

Natural Language
Processing on Oracle
Cloud Infrastructure

Building Transformer-Based NLP
Solutions Using Oracle AI

and Hugging Face

Hicham Assoudi

Natural Language Processing on Oracle Cloud Infrastructure: Building Transformer-
Based NLP Solutions Using Oracle AI and Hugging Face

ISBN-13 (pbk): 979-8-8688-1072-5		 ISBN-13 (electronic): 979-8-8688-1073-2
https://doi.org/10.1007/979-8-8688-1073-2

Copyright © 2024 by Hicham Assoudi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler

Cover designed by eStudioCalamar

Cover Image by sfkjrgk from Pixabay

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Hicham Assoudi
Montreal, QC, Canada

https://doi.org/10.1007/979-8-8688-1073-2

To my family,

I can’t thank you enough for your endless support and patience. You
stood by me through all the late nights, weekends, and even during

vacations when I had to keep working. To my wife, Imane, your
understanding meant everything, and to my little one, Salim, your

patience when I couldn’t always be there is something I deeply
appreciate. This book is as much yours as it is mine.

v

About the Author�� xi

About the Technical Reviewers�� xiii

Acknowledgments��xvii

Introduction���xix

Part I: Foundations and Case Study Introduction.. 1

Chapter 1: �NLP Essentials�� 3

Introduction to Natural Language Processing�� 3

NLP Tasks��� 6

NLP Key Concepts�� 8

Common Challenges��� 14

Transformers for NLP��� 15

Transformer Architecture�� 15

Transformer Taxonomy��� 20

Transfer Learning��� 23

Hugging Face Ecosystem��� 25

Strategic Considerations for NLP Adoption�� 28

Models�� 29

Data�� 32

Team��� 32

Summary��� 33

References��� 34

Table of Contents

https://doi.org/10.1007/979-8-8688-1073-2_1
https://doi.org/10.1007/979-8-8688-1073-2_1
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec3
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec4
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec5
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec6
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec7
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec8
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec9
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec10
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec11
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec12
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec13
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec14
https://doi.org/10.1007/979-8-8688-1073-2_1#Sec15

vi

Chapter 2: �Oracle Cloud for NLP�� 35

Introduction to Oracle Cloud Infrastructure (OCI)��� 35

History�� 35

Core Concepts and Terminology��� 37

Oracle’s AI Overview�� 52

AI Strategy�� 52

AI Stack�� 53

OCI AI Services��� 54

OCI ML Services��� 56

AI Infrastructure�� 57

OCI for NLP��� 58

OCI Language��� 59

OCI Data Science�� 62

OCI Data Labeling��� 64

AI Samples�� 66

High-Level Flow for Building NLP Models Using OCI�� 67

Summary��� 69

References��� 70

Chapter 3: �Healthcare NLP Case Study�� 73

MedTALN Inc. Case Study�� 73

Company Background�� 73

Healthcare NLP��� 76

Healthcare NER Initiative�� 79

Healthcare NER Inception�� 84

Scope and Requirements��� 85

Assembling the Team��� 88

Healthcare NER Elaboration��� 89

Architectural Design��� 90

Solution Blueprint�� 97

Table of Contents

https://doi.org/10.1007/979-8-8688-1073-2_2
https://doi.org/10.1007/979-8-8688-1073-2_2
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec3
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec11
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec12
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec13
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec14
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec15
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec16
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec17
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec18
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec20
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec22
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec23
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec24
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec25
https://doi.org/10.1007/979-8-8688-1073-2_2#Sec26
https://doi.org/10.1007/979-8-8688-1073-2_3
https://doi.org/10.1007/979-8-8688-1073-2_3
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec3
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec5
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec9
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec10
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec12
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec14
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec15
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec22

vii

High-Level Architecture�� 97

High-Level Approach�� 99

Project Preparation��� 101

Summary��� 104

Reference��� 105

Part II: Case Study Implementation��� 107

Chapter 4: �Tenancy Preparation�� 109

Getting Started��� 109

Cost-Saving Strategies��� 109

OCI Tenancy Preparation�� 110

Compartment Creation��� 111

Network Configuration�� 114

Storage��� 119

Identity and Security�� 124

Data Science Environment Setup��� 139

Project�� 139

Notebook Sessions��� 141

Summary��� 170

Chapter 5: �Dataset Preparation��� 171

Preliminaries�� 171

Labeled Datasets�� 172

Cost Saving��� 174

Dataset Life Cycle�� 179

Framing the Problem (Step 1)�� 181

Dataset Selection (Step 2)�� 182

Training Dataset Preparation�� 191

Dataset Collection and Wrangling (Steps 3 and 4)��� 193

Dataset Labeling (Step 5)��� 215

Table of Contents

https://doi.org/10.1007/979-8-8688-1073-2_3#Sec23
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec24
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec25
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec28
https://doi.org/10.1007/979-8-8688-1073-2_3#Sec29
https://doi.org/10.1007/979-8-8688-1073-2_4
https://doi.org/10.1007/979-8-8688-1073-2_4
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec3
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec4
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec5
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec6
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec7
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec13
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec14
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec15
https://doi.org/10.1007/979-8-8688-1073-2_4#Sec20
https://doi.org/10.1007/979-8-8688-1073-2_5
https://doi.org/10.1007/979-8-8688-1073-2_5
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec3
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec6
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec7
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec8
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec11
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec12
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec16

viii

Dataset Creation (Step 6)��� 234

Additional Notes��� 239

Summary��� 246

References��� 247

Chapter 6: �Model Fine-Tuning�� 249

Preliminaries�� 249

Language Models (LMs)��� 249

Healthcare-Specific Pretrained Language Models��� 256

Cost-Saving Strategies for the Training Phase��� 259

Transfer Learning–Based Fine-Tuning Workflow�� 260

Pretrained Model Selection�� 262

Framing the Problem (Step 1)�� 263

MLM Model Selection from Hugging Face (Step 2)�� 265

Healthcare NER Model Fine-Tuning��� 275

Training Dataset Creation Notebook��� 276

Training Notebook��� 282

Healthcare NER Model Evaluation�� 299

Evaluation Notebook��� 300

Summary��� 317

References��� 318

Part III: Case Study Deployment and Wrap-Up.. 321

Chapter 7: �Model Deployment and Monitoring�� 323

Model Inference Preliminaries��� 324

Understanding Inference vs. Training��� 324

Preparing the Environment��� 328

Deployment Process�� 334

Oracle Data Science Model Catalog��� 335

Oracle Data Science Model Deployment�� 336

Oracle ADS HuggingFacePipelineModel��� 338

Table of Contents

https://doi.org/10.1007/979-8-8688-1073-2_5#Sec24
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec25
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec28
https://doi.org/10.1007/979-8-8688-1073-2_5#Sec29
https://doi.org/10.1007/979-8-8688-1073-2_6
https://doi.org/10.1007/979-8-8688-1073-2_6
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec11
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec14
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec15
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec16
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec17
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec18
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec25
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec26
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec31
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec41
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec42
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec55
https://doi.org/10.1007/979-8-8688-1073-2_6#Sec56
https://doi.org/10.1007/979-8-8688-1073-2_7
https://doi.org/10.1007/979-8-8688-1073-2_7
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec4
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec8
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec9
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec10
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec11

ix

Deployment Process Notebook�� 340

Initializing the ADS Class “HuggingFacePipelineModel”�� 341

Authenticate��� 341

Save the Model to the Model Catalog��� 347

Deploy and Invoke�� 353

Monitoring and Maintenance��� 358

Logs�� 359

Metrics��� 361

Summary��� 362

References��� 363

Chapter 8: �MLOps and Conclusion��� 365

MLOps with OCI Data Science�� 365

OCI Data Science Pipelines��� 365

Pipeline Example�� 366

Pipeline Creation Step-by-Step�� 367

Journey Through NLP: From Theory to Practice��� 380

Healthcare NER Model Life Cycle Summary��� 380

Responsible AI�� 391

Summary��� 394

Reference��� 395

�Index�� 397

Table of Contents

https://doi.org/10.1007/979-8-8688-1073-2_7#Sec12
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec13
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec14
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec21
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec24
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec27
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec28
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec29
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec30
https://doi.org/10.1007/979-8-8688-1073-2_7#Sec31
https://doi.org/10.1007/979-8-8688-1073-2_8
https://doi.org/10.1007/979-8-8688-1073-2_8
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec1
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec2
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec3
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec4
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec9
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec10
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec16
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec17
https://doi.org/10.1007/979-8-8688-1073-2_8#Sec18

xi

About the Author

Hicham Assoudi is an accomplished IT professional and

AI expert with over 30 years of experience, including more

than 25 years of specializing in Oracle technologies. He holds

a PhD in Computer Science and is also an OCI Certified

Architect. Hicham has held key roles such as Technology

Manager at Oracle and IT Architect at IBM, offering highly

specialized technical consulting to major corporations across

Canada, the United States, and Europe. 

Hicham’s journey into AI began over a decade ago during

his doctoral studies, where he initially focused on intelligent

agents and general machine learning. He later specialized

in Natural Language Processing (NLP) from the early days of

Transformer models, positioning him at the forefront of NLP innovation. As the founder

of typica.ai, an AI startup, Hicham applies cutting-edge research to practical NLP

solutions, empowering organizations to leverage NLP for significant business impact.

In addition to his industry contributions, Hicham maintains strong ties to academia

as an External Research Associate at the AI Lab of UQAM University in Montreal,

bridging the gap between academic research and real-world applications.

xiii

About the Technical Reviewers

Karanbir Singh is an accomplished engineering leader with

over seven years of experience leading AI/ML engineering,

distributed systems, and microservices projects across diverse

industries, including fintech and automotive. Currently

working as a Senior Software Engineer at Salesforce, he

focuses on backend technologies as well as AI. His career has

been marked by a commitment to building high-performing

teams, driving technological innovation, and delivering

impactful solutions that enhance business outcomes. 

At TrueML, as an Engineering Manager, he managed a critical team to develop

and deploy machine learning models in production. He successfully expanded and

led engineering teams, significantly improving feature development velocity and client

engagement through strategic collaboration and mentorship. His leadership directly

contributed to increased revenue, client retention, and substantial cost savings through

innovative internal solutions. His role involved not only steering technical projects

but also shaping the company’s roadmap in partnership with data science, product

management, and platform teams.

Previously, at Lucid Motors and Poynt, he developed critical components and

integrations that advanced product capabilities and strengthened industry partnerships.

His technical expertise spans across AI/ML, cloud computing, and software architecture,

and he is adept at utilizing cutting-edge technologies and methodologies to drive results.

Karanbir holds a master’s degree in Computer Software Engineering from San Jose

State University and has been recognized for his innovative contributions, including

winning the Silicon Valley Innovation Challenge. He is passionate about mentoring and

coaching emerging talent and thrives in environments where he can leverage his skills to

solve complex problems and advance technological initiatives.

xiv

Prashanth Josyula is a dynamic force in the tech world

whose journey is marked by an unyielding passion for

innovation and an extraordinary depth of expertise in

both technical literature and software engineering. As a

Principal Member of Technical Staff (PMTS) at Salesforce,

Prashanth doesn’t just meet expectations—he consistently

exceeds them, pushing the boundaries of what’s possible in

technology.

With over 16 years of robust experience in the IT industry, Prashanth has mastered

a multitude of programming languages and technologies, establishing himself as a

true polyglot programmer. His proficiency spans a cross Java, Python, Scala, Kotlin,

JavaScript, TypeScript, shell scripting, SQL, and an array of open source solutions. Since

beginning his professional journey in 2008, he has delved into various domains, each

time leaving a mark of excellence.

In the realm of Java/JavaEE and Spring, Prashanth has been instrumental in

designing and building resilient, scalable backend systems that power critical

applications across industries. His deep understanding of these technologies ensures

robust and high-performance solutions tailored to meet complex business needs.

Prashanth’s expertise in UI technologies is equally impressive. He has crafted

intuitive, responsive user interfaces using frameworks like ExtJS, JQuery, DOJO, Angular,

and React. His commitment to creating seamless user experiences shines through in

every project, bridging the gap between complex backend processes and user-friendly

front-end interfaces.

Venturing into big data, Prashanth has leveraged platforms like Hadoop, Spark, Hive,

Oozie, and Pig to transform massive datasets into valuable insights, driving strategic

decisions and innovations. His ability to harness the power of big data showcases his

analytical mindset and his knack for tackling large-scale data challenges.

In the field of microservices and infrastructure, Prashanth has been a pioneer, in

engineering robust and scalable solutions with cutting-edge tools like Kubernetes,

Helm, Terraform, and Spinnaker. His contributions to open source projects reflect his

commitment to collaborative innovation and continuous improvement.

Moreover, Prashanth is at the forefront of AI and machine learning, exploring and

advancing the capabilities of these transformative technologies. His work in this area

is characterized by a fearless approach to experimentation and a relentless pursuit of

knowledge.

About the Technical Reviewers

xv

Each day for Prashanth is an exciting adventure, filled with opportunities to learn,

innovate, and lead. His career is a testament to his dedication to advancing technology,

not just for the sake of progress but to truly make a difference. With his unparalleled

skills and a visionary mindset, Prashanth continues to inspire peers and push the

envelope of technological possibility.  

Ankur Goel is a seasoned Principal Solutions Engineer at

Confluent Inc. and brings more than 18 years of versatile

expertise, primarily in the digital native and fintech industries.

With key roles as cloud architect, technical lead, and

solutions architect, Ankur is a certified professional in AWS,

Kafka, Oracle Exadata, and Hadoop, showcasing a profound

understanding of distributed technology and cloud services.

In his current role, Ankur serves as a global advisor for

key and strategic accounts, specializing in cloud platform

adoption, event-driven architectures, and real-time stream processing. Noteworthy is his

impactful contribution to establishing robust event-driven architectures for major digital

native clients in the United States and leading complex database implementations for

prominent banks and telecom giants in India.

