
lltØy 1 IiIrady;1]

Martin Tracy, Anita Anderson,
and

Advanced MicroMotion, Inc.

MASTERING

FORTH
REVISED AND EXPANDED;0]

Mastering FORTH,
Revised and Expanded

Martin Tracy

Anita Anderson

Advanced MicroMotion, Inc.

BRADY

New York

Copyright© 1989 Brady Books, a division

of Simon & Schuster, Inc.

All rights reserved, including the right of reproduction

in whole or in part in any form.

B R A D Y

Simon and Schuster, Inc.

Gulf + Western Building
One Gulf + Western Plaza

New York, NY 10023

DISTRIBUTED BY PRENTICE HALL TRADE

Manufactured in the United States of America

1 2 3 4 5 6 7 8 9 10

Library of Congress Cata1ogingin-Pub1ication Data

Tracy, Martin, 1946-

Mastering FORTH.

Previous ed. Anderson’s name appeared first on t.p.
Includes index.

1. FORTH (Computer program language) I. Anderson,
Anita. II. Title.

QA76.73.F24T73 1988 005.133 88-8148

ISBN 0-13-559957-1

Contents

1. Introduction 1

2. Definitions 5

3. TheStack 13

4. Stack Manipulation 27

5. The Editor 39

6. Variables, Constants and Arrays 58

7. Flow of Control 75

8. Loops 88

9. More on Numbers 108

10. Strings 121

11. Defining Words 146

12. Compiling Words 160

13. The Input Stream and Mass Storage 174

14. Fixed and Floating Point Math 188

15. Assemblers and Metacompilers 210

Solutions to Problems 228

Index 243

Acknowledgments

We have many people to thank for their help on this project. Steve Tabor wrote the preliminary

version of chapter 9, and Jennifer Brosious was responsible for all the illustrations and much

of the design of the book. Coordination of public relations and marketing was handled by Linda

Kahn. Mardi Rollow worked on paste-up and provided much appreciated moral support.

Lyndell Martin assisted with the printing and patiently answered the phone. Some of the

information we used was provided by the Forth Interest Group (408 277-0668). We especially

want to thank Henry Laxen, Michael Perry, and Kim Harris for their help with a language

implementation model.

We owe a special thanks to Wil Baden, whose expert rewriting and miniature flowtrees greatly

improved chapters 7 and 8 in the second edition of this book. And finally, we would like to

thank Charles H. Moore, the father of FORTH, whose foresight we celebrate in this book.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in preparing this book and

the programs contained in it. These efforts include the development, research, and testing of

the theories and programs to determine their effectiveness. The author and publisher make no

warranty of any kind, expressed or implied, with regard to these programs or the documentation

contained in this book. The author and publisher shall not be liable in any event for incidental

or consequential damages in connection with, or arising out of, the furnishing, performance,

or use of these programs.

Mastering FORTH,
Revised and Expanded

1 Introduction

ORTH is a high-level, stack-oriented language invented by Charles Moore

in the early 1970s. Dr. Moore was looking for a simpler and more natural

way to communicate with his third generation computer—hence the name

FORTH (short for fquj-generation language). One of FORTH’s first

applications was to control the giant telescope at the Kitt Peak National

Observatory and to analyze the data it collected. Since that time, FORTH has

been used in a great many varied and complex projects such as:

• a robot that uses tactile feedback to shear sheep

• an automotive ignition analyzer

• a peach sorter for a California cannery

• an expert system for diagnosis of faults in diesel locomotives

• a portable language translator

• numerous word processors, spreadsheets, and data base managers

• controlling a laser fusion laboratory

• programming a massively parallel processor

From the beginning FORTH has defied categorization; to begin with, it is

designed for both systems programming and applications, and it is interpreted

from the keyboard but compiled from mass storage screens. Programming

consists of adding new commands to the small but powerful set of commands

2 Mastering FORTH, Revised and Expanded

provided by the language; these commands constitute both the program and

actual additions to the language itself.

What Makes FORTH So Special?

• FORTH is extensible. Because you can add to the language, you can

tailor it to your own needs. And since almost everything in FORTH is

written in FORTH—the text editor, assembler, etc.—you can access and

alter any of it.

• FORTH is structured. Programming with FORTH encourages you to

write logically complete, self-sufficient commands, built on existing commands,

which are themselves used as the basis of more complex commands.

This helps structure program design and simplifies and speeds

debugging.

• FORTH is fast. FORTH runs much faster than many other high-level

languages. Because the interpretation scheme is so elegant, interpreter

overhead is minimal. Furthermore, FORTH includes a built-in assembler

for speed-critical routines. As a result, FORTH can run almost as fast as
machine code itself.

• FORTH is interactive. Each new word can be tested as it is defined, and

changes can be made and checked on the spot.

• FORTH is powerful. It spans a power range from machine code to state-

of-the-art structured and extensible languages. FORTH gives you direct

access to the resources of your computer while providing you with

sophisticated programming and data structures. It encourages you to write

high-level programs by making it easy to optimize key sections of your

code when you are done.

• FORTH is transportable. Only a small nucleus of code needs to be rewritten

to move the entire language to a new computer. FORTH has been

implemented on almost every computer developed to date.

• FORTH is compact. Its simplicity makes for an extremely compact language

whose applications actually require less memory than equivalent

machine-code programs.

Introduction 3

FORTH is not restrictive. You can extend it and experiment with it interactively.

The time it takes you to master FORTH will be well spent when

you find that your programs run faster, take up less space, do exactly

what you want them to, take less time to debug, and provide the basis for

more complex programs.

The FORTH-83 Standard

FORTH’s extensibility encourages you to form your own personal dialect of

the language. At times, however, you may wish to write programs that run

unchanged from computer to computer. To facilitate such transportability,
the FORTH Standards Team was formed in the mid 1970s to select and

recommend a common dialect of FORTH. Their work resulted in the FORTH-

83 Standard, which was passed in August 1983.

In this book, we will introduce you to each of the commands required by the

FORTH-83 Standard. In addition, we will be using many commands which,

while not included in the standard dialect, can be written in the Standard and

are therefore transportable. From time to time, we will also present extensions

to FORTH which are not addressed by the Standard, such as strings

and floating-point arithmetic. When we do, we will remind you that these

extensions may differ from one standard system to another.

Most modern commercial FORTHs meet the FORTH-83 Standard partially

or completely. We will be taking a close look at several popular FORTH
dialects:

• UR/FORTH 1.0 by Laboratory Microsystems, Inc.

• Po1yFORTH ISD-4 1.0 by Forth, Inc.

• F83 2.1.0, a popular public-domain dialect by Henry Laxen and Michael

Perry. We will refer to this as L&P F83.

• MacFORTH Plus 3.53 by Creative Solutions, Inc.

• MasterFORTH 1.2.4 by Micromotion Products, Inc.

• ZEN 1.0, a simple subset of MasterFORTH.

4 Mastering FORTH, Revised and Expanded

You will learn FORTH most effectively if you learn it while seated at your

computer, because FORTH is designed to give you immediate feedback on

your programs. Be sure to take the time to install FORTH on your computer

before reading any further. We recommend that you try each example as you

come to it and that you answer all of the exercises at the end of each chapter

before going on to the next. You will find answers to all the exercises at the

back of the book. And please feel free to alter and improve on any of the

definitions we present. We hope that you find learning FORTH to be as

enjoyable as it is rewarding.

Definitions

FORTH is an interactive language. It encourages you to try things out and
responds immediately to your commands. To see how this works, start by

pressing the <RETURN> key.

<RETURN> Q

FORTH says “OK.”* You didn’t ask it to do anything, but FORTH responded

anyway to tell you that it was listening. Regardless of your command, if it can

be completed successfully you will see the “OK” when it’s done—watch for it.

Commands are called words in FORTH. One of the simplest and most useful

words is the one which prints a message on the screen. Watch (don’t type yet)
as we define the word ALICE.

ALICE .“ CURIOUSER AND CURIOUSER!”

Certain components always appear in the definition of a word.

* In the examples in this book, we will always underline FORTH’s response.

5

6 Mastering FORTH, Revised and Expanded

Word Action

The colon alerts FORTH that a definition is coming.

ALICE Every word must have a name. Choose the name to reflect the word’s

purpose, as you will be asking for it later. Names can be as long as 31

characters.* Use dashes instead of blanks to break up a long name, for

example, A-LONG-NAME.

definition In this case, the definition of ALICE is the message that you want to

be printed, bounded by the message markers that tell FORTH where the

beginning and end of the message are—.” (called “dot-quote”) and”

(“quote”). The .“ must be separated from the message by a blank.

The semicolon tells FORTH that the definition is complete.

*

Po1yFORTH words with the same three characters and the same length are indistinguishable.

Later we will show you how to change this.

Po1yFORTH philosophy discourages the use of hyphenated names.

In painting, the empty space is just as important as the painted area—and in

FORTH, the spaces are just as important as the words. All words must be

separated by at least one space; otherwise, FORTH wouldn’t know where

one word ended and another began. For clarity, always add two extra spaces
between the name of the definition and the definition itself.

Now, type in the definition for ALICE (the shaded boxes are blanks). Don’t

forget to press <RETURN>.

: ALICE .“ CURIOUSER AND CURIOUSER!” ; OK

Try out this new definition; type ALICE—and voila!

ALICE <RETURN> CURIOUSER AND CURIOUSER! OK

Of course the message that a word prints could be anything. To define a word

that will print an asterisk, for example, follow the example of ALICE.

STAR .“ “ ; <RETURN> Q

Definitions 7

Check to see that all the elements of a definition are in place: colon plus word

name, definition, semicolon. Then try out the new word:

STAR <RETURN> * OK

Another word that is particularly useful is CR (called “carriage return.”) Its

function is simply to start a new line whenever it appears in your definition. Try

defining a word (call it COLUMN) that will use STAR and CR to draw a vertical
column of four asterisks.

COLUMN <RETURN>

CR STAR CR STAR <RETURN>

CR STAR CR STAR ; <RETURN>

When you enter a long definition, you can break it into as many lines as you wish by pressing

<RETURN> at the end of each line. FORTH won’t answer “OK” until it sees the semicolon

at the end of the definition.

Check the display your new word creates.

COLUMN <RETURN>

*

*

*

* OK

The Dictionary

All words—the ones already present in FORTH (like : and ;), the ones you

just defined, the ones you will define later—are stored in its dictionary. Here is

a summary of the words you have just used plus STAR and COLUMN, the words

you just created. New words appear at the end of the dictionary.

8 Mastering FORTH, Revised and Expanded

Word Action

Enters a new definition into the dictionary.

Used in the form:

<name> definition;

Terminates a definition.

.“ Puts a message into a definition. When the

definition is later executed, the message is

printed. Used in the form:

message”

CR Moves display carriage to the next line.

STAR Prints an asterisk.

COLUMN Prints a column of asterisks.

Much of the magic of FORTH is the ease with which it remembers (compiles)

and carries out (executes) the definitions in the dictionary. When you type a new

line and press <RETURN>, control is passed to a word called the text interpreter.

This interpreter reads the line word by word, from left to right, separating each

word from its neighbors by the spaces between them.

STAR .“ *,, ;

word 1 word 2 word 3 word 4

As each word is found in the dictionary, its definition is executed. When all

words have been executed, the text interpreter prints “OK” and waits for the next
line.

If the word executed is : , a new definition is created in the dictionary; its name

is given by the first word following the : —in this case, “STAR.” Subsequent

words are then compiled into the definition until the word ; is encountered. It

is important to realize that no asterisk is printed when STAR is compiled.

Learning to distinguish between when a word is created and when it is

executed is one of the keys to understanding FORTH.

Definitions 9

Modularity

Once you defined STAR , you were then able to immediately use it to create the

more complex word COLUMN. STAR and COLUMN could then serve as

modules in the construction of even more complex words. FORTH encourages

modular programming by making it easy to create and name new definitions.

Each new word can be immediately tested simply by typing its name. You can

enhance both efficiency and style with the following principle:

Words should do as little as possible. By keeping words simple, you can use them in more

situations within many other definitions.

Let’s design some simple modules which, when combined with STAR, R, and

COLUMN, let you print giant letters made of asterisks. One way to group asterisks

is to include them within the message markers. Define a word, for instance, that

will start a new line and print five asterisks in a horizontal row—call it ROW.

ROW CR .“ ; <RETURN> Q

Does it behave the way you expected?

ROW <RETURN> OK

Now try a more complicated project: a word that will print a giant capital L. Do

you see already how such a word can be defined using words you already have?

L COLUMN ROW ; <RETURN> Q

At this time you may see a warning like

L Isn’t Unique

This is not an error; FORTH is simply telling you that the word L has already

been defined. When this happens, FORTH will use the most recent definition—

your definition— which is what you want it to do anyway.

10 Mastering FORTH, Revised and Expanded

Check to see if L works correctly.

L <RETURN>

*

*

*

*

***** OK

What if you wanted to draw a capital “T”? There are several ways to do it. One

way would involve first defining a word that would space over two blanks from

the margin so that you could center the stem of the “T.”* Call this new word
INSET.

INSET .“ “ ; <RETURN> Q

When you combine INSET with STAR and CR, you can create STEM:

STEM <RETURN>

CR INSET STAR CR INSET STAR <RETURN>

CR INSET STAR CR INSET STAR <RETURN>; Qç

Check to see that STEM works.

STEM <RETURN>

*

*

*

* OK

* Remember, whatever is inside the message markers is displayed on the screen as is—whether it’s

intelligible words, characters, or just blank spaces.

Definitions 11

Now the “T” is easy—just combine ROW and STEM.

T ROW STEM ; <RETURN> Q

Check the result:

T <RETURN>

*

*

*

* OK

In Summary

The programs you will want to write will involve more complicated functions

with more useful applications than drawing letters, but the principles remain the

same. Think modular. By using FORTH words that are already available or that

you have defined, you will be able to accomplish complex tasks in less time. It

will also be easier to find your mistakes, since each word is labeled for easy

reference and can be tested independently. Modular programming looks like a

well-built pyramid, starting at the bottom level with words like STAR and R

and using them to build higher levels.

STEM

/I\
INSET CR STAR ROW

The word is the program. There’s no distinction between words and programs;

STAR is a program, and so is T. All your FORTH programs will be

combinations of previously defined words. That’s why it’s so important to

understand definitions right at the beginning.

12 Mastering FORTH, Revised and Expanded

EXERCISES

Here are some simple exercises for you to try. You’ll find the answers in the back

of the book. Just remember, every : has a ; ,and every .“ has a “.

H 1. Combine the actions of cR, INSET, and STAR into the new word BLIP,
Iwhich

will return, indent two spaces, and print one asterisk. Redefine T to

* use BLIP instead of STEM. Using only STAR, ROW, BLIP, and cR, make

the new words I C and E. Each letter should be no higher and no wider than

T five characters.

E 2. Define a word BOOP which, combined with ROW, lets you create the words
H and U, which (guess what) print the block-letters “H” and “U”

[3. You have been asked to print a giant homecoming banner for Somewhere
HTechnical

High School Using only words you have already written, create

the word BANNER which, when executed, prints’ HI-TECH” vertically on

your terminal in large block letters.

3 The Stack

t would be quite impossible to build a dictionary large enough to hold a

separate definition for every number. In fact, numbers are never found in the

dictionary. What happens if you type 459 ? (We assume at this point you know

to press <RETURN>, so we are not going to show it any more.)

459 Qk

The text interpreter scans the input stream and finds the string of characters

“459”. It next searches the dictionary for a definition with the name “459”. When

the search fails, the text interpreter passes the string to an internal procedure

which attempts to convert it into a number. In this case, the conversion succeeds,

and the number 459 results (to be continued below.)

If the word you type is neither the name of a definition nor a number, the

conversion fails, and the text interpreter assumes you’ve made an error.

Execution stops, and the name is returned to you with a question mark. Try

typing the nonsense word GORF.

GORF

GORF ?

If the conversion to a number succeeds, where does FORTH leave the number?

On the stack.

One way to imagine the FORTH stack is to think of a giant spring-loaded rack

13

14 Mastering FORTH, Revised and Expanded

with numbers on it. Whenever a number is found in the input stream, FORTH

puts or pushes that number onto the stack. Try typing some numbers, separating

them by spaces (and don’t forget the <RETURN>).

1 2 3 Qk

As each number is read and interpreted, it is pushed onto the stack, on top of any

numbers already there.

ITT
When you take the numbers off again (popping them from the stack), their order

is reversed. You cannot pop number 1 until you first pop numbers 3 and 2. This

kind of a stack is sometimes called a Last In, First Out or LIFO stack.

You can use the word . (“dot”) to pop a number from the stack and display it

on your screen—try it.

3 Ok

@ZD

And then print the rest out too.

• .210k

The order in which these numbers are stacked is crucial to understanding

FORTH. It is your responsibility to know the condition of the stack and the order

of the numbers on it for accurate programming.

The Stack 15

What happens if you type a. now?

0 ? Stack?*

The stack is empty and FORTH gives you an error message. (This condition is

known as stack underfiow.)

To see the what’s on the stack, type . S.

123

.s

1 23 <-Topt

The numbers are still there.

.s

123<-Top

The easiest way to clear the stack of all numbers is to lightly slap the keyboard

and then press <RETURN>.

hncq3 hncg3 ?

This generates a nonsense word which FORTH is unable to execute. This kind

of error empties the stack.

<_Top**

The number of items on the stack is given by DEPTH, which, like most FORTH

words, leaves its result on the stack.

* Or Empty! or some such message.

MacForth menus include a debug switch. When it is on, the stack contents are printed after each line
is executed.

t Or Stack: 3 2 1 or some such message.

** As you may have guessed, each FORTH has a unique but recognizable set of informative messages.

16 Mastering FORTH, Revised and Expanded

10 9 8 Qk

DEPTH .S

10 9 8 3 <-Top Ok

DEPTH . 4 Ok

aeblgm,; aeblgm.

DEPTH . 0 Ok

Addition

One of the unusual features of FORTH is the order in which numbers are entered

for arithmetic operations. Instead of

3+4

as you might expect, FORTH uses

34+

This idea, known as postfix notation or RPN (Reverse Polish Notation), makes

sense when you think about FORTH’s stack. It also makes complicated

algebraic expressions easier to enter, as we will see later.

The word + (“plus”) removes the top two numbers (or arguments) from the

stack, adds them together, and leaves the result on top of the stack.

Use . to see the result:

3 4 + . 7 Ok

The Stack 17

Now you can see why we need postfix notation; both numbers must be already

on the stack before + can operate. To add a series of numbers, you can enter them

this way:

513+1+14+25+ .580k

or this way:

51311425++++ .580k

Either way, + must find (at least) two numbers on the stack when it operates.

When a number appears inside a word definition, the compiler records the

number for future use. The number won’t be pushed onto the stack until the word
is later executed.

DOZEN 12

DEPTH .

DOZEN 1Z

We will no longer show the Q] at the end of each line, but you will see it on

your screen.

Subtraction

Postfix notation is used by all arithmetic operators, including subtraction.

73-.4

The operator - (“minus”) needs blanks on both sides, just like any other word.

Don’t confuse this with the minus-sign which must immediately precede

negative numbers.

-7 3 +

Speaking of negative numbers, NEGATE changes the sign of the top number
on the stack.

18 Mastering FORTH, Revised and Expanded

3 NEGATE .

DEPTH .

Consider how you might define - using NEGATE:

: - NEGATE+ ;

The complementary word ABS will give you the absolute value of any number.

-3 ABS .

3 ABS .

Multiplication and Division

The word * (“star”) pops the top two stack numbers, multiplies them together,

and pushes the result back onto the stack.

3 _4 * .

Division is more complicated because it produces both a quotient and a

remainder. The word / (“slash”) gives you the quotient alone.

15 6 / a

The word MOD gives you the remainder alone.

15 6 MOD .

The Stack 19

Note that 6 MOD will always return a
number from zero to five. We will make

use of this later in writing a random

number generator.

The word /MOD (“slash-mod”) combines

these functions, leaving the quotient

on top of the stack and the remainder
underneath.

156/MOD. .

Division is “floored,” meaning that if the result is negative and has a remainder,

the quotient nearest to minus infinity (rather than nearest to zero) is returned.

—16 3 / .

The remainder returned by MOD always has this property:

Numerator = (Quotient * Denominator) + Remainder

Check it out. Quotient

N3iMOD 2

-163M0D.a

_63*2+ . , , , , , •,

-8 8
. . .

. . .

.

Remainder

.12 .
I •

. 1 1 I I I I I I 1

4 8

Division by zero is meaningless and the result is unpredictable.

* poIyFORTH specifies that MOD and IMOD use unsigned arguments. -16 is treated as 65520 to give

a quotient of 21840 and a remainder of 0.

MacForth division rounds towards zero rather than floors towards minus infinity. -16 3 / yields a

quotient of -5 and a remainder of -1.

20 Mastering FORTH, Revised and Expanded

MAX and MIN

The pair of words MAX and MIN are useful in limiting numbers to lie within

a given range. As you may have guessed, MIN will give you the smaller of two
numbers

17 53 MIN

78 -22 MIN . z2..a

while MAX gives you the larger of the two.

4 3000 MAX . 3000

-8 -10 MAX .

For example, you may wish to limit a thermostat control to the range between

62 to 75 degrees Fahrenheit. The expression

62 MAX 75 MIN

will do this for you.

COMFORT 62 MAX 75 MIN

55 COMFORT .

65 COMFORT .

90 COMFORT

Arithmetic Expressions

One advantage of postfix notation is apparent when you try to work with

complicated algebraic equations that have parentheses. With postfix notation,

no parentheses are required. The following problem:

4 (3+2)

(1+7)

The Stack 21

can be written in postfix notation like this:

32+4*17+?. a

Let’s walk through this example step by step, noting the stack contents at each

point:

Word Action Stack

3 Pushes 3 onto stack. 3

2 Pushes 2 onto stack. 3 2

+ Adds top two numbers. 5

4 Pushes 4 onto stack. 5 4

*

Multiplies top two numbers. 20

1 Pushes 1 onto stack. 20 1

7 Pushes 7 onto stack. 20 1 7

+ Adds top two numbers. 20 8

/ Divides top two numbers. 2

Outer Limits

Ultimately, all numbers in a computer are represented by conveniently grouped
bits of zeroes and ones. Most FORTHs have stacks that are either 16 or 32-bits

wide. The arithmetic operators expect and produce single-precision signed

numbers as wide as the stack. An integer is a whole number with no fractional

parts. That’s why 21 divided by 5 gives 4 instead of 4.2 or four and one-fifth.

16-bit signed numbers are somewhat limited in size.*
a)

c1 ‘0
II 0 Cl Ci

‘0

I II 11111 11 II I

* MacForth uses 32-bit single precision numbers, which can be as large as 2,147,483,647.

Most vendors supply 32-bit implementations for selected processors.

22 Mastering FORTH, Revised and Expanded

0000000000000000 is 0

—16,384
0111111111111111 is +32,767

ED llllllllllllllllis-1

o 4 NUMBERS)3177667 1000000000000000 is -32,768
+ Adding 1 to the largest positive number gives

16,384 you the largest negative number:

32767 1 + . -32768

,25,536

OJ’_32i768 Other calculations can yield equally surprising20,000
20000 20000 + . -25536

20000 2 * . -25536

Fortunately, FORTH has ways of dealing both with extra-large double numbers

and with fractions, as we will see in later chapters.

Stack Notation

The arguments required by each FORTH word and the result left on the stack

after execution are so important that we use a special notation to keep track of

them. The arguments required on the stack before execution are shown to the left

of a single dash and the results after execution are shown to the right.

before - after

Numbers on the stack appear in order of entry, so the number furthest to the right

will be the top number of the stack. If no numbers are needed or produced, no

stack diagram is necessary.

Here are the definitions of the words we have used so far in this chapter:

The Stack 23

Word Stack Action

n Prints number on top of stack.

+ n n2 - n3 Adds two numbers, giving n3.

n n2 - n3 Subtracts n2 from n, giving n3.
* n n2 - n3 Multiplies two numbers, giving n3.

/ n n2 - n3 Divides n by n2, giving quotient n3.

MOD n n2 - n3 Divides n by n2, giving remainder n3.

/MOD n n2 - n3 n4 Divides n by n2. n3 is the remainder and n4 is the quotient.

MIN n n2 - n3 Returns the smaller of n and n2.

MAX n n2 - n3 Returns the larger of n and n2.

NEGATE n - n2 Changes the sign of n.

ABS n - n2 Gives the absolute value of n.

DEPTH - n Returns the number of items now on the stack.

• S Prints the items on the stack without disturbing them.

Shortcuts

Certain common calculations have shortcuts in FORTH. These are words which

are both faster and shorter than their alternative sequences; they should be

substituted whenever possible. One such word is 1+ , which works like a 1

followed by a +.

13 1+ . li

The words 1— , 2— , 2* , and 2/ are analogous. 2* is available in most

FORTHs, but is not required by the FORTH-83 Standard

Word Stack Action

1+ n-n2 Addslton.

2+ n-n2 Adds2ton.

1- n - n2 Subtracts 1 from n.

2- n - n2 Subtracts 2 from n.

2* n - n2 Multiplies n by 2.

2/ n - n2 Divides n by 2.

24 Mastering FORTH, Revised and Expanded

MacForthadds3+ 3- 4+ 4- 4* 4/ 5+ 5- 6+ 6- 7+ 7- 8+ 8- 8*

8/ 10+ 10— 10* 16+ 16- 16* 16/ and OMAX.

Putting It All Together

Now that you know how to define FORTH words and use

basic arithmetic operators, you can begin thinking of

ways to accomplish specific tasks. Here’s a set of words,

for example, that function together as a “change optimizer”

program. They will take a random assortment of

change and tell you how to present this amount with the
smallest number of coins.

The first part of the program converts all the coins to their

penny values so that they can be totaled.

CHANGE

QUARTERS

DIMES

NICKELS

PENNIES

The first word, CHANGE, merely sets up the running

total by putting a 0 on the stack. The word QUARTERS

takes a number you provide, multiplies it by 25, adds it

to the number on the stack (0), and leaves the result on the

stack. DIMES and NICKELS multiply their respective

numbers by 10 and 5 and add this to the total already on
the stack.

PENNIES simply adds the number of loose pennies to the number on the stack.

If the definitions of PENNIES is simply + , why have a word at all? Why not

just use + in the program? Simply for readability.

Now your input can be expressed in this form:

L

0;

25 * +

10 * +

5 *+;

+;

CHANGE 3 QUARTERS 6 DIMES 10 NICKELS 112 PENNIES

The Stock 25

What’s on the stack at this point? The sum of 3 * 25, 6 * 10, 10 * 5, and 112.

.a91

The second part of the program redistributes the total starting with the largest

denomination, quarters—so as to produce the smallest number of total coins.
This is done with the word INTO.

INTO

25 /MOD CR .“ QUARTERS”

10 /MOD CR .“ DIMES”

5 /MOD CR . “ NICKELS”

CR . .“ PENNIES”

INTO divides the number on the stack first by 25; the quotient is printed on a

new line followed by the message QUARTERS The remainder stays on the stack

to be divided by 10, and so forth. The final remainder represents the number of

pennies left over; it is printed as is, followed by the message PENNIES.

When you use the program, the result looks like this:

CHANGE 3 QUARTERS 6 DIMES 10 NICKELS 112 PENNIES INTO

11 OUARTERS

2 DIMES

0 NICKELS

2 PENNIES

EXERCISES

1. The area of a triangle is given by the formula h..h
2

where b is the base of the triangle and h is its height

(which is always perpendicular to the base).

26 Mastering FORTH, Revised and Expanded

Define a word TRIANGLE which, given the base and height as arguments

on the stack, computes and prints the area of the triangle. Since it’s always

a good idea to label your results, TRIANGLE should produce a result that

looks something like this:

10 14 TRIANGLE

THE AREA IS 70

2. Write a phrase which limits the number on top of the stack to be a positive

integer, but no more than 100. Test it against several numbers. Hint: first
make it into a definition.

3. After a busy day waiting tables, you notice that your tips include several

strange coins. Modify the change machine to handle these coins. Their

values, in pennies, are

FRANCS worth 27 cents.

KRONOR worth 13 cents.

MARKS worth 40 cents.

TOKENS worth 75 cents.

The output of the change machine should look exactly like the one in this

chapter. Write extra words to handle your new income and produce a result

like the following:

CHANGE 4 QUARTERS 3 FRANCS 6 NICKELS 2 TOKENS INTO

14 QUARTERS

1 DIMES

0 NICKELS

1 PENNIES

4. Evaluate the following expressions:

a. 5 + 4 + 3 + 2 + 1

b. (1 * 3) + (2 — 4)

c. 54

d. ((76 * 20) / (45 / 3))

e. 32 + 2(3 * 5) + 52

4 Stack Manipulation

will often need to alter the contents of the stack. You might want to

make copies of certain numbers, delete others, move them around, or a

combination of these. To make changes such as these, you can use FORTH’s

stack manipulation commands.

DUP

DUP (“dupe” as in duplicate) takes the

top number off the stack, makes a copy

of it, and puts both numbers back on
the stack.

1 2 3 DUP .S

1 2 3 3 <-Top

DUP

Write the word DOUBLE, which multiplies a number by two and prints the

results. You need DUP to write the word DOUBLE because you want to

print the number being multiplied as well as multiply it, which takes two

copies.

DOUBLE .“ TWICE “ DUP . .“ IS “ 2*

4 DOUBLE TWICE 4 Is 8

27

28 Mastering FORTH, Revised and Expanded

DROP

DROP is the opposite of DUP; it takes the top number on the stack and
discards it.

IDR0P1[11
7 9 11

DROP . 9

DROP

Here’s a likely definition of MOD that would use DROP to get rid of the

quotient and leave the remainder.

MOD /MOD DROP

SWAP

SWAP simply exchanges the top two items on the stack.

746

DUP

SWAP . 4

.5

7 6 <-Top

DROP DROP

SWAP is especially useful whenever you have to deal with two numbers at

once. In the following example, you need to keep track of how many events

are completed and how many are still to be performed. Each computation

must be performed at the top of the stack, so you need to SWAP the two
numbers each time.

Stack Manipulation 29

EVENTS 0 ;

TICK 1+ DUP . .“ COMPLETED,

SWAP 1- DUP TO GO SWAP

FINISH . .“ COMPLETED. DROP

10 EVENTS

TICK 1 COMPLETED. 9 TO GO

TICK 2 COMPLETED. 8 TO GO

TICK 3 COMPLETED. 7 TO GO

FINISH 3 COMPLETED

The word FINISH DROPS the number of incomplete events, since there is

no point in printing this number and since it’s a good idea to clear the stack

before the next program.

OVER

DUP copies the top item on the stack; OVER copies the item beneath it,

leaving the copy on top of the stack. For example, suppose you want a copy

of the top two items on the stack. Let’s call the word that does this 2DUP

(“two-dupe”). A good definition of 2DUP would be

2DUP OVER OVER

Why doesn’t DUP DUP work the same way as 2DUP? Let’s try some
numbers and see.

1 2 3 DUP DUP .S

12333<-Top

4
azddk azddk “ OVER>1 2 3 2DUP S

1 2 3 2 3 <-Top

qoiav goiav ?

30 Mastering FORTH, Revised and Expanded

All DUP can do is make a copy of the number on top of the stack; you need

OVER to get at numbers further down and make copies of them.

PICK

You can select or pick any item on the stack with PICK*. As with OVER,

the selected item is copied and the copy moved to the top of the stack.

However, you must first push the “index” or number of the item you want on

the stack. The top item has an index of zero, the second item has an index of

one, and so on.

Pici)

Suppose you would like to calculate the volume of a box. To do this, you

need to multiply three items: the length, the width, and the height. You

would like to print these measurements with appropriate labels before printing

the volume. The word VOLUME uses PICK to accomplish this for you:

VOLUME

CR LENGTH 2 PICK

CR WIDTH : 1 PICK

CR HEIGHTS 0 PICK

CR .“ VOLUME: * *

* po1yFORTH defines PIcK in the FORTH-83 compatibility blocks.

Stock Manipulation 31

5 8 9 VOLUME

LENGTH: 5

WIDTH : 8

HEIGHT: 9

VOLUME: 360

PICK is the most general stack copy command. We can define the other

copy commands DUP and OVER by using PICK with the proper index:

:DUP OPICK;

:OVER 1PICK;

But both DUP and OVER are usually much faster and produce less code

than a corresponding PICK plus its argument does.

ROT

The commands DUP, DROP, SWAP, and OVER let you move or copy the

top two items on the stack in any way you choose. Likewise, the command

ROT (“rote” as in rotate) lets you reach the third item on the stack. ROT

moves the third item to the top of the stack. As with SWAP, the number is

moved rather than copied. The second and top items are renumbered to
become the new third and second items.

9 5 6 .S

- pp

ROT S

5 6 9 <-Top

5:<_ToP
ROT

9 5 6 <-Top

32 Mastering FORTH, Revised and Expanded

The phrase ROT ROT is the reverse of ROT. It moves the top item on the

stack to the third position.* Keeping the same numbers as in the last example,

this is how ROT ROT would rearrange them:

9 5 6 ROT ROT .5

6 9 5 <-Top

ROT .5

9 5 6 <-Top

Suppose that three numbers on the stack represent three quantities and that

you need to increment the third quantity by one. You could do this by

alternating ROT and ROT ROT (that is, bringing the third number up to the

top of the stack, incrementing it, and putting it back again).

9 5 6 ROT 1+ ROT ROT . S

10 5 6 <-Top

ROLL

ROLL takes ROT a step furthert. Instead of moving just the third number

on the stack to the top, ROLL will move any number you specify to the top,

no matter how far down on the stack it is. Knowing what’s on the stack, you

simply indicate the index of the number you want moved to the top. ROLL

takes the same kind of index argument as PICK; that is, the top item is
numbered zero, the second item is numbered one, and so on.

[ROLL \) 9E 3 5 8 9 2 ROLL . S

‘ I1 3895

3 ROLL S

8953

* L&P F83 and URFORTH have the word —ROT (“not-rote” or “dash-rote”) which is equivalent to ROT

ROT but is much faster.

t po1yFORTH defines ROLL in the FORTH-83 compatibility blocks.

Stock Manipulation 33

ROLL is the most general stack manipulation command. We can define the

more specific commands SWAP and ROT by using ROLL with the proper
index.

SWAP 1ROLL;

:ROT 2ROLL;

The command 0 ROLL does nothing. ROLL is quite a slow primitive. It is

hardly ever used in actual practice.

Here is a list of all the simple stack manipulation commands we’ve learned
so far:

Word Stack Action

DUP n - n n Duplicates the top stack item.

DROP n Discards the top stack item.

SWAP n n2 - n2 n Swaps the top two stack items.

OVER n n2 - n n2 n Copies the second item on the stack to the top of the
stack.

PICK ... i - n Copies the index-numbered item to the top of the stack.

The top item has an index of zero, the second item an

index of one, and so on.

ROT n n2 n3 - n2 n3 n Moves the third item on the stack to the top of the stack.

ROLL ... i - n Moves the index-numbered item to the top of the stack.

The top item has an index of zero, the second item an

index of one, and so on.

The i in the stack diagrams for PICK and ROLL means a single number

used as an index.

34 Mastering FORTH, Revised and Expanded

Double Stack Operators

Most of the simple stack operators you have learned have an equivalent

which operates on a pair of items at a time. We have already seen how

2DUP lets you duplicate a pair of items. Here is a list of the double operators,

their arguments, and their results:

Word Stack Action

2DUP n n2 - n n2 n n2 Duplicates the top pair of items.

2DROP n n2 - Drops the top pair of items.

2 SWAP n n2 n3 n4 - n3 n4 n n2 Swaps the top two pairs of items.

2OVER n n2 n3 n4 - n n2 n3 n4 n n2 Copies the second pair of items and

moves them to the top of the stack.

2ROT n n2 n3 n4 n5 n6 - n3 n4 n5 n6 n n2 Moves the third pair of items to the

top of the stack.

The double stack operators are especially useful when dealing with paired

quantities such as fractions (which have a denominator and a numerator),

graphics (which have x and y coordinates), and complex numbers (which

have a real part and an imaginary part). You may have noticed that 2PICK

and 2ROLL are missing from our list. That’s because the stack seldom

contains more than six items (or three pairs).

Putting It All Together

The height of a falling object above the ground can be determined at any

time (t) if its initial height (h0) and its initial downward velocity (v0)

are both known. The height of the object is given by the formula

height = h0 - (v0 * t) - 16t2

Stock Manipulation 35

where height is in feet and velocity is in feet per second. We can write a

FORTH word which takes an initial height, initial velocity, and a time t

(entered in that order) from the stack and leaves the final height of the object
after t seconds.

HEIGHT

SWAP OVER *

SWAP DUP * 16 * + -

Let’s take some numbers—say, an initial height of 1000 feet, an initial velocity

of 100 feet per second, and a time of 3 seconds—and follow the computation.

Word Stack

10001003

SWAP 10003100

OVER 100031003

* 10003300

SWAP 10003003

DUP 100030033

* 10003009

16 1000300916

* 1000300144

+ 1000444

556

Action

SWAPs time and velocity.

Copies and moves time.

Multiplies velocity by time.

SWAPs product and time.

DUP5 time.

Squares time.

Adds 16 to the stack.

Multiplies 16 by time squared.

Adds product to velocity times time.

Subtracts sum from initial height.

Don’t take our word for it, though—try out HEIGHT for yourself.

1000 100 3 HEIGHT .

We can do more with this problem, particularly to make the entry of the

values clearer. In a case like this, it helps to echo the inputs by printing them

on the screen properly labeled. The addition of a word that “surrounds” the

original problem-solving word takes care of this need. It also can take care of

36 Mastering FORTH, Revised and Expanded

exceptions—say, if the initial height was so low (or the velocity so high or

the time too long) that the final height was less than 0, which wouldn’t make

sense. The 0 MAX in the following word, HEIGHT?, makes sure that no

values less than 0 will be displayed. po1yFORTH normally retains only the

first three characters of a name and its length. To prevent inadvertent redefinitions,
this word would be renamed ?HEIGHT.

HEIGHT?

CR .“ INITIAL HEIGHT : “ 2 PICK

CR “ INITIAL VELOCITY “ OVER

CR “ HEIGHT AFTER “ DUP

.“ SECONDS: “ HEIGHT 0 MAX

Now try the same values to see how much easier the result is to read.

1000 100 3 HEIGHT?

INITIAL HEIGHT : 1000

INITIAL VELOCITY: 100

HEIGHT AFTER 3 SECONDS: 556

And increase the time to 6 seconds to see that the 0 MAX is doing its job.

1000 100 6 HEIGHT?

INITIAL HEIGHT : 1000

INITIAL VELOCITY: 100

HEIGHT AFTER 6 SECONDS: 0

Exercises

1. Assuming x y and z are single-precision numbers, find FORTH phrases

which match these stack diagrams:

a. xy-xyx b. xy-xxy

c. xyz-xz d. xyz-yz

e. xyz-zyx f. xyz-yxz

g. xyz-xxyz h. xyz-xyyz

Stock Manipulation 37

2. L&P F83 supports several additional stack operators. Using only DUP

DROP SWAP OVER ROT and PICK, see if you can define them.

