Values are left in the stack between

FORTH statements* as demonstrated in the following

script:

5 9 2 OK

- * * * 7 5 0 EMPTY STACK

In the latter case* the final 0 was displayed

because the stack was empty when FORTH encountered

the final dot command* This fact is explicitly

indicated with the message EMPTY STACK*

DEFINITION MODE

A procedure in the FORTH Ian4ua*e is actually a

command that is executed when it is encountered in

an input line* When a procedure is defined* it is

iven a name That name is used to execute the

procedure*

A procedure definition begins with a colon {:>

and ends with a semicolon £?>• In between is the

procedure name followed by the commands and values

that comprise the procedure* Because procedures

always start with a C:>* they are known in FORTH as

"colon definitions*1'

A colon definition of a simple procedure that

multiplies the value on top of the stack by 2 is

*iven as follows:

: DOUBLE 2 * > OK

DOUBLE* when executed* places the value 2 in the

stack pushing down the value currently on top* The

operator <*>• which represents multiplication*

forms the product of the top two stack entries*

The FORTH Concept Pa*e 9

removing then* and placing the product in the

stack* In the following example:

125 DOUBLE • 250 OK

the following sequence of steps is executed: (1)

The value 125 is placed on the stack* (2) The

procedure DOUBLE is invoked* which pushes the value

2 into the stack* multiplies the two top stack

items - also removing them - and placing the

product of 250 on the stack* (3) The top item on

the stack - i*e** 250 - is displayed and removed

from the stack*

Colon definitions are a powerful tool for the

FORTH programmer* One colon definition can

reference another colon definition and this nestin*

process can effectively be used to implement

top-down development and modular programming* Host

procedures or commands - defined by colon

definitions or existing as a primitive in the FORTH

)an*ua*e - work exactly the same as commands

entered in the execution mode or as components in

other colon definitions*

ADDITIONAL FORTH CAPABILITY

The preceding information *ives only the FORTH

concept and the reader is cautioned against

thinkin* that this is all there is to the lan^uatfe*

The subject matter presented in this chapter *ives

only a taste of the lansfua^e and does not even

serve as an overview* Subsequent chapters cover

the following key topics:

o Computer Fundamentals

o Software Technology

o Reverse Polish Notation

o Elementary Calculations and Stack

Manipulation

o Constants* Variables* and Memory Operations

o Definitions and Terminal Operations

The FORTH Concept Pa*e 10

o Control Structures

o Double Precision

o Information Management

For each topic• the structure of the various FORTH

commands and statements and the manner in which the

FORTH system responds to this input are covered in

detail?

VOCABULARY

A General familiarity with the following terms

will help in learning the FORTH lantfuasfe:

Algebraic entry notation

Colon definition

Definition mode

Execution mode

OK

Reverse Polish notation

Stack

EXERCISES

It Evaluate the following expressions

in reverse Polish notation:

6 12 +

3 5 * 2 +

3 3*44* +

2. Execute the following FORTH state-

ments:

3 7 * ?

3 4 2 9 + + +*

3 6 2 + 9*..

3. Given the following colon defini-

tions:

The FORTH Concept Patfe 11

: DOUBLE 2 * ?

: 4TIMES DOUBLE DOUBLE ?

Execute the following FORTH state-

ments:

4 5 DOUBLE + .

3 4TII1ES 1 + ?

Computer fundamentals Pa*e 13

Chapter 1. COMPUTER FUNDAMENTALS

Computer Philosophy

Computer Memory

Hardware* Software* and Firmware

Microcomputer Systems Organization

Microprocessor Organization and Operation

Stack Operation

Disk Storage Technology

Vocabulary

Exercises

Computer Fundamentals Pa*e 15

Computers are frequently regarded as "black

boxes'* by people who use them* With the black box

concept* the major concern is over the input*

outputs* and functions of a system* Knowledge of

the components within the black box is normally

left to specialists* The approach is not unusual

in today's world of advanced technology* Clearly*

computers are not bein* singled out here* and the

concept applies equally well to automobiles*

television receivers* radars* powerful hand

calculators* many household appliances* and so

forth* One of the factors contributing to the

microcomputer revolution* however* is the simple

fact that a person does not have to be an

electronics expert in order to utilize a computer

effectively* The FORTH lan*ua*e continues in the

above direction by making it relatively easy to

program a computer without possessing full detailed

knowledge of the computer bein* used* On the other

hand* some computer background is needed to fully

utilize the features in FORTH* This chapter

provides a survey of computer fundamentals* Many

engineers and computer people already know

everything presented in this chapter* and they can

skip it* Others may wish to browse through the

chapter filling in their background as needed* The

subject matter of this chapter has been specially

selected for this book on the FORTH lan*ua*e* For

example* microcomputer organization* the

microprocessor* stack operation* and disk storage

technology are included because they are the topics

with which the FORTH programmer will deal most

frequently* Other topics* such as video displays

and printer technology* are not covered at all

because detailed knowledge of those subjects does

not specifically help in writing FORTH programs*

COMPUTER PHILOSOPHY

At this time* two philosophies exist for the

design and construction of digital computers:

Computer Fundamentals Pa*e 16

o The Harvard architecture

o The Princeton architecture

In both forms of computer architecture* the machine

features contain the same basic elements:

The INPUT MECHANISM used to enter programs and

data into the computer

The MEMORY CONCEPT used to store instructions

and data while the computer is in operation

The ARITHMETIC/LOGIC UNIT for performing

calculations

The CONTROL UNIT for allowin* the computer to

operate automatically by interpreting

instructions* *oinsf from one instruction to its

successor* and by permitting the computer to

select alternatives based on computed results

The OUTPUT MECHANISM used to transfer data from

the computer to the external nor Id

The difference between the two philosophies exists

in the "memory concept*" In a Harvard machine* the

program memory and the data memory are separate*

In fact* the Harvard Mark I calculator was

controlled by a program on punched paper tape and

contained an internal electromechanical data

storage capacity of only sixty 23-ditfit numbers*

Subsequent machines in the Harvard class were

controlled by either electromechanical switches or

by electrical connectors called plusf boards*

In a Princeton machine - also known as the von

Neumann machine - instructions and data are stored

in the same form in the same computer memory* The

potential benefit from this philosophy is obvious*

With the Princeton machine* a hi*h decree of

flexibility is achieved because a computing machine

can then change the very instructions that control

it*

Host existing computers are Princeton machines*

Conputer Fundamentals Pasre 17

However* the widespread use of hi*h-level

programming)an*ua*es and the logical separation of

a program into a "program part" and a "data part"

have diminished the primary advantage of the

Princeton architecture* Modern microcomputers have

taken a bisf step toward combining the two

philosophies by utilizing more than one kind of

memory*

COMPUTER MEMORY

The primary function of the computer memory is

to hold instructions and data so that they can be

recalled when necessary during the execution of the

computer* We are talking here about internal

memory (also called main memory or main storage)

and not about external storage mechanisms* such as

tape cassettes or revolving disk mediums* Computer

memory is divided into two classes: ROM and RAM*

ROM stands for Read-On Iy Memory and it is used to

hold programs and a small amount of data that do

not change during the course of computer operation*

When you turn on a microcomputer* for example* it

responds immediately* This feat happens because

the computer is bein* controlled by a program in

ROM* (In larsfe computers* ROM is known as control

storage* but is used in a different manner than

with microcomputers*) ROM memory cannot be

modified by a user program and when the power to

the computer is turned off* the contents of ROM

remain intact* Information is placed on a ROM chip

when the chip is fabricated* PROM* which stands

for programmable read-only memory* is a variation

to ROM which can be loaded by the user either

through special programming or by unique electrical

or optical equipment* When information is placed

on a PROM chip* it is said to be "burned in*" and

the portion of the PROM chip that has been altered

cannot be changed* It is possible to program one

part of a PROM chip at one time and other parts at

later times* Regardless of whether ROM or PROM is

bein* used* it cannot be changed after it is

Computer Fundamentals Page 18

written* A third type of read-only memory is

EPROM* which stands for Erasable Programmable

Read-Only Memory* An EPROM can be prog rammed*

erased* and then reprogrammed* EPROMs* however*

are relatively inexpensive* In this book* ROM*

PROM* and EPROM are referred to collectively as

ROM* Regardless of whether ROM* PROM* or EPROM is

being used* the appearance to the user is exactly

the same: the computer responds immediately to the

user through its collection of "built-in" programs*

RAM* which stands for random-access memory* is

used to hold the user's program and data* The name

"random access memory" refers to the fact that the

speed of the memory is independent of the location

bein£ referenced* and this property holds for ROM*

as well* When the power to the computer is turned

off* the contents of RAM are lost*

RAM comes in two varieties: static and dynamic*

With static RAM* information is stored by setting

"flip flop" electronic devices* Information in

static RAM is retained until it is either changed

by a program or the power to the computer is turned

off* With dynamic RAN* information is stored

through electrical charges that dissipate and must

be refreshed - hence the name "dynamic" RAM* In

most cases* dynamic RAM is preferable because fewer

electronic components are needed resulting in a

smaller and less expensive package* Dynamic RAMs

are also faster and use less power on the average*

The refreshing operation is normally handled by the

microprocessor or by special circuitry and is

transparent to the user*

The amount of computer memory referenced during

one memory access is called BANDWIDTH*

(Frequently* bandwidth is used synonomously with

the term "word size*") In the design of ROM and

RAM* the bandwidth is usually set at an optimum

trade-off level for instructions and data* One of

the options available to computer designers is to

have separate memories for instructions and data*

allowing an optional bandwidth for each case* This

is another instance of Harvard architecture* For

example* consider an application domain - such as

Computer Fundamentals Page 19

automobile electronics - where the microcomputer is

to operate on 4 bit quantities* The use of memory

can be optimized by having a word size (i*e*#

bandwidth) for instructions of 8 bits and a word

size for data of 4 bits* This subject has been

discussed most recently (see Crazon C13) for the

design of single chip microcomputers* Another fact

reported by Crazon that may be surprising to many

microcomputer users is that a microcomputer needs

from 16 to 32 times more memory for instructions

than for data* This is obviously the case because

of the applications for which microcomputers are

used* The need for large tables and arrays is not

common and in the few cases where large memory

requirement do exist - say in the area of high

resolution graphics - the programs are

correspondingly large* Also* the cost of RAM to

ROM ranges from 4:1 to 8:1« The result is obvious:

it pays to conserve RAM*

The key point to be recognized here is that the

FORTH language is "right on the button" for

microcomputer applications* FORTH contains

extensive and efficient facilities for data

manipulation* but has a relatively limited

capability for handling tables and arrays and

high-volume input/output operations*

HARDWARE* SOFTWARE* AND FIRMWARE

Three terms are employed to identify facilities

inherent in a computer system: hardware* software*

and firmware* Hardware designates the physical

components of the system - such as microprocessors?

memories* disk drives* and tape units* Software

designates the various sets of instructions used to

control the operation of the computer* Software is

usually recorded in the computer system as

electrical impulses in one form or another* but it

is not a physical device - hence the name software*

Firmware designates instructions* normally stored

in ROM or executed out of ROM* that determine how

the hardware operates or greatly facilitates using

Computer Fundamentals Pa*e 20

the computer* The name firmware apparently stems

from the notion of software that is "firmly" stored

in ROM*

The origin of the term firmware comes from

larae-scale computers wherein the control unit of a

computer is programmed to use the other components

in a prescribed fashion* This process* known as

microprogramming* is employed to synthesize machine

instructions from basic hardware components such as

switches* adders* registers* and control circuits*

The use of firmware and microprogramming is an

alternative in computer design to "hard wiring" the

computer* The key point is that instructions

stored in ROM were regarded as firmware and the

concept has been extended through normal usatfe to

apply to microcomputer instructions stored in and

executed out of ROM*

MICROCOMPUTER SYSTEMS ORGANIZATION

A microcomputer system is a set of compatible

components that operate under the control of a

microprocessor* The microprocessor is the main

component in the system and also performs the

processing* The total organization of the system

is suggested by Figure 1*1* which *ives a block

diagram of a typical microcomputer system

containing the following components:

Microprocessor

Read-only memory

Random-access memory

Keyboard interface

Video display interface

Disk system controller

Printer interface

Cassette interface

The microprocessor is commonly known as "the

computer on a chip*" although in reality* it is

only the processing element that resides on that

chip* A single chip can contain thousands of

Computer Fundamentals Pa*e 21

transistors and other discrete devices - hence the

name integrated circuit* Modern integrated

circuits are densely packed and known as Lar*e

Scale Integrated circuits(LSIs)* Each of the other

components in the system is synthesized from one or

more integrated circuit chips*

Another important element in a microcomputer is

the bus used to transport information between

components of the computer and usually exist in

microcomputers as either 8-bit and most recently

16-bit data lines* The address bus sends "address"

information from the microprocessor to the various

components while the data bus is used to transfer

data between the components and the microprocessor*

In Figure 1«1# the memories and the

input/output units share the same bus* so that the

microprocessor can treat an input/output device as

another memory device* In other microcomputer

systemst there is a separate bus for the memory and

for the input/output units*

MICROPROCESSOR ORGANIZATION AND OPERATION

A microprocessor operates by executing

instructions held in RAM or RON* Normally* RAM and

ROM have the same address space so each responds in

exactly the same manner to the microprocessor* In

a General fashion* the operation of a

microprocessor proceeds as follows:

1* An instruction is fetched from either RAH or

ROM

2* The instruction is decoded to determine the

operation and the operands

3* The operands are retrieved from either RAH

or ROM

4* The specified operation is executed

In order to perform the above tasks* the

Computer Fundamentals Pa*e 22

E

3
a

E

8
o

r &
*-" E

5 8
.2* a

o

E
(0
k.

o>
(0

I
CO

Computer Fundamentals Page 23

microprocessor requires internal read/write memory

for its operation* This interna) read/write memory

is divided into "registers" - each with a specific

purpose* They are described later* During the

performance of these tasks* the operation of the

microprocessor is organized into two cycles:

o The instruction cycle (I-cycle)

o The execution cycle (E-cycle)

Steps 1 and 2 take place during the instruction

cycle? steps 3 and 4 take place during the

execution cycle* Clearly* one occurrence of each

cycle is needed to execute one machine instruction

so that a machine cycle is defined as an I-cycle

followed by an E-cycle*

The implementation of machine cycle processing

within a microprocessor requires three maJor

elements: a control unit* an arithmetic/logic unit*

and a set of machine registers* A block diagram of

a typical microprocessor is given in Figure 1*2*

which shows the interrelationship of the various

elements*

The microprocessor registers are usually

configured as static RAH within the microprocessor*

Some registers can be addressed by an executing

program? others are under the control of the

microprocessor and are normally not referenced

directly by a program*

Registers not normally addressed directly by

the user are the instruction register* the program

counter* the stack pointer* the memory address

register* the memory data register* and the memory

refresh register* The INSTRUCTION REGISTER is used

by the control unit of the microprocessor to decode

and interpret an instruction* After an instruction

is fetched from RAM or ROM* it is routed via an

internal data bus to the instruction register*

where the fields in an instruction word are

isolated by the circuitry of the control unit* The

PROGRAM COUNTER (often referred to as the CURRENT

ADDRESS REGISTER) is used by the control unit to

keep track of the address in RAM or ROM of the

Computer Fundamentals Pasre 24

current instruction* When it is time to fetch an

instruction* the control unit tfoes to the program

counter to determine its location* During the

execution of an instruction by the microprocessor*

the program counter is incremented by the length

attribute of the instruction so that the succeeding

instruction is executed next* The STACK POINTER is

a register that holds the address of the current

position of the top of the stack* Normally* the

stack is not located in the read/write memory of

the microprocessor but in RAH memory external to

the microprocessor* Two registers are needed to

reference RAH and ROM* The Memory Address Register

(MAR) contains the address of the word to be

written to or read from memory* The Memory Data

Register (MDR) holds the data word before it is

written to memory or after it is read from memory*

As reflected in the block diagram of a typical

microprocessor (Figure 1*2)* the memory address

register deals with "data address control" and the

memory data register deals with "data bus control*"

Figure 1*3 *ives the flow of instructions and data

within the microprocessor* Some microprocessors

also include a MEMORY REFRESH REGISTER for keep in*

count of the refresh operation for dynamic RAH*

When a memory refresh register is present in a

microprocessor* it can be loaded under program

control for hardware testing purposes but is

normally not used by the programmer*

Registers addressed directly by the user are

the accumulator* index registers* and

Genera I-purpose registers* The ACCUMULATOR holds

results of arithmetic and logical operations by the

arithmetic/lo^ic unit and serves as one of the

inputs to the arithmetic/Io*ic unit for most

microprocessor operations* The INDEX REGISTERS are

used for addressing - usually with array data*

GENERAL PURPOSE REGISTERS hold addresses and data

during processing and frequently serve as a second

input to the arithmetic/losic unit* Figure 1*4

tfives a block diagram of data flow during the

operation of the arithmetic/lotfic unit*

Host microprocessors also contain a variety of

Computer Fundamentals Pase 25

Micropro-
cessor

and

System
Control

Signals

Data Bus

Data Bus
Control

tt:

Control

Unit

Instruction

Register £ 3
Arithmetic-

Logic Unit

=> internal data bus

NJl

Registers

Data
Address
Control

^

Arithmetic

Logic Unit

Address Bus

Figure 1.2

General Block diagram of a typical microprocessor

Instruction

Register

3E
Control

Unit 3
3X

data bus

from memory

\W ad< Yt7 to
address bus

memory

Microprocessor

Registers e

Accumulator

O^
Arithmetic

Logic
Unit

0
Control

Unit

0 MDR

MAR

A
4>

^>

data bus

to memory

address bus

to memory

(A) Instruction/address flow (B) Data/address flow

Figure 1.3
Flow of instructions and data within a microprocessor

Computer Fundamentals Patfe 26

General-

Purpose
Register

l

V 1 denotes or

RAM or ROM

3~L_^LZH
Arithmetic-

Logic

Unit

N^l

Accumulator

Figure 1.4

Data flow during arithmetic/logic unit processing

I contains

Top

Bottom

9

6

3

5

-7

8

PUSH (8)

\ : /

x
8

9

6

3

5

-7

POP (I)

) -7

/

r
9

6

3

5 POP (J)

/ /

r
6

3

5

-7

J contains

9

Figure 1.5
Conceptual view of stack operation.

Computer Fundamentals Pa*e 27

status registers and "fla*" registers that are set

during norma) computer operation by the hardware

and can be tested and cleared by a user's program?

STACK OPERATION

A stack is a set of registers whose contents

are managed on a last-in-first-out (LIFO) basis*

As mentioned previously* the stack can be

implemented in the microprocessor itse)f or in RAH

memory* Two aspects of a stack are important:

o The size (length) of the stack

o The stack pointer

The two entities *o together* The number of bits

in the stack pointer determines the maximum

capacity of the stack* For example* if the width

of the stack pointer is 3 bits* then the stack can

hold ei*ht entries* numbered 0 through 7* Two

computer operations are normally designed to

manipulate the stack: push and pop* The PUSH

operation places an entry in the stack* and as an

entry is made* the previous entries are pushed

down* The POP operation removes an entry from the

stack* and as the removal is performed* the

previous entries are pushed up* Figure 1*5 4ives a

conceptual view of stack operation*

A stack is commonly used with arithmetic and

logical operations and for savin* the return

addresses for calls to subprograms* Because a

stack is finite in size* the stack can overflow if

too many entries are pushed into it* When this

occurs* the "earliest" entry is lost* aa described

in Fitfure 1*6*

When a stack is implemented in RAN* the stack

pointer moves up and down as PUSH and POP

operations are executed* This method of

implementing a stack is demonstrated in Figure 1*7

and Figure 1*8 *ives Pascal procedures for the PUSH

and POP operations* In the procedures* STACK is an

array of integers whose subscripts ran*e from 0 to

Computer Fundamentals Pasfe 28

Top

Bottom

'3

t:-7 is

lost

Figure 1.6
Stack overflow

(contain
J 4

8

2

1

I 7 PUSH (4) ^)
6

3

5

-7

1

4

8

2

1

6

3

5

POP(K)

.

i

8

2

1 |
7

1

6

3

5

Stack

Pointer

7

6

5

4

—-3

2

1

0

-0

2

6

3

5

7

6

5

—»4

^3
PUSH 2

(8)

1

0

-|4|

8

2

6

3

5

7

6

—»5

4

PUSH 2
(1)

1

0

-a

1

8

2

6

3

5

7

6

5

—*4

POP 2

(I)

1

0

-a

1

8

2 |
6 |
3 |
5 I

Figure 1.7

Implementation of a stack.

Computer Fundamentals Pase 29

PROCEDURE PUSH(VALUE: INTEGER)?

BEGIN

PT:= PT+1?

IF PT>7 THEN

PTs=0?

STACKCPT3s=VALUE

END?

PROCEDURE POP(VAR ENTRYi INTEGER)?

BEGIN

IF PT<0

THEN

BEGIN

ENTRYj=0?

WRITE< 'STACK IS EMPTY')

END

ELSE

BEGIN

ENTRYs=STACKCPTJ?

PT:=PT-1?

IF PT<0 THEN

PT:=7

END

END?

Figure 1.8

Pascal procedures for stack operations.

Computer Fundamentals Pa*e 30

7 and PT is a stack pointer* Both STACK and PT are

declared as tflobal variables* The following

procedure calls would yield the results indicated:

CALL RESULT

PUSHC8) Places 8 in the stack

PUSHC-7) Places -7 in the stack

PUSH(5) Places 5 in the stack

POP(I) Removes 5 from the stack and

places it in I

Stack operation and reverse Polish notation are

covered in more detail in chapter 3*

DISK STORAGE TECHNOLOGY

The processing capability of modern computer

systems is directly related to the speed with which

data can be transferred in and out of the computer*

The transfer rate with serial devices* such as

tape* is inherently limited because it is usually

necessary to pass over preceding information before

the needed information can be accessed* With disk

storage* data can be accessed directly without

having to space over preceding information while at

the same time providing the capability for

sequential access*

A magnetic disk recording medium is a circular

disc coated with magnetic recording material* The

concept is similar to that of a phonograph record*

because data is recorded on tracks and is read or

written as the disk rotates* The tracks on a

magnetic disk are concentric# whereas on a

phonograph record* they are spiral* The speed of a

magnetic disk unit stems from the manner in which

data are accessed* A read/write head moves to the

correct track and only then does a data transfer

operation take place* (This operation is known as

direct access*) Disk storage comes in two

varieties: hard disk and soft disk* HARD DISK is

characterized by the fact that the recording medium

Computer Fundamentals Pa*e 31

is a set of metal disks* coated with magnetic

material* and mounted on a rotating spindle* A

sinfle disk is approximately 14 inches in diameter*

The stack of disks is referred to as a DISK VOLUME*

and if the volume is removable* it is called a DISK

PACK* Data are recorded on both surfaces of a disk

(except perhaps the top and bottom surfaces of a

votume* which are used for protection) and a single

arm controls two read/write heads - one for the

upper surface and one for the lower surface* The

access arms for a comb-type assembly move in and

out together* and a single read/write head is used

to access an entire surface* If the access arms

and read/write heads are in a sealed assembly with

the magnetic disks* then the unit is known as a

WINCHESTER DISK* Hard disks are predominantly used

with medium to)ar*e-sca)e computers*

A SOFT DISK is flexible and is usually called a

FLOPPY DISK or a DISKETTE* A diskette is either an

ei*ht-inch or a five-inch circular piece of flat

Hylar CTHJ polyester sheathed in a polyvinyl

chloride protective Jacket - resembling a 45 rpm

phonograph record* The eiafht-inch variety is

commonly used with small business computers* The

five-inch variety is frequently used with

development systems and with personal/home/hobby

computers* Each recording track on a diskette is

divided into equally-sized zones called SECTORS*

Thus* an area of a diskette is identified by a

track number and a sector number*

A diskette can be hard sectored or soft

sectored* A soft-sector formatted diskette has

magnetically recorded sector locations! whereas a

hard-sector formatted diskette has sector locations

indicated with holes actually punched through the

disk surface*

A typical five-inch diskette has the following

characteristics:

Number of tracks: 35

Number of sectors per track: 13

Number of bytes per sector: 250

Total capacity: approximately 116*000 bytes

Computer Fundamentals Pa*e 32

Figure 1*9 *ives a diagram of a typical diskette*

Disk storage is used in a unique nay in FORTH*

An entire disk is divided into blocks of 1024

bytes? The blocks are called SCREENS because each

can be displayed as sixteen 64-character lines on a

video display device* This philosophy permits any

screen on a diskette to be read or written with one

access*

index-access

hole

read/write

head opening

5%"

diskette

1/ cover

diskette

opening for
device hub

Figure 1.9

Typical diskette

VOCABULARY

A General familiarity with the following terms

will help in learning computer fundamentals:

Accumulator

Arithmetic/)o*ic unit

Bandwidth

Bus

Control unit

Computer Fundamentals Pa*e 33

Diskette

Disk pack

Disk storage

Disk volume

Dynamic RAH

Erasable programmable read-only memory (EPRON)

Execution cycle (I-cycle)

Firmware

Floppy disk

Genera)-purpose registers

Hard-sector disk

Harvard architecture

Hardware

Index register

Instruction cycle (I-cycle)

Instruction register

Memory-address register

Memory-data register

Memory refresh register

Microcomputer

Microprocessor

Princeton architecture

Program counter

Programmable read-only memory (PROM)

Random-access memory (RAM)

Read-only memory (ROM)

Register

Screen

Sector

Soft disk

Soft-sector disk

Software

Stack

Stack pointer

Static RAM

von Neumann machine

Winchester disk

EXERCISES

1« List a couple of items normally treated as

"black boxes."

Computer Fundamentals Pa*e 34

2« Does a modern programmable calculator adhere

to the Harvard or Princeton architecture?

3* Some computer engineers refer to "read

write" memory* Would that be ROM or RAM?