Ankur’s unwavering commitment to customer satisfaction, evident in his prior role

as the primary database architect for multiple Yahoo websites, continues to resonate

in his recent collaborations across industries. Beyond his professional pursuits, Ankur

enjoys culinary endeavors and sports, adding depth and vibrancy to his multifaceted life.  

About the Technical Reviewers

xvii

Acknowledgments

Writing this book has been a rewarding journey, and I would like to express my gratitude

to a few individuals who contributed to its completion.

First, I would like to thank the technical reviewers for their encouraging feedback

and insightful comments. Your thoughtful reviews motivated me and ensured the

content was as clear and accurate as possible.

I would also like to acknowledge the team at Apress for their support throughout the

publishing process. Your professionalism and guidance made the experience smooth

and enjoyable.

Lastly, I’m grateful to everyone who supported me throughout this journey, directly

or indirectly. Your encouragement made a significant difference.

xix

Introduction

Welcome to Natural Language Processing on Oracle Cloud Infrastructure. This

book serves as a comprehensive guide to creating real-world NLP solutions on

Oracle Cloud Infrastructure (OCI). The motivation behind this book stemmed from

recognizing the need for a dedicated, all-encompassing guide to constructing NLP

solutions on OCI. While existing resources are available, they are often dispersed and

challenging to consolidate into a single source that systematically guides the entire NLP

implementation process on OCI. This book aims to bridge that gap.

By combining OCI’s robust infrastructure with cutting-edge NLP technologies, we

will explore how to tackle practical challenges efficiently and deliver effective and cost-

effective NLP models. Whether you are new to NLP or looking to leverage OCI for your

current projects, this guide equips you with the insights and tools necessary for success.

The book is structured around the typical NLP project life cycle, starting with

foundational concepts and progressing to advanced implementation. In Part 1, we begin

with the essentials. Chapter 1 provides a comprehensive overview of NLP, guiding you

through its evolution and key developments. Chapter 2 introduces the OCI ecosystem,

focusing on the AI infrastructure and services best suited for building and scaling

NLP models.

Chapter 3 presents the case study of MedTALN Inc., a fictional Canadian healthcare

analytics company that serves as the backdrop for this book. MedTALN Inc. faces the

unique challenge of developing a domain-specific Named Entity Recognition (NER)

model for healthcare that supports French—an essential requirement in their Canadian

context. This case study not only addresses the complexities of building healthcare-

specific NLP solutions but also the added challenge of supporting multiple languages,

including French. Through MedTALN’s journey, we’ll walk step-by-step through the

implementation of this NER solution on OCI, demonstrating how to design, build, and

deploy custom NLP models tailored to specific industry and language needs.

In Part 2, we shift focus to hands-on implementation. Chapter 4 guides you

through setting up your OCI environment, covering configurations proven effective in

production. Chapter 5 explains how to create a robust training dataset, starting with

a prelabeled dataset from Hugging Face and enriching it using OCI’s Data Labeling

https://doi.org/10.1007/979-8-8688-1073-2_1
https://doi.org/10.1007/979-8-8688-1073-2_2
https://doi.org/10.1007/979-8-8688-1073-2_3
https://doi.org/10.1007/979-8-8688-1073-2_4
https://doi.org/10.1007/979-8-8688-1073-2_5

xx

Service. In Chapter 6, we explore the process of fine-tuning pretrained language models

for healthcare applications that support French, leveraging GPU-based OCI Data

Science Notebooks and models sourced from Hugging Face.

Part 3 brings the project to completion, focusing on deployment and

operationalization. Chapter 7 provides a detailed, step-by-step guide to deploying the

NER model using OCI Data Science Model Deployment, streamlining the process for

real-world applications. Finally, Chapter 8 addresses how to implement MLOps using

OCI Data Science Pipelines, reflecting on key lessons learned and concluding with

discussions on cost-effectiveness and responsible AI in NLP implementations.

The book primarily focuses on a fictional case study of building an NER model

for French in the healthcare sector. However, its main goal is to guide you through

the process of developing an NLP model from start to finish on OCI, regardless of the

specific task, domain, or language. The techniques, strategies, and methods discussed

are adaptable to other NLP tasks, such as sentiment analysis, and can be applied

across industries like legal. Additionally, these approaches are applicable to a range of

languages, from Spanish to non-Latin languages like Arabic.

As we embark on this journey, my goal is to provide not only the technical expertise

but also the confidence to approach NLP projects with clarity and purpose. By

consolidating best practices and practical insights, this book aims to be the resource I

wished for when I first started working with NLP on OCI.

Let’s dive in and start building impactful, scalable, and responsible NLP solutions on

Oracle Cloud Infrastructure (OCI) together!

Introduction

https://doi.org/10.1007/979-8-8688-1073-2_6
https://doi.org/10.1007/979-8-8688-1073-2_7
https://doi.org/10.1007/979-8-8688-1073-2_8

3
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_1

CHAPTER 1

NLP Essentials
In the digital era, there has been a significant increase in text data, ranging from social

media content to corporate documents. To effectively utilize this data, a thorough grasp

of Natural Language Processing (NLP) is essential. This chapter examines the evolution

of NLP, from its initial stages to its contemporary advanced methods. We will discuss

the core tasks and inherent challenges of NLP. Lastly, we will consider the key strategic

choices that businesses encounter when integrating NLP solutions.

�Introduction to Natural Language Processing
Natural Language Processing (NLP) represents a critical convergence of computer

science and linguistics. Situated within the broad spectrum of artificial intelligence (AI),

NLP aims to enhance machine comprehension of human language. This domain fuels a

range of modern applications, from semantic search and AI-driven conversational tools

to document translation and summarization. Moreover, advancements in NLP have

paved the way for the generation of text, expanding the horizon of possibilities.

In today’s digital era, the omnipresence of NLP, as showcased in the burgeoning

popularity of systems like ChatGPT, might be perceived as a given. Yet, this wasn’t

always the case. The genesis of NLP can be traced back to the mid-20th century, a period

synonymous with Alan Turing’s groundbreaking Turing test, originally conceived as the

“imitation game.” Turing’s audacious proposition centered around machines simulating

humanlike intelligence, challenging our conventional wisdom on machine cognition

and sowing the seeds for future machine–human interactions.

The initial forays into NLP were, understandably, primitive. Early techniques

resembled a mosaic of basic rules and dictionary lookups, striving for complex tasks

while often only achieving rudimentary ones. One can recall the 1954 Georgetown

experiment, a milestone in machine translation, wherein a handful of Russian sentences

https://doi.org/10.1007/979-8-8688-1073-2_1#DOI

4

were translated into English. It was an endeavor viewed as groundbreaking at its time,

though history would prove that the layers of complexity within machine translation ran

far deeper than initially estimated.

Enter Eliza, a creation from the esteemed corridors of the Massachusetts Institute of

Technology (MIT), considered by many as one of the earliest chatbots. Crafted by Joseph

Weizenbaum in the mid-1960s, Eliza simulated conversation by emitting strategically

vague responses, hinting at an artificial emotional intelligence.

As the pages of NLP’s history turned through the 1970s and 1980s, hand-coded rule

systems were the norm until machine learning heralded a new dawn in the late 1980s.

These novel systems leveraged statistical inference, fashioning models rooted in real-

world data, thereby reducing the need for intricate hand-crafted rules. The turn of the

millennium only accelerated this shift, with burgeoning data access paving the way for

increasingly successful statistical methods.

The 2010s witnessed a revival of an old acquaintance: neural networks. Their ability

to produce unparalleled results across AI disciplines, not least in NLP, coincided with the

proliferation of online data and the advent of modern GPU capabilities. Word embeddings

emerged as a sophisticated tool, mapping words into multidimensional spaces, bringing

semantically similar terms closer and revolutionizing word representation.

While recurrent neural networks (RNN) and long short-term memory nets (LSTM)

offered great promise in modeling sequences, they weren’t without challenges.

Enter BERT in 2018, a transformative deep learning model by Google, rooted in the

“Transformer” architecture. Offering bidirectional understanding and remarkable

training efficiency, Transformers, as exemplified by BERT, have redefined the

benchmarks in NLP tasks, at times even eclipsing human performance.

Figure 1-1.  NLP history timeline

Chapter 1 NLP Essentials

5

Natural Language Processing (NLP) has undergone an outstanding transformation

over the years. Initially relying on rudimentary rule-based systems, NLP was hampered by

limited adaptability and a narrow understanding of human language nuances. However,

several pivotal advancements catalyzed its ongoing maturity. The exponential increase in

available data, coupled with advances in computational power, particularly through GPUs,

led to the development of more intricate machine learning models. The democratization of

machine learning frameworks and the extensive research collaborations further fueled this

evolution. Among these advancements, the emergence of large language models (LLMs)1

stands out. Pioneers in this domain, such as OpenAI’s ChatGPT, Facebook’s LLaMA,

Mistral AI’s Mistral 7B, and Cohere LLM, epitomize the zenith of current NLP capabilities,

showcasing how far the field has come and hinting at the potential that lies ahead.

Here’s a chronological outline highlighting the key milestones in the continuous

advancement of NLP’s maturity (see Figure 1-1):

•	 Rule-Based Systems: NLP’s inception was closely tied to rule-based

systems. These systems leaned heavily on predefined linguistic rules.

While foundational, their inability to handle nuanced linguistic

variations was evident.

•	 Statistical and Machine Learning-Based Paradigms: As we

transitioned away from hard-coded rules, the latter part of the 20th

century saw a surge in statistical models. Machine learning models

such as Naive Bayes, hidden Markov models, and conditional

random fields came into play. Although they were adaptive to

a degree, they often demanded extensive labeled datasets and

occasionally overlooked intricate linguistic structures.

•	 Neural Network Paradigms

•	 Basic Neural Networks: With the dawn of deep learning, neural

networks, specifically RNNs and CNNs, started playing a pivotal role in

NLP, enabling the modeling of more complex linguistic relationships.

•	 Neural Network-Based Embeddings with Unsupervised Learning: Using

neural networks and leveraging the power of unsupervised learning,

significant strides were made in training on vast amounts of unlabeled

data. Embeddings like Word2Vec laid the foundation for this era.

1 The term “large” in LLMs refers to their size in terms of parameters.

Chapter 1 NLP Essentials

6

•	 Transformers and LLMs: The Transformer architecture was a

watershed moment in NLP. Models like BERT utilized vast amounts

of data to train, and then, these pretrained models were refined

for specific tasks—a practice termed as transfer learning. This era

witnessed a rapid increase in model sizes, from BERT’s 340 million

parameters to massive models like OpenAI’s ChatGPT-3 with 175

billion parameters.

Reflecting on this trajectory, the progression from rule-based systems to

sophisticated LLMs underscores the ongoing evolution and promise of NLP.

In summary, the progression from foundational methods to advanced techniques

has marked NLP’s growth. With ongoing research and technological advancements, the

field continues to make strides toward more efficient and nuanced language processing

systems.

�NLP Tasks
Modern Natural Language Processing (NLP) models are proficient in an expansive range

of NLP tasks. These tasks serve as the foundation for numerous applications and are

often integral components in intricate NLP architectures. Let’s systematically explore

these cornerstone NLP tasks:

•	 Sentiment Analysis: A widely embraced NLP task, sentiment

analysis discerns the emotional tone of a given text, categorizing it

as positive or negative. Its prevalent application is in the automated

segmentation of customer feedback. Typically, deep learning

architectures address this as a binary or multiclass classification

challenge.

•	 Named Entity Recognition (NER): NER focuses on pinpointing

named entities within a textual corpus. These entities can encompass

individuals, geographical locations, institutional names, or temporal

references. Recognized entities often aid downstream processes,

such as enhancing the precision of search engine outcomes or

flagging sensitive personal data for redaction.

Chapter 1 NLP Essentials

7

•	 Machine Translation: The objective here is the transformation of a

text snippet from its source language to a target language. In recent

times, deep learning architectures have ushered in considerable

advancements in the accuracy and fluency of translations.

•	 Text Summarization: This involves distilling lengthy content into a

concise rendition. There are two primary approaches:

•	 Extractive Summarization: Selecting pivotal segments of the original

content for representation.

•	 Abstractive Summarization: Generating a novel summary, ensuring

syntactical correctness and coherence. Notably, training models

for abstractive summarization is more intricate compared to its

extractive counterpart.

•	 Question Answering: Often referred to as machine comprehension,

this task necessitates generating answers from a reference text in

response to posed questions. While deep learning has made notable

strides here, challenges persist, especially when the reference text

lacks a direct answer.

•	 Topic Modeling: This task is geared toward discerning dominant

themes in a document and quantifying their prominence. Such an

analysis is invaluable for understanding large-scale textual databases,

ranging from corporate communication to historical archives or

academic literature.

•	 Speech Recognition: Venturing into the auditory domain, speech

recognition transcribes spoken content into textual format. While

NLP predominantly focuses on textual content, the intertwined

nature of language processing brings speech recognition within

its ambit.

•	 Text to Speech (TTS): The converse of the previous task, TTS

endeavors to vocalize written text. The process is twofold: Initially,

the text undergoes a phonetic transformation via NLP, followed by

a conversion into audio signals leveraging digital signal processing

techniques.

Chapter 1 NLP Essentials

8

•	 Language Generation: Central to NLP, this task pertains to the

synthesis of context-aware and grammatically consistent text based

on specific cues or prompts. The emergence of sophisticated models,

epitomized by ChatGPT, has significantly elevated the caliber and

versatility of automated language generation.

In summation, while this list encapsulates some pivotal NLP tasks, the domain’s

breadth extends further. Given the rapid innovations in deep learning, one can

anticipate even more refined and powerful NLP capabilities in the forthcoming era.

�NLP Key Concepts
Understanding the intricate process of developing modern NLP models goes beyond

merely learning popular terminologies and jargon prevalent in NLP literature. It requires

a deep comprehension of these concepts, their interrelationships, and their practical

applications. This section provides an overview of some foundational elements, aiming

to simplify and clarify the complex process of building NLP models.

Chapter 1 NLP Essentials

9

Figure 1-2.  Overview of Natural Language Processing (NLP) approaches and
workflow

Chapter 1 NLP Essentials

10

Figure 1-2 is a diagram designed to introduce the complex process of developing

modern NLP models. It depicts some fundamental concepts and their relationships in

a clear and structured manner, illustrating the top-down flow between these concepts.