3DUP n n2 n3 - n n2 n3 n n2 n3 Duplicates the top three stack items.
NIP n n2 - n2 Deletes the second stack item.

TUCK n n2 — n2 n n2 Duplicates and tucks the top stack
item under the second item.

Can your definition for 3DUP be improved by using 2DUP, 2DROP,

2SWAP, 2OVER, or 2ROT?

3. Given two single-precision numbers x and y on the stack, with y on top,

find FORTH phrases which evaluates these expressions:

a. x+y2 b. x2+y2

c. 3xy d. x2+2xy+y2

Given x y and z, with z on top, find phrases for these expressions:

e. (x + y)/z f. (x + y)/(x - z)

g. xy + xz h. xz2 + xy2 - yz2

4. The area of a rectangle can be determined from the coordinates of either

pair of opposite corners. Coordinates are usually given as a pair of numbers,

with the horizontal coordinate given first. If we call the coordinates
of one corner X1 and Yl and the coordinates of the other corner X2 and

Y2, the area is calculated by the formula

(X2 - Xl) * (Y2 - Yl)

Define a word which expects all four coordinates on the stack and which

returns and appropriately labeled result.

RECTANGLE xl yl x2 y2 computes and prints the area of a rectangle,

given the coordinates of two opposite corners.

.x2Y2

RECTANGLE works like this:

41 44 58 80 RECTANGLE

THE AREA IS 612

--

x’Y’

* poIyFORTH and MasterFORTH line editors use the command Xto delete a line. For safety, X should

not be used as the name of a definition.

38 Mastering FORTH, Revised and Expanded

5. Polynomials such as

y=x4-3x3+17x2-4x+5

can be rapidly evaluated using Homer’s method. The polynomial is factored

and the innermost phrase is computed first.

y=(((x-3)x+ 17)x-4)x+5

Write the word POLY which takes its argument x from the stack and

leaves its results y there.

7 POLY . 2182

5 The Editor

rogramming with FORTH is never a one-shot operation. Inevitably you

will want to add or change something later as you think about your work a

second time or devise a new purpose for your program. FORTH includes a

separate program called the editor which makes it easy to both retain and

improve upon existing words.

Words, Words, Words

All the words provided in FORTH as well as all the definitions you may add

are compiled in the dictionary. You can use the command WORDS to

examine the contents of the dictionary.* First, type in the following definitions:

MARKER

DANCE “ CHARLESTON”

MUSIC .“ SWING”

When you type WORDS, the name of each word in your dictionary will be

listed on the screen, starting with the latest definition. To interrupt the listing,

hit any key, or follow the instructions printed by WORDS. To continue the

listing, hit a key again; otherwise, hit <RETURN> to abort the listing.

* Older FORTHs use VLIST instead. PoIyFORTH RDS can be loaded as an option.

39

40 Mastering FORTH, Revised and Expanded

WORDS

MUSIC DANCE MARKER... <Hit any key> <RETURN>

As we have seen, you can redefine words if you think of a newer or better

definition, and FORTH will automatically use the latest version.

DANCE .“ HUSTLE”

MUSIC .“ ROCK”

DANCE HUSTLE

The new definitions are added to the dictionary, but the previous definitions
are still there.

WORDS

MUSIC DANCE MUSIC DANCE MARKER

To remove definitions from the dictionary, type FORGET, followed by the
name of the word.

FORGET DANCE

MUSIC SWING

FORGET not only removes a definition (the latest DANCE), but also all the

definitions which follow it (the latest MUSIC too.) Your dictionary now
looks like this:

WORDS

MUSIC DANCE MARKER

Try it again.

FORGET DANCE

WORDS

MAR1R

There is a limit to what you can FORGET.

The Editor 41

FORGET DUP FORGET ? Protected

This is FORTH’s way of saying that words below a certain critical point in

the dictionary cannot be forgotten.

If you want to restore a forgotten word, you can type it in again and recompile

it. But a long definition would mean a lot of retyping. When you create a

FORTH word from the keyboard, the carefully typed lines that go into its

definition are gone forever. There is no easy way to reconstruct the lines you

typed (called the source code) from the word that is now part of the dictionary

(called the compiled or object code). You need some way of saving what

you type so that the words you create can be recreated as needed.

Files and Screens

Fortunately, there is a way to save lines of source code—by typing them into

computer memory. We have already seen one kind of memory—the FORTH

stack. The stack holds the arguments and remembers the results of the words

you use. Another kind of memory holds the dictionary and remembers new

definitions. These two types of memory are usually called main memory

because they are immediately accessible to the computer.

Another kind of memory is called mass storage, which is often cheaper and

larger than main memory. Cassettes, floppy disks, and hard disks are examples

of mass storage. It is the job of a program called the operating system

to move information from mass storage to main memory and back again.

FORTH provides many of the functions of an operating system. It lets you

type lines of source code to be saved in mass storage. You can then direct the

text interpreter to read from mass storage rather than from the keyboard. The

text interpreter reads the lines it finds there exactly as if you had typed them

in again.

Mass storage is typically divided into a number of files. A file simply holds

an ordered collection of information, much like a file folder in a file cabinet.

A catalog gives the name of each file and its location in mass storage.

42 Mastering FORTH, Revised and Expanded

0

Many FORTHs further divide each file into conveniently sized blocks, which

are moved in and out of main memory on request. Some po1yFORTH systems

do not use files.The mass storage device is simply divided into blocks.

MacForth uses the normal Macintosh files, which appear to be a continuous

text file, rather than a series of blocks. UR/FORTH supports both text and

block files. The blocks are numbered sequentially, starting with zero. A
block which is used to hold source text is sometimes called a screen. Screens

are divided into 16 lines of 64 characters each. These are enough lines for
several definitions.

Selecting a File

The program which enables you to type source text into a screen is called the

editor. A well-designed editor lets you move, insert, and delete lines of

source text. You can insert words within a line, search screens for a match

with a given word, or replace one word with another. In short, the editor

gives you control over the source text and encourages you to improve it.

Editors differ remarkably— some FORTH systems even give you a choice of

editors. We will describe two general-purpose editors: screen-oriented editors

that let you type text directly into a 16 line area on your console screen,

4

The Editor 43

and line-oriented editors where all the editing is done in a command line at

the bottom of the screen. We will further assume that you are using a floppy

diskette or hard disk for mass storage and that you are somewhat familiar

with the operating system of your computer.

Before using the editor, you must create or select a file to be edited. The files

available to you are listed in a catalog and can be displayed with a command

like DIR or with the same command that you would normally use with

your operating system.

MacFORTH

Creative Solutions has taken great pains to follow the standard Macintosh

file interface. When you first boot MacForth Plus, you will be in a new

untitled text file. Any commands you type go into this file. The mouse, the

clipboard, and all other editing tools will work in a familiar manner. To

execute or compile the last line you typed, press <ENTER> instead of

<RETURN>. To execute or compile several lines, select them and press

<ENTER>. Any output is inserted in the file, where it may be cut and pasted

or otherwise edited. To execute or compile an entire source file, pull down
the File menu and select Include.

To save a source file, click the close box and you will be asked to name it (if

it’s new). To select a different source file, pull down the File menu and

select Open. That’s all there is to it. MacForth users may wish to skip to the

exercises at the end of this chapter.

U R/FORTH

When you first boot UR/FORTH , it selects the file FORTH. SCR if it is

present in the same subdirectory. You can use DIR to list the other available

files— source files end in . SCR. To select another file, type USING

followed by the name of the file.

USING COMPUSR

If the suffix is omitted, . SCR is assumed. To make a new file, type MAKE

followed by the name of the file, then select it with USING.

44 Mastering FORTH, Revised and Expanded

MAKE SAMPLE

USING SAMPLE

The file is created empty but is automatically extended as you edit it. To

invoke the editor, type EDIT. UR/FORTH uses a screen editor. To enter the

display, press the space bar or <ENTER>. To leave the display, press

<ESC>. Press it again to return to Forth.

It is possible to select files from the editor simply by typing the number of

the file as it appears in the upper left of the display. If the file you want isn’t

there, type “U” and then name the file; Press <F 1> for help.

L&P F83

Use DIR to list the available files— source files end in .BLK. To select a

file, type OPEN followed by the name of the file.

OPEN KERNEL86.BLK

To make a new file, type CREATE—FILE followed by the name of the file.

CREATE-FILE needs to know how many blocks to make the file. To make

a 32 block file called SAMPLE . BLK, you would type

32 CREATE-FILE SAMPLE.BLK

This also selects the file. To extend this file by, say, 10 blocks, type 10
MORE.

Laxen and Perry’s F83 uses a line-oriented editor. To invoke the editor, type

ED. The first time you type ED you will be asked for your id. Just type in

your initials for now. To edit screen 5, type

5 EDIT

When you are through editing, type DONE. Be sure to close all files with

FLUSH before returning to the operating system with BYE.

The Editor 45

PoIyFORTH

The po1yFORTH main source file FORTH.SRC is opened when you first

boot. The remaining source files are generally opened when you type HI.

You will often find a list of files to be opened on block 8 or block 11 of
FORTH.SRC.

To see which files are available, type DIR. Po1yFORTH source files end in

.SRC. To see which files have been opened, type .MAP. To the left of each

file name you will see its unit number. To select a file, type its unit number
and the command UNIT.

2 UNIT (generally selects FORTH2.SRC)

0 UNIT (generally selects FORTH.SRC)

To add a file to the units map, use CHART, followed by the name of the file.

CHART MYFILE

If the suffix is omitted, . SRC is assumed. There is no simple word like

CHART for making a new file. We recommend that you carefully type in the

following definition:

:MAKE

>R AUNIT DUP BL WORD COUNT MAP

OVER VOLUME * RELATIVE R> NEWBLOCKS

To make a 32 block file called SAMPLE. SRC, you would enter

32 MAKE SAMPLE. SRC

Then type . MAP and select the appropriate unit.

Po1yFORTH uses a line-oriented editor. To invoke the editor, type L. This

lists the most recently edited block, initially 0, and enables the editor. When

you are through editing, type FLUSH. All files are automatically closed

when you return to the operating system with BYE.

46 Mastering FORTH, Revised and Expanded

MasterFORTH and ZEN

MasterFORTH and its subset ZEN use gerunds to manipulate files. Type

DIR to see a list of available files. Source files end in . 5CR. To select a file,

type USING followed by the name of the file.

USING SAMPLE

If the suffix is omitted, . SCR is assumed. To make and select a new file,

type MAKING followed by the name of the file.

MAKING MYFILE

The new file MYFILE. SCR will be four screens long. To extend it by 10

screens, type

10 MORE

Both MasterFORTH and ZEN are shipped with the file SAMPLE . SCR for

you to practice on.

USING SAMPLE

MasterFORTH uses a screen-oriented editor. To invoke it, type the number

of the screen to edit, followed by the command EDIT.

3 EDIT

To leave the editor, press <ESC> once for ZEN, and twice for MasterFORTH.

ZEN provides both a screen-oriented editor and a line-oriented

editor. To use the line editor, type L. This lists the most recently edited

block, initially 0, and invokes the editor. In either case, all files are automatically

closed when you return to the operating system with BYE.

The Editor 47

LIST, LOAD, and THRU

Before continuing further, make or select a file for editing practice. If you
want to examine a screen in this file, you can list its contents by typing the
screen number, followed by the word LIST. See if there’s anything on
screen 1 of your file.

1 LIST

Assume for now that you see the following definition typed into your screen.

SIMPLE

CR .“ This is easy!”

The word SIMPLE is not yet part of the dictionary:

SIMPLE SIMPLE ?

To redirect the text interpreter to read a screen instead of the keyboard (that

is, to compile the screen), you would simply type the screen number followed

by the word LOAD.

1 LOAD

Has SIMPLE been compiled?

SIMPLE This is easy!

Comments

Now imagine that screen 2 of your file holds the definitions of some trickier
words.

48 Mastering FORTH, Revised and Expanded

2 LIST

SCR# 2

0 \ Somewhat trickier words.

1 : TRICKY (start# - end#)

2 \ Starting equals ending number.

3 3+ (add3)

4 2* (multiply by two)

5 2- (subtract 2)

6 2/ (divide by two)

7 2- (subtract two again)

8

9 : TRICK2 (start# — end#)

10 \ The answer is always 3.

11 DUP 3*7+

12 OVER+5+4/

13 SWAP-

14

15*

* Line-oriented editors usually display the line numbers to the left of the screen. These numbers

are not really part of the screen, and screen-oriented editors may omit them entirely.

This screen shows how to use comments and indentation to make a definition

easier to understand. Line 0 describes the contents of the screen in general

terms. The backslash \, which begins the line, is a FORTH word that causes

the text interpreter to ignore all text to the right of the backslash for the rest
of the line.\ works for text files, too.

Po1yFORTH users can add \ this way:

\ >IN @ 64 + -64 AND >IN ! ; IMMEDIATE

This would be a good definition to practice editing and LOADing.

Therefore, the text “Somewhat trickier words” is not compiled into the dictionary.

The Editor 49

By convention, line 0 of each screen in a file describes the words on that

screen. This makes it possible to quickly determine the contents of a file by

reading line 0 of each screen. UR/FORTH uses QX to list line 0 of the first

50 screens. In po1yFORTH and ZEN, QX takes as an argument the starting

screen number, for example, 10 QX.

Several FORTHs provide INDEX, which takes two arguments, the starting

and ending screen numbers:

10 40 INDEX.

The line 0 comment often contains other useful information, such as the

initials of the programmer who created the screen and the date the screen

was last modified.

Line 1 reads

1 : TRICKY (start# - end#)

The left parenthesis (called “paren”) is also used to add comments to source

text. All text up to and including the next right parenthesis is treated as a

comment. The first line of source text for a definition should include a paren

comment giving the stack notation for the definition (its arguments and results).

Paren comments are also useful to explain the less obvious words

within a definition. Comments should be used carefully, however, for these

reasons:

• Too many comments can make the definition difficult to read.

• Comments about what a definition is supposed to be doing tend to be

believed, even if the code is incorrect!

The word TRICKY is a good example of using too many comments. The

comment “subtract 2,” for example, doesn’t really need to follow 2—.

50 Mastering FORTH, Revised and Expanded

Well-chosen names, indentation, and comments are the keys to writing easily readable

definitions.

You can compile a range of screens with the command THRU. THRU

needs the starting and ending screen numbers to compile.

FORGET SIMPLE

2 3 THRU

Screens 2 and 3 will be compiled just as if you had typed 2 LOAD

followed by 3 LOAD.

One last remark about comments: screen 0 of a file cannot be read by the text

interpreter— neither LOAD nor THRU can be used to compile it. Therefore,

you can use screen 0 as a full screen of commentary on the words

defined in the file and their use. You don’t need any backslashes or parentheses

either, because the screen is never compiled.

Screen-Oriented Editors

Use LIST to find a blank screen for editing practice, or else make yourself

a new file. You will shortly be writing source text on this screen and editing

it. Because you will be typing directly into the screen, you will need a set of

non-printing keys to invoke the editing functions. On some computers you

do this by pressing both the <CONTROL> key and a normal key at the same

time. WordStar-style editors work this way. On other computers, you may

have special editing or function keys marked with arrows, logos, or other

symbols. We will assume that your terminal has at least the four cursor arrow

keys.

To edit screen 3, type:

3 EDIT*

* UR/FORTH: type EDIT, then E, then the screen number.

The Editor 51

You’ll see the empty screen with the cursor in the upper lefthand corner

(called the “home” position).

Just for practice, type in these three lines, hitting <RETURN> at the end of
each line:

This is line one.

This is line two.

And this is line three.

The underscore shows the position of the cursor. Press the up-arrow twice to

move the cursor up two positions to the beginning of line 2. Notice that the

cursor travels right through the “A” in line 3 without changing it. You can

move the cursor to the right without disturbing line two by pressing the right-

arrow key. Move to the second word (with five right-arrows).

This is line one.

This js line two.

And this is line three.

A more efficient way to move right is to use <TAB>, which puts the cursor

at the beginning of the next word. Try two <TAB>s.

This is ‘ine two.

This is line two.

If <TAB> doesn’t work, try pressing <CONTROL> and the right arrow at
the same time.

<Shift—TAB> takes you to the beginning of the previous word, or try

pressing <CONTROL> and the left arrow at the same time.

This is ‘ine two.

Use the <TAB> and the arrow keys until the cursor is positioned over the

period in line 2.

52 Mastering FORTH, Revised and Expanded

This is line two

Now type over the period with a comma.

This is line two,_

Move the cursor down to the beginning of line 3. Type over the capital “A”

with a small “a” and you will see:

This is line one.

This is line two,

ad this is line three.

Try advancing to the next screen* and typing in the following definition:

\ Famous Quotes

LAVOISIER

\ 18th century chemist.

CR .“ To call forth a concept”
CR .“ a word is needed.”

CR .“ —Lavoisier”

Let’s add some new natural— for example, Lavoisier’s first name (Antoine).

First, position the cursor over the L of his last name.

CR .“ —J.1avoisier”

Press the <INSERT> key. If you have no such key, try the WordStar

Command <CONTROL-V>. A message should appear somewhere near

your screen to remind you that “insert mode” is active. Now type in

“Antoine” (and a space).

CR .“ —Antoine L1avoisier”

Notice how the characters to the right of the cursor are pushed over automatically

to make room for your new material. If you insert too many characters,

the end of the line may be pushed off the righthand edge of the

* On IBM PCs, try pressing the <PgDn> to move forward one screen and <PgUp> to move back. If that

fails, try <CONTROL—N> for the next screen and <CONTROL-B> to move back one screen. If that fails,

too, this would be a good time to read the editor chapter in your system documentation.

The Editor 53

screen. Some editors will prevent you from inserting more characters; others

will warn you with an audible beep. To leave insert mode, press the

<INSERT> key again— it toggles you in and out of insert mode.

Now take out what you’ve just put in. You can do this several ways. You can

use the backspace key to delete the character to the left of the cursor, for

example. Make sure the cursor is still over the “L” in “Lavoisier,” then press

backspace three times.

CR .“ —Antoi_Lavoisier” ;

Although the cursor has moved three positions to the left, erasing as it goes,

the remainder of the line didn’t move at all. This leaves you with three

blanks between names. You can delete one of the extra blanks, or any other

character under the cursor, by using the <DELETE> key, or try the Word-
Star command <CONTROL-G>. Press it three times.

CR .“ —Antoiavoisier” ;

The actions of erasing and moving the remainder of the line to the left can be

combined by using backspace while in the insert mode. Try typing

<INSERT>, followed by five backspaces.

CR .“ —avoisier”

The five letters to the left of the cursor have been deleted and the remainder

of the line has moved left five positions. Choose the method of character

deletion which seems the most comfortable to you.

If you have inadvertently changed a screen, there is usually a special key that

will restore it to its original condition.* When you have finished editing,

press <ESC>. FORTH screen editors usually have a rich repertoire of additional

commands for deleting lines, moving lines or screens within or between

files, and other courtesies.* It is often useful to be able to search the

file for a string and replace it with another string, and most FORTH screen

* UR/FORTH uses <PlO> or <CONTROL-Z>. ZEN uses <CONTROL-U>. MasterFORTH uses the

command line— press <Escape> then type FPESH. Return to the editor with <RETURN>.

54 Mastering FORTH, Revised and Expanded

editors provide this capability.t Searching always takes place from the current

cursor position on the current screen forward to the end of the file. To

search the entire file, first move to screen 0. Consult your system documentation
for further information.

The Line Editor

Use LIST to find a blank screen for editing practice, or else make yourself

a new file. You will shortly be writing source text on this screen and editing

it. To invoke the line editor, type L. This lists the most recently edited

block, initially 0, and enables the editor. To see the next screen, type N (try

it!).** To move çç a screen, type B. Line 0 is displayed at the bottom of

your screen, or in highlight or inverse video to show you that it is the active

line, and that the line editor is available for editing it. You can change the
active line with the command

nT

Line n becomes the active line. To replace it, type

P <text>

The P command the following text into the active line, replacing what

was there. The variation U <text> puts the text under the active line. Try

entering a line of your choice. The remaining lines move down to accommodate
the new active line.

* UR/FORTH, MasterFORTH, and ZEN even support a line stack for pushing lines in one screen and

popping them in another.

t UR/FORTH uses <P7> for search and <P8> for search and replace. You will be prompted for the

arguments. <CONTROL—L> repeats the previous search and replace operation.

ZEN uses the line editor for search and replace. MasterFORTH also uses a line editor syntax which
is executed from its command line. Press <ESC> to move to the command line and <RETURN> to return

to the editor.

** L&P F83: use N L to move forwards and B L to move backwards in the file.

The Editor 55

To delete the active line entirely, type:

x

The remaining lines move up to fill the gap. The deleted line is saved in a

special insert buffer. Typing P or U followed immediately by <RETURN>

puts the text in the insert buffer into or under the active line. For example,

the following sequence will move line 6 to line 9:

6 T X<RETURN>

8 T U<RETURN>

At this point, find an empty screen and experiment with these line editing
commands.

Editing an entire line to add or change a word is a clumsy operation, at best.

You can also edit characters within a line at the current cursor position. The
command

I <text>

inserts text at the cursor. The remaining characters on the line move to the

right to accommodate the insertion. Characters on the extreme right may be

pushed off the line and lost. The command

F <text>

finds the next occurrence of the given text and repositions the cursor there.

The search is made from the current cursor position to the end of the screen.

To search the entire screen, first reposition the cursor with 0 T. The
command

E

erases the last text found. The command

D <text>

56 Mastering FORTH, Revised and Expanded

finds and deletes the given text. It is exactly equivalent to an F command
followed by an E command. The command

R <text>

replaces the text last found with the text following the command.

For example, to replace the first 0= on the screen with NOT, use the
sequence

o T F 0=

R NOT

Line editor commands can be combined on a single line by separating them

with a caret (“A”).

0 T F 0=’R NOT

The text following an F or D command is copied into a special find buffer.

Subsequent F or D commands followed immediately by <RETURN>

find or delete the text in the find buffer. If you execute the example above,

typing F<RETURN> will take you to the next occurrence of “0=”. If the

search fails, you will see a message like “Not found.”

The S <text> command works like the F command except that it scans

for the text from the current screen to the end of the file In Po1yFORTH and

L&P F83 the S command takes an argument equal to the last block number

to search. ZEN always searches to the end of the file. To search the entire

file, first move to screen 0. When you have finished editing, save your

changes to disk by typing FLUSH.

Many FORTHs which support the line editor also support shadow screens. A
shadow screen is a documentation screen associated with a source screen.

Select a source screen from one of your system files and note which words

are defined on it. Now select the shadow screen. Po1yFORTH uses type

Q. The shadow blocks are kept in a separate file, ending with the prefix

• DOC. This file is usually mapped out one UNIT higher than the source
file.

The Editor 57

L&P F83: type A. The shadow blocks are kept in the last half of the source
file.

ZEN does not support shadow screens.

You should be looking at the documentation associated with the words
on the source screen.

Finishing Up

When you edit a screen, you are actually editing a copy of the screen which

was moved from mass storage to main memory by the operating system.

How and when the operating system rewrites the edited screens to mass

storage varies from system to system. The FORTH-83 Standard command

SAVE-BUFFERS is guaranteed to write all altered screens to disk. In addition,

many FORTHs support the command EMPTY-BUFFERS, which reinitializes

the disk buffers. Any changes not written to disk are lost. This

may be exactly what you want, if you have written bad information to a

screen but have not yet saved it to disk.

Exercises

Retype the definitions you used in Chapter 2 into an empty screen in your

file—use as many screens as you wish. Be sure to use comments and indentation

to make the definitions easy to understand. Use LOAD or THRU to

compile these screens. Do the definitions work correctly? If not, FORGET

them, correct the source screens, and try compiling them again.

6 Variables, Constants
and Arrays

omputer memory comes in many types. One type of memory we have

seen is the FORTH LIFO stack. It keeps a few top items handy but requires

extra manipulation to reach items buried more deeply.

Another type of memory is called random-access memory (or just RAM).

Each item in RAM is equally accessible and can be obtained in any order.

This is possible because each location in RAM has its own fixed numerical

address. Each location has an address—a number assigned to it by the computer

according to its own internal system. You can think of RAM as a long

series of slots on a very large table.

HERE

10A7AJ6\
J2 f 104 1106 1101 1110 1112

Each slot contains a value. The value could be any number of things—the

square root of 2, your checkbook balance, even the address of another location.

Be sure you understand that there is a difference between the address of a location and the value
stored at that location.

Since all addresses tend to look alike, FORTH lets you give some of them

names for easy reference and readability.

58

Variables, Constants and Arrays 59

Variables

Some values change quite frequently—the number of inches of rain so far

this season, for example, or the number of boxes of detergent in a

supermarket’s stock. When you want to use these values in your program

without the hassle of manipulating them on the stack—and with the added

convenience of referring to them by name—you should use a variable. Let’s

set up a variable that will have the name RAIN.

VARIABLE RAIN

What exactly have you done?

The interpreter creates a new dictionary word with the name RAIN. It then

finds the address of the first available or free RAM location. This is given by
the word HERE.

HERE.UQ

The interpreter then assigns the name RAIN to this location, and updates

HERE to point to the next free location. RAIN will now leave the address
of this location on the stack.

RAIN . UQ

HERE.ua

A byte in computer jargon means the smallest unit of memory that has its

own address. On many computers, a byte contains 8 bits (zeroes or ones),

and so has 1 of 256 different values (0 to 255). This is large enough to hold a

printable character, but is too small for general use. For this reason, bytes are

usually grouped into cells.

A FORTH-83 cell is 16-bits wide. The FORTH-83 stack is also 16 bits, or

one cell, wide. However, some modern computers, like the Novix NC4016

or the TMS320C25, are cell-addressed. The smallest addressable unit is a

cell and so a cell is the same as a byte. In contrast, 32-bit FORTH implementations

usually groupfour bytes into a 32-bit cell.

60 Mastering FORTH, Revised and Expanded

To hide the differences between these implementations, we introduce three
new words: CELL CELLS and CELL+. Their FORTH-83 definitions are:

2 CONSTANT CELL* (number of bytes per cell)

CELLS (n - n2) 2* ; (number of bytes per n cells)

CELL+ (a - a2) 2+ ; (advance to the next cell address)

We will use a to refer to an address in a stack diagram. The equivalent
definitions for cell-addressed FORTHs are:

1 CONSTANT CELL

CELLS (n-n2) 1

:CELL+(a-a2) 1+;

For 32-bit implementations you would use:

4 CONSTANT CELL

CELLS (n-n2) 4*;

CELL+ (a - a2) 4 + ;**

Find an empty source screen or file and enter the appropriate definitions for

your implementation. This will be your prelude, which you should LOAD or

INCLUDE each time you start FORTH.

In the example above, HERE has been advanced by one cell to point to the

next empty cell. This cell that is skipped belongs to the variable RAIN.

RAIN, however, occupies more than one cell of memory. When we add the

variable RAIN, we add the four characters of its name and another 4 or 5

bytes of overhead.

At this point the cell RAIN contains an unknown value. Let’s initialize
RAIN with a useful number. Assume that there have been 12 inches of rain

so far this season.

* The word CONSTANT will be introduced later in this chapter.

** MacForth would use

4 CONSTANT CELL

:cELLS 4*;

:CELL+ 4+;

Variables, Constants and Arrays 61

12 RAIN

The value 12 is placed on the stack and the address of the variable RAIN

(110 in this example) is pushed on top of it. The operator ! (“store”) then

moves the 12 to the RAM location RAIN, replacing the unknown value that

was previously there.

RAI ___________________

112 ‘“I _________RAI_1

See if the value of RAIN is now really 12.

RAIN . UQ

Whoops! The value isn’t on the stack; the address is. (Your RAIN is

probably at a different address anyway; we chose the number 110 just for

convenience.) You need the new word @ (“fetch”) to get to the value of
RAIN.

RAIN @ . 1Z

The word @ takes an address from the stack (left there by RAIN) and

copies the value it finds there onto the stack. In other words, @ replaces an
address with its value.

12
112

I RAIN

Note that you could get exactly the same result by using the address of

RAIN, if you knew it. Ordinarily, however, you will never have to worry

about the specific address of a variable; the name is all you need.

62 Mastering FORTH, Revised and Expanded

The process of bringing a value to the stack and printing it can be shortened

with the word ? (“question”), which combines @ and . . FORTH-83

doesn’t require ? but most FORTHs supply it anyway. If yours doesn’t, add

it to the prelude this way:

:? @.;

RAIN ? ia

Changing the value of a variable is as simple as initializing it. Suppose it

rained an inch yesterday, bringing the season’s total to 13; you can store the

new total just like you did the old one.

13 RAIN

You’ll find that the old total has now been replaced.

RAIN ? U

An easier way to keep running totals is to let FORTH do the computation for

you. Suppose yet another inch of rain falls; you could store this information
as follows:

RAIN @ 1+ RAIN

Review the elements of this program to be sure that you understand them:

Word Stack Action

RAIN a Pushes the address of RAIN on the stack.

13 Pops the address off the stack, gets the value at that

address, and pushes it on the stack.

1+ 14 Adds 1 to the number.

RAIN 14 a Pushes the address of RAIN on the stack again.

Stores 14 at the address, removing both numbers.

Variables, Constants and Arrays 63

Check to be sure that the total is correct.

RAIN ? 14

Since adding to running totals is such a common operation, a special word,

+! (“plus-store”) will add the second number on the stack to the value stored

at the address on top of the stack, saving you some steps. Try adding another

1 to RAIN this way.

1 RAIN +!

RAIN ?

It is also possible to add the value of one variable to that of another variable.

You could set up a variable called TODAYSRAIN that keeps track of daily

rainfall, for example, and then add that total to the running total stored in

RAIN. If rainfall today was 2 inches, here’s what you would do:

VARIABLE TODAYSRAIN

2 TODAYSRAIN

TODAYSRAIN @ RAIN +!

RAIN ? fl

You can also include variables in definitions. Instead of adding a 1 to

TODAYSRAIN every time an inch of rain falls, you can define a word that

will take care of this for you—call it DRIP.

DRIP 1 TODAYSRAIN +!

TODAYSRAIN currently has a value of 2. Suppose it rains 3 inches today.

DRIP DRIP DRIP

TODAYSRAIN ?

64 Mastering FORTH, Revised and Expanded

A Random Example
Variables are useful whenever a named quantity has changing values. For

example, one kind of random number generator generates a new random

number by applying a formula to a previous random number.

new number = ([old number * b] + 1) mod m

This new random number in turn becomes the previous random number (the

seed) the next time around. We can use a variable called SEED to keep

track of this number. Here is a simple random number generator RAND that
uses SEED.

VARIABLE SEED

1234 SEED

RAND (- n)

SEED @ 5421 * 1+ DUP SEED

Check RAND against the formula. SEED @ gives us the previous random

number, which we initialized to 1234. This is multiplied by 5421 (our b) and

is added to 1. The multiplication operator * limits the product to a one-cell

result, which is equivalent to performing a MOD of 65536 (our m) on the

result (equivalent to 2147483648 MOD on 32-bit implementations). Here is
RAND in action:

RAND RAND RAND . . . 7793 1072 -10837

We might also need to produce a more limited range of random numbers. We

might want to pick a random card (only 52 choices) or throw dice (only 6

choices per die). We can limit the size of any number to a useful range with

the MOD function. For example, any number MOD 52 gives a result from 0

to 51. We could include MOD within a new RANDOM, which is based on

RAND:

RANDOM (n - n2)

RAND SWAP MOD ; *

* MacForth division of a negative number by a positive number gives a negative remainder. To

keep the dice positive, use this definition:

RANDOM RAND ABS SWAP MOD

Variables, Constants and Arrays 65

RANDOM will return a number from 0 to n-i. By adding 1 to whatever

RANDOM returns, we get a number from 1 to n. If n is 6, we will get a

number from 1 to 6, which is exactly what we need to model the throw of a
die.

DICE (- n n2)

6 RANDOM 1+ 6 RANDOM 1+

DICE . .

DICE . . Li.

Using MOD to limit the range of random numbers greatly reduces their

randomness. This is because the digits on the right of a number produced by

RAND are less random than the digits on the left. We will give you a better

definition of RANDOM in a later chapter. If you wish to know more about

random numbers and their generation, you might read Algorithms by Robert

Sedgewick (Addison-Wesley, 1983).

Constants

Some values just never change—the number of days in a week, grams in a

kilogram, etc. You can assign a name to any constant value with the word

CONSTANT. Because you know the value of a constant when you first set it

up, creating the constant and initializing it can be done in one step. Let’s set

up a constant to hold the number of days in a week.

7 CONSTANT DAYS/WEEK

And when you want to see the value or work with it, this is all you need to
do:

DAYS/WEEK . 2

Note that no @ is necessary. A constant puts its value on the stack, ready for

you to use.

66 Mastering FORTH, Revised and Expanded

Constants are more than convenient and readable; they are also fast. If you

define a constant to be the number 12, like this:

12 CONSTANT DOZEN

DOZEN . 1

using DOZEN is likely to be faster than putting a 12 on the stack.

A Closer Look

Before going on, it’s worthwhile to examine in more detail how variables are

really set up. When you type

VARIABLE <name>

two separate actions take place:

1. A new definition is created in the dictionary with the name <name> and

instructions to push the address of the first free RAM cell (which usually

follows the definition) on the stack. This much is done internally with the
word CREATE.

2. The first free cell of RAM is reserved for the variable <name>. The word

HERE is updated to point to the next free cell, which normally follows

the cell just reserved. This much is done internally with the word

ALLOT, which needs to know the number of free bytes to be reserved.

Since a variable occupies one free cell, here is a possible definition of VARI —
ABLE:

VARIABLE CREATE CELL ALLOT

Any word which uses CREATE to make a new dictionary entry is called a

defining word. The defining words we have met so far are : VARIABLE
and CONSTANT.

Arrays

A logical grouping of identically sized variables is called an array. What are

arrays good for? Mainly, convenience and saving space. The convenience

Variables, Constants and Arrays 67

comes in when you can refer to the whole group by one name, enhancing
readability. Arrays save space, too, by eliminating much of the computer
housekeeping necessary to name each individual cell in an array.

What sorts of things would you want to group in an array? You might want
to keep track of the calories you take in daily and add them up weekly, for
instance. Instead of setting up seven variables, one for each day of the week
and all in different memory locations, you can group the seven variables in
an array and simplify the process of entering the values and keeping track of
the totals.

The word VARIABLE is not what we want to set up arrays; as we’ve just
seen, it ALLOTs only one cell of memory. But by splitting the action of
VARIABLE into CREATE and ALLOT, you can ALLOT as many bytes as
you need to hold all the elements in your array.

For example, to create the calorie array CALS, first you need to make a new
definition with the name CALS, and then you need to allot enough cells for
7 days’ worth of calories, one cell per day:

CREATE CALS 7 CELLS ALLOT

You now have a whole row of consecutive cells in memory, with the first
cell named CALS.

HERE

SMTW1NFS

____ 4 18 N120[RAIN CALS

The action of CALS, like any new word defined by CREATE, is to leave the

address of the first reserved cell which follows it on the stack. If you can find

the address of the first cell, you can find the address of any cell by adding the
appropriate offset, or distance between them. Since an offset is a difference

between two memory addresses, it is given in bytes. Here’s how it works:

Suppose your caloric intake on Sunday (the first day of the week) was 1200.
Simply store that number at the beginning of CALS:

68 Mastering FORTH, Revised and Expanded

1200 CALS

On Monday you took in 2000 calories. All you need to do is increase the

address of CALS by one cell to store the 2000 in the right place:

2000 CALS CELL+

Rather than trying to remember the offset for each day—which could get

very difficult if you had a large number of offsets. Use constants to name

each offset and make it easier on yourself.

0 CELLS CONSTANT SUNDAY

1 CELLS CONSTANT MONDAY

2 CELLS CONSTANT TUESDAY

3 CELLS CONSTANT WEDNESDAY

4 CELLS CONSTANT THURSDAY

5 CELLS CONSTANT FRIDAY

6 CELLS CONSTANT SATURDAY

Now when you want to store 1800 calories for Tuesday, this is all you need
to do:

1800 CALS TUESDAY +

You can also set FORTH to the task of adding up each day’s caloric intake

so that all you have to do is enter each meal. Your Wednesday, say, starts
with a 450-calorie breakfast.

450 CALS WEDNESDAY +

Later you eat a 600-calorie lunch.

600 CALS WEDNESDAY + +!

The + adds the offset, and the +! adds the calories.

CALS WEDNESDAY + ? 1050

This is tedious, isn’t it—typing in WEDNESDAY + every time you want to

enter another meal or check the total? By factoring out repetitive material

Variables, Constants and Arrays 69

such as WEDNESDAY + , you can simplify your input considerably. Several

steps are necessary to do this, but they need to be entered only once—and

you may be using your CALS array for a long time, long enough to

appreciate the extra convenience.

First, set up a variable to hold the offset for the current day.

VARIABLE TODAY

Second, a word to enhance readability. IS_TODAY* will take the offset

you give it and store it in TODAY.

IS-TODAY (n) TODAY

Third, a word to set the value of TODAY’s offset to 0, in case it still has the

value from last week in it.

:WAKE-UP OCALSTODAY@+! ;

Fourth, a word to store calories at the proper offset.

MEAL CALS TODAY @ +!

And fifth, a word to put the total on the stack so that you can display it.

TOTAL CALS TODAY @ + @

Now you can use the words in this sequence, plugging in caloric values such
as these:

THURSDAY IS-TODAY

WAKE-UP

800 MEAL

450 MEAL

1000 MEAL

TOTAL . 2250

* poIyFORTH philosophy discourages hyphenated names. You might use DAYTI!€ instead.

70 Mastering FORTH, Revised and Expanded

You may have noticed the repetition of CALS TODAY @ + in the

preceding examples. Could this be factored out as well?

Tables

Arrays provide a good way to store tables and to access the information in

them for computation or display. Entering each value in the table separately

can be a chore if you have to take two steps to allot space and initialize the

value. Fortunately, the word , (“comma”) combines these two operations.

It reserves the next free cell and initializes it to whatever value is on top of
the stack.

Let’s make up a table to hold postal fees; then you can design a program that

will take the number of ounces a package weighs, look up the proper fee in

the table, and tell how much postage to put on your package. In our mythical

postal system, the first 3 ounces cost 40 cents; 20 cents per ounce is added

for the next 4 ounces; and 10 cents per ounce additional charge is made for

the next 9 ounces, which brings the postage for one pound to $2.10. The

table has one entry for each ounce:

CREATE POSTAGE-TABLE

0 , 40 , 40 , 40 , 60 , 80 , 100 , 120 , 130 , 140

150 , 160 , 170 , 180 , 190 , 200 , 210

Now you need a word to look up values in the table. Call it OUNCES.