4« Create a scenario wherein bandwidth would

contribute to less than optimal performance*

5# What common computer functions would be

described by the following procedures:

(a) Place address in memory address

register (MAR)

Issue read command

Take word from memory data register

(MDR)

(b) Place address in memory address

register (MAR)

Place word in memory data register

(MDR)

Issue write command

Software Technology Pa*e 35

Chapter 2. SOFTWARE TECHNOLOGY

Reasons for Usin* Software

Categories of Software

The Concept of an Algorithm

The Concept of a Program

Assembler Lan*ua*e

Programming Lan*ua*es

Prosfram Structure

Lan?ua£e Processors

Assembler Programs

Compiler Programs

Interpreter Programs

Monitors and Operating Systems

Utility Systems

Development Systems

Vocabulary

Exercises

Software Technology Paafe 37

Computer software can be viewed collectively as

the set of instructions necessary for usin* the

computer* However* the concept is not as

well-defined as one mi*ht imagine* Some people

view software as only those elements that "*o with"

the machine* Anythin* that deals with the user's

applications* therefore* would be outside the scope

of software and known as "application programs*"

Other people view software in the collective sense

to include "all of the above*" Regardless of one's

point of view* software is a more tractable medium

than hardware and much of the power of modern

computers is available through effective software*

As an example* the FORTH)an*ua*e is available to

the user as an element of software*

REASONS FOR USING SOFTWARE

Software is one of the most popular topics in

the computer field* This is so for a variety of

reasons* First* a software program is the key

interface in most cases between a person and a

computer* Through the use of appropriate software*

almost anyone can use a computer* Without

software* specific technical training is needed to

use a computer* Second* programming lan*ua*es and

operational software make it relatively

straightforward to do programming so that the time

and costs necessary for program development are

decreased* Third* the use of a machine-independent

programming lansrua^e allows a program to be run on

several computers* Lastly* software permits the

computer to be used efficiently and effectively*

and permits a computer system to be tailored to a

particular application domain*

CATEGORIES OF SOFTWARE

Computer software is conveniently Grouped into

four major classes for the purposes of this books

programming languages*)an*ua*e processors*

Software Technology Pa*e 38

monitors and operating systems* and utility

systems* A fifth class* "Data Management and

Database Systems*" is also recognized* This class

is outside the scope of the FORTH)an*ua*e and is

not covered further? Another software related

topic is "Development Systems*" which is also

briefly discussed in this chapter*

PROGRAMMING LANGUAGES include assembler

lantfuatfe and higher-level lantfuatfes* FORTH is a

higher-level)an*ua*e« LANGUAGE PROCESSORS include

assemblers* compilers* and interpreters*

Programming lantfuasres are available to the user

through lan*ua*e processors* MONITORS AND

OPERATING SYSTEMS are the set of routines that

control the operation of the computer through

facilities for system management* program

management* and data management* Closely related

to the previous category are UTILITY SYSTEMS* which

supply the capacity for editing and debuJtfintf

programs*

DEVELOPMENT SYSTEMS permit a program to be

prepared and tested on one microcomputer system for

use on a distinct system* Many typical

applications of microprocessors and microcomputers

require a development system because the

application itself does not involve a complete

computer system*

THE CONCEPT OF AN ALGORITHM

Generally speaking* an ALGORITHM is a set of

procedures ro be followed in solving any problem of

a *iven kind* Procedures of this kind can be

specified in a variety of ways ranafin* from concise

mathematical formulation to description in a

natural Ian4ua*e* such as English* For example* a

mathematical algorithm for computing the square

root r of a number x is Jiven as follows (where e

is a smalI value):

Software Technology Pa*e 39

STEP INSTRUCTION

1 Set r equal to 1

2 Compute r=*5(x/r+r)

3 If |(r -x)| <e# then r is the
desired result? otherwise *o to step 2

Similarly* a less forma) algorithm for computing

the Greatest common divisor of two nonzero integers

A and B is tfiven as follows:

1* Compare the numbers A and B? if they are

e^ualt then each is the desired result*

2* If B is larger than A* exchange their values

so that A always contains the larsfer value*

3. Compute A-B and replace A with the result*

Continue with step 1«

From these examples* an idea of the characteristics

of an algorithm can be determined:

THE DETERMINISTIC NATURE OF AN ALGORITHM, An

algorithm must be Jiven in the form of a finite

list of instructions tfivin* the exact procedure

to be followed at each step of the calculation*

Thus* the calculation does not depend on the

calculator? it is a deterministic procpss that

can be repeated successfully at any time and by

anyone*

THE GENERALITY OF AN ALGORITHM* An algorithm

is a single list of instructions defining a

calculation which may be carried out on any

initial data and which* in each case* *ives the

correct result* In other words* an algorithm

tells how to solve not Just one particular

problem* but a whole class of similar problems*

Software Technology Pa*e 40

In spite of the specificity of an algorithm* it can

also be seen that the actual number of instructions

that must be executed in solving a particular

problem is not known beforehand * and is dependent

upon the input data* The number is discovered only

during the course of computation4

THE CONCEPT OF A PROGRAM

One of the most straightforward definitions of

programming was *iven in 1958 by John von Neumann

[213:

"?•? any computing machine that is to solve

a complex mathematical problem must be

'programmed' for this task* This means

that the complex operation of solving that

problem must be replaced by a combination

of the basic operations of the machine*"

A COMPUTER PROGRAM (usually referred to simply

as a PROGRAM) is a series of statements that

specifies a computer representation of an

algorithmic process* When the statements are

executedt the algorithm is performed* The

"statements" are the key entity and always adhere

to the specifications for a sfiven programming

lan^uasfe*

Informally* a statement is a series of

characters punched on a card* recorded on disk or

tape* or entered at a terminal or display device*

To be useful* however* a sfiven statement must

adhere to the SYNTAX (rules) and utilize the

SEMANTICS (operational meaning) of the lansfuatfe

bein* used* Some examples of)an*ua*es and

programs are included in the following sections*

ASSEMBLER LANGUAGE

Assembler Ian4ua*e is closely related to the

machine lan£ua*e of the computers operation codes*

Software Technology Pasfe 41

operands* and modifiers are simply represented by

symbolic equivalents* Consider the assembler

lan*ua*e program (listed as Figure 2*1) that

computes the Greatest common divisor of numbers A

and B* as described above* Bach statement is

written according to a format consisting of a

"location" field* an "operation code" field* an

"operand" feld* and a "comments" field* The

LOCATION MELD is used to reference the

corresponding machine instruction or data field*

The contents of the OPERATION CODE and OPERAND

fields are used to construct machine instructions*

to establish storage areas* and to specify program

constants* Assembler lansfua^e is not Generally

considered to be a higher-level lan*ua*e» so that a

program written in assembler lan*ua*e is not as

readable as one written in a modern programming

lansfuasfe such as BASIC or FORTRAN* As a lan*uasfe>

FORTH is more readable than assembler Ian4ua4e» but

probably not as readable - at least to the beginner

- as some other programming Ian*ua4es*

PROGRAMMING LANGUAGES

As an example of a program in a programming

lantfuasfe* consider the BASIC program in Fisfure 2*2

that computes the sfreatest common divisor* as

introduced in the previous alsforithi) and assembler

lan*ua*e program* Each statement is identified by

a line number that is followed by a statement that

performs a computer function* Even though you may

not be familiar with the BASIC)an*uatfe# it is

still possible to follow the flow of the program

segment by referring to the algorithm* Similarly*

the FORTRAN program in Figure 2*3 computes the

s«?uare root of x ? Also* by following the

algorithm* this program is reasonably easy to

comprehend* The essence of programming)an^ua*es

is readability* writeability* and efficiency*

FORTH is a programming lantfua^e and several

examples of how it is used were *iven in the first

chapter* FORTH and other popular programming

Software Technology Pa*e 42

c
CD

E
E
o
o

c

o
•= CD

2 "g

o

c
o

CO

4-J

< <
.c

gister 5 wit e reg. 5 (i.e if equal to 1 if reg. 5 (i.e ge A and B reg. 5 with s of reg. 6 (t B from A. to locate R "n would co
Loac Com Bran Bran Excr loadi conti Subt Bran (Proc

ONE. A) is y plac 1 andt e., the PEAT tinue 1
Q

JC
O

BtoOK ster 6, by ng the algorithrr
c O) O GO

CD CD CD c-C

jater (VP cont
k.

.

k. — Q.

.E -c o

.Q UJ ._;

C O) c racCD C

3

C

o
¦4-"

UJ

sz
u

6
k.
0)
r-

c

CD
k.

¦D
C
CD

a>

Q.

o

LU
<

<OQZ^lflCQDQCQiiJ

in in O o co lo to in p-
Q LU

CC

LU I CC

CO CO —I fe CO CO

<
LU
Q.
LU
CC O

< CO
k. k.

o o

H- H-

<D CD

O) O)

CD CD
k. k.

o o

CO CO

LL LL

CO CO

Q Q

s
0)
4-
(0
CD
k,

o>

W

JC

?*

0)

?*

3

a

Ego

8-g " c
O CD
?* ^-

™ E ..
o no

Is!

progr mmon
8>8
§.
C

J2

k.
0)

3
E

Si

o
Q < co

Software Technology Pa*e 43

10 IF A=B THEN GOTO 80

20 IF A>B THEN GOTO 60

30 T=A

40 A=B

50 B=T

60 A=A-B

70 GOTO 10

80 (continuation of program)

Figure 2.2

A BASIC program segment that computes the greatest
common divisor of A and B.

E=*001

R=1,0

2 R=*5*(X/R-R).GE.E) GOTO 2

(continuation of program)

Figure 2.3

A FORTRAN program segment that computes

the square root of x.

Ian*ua£es in this category are designed primarily

to aid in the preparation of computer programs for

subsequent execution on a digital computer* These

)an*ua*es are normally referred to as

"hiflfher- level" or "procedure-oriented" lan£fua*es*

The implications are twofold: (1) A prosrram can be

written in one of these lansfuasfes without the user

necessarily knowin* the specific details of the

particular computer on which the prosfram is to be

run? and (2) When writing a program in one of these

)an*uasres» the user describes the steps to be

performed by the computer as compared to a case in

Software Technology Patfe 44

which a)an*ua*e is used to describe the problem to

be solved*

While a user must state the steps to be

followed in the execution of the computer program*

many of the details ordinarily associated with

"machine-level" programming are eliminated* The

significance of the preceding concepts is

demonstrated in the following prosfram* written in

the BASIC)an*ua*e* that computes a table of even

numbers less than or equal to 100 and their

squares:

10 FOR 1=2 TO 100 STEP 2

20 PRINT I* I 2

30 NEXT I

99 END

The statement numbered 10 marks the befinnin* of a

series of statements that are to be executed

repetitively while "I" successively taKes on the

values 2*4*6*•.?*100* The statement numbered 20

specifies that the values "I" and "I squared"

should be printed on the same line* In the case of

"I squared*" a numerical calculation is required

through the use of the operator* which represents

exponentiation* The statement numbered 30

specifies that the loop should be repeated for the

next value of I* Lastly* statement numbered 99

ends the program* When the program is executed* a

sinsfle line is printed for each trip through the

loop* The output would look somewhat as follows:

2 4

4 16

6 36

8 64

10 100

and so forth*

Some of the other well known programming

lan*ua*es and their maJor applications are:

FORTRAN for scientific computing

Software Technology Pa*e 45

COBOL for data processing

Pascal for General programming

In fact a Pascal program for the "I squared"

program is tfiven as Figure 2*4* Pascal appears to

be more complicated than BASIC or FORTRAN* but the

difference is only superficial* In fact# the

structure of the Pascal lansfuatfe makes it easier to

write correct programs* The same philosophy would

apply to FORTH* The lan*ua*e demands an investment

in learning but the result is certainly worthwhile

in terms of efficiency and flexibility*

PROGRAM TABLE(INPUT? OUTPUT)?

VAR

I;

integer;

BEGIN

FOR I := 1 TO 50 DO

WRITELN(2*I*SQR(2*I))

END*

Figure 2.4

A Pascal program that computes a table of "I" and "I squared."

Each programming lan*ua*e is designed with a

specific purpose in mind* The FORTH lan*ua*e is

particularly suited for the programming of

microcomputers*

PROGRAM STRUCTURE

Statements in a program are executed

sequentially until a statement is executed that

alters the normal sequence* The IF and GOTO

statements* in previous examples* were statements

in this category*

Most computer programs are designed so that

Software Technology Pa*e 46

certain operational functions* such as the square

root* are repeated frequently in the execution of

the program* Thus* the machine instructions

necessary for computing the square root (in this

case) would be duplicated many times - an

inefficient means of usin* valuable RAH memory* An

alternate method and the one that is most

frequently used is to include the square root

function in the program only once as a "subprogram"

and branch to it when needed* The process of usin*

a "subprogram" is depicted conceptually in Figure

2*5* Thus* a program is effectively structured

into a MAIN PROGRAM and possibly one or more

SUBPROGRAMS* A main program can reference

subprograms* a subprogram can reference other

subprograms* and so forth*

A subprogram is rousfhly equivalent to the

definition mode in FORTH* This is how programs are

synthesized in FORTH: as successive layers of

subprograms*

LANGUAGE PROCESSORS

One of the key factors in the widespread use of

programming)an*ua*es is the fact that much of the

detail ordinarily associated with "machine-level"

programming is subordinated to another computer

program* termed a "lan*Ma*e processor*" More

specifically* a LANGUAGE PROCESSOR is a program

that accepts another program as input? the output

of a lantfua^e processor either is a translated

version of the input program or a set of computed

results*

A LANGUAGE TRANSLATOR is a lan*ua*e processor

that produces an output program* Some terminology

relevant to the use of lan*ua*e translators is

shown in Figure 2*6* The program as expressed in

assembler lan*ua*e or in a higher-level lan?ua*e is

referred to as a SOURCE PROGRAM? it is read into

the lan*ua*e translator from cards* tape* a

direct-access device* or from a terminal or display

device* The output from the lantfuaafe translator is

Software Technology Pa*e 47

MAIN

PROGRAM

SUBPROGRAM

B

Figure 2.5

Conceptual view of the process of structuring a program into a

main program and one or more subprograms

Source

Program

(Input to the

Language

Translator)

Language
Translator

(Assembler or

Compiler)

Object

Program

Program

Listing

(Output from the

Language Translator)

Figure 2.6

Conceptual view of the process of language translation.

Software Technology Pa*e 48

a translated version of the program* termed an

OBJECT PROGRAM* and a listing of the program* The

object program is recorded on cards* tape* or a

direct-access device for subsequent input to the

computer for execution* Lansfuatfe translators come

in two forms: assemblers and compilers*

ASSEMBLER PROGRAMS

An ASSEMBLER PROGRAM (usually referred to

simply as an ASSEMBLER) converts a program written

in assembler lan£ua£e to an equivalent program in

machine lan*ua*e* The translation process is

usually referred to as ASSEMBLY or the ASSEMBLY

PROCESS* Assembly is usually performed in two

passes over a source program* In the first pass*

relative addresses are assigned to symbols in the

location field* In the second pass over the source

program* symbolic operation codes are replaced by

internal machine codes and symbolic operands are

replaced by corresponding addresses that were

determined during pass one* The object program and

the program listing are also produced durinsf pass

two* Various forms of error checking and analysis

are performed during both passes*

COMPILER PROGRAMS

A COMPILER PROGRAM (usually referred to simply

as a COMPILER) converts a program written in a

higher-level lan*ua*e to either machine lansfua^e or

to assembler lan^uatfe* In the second case* the

resulting assembler lantfuatfe program must then be

processed by the assembler* Figure 2*7 depicts

sample assembler Ian*ua4e statements that would be

Generated by a single statement in a higher-level

)an£ua£e«

Software Technology Pa*e 49

HIGHER-LEVEL ASSEMBLER LANGUAGE

LANGUAGE

I'J*K+L L 6tJ (Load 6 with J)

II 5*K (Hult*re*s. 5-6 by K)

A 6*L (Add L to re** 6)

ST 6*1 (Store re*. 6 in I)

Figure 2*7 Sample assembler)an*ua*e statements

Generated by a compiler*

In contradistinction to assembly where one machine

instruction is usually Generated for each assembler

lan*ua*e source statement* the compiler usually

Generates several machine instructions for each

source statement in a higher-level)an*ua*e*

Compilation is generally considered to be more

complicated than assembly since higher-level

lansfuatfe structure tends to be more complex than

assembler lantfuasfe structure* Although a compiler

is necessarily dependent on the lan*ua*e bein*

compiled* the following steps are usually involved:

1* The compiler reads the source program on a

statement-by-statement basis and performs the

following processing for each statement:

(a) Lexical analysis to identify keywords*

names* constants* punctuation characters*

etc*

(b) Syntactical analysis to identify the

type of statement and determine that its

structure is admissible

(c) Placing the constituents of the

statement in lists and tables to facilitate

the feneration of machine code and to allow

a Global analysis of the program*

2# A flow analysis of the program is performed

to check for interstatement errors and to

Software Technology Pa*e 50

provide information on how machine registers

should be assigned*

3* Program optimization is performed and

machine instructions are Generated*

4* An object program and a program listing are

produced*

A compiler and an assembler have one important

feature in common* That is> each has the complete

source program at its disposal so that the various

steps in the assembly and compilation processes can

be executed at the discretion of the person

desi*nin* the assembler or the compiler* Only

after a source prosfram has been completely analyzed

by an assembler or compiler and an object program

produced is that object program actually executed*

INTERPRETER PROCRAHS

One type of lan*ua*e processor that allows

program modification durinsf execution is the

interpreter* The INTERPRETER is a lan*uatfe

processor that executes a source program without

producing an object program* An interpreter

operates as follows:

1* The interpreter reads the source program on

a statement-by-statement basis and performs the

following processing for each statement:

(a) The statement is scanned* identified*

analyzed* and interpreted to determine he

operations that should be performed*

(b) The required operations are executed by

the interpreter and the intermediate results

are retained*

2* The next statement that is interpreted

depends on the results of the statement Just

Software Techno I osfy Pa*e 51

executed (such as in the case of a COTO

statement)*

Interpreters vary in internal design* Some

interpreters convert a source program into an

intermediate function lan*ua*e and then

interpretive Iy execute the statements in the

intermediate form* The Key point is that an object

prosfraro is not produced and that all statements are

not necessarily processed by the interpreter*

Interestingly enough* the FORTH concept employs

both a compiler and an interpreter* Statements

entered in the definition mode are compiled into an

internal form* In the execution mode* statements

are then handled interpretively*

MONITORS AND OPERATING SYSTEMS

The title "monitors and operating systems"

refers to a set of systems programs that provide

three major functions:

1* A logical interface between the hardware and

the software

2* A logical interface between the user and the

software

3* A logical interface between the user and

data stored on "external" storage devices* such

as tape or diskette

If the set of systems programs are stored in ROM

and only ROM* then it is called a MONITOR that

normally controls the execution of all programs*

Moreover* all programs use the monitor during

execution* Typical monitor capabilities <xrei

1* Automatic startup from ROM

2* Hand I in* standard input from the keyboard

and output to the video display

Software Technology Pa*e 52

3# Examining* chan*in*> movin*# and comparing

the contents of memory

4* Examining and chan*in* the contents of

registers

5# Savins the contents of memory on tape and

reading the contents of memory from tape

6* Running and listing programs

7* Loading and savin* programs from tape

Monitors are normally associated with reasonably

small microcomputer systems that utilize tape

cassettes for storing programs and data*

When the set of systems programs are stored on

disk storage and utilize a disk or diskette for

storin* programs and data* then it is called an

OPERATING SYSTEM* Like a monitor* an operating

system controls the execution of all programs* and

all programs use the operating system during

execution* Typical operating system capabilities

are classed into three categories: program

management* data management? and user services?

PROGRAM MANAGEMENT facilities concern the following

functions:

1« Loadin* programs from disk

2* Runnin* programs from disk

3* Savin* programs on disk

DATA MANAGEMENT facilities involve the followin*:

If Storin* data files and programs on disk by

name

2* Copyin* files

3# Erasin* files from disk

Software Technology Pa*e 53

4* Renaming files

5* Providing disk input/output operations

USER SERVICE facilities involve the following:

1* Mana*in* the catalog of program and data

file names

2* Initializing disk

3* Establishing system parameters

In disk based microcomputers* both monitor and

operating system facilities are commonly available

to the user* providing the convenience of a ROM

based system with the power of a disk operating

system*

UTILITY SYSTEMS

Two software elements are available in most

computer systems to aid the user in writing and

debu£*in* programs: an editor and a debu* package*

An EDITOR is a text processing system that permits

a program to be entered into the system* changed*

and listed with a minimum of inconvenience* Once

the program file is constructed* editor commands

permit textual modifications to be made to the

program text at the statement level without

resuirin* that the user re-enter a complete program

line*

A DEBUG PACKAGE assists the user in correcting

program errors by supplying a means of tracinsf

program flow and displaying intermediate results on

a conditional basis*

Editors and debu* packages are commonly

regarded as part of the operational environment for

program development*

Software Technology Pa*e 54

DEVELOPMENT SYSTEMS

Many microcomputer systems cannot support the

program development process* A microcomputer

system in an automobile* appliance* or other

machine is relatively limited in functional

capability because of the specialized nature of the

application* Some of the necessary hardware

elements (such as lar*e RAM memory* printer? tape*

or disk) simply do not exist* In cases such as

this* programs are developed on a "development

system" and then transferred to the specialized

system*

There is nothin* special about a development

system* other than the fact that it can support the

program development process throusfh the following

hardware and software elements (see Figure 2*8):

o Editor

o Debus package

o Lan?ua*e processor

o Monitor or operating system

o Printer

o Tape or disk storage

o Sufficiently larsfe RAM

Each of these elements has been presented

previously*

A development system need not be the same model

of computer as the target system* Frequently* mini

or)ar*e-sca)e computers are used to develop a

prosfram for a microcomputer system* When assembly

is done on one computer (i*e** a development

system) for another computer (usually a

microcomputer)* the lan*ua*e processor is called a

CROSS ASSEMBLER* Similarly* compilation on one

system for another computer is called a CROSS

COMPILER*

Software Technology Pa*e 55

Editor

Monitor or

Operating

System

Algorithm

f

Source

Program

f

Language
Processor

r

Execution

}

Completed

Program

1

Compile or

Assembly Error

Execution

Error

Debug

Package
—1

Figure 2.8

The program development process

Software Technology Pa*e 56

VOCABULARY

A General familiarity with the following terms

will help in understanding software technology:

Algorithm

AssembI er) an*ua*e

Assembler program

Compiler prosfram

Cross assembler

Cross compiler

Debu* package

Development system

Editor

Higher-1 eve I Ian*ua*e

Interpreter program

Lan£ua£e processor

Lan*ua*e translator

Main program

Monitor

Operating system

Procedure-oriented Ian£ua*e

Program

Programming)an£ua*e

Subprogram

Utility system

EXERCISES

1* What do an algorithm and an ordinary kitchen

recipe have in common?

2» How many steps are in the Greatest common

divisor algorithm sriven in the chapter? Apply this

algorithm to the values 35 and 21? How many steps

are actually executed?

3« Name the fields in an assembler lan«fua*e

statement*

4* Give the output from a)an*ua«re translator*

Give the output from an interpreter*

Polish Notation Pa*e 57

Chapter 3* REVERSE POLISH NOTATION

MathenaticaI Forms

Structure of Expressions

Conversion Between Infix Notation and

Postfix Notation

Interpretive Execution of Infix Notation

Vocabulary

Exercises

Polish Notation Page 59

A good workin* knowledge of the FORTH language

requires that a user have a good background in

reverse Polish notation and the use of a stack*

Both topics have been introduced previously* This

chapter goes into more detail so that a user can

easily convert expressions to reverse Polish

notation and understand how they are executed in

FORTH* Clearly* a user can do simple things in

FORTH without possessing any special knowledge* As

the level of complication increases* however*

background information is important for effective

programming* This chapter does not have any

specific orientation to FORTH or any other

programming language* The subject matter is simply

presented to assist the programmer whenever needed*

MATHEMATICAL FORMS

Ordinary mathematical notation is referred to

as INFIX NOTATION* which means that the operator

symbol for an operation requiring two operands

separates the operands* Examples of infix notation

are: x+y* which means "add the value of y to the

value of x*M and -a* which means "take the negative

of a«M When an expression includes more than one

operation* then an operational convention is used

to determine the order in which the operations are

executed* The most widely used convention is to

establish a hierarchy among operators* such as the

following:

OPERATOR HIERARCHY OPERATIONAL MEANING

SYMBOL

** High Exponentiation

* or / Multiplication or division

+ or - Low Addition or subtraction

and then to execute operators by order of

hierarchy* Thus* an expression such as

Polish Notation Patfe 60

a

x+y

requires the use of parentheses* that is

A/CX+Y)

to specify the intended meanintf*

A notation that does not require parentheses

for expressions of this sort is called Polish

notation* after the Polish Mathematician J«

Lukasewicz* who used it for representing

well-formed formulas in lo^ic* In fact* Polish

notation ne^er requires parentheses and is Known as

a Mparenthesis-freeM notation* Polish notation

comes in two varieties: PREFIX NOTATION* which is

also called simply Polish notation? and POSTFIX

NOTATION* which is also called reverse Polish

notation* In prefix notation* the operator always

precedes its operands (reading from left to ri*ht)>

so that an expression such as A+B is denoted by

+AB* More complex expressions are constructed by

repeated application of the concept in a similar

manner* Additional examples of mathematical

expressions represented in prefix notation are

*iven in Table 3»1»

Table 3.1

Examples of Polish Notation

Infix Notation

A#B

A*X-B

A*(X-B)

A+(B/C-D)

A*(B/(C-D)+E)

Prefix Notation

*AB

-#AXB

*A-XB

+A-/BCD

*A+/B-CDE

Postfix Notation

AB*

AX*B-

AXB-*

ABC/D-+

ABCD-/E+*

Po)ish Notation Pa*e 61

POSTFIX NOTATION is the most popular form of

Polish notation and is characterized by the fact

that the operands precede the operator (asfain

readinsf from left to ritfht)* so that the infix

expression A+B is represented by AB+* Additional

examples of postfix notation are *iven in Table

3*1* The major advantages of postfix notation are

inherent in the relative simplicity of the

processes required to: (1) convert an expression

from infix notation to postfix notation? and (2)

execute the postfix notation interpretively or

convert it to a set of equivalent machine lan*ua*e

instructions* A description of the conversion

process from infix notation to postfix notation is

iven in a subsequent paragraph

STRUCTURE OF EXPRESSIONS

One means of showing the relationship between

operators and operands in an expression and

exhibiting the order in which operations should be

executed is to use a STRUCTURAL DIAGRAM* In a

diagram of this type* operators and operands are

regarded as points (or nodes)t and the relationship

between them is denoted by lines* as shown in

Figure 3*1* A structural diagram provides two

important items of information about an expression:

(1) its form* and (2) its structural meaning* In

General* a structural diagram is independent of the

syntactic structure of a programming)an*uasfe*

A structural diagram can be regarded as an

upside-down tree* The topmost node is the "root"

and operands are always terminal nodes or "leaves"

of the tree* Another way to look at a structural

diagram is to view it as a hierarchical collection

of subtrees* where each operator is the root of a

subtree and the operands (to that operator) are

leaves of that subtree* Thus* an operator is

always the root of a subtree* A binary operator

has two subtrees* corresponding to each of its

operands* A unary operator has a single subtree*

corresponding to its single operand* Figure 3*2

Polish Notation Pasre 62

(A) Structure diagram for A*X-B (B) Structure diagram for A*(X-B)

Figure 3.1

Structure diagrams used to exhibit the relationship between operators

and operands in an expression.