This visual representation simplifies the understanding of NLP model development

approaches and workflow tasks, enhancing your comprehension of the essential

techniques and methods that drive the creation of effective NLP models.

The following descriptions provide an overview of the key concepts depicted in the

diagram. Each concept plays a crucial role in the process of developing NLP models,

illustrating how different components interact to create effective NLP solutions.

•	 Machine Learning (ML): A subset of artificial intelligence that

involves training models on data to make predictions or decisions

without being explicitly programmed. Training ML-based NLP

models involves algorithms such as Naive Bayes and Support Vector

Machines (SVM).

•	 Deep Learning (DL): A subset of machine learning that uses neural

networks with many layers (deep neural networks) to learn from

data. Training DL-based NLP models leverages architectures such as

Transformers, which are implemented using libraries like PyTorch

and TensorFlow.

•	 Datasets: Datasets are collections of text used to train and evaluate

NLP models. High-quality datasets are crucial for building effective

models. They can be domain-specific (e.g., medical, legal) or

general-purpose (e.g., Wikipedia, news articles). Datasets can be

annotated with labels for supervised learning or remain unlabeled

for unsupervised learning. Examples of popular NLP datasets include

the Penn Treebank, IMDB reviews, and the Common Crawl.

•	 Tokenization: Tokenization, a crucial preprocessing step within

datasets, divides text into smaller units known as tokens, typically

words or subwords. This process is essential for converting raw

text into a structured format that NLP models can use. Different

tokenization techniques exist, such as word tokenization, subword

tokenization (e.g., Byte Pair Encoding), and character tokenization.

Effective tokenization helps ensure that datasets are appropriately

prepared for training and evaluating NLP models.

Chapter 1 NLP Essentials

11

•	 Language Models: Language models are a foundational component

in NLP, enabling machines to understand and generate text. These

models provide the basis for text prediction and generation, allowing

machines to comprehend and produce human language in a

meaningful way. They predict the probability of a sequence of words.

It is fundamental to many NLP tasks, as it helps generate coherent

text, translate languages, and understand context. Language models

are trained on big datasets to learn the human language’s underlying

structures. Examples include the Transformer-based language

models such as BERT, GPT, and T5.

•	 Large Language Models (LLMs): Large language models (LLMs),

such as the renowned ChatGPT models (e.g., ChatGPT-3.5,

ChatGPT-4, and ChatGPT-4o), represent a special class of

Transformer-based language models. These models are trained on

massive datasets using extensive GPU processing, often involving

clusters of thousands of GPUs. Their vast training datasets and

computational power enable them to perform exceptionally well in

understanding and generating human language.

•	 Embeddings: Embeddings are numerical representations of words

or phrases in a continuous vector space. They capture semantic

meanings and relationships between words, allowing models

to perform better on various NLP tasks. Word embeddings like

Word2Vec, GloVe, and contextual embeddings from models like

BERT and GPT transform text into dense vectors that capture

semantic relationships between words in multidimensional space.

•	 Transformers: Transformers are a deep learning–oriented

architecture that has revolutionized NLP. The Transformer model

leverages self-attention mechanisms to process entire sentences

simultaneously rather than sequentially. This allows for more

efficient handling of long-range dependencies and has led to

significant improvements in performance across various NLP tasks.

Chapter 1 NLP Essentials

12

•	 Training: Training a model in NLP involves exposing a model to

large amounts of text data to learn language patterns and structures.

Training can be supervised (using labeled data) or unsupervised

(using unlabeled data). This process typically includes data

preparation, model training, and evaluation. Evaluation involves

validating the model’s performance on a separate dataset that was

not used during training, ensuring that the model generalizes well to

new, unseen data and preventing overfitting.

•	 Pretraining: Pretraining involves creating a pretrained language

model by training on massive unlabeled datasets using unsupervised

learning (usually publicly available data on the Internet).

•	 Fine-Tuning: Fine-tuning is a training process that adapts a

pretrained model to a specific task or domain. This involves further

training the model on a smaller, task-specific dataset (supervised

learning). Fine-tuning allows models to leverage general language

understanding from large-scale pretraining while specializing in

particular applications, such as Named Entity Recognition, sentiment

analysis, translation, or question answering.

As depicted in Figure 1-2, there are two primary approaches for building models in

NLP: the ML-based approach and the DL-based approach. Each approach has distinct

methodologies and applications, significantly influencing how NLP models are trained

to learn patterns from textual data. Understanding these differences helps approach

each NLP project’s specific requirements and constraints with the appropriate set of

tools and approaches.

•	 Machine Learning-Based Models for NLP: This approach involves

algorithms like SVM and Naive Bayes alongside feature extraction

methods such as Bag of Words and TF-IDF. Machine learning in NLP

typically involves algorithms like Support Vector Machines (SVM),

Naive Bayes, and decision trees, combined with manual feature

extraction techniques such as Bag of Words or Term Frequency-

Inverse Document Frequency (TF-IDF). This approach relies on

transforming raw text into numerical features that these algorithms

can process. Feature extraction methods like Bag of Words convert

text into fixed-length vectors based on word counts or occurrences,

Chapter 1 NLP Essentials

13

while TF-IDF adjusts these counts by the importance of words across

documents. Once the text is converted into numerical features,

traditional ML algorithms are applied to classify, cluster, or make

predictions based on these features. This approach works well with

smaller datasets and requires less computational power compared

to deep learning. However, it often struggles with capturing complex

linguistic patterns and long-range dependencies in text.

•	 Deep Learning-Based Models for NLP (with Transformers): This

approach includes advanced neural network models like BERT, GPT,

and other Transformer-based architectures that leverage self-attention

mechanisms to process text data. Deep learning with Transformers

has brought about a paradigm shift in NLP. It harnesses the power

of neural networks that autonomously learn features and complex

patterns directly from raw text data. This approach is exemplified

by models such as BERT (Bidirectional Encoder Representations

from Transformers) and GPT (Generative Pretrained Transformer).

Transformers use self-attention mechanisms to process entire

sentences simultaneously, enabling them to capture long-range

dependencies and contextual relationships between words more

effectively than traditional ML methods. While deep learning models

typically require large datasets and significant computational resources

to train, they offer superior performance on various NLP tasks, from

language translation to sentiment analysis and text generation.

The major differences between machine learning (ML) and deep learning (DL)

approaches in NLP lie in their methodologies, algorithms, training data requirements,

and computational requirements. ML-based NLP focuses on manual feature extraction

and simpler algorithms, making it suitable for projects with smaller datasets and limited

computational power. However, it may struggle with capturing complex linguistic patterns

and long-range dependencies in text. In contrast, DL-based NLP, particularly with

Transformer models, leverages advanced neural networks that automatically learn from

raw text. This approach requires larger datasets and significant computational resources

but achieves state-of-the-art performance on diverse NLP tasks by effectively handling

long-range dependencies and contextual relationships. Understanding these differences

allows you to choose the appropriate approach based on each NLP project’s specific

requirements and constraints, ensuring optimal performance and resource utilization.

Chapter 1 NLP Essentials

14

While this overview of essential NLP notions might not be exhaustive and may

not be sufficient to grasp every concept or technique in the NLP field, it can serve as a

good starting point. The realm of NLP is vast, but throughout this book, we will have

the opportunity to dig into specific concepts and see how they are applied in real-world

projects.

�Common Challenges
Natural Language Processing, while a groundbreaking field, isn’t devoid of intricacies

and hurdles. Understanding its challenges is essential for harnessing its true potential.

Here’s a breakdown of the significant challenges faced by NLP systems:

•	 Ambiguity: The inherent nature of language brings about

ambiguities. A single word can have varied meanings, requiring NLP

systems to decipher the intended one, akin to solving a complex

computational puzzle.

•	 Polysemy and Homonymy: Linguistic phenomena like polysemy and

homonymy present unique challenges. Words like “bark” (referring

to a dog’s sound) and “bark” (referring to a tree’s outer layer)

necessitate NLP systems to derive meaning based on context.

•	 Contextual Understanding: The meaning of words often hinges on

surrounding content. Hence, an NLP system must understand the

entirety of the input rather than isolated words, ensuring accurate

semantic interpretation.

•	 Data Limitations: The efficacy of an NLP model correlates with

the volume and diversity of the data it’s trained on. Sparse data,

especially for certain languages or niche topics, can constrain the

system’s learning capabilities.

•	 Multilingualism: With thousands of languages worldwide, each with

its unique grammar and semantics, NLP systems face the arduous

task of understanding and processing multiple languages seamlessly.

•	 Domain Adaptation: Specialized jargon, such as those in the

medical or legal fields, demands specialized understanding. NLP

systems must be adept at domain-specific nuances to process such

information accurately.

Chapter 1 NLP Essentials

15

•	 Ethical and Bias Considerations: An essential aspect of NLP

development is ensuring systems are free from biases. Addressing

and eliminating potential prejudices in NLP models is paramount for

ethical and balanced outputs.

Indeed, the advent and proliferation of large language models (LLMs) in the

NLP landscape have brought to the forefront a unique set of challenges. Model

hallucinations, or the generation of information not present in the input, present issues

of reliability and accuracy. Furthermore, the significant computational costs associated

with training and deploying LLMs underscore environmental and economic concerns.

Biases embedded in training data pose risks of perpetuating stereotypes and reinforcing

societal inequalities. Additionally, the extensive capabilities of LLMs also spark a myriad

of ethical quandaries, emphasizing the imperative for responsible use and governance in

NLP applications.

�Transformers for NLP
Transformers have revolutionized the field of Natural Language Processing (NLP) by

enabling models to process and understand language with unprecedented accuracy and

efficiency. In this section, we provide a broad overview of Transformers, including their

architecture, functionality, and guidelines for choosing the appropriate architecture for

specific NLP tasks.

Our objective is not to delve into the detailed inner workings of Transformers.

Instead, we aim to give you a conceptual understanding of Transformers’ high-level

architecture and basic functionality. A deeper dive is required to fully grasp these

complex concepts, which is beyond the scope of this book. Excellent references are

available for those who want a more detailed exploration and in-depth explanations of

Transformers. Notable among these are the seminal paper “Attention Is All You Need”

(Vaswani, et al., 2017) and “Chapter 3: Transformer Anatomy” in the book Natural

Language Processing with Transformers, Revised Edition (Tunstall, Werra, & Wolf, 2022).

�Transformer Architecture
The Transformer architecture offers significant advantages over traditional models.

Its parallelization capability allows it to process sequences much faster, as it does not

require sequential processing like recurrent networks. Moreover, its ability to handle

Chapter 1 NLP Essentials

https://doi.org/10.1007/979-8-8688-1073-2_3

16

long-range dependencies and capture complex relationships within the text has set new

standards in NLP, enabling models to achieve state-of-the-art results in various tasks

such as language translation, text generation, and question answering.

Transformers, a specific class of deep learning models, have brought about a paradigm

shift in text processing. Since their introduction, Transformers have demonstrated their

supremacy in the NLP field across various tasks. This breakthrough has enabled models to

understand and generate language with unprecedented accuracy and efficiency.

Unlike their predecessors, such as RNNs (recurrent neural networks) and CNNs

(convolutional neural networks), Transformers employ self-attention mechanisms. This

unique feature enables them to grasp the significance of different words in a sentence,

irrespective of their position, thereby enhancing their ability to capture contextual

relationships in text.

The research paper “Attention Is All You Need” (Vaswani, et al., 2017) made

a groundbreaking contribution to the NLP field by introducing the Transformer

architecture. This paper proposed a new network architecture based solely on attention

mechanisms, completely dispensing with recurrence and convolutions. The authors

argue that the Transformer model is the first to rely entirely on self-attention to compute

representations of its input and output without using sequence-aligned RNNs or

convolutional networks.

Figure 1-3.  Encoder–decoder high-level architecture (simplified)

At the core of the Transformer architecture lies the encoder–decoder structure as

illustrated in Figure 1-3.

Chapter 1 NLP Essentials

17

The encoder’s primary role is to process the input sequence. It converts the input

into numerical representations that capture the semantics of the text. As depicted

in Figure 1-4, the encoder comprises a stack of several layers (e.g., six layers), each

containing a self-attention mechanism and a feed-forward network. These layers help

the encoder to focus on different parts of the input sequence dynamically, ensuring that

the model effectively captures the semantics of the text.

Figure 1-4.  Encoder architecture

Chapter 1 NLP Essentials

18

The decoder, on the other hand, takes the vector representations generated by the

encoder and use them to generate the output sequence. Like the encoder, the decoder

consists of multiple layers, each with a self-attention mechanism and a feed-forward

network as shown in Figure 1-5.

Figure 1-5.  Decoder architecture

Both the encoder and decoder layers contain a self-attention mechanism, which is

central to the Transformer’s performance. This mechanism allows the model to weigh

the importance of different words in the input sequence, regardless of their positions. It

enables the model to capture dependencies and relationships between words within the

text, which is essential for understanding context and meaning. Additionally, the self-

Chapter 1 NLP Essentials

19

attention mechanism allows for parallelization during training by processing all words

in the sequence simultaneously, significantly speeding up the process and providing

scalability, as it can efficiently handle long sequences by focusing on relevant parts of

the input.

Since Transformers do not inherently understand the order of words in a sequence,

positional encodings are added to provide information about the position of each

token. This ensures that the model retains the order of words, which is essential for

understanding the syntax and structure of the text.

Input and output embeddings are another crucial aspect of the Transformer

architecture. Before being processed by the encoder, input tokens are converted into

continuous vector representations, known as embeddings. Similarly, output tokens are

embedded before being processed by the decoder. These embeddings provide dense

representations of the tokens, capturing their meanings in a high-dimensional space.

Let’s explain how the Transformer model works in simple terms by going through a

toy example for a translation task. Suppose we need to translate this English sentence to

French: “I live in Montreal.”

The input to the encoder of a Transformer model is a sequence of tokens, which can

be words, subwords, or characters, depending on the tokenization method used. For

example, “I live in Montreal” would be tokenized into [“I”, “live”, “in”, “Montreal”].

The encoder’s output is a sequence of vector representations, one for each input

token. These representations capture the contextual information of each token based on

its position and surrounding tokens in the input sequence. The encoder processes the

input sequence in a bidirectional manner, considering both the left and right context of

each token.