OUNCES (n

CELLS POSTAGE-TABLE + @ CR . .“ CENTS” ;“

When you type a number followed by OUNCES, FORTH knows to multiply

the number by CELL (to get the offset), @ the value at that offset, return

the carriage, and print the value followed by the message “CENTS.” See
how it works:

5 OUNCES 80 CENTS

6 OUNCES 100 CENTS

Variables, Constants and Arrays 71

Byte Arrays

If the values to be stored in an array are small (from 0 to 255), you can save

memory by storing them in an array of bytes rather than an array of cells.

The operators !, @, and , have the byte-sized equivalents C! (“Cstore”),

C@ (“C-fetch”), and C, (“C-comma”). The “C” stands for “character”

because a single printable character can be neatly stored in one byte of

memory.

When you move a value from the stack to RAM memory with C!, the

high-order byte is discarded. When you copy a byte value from RAM to

the stack with C@ ,the high-order byte is made zero. The order of bytes

within a variable is undefined, so don’t C@ from a variable unless you
first C! into it.

We can rewrite the postage example to use an array of bytes. The table is

built with C,

CREATE POSTAGE-TABLE

0 C, 40 C, 40 C, 40 C, 60 C, 80 C,

100 C, 120 C, 130 C, 140 C, 150 C, 160 C,

170 C, 180 C, 190 C, 200 C, 210 C,

and the new definition for OUNCES is

OUNCES (n

POSTAGE-TABLE + C@ CR .“ CENTS”

Check to see that it produces the same results.

5 OUNCES 80 CENTS

72 Mastering FORTH, Revised and Expanded

Word Stack Action

n a Stores the value n at the given address.

a - n Reads the value n at the given address and pushes it on the
stack.

? a Prints the value stored at the given address.

+! n a Adds n to the value stored at the given address.

VARIABLE <name> Creates a one-cell variable named <name>. When <name>

is executed, it will push the address of this cell on the stack.

CONSTANT <name> Creates a constant named <name> with a value of n. When

<name> is executed, the value n will be pushed on the stack.

CREATE <name> Creates a dictionary entry named <name>. When executed,

<name> will push the address of the first memory cell which

follows the word <name> onto the stack. No memory is

actually reserved by CREATE.

ALLOT n Reserves n bytes of RAM memory. ALLOT usually follows

a defining word.

n Reserves one cell of memory, initializing it to the value n.

C! byte a Stores the byte on the stack at the given address.

C@ a - byte Reads the byte at the given address and pushes it on the stack.

C, byte Reserves one byte of memory, initializing it to the byte value.

Double Variables and Constants

Paired quantities, such as spatial coordinates or complex numbers, can be

stored in and retrieved from special double-sized variables and constants.

Use 2VARIABLE and 2CONSTANT to build the named 2-cell quantities.*

Use 2@ and 2! to move the paired quantities to and from the stack.

* MacForth does not supply 2VARIABLE and 2CONSTANT. You can add them to your prelude this way:

2VRThBLE VRThBLE CELL ALLOT;

2CONSTANT PEATE , , DOES> 2@

cREATE—DOES> will be introduced in a later chapter.

Variables, Constants and Arrays 73

12 20 2CONSTANT BOTH

BOTH . S 2DROP

STACK: 12 20

2VARIABLE HIS-AND-HERS

1 10 HIS-AND-HERS 2!

HIS-AND-HERS 2@ .S 2DROP

STACK: 1 10

The high-order item of the pair, that is, the one closest to the top of the stack,

is stored in the first 2 bytes of the 2VARIABLE.

HIS-AND-HERS @ .

Word Stack Action

2VARIABLE <name> Creates a 2-cell variable named <name>. When <name> is

executed, it will push the address of the first cell on the

stack.

2CONSTANT <name> Creates a double constant named <name> with the value

pair n and n2. When <name> is executed, this pair will be

pushed on the stack.

2! n n2 a Stores the pair n and n2 at the given address.

2 @ a - n n2 Reads the pair n and n2 from the given address and pushes

them on the stack.

Exercises

1. Write a word EXCHANGE which exchanges the values of two variables.
EXCHANGE is used like this:

VARIABLE X 2 X

VARIABLE Y 5 Y

X Y EXCHANGE

X ?

74 Mastering FORTH, Revised and Expanded

2. The Forth Interest Group (FIG) FORTH supports a form of VARIABLE

which takes its initial value from the stack. Write a defining word FIG—
VARIABLE which creates this kind of variable.

10 FIG-VARIABLE WHAT

WHAT ?

3. You will often find that an extra stack is just what you need to solve a

problem. Try creating your own stack with an array called STACK and
the words PUSH and POP. PUSH and POP should work like this:

3 PUSH

4 PUSH

POP . 4

POP .

You’ll need an additional variable to keep track of the next available

stack position. PUSH should do something reasonable even if your

STACK is full. (Hint: use MAX and MIN.) What might POP do with

an empty stack?

4. Add these stack manipulation words to the pseudo stack created in the

example above:

>P (n ; P: - n) Pushes n on the pseudo stack.

(- n; P: n) Pops n from the pseudo stack.

PDUP (P: n - n n) DUP5 n on the pseudo stack.

PDROP (P: n) DROPs n from the pseudo stack.

PSWAP (P: n n2 - n2 n) SWAPs n and n2 on the pseudo stack.

7 Flow of Control

ften you will come to a point in your program where a decision needs

to be made—that is, if the temperature of a room is over 85 degrees, turn the

air conditioner on. Or suppose you are programming a dice game like craps.

The first time you roll the dice, you need to see if their total equals 12 or 2; if

it does, you lose, and if it doesn’t, you can continue playing.

The decision-making process can always be divided into two parts: first,
information about a circumstance or condition on which the decision depends

(in the case of craps, whether the total equals 12 or 2); and second,

what the possible responses will be (to end the game, to reroll, etc).

Every time FORTH checks for a condition, it expects to find a number on the

stack with one of two values—true or false—called a boolean flag. True is

represented by -1, false by 0. These flags are left on the stack by words

called logical operators, and are used to decide between alternative courses

of action. For example, the following words compare two numbers to each

other and leave a true/false condition on the stack, depending on what they
find:

Word Stack Action

= n n2 - f Equal returns true (-1) if n equals n2.

> n n2 - f Greater-than returns true if n is greater than n2.

n n2 - f Less-than returns true if n is less than n2.

75

76 Mastering FORTH, Revised and Expanded

Here are the comparison operators in action:

11 12=

12 12 =

65>

11 6 <

-6 6 <

Though at this point it is necessary to print the flags to see how the logical

operators work, remember that you will usually leave them on the stack to be

passed on to the next part of the program.

Another group of logical operators compares a single number on the stack to
zero.

Word

0=

Stack

n - f

Action

Zero-equals returns true if n equals 0.

0> n - f Zero-greater-than returns true if n is greater than 0.

0< n - f Zero-less-than returns true if n is negative.

5 0= . Q

0 0= .

5 0> .

-5 0< .

5 0> .

The operator 0= can be used to reverse the value of a flag.

0 0= .

-1 0= .

Flow of Control 77

AND, OR, and NOT

The logical operators AND OR and NOT allow you to make more

sophisticated decisions based on conditions returned by the other logical

operators. AND returns true only if the top and second flags on the stack are

true. OR returns true if either the top or second flag (or both) is true.

o 5 < 5 8 < AND .

09<98<AND .

33=34=OR ..

35=36=OR . Q

NOT , like 0=, reverses the top boolean flag on the stack.

5 5 = NOT .

5 6 > NOT .

We will show you later how to use AND OR and NOT to manipulate nonboolean

values. Meanwhile, be sure that when you form a logical expression

(combination of conditions) that at least one of the arguments to AND OR

and NOT is a boolean flag.

Let’s suppose your computer has a built-in clock which you’ve used to store

the current month (a number from 0 to 11) and current year (a 4-digit number

like 1984) into the variables MONTH and YEAR. Now suppose you would

like to write a word called DAYS which returns the number of days in the

current month. One approach you could take would be to create a table of

twelve entries, one entry for each month. But if the month is February (that

is, its value is 2) and if the year is a leap-year (that is, it is evenly divisible by

4), then you will need to add 1 to the number of days (28). The logical

expression which, if true, means to add one the number of days, looks like
this:

MONTH @ 2 = YEAR @ 4 MOD 0= AND

78 Mastering FORTH, Revised and Expanded

Word

AND

Stack

ff2 - f3

Action

Returns true if flags f and f2 are both true.

OR ff2 - f3 Returns true if either flag for f2 (or both) is true.

NOT f - f2 Returns true if flag f is false and false if it’s true.

Conditional Structures

Logical operators record information about circumstances or conditions in

the form of true/false boolean flags, which they leave on the stack. We can

then use these flags to select among alternative choices of action. Let’s write

a word that will examine a flag and do different things depending on what it

finds. If the flag is true, it will print “true”; if it is false, it will print “false.”

Here’s how you set it up:

TRUTH IF .“ TRUE “ ELSE .“ FALSE “ THEN

The word IF removes and examines the flag on top of the stack. If it is

true, IF continues executing the words which follow until it reaches ELSE;

if it is false, IF skips ahead to continue execution with the first word which

follows ELSE. In either case, execution continues with the words following

THEN, if any. Try out TRUTH with some comparisons:

10 3 > TRUTH TRUE

10 3 < TRUTH FALSE

It is often helpful to diagram these alternate pathways— this is particularly

true as the choices grow more complicated. We’ll use a variation of traditional

flowcharts to display what we’ve just done.

Flow of Control 79

TRUTH (flag)

9-m IF(

-]
TRUE

ELSE

FALSE

THEN

In this method, the boxes used in the flowchart are too small to have anything

put inside them. Instead there is associated text to the right of, and

parallel to, the boxes. For flow diagrams there will not be more than one box

in a horizontal line. It is easy to see that any flowchart can be pulled and

stretched into this form. A box like is used to indicate an action or group

of actions. A box like L ø(ori) is used to show a test or decision. An

action or group of actions will often be included with the test. The associated

text can be informal description for program design or actual program source.

Our use will be mostly actual program source. The direction of flow will

always be straight down for actions in sequence or a true condition. For a

false condition the flow will be to the side. When we don’t go straight down

we will always go to the right and down, or to the left and up, that is,

clockwise. Thus it is not necessary to have arrows showing the direction of
flow.

In this and the next chapter, which are both about flow of control, we will

include flow diagrams like this with all our examples. These diagrams are

not part of FORTH, but are included to help you understand how flow of

control is handled in FORTH. The diagrams do not show anything that is not

already present in the FORTH code, but they make the intent of the actual

code clearer. In other chapters we will sometimes include these diagrams

when we think that they will be helpful.

In some decisions, the alternative is to do nothing. In that case, take it out—

it’s optional. An example of a situation like this is a word that checks the

stock of some item (say, boxes of detergent) in a supermarket. If the number

of boxes goes below some number, called a “reorder point,” then a message

prompting the user to reorder is displayed. If there are enough items in stock,

no action is taken. Let’s make 12 the reorder point for all items. You could

start by creating a constant equal to 12.

80 Mastering FORTH, Revised and Expanded

12 CONSTANT REORDER-POINT

The word IN-STOCK compares the number of boxes in stock with the
constant:

IN-STOCK (n)

REORDER-POINT <

IF .“ TIME TO REORDER THEN

15 IN-STOCK

10 IN-STOCK

TIME TO REORDER

: IN-STOCK (n)

REORDER-POINT < IF ()

TIME TO REORDER

THEN

Now let’s get back to the craps game and see what these conditional structures
can do.

Once you have rolled the dice and added the total, you need to examine the

total and make some decisions. One thing you might do is print the message

“Craps! You lose” if you roll a total of 2 (snake eyes) or 12 (boxcars) on the
first throw.

SNAKE-EYES (n)

2 = IF .“ CRAPS! YOU LOSE “ THEN

BOXCARS (n)

12 = IF .“ CRAPS! YOU LOSE “ THEN

SNAKE-EYES (n)

2=IF (

CRAPS! YOU LOSE

THEN

BOXCARS (n)

12=IF (

CPAPS! YOU LOSE

THEN

Flow of Control 81

Test these words with a reasonable total (from 2 to 12, just as you would get

with two dice) and see if they work.

2 SNAKE-EYES CRAPS! YOU LOSE

5 SNAKE-EYES

12 BOXCARS CRAPS! YOU LOSE

Since you need to perform two tests on the same total, you should DUP the
total first:

CRAPS (n n2)

+ DUP SNAKE-EYES BOXCARS

—j----

[]

: CRAPS (n n2)

+ (total) DUP SNAKE-EYES

BOXCARS ;

These words illustrate the importance of modularity: CRAPS is made from

the two modules SNAKE-EYES and BOXCARS, each of which has simple,

yet clearly defined actions. You could have redefined SNAKE—EYES to

include the DUP, thereby making the definition of CRAPS shorter, but this
would have limited the usefulness of SNAKE—EYES in other situations

where a copy of the total was not necessary. Remember, words should do as

little as possible.

Other Truths

Conditional structures (such as IF—THEN and IF—ELSE—THEN) will

react to any non-zero value as if it were a true (-1) flag:

25 TRUTH TRUE

-3 TRUTH TRUE

This is especially useful in programming situations where if there is a nonzero

quantity you want to do something; otherwise you want to do nothing.

This feature also lets us use subtraction to test equality—only equal numbers
subtract to be zero.

82 Mastering FORTH, Revised and Expanded

Look again at the word INTO which you defined in chapter 3. It took an

assortment of change, converted it into pennies, and redistributed them into

the highest coin denominations. But in a real program situation, there might

not be any change to redistribute. How would you tell FORTH to execute

INTO only if it found change left over on the stack? You can write a new

word, ?INTO, to check for this.

: ?INTO (n)

DUP IF INTO ELSE DROP THEN

: ?INTO (n)

DUP IF

INTO ()

ELSE

DROP ()

THEN

Note that you had to DUP the number on the stack before checking it; if you

didn’t, IF would have removed the number, and there wouldn’t have been

a copy left for INTO to work with. If the number representing the amount

of change was 0, however, there would still be a copy of it left after ELSE

was executed, so a DROP is necessary to leave the stack clean.

This situation comes up so often in FORTH that a special word, ?DUP

(“question-dup”), has been written to factor out the inevitable DROP. It

DUP5 the top number on the stack only if it’s true. Just for fun, one possible
definition of ?DUP is:

?DUP DUP IF DUP THEN ;

?DUP (n - n n, or 0)

DUP IF

DUP (n n)

THEN (n n, or 0) ;

Flow of Control 83

In FORTH, words which expect a flag on the stack are given a name which begins with a

question-mark, such as ?INTO and ?DUP. Words which print results have names which

include a. (dot) like . S and . “. There are other naming conventions in FORTH, but these

two are used the most often.

Here is an improved version of ?INTO using ?DUP:

: ?INTO (n)

?DUP IF INTO THEN

?DUP IF

: ?INTO (n)

INTO ()

THEN

Look again at CRAPS. On the first throw, you would roll the dice and check

for a total of 2 or 12. If the total is 2, there’s no need to check to see if it’s

also 12. Since the categories are mutually exclusive, it makes no sense to

check for both. This is even more important when you have more things to

check for; for example, in some versions of craps, a sum of 3 on the first
throw also loses.

What you need in a case like this is a system of nested conditional structures.

To make the system even more efficient, try to factor out the repetitive

elements of the structure before you try nesting. In this case, we can isolate

the losing message in a word called SORRY!.

SORRY! •11 CRAPS! YOU LOSE!

SORRY! (n - n)

.“ CRAPS! YOU LOSE! “

Notice how SORRY! fits into the following structure:

84 Mastering FORTH, Revised and Expanded

CRAPS2 (n n2)

+ DUP 2 =

IF DROP SORRY!

ELSE DUP 3 =

IF DROP SORRY!

ELSE 12 =

IF SORRY! THEN

THEN

THEN

CRPS2 (n n2)

+ (total) DUP 2 =

IF DROP(

SORRY!

ELSE DUP 3 =

IF DROP(

SORRY!

ELSE 12 =

IF

SORRY!

THEN

THEN

THEN

Note the indentations in the program. As in an

outline, the conditional structures are contained

within each other, like boxes within boxes. Such

indentation can become very complicated. In a

real game of craps, for example, you have to

check for 2 or 12 or 3 (the losing combinations)

and 7 and 11 (the winning combinations)— five

mutually exclusive possibilities. Notice in the

following example how the rearrangement of

words makes the program easier to read.

To complete the craps program for the first throw you will need a winning

message.

Flow of Control 85

WIN! .“ YOU WIN!”

You’ll also need a variable to hold the total “point” in case the game continues:

VARIABLE POINT

Here is the completed program:

FIRST-THROW (n n2)

+ (only the total counts

DUP 2 = IF DROP SORRY! ELSE

DUP 12 = IF DROP SORRY! ELSE

DUP 3 = IF DROP SORRY! ELSE

DUP 7 = IF DROP WIN! ELSE

DUP 11 = IF DROP WIN! ELSE

POINT ! (otherwise)

THEN THEN THEN THEN THEN

FIRST-THROW (n n2)

+ (Only the total counts.)

DUP 2=IF DROP(

SORRY!

ELSE DUP 12 = IF

SORRY!

ELSE DUP 3=IF

SORRY!

ELSE DUP 7=IF

WIN!

ELSE DUP 11 = IF

WIN!

ELSE POINT

THEN THEN THEN THEN THEN ;

Try out this multiple-choice control structure:

2 1 FIRST-THROW CRAPS! YOU LOSE!

6 1 FIRST-THROW YOU WIN!

3 2 FIRST-THROW

POINT ?

DROP

DROP

DROP (

DROP (

Otherwise)

86 Mastering FORTH, Revised and Expanded

Word Stack Action

IF f Used in a definition in the form IF—ELSE—THEN or simply

IF—THEN. If flag is true,

ELSE ... the words following IF are executed (but the words

following ELSE are skipped);

THEN ... if false, the words following ELSE are executed (if the

ELSE part exists).

?DUP n - 0 or n n Duplicate n if it is non-zero.

Exercises

1. Now that you have learned the comparison, logical, and flow of control

operators, define MAX and MIN.

2. Given 0< and 0=, define 0>.

3. Define the new logical operator, NAND, in terms of the current logical

operators AND, OR, and NOT. NAND returns false if both of its

operands are true; otherwise it returns true.

o ONAND.zJ.

-1 0 NAND .

o -i NAND .

-1 -1 NAND .

4. For advanced students—given NAND, define the other logical operators

AND,OR,and NOT.

5. Complete the definition of DAYS described in this chapter. To test days,

store month and year values into the variables MONTH and YEAR and

check your results.

4 (APRIL) MONTH ! 1980 YEAR

DAYS

Don’t forget to test February on a leap year.

Flow of Control 87

6. Here’s a number-guessing game for you to program. The computer starts

with a secret number from 1 to 100. You try to guess the number. With

each guess, the computer responds “WARMER” if the new guess is

closer than the old one, and “COLDER” if it is not. If you guess within

2 of the number, you’re “HOT,” and if you guess the number exactly,

you’re told how many guesses you took. The action looks something like
this:

GAME (Sets the secret number.)

10 COLDER

80 WAR1’R

75 HOT!

73

YOU WON IN 4 GUESSES!

Use RANDOM (from the last chapter) to set the secret number. What is a

reasonable response to the first guess?

8 Loops

A n extension of the idea of taking an action if a condition is true, is to
repeat an action until a condition is true. In flow-of-control terms, this is

called an indefinite ioop. For example, in a dice game you continue to throw

dice until you win or lose.

Indefinite Loops

An interesting conjecture about positive integers is tested in the following

program:

WHATSIT (n) \ Test a conjecture.

BEGIN DUP 1 AND (is n odd?)

IF 3 * 1+ ELSE 2/ THEN

DUP . DUP 1 =

UNTIL DROP

: WHATSIT (n) \ Test a conjecture.

BEGIN

DUP 1 AND (Is n odd?)

IF 3* 1+

ELSE 2/

THEN

DUP. DUP1=

UNTIL DROP

88

Loops 89

We will be showing you all definitions from this point on with appropriate
comments and indentation.

We can summarize the action of WHATSIT thus: “ Pick a number. If the

number is odd, multiply it by three and add one; if it’s even, divide by two.

Repeat with the result you obtain until the result equals one.” The interesting

conjecture is that, although you are multiplying by three but dividing only by

two, the result will eventually equal one. Although we can demonstrate this

for all the positive integers that can normally be expressed in a computer,

to-date no one has proved that it will hold for all integers whatever.

Here’s a breakdown of the elements in WHATSIT:

Word Stack Action

n The starting number.

BEGIN n Marks the beginning of an indefinite loop.
DUP n n Copies n.

1ND nf Flagistrueifnisodd.

IF n Executes the following code IF flag is true;

otherwise, skips to Z[SE.

3 * 1+ n2 Multiplies n by 3 and adds 1. Skips to TIN.
ELSE n Executes the following code (IF flag was false).

2/ n2 Divides n by 2.

THEN n2 Marks the end of a conditional path.

Both IF and ElSE continue here.

DUP . n2 Copies n and then prints it.

DUP 1 = n2 f Creates a true flag if n2 equals 1.

UNTIL n2 Marks the end of an indefinite loop. If

the flag is false, execution will

return to the most recently corriled

.GIN; otherwise, execution continues

with the following code. In other words,

execution repeats at GIN until the

flag is true

DROP Cleans the stack by DROPping the 1.

90 Mastering FORTH, Revised and Expanded

Enter WHATSIT from the keyboard (or LOAD it from a screen) and try it
out.

40 WHATSIT 20 10 5 16 8 4 2 1

25 WHATSIT 76 38 19 58 29 88 44 22 11 34

17 52 26 13 40 20 10 5 16 8 4 2 1

In the BEGIN—UNTIL construct, the test that decides whether the program

exits the ioop is found at the bottom of the loop. This means that the code

sequence within the ioop will always be executed at least once:

1 WHATSIT 1

An alternate form of the indefinite loop puts the loop test at the beginning.
Look at this definition of CLEAR:

CLEAR (?

\ empties the stack.

BEGIN DEPTH WHILE DROP REPEAT

CLE1R (any — none

empties the stack.

BEGIN

DEPTH

WHILE

DROP

REPEAT

Loops 91

Here is CLEAR in more detail:

Word Stack Action

[? Anything could be on the stack here.
BEGIN ? Marks the beginning of an indefinite loop.

DEPTH ? n Leaves the number n of items on the stack, not

including n itself.

WHILE ? Executes the following if n is true, that is, if

there are items on the stack (DTH > 0). If n is

false, execution skips to the word following

REAT.

In other words, the program exits the loop when

the stack is errty.

DROP ? DPs an item from the stack. The stack might now

be empty.

REPEAT Continues execution at the rrost recently compiled

WGIN.

Ends the definition. 1IILE skips to here when it

exits the loop.

Ending The Game

We now have all the programming elements we need to complete the dice

game craps. For your convenience, here is a copy of DICE and FIRST-

THROW from the earlier chapter:

DICE (- n n2)

\ throws two die.

6 RANDOM 1+ 6 RANDOM 1+

VARIABLE POINT \ holds the “point” total.

SORRY!

.“ cRAPS! YOU LOSE!”

WIN!

.“ YOU WIN!”

92 Mastering FORTH, Revised and Expanded

FIRST-THROW (n n2)

continue.\ lose, win or

Only the total counts.+ (total)\

2=DUP

DROP () SORRY!

ELSE DUP 12

IF DROP () SORRY!

ELSE DtiP 3

IF DROP () SORRY!

ELSE DtiP 7 =

IF DROP () WIN!

ELSE DtiP 11

IF DROP () WIN!

ELSE POINT ! ()\ Otherwise.

THEN THEN THEN THEN THEN

If the game continues beyond the first throw, you must keep throwing dice

until the total of a throw is equal to your point (and you win) or else equals

seven (and you lose). A BEGIN—UNTIL construct which plays the game

might look like this:

BEGIN

CR DICE 2DUP . . +

DUP 7 = IF SORRY! TRUE (game over)

POINT @ = IF WIN! TRUE (game over)

FALSE (otherwise keep playing)

THEN THEN

UNTIL

BEGIN

CR

ELSE

DICE (nl n2) 2DtiP . . + (total)

DtiP 7 =

IF DROP () SOPRY! TRUE (true) \ Game over.

POINT @

IF () WIN! TRUE (true) \ Game over.

ELSE FALSE (false)\ Otherwise keep playing.

THEN THEN

UNTIL

BEGIN-UNTIL and BEGIN-WHILE-REPEAT, like IF-ELSE-THEN,

are compile-only constructs. This means that, while you can compile them

into a definition, you could never type them in directly from the keyboard.

IF

ELSE

ELSE

Loops 93

When we give an example like the one above, we do not expect you to try it

out until it appears later within a definition. TRUE and FALSE are

constants. If your FORTH doesn’t include them, their definitions are as
follows:

0 CONSTANT FALSE (boolean false)

-1 CONSTANT TRUE (boolean true)

The TRUE and FALSE are necessary to inform UNTIL whether to

continue playing or not.

The word EXIT lets us simplify situations like this, in which we simply

want to stop playing when the game is over. EXIT exits a definition

immediately, no matter how deeply nested it is within BEGIN-UNTIL,

BEGIN-WHILE-REPEAT, or IF-THEN-ELSE constructs. We can use

EXIT to improve our game.

BEGIN

CR DICE 2DUP . . +

DUP 7 = IF SORRY! DROP EXIT (game over) THEN

POINT @ = IF WIN! EXIT (game over) THEN

FALSE

UNTIL

[BEGIN
CR DICE 2DtiP +

DtiP 7

IF DROP () SORRY!

EXIT (game over)

THEN

POINT @

IF () WIN!

EXIT (game over)

THEN

FALSE

UNTIL

EXIT doesn’t affect the stack, so we need DROP to remove the total of the

dice if we lose. We need FALSE to tell UNTIL to keep playing. In fact,

many FORTHs use the word AGAIN to replace FALSE UNTIL. AGAIN

can be used to emphasize that the only valid exits from our dice loop are

winning or losing.

94 Mastering FORTH, Revised and Expanded

rBEGIN
CR DICE (ni n2) 2DtiP . . + (total)

DtiP 7 =

IF SOPRY! DROP

EXIT \ Game over.

THEN

POINT @ =

IF () WIN!

EXIT \ Game over.

THEN

AGAIN

And now, here is the completed craps program:

: CPAPS

\ the game of craps.

0 POINT

CR DICE (ni n2) 2DtiP . . FIRST-THR

Game won or lost on first throw?)

POINT @ 0=

IF EXIT THEN

BEGIN CR DICE (ni n2) 2DtiP . . + (total)

DtiP 7 =

IF SORRY! DROP

EXIT (Game over.)

THEN (total)

POINT @ =

IF () WIN!

EXIT (Game over.)

THEN

AGAIN

The word EXIT cannot be used to improve FIRST-THROW because

EXIT exits only the word it is in. Win, lose, or otherwise, FIRST-THROW
must return to CRAPS when it is done. The variable POINT is used to

communicate between FIRST-THROW and CRAPS. POINT will be set

to the non-zero point total only if the game is to continue.

Loops 95

Finite Loops

Finite loops are loops which are guaranteed to end after a certain number of

repetitions. They are often used for counting or for repeating an action a

given number of times. Look closely at the following example:

SIX-SHOOTER

a simple DO—LOOP.

6 0 DO CR .“ BANG!” LOOP

: SIX-SHOOTER

\ A sinpie DO— LOOP.

60

DO

CR .“ BANG!”

LOOP

SIX-SHOOTER

BANG!

BANG!

BANG!

BANG!

BANG!

BANG!

DO-LOOPS must follow these rules:

• DO—LOOPs are compile-only constructs, and are always used within a
definition.

• Every DO must have a LOOP, just as every IF must have a THEN.

• The upper limit of the loop (6) appears first in the structure.

• The lower limit or index (0) appears second. This number is incremented

each time the loop is repeated.

• The actions to be executed appear between DO and LOOP.

96 Mastering FORTH, Revised and Expanded

The Return Stack

Before we continue our discussion of finite ioops we need to look at the

internal FORTH stack called the return stack. FORTH uses this stack to keep

track of program execution whenever one word calls another. For example,

in the word CRAPS, before FORTH executes FIRST-THROW, it first

pushes an address onto the return stack. This return address tells FORTH
where in CRAPS to continue execution when it returns from FIRST-

THROW. FORTH pops the return stack and returns to this address whenever it
executes either a semicolon or an EXIT.

To avoid confusion, we will continue to call the normal FORTH stack the

parameter stack, or the data stack, or simply, the stack. When we refer to the

return stack, we will call it by its full name, the return stack.

The return stack can come in quite handy as an extra stack. Three words are

provided in FORTH to let you use this stack.

Word

>R

Stack

n

Action

(“to-R”) removes the top item from the parameter stack and pushes

it onto the return stack.

R> n (“R-from”) removes the top item from the return stack and pushes

it onto the parameter stack.

R@ n (“R-fetch”) copies the top item of the return stack to the parameter
stack.

If you use the return stack, you must use it carefully:

• >R, P.>, and R@ should only be used within a definition.

• Items pushed on the return stack before entering a DO—LOOP cannot be

accessed while in the loop.

• Items pushed on the return stack from within a DO—LOOP must be

removed before terminating the loop.

• The return stack must be restored to its original state before leaving a
definition with a semicolon or EXIT.

Loops 97

You can define a word which multiplies three coordinates by a scaling factor
like this:

3DTIMES (xyzn-nxnynz)

DUP >R * ROT

R@ * ROT

* ROT

:r : 3DTIMES (xyzn-nxny nz)
DUP>R * (xynz) ROT (ynzx)

R@ * (y nz nx) ROT (nz nx y)

* (nx ny) ROT

DO—LOOPS also use the return stack to keep track of the progress of the

loop. Study this definition of SIGMA, to see how the two stacks work

together.

SIGMA (n - n2)

\ sum the integers from 0 to n-i.

DUP 0= IF EXIT THEN (exceptional case)

0 (running total) SWAP 0 (initial index)

DO I + LOOP

: SIGMA (n - n2)

\ sum the integers from 0 to n—i.

DtiP 0-

IF EXIT THEN (Exceptional case.)

0 SWAP (sum n) 0 (Initial index.)

DO (sum)

1+

LOOP

0 SIGMA .

i SIGMA . (0)

2SIGMA.1 (0+i)

5SIGMA . (0+i+2+3+4)

98 Mastering FORTH, Revised and Expanded

Word Stack Actionn

is the upper limit plus 1.

DtiP O- n flag If n is zero,

IF EXIT THEN ... do something reasonable.

o n sum Initializes the running total.

SWAP 0 sum n 0 The top two items on the stack

specify an initial count value (index) of 0,

and an upper limit of n-i.

DO sum Marks the beginning of the loop. The

initial value and upper limit are moved

to the return stack.

I sum I The current index of the loop is copied

from the return stack to the parameter

stack by the word I.

+ sum Adds I to the running total.

LOOP sum First, adds i to the current index (on

the return stack). If the current index

then equals the upper limit, the index

and limit are rerroved from the return

stack and execution continues with the

next word; otherwise, execution returns

to the rrost recently conpiled DO.

sum Ends the definition and returns to the address

popped from the return stack, as usual.

By using the return stack, DO—LOOPs don’t clutter up the data stack with the index and

limit of the loop.

Here are two other ways in which SIGMA could be defined.:

SIGMA (n — sum)

\ Sum the integers from 0 to n-i.

DUP

IF

0 SWAP (sum n) 0

DO (sum)

1+

LOOP

THEN

SIGMA (n — sum)

\ Sum the integers from 0 to n-i.

Dtipi_* 2/;

Loops 99

The word +LOOP lets you increment the loop index by any integer. +LOOP

is used like LOOP, except that it adds the number it finds on top of the stack

to the ioop index each time through the loop. For example, to count from 1 to

20 by 3, use the DO-+LOOP sequence in 20-BY-3.

20-BY-3

211 DO I. 3+LOOP;

21 1

DO

20-BY-3

I.

3

+LOOP ;

20-BY-3 1 4 7 10 13 16 19

+LOOP exits the loop when the index crosses the boundary between the

limit minus 1 and the limit—that is, it stops the loop just after it increments

the index from 19 to 21, which crosses the boundary between 20 (the limit

21 minus 1) and 21. In fact, the DO—LOOP is just a special case of the DO—

+LOOP in which the increment is always one.

It’s easiest to picture the action of LOOP and +LOOP

if you think of the integer numbers arranged in a circle,

with the largest possible integer connected to the smallest

possible integer. When the loop prints the 19, +LOOP

tries to move the index up 3 (to 22), but in the process it

crosses the border between 20 (limit minus 1) and 21

(limit) and so does not return to the DO. Because LOOP

checks only for boundary crossing, it can count and index

memory addresses as easily as it counts integers.

+

100 Mastering FORTH, Revised and Expanded

Such an image also helps explain why, when the ioop parameters are set, the

upper limit should always be a number greater than the index. If you set up

loop parameters such as 3 and 3, for example, the loop would begin at 3 and

continue around all possible integers until it stopped at 2, which is probably

not what you had in mind. MacFORTH DO tests for this condition. If the

limits are the same, the loop is skipped. Po1yFORTH DO-LOOPs would

execute only once.

Errors such as these can be tricky to spot. An incorrect definition of CLEAR

using a DO-LOOP would be

CLEAR (?

\ empties the stack.

DEPTH 0 DO DROP LOOP

This version of CLEAR correctly empties the stack as long as there are

items to be DROPped. But if the stack is empty, the loop index and limit will

both be 0, and far too many items will be dropped.

One way to fix this problem would be to insert an IF-THEN clause that

would check the stack for 0 items before giving the go-ahead to run the loop.

CLEAR (?

\ empties the stack.

DEPTH ?DUP IF 0 DO DROP LOOP THEN

: CLEAR (?

\ Empties the stack.

DEPTH ?DtiP

IF

0

DO

DROP

LOOP

THEN

A shorter and neater way to handle the problem is to use the word ?DO

(“question-do”), which will start a loop only if the upper limit is unequal to

the initial index. UR/FORTH, MasterFORTH, and L & P F83 all support the

?DO—LOOP construct. With ?DO, CLEAR looks like this

Loops 101

CLEAR (?)

\ empties the stack.

DEPTH 0 ?DO DROP LOOP ;

: CLE1R (?

\ Empties the stack.

DEPTH 0

?DO

DROP

LOOP

Nested Loops

Loops, like IF-ELSE-THEN constructs, can be nested to any level. You

could use a nested loop to take a list and compare each item in that list with

each item in a second list. To do this, you will need both an inner and an

outer loop index. The word I always gives you the innermost loop index.

while the word J gives you the index of the next outermost loop. The word

ODDS uses nested loops this way to examine probabilities in dice-throwing.

ODDS (sum - n)

\ there are n ways to make the sum by throwing 2 dice.

o (the initial n)

71

DO (outer loop)

71

DO (inner loop)

DUP I J + = (dice total=sum?)

IF SWAP 1+ SWAP THEN

LOOP

LOOP

DROP CR . .“ OUT OF 36 WAYS “

102 Mastering FORTH, Revised and Expanded

ODDS (sum — n)

\ Display how many ways to make sum by throwing 2 dice.

0 (sumn)

71

DO

71

DO

OVER I J + = (Sum = dicetotal?

IF 1+ THEN

LOOP

LOOP

SWAP DROP (n) CR . () .“ OUT OF 36 WAYS “

4 ODDS

3 OUT OF 36 WAYS

2 ODDS

1 OUT OF 36 WAYS

If you are nesting more than two ioops, you will need to use variables or the

data stack itself to hold a copy of the additional loop indices.

Leaving Loops

DO—LOOP uses the return stack to hold the index and limit of a loop. This

places two important restrictions on what can be done from inside a DO-
LOOP:

• Any item pushed onto the return stack before entering the loop cannot be

reached from inside the loop. The following sequence is meaningless:

>R DO R@ LOOP R>

• Any item pushed onto the return stack after entering the loop prevents the

loop index from being reached. The following sequence is also meaningless:

DO 0 >R I R> DROP LOOP

Loops 103

• The word EXIT cannot be used from inside a DO-LOOP. The return

address cannot be reached.

You can, however, terminate execution of a DO—LOOP at any time with the

word LEAVE. Before leaving a DO-LOOP, you must remove any items

you have pushed onto the return stack from within the loop. LEAVE leaves

the loop immediately, but does not exit the definition itself. You can use it to

search an array for a match with a given key as follows:

CREATE KEEPERS 100 ALLOT (50 cells)

MATCH (key - index true or 0)

\ find key in KEEPERS.

\ Returns index and true if key is found;

\ otherwise returns only false.

FALSE (assume no match) 50 0

DO DROP DUP KEEPERS I + @ = (match?)

IF I SWAP TRUE LEAVE

THEN FALSE 2 (two bytes per cell)

+LOOP

SWAP DROP (drops key)

CREATE KEEPERS 50 CELLS ALLOT

: MATCH (key — index true, or false)

\ Find key in KEEPERS.

\ Returns index and true if key is found;

\ otherwise returns only false.

FALSE (key false) 50 CELLS 0

DO

DROP (key) DUP KEEPERS I + @ = (match?)

IF I SWAP (index key) TRUE (index key true)

lEAVE

THEN (key)

FALSE (key false)

CELL (key false cellsize)

+LOOP (index key true, or key false)

SWAP DROP (index true, or false)

If the key is found, execution leaves the loop but remains in MATCH to drop

the key. In the case of nested loops, LEAVE leaves only the loop which
contains it.

104 Mastering FORTH, Revised and Expanded

UNDO

A string search is a classical programming problem. When you search for

characters in a string, you generally use a DO—LOOP. You leave the ioop in
one of two circumstances:

1. The search is successful. You leave the loop immediately.

2. The search fails. You leave the loop because it is exhausted.

The problem is that once you have left the loop, how do you know if the
search was successful?

One solution is to maintain a flag on the stack.

SEARCH

0 (flag) ROT ROT

DO DROP (compare strings here) =

IF TRUE LEAVE THEN 0 (flag)

LOOP

If the search is successful, the flag will be true.

A better solution is to leave the loop and the word that contains it as soon as
the search is successful.

SEARCH

DO (compare strings here) =
IF TRUE UNDO EXIT THEN

LOOP FALSE

The command UNDO undoes the loop by discarding the index, limit, and

any other loop items on the return stack before leaving the word with EXIT.

Only ZEN includes UNDO in its word set. Po1yFORTH would define UNDO

this way:

UNDO R> 2R> 2DROP >R

MacFORTH, URJFORTH, and L&P F83 would define this way:

UNDO R> R> R> R> 2DROP DROP >R

Loops 105

UNDO has the additional charm that it can leave a word from a nested loop,
asin UNDO UNDO EXIT.

Word Stack Action

BEGIN Used in a definition in the form BEGIN-UNTIL or

WHILE flag BEGIN-WHILE-REPEAT. Marks the start of a word sequence

for repetition. A BEGIN—UNTIL loop executes until flag is

true;

REPEAT a BEGIN—WHILE—REPEAT loop executes until the flag is
false.