(A) Representation of a binary operator

9
©

(B) Representation of a unary operator

Figure 32

Structural forms for binary and unary operators.

Polish Notation Page 63

gives structural forms for binary and unary

operators*

Trees (or structural diagrams) do not lend

themselves to representation in the computer* for

obvious reasons» and are stored as a linear

sequence of symbols* The process of converting a

tree to a linear sequence of symbols is

accomplished by traversing (or walking through) the

tree* Knuth C143 defines three methods that are

applied by systematically dividing a tree into

subtrees* The three methods (modified to meet our

needs) are given ass

PREORDER TRAVERSAL

Visit the root

Traverse the left subtree

Traverse the right subtree

or

Visit the root

Traverse the single subtree

POSTORDER TRAVERSAL

Traverse the left subtree

Visit the root

Traverse the right subtree

or

Visit the root

Traverse the single subtree

ENDORDER TRAVERSAL

Traverse the left subtree

Traverse the right subtree

Visit the root

or

Traverse the single subtree

Visit the root

Polish Notation Pa*e 44

The three forms of traversal are depicted in Figure

3*3* Fitfure 3*4 *ives additional examples* of

which the last includes unary operators*

An interesting relationship exists between the

structural diasfram (or tree form) of an expression

and infix* prefix* and postfix notation* If the

"tree of an expression" is denoted by TOE* then

PREORDER (TOE) - prefix notation

ENDORDER (TOE) - postfix notation

POSTORDER (TOE) - infix notation without

parentheses

In the last case* the relationship has validity

only for expressions without parentheses* but is a

useful conceptual tool* As an example of these

concepts* consider the tree named 0 in Figure 3*5*

Application of the three forms of traversal £ives

PREORDER(Q) =A+*BC/DE* which is prefix

notation

POSTORDER A*B*C*D/E* which is infix notation

ENDORDER(Q) ABC*DEA** which is postfix

notation

This last example incorporates the conventional

replacement operation of the form

v=e

where v is a variable and e is an expression* This

can be regarded as a binary operation that takes

the form = ve in prefix notation and ve= in postfix

notation*

It should be emphasized here that another symbol

is used for the "store" operation in FORTH* If it

were desired to replace the contents of variable A

Polish Notation Pa*e 65

Preorder traversal

?+XY-/ZWA

Postorder traversal

X+Y*Z/W-A

Endorder traversal

XY+ZW7A-*

Figure 3.3
Preorder, postorder, and endorder traversal of the structural diagram

of the expression (X+Y) *Z/W-A).

Polish Notation Pa*e 66

preorder (G)^ABDGECFHI

postorder (GHDGBEACHFI

endorder (G)-GDEBHIFCA

Figure 3.4

Examples of preorder, postorder, and endorder traversal.

Polish Notation Pa*e 67

with the value 5 in FORTH* one would enter:

5 A !

where {!> represents the store operation*

Figure 3.5

Structural diagram of the statement A=B*C+D/E. This example is used

in the text to show the relationship between traversal and
mathematical forms.

CONVERSION BETWEEN INFIX NOTATION AND POSTFIX

NOTATION

The conversion process fro* infix notation to

postfix notation is *iven here as a basic *ethod

that a user can app)y to complex expressions* The

description of the Method utilizes operands that

are single letters and does not pernit subscripted

variables* Methods for interpretively executing

postfix notation follow this section*

Conversion frow infix notation to postfix

notation uses a set of procedures and a hierarchy

(or priority) awon* operators* The overall process

is depicted in Fisfure 3*6* The terns SOURCE STRING

Polish Notation Pa*e 66

H
\ /

Source string
(infix notation)

Target string
(postfix notation)

Operator
stack

Figure 3.6

Basic diagram of the conversion process from infix and postfix notation.

and TARGET STRING are particularly appropriate

because the expression can be regarded as a string

of characters* After conversion from infix to

postfix notation* the order of operands (that is*

variables) regains the same* During conversion* an

OPERATOR STACK is used to rearrange the operators

so that they occur in the target string in the

order in which they should be executed* The

priority of operators is as follows:

PRIORITY OPERATOR

OR SYMBOL

NOTE

Hitfh

Low

(

* or /

+ or -

(

Outside the operator

stack

Inside the operator

stack

Polish Notation Paste 69

A snail subset of operators* including parentheses*

is selected to simplify the conversion process*

Rules for Manipulating the source and target

strings and the operator stack can now be *iven:

1* The source strinsr is scanned from left to

ri*ht* Similarly* the target strinsf is formed

from left to risfht*

2* Operands (that is* variables) from the

source string bypass the Operator stack and are

passed to the target string directly*

3* If the scan of the source strinsf encounters

an operator with a priority Greater than the

priority of the operator at the top of the

operator stack* then the operator from the

source string is entered into the operator

stack* If the priority of the operator in the

source string is not sfreater than the priority

of the operator at the top of the operator

stack* then the operator at the top of the

operator stack is moved to the target string

and this step is repeated* (Note: a left

parenthesis always enters the operator stack*)

4* If a ritfht parenthesis is encountered during

the scan of the source strinsf* then the

operators in the operator stack are moved to

the tarsfet string* This process continues

until a left parenthesis is encountered in the

operator stack? then the left and ritfht

parentheses are both discarded*

5* When the end of the source string is

reached* all operators in the operator stack

are moved directly to the target strinsf*

Figure 3*7 *ives a detailed "walk-throusfh" of the

conversion process usintf the above rules and

operator priorities*

lotation Pa*e 70

Source String Operator Stack Target String

tA+B*C-D)/E

t+(B*C-D)/E

t(B*C-D)/E

tB*C-D)/E

t*C-D)/E

tC-D)/E

t-D)/E

tD)/E

t)/E

t/E

|E

t

(| Denotes scan
pointer)

u
u

+

(

+

1 (
+

*

(

+

*

(

+

(

+

(

+

+

/

+

/

+

A

A

AB

AB

ABC

ABC*

ABC*D

ABC*D-

ABC*D-

ABC*D-E

ABC#D-E/+

Figure 3.7

Conversion from infix notation to postfix notation.

Polish Notation Pasfe 71

INTERPRETIVE EXECUTION OF INFIX NOTATION

Interpretive execution of an expression in

postfix notation involves a)eft-to-ritfht scan and

the use of an operand stack* If an operand is

encountered during the scan* its value is placed in

the operand stack* If an operator is encountered

during the scan* the required number of values

(i*e** two operands for binary operators and one

operand for unary operators) are taken from the

operand stack* The specified operation is

performed on the operand(s) and the result is

placed back in the stack* An example of

interpretive execution is tfiven in Figure 3*8»

When the process is complete* the computed value of

the expression is at the top of the operand stack*

In FORTH> placing the value of a variable in

the stack is not as straightforward as the above

examples misfht imply* If a user wished to compute

A+5* for example* and entered the following FORTH

input line:

5 A +

the "address" of A would be added to 5* since a

variable reference puts the address of a variable

in the stack in the FORTH lansfuai/e* The following

input line:

5A9 +

would be needed to add the contents of A to 5* The

symbol {§} is a FORTH word that fetches the

contents of the address on the top of the stack and

pushes the value into the stack*

Polish Notation Pa*e 72

Postfix String Operand Stack Note

XY+ZW/A-B+Y/ | | Prior to scan of postfix

Y+ZW/A-*B+Y/

+ZW/A-*B+Y/

ZW/A-*B+Y/

W/A-*B+Y/

/A-*B+Y/

A-*B+Y/

-*B+Y/

*B+Y/

2

3

2

5

12

5

4

12

5

3

5

1

3

5

2

5

string; stack empty

Value of X is pushed into stack

Value of Y is pushed into stack

+ operator; two operands (3 and

2) are pulled from top of stack

operation is performed on them

result is pushed into stack

Value of Z is pushed into

stack

Value of W is pushed into stack

/ operator; two operands (4 and

12) are pulled from top of

stack; operation is performed

on them; result is pushed into

stack

Value of A is pushed into stack

- operator; two operands (1 and

3) are pulled from top of

B+Y/

+Y/

Y/

Value of Operands

Symbol Value

X

Y

Z

w

A

B

2

3

12

4

1

5

10

5

10

15

stack; operation is performed

on them; result is pushed into

stack

* operator; two operands (2 and

5) are pulled from top of

stack; operation is performed

on them; result is pushed into

stack

Value of B is pushed into stack

+ operator; two operands (5 and

10) are pulled from top of

stack; operation is performed

on them; result is pushed into

stack

Value of Y is pushed into stack

/ operator; two operands (3 and

15) are pulled from top of

stack; operation is performed

on them; result is pushed into

Execution of postfix string is

complete; result is in the

operand stack

Figure 3.8
Interpretive execution of the postfix expression XY+ZW/A-*B+Y/
that corresponds to the infix expression ((X+Y)*(Z/W-A)+B)/Y.

Polish Notation Pa*e 73

VOCABULARY

A General familiarity with the following terms

will help in learning the concepts of reverse

Polish notation:

Binary operator

Endorder traversal

Infix notation

Operator hierarchy

Postfix notation

Postorder traversal

Prefix notation

Preorder traversal

StructuraI diasfram

Unary operator

EXERCISES

1* Convert the following expressions to postfix

notation:

A+B-C

<A+B)*C

A*B-C/D+E

<A+B)/(C-D)-E

<A*Y+B)*Y+C

<A*(B+C)-D)*E

<<A*Y+B)*Y+C)*Y+D

2* Draw structural diagrams for the following:

A*B-C/D+E

<A*Y+B)*Y+C

3# Interpretive Iy execute the following expressions

in postfix notation:

ABC*-

ABC+*D-E*

Polish Notation Pa*e 74

AB*CD/-E+

usin? the following values:

VARIABLE VALUE

A 10

B 2

C 4

D 5

E 3

4. Traverse the following tree

in preorder* postorder> and endorder form.

Elementary Calculations Pa*e 75

Chapter 4* ELEMENTARY CALCULATIONS AND STACK

MANIPULATION

FORTH Words

Punctuation

Looking at the Stack

Elementary Arithmetic Operations

Number Bases

Stack Manipulation Operations

Mathematical Functions

Complement Arithmetic

Vocabulary

Exercises

Elementary Calculations Pa*e 77

In order to do elementary calculations in

FORTH* a person needs a Knowledge of the command

structure and the operational conventions of the

system* While the FORTH system takes on the

outward appearance of a calculator at the

elementary level* the primary objective of the

)an*ua*e is for conventional computer programming -

especially at the microprocessor level - so that

the)an*ua*e has considerably more expressive power

than an ordinary calculator* It must be

emphasized* however* that to some extent* FORTH

capability is supported and also limited by the

underlying hardware* This fact will become evident

with regard to the data types and associated

arithmetic operations that are available to the

user via the FORTH lan^uatfe*

FORTH WORDS

Any symbol or sequence of characters that has

meaning to the FORTH system is called a "word*"

So* for example* the symbol {+} and the word {DUP>

are called FORTH WORDS* Recall here that items

enclosed in braces are FORTH words* Normally the

braces are used when the inclusion of a FORTH word

in a sentence misrht cause confusion to the reader*

The braces are also used for emphasis* There is no

connection between a FORTH word and a computer

word* In the latter case* a computer word is a

hardware memory cell used to store an element of

data*

In the first chapter* the stack was introduced

as the place where numbers are held during computer

operations* In this case* numbers include data

values and also address values in the computer*

FORTH words cannot be placed in the stack* In the

execution mode* a FORTH statement is "Generally"

processed in the following manner:

o When a value is encountered* it is placed in

the stack

Elementary Calculations Pa*e 78

o When a FORTH word is encountered* it is

executed

In the definition mode* numbers and words are

stored as part of the definition for subsequent

execution*

Some caution must be taken with punctuation

characters* such as {*> and {!>* which are in fact

FORTH words* To FORTH* they are not punctuation

characters* but command the FORTH system to execute

the respective computer operation* There are no

lexical restrictions on FORTH words* A FORTH word

can be composed of any character or sfroup of

characters from the keyboard*

The concept of a word is so General in FORTH

that there is no need to specify the system's

character set* Minimally* it can be expected to

include the letters (A throusfh Z)* dibits (0

through 9)* and a lar*e selection of operators and

punctuation symbols* such as {+-«/?! 8 : 5 "

' *><?<)#>?Almost every symbol -

sometimes referred to as a special character in

other)an*ua*es - has an operational meaning as a

FORTH word*

PUNCTUATION

There is one punctuation rule: FORTH WORDS MUST

BE SEPARATED BY AT LEAST ONE SPACE* This rule

stems from the need for visual fidelity and the

extreme)exi*raphic Generality of FORTH words*

Thus* a user may define any sequence of characters

as a FORTH word and it will not cause any confusion

to the FORTH system*

LOOKING AT THE STACK

It is frequently necessary to visualize the

stack in order to describe how a particular FORTH

operation works* The FORTH convention for dointf

Elementary Calculations Paste 79

this is to picture the stack as a series of tokens

with the top of the stack on the riaht and the

bottom of the stack on the left* Ordinary addition

can be used as an example* Recall that in

conventional mathematical notation* an addition

operation is expressed as "nl+n2" yielding the

result "sum?" you mi£ht write this as "nl+n2 sum*"

where the ri*ht arrow denotes "yields*" Clearly*

in reverse Polish notation* the expression would be

represented as "nl n2 + sum*"

To visualize the stack* simply ignore the

operator symbol and picture only the stack* For

the above addition operation the stack <uou)d be

visualized as:

STACK

Before After

nl n2 sum

In this case* n2 is on the top of the stack because

it is on the ri*ht* The addition operation takes

the top two values from the stack and returns the

sum*

ELEMENTARY ARITHMETIC OPERATIONS

The elementary arithmetic operations in FORTH

and their respective operator symbols* recognized

as FORTH words* are:

OPERATION

Addition

Subtraction

Multiplication

Division

Modulus

Divide Modulus

FORTH WORD

*

/

MOD

/MOD

These operations are defined on 16-bit integer

values that have a ran*e of -32768 to +32767*

Elementary Calculations Patfe 80

Double precision operations are covered in a

separate chapter*

All arithmetic operations are defined on values

held in the stack* It does not matter whether the

values were placed in the stack directly or the

values in the stack resulted from a previous FORTH

operation* Terminology for the four basic

arithmetic operations may be recalled as follows:

H (addend)

+N (augend)

H+N (sum)

n (minuend)

-N (subtrahend)

M-N (difference)

n (multiplier)

»H (multiplicand)

H*N (product)

M (dividend)

/N (divisor)

n/H (quotient)

In ordinary arithmetic* the division operation

yields a remainder* described as follows:

"dividend = divisor * quotient ? remainder*"

The ADDITION operation in FORTH is described

symbolical)y as:

nl n2 + ?sum

where "nl" is the addend and "n2" is the autfend*

When the word {+> is encountered by FORTH* it adds

the top two values in the stack (i*e*# nl+n2)

removes them* and places the sum in the stack* The

values can be placed in the stack directly or may

result from a previous computation* The following

examples demonstrate addition:

2 3 + * 5 OK

4 1 ? fl + * 13 OK

14 3 + 2 5 + + ? 24 OK

Elementary Calculations Pasre 81

Recall that the underline denotes what the user has

entered* The "OK" denotes that the computation was

performed successfully and that the system is ready

for additional input*

The SUBTRACTION operation in FORTH is described

symbolically as:

nl n2 —?difference

where "nl" is the minuend and "n2" is the

subtrahend? When the word C-J is encountered by

FORTH* it subtracts the value on the top of the

stack from the value below it <i*e** nl-n2>*

removes them* and places the difference in the

stack* As with other FORTH operations* the values

can be placed in the stack directly or may result

from a previous computation* The following

examples demonstrate subtraction:

5 3 - * 2 OK

20 10 - 5 - * 5 OK

8 5 - 16 10 - - * -3 OK

It is important to remember with subtraction that

the subtrahend is always on the top of the stack*

The MULTIPLICATION operation in FORTH is

described symbolically as:

nl n2 *—?product

where "nl" is the multiplier and "n2M is the

multiplicand* When the word {*> is encountered by

FORTH* it multiplies the top two values in the

stack (i*e** nl*n2)» removes them* and places the

product in the stack* The following examples

demonstrate multiplication:

3 2 * ? 6 OK

Elementary Calculations Pa*e 82

7 4 2 » » * 56 OK

6 5 * 3 -1 * * • -90 OK

Because the basic arithmetic operations in FORTH

are defined on 16-bit integer values* a value

outside of the ran*e -32768 to 32767 can be

produced from the arithmetic operations* The value

will be correctly computed but may yield unexpected

results* because FORTH uses binary two's complement

notation for internal data values* This subject

will be covered later in two sections: complement

arithmetic and double precision arithmetic*

The DIVISION operation in FORTH is described

symbolically as:

nl n2 /—quotient

where "nlM is the dividend and "n2M is the divisor*

When the word </> is encountered by F0RTH# it

divides the value on the top of the stack into the

value below it <i*e*» nl/n2)» removes them* and

places the intesfer quotient in the stack* Since

the operation is integer division* the remainder is

lost* The following examples demonstrate integer

division:

6 2 / * 3 OK

5 3/* 1 OK

18 3 / 2 / * 3 OK

11 2 / 15 7 / * 2 OK

11 2 / 15 -7 / / ? -2 OK

The mathematical si*n of the quotient is the si*n

that results from the division operation* Two

Elementary Calculations Patfe 83

related operations* {MOD} and {/MOD} can be used to

obtain the remainder from integer division*

The MODULUS operation in FORTH is described

symbolically as:

nl n2 MOD-^remainder

where "nl" is the dividend and "n2" is the divisor*

When the word {HOD} is encountered by FORTH* it

divides the value on the top of the stack into the

value below it (i*e*# nl/n2)» removes them* and

places the remainder in the stack* The following

examples demonstrate the modulus operation:

11 3 MOD * 2 OK

4 2 HOD * 0 OK

-11 3 MOD ? -2 OK

The algebraic si*n of the remainder always is the

same as the algebraic si*n of the dividend*

The DIVIDE-MODULUS operation in FORTH is

described symbolically as:

nl n2 /MOD—^remainder quotient

where "nl" is the dividend and "n2" is the divisor*

When the word {/MOD} is encountered by FORTH* it

divides the value on the top of the stack into the

value below it (i*e** nl/n2)# removes them* and

places the quotient on the top of the stack and the

remainder below it* More specifically* FORTH

pushes the remainder into the stack and then pushes

the quotient into the stack so that the quotient is

on the top* The following examples demonstrate the

divide-modulus operation:

11 3 /MOD * * 3 2 OK

Elementary Calculations Patfe 84

4 2 /MOD * * 2 0 OK

-11 3 /MOD • ? -3 -2 OK

The mathematical si*n of the quotient is the si*n

that results from the division operation? the

arithmetic si*n of the remainder is always the same

as the arithmetic sisfn of the dividend*

NUMBER BASES

When FORTH comes upt the system automatically

operates in the decimal system (i*e»* base 10)?

What this means is that numbers can be entered in

decimal and the results are displayed in decimal*

A user may change the number system used for entry

and display and thereby adapt the FORTH system to

the needs of a particular application* The

hexadecimal number system is built into FORTH and

it may be invoked by entering the FORTH word £HEX>*

With relative ease* the user may also define other

number systems* such as octal or binary*

To change to the hexadecimal? the user simply

enters the word HEX* demonstrated as follows:

12 OK

HEX OK

* C OK

To return to the decimal system* the user Just

enters the word DECIMAL* demonstrated as follows:

DECIMAL OK

1234 * 1234 OK

Elementary Calculations Patfe 65

1234 HEX * 4D2 OK

4D2 DECIMAL . 1234 OK

Once a number system is entered» FORTH stays in

that system until the number base is changed.

A number system is defined through a colon

definition that assigns a value to the system

variable BASE* as follows:

: BINARY 2 BASE ! >

Then* to put FORTH into the binary system* all the

user has to do is to enter the word BINARY:

: BINARY 2 BASE I \ OK

BINARY OK

11 10 + ? 101 OK

Similarly* the octal system can be defined with an

analogous statement:

: OCTAL 6 BASE ' > OK

OCTAL OK

5 7 + ? 14 OK

Once* several number bases are defined* it is

possible to switch between them almost at will:

DECIMAL 12345 HEX ? 3039 OK

DECIMAL 12345 OCTAL ? 30071 OK

Elementary Calculations Pa*e 86

DECIMAL 12345 BINARY * 11000000111001 OK

DECIMAL OK

All internal calculations in FORTH are performed in

the binary number system? The number bases»

introduced above* only affect input and output*

STACK MANIPULATION OPERATIONS

The FORTH lansruatfe permits the stack to be

manipulated directly to facilitate the construction

of programs* In many cases/ a sinsrle stack

manipulation operation can simplify a prosrram and

decrease its execution time*

Recall the method of visualizing the stack*

sriven previously* wherein the item on the risfht

denotes the top of the stack* For example* in the

fo)lowin* list:

nl n2 n3

"n3" denotes the top of the stack* "n2" represents

the number directly below it* and "nl" denotes the

third number down*

The stack manipulation operations in FORTH and

their respective FORTH words are:

OPERATION FORTH WORD

Duplicates the top DUP

value on the

stack

Exchanges top two SWAP

values in the

stack

Removes top value

from the stack

DROP

Elementary Calculations Pa*e 87

Copies the second

number in the

stack and puts it

on the top

OVER

Rotates the third

number in the

stack and puts it

on the top

ROT

Rotates the top N

stack entries

ROLL

Duplicates the top

value on the stack

only if it is non-

zero

DUP

Duplicates the top

value on the stack

only if it is non-

zero (Same as -DUP)

?DUP

Copies the nl-th stack

item to the top

Counts the number of

items on the stack

PICK

DEPTH

These operations are defined on 16-bit integer

values that have a ransfe of -32768 to 32767*

Corresponding stack manipulation operations exist

for double precision values and are introduced in a

separate chapter*

The DUP operation takes the top value on the

stack* duplicates it* and pushes the duplicated

value into the stack* The stack contents before

and after the execution of the DUP operation are:

Operation: DUP

Elementary Calculations Pa*e 88

Stack before: nl n2 n3

Stack after: nl n2 n3 n3

The SWAP operation exchanges the top two values

on the stack without disturbing the other stack

values* The stack contents before and after the

execution of the SWAP operation are:

Operation: SWAP

Stack before: nl n2 n3

Stack after: nl n3 n2

The DROP operation removes the value on the top

of the stack so that all of the values below it are

moved up* The stack contents before and after the

execution of the DROP operation arei

Operation: DROP

Stack before: nl n2 n3

Stack after: nl n2

The OVER operation takes the second number in

the stack* duplicates it* and pushes the duplicated

value into the stack* The stack contents before

and after the execution of the OVER operation are:

Operation: OVER

Stack before: nl n2 n3

Stack after: nl n2 n3 n2

The ROT operation works with the top three

values in the stack* The value that is third from

the top is rotated to the top and the two values

above it are pushed down* The stack contents

before and after the execution of the ROT operation

are:

Elementary Calculations Fa*e 89

Operation: ROT

Stack before: nl n2 n3

Stack after: n2 n3 nl

The ROLL operation is similar to the ROT

operation* but uses the value on the top of the

stack to determine the "depth" of the roll* The

statement {3 ROLL> is the same as the ROT

operation* The stack contents before and after the

execution of the ROLL operation are:

Operation: ROLL

Stack before: nl *•* n(i-l) ni n(i+l) ??? nk n

Stack after: nl ??? n(i-l) n(i+l) *»* nk ni

where i=k-n+l# The value on the top of the stack

that determines the depth of the roll is removed*

The {-DUP> operation inspects the top value on

the stack* If it is zero* then the C-DUP>

operation does nothing* If it is non-zero* then

FORTH takes the value on the top of the stack*

duplicates it* and pushes the duplicated value into

the stack* The stack contents before and after the

ODUPJ operation are:

Operation: -DUP

Stack before: nl n2 n3

Stack after: nl n2 n3 n3# if n3 is non-zero

Stack after: nl n2 n3* if n3 is zero

The FORTH word {?DUP> is synonymous with f-DUP> and

is pronounced "*uery dup*" The meaninsf is that the

top item on the stack is inspected and duplicated

only if it is nonzero*

The PICK operation copies a stack entry to the

top of the stack without disturbing the relative

Elementary Calculations Pa*e 90

order of the values* This operation uses the

number on the top of the stack to determine the

"depth" of the pick operation* The statement il

PICK> is the same as the DUP operation* and the

statement £2 PICK} is the same as the OVER

operation* The stack contents before and after the

execution of the PICK operation are:

Operation: PICK

Stack before: nl ??? n(i-l) ni n(i+l) **• nk n

Stack after: nl *** n(i-l) ni n(i+l) *** nk ni

where i=k-n+l* The value on the top of the stack

that determines the depth of the PICK operation is

removed*

The DEPTH operation counts the number of items

in the stdck and pushes that value into the stack*

This operation is described symbolically as:

nl n2 DEPTH —*nl n2 n

where "n" is the number of items in the stack and

"nl" and "n2M are residual values* After the DEPTH

operation is executed* the stack contains "n+1"

items*

Figure 4*1 4ives several examples of

single-precision stack manipulation operations*

The examples are routine cases to demonstrate the

manner in which the stack manipulation operations

function* The last two examples in Figure 4*1

perhaps need further clarification* The following

FORTH statement:

3 4 DUP * SWAP DUP * + •

is a means of computing the expression (in ordinary

mathematical notation): <H*H)+(B*B)* The leftmost

DUP operation copies the top stack item srivin* 3 4

4 and the succeeding {*} operation multiplies the

top two numbers aivin* 16* The SWAP operation

exchanges the top values ^ivinsf 16 and 3* The

Elementary Calculations Pa*e 91

5 DUP ? * 5 5 OK

7 3 SWAP • * 7 3 OK

1 8 DROP ? 1 OK

4 9 OVER ? ? ? 4 9 4 OK

-7 3 9 ROT ? ? ? -7 9 3 OK

-17 23 6 10 4 ROLL ? * ? • -17 10 6 23 OK

-11 4 -DUP ? ? 4 4 OK

-11 0 -DUP • • 0 -11 OK

-17 23 6 10 4 PICK -17 10 6 23 -17 OK

3 4 DUP * SWAP DUP * + . 25 OK

: SQR DUP * ? OK

5 SQR ? 25 OK

Figure 4.1

Examples of stack manipulation operations.

rightmost DUP operation a£ain copies the top entry

in the stack *ivinsf 16 3 3 and the following {*>

multiplies the top two numbers *ivin* 16 9* The

final {+} operation computes the sum of the top two

values on the stack* *ivin* 25* and the final dot

displays the result of 25*

The following colon definition:

: SQR DUP * ?

is a procedure that "squares" the top value on the

stack* removing the value and depositing its

square* The procedure is straightforward* the top

value on the stack is duplicated and then

multiplied by itself*

MATHEMATICAL FUNCTIONS

A set of mathematical functions are included in

the FORTH language to increase the efficiency of

the system* The functions could be programmed

using colon definitions? however* the execution

speed would be sfreater than with the use of

built-in functions* The following functions are

Elementary Calculations Patfe 92

defined on 16-bit integer values:

FUNCTION

Absolute value

Maximum

Minimum

Times divide

Times divide modulus

SisJn

precision functions are covered

FORTH WORD

ABS

MAX

MIN

*/

*/H0D

+ -

Double precision functions are covered in

separate chapter*

All mathematical functions are defined on

values held in the stack* It does not matter

whether the values were placed on the stack

directly or the values in the stack resulted from a

previous FORTH operation*

The ABSOLUTE VALUE function in FORTH is

described symbolically as:

nl ABS n2

where "n2M is a positive integer* When the word

{ABSJ is encountered by FORTH* it removes the top

stack entry# computes its absolute value* and

places the result in the stack* The following

examples demonstrate the absolute value function:

-17 ABS ? 17 OK

75 ABS • 75 OK

There is a related mathematical operation in FORTH

that computes the two's complement of the top value

in the stack* This operation* termed "minus" is

covered in the following section on complement

arithmetic*

The MAXIMUM function in FORTH is described

Elementary Calculations Pasre 93

symbolical)y as:

nl n2 MAX—*n3

where Mn3" is the maximum of "nl" and "n2*" More

specifically* the MAX function removes the top two

values from the stack* computes the value that is

mathematically larger* and places the result in the

stack* The following examples demonstrate the

maximum function:

10 5 WAX » 10 OK

-9 63 MAX . 63 OK

-34 -6 MAX ? -6 OK

The MINIMUM function is FORTH is described

symbolical)y as:

nl n2 MIN—>n3

where "n3M is the minimum of "nl" and "n2#" More

specifically* the MIN function removes the top two

values from the stack* computes the value that is

piatheroatical Jy smaller* and places the result back

in the stack* The following examples demonstrate

the minimum function:

10 5 MIN » 5 OK

-9 63 MIN ? -9 OK

-34 -6 MIN ? -34 OK

The TIMES DIVIDE function computes the value of

the expression nl*n2/n3 and is described

symbolically as:

Elementary Calculations Pasfe 94

nl n2 n3 */—* quotient

When the word {*/> is encountered by FORTH* it

removes the top three values from the stack and

performs the computation of the function in the

following order:

1* "nl" is multiplied by "n2" and a double

precision product is retained*

2* The double precision product is divided by

"n3" yielding the single precision quotient*

3* The quotient is placed in the stack*

The remainder from the division operation is lost*

The following examples demonstrate the times divide

function:

3 4 2 »/ * 6 OK

-754*/* -8 OK

It should be noted that the times divide function

is more accurate than the sequence {nl n2 * n3 />

because of the double precision intermediate

product*

The TIMES DIVIDE MODULUS function performs the

same calculation as the TIMES DIVIDE function

except that both the remainder and the quotient are

stored* It is described symbolically as:

nl n2 n3 */HOD —?remainder quotient

The quotient is placed on top of the stack and the

remainder below it# as demonstrated in the

following examples:

5 3 2 */HOD * * 7 1 OK

Elementary Calculations Pasre 95

-7 5 4 */M0D ? ? -8 -3 OK

Atfaim the times divide modulus function is More

accurate than the sequence -Cnl n2 * n3 /MOD>

because of the double precision intermediate

product?

The SIGN function applies the arithmetic si*n

of the value on the top of the stack to the value

below it* This function is described symbolically

as:

nl n2 + -—^n3

where n3=sisrn(n2)*nl* The values nl and n2 are

removed from the stack and the result is placed in

the stack* as demonstrated in the following

examples:

4 -5 +- ? -4 OK

-4 -5 + - • 4 OK

-4 5 + - t -4 OK

-4 5 +- ? ? -4 0 EMPTY STACK

The mathematical functions in FORTH represent a

basic set that can be expanded by the user through

the definitional facility* When a function is

defined in FORTH* it is used in exactly the same

manner that built-in functions are usedt

COMPLEMENT ARITHMETIC

During internal computer operations* FORTH

recognizes 16-bit or 3?-bit numbers stored in

binary two's complement notation* What this means

is that a positive integer is stored in true form

and a negative integer is stored in two's

Elementary Calculations Pa*e 94

complement form* This section covers 16-bit

operations? 32-bit operations are covered in the

chapter on double-precision arithmetic*

In a computer* integer values can be stored in

either "signed magnitude" representation or "two's

complement" form* In SIGNED MAGNITUDE

REPRESENTATION* a numeric value is expressed in

true form to which is prefixed a siSn ditfit* as in

the following skeleton:

s Va 1 ue

S refers to the sisfn and Value is the computer

representtion of the number* Normally* the dibits

0 for + and 1 for - are used as si*ns so the

si*ned-ma*nitude representations of +5 and -5 are:

Representation of +5: 0000000000000101

Representation of -5: 1000000000000101

When numbers are stored in si*ned-ma*nitude

representation* the methods used for internal

computer operations must take the si*n into

consideration* FORTH does not use signed-magnitude

representation!

With TWO'S COMPLEMENT arithmetic* negative

numbers are stored in two's complement form and the

internal lotfic of the microprocessor is simplified

by takinsf this fact into account*

The BASE COMPLEMENT of a number N is defined

as:

Complement of N=b -N

where "b" is the base and "n" is the number of

dibits in N* More specifically* bn -1 is the

largest number that can be represented with n

disfits* Thus* the ten's complement of 435 is 565

and the two's complement of 1010 is 0110* In the

computer* numbers are stored in fixed-length memory

Elementary Calculations Pasre 97

locations or arithmetic registers* so the number of

dibits in a number is fixed* In the binary number

system* the two's complement of a number can be

developed by inspection* All zeros are converted

to ones* all ones are converted to zeros* and 1 is

added to the resulting value* For example* the

two's complement of the binary number 101 is

computed as follows:

0000000000000101 (original value)

1111111111111010 (convert 1 to 0 and 0 to 1)

+1 (add 1)

1111111111111011 (two's complement)

The primary advantages of usin* complement

arithmetic are: (1) It is relatively simple to

develop the two's complement? and (2) Arithmetic

operations are executed without resfard to the size*

Typical addition operations usin* complement

arithmetic are:

0000000000000110 (6) 0000000000000110 (6)

+0000000000001101 +(13) +1111111111110011 +(-13)

0000000000010011 (19) 1111111111111001 (-7)

1111111111111010 (-6) 1111111111111010 (-6)

+0000000000001101 +(13) +1111111111110011 +(-13)

1 0000000000000111 (7) 1 1111111111101101 (-19)

t t
Carry is discarded Carry is discarded

Subtraction has similar advantages and is performed

by taking the two's complement of the subtrahend

and addin* it to the minuend* as demonstrated in

the following examples:

Elementary Calculations Pa*e 96

0000000000001101 (13) 0000000000000110 (6)

-0000000000000110 -(A) -0000000000001101 -(13)

0000000000001101 (13) 0000000000000110 f£7

+1111111111111010 +(-6) +1111111111110011 +(-13)

1 0000000000000111 (7) 1111111111111001 (-7)

t
Carry is discarded

0000000000000110 (6) 1111111111110011 (-13)

-1111111111110011 -(-13) -1111111111111010 -(-6)

0000000000000110 (6) 1111111111110011 (-13)

+0000000000001101 +(13) +0000000000000110 +(«)

0000000000010011 (19) 1111111111111001 (-7)

To sum up* two's complement arithmetic provides the

benefits of other methods of representation* while

at the same time simplifying interna) computer

operations* The leftmost bit can also be regarded

as a sitfn bit* since a negative value always begins

with a one bit and a positive value always begins

with a zero bit*

The MINUS operation in FORTH chansfes the sisn

of the value on the top of th stack and is

described symbolically as:

nl MINUS —n2

where "nl" is the value on the top of the stack*

When the word {HINUS> is encountered by FORTH* it

removes the top value from the stack* takes its

two's complement* and places the result in the

stack* Figure 4*2 demonstrates the MINUS

operation* as well as other aspects of complement

arithmetic*

In some versions of FORTH* the word NEGATE is

used in place of MINUS* This is simply the process

of evolution* wherein specificity is incorporated

into the lan£ua*e definitions*

Many computers incorporate facilities for

complement arithmetic and for storing negative

numbers in two's complement notation* That is the

Elementary Calculations Fa*e 99

primary reason that this section of the chapter

exists. Other computers do not utilize complement

arithmetic. The meaning of a FORTH program is not

necessarily dependent upon a particular type of

hardware/ except when "bit level" programming is

involved. However* it is useful to note that the

FORTH concept embodies two's complement

representation.

-3 MINUS . 3 OK

175 MINUS . -175 OK

5 BINARY . 101 OK

DECIMAL -5 BINARY . -101 OK

111111111111111 DECIMAL . -32767 OK

BINARY OK

1000000000000000 DECIMAL . -32768 OK

BINARY OK

1111111111111111 . -1 OK

1111111111111111 DECIMAL . -1 OK

BINARY OK

111111111111111 1 + . -1000000000000000 OK

Figure 4.2

Examples of complement arithmetic.

Elementary Calculations Pa*e 100

VOCABULARY

A familiarity with the following terms and

FORTH words is necessary for learning the FORTH

lan*uade:

*

/

+-

*/

ABS

Complement arithmetic

DEPTH

DROP

DUP

-DUP

?DUP

HAX

HIN

MINUS

HOD

/HOD

»/H0D

NEGATE

Number base

OVER

PICK

ROLL

ROT

Signed magnitude representation

SWAP

Two's complement

Word

EXERCISES

1* Write FORTH statements to perform the following

calculations:

Elementary Calculations Pa«e 101

a* Evaluate ax+ht for a=2> b*3# and x=5«

b. Evaluate 2(n+l)(n+l) for n=4.

c« Evaluate n(n+l)(n+2) for ns5»

d« Evaluate ax/b for a=4» b*2» and x=5.

e» Evaluate aa+bb for a=3 and b=4.

2. Give the result fron performing the following

operations!

-4 13 +

6 -5 -

-9 -3 *

-11 2 /

17 -8 MOD

-19 4 /MOD

2 1 DUP

9 3 7 SWAP

16 3 -8 DROP

9 3 7 OVER

-16 3-8 ROT

-16 3-82 ROLL

6 -2 -DUP

4 -1 ABS

-13 -63 MAX

14 -6 MIN

7 4 3 */

-11 3 2 */M0D

63 -37 +-

3. Cive the results from executing the following

FORTH statements:

a. 16 MINUS 5 + 2 MOD ?

b. 6 3 DUP ROT 4 */M0D DROP + ?

c. 23 3 /MOD SWAP / DUP * ?

d. 15 4 MINUS 11 »/M0D * 2 + .

e. 47 13 MINUS /MOD MAX ABS DUP + »

Constants* Variables Pa*e 103

Chapter 5. CONSTANTS, VARIABLES, AND MEMORY

OPERATIONS

Constants

Variables

Fetch Operation

Store Operation

Add to Memory

The Dictionary

Vocabulary

Exercises

Constants* Variables Pa*e 105

A FORTH program is developed as a set of

"function" calls* New words are defined from old

words (i*e*# words already defined) until a single

definition represents the whole program* Since it

is relatively easy to split a function into

subfunctionst there is a lesser need in FORTH to

utilize named variables than in conventional

programming Ian*ua4es* The stack is normally used

for temporary storage* When the number of entries

in the stack is too many to keep track of* then a

function is usually subdivided* There are times*

howevert when named variables are necessary for a

particular application or for implicit commenting

available through meaningful variable names* The

FORTH)an*ua*e includes facilities for defining

constants and variables and for executing "store"

and "fetch" operations*

CONSTANTS

A CONSTANT is a value that does not change

during the execution of a program* If the same

value is used several places in a program* it saves

memory space to define it as a constant* Another

advantage of usintf a constant is that its value is

specified in only one place in a program* If a

change to the constant were necessary? it would

only have to be changed once* If a constant

definition were not used* then values would be

scattered throughout the program* If a change were

then necessary* the programmer would have to search

out each value* Invariably* one or two occurrences

are missed resulting in less software reliability*

A constant is defined in FORTH with a statement

of the form:

value CONSTANT name

where "value" is the value of the constant and

"name" is the name by which it is referenced* The

following examples demonstrate the definition and

Constants* Variables Pa*e 106

use of a constant:

6 CONSTANT SIX OK

SIX * 6 OK

SIX 2 * ? 12 OK

The word CONSTANT is an executable operation in

FORTH in comparison to nonexecutable declarations

in some programming lan*ua*es* When the word

CONSTANT is encountered by FORTHt the value on the

top of the stack is used as the constant's value*

The word following CONSTANT is the name of the

constant* The value on the top of the stack is

removed?

A constant is referenced by usin* its name* as

demonstrated in the preceding example* When the

name of a constant is encountered by FORTH* the

value of the constant is pushed into the stack*

Figure 5*1 *ives several examples of the definition

and use of constants*

80 CONSTANT LINESIZE OK

60 CONSTANT PAGESIZE OK

LINESIZE PAGESIZE # . 4800 OK

LINESIZE PAGESIZE * CONSTANT BUFSIZE OK

BUFSIZE . 4800 OK

Figure 5.1
Definition and use of FORTH constants.

VARIABLES

A VARIABLE is a quantity that can change during

the execution of a program* When a variable is

defined* its location is established and its

initial value is specified* A variable's location*

specified as a memory address* does not change*

Constants* Variables Pa*e 107

The value of a variable is changed when a store

operation is made to its Memory address*

A variable is defined in FORTH with a statement

of the form:

value VARIABLE name

where "value" is the initial value of the variable

and "name" is the name by which it is referenced*

The following examples demonstrate the definition

of a variable:

16 VARIABLE PCL OK

10 VARIABLE DX OK

-173 VARIABLE RIMIT OK

The word VARIABLE is an executable operation in

FORTH that uses the value on the top of the stack

as the initial value of the variable* When the

word VARIABLE is encountered by FORTH* the value on

the top of the stack is removed as the initial

value of the variable and the word following

VARIABLE is the name of the variable*

Each time the word VARIABLE is encountered by

FORTH* a new variable is defined* Therefore* the

word should not be used to change the value of a

variable* VARIABLE should only be used to declare

a variable initially*

When the name of a variable is encountered by

FORTH* the address of the variable is placed on the

stack* The address is used with store and fetch

operations*

FETCH OPERATION

The FETCH operation uses the value on the top

of the stack as an address and is described

symbol id ly as:

Constants* Variables Pa*e 108

addr P—-»>n

where "addr" is a memory address and "n" is the

value stored at the specified address* The

following examples demonstrate the fetch operations

5 VARIABLE A OK

A 8 * 5 OK

25 CONSTANT TX OK

TX A 8 + * 30 OK

When the word €B> is encountered by FORTH* it

removes the value on the top of the stack

interpreting the value as an address* The contents

of the specified address location are "fetched"

from memory and pushed into the stack*

The fetch operation can be used to examine the

contents of any location in memory? and is not

limited exclusively to variables* In fact*

absolute memory locations can be specified with the

fetch operation *ivin$ the user complete access to

the contents of RON and RAH* For example* if the

user wished to display the contents of binary

location 1011011* the following statements would do

the Job:

BINARY OK

1011011 8 * -100011111000 OK

The fetch operation should not be used with a

constant because a reference to the name of a

constant yields the value of the constant and not

its memory address* The only case wherein a fetch

operation to the value of a constant would be

meaningful is when the constant value represents a

memory address*

Constants* Variables Pa*e 109

STORE OPERATION

The STORE operation is used to place a value in

memory at a specified address and is described

symbolically as:

n addr !

where Mn" is the value to be placed in memory and

"addr" is the memory address where the value should

be placed* The address is on the top of the stack

and the value is directly below it* When the word

{!> is encountered by FORTH* the two top values are

removed from the stack and the store operation is

performed* The following statements demonstrate

the "store" operation:

3 VARIABLE TEHP OK

25 TEMP I OK

TEHP 8 * 25 OK

When a store operation to a memory location is

performed* the previous contents of that location

are lost*

As with the fetch operation* the use of the

store operation is not limited exclusively to

variables* The contents of any memory location in

RAH can be changed with the store operation* For

example* if the user wished to place a 1 in

hexadecimal location A3FE* the following statements

would do the Job:

HEX OK

1 A3FE ! OK

A3FE P * 1 OK

As with the fetch operation* the store operation

should not be used with a constant because a

reference to the name of a constant yields the

Constants* Variables Pa*e 110

value of the constant and not its memory address?

The only case wherein a store operation to the

value of a constant would be meaningful is when the

constant value represents a memory address*

Fisfure 5*2 srives several examples of the

definition and use of variables and the fetch and

store operations?

8 VARIABLE A OK

45 VARIABLE B OK

A 0 B 0 SWAP B ! A ! OK

A I? ? 45 OK

B 9 ? 8 OK

Figure 5.2

A set of FORTH operations that exchange
the values of variables A and B.

ADD TO MEMORY

The ADD TO MEMORY operatiion can be used to add

a value to the contents of a memory location*

While this operation can be programmed as a series

of FORTH operations* it occurs frequently enough to

warrant a special built-in function* which is

described symbolically as:

n addr +!

where "n" is the value to be added to the contents

of the specified memory address and "addr" is the

memory address* The address is on the top of the

stack and the value is directly below it* When the

word {+!} is encountered by FORTH* the two top

values are removed from the stack* The contents of

the specified address are fetched from memory* the

tfiven value is added to it* and the result is

stored in the memory location indicated by the

address* The following example demonstrates the

"add to memory" operation:

Constants* Variables Patfe 111

3 VARIABLE BETA OK

2 BETA +! OK

BETA 8 * 5 OK

The "add to memory" operation is representative of

a class of operations that a user can define to

extend FORTH to a particular application

environment*

THE DICTIONARY

The heart of the FORTH system is a dictionary

that contains all FORTH words and their

definitions* Whenever an entity is defined by the

user* it is placed in the dictionary* The

dictionary entries that have been covered thusfar

are:

o FORTH words

o Colon definition names

o Constant names

o Variable names

A dictionary entry name can consist of up to

any 31 Keyboard characters* excluding the space

character* The VLIST command can be used to list

the contents of the dictionary and Figure 5*3 sfives

a sample listing*

The complete listing of the dictionary is

lengthy and it is cumbersome to search through it

to determine if a particular entry is in the table

or not* The "tick" comand* described symbolically

ass

word—*addr

where "word" is the name of the entry and "addr" is

its address in the dictionary* can be used to find

out if the specified word is in the dictionary* If

Constantst Variables Pate 112

VLIST

TASK SEARCH SRCH ST SW

COUNT-CHRS EFL «CHRS SLINE

SCAN EDIT EDITOR HON DEMO

LS VLINE HLINE SCRN PLOT

COLOR TEXT CR CLEAR (TXT)

(CR) L SCOPY BSTR SBTR

CODE ASSEMBLER RAND URAND

RSEED BUFFERS BACKUP DUMP

.ROW .ASCII .VALUES .ADDRESS

SAVETURNKEY INITIALI2EDISK

SAVESYSTEM &SIZE &DUMP-FORTH

4DUMP-RWTS 4DISK-DUMP 4RWTS-FMT

SECTORS GET LOAD LK JOIN

VLIST INDEX LIST VHTAB

Y/NQUERY WHERE IND PR ?CARD

D= DO* D? DMAX DMIN D>

D< D- 2R0T 2SWAP 2DUP

20VER 2DR0P --> ? .R

U. U.R D. D.R its « SIGN

«> <* SPACES 4R/WSECT FORGET

WHILE ELSE IF REPEAT

AGAIN END UNTIL +LOOP LOOP

DO THEN ENDIF BEGIN BACK

MYSELF REBOOT <<COMPILE>>

CCOMPILE] 4R/W 41/0 &DRV

DRIVE2 DRIVE1 ERRMSG CALL

4RWTS LOAD MESSAGE .LINE

(LINE) BLOCK EMPTY-BUFFERS

FLUSH BUFFER DRO UPDATE +BUF

M/MOD */ */MOD MOD / /MOD

* M/ M« MAX MIN DABS ABS

D+- +- S->D COLD C0LD1

HOME ABORT QUIT (

DEFINITIONS FORTH VOCABULARY

IMMEDIATE INTERPRET ?STACK

DLITERAL LITERAL CREATE ID.

ERROR (ABORT) -FIND NUMBER

(NUMBER) WORD PAD HOLD

BLANKS ERASE QUERY EXPECT

(.") -TRAILING TYPE COUNT

Constants* Variables Pa-re 113

DOES) <BUILDS »CODE (>CODE)

DECIMAL HEX SI1UDCE 1 C

COMPILE 7L0ADING ?CSP 7PAIRS

?EXEC 7C0NP 7ERR0R »CSP PFA

NFA CFA LFA LATEST TRAVERSE

U< -DUP SPACE ROT >

Cf t ALLOT HERE 2+ 1 +

DISKMAX SLOT HLD R» CSP

FLD DPL BASE STATE CURRENT

CONTEXT OFFSET SCR OUT IN

BLK C/L PREV USE LIMIT

FIRST VOC-LINK DP FENCE

WARNING WIDTH TIB CV CH

+0RISIN B/SCR B/BUF BL 3 2

1 0 USER 2C0NSTANT 2VARIABLE

2! 29 VARIABLE CONSTANT EMIT

> : BCALC -TEXT ROLL PICK

C! ! C9 9 TOGGLE +! DUP

SWAP DROP OVER DMINUS MINUS

D+ + < 0< 0= R R> >R

LEAVE ?S RP! SP! SPff XOR

OR AND U/ U* FILL CilOVE

KEYESCC CR 7TERMINAL KEY

(EMIT) ENCLOSE (FIND) DIGIT

I (DO) (+LOOP) (LOOP)

OBRANCH BRANCH EXECUTE CLIT

LIT

OK

Figure 5.3

A sample listing of the dictionary generated with
the VLIST command.

Constants* Variables Pasre 114

the word is in the dictionary? then FORTH Places

its address on the stack. If the word is not in

the dictionary* then FORTH responds with the word

followed by a question nark* Fisfure 5*4 contains

an example of the tick command*

As with all FORTH words* the "tick" symbol must

always be followed by a space*

The FORGET command can be used to delete an

entry from the dictionary? it is written as

followss

FORGET word

where "word" is the name of the entry to be

deleted* Figure 5*4 additionally includes examples

of the FORGET command*

Caution should be taken when usin* the FORGET

command because it deletes the specified entry and

all entries defined after it was defined*

SQR * SQR ?

: SQR DUP * ? OK

3 SQR • 9 OK

' SQR * 15692 OK

6 VARIABLE A OK

21 VARIABLE B OK

' A * 15704 OK

' B ? 15712 OK

FORGET B OK

' B * B ?

FORGET SQR OK

' SQR * SQR ?

' A ? ?

Figure 5.4

Examples of the use of the tick

operation and FORGET command.

Constants* Variables Page 115

VOCABULARY

A General familiarity with the following terms

and FORTH words is necessary for learning the FORTH

language:

+ •

CONSTANT

Dictionary

9 (fetch)

FORGET

! (store)

' (tick)

VARIABLE

EXERCISES

1. Define the following constants:

Name Value

ONE 1

TWO 2

DX 15

DY 2*DX-1

2. Define the following variables:

Name VaIue

X 321

Y -6

U X+Y-173

3. Write FORTH statements for the following

statements using variables:

A«A-1

Y=A*X**2-B»X+C

where *» denotes exponentiation*

Definitions Pa*e 117

Chapter *? DEFINITIONS AND TERMINAL

OPERATIONS

Colon Definitions

Comment Lines

Dot Operation

Dot-R Operation

Carriage Return

Character Literals

Screen Operations

Space Characters

Unsigned Output

Display Contents of Address

Vocabulary

Exercises

Definitions Pa*e 119

Programming in FORTH is essentially the process

of extending the Jan*ua*e* Every time a new

operation is defined in FORTH* the definition is

placed in the dictionary and becomes part of the

)an*ua?e« Through this process* a programmer can

build up a sophisticated set of operations that

pertain to a particular application environment*

This chapter covers colon definitions* which are an

essential part of FORTH programming* and terminal

input/output operations?

COLON DEFINITIONS

A colon definition is used to define an

operation in FORTH and consists of the following

elements:

o The initial colon {:>

o The name of the operation

o The body of the definition

o The terminal semicolon <?>

The initial colon* the name of the operation* and

the terminal semicolon are mandatory? The body of

the definition is optional? if present* however* it

must contain elements in the FORTH dictionary*

numerical values* or character literals*

The structure of a colon definition is:

: name

body of definition

wherein the textual structure is intended only to

improve readability* since FORTH is a free form

lantfuaae* The following definition illustrates the

preceding concepts:

: INITIALIZE

1 CONSTANT ONE

Definitions Pasfe 120

2 constant two

10 variable dx

1000 variable limit

; ok

When a colon definition is entered into the FORTH

system* it is placed in the dictionary for

subsequent use in a FORTH statement* The initial

colon and terminal semicolon must always be

preceded and followed by at least one space

character*

A colon definition is not executed until its

name is present in a FORTH statement that causes

the body of the definition to be invoked* Fisfure

4*1 *ives examples of colon definitions and their

invocation*

COMMENT LINES

A comment line can be entered at the Keyboard

in the execution or the definition mode by

enclosing the comment line in parentheses* as

follows:

(THIS IS A COMMENT LINE)

The initial left parenthesis must be followed by a

space character* The ri*ht parenthesis ends the

comment*

If a comment line is entered in the execution

mode* FORTH responds immediately with the word OK*

In this mode* a comment line can be used to

annotate a listing of the display screen*

In the definition mode* a comment line is

stored with the definition in which it is enclosed*

When the defined operation is executed by FORTH*

the comment line is ignored* However* the comment

line serves to inform the reader of the meaning of

the definition when it is listed. Figure 6*2 sives

an example of comment lines in a function that

exchanges the values of two variables*

Definitions Pasfe 121

0 VARIABLE X OK

0 VARIABLE Y OK

0 VARIABLE Z OK

: LOAD-XYZ

Z !