The input to the decoder is typically the target sequence (the desired output) shifted

by one position to the right, with a special start token added at the beginning. For

example, if the target sequence is “Je vis à Montréal,” the input to the decoder would be

[“<start>”, “Je”, “vis”, “à”, “Montréal”].

The decoder output is a sequence of probability distributions over the vocabulary,

one for each position in the target sequence. Given the previous tokens and the

encoder’s output, these probability distributions represent the model’s prediction of the

next token in the sequence. The decoder generates the output sequence token by token,

using the encoder’s output and its previous predictions as input.

Chapter 1 NLP Essentials

20

The data flow in a Transformer model can be summarized as follows:

	 1.	 The input sequence is fed into the encoder, producing a sequence

of vector representations (encoder output).

	 2.	 The encoder output and the shifted target sequence (decoder

input) are fed into the decoder.

	 3.	 The decoder generates the output sequence token by token, using

the encoder output and its previous predictions as input.

	 4.	 The final output is the sequence of tokens generated by the

decoder, representing the model’s prediction for the target

sequence.

The Transformer model uses self-attention mechanisms in both the encoder and

decoder, which allow it to capture long-range dependencies and contextual information

more effectively than traditional sequence-to-sequence models like recurrent neural

networks (RNNs).

�Transformer Taxonomy
Understanding the taxonomy of Transformer models helps categorize and differentiate

their applications and functionalities. Figure 1-6 provides a summarized overview of the

main Transformer families with the well-known models for each category.

Chapter 1 NLP Essentials

21

Figure 1-6.  Transformer taxonomy

Transformers can be divided into four categories, each with specific purposes,

designs, and training methods. The four categories are

•	 Encoder-Only Models: These models are designed for the

understanding tasks. They process the entire input sequence

simultaneously and are well-suited for tasks like sentence

classification, Named Entity Recognition, and question answering.

BERT (Bidirectional Encoder Representations from Transformers) is

a prime example.

Chapter 1 NLP Essentials

22

•	 Decoder-Only Models: These models are used for generation

tasks where the output sequence is generated sequentially based

on the preceding context. They are effective for tasks such as text

completion, text generation, and language modeling. Examples

include the GPT (Generative Pretrained Transformer) series

by OpenAI.

•	 Encoder–Decoder Models: These models are designed for sequence-

to-sequence tasks, where the input sequence is transformed into

an output sequence. They are highly effective for tasks like machine

translation, text summarization, and question answering. Notable

examples include T5 (Text-to-Text Transfer Transformer) and BART

(Bidirectional and Auto-Regressive Transformers).

•	 Checkpoint-Based Encoder–Decoder Models: These models

combine pretrained checkpoints for both the encoder and the

decoder. They can be initialized from a pretrained encoder

checkpoint and a pretrained decoder checkpoint. Any pretrained

auto-encoding model, such as BERT, can serve as the encoder.

Additionally, the decoder can be pretrained auto-encoding models

(e.g., BERT), pretrained causal language models (e.g., GPT-2), or the

pretrained decoder part of sequence-to-sequence models (e.g., the

decoder of BART).

To differentiate between encoder–decoder models like T5 or BART and encoder–

decoder models based on loading checkpoints such as BERT2GPT, one can focus on

their design and training methods. Pretrained encoder–decoder models like T5 and

BART are designed and trained end-to-end as integrated architectures. These models

are purpose-built for tasks such as translation, summarization, and text generation,

ensuring that the encoder and decoder work seamlessly together because they are

trained from scratch as a single unit.

In contrast, checkpoint-based encoder–decoder models, like BERT2GPT, involve

a hybrid design where pretrained encoders and decoders from different models are

combined. This approach uses pretrained checkpoints that may have been trained on

separate tasks, allowing for the strengths of different models to be leveraged, which can

enhance performance on complex tasks.

Chapter 1 NLP Essentials

23

As shown in Figure 1-7, one could imagine using a BERT checkpoint to initialize the

encoder for better input understanding and choosing a GPT-2 model as the decoder for

superior text generation. This flexibility allows you to combine strengths from different

models to achieve better results. For example, in translation, you might use a pretrained

English encoder with a French decoder to translate text from English to French. In

summarization tasks, you could use an encoder trained on long-form text and a decoder

optimized for generating concise summaries. For multimodal tasks, combining an

image encoder with a text decoder can generate descriptions of images. Domain-specific

applications also benefit from this flexibility, such as using encoders and decoders fine-

tuned on medical or legal texts for specialized document translation or summarization

in those fields.

Figure 1-7.  Examples of hybrid seq-to-seq encoder–decoder models

The effectiveness of initializing sequence-to-sequence models with pretrained

checkpoints for sequence generation tasks was demonstrated in the paper “Leveraging

Pre-trained Checkpoints for Sequence Generation Tasks” (Rothe, Narayan, & Severyn,

2020). In this study the authors conducted an extensive empirical evaluation, initializing

both the encoder and decoder with publicly available pretrained model checkpoint (e.g.,

BERT, GPT-2, and RoBERTa). The results showcased new state-of-the-art performance in

tasks such as machine translation and text summarization.

�Transfer Learning
Transfer learning, a fundamental concept in modern NLP, involves using pretrained

models on large datasets to improve performance on specific tasks with limited data. By

initializing models with pretrained checkpoints, such as using BERT for the encoder and

GPT-2 for the decoder, we significantly improve training effectiveness and efficiency.

Chapter 1 NLP Essentials

24

Figure 1-8.  Transfer learning–based training process

Figure 1-8 shows how transfer learning speeds up the training of NLP models by

using pretrained models that have been trained on general tasks and applying them to

specific tasks like text classification, token classification, table question answering, and

translation. This is done by fine-tuning a pretrained model, which was initially trained

using unsupervised learning on large datasets, with a task-specific dataset through a

supervised learning approach.

For example, when fine-tuning a pretrained model like BERT for Named Entity

Recognition (NER), the model’s initial training weights come from a pretraining

task called Masked Language Modeling (MLM). During the BERT pretraining phase,

MLM helps the model learn to predict missing words in sentences, enhancing its

understanding of context and language patterns. The model undergoes additional

training on a smaller, NER-specific dataset in the fine-tuning phase. This allows the

model to adapt its prelearned language features to solve the new NER task.

When it comes to the training phase of NLP models, transfer learning differs

significantly from the conventional model life cycle. The main distinction lies in the use

of pretrained models, which eliminates the need for extensive training from scratch in

the transfer learning approach. This results in significant resource efficiency, as the fine-

tuned model requires less computational resources and time for training. Furthermore,

pretrained models bring prior knowledge, resulting in better initial performance and

quicker convergence during fine-tuning.

Chapter 1 NLP Essentials

25

It’s critical to select the appropriate pretrained model for the task at hand
because it significantly influences the performance and accuracy of the final
fine-tuned model.

As illustrated in Figure 1-9, the transfer learning life cycle emphasizes the utilization

of pretrained models to enhance performance and efficiency across various NLP tasks.

Figure 1-9.  NLP model life cycle in the context of transfer learning

The transfer learning approach not only enhances the performance and precision of

the fine-tuned models but also offers additional benefits, including the reduction of the

required training data and minimization of training time (GPU compute resources), and

thus decreases NLP training costs and the environmental training footprint.

�Hugging Face Ecosystem
As we delve deeper into the benefits and processes of Transformers and transfer

learning, it’s important to recognize the tools and platforms that facilitate these

advancements. One such ecosystem is Hugging Face, a leading platform that provides

comprehensive support for the development of Transformer-based models. Hugging

Face offers an extensive library of pretrained models, along with user-friendly interfaces

and resources to streamline the transfer learning process. This ecosystem simplifies

the deployment of advanced NLP models and accelerates the development cycle,

Chapter 1 NLP Essentials

26

making state-of-the-art NLP accessible to a wider audience. The subsequent paragraphs

will explore the Hugging Face ecosystem, its key components, and its impact on the

field of NLP.

Figure 1-10.  Hugging Face ecosystem

As illustrated in Figure 1-10, the Hugging Face ecosystem (Hugging Face, 2022)

is divided into two main components: the Hugging Face Hub and the Hugging Face

libraries. The Hugging Face Hub serves as a central repository for pretrained models,

datasets, metrics, and documentation. It provides the resources needed for initializing

and fine-tuning Transformer-based models. The Hugging Face libraries, which include

tools like the Transformers, Datasets, and Tokenizers libraries, offer the essential tools

and frameworks to utilize these resources effectively. Together, these components

support the entire development life cycle of Transformer-based models, from initial

training and fine-tuning to deployment and evaluation, ensuring seamless integration

and efficient development processes.

Chapter 1 NLP Essentials

27

The Hugging Face Hub (Hugging Face) is an online platform that provides a virtual

space for hosting a vast repository of machine learning models, datasets, and demo

applications. With over 500k models, 130k datasets, and 160k demo apps,2 this platform

promotes knowledge sharing and collaboration among machine learning experts. Its

overarching goal is to facilitate the exploration, experimentation, collaboration, and

development of cutting-edge technologies in machine learning. As a central hub for

machine learning resources, the Hugging Face Hub offers an unparalleled opportunity

for practitioners to stay current with field advancements and exchange ideas, insights,

and best practices. It includes a repository of pretrained models that can be used for

various NLP tasks, a collection of datasets available for training and fine-tuning models,

tools and benchmarks for evaluating model performance (i.e., Metrics), as well tools for

building and sharing interactive machine learning demo applications (i.e., Spaces).

The Hugging Face libraries (Hugging Face) form the backbone of the ecosystem,

providing essential tools for working with Transformer models. The Transformers

library offers a unified API to access pretrained Transformer models for various NLP

tasks, including text classification, translation, summarization, and question answering.

It supports a range of models such as BERT, GPT-2, GPT-3, RoBERTa, T5, and others,

enabling users to leverage cutting-edge technologies with ease. The Datasets library

provides a vast repository of datasets tailored for machine learning and NLP, simplifying

the process of loading, preprocessing, and managing large datasets. This library supports

diverse formats and storage solutions, making it a flexible tool for handling data. The

Tokenizers library excels in providing fast, efficient, and customizable tokenization,

including implementations for various tokenization techniques required for different

Transformer models. Additionally, Hugging Face’s inference API simplifies the

deployment of NLP models in real-world applications by providing a straightforward

way to integrate powerful NLP models into applications through a simple API call.

A vibrant community and extensive documentation are vital components of the

Hugging Face ecosystem. The platform provides comprehensive guides, tutorials,

and support forums, helping users of all skill levels to maximize the potential of the

available tools and libraries. The community-driven approach ensures continuous

improvement and support, fostering an environment where users can share knowledge,

seek assistance, and collaborate on projects. This support infrastructure is crucial for

maintaining the ecosystem’s relevance and usability.

2 At the time of writing.

Chapter 1 NLP Essentials

28

The Hugging Face ecosystem has significantly lowered the barrier to entry in NLP,

making advanced AI accessible to a broader audience. Its tools are widely adopted in

both academia and industry, facilitating rapid prototyping and deployment of NLP

solutions. By democratizing access to state-of-the-art tools and models, Hugging

Face enables researchers, developers, and businesses to harness the power of NLP

effortlessly.

�Strategic Considerations for NLP Adoption
Natural Language Processing (NLP) has the potential to revolutionize how businesses

interact with data, engage customers, and derive insights from vast amounts of

unstructured information. However, adopting NLP presents a strategic dilemma for

decision-makers. A prime example of this dilemma is whether an organization should

invest in ready-to-use cloud NLP models or develop custom NLP models.

As organizations consider adopting NLP technologies, they must make several

strategic decisions to ensure the success of their initiatives (see Figure 1-11). This section

explores key strategic considerations in three main areas: model development and

deployment, data acquisition and preparation, and team building.

Chapter 1 NLP Essentials

29

Figure 1-11.  Strategic decisions for NLP adoption

�Models
When it comes to NLP model development, organizations face the choice of building

in-house, purchasing pretrained models, or using cloud NLP services. Building NLP

models in-house provides a unique advantage in terms of control and customization.

This approach allows organizations to tailor their models to their specific needs,

incorporating unique features and domain-specific knowledge that off-the-shelf

solutions may lack. It’s particularly beneficial for businesses with proprietary data or

specialized requirements, ensuring that the models are perfectly aligned with their

operational contexts. Developing custom models means all data remains in-house,

ensuring tighter control over sensitive or proprietary information.

Chapter 1 NLP Essentials

30

Additionally, organizations can innovate and potentially develop unique NLP

capabilities, leading to a competitive advantage and even potential new revenue streams

if they decide to commercialize their solutions. However, this approach requires a

significant investment in skilled personnel, computational resources, and time. The field

of NLP is competitive, and attracting and retaining top NLP talents (i.e., deep learning

experts) can be challenging and expensive. It also necessitates ongoing updates and

refinement to stay aligned with state-of-the-art advancements in NLP, ensuring that

the models not only remain relevant and perform optimally but also leverage the latest

techniques and innovations to maintain a competitive edge.

On the other hand, purchasing pretrained models or using cloud-based NLP services

can significantly reduce the time and resources needed to deploy NLP capabilities.

NLP cloud services offer a compelling alternative. They present a cost-efficient option,

eliminating the expenses of talent acquisition, infrastructure setup, and continual model

updates. Additionally, these services promise rapid deployment with ready-

to-use, pretrained models, ensuring businesses can swiftly integrate advanced NLP

functionalities. Scalability, a crucial factor for growing businesses, is seamlessly

addressed by these platforms, which can effortlessly adapt to fluctuating workloads.

Pretrained models and cloud services can be deployed quickly, enabling organizations

to leverage NLP capabilities without the lengthy development process. This approach is

often more cost-effective, as it minimizes the need for extensive in-house resources and

infrastructure.

Furthermore, vendors typically provide ongoing support and updates, ensuring the

models remain state of the art. Additionally, availing cloud services grants businesses

indirect access to the invaluable expertise of top-tier AI researchers and engineers. This

ensures that enterprises remain at the forefront of NLP advancements and allows them

to concentrate on their core competencies, relegating the intricacies of NLP to those who

specialize in it. In the fast-paced world of AI and NLP, staying updated is vital, and cloud-

based solutions ensure consistent access to the latest breakthroughs without ceaseless

in-house R&D investments. However, off-the-shelf models may only partially align with

specific business needs and may require significant adaptation. Additionally, using

external services can pose risks related to data privacy and compliance, particularly if

sensitive data is involved.