When the loop finishes, execution continues with the word

following the

UNTIL flag UNTIL or REPEAT.

EXIT Exits a definition immediately.

AGAIN Used with BEGIN in the form BEGIN-AGAIN to mark a

word sequence for indefinite execution.

DO limit n Used in the form DO-LOOP or DO-+LOOP

Marks a word sequence for repetition until the loop index,

(initially n) crosses the boundary between the loop limit and
the limit-i.

LOOP LOOP increments the index by i with each repetition.

+LOOP n adds the increment on top of the stack to the index with each

repetition.

When the loop finishes, execution continues with the first

word following LOOP or +LOOP.

I - i Copies the loop index of the innermost ioop to the stack.

- j Copies the loop index of the next outermost loop to the stack.

?DO limit n Used in the form ?DO-LOOP or ?DO-+LOOP. ?DO,

unlike DO, skips the loop if the initial index n equals the limit.

LEAVE Leaves the innermost DO-LOOP or DO-+LOOP immediately,

but does not leave the definition.

UNDO Discard all loop parameters on the return stack in preparation

for leaving a word with EXIT.

106 Mastering FORTH, Revised and Expanded

Exercises

1. The ACME Pack-Me company packs products into boxes. If a box of the

proper size is not available, the next largest size will do. Boxes range in

size from 0 to 9, and the following quantities are on hand (in the initialized

array BOXES):

CREATE BOXES

3,2,0,4,0,1,4,2,2,3,

In other words, there are currently 3 boxes of size 0, 2 of size 1, etc.

Define a word BOX? which, when a box size is requested, returns the

actual size to use and decrements BOXES accordingly.

5 BOX? (use size 5)

5 BOX? (no more size 5 SO use size 6)

If there are no suitable boxes at all, say so.

2. Write the word STARS which prints a given number of asterisks on a
line.

6 STARS ******

3 STARS ***

3. Define the utility word BOUNDS which, given a starting address and

length in bytes, converts them to a form suitable for examining a range of
addresses with a DO-LOOP.

8050 (address) 10 (count) BOUNDS .S

8060 8050 <-Top

Loops 107

4. Write the word HISTOGRAM to display the elements of an array in

histogram form. Histogram expects the starting address and number of

cells in the array to be on the stack. For each cell, it prints a line of stars,

the number of stars equal to the number in the cell. If you apply

HISTOGRAM to the BOXES array from the first exercise, you would
see

BOXES 10 HISTOGRAM

**

*

**

**

Limit the number of stars to a reasonable value.

9 Moreon Numbers

o far we have been working with integer or single-precision arithmetic.

Most programming requires only integer arithmetic, even if you might think

that the problem would require larger or more accurate numbers.

Numbers like 121.08 and 894 5/8 are called rational numbers; they aren’t

integers but can be expressed as the ratio of two integers. 121.08 is the same

as 12108/100, and 894 5/8 is the same as ([8 * 8941 + 5)18 or 7 157/8. In

FORTH we can represent this second number in two ways:

894 5 8 / +

or

894 8 * 5 + 8 /

Either of these computations gives you 894, because the / function drops

the fractional part of the quotient. Now try multiplying 894 5/8 by 2, using

these two different computations (the exact answer is 1789.25).

894 8 * 5 + 8 / 2* . 1788

8948 * 5+2*8 / .1789

What happened? In the first example, / dropped the fraction before the

calculation was complete, and the answer came out too low.

108

Moreon Numbers 109

It’s usually more accurate to divide after multiplying.

Another sort of calculation you may want to do is percentages. What is

37% of 182? To solve this on paper you would multiply 182 by 37 and

divide by 100 to get 67.34. Let’s write a FORTH word to do percentages.

% (nn2 — n3) * 100 /

182 37 % . LI

So far, so good. Now try 37% of 1820 (it should be 673.4).

1820 37 % . ir

What happened? The word % multiplied 37 by 1820, giving 67340. But this

is larger than the largest positive single number, 32767, so a meaningless

product was left on the stack.

Double Numbers

What we need is a 32-bit number, or double number, to hold the intermediate

product until the calculation is complete. Double numbers range from

—2,147,483,648 to +2,147,483,647. This range is large enough to hold any

possible product of two single numbers.

The FORTH-83 Standard double-number extension provides a rich set of

double-number operations. We have already seen the stack manipulators

2DUP, 2DROP, 2SWAP, 2OVER, and 2ROT.t We have also seen the

memory operators 2!, 2@, 2CONSTANT, and 2VARIABLE. There are

double-number equivalents to many of the other operators we have studied.

MacForth 32-bit precision is sufficient for most calculations. For this reason,

MacForth does not include any double-number math operators.

* MacForth 32-bit single-precision integers will correctly calculate 673 as the answer.

t MacForth does not include 2ROT.

110 Mastering FORTH, Revised and Expanded

Word Stack

D+ dd2-d3

D- dd2-d3

DMAX dd2-d3

DMIN dd2-d3

DABS d-d2

DNEGATE dl — d2

D2/ d-d2

D. d

D< dd2-flag

D= dd2-flag

DO= d-flag

Many FORTHs also provide:

D2* dl—d2

Action

d3 equals d plus d2.

d3 equals d minus dl.

d3 is the greater of d and d2.

d3 is the lesser of d and d2.

d2 is the absolute value of d.

changes the sign of d.

Divides d by 2.

Prints d.

Returns true if d is less than d2.

Returns true if d equals d2.

Returns true if d is 0.

Multiplies d by 2.

Given these operators, many others can be defined, for example:

D> (d d2 - f) 2SWAP D<

When a double number is pushed on the stack, the most-significant high-

order cell is pushed on top of the least-significant low-order cell. A single

number can therefore be extended to a double number by pushing a zero on

top of it if it is positive, or a minus one if it is negative. The word S>D (“Sto-D”)

does exactly that. S>D assumes that true is represented by -1. Some

older FORTHs use 1 instead. If so, the definition of S>D changes to

S>D DUP 0< NEGATE

You may wish to add the appropriate S>D to your prelude.

S>D (n - d) DUP 0< ;

More on Numbers 111

This is the only way that double numbers can be created under the FORTH-

83 Standard. However, in many FORTHs, ending a number with a decimal

point automatically converts it to a double number.

1S>D. .LJ.

1 S>D D. 1

1. D. 1

700000. D. 700000

When a double number is stored in memory, the high-order cell is stored at
the low-order address.

2VARIABLE TWOSOME

3 S>D TWOSOME 2!

TWOSOME 2@ D.

TWOSOME @ .

TWOSOME 2+ @ .

The word */ (“star-slash”) combines the multiplication and division we

need for fractions or decimals but uses a double-number intermediate product

to ensure accurate results.* The divisor must be on top of the stack and

the multiplier just underneath. Compare these two calculations:

15000 10 * 5 / . 3785 (wrong

15000 10 5 */ 30000 (correct

Let’s rewrite % using *1.

PERCENT (n n2 - n3) 100 */

1820 37 PERCENT

We can also use *1 to calculate the the area of a circle, given its radius.

Integer numbers can’t represent it as 3.14 159... but we can substitute 31416 /
10000. The formula for the area would then be

AREA (n - n2)

DUP * 31416 10000 */

* MacForth uses a 64-bit intermediate product.

112 Mastering FORTH, Revised and Expanded

Surprisingly, it is possible to get even better precision by using 355/113 for it

instead of 31416/10000. Many mathematical constants can be expressed as

the ratio of two single numbers.

Constant Value Substitution

it 3.141592 355/133

J2 1.414213... 19601/13860

J3 1.732050... 18817/10864

e 2.718281... 28667/10546

\J10 3.162277... 22936/7253

Rounding

At times, we need to know how large the remainder of a division is. For

example, this remainder might represent pennies left over from a compound

interest calculation. Or we might need to examine the size of the remainder

to determine whether we should adjust or round the quotient before we
discard or truncate the remainder.

The word */MOD (“star-slash-mod”), like /MOD, leaves the remainder on

the stack, just underneath the quotient. Unlike */, it uses a double-number

intermediate product. We can then use the remainder to round a result to the

nearest single number.

ROUND% 100 */MOD SWAP 50 + 100 / +

Look at how this works with a real problem, say 15% of 3518.

Moreon Numbers 113

Stack Action

3518 15 Pushes arguments on the stack.

100 * /MOD Multiplies 3518 by 15, giving an intermediate double number. Divides

this product by 100, leaving a quotient (527) and a remainder (70) with

the quotient on top. The remainder will be between 0 and 99.

SWAP Swaps the quotient and the remainder so you can test the remainder for
size.

50 + Adds 50 to the remainder, leaving a sum between 50 and 149.

100 / Divides the modified remainder by 100, leaving a quotient of either 0 or
1 on the stack.

+ Adds the new quotient to the old quotient. If the new quotient is 0 (that

is, if the original remainder was less than 50) the old quotient remains

unchanged; if the new quotient is 1 (that is, the original remainder was

equal to or greater than 50) the old quotient is rounded up.

Check and see what your answer is.

3518 15 ROUND%

Sometimes you must round up. Say you are planning a school for 2450

students. You know that 7% of Americans are left-handed, and you want to

plan for an adequate number of left-handed desks.

ROUNDUP% (n n2 - n3)

100 */MOD SWAP 99 + 100 / +

2452 7 ROUND% .

2452 7 ROUNDUP% .

Adding 99 to the remainder instead of 50 ensures that if there is any remainder

at all, the program will round up the number.

114 Mastering FORTH, Revised and Expanded

Unsigned Numbers

Signed integers are 16-bit numbers ranging from -32768 to 32767. The leftmost

bit, called the sign bit, indicates whether the number is positive or

negative. This bit can be used instead as an ordinary number bit. The 16-bit

unsigned number that results can represent the full range of 16-bit values

from 0 to 65535. 32-bit unsigned numbers range from 0 to 4294967295.

Whether or not a number is signed 16-bit or unsigned 16-bit is merely a

question of how you look at it. To print a number as if it were unsigned, use

U. (“U-dot”) instead of . . *

20000 20000 + . -25536

20000 20000 + U. 40000

-1 U. 65535

To create an unsigned number, just type it in.

40000 U. 40000

Memory addresses are considered to be unsigned numbers. That’s why the

memory space of most small computers is 65535 bytes or 64K (one K is 1024

bytes—the tenth power of 2). Fortunately, the operators + and — work for

both signed and unsigned numbers, so you can correctly add an offset to an

oc1

1aOcb1

L1IIIii1iiiIiIii-:L

49,152

I

16,384

* MacForth does not support unsigned number operators.

Moreon Numbers 115

address with + . Many other single-number operators work correctly with

unsigned numbers, such as = and 0=. Unfortunately, you can’t compare
two addresses with <.

30000 40000 < .

That’s because < interprets 40000 as the signed integer -25536. Use U<

(“U-less-than”) instead.

30000 40000 U< .

The unsigned operators required by the FORTH-83 Standard are:

Word Stack Action

U. u Prints an unsigned number.

U< u u2 - f Returns true if ul is less than u2.

DU< ud ud2 - f Returns true if ud is less then ud2. This is the double-number

equivalent to U<.

UM* u u2 - ud Multiplies u by u2 to give the unsigned double-number product

ud. All values are unsigned.

UM/MOD ud u - u2 u3 Divides the double-number ud by u to give the quotient u3 and

the remainder u2. All values are unsigned.

The mixed-number operators UM* (“U-M-star”) and UM/MOD (“U-Mslash-mod”)

are the FORTH primitives for multiplication and division. They

are usually faster than the equivalent signed operations when all values are

known to be unsigned.

TENTH C n - n2 n3)

\ divides n by 10. Leaves rem and quotient.

0 (makes n an unsigned double number)

10 C 10 is unsigned, too)

UM/MOD

123 TENTH . . 12 3

116 Mastering FORTH, Revised and Expanded

Changing Bases
Decimal numbers are also called base 10 numbers because they are based on

the number 10. Computers usually translate decimal numbers to sequences of

zeroes and ones, which are called binary or base 2 numbers. Sometimes you

need to know exactly which pattern of bits a computer is using to represent a

certain quantity. Rather than deal with long and often confusing binary numbers,

you can group the bits four at a time into a single digit of the hexadecimal

or base 16 system (hex for short). Here are the 16 possible combinations
of four bits:

Binary Decimal Hex Binary Decimal Hex

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

Any 16-bit memory address can be represented by four hex digits. How

many of the se hex va lues do y ou recognize?

Hex Decimal Interpretation

0000 0 The number zero.

00FF 255 The highest possible 8-bit value.
7FFF 32767 The largest positive signed 16-bit number.
8000 -32768 The largest negative signed 16-bit number.
FFFF -1 The number minus one.

FFFF 65535 The largest unsigned 16-bit number; also the highest

possible 16-bit memory address.

Moreon Numbers 117

FORTH uses a special variable called BASE to decide which numeric base

to use for interpreting and displaying numbers. Normally, numbers are treated

as decimal numbers. You can make sure this is true by using the word

DECIMAL. Here is a probable definition for DECIMAL (assuming you are

somehow working in decimal in the first place):

DECIMAL 10 BASE

Some of these alternate base commands are probably also included in your

dictionary:

:BINARY 2BASE!

OCTAL 8 BASE

HEX 16BASE

Numeric conversion is easy in FORTH.

10001123 CR DUP BINARY . HEX .
>

BASE illOlliE BASE
[16] 1101

If you enter a number in hex, you should precede it with an extra 0 digit so

that it doesn’t accidentally look like something it shouldn’t—better ODEAD
than DEAD.

Here are two useful words which use BASE. Both words fetch and restore

BASE so that they can display numbers in a given numeric base without

disturbing the current BASE. The first word prints the current numeric base
in decimal:

BASE? BASE @ DUP DECIMAL . BASE !

HEX BASE? 1

DECIMAL BASE?)Q

118 Mastering FORTH, Revised and Expanded

The second word displays a range of bytes starting at a given memory address.

DUMP C a n

BASE @ >R HEX (save BASE

CR .“ ADDR: “ OVER U. C starting address

CR OVER + SWAP C print each byte

DO I C@ U. LOOP

R> BASE ! ; (restore BASE

If you were to DUMP the beginning of the POSTAGE-TABLE we created

in an earlier chapter, you would see something like this:

POSTAGE-TABLE 8 DUMP*

Addr: 2B40

0 28 28 28 3C 50 64 78

Word Stack Action

*/MOD n n2 n3 - n4 n5 Multiplies n by n2, then divides by n3 leaving remainder

n4 and quotient n5. Uses a double-number

intermediate.

*/ n n2 n3 - n4 Like */MOD, but leaves the quotient only.

BASE - a Variable containing the value of the current numeric

base for all input and output conversion.

DECIMAL Changes the current numeric base to decimal.

Exercises

1. Write the word GROWTH? which determines how long it takes a number

(use 1000) to double for a given percent of growth. GROWTH? will act
like this:

* MacForth DUMP expects starting and ending address as arguments.

To see POSTAGE-ThBLE, use POSTAGE-ThBLE DUP 8 + DUMP.

Moreon Numbers 119

15 GROWTH?

1000 grows as 1150, 1322, 1520, 1748, and 2010.

2. The volume of a cone is given by the formula

V = (it * r2 * h) / 3

where V is the volume, r is the radius, and h is the height. The

volume of a sphere is given by

V = (4 * it * r3) / 3.

Define the words

CONE (r h - V) and

SPHERE (r - V).

3. Define D>S which truncates a double number to a single number. The

definition is surprisingly short.

4. Create the operator D” which compares two double numbers for approximate

equality. The amount by which the two numbers can differ and

still be considered equal is stored in the variable FUDGE.

2 FUDGE

3 S>D 4 S>D

3 S>D 5 S>D

3 S>D 7 S>D

5. Write a smart . S which examines the current BASE and prints signed

numbers if the base is decimal; otherwise it prints unsigned numbers.

DECIMAL

1 2 -3 .S

STACK: 1 2 -

HEX .S

1 2 FFFD

120 Mastering FORTH, Revised and Expanded

6. Define four operators C+ C— C* and Cl to add, subtract, multiply, and

divide complex numbers. A complex number is represented as a pair of

numbers, real and imaginary magnitudes, with the imaginary magnitude on

top. Complex mathematics follows the formulas

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) - (c + di) = (a - c) + (b - d)i

(a + bi) * (c + di) = ((a * c) - (b * d)) + ((a * d) - (b * c))i

(a + bi) / (c + di) = (a * a) + (b * d) + ((b * a) - (p * dfli

c2 + d2 c2 + d2

7. Temperature conversion between Centigrade and Fahrenheit follows these
rules:

°C = °F - 32 °F = (°C * 1.8) + 32

1.8

Write the words C>F and F>C to convert from Centigrade to Fahrenheit

and back again. Your words should be as accurate as possible. Hint: scale

intermediate numbers by 10.

8. You decide to carpet your house. Since carpeting is sold by the square foot,

you measure each (rectangular) room to find its dimensions in feet and

inches. Define a word which converts these measurements to square feet.

15 FEET BY 18 FEET 4 INCHES ROOM?

275 SOUARE FEET

There are 144 square inches in a square foot. Hint: Let FEET and INCHES

accumulate a total of inches. ROOM? expects to find two such totals on the
stack.

1 0 Strings

FVI
We have already seen how . interprets the top stack item to be a signed

integer, while U. interprets the same pattern to be an unsigned integer. The

word EMIT interprets the top stack item as a printable character and prints it

on the display.

65 .

65 EMIT

FORTH uses the 7-bit ASCII (American Standard Code for Information

Interchange) patterns to represent printable characters. Any higher-order bits

are usually 0, but may have a system-dependent meaning, like blink this
character.

121

122 Mastering FORTH, Revised and Expanded

LSD

ASCII Character set (7-bit codes)

0 1 2 3 4 5 6 7

0

2

3

4

5

6

7

8

9

A

B

C

D

E

F

sp 0

1 A

2 B

3 C

$ 4 D

% 5 E

& 6 F

7 G

(8 H

) 9 I

*
: J

Escape + ; K

< L

- = M

> N

/ ? 0

p p

Q a q

R b r

S c s

T d t

U e u

V f v

W g w

X h x

Y i y

z j

[k

1 I

I m

A

0 Rubout

To use this chart, locate the character you want to display. The column gives

you the most-significant hex digit (MSD), and the row gives you the least-

significant digit (LSD) of the ASCII code. For example, the code for small-z

is 7A (column 7, row A). The first printable character is the blank space (SP

at hex 20).

The ASCII codes in the first two columns are for non-printing control-characters.

They are named after the corresponding printable character found by

adding hex 40 to the control character. For example, 07 is called control-G.

The control characters also have special names, some of which appear in the

chart above. Hex OA (control-J) is called Linefeed, for example, because it is

often used to reposition a cursor (or printer) to the left side of the current
line.

You can display all the printable characters on your terminal with the word
CHARACTERS.

MSD

Null

Bell

Backspace

Tab

Linefeed

Formfeed

Return

CHARACTERS 128 32 DO I EMIT LOOP

Strings 123

Many FORTHs support the command ASCII, which converts the character

following it to an ASCII code and leaves it on the stack.

ASCII A .

ASCII also works within a definition.*

DASHED-LINE 14 0 DO ASCII - EMIT LOOP

CR DASHED-LINE

Note that the last definition is equivalent to this one:

DASHED-LINE2 .“

The .“ word is compile-only, which means it can only be used within a

definition. The equivalent word for use outside a definition is . ((“dotparen”).
MacForth uses .“ both inside and outside of definitions

CR . (ECHO ME!)

ECHO ME!

The word . (is useful for printing a message while LOADing a screen.

Notice that it requires a matching) as the trailing delimiter.

Keyboard Input

One of the input primitives of FORTH is KEY, which waits for a key to be

pressed, then leaves the ASCII code for that key on the stack. Type in the

following line, then press <RETURN>:

KEY

No Q appears. KEY is waiting for you to press a key, so press “A”.

65 Ok

* poIyFORTH uses [ASCII] within a definition.

124 Mastering FORTH, Revised and Expanded

FORTH accepts the key immediately and prints Q.

If the ASCII code returned by KEY is larger than 127 (hex 7F), then some

high-order bits have been set by your system. You can screen out or mask off

these bits with 127 AND. The expression KEY 127 AND is guaranteed to
leave a 7-bit ASCII code on the stack. We will talk more about masks and bit

manipulation in a later chapter.

Try the simple word ECHO:

ECHO

BEGIN KEY DUP 127 AND EMIT 13 (<Return>) =

UNTIL

Control-M (13) is the <RETURN> key. Type ECHO, then type “ABC” and

press <RETURN>.

ECHO

Many FORTHs also provide a word that checks to see whether a key has

been pressed without waiting for one. The word is called KEY? or something

similar,* and leaves a flag which is true if a key has been pressed. You

can use this word to allow yourself to interrupt a long ioop by pressing a key.

ENDLESS

10000 0

DO I . KEY? IF LEAVE THEN LOOP

KEY DROP

ENDLESS 0 1 2 3 4 5 (key pressed here) Qk

The KEY DROP sequence is used to clear the unwanted key.

FORTH also provides the word EXPECT which reads an entire line from

the keyboard. EXPECT reads each key in turn and moves it to a memory

buffer of your choice until either a <RETURN> is pressed or the buffer is
full. The number of characters read is stored in the variable SPAN. The

<RETURN> itself is neither counted nor moved. EXPECT provides simple

editing to allow the user to correct mistakes before hitting <RETURN>. This

* UR/FORTH and MacForth use ?TERMINAL while poIyFORTH uses ?IY.

Strings 125

includes recognizing and handling <Backspace> (control-H). Let’s write

a simple routine that uses EXPECT. We will need a buffer to hold the

characters and a word to set up the arguments.

CREATE BUF 80 ALLOT (80-byte buffer)

READLINE

CR BUF 80 (a n) EXPECT

CR SPAN ? .“ Characters were read”

Execute READLINE <RETURN>, then type “A SIMPLE LINE”, followed

bya <RETURN>.

READLINE

A SIMPLE LINE

13 Characters were read

A word called QUERY which works very much like READLINE is used by

FORTH to read the next line of text to be interpreted. The characters are

stored in the array whose address is given by TIB, and the count is stored

in the system variable #TIB. MacForth keeps the count in the variable
TIB. SIZE.

String Representation

When READLINE reads a line from the keyboard to a buffer, a single 7-bit

ASCII code is stored in each consecutive byte of the buffer, with the high-
order bit cleared to 0.

A LINE
t t t t t

BUF +2 +4 +6 +8

The expression BUF SPAN @ gives the address of the first byte of the

buffer and the number of bytes actually read into BUF. The phrase SPAN @

is usually used in a definition, since it may be changed by the FORTH

interpreter with every line you type. These two arguments, starting address

and length, exactly represent a consecutive sequence (or string) of ASCII

characters in memory. We will call this pair of arguments a text string. In

stack notation, we will refer to a text string as (a n).

126 Mastering FORTH, Revised and Expanded

You can display a text string with the command TYPE. EXPECT a string

into BUF and then TYPE it out on your display.

ECHO-BUF CR BUF 80 EXPECT CR BUF SPAN @ TYPE

ECHO-BUF

A SIMPLE LINE

A SIMPLE LINE

You could also have examined the string with DUMP, since DUMP expects

the same arguments as TYPE, that is, starting address and length. MacForth

users, don’t forget that DUMP wants the starting and ending addresses, as in

BUF DUP SPAN @ + DUMP. In fact, strings are often used to represent

arrays of arbitrary bytes as well as sequences of ASCII characters.

Moving and Filling Strings

The word MOVE is the primitive for moving sequences of bytes from one

memory location to another, one byte at a time. MOVE needs the from

address, the to address, and the number of bytes to move. The byte at the

lowest memory address (the leftmost byte) is moved first. If the from and to

memory areas overlap, MOVE may end up moving bytes which have

already been moved.

You can exploit this effect to fill an arbitrary memory area with a repeating

pattern of your choice. If you want to build a string of 10 stars in BUF, first

put a star in the leftmost byte.

ASCII * BUF C!

Now MOVE for9morebytes.

BUF BUF 1+ 9 CMOVE

Check your results.

BUF 10 TYPE **********

Strings 127

_____ the first byte is moved.
t t t t t

BUF +2 +4 +6 +8

etc.

t t t t
BUF +2 +4 +6 +

Here are some common FORTH words based on MOVE:

FILL (a n c)

\ fill memory with n bytes of pattern c.

\ Only the low-order byte of the pattern is used.
OVER 0= IF DROP 2DROP EXIT THEN

SWAP >R OVER C! DUP 1+ R> 1- CMOVE

ERASE (an) 0FILL;

\ fill memory from address a with n zeroes.

BLANK (a n) BL FILL ;*

\ fill memory from address a with n blanks.

Most FORTHs include the constant BL (32) for an ASCII blank.

To move a string safely when the to address is higher than the from address,

use MOVE> (“C-move-up”).t MOVE> is identical to MOVE, except

that the rightmost byte is moved first.

Packing Strings

Each string you read with READLINE replaces the previous string that was

stored in BUF and resets SPAN. If you want to save a string, you must

move the characters from BUF to another memory location. You must also

save the character count or length of the string. The preferred format for

saving strings in memory is to store the length in the first byte of an array,

followed by the characters in the string. Storing “A SIMPLE LINE” would

look like the example at the top of the following page.

* poIyFORTH users should add 32 CONSTANT BL to their prelude.

poIyFORTH uses <aEVE instead.

128 Mastering FORTH, Revised and Expanded

13A LIINE
t t t t t

BUF +2 +4 +6 +8

A string in this form is called a counted string. Since oniy one byte is used to

hold the length, the maximum length of a counted string is 255 characters.

Zero-length strings are allowed and are called null strings.

Let’s create a second buffer and pack the string in BUF and SPAN into it.

CREATE BUF2 81 ALLOT (one more byte for count)

BUF BUF2 1+ SPAN @ CMOVE (move the chars)

SPAN @ BUF2 C! (save the length)

This is even easier if you first define the word PLACE.

PLACE (a n a2)

\ pack string a n into counted string a2.

2DUP >R >R 1+ SWAP CMOVE> R> R> C! ; *

BUF SPAN @ BUF2 PLACE

Now you can refer to a string simply by pushing the address of the counted

string on the stack. An address used to refer to information this way is called

a pointer. We can say that the address left by BUF2 points to a counted

string. The word COUNT converts the counted string back into the more

useful text string argument pair.

BUF2 COUNT TYPE A SIMPLE LINE

COUNT could be defined this way:

:COUNT(a-a+ln) DUP1+SWAPC@;

You can convert a text string back into a counted string with the expression

DROP 1—, but only if you’re sure that the string was counted to begin with.

* A shorter definition is possible:

PLACE 2DUP C! 1+ SWAP MOVE

However, the longer definition allows a string to be packed into its own buffer

Strings 129

String Manipulation

When a string is represented as a text string argument pair, you can duplicate

it with 2DUP and drop it with 2DROP. Bear in mind, however, that the

string itself is not affected by the stack manipulation. 2DUP does not

produce a duplicate copy of the string, nor does 2DROP destroy it. To make

a true copy of a string, you must MOVE or PLACE it in another memory
location.

Splitting a string into smaller parts is easier with a text string. You can drop

characters from the left side of the string by adding a constant to the starting

address while decreasing the length by the same amount. Since “A SIMPLE

LINE” is still in BUF2, let’s drop the first two characters and print what
remains.

BUF2 COUNT SWAP 2+ SWAP 2- TYPE SIMPLE LINE

The original string has not changed.

BUF2 COUNT TYPE A SIMPLE LINE

Shortening a string this way is a common operation, and you might find the

word /STRING handy.

/STRING (a n u - a2 n2)

\ drop the first u chars from a string.

ROT OVER + ROT ROT -

/STRING works like this:

BUF2 COUNT 9 /STRING TYPE LINE

Dropping characters from the right of the string is even easier—just decrease

the length.

BUF2 COUNT 5 - TYPE A SIMPLE

These simple string operations can be combined to select any part of a string.

130 Mastering FORTH, Revised and Expanded

BUF2 COUNT 2 /STRING 5 - TYPE SIMPLE

Once a part of a string, called a substring, is selected, it can be copied with

MOVE or PLACE to a separate memory area for further processing.

-Trailing

The length of a string can be kept on the stack or stored in memory. Alternately,

it can be computed from the string itself. First, you must prepare a

string buffer by filling it with blanks. FORTH provides a temporary but

suitable memory area called PAD, which is guaranteed to be at least 84 bytes

long. Then EXPECT or MOVE the string into PAD. When you want the

string in its text (two-argument) form, push the address and maximum length

of the string in PAD on the stack and call —TRAILING. —TRAILING

effectively shortens the string to remove trailing blanks by altering its length.

ACCEPT (- a n)

\ get a string from the user.

PAD 80 BLANK

PAD 80 EXPECT

PAD 80 -TRAILING (a n - a2 n2)

NAME?

CR .“ Your name please: “ ACCEPT

CR .“ Thank you, “ TYPE

NAME?

Your name please: Martin

Thank you. Martin

String to Number Conversion

Single digits from 0 to 9 can be directly obtained from their ASCII codes

(hex 30 to 39) by subtracting an ASCII “0”. The following short program

shows you how to prompt a user to select one of four items:

Strings 131

SELECT? (- n)

\ pick an item from 0 to 3.
BEGIN CR .“ PLEASE SELECT AN ITEM:”

KEY 127 AND DUP EMIT (echo)

ASCII 0 - (convert)

DUP 0< OVER 3 > OR (test range)*

WHILE .“ Oops!” DROP
REPEAT .“ Thank You”

[j: SELECT? (— n)
\ Pick an item from 0 to 3.

BEGIN

CR .“ PLEASE SELECT AN ITEM:”

KEY (c) 127 AND DTJP EMIT \ Echo.

ASCII 0 - (n) \ Convert.

DTJP 0< OVER 3 > OR \ Test range.

WHILE .“ Oops!” DROP

REPEAT (n) .“ Thank You” ;

Converting a string of ASCII digits to a number is somewhat more difficult.

FORTH provides the primitive CONVERT, which converts a string of ASCII

digits to a double number. Digits are converted from left to right and in the

current numeric base. Note that “A” is a valid digit in the hexadecimal base

but not in the decimal base. The string to be converted must end with a

blank. The length of the string is ignored, and conversion stops when the first

non-digit character is encountered. By calling CONVERT repeatedly and

examining each character that it stops at, you can build a sophisticated string-
to-number conversion routine.

Let’s construct a conversion routine that accepts a string of ASCII digits and

converts it to a double number. The string can be optionally preceded by a

poIyFORTH, L&P F83, MasterFORTH, and ZEN would use WITHIN (n n2 n3 - f) for this

kind of range check. WITHIN is true if n2 � n < n3.

0 4 WITHIN NOT WHILE or 4 0 WITHIN WHILE

URFORTH users could define : WITHIN OVER - >R - R> U<

132 Mastering FORTH, Revised and Expanded

minus sign, but can contain no other punctuation. Since you cannot assume

that the string ends with a blank, you must arrange to add one. You must first

copy the string to a buffer and then add the blank. The following sequence

copies a string to PAD and prepares it for CONVERT:

PAD PLACE (copies the string to PAD)

BL PAD COUNT + C! (adds a blank)

CONVERT requires a double-number accumulator on the stack, initialized to

zero, and the starting address to be converted, minus one. It returns the

double-number result and the address of the first non-digit character. Here is

the word VAL, which sets up and calls CONVERT:

VAL (a n - d true I 0)

\ convert a string to a number.

\ Returns true if the number is valid.

\ If false, no number is returned.

PAD PLACE (copies the string to PAD)

BL PAD COUNT + C! (adds a blank)

0 0 (accumulator)

PAD (starting address minus 1)

CONVERT (da-d2a2)

DUP C@ ASCII - = (leading minus sign?)
IF CONVERT (continue conversion)

>R DNEGATE R> (negative case)

THEN C@ BL = (successful conversion?)

?DUP 0= IF 2DROP 0 THEN ;*

The vertical bar I in the stack diagram means that either d true is

returned or only a 0 is returned.

Use ACCEPT to read a string, and VAL to convert it to a number. Try

some of the following examples:

* poIyFORTH users: don’t forget to substitute [ASCII] for ASCII.

MacForth doesn’t support double numbers.

Substitute 0 for 0 0, NEGATE for DNEGkTE, and DROP for 2DROP.

Strings 133

String flag (dn) Comment

DECIMAL Set base to decimal

“123” -1 123 Successful conversion.

“12A” 0 “A” is not a digit.

HEX Set base to hexadecimal.

“12A” -1 12A “A” is now a digit.

“54,321” 0 “,“ is not allowed.”

-12ABC” -1 -12ABC Successful conversion.

Most FORTHs support imbedded punctuation. A number ending with a decimal

point is usually interpreted to be a double number.

In general, a number containing any allowed punctuation is interpreted as a double number.

The following version of VAL supports imbedded punctuation. A decimal

point can occur anywhere in the number. The number of digits to the right of

the rightmost decimal point is returned in the variable DPL.

VARIABLE DPL

VAL (a n - d true I 0)

\ convert a string to a number.

\ Returns true if the number is valid.

\ If false, no number is returned.

PAD OVER - SWAP OVER >R CMOVE BL PAD C!

PADDPL! OOR> DUPC@ASCII-= DUP>R-1-

BEGIN CONVERT DUP C@ ASCII . =

WHILE DUP DPL ! REPEAT

R> SWAP >R IF DNEGATE THEN

PAD 1- DPL @ - DPL ! R> PAD = (valid?)

?DUP 0= IF 2DROP 0 THEN

CR ACCEPT VAL . D.

123.45 -1 12345

DPL ? a

134 Mastering FORTH, Revised and Expanded

Notice that this version of VAL puts its conversion buffer below PAD. This

area is normally used for conversion and is at least 32 bytes long.

Most FORTHs provide DPL and some facility for converting strings to

numbers. The name and nature of this facility, however, varies greatly.*

Number to String Conversion

You have already seen how to type numbers with the dot operators (., D.,

and U.). At times, you may want to add punctuation or otherwise control

the way that a number prints. FORTH provides a flexible set of primitives to

convert a double number to a string. Once you have a string, you can reformat

it before printing it. And since single, signed, and unsigned numbers can

be easily converted to double numbers, a number can be printed in any way

you like.

The FORTH double number conversion primitives are

<# “less-sharp”
“sharp”

#S “sharp-S’

“sharp-greater”

HOLD and SIGN

The symbols <# and #> are used as brackets to signal the beginning and

end of conversion. As the conversion progresses, a string is constructed by

the operators #, #5, HOLD, and SIGN. When the conversion is complete,

#> pushes the address and length of this string on the stack. A possible

definition for a word which prints an unsigned double number would be:

DU. (u) <# #S #> TYPE SPACE

\ print an unsigned double number.

* MacForth calls it $>NUMBER.

UR/FORTH uses NUMBER? (a — d flag) which converts the counted string at a.

:VAL DROP 1- NUMBER? ?DUP 0= IF 2DROP 0 THEN

po1yFORTH uses NUMBER (a — n I d) which converts the counted string at a. Punctuation from

the set “,-./:“ is allowed. No punctuation returns a single number. Invalid numbers are errors.

VAL DROP 1- NUMBER DPL @ 1+ 0>

IF ‘NUMBER CELL+ @ THEN TRUE

Strings 135

The sequence <# #S #> converts the number to a string, which is then

printed by TYPE. The word #S converts all of the digits to characters in

the string. No leading zeroes are printed unless the number is 0, in which

case a single “0” is printed. The command SPACE prints an extra space.

FORTH provides both SPACE and SPACES, which could be defined this

way:

SPACE BL EMIT

SPACES (n

?DUP IF 0 DO SPACE LOOP THEN

The word SIGN adds a minus sign to the string if the number on top of the

stack is negative. The definition of D., which prints a signed double number,

would be something like this:

D. (d

\ print a double number.

SWAP OVER DABS (save the sign)

<# #S ROT SIGN #> TYPE SPACE ;*

The conversion words expect an unsigned double number to be on the stack.

To convert signed numbers, you need a sequence like the one above to save

and restore the sign for SIGN. Conversion proceeds from right to left,

starting with the least significant digit, so SIGN is often the last word in the

conversion sequence.

You can add punctuation as you convert with the word HOLD. HOLD takes

an ASCII character and adds it to the string. Suppose you are programming a

business application. Money in cents is represented by a signed double number.

To print an amount of money, you will want, from right to left, two

digits for the cents amount, a decimal point, the dollar amount, and a leading

dollar sign. Here is a word that will do this for you:

* MacForth doesn’t support double numbers, so use

• (n) DUP ABS <# #S SWAP SIGN #> TYPE SPACE

po1yFORTH takes the SIGN from the third number on the stack, so substitute SIGN for ROT SI’1.

136 Mastering FORTH, Revised and Expanded

MONEY (d

SWAP OVER DABS

<# # # ASCII . HOLD #S ASCII $ HOLD ROT SIGN #>

TYPE SPACE *

Each # forces the conversion of one digit, even if the number is zero.

o o MONEY $0.00

12345. MONEY S123.45

-999. .MONEY -$9.99

To print numbers in even columns, you can use the length of the string

returned by #> to determine how many extra spaces should be printed on

the left. The word D . R, defined below, right-justifies a number in a column

of a given width. If the width is too small for the number, the width is

ignored and the full number is printed.

D.R (d n)

\ print d right-justified in a field of width n.

>R SWAP OVER DABS

<# #S ROT SIGN #> R> OVER - SPACES TYPE ;t

Print a column of numbers with D . R.

CR 0. 5 D.R CR 123. 5 D.R CR -2. 5 D.R

p

123

-2

* MacForth:

.)NEY DUP ABS

<# # # ASCII . HOLD #S ASCII $ HOLD SWAP SIGN #>

TYPE SPACE

po1yFORTH:
.I4DNEY SWAP OVER DABS

<# # # [ASCII] . HOLD #S [ASCII] $ HOLD SIGN #>

TYPE SPACE

t MacForth and po1yFORTH users should rewrite these and subsequent definitions accordingly.

Strings 137

Most of the number printing words can be based on D . R.

D. (d) 0 D.R SPACE

U. (u) 0 D.

n) S>D D.

The conversion words build a string in a temporary area (usually just below

PAD). Since there is only one temporary area, a converted string should be

printed or moved to a string buffer before the next conversion is begun. This

is why the definitions we have given TYPE the string immediately after

conversion. With care, however, you can work directly with the string before

printing it. Suppose you define (D.) to convert a signed double number to

a string. You can base both D. and D . R on (D.) as follows:

(D.) (d - a n)

SWAP OVER DABS <# #S ROT SIGN #>

D. (d) (D.) TYPE SPACE

D . R (d n) >R (D.) R> OVER - SPACES TYPE

String Literals

In most FORTHs, a specific string, called a string literal, can be created by

enclosing the string within double-quote marks. Like . “, the string must be

separated from the leading double quote by a blank. In some FORTHs,

(MasterFORTH, ZEN, L&P F83) “ returns a two-argument text string; in

others (MacFORTH, UR/FORTH, po1yFORTH), it returns a single-argument

counted string which can be converted to a text string by COUNT.