Y !

X !

? OK

s LIST-XYZ

X 8 ?

Y 9 ?

Z 9 ,

; ok

10 20 30 load-xyz ok

list-xyz 10 20 30 ok

Figure 6.1
Colon definitions and their invocation.

EXCHANGE (VALUES OF A AND B)

(STACK CONTENTS: A B)

DUP

9

ROT

DUP

9

4 ROLL

i

1

; ok

(ABB)

(A B VB)

(B VB A)

(B VB A A)

(B VB A VA)

(VB A VA B)

(VB A - A STORED)

(B STORED)

24 VARIABLE TIME OK

6 VARIABLE MONEY OK

TIME HONEY EXCHANGE OK

TIME 9 ? 6 OK

MONEY 9 , 24 OK

Figure 6.2

Colon definition that exchanges the values of two variables and
demonstrates the use of comment lines.

Definitions Pa*e 122

DOT OPERATION

The DOT OPERATION outputs a number* followed by

a space* to the printer or display* The dot

operation uses the period (i*e*> {*}) as a FORTH

word and is described symbolically as:

n ?

where "n" is the value to be displayed* The value

is always placed on the output medium with a

trail in* space character* When the word {*> is

encountered by FORTH? the top value is removed from

the stack and the output operation is performed*

The follou;in* example demonstrates the "dot"

operation:

-13 173 PUP * * * 173 173 -13 OK

The dot operation is limited exclusively to the

output of numerical values*

The dot operation displays a negative number in

true form with a preceding minus sitfn* Positive

values are displayed without a preceding plus si*n«

The number to be displayed is converted from

binary to an external form usin* the number base

stored as a variable named BASE* A value can be

entered in one number system whereby it is stored

internally in binary* Output conversion can be

made according to another base as follows:

DECIMAL OK

138 HEX * 8A OK

8A DECIMAL * 138 OK

The number displayed with the dot operation can be

entered into the stack directly or result from a

previous computation* the dot operation always

outputs the value on the top of the stack*

Definitions Pa*e 123

DOT-R OPERATION

The DOT-R OPERATION displays a value while

permitting the programmer to specify a field width*

The dot-r operation uses the FORTH word {*R> as an

operator symbol and is described symbolically as:

n width *R

where "n" is the value to be displayed and "width"

is the field width* Both values are in the stack*

The field width is on top and the value to be

displayed is directly below it* When the word £*R>

is encountered by FORTH* both values are removed

from the stack and the output operation is

performed* The output value is always ri*ht

Justified in the field* as follows:

(THIS LINE IS FOR ALIGNMENT) OK

-13 6 173 8 *R *R 173 -13 OK

12345 2 *R 12345 OK

-125 3 *R -125 OK

If the number of characters in the number is less

than the field width* then it is padded on the left

with spaces* If the number of characters in the

number including the algebraic si*n* is greater

than the field width* then the field width is

extended as demonstrated above*

The dot-r operation adheres to the same output

conversion rules as the dot operation* Numbers are

always stored internally in binary and converted

for output according to the existing number base*

CARRIAGE RETURN

Durin* a terminal output operation* FORTH fills

the output line until it is full* and then

continues on the next line* If it is desired to

resume the display on the next line* the programmer

should insert a CARRIAGE RETURN into the FORTH

statement or colon definition* The carriage return

Definitions Patfe 124

is represented by the FORTH word tCRJt which must

be preceded and followed by a space character*

Figure 4*3 *ives some examples of the use of the

carriage return*

CHARACTER LITERALS

A CHARACTER LITERAL may be displayed by

enclosing it in the FORTH words {*"} and t"> as

follows:

*M THIS IS A CHARACTER LITERAL"

where the word {?"> must be followed by a space

character* The terminal word {"> ends the literal*

If a character literal is entered in the

execution mode* FORTH responds immediately by

displaying the literal without the enclosing FORTH

words* In the definition mode* the character

literal is saved as part of the colon definition*

When the defined function is subsequently executed*

the literal is displayed without the enclosing

FORTH words when it is encountered by FORTH*

Figure 6*4 contains examples of character literals*

FORTH words placed between the quotation marks

in a character literal are not interpreted as FORTH

words* but rather as keyboard characters to be

routinely displayed*

SCREEN OPERATIONS

Some versions of FORTH include a vertical and

horizontal tabbing feature that allows the cursor

to be moved to a specified position on the screen*

Once the cursor has been moved to the desired

position* the next input or output operation

proceeds from that point* The tabbing feature uses

the FORTH word *VHTAB>> described as follows:

nl n2 VHTAB

Definitions Page 125

(OF N ON THE STACK)

(PREPARE TO PRINT N)

(PRINT N)

(COMPUTE CUBE)DUP DUP * *

(PRINT CUBE)

-13 173 ? CR . 173

-13 OK

s CUBE

DUP

CR 3 .R

6 ,R

; ok

12 CUBE

12 172fl OK

25 CUBE

25 15625 OK

Figure 6.3

The carriage return tCR I is used to begin output on a new line.

?" THIS IS A TEST" THIS IS A TEST OK

0 VARIABLE PACECOUNT OK

s PAGENUHBER

PACECOUNT DUP (ADDR OF PACE COUNT)

(ADD 1 TO COUNT)

(DUP COUNT* START LINE)

9 1 +

DUP CR

." PACE"

3 .R

SWAP !

? OK

PAGENUNBER

PAGE 1 OK

PAGENUMBER

PAGE 2 OK

(CHARACTER LITERAL)

< PRINT COUNT)

(STORE COUNT)

Figure 6.4
Use of a character literal in the execution and definition modes.

Definitions Pa*e 126

where "nlM is the vertical screen position and "n2"

is the horizontal screen position* When VHTAB is

encountered by FORTH* "nl" and "n2" are removed

from the stack* where "nl" is on the top of the

stack and Mn2" is directly below it» The cursor is

then moved to the specified position*

Another feature included in some versions of

FORTH is the HOME command that clears the screen

and moves the cursor to the upper left hand corner*

Figure 6*5 lists a colon definition that includes

the HOME and VHTAB operations*

: TITLE

HOME

10 20 VHTAB

?" chapter 7* control structures"

; ok

Figure 6.5

Examples of the HOME and VHTAB operations.

SPACE CHARACTERS

A space character can be inserted into the

output line by usin* the FORTH words {SPACE) or

{SPACES)* The FORTH word {SPACE: inserts a single

space at the current line position* The word

{SPACES) uses one value* described as follows:

n SPACES

where "n" is the number of spaces to be placed in

the output line* For example* the following

statement:

Definitions Pasfe 127

5 SPACES

would insert 5 spaces in the output line*

UNSIGNED OUTPUT

An unsigned number is one in which all of the

bits in a word are interpreted as data bits* In a

single-precision value* all sixteen bits represent

data without an algebraic sitfn* In a doubl

precision value all thirty-two bits represent data

without an algebraic sitfn* This section covers

unsigned output of single precision values*

Two operations are included in FORTH that sfive

the programmer the capability of displaying

unsigned numbers: the "u-dot" operation and the

"u-dot-r" operation* The U-DOT OPERATION is

similar to the dot operation except that all bits

in the single precision value are treated as

unsigned data bits* Thus all unsigned data values

are effectively positive* The u-dot operation uses

the FORTH word CU*> and is described symbolically

as:

n U*

where "n" is the value to be displayed* As with

the dot operation* the value is always placed on

the output medium with a trailing space character*

When the word tU*> is encountered by FORTH* the top

value is removed from the stack and the output

operation is performed* The following example

demonstrates the u-dot operation:

-13 173 U* U* 173 45523 OK

The u-dot operation is limited exclusively to the

output of numerical values*

The U-DOT-R operation is similar to the u-dot

operation with the exception that it permits field

width to be specified* The u-dot-r operations uses

the FORTH word <U*R> and is described symbolically

Definitions Paste 128

as:

n width U*R

where Mn" is the value to be displayed and "width"

is the field width* Both values are in the stack*

The field width is on top and the value to be

displayed is directly below it* When the word

CU*R> is encountered by FORTH* both values are

removed from the stack and the output operation is

performed* The output value is always ri*ht

Justified in the field* as follows:

(THIS LINE IS FOR ALIGNMENT) OK

-13 6 173 8 U*R U*R 173 65523 OK

The same conversion rules that apply to signed

output also apply to unsigned output* The number

to be displayed is converted from internal binary

to the existing number base and then translated to

character form for output*

If the number of characters in a number exceed

the field width specified with the u-dot-r

operation* then the field width is extended to

accomodate the actual value*

DISPLAY CONTENTS OF ADDRESS

One of the most common sequences of FORTH

operations is {addr P ?>? which is used to display

the contents of an address* This basic operation

occurs frequently enough in FORTH programming to

warrant a symbol of its own* described as follows:

addr ?

where "addr" is the address of the location whose

contents should be displayed* When FORTH

encounters the word {?>? the top entry is removed

from the stack* This is the address* The contents

of the indicated address are fetched from memory

and displayed in the form of a dot operation* as

Definitions Pa*e 129

indicated in the following example:

3 VARIABLE DELTA OK

DELTA ? 3 OK

The "display contents of address" operation does

not alter the contents of the stack after the

specified address is removed?

VOCABULARY

A General familiarity with the following terms

and FORTH words is necessary for learning the FORTH

lan*ua£e:

?

? R

Carriage return

Character literal

Colon definition

Comment Ii ne

CR

HOME

SPACE

SPACES

U.

U.R

VHTAB

EXERCISES

1* Write a colon definition to raise a number to

the fifth power*

Definitions Pasfe 130

2* Write a colon definition to print a title and

p<*e number across the top of the screen*

3« Write a colon definition to add one to the value

of a variable in memory?

Control Structures Pa*e 131

Chapter 7, CONTROL STRUCTURES

Logical Values

Comparison Operations

Losfica) Operations

DO Loop

IF Statement

EXIT and LEAVE Operations

Indefinite Loops

Vocabulary

Exercises

Control Structures Pa*e 133

The control structures in FORTH provide the

capability for program looping and conditional

operations* Program looping facilities include the

DO loop* the UNTIL loop* and the WHILE loop* The

conditional operation in FORTH is the IF statement*

Several of the control structures use logical

values* comparison operations* and logical

operations* which are covered initially*

LOGICAL VALUES

A number has a logical value of "true" if its

value is nonzero and has a logical value of "false"

if its value is zero* Accordingly* a binary value

of 1 represents true and a binary value of 0

represents false* A logical value can be placed in

the stack directly or result from an arithmetic*

comparison* or logical operation*

A logical value is referred to as a "fla*" in

FORTH terminology*

COMPARISON OPERATIONS

The comparison operations in FORTH and their

respective operator symbols* recognized as FORTH

words are:

OPERATION

Less than

Greater than

E^ual to

Unsigned less than

Less than zero

Greater than zero

E^ual to zero

FORTH WORD

(

>

a

u<

0<

0>

0*

These operations are defined on 16-bit integer

values* Double precision operations are covered in

a separate chapter*

Control Structures Pcttfe 134

The LESS THAN operation in FORTH is described

symbolical)y as:

nl n2 <—*f1a*

where "nl" is the leftmost operand and "n2" is the

rightmost operand in the mathematical expression

nl<n2* The operands are entered in the same order

as they would be entered in ordinary mathematical

notation* When FORTH encounters the word -CO* the

top two values are removed from the stack and the

comparison operation (i*e*> nl<n2) is performed*

If the value of nl is less than the value of n2>

then a "true" value of 1 is pushed into the stack*

Otherwise* a "false" value of 0 is pushed into the

stack* The following examples demonstrate the less

than operation:

2 3 < * 1 OK

173 -13 < * 0 OK

-43 6 < ? 1 OK

The GREATER THAN operation in FORTH is

described symbolically as:

nl n2 >— fla*

where "nl" is the leftmost operand and "n2" is the

rightmost operand in the mathematical expression

nl>n2* The operands are entered in the same order

as they would be entered in ordinary mathematical

notation* When FORTH encounters the word {>}• the

top two values are removed from the stack and the

comparison operation (i*e»* nl>n2) is performed*

If the value of nl is sfreater than the value of n2>

then a "true" value of 1 is pushed into the stack*

Otherwise# a "false" value of 0 is pushed into the

stack* The following examples demonstrate the

sfreater than operation:

Contro1 Structures Pa*e 135

173 -13 > ? 1 OK

2 48 > * 0 OK

-4 -59 > * 1 OK

The EQUAL TO operation in FORTH is described

symbolical)y as:

nl n2 =—*fla*

where "nl" is the leftmost operand and "n2" is the

rightmost operand in the mathematical expression

nl*n2* The operands are entered in the same order

as they would be entered in ordinary mathematical

notation* When FORTH encounters the word C=>* the

top two values are removed from the stack and the

equal to operation (i*e*# nl=n2) is performed* If

the value of nl is equal to the value of n2> then a

"true" value of 1 is pushed into the stack*

Otherwise* a "false" value of 0 is pushed into the

stack* The following examples demonstrate the

equal to operation:

54 54 = * 1 OK

23 -23 = * 0 OK

-31 -31 = . 1 OK

The UNSIGNED LESS THAN operation in FORTH is

described symbolically as:

ul u2 U<—*fla*

where "ul" is the leftmost operand and "u2M is the

rightmost operand in the mathematical expression

ul<u2« This operation is the same as {<> except

that the algebraic si*n of the operands is ignored

Control Structures Pa*e 136

and the full sixteen bits of the sinsfle precision

value are interpreted as data bits* The operands

are entered in the same order as they would be

entered in ordinary Mathematical notation* When

FORTH encounters the word £UO* the top two values

are removed from the stack and the comparison

operation (i*e*# ul<u2) is performed* If the

absolute value of ul is less than the value of u2»

then a "true" value of 1 is pushed into the stack*

Otherwise* a "false" value of 0 is pushed into the

stack* The following examples demonstrate the

unsigned less than operation:

2 3 U< * 1 OK

2 -3 U< * 1 OK

-3 -2 U< * 1 OK

The LESS THAN ZERO operation in FORTH is

described symbolically as:

n 0<—*fla*

where "n" is a value to be compared with zero* as

in the mathematical expression n<0* When FORTH

encounters the word iQOt the top value is removed

from the stack and its value is compared with zero*

If the value of n is less than zero* then a "true"

value of 1 is pushed into the stack* Otherwise* a

"false" value of 0 is pushed into the stack* The

following examples demonstrate the "less than zero"

operation:

-13 Q< * 1 OK

139 0< * 0 OK

The GREATER THAN ZERO operation in FORTH is

Control Structures PctSe 137

described symbolically as:

n 0>—*fla*

where "n" is a value to be compared with zero* as

in the mathematical expression n>0* Uhen FORTH

encounters the word £0>>* the top value is removed

from the stack and its value is compared with zero*

If the value of n is greater than zero* then a

"true" value of 1 is pushed into the stack* The

following examples demonstrate the "Greater than

zeroM operation:

139 0> * 1 OK

-13 0> . 0 OK

The EQUAL TO ZERO operation in FORTH is

described symbolically as:

n 0=—*fla*

where "n" is a value to be compared with zero* as

in the mathematical expression n=0* When FORTH

encounters the word <0->t the top value is removed

from the stack and its value is compared with zero*

If the value of n is e«*ual to zero* then a "true"

value of 1 is pushed into the stack* Otherwise* a

"false" value of 0 is pushed into the stack* The

following examples demonstrate the "e*ual to zero"

operation:

-13 0= * 0 OK

1 0= * 0 OK

0 0= * 1 OK

The "e<?ual to zero" operation performs the Boolean

Control Structures Patfe 138

NOT operation on binary values*

LOGICAL OPERATIONS

The logical operations in FORTH and their

respective operator symbols* recognized as FORTH

words are:

OPERATION

Logical and

Logical or

Logical excl usive or

Logical not

FORTH WORD

AND

OR

XOR

NOT

Logical operations in FORTH are applied in a

bitwise fashion to 32-bit operands held in the

stack* Bach logical operation yields a 32-bit

result which is placed in the stack*

The AND operation in FORTH is described

symbolical)y as:

nl n2 AND—>n3

where "nl" and "n2M are the operands in the

mathematical expression nl n2 and "n3" is the

logical result* When FORTH encounters the word

CAND># the top two values are removed from the

stack and the "and" operation (i*e*> nl n2) is

executed* The operation is performed on a

bit-by-bit fashion according to the following

table:

/\

0 0 0

1 0 1

0 1

The following examples demonstrate the "and"

operation:

Control Structures Pa*e 139

BINARY OK

1 0 AND ? 0 OK

1 1 AND • 1 OK

0 0 AND ? 0 OK

101011001 100110011 AND • 100010001 OK

The OR operation in FORTH is described

symbolical)y as:

nl n2 OR—*n3

where "nl" and "n2M are the operands in the

mathematical expression nlvn2 and "n3" is the

logical result* When FORTH encounters the word

<0R>* the top two values are removed from the stack

and the "or" operation (i»e*# nlvn2) is executed*

The operation is performed on a bit-by-bit fashion

according to the following table:

V

0 0 1

1 1 1

0 1

The following examples demonstrate the "or"

operation:

BINARY OK

1 0 OR ? 1 OK

1 1 OR . 1 OK

0 0 OR , 0 OK

101011001 100110011 OR . 101111011 OK

Control Structures Pa*e 140

The EXCLUSIVE OR operation in FORTH is

described symbolically as:

nl n2 XOR—«>n3

where "nl" and "n2" are the operands in the

mathematical expression "(nl*n2) and "n3" is the

logical result* When FORTH encounters the word

<X0R># the top two values are removed from the

stack and the "exclusive or" operation is executed*

The operation is performed on a bit-by-bit fashion

according to the following table:

¥=

0

1

0 1

0 1

1 0

The following examples demonstrate the "exclusive

or" operation:

BINARY OK

1 Q XOR * 1 OK

0 0 XOR ? 0 OK

1 1 XOR * 0 OK

101011001 100110011 XOR ? 1101010 OK

The NOT operation in FORTH is described

symbolically as:

nl NOT—>n2

where "nl" is the operand and "n2" is the logical

result? When FORTH encounters the word {N0T># the

top value is removed from the stack and the "not"

operation is executed* The operation is performed

on a bit-by-bit fashion according to the following

Contro I Struc:tures Pa*e 141

table:

"10 1

II 0"

The following examples demonstrate the "not"

operation:

BINARY OK

1 NOT U* 1111111111111110 OK

0 HOT U* 1111111111111111 OK

101011001 HOT U* 1111111010100110 OK

The logical operations are conveniently used

for masking operations* wherein it is desired to

keep or eliminate specified bits in a field* The

following example demonstrates a case where it is

necessary to keep the low-order four bits of a

binary field and make the other hi*h-arder bit*

zero:

BINARY OK

101011001 VARIABLE DATA OK

DATA 0 1111 AND DATA ! OK

DATA ? 1001 OK

Unlike the logical bit-by-bit operations* the

control structures in FORTH inspect a stack item

for a zero or non-zero condition when performing

conditional operations*

ControI Structures Pale 142

DO LOOP

Many algorithms require that a sequence of

steps be repeated a fixed number of times? An

algorithm of this type is usually programmed in one

of two ways: (1) The program steps are replicated

the required number of times? and (2) the program

is written so that the same program steps are

executed repetitively* The second method is

preferred for coup lex or lengthy programs*

A series of statements to be executed

repetitively is termed a LOOP? the statements that

comprise the loop are termed the BODY OF THE LOOP?

and one pass through the loop is termed an

ITERATION* The number of iterations is Governed by

three control values: the initial value* the limit

value* and the increment value* and the process

usually operates as follows:

1* A CONTROL VARIABLE is set to an initial

value*

2* The body of the loop is executed*

3* The value of the control variable is

increased by the increment value*

4* The value of the control variable is

compared with the limit value* If the limit

value is reached or is exceeded* then the first

executable operation following the body of the

loop is executed*

5* Execution of the loop continues with step 2*

In FORTH* a loop of this Kind is called a DO LOOP*

Figure 7*1 *ives an example of a DO loop that

prints the numbers 0 through 9* The components of

the DO loop in Figure 7*1 are identified as

follows:

Control Structures Fade 143

10 0 Li«it value* initial value

DO loop

where

Limit value: 10

Initial value: 0

Body of loop: CR I ?

Increment value: set implicitly to 1

The control variable is maintained internally by

FORTH* and the FORTH word <I> places the value of

the control variable in the stack. The word (.!> is

not an ordinary variable* It is a command to FORTH

to place the current value of the control variable

in the stack* The limit value should always be set

at one more than the intended limit by the

programmer.

: TOTEN

10 0

DO

CR I

LOOP

; ok

TOTEN

0

1

2

3

A

5

6

7

8

9 OK

(CONTROL VALUES)

(BEGINS LOOP)

(BODY OF LOOP)

(ENDS LOOP)

Figure 7.1

A DO loop that prints the numbers 0 through 9.

Control Structures Pasfe 144

It should be noted that one pass is always Made

through the loop before the value of the control

variable is compared against the limit* Figure 7*2

*ives a DO loop in which the initial value is

Greater than the value but is still executed one

time*

: ONETIME

5 10 (LIMIT VALUE = 5)

DO (INIT VALUE = 10)

CR I ?

LOOP

; ok

ONETIME

10 OK

Figure 7.2

One pass is made through a DO loop even if the initial value

is greater than the limit value.

When the DO loop is executed# the value on the

top of the stack is taken as the initial control

value and the value directly below it in the stack

is taken as the limit value plus one* The

increment value is automatically set to one* The

operations between the FORTH words {DO} and <L00P>

constitute the body of the loop that are executed

during each iteration* The DO loop executes by

increasing the value of the control variable by one

after each pass through the loop until the limit

value is reached or exceeded.

A Fibonacci series is a set of numbers of the

form:

1 1 2 3 5 8 13 21 34 55 . * *

where the Ith number is the sum of the previous two

values* Fisfure 7*3 tfives a colon definition

containing a DO loop that computes Fibonacci

numbers* In this case* the control variable is

Control Structures Patfe 145

used only as a counter since it is not referenced

in the body of the loop* Fisfure 7*4 srives a colon

definition* containing a DO loop* that computes N

factorial* In this case* the control values are

not entered directly* but a minor computation is

performed to place the desired value* i*e** N+l* on

the stack*

: FIBONACCI

I DUP DUP DUP (SET UP INIT VALUES)

CR ? ? (PRINT FIRST 2 VALUES)

II 1 (LOOP 10 TIMES)

DO

DUP ROT + (COMPUTE NEXT ELEMENT)

DUP ? (PRINT IT)

LOOP

; ok

fibonacci

1 1 2 3 5 8 13 21 34 55 89 144 OK

Figure 7.3

A loop that generates Fibonacci numbers.

A variation to the DO loop structure permits

the increment value to be established by the

programmer* As an indication of how this facility

works* consider the DO loop in Figure 7*5 that

prints the even integers between 2 and 20

inclusive* The structure is the same as the

conventional DO loop except that the FORTH word

{+L00PJ is used to close the loop and the value of

2 is pushed into the stack Just prior to the word*

The -C+L00P} operation uses the value on the top of

the stack as the increment value*

A "varyinsr" increment can be used to make the

value of the control variable *o backwards* as in

Figure 7*6 that Generates o number and its square

as the index Soes from 10 to zero* This prosfram

demonstrates a case where the loop index is

referenced twice in the same loop* In each case*

Contro) Structures Pa*e 146

s FACTORIAL
fi

t>
-

1 +

1

SWAP 2

DO

I *

LOOP

? ok

5 FACTORIAL ¦ * 120 OK

(OF N)

(DISPLAY EQUALS SIGN)

(LOOP N TIMES)

(RUNNING PRODUCT)

(SET UPs 1 N+l 2)

(COMPUTE FACTORIAL)

(DISPLAY RESULT)

7 FACTORIAL = 5040 OK

Figure 7.4

Do loop using a control variable to compute N factorial.

(LIMIT=20» INIT=2)

(PRINT NUMBER)

< INCREMENT=2)

s 2L00P

21 2

DO

CR I

2

+LOOP

; ok

2L00P

2

4

6

6

10

12

14

16

18

20 OK

Figure 7.5

A DO loop illustrating an increment value of 2. Note that

+LOOP is used to close the loop.

Control Structures PaSe 147

s RSQUARE

0 10 (LII1IT=1* INIT=10)

DO

CR I . (PRINT NUMBER)

I DUP * * (PRINT SQUARE)

-1

+L00P

; ok

RSQUARE

10 100

9 81

8 64

7 49

6 36

5 25

4 16

3 9

2 4

1 1 OK

Figure 7.6

A DO loop with an index running backwards.

it yields the same value* because it is an

operation that simply places the current index on

the stack* This fact is further demonstrated in

Figure 7*7 that contains a nested loop*

When loops are nested* it is sometimes

desirable to reference the index of the next outer

loop* This operation can be performed throusrh the

use of the (word {J>* When the word iJ5 is

encountered by FORTH* it pushes the current value

of tl»e index of the next outer loop into the stack*

When a loop index runs in the positive

direction* the limit value should be set at one

more than the intended limit* When a loop index

runs in the negative direction* the limit value

should be set at one less than the intended limit*

Control Structures Pasfe 148

: NESTEDLOOP

10 0

DO

CR I ? .

0 3

DO

CR 5 SPACES

-1

+LOOP

2

+LOOP

? OK

NESTED LOOP

0

3

2

1

2

3

2

1

A

3

2

1

6

3

2

1

8

3

2

1 OK

(«««******«)

(*>

(#)

(*«««* »)

(* «)

(* *)

(***** #)

(«>

(**********)

Figure 7.7

Nested loops demonstrating the use of the FORTH word HI.