Chapter 1 NLP Essentials

31

Figure 1-12.  NLP model development decision tree

As depicted in Figure 1-12, the decision between adopting ready-to-use NLP models

or building in-house custom models is not black and white. It’s a strategic choice that

hinges on the organization’s immediate needs, long-term vision, available resources,

and risk appetite. A hybrid approach, where some functionalities are outsourced while

others are developed in-house, might also be worth considering.

Deploying NLP models on-premises offers enhanced control over data security

and compliance. It is suitable for organizations handling sensitive data or operating in

regulated industries. However, it requires substantial infrastructure, IT support, and

ongoing maintenance and updates. Cloud deployment provides scalability, flexibility,

and ease of management. It allows organizations to leverage powerful computing

resources without significant upfront investment in infrastructure. Cloud providers

often offer built-in tools for monitoring, scaling, and maintaining NLP models, making

this option attractive for many organizations. However, concerns about data security

and compliance may arise depending on the provider and the specific use case. The

deployment location of NLP models, whether on-premises or in the cloud, is a pivotal

decision for any organization. Both options offer distinct benefits and come with

their sets of challenges. The organization’s specific needs, regulatory environment,

budget constraints, and strategic vision should influence the choice. Hybrid solutions,

which leverage both on-premises and cloud resources, might also provide a balanced

approach, offering the best of both worlds. As with all strategic decisions, CIOs and lead

architects must consider the broader implications.

Chapter 1 NLP Essentials

32

�Data
Data is the backbone of any NLP initiative, and strategic decisions around data

collection, management, and utilization are critical. Using internal data sources

ensures that the data is highly relevant and specific to the organization’s operations.

This includes customer interactions, internal documents, transaction records, and

more. The primary advantage of internal data is its direct relevance to the business

context and specific use cases, which can enhance the accuracy and effectiveness of

NLP models. Moreover, organizations have full control over data quality, preprocessing,

and integration with existing systems, ensuring that the data is consistent and reliable.

Keeping data internal also reduces exposure risks and helps maintain privacy.

However, relying solely on internal data may have limitations. Internal data can be

fragmented across different departments and systems, requiring significant effort to

consolidate and preprocess. There may also be limitations in the volume and variety of

data available internally, which can restrict the model’s ability to generalize and perform

well on diverse inputs. To address these limitations, organizations can supplement

internal data with external data sources. External data can enhance the capabilities

of NLP models by providing additional context and diversity. This includes publicly

available datasets, third-party data providers, and social media data. While external

data can offer broader insights and improve model generalization, it also comes with

challenges. Ensuring compliance with data privacy regulations when using external data

can be complex, and external data sources may vary in quality and relevance, requiring

rigorous validation and preprocessing.

�Team
Given their technical complexity and potential for competitive advantage, Natural

Language Processing (NLP) initiatives prompt a critical decision for business leaders:

Should the organization invest in building a dedicated in-house NLP team, or is it more

strategic to delegate this task to specialized external firms?

Building an in-house NLP team ensures that expertise is readily available and

aligned with the organization’s goals and culture. It allows for greater customization and

faster iteration on projects. This approach requires investment in hiring and training

skilled professionals and ongoing management and development of the team.

An in-house team typically includes data scientists, machine learning engineers, and

Chapter 1 NLP Essentials

33

domain experts who work closely with the organization to ensure that NLP initiatives

are directly relevant to business needs. This alignment with the organization’s goals and

culture ensures the team can iterate quickly and adapt models as requirements evolve.

Additionally, having an in-house team helps retain expertise within the organization,

building long-term capability. However, building and maintaining an in-house team

requires significant investment in hiring, training, and managing skilled personnel. This

can be challenging and costly, particularly in competitive job markets.

Partnering with an external firm can provide access to specialized expertise and

resources that may not be available in-house. It can be a cost-effective way to implement

NLP solutions, especially for organizations with limited internal capabilities. External

firms bring extensive knowledge and experience in NLP, ensuring high-quality

implementation and offering flexibility in scaling resources based on project needs. This

approach can accelerate the implementation process, as external partners can leverage

their existing frameworks and methodologies. However, relying on external firms may

lead to challenges in aligning external efforts with internal goals and maintaining long-

term knowledge within the organization. There are also concerns regarding intellectual

property (IP) when outsourcing. Ensuring the proprietary nature of technologies and

data can be challenging, potentially risking the leakage of competitive advantages.

Furthermore, overreliance on external firms can create dependency, making it

difficult to bring NLP development back in-house or switch vendors in the future. This

dependency can limit organizational flexibility and control over NLP projects, potentially

hindering long-term strategic goals and innovation in Natural Language Processing.

The decision to invest in an in-house NLP team or delegate to an external firm depends

heavily on the organization’s strategic goals, budgetary constraints, project timelines, and

desired level of control. While an in-house team provides deep integration and control,

an external firm offers immediate expertise and potential cost savings. Leaders should

weigh these factors carefully, considering both immediate needs and long-term business

objectives, to make an informed decision that best serves the organization’s interests.

�Summary
This chapter provides the theoretical framework for understanding Natural Language

Processing (NLP). It delves into NLP’s core principles, historical evolution, and

strategic dimensions of NLP implementations to familiarize you with key concepts and

theoretical groundwork necessary to understand subsequent chapters.

Chapter 1 NLP Essentials

34

The introductory chapter covers essential concepts in NLP, focusing on Transformers

and introducing the Hugging Face ecosystem for working with Transformer models.

It also discusses strategic decisions decision-makers may face when adopting NLP

technologies, such as choosing between prebuilt SaaS solutions and developing

custom models.

While not comprehensive, this overview is a starting point for readers to understand

fundamental NLP notions before delving into specific concepts and their real-world

applications in subsequent chapters.

The next chapter will introduce the OCI ecosystem, emphasizing its artificial

intelligence and machine learning offerings to provide a comprehensive understanding

of harnessing the platform’s potential for developing NLP solutions.

�References
Hugging Face. (2022). The Hugging Face Course, 2022. Retrieved from Hugging Face:

https://huggingface.co/course

Hugging Face. (n.d.). Documentations. Retrieved from Hugging Face: https://

huggingface.co/docs

Rothe, S., Narayan, S., & Severyn, A. (2020). Leveraging Pre-trained Checkpoints

for Sequence Generation Tasks. Transactions of the Association for Computational

Linguistics

Tunstall, L., Werra, L. v., & Wolf, T. (2022). Natural Language Processing with

Transformers, Revised Edition. O’Reilly Media, Inc.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …

Polosukhin, I. (2017). Attention Is All You Need. CoRR

Chapter 1 NLP Essentials

https://huggingface.co/course
https://huggingface.co/docs
https://huggingface.co/docs

35
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_2

CHAPTER 2

Oracle Cloud for NLP
Oracle Cloud Infrastructure (OCI) provides a robust platform for the development,

deployment, and scaling of Natural Language Processing (NLP) applications. Its

comprehensive suite of managed services abstracts the complexities of infrastructure

management, allowing data scientists and developers to concentrate on core NLP tasks.

This chapter explores the OCI ecosystem, focusing on its artificial intelligence and

machine learning offerings. It provides an overview of OCI’s capabilities for developing

practical Natural Language Processing (NLP) solutions.

�Introduction to Oracle Cloud Infrastructure (OCI)
Oracle has become a major player in the cloud computing market, offering diverse

services such as computing, storage, networking, databases, and AI/ML capabilities. In

this section, we will explore the core concepts and components that form the foundation

of OCI after providing a brief overview of its evolution.

�History
Oracle Cloud Infrastructure (OCI) has undergone significant evolution since its

inception, reflecting Oracle’s commitment to becoming a major player in the cloud

computing market. Oracle entered the cloud market relatively late compared to

competitors like Amazon and Microsoft. The company’s initial cloud offerings, launched

in the early 2010s, were primarily focused on Software as a Service (SaaS) products,

leveraging Oracle’s strong position in enterprise software. However, these early efforts

did not include a comprehensive Infrastructure as a Service (IaaS) platform.

Recognizing the growing importance of IaaS in the cloud ecosystem, Oracle began

developing its own cloud infrastructure platform. The first generation of OCI, sometimes

referred to as “OCI Classic,” was introduced in 2016 under the name “Oracle Bare Metal

https://doi.org/10.1007/979-8-8688-1073-2_2#DOI

36

Cloud Services.” This initial offering provided basic compute, storage, and networking

services but lacked the scalability and advanced features of more established cloud

platforms.

A turning point came in 2018 with the rebranding of Oracle Bare Metal Cloud

Services to Oracle Cloud Infrastructure (OCI) and introducing OCI’s second generation,

labelled “Generation 2 Cloud.” This marked a significant leap forward in Oracle’s cloud

capabilities. The new iteration of OCI was built from the ground up, focusing on high

performance, security, and enterprise-grade reliability. It introduced a new network

architecture designed to minimize latency and improve security, as well as bare metal

compute instances for high-performance workloads (Oracle, 2018).

Figure 2-1.  Key AI milestones in OCI’s evolution

Since introducing OCI’s second generation, Oracle has continuously expanded

and refined OCI’s capabilities. The company has aggressively invested in global data

center expansion, rapidly increasing its cloud regions worldwide. This expansion has

been crucial in addressing data sovereignty concerns and reducing latency for global

customers.

Oracle has also focused on making OCI more accessible and flexible. This includes

introducing always-free tier services, improving interoperability with other cloud

providers, and developing partnerships to expand OCI’s reach. Notable among these is

the partnership with Microsoft, announced in 2019, enabling interconnection between

OCI and Azure (Oracle, 2019).

In recent years, Oracle has strongly emphasized adding advanced services to OCI,

particularly in areas like artificial intelligence, machine learning, and autonomous

systems. Oracle expanded its AI offerings significantly in the early 2020s, with a strong

Chapter 2 Oracle Cloud for NLP

37

focus on enterprise-grade AI capabilities. For example, the company introduced the OCI

Data Science Service in 2020, OCI Language and OCI Data Labeling in 2021, and OCI

Vision and AI Speech Services in 2022.

In 2022, Oracle announced a multiyear partnership with NVIDIA to enhance AI

adoption. The collaboration aims to bring the full NVIDIA accelerated computing stack—

from GPUs to systems to software—to Oracle Cloud Infrastructure (OCI), thus helping

customers solve business challenges with accelerated computing and AI (Oracle, 2022).

The last important AI-related OCI development is the Generative AI Service, which

became generally available in early 2024. It provides access to prebuilt large language

models (LLMs) from partners like Meta and Cohere. It allows enterprises to connect

LLMs with their proprietary data sources, enhancing the relevance and accuracy of AI-

generated outputs (Oracle, 2023).

OCI has consistently focused on performance, security, and cost-effectiveness

throughout its evolution, often positioning itself as a more efficient alternative to other

major cloud providers. While it entered the market later than some competitors, OCI

has rapidly evolved into a comprehensive and competitive cloud platform, particularly

appealing to enterprises with existing Oracle investments and those requiring high-

performance cloud infrastructure.

�Core Concepts and Terminology
Understanding the fundamental concepts of Oracle Cloud Infrastructure (OCI) is crucial

for developing robust cloud applications, particularly our practical Natural Language

Processing (NLP) solution.1 This foundational knowledge will serve as the cornerstone

for our exploration throughout this book, enabling you to effectively leverage OCI’s

capabilities in the context of NLP.

Below are the core OCI concepts and services:

•	 Regions and Availability Domains: OCI is a geographically distributed

cloud platform with multiple regions around the world. Each

region contains several isolated availability domains, providing

high availability and fault tolerance for your cloud resources. This

geographical distribution will be a key consideration as we design the

NLP solution to meet performance and data sovereignty requirements.

1 This NLP application will be introduced as a comprehensive case study in the following chapter,
demonstrating the practical implementation of OCI concepts in a real-world scenario.

Chapter 2 Oracle Cloud for NLP

38

•	 Virtual Cloud Networks (VCNs): At the heart of OCI’s networking

capabilities are Virtual Cloud Networks (VCNs). VCNs allow you to

provision logically isolated, customizable virtual networks within the

OCI environment, enabling secure communication between your

cloud resources. The NLP solution will leverage VCNs to ensure a

secure and scalable network architecture.

•	 Compute Instances: OCI offers various compute instance types,

including bare metal, virtual machine (VM), and GPU-accelerated

options. These instances can be dynamically scaled to meet the

demands of your workloads. As we develop the NLP solution, we

will evaluate the appropriate compute resources required for model

training and inference tasks.

•	 Storage Services: OCI provides storage services, including Block

Volumes, Object Storage, and File Storage. These options cater to

diverse data storage and retrieval requirements within your cloud-

based applications. The NLP solution will leverage these storage

services to effectively manage the data required for training our NLP

solution’s models.

•	 Identity and Access Management (IAM): The OCI IAM service

lets you centrally manage user access, permissions, and security

policies across your cloud resources. This ensures controlled and

auditable access to critical infrastructure and data. As we build the

NLP solution, we will implement robust IAM practices to ensure the

application’s security and compliance.

Subsequent section will provide detailed explanations of these core OCI concepts

and services, equipping you with the necessary knowledge to build sophisticated NLP

applications on the OCI platform.2

2 For those interested in a deeper understanding of OCI, the official OCI documentation provides
comprehensive information on the platform’s features, capabilities, and services (the official
Oracle Cloud Infrastructure documentation can be found at https://docs.oracle.com/en-us/
iaas/Content/home.htm). Additionally, numerous training resources and books are available to
explore the OCI ecosystem in greater detail.

Chapter 2 Oracle Cloud for NLP

https://docs.oracle.com/en-us/iaas/Content/home.htm
https://docs.oracle.com/en-us/iaas/Content/home.htm

39

�Regions and Realms

Oracle Cloud Infrastructure is physically hosted in regions and availability domains. A

region is a localized geographic area, and an availability domain is one or more data

centers located within a region. Oracle cloud regions are globally distributed data

centers that provide secure, high-performance, local environments (refer to Figure 2-2).