EG “ A String Literal” TYPE

or

EG “ A String Literal” COUNT TYPE

EG A String Literal

TYPE is used to show that the string is on the stack in text string form. To

hide the differences between FORTH implementations in subsequent examples,

we will invent the word (COUNT)

138 Mastering FORTH, Revised and Expanded

(COUNT) COUNT

or

(COUNT)

EG “ A String Literal” (COUNT) TYPE

Some FORTHs allow one or more string literals to appear outside of a

definition.* These strings are stored in a string stack, or PAD, or some other

temporary location.

CR “ Temporary String Literal” (COUNT) TYPE

Temporary String Literal

String Comparison

Many FORTHs include additional string commands for creating, storing, and

comparing strings. We will present two typical string extensions which are

based, in large part, on the commands you have learned so far.

Two strings can be compared with the word COMPARE. COMPARE returns

-1 if the first string is less than the second, 0 if they are equal, and 1 if the

first string is greater than the second.t Less than means that the string would

appear first in a dictionary, that is, in lexicographical order. FORTHs vary in

the number and order of the string arguments, but almost all return the tnstate

flag. Here is a possible definition of COMPARE. Review the code

carefully and make sure you understand it.

* MasterFORTH and ZEN allow one such string literal;

UR/FORTH and MacForth allow several such literals;

po1yFORTH and L&P F83 do not support interpreted string literals.

t L&PF83usesCcPME(aa2n--1IOI1).

UR/FORTHu5e5STRa4P(ana2n2--1IOI1)

MacForth and po1yFORTH use —TEXT (a n a2 - -1 I 01 1). The po1yFORTH —TEXT compares cell-

by-cell and so length n must be even.

Strings 139

-TEXT (a n a2 - -1 I 0 I 1)

OVER 0= IF ROT 2DROP EXIT THEN

SWAP 0 DO OVER C@ OVER C@ - (chars unequal?)

IF UNDO C@ SWAP C@ > 2* 1+ EXIT THEN

1 1 D+

LOOP 2DROP 0

:COMPARE(ana2n2--1I0I1)

ROT 2DUP (lengths) >R >R MIN SWAP -TEXT DUP

IF R> R> 2DROP

ELSE DROP R> R> 2DUP = (lengths = ?)

IF 2DROP 0 ELSE > 2* 1+ THEN

THEN

:—TEXT (ana2——1, orO, on)

[OVER 0=
IF ROT 2DROP (0)

EXIT

THEN (a n a2)

SWAP 0 DO (a a2)

OVER C@ OVER C@ - (Chars unequal?

IF UNDO C@ SWAP C@ > (flag) 2* 1+

EXIT

THEN (a a2)

1 1 D+

LOOP 2DROP()0;

140 Mastering FORTH, Revised and Expanded

COMPAPE (a n a2 n2 — —1,or 0, or 1)

ROT (aa2n2n) 2DUP>R>R

MIN SWAP (a mm a2) -TEXT (flag) DUP

IF R> R> 2DROP

ELSE DROP () P.> R> (n2 n) 2DUP =

Lengths = ?

IF 2DROP () 0

ELSE > (flag) 2* 1+

THEN THEN

The phrase 2* 1+ converts true to -1 and false to 1. Notice how-TEXT, a

useful primitive in itself, has been factored out of COMPARE. Here are some

examples for you to try:

• “ANIMAL” “ ANIMAL” (COUNT)

• “AN”“ AN” (COUNT)

• “ANIMUS” “ ANIMUS” (COUNT)

“AN” “ANIMAL” COMPARE

“ANIMAL” “ANIMAL” COMPARE

“ANIMUS” “ANIMAL” COMPARE . 1

po1yFORTH has a default name WIDTH of 3 characters, and would not be

able to distinguish “ANIMAL” from “ANIMUS”. You can temporarily

increase the WIDTH of a name to 31 characters by preceding it with a

(“tilde”). The should precede the latter word.

“ANIMUS” “ ANIMUS” ;

Another common string comparison word is MATCH, which finds one string
within another.

Strings 141

MATCH(ana2n2-???0 1n3-1)

\ return the offset n3 of string a2 n2 in string a n.

\ Offset is zero if the match is found in the 1st position.

\ Returns invalid offset and 0 if no match is found.

DUP 0= IF 2DROP 2DROP 0 TRUE EXIT THEN

2 SWAP 2 P ICK OVER SWAP -

DUP 0< IF 2DROP 2DROP 0 EXIT THEN

0 (offset) SWAP 1+ 0

DO (offset) >R

2OVER 2OVER DROP -TEXT 0= (equal?)

IF 2DROP 2DROP R> TRUE UNDO EXIT THEN

1 /STRING R> 1+

LOOP 2DROP 2DROP 0

UR/FORTH uses STRNDX (a n a2 n2 — n3) which returns the offset of the

second string in the first. No match returns an offset of -1. polyForth uses —

MATCH (a n a2 n2 - a n -1 I a3 n3 0) which finds the second string in the

first. If a match is found, returns the substring following the match and 0;

otherwise it returns a n and true. MacForth uses MATCH (a n a2 n2 - a3 - -1

a4) which finds the second string in the first. If a match is found, MATCH

returns 0 and the address just past the match; otherwise it returns true and the

address just past the string.

142 Mastering FORTH, Revised and Expanded

MATCH (ana2n2-???0 n3-1)

\ return the offset n3 of string a2 n2 in string a n.

\ Offset is zero if the match is found in the 1st position.

\ Returns invalid offset and 0 if no match is found.

DtJP 0=

IF 2DROP 2DROP () 0 TRUE (0 true)

EXIT

THEN (a n a2 n2)

2SWAP (a2 n2 a n) 2 PICK (a2 n2 a n n2)

OVER SWAP - (a2 n2 a n n-n2) DtJP 0<

IF 2DROP 2DROP (a2) 0 (a2 0)

EXIT

THEN (a2 n2 a n n-n2)

0 SWAP 1+ 0 (a2 n2 a n offset n-n2+1 0)

DO (a2n2anoffset)>R(a2n2an)

2OVER 2OVER DROP (... a2 n2 a) -TEXT 0=

IF (...) 2DROP 2DROP () R> TRUE

EXIT

THEN (a2 n2 a n)

1 /STRING R> (a2 n2 a n offset) 1+

LOOP 2DROP 2DROP (a2) 0
L

offset) UNDO

“ANIMAL” “AN” MATCH -1 0

“ANIMAL” “MAL” MATCH -1 3

“ANIMAL” “ANIMUS” MATCH DROP Q

MAL” (COUNT)

Strings 143

Word Stack Action

• (ccc) Displays the string <ccc>.

—TRAILING a n - a2 n2 Removes trailing blanks from string a n, shortening it to string a2 n2.

BL - c ASCII space.

BLANK a n Fills memory at address a with n blanks.

VE a a2 n Moves n bytes from address a to address a2, leftmost byte first.

VE> a a2 n Moves n bytes from address a to address a2, rightmost byte first.

CONVERT d a - d2 a2 Converts string at address a+1, accumulating number into d. Stops

at first non-convertable character (at address a2).

COUNT a - a+1 n Unpacks string.

D. d Prints double number d.

D . R d n Prints double number d left-justified in a field n wide.

24IT c Displays an ASCII key.

ERASE a n Fills memory at address a with n zeroes.

EXPECT a n Reads up to n chars or <Return> into the buffer at address a.

FILL a n c Fills n bytes at address a with the low-byte pattern of c.

KEY - c Reads an ASCII key.

KEY? (- flag) True if a key is pressed.

PAD - a Points to a temporary buffer.

SPACE Prints a space.

SPACES n Prints n spaces.

SPAN - a Variable which contains the number of chars from the last EXPECT.

TIB - a Points to the FORTH terminal input buffer.

#TIB - a Variable which contains the number of chars in TIB.

TYPE a n Displays a string.

U. u Prints unsigned double number d.

Output conversion word set:

Word Stack Action

d - d Initializes for pictured numeric conversion.

d — d2 Converts one digit of d.

d - 0 0 Converts all remaining digits.

HOLD c Adds char to conversion string.

SI4 n Adds “-“ to conversion string if n is negative.

d - a n Ends conversion, leaving string.

144 Mastering FORTH, Revised and Expanded

String extensions:

Word Stack Action

/STRING a n n2 - a2 n3 Drops n2 leftmost chars of string a n.

ccc” - a n Creates the string literal <ccc>, delimited by double-quote
marks.

ASCII <c> - n The ASCII code of the following character is left on the stack.

C1WARE a n a2 n2 Compares string a n to string a 2 n 2. Returns true if string a n

is less than string a2 n2 in lexicographical order, 0 if equal,

and I if greater than.

TCH a n a2 n2 - ? 0 I n3 -1 Returns the offset n3 of string a2 n2 in string a n. Offset is

zero if the match is found the the 1st position. Returns invalid
offset and 0 if no match is found.

PLACE a n a2 Moves and packs a string from address a to address a2 of

length n.

VAL a n - d true I 0 Converts a string to a - double number. True if conversion

succeeds; otherwise the number is not returned.

Exercises

1. Write the word <MOVE> which, unlike MOVE or cMOVE>, safely

moves an array of bytes either upwards or downwards in memory, even

if the source and destination overlap.

2. Many FORTHs provide the word UPPER which converts a string to

upper-case. UPPER only affects characters in the range of “a” to “z”.

Write UPPER and test it with some string literals which you have

moved to PAD. If a string has a length 0, it should be properly ignored.

3. Define the word LEX, which splits a string into two at a given delimiter.

The delimiter is removed and either string can be null (length 0). LEX is

useful for breaking strings into meaningful substrings:

“ VOLUME:NAME” ASCII : LEX

TYPE NAME (right string)

TYPE VOLU (left string)

Strings 145

4. Write 5+ (a n) which adds a string to the end of a counted string in

PAD. The count byte at PAD should be adjusted accordingly.

5. Using the conversion words <# # #5 SIGN HOLD and #>,

Redefine D. to insert a comma between each three digits, starting from

the right. Your new definition of D. will act like this:

1234567. D. 1,234,567

6. Write a word which parses a date, such as “02/07/88”, in a text string and

returns the month, day, and year on the stack, with the year on top. Check

your results by writing another word to convert the arguments back into a

text string at PAD.

7. UR/FORTH keeps temporary strings in a circular string buffer. When the

buffer fills, it wraps to the beginning, overwriting the oldest string. Write

the word +BUF which allocates bytes from a circular memory buffer

and packs a given string there.

+BUF (a n - a2)

\ allocates n+1 bytes in a circular buffer and moves

\ string a n there.

\ Returns the address of the now counted string a2.

“TEST” “ This is a test.” (COUNT)

“TEST” +BUF CR COUNT TYPE

This is a test.

1 1 Defining Words

Compiie time
We have seen how the defining words : CONSTANT, VARIABLE, and

CREATE can be used to add new words to your dictionary . CREATE is used

to build variables, arrays and tables. In the way of review, let’s use CREATE

to build a two-dimensional array or matrix. A matrix can be unraveled into a

normal one-dimensional array by allocating the first row in memory, followed

by the second, and so forth. Suppose you want to build a 3 by 5 (3

rows of 5 columns) array of cells. To find the third cell of the second row,

you would skip 5 cells (the first row) from the beginning of the matrix, and

then skip two more (the first two columns of this row). This is expressed by
the formula

‘item = ‘matrix + ([row# * #coi.s] + coi.#)

where row# means row number,

col# means column number,

#rows means number of rows,

#cols means number of columns, i.e., bytes/row,

‘matrix means starting address of matrix, and

‘item means address of item at the given row# and col#

A matrix of bytes is completely described by its two dimensions: #rows

and #cols. The dimensions must be remembered somehow when the matrix

is created. The defining word MATRIX does all of this.

146

Defining Words 147

MATRIX (#rows #cols) (- ‘matrix)

\ define a #rows by #cols-byte matrix.

CREATE 2DUP , , (remember the dimensions)

* CELLS ALLOT ; (#rows * #cols elements)

We haven’t actually created any matrices yet. But we have specified what

will happen when we do. The first stack diagram reminds us that when

MATRIX is executed, it expects to find the two dimensions of the matrix on

the stack. CREATE creates the matrix and each , compiles a dimension

into the dictionary for later use. The ALLOT then allocates one cell for each

element of the matrix. So the compile-time action of MATRIX is to create

the matrix by compiling the dimensions and allocating space for the elements.

The second stack diagram tells us that when any matrix is executed (runs), it

will leave the address of the first cell of data compiled into the dictionary, in

this case, ‘matrix, that is, the cell containing #cols. This is exactly the

same address that CREATE alone would leave. In fact, pushing the address

of the first byte of compiled data on the stack is the default run-time action

for any word created by a defining word. This makes sense when you realize

that there’s no point in compiling data into the dictionary if you can’t find it
afterwards.

Use MATRIX to make a 3 by 5 matrix.

3 5 MATRIX BOXES

What’s on the stack now? Nothing yet! The defining word MATRIX has

been executed. Its compile-time action is to create the matrix BOXES.

5 3 15 bytes of space BOXES

t t t

BOXES +2 +4

The dimensions 3 and 5 are compiled into the dictionary,

and 15 cells of storage are allocated for the elements of the

matrix. Only the word MATRIX has run, and not the

matrix BOXES. Be sure you understand this before reading
further.

L

I

148 Mastering FORTH, Revised and Expanded

The run-time action of BOXES is to leave the address of the first cell of the

matrix on the stack, which contains the dimension #cols:

BOXES ?

If you’re not sure where this number came from, try rereading the section on

arrays.

You could say that BOXES is a member of the class matrix, created by the

defining word MATRIX.

Separating the compile-time action of the defining word from the run-time action of the

defined word is the key to understanding defining words.

With the address returned by BOXES you can define a word which will find

the address of any element within BOXES, given its row and column number.

Bear in mind that when you count items in FORTH, you usually start
from zero.

ELEMENT (row# col# ‘matrix - ‘element)

\ finds the address of the element at row# and col#.

DUP >R @ (retrieve #cols = cells/row)

ROT * + (apply formula for offset)

2+ CELLS R> (addr of first element) +

See if it works.

100 0 2 BOXES ELEMENT ! (1st row, 3rd col)

150 1 1 BOXES ELEMENT ! (2nd row, 2nd col)

0 2 BOXES ELEMENT ?

1 1 BOXES ELEMENT ? Q

By using CREATE, we can create data structures of any complexity. This is

because we can use the full power of FORTH (including other defining

words) to compile the data in whatever form we wish.

Defining Words 149

Run Time

The default run-time action of any word made with CREATE is to leave the

address of the internal data storage area (called the body) of the word on the

stack. The size, format, and initial contents of this area are determined by the

words which follow CREATE in the defining word. For example, here is a

definition for the defining word VARIABLE:

VARIABLE (-) (- a) CREATE 0

Using this definition, any variable of the class VARIABLE will have a one-

cell body initialized to zero. When the variable is executed, it will leave the

address of this body on the stack.

Once the address of the body of a word is known, the data stored within the

body is available for further processing. The word DOES> lets you specify

the run-time action to be done on this data. In other words, DOES> lets you

extend the default run-time action of any defined word. Here is a definition
of the word VALUE which is identical to the FORTH word CONSTANT:

VALUE (n) (- n) CREATE , DOES> @

Be sure you understand what is happening and when. The compile-time

action of VALUE is to CREATE a word with a one-cell body initialized to
the value n which is on the stack when the word is defined.

5 VALUE FIVE

At this point, the defining word VALUE has run, but the defined word

FIVE has not. What’s on the stack right now?

<-Top

Normally, you would expect that FIVE, or any word made by CREATE,

would leave the address of its body on the stack. In this case, when FIVE

runs, you would expect to find the address of the body of FIVE, which

contains the number 5, on the stack. However, the DOES> within VALUE

extends this default action with a @, so that the value (5) in the body is
returned rather than its address.

150 Mastering FORTH, Revised and Expanded

FIVE . 5

You can use DOES> to make the run-time action of MRTRIX smarter.

Simply incorporate the action of ELEMENT within the definition of
MATRIX.

SMART-MATRIX

\ defines a #rows by #cols byte matrix.

\ Finds the address of the element at row# and col#.

CREATE (#rows #cols

2DUP , , (remember the dimensions)

* CELLS ALLOT (#rows * #cols elements)

DOES> (row# col# - ‘element)

DUP >R @ (retrieve #cols = bytes/row)

ROT * + (apply formula for offset)

2+ CELLS R> (addr of first element) +

The stack diagrams for compile-time and run-time action follow the CREATE

and DOES> words, respectively. You will find this smarter matrix easier
and more natural to use.

3 5 SMART-MATRIX COLLECTOR

100 0 2 COLLECTOR

150 1 1 COLLECTOR

0 2 COLLECTOR ? 1Q

1 1 COLLECTOR ? Q

You could have redefined MATRIX instead of renaming it to SMART-

MATRIX. The old version of MATRIX, however, is functionally different

from the new version. Functionally different means that the two words differ

either in the arguments they expect or the results they produce. It is potentially

confusing for two functionally different versions of a word to have the
same name.

Whenever you change the function of a word, give the new version a new name.

You can use DOES> to add error or limit checking to a class of words. This

version of SMART-MATRIX uses MAX and MIN to keep the row and
column numbers within the bounds of the matrix.

Defining Words 151

SMARTER-MATRIX

\ defines a #rows by #cols byte matrix.

\ Finds the addr of the element at row# and col#.

\ Limits the row# and col# to lie within the matrix.

CREATE (#rows #cols —)

2DUP , , (remember the dimensions)
* CELLS ALLOT (#rows * #cols elements)

DOES> (row# col# — Aelement)

DUP >R @ MIN 0 MAX (limit col#)

SWAP R@ CELL+ @ MIN 0 MAX (limit row#)

SWAP R@ @ (retrieve #cols = bytes/row)

ROT * + (apply formula for offset)

2+ CELLS R> (addr of first element) +

FORTH allows you to add error checking to words, but does not require that

you do so. Contrast this to other programming languages, which use extensive

error checking even when it is not needed.

All objects which can be represented in computer memory fall into one of

two classes: data and operations to be done on data. Most programming

languages allow you to design and create data structures, sometimes called

records or types. Similarly, they allow you to group data operations

into subroutines, modules, functions, or programs. The FORTH construct

CREATE—DOES> lets you define a class of objects by specifying both the

data organization and the data operation for objects of that class. You can

think of an object as either a smart data structure, or else as a program with

built-in data storage. The structure and behavior of an object is conveniently

presented by the CREATE—DOES> in the definition of the defining word for

that object.

FORTH’s ability to define a class of objects with CREATE—DOES> is its single most

powerful feature.

Compilation Addresses

Sometimes you need to define a word before you know what its definition

should be! You might be designing a word which calls several other words,

not all of which have been written yet. You could define dummy words or

stubs to indicate the undefined words, and then replace them with final

152 Mastering FORTH, Revised and Expanded

definitions later. Or suppose you want to write a simple version of a word, to

be replaced with a more sophisticated word when necessary. There is a way

to apparently defer and otherwise manipulate the run-time action of a word
in FORTH.

Normally, when compiling a definition, the address of each word which

appears in the definition is compiled into the dictionary. This compilation

address tells the FORTH interpreter where to begin executing a word. You

can find the compilation address of a word with the command ‘ (“tick”),

followed by the name of the word. For example, executing ‘ DUP leaves

the compilation address of DUP on the stack. You can then execute the

word at this address with the word EXECUTE •* So the sequence ‘ DUP

EXECUTE does the same thing as DUP.

1 2 3 ‘ DUP EXECUTE .S

1 2 3 3 <-Top

MacForth: ‘ returns the address of the definition. EXECUTE, however,

executes a token, equivalent to a compilation address. In this and subsequent

examples involving EXECUTE, substitute TOKEN . FOR for ‘.

1 2 3 TOKEN . FOR DUP EXECUTE . S

You can save the compilation address in a variable for future use, as in the

following example.

TRING1 .“ FIRST ACTION

TRING2 .“ SECOND ACTION “ “

VARIABLE ACTION

TRING1 ACTION

ACTION @ EXECUTE FIRST ACTION

THING2 ACTION

ACTION @ EXECUTE SECOND ACTION

* poIyFORTH: returns the address of the body of the definition, which EXECUTE executes.

poIyFORTH: name them 1THING and 2THING, or else precede each with a (tilde).

Defining Words 153

Notice that you have a consistant action (@ EXECUTE) on the data in the

variable ACTION. This suggests that you can make a defining word to
describe words like ACTION. Consider this definition of DEFER:

DEFER

CREATE CELL ALLOT

DOES> @ EXECUTE

po1yFORTH, MacFORTH, MasterFORTH and ZEN can use @EXECUTE

for @ EXECUTE . L&P F83 and URFORTH should use PERFORM instead.

The compile-time action of DEFER is to create a deferred word, whose

action will be specified later.

DEFER SURPRISE

SURPRISE, like all objects of the class DEFER, has internal storage for one

compilation address. The run-time action of SURPRISE is to retrieve and

execute this compilation address.

Parameter Addresses

Unfortunately, we can’t initialize or change the action of SURPRISE because

we no longer know the location of its body, where the compilation

address is normally stored. This is because the address of the body (also

called the parameter address) is used by the sequence DOES> @ EXECUTE

in DEFER and is no longer available to us.

The solution to this problem is to use the command >BODY (“to-body”) to

change the compilation address of a word into its parameter address.

po1yFORTH doesn’t need >BODY since ‘ already returns the parameter

field address. You could define : >BODY ; in your prelude, or just

eliminate it from examples. Once you know the parameter address of a word,

you can directly access the data stored in the word. Now you can set the
action of SURPRISE like this:

154 Mastering FORTH, Revised and Expanded

TRING1 ‘ SURPRISE >BODY !*

SURPRISE FIRST ACTION

TRING2 ‘ SURPRISE >BODY

SURPRISE SECOND ACTION

>BODY can be used to access the body of any word. You can use it to

examine and change the value of the word FIVE defined earlier.

FIVE >BODY ?

4 ‘ FIVE >BODY

FIVE . 4

It is even possible to change the value of a constant this way, although a

FORTH-83 Standard program is not allowed to do so.

If you are interested in a value which often changes, use a VARIABLE. If it seldom

changes, use a VALUE, and if it never changes, use a CONSTANT.

You can use ‘ within a definition, but this can lead to one of the most

confusing constructs in FORTH:

CONFUSION

\ planned obfuscation.

TRING1 DROP ;t

CONFUSION TRING2 FIRST ACTION

What happened? The compilation addresses of ‘, THING1, and DROP

were compiled into the definition of CONFUSION in the usual manner.

When CONFUSION was executed, ‘ ran, leaving the compilation address

of the following word, which was then THING2, on the stack. Then THING1

ran, printing “FIRST ACTION”. Finally, DROP dropped the compilation
address of THING2, which was never used.

* MacFORTH: in this example, ‘is used once with E2CUTE and once to find the body of
SURPRISE:

TOIN . FOR THING1 ‘ SURPRISE

t MacFORTH users may skip the next paragraph, since both ‘ and TOIN.FOR work the same way
inside and outside of a definition.

Defining Words 155

The word [‘] (“bracket-tick”) is a variation of ‘ for use within a

definition.* Its usage is best illustrated with an example. Let’s use it to

improve DEFER to print a warning if an uninitialized definition is executed.

WARNING .“ UNINITIALIZED “

DEFER

\ improved definition.warns of uninitialized values.

CREATE [‘] WARNING

DOES> @ EXECUTE

The new DEFER works like this:

DEFER FORGOTTEN

FORGOTTEN UNINITIALIZED

THING1 ‘ FORGOTTEN >BODY

FORGOTTEN FIRST ACTION

The [‘] in DEFER compiles the compilation address of the following
word WARNING as a numeric literal. This means that when DEFER

FORGOTTEN is executed, [‘] will push the compilation address of

WARNING on the stack. This is used by, to initialize the body of FORGOTTEN
to the WARNING.

You could improve the readability of the sequence ‘ NAME >BODY
with aword like IS:

:IS (n)

\ sets the body of the following word to the value n.

>BODY

Read this definition carefully. This is exactly the case which we described

above in the CONFUSION example. The word IS can be used to set the

value of any body.

* MacFORTH: in the following discussion, substitute ‘for [‘] when it is used to find the body of a

word and TOI4.FOR for [‘] when it is used with ECUTE.

DEFER CREATE TO . FOR WARNING , DOES> @EXECUTE

:15 [COMPILE]’ !;

156 Mastering FORTH, Revised and Expanded

THING2 IS FORGOTTEN

FORGOTTEN SECOND ACTION

10 Is FIVE FIVE .

This definition of IS cannot be used within a definition.

Positional Case

An array or table of compilation addresses lets you assign an action to an

index into the array. The idea of relating a number to an action is sometimes

called vectored execution and appears in programming languages as positional

case statements or something similar. In the following example, television

channel numbers are each given an action. The action could be to set an

electronic tuner, but in this case, we will simply have it print out a channel

identification. MAX and MIN are used to ensure that something reasonable

is done even for meaningless channel numbers.

KNXT .“ KNXT”

KNBC .“ KNBC”

KTLA “ KTLA”

KABC .“ KABC”

•KHJ “KHJ”

KTTV “ KTTV”

KCOP .“ KCOP”

N/A .“ NO STATION”

CREATE CHANNELS

N/A , ‘ N/A , ‘ KNXT , ‘ N/A

KNBC , ‘ KTLA , N/A , ‘ KABC

N/A , ‘ KHJ , ‘ N/A , ‘ KTTV

N/A , ‘ KCOP , ‘ N/A

CHANNEL (channel#

\ identify a TV channel using CHANNELS.

0 MAX 14 C decimal) MIN CELLS

CHANNELS + @ EXECUTE SPACE

Defining Words 157

-1 CHANNEL NO STATION

o CHANNEL NO STATION

1 CHANNEL NO STATION

2 CHANNEL 24XT

3 CHANNEL NO STATION

4 CHANNEL KNBC

99 CHANNEL NO STATION

Word Stack Action

DOES> Used in the form

<class> CREATE ... DOES> xxx

<class> ccc extends the run-time action of the new word

ccc to include the code sequence xxx.

ccc - a Leaves the compilation address of the word ccc on the stack.

[‘] ccc - a Like ‘ , but for use within a definition only. When the

definition runs, leaves the compilation address of the word
ccc which followed it in the definition.

EXECUTE a Executes a word given its compilation address.

>BODY a- a2 Converts a compilation address into a parameter (body) address.

Exercises

1. Write the defining word STRING. The compile-time action of STRING

(n) is to create a string buffer for a string up to n bytes long. The

run-time action of a string buffer (— a) is to leave the address of this
buffer on the stack.

10 STRING REPOSE

IMPOSE “ Stay a while “ (COUNT) REPOSE PLACE

REPOSE COUNT TYPE Stay a while

158 Mastering FORTH, Revised and Expanded

2. Design the defining word COUNTER. When executed, an object of the
class COUNTER increments an internal counter. You will need a word

RESET to initialize the counter and a word EXAMINE to print its value.

COUNTER KILROY

RESET KILROY

KILROY KILROY KILROY

EXAMINE KILROY

You can put counters like this in words to see how many times they’ve
been executed.

3. Design a flip-flop generator that changes state each time it’s called. Flip-

flops leave their previous state, either a 0 or a -1, on the stack. The

RESET function in the previous example should work on flip-flops too:

FLIP-FLOP DUPLEX

DUPLEX .

DUPLEX .

DUPLEX .

RESET DUPLEX DUPLEX .

4. Write 2VALUE as the double-number equivalent of VALUE. Be sure

2VALUE stores the high-order cell of the number in the low-order cell of

the body.

5. Assume the variable COLORED represents a hardware register for setting

the color of text on a graphic screen. Write a defining word which
creates colors. The run-time action of a color is to store its value in

COLORED.

4 COLOR YELLOW 5 COLOR VIOLET

YELLOW COLORED ? 4

VIOLET COLORED ?

6. Write the defining word POINT which stores the two-dimensional

coordinates of a point. When a point runs, these coordinates are multiplied

by the value SCALE before being pushed on the stack.

Defining Words 159

10 12 POINT 1OBJECT 8 13 POINT 2OBJECT

1 IS SCALE

1OBJECT . 12 10

2 IS SCALE

1OBJECT . . 24 20

2OBJECT . . 26 16

7. The defining word FOOD makes a food category with a given initial

price in pennies and an initial quantity of zero. The quantity may be inspected
with HOWMANY and increased with MORE.

89 FOOD HAMBURGER

69 FOOD FRIES

HOWMANY HAMBURGER

12 MORE HAMBURGER

10 MORE FRIES

ROWMANY HAMBURGER

Each time a food is executed, its quantity is decremented by one. Furthermore,
its cost is added to the variable TOTAL.

VARIABLE TOTAL 0 TOTAL

HAMBURGER

TOTAL ?

HOWMANY HAMBURGER U

FRIES FRIES FRIES

TOTAL ? 2.9k

1 2 Compiling Words

very word in the FORTH dictionary has a name, an action, and a body.

The name and its associated linkage is called the header. The header can usually

be subdivided into a name field and a link field, which points to another name

or link field. In modern FORTHs, this is not always true. The action is specified

by the code field. The body of the word, also called its parameterfield, holds the

data on which the code field acts. Together, these three fields completely
describe the word.

Headers

The header is built by CREATE when a new word is first defined. All of the

defining words use CREATE to create and name new words. CREATE reads

the name which follows and packs it into the dictionary as a header for future

reference. CREATE also creates a code field whose default action is to push the

address of the parameter field on the stack. The parameter field is empty at this
time.

When you type in a line and press <RETURN>, FORTH reads each word and

looks in the dictionary for a matching header. The dictionary is searched in

reverse chronological order, so if a word has been defined more than once,

FORTH finds the most recent definition first. The header is followed by the

corresponding code field or a pointer to it, which in turn is followed by the

160

Compiling Words 161

parameter field (or a pointer to it). Once the code field is found, it is either

executed or else converted to a compilation address and compiled.

Colon Definitions

The parameter field of a colon definition contains the sequence of compilation

addresses of the words which make up the definition. Consider this high-level
definition of WITHIN:

WITHIN OVER - >R - R> U<

The body of WITHIN would contain the compilation address of OVER

followed by the compilation address of - and so on. Let’s assume that OVER

is a machine-code primitive and not itself a colon definition. This means that it

is the machine processor, and not FORTH, which executes the word OVER.

FORTH simply maintains a register, usually called the instruction pointer or I

register, telling the machine what to execute next. In this case, the I register

points to the compilation address of - within the body of the definition
WITHIN.

OVER, like all machine-code definitions called from FORTH, will eventually

end with a special sequence of instructions called the address interpreter or

simply NEXT. NEXT has two important jobs:

1. Execute the machine code associated with the compilation address pointed

to by the I register.*

* The association between the compilation address and the machine code it executes varies greatly

between FORTH implementations.

For Indirect threaded-code (ITC) FORTHs, the compilation address points to the code field, which

contains a pointer to the machine code.

For Direct threaded-code (DTC) FORTHs, the compilation address points to the code field, which

contains the machine code, usually a iMP or CALL elsewhere.

For Token threaded-code (TTC) FORTHs, the compilation address is an index to an execution
vector.

For Subroutine threaded-code (STC) FORTHs, there is no address interpreter. FORTH compiles

directly to machine code, and the I register is simply the machine instruction pointer.

162 Mastering FORTH, Revised and Expanded

2. Increment the I register to point to the next compilation address.

These two steps take place more or less simultaneously. By repeating them,

NEXT will sequentially execute all the compilation addresses in a definition.

How does the I register get pointed into the colon definition in the first place?

When the I register points to the compilation address of a colon definition, like

WITHIN, NEXT executes the machine code associated with that colon definition.

The action of all colon definitions is the same.

1. Save the current value of the I register by pushing it on the return stack.

2. Point the I register to the first compilation address in the colon definition

(in this case, OVER) and execute NEXT.

Eventually, the I register will be incremented to point to the compilation

address of the word EXIT (or its equivalent) compiled by ; at the end of the

definition. EXIT has only one job—to restore the previous value of the I

register by popping it from the return stack.

This would return the address interpreter to the word that contained WITHIN.

Eventually, this word too will end with an EXIT, and control will be returned

to the word which called it. As each word EXITs in turn, control will be passed

upward until it reaches the highest level of execution. This level is called the

outer interpreter or text interpreter. The outer interpreter, like the address

interpreter, has two important jobs:

1. Request a line of input. The input comes either from the user at the keyboard

or from mass storage. We will take a closer look at this in the next chapter.

2. Find the code field associated with each word of input, either compiling or

executing it as appropriate.

By repeating these two steps indefinitely, FORTH compiles and executes all

programs according to the commands given in the input.

Compiling Words 163

Compiling Versus Interpreting

When you enter a line from the keyboard or LOAD a screen, the text interpreter

immediately finds and executes each word that it reads. This is called the

interpret state of FORTH. On the other hand, once the interpreter starts a colon

definition, it compiles the address of each word that it reads. This is the compile

state of the language.

FORTH keeps track of which state it is in with the variable STATE. STATE is

zero while interpreting and non-zero while compiling. Let’s define a word to see
what state we’re in.

STATE?

STATE @ IF .“ COMPILING” ELSE .“ INTERPRETING” THEN

Try it out from the keyboard.

STATE? INTERPRETING

Now try it in a definition.

TEST STATE?

TEST INTERPRETING

The STATE? in TEST is compiled and doesn’t run until TEST itself is

executed in the interpret state. What we need is some way of executing a word

in the middle of a definition. FORTH provides the pair of words [(“leftbracket”)

and] (“right-bracket”) to let us change states at will. The [puts

us in interpret state; the] returns us to compile state. They are normally used

in pairs to bracket the sequence to be executed.

FORGET TEST

TEST [STATE? I ; INTERPRETING

TEST

164 Mastering FORTH, Revised and Expanded

This time, the bracketed STATE? runs as expected. But the brackets cause us

to change states, so the message “INTERPRETING” is printed. And because

STATE? is interpreted, it is never compiled. When TEST runs, it has nothing
to do.

To see the message “COMPILING,” we need a STATE? that will execute while

FORTH is in the compile state. We can use the command IMMEDIATE to

modify a word so that it runs while compiling. IMMEDIATE must appear

immediately after the definition of the word you wish to modify:

FORGET STATE?

STATE?

STATE @ IF .“ COMPILING” ELSE .“ INTERPRETING” THEN

IMMEDIATE

TEST STATE? ; CO!.ILING

TEST

The immediate word STATE? now runs while compiling, leaving TEST with

nothing to do.

Making a word IMMEDIATE is a permanent change. If you ever need to compile

an immediate word, however, you can force its compilation with the command

[COMP ILE] (“bracket-compile”).

TEST-AGAIN [COMPILE] STATE?

TEST-AGAIN INTERPRETING

Words which run while compiling are called compiler words and are, by

definition, IMMEDIATE . You have already used compiler words like IF and

THEN in flow-of-control structures. You may even have noticed that the

semicolon which ends a definition must be a compiler word, since it must run

in order to restore FORTH to the interpret state. Furthermore, you have seen that

the semicolon causes the word EXIT (or its equivalent) to be compiled at the
end of the definition.

Compiling Words 165

Literals

Compiling words let you mix data and code within the same definition. Suppose,

for example, you put a number inside of a definition.

:FOUR+ 4+;

If FORTH were simply to compile the number 4 into the definition where it

occurs, the inner interpreter would try to execute a word at compilation address

4, which is not what you mean. And yet, the logical place to save a number is

inside the definition where it occurs. What we need is some way to include the

number within the definition while shielding it from execution.

When the text interpreter reads the definition, it compiles the following

sequence into the body of FOUR+:

Address

BODY

Contents

compilation address of lit

CELL+ the number four

CELL+ compilation address of +

CELL+ compilation address of EXIT

The compilation address of the run-time component of a numeric literal, which

we will call lit, is compiled in front of the 4. When lit runs, it must do two

things:

1. First, it must push the number which follows it onto the stack.

2. Then it must move the I register past this number to the next compilation
address.

Here is a possible high-level definition of lit:

lit (- n)

\ run-time code for a numeric literal

R@ @ (retrieves number)

R> CEII+ >R (adjusts I register)

166 Mastering FORTH, Revised and Expanded

How does it work? When lit runs, the I register is pointing to the next

compilation address to be executed in FOUR+, in this case, the number 4.

Because lit is a colon definition, it has the same action as all colon definitions,

that is, to save the I register on the return stack. R@ copies this address to the

data stack and @ replaces it with the 4. The next sequence, R> CELL+ >R,

adds one cell to the return address, moving it past the 4. When lit returns (via

its EXIT) to FOUR+, the address interpreter continues execution at the +
instruction.

The final result is that the number 4 is saved and restored literally as the number

4. The literal 4 is saved in-line, that is, mixed in with the compilation addresses.

Other kinds of literals can be saved in-line with the same technique. Consider,

for example, the string literals from the chapter on strings. They could be

compiled this way:

FELIX (- a n) “ CAT”

Address

BODY

Contents

compilation address of (“)

CELL+ the byte count 3

1+ the ASCII bytes for “C” “A” and “T”

3 + compilation address of EXIT

(“) (- a n)

\ run-time string literal.

R> COUNT (retrieves string)

2DUP + >R ; (adjust I register)*

In this case we are taking advantage of the fact that if you have a two-argument

text string, the phrase 2DUP + returns the address just past the end of the string.

* MacFORTH and other 68000-based FORTHs compile compilation addresses on even byte

boundaries. The phrase 1 AND + forces an odd address to the next even address.

(“) R> COUNT 2DUP + 1 AND + >R

Compiling Words 167

You can make your own numeric literals with the compiling word LITERAL.

LITERAL takes a number from the data stack and builds it into a literal. This

number is often calculated between the commands [and I just before the

LITERAL. For example, we could have defined FOUR+ this way:

:FOUR+ [4]LITERAL +;

This definition produces exactly the same code as the previous definition.

LITERAL is used to best advantage whenever a calculation results in a constant

value. Rather than compile each step of the calculation into a definition, you can

perform the calculation between [and I and save the results as a literal. The

calculation is made at compile time rather than at run time. This saves both time

and memory.

Suppose, for example, that you have a four-cell status array called STATUS and

that you are especially interested in the second cell. The phrase

STATUS 2 CELLS +] LITERAL

is likely to be much faster and smaller than the phrase

STATUS 2 CELLS +

LITERAL can also be used to create headerless variables, arrays, and tables.

Suppose, for example, you need a table with several powers of 10 for use in the
definition POWERS.

HERE (*) 1 , 10 , 100 , 1000 , 10000

POWERS (n - n2)

\ returns nth power of 10 for small n.

CELLS (*) LITERAL + @

HERE pushes the address in the dictionary where the table is constructed on the

stack. LITERAL takes this address off the stack and compiles it into POWERS.