Control Structures Pasre 149

IF STATEMENT

The IF statement permits a series of FORTH

operations to be executed on a conditional basis*

as su**ested by the following structure:

IF

FORTH operations

ELSE

FORTH operations

THEN

The IF statement tests the value on the top of the

stack* removing it* If it is true <i*e** nonzero)•

the operations following the word {IF} up to the

word {ELSE} are executed* Then* control passes to

the statement following the word CTHEN}* If the

value on the top of the stack is false (i*e**

zero)* the operations following the word {ELSE} up

to the word {THEN} are executed* and control passes

to the statement following the word {THEN}* The

following IF statement* for example* tests a number

on the top of the stack and prints whether it is

zero or nonzero:

IF

*" NONZERO"

ELSE

?" ZERO"

THEN

This statement is included in Figure 7*8 that

depicts it in an operational setting*

The ELSE part of an IF statement is optional*

If it is not present* then the "false" case simply

drops through to the word THEN* where execution

resumes* This option is demonstrated in the

program in Figure 7*9t which tests the value on the

top of the stack and changes its si*n if it is

negative*

Control Structures Pasfe 150

: TESTIT

IF

CR ?" NONZERO"

ELSE

CR ?" ZERO-

THEN

> OK

0 TESTIT

ZERO OK

-1 TESTIT

NONZERO OK

Figure 7.8

An example of the If-ELSE-THEN statement that displays
whether a number is nonzero or zero.

IF statements can be nested as sutftfested by the
following skeletons

IF

A

B

IF

C

0

ELSE

E

F

THEN <---! 1

ELSE

C

H

THEN

< --1

<---! 1

< 1

Statements can be organized in this fashion as Ion*

as one statement is wholly contained in another

one? they may not overlap*

Figure 7*10 *ives a program to "make changes"

Control Structures Pa*e 151

that demonstrates the use of nested loops*

: MAKEPOS

DUP (DUP VALUE FOR TESTING)

0< (TEST IF NEGATIVE)

IF

MINUS (CHANGE SIGN)

THEN

? OK

5 MAKEPOS ? 5 OK

-73 MAKEPOS ? 73 OK

Figure 7.9

An example of the IF-THEN statement that makes the top

value on the stack positive.

EXIT AND LEAVE OPERATIONS

The MAKECHANGE program in Figure 7*10 includes

the EXIT operation that can be used to exit from a

colon definition* When the word {EXIT} is

encountered by FORTH* an exit is made from the

defined procedure in which it is included* The

exit operation may not be used from within a DO

loop*

The LEAVE operation forces an exit from a DO

loop by setting the index value esual to the limit

value* When the respective {LOOP} or {+LQ0P} is

encountered by FORTH/ a normal exit from the loop

is performed* Figure 7*11 contains a program that

computes the larsfest factor of a number? it

demonstrates the LEAVE operation*

INDEFINITE LOOPS

With many algorithms* the number of iterations

is not known beforehand and is discovered only

during the course of computation* A loop of this

Control Structures Pase 152

: MAKECHANGE

-DUP

IF

50 /MOD

-DUP

IF

CR ? ?" HALVES"

THEN

-DUP

IF

25 /HOD

-DUP

IF

CR ? ?" QUARTERS-

THEN

-DUP

IF

10 /MOD

-DUP

IF

CR . ?" DIMES"

THEN

-DUP

IF

5 /MOD

-DUP

IF

CR ? ?" NICKELS"

THEN

-DUP

IF

CR ? ?" PENNIES"

THEN

THEN

THEN

THEN

ELSE

CR ?" NO CHANCE"

THEN

cr ?" *«* thank you «**"

; ok

63 makechange

Control Structures PaSe 153

1 HALVES

1 DIMES

3 PENNIES

*** THANK YOU **# OK

Figure 7.10

A program to "make change" that demonstrates the
use of nested IF statements.

0 VARIABLE N OK

0 VARIABLE N0TD0NE OK

: LGFACTOR (OF N)

DUP DUP

CR ?" LARGEST FACTOR OF

N !

IS

1 NOTDONE !

1

SWAP 2 /

DO

N ff I MOD

0=

IF

I ?

0 NOTDONE ! !

LEAVE

THEN

-1

+LOOP

NOTDONE 9

IF

1 .

THEN

; ok

51 LCFACTO

LARGEST FACTOR OF 51 IS 17 OK

(SET NOT DONE FLAG)

(FINAL LOOP VALUE)

(N/2 IS INIT VAL)

(N/I -> REM)

(PRINT FACTOR)

Figure 7.11

A program that computes the largest factor of a number

and demonstrates the LEAVE operation.

Control Structures Pa*e 154

kind is known as an INDEFINITE LOOP*

FORTH includes two loop in* facilities to handle

indefinite loops* and these facilities correspond

to the "do while" and "do until" structures in

structured programming* Figure 7*12 depicts the do

while and do until structures* With the DO WHILE

loop* the test is performed beforehand* and the

block of code is executed only if the conditional

test yields a true value* With the DO UNTIL loop*

the test is performed afterwords* and continued

execution of the loop is performed only if the

conditional test yields a false value* In other

words* the loop is executed until a prespecified

condition is met* With the DO UNTIL loop* the

block of code is always executed at least once*

whereas with the DO WHILE loop* the block of code

may not be executed at all*

Do while:

Do until:

False

Test?
True

Figure 7.12

The "do while" and "do until" structures in structured programming.

Control Structures Page 155

The BEGIN*?WHILE*?REPEAT statement structure in

FORTH performs the do while loop and has the

following structure:

BEGIN

Operations for the conditional test

WHILE

Operations for the loop

REPEAT

When FORTH encounters the BEGIN*?WHILE*?REPEAT

structure* the operations between the FORTH words

{BEGIN} and {WHILE} are executed? This is intended

to be the conditional part of the loop* The FORTH

word {WHILE} then tests the value on the top of the

stack* If it is true <i*e** nonzero)* then the

operations between the FORTH words <WHJLE> and

{REPEAT} are executed* Upon encountering the word

{REPEAT}, FORTH J oops back to {BEGIN} and the

process continues* If the value on the top of the

stack is false when the word {WHILE} is encountered

by FORTH* then FORTH continues execution with the

operation following {REPEAT}* When using the

BEGIN*•WHILE??REPEAT structure* it is the

programmer's responsibility to place the needed

conditional operations between BEGIN and WHILE*

Figure 7*13 gives a simple program to

illustrate the idea of a BEGIN*?WHILE**REPEAT loop*

The program prints a list of odd numbers and their

squares* Statement numbered (1) sets the initial

value for the loop counter* Statement numbered (2)

begins the loop* Statement numbered (3) duplicates

the loop counter for a conditional test and then

performs a comparison operation with the limit of

20* Statement numbered (4) performs the WHILE

test* If the result of the comparison is true*

then execution continues with the operation after

the FORTH word {WHILE}* If it is false* execution

continues with the operation that follows the FORTH

word {REPEAT}* Statement numbered (5) prints the

loop counter and its squares* Statement numbered

(6) adds an increment of ? to the loop counter*

which is on the top of the stack* Statement

Control Structures Pa*e 156

< 1)

(2)

< 3)

(4)

(5)

(6)

(7)

(8)

numbered (7) passes control to the first operation

after the FORTH word {BEGIN>> and statement

numbered (8) removes the final loop value from the

stack.

: ODDSQUARES

1

BEGIN

DUP 20 <

WHILE .

CR DUP . DUP DUP *

2 +

REPEAT

DROP

; ok

oddsquares

I 1

3 9

5 25

7 49

9 81

II 121

13 1*9

15 225

17 289

19 361 OK

Figure 7.13

A program that lists odd numbers and their squares to
demonstrate the BEGIN. .WHILE. .REPEAT loop.

A second form of the GREATEST COHHON DIVISOR

algorithm involves the modulus function* The

algorithm* which computes the Greatest common

divisor of A and B# is listed as follows:

!? Enter A and B

2. If B is Greater than A# exchange them

Contro) Struc tures Pasfe 157

3* Divide A by B tfivin* the remainder R*

4* Replace A by B <i*e*# A B)

5* Replace B by R <i*e*# B R)

6* If R>0# continue with step 3* Otherwise* A

is the s/reatest common divisor*

The actual calculations can be listed as follows:

GCD of 44 and 28 GCD of 10 and fl

44 28

28 16

16 12

4 0

Result is 4

16

12

4

0

10 8 2

8 2 0

2 0 0

Result is 2

Figure 7*14 tfives a program that computes the

Greatest common divisor usin* this algorithm? it

demonstrates the BEGIN*.WHILE*?REPEAT loop* It

should be emphasized that the WHILE operation tests

any value that is on the top of the stack* If it

is true (i*e*# nonzero)* then execution of the loop

continues* Otherwise* as covered previously*

execution of the indefinite loop is terminated*

The Greatest common divisor program in Figure

7*14 demonstrates the use of a "subprogram" named

7EXCHANGE that verifies that variable A is Greater

than variable B* The rest of the program

essentially duplicates the *iven algorithm*

The BEGIN**UNTIL statement structure in FORTH

performs the do until structure and has the

following structure:

Control Structures Patfe 158

0 VARIABLE A OK

0 VARIABLE B OK

s 7EXCHANGE

SWAP

DUP

ROT

DUP

ROT

>

IF

SUAP

THEN

? ok

; GCD1

EXCHANGE

B ! A !

BEGIN

B <?

WHILE

A § B 9

MOD

B 0 A !

B <

REPEAT

A Q

CR ?

; ok

38 57 GCD1

19 OK

(A B)

(B A)

(B A A)

(A A B)

(A ABB)

(A B B A)

(A B F)

(A > B)

(A > B)

< TEST B)

(A MOD B)

(A <- B)

(B <- REM)

(A IS RESULT)

(PRINT RESULT

Figure 7.14

A program to compute the greatest common divisor

demonstrating the BEGIN. .WHILE. .REPEAT loop.

Control Structures Pa*e 15?

BEGIN

Operations for the loop

Operations for the conditional test

UNTIL

When FORTH encounters the BEGIN**UNTIL structure*

the operations between the FORTH words {BEGIN} and

{UNTIL} are executed* This is intended to be both

the operational and conditional parts of the loop*

It should be noted that the loop is always executed

at least once because the conditional test will be

at the end of the loop* The FORTH word {UNTIL}

then tests the value on the top of the stack* If

it is true <i*e*# nonzero)* then the execution of

the loop has been completed and FORTH continues

execution with the operation following {UNTIL}* If

the value on the top of the stack is false when the
word {UNTIL} is encountered by FORTH* then FORTH

continues execution with the operation fol lowinsf
the initial BEGIN* Essentially* this is the

looping facility available with the BEGIN**UNTIL

Ioopin* structure* It is the programmer's

responsibility to place the needed conditional

operations between BEGIN and UNTIL and in the

appropriate operational sequence*

Figure 7*15 *ives a simple program to

illustrate the idea of a BEGIN**UNTIL loop* The

program prints a list of even numbers and their

squares and cubes* The two subprograms named SQR

and CUBE compute the square and cube operations*

respectively* of the value on the top of the stack*

Statement numbered (1) sets the initial value for

the loop counter* Statement numbered (2) begins

the loop* Statement numbered (3) returns the

carriage (to the printer) so that each value begins

on a new line* Statements numbered (4)* (5)* and

(6) display the loop counter* its square* and its

cube* respectively* Statement numbered (7)

increases the value of the loop counter by 2 and

statement numbered (8) compares its value against

the limit of 20* Statement numbered (9) tests the

condition* If its value is false* execution of the

Control Structures Page 160

i SQR

DUP *

5 OK

: CUBE

DUP DUP

* *

? ok

: EVENS

2 (1)

BEGIN (2)

CR (3)

DUP , < 4)

DUP SQR ? (5)

DUP CUBE . (6)

2 + (7)

DUP 20 = (8)

UNTIL (9)

DROP (10)

> OK

EVENS

2 4 8

4 16 64

6 36 216

8 64 512

10 100 1000

12 144 1728

14 196 2744

16 256 4096

18 324 5832 OK

Figure 7.15

A program that lists even numbers, their squares, and

their cubes to demonstrate the BEGIN. .UNTIL loop.

Control Structures Pasfe 161

loop continues. Otherwise* control drops through

the loop to the next operation* Statement numbered

(10) removes the final loop value from the stack.

Figure 7.16 ?ives another program for the

Greatest common divisor algorithm presented earlier

in the chapter? it demonstrates the BEGIN..UNTIL

loop. The user should compare this program with

the program named GCD1 in Figure 7.14 to obtain the

subtle difference between the two types of

indefinite loops.

s GCD2

?EXCHANGE

B ! A !

BEGIN

A 8 B 8

MOD DUP

B«A !

B !

0=

UNTIL

A 0

CR .

; ok

38 57 GCD2

19 OK

Figure 7.16

A program to compute the greatest common divisor

demonstrating the BEGIN. .UNTIL loop.

(A > B)

(SET UP A AND B)

(A MOD B)

(A <- B)

(B <- REM)

(TEST FOR ZERO)

(A IS RESULT)

(PRINT RESULT)

Contro1 Struc tares Pa*e 162

VOCABULARY

A General familiarity with the following terms

and FORTH words is necessary for learnin* the FORTH

)an£ua*e:

And

BEGIN

Body of the loop

Control variable

DO

DO loop

Do until loop

Do while loop

ELSE

E«utal to

E<uia) to zero

Exclusive or

EXIT

False

Greater than

Greater than zero

I

IF

Increment value

Indefinite loop

Initial value

LEAVE

Less than

Less than zero

Limit value

LOOP

Not

Or

REPEAT

THEN

True

Unsigned less than

UNTIL

Control Structures Patfe 163

WHILE

EXERCISES

1. Give results for the following comparison

operations?

(a) 6 -43 < .

(b) -15) .

(c) 10 0 = ?

(d) -4 0< ?

(e) -1 -6 U< ?

(f) 5 0> ?

(*) 3 0= ?

2. Give results for the following logical

operationss

(a) 1 0 AND .

(b) 0 0 XOR ?

(c) 0 NOT U.

(d) 111010011100001 001111100010110 XOR ?

(e) 111010011100001 001111100010110 AND ?

3. Give the results of the following loops:

(a) 5 10

00

CR I .

LOOP

(b) 3 2

DO

CR I DUP + ?

LOOP

(c) 5 10

DO

CR I .

-1

+L00P

Control Structures Pa*e 164

4. What operation does the following colon

definition perform?

: ??

DUP

5. Write a program to add the integers from 57 to

139 usina each of the following constructs:

(a) DO loop

(b) BEGIN •?UNTIL ?oop

(c) BEGIN..WHILE..REPEAT loop

Double Precision Pa*e 165

Chapter 8« DOUBLE PRECISION

Representation

Arithmetic Operations

Stack Manipulation

Mathematical Functions

Comparison Operations

Hixed-Magnitude Operations

Terminal Operations

Constants and Variables

Memory Operations

Vocabulary

Exercises

Double Precision Pa*e 167

Many computer applications require a level of

arithmetic precision Greater than is available

through the use of 16-bit values* In fact* routine

tabulations commonly involve totals that exceed the

maximum representable sinsfle precision value of

32*767. The DOUPLE PRECISION facilities in FORTH

permit calculations involving double length

quantities with the same relative ease with which

single precision calculations can be performed*

This chapter introduces double precision concepts

and covers the FORTH operations that app)y to

double precision values* The basic concepts

underlying double precision operations are the same

as for single precision operations* The primary

difference is that alternate FORTH words are used*

Therefore* most topics are presented with a minimum

of introductory material*

REPRESENTATION

A double precision number in FORTH occupies two

16-bit positions in the stack and in memory* In a

double precision number* the left half is called

the "hi^h order" part and the riaht half is called

the "low order" part* In the stack and in memory*

the hitfh order part of a double precision number is

placed directly above the low order part*

A double precision integer is specified by

placinsr a period anywhere in the number*

Regardless of where the period is placed the value

stored in the computer is the same* The operation

<D*>* pronounced "d dot*" is used to display a

double precision number as follows:

47381* D* 47381 OK

47*381 P* 47381 OK

If the parts of a double precision number are

displayed separately* unusual results are obtained*

as in the following examples:

Double Precision Paste 168

3 5 D* 327683 OK

327683* ? * 5 3 OK

In the first line* two single precision numbers are

routinely entered into the stack and then displayed

as a double precision number? In the second line*

the process is reversed* If the binary bit

patterns are analyzed* then the previous results

make good sense:

HIGH ORDER PART LOW ORDER PART

Binary 0000000000000101 0000000000000011

5 3

When a double precision value is displayed* the

high and low order parts are concatenated to form

one long word*

The leftmost bits of both the high and

low-order parts of a double precision number are

significant when the parts are displayed separately

because they determine the algebraic signs of the

values displayed* As a double precision number*

FORTH determines the algebraic sign of the value

from the leftmost-bit of the high-order part of the

number? Figure 8*1 gives some indication of double

precision bit patterns*

Another means of entering a double precision

value into the <?tack is by extending a single

precision value through the use of the following

FORTH operation:

S->D

where the characters are entered without

intervening spaces* When FORTH encounters the word

<S->D>* it removes the single precision value from

the top of the stack* extends it to a double

precision value* and pushes the result back into

the stack* A double precision value is created by

propagating the sign bit of a single precision

value across the high order part of the generated

Double Precision Pa*e 169

-3 5D, 393213 OK

-3 5 BINARY D, 1011111111111111101 OK

DECIMAL OK

-3 5 BINARY U, U* 101 1111111111111101 OK

DECIMAL OK

-3 -5 D, -262147 OK

-3 -5 BINARY D* -1000000000000000011 OK

DECIMAL OK

-3 -5 BINARY CR U. CR U«

1111111111111011

1111111111111101 OK

Figure 8.1

Representation of double precision values.

double precision word* Negative double precision

values are stored in two's complement form*

ARITHMETIC OPERATIONS

The double precision arithmetic operations in

FORTH and their respective operator symbols*

recognized as FORTH words are:

OPERATION FORTH WORD

Double Precision Addition D+

Double Precision Subtraction D-

Double Precision Negative DMINUS

These operations are defined on 32-bit integer

values*

The double precision addition operation in

FORTH is described symbolically as:

dl d2 D+—?sum

where "dl" is the double precision addend and Md2"

is the double precision augend* When the word {D+>

Double Precision Pasfe 170

is encountered by FORTH* it adds the top two double

precision values in the stack (i*e** dl+d2)*

removes them* and places the double precision sum

in the stack* The values can be placed in the

stack directly or way result from a previous

computation* The following examples demonstrate

double precision addition:

43216, 1* D+ P* 43217 OK

5000. 60000* '10000. 0+ P+ P* 55000 OK

-35123* 5000* P+ 123, D+ P* -30000 OK

123 S->D 90000* P+ P* 90123 OK

The double precision subtraction operation in

FORTH is described symbolically as:

dl d2 D—^difference

where "dl" and Md2" are the double precision

minuend and double precision subtrahend*

respectively* When the word <D-> is encountered by

FORTH* it subtracts the value on the top of the

stack from the value below it <i*e** dl-d2)*

removes them* and places the double precision

difference in the stack* As with other FORTH

operations* the values may be placed in the stack

directly or may result from a previous computation*

The following examples demonstrate double precision

subtraction:

75123* 5123* P- P* 70000 OK

67887* -2113* D- D* 70000 OK

90000* -123 S->P P- P* 90123 OK

With double precision subtraction* the subtrahend

is always on the top of the stack* Figure 8*2

depicts a simple FORTH loop that demonstrates a

double precision arithmetic operation*

Double Precision Pa*e 171

: SUM

1

DO

D+

LOOP

cr .m sum is m d*

; ok

32768? 50000* 2* 3 SUM

SUM IS 82770 OK

Figure 8.2

A FORTH loop demonstrating a double precision

arithmetic operation.

The double precision negation operation in

FORTH changes the sitfn of the double precision

value on the top of the stack and is described

symbolically as:

dl DMINUS—-dl

where "dl" is the double precision value on the top

of the stack* The following example demonstrates

the DMINUS operation:

-161289, DMINUS D» 161289 OK

When the word {DMINUS} is encountered by FORTH* it

removes the double precision value from the stack*

takes its two's complement* and places the result

ir) the stack*

Double precision multiplication and division

are available as mixed-magnitude operations*

STACK MANIPULATION

The double precision stack manipulation

operations in FORTH and their respective FORTH

words are:

Double Precision Pa*e 172

OPERATION FORTH WORD

Duplicates the top

two double

precision values

on the stack

2DUP

Exchanges the top

two double

precision values

on the stack

2SWAP

Removes the top 2DR0P

double precision

value from the

stack

Copies the second 20VER

double precision

value in the stack

and puts it on the

top

Copies the ni-th

double precision

stack item to the

top

2PICK

Rotates the third

double precision

value in the stack

and puts it on the

top

2RQT

Rotates the top N

double precision

stack items

2R0LL

It should be recalled that when visualizing the

stack> the item on the ri*ht denotes the top of the

stack* The ellipsis* i»e»* {»»?>> is used to

indicate that items lower in the stack may exist

Double Precision Pa*e 173

but they are not restricted to double precision

values*

The 2DUP operation takes the top double

precision value on the stack* duplicates it# and

pushes the duplicated value into the stack* The

stack contents before and after the operation are:

Operation: 2DUP

Stack before: ***dl

Stack after: ***dl dl

The 2SWAP operation exchanges the top two

double precision values on the stack without

disturbing the other stack values* The stack

contents before and after the 2SWAP operation are:

Operation: 2SWAP

Stack before: ???dl d2

Stack after: ***d2 dl

The 2DR0P operation removes the double

precision value on the top of the stack so that all

of the values below it are moved up* The stack

contents before and after the execution of the

2DR0P operation are:

d2...dl

The 20VER operation takes the second double

precision value in the stack* duplicates it* and

pushes the duplicated value into the stack* The

stack contents before and after the execution of

the 20VER operation arez

Operation: 20VER

Stack before: ***dl d2

Stack after: •??dl d2 dl

The 2PICK operation copies a stack entry to the

top of the stack without disturbing the relative

order of the values* This operation uses the

Operations

Stack before?

Stack afters

2DR0P

...dl

Double Precision Pa*e 174

single precision number on the top of the stack to

determine the "depth1* of the pick operation* The

stack contents before and after the execution of

the 2PICK operation are:

Operation: 2PICK

Stack before: dl***d(i-l) di d(i+l)*i*dk n

Stack after: dl***d(i-l> di d(i+l)***dk di

where i=k-n+l* The value on the top of the stack

that determines the depth of the 2PICK operation is

removed* The statement fl 2PICK> is the sane as the

2DUP operation* and the statement x2 2PICKJ is the

same as the 20VER operation*

The 2R0T operation works with the top three

double precision values in the stack* The double

precision value that is third from the top is

rotated to the top* and the two values above it are

pushed down* The stack contents before and after

the execution of the 2R0T operation are:

Operation: 2R0T

Stack before: ***dl d2 d3

Stack after: **.d2 d3 dl

The 2R0LL operation is similar to the 2R0T

operation* but uses the single precision value on

the top of the stack to determine the "depth" of

the roll* The statement £3 2R0LLT is the same as

the 2R0T operation* The stack before and after the

execution of the 2R0LL operation arez

Operation: 2R0LL

Stack before: dl«**d(i-l) di d(i+l)***dk n

Stack after: dl***d(i-l) d(i+l)***dk di

where i*k-n+l* The value on the top of the stack

that determines the depth of the roll is removed*

Figure 8*3 4ives several examples of double

precision stack manipulation operations* The

examples are routine cases to demonstrate the

manner in which the double precision stack

manipulation operations function*

Double Precision Pa*e 175

32768? 2DUP D* D* 32768 32768 OK

40000* 50000* 2SWAP D* D* 40000 50000 OK

40000* 50000. 2DR0P D* 40000 OK

65535* -14* 20VER D* D* D* 65535 -14 65535 OK

-7* 3* 9* 2R0T D* D* D* -7 9 3 OK

-17* 23* 6* 10* 4 2R0LL CR D* D* D. D*

-17 10 6 23 OK

Figure 8.3

Examples of stack manipulation operations.