These regions allow businesses to move, build, and run all workloads in the cloud

from infrastructure to applications while meeting regional data regulations. For more

information about each offering, see Regions and Availability Domains and Dedicated

Regions (Oracle, 2023).

Figure 2-2.  OCI regions worldwide

A realm is a logical collection of regions. Realms are isolated from each other

and do not share any data. Your tenancy exists in a single realm and has access to the

regions that belong to that realm. OCI currently offers realms for commercial regions,

government regions, and dedicated regions (Oracle, 2023).

Oracle is expanding its global presence by continually adding more regions to its

public cloud network. Oracle is continuing to expand its global presence by adding more

regions to its public cloud network. This expansion demonstrates Oracle’s dedication to

providing enterprise cloud services to local and regional organizations across Africa and

worldwide, as shown in Figure 2-1. For example, at the time of writing this book, Oracle

recently announced its plans to open two public cloud regions in Morocco, positioning

Oracle as the first hyperscaler to open public cloud regions in North Africa (Oracle, 2024).

Chapter 2 Oracle Cloud for NLP

40

�Tenancy/Compartment

When you sign up or subscribe to Oracle Cloud services, Oracle creates a tenancy for

you. You can think of the tenancy as your account, but it is also a secure and isolated

partition within Oracle Cloud Infrastructure where you can create, organize, and

administer your cloud resources. When you sign up, your tenancy is created in your

home region, but you can subscribe your tenancy to as many regions as you need. Large

organizations can have multiple tenancies (Oracle, 2023).

Figure 2-3.  OCI tenancy, regions, and compartments

As shown in Figure 2-3, compartments allow you to organize and control access

to your cloud resources. A compartment is a collection of related resources (such as

instances, Virtual Cloud Networks, block volumes) that can be accessed only by certain

Chapter 2 Oracle Cloud for NLP

41

groups that have been given permission by an administrator. A compartment should be

thought of as a logical group and not a physical container. When you begin working with

resources in the console, the compartment acts as a filter for what you are viewing.

When you sign up for Oracle Cloud Infrastructure, Oracle creates your tenancy,

which is the root compartment that holds all your cloud resources. You then create

additional compartments within the tenancy (root compartment) and corresponding

policies to control access to the resources in each compartment. When you create a

cloud resource such as an instance, block volume, or cloud network, you must specify to

which compartment you want the resource to belong (Oracle, 2023).

In Oracle Cloud Infrastructure (OCI), compartments serve as organizational units

that group related resources, such as network and storage, to improve governance

and isolation. Each OCI tenancy includes a default root compartment, named after

the tenancy, which is the parent compartment for all others within the tenancy. Best

practices recommend avoiding the use of the root compartment for user-created OCI

resources.

OCI accommodates a hierarchical compartment structure, allowing up to six

nested levels. This feature enables nuanced segregation of resources, facilitating

the management of different phases of a project or the operational needs of various

departments. Each cloud resource must be linked to a designated compartment to

maintain this structured organization.

Compartments are tenancy-wide, across regions. When you create a compartment, it

is available in every region that your tenancy is subscribed to. You can get a cross-region

view of your resources in a specific compartment with the tenancy explorer.

�Core OCI Resources

OCI provides a complete set of cloud services, each offering various resource types to

meet diverse needs. Here are some key OCI resources grouped by their primary use.

�OCI Networking

In this section, we discuss OCI Virtual Cloud Network (VCN)3 and its resources, such

as security lists, network security groups, route tables, and connectivity to the outside

world, such as the Internet or to an on-premises environment.

3 For detailed information, refer to the Networking Overview found at https://docs.oracle.com/
en-us/iaas/Content/Network/Concepts/overview.htm

Chapter 2 Oracle Cloud for NLP

https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Concepts/overview.htm

42

Figure 2-4.  OCI VCN and subnets

As depicted in Figure 2-4, an OCI Virtual Cloud Network (VCN) resides in a single

region. Oracle has many regions worldwide. When you create a VCN, it is specific to

one region. Notably, within a VCN, we can have multiple IP CIDR ranges, up to five. The

fundamental constituents of a VCN encompass the following:

•	 Subnets: Subnets divide a VCN and are necessary for deploying

resources such as compute instances, database nodes, or load

balancers. Subnets can be public or private and regional or specific

to an availability domain (AD). Public subnets can optionally have

public IPs, while private subnets cannot. Regional subnets span all

ADs within a region, allowing resource distribution across ADs.

•	 Security Lists: Each subnet includes a firewall called a security

list, applying to all resources within the subnet. Security lists allow

or deny traffic based on rules. By default, three permissions are

included: port 22 for SSH and two ICMP rules for fragmentation and

troubleshooting. You can modify or remove these rules as needed.

Security lists can be stateful or stateless. Stateful rules automatically

allow return traffic, while stateless rules require explicit rules for both

directions.

Chapter 2 Oracle Cloud for NLP

43

•	 Network Security Groups: Network security groups (NSGs) provide

more granular control than security lists, allowing you to create

exceptions for specific resources within a subnet. For example, if

only certain web servers need port 80 and 443 open, you can create

an NSG for those servers rather than applying the rule to the entire

subnet. NSGs can be mixed with security lists, and you can use up to

five NSGs per vNIC. Oracle recommends using NSGs over security

lists for finer control, though they can be more complex.

•	 Gateways: The gateways used for connectivity between the VCN and

external networks, such as Oracle Services Network (OSN), on-prem

networks, or the Internet, are as follows:

•	 Internet Gateway: Allows bidirectional traffic between the VCN and

the Internet for public subnets.

•	 NAT Gateway: Enables outbound traffic from private subnets to the

Internet without allowing inbound traffic.

•	 Service Gateway: Provides access to Oracle Cloud Infrastructure

services like object storage without traversing the Internet, staying

within OCI for efficiency.

•	 Local Peering Gateway: Connects VCNs within the same region.

•	 Dynamic Routing Gateway (DRG): Connects VCNs across different

regions or to on-premises networks.

•	 Route Tables: Route tables enable communication outside the VCN,

such as to the Internet, on-premises networks, or peered VCNs. Local

routing within the VCN handles traffic between subnets automatically.

We covered Virtual Cloud Networks, subnets, security lists, network security groups,

route tables, and various gateways (Internet, NAT, service, local peering, and dynamic

routing).

�OCI Compute

The OCI Compute Service is a fundamental component of the Oracle Cloud. It allows us

to set up compute instances, which are either physical or virtual computers in the cloud,

as exemplified in Figure 2-5. Compute instances provide the necessary computational

power for running software applications in the cloud. These instances are configured

Chapter 2 Oracle Cloud for NLP

44

using images, which define a preinstalled software stack, and shapes, which specify the

virtual hardware profile. These compute instances can be utilized directly by OCI users

or by other OCI services. Each compute instance contains CPU, memory, and storage.

Figure 2-5.  OCI compute instances

Before we discuss the Compute Service on OCI, it’s important to understand how

CPUs are measured and used. In most cloud environments, compute resources are

measured using virtual CPUs (vCPUs), which represent a thread in a multithreaded

processor core and are abstracted from the physical hardware. This abstraction often

means that end users are unaware of the actual hardware being used or how many

compute cores the cloud provider has allocated.

Chapter 2 Oracle Cloud for NLP

45

On the other hand, Oracle Cloud Infrastructure (OCI) uses Oracle Compute Units

(OCPUs) as the measurement for compute resources. An OCPU represents an entire

physical CPU core with hyper-threading enabled, effectively equating to two vCPUs

or two threads. This difference is important for understanding how to scale your

infrastructure and manage software licensing effectively.

With a clear understanding of how OCI measures compute resources using OCPUs,

we can now explore the types of compute instances available. OCI Compute Service

offers two primary options for compute instances:

•	 Bare Metal (BM): Provides direct hardware access with all the

security capabilities, elasticity, and scalability of Oracle Cloud

Infrastructure. Typical use cases include performance-intensive

workloads, nonvirtualizable workloads, or workloads requiring a

specific hypervisor

•	 Virtual Machines (VMs): Independent computing environments that

run on top of physical bare metal hardware, isolated from each other.

Users do not need to manage virtualization host maintenance.

OCI offers the option to customize VM instances for specialized workloads:

•	 Burstable Instances: VM instances with a baseline level of CPU

performance that can handle occasional usage spikes, depending on

available capacity

Currently, OCI offers AMD, Intel, and Ampere processors. The processor choice is

part of the instance creation process and is included in the instance’s shape. A shape

defines the resources allocated to an instance and can be either fixed or flexible:

•	 Fixed Shapes: Predefined CPU and memory allocations, including

special shapes like dense I/O shapes with local NVMe disks, GPU

shapes with NVIDIA graphics processors, and HPC shapes with

high-frequency processor cores and cluster networking support

•	 Flexible Shapes: Allow CPU and memory adjustments at creation or

during the instance’s lifespan. Available only for virtual machines.

Chapter 2 Oracle Cloud for NLP

46

Every compute instance, whether bare metal or a virtual machine, is created using

an image. An image is a template for the boot volume, defining partitions and containing

the OS and additional software. Four types of images can be used in OCI:

•	 Platform Images: Oracle-provided standard images, including

multiple Linux distributions and Windows images

•	 Custom Images: Created from configured instances to replicate

exact copies

•	 Marketplace Images: Oracle products and third-party images ready

for deployment

•	 Bring Your Own Image (BYOI): Allows migrating on-premises

virtual machines to OCI, supporting cloud migration projects and

infrastructure flexibility

When launching compute instances, you can choose the type of host capacity:

•	 On-Demand Capacity: Resources are allocated immediately upon

instance creation and released upon termination, with billing based

on usage.

•	 Capacity Reservation: Ensures resources are available when needed

by creating a reservation ahead of time. Capacity reservations can be

created, changed, or deleted anytime and charged at a discounted

rate when not used.

•	 Preemptible Capacity: Uses excess compute capacity on a first-come,

first-served basis without guaranteed ownership, ideal for short-lived,

fault-tolerant workloads. These instances are 50% cheaper than on-

demand instances but can be terminated if capacity is needed elsewhere.

•	 Dedicated Capacity: Dedicated Virtual Machine Hosts (DVH) allow

running compute VM instances on dedicated single-tenant servers,

meeting compliance and regulatory requirements for isolation and

supporting node-based or host-based software licensing.

OCI Compute Service offers scaling capabilities:

•	 Vertical Scaling: Flexible-shaped instances can adjust OCPU and

memory counts, while fixed-shaped instances can change to different

shapes with more or fewer resources, requiring a reboot.

Chapter 2 Oracle Cloud for NLP

47

•	 Horizontal Scaling (Autoscaling): Instance pools can scale based

on metric- or schedule-based policies, increasing or decreasing the

number of instances as needed.

OCI Compute Services provides a comprehensive and adaptable solution for

running diverse workloads. From performance-intensive applications on bare metal

instances to scalable virtual machines, OCI offers various capacity options including on-

demand, preemptible, reserved, and dedicated instances to meet different performance,

budget, and compliance requirements.

�OCI Storage

This section briefly overviews OCI’s main categories of storage services: Block Volumes,

File Storage, Object Storage, and local NVMe as illustrated in Figure 2-6.

Figure 2-6.  OCI Storage Services

Chapter 2 Oracle Cloud for NLP

48

•	 Block Storage Service: The Block Storage Service lets you dynamically

provision and manage block storage volumes. Unlike local NVMe

storage, these are accessed through a secure and high-speed

network, similar to a SAN (storage area network). Volumes can be

block volumes or boot volumes, with block volumes used for data

and boot volumes for booting instances.

•	 Block Volume: Block volumes are elastic, allowing you to set the

size according to your needs, from 1 gigabyte up to 32 terabytes per

volume in 1 gigabyte increments. The size of the volume determines

performance, and costs are defined by the space allocated and the

performance level set. NVMe solid-state drives ensure outstanding

performance, running on a high-performance network with

submillisecond latencies. Each instance can connect up to 32

volumes, which appear to the OS as regular block devices. Volumes

can be attached to multiple instances for sharing content and

are encrypted at rest and in transit. Durability is ensured through

several replicas across the availability domain. Block volumes can be

resized online or offline but only to increase the size. Performance

tiers include Basic, Balanced (default), Higher Performance, and

Ultra High Performance, with IOPS ranging from 90 to 225 IOPS

per gigabyte. OCI Block Volumes allows the creation of complete

point-in-time snapshot copies, which can be incremental or full

backups. These backups are stored in OCI Object Storage after they

are encrypted and can be restored as new volumes in any availability

domain within the same region (Oracle, 2024).

•	 Object Storage Service: Object Storage is an Internet-scale, high-

performance storage platform for unstructured data. Use cases

include content repositories, large datasets from pharmaceutical

trials, application logs, and backups. Objects are stored in a flat

hierarchy within buckets, and metadata is also stored with each

object. Object Storage offers three tiers: Standard (Hot Storage) for

frequent access, Infrequent Access (Cool Storage) for infrequent

Chapter 2 Oracle Cloud for NLP

49

access with lower costs, and Archive Storage (Cold Storage) for

seldom accessed data with a 90-day retention requirement. Auto-

tiering can move objects between tiers based on access patterns,

optimizing costs. Object life cycle policies allow for transitioning

data between tiers based on time-based rules, facilitating cost

management by moving objects to lower-cost tiers or deleting them

after a set period (Oracle, 2024).

•	 File Storage Service: The File Storage Service offers scalable,

distributed, enterprise-grade network file systems that are accessible

across different subnets and VCNs or through VPN or FastConnect

connections. It’s a fully managed shared storage. Use cases include

migrating Oracle applications, general-purpose file systems, big data

analytics, scaling out applications, and providing persistent storage

for containers. File Storage ensures data durability through a five-

way replication and offers 10,000 snapshots per file system. Data is

encrypted at rest and in transit (Oracle, 2024).

In addition, bare metal instances have the option to use local NVMe storage. It

consists of NVMe solid-state drives that are directly attached to the host. The common

use cases for this type of storage include large databases, big data workloads, and

applications requiring high local performance.

Table 2-1 (Oracle, 2020) comprehensively overviews Oracle Cloud Infrastructure

(OCI) storage services. It compares various storage options available in OCI, including

local NVMe, Block Volume, File Storage, Object Storage, and Archive Storage. Each

storage type is detailed in terms of its type, access method, structure, durability, capacity,

unit size, and use cases. This comparison aims to help users understand each storage

service’s key features and benefits, enabling them to choose the most appropriate

solution for their specific needs.