The (*) is simply a comment, similar to a footnote, to remind you what the
LITERAL refers to.

168 Mastering FORTH, Revised and Expanded

Some FORTHs object to a change in the DEPTH of the stack between the colon

and the semicolon. If your FORTH complains, use the following technique
instead:

HERE 1 , 10 , 100 , 1000 , 10000

POWERS (n - n2)

\ returns nth power of 10 for small n.

CELLS [DUP] LITERAL + @ ; DROP

The definition of [‘] itself can be based on LITERAL.

[‘] (- a)

\ compile an address literal.

[COMPILE] LITERAL ; IMMEDIATE*

Constructing Compiler Words

When LITERAL runs, it must compile the address of lit into the word

currently being defined. It must also pop a number from the stack and compile

it into the dictionary following lit.

LITERAL (n) (- n)

\ compiles a numeric literal.

[‘] lit , (add lit) , (add n.) ; IMMEDIATE

You can see from the two stack diagrams, which specify separate compile-time

and run-time actions, that compiling words are closely related to defining words.

You can think of compiler words as local versions of defining words. They specify both the inline

storage of data during compilation of a definition, and the run-time action to be performed

on this data when the definition is later executed.

* MacForth would use:

[‘] [COMPILE] ; 114’IEDIATE

Compiling Words 169

Since the action of adding a compilation address to the dictionary is a part of

every compiling word, it has been factored out into the command COMPILE.

Here is a more readable definition of LITERAL, using COMPILE:

LITERAL (n) (- n)

\ compiles a numeric literal.

COMPILE lit (add lit) , (add n.) ; IMMEDIATE

Word Stack Action

STATE - a Variable holding the interpret state. A non-zero value means

compile state.

Sets the interpret state.

Sets the compile state.

IMMEDIATE Alters the latest definition so that it executes during compilation.

[COMPILE] <name> Adds the compilation address of <name> to the definition

in progress, even if <name> is IMMEDIATE.

LITERAL n Compiles n into the current definition. When the definition is
- n later executed, n is pushed on the stack.

COMPILE <name> Adds the compilation address of <name> to the definition

in progress.

State-dumb and State-smart

All words in the FORTH-83 Standard have the same action regardless of the

state of the system and are therefore said to be state-dumb. You have already

seen how you must use ‘ outside of a definition and [‘1 inside of a definition

to achieve the same results. And while you can use a .“ to print a message from

within a definition, you must use . (to print a message outside of a definition.

170 Mastering FORTH, Revised and Expanded

You probably also have some words in your FORTH which apparently act the

same way inside and outside a definition—perhaps ASCII or string literals.

If so, these words are state-smart, that is, they examine STATE and take

interpretive or compile-time actions accordingly. If compiling, they compile

data and a run-time word which mimics their own interpretive action.

Flow-of-control Compiling Words

The flow-of-control operators like IF, BEGIN, and LOOP are all compiling

words. They construct in-line conditional and unconditional branch instructions,

using a small set of flow-of-control primitives. A System Extension to the

FORTH-83 Standard suggests the following names for these primitives:

Word Stack Action

BRANCH Unconditionally transfers control to the in-line address which

follows.

?BRANCH If the flag is false, transfers control to the address which

follows; otherwise, skips this address and continues normal

execution. Pronounced “question-branch.”

<MARK - a Marks the destination of a backward branch by pushing its
address on the stack. Pronounced “backward-mark.”

<RESOlVE a- Uses the destination address left by <MARK to cause a transfer

of control from the end of the dictionary to this address. The

address must immediately follow a BRANCH or ?BRANCH.
Pronounced “backward-resolve.”

>MARK - a Marks the destination of a forward branch by pushing itsfix-up
address on the stack. Pronounced “forward-mark.”

>RESOIJVE a - Calculates and compiles a destination address into the fix-up

address left by >MARK to cause a transfer of control to the end

of the dictionary. This address must immediately follow a
BRANCH or ?BRANCH. Pronounced “forward-resolve.”

Compiling Words 171

For example, the IF—THEN operators could be defined this way:

IF COMPILE ?BRANCH >MARK ; IMMEDIATE

THEN >RESOLVE ; IMMEDIATE

Here is a definition of MAX along with the object code it produces:

MAX 2DUP < IF SWAP THEN DROP

Address Contents

BODY compilation address of 2DUP

CELL+ compilation address of <

etc. ?BRANCH

forward to Label A

compilation address of SWAP

Label A compilation address of DROP

compilation address of EXIT

Aliases

It is possible to use compiling words to substitute one code sequence for another.

For example, if your FORTH doesn’t have 2DUP, you could define it this way:

2DUP OVER OVER

If you use this 2DUP within a definition, you will compile instructions to do

several things.

1. Execute 2DUP from the definition, which means pushing the I register

on the return stack and resetting it to point to the first OVER.

2. Execute OVER and OVER again.

3. Execute EXIT (compiled by ;), popping the I register from the return
stack.

172 Mastering FORTH, Revised and Expanded

Actions 1 and 3 are the overhead of calling one high-level colon definition from

another. It would be significantly faster to simply substitute the phrase OVER
OVER for 2DUP whenever it occurs in a definition.

2DUP COMPILE OVER COMPILE OVER ; IMMEDIATE

The technique of substituting one sequence for another is called macro expansion.

In deference to FORTH’s macro-assembler, however, we will call it

aliasing. In this case, 2DUP is an alias for OVER OVER.

The power of compiling words lies in their ability to substitute low-level command sequences

for high-level constructions.

It is possible to create new flow-of-control operators as aliases of existing

operators. For example, the popular variation of DO called ?DO does not

execute the following loop at all if the index is equal to the limit.* You could

define ?DO this way:

?DO COMPILE 2DUP COMPILE =

[COMPILE] IF COMPILE 2DROP

[COMPILE] ELSE [COMPILE] DO ; IMMEDIATE

DO COMPILE TRUE [COMPILE] IF [COMPILE] DO ; IMMEDIATE

LOOP [COMPILE] LOOP [COMPILE] THEN ; IMMEDIATE

+LOOP [COMPILE] +LOOP [COMPILE] THEN ; IMMEDIATE

This converts a ?DO—LOOP construct into

2DUP = IF 2DROP ELSE DO ... LOOP THEN

DO LOOP and +LOOP also become aliases. DO—LOOP constructs are

converted into

TRUE IF DO ... LOOP THEN

To create an alias, precede each IMMEDIATE word in the sequence to be substituted with

[COMPILE]; otherwise, precede it with COMPILE.

* MacFORTH DO already includes this test.

Compiling Words 173

Notice that all macros must be IMMEDIATE . This means that if you want to use

one macro within another, you must precede it with [COMPILE].

Exercises

1. Define the word DLITERAL, which acts like LITERAL but which saves

and restores double numbers.

2. The construction IF LEAVE THEN is commonly found in DO—LOOPs.

Write the alias ?LEAVE to replace it.

3. Many FORTHs support the BEGIN—AGAIN construct which repeats the

sequence between BEGIN and AGAIN indefinitely. Define AGAIN. Hint:

base it on UNTIL.

4. Redefine: and; to print the number of bytes occupied by each new word in

the dictionary.

NEW 1234 DUP 2DROP ; Occupies 30 bytes.

5. Add the FOR—NEXT construct to your FORTH. This form of DO—LOOP

takes a single argument n and executes the loop sequence n+1 times.

TEST 10 FOR I . NEXT

TEST 10 987 654 3210

13 The Input Stream

and Mass Storage

r 1

he text interpreter reads and operates on each word of input until the input

stream is exhausted and then asks for more. Input normally comes from the lines

you type in at the keyboard, unless you choose to LOAD a screen or a range of

screens. We will use input stream to mean the input to the text interpreter, no

matter where it is coming from.

The Input Stream

The text interpreter determines the source of the input stream by examining the

system variable BLK (“b-l-k”). If the value of BLK is zero, it takes its input

from the terminal input buffer (TIB) . Otherwise, it uses the value of BLK as

a block number and takes its input from that block. This is why you can never
LOAD block number zero.

BLOCK

BLK =3

INPUT STREAM

174

The Input Stream and Mass Storage 175

Since the input stream comes from either TIB or from a block, it will always

be read from memory. You can think of the input stream as an array or string of

characters whose starting address and length can be determined by the following

word.

SOURCE (- a n)

\ determines the starting address and length in bytes

\ of the input stream.

BLK @ ?DUP (from BLOCK ?)

IF BLOCK 1024 ELSE TIB #TIB @ THEN ;*

The text interpreter uses the system variable >IN (“to-in”) to keep track of

where it is in the input stream. As it reads each word, it advances the index >IN

to point to the next position to be read. This address and the number of characters

remaining to be read is given by the expression

SOURCE >IN @ /STRINGt

When the index in >IN is equal to the length of the input stream, there are no

more characters to be read. The input stream is said to be “exhausted,” and the

text interpreter will request further input. The word STOPS takes advantage of

this to immediately terminate a LOAD whenever it is executed from within a

block. STOPS fools the text interpreter into thinking that the block has already
been read.

STOPS 1024 >IN

\ stops a LOAD immediately.

The word MANY works from the keyboard in a similar way; it causes the

commands in the line just typed to be repeated until a key is pressed.

MANY

\ re-execute the commands in the line just typed.

KEY? NOT IF 0 >IN ! THEN

CR . (AGAIN!) MANY AGAIN! AGAIN! AGAIN! (key pressed here)

* MacFORTH doesn’t use LOAD, and interprets either from the keyboard or from text files.

SOURCE TIB @ TIB.SIZE @ ;

t At this point you may wish to review /STRING in the Strings chapter.

176 Mastering FORTH, Revised and Expanded

Be sure you understand why MANY must appear on the same line as the

commands you want to repeat.

The Command WORD

You can use the command WORD to read the input stream. WORD uses the

character on the top of the stack as a delimiter and reads the input stream up to

the delimiter into a temporary packed string, returning the address of the string.

Here is a simple word which simply reads and types the next word in the input
stream:

WHAT?

\ reads and types the next word in the input stream.

BL (delimiter) WORD COUNT TYPE

1 2 3 CR WHAT? OVER .S

OVER

1 2 3 <-Top

The OVER is read by WHAT? instead of by the text interpreter and sois never
executed.

If the input stream is exhausted while it is being read, WORD returns with a string

of whatever characters were available. If WORD is called when the input stream

is already exhausted, this string has a length of zero.

CR . . . WHAT?

3 2 1 <-Top

The text interpreter itself uses WORD (or something similar) to read each word

in the input stream. It then uses FIND (or something similar) to find the word

in the dictionary from the packed name returned by WORD. The FORTH-83

FIND has a curious syntax which largely reflects the needs of a typical text

interpreter.

The Input Stream and Mass Storage 177

Word Stack Action

WORD c - a Returns the address of a counted string read from the input

stream up to the delimiter c or until the input is exhausted.

Skips leading delimiters. The counted string is followed by
a blank not included in the count. If more than 255 characters

are read, the count is meaningless.

FIND a - a 0 I a2 1 I a2 -1 Finds the name in the dictionary given by the counted string

a. If the name is not found, returns a and 0. If the name is

found, returns the compilation address a2and a true flag

with one of two values: 1 meaning the word is IMMEDIATE;

-1 meaning the word is not IMMEDIATE.

The text interpreter uses a sequence like BL WORD FIND to find a word in the

dictionary. The state-smart word ASCII can also be based on WORD.

ASCII (- n)

\ used in the form: ASCII c

\ where c follows in the input stream.

\ Returns the 7-bit ASCII code of c.

BL WORD 1+ C@ (read the next char)

STATE @ (ASCII is state-smart!)

IF [COMPILE] LITERAL THEN ; IMMEDIATE

WORD skips leading delimiters.

ASCII A .

This can lead to some unfortunate situations. Consider, for example, this

definition of . (:

\ reads and TYPEs text up to the next “)“.
ASCII) (delimiter) WORD COUNT TYPE ;*

* Assume we are using a state-smart ASCII. Otherwise, use LITERAL like this:

ASCII)] LITERAL WORD COUNT TYPE

178 Mastering FORTH, Revised and Expanded

The following message prints correctly:

• (PRINT ME) PRINT ME

But when the message is empty, strange things may happen.

• () (IGNORE ME) (IGNORE ME

What happens? When the text interpreter reads the. (,it leaves the index in >IN

pointing just past the blank delimiter to the next right parenthesis. When . (is

executed, WORD treats this right parenthesis as a leading delimiter and ignores

it. WORD then reads the input up to the next right parenthesis into a packed

string—which .(then prints.

This problem often occurs in words which use WORD to read the input stream
with a non-blank delimiter. Such words should be based on PARSE rather than

on WORD.

PARSE (C - a)

\ works like WORD, but doesn’t ignore

\ leading delimiters.

SOURCE >IN @ /STRING

>R C@ OVER = (peek at next char in input)

P.> 0> AND (does it equal delimiter?)

IF DROP 0 PAD ! (build empty string)

1 >IN +! PAD EXIT THEN WORD

Both . (and (can now be safely defined with PARSE.

\ reads and ignores text up to the next “)“.
ASCII) (delimiter) PARSE DROP

• (\ reads and TYPEs text up to the next “)“.

ASCII) (delimiter) PARSE COUNT TYPE

Conditional Compilation

Some applications may need to run in several different environments. For

example, words which control a printer may need to change with each new

printer. While it is possible to write one word which controls several printers, it

The Input Stream and Mass Storage 179

is more efficient to write one word for each printer. Once a printer is selected,

only the word controlling that printer should be compiled.

One approach you might take to implement selective or conditional compilation

is to put definitions onto separate screens in a file. You can then write a word

which tests a condition and compiles the appropriate screen. The word might

contain a code sequence like this:

DUP 1 = IF 8 LOAD ELSE

DUP 2 = IF 9 10 THRU ELSE

otherwise:) DROP 11 LOAD

THEN THEN

It would be nice if this sequence could appear in interpret mode. Unfortunately,

the IF—ELSE--THEN construct is compile-only and must appear within the

body of a definition. Therefore, you must invent a name and compile the code

sequence into its definition. Furthermore, since the new definition will be

LOADing the screens, it will precede any definitions on these screens in the

dictionary and so cannot be forgotten after the LOAD.

Alternately, you can design a class of smart comments for conditional code.

These comments normally act like ordinary comments—any code they contain

is ignored. But under certain conditions, smart comments disappear and the

code they contain is read and processed by the text interpreter.

VARIABLE CHOOSE (smart comment selector)

(1

\ the lefthand side of smart comment class 1.

\ If CHOOSE isn’t 1, the code in the comment is

\ ignored.

CHOOSE @ 1 - IF ASCII) PARSE DROP THEN

IMMEDIATE

(2

\ the lefthand side of smart comment class 2.

CHOOSE @ 2 - IF ASCII) PARSE DROP THEN

IMMEDIATE

IMMEDIATE

\ the righthand side of a smart comment.

180 Mastering FORTH, Revised and Expanded

The dummy definition of) is necessary because when a smart comment is

selected, all words included in the comment will be processed by the text

interpreter, including the trailing). For this same reason, the) must be

preceded and followed by at least one blank.

2 CHOOSE

(1 : HI .“ HELLO” ;) (2 : HI .“ BONJOUR”

CR HI BONJOUR

String Arrays

We can combine string and input stream operators to generate arrays of strings.

String arrays can be constructed with STRING, which is based on WORD.

STRING (c

\ read a string up to delimiter c

\ Compile it into the dictionary.

WORD COUNT SWAP OVER HERE PLACE 1+ ALLOT ; *

CREATE ASTRING

ASCII “ STRING This is a test.”

ASTRING COUNT TYPE This is a test.

Now suppose we need a string array to name various colors.

STRINGS (n

0 DO [ASCII /] LITERAL STRING LOOP

CREATE COLORS

5 STRINGS WHITE/RED/GREEN/YELLOW/KIND OF BLUE/

.COLOR (n

COLORS SWAP ?DUP

IF 0 DO COUNT + LOOP THEN

COUNT TYPE SPACE

1 . COLOR Q

4 .COLOR KIND OF BLUE

* FORTHs that require even address alignment might add the phrase IE 1 ALLOT to the end

of this definition.

The Input Stream and Mass Storage 181

Traversing a string array is simplified by using 0 C, to compile a null string

at the beginning of each array. MacFORTH and other aligned FORTHs would

use 0, instead.

STRINGS (n) 0 C, (null string)

o DO [ASCII /] LITERAL STRING LOOP

CREATE COLORS

5 STRINGS WHITE/RED/GREEN/YELLOW/KIND OF BLUE/

.COLOR (n

COLORS SWAP

1+ 0 DO COUNT + LOOP

COUNT TYPE SPACE

1 .COLOR Q

4 .COLOR KIND OF BLUE

Mass Storage

The word BLOCK reads a block into a memory buffer and returns the starting

address of that buffer. BLOCK, in essence, is a 1024-byte window into a file.

MacFORTH users: BLOCK is only present if the optional BlockSupport is

loaded. BLOCKs can be used for data storage, but not for source code, so LIST

and LOAD are not provided. Words like LIST, LOAD, and even the editor itself

are based on BLOCK (or a word very much like it). You might expect the

following sequence to copy screen 2 to screen 4:

2 BLOCK 4 BLOCK 1024 CMOVE

The 2 BLOCK reads block 2 into a buffer in memory and returns its address.
The 4 BLOCK returns the buffer address of block 4. You now have the three

arguments required by cMOVE.

Unfortunately, you have no control over which buffer is selected by BLOCK. It

could happen that block 4 is read into the same buffer as block 2, in which case

you copy block 4 to block 4, which is not what you meant. You can solve this

problem by using a third intermediate buffer in memory.

182 Mastering FORTH, Revised and Expanded

2 BLOCK PAD 1024 CMOVE

PAD 4 BLOCK 1024 CMOVE

Here, PAD is used as the intermediate buffer. PAD is only guaranteed to be

84 characters long, but on most FORTHs, it is much larger. If PAD is smaller

than 1024 bytes on your system, substitute a suitable memory array.

CREATE TEMP-BUF 1024 ALLOT

Once screen 2 has been copied, you must tell FORTH that block 4 has been

changed and needs to be (eventually) rewritten to mass storage. You can do this

with the word UPDATE. UPDATE marks the most recently read BLOCK as

updated or changed. (If you were in the editor, it would automatically UPDATE

a screen when you changed its contents.) The complete sequence for copying
screen 2 to screen 4 is

2 BLOCK PAD 1024 CMOVE

PAD 4 BLOCK 1024 CMOVE UPDATE

Now that you know how to copy one screen to another, you could write a utility

to copy a range of screens the same way.

The FORTH-83 Standard also provides the word BUFFER which, like BLOCK,

selects an available buffer and returns its memory address. Unlike BLOCK,

however, the block number is assigned to the buffer and is not necessarily read

into it from mass storage. BUFFER is designed for operating systems that

require you to write a block before reading it for the first time. You can initialize

a block this way:

10 BUFFER 1024 BL FILL UPDATE

Block 10 is created and is initialized to blanks.

Reading Blocks

You now have all the words you need to write the INDEX function. INDEX

reads a range of screens and types out any line that begins in the leftmost column

(column 0).

The Input Stream and Mass Storage 183

: INDEX (n n2)

\ prints any line in blocks n through n2

\ that begins in column 0.
1+ SWAP (read each block)

DO I BLOCK 1024 0 (read each line)

DO DUP I + C@ BL - (column 0 not blank?)

IF CR DUP I + 64 TYPE THEN

64 (next line is 64 bytes away)

+LOOP DROP

LOOP

Virtual Arrays

In writing INDEX , we took advantage of the fact that screens are exact multiples

of lines, that is, there are exactly 16 lines per screen. This means that no line starts

on one block and crosses over into the next block. So if a screen is brought into

memory with BLOCK, all the lines on that screen are in memory too.

The lines on a screen spend most of their time in mass storage, and are brought

into memory on demand. You could say that they exist in a virtual memory. As

such, they don’t take up valuable main memory space. In FORTH, virtual

memory arrays are easy to implement, provided that the array fits entirely within

a block. Here is a defining word which creates virtual arrays 1024 bytes (512

cells) long:

VIRTUAL-ARRAY

CREATE (block#

DOES> (- a) @ BLOCK

Notice that no ALLOT is necessary. Before you create a virtual array, you must
decide which block to use.

4 VIRTUAL-ARRAY HOLD-IT

Block 4 of the active file is assigned to HOLD—IT. Save a string in HOLD—IT

this way:

SAMPLE

TRUST ME” HOLD-IT PLACE UPDATE

184 Mastering FORTH, Revised and Expanded

The UPDATE is necessary to ensure that HOLD—IT will be rewritten to mass

storage when the file is closed.

FLUSH SAMPLE

CR HOLD-IT COUNT TYPE

TRUST ME

No UPDATE is necessary here, since you are only reading HOLD—IT.

UPDATE can be included in the defining word VIRTUAL-ARRAY itself, right
after BLOCK.

If you are just as likely to write to a virtual array as you are to read from it,

include UPDATE in the defining word for the virtual array.

A Simple Data Base Manager

In a simple data base manager, information is saved to and retrieved from mass

storage in units called records. A record is typically subdivided into fields of

numbers and text. For example, in a mailing list program, the records are the

addresses themselves and the fields are the name, street number, city, state, zip

code, and so on.

If the record size is fixed (unvarying) and evenly divides a block (1024 bytes),

then the block location of a record in a file can be found by multiplying the record

number by the record size (in bytes) and then dividing the product by 1024. The

remainder of this division is the byte offset of the record within the block. If the

records begin on a block other than block 0, you will need to add a constant offset
to the block location.

Once the block location and byte offset of a record are known, the record and all

fields in it can be treated as virtual memory arrays. Here ‘show to find the starting
address of a record:

4 CONSTANT FIRST-BLOCK (records start here)

128 CONSTANT RECORD-SIZE (8 records per block)

The Input Stream and Mass Storage 185

RECORD (n - a)

\ determine the starting address of a virtual

\ record.

RECORD-SIZE *

1024 /MOD FIRST-BLOCK + (offset block#)

BLOCK + UPDATE

Given the starting address, you can find all other fields just by adding an

appropriate offset. You can even create the defining word FIELD to do this for

you.

VARIABLE RECORD# (number of current record)

FIELD

\ return the address of a field in the current

\ record. A field is defined by its offset in

\ the record.

CREATE (record-offset

DOES> (- a) @ RECORD# @ RECORD +

0 FIELD NAME (20-byte name field)

20 FIELD STREET (30-byte street field)

50 FIELD ZIP (9-byte zip code field)

Using the string operators from the chapter on strings, you can write a word

which prompts the user for name, address, and zip code and uses this information
to initialize a record.

CREATE BUF 4 ALLOT (temporary buffer)

SELECT-IT

\ select a record and makes it current.

CR .“ USE WHICH RECORD? BUF 4 BL FILL

BUF 4 EXPECT (assume a valid number:)

BUF SPAN @ VAIJ (dn flag)

2DROP (includes D>S) RECORD#

READ-IT (a n

\ read and pack a field.

OVER 1+ SWAP 1- EXPECT

DUP 1+ SPAN @ ROT PLACE

186 Mastering FORTH, Revised and Expanded

FILE-IT

\ request and file name, address, and zip.

SELECT-IT (choose a record)

CR NAME: NAME 20 READ-IT

CR STREET: STREET 30 READ-IT

CR .“ ZIP: ZIP 9 READ-IT

Finally, PRINT—IT let’s you see what’s in a record.

PRINT-IT

\ print requested record.

SELECT-IT (choose a record)

CR .“ NAME: NAME COUNT TYPE

CR .“ STREET: STREET COUNT TYPE

CR .“ ZIP: ZIP COUNT TYPE

Word Stack Action

BLK - a Variable which selects a block number for input. If BLK is zero, input

is taken from the terminal input buffer.

>IN - a Variable which contains the current offset of the input stream.

BLOCK n - a Reads block n from the active file into a memory buffer and returns the
address of that buffer.

BUFFER n - a Assigns block n to a memory buffer and returns the address of that

buffer. Block n may not be read from the active file into that buffer.

UPDATE Marks the most recently read block for eventual rewriting to mass

storage.

Exercises

1. Define a state-smart word CONTROL which, like ASCII, reads the

character that follows it in the input stream, converting it to the appropriate

control character.

HEX CONTROL X

The Input Stream and Mass Storage 187

2. Define the word SLICES< which reads the input stream to the delimiter

“>“and prints each word on its own line.

SLICES< This is a test.>

This

A

test.

3. Write a version of RECORD which reads records into a memory buffer that

you provide. The records can be any size less than 1024 bytes, but all records
must be the same size. This means that a record can start on one block and

end on another. By reading the record into a memory buffer, you are then

able to access the fields with cMOVE. The syntax of the new RECORD is
as follows:

RECORD (record# buffer-address

4. Modify the simple mailing list program to include city and state fields.

Change ZIP from a 9-byte text field to a 4-byte double-number field. You

will also need to modify PRINT-IT to print the new information.

5. Write a word to define an execution vector. Anything between X [and] X

is compiled as a token or address for a later EXECUTE. Hint: define] X then

use X [to compile tokens or addresses until you see a reference to] X.

lThing .“ Thing 1

2Thing .“ Thing 2

3Thing .“ Thing 3

CREATE THINGS 3 X[lThing 2Thing 3Thing]X

ACTION (n) 1- CELLS THINGS + @ EXECUTE

1 ACTION Thing 1

3 ACTION Thing 3

1 4 Fixed and
Floating Point Math

it Manipulation

The logical operators AND and OR presented in the chapter on flow of control

are bitwise operators. This means they examine each pair of bits in the two

operands independently. For example, suppose you OR two binary numbers

together.

00010010001 10100 (hex 1234)

OR 1010101111001101 (hexABCD)

1011101111111101 (hexBBFD)

Each bit in the answer is set to one if either of the two bits above it is set.

What if you AND the numbers 2 and 4?

0000000000000010 (2)

AND 0000000000000100 (4)

0000000000000000 (0)

Each bit in the answer is set to one if both of the two bits above it is set. In this

case, all bits in the result are zero. If you were using 2 and 4 as boolean flags, you

would get the surprising result that true AND true is false. To prevent situations

like this, be sure that at least one of the flags is boolean, since boolean flags are

either all zeroes (0) or all ones (—1).

188

Fixed and Floating Point Math 189

You can use logical operators to manipulate bits within a number. They can be
used to

• set a bit (to one);

• reset a bit (to zero);

• detect whether a bit is set or not;

• reverse a bit.

To set a bit, you can OR it with a one in the appropriate position. You can clear

a bit by ANDing it with zero. We will number bits from right to left, starting with

zero. If you want to set bit 3 of a number, you could OR it with binary

0000000000001000 (8).

0001001000110100 (hex 1234)

OR 0000000000001000 (hex 0008)

0001001000111100 (hex 123C)

You could clear it again with (hex) FFF7 AND.

0001001000111100 (hex 123C)

AND 1111111111110111 (hex7FFF)

0001001000110100 (hex 1234)

To see whether bit 3 is set, AND it with 0000000000001000 (8).

7777777777777777

AND 0000000000001000 (8)

000000000000?000

If bit 3 is one, the result will be true (8); otherwise it will be false (0). The other

bits are ignored or masked out.

Bits can be selectively reversed with the XOR (“x-or”) exclusive-OR logical

function. An exclusive-OR of two bits is one if either of the two bits (but not

both) is one. In other words, if one of the two bits is set, the other will be reversed.

190 Mastering FORTH, Revised and Expanded

1010101010101010 (hex AAAA)

XOR 1111111111111111 (hexFFFF or -1)

0101010101010101 (hex 5555)

In some FORTHS (MasterFORTH, UR/FORTH, L&P F83, and other FORTH-

83 Standard FORTHS), NOT is a bitwise operator, equivalent to -1 XOR; in

others (Po1yFORTH and MacFORTH), it is a logical operator, equivalent to 0=.

Fixed-point Fractions

Numbers like 10.125 and .003 are called fixed-point numbers if the number of

digits to the right of the decimal (or binary) point in their internal representation

is fixed. Numbers like 6.0225 x 1023 (or its alternate representation 6.0225E23)

are calledfloating-point numbers if their internal representation is in two parts:

a fixed point number multiplied by a separate exponent. The exponent is usually

a power 2 but is converted to a power of 10 for input and display. In floating-point

representation, the number of accurate digits is fixed, but the decimal or binary

point appears to float and can appear anywhere in the number.

FORTH programmers generally prefer fixed-point to floating-point math. For

any given number size, fixed-point math is faster and more accurate than

floating point but lacks its convenience and larger dynamic range. Real-time

applications that read transducers and write to D/A converters or stepper motor

controllers usually have well-understood algorithms of limited dynamic range.

PID controllers, digital filters, and computer graphics are especially amenable

to fixed-point solutions.

A common FORTH approach to implementing fixed-point numbers is to

combine signed 16-bit integer math with signed 14-bit fractional fixed-point

math. A 14-bit fraction is a signed 16-bit number with the binary point two

positions from the left:

s#.## #### #### ####

where s is the sign bit and each # is a binary digit.

Fixed and Floating Point Math 191

Binary Hex Decimal

01.00 0000 0000 0000 4000 1.0000

11.00 0000 0000 0000 C000 -1.0000

00.100000 0000 0000 2000 0.5000

00.01 0101 0101 0101 1555 0.3333

Fourteen-bit fractions have several charming properties:

• They can be added to each other with no adjustment.

• They can be multiplied by an integer with no adjustment.

• They can be multiplied together and adjusted with two left shifts.

• They can exactly represent +1 and -1, which is especially useful when

working with sines and cosines.

To experiment with 14-bit fractional math, we need some way to enter fractions

and some way to print them. Printing them is easy—just multiply them by 10000

to convert them to integers and print them with exactly four digits to the right of

the decimal point. When you multiply a 14-bit fraction by an integer, you must
shift the result left twice.

FN* (fn fn2 - fn3)t * 2* 2* ; \ Wrong!

This definition of FN* multiplies the two fractions with *. Unfortunately, *

discards the leftmost half of the double-number product, where all the precision

is. Extra precision is preserved by using */ instead.

HEX 4000 CONSTANT ONE

1555 CONSTANT 1/3 DECIMAL

FN* (fn fn2 - fn3) ONE *1 ; \ Better.

Instead of multiplying the product by four, we are effectively dividing it by one

quarter.

t Here we are using fn to mean 14-bit fraction.

192 Mastering FORTH, Revised and Expanded

Many FORTHs support mixed-precision multiplication, called M*, which

multiplies two signed single-precision numbers to give a signed double-

precision result. If M* and D2* are available, an alternate definition for FN*

which uses multiplication only is

FN* (fn fn2 - fn3) M* D2* D2* SWAP DROP

Now we are ready to print fractions.

FN. (fn) \ print a 14-bit fraction.

10000 FN* DUP ABS 0

<# # # # # [ASCII .] LITERAL HOLD # ROT SIGN #>

TYPE SPACE

ONE FN. 1.0000

1/3 FN. O3333

To enter a fraction, follow the decimal point with exactly four digits.

1. 2345

In most FORTHs, this will leave a double-precision 12345 on the stack.

Assuming this is so, convert the number by dividing it by 10000 and then shift

it twice to the right.

FN/ (fn fn2 - fn3) ONE SWAP */

D>FN (d - fn) DROP 10000 FN/

1.2345 D>FN FN. 1.2344

Some precision is unavoidably lost in the conversion, but the result is still

accurate to about four decimal digits.

Fractions can be manipulated with DUP and DROP, and added and subtracted
with + and — as usual.

1/3 1/3 2DUP + FN. FN* FN. 0.6666 0.1110

Higher functions can be implemented with polynomial approximations, such

as those found in Computer Approximations, by Hart et al (Fla: Krieger Publ,

Fixed and Floating Point Math 193

1978). According to Hart, the cosine of an angle in radians between 0 an jtx/4

is given to 7 digits by a third degree polynomial (#3820) of x2.

- .0003x6 + .0158x4 - .3084x2 + 1

This can be implemented most quickly using Homer’s method.

FNCOS (fn - fn2) \ Hart 3820 COS of nfn/4

DUP FN* (x”2)

- . 0003 D>FN] LITERAL OVER FN*

0158 D>FN] LITERAL + OVER FN*

- .3084 D>FN] LITERAL + FN* ONE +

ONE FNCOS FN. 0.7070

The correct answer is 0.7071. FNCOS is actually restricted to x between 0 and

J2 (approximately 1.4142); otherwise the term x2 overflows. Angles outside
the permitted range can be easily transformed or folded to lie within the range.

We will shortly explore one such technique. Polynomials are readily available

for other trigonometric functions, logarithms, exponentials, power functions,

and square and cube roots.

Mixed-precision Arithmetic

Unfortunately, neither single integers nor 14-bit fractions can represent handy

numbers such as 3.14 15... For both efficiency and convenience, you can use a

mixed-point format which consists of a single number fraction and signed single

integer, with the integer on top of the stack. Assume for the moment that single
numbers are 16-bits wide.

s### #### #### #### . #### #### #### ####

Binary Hex Decimal

0000 0000 0000 0001 . 0000 0000 0000 0000 1.0000 1.00000

0000 0000 0000 0001 1000 0000 0000 0000 1.8000 1.50000

0000 0000 0000 0011 . 0010010000111111 3.243F 3.14159

194 Mastering FORTH, Revised and Expanded

When we multiply and divide numbers in this format, we will need mixed-

precision operators such as the M* we mentioned above. Many of these

operators are probably already available in your FORTH. The easiest way to find

out is to ‘ (“tick”) them. If ‘ can’t find a word, use the appropriate high-level

definition provided below.

D2* (d - 2d) 2DUP D+

DU< (udi ud2 - f

ROT SWAP 2DUP U<

IF 2DROP 2DROP TRUE

ELSE - IF 2DROP 0 ELSE U< THEN THEN

:M+(dn-d2) DUP0<D+;

\ sign-extend n and add it to d.

D+- (ufn n - fn) 0< IF DNEGATE THEN

\ apply sign of n to ud.

M* (n n2 - d)

\ multiply n by n2 giving signed product d.

2DUP XOR >R ABS SWAP ABS UM* R> D+M

/ (d n - n2)

\ divide d by n giving single quotient n2.

\ All are signed.

2DUP XOR >R ABS >R DABS R> UM/MOD SWAP DROP

R> 0< IF NEGATE THEN

D* (d d2 - d3

\ multiply two signed double numbers to give

a double product.

ROT 2DUP XOR >R ROT ROT DABS 2SWAP DABS

ROT SWAP >R >R 2DUP UM*

2SWAP R> UM* DROP SWAP R> UM* DROP + + R> D+2VARIABLE

DENOM \ holds denominator— simplifies stack.

Q2* (qn - qn2)

\ shift quad-precision q left once.
2SWAP DUP >R D2* 2SWAP D2* R> 0< NEGATE M+

Fixed and Floating Point Math 195

: D/MOD (dn dn2 - dn-rem dn-quot

\ divide two double numbers.

\ All numbers are signed doubles.
2 PICK OVER XOR >R DABS 2 SWAP DABS 2 SWAP

DENOM 2! 0 0 32 0

DO DUP >R (save hi bit) (Q2* >= DENOM?)

Q2* 2DUP DENOM 2@ DU< NOT R> 0< OR

IF DENOM 2@ D- 2 SWAP 1 M+ 2 SWAP THEN

LOOP 2SWAP R> D+The

next set of words employ both double and triple-precision numbers. They

are used to construct M*/.

UT/D (utn ud2 - ud-quot)

\ used by >F for input conversion.
DENOM 2! 0 32 0

DO DUP >R (save hi bit) (Q2* >= DENOM?)

Q2* 2DUP DENOM 2@ DU< NOT R> 0< OR

IF DENOM 2@ D- 2 SWAP 1 M+ 2 SWAP THEN

LOOP 2DROP

U2/ (u-u/2) 2/32767AND

UT* (ud u - ut)

>R SWAP R@ UM* ROT R> UM* ROT M+

UT/MOD (ut u - urem udquot)

DUP >R UM/MOD ROT ROT R> UM/MOD ROT

The M*/ operator is the double-precision equivalent of */. It is used to scale

a double number by a ratio of two single numbers.

M*/ (d n n2 - d*n/n2)

\ the infamous M*/

ABS >R DUP ABS >R OVER XOR (sign

ROT ROT DABS R> UT* R> UT/MOD

ROT (rem) DROP ROT D+123456.

1 3 M*/ D. 41152

196 Mastering FORTH, Revised and Expanded

Mixed-precision Aliases

Mixed-precision fractions, with the binary point between the signed single-

precision integer and the single-precision fraction, can be manipulated with

2DUP and 2DROP and added and subtracted with D+ and D-. However, it

is to our advantage to hide the precision of these operators by calling them

FDUP, FDROP, F+, and F—,respectively. This lets us increase the fixed-point

precision or even change to floating-point numbers without changing the source
code.

The easiest way to substitute FDUP for 2DUP is to define it this way:

FDUP 2DUP

If FDUP is implemented this way, however, it will be much slower than 2DUP.

To increase the performance of FDUP, we can alias it to be 2DUP.

FDUP COMPILE 2DUP ; IMMEDIATE

If you don’t understand what’s happening here, you may wish to review the

chapter on compiling words. This definition of FDUP will work only inside a
definition. A better state-smart version will work either inside or outside a

definition.

FDUP STATE @ IF COMPILE 2DUP ELSE 2DUP THEN

IMMEDIATE

Since we have several aliases to make, let’s create a defining word called
ALIAS.

ALIAS

\ alias two definitions.

\ The second will act like the first.

CREATE ‘ , IMMEDIATE

DOES> STATE @ IF @ , ELSE @ EXECUTE THEN

ALIAS F+ D+ ALIAS F- D- ALIAS F2* D2*

ALIAS FU< DU< ALIAS F< D< ALIAS F2/ D2/

ALIAS FABS DABS ALIAS FMAX DMAX ALIAS FMIN DMIN

ALIAS F= D= ALIAS FO= DO=

Fixed and Floating Point Math 197

ALIAS FNEGATE DNEGATE

ALIAS FDUP 2DUP ALIAS FSWAP 2 SWAP

ALIAS FDROP 2DROP ALIAS FOVER 2OVER ALIAS FROT 2ROT

ALIAS F@ 2@ ALIAS F! 2!

F0< SWAP DROP 0<

FVARIABLE 2VARIABLE ;

FCONSTANT 2CONSTANT

FLITERAL [COMPILE] DLITERAL ; IMMEDIATE

We will also need a constant to tell us how many bytes of memory a mixed-point

number occupies. Assume for now that single-precision numbers occupy 2

bytes.

4 CONSTANT F#BYTES \ bytes/mixed-fraction.

Mixed-precision Fractions

Mixed-point multiply and divide are not simple aliases of existing operators.