MATHEMATICAL FUNCTIONS

The double precision mathematical functions in

FORTH complement the single precision functions and

have the same mathematical meaning* The following

double precision mathematical functions are

included in FORTH:

FUNCTION FORTH WORD

Double precision absolute value DABS

Double precision maximum DMAX

Double precision minimum DHIN

Double precision si*n D+-

A)l double precision mathematical functions are

defined on double precision values held in the

stack*

The double precision absolute value function in

FORTH is described symbolically as:

dl DABS d2

where d2 is a positive double precision integer*

When the word {0ABS> is encountered by FORTH* it

removes the top double precision stack entry*

computes its absolute value* and places the result

in the stack* The following examples demonstrate

Double Precision Pa*e 176

the absolute value function:

-171264. DABS D, 171264 OK

41390, DABS P. 41390 OK

The double precision maximum function in FORTH

is described symbolically as:

dl d2 DMAX—^d3

where d3 is the maximum of dl and d2. The DMAX

function removes the top two double precision

values from the stack* computes the value that is

mathematically lurtfer* and places the result in the

stack* The following examples demonstrate the

maximum function:

-63152, -59004* DHAX P, -59004 OK

35190, -14, DMAX D, 35190 OK

The double precision minimum function in FORTH

is described symbolically as:

dl d2 DMIN-^d3

where d3 is the minimum of dl and d2. The DMIN

function removes the top two double precision

values from the stack* computes the value that is

mathematically smaller* and places the result back

in the stack. The following examples demonstrate

the minimum function:

-63152, -59004, DMIN D, -63152 OK

35190, -14, DMIN D, -14 OK

The double precision si*n function applies the

arithmetic sisfn of the single precision value on

the top of the stack to the double precision value

below it. This function is described symbolically

as:

Double Precision Pa*e 177

dl n D+- — d2

where d2=si*n(n)*dl* The values dl and n are

removed from the stack and the result is placed in

the stack as demonstrated in the following

examples:

50000* -1 P+- P* -50000 OK

-50000* -1 D+- D* 50000 OK

-50000* 1 D^ !)? -50000 OK

The mixed-mode operations on single and double

precision values constitute other mathematical

functions* They are covered in a separate section*

COMPARISON OPERATIONS

The double precision comparison operations in

FORTH and their respective operator symbols*

recognized as FORTH words are:

OPERATION

Less than

Greater than

E«uia) to

E*ua) to zero

Unsigned less than

aerations arc f defined on 32-b

FORTH WORD

D<

D>

D=

DO*

DU<

These operations are defined on 32-bit intesrer

values*

The double precision less than operation in

FORTH is described symbolically as:

dl d2 D<—^flasf

where "dl" is the leftmost operand and "d2" is the

rightmost operand in the mathematical expression

dl<d2* The operands are entered in the same order

Double Precision Pa*e 178

as they would be entered in ordinary mathematical

notation* When FORTH encounters the word {DO* the

top two double precision values are removed from

the stack and the comparison operation Ci*e*#

dl<d2) is performed* If the value of dl is less

than the value of d2# then a "true" value of 1 is

pushed into the stack* Otherwise* a "false11 value

of 0 is pushed into the stack* The following

examples demonstrate the double precision less than

operation:

40000. 50000* D< * 1 OK

50000* 40000* D< * 0 OK

-173. 0, D< * 1 OK

The double precision greater than operation in

FORTH is described symbolically as:

dl d2 D>—>fta*

where "dl" is the leftmost operand and "d2" is the

rightmost operand in the mathematical expression

dl>d2t The operands are entered in the same order

as they would be entered in ordinary mathematical

notation* When FORTH encounters the word <D>># the

top two double precision values are removed from

the stack and the comparison operation (i*e*»

dl>d2) is performed* If the value of dl is Greater

than the value of d2# then a "true" value of 1 is

pushed into the stack* Otherwise* a "false" value

of 0 is pushed into the stack* The following

examples demonstrate the double precision Greater

than operation:

0* -173* D> * 1 OK

69145* 32961* D) * 1 OK

9999* A9423* D> * 0 OK

The double precision eiual to operation in

Double Precision Pasfe 179

FORTH is described symbolically as:

dl d2 D=—*f)a*

where "dl" is the leftmost operand and "d2" is the

rightmost operand in the mathematical expression

dl=d2* The operands are entered in the same order

as they would be entered in ordinary mathematical

notation* When FORTH encounters the word <D=># the

top two double precision values are removed from

the stack and the equal to operation <i*e*# dl*d2>

is performed* If the value of dl is equal to the

value of d2# then a "true" value of 1 is pushed

into the stack* Otherwise* a "false" value of 0 is

pushed into the stack* The following examples

demonstrate the double precision equal to

operation:

72669* 72689* D= * 1 OK

^4365* 4365* D= ? 0 OK

-0* 0* D= * 1 OK

The double precision equal to zero operation in

FORTH is described symbolically as:

d D0=—*fla*

where "d" is a double precision value to be

compared with zero* as in the mathematical

expression d=0* When FORTH encounters the word

{D0=># the double precision value on the top of the

stack is removed and compared with zero* If the

value of d is equal to zero* then a "true" value of

1 is pushed into the stack* Otherwise* a "false"

value of 0 is pushed into the stack* The following

examples demonstrate the double precision equal to

zero operation:

95222? DO* ? 0 OK

0* D0= • 1 OK

Double Precision Pa*e 180

0 0 D0= ? 1 OK

The double precision unsigned less than

operation in FORTH is described symbolically as:

udl ud2 DU<—*flasf

where "udl" is the leftmost operand and "ud2" is

the rightmost operand in the mathematical

expression udl<ud2* This operation is the same as

{DO except that the sisfn bit of the operands is

interpreted as a data bit* The operands are

entered in the same order as they would be entered

in ordinary mathematical notation* When FORTH

encounters the word \DUO# the two double precision

values are removed from the stack and the

comparison operation (i*e*# udl<ud2) is performed*

If the value of udl is less than the value of ud2#

then a "true" value of 1 is pushed into the stack*

Otherwise* a "false" value of 0 is pushed into the

stack* The following examples demonstrate the

double precision unsigned less than operation:

40000* 50000, DU< * 1 OK

40000* -50000* DU< * 1 OK

-50000* -40000* PU< * 1 OK

All double precision comparison operations

yield single precision "flatf" values that can be

used as operands in logical operations*

MIXED MAGNITUDE OPERATIONS

Mixed magnitude operations provide a means of

utilizing the multiplicative operations in computer

integer arithmetic* In General* the product of two

single precision integers yields a double precision

product and the division of a double precision

dividend by a sinsrle precision divisor yields a

Double Precision Pale 181

single precision quotient and a single precision

remainder* Mixed-magnitude multiplication in

FORTH is described symbolically as:

nl n2 M*—*d

where "nl" and "n2M are the sinsMe precision

multiplier and multiplicands respectively* and "d"

is the double precision product* When the word

<M*> is encountered by FORTH* it removes the top

two single precision values from the stack*

multiplies them forming a double precision product

<i*e** nl*n2)* and pushes the result into the stack

as a double precision value* The following example

demonstrates mixed-magnitude multiplication:

20000 30QQ0 H» D* 600000000 OK

Hixed-masfnitude division in FORTH is described

symbolical)y as:

d nl H/—*n2 n3

where "d" is the double precision dividend* "nl" is

the single precision divisor* "n2" is the single

precision remainder* and "n3" is the single

precision quotient* When the word <PI/> is

encountered by FORTH* it removes the single

precision value from the top of the stack and the

double precision value below it* The division

operation (i*e** d/nl) is performed* and the

remainder (i*e** n2) and the quotient (i*e** n3)

are pushed into the stack* The following example

demonstrates mixed-magnitude division:

600000001* 20000 M/ * * 30000 1 OK

The unsigned mixed-magnitude multiplication

operation in FORTH is described symbolically as:

ul u2 U*—*ud

where "ul" and "u2" are the unsigned single

Double Precision Pa*e 182

precision multiplier and multiplicand*

respectively* and "ud" is the unsigned double

precision product* When FORTH encounters the word

<U*>* the top two single precision values are

removed from the top of the stack and multiplied

together (i*e** ul*u2) usina all 16 bits of each

operand with the sisfn bit interpreted as a data

bit* The unsigned double precision result is

pushed into the stack* The follow/in* example

demonstrates unsigned mixed-magnitude

multiplication:

-5 -3 U» D» -524273 OK

The unsigned mixed-magnitude division operation

in FORTH is described symbolically ass

ud ul U/—*u2 u3

where "ud" is the unsigned double precision

dividend* "ul" is the unsigned sinsfle precision

divisor* Mu2" is the unsigned single precision

remainder* and "u3" is the unsigned single

precision quotient* When the word <U/> is

encountered by FORTH* it removes the top two values

from the stack* The first value which is on the

top of the stack is the unsigned single precision

divisor and the value below it is the unsigned

double precision dividend* The division operation

(i»e»* ud/ul) is executed and the unsigned single

precision remainder and quotient are pushed into

the stack* The following example demonstrates the

unsigned mixed-magnitude division operation:

-600000001* '30000 U/ U* U* 43546 32991 OK

The unsigned mixed-magnitude divide modulus

operation in FORTH is described symbolically as:

udl u2 H/H0D-*u3 ud4

where "udl" is the unsigned double precision

dividend* "u2M is the unsigned sinsfle precision

Double Precision Paste 183

divisor* "u3" is the unsigned single precision

remainder* and ,,ud4,, is the unsigned double

precision quotient* When FORTH encounters the word

{N/M0D># the single precision divisor and double

precision dividend are removed from the stack and

the division operation (i*e*# udl/u2) is executed*

The unsigned single precision remainder and the

unsigned double precision quotient are pushed into

the stack* The following example demonstrates this

operation:

-600000001* -30000 M/H0D D* U* 103978 5087 OK

In general* the unsigned values selected as

operands for mixed-magnitude operations permit the

full word capability to be used for applications

that resuire it*

TERMINAL OPERATIONS

The D-DQT OPERATION represented by the word

{D*> outputs a double precision value to the

printer or display* This operation was presented

earlier in this chapter* The d-dot operation is

described symbolically as:

d D*

where "d" is the double precision value to be

displayed* which is always placed on the output

medium with a trailing space character. When the

word {D*> is encountered by FORTH* the double

precision value on the top of the stack is removed

and displayed* The d-dot operation displays a

negative number in true form with a preceding minus

sign* Positive values are displayed without a

preceding plus sign* The value is converted from

internal binary to external form according to the

number base stored in BASE*

The D-D0T-R OPERATION displays a double

precision value while permitting the programmer to

specify a field width* The d-dot-r operation uses

the FORTH word {D*RJ as an operator symbol and is

Double Precision Pa*e 184

described symbolically as:

d width D*R

where "d" is the double precision value to be

displayed and "width" is a single precision value

representing the field width* Both values are in

the stack with the width on top and the double

precision value below it* When the word xD»R> is

encountered by FORTHt both values are removed from

the stack and the output operation is performed*

The output value is always ri*ht Justified in the

field* The d-dot-r operation adheres to the same

output conversion rules as the d-dot operation*

CONSTANTS AND VARIABLES

A double precision constant is defined in FORTH

with a statement of the form:

value 2C0NSTANT name

where "value" is the value of the double precision

constant and "name" is the name by which it is

referenced* The following examples demonstrate the

definition and use of a double precision constant:

75301* 2C0NSTANT LMT OK

LHT D* 75301 OK

The word {2C0NSTANT> is an executable operation in

FORTH* When it is encountered by FORTH* the double

precision value on the top of the stack is used as

the value of the double precision constant* The

word following 2C0NSTANT is the name of the

constant* and the double precision value on the top

of the stack is removed during the execution of the

operation*

A double precison constant is referenced by

usin* its name* as demonstrated in the preceding

example* When the name of a double precision

Double Precision Paae 185

constant is encountered by FORTH* the value of the

double precision constant is pushed into the stack*

A double precision variable is defined in FORTH

with a statement of the form:

value 2VARIABLE name

where "value" is the initial value of the double

precision variable and "name" is the name by which

it is referenced* The following examples

demonstrate the definition of a variable:

-131294* 2VARIABLE CTL OK

0* 2VARIABLE DSUH OK

5* 2VARIABLE DFIVE OK

The word 2VARIABLE is an executable operation in

FORTH that uses the double precision value on the

top of the stack as the initial value of the double

precision variable* When the word 2VARIABLE is

encountered by FORTH* the double precision value on

the top of the stack is removed as the initial

value of the variable and the word following

2VARIABLE is the name of the variable*

Each time the word 2VARIABLE is encountered by

FORTH* a new double precision variable is defined*

Therefore* the word should not be used to chanafe

the value of a variable* The FORTH word

{2VARIABLE2 should only be used to declare a

variable initially*

When the name of a double precision variable is

encountered by FORTH* the address of the double

precision variable is placed on the stack* The

address is used with the double precision store and

fetch operations*

I1E/10RY OPERATIONS

The double precision fetch operation uses the

value on the top of the stack as the address of a

Double Precision Pasfe 186

double precision value and is described

symbolical)y as:

addr 28—?d

where "addr" is a memory address and "d" is the

double precision value stored at the specified

address* The follou/in* examples demonstrate the

double precision fetch operation:

50000. 2VARIABLE PAY OK

PAY 28 D* 50000 OK

5000* 2C0NSTANT RAISE OK

RAISE PAY 28 D+ D* >5000 OK

When the word {28} is encountered by F0RTH# it

removes the single precision value on the top of

the stack interpreting the value as an address*

The double precision value at the specified address

location is "fetched" from memory and pushed into

the stack*

The double precision fetch operation should not

be used with a double precision constant because

reference to the name of a constant always yields

the value of the constant and not its memory

address*

The double precision store operation is used to

place a double precision value from the stack into

memory at a specified address and is described

symbolically as:

d addr 2!

where Md" is the double precision value to be

placed in memory and "addr" is the memory address

where the value should be placed* The address is

on the top of the stack and the double precision

value is directly below it* When the word £2!> is

encountered by FORTH* the top two stack entries -

one for the address and one for the double

Double Precision Pa*e 187

precision value - are removed from the stack and

the double precision store operation is performed*

The following statements demonstrate the double

precision store operation:

69999? 2VARIABLE TOP OK

70000* TOP 2! OK

TOP 25 D« 70000 OK

When a double precision store operation to a memory

location is performed* the previous contents of

that location are lost*

As with the double precision fetch operation*

the double precision store operation should not be

used with a double precision constant because a

reference to the name of a double precision

constant yields the value of the constant and not

its memory address* Fisfure 8*4 *ives several

examples of the definition and use of double

precision variables and the double precision fetch

and store operations*

50000, 2VARIABLE DA OK

100000* 2VARIABLE DB OK

: BXCH

DA 28 DB 20

2SWAP DB 2! DA 2!

? OK

EXCH OK

DA 20 D* 100000 OK

DB 20 D* 50000 OK

Figure 8.4

A set of double precision operations that exchange the

values of double precision variables DA and DB.

Double Precision Pasfe 18d

VOCABULARY

A General familiarity with the folio*in* ter«s

and FORTH words is necessary for learning the FORTH

)an*ua*e:

2!

29

2C0NSTANT

2DR0P

2DUP

20VER

2PICK

2R0LL

2R0T

2SWAP

2VARIABLE

D.

0+

D-

D+-

D<

D>

D=

DO*

DABS

DMAX

DMIN

DI1INUS

Double-precision value

D.R

DU<

H»

H/

(1/M0D

Mixed-aatfnitude operation

S->D

U«

U/

Double Precision Pasre 189

EXERCISES

Develop colon definitions for the following

double-precision functions:

1* Double plus store

Operation: D+!

Stack before: ??? d addr

Stack after: ???

Result: d is added to the double

precision value at addr

2# Double one plus store

Operation: D1 + !

Stack before: ??? addr

Stack after:

Result: 1 is added to the double

precision value at addr

3* Double one minus store

Operation: D1-!

Stack before: ??? addr

Stack after:

Result: 1 is subtracted fro* the

double precision value at

addr

4* Double one plus

Operation: D1+

Stack before: ??? dl

Stack after: ??? d2

Result: d2 dl+1

5* Double one Minus

Operation: Dl-

Stack before: ??? dl

Stack after: ??? d2

Result: d2 dl-1

Double Precision

6« Double two plus

Operations D2+

Stack before: ??? dl

Stack after: ??? d2

Result: d2 dl+2

7» Double two ainus

Operation: D2-

Stack before: ??? dl

Stack after: ??• d2

Result: d2 dl-2

Information Management Pa<re 191

Chapter 9. INFORMATION MANAGEMENT

Memory Organization

Al location

Disk Input and Output

Program Management

Keyboard Operations

Character Movement

Output Formatting and Conversion

Vocabulary

Exercises

Information Management Pa*e 193

Information in FORTH is organized around the

concept of a SCREEN* which is a 1024-byte block of

memory* Disk storage is divided into screens and

the FORTH system contains a fixed number of

screen-sized buffers for working memory and for

disk input/output* The word "screen" corresponds

to a virtual display screen consisting of sixteen

A4-character lines* Programs are also organized

into screens and language features are available

for loadin* and executing screens on a static or

dynamic basis*

MEMORY ORGANIZATION

The FORTH system contains a fixed number of

screen buffers that are managed on a dynamic basis*

When the user requests memory by employing one of

several well-defined methods* a screen buffer is

assigned on a "least recently used" basis* If* for

example* the assigned buffer holds a disk

input/output screen that has been updated* the

current buffer contents are rewritten to disk

storage before the screen buffer is reassigned*

The number of screen buffers in a particular

FORTH system is implementation-dependent and is

assigned by default* This number can be changed*

providing a tradeoff between buffer space and

dictionary space*

ALLOCATION

A screen buffer can be allocated explicitly or

implicitly* Explicit allocation is made with the

BUFFER operation* Implicit allocation is made with

the LOAD or BLOCK operations* Explicit screen

buffer allocation is covered here*

The BUFFER operation is described symbolically

as:

n BUFFER—addr

Information Management Pa*e 194

where "n" is a screen number and "addr" is a buffer

address* When FORTH encounters the word {BUFFERS

it removes the screen number from the top of the

stack and assigns a buffer to it* If the screen

buffer has been marked for updating the contents

of the buffer are written to disk* The address of

the buffer is returned by pushing it into the

stack* The allocated buffer can then be used as a

1024-byte storage area in memory*

DISK INPUT AND OUTPUT

A screen is read from disk to memory with the

BLOCK operation which takes the following form:

n BLOCK-^addr

where "n" is a screen number and "addr" is a buffer

address* When FORTH encounters the word <BL0CK>#

it removes the screen number from the top of the

stack and assigns a buffer to it on a least

recently used basis* If the screen buffer has been

marked for updating* the contents of the buffer are

written to disk* Then* the contents of disk screen

numbered "n" are read into the assigned screen

buffer in memory from disk and its address is

pushed into the stack* The BLOCK operation employs

implicit screen buffer allocation since allocation

is performed in support of a distinct FORTH

operation* A screen buffer is marked for

updating with the UPDATE operation* When FORTH

encounters the word {UPDATE># the screen buffer

last referenced is marked for updating*

The contents of a screen buffer that have been

marked for updating are written to disk under two

circumstances:

o The screen buffer is re-allocated

o The SAVE-BUFFERS operation is executed

When the word {SAVE-BUFFERS> is encountered by

FORTH* all screen buffers marked for updating are

Information Management Pa*e 195

written to disk* The FORTH word vrSAVE-BUFFERS> is

synonymous with the word {FLUSH}* which is used in

some FORTH systems*

The EMPTY-BUFFERS operation is used to mark all

screen buffers as empty* When a subsequent

EMPTY-BUFFERS operation is encountered by FORTH*

the effect of the UPDATE operation is nullified so

that the contents of the screen buffers are not

written to disk*

PROGRAM MANAGEMENT

Programs in FORTH can be entered into the

system via the keyboard or through the use of a

disk screen* From the keyboard* statements are

Keyed in the execution or definition mode and FORTH

responds immediately* This topic was covered

earlier*

Another facility for program management is to

use a screen editor to construct a display screen

containing FORTH statements and to store it on disk

as a screen* A disk screen can be loaded for

execution and FORTH responds as though the

statements were entered from the keyboard*

The LOAD operation in FORTH is described

symbolically as:

n LOAD

where "n" is the number of a disk screen* When the

word \LOAD> is encountered by FORTH* the screen

number is removed from the stack* A screen buffer

is implicitly assigned* as covered previously* and

the disk screen is read in* FORTH treats the

contents of the screen buffer as though it were

entered via the keyboard* LOAD operations can be

nested* which means that one disk screen may

contain another LOAD operation* and so forth*

The NEXT SCREEN operation is described

symbolically as:

-->

Information Management Pane 196

which commands FORTH to continue interpretation

with the next disk screen in numerical sequence*

The interpretation of a screen can be

terminated with the following FORTH word:

;s

allowing the remainder of the screen to be used for

comments?

When FORTH encounters the word <?S> or comes to

the end of a screen* interpretive execution resumes

with the FORTH operation immediately following the

last LOAD operation that was executed* Thus* in

effect* a "return" is made to the "calling screen*M

The LIST operation is used to display the

contents of a screen and is described symbolically

as:

n LIST

where "n" is the screen number of the text to be

displayed* If the specified screen is in memory*

it is displayed without disk input* If the

specified screen is not in memory* a screen buffer

is allocated and the specified screen is read into

memory and displayed*

The SCR command returns the address of a

variable containing the number of the screen most

recently listed* This operation is described

symbolically as:

SCR—*addr

where "addr" is the address of the variable that

contains the screen number* The address would then

be followed with a fetch operation* such as {SCR

§>• to obtain the screen number* This operation

would normally be used when listing several screens

in succession under program control or when the

user simply fortfot the number of the screen that he

or she most recently listed* In some versions of

FORTH* the operation SCR is also used with editor

Information Management Pa*e 197

related commands*

KEYBOARD OPERATIONS

Through the use of keyboard operations* strings

of characters can be entered directly into memory

and can be displayed from memory?

The EXPECT operation is used for data entry and

is described symbolically as:

addr n EXPECT

where "addr" is the hetfinninsf memory address and

"n" is the number of characters to be transmitted*

When FORTH encounters the word CEXPECT>> characters

entered from the keyboard are placed in consecutive

byte locations in memory until "n" characters or

the carriage return is entered* Two null

characters are appended to the end of the string

and sufficient space should be available in the

memory buffer for these characters*

The TYPE operation is used to display character

strings from memory and is described symbolically

as:

addr n TYPE

where "addr" is the be*innin* memory address and

"n" is the character count* When FORTH encounters

the word <TYPE>* "nM characters from consecutive

memory locations starting with the specified

address are displayed* Figure 9*1 demonstrates the

use of the BUFFER* EXPECT* and TYPE operations*

The KEY operation permits the ASCII code of a

character entered at the keyboard to be entered

into the stack* This operation is described

symbolically as:

KEY—>c

where "c" is the ASCII code of the character

entered* When FORTH encounters the word <KEY># it

Information Management Fa*e 198

0 VARIABLE STRING OK

: IN-OUT

50 BUFFER

STRING !

CR ?" ENTER 5 CHARACTERS M

STRING S 5 EXPECT

CR *" YOU ENTERED: "

STRING 9 5 TYPE

CR ? " END OF IN-OUT "

? OK

IN-OUT

ENTER 5 CHARACTERS FORTH

YOU ENTERED: FORTH

END OF IN-OUT OK

Figure 9.1

A sample colon definition demonstrating the

BUFFER, EXPECT, and TYPE operations.

waits until a character is entered from the

keyboard and then pushes its ASCII code into the

stack*

The EMIT operation reverses the effect of the

key operation by taking an ASCII code from the

stack and displaying its corresponding character*

This operation is described symbolically as:

c EMIT

where Mc" is the ASCII code to be displayed* When

FORTH encounters the word {EMIT}* the ASCII code on

the top of the stack is removed and the

corresponding character is displayed*

The 7TERMINAL operation is used to break a

continuous operation* such as a listing* and is

described symbolically as:

7TERHINAL—*f)a*

where "fla*" is either a 1 or a 0* When FORTH

Information Management Pasfe 199

encounters the word <?TERMINAL}# it tests whether a

key has been struck* If a key has been struck* a

value of 1 is pushed into the stack* Otherwise* a

value of 0 is pushed into the stack?

CHARACTER MOVEMENT

Character movement operations in FORTH permit

character data to be moved from one area of memory

to another* Also included in the set of operations

are a variety of "utility" operations that

facilitate FORTH programming*

The character movement operations in FORTH are

summarized as follows:

DESCRIPTION

Store 8 bits

Fetch 8 bits

Character movement

Suppress trailing r blanks

Fi 11 memory with specified

byte

Fi 11 memory with blanks

FORTH WORD

C!

ce

CHOVE

-TRAILING

FILL

BLANKS

Move 16-bit memory cells MOVE

When a byte is specified as an operand* it occupies

the low-order byte position of a stack entry* The

hi*h-order bits of that stack entry are not used*

The STORE BYTE operation in FORTH is described

symbolically as:

byte addr C!

where "byte" is the data to be stored and "addr" is

the memory address* When FORTH encounters the word

<C!># the top two values are removed from the

stack* The topmost entry is the memory address and

the entry below it contains the byte to be stored*

This FORTH operation is pronounced "c-store*"

Information Management Pasfe 200

Normal Iy* the specified byte will contain the ASCII

code of a character*

The FETCH BYTE operation in FORTH is described

symbolical)y as:

addr C9—*byte

where "addr" is a memory address and "byte" is the

data that has been fetched* When FORTH encounters

the word {CP>* the top entry is removed from the

stack* This is the memory address* A fetch

operation is made to the specified byte address in

memory and a stack entry is created* The 8 bits

fetched occupy the low- order position of the stack

entry* which is pushed into the stack* This FORTH

operation is pronounced "c-fetch*" Normally* the

specified byte will contain the ASCII code of a

character*

The CHARACTER MOVE operation in FORTH is used

to move a block of characters from one area of

memory to another* This operation is described

symbolically as:

addrl addr2 n CMOVE

where "addrl" and "addr2" are the from and to

memory addresses* respectively* and "n" is the

number of character positions (i*e** byte

locations) to be moved* When FORTH encounters the

word {CH0VE>* the top three entries are removed

from the stack representing addrl* addr2# and n» in

that order* from the top* The character movement

is performed from addrl to addr2 starting with the

lower memory address* If n is less than or equal

to zero* no movement is performed*

The SUPPRESS TRAILING BLANKS operation

eliminates trail in* blanks by adJustin* the

character count of a strin* reference* This

operation is described symbolically as:

addr nl -TRAILING —addr n2

where "addr" is the memory address of the character

Information Management Pa*e 201

string and "nlM is the length of the string* When

FORTH encounters the word {-TRAILINO* it removes

the top two values from the stack* representing the

length and address* respectively* Trailing blanks

are eliminated and the old address and the new

character count "n2M are pushed into the stack*

The FILL operation places a specified character

into each byte location of an area of memory* This

operation is described symbolically as:

addr n byte FILL

where "addr" is the starting address* "n" is the

number of byte locations to be filled* and "byte"

is the quantity to be placed in each byte location*

Normally* byte is ar\ ASCII code of a character*

When FORTH encounters the word <FILL>* the top

three values are removed from the stack#

representing byte* n* and addr sfoin* from the top

downwards* The FILL operation is performed from

the starting address upwards in memory* If n is

less than or e^ual to zero* no fill operation is

performed*

Figure 9*2 demonstrates the FILL* CHOVE* and

-TRAILING operations*

The BLANKS operation in FORTH fills an area of

memory with blanks and is described symbolically

ass

addr n BLANKS

where "addr" is the starting address and "n" is the

number of byte locations to be filled with a blank

character* When FORTH encounters the word

«CBLANKS>* the top two values are removed from the

stack* representing the count and starting address*

respectively* The specified area of memory is

filled from the starting address upwards with the

ASCII code for the blank character* If n is less

than or e^ual to zero* no memory locations are

filled with a blank*

Information Management Pa*e 202

0 VARIABLE FROM OK

0 VARIABLE TO OK

: CMOVEMENT

60 BUFFER

FROM !

70 BUFFER

TO !

FROM 9 50 192 FILL

CR ." ENTER 5 LETTERS AND 5 SPACES

FROM 9 10 EXPECT

FROM 9 TO 9 10 CMOVE

TO 9 10 -TRAILING

CR ," THE RESULT IS: "

TYPE

CR ." END OF CMOVEMENT "

1 OK

CMOVEMENT

ENTER 5 LETTERS AND 5 SPACES FORTH

THE RESULT IS: FORTH

END OF CMOVEMENT OK

Figure 9.2

Example of character movement demonstrating the

FILL, CMOVE, and -TRAILING operations.