Chapter 2 Oracle Cloud for NLP

50

Table 2-1.  OCI Storage Services

OCI
Storage
Services

Local NVMe Block Volume File Storage Object
Storage

Archive
Storage

 Type NVMe SSD

temporary

storage

NVMe SSD block

storage

NFSv3

compatible file

system

Highly durable

object storage

Long-term

archival and

backup

 Access Block Block File Object Object

 Structure Block level Block level Hierarchical Unstructured Unstructured

 Durability Nonpersistent Durable (multiple

copies in an AD)

Durable (multiple

copies in an AD)

Multiple copies

across ADs4

Multiple copies

across ADs

 Capacity Terabytes+ Petabytes+ Exabytes+ Petabytes+ Petabytes+

 Unit Size 51.2 TB (BM),

6.4–25.6 TB

(VM)

50 GB to 32 TB/

vol, 32 vols/

instance

Up to 8 exabytes 10 TB/object 10 TB/object

 Use Cases OLTP,

NoSQL, data

warehousing

Database, VMFS,

NTFS, boot and

data disks for

instances

Oracle apps

(EBS), HPC,

general-purpose

file systems

Unstructured

data (logs,

images,

videos)

Backups and

long-term

archival (DB

backups)

OCI provides robust and versatile storage solutions tailored to various needs. Block

Volumes offer persistent storage for compute instances, supporting boot volumes and

additional storage with comprehensive backup capabilities. Object Storage, designed

for managing data as objects within buckets, allows for efficient and scalable data

management with life cycle policies for automated object handling. It is ideal for storing

unstructured data such as logs, images, and videos. On the other hand, File Storage

facilitates the creation of shared file systems within subnets, enabling compute instances

to connect seamlessly and benefit from efficient backup solutions through snapshots.

These storage options ensure that users can effectively manage their data with flexibility,

scalability, and reliability.

4 ADs: availability domains.

Chapter 2 Oracle Cloud for NLP

51

�Identity and Access Management (IAM)

OCI Identity and Access Management (IAM) is a service that assists in managing user

authentication and authorization in OCI. In Figure 2-7, you can see the high-level flow

for OCI access management, which depicts a group as a collection of users who are

granted access to resources or compartments using policies.

Users in OCI authenticate using methods such as username and password, which

ensures that they are who they claim to be. Users are categorized based on their access

requirements, and each group is assigned specific permissions to access OCI resources.

In OCI, an identity domain represents a user population, associated configuration, and

security settings.

Resources such as compute instances and storage volumes belong to compartments

and have unique Oracle-assigned identifiers called OCIDs. Policies are created to define

which resources an authenticated group can access. These policies are applied to both

the tenancy and specific compartments. A policy might look like this:

•	 Allow group <group-name> to <verb> <resource-type> in tenancy.

•	 Allow group <group-name> to <verb> <resource-type> in

compartment <compartment-name> [where <condition>].

Figure 2-7.  OCI’s Identity and Access Management (IAM)

OCI IAM ensures secure and organized access to cloud resources by effectively

utilizing compartments and their policies.

Chapter 2 Oracle Cloud for NLP

52

�Oracle’s AI Overview
Oracle’s approach to artificial intelligence (AI) is characterized by strategically

integrating AI and machine learning (ML) technologies across its cloud offerings and

enterprise solutions. By embedding AI capabilities into core products and developing

robust platforms for AI development, Oracle aims to enhance operational efficiency

and drive innovation for its customers. This section provides an overview of Oracle’s AI

strategy, its comprehensive AI and ML stack, and the diverse offerings designed to meet

the evolving needs of businesses across various industries.

OCI’s robust infrastructure and advanced AI capabilities make it an ideal platform

for developing and deploying sophisticated NLP applications, which we’ll explore in

detail in the upcoming sections and chapters.

�AI Strategy
Oracle has strongly emphasized integrating AI technologies into its cloud offerings and

enterprise solutions. The company’s AI strategy involves enhancing existing products,

developing new AI-powered services, and providing robust AI development and

deployment platforms.

A key part of Oracle’s AI strategy involves integrating AI and machine learning

capabilities into its core products. For instance, Oracle Database 23ai with AI Vector

Search supports retrieval-augmented generation (RAG), which combines large language

models (LLMs) with private business data to provide accurate and contextually relevant

responses to natural language questions.

Another important aspect of Oracle’s AI strategy is its focus on “embedded AI”—

integrating AI capabilities directly into business applications. This approach is evident

in Oracle’s suite of cloud applications, including those for customer experience, human

resources, and enterprise resource planning.

Oracle is also committed to developing and providing prebuilt AI services to expedite

customer adoption, such as OCI Vision for image analysis, OCI Language for Natural

Language Processing, and OCI Speech for speech recognition and synthesis.

Additionally, Oracle offers solutions like OCI Data Science and Machine Learning

in Database, which enable data scientists to build, train, and deploy machine learning

models, streamlining the process of building and deploying ML models at scale.

Chapter 2 Oracle Cloud for NLP

53

In the realm of cloud infrastructure, Oracle has positioned its Oracle Cloud

Infrastructure (OCI) as a high-performance platform for AI and machine learning

workloads. The company has heavily invested in GPU-accelerated computing resources

and has partnered with NVIDIA to offer powerful hardware options for AI model training

and inference.

Furthermore, Oracle has developed industry-specific AI applications tailored for

healthcare, financial services, and retail sectors. This allows the company to offer its

enterprise customers more targeted and immediately applicable AI solutions.

Oracle’s AI strategy aims to expand its AI services, integrate AI into core products,

and explore emerging areas such as generative AI and LLMs. The company also

recognizes the importance of responsible and ethical AI use, particularly in financial

institutions and healthcare sectors.

�AI Stack
Oracle’s AI stack offers a comprehensive suite of advanced AI and machine learning

solutions designed to meet the diverse needs of modern enterprises. From powerful

generative AI capabilities to robust infrastructure for intensive workloads, Oracle

provides tools that enable businesses to leverage artificial intelligence efficiently

and effectively. Figure 2-8 illustrates the key offerings of Oracle’s AI stack, including

Generative AI, AI Services, Generative AI and Machine Learning for Data Platforms, and

AI Infrastructure.

Chapter 2 Oracle Cloud for NLP

54

Figure 2-8.  Oracle AI stack

Although the AI capabilities cover a wide range of areas including computer vision,

various machine learning services, and diverse use cases, this section will specifically

focus on products related to developing Natural Language Processing (NLP) solutions,

which are relevant to our book. We will introduce these key capabilities, laying the

groundwork for subsequent chapters where we will explore how to use them effectively

to create advanced NLP applications that foster innovation and improve productivity.

Let’s explore each category and its components and capabilities to gain a better

understanding.

�OCI AI Services
The AI Services include various functionalities such as Natural Language Processing,

computer vision, and speech-to-text. Oracle AI Services provides pretrained models

that can be easily integrated into applications to access advanced AI capabilities. These

models can be customized with user data to make them more relevant. By using these

Chapter 2 Oracle Cloud for NLP

55

prebuilt models, businesses can quickly improve their applications with advanced

AI capabilities without needing extensive machine learning expertise, speeding up

intelligent application deployment (Oracle).

Lately, Oracle enhanced its AI Services offering with Generative AI. This service

enables users to choose from managed open source or proprietary large language

models (LLMs), fine-tune them, or augment them with their enterprise data leveraging

built-in vector databases retrieval-augmented generation (RAG). Generative AI is

ideal for creating new content, such as text or code, based on existing data, making it a

powerful tool for content creation, data augmentation, and various creative applications.

As shown in Figure 2-8, OCI AI Services provide the following services:

•	 Generative AI and GenAI Agents

•	 OCI GenAI: Allows users to harness the power of managed

open source or proprietary large language models (LLMs). It

supports fine-tuning these models and augmenting them with

enterprise data.

•	 OCI GenAI Agents: Combines the power of large language

models (LLMs) and retrieval-augmented generation (RAG)

techniques with enterprise data. This allows users to converse

directly with enterprise knowledge bases using natural language.

•	 OCI Digital Assistant: An intelligent chatbot platform that can

simulate and process human conversation, whether it’s written or

spoken. This allows humans to interact with applications and data

as if they were communicating with a real person. The platform

uses deep learning algorithms to understand natural conversation,

interpret intent and context, and remember user behaviors in

multiple languages.

•	 OCI Speech: Capable of converting spoken words into written text

and vice versa. It utilizes automatic speech recognition (ASR) models

to transcribe audio content into text. In addition, text-to-speech

(TTS) models based on neural networks synthesize natural-sounding

voices from written text. These ASR and TTS pretrained models can

be easily integrated into enterprise applications.

Chapter 2 Oracle Cloud for NLP

56

•	 OCI Language: Performs text analysis at scale, including sentiment

analysis, entity recognition, translation, and more. It offers pretrained

models that can be customized and fine-tuned on enterprise data for

more relevant text analysis, enabling the development of intelligent

applications for processing unstructured text.

•	 OCI Vision: Offers capabilities for processing and analyzing images at

scale. Its pretrained models enable image recognition to be integrated

into applications without requiring machine learning (ML) expertise.

Enterprises can create custom vision models using their own data.

•	 OCI Document Understanding: Enables the extraction of text, tables,

and other important data from document files through pretrained or

custom trained AI models.

�OCI ML Services
OCI ML Services enable users to collaboratively build, train, deploy, and manage

machine learning models. This service supports the use of popular open source

frameworks and in-database machine learning, providing flexibility and efficiency

in model development. By leveraging these tools, data scientists and developers can

create robust ML models that integrate seamlessly with their data platforms, driving

insights and automation in various business processes. This offering is essential for

organizations looking to harness the full potential of their data through advanced AI and

ML techniques (Oracle).

Below are the main services under OCI ML Services categories:

•	 Oracle Database 23ai with AI Vector Search: Enhances data

processing by generating and storing vectors (embeddings).

One of its key features is AI Vector Search, which allows users to

generate and store vectors for performing similarity searches using

mathematical calculations. Another powerful feature is the ability to

combine similarity searches with traditional business data searches

using simple SQL. Additionally, it supports retrieval-augmented

generation (RAG), combining large language models (LLMs) with

private business data to deliver accurate and contextually relevant

responses to natural language questions.

Chapter 2 Oracle Cloud for NLP

57

•	 ML in Oracle Database: The ML in Oracle Database supports data

exploration, preparation, and machine learning (ML) modeling

at scale using SQL, R, Python, REST, automated machine learning

(AutoML), and no-code interfaces. It includes many in-database ML

algorithms that produce models for immediate use in applications.

By keeping data in the database, data scientists can automatically

build models that are closely tied to their data.

•	 OCI Data Science: Offers a managed environment for the end-to-end

for building and deploying of machine learning models.5

•	 OCI Data Labeling: A tool for labeling data, either text or images,

essential for preparing datasets for machine learning, including NLP.6

�AI Infrastructure
Oracle AI Infrastructure offers the benefits of cloud elasticity, usage-based costs, and

high-performance computing, delivered through OCI’s distributed cloud. This service

provides access to powerful GPUs optimized for AI workloads, helping businesses use

advanced computing resources for their AI projects without having to buy and manage

expensive hardware themselves.

Here are the key components of OCI AI Infrastructure:

•	 GPU Instances: These are specialized computers with powerful

graphics processing units (GPUs) from NVIDIA. GPUs are excellent

at handling AI tasks because they can perform many calculations

at once. OCI offers both physical (bare metal) and virtual machines

with these GPUs.

•	 Supercluster GPU Instances: For even more demanding AI tasks,

OCI provides superclusters. These are groups of very powerful GPUs

working together, ideal for training large AI models or processing vast

amounts of data quickly.

5 A comprehensive exploration of OCI Data Science, including its features, capabilities, and
integration with NLP workflows, will be provided in subsequent chapters. This service will be
detailed further in the upcoming sections.
6 Detailed information on OCI Data Labeling, its functionalities, and its role in NLP data
preparation will be discussed in-depth in later sections.

Chapter 2 Oracle Cloud for NLP

58

•	 Fast Network Connections: AI often requires moving large amounts

of data between computers. OCI uses a technology called RDMA to

create very fast connections between machines, helping AI tasks run

more efficiently.

•	 High-Performance Storage: AI needs quick access to lots of data. OCI

offers fast storage options, including

•	 NVMe storage: Very fast storage directly attached to the

computing units.

•	 Special file systems: These allow many computers to access the

same data quickly.

The benefits of using OCI AI Infrastructure are significant. With OCI, you have the

flexibility to use and pay for resources only when you need them, making it a cost-effective

solution. By avoiding the expense of buying and maintaining your own AI hardware, you

can redirect your resources to other critical areas of your business. Additionally, OCI

offers scalability, allowing you to easily increase or decrease resources as your AI projects

grow or change. This ensures that you have the necessary infrastructure to support

your evolving needs. Finally, OCI provides access to cutting-edge hardware for faster AI

development and deployment, thereby enhancing overall performance.

By using OCI’s AI Infrastructure, companies can focus on developing their AI

applications without worrying about the complex technical details of managing

hardware. This can help speed up AI projects and make it easier for businesses to use

advanced AI technologies.

�OCI for NLP
Businesses increasingly rely on data to make informed decisions in today’s landscape.

From finance to social media, there is a growing need for solutions that can effectively

understand and analyze language data. Cloud-based Natural Language Processing

(NLP) platforms have emerged as a viable option, enabling companies to extract

valuable insights from textual information, even without extensive AI expertise.

One significant player in this space is Oracle Cloud Infrastructure (OCI). OCI offers

a robust infrastructure and a range of AI and machine learning solutions to support

modern businesses. Its comprehensive suite of tools allows enterprises to efficiently and

confidently manage the entire life cycle of AI projects.

Chapter 2 Oracle Cloud for NLP

59

While Oracle offers a vast array of services under its AI and ML umbrella, this book

will focus on three pivotal services that empower NLP implementations:

•	 OCI Language: Cloud-based Natural Language Processing (NLP)

platform. This service provides advanced text analysis capabilities.