Possible definitions for them are given below. Here we are using r to mean real

or floating-point number. A properly aliased set of mixed-point operators is

indistinguishable from floating operators.

r r2 - r3) \ mixed-point multiply

2DUP XOR >R ROT ROT FABS FSWAP FABS

2DUP UM* DROP >R 2OVER UM* >R >R

UM* 2 SWAP UM* D+ R> ROT ROT R> R> D+ROT

0< NEGATE M+ (rounds) R> D+F/ROT

(f f2 - fn-quot

2 PICK OVER XOR >R FABS DENOM F!

FABS 0 ROT ROT 0

DO DUP >R (save hi bit) (Q2* >= DENOM?)

Q2* FDUP DENOM F@ FU< NOT R> 0< OR

IF DENOM F@ F- 2 SWAP 1 M+ 2 SWAP THEN

LOOP FDROP 1 M+ DUP 0< M+ D2/ (rounds

R> D+F*

ROT

ROT

\ mixed-point divide

33 0

198 Mastering FORTH, Revised and Expanded

Now that we can add, subtract, multiply, and divide mixed-point fractions, we

can implement routines to enter and display them.

[NIP] (n n2 - n2) \ more practice with aliasing.

COMPILE SWAP COMPILE DROP ; IMMEDIATE

F. (r) \ print a mixed-point fraction.

DUP >R FABS SWAP 10000 UM* [NIP] 0

<# # # # # ASCII . HOLD [NIP] #S R> SIGN #>

TYPE SPACE

F? (a) F@ F.

CREATE TENS

1. , , 10. , , 100. , , 1000. , , 10000. , , 100000. ,

>F (d - r)

\ converts most recent double number to mixed fraction.

\ Used like 3.14159 >F

DPL @ 0< ABORT” Needs decimal point”

DPL @ 5 > ABORT” Use 0->5 digits after decimal”

DUP >R DABS 0 ROT ROT

DPL @ 2* CELLS TENS + 2@ UT/D R> D+Here

are some examples of their use:

3.14159 >F FCONSTANT P1

P1 F. 3.1415

2.0 >F F. 2.0000

0 2 F. 2.0000

CIRCUM (r - r2) [P1 0 2 F*] FLITERAL F*

\ calculates circumference of a circle given radius r.

100. >F CIRCUM F. 628.3172

\ Useful constants

3.14159 >F FCONSTANT P1

1.57079 >F FCONSTANT P1/2

0.78540 >F FCONSTANT P1/4

0.31831 >F FCONSTANT 1/PI

0.69315 >F FCONSTANT LN (2)

0.30103 >F FCONSTANT LOG (2)

1.44270 >F FCONSTANT 1/LN(2)

3.32193 >F FCONSTANT 1/LOG (2)

Fixed and Floating Point Math 199

2.71828 >F FCONSTANT E#

Finally, lets look at mixed-point functions for calculating sines and cosines.

First, we will use another polynomial approximation from Hart, this time for the

sine of itx/4.

FNSIN (fn - fn2) \ Hart 3040 SINE of nfn/4

DUP DUP FN* (x”2)

0025 D>FN] LITERAL OVER FN*

- . 0807 D>FN] LITERAL + FN*

.7854 D>FN] LITERAL + FN*

ONE FNSIN FN. 0.7070

FNSIN operates on 14-bit signed fractions in the range of 0 to it/4. What we need

now is a way to take a mixed-fraction, map it into this range, find the sine or

cosine, and translate the result back to a mixed fraction. Bear in mind that

FNCOS and FNS IN, our two primitives, operate on itx/4 and not on x itself. For

this reason, a good first step would be to multiply the angle, which we assume

to be in radians, by 4/it.

1.27324 >F FCONSTANT 4/PI

P1/4 4/PI F* F. 0.9999

Of course, if the result is one, then the angle is it/4. More important, if the angle

is less than it/4, then the result will lie in the proper range for FNSIN or FNCOS.

If the angle is equal to or greater than it/4, then we need to place the angle in one

of eight possible divisions or octants of a circle and express it as an octant
number and a remainder.

FI/2

U ,,,N” 00
Iv VII.

V.
3F1/2

VI.

200 Mastering FORTH, Revised and Expanded

The remainder will lie within the range of 0 to it/4, which is what we want. If the

angle lies outside of octant number 0, we will use trigonometric identities to

bring it back into this range.

/OCTANT (r - fn octant)

\ transform angle r into smaller angle fn and

\ integer octant number.

DUP (sign) >R FABS 8 MOD (octant) >R

0 D2/ 1 M+ (rounds) D2/ DROP R>

R> 0< IF >R 1 SWAP - 7 R> - THEN

0.39270 >F FCONSTANT P1/8

P1 P1/8 F+ FCONSTANT 9P1/8

9P1/8 4/PI F* /OCTANT . FN. 4 0.5000

After multiplying by 4/it, the phrase 8 MOD determines the octant. The next

0 restores the integer part of the mixed fraction and D2/ 1 M+ D2/ DROP

converts it to a positive 14-bit fraction. The remainder of the definition maps

negative angles into positive angles. As you can see, an angle of one and one

eighth it is in octant 4, plus one half an octant more.

CREATE SINES

FNSIN , ‘ FNCOS , ‘ FNCOS , ‘ FNSIN

FNSIN , ‘ FNCOS , ‘ FNCOS , ‘ FNSIN

SINE (fn octant - r)

DUP >R 1 AND IF 1 SWAP - THEN

R@ CELLS SINES + @ EXECUTE

DUP 0< D2* D2* (fn - r)

R> 4 AND IF FNEGATE THEN

FSIN (r - r2)

4/PI F* /OCTANT SINE

FCOS (r - r2)

4/PI F* /OCTANT 2+ 7 AND SINE

P1/8 FSIN F. 0.3826

P1/8 FCOS F. 0.9238

In SINE, we use the trigonometric identity

sin(x) = cos(n/4 - x)

Fixed and Floating Point Math 201

where 1 SWAP — is equivalent to it/4 - x. In FCOS, we use the identity

cos(x) = sin(n/2 + x)

where adding 2 to the octant is equivalent to adding it/2 to the angle.

Floating-point Numbers

Conservative FORTH programmers disdain floating-point for higher-performance

fixed-point arithmetic. “If you need to use floating-point arithmetic,” they

say, “then you don’t understand the problem.” Nevertheless, virtually all major

FORTH vendors offer a floating-point package. Most of these extensions

closely follow the hardware or firmware floating-point support on the host

system, such as the 8087 co-processor or the Macintosh SANE interface.

Software-only floating-point implementations usually follow the guidelines in

The FVG Standard Floating-Point Extension by Duncan and Tracy (Dr. Dobbs

Journal Sep. 1984).

Virtually all floating-point (FP) extensions provide the four functions F+ F—

F* and F/. Most packages keep FP numbers on a separate FP stack. Hardware

implementations use the separate FP stack provided by the hardware. Software

FP packages achieve better performance if FP numbers are kept on the normal

data stack. It is possible to make the separate FP stack a compilable option.

Imagine a definition of F+ in a software FP system.

F+ [FPOP] (. . . add numbers here...) [FPUSH]

If FP numbers are kept on a separate stack, [FPOP] would pop an FP number

from that stack and push it on the data stack. [FPUSH] would have the reverse

action. For greater speed, you could redefine [FPOP] and [FPUSH] to do

nothing before compiling the FP extension.

[FPOP] ; IMMEDIATE

[FPUSH] ; IMMEDIATE

The existence of a separate FP stack implies the existence of FP stack operators

such as FDUP FDROP FSWAP FOyER and FROT. Inmostpackages, F@ and

202 Mastering FORTH, Revised and Expanded

F! move FP numbers to and from FVARIABLEs, and FCONSTANTs such as

P1 aid readability. FP numbers can be compared with F< and F>. F= may

be provided, but comparing floating-point numbers for equality is a questionable

practice and should be avoided. It is meaningful, however, to compare an
FP number to zero with FO= or FO<. FABS FNEGATE FMAX and FMIN

are usually also provided.

The method of inputting a real number varies from FORTH to FORTH. Most
FORTHS install some kind of automatic conversion when the FP extension is

compiled. The usual conversion rule is that real numbers must contain an uppercase

E, particularly in MasterFORTH, UR/FORTH, MacFORTH, and all derivatives
of the FVG Standard.

2E or 2.E or 2.OE or 2E0 etc.*

You must be in DECIMAL or strange things happen.

To print a real number, use F. , but first set the number of places to the right
of the decimal with PLACES.t

4 PLACES

3.14159E F. 3.1416

Now let’s see what’s involved in writing a floating-point package, in case you

would like to experiment with one. First, we need a proper floating-point

representation. The most efficient representation for FORTH seems to be a normalized

double-precision signed mantissa and a single-precision signed exponent,

with the exponent on top.

* PoIyFORTH numbers containing a period and followed by at least one non-blank character are

converted to floating point when the floating-point extension is compiled. For example,

2 . 0 Would be a real 2 while

2 . Would be a double-precision 2.

t PoIyFORTH’s F. is an exception to this rule, and takes the number of places from the stack. If you

would like compatibility with the FVG standard, redefine F. this way:

VARIABLE Places

PLA.cES (n) Places!

F. (r) Places @ F.

Fixed and Floating Point Math 203

s. 1### #### #### #### #### #### #### #### normalized mantissa

s### #### #### #### exponent as a power of 2.

where s is the sign bit and each # is a binary digit. The high-order bit of the

mantissa is the sign bit. The remaining bits form an unsigned normalized

mantissa, with the second highest bit set to one. The binary point is to the left of

this bit. This gives the mantissa 31 bits, or about nine digits of precision, and an

exponent with an unheard of dynamic range.

Hex

Mantissa Exponent

Decimal

Real

40000000. 1 i.E

C0000000. 2 -2.E

40000000. 0 .5E

70000000. -1 .875E or 1.75E-1

0. 0 0

To multiply and divide double-precision mantissas, we are going to need a few

more math operators.

DU2/ (d - d2)

D2/ [HEX] 7FFF [DECIMAL] AND

T+ (tA tB - tC)

\ add two triple numbers.

>R ROT >R ROT SWAP >R >R

o SWAP 0 D+ 0 R> 0 D+ R> 0 D+ R> R> + +

TU2/ (t - ut)

\ shift triple number right unsigned.

0 SWAP DU2/ >R >R DU2/ R> + R>

2VARIABLE MULTIPLIER

DUM* (udi ud2 - uqproduct)

204 Mastering FORTH, Revised and Expanded

\ multiply unsigned double numbers to unsigned quad result.

MULTIPLIER 2! 0 0 (accumulator) 2SWAP 32 0

DO DUP (pseudo-carry) >R Q2* R> 0< (carry set?)

IF >R MULTIPLIER 2@ 0 T+ R> THEN

LOOP

QUM/ (uq ud - udquotient)

\ divide unsigned quad uq by unsigned dividend ud.

DENOM 2! 32 0

DO DUP >R (save hi bit) (Q2* >= DENOM?)

Q2* 2DUP DENOM 2@ DU< NOT R> 0< OR

IF DENOM 2@ D- 2SWAP 1 0 D+ 2SWAP THEN

LOOP 2DROP

DUM* / (ud ud2 ud3 - ud4) >R >R DUM* Q4/

\ (ud * ud2)/ud3 with quad-precision intermediate.

Writing the various stack manipulation and memory access words is also

straightforward.

FDUP DUP 2OVER ROT ;

FDROP 2DROP DROP

FSWAP >R ROT >R 2SWAP R> R> SWAP 2SWAP ROT

FOVER >R >R >R FDUP R> R> R> FSWAP

FROT >R >R >R FSWAP R> R> R> FSWAP

F@ DUP2+2@ ROT@

F! SWAP OVER ! 2+ 2!

: F, , , ,

FCONSTANT CREATE F, DOES> DUP 2+ 2@ ROT @

FVARIABLE CREATE 0 0 0 F,

FLITERAL ROT ROT [COMPILE] DLITERAL [COMPILE] LITERAL

IMMEDIATE

Rather than support a fancy system of infinities and other not-a-numbers, the

only special case we will handle is zero. A zero number will have a zero

mantissa, which can be easily tested with the expression OVER 0=.

f0 (r - r f) OVER 0=

Fixed and Floating Point Math 205

:F0(r-f) ROT2DROPO;

Changing the sign of the mantissa is easy, but we must not change the sign of
zero.

HEX 8000 DECIMAL CONSTANT _MAX#*

FNEGATE (r - r2)

\ 2’s complement of r

OVER IF >R -MAX# XOR R> THEN

FABS (r - r2)

\ absolute value of r.

>R -MAX# 1- AND R>

Packing and unpacking the sign bit from the mantissa is also easy.

UNPACK (d - ud sign) DUP FABS

PACK (ud sign - d) -MAX# AND OR

Probably the simplest function to implement is F* since exponents add and

mantissas multiply. We do, however, need some way to normalize and round the

quad-precision result.

QNORM (q - t exp)

\ normalize q to bit 30; leave adjustment as exp.

2DUP OR 2OVER OR OR (any non-zero bit?)

IF 1 (count) >R

BEGIN DUP 0< NOT

WHILE Q2 * R> 1- >R REPEAT

>R >R SWAP DROP R> R> TU2/

THEN

ROUND (t - ud exp

\ assumes hi bit is zero.

-MAX# 0 0 T+ ROT DROP

DUP 0< DUP IF >R DU2 / R> THEN

F* (r r2 - r3)

* For 32-bit FORTHS, change 8000 to 80000000.

206 Mastering FORTH, Revised and Expanded

fO= IF FSWAP THEN

FOVER FO= IF FDROP EXIT THEN

exp2) >R ROT (exp) >R

UNPACK >R 2 SWAP UNPACK >R DUM*

QNORM (t exp) >R

ROUND (dexp) R>+ROTROT

R>R>XORPACK ROTR>R>++ 1+;

The other arithmetic primitives F+ F— and F! follow a similar pattern.

DNORM (d - t exp)

\ normalize d to bit 30, leaving adjustment as exp.

2DUP D0= IF 0 0 EXIT THEN

1 (exp) >R

BEGIN DUP 0< NOT WHILE D2* R> 1- >R REPEAT

0 ROT ROT TU2/ R>

-NORM (ud n - ut)

\ denormalize ud by n bits.

32 MIN >R 0 ROT ROT

R> ?DUP IF 0 DO TU2/ LOOP THEN

F+ (r r2 - r3)

FOVER F0= IF FSWAP THEN

f 0= IF FDROP EXIT THEN (exp2) >R

ROT R@ - (del = exp - exp2) DUP 0< (r2 > r?)

IF NEGATE (del) >R UNPACK >R 2SWAP UNPACK

R> R> ROT OVER (signs) XOR SWAP >R >R

ELSE DUP R> + >R >R UNPACK >R 2SWAP UNPACK >R

2SWAP R> R> R> SWAP ROT DUP >R (signs)
XOR >R (R: exp sign xor) THEN

-NORM (t) ROUND (d exp

R> SWAP >R 0< IF D- ELSE D+ THEN

DNORM (t exp) >R ROUND (d exp) R> R> + +

R> SWAP >R PACK R> R> +

F- (r r2 - r3) FNEGATE F+

F! (r r2 - r3)

fO= ABORT” Zero divide”

FOyER F0= IF FDROP EXIT THEN

exp2) >R ROT (exp) >R

0 0 2ROT UNPACK >R 2ROT UNPACK >R D2* Qm4/

DNORM (t exp) >R ROUND (d exp)

R> + ROT ROT R> R> XOR PACK ROT R> R> SWAP - +

Fixed and Floating Point Math 207

For a simple four-function package, we lack only the primitives for input and

output.

D>SHIFT (d u - d2)

\ double shift d u bits to the right arithmetically.

o MAX ?DUP IF 0 DO D2/ LOOP THEN

F. (r

OVER >R FABS DUP 0>

IF 0 0 ROT 0

DO Q2* LOOP Q2* 999999999. DMIN

2SWAP DU2/

ELSE NEGATE D>SHIFT 0 0 2SWAP THEN

500000000. 1073741824. DUM*/

<# # # # # # # # # #

ASCII .] LITERAL HOLD 2DROP

#S R> 0< SIGN #> TYPE SPACE

FLOAT (d - r)

2DUP D0= IF 0 EXIT THEN

SWAP OVER DABS 1 (count) >R

BEGIN DUP 0< NOT WHILE D2* R> 1- >R REPEAT

DU2/ ROT PACK R> 31 +

>F (d - r)

\ convert most recent double number to real.

\ Used like 3.14159 >F

DPL @ 0< ABORT” Needs decimal point” FLOAT

DPL @ ?DUP

IF 1 0 ROT 0 DO 10 0 DUM* 2DROP LOOP FLOAT F! THEN

3.14159 >F F. 3.141589999

3.14159 >F FCONSTANT P1

P1 P1 F* F. 9.869587719

>F converts a double to a real number, and F. prints it. This simple version

of F. clips the real number to only a part of its dynamic range, limiting it to

999999999. Numbers less than .00000000 1 are printed as zero. A more

sophisticated version would use logarithms to change the number from a power

of 2 to a power of ten before printing.

208 Mastering FORTH, Revised and Expanded

Exercises

1. The exclusive-OR function XOR can be built from AND and OR according

to the following formula:

A XOR B = (((A AND (NOT B)) OR ((B AND (NOT A)))

where A and B are the arguments and NOT is the bitwise operator. Define

NOT using XOR, then define XOR using AND OR and NOT. Test your
function.

2. According to HART (#252 1), the logarithm of a number to the base two can

be approximated to four digits of accuracy with the ratio of two polynomials

.5020x2 + .9514x -1.4533

x + .3521

where .5 � x < 1. Add the function FNLOG2 (fn - fn2) to the 14-bit

fraction operators. Test your result with .5, .75, and ONE.

3. Numbers which are smaller than .5 or larger than 1 can be normalized to a

14-bit fraction and an integer exponent power of 2. The fraction should lie

within the range .5 � fn < 1, that is, bit 14 should be clear and bit 13 set. Write

the word FNORM (r - fn exp) to reduce a mixed-point number to

this range. Ignore negative numbers for now.

4. Using FNORM, write the word FLOG2 (r - r2) which finds the

logarithm of base two of its mixed-point argument. The logarithm of a normalized

fraction and exponent is calculated by taking the logarithm of the

fraction and adding it to the exponent. The logarithm of zero should return

exactly one. The logarithm of a negative number is meaningless—return an
answer of zero.

Fixed and Floating Point Math 209

5. The 8087 floating-point coprocessor long real is a 64-bit format.

sign I exponent I mantissa ... I

63 62 52 51 0

The exponent is biased by 1023, that is, an exponent of one would appear in

the number as 1024. The bias is used as the the sign of the exponent. The sign

of the long real is actually the sign of the mantissa. Assume that in an 8087

floating-point package running on a 16-bit FORTH, the long real would

appear on the data stack as four items in decreasing significance, with the

least significant on top. Write the word XFORM (n n2 n3 n4 - r)

to unpack an 8087 long real and repack it as a software floating-point real

number. Use the following test cases:

HEX .S XFORM DECIMAL F.

1.0000000003FFO 0 0 0

BFFO 0 0 0 —1.000000000

3FD5 5555 5555 5556 .333333333

4009 21FB 5444 2D18 3.141592653

1 5 Assemblers and
Metacompilers

ssemblers

All FORTHs have a built-in assembler for writing selected words directly in

machine code. FORTH code is inherently more portable than machine code

in that it can run unchanged on different computers. Nevertheless, there are

times you may wish to consider the extra speed of machine code. The format

of the FORTH assembler differs greatly from machine to machine and differs

between FORTHS as well. You should consult your system documentation
for details.

Most programs spend roughly 80 percent of their time in 20 percent of their

code. If you rewrite this 20 percent of a FORTH program in machine code,

you will see a dramatic increase in the speed of execution. A good compromise

between speed and portability is to first write your entire program in

FORTH and then to replace selected words with machine code. This way, the

original FORTH source code is available if you ever need to move your

program to a different computer. You can even keep the FORTH source code
on screens near the machine-code source.

Colon definitions take the form:

<name> (sequence of FORTH words)

Machine-code definitions take instead the form:

CODE <name> (machine instructions) NEXT END-CODE

210

Assemblers and Metacompilers 211

The defining word CODE creates a dictionary entry with the given name

and prepares FORTH to assemble machine-code instructions. When the definition

is later invoked by its name, control will pass to the first machine
instruction. The macro NEXT* returns control back to the FORTH address

interpreter at the point just past where the CODE definition was invoked.

The word END—CODE, sometimes called C; (“C-semi”), ends the definition.

Let’s look at a typical CODE definition:

CODE + (n n2 - n3)

AX POP BX POP (pop the arguments)

BX AX ADD (add them)

AX PUSH (push the result)
NEXT (return to FORTH)

END-CODE

Here we are using the instruction set of the Intel 8088 CPU. Notice that the

register arguments precede the opcodes, that is, AX POP instead of POP

AX . The register and opcode names vary from FORTH to FORTH, even if

the CPU is the same. Nevertheless, in most FORTHs, the arguments precede

the opcode. The register AX would typically be a constant used as the argument

to the opcode generator POP. This implies that both AX and POP
run while the CODE definition is assembled.

CODE definitions are interpreted and not compiled. This means that you can calculate

operands to be used as arguments to opcodes. Assume, for example, that the # (“sharp”)

operator, appearing within a CODE definition, means immediate data.

CODE 2+ (n - n2)

AX POP (pop the argument)

2#AXADD (add2)

AX PUSH (push the result)

NEXT (return to FORTH)

END-CODE

Suppose you are interested in the third entry in a cell array called STATUS.

CODE WHATSIT ... STATUS 3 CELLS + # BX MOV ... END-CODE

* Sometimes you will see NEXT JNP. If so, you might consider redefining NEXT as a macro in the
assembler like this:

NEXT NEXT JNP;

212 Mastering FORTH, Revised and Expanded

The address of STATUS 3 CELLS + will be moved into the BX register,

perhaps to be used as a pointer.

The word ; CODE (“semi-code”) is the machine-code equivalent of DOES>.

Used inside of a defining word, ; CODE sets the run-time action of any word

subsequently defined by that word to be the machine-code sequence which
follows it.

CONSTANT

CREATE (n

;CODE ... (machine code for constant) ... NEXT

END-CODE

The address of the data field containing n is pushed on the stack (as with

DOES>) or else is found in a selected register.

Labels

FORTH-style assemblers seem to fall into two classes—those that use numeric

labels (MasterFORTH and UR/FORTH), for flow of control and those

that use structured conditionals (Po1yFORTH, MacFORTH, and L&P F83).
Numeric labels are numbered labels which are re-initialized for each CODE

definition.

CODE 0<> (n - f)

BX POP BX BX OR

TRUE # BX MOV

1 L# JNZ

BX INC

1 L: NEXT

END-CODE

set flag if n is not zero)

assume zero flag)

jump to label 1 on zero flag)

increment BX to 0)

continue with NEXT at label 1)

Using structured conditionals, 0= might look instead like this:

CODE 0<> (n - f)

BX POP BX BX OR

TRUE # BX MOV

0= IF

BX INC

THEN NEXT

END-CODE

set flag if n is not zero)

assume zero flag)

skip to THEN on zero flag)

increment BX to 0)

continue with NEXT)

Assemblers and Metacompilers 213

Typically, conditionals are provided for branching on every possible CPU

flag state.

Vocabularies

In an example above, we used the # operator as an opcode selector for

immediate data. This differs from the normal meaning of #, which is to

convert one digit of a number. How can # mean one thing outside of a

CODE definition and another thing inside of it? Because words inside a

colon definition are selected from the ASSEMBLER vocabulary.

Vocabularies are miniature dictionaries of words related to each other by function. A

FORTH system typically has at least three vocabularies:

FORTH This is the main vocabulary and contains the required words of

the FORTH language like DUP and SWAP.

EDITOR This vocabulary holds the words used by the screen editor.

ASSEMBLER This vocabulary holds the words which generate machine code.

When the FORTH interpreter searches the dictionary for a word, it looks first

in the most recently activated vocabulary, called the context vocabulary. It

then searches any other active vocabularies in their order of activation, typically

ending with the FORTH vocabulary. The order in which the vocabularies
are searched is called the search order.

There are two important advantages to grouping words into vocabularies:

1. Compilation speed. Words in an inactive vocabulary are not part of the

search order and will not be searched by the text interpreter. For example,

if you are not editing a screen, there is no need to search for

words in the EDITOR vocabulary.

2. Reusing names. You can use the same name to mean different things in

different vocabularies. For example, the word FILL in the vocabulary

FORTH is used to fill a memory area with a character. In a graphics application,

you might also use it to fill a shape with a given pattern or
color.

214 Mastering FORTH, Revised and Expanded

When you first run the FORTH language, the search order is simply the

FORTH vocabulary. To make any other vocabulary the context vocabulary,

simply execute it.

Assembler

The context vocabulary is set to ASSEMBLER, and the search order is

changed to search first in the ASSEMBLER vocabulary and last in the

FORTH vocabulary. The word CODE contains the command ASSEMBLER,

so within a CODE definition, the ASSEMBLER vocabulary is searched

first. To restore the search order to search only FORTH, execute FORTH.

How do you put new definitions into a vocabulary in the first place? By

using the command DEFINITIONS, which sets the current vocabulary

equal to the context vocabulary. All new definitions go into the current

vocabulary. For example, to add the macro PUSH1O to the assembler, you

might use

ASSEMBLER DEFINITIONS

PUSH1O 10 # AX MOV AX PUSH

FORTH DEFINITIONS

PUSH1O is now available while assembling machine code, that is, between

the words CODE or ; CODE and END-CODE or C;. When executed, it will

assemble instructions to push a 10 on the stack.

Suppose you want to redefine VARIABLE to take an initial value, as in the

FORTH Interest Group (FIG) FORTH dialect, but you don’t want to lose the

current definition of VARIABLE. In other words, you want two different

kinds of VARIABLE, depending on the context. First, lets define the vocabulary
FIG.

VOCABULARY FIG

Po1yFORTH vocabularies select the entire word order. For example,

HEX 0137 DECIMAL VOCABULARY FIG

Assemblers and Metacompilers 215

defines vocabulary 7 and specifies that this vocabulary will be searched first,

followed by vocabulary 3 (ASSEMBLER), followed by vocabulary 1 (FORTH).

Then lets make FIG both the context and the current vocabulary while

defining the new VARIABLE.

FIG DEFINITIONS

VARIABLE CREATE (n)

FORTH DEFINITIONS

Whenever you want an initialized variable, just say so.

10 FIG VARIABLE EXAMPLE FORTH

EXAMPLE ?

For historic reasons, the : defining word sets the context vocabulary equal to

the current vocabulary—the opposite action of DEFINITIONS.

Be aware that any colon definition can change the context vocabulary.

Word Action

VOCABULARY <name> Defines a new vocabulary. When the vocabulary is

executed, it will become the context vocabulary, that

is, the first vocabulary in the search order.

DEFINITIONS Sets the current vocabulary equal to the context

vocabulary. Subsequent definitions will be created in

the current vocabulary.

The FORTH-83 Standard includes a vocabulary stack as an experimental extension.

This special stack is often available as an optional extension to

FORTH, so lets take a brief look at it.

The vocabulary stack determines the search order. The order in which vocabularies

are pushed on the stack is the order in which they are searched,

with the top vocabulary searched first. Before we push any vocabularies onto

this stack, let’s empty it.

216 Mastering FORTH, Revised and Expanded

ONLY

ONLY is a smart vocabulary which has the side effect of clearing the vocabulary

stack, effectively removing all vocabularies, including FORTH, from

the search order. ONLY then makes itself the context vocabulary.

1 2 3 DUP DUP ?

ONLY itself contains only about a dozen definitions. (Fortunately, one of

them is FORTH.)

In diagram form, the vocabulary stack looks like this:

While ONLY seems to be present twice, it actually isn’t on

the vocabulary stack at all! The ONLY is transient. Like all

context vocabularies, it is replaced when the next vocabulary
runs.

FORTH DEFINITIONS

Now FORTH is the context vocabulary. FORTHs which use

vocabulary stacks are usually optimized so that if the same

vocabulary appears twice in the search order, it is only

searched once. To make a vocabulary a permanent part of the

search order, use ALSO, which pushes the context vocabulary

onto the vocabulary stack.

ALSO

There is no way to pop an item from the vocabulary stack,

but.you can always clear it with ONLY and start over. The
normal search order is

Assemblers and Metacompilers 217

ONLY FORTH DEFINITIONS ALSO
CONTEXT

FIG

You can extend the search order as needed with ALSO.

EDITOR
EDITOR ALSO FORTH

The search order is EDITOR then FORTH then ONLY

The ONLY vocabulary sits below the stack and is not part of

it +ONLY

The ONLY vocabulary is always searched and is usually searched last.

Building an Assembler

An assembler assembles opcodes and operands into bytes of machine-code

instructions. A FORTH-style assembler adds these instructions to the end of

the dictionary with , and C,. Let’s examine a typical Intel 8088 CPU

FORTH-style assembler.

Every CPU has a class of opcodes whose operands are implicit. In other

words, once you know the opcode, you know which byte(s) to generate. Here

are some of the 8088 opcodes with implied operands:

Opcode

CLC

Instruction (in hex)

F8

STC F9

CMC F5

IRET CF

The action of each of these opcodes is the same; it is only the data, that is,

the machine instruction, which changes. Whenever you see a group of words

with the same action but different data, you should immediately think of
CREATE and DOES>.

218 Mastering FORTH, Revised and Expanded

ASSEMBLER DEFINITIONS

IMPLIED

\ generate implied operand instructions.

CREATE (n) C, DOES> C@ C,

HEX F8 IMPLIED CLC

F9 IMPLIED STC

F5 IMPLIED CMC

CF IMPLIED IRET DECIMAL

When CLC is executed in a CODE definition, F8 will be added to the end

of the dictionary.

A second class of 8088 opcodes increment or decrement a 16-bit register.

The register to be altered is packed into the low order three bits of the

instruction according to the following table:

Register

AX

CX

DX

BX

Sp

BP

SI

DI

Bit pattern

(in binary)

000

001

010

011

100

101

110

111

A register leaves its bit pattern on the stack for the following operand.

o CONSTANT AX

2 CONSTANT DX

4 CONSTANT SP

6 CONSTANT SI

1 CONSTANT CX

3 CONSTANT BX

5 CONSTANT BP

7 CONSTANT DI

Assemblers and Metacompilers 219

REGISTER

\ generate simple 16-bit register instructions.

CREATE (n) C,

DOES> C@ OR C,

HEX 40 REGISTER INC

48 REGISTER DEC DECIMAL

Executing BX INC adds the instruction 43 (hex) to the end of the dictionary.

A third class of 8088 opcodes branch forward or backward a short distance.

These relative branch opcodes need an address to branch to, from which they

compute the relative distance. This relative distance, a one-byte number between

-128 and 127, follows the opcode byte.

BRANCH

\ generate a branch to the given address - HERE - 1.

CREATE (a) C,

DOES>C@C, HERE-i-C,;

HEX 70 BRANCH JO (jump on overflow)

7E BRANCH JLE (jump if less than)

75 BRANCH JNZ DECIMAL (jump if not zero)

In its simplest form, an indefinite loop might look like this:

HERE (code sequence) JNE

As long as the code sequence leaves the zero flag false, it will be repeated.

Indeed, with structured conditional operators, the example might look like
this:

BEGIN (code sequence) 0= UNTIL

With local labels, it would look instead like this:

1 L: (code sequence) 1 L# JNE

What if the branch address is too far, that is, the relative distance does not fit

in one byte? We can improve the definition of BRANCH to check for this.

220 Mastering FORTH, Revised and Expanded

FAR? (o)

\ objects if the displacement o is too big.

128 + 256 U< IF ABORT THEN

BRANCH

\ generate a branch to the given address - HERE - 1.

CREATE (a) C,

DOES> C@ C, HERE - 1- DUP FAR? C,

A correct opcode cannot be generated, and the error is fatal.

Exceptional Conditions

When ah error occurs for which FORTH has no reasonable course of action,

it aborts and returns to you with an error message.

HERE 1000 ALLOT JNZ

JNZ ?

Aborting a program means that FORTH immediately stops whatever it is

doing and returns to the normal keyboard text interpreter. You can force a

program to abort anytime with the words ABORT or QUIT.

Word

QUIT

Action

Clears the return stack, changes to text interpret mode, and returns

you to the keyboard.

ABORT Clears the data stack and executes QUIT.

QUIT is normally used to end a program immediately. In the CRAPS

program presented in the chapter on loops, for example, when you determine

that the game is won or lost, you can QUIT the program without having to

return through several layers of execution.

ABORT is more commonly used when you detect an error but are unable to

take a corrective action. If you wish to specify the error message, use ABORT”

(“abort-quote”) instead.

Assemblers and Metacompilers 221

FAR? (o)

\ objects if the displacement o is too big.

128 + 256 U< NOT ABORT” Too Far”

If the displacement is too big, the message “Too Far” will be printed and the

program will ABORT. Otherwise, no action is taken.

Word

ABORT”

Stack

flag

Action

Compiled in the form

ABORT” ccc”

If the flag is true, prints the message ccc and takes a system-

dependent error action which includes ABORT.

The system-dependent error action can include automatically FORGET ing a

defective definition or even tracing the execution path leading to the error. In

addition, many FORTHs let you change the error action to something more

suitable for the program at hand.

Metacompilation

Metacompilation is the process by which one FORTH creates another. The

program which creates the new FORTH is called the metacompiler. The

newly created target FORTH need bear little or no resemblance to its parent.

For example, you might use a Motorola 68000 FORTH to create an Intel

8088 FORTH. Let’s create a separate address space within our own so we

can watch this process.

CREATE TARGET 32 ALLOT

TARGET 32 ERASE

Our target address space is a small one, only 32 bytes long. We have initialized

it to zeroes. We’ll also need some way to examine it.

.## (c) 0 <# # # #> TYPE SPACE

222 Mastering FORTH, Revised and Expanded

REVIEW BASE @ >R HEX \ show target address space.

2 0 DO CR 16 0 DO J 16 * + TARGET + C@ . ## LOOP LOOP

R> BASE

REVIEW

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Since this address space is within our own, we can @ and ! directly into

it. Nevertheless, we would like to refer to the beginning of this space as

target address 0, so we should have special forms of @ and ! which use

the target address.

:T@(a) TARGET+@;

T! (n a) TARGET +

TC@ (a) TARGET + C@

TC! (c a) TARGET + C!

All references to the target space will be through these words. We can make

a new FORTH in a block or file simply by rewriting these words to use a

virtual array.

As we generate code, we will be adding bytes and cells to the current end of

the target address space. This is analogous to using C, and , to add to the

end of the dictionary at HERE. We need a special form of these words to

work in the target space.

VARIABLE TP (target pointer) 1 TP

THERE (-a) TP@

2 CONSTANT TCELL (2 bytes per target cell)

TC, (n) THERE TC! 1 TP +!

T, (n) THERE T! TCELL TP +!

RENEW TARGET 32 ERASE 1 TP ! ; RENEW

Notice that we initialize THERE to 1 instead of to 0.

FORTH follows the unwritten rule that address 0 is not an address at all, but is rather a

flag. The flag usually means that the address is invalid or the requested item is missing.

Assemblers and Metacompilers 223

Let’s add some bytes to the target.

RENEW 1 TC, 2 TC, 3 TC, REVIEW

00 01 02 03 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

THERE . 4

These bytes can just as easily be characters in a string.

TECHO BL WORD COUNT

DUP TC, 0 DO COUNT TC, LOOP DROP

RENEW TECHO ABC REVIEW

03 41 42 43 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

You may recognize that hex 41, 42, and 43, are the ASCII characters for A,

B, and C.

HEX 41 EMIT 42 EMIT 43 EMIT DECIMAL

These bytes could also be machine-code instructions. In fact, the machine-

code primitives in the target FORTH are built by changing the opcode generators

to use TC, instead of C,.

0 CONSTANT AX 1 CONSTANT CX

2 CONSTANT DX 3 CONSTANT BX

REGISTER

\ generate simple 16-bit register instructions.

CREATE (n) C,

DOES> C@ OR TC,

HEX 40 REGISTER INC

48 REGISTER DEC DECIMAL

RENEW AX INC CX DEC REVIEW

00 40 49 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Since we can compile strings in the target space, we can compile headers;

and because we can assemble machine instructions, we can generate CODE
definitions as well.

224 Mastering FORTH, Revised and Expanded

What about colon definitions? A colon definition compiles to a sequence of

compilation addresses. Suppose that we have assembled CODE definitions

for SWAP, DROP, and EXIT, and that their compilation addresses in the

target are hex 10, 20, and 30, respectively. In most language compilers, the

table associating names with addresses is called the symbol table. In FORTH,

however, each symbol is a word whose action is compile its address into the

target. Symbols have the same action on different data, so we make them
with CREATE and DOES>.

SYMBOL

\ associate a name with a compilation address.

CREATE (a)

DOES> @ T,

HEX 10 SYMBOL SWAP

20 SYMBOL DROP

30 SYMBOL EXIT DECIMAL

Actually, a symbol is created when it is first defined. At that time, the header

and the code field are constructed, and the symbol is given the value of the

compilation address in the target. This value is usually closely related to
THERE. A more correct skeletal definition of SYMBOL would look like

this:

SYMBOL

\ associate following name with compilation address.

construct link field in target here)

CREATE THERE (convert to compilation address)

construct code field in target here)

DOES> @ T,

This version of SYMBOL does not construct a header in the target. Applications

which run in the target but which do not have their own text interpreter

can be headerless to save on target memory. To create a new FORTH in the

target, however, SYMBOL will have to generate target headers.

Assemblers and Metacompilers 225

SYMBOL

\ associate following name with compilation address.

construct link field in target here)

>IN @ >R (remember input stream pointer)

BL WORD COUNT (construct name field in target)

DUP TC, 0 DO COUNT TC, LOOP DROP

P.> >IN ! (prepare to reread name)

CREATE THERE (convert to compilation address)

construct code field in target here)

DOES> @ T,

Notice how >IN is manipulated to read the following name twice: once to

move it to the target and once to create a symbol. SYMBOL must run

whenever a new word is added to the target. That implies that SYMBOL is

included in the metacompiler’s version of CREATE and in any word based

on CREATE, such as CODE or : (colon).

CODE SYMBOL ASSELER (etc.)

To avoid a proliferation of names, metacompiler versions of defining words

have the same name as their normal FORTH counterparts, but are kept in a

separate vocabulary. This vocabulary is the context vocabulary when the

metacompiler runs.

Let’s metacompile the word NIP for the new target FORTH.

NIP SWAP DROP

This definition looks like an ordinary definition, but a great many things are

happening under the surface. First of all, the context is set so that the metacompiler

version of : (colon) runs. This creates a new symbol called NIP

which resides in another special vocabulary which we will call SYMBOLS.

At the same time, the header and code field of NIP are created in the target.

The symbol NIP gets the value of the compilation address of the target

NIP. : (colon) then effectively changes state and enters the metacompiler

loop.