The MOVE operation in FORTH moves a specified

number of 16-bit memory cells from one area of

memory to another. This operation is described

symbolically as:

addrl addr2 n MOVE

where "addrl" and "addr2" are the from and to

memory addresses* respectively* and "n" is the

number of 16-bit memory cells to be moved. When

FORTH encounters the word {M0VE>» the top three

values* representing the count* to address* and

from address* Soin* downwards* are removed from the

stack. The 16-bit memory cells are moved starting

with the specified address upwards. If n is less

Information Management Pa*e 203

than or e^ual to zero* no movement is performed?

OUTPUT FORMATTING AND CONVERSION

The FORTH lan*ua*e contains an output formatting

facility to specify the conversion of a

double-precision number into an ASCII character

string* FORTH incorporates the following words

that deal exclusively with output formatting:

<* it its HOLD SIGN »>

Lookin* at output formatting conceptually* the word

{<»> puts the system into the output formatting

mode and the word {*>} is usd to exit from the

output formatting mode* The words 0>> C*S>#

{H0LD># and {SICN> can only be used between <* and

*>?

Output formatting is designed around double

precision numbers because most business

applications require more significant dibits than

are available with sixteen-bit single precision

values* For example* the largest binsfle precision

representable number with dollars and cents would

be $327.67*

Figure 9*3 stives a General -purpose double

precision output formatting routine that can be

used with a variety of business applications* It

is explained in the following paragraphs*

Output formatting proceeds from ri*ht to left

and essentially operates by dividing the number by

the base and converting the remainder to an ASCII

code* The formatting procedures utilize an

unsigned double precision number* The steps in the

definition {*?> are explained as follows:

a* {2DUP DABS> saves the algebraic si*n and

creates a positive value*

b* {<*> puts the system into the output

formatting mode*

c* <* *J converts the cents portion of the word

Information Management Pa*e 204

placing the ASCII dibits in the text string

d, <4A HOLD} puts the ASCII code for the

decimal point into the text strintf*

e* {*S} converts the remainder of the number*

f? {SIGN DROP} puts the ASCII code for the

minus into the text string if the original

value was negative* This operation uses only

the hifh-order part so the low order part is

dropped?

*? {36 H0LD> puts the ASCII code for the dollar

si*n into the text string

h* {*>} exits the output formatting mode and

leaves the addr and count on the stack for the

TYPE operation

it {TYPE SPACE} displays the result.

Since the operation {*>} does in fact put the

address and character count of the text string in

: $? (OUTPUT FORMATTING)

2DUP DABS (SET UP DATA)

<* (ENTER FORMAT MODE)

* it (CONVERT CENTS)

46 HOLD (PUT IN DEC POINT)

*S (CONVERT DOLLARS)

SIGN DROP (PUT IN SIGN)

36 HOLD (PUT IN *)

*> (EXIT FORMAT MODE >

TYPE SPACE (DISPLAY RESULT)

? OK

12345, $? $123*45 OK

-6738124* *• $-67381*24 OK

Figure 9.3

General purpose output formatting routine.

Information Management Pa*e 205

the stack* it can be followed by any FORTH

operation that deals with character movement* such

as the CMOVE or TYPE operations*

There is relatively little need to convert

numbers from ASCII code to internal binary since

numerical data can be entered into the stack from

the keyboard? However* turnkey systems frequently

require data verification* so that FORTH operations

are also available for input conversion*

The (NUMBER) operation in FORTH is used to

convert ASCII text into a number* This operation

is described symbolically as:

dl addrl (NUMBER) —>d2 addr2

where "dl" is a double precision number into which

the new value is accumulated* "addrl" is the

address of the ASCII text* "d2" is the new double

precision value* and "addr2" is the address of the

first unconvertable di*it* When FORTH encounters

the word C(NUMBER)>* it removes the address from

the top of the stack and the double precision value

below it* The ASCII text is converted to binary

starting with the specified address plus one (i*e**

addrl+1) and accumulated into the specified

double-precision value (i*e** dl)* The double

precision result is pushed into the stack followed

by the address in memory of the first unconvertable

character in the ASCII text string* Fisfure 9*4

*ives an example of the use of the (NUMBER)

operation*

Information Management Pa*e 206

0 VARIABLE LOC OK

? TEST-NUM

50 buffer (get storage)

loc ! (save address)

loc & 1 + 8 expect < ascii data)

0* (accumulator)

loc 8 (number) (convert)

drop (drop address)

cr ." number is: "

d. (converted value)

? ok

test-num 2376914k

NUMBER ISs 2376914 OK

Figure 9.4

Example of input conversion.

VOCABULARY

A tfenera) familiarity with the following terms

and FORTH words is necessary for learning the FORTH

)an*ua*e:

»

«>

»S

-->

<«

;s

7TERHINAL

-TRAILING

BLANKS

BLOCK

BUFFER

C0

C!

CMOVE

EMIT

EMPTY-BUFFERS

EXPECT

Information Management Pa*e 207

Explicit a)location

FILL

HOLD

Implicit a)location

KEY

Least recently used

LIST

LOAD

MOVE

(NUMBER)

SAVE-BUFFERS

SCR

Screen

SIGN

TYPE

UPDATE

EXERCISES

1* Write a FORTH statement to place blank

characters in 100 byte locations startinsf with the

address stored in variable START*

2* Write a FORTH statement to move 1000 bytes from

hex location 6FC to hex location FF3*

3* Starting at decimal location 2000 is an 11

character message* Give a FORTH statement to have

the message displayed*

4* Write a FORTH statement to place the letter "A"

in byte location 10111 (binary)*

5* Write a FORTH prosfram to obtain a buffer

containing at least 100 bytes* Place the character

"§" in odd bvte locations and the character 'V in

even byte locations* Then display the result as 10

rows of 10 characters*

References Pa*e 209

REFERENCES

C1J Crazon* H.G.* "The elements of single-chip

microcomputer architecture*" COMPUTER* Volume 13*

Number 10 (October* 1980)* pp. 27-41*

C23 Engineering Research Associates* Hi«rh-Speed

Computing Devices* McGraw-Hill Book Company* New

York* 1950*

C33 FORTH-79* FORTH Interest Croup* 1980* (P.O.

Box 1105* San Carlos* California 94070)

C4D FORTH Ver. 1*7: LamfuasTe Manual And User's

Guide* Cap'n Software* 1980.

C5J Harris* K.* "FORTH Extensibility: Or How to

Write a Compiler in 25 Words or Less*" Byte

(Ausfust* 1980). pp. 164-184.

[63 Hit burn* J.L. and P.M. Julich*

Microcomputers/Microprocessors: Hardware* Software*

and Applications* Prentice Hal I * Inc.* Entflewood

Cliffs* New Jersey* 1976.

C7J Holder* C.L.* "Small businesses use floppy disk

word processing*" Small Systems World (September*

1980)* pp. 46-50.

C83 James* J.S.* "What Is FORTH? A Tutorial

Introduction*" Byte (August* 1980)* pp. 100-126.

C9U Katzan* H.* Computer Systems Organization and

Programming* Science Research Associates* Chicago*

1976.

C103 Katzan* H.* Introduction to Computers and Data

Processing* D. Van Nostrand Company * New York*

1979.

CUD Katzan* H.* Introduction to Computer Science*

Petrocelli/Charter* New York* 1975.

References Pa*e 210

C123 Katzan* Hu Introduction to Programming

Lansruasfes* Auerbach Publishers/ Inc.* Philadelphia/

1973*

C13J Katzan* H.* Microprogramming Primer*

McGraw-Hill Book Company* New York* 1977*

C14D Knuth* D.E.* The Art of Computer Programming

Volume 1* Fundamental Algorithms* Addison-Wesley*

Reading* Massachusetts* 1968*

C153 Leinin*er* S.W.* "The Radio Shack TRS-80

Microcomputer System*" Interface Atfe (September*

1977)* pp. 58-62.

[163 Mandl* M.* Fundamentals of Digital Computers*

Prentice-Hall* Inc.* En*lewood Cliffs* New Jersey*

1958*

C173 Manuel* T.* "The hard-disk explosion: hitfh

powered mass storage for your personal computer**'

Byte (August* 1980)* pp. 58-70* 138-146.

C183 Miller* A.R.* and Miller* J.* "Breakforth into

FORTH*" Byte (August* 1980)* pp. 150-163.

C19J Moore* C.H.* "The Evolution of FORTH* an

Unusual Lantfua*e*" Byte (Ausrust* 1980)* pp. 76-92.

C20D Pollini* S.* "Hardware Talk About Hardware*"

Personal Computing (January/Febiuary* 1977)* pp.

68-70.

C213 von Neumann* J.* The Computer and the Brain*

Yale University Press* New Haven* 1958.

C223 Williams* C* "FORTH Glossary*" Byte (August*

1980)* pp. 186-196.

C23J Zaks* R.* Microprocessors: From Chips to

Systems* SYBEX Incorporated* 1977.

References Pasfe 211

C24D Z80-CPU Technical Manualt Zilo* Corporation*

1976.

Answers Pa*e 213

ANSWERS

Chapter Zero

1* (a) 18

(b) 17

(c) 25

2* (a) 21 OK

(b) 20 OK

(c) 9 8 3 OK

3. (a) 14 OK

(b) 13 OK

Chapter One

1* Devices normally treated as "black boxes" in

everyday life are:

o The fuel injection system in an automobile

o A modern electronic digital wristwatch

o An "instant" camera

o A modem or multiplexer for data

communications

o A "laser disk" recording system

In fact* most devices that utilize advanced

technology are commonly used as black boxes?

24 The usual programmable calculator would use a

Harvard architecture* since data and program

memories are separate - i*e*# at least as far as

the user is concerned?

3« Read-write memory would be RAH«

4* A computer system in which bandwidth is two

bytes and instruction size is four bytes is a case

where bandwidth would contribute to less than

optimal performance* In this example* two fetches

Answers Pa*e 214

from storage would be required to access one

instruction*

5* (a) Fetch a word from ROM or RAM* (b) Write a

word to RAM*

Chapter Two

1* They both exist as a finite list of

instructions*

2* There are three steps in the Greatest common

divisor algorithm* When applied to the values 35

and 21* nine steps are actually executed*

3* The fields in an assembler lansfuasfe statement

are the location field* operation code field*

operand field* and the comments field*

4* The output from a lansua^e translator includes

the object prosfram and the listing* The output

from an interpreter is a set of computed results*

Chapter Three

1* (a) AB+C-

(b) AB+C*

(c) AB*CD/-E+

(d) AB+CD-/E-

(e) AY*B+Y*C+

(f) ABC+*D-E*

<*) AY*B+Y*C+Y*D+

Answers Pa*e 215

3. (a) 2

<b) U5

(c) 22.2

4. Preorder: +A-/BCD

Postorder: A+B/C-D

Endorders ABC/D-+

Chapter Four

1* (a) 2 5 * 3 +

(b) 2 4 1 + DUP * *

<c> 5 DUP 1 + DUP 1 + * *

(d) 4 5 2 »/

(e) 3 4 DUP * SWAP DUP * +

2, (a) 9

 11

Answers

(c) 27

(d) -5

(e) 1

(f) -3 -4

(*> 2 1 1

(h) 9 7 3

(i) 16 3

(J) 9 3 7 3

(k) -13-8 6

(I) -16-8 3

<m) 6 -2 -2

(n) 4 1

(o) -13

(p) -6

<*) 9

<r> -1 -16

(s) -63

3. (a) -1

(to) 5

(c) 9

(d) 27

(e) 16

Chapter Five

1* (a) 1 CONSTANT ONE

(b) 2 CONSTANT TWO

(c) 15 CONSTANT DX

(d) DX TWO * ONE - CONSTANT DY

or more succinctly

DX 2 * 1 - CONSTANT DY

2. (a) 321 VARIABLE X

(to) -6 VARIABLE Y

(c) X 0 Y 8 + 173 - VARIABLE W

3. (a) A 8 1 - A !

or more efficiently

A DUP ff 1 - SWAP '

or still more efficiently

-1 A +•

Answers Page 217

(b) h x « dup » » b e x » » • c « + y i

Chapter Six .

1. : 5P0WER

DUP DUP

*

DUP

#

*

< X)

(XXX)

(X X**2)

(X X**2 X**2>

(X X**4)

(X**5)

2. The pctfe number is assumed to be on the top of

the stack.

s TITLE

1 7 VHTAB

." INVITATION TO FORTH Pa*e "

or alternately

: TITLE

1 1 UHTAB

6 SPACES

?" INVITATION TO FORTH PAGE "

3. s 1+! (ADDR)

1 (ADDR 1)

SWAP (1 ADDR)

+ !

Chapter Seven

1. (a) 0 OK

(b) 0 OK

(c) 0 OK

Answers Pa*e 218

3. (a) 10 OK

(d) 1 OK

(e) 0 OK

<f> 1 OK

<*) 0 OK

(a) 0 OK

<b) 0 OK

(c) 1111111111111111 OK

<d) 110101111110111 OK

(e) 1010000000000 OK

(b) 4 OK

(c) 10

9

e

7

6 OK

4* Absolute value function

5. (a) : ADDl

0

140 57

DO

I +

LOOP

(b) : ADD2

0

57

BEGIN

DUP

ROT

+

SUAP

1

+

DUP

139

>

UNTIL

(SUH)

(INITIAL VALUE)

(<---))

(<---])

(<---!)

(<---!)

(1)

(1 LOOP)

())

(1)

(1 CONDITION)

Answers Pa*e 219

DROP

<c) ADD3

0

57

BEGIN

DUP

140

<

WHILE

DUP

ROT

+

SWAP

1

+

REPEAT

DROP

(SUM)

(INITIAL VALUE)

(<---))

(<---!)

(<---))

(<---))

(1 CONDITION)

(1)

() LOOP)

(1)

< 1)

Chapter Eisfht

D+!

DUP

28

5 ROLL 5 ROLL (ADDR D2 Dl)

D+

ROT

2'

D1+!

DUP

20

1. D+

ROT

(Dl ADDR)

(Dl ADDR ADDR)

(Dl ADDR D2)

(ADDR D1+D2)

(D1+D2 ADDR)

(ADDR)

(ADDR ADDR)

< ADDR D)

(ADDR D+l)

(D+l ADDR)

2!

3. : D1-! (ADDR)

DUP (ADDR ADDR)

Answers Pcitfe 220

4.

5.

6,

7.

29 (ADDR D)

1» D- (ADDR D-l)

ROT (D-l ADDR)

2!

D1+ (D)

1. D+ (D+l)

Dl- (D)

1. D- (D-l)

D2+ (D)

2. D+ (D+2)

D2- (D)

2. D- (D-2)

Chapter Nine

1* START 0 100 BLANKS

2. HEX 6FC FF3 DECIMAL 1000 CMOVE

3. 2000 11 TYPE

4. 193 2 BASE ! 10111 C! DECIMAL

Since ASCII is a 7-bit code* the following is

equivalent:

65 2 BASE > 10111 C! DECIMAL

5. 50 BUFFER OK

VARIABLE BUFLOC OK

: FILLMAT

100 0

DO

BUFLOC 9

I + DUP

Answers Paare 221

2 MOD

IF

192 SWAP C!

ELSE

171 SWAP C!

THEN

LOOP

? OK

5 PRMAT

100 0

DO

CR

BUFLOC 9

I + 10 TYPE

10

+LOOP

? ok

: *5

FILLHAT

PRMAT

; ok

»5

+(?+(!+<?+{?+(!

+(?+(?+(»+(?+e

+e+(?+e+(?+e

+(?+(?+(?+(?+(!

+e+e+e+e+e

+(?+e+(»+e+(?

+e+e+e+(?+(!

+8+e+<*+Q+e ok

Or the colon definitions can be combined for

printing as ins

s «5A

CR

101 1

DO

Answers

I 2 MOD

IF

192 EMIT

ELSE

171 EMIT

THEN

I 10 MOD 0=

IF

CR

THEN

LOOP

; ok

«5A

8+8+8+8+8+

9+9+9+9+9+

8+8+8+8+8+

8+8+8+8+8+

8+8+8+8+8+

9+8+8+8+8+

8+8+8+8+8+

8+8+8+8+8+

9+9+9+1**9+

8+8+8+8+8+

OK

Index Pa*e 223

INDEX

(* 120

)* 120

+-(sitfn)* 92* 95

+!(add to memory)* 110

?(addition)* 79* BO

?(display contents of address* 128-129

/(division)* 79* 82

?(dot operation)* 122

"(end character literal)* 124

?(end colon definition)* 119

(»(enter output formatting mode)* 203* 204

ttXexit output formatting mode)* 203* 204

P(fetch)* 108

^(multiplication)* 79* 81

--Xnext screen)* 195

»(output conversion)* 203* 204

?"(start character literal)* 124

:(start colon definition)* 119

!(store)* 109

-(subtraction)* 79* 81

'(tick)* 111

/(times divide) 92, 94

2B(double precision fetch)* 185-184

2!(double precision store)* 186-187

2C0NSTANT* 184

2DR0P* 172* 173

2DUP* 172* 173

20UER* 172* 173

2PICK* 172* 174

2R0LL* 172* 174

2R0T* 172* 174

2SUAP* 172* 173

2VARIABLE* 185

-DUP* 87* 89

?DUP* 67

/MOD* 79* 83

/M0D 92* 94

?R(dot-r operation)* 123

S(outPut conversion) 203* 204

5S(terminate execution of screen)* 196

Index

7TERMNAL* 198-199

-TRAILING, 199* 200-201

ABS* 92

Absolute value function* 92

Accumulator* 24

Add to memory operation* 110-111

Addend* 60

Addition operation* 79* 80

Address bus* 21

Algebraic entry notation* 4

Algorithm* 38-40

Allocation* 193-194

And operation* 138

Arithmetic/losfic unit* 16* 23

Arithmetic operations* 79ff

Assembler lansfuatfe* 38* 40

Assembler program* 38* 48

Assembly* 48

Augend* 80

Automatic computer* 3

Bandwidth* 18

BASE* 85

Base complement* 96

BEGIN* 155* 159

Black box* 15

Binary operator* 61

Binary system* 85

BLANKS* 199* 201

BLOCK* 194

Body of the loop* 142

Braces* 77

BUFFER* 193-194

Buffer allocation* 193

Bus* 21

CB<fetch character)* 199* 200

C!(store character)* 199

Carriage return* 123-124

Character literal* 124

Character movement* 199-203

Character set* 78

Index Pa*e 225

CMOVE* 199* 200

Colon definition* 8-9* 119-120

Comment line* 120

Comments field* 41

Comparison operations* 133ff

Complement arithmetic* 95ff

Compiler program* 38* 48

Computer memory* 17

Computer software* 37

Computer word* 77

CONSTANT* 105

Constant definition* 105-106

Control storage* 17

Control unit* 16* 23

Control variable* 142* 143

CR* 124

Crazon* H«G«* 19* 209

Cross assembler* 54

Cross compiler* 54

Current address register* 23

D«(d-dot operation)* 167* 183

D+(doub)e precision addition)* 169

D=(doub)e precision e<uial to)* 177* 178

D>(double precision greater than)* 177* 178

D<(double precision less than)* 177

D+-(doub)e precision si£n)* 175* 176

D-(double precision subtraction)* 169* 170

D0=(double precision e*utal to zero)* 177* 179

DABS* 175

Data base* 21

Data management* 52

Data part* 17

Debits package* 38* 53

DECIMAL* 84

Definition mode* 5* 8

DEPTH* 87* 90

Development system* 38* 54

Dictionary* 111

Difference* 80

Diskette* 31

Disk input and output* 194-195

Disk pack* 31

Index Pasre 224

Disk storage* 30

Disk volume* 31

Dividend* 80

Divide modulus operation* 79* 83

Division operation* 79* 82

Divisor* 80

DMAX* 175* 176

DMIN* 175* 176

DMINUS* 169* 171

DO* 143

Do loop* 142-147

Do until loop* 154* 157

Do while loop* 154* 155

Dot operation* 122

Dot-R operation* 123

Double-precision value* 167

D*R(d-dot-r operation)* 183-184

DROP* 66* 88

DU<(double precision unsigned less than)* 177* 180

DUP* 86

Dynamic RAM* 18

Editor* 38* 53

ELSE* 149

EMIT* 198

EMPTY-BUFFERS* 195

EMPTY STACK* 8

Endorder traversal* 63

EPROM* see Erasable programmable read-only memory

E<uia) to operation* 133* 135

E^ual to zero operation* 133* 137

Erasable programmable read-only memory* 18

Exclusive or operation* 18* 140

Execution cycle* 23

Execution mode* 5* 7

Expect* 197

Explicit allocation* 193

Exit* 151

False value* 133

Fetch operation* 107-108

Fibonacci series* 144

FILL* 199* 201

Index Pasre 227

Firmware* 19-20

Floppy disk* 31

FLUSH* 195

FORGET command* 114

FORTH word* 77

Genera)-purpose register* 24

Greater than operation* 133* 134

Greater than zero operation* 133* 136

Greatest common divisor* 156

Hand calculator* 3

Hard disk* 30

Hard-sector disk* 31

Hardware* 19

Harvard architecture* 16

Harris* !(?* 209

HEX* 84

Higher-level lan*ua*e* 38* 43

Hilburn* J#L** 209

HOLD* 203* 204

Holder* C*L«* 209

HOME* 126

I* 143

IF* 149

IF statement* 149-151

Implicit allocation* 193

Increment value* 142* 143* 144

Indefinite loop* 151-161

Index register* 24

Infix notation* 59

Initial value* 142* 143* 144

Input mechanism* 16

Instruction cycle* 23

Instruction register* 23

Integrated circuits* 21

Interpreter program* 38* 50-51

Interpretive execution* 71

Iteration* 142

J* 147

James* J*S»* 209

Index Pasfe 228

Julich* P*M** 209

Katzan* H,* 209* 210

KEY, 197

Keyboard operations* 197-199

Knuth* D*E** 43* 210

Lan*ua*e processor* 38* 46-51

Lantfua^e translator* 44

Last in first out* 27

Least recently used* 193

LEAVE* 151

Leinin*er* S*U«* 210

Less than operation* 133* 134

Less than zero operation* 133* 134

LIFO* see Last in first out

Limit value* 142* 143* 144

LIST* 194

LOAD* 195

Location field* 41

Logical operations* 138ff

Logical values* 133

Loop* 142* 143

LSI circuits* 21

Lukasewicz* J** 40

M*(mixed-nia*nitude multiplication)* 181

M/(mixed-ma*nitude division)* 181

Magnetic disk* 30

Main memory* see Computer memory

Main program* 44

(lain storage* see Computer memory

Mandl* M#* 210

Manuel* 1* 210

Mark I calculator* 14

Masking operations* 141

Mathematical functions* 91ff

MAX* 92* 93

Maximum function* 92

Memory address register* 24

Memory concept* 14

Memory data register* 24

Memory organization* 193

Index Pa*e 229

Memory refresh register* 24

Memory* see Computer memory

Microcomputer* 20

Microprocessor* 20

Miller* A*R<* 210

Miller* J*t 210

MIN* 92* 93

Minimum function* 93

Minuend* 80

MINUS* 98

Mixed-magnitude operation* 180

M/M0D(unsi£ned mixed-magnitude divide modulus* 82

MOD* 79* 83

Modulus operation* 79* 83

Monitor* 38* 51

Moore* C#H#* 210

MOVE* 199* 202

Multiplicand* 80

Multiplication operation* 79* 81

Multiplier* 80

NECATE* 98

Nested loop* 150

Not operation* 138* 140

(NUMBER)* 205'

Number base* 84ff

ObJect prosrram* 48

Octal system* 85

OK* 7

Operand field* 41

Operating system* 38* 52

Operation code field* 41

Operator hierarchy* 59

Operator stack* 68

Or operation* 138* 139

Output mechanism* 16

OVER* 87* 88

PICK* 87t 90

Pollini* S** 210

POP operation* 27

Postfix notation* 60-61

Index Patfe 230

Postorder traversal* 63

Prefix notation* 60

Preorder traversal* 63

Princeton architecture* 16

Procedure* fl

Procedure-oriented lantfua^e* 43

Product* 80

Program* 40* 45-46

Program counter* 23

Program management* 52

Program part* 17

Programmable read-only memory* 17

Programming lansfuatfe* 38* 41-45

PROM* see Programmable read-only memory

Punctuation* 78

PUSH operation* 27

Pushdown stack* see Stack

Quotient* 80

RAM* see Random access memory

Random access memory* 18

Read-only memory* 17-18

Register* 23-27

REPEAT* 155

Reverse Polish notation* 4* 6* 59ff

ROLL* 87* 89

ROM* see Read-only memory

ROT* 87* 88-89

RPN* see Reverse Polish notation

S->D(convert single precision to double precision)*

168

SAVE-BUFFERS* 194-195

SCR* 196

Screen* 32* 193

Screen editor* 195

Sector* 31

Semantics* 40

SIGN* 203* 204

Si*ned-ma*nitude representaton* 96

Si*n function* 95

Soft disk* 30* 31

Index Pa*e 231

Soft-sector disk* 31

Software* 19* 37

Source prosfram* 46

Source string* 67

SPACE* 12*

SPACES* 126-127

Stack* 5* 27* 59* 77t 79

Stack manipulation* 86

Stack pointer* 24

Statement* 40

Static RAM* 18

Store operation* 109-110

Structural diagram* 61

Subprogram* 46

Subtraction operation* 79* 81

Subtrahend* 80

Sum* 80

Suppress trailing blanks* 200

SWAP* 86* 88

Syntax* 40

Tarsfet string* 68

THEN* 149

Tick command* 111

Times divide function* 93

Times divide modulus function* 94

True value* 133

Two's complement* 95* 96-99

TYPE* 197

U«* 127

U*R* 128

U/(unsisfned mixed-magnitude division)* 182

U*(unsi*ned mixed-magnitude multiplication)* 181

Unary operator* 61

Underlined material* 7

Unsigned less than operation* 133* 135

UNTIL* 159

UPDATE* 194

User service* 53

Utility system* 38* 53

VARIABLE* 107

Index

Variable definition* 106-107

VHTAB* 124

VLIST command* 111

von Neumann* J»* 40* 210

von Neumann machine* 16

WHILE* 155

Ui))iams* G** 210

Winchester disk* 31

Word* 77-78

Word size* IS

Zaks* R** 210

PETROCE LLI’S

INVITATION SERIES

by Harry Katzan, Jr.

Published:

INVITATION TO PASCAL

Coming:

INVITATION TO ADA;0]