226 Mastering FORTH, Revised and Expanded

The metacompiler loop reads each word from the input stream and looks it

up in the special vocabulary SYMBOLS. Unlike the normal FORTH compiler

ioop, instead of compiling each symbol, it executes it. Executing a

symbol causes it to compile its target compilation address into the target. So

the symbols for both SWAP and DROP add their associated compilation

addresses to the target definition of NIP.

When the metacompiler loop encounters the word ; (semicolon), it recognizes

it as a special word and executes it without searching SYMBOLS. The

metacompiler version of ; executes, in turn, the symbol EXIT and then

leaves the metacompiler loop, changing state again. Executing the symbol

EXIT causes it to add its associated compilation address to the end of the

target NIP, completing the target definition.

Confused? Don’t worry. A metacompiler typically juggles multiple address

spaces and several vocabularies, and that would confuse anyone. The best

way to learn how to use a metacompiler is to get one and practice generating

tiny FORTHs with it.

Exercises

1. Redefine / (slash) to protect against division by zero.

10 0 /

I ? Zero Divide

Keep your definition in a new vocabulary called SAFETY.

2. Define an associative stack for use with local labels. Each L: pushes on

the stack two items: a value, which is normally HERE, and a key, which

is the label number. Each L# finds the key-value pair associated with

the label number, or zero if no matching key is found.

Assemblers and Metacompilers 227

HERE . logo (for example)

1 L: 20 ALLOT 3 L: 10 ALLOT 5 L: HERE . 1030

1 L# . 1000

5 L# . 1030

3 Ut . 1020

2 Ut .

This simple version of local labels does not handle multiple references to
the same label.

1 Ut .

3. Extend the 8088 assembler to handle the string instructions

HEX AC LODS A6 CMPS A4 MOVS

AA STOS AE SCAS DECIMAL

The low order bit of the opcode is 0 if 8 bits are to be transferred on each

operation and 1 otherwise. Adjust the syntax of the assembler so that

string opcodes preceded by BYTE or by nothing set this bit to zero;

those preceded by WORD set it to one.

HERE BYTE LODS C@ . AC

HERE WORD LODS C@ AD

HERE LODS C@ . AC

Hint: use a variable as a flag holder. Assume it is initialized to false by
CODE.

4. Change the metacompiler so that it builds the target somewhere in a disk

file. You need only change the words T@ T! TC@ and TC!.

Solutions to Problems

Chapter 2

1. : BLIP CR INSET STAR

T ROW BLIP BLIP BLIP BLIP

I ROW BLIP BLIP BLIP ROW

C ROW CR STAR CR STAR CR STAR ROW

E ROW CR STAR ROW CR STAR ROW

2. : BOOP CR * *“

H BOOP BOOP ROW BOOP BOOP ;

U BOOP BOOP BOOP BOOP ROW ;

3. : HI-TECH H I CR ROW CR T E C H

Chapter 3

1. : TRIANGLE CR .“ THE AREA IS * 2/

2. : LIMIT 0 MAX 100 MIN

3. : CHANGE 0

QUARTERS 25 * +

DIMES 10 * +

:NICKELS 5*+;

PENNIES +

FRANCS 27 * +

KRONOR 13 * + ;

228

Solutions to Problems 229

MARKS 40 * +

TOKENS 75 * +

INTO

25 /MOD CR . .“ QUARTERS”

10 /MOD CR . .“ DIMES”

5 /MOD CR . .“ NICKELS”

CR . .“ PENNIES”

4. 15, 1, 625, 64.

Chapter 4

1. a. OVER b. OVER SWAP

c. SWAP DROP d. ROT DROP

e. ROT ROT SWAP f. ROT SWAP

g. ROT DUP 2SWAP h. OVER SWAP

2. : 3DUP 2 PICK 2 PICK 2 PICK

NIP SWAP DROP

TUCK SWAP OVER

3. a. DUP * +

b. DUP * SWAP DUP * +

c. 3 * *

d. + DUP *

e. ROT ROT + SWAP /

f. ROT ROT OVER + ROT ROT SWAP - /

g. DUP * 2DUP * 2SWAP DUP * OVER * ROT - ROT ROT * +

4. : RECTANGLE

ROT - ROT ROT SWAP - *

CR .“ THE AREA IS “ .

5.:POLY DUP3_OVER*17+OVER*4_*5+;

Chapter 5

Problem 1

STAR .“ “

INSET .“

ROW CR .“ *****“ ;

230 Mastering FORTH, Revised and Expanded

COLUMN CR STAR CR STAR CR STAR CR STAR

BLIP CR INSET STAR

\ a block-letter stem primitive.

\ Some block-letters:

T ROW BLIP BLIP BLIP BLIP

I ROW BLIP BLIP BLIP ROW

C ROW CR STAR CR STAR CR STAR ROW

E ROW CR STAR ROW CR STAR ROW

Problem 2

BOOP CR U * *

\ another block-letter primitive.

\ Some block-letters:

H BOOP BOOP ROW BOOP BOOP ;

U BOOP BOOP BOOP BOOP ROW

Problem 3

HI-TECH H I CR ROW CR T E C H

\ prints a giant message.

Chapter 6

Problem 1

VARIABLE X 2 X ! VARIABLE Y 5 Y

EXCHANGE (a a2) OVER @ OVER @ SWAP ROT SWAP

\ exchanges the values at the two given addresses.

Problem 2

FIG-VARIABLE (n) CREATE ,

\ create a FIG-style variable with initial value n.

Problem 3

CREATE STACK (extra stack) 16 CELLS ALLOT

VARIABLE STACK-INDEX (next stack index) 0 STACK-INDEX

\ Push and Pop from extra stack:

PUSH (n)

Solutions to Problems 231

STACK STACK-INDEX @ +

STACK-INDEX @ CELL + 15 CELLS MIN STACK-INDEX

POP (- n)

STACK-INDEX @ CELL - 0 MAX DUP STACK-INDEX

STACK + @

Problem 4

>P (n ; P: - n) PUSH ; (same as PUSH)

P> (- n ; P: n) POP ; (same as POP)

PDUP (P: n - n n) P> DUP >P >P ;

PSWAP (P: n n2 - n2 n) P> P> SWAP >P >P

PDROP (P: n) P> DROP

Chapter 7

Problem 1

MAX (n n2 - n3) 2DUP < IF SWAP THEN DROP

MIN (n n2 - n3) 2DUP > IF SWAP THEN DROP

Problem 2

:0> (n-f) NEGATEO<;

Problem 3

NAND (n n2 - n3) AND NOT

Problem 4

NOT (f - f’) TRUE NAND ; : AND (f f2 - f 3) NAND NOT

OR (f f2 - f 3) NOT SWAP NOT NAND

XOR (f f2 — f3)

2DUP NOT AND ROT ROT SWAP NOT AND OR

Problem 5

CREATE DAYS/MONTH 00 C, (January is month #1)

31 C, 28 C, 31 C, 30 C, 31 C, 30 C,

31 C, 31 C, 30 C, 31 C, 30 C, 31 C,

232 Mastering FORTH, Revised and Expanded

VARIABLE MONTH

VARIABLE YEAR

DAYS (- n)

DAYS /MONTH MONTH @ + C@

MONTH @ 2 = YEAR @ 4 MOD 0= AND (leap year?)

IF 1+ THEN

Problem 6

\ compute the # of days in MONTH for YEAR.

VARIABLE SECRET# \ the secret number.

VARIABLE OLD-ERROR \ the prior guess error.

VARIABLE #GUESSES \ the number of incorrect guesses.

VARIABLE SEED 1234 SEED

RAND (- n) SEED @ 5421 * 1+ DUP SEED

RANDOM (n - n2) \ random number from 0 to n-i.

RAND ABS SWAP MOD ;

GAME \ set up the secret number.

100 RANDOM 1+ DUP SECRET#

0 #GUESSES ! 101 OLD-ERROR

YOU-WIN!

CR .“ YOU WON IN “ #GUESSES @ . .“ GUESSES! “

GUESS (n) \ play “guess the number.”

1 #GUESSES +!

DUP SECRET# @ = IF DROP

DUP SECRET# @ - ABS 3 < IF DROP

compute error size:)

SECRET# @ - ABS OLD-ERROR @

new-error old-error) < IF .“ WARMER” ELSE .“ COLDER”

THEN THEN THEN

Chapter 8

Problem 1

CREATE BOXES \ create and initialize box array:)

3,2,0,4,0,1,4,2,2,3,

BOX? (n

\ select a box, deleting it from BOXES.

9 MIN (sizes 0-9) 0 (assume no boxes)

10 ROT (check same or larger sizes)

YOU-WIN! ELSE

.“ HOT!” ELSE

OVER OLD-ERROR

Solutions to Problems 233

DO DROP BOXES I CELLS + @ ?DUP (any boxes?)

IF I . 1- BOXES I CELLS + ! TRUE LEAVE THEN 0

LOOP 0= IF .“ NO BOXES” THEN

Problem 2

STARS (n) \ print n stars.

?DUP IF 0 DO .“ “ (Star) LOOP THEN

Problem 3

BOUNDS (a n - n2 n3) OVER + SWAP

\ convert address and length into DO — LOOP form.

Problem 4

HISTOGRAM (a n

\ display array of cells as histogram.

CELLS BOUNDS DO CR I @ STARS CELL +LOOP

Chapter 9

Problem 1

GROWTH? (n

\ find how long it takes 1000 to double at this percent.

>R 0 (COUNT) 1000

BEGIN 1 0 D+ (increment count)

DUP R@ 100 */ + DUP 1999 >

UNTIL R> 2DROP

Problem 2

CONE (n n2 — n3) OVER * * 355 339 (P1/3) *1

SPHERE (n — n2) DUP DUP * * 1420 339 (4P1/3) *1

Problem 3

D>S (d - n) DROP

Problem 4

VARIABLE FUDGE

234 Mastering FORTH, Revised and Expanded

D- (d d2 - f) \ true if d d2 within fudge factor.

D- DABS D>S FUDGE @ > NOT

Problem 5

CR .“ STACK: “ DEPTH ?DUP

IF 0 DO DEPTH I - 1- PICK BASE @ 10 = IF . ELSE U. THEN

LOOP

ELSE .“ EMPTY”

THEN

Problem 6

Problem 8

cx3) ROT + >R + R> ;C+ (cx cx2 -

cx3) ROT - NEGATE >RC- (cx cx2 -

cx3) 2OVER 2OVERC* (cx cx2 -

* - NEGATE >R ROT * >R>R * R> ROT

18 10 */ 32 +

32 — 10 18 */

- R>

FEET (n — n2) 12 *

INCHES (n n2 - n3) +

BY

ROOM? (n n2) 144 */ CR

Chapter 10

Problem 1

.“ SQUARE FEET

<CMOVE> (a a2 n)

\ safely move n overlapping bytes from a to a2.

>R 2DUP U< NOT IF R> CMOVE ELSE R> CMOVE>

C/ (cx cx2 - cx3) 2OVER 2OVER

2DUP DUP * SWAP DUP * + (c**2 + d**2)

>R * R> ROT * - >R ROT * >R * R> +

R@ / SWAP R> / SWAP

Problem 7

* R> - R> ;

>R

R>

C>F (n - n2)

F>C (n - n2)

THEN

Solutions to Problems 235

Problem 2

UPPER (a n) \ convert a string to upper case.

DUP 0= IF 2DROP EXIT THEN

OVER + SWAP DO I C@ DUP ASCII a < SWAP ASCII z > OR NOT

IF IC@BL-IC! THEN

LOOP

Problem 3

/STRING (a 1 n - a+n 1-n) ROT OVER + ROT ROT -

\ truncates leftmost n chars of string. n may be negative.

SCAN (a 1 byte - a2 12)

\ returns shorter string from first position equal to byte.

>R BEGIN DUP

WHILE OVER C@ R@ = IF R> DROP EXIT THEN 1 /STRING

REPEAT R> DROP

LEX (a n c - a2 n2 a3 n3) \ splits string at the delimiter.

\ Rightmost string is on top. Either string can have 0 length.

>R 2DUP R> SCAN ROT OVER - ROT ROT DUP 0> NEGATE /STRING

Problem 4

S+ (a n) \ add string to counted string at PAD.

n) >R PAD COUNT + R@ CMOVE PAD C@ R> + PAD C!

Problem 5

D. (d

<# BEGIN # 2DUP D0= NOT

IF # 2DUP D0= NOT

IF # THEN THEN

2DUP D0= NOT

WHILE ASCII , HOLD

REPEAT #> TYPE SPACE

Problem 6

VAL (a n - d true I 0)

\ convert a string to a number.

\ Return true if the number is valid.

\ If false, no number is returned.

PAD OVER - SWAP OVER >R CMOVE BL PAD C!

236 Mastering FORTH, Revised and Expanded

PAD DPL ! 0 0 R> DUP C@ ASCII - = DUP >R - 1-

BEGIN CONVERT DUP C@ ASCII . =

WHILE DUP DPL ! REPEAT

R> SWAP >R IF DNEGATE THEN

PAD 1- DPL @ - DPL ! R> PAD (valid?)

?DUP 0= IF 2DROP 0 THEN

PLACE (a n a2) \ pack string into counted string a2.

2DUP >R >R 1+ SWAP CMOVE> R> R> C!

>DATE (a n - month date year)

\ parse a string in the form 02/07/88

ASCII / LEX ASCII / LEX (a n a2 n2 a3 n3)

VAL 0= ABORT” 2” DROP (D>S) >R

VAL 0= ABORT” 2” DROP (D>S) >R

VAL 0= ABORT” ?“ DROP (D>S) R> R>

DATE> (month date year)

<# 0 (S>D) # # ASCII / HOLD 2DROP

0 (S>D) # # ASCII / HOLD 2DROP 0 (S>D) # # #>

PAD PLACE

Problem 7

CREATE BUF 1024 ALLOT \ circular string buffer.

VARIABLE BUFPTR BUF BUFPTR ! \ pointer to latest string.

+BUF (a n - a2)

\ allocate n+1 bytes in a circular buffer and moves

\ string a n there.

\ Return the address of the now counted string.

BUFPTR @ PLACE BUFPTR @

DUP COUNT + DUP BUF 1024 256 - + U< NOT (wrap?)

IF DROP BUF THEN BUFPTR !

Chapter 11

Problem 1

STRING CREATE (n) 1+ ALLOT

\ create a string buffer for strings up to n bytes long.

Solutions to Problems 237

Problem 2

COUNTER \ create a counter.

CREATE 0 , DOES> 1 SWAP +!

RESET \ reset a counter.

>BODY 0 SWAP

EXAMINE \ print counter value.

>BODY

Problem 3

FLIP-FLOP \ object which changes state alternately.

CREATE 0 , DOES> DUP @ DUP 0= ROT

Problem 4

2VALUE \ double-number value.

CREATE (d) , , DOES> (- d) 2@

Problem 5

VARIABLE COLORED

COLOR \ object which sets its value into COLORED.

CREATE (n) , DOES> @ COLORED

Problem 6

VARIABLE SCALE

POINT \ 2CONSTANT scaled by SCALE.

CREATE (n n2)

DOES> (- n n2) 2@ SCALE @ * SWAP SCALE @ * SWAP

Problem 7

VARIABLE TOTAL

FOOD

CREATE (n) , 0 (quantity)

DOES> DUP 2@ TOTAL +! 1- 0 MAX SWAP CELL+ !

HOWMANY ‘ >BODY CELL+ @ .

MORE (n) ‘ >BODY CELL+ +!

238 Mastering FORTH, Revised and Expanded

Chapter 12

Problem 1

DLITERAL (d) (-d)

SWAP [COMPILE] LITERAL [COMPILE] LITERAL ; IMMEDIATE

Problem 2

?LEAVE [COMPILE] IF [COMPILE] LEAVE [COMPILE] THEN

IMMEDIATE

Problem 3

AGAIN 0 [COMPILE] LITERAL [COMPILE] UNTIL ; IMMEDIATE

Problem 4

HERE (old):;

[COMPILE] ; HERE SWAP - .“ Occupies “ .“ bytes.”

IMMEDIATE

Problem 5

FOR 0 [COMPILE] LITERAL COMPILE SWAP [COMPILE] DO

IMMED lATE

NEXT -1 [COMPILE] LITERAL [COMPILE] +LOOP ; IMMEDIATE

Chapter 13

Problem 1

CONTROL (- n)

\ used in the form: CONTROL c

\ where c follows in the input stream.

\ Return the 7-bit ASCII code of c.

BL WORD 1+ C@ (read the next char) ASCII @ -

STATE @ IF [COMPILE] LITERAL THEN ; IMMEDIATE

Solutions to Problems 239

Problem 2

SLICES<

BEGIN

WHILE

ASCII > WORD COUNT

BL LEX DUP

2SWAP CR TYPE REPEAT 2DROP CR TYPE

Problem 3

4 CONSTANT FIRST-BLOCK

100 CONSTANT RECORD-SIZE

RECORD (n a)

SWAP RECORD-SIZE *

1024 /MOD FIRST-BLOCK + SWAP

1024 OVER - >R RECORD-SIZE R@ - 0>

IF OVER 1+ BLOCK 3 PICK

RECORD-SIZE R@ /STRING

THEN SWAP BLOCK + SWAP

RECORD-SIZE R> MIN

FILE-IT SELECT-IT (choose a record)

CR NAME” NAME 19 READ-IT

CR “ STREETS” STREET 29 READ-IT

CR .“ CITY:” CITY 19 READ-IT

2 READ-IT

PRINT-IT SELECT-IT (choose a record)

\ read virtual record into buffer.

CMOVE

CMOVE ;

Problem 4

0 FIELD NAME

50 FIELD CITY

73 FIELD ZIP

CREATE BUF 9 ALLOT

(20-byte) 20 FIELD STREET (30-byte)

(20-byte) 70 FIELD STATE (3-byte)

(4-byte)

CR .“ STATE:”

CR .“ ZIP:”

BUF SPAN @ VAL DROP ZIP 2!

STATE

BUF 9 EXPECT

CR .“ NAME:”

CR .“ STREET:” STREET COUNT TYPE

CR .“ CITY:”

NAME COUNT TYPE

CITY COUNT TYPE

CR STATES” STATE COUNT TYPE

CR .“ ZIP:” ZIP 2@ D.

240 MasterIng FORTH, Revised and Expanded

Problem 5

1THING “ THING 1 “ 2THING “ THING 2 “

3THING .“ THING 3 “

]X; (dummy)

X[BEGIN ‘ DUP [‘]]X - WHILE , REPEAT DROP

Chapter 14

Problem 1

XOR (n n2 - n3)

2DUP NOT AND >R SWAP NOT AND R> OR

Problem 2

FNLOG2 (fn - fn2) \ HART #2521.

.5020 D>FN] LITERAL OVER FN*

.9514 D>FN] LITERAL + OVER FN*

-1.4533 D>FN] LITERAL + SWAP

.3521 D>FN] LITERAL + FN/

Problem 3

FNORM (r - fn exp) 2DUP D0= IF EXIT THEN

0 (count) >R

BEGIN DUP WHILE D2/ R> 1+ >R REPEAT

BEGIN DUP 0= WHILE D2* R> 1- >R REPEAT

D2/ D2/ D2/ DROP R> 1+

Problem 4

FN>F (fn - r) \ convert fn to r.

DUP 0< D2* D2*

FLOG2 (r - r2) \ logarithm base 2.

2DUP D0 IF 2DROP 0 1 ELSE

DUP 0< IF 2DROP 0 0 ELSE

FNORM >R FNLOG2 FN>F 0 R> F+ THEN THEN

Solutions to Problems 241

Problem 5

HEX

T+ (tA tB - tC) \ add two triple numbers.

>R ROT >R ROT 2>R

0 SWAP OD+ OR>OD+ R>OD+ 2R>++

7FFF CONSTANT MAX# 8000 CONSTANT -MAX#

DU2/ (d - d2) D2/ MAX# AND ;

TU2/ (t - ut) \ shift triple number right unsigned.

0 SWAP DU2/ >R >R DU2/ R> OR R>

DEC IMAL

PACK (ud sign - d) -MAX# AND OR

ROUND (t - ud exp) \ assumes hi bit is zero.

-MAX# 0 0 T+ ROT DROP DUP 0< DUP IF >R DU2/ R> THEN

HEX

\ Xlate from 8087 format:

XFORM (mh mm mm ml - r) DROP SWAP ROT (ml mm mh

DUP 7FFO AND 10 / 3FF - (exp) >R DUP (sign) >R

OF AND 10 OR 5 0 DO TU2/ LOOP ROT ROT TU2/

ROUND ROT ROT R> PACK ROT R> + 1+ .S

DEC IMAL

Chapter 15

Problem 1

VOCABULARY SAFETY SAFETY DEFINITIONS

/ (n n2 - n3) DUP 0= ABORT” Zero Divide”

FORTH DEFINITIONS

Problem 2

10 CONSTANT MXL#

VARIABLE FWDS

\ associate stacks can be “popped” from the middle, or wherever

\ the key is found. Emptied by READY.

CELL ALLOT (pointers) MXL# 2* CELLS ALLOT (pairs)

242 Mastering FORTH, Revised and Expanded

READY FWDS 2 CELLS + FWDS

\ initializes associative stack.

LPUSH (n key) \ pushes value and its key.

FWDS 2@ = ABORT” Full” FWDS @ 2! 2 CELLS FWDS +!

LPOP (key - value true I 0 0) \ pops value given key.

FWDS @ FWDS 2 CELLS + 2DUP - (not empty?)

IF DO DUP (key) I @ = (found?)

IF DROP I CELL+ @ (move last pair into slot)

2 CELLS NEGATE FWDS +!

FWDS @ 2@ I 2! TRUE UNDO EXIT

THEN 2 CELLS

+LOOP 0 0

THEN 2DROP DROP 0 0

L: (n) HERE SWAP LPUSH ; \ enter local label.

L# (n) LPOP DROP ; \ resolve local label.

Problem 3

ASSEMBLER DEFINITIONS

VARIABLE ?WORD \ switch. 1 : WORD ref ; 0 : BYTE ref.

WORD 1 ?WORD

BYTE 0 ?WORD

STRCODE \ assemble string instructions.

CREATE (n) C, DOES> C@ ?WORD @ OR C, 0 ?WORD

FORTH DEFINITIONS

Problem 4

5 CONSTANT FIRST—BLOCK

>FILE (a - a2)

\ convert target address into memory address.

1024 /MOD FIRST-BLOCK + BLOCK +

TC@ (a - n) >FILE C@

TC! (n a) >FILE C! UPDATE

\ Assume 2 bytes per cell, low-order byte at lower address:

T@ (a - n) DUP TC@ SWAP 1+ TC@ 256 * +

T! (n a) >R DUP 255 AND R@ TC! 256 * R> 1+ TC!

Index

166, 210, 215, 224definitions, 161—162,

ABORT, 220-221

addition, 16—17

address, 58—62, 96, 103

compilation; see compilation address

interpreter, 161

memory, 114,116,118

parameter, 153

aliases, 171—172

mixed-precision, 196

ALLOT, 66, 67, 146—147

ALSO, 216—217

AND, 77—78, 188—189

arrays, 66—70, 146

byte, 71

of compilation addresses, 156

status, 167

string, 180—181

and tables, 70

virtual, 183—184

ASCII codes, 121—126, 130—131, 170

assembler, 2, 210, 212—218

building, 2 17—220

conversion, 131

ASSEMBLER vocabulary, 213—215

backslash, 48

bases, 116—118

bits, 21, 59, 116

manipulation, 188—190

sign, 114

BLOCK, 18 1—183, 186

blocks, 42, 44, 46, 56

reading, 182—183

boolean flag, 75—78, 188

bracket-tick, 155, 168

brackets, 163—167

BUFFER, 181—182, 186

bytes, 59

arrays, 7 1—72

in metacompilation, 222—223

moving, 126

catalog, 41, 43

cells, 59—60, 66, 110

CLEAR, 90-91, 100

code, 2, 210, 222—223

conditional, 179

machine, 210-211, 223

object, 41

source, 41

code field, 160—162

colon, 7, 168, 225

commands; see words

comments, 48—50

smart, 179—180

COMPARE, 139—140

compilation address, 152—155, 161, 162, 171

243

244 Mastering FORTH, Revised and Expanded

array, 156

of run-time component of numeric literal,

165—166

compile state, 163—164

compile-only constructs, 92—93, 95, 179

compile-time action, 147—148, 153, 168

compiler words, 168—169, 172

flow-of-control, 170—171

conditional compilation, 179

conditional structures, 78—86

multiple-choice, 85

nested, 83

constants, 65—66, 68, 112, 154

double, 72—73

CONVERT, 131-132

COUNT, 128

CREATE, 66, 67, 146—150

in building headers, 160

cursor, 50—54, 55

dash, 22

data base manager, 184—186

dictionary, 7—8, 13, 39

adding/removing, 40

division, 18—19, 111, 192

remainder, 18, 112

DO-LOOPS, 95—100, 103

dot, 14, 83, 134, 169, 178

double quotes, 137

DROP, 28, 82, 93, 154

DUP, 27, 29—30, 31, 82

editor, 39—57

line-oriented, 43—46, 48, 54—57

screen-oriented, 42, 46, 48, 50—54

ELSE, 78, 82

error, 220—221

EXIT, 93—94, 96, 162, 164, 226

EXPECT, 124-125

@ (fetch), 61,71

fields, 184

code, 160—162

link, 160

name, 160

parameter, 160, 161

files, 4 1—50

records in, 184

selecting, 42—47

source, 43—45

FIND, 177

find buffer, 56

flow-of-control structures, 164

as aliases, 172

in compiling words, 170-17 1

FORGET, 40, 221

fractions, 190—191

mixed-precision, 196—200

gerunds, 46

headers, 160-16 1, 224

hexidecimal system, 116, 118

I register, 16 1—162

and numeric literals, 165—166

IF, 78, 82

INDEX, 182—183

input stream, 174—178

insert buffer, 55

insert mode, 53

instruction pointer, 161; see also I register

integers, 21, 99, 191. 193

positive, 88—89

interpret state, 163—164

labels, numeric, 212

LEAVE, 103

LIFO stack, 14, 58

LIST, 47,48, 50

literals, numeric, 155, 165—169

LOAD, 47

logical operators, 75—78

loops

finite, 95

indefinite, 88—94

leaving, 102

metacompiler, 225—226

Index 245

nested, 101—102

parameters, 100

MANY, 175—176

mass storage, 41, 57, 18 1—182

retrieving from, 184

matrix, 146—151

MAX/MIN, 20

memory, 41, 58, 114; see also mass storage

main, 41,57

random-access, 58

metacompilation, 22 1—226

loop, 225, 226

minus, 17, 114—115

mixed-precision operators, 192—195

modules, 9—11, 151

Moore, Charles, 1

multiplication, 18, 111, 19 1—192

mixed-precision, 192

NEXT, 161—162

NOT, 77—78

numbers; see also integers

binary, 116

conversion of, 13, 116—118

and definitions, 165

double, 22, 109—112,133—135,192,195

fixed-point, 190, 196, 201—202

floating-point, 190, 196, 197, 201

negative, 17—18

random, 64—65

signed, 21—22

single, 21—22, 33, 192

unsigned, 114-1 15

ONLY, 216-217

opcodes, 211, 213, 2 17—220, 223

operating systems, 41, 57

OR, 77—78, 188—189

OVER, 29—30, 31, 161

parentheses, 49, 178, 180

percentage, 109

PICK, 30—31

plus, 16-17,114-115

pointer, 128

positional case, 156

postfix notation, 16—17

in algebraic expressions, 20—21

? (question), 62

QUIT, 220

records, 184—186

ROLL, 32, 33

ROT, 3 1—32

rounding, 112—113

run-time action, 147—150, 152, 168

screens, 42, 47—57, 183

shadow, 56

search order, 2 13—217

semicolon, 7, 96, 162, 164, 168, 226

shadow screen, 56

slash, 18—19, 108

spacing, 6, 8

stack, 13—15

double operators, 29, 34

manipulation, 27—38

notation, 22

popping from, 14

return, 96—100, 102

underfiow, 15

vocabulary, 215, 216

* (star), 6—9

star-slash, 111

state-dumb, 169

state-smart, 170, 196

(store), 61,71

string, 125, 185

arrays, 180—181

comparison, 139

conversion, 130—137

extensions, 144

filling, 126

and literals, 137—138, 167

manipulation, 129

moving, 126—127

246 Mastering FORTH, Revised and Expanded

packing, 127—128

representation, 125—126

search, 104

structured conditionals, 212—2 13

subtraction, 17—18

SWAP, 28—29

symbols, 224—226

tables, 70, 224

text interpreter, 8, 162—166

and backslash, 48

and input stream, 13, 174—176, 178

and mass storage, 41

THRU, 50

transportability, 3

trigonometry, 199—20 1

underscore, 51

UNDO, 104-105

UPDATE, 182, 184, 186

values, 58, 59, 154

changing, 64, 154

constant, 65, 154

variables, 59—65, 66, 67, 154

double, 72—73

vectored execution, 156

vocabularies, 213—2 17

ASSEMBLER, 213-215

colon definition in 215

WORD, 176-178

words, 5

compiler, 168—169, 172

defining, 5—11, 13, 40, 66, 225

executing, 8, 13

redefining, 39—40

spacing in, 6, 8

special, 63

XOR, 189—190

About the Authors

Martin Tracy has been a full-time FORTH programmer since

1978. He is the founder of Advanced Micromotion, Inc., and vice

president of the FORTH Interest Group. Mr. Tracy serves as the

secretary of the ANS X3J14 FORTH committee and is the

FORTH columnist for Dr. Dobb’s Journal. He is currently a

project manager at FORTH, Inc.

Anita Anderson has worked as a freelance writer and editor since

1979 and has co-authored several books. She is currently a

professional technical writer and editor of the office of Academic

Computing at the University of California, Los Angeles,

specializing in mainframe and micro computers.

Inside the IBM PC

Access to Advanced Features and Programming,
Revised and Expanded
by Peter Norton
The most widely recognized book about the IBM PC Learn to write efficient, full-scale assembly

written by the most highly acclaimed IBM PC
expert. Covers the IBM PC, XT and
AT, every version of DOS fmm
1.1 to 3.0.

The classic work includes:

• The fundamentals of the

8088 and 80286

micropmcessors, DOS
and BIOS

• Programming
examples to show
how the machine

works, in BASIC,
Pascal, and

Assembly Language
• How ROM is allocated

• A detailed look at disk data

storage
Your only source for understanding and

using the hardware and software that make up your hands-on experience in assembly language. The disk
IBM PC system.
ISBN: 0-89303-583-1 • $21.95 (book)

ISBN: 0-13-467325-5 • $39.95

(book/disk, includes 15 programs)

The Hard Disk Companion
by Peter Norton and Robert Jourdain

Head’s crashed? Space fragmented? Just can’t find Require8: IBM PC, AT, XT or compatible
that expense report file?

Hard disks have become an intrinsic part of msot Peter Norton’s DOS Guide
personal computer systems, but many users don’t

really know how to handle them. Whether you’re Revised and Expanded

preparing to add a hard disk to your system or you’ve by Peter Norton

been using one for years, The Hard Disk Companion Here’s tried and true instruction from the true-blue
provides the guidance and advice you need.

• Learn to double, triple, even quadruple your hard coverage of DOS 3.3, this best-seller is distinguished
disk’s performance

• Learn about DOS commands and utilities for file approach. Includes advice on hard disk management

recovery

• Get help determining your hard disk needs

• Follow step-by-step instructions for installation only a lively tutorial, but also a long-lasting
and setup

It’s all here—from the pleasure of purchase to the ISBN: 0-13-662073-6 • $19.95

grief of head crashes—with tips, warnings, and essential
assistance you just won’t find anywhere else!

ISBN: 0-13-383761-0 • $21.9S

To Order: Call 1 (800) 624-0023,

in New Jersey 1 (800) 624-0024

Visa/MC accepted

Peter Norton’s Assembly

Language Book for the IBM PC
by Peter Norton and John Socha

language programs that double and even triple your
programs’ speed. To learn

Ttechniques
and enhance your

eknowledge,
you’ll build a

program step-by-step.
The book is divided into

three parts:
• Part 1 focuses on the

mysteries of the 8088

microprocessor

Part2guides you
into assemby

language
• Part 3 tackles the PC’s

more advanced

From Brady features and debugging

techniques

Books The book disk package includes a fully

integrated, powerful disk for instant,

contains all the examples discussed in the book, and

advanced professional version of the program you
build.

With the expertise of Peter Norton and John Socha

to guide you, you’re guaranteed an experience that’s

both informative and practical.
ISBN: 0-13-661901-0 • $21.95 (book)

ISBN: 0-13-662149-X • $39.95 (book/disk)

friend of PC users everywhere. Newly updated with

by Norton’s easy-to-follow style and honestly factual

and discussions of batch files for DOS customization.

Topic-by-topic organization make this manual not

reference.

Norton

Portfolio

Turbo Pascal Express
250 Ready-to-Run Assembly Language Routines that Problem Solver

Make Thrbo Pascal Faster, More Powerful and Easier For the IBM PC, XT & ATto Use

Programmer’s

Learn to substitute lightning-fast assembly language

routines for critical parts of your Turbo Pascal programs Brady’s most comprehensive and insightful
with this book/disk package.

The IBM pmgramming book you absolutely need.

reference guide to the facts, numbers and procedures

needed to contml your PC hardware.
• For programmers in BASIC, Pascal, C and otherProgrammers know all too well that 20% of a program

languages—you’ll find

disk directory access,

keyboard macros,

scrolling, paging on

Secrets From advancedvideo, and sound

takes 80% of the run time.

Now run time is pushed into

fast forward, thanks to this

package. Its two disks are

chock-full of more than 250 assembly

language routines to

manipulate data structures;

process strings; handle

screens; exploit disk operations;

and streamline the fundamental

routines that chew

up valuable compile time.

control.

RI)
• For assembly language

Oe F programmers—itincludes overlays, device

drivers, error diagnosis

and recovery, COM files,

DOS access, and realtime

operations.

For everyone—it

explores graphics
on the EGA, control

of serial and parallel ports and modems,

proportional spacing and printer graphics, file
operation of all kinds, and assessment of what

equipment is installed.
Every section begins with a review of the fundamentals

and includes cross-referencing. You’ll also

find helpful appendices for brand-new programmers,
a detailed index, all standard data tables,

and an advanced-level glossary. This ultimate

reference book is an excellent source of ideas, a

valuable tutor, and a tremendous time-saver.
ISBN: 0-89303-787-7 • $22.95

To Order: Call 1 (800) 624-0023,

in New Jersey 1 (800) 624-0024

VisaIMC accepted

Programming

The book offers extensive 01.1 F d a i ndocumentation, includ- •
ing details on how each
routine functions; specifics

on coupling each module to existing programs;
hints on avoiding potential trouble spots; and abundant

examples of the program modules in action.
ISBN: 0-13-535337-8 • $39.95

Requires: IBM PC, XT, AT or compatible, 256K RAM, 2 disk
drives and Turbo Pascal v. 3.0

The Hard Disk Companion
by Peter Norton and Robert Jourdain

Head’s crashed? Space fragmented? Just can’t find that expense reporL file?

Hard disks have become an intrinsic part of msot personal computer systems, but many users don’t really

know how to handle them. Whether you’re preparing to add a hard disk to your system or you’ve been using
one for years, The Hard Disk Companion provides the guidance and advice you need.

• Learn to double, triple, even quadruple your hard disk’s performance

• Learn about DOS commands and utilities for file recovery
• Get help determining your hard disk needs

• Follow step-by-step instructions for installation and setup
It’s all here—from the pleasure of purchase to the grief of head crashes—with tips, warnings, and essential

assistance you just won’t find anywhere else!
ISBN: 0-13-383761-0 • $21.95

The Paul Mace Guide

to Data Recovery
by Paul Mace

You’ve just spent 30 hours in front
of your PC, entering the important
data you need for a critical report.
With a well-earned

sense of accomplishment

you

smile, stretch, hit a

function key

and lose everything.

Recovery makes

data retrieval as

simple as opening

a book! A unique resource that

fully explains hard and floppy

disks—how they work and fail; DOS

and DOS commands—and the

errors they can produce. The book

features:

• Recovery Sections— what to do when your disk won’t

detailed alphabetically by boot, and much more.

problem;

• Complete. easy to follow.

step-by-step instructions for

retrieval;

• Wire bound to lay

flat for convenient

reference;

• A detachable

master reference

card;

• A comprehensive

index, elaborately

cross-referenced by

key word;

• Shows when and

how to use The Paul

Mace Utilities, The

Norton Utilities, and Central

Point Software’s Copy II PC,

among others.

Learn how to restore deleted files

and directories, how to recover

lost or damaged Lotus 1-2-3 files,

ISBN: 0-13-654427-4

$21.95
Look for this and other Brady titles at

your local book or computer store, or

order direct by calling: 1(800) 624-0023,
or in New Jersey 1 (800) 624-0024. Visa

and MasterCard Accepted.

The Most

Valuable

Reference

The Paul Mace You’ll EverGuide to data

Own!

“This book has greatly aided my students’ understanding of FORTH. . . I

definitely plan on using it again!”

—Henry Laxen

Programming Instructor

University of California Berkeley

Extension about the previous edition

This step-by-step tutorial to the high-level, stack-oriented FORTH computer

language will bring you up to speed right at your keyboard. This unique guide

introduces each of the powerful commands of the FORTH-83 International

Standard—the preferred dialect of the FORTH Interest Group. Also included
are utilities and extensions that can be written within the Standard.

Because FORTH is an interactive language, this book is ideal for use while

working right at your computer. Inside you’ll find complete discussions of:

• stack manipulation
• the Editor

• variables, constants, and arrays

• loops

• strings

• assemblers, metacompilers, and much more!

Numerous examples for each new concept will help you learn and test your

newfound skills. Answers to all the exercises appear at the back of the book.;0]

Insights into tomorrow’s

technology from the

IliBra dyL in e r:editors of
You rely on Brady’s bestselling computer books for up-todate

information about high technology. Now turn to

BradyLine for the details behind the titles.

Find out what new trends in technology spark Brady’s authors and editors.
Read about what they’re working on, and predicting, for the future. Get to
know the authors through interviews and profiles, and get to know each
other through your questions and comments.

BradyLine keeps you ahead of the trends with the stories behind the latest
computer developments. Informative previews of forthcoming books and

excerpts from new titles keep you apprised of what’s going on in the fields

that interest you most

• Peter Norton on operating systems

• Jim Seymour on business productivity

• Jerry Daniels, Mary Jane Mara, Robert Eckhardt, and Cynthia

Harriman on Macintosh development, productivity, and connectivity

Get the Spark. Get BradyLine.
Published quarterly, beginning with the Summer 1988 issue. Free exclusively to our customers. Just

fill out and mail this card to begin your subscription.

Name

Address

City State Zip

I Name of Book Purchased ______________________________
Date of Purchase Mall this card

for your free
Where was this book purchased? (circle one)

subscription to

Retail Store Computer Store Mail Order BradyLine

CD —

cc

- —

CD
F’)

C):2

I
N

-o ,i I

ECDØ
-o

CDOCD
CD

CD
Co
CD

I