•	 OCI Data Science: This platform offers a comprehensive environment

for developing and deploying NLP models.

•	 OCI Data Labeling: This service is a crucial service for annotating

and labeling the data required to train Natural Language Processing

(NLP) models.

In the subsequent sections, we will explore how these OCI services can be leveraged

to enhance your organization’s NLP capabilities and drive data-driven decision-making.

�OCI Language
OCI Language is a cloud-based service that enables companies to process unstructured

text data for various tasks, including sentiment analysis, entity recognition, and more,

using various pretrained models.7

Key functionalities of OCI Language include

•	 Language and Entity Recognition: OCI Language can identify

multiple named entities, including but not limited to names of

individuals, places, organizations, and product identifiers. It also

allows identifying Personally Identifiable Information (PII), which is

crucial for ensuring data protection and regulatory compliance.

•	 Sentiment Analysis: One of the primary functionalities of OCI

Language is sentiment detection. The service examines the text

to categorize its sentiment as positive, negative, or neutral. An

associated confidence score is provided with each categorization,

giving a more detailed perspective on the detected sentiment across

different languages.

7 Learn more about the OCI Language service pretrained models at [Oracle Docs](https://docs.
oracle.com/en-us/iaas/language/using/pretrain-models.htm).

Chapter 2 Oracle Cloud for NLP

https://docs.oracle.com/en-us/iaas/language/using/pretrain-models.htm
https://docs.oracle.com/en-us/iaas/language/using/pretrain-models.htm

60

•	 Document Classification and Key Phrase Extraction: The service

categorizes textual content into more than 600 predefined categories,

which span numerous languages. It can also pinpoint key phrases

within text documents through advanced Natural Language

Processing techniques.

•	 Translation: Utilizing advanced neural machine translation mechanisms,

OCI Language supports text translation across over 20 languages.

Oracle has recently announced the general availability of OCI Language 4.0. This

release now supports additional languages (Arabic, French, German, and Italian) for

the pretrained models. It also introduces Health Natural Language Processing (NLP)

features, which provide pretrained models to extract entities from electronic health

records (EHRs), progress notes, clinical trial documents, and more (Oracle, 2024). The

Healthcare NLP suite includes pretrained models for

•	 Health Named Entity Recognition (Health NER): Identifies key entities

from text, including identifying medical conditions, medications,

dosages, symptoms, test results, treatments, and procedures.

•	 Protected Health Information (PHI) Identification and

Deidentification: The PHI service extends the current PII service

to detect PHI entities and provides the option to deidentify and

anonymize identified entities from output.

OCI Language provides a powerful feature for customizing pretrained models to

meet specific needs of different domains and industries.

�Use Cases

The following use cases illustrate practical applications of the OCI Language Service,

providing valuable insights into how this service can be leveraged to meet specific

business needs. These examples can serve as a guide for effectively utilizing OCI

Language in real-world scenarios.

•	 Customer Feedback Analysis

•	 Understanding Customer Perception: Dive into how customers

view your brand, extracting sentiments and zeroing in on specific

pain points. This allows businesses to proactively address

concerns and improve the customer experience.

Chapter 2 Oracle Cloud for NLP

61

•	 Keeping a Pulse on the Discourse: Monitor discussions on

platforms like social media or within your customer support

knowledge base. By understanding which topics dominate the

conversation, you can prioritize interventions effectively.

•	 Gleaning Insights from Named Entities: Extracting named

entities from customer feedback helps identify crucial players

in the discourse, whether they’re individuals, products, or

organizations. This can provide businesses with actionable

intelligence on what products or features might require attention.

•	 Elevating Customer Support

•	 Prompt Issue Escalation: Real-time identification of dissatisfied

customers ensures that seasoned agents can intervene timely,

mitigating issues and potentially salvaging the customer relationship.

•	 Enhanced Ticket Classification: By automatically extracting key

phrases from incoming support tickets, similar tickets can be

grouped together. This allows for patterns to be identified quickly,

facilitating faster resolution.

•	 Efficient Ticket Routing: The automatic language detection

capability ensures that support tickets are channeled to agents

proficient in the customer’s language, promoting effective

communication.

•	 Ensuring Customer Data Privacy

•	 Regulatory Compliance: In the era of stringent data privacy

regulations like GDPR, OCI Language assists businesses in

identifying Personally Identifiable Information (PII) or Protected

Health Information (PHI). This crucial feature allows data

to be redacted or anonymized prior to publication, ensuring

compliance and safeguarding customer privacy.

Here’s an example of how a company can use OCI Language to enhance the

efficiency of processing customer feedback:

A company can leverage OCI Language to streamline the analysis of customer

feedback. By using sentiment analysis, the company can quickly categorize large

volumes of text-based feedback into positive, negative, or neutral sentiments, providing

Chapter 2 Oracle Cloud for NLP

62

a clear picture of customer opinions. Additionally, with features like Named Entity

Recognition and key phrase extraction, the company can automatically identify specific

products, services, or recurring themes mentioned in the feedback. This allows the

business to transform unstructured data into actionable insights, leading to better

decision-making and improved customer satisfaction.

�OCI Data Science
OCI Data Science serves as a cornerstone for ML model development within the OCI

environment. This fully managed platform equips both developers and data scientists

with a rich set of tools to build, train, and manage ML models seamlessly (Oracle).

Projects, as shown in Figure 2-9, are central to organizing and managing model

development tasks.

Figure 2-9.  OCI Data Science Service—Projects page

Key features of OCI Data Science include

•	 Notebook Sessions: This collaborative environment, based on

Jupyter, allows for intuitive model building and testing.

•	 Model Catalog: An organized system to store and version ML models.

•	 Accelerated Training: It taps into GPU resources, ensuring efficient

and rapid model training.

•	 Model Deployment: Models can be seamlessly deployed, whether as

REST APIs or batch processes.

Chapter 2 Oracle Cloud for NLP

63

OCI Data Science value revolves around several foundational elements:

•	 Fully Managed Service: Recognizing the complexities inherent to

data science workflows, OCI Data Science offers a platform where

data scientists can remain focused on deriving insights and honing

algorithms, relieved from infrastructure management concerns.

•	 Comprehensive Toolset: The platform’s integration with JupyterLab

notebooks facilitates an interactive environment conducive to model

development, data visualization, and real-time evaluations. This

integration fosters an atmosphere of iterative development.

•	 Scalability: With ever-expanding data volumes, businesses require

services that can scale without hitches. The auto-scaling capabilities

of OCI Data Science ensure efficient handling of data, irrespective of

its size.

A distinct advantage of OCI Data Science is its deep integration within the OCI

ecosystem. In an era where enterprises leverage a multitude of tools, from data storage

solutions to advanced BI platforms, OCI Data Science offers a unified platform. This

ensures a streamlined workflow across data storage, preprocessing tools, and model

deployment, enhancing the efficiency of the entire AI/ML project life cycle.

�AI Quick Actions

The AI Quick Actions feature, which is part of the OCI Data Science Service, is designed

for users who want to leverage AI capabilities quickly without needing extensive coding

knowledge. This feature aims to make foundation models accessible to a broader

audience by offering a streamlined, code-free, and efficient environment for working

with these models.

AI Quick Actions allows users to quickly deploy, fine-tune, and evaluate various

foundation models, as shown in Figure 2-10. The platform provides comprehensive

information about each model, including fine-tuning instructions, code samples, model

architecture descriptions, troubleshooting tips, and limitations.

Chapter 2 Oracle Cloud for NLP

64

Figure 2-10.  AI Quick Actions Model explorer

The latest release of AI Quick Actions introduces support for a “bring your own

model” feature through OCI Object Storage, expanding the selection of models users

can utilize. To bring your own model into AI Quick Actions, users need to download the

model artifacts to an OCI Object Storage bucket and register the model within AI Quick

Actions.

�OCI Data Labeling
The significance of high-quality data in artificial intelligence and machine learning

is well known. One key service in this area is the OCI Data Labeling platform (see

Figure 2-11). It is designed to create accurately labeled datasets for training ML models

including NLP models (Oracle).

Chapter 2 Oracle Cloud for NLP

65

Figure 2-11.  OCI Labeling Service overview page

The OCI Data Labeling Service makes it easy for developers and data scientists to

create training datasets for machine learning models. They can quickly add labels to data

using user-friendly interfaces and public APIs. Once labeled, the data can be exported

and seamlessly integrated with Oracle’s AI and Data Science Services, streamlining the

model-building process. Key features of OCI Data Labeling Service include

•	 User-Friendly Annotation Interface: OCI Data Labeling focuses

on making data labeling tasks easy and efficient. Whether tagging

sentiments in text or highlighting objects in images, the interface

is designed for accuracy and speed, enhancing the overall user

experience.

•	 Collaborative Labeling: Enables team-based data annotation,

allowing multiple users to work together efficiently on data labeling

projects.

•	 Flexible Data Handling: OCI Data Labeling can handle various

types of data, including text, images, and complex data structures.

This flexibility makes it suitable for a wide range of industries and

applications.

Chapter 2 Oracle Cloud for NLP

66

•	 Seamless Integration: OCI Data Labeling easily connects with other

OCI AI and ML services, making labeled data readily available for

various ML tasks. It works effectively with services like OCI Vision

and OCI Language, enhancing their capabilities.

The OCI Data Labeling Service complements the OCI Data Science Service.

Together, they form a cohesive backbone for the entire machine learning life cycle.

While each service has its distinct functions, they work together seamlessly to address

specific aspects and ensure robust support for NLP models’ development and

deployment stages.

�AI Samples
Oracle provides a helpful GitHub repository8 for those interested in using Oracle

Machine Learning (ML) Services, specifically OCI Data Science and OCI Data Labeling.

This repository contains demos, tutorials, and code examples that demonstrate the

capabilities of these services (as shown in Figure 2-12).

Inside the repository, you’ll discover a set of JupyterLab notebooks that simplify the

use of the ADS SDK and various OCI Data Science features. For example, the Natural

Language Processing notebook covers a variety of NLP tasks, such as part-of-speech

tagging, Named Entity Recognition, and sentiment analysis. These examples offer

hands-on experience, helping users take full advantage of OCI Data Science Services.

The repository also offers extensive resources for OCI Data Labeling, which focuses

on creating well-labeled datasets for training machine learning models. It includes

Python and Java scripts for annotating large numbers of records in OCI Data Labeling

Service (DLS).

8 Oracle Cloud Infrastructure Data Science and AI services Examples GitHub Repository (oracle-
samples/oci-data-science-ai-samples) can be found at https://github.com/oracle-samples/
oci-data-science-ai-samples

Chapter 2 Oracle Cloud for NLP

https://github.com/oracle-samples/oci-data-science-ai-samples
https://github.com/oracle-samples/oci-data-science-ai-samples

67

Figure 2-12.  Oracle AI sample GitHub repository

Oracle’s GitHub repository is a valuable resource for anyone using Oracle ML

Services. It provides practical examples to assist developers in accelerating the

development of ML solutions, including NLP solutions, using OCI Data Science and OCI

Data Labeling Services.

�High-Level Flow for Building NLP Models Using OCI
Figure 2-13 outlines a high-level workflow for developing Natural Language Processing

(NLP) models using Oracle Cloud Infrastructure (OCI).

Chapter 2 Oracle Cloud for NLP

68

Figure 2-13.  High-level flow for building NLP models using OCI

This process involves several key stages, supported by various OCI services:

	 1.	 Data Acquisition: The process starts by gathering data from

various sources like social media, external datasets, enterprise

systems, big data platforms, and IoT events. This diverse data

forms the foundation for training NLP models.

	 2.	 Data Storage: The collected data is stored in OCI Object Storage,

a scalable and secure solution for managing large volumes of

unstructured text data. It ensures easy access and retrieval for further

processing and integrates seamlessly with OCI Data Labeling.

	 3.	 Dataset Preparation: OCI Data Labeling plays a crucial role in

preparing the dataset by creating and annotating data for specific

NLP tasks like sentiment analysis and entity recognition.

	 4.	 Model Training: Once the dataset is ready, it’s used in OCI Data

Science to train NLP models. OCI Data Science provides the

necessary tools and environment to build, test, and refine models

efficiently.

	 5.	 Model Deployment: After training, the NLP models are deployed

to enterprise applications or analytics platforms, where they can

generate insights, automate processes, and enhance the user

experience.

Chapter 2 Oracle Cloud for NLP

69

Below are some general guidelines that can help streamline NLP projects when

developing solutions on Oracle Cloud Infrastructure (OCI):

•	 Data Management: Utilize separate OCI Object Storage buckets to

efficiently manage and back up datasets as well as NLP models for

different teams and stages of NLP projects.

•	 Model Development: Leverage OCI Data Science’s integration

capabilities with OCI Object Storage buckets and Git repositories to

streamline model development.

•	 Cost Optimization: Optimize costs by strategically using resources,

such as deploying GPU-based VMs primarily during the model

training phase.

•	 Security: Implement strong security measures using OCI Identity and

Access Management (IAM) to control access to resources and data,

ensuring compliance and data protection.

•	 Monitoring and Logging: Utilize OCI’s Monitoring and Logging

services to track the performance and health of your NLP

applications.

�Summary
Oracle Cloud Infrastructure provides a comprehensive ecosystem for developing,

deploying, and scaling NLP solutions. From ready-to-use services like OCI Language

and OCI Speech to ML development services like OCI Data Science, OCI offers a robust

platform for building and deploying NLP models for various NLP tasks. The integration

of these services with Oracle’s enterprise-grade infrastructure ensures high performance,

security, and scalability for NLP applications.

The future of AI and NLP on OCI looks promising, with Oracle continuously

investing in enhancing its AI capabilities. We can expect to see advancements in areas

such as GenAI, LLMs, multilingual NLP support, more sophisticated pretrained models,

and improved integration with Oracle OCI services and Applications. Oracle’s focus on

industry-specific solutions suggests that we may also see more tailored NLP offerings for

sectors like healthcare, finance, and retail.

Chapter 2 Oracle Cloud for NLP

70

Below are key takeaways for organizations considering OCI for NLP solutions:

•	 Comprehensive Platform: OCI provides an end-to-end platform for

NLP, from data storage and processing to model development and

deployment.

•	 Performance and Scalability: With its high-performance infrastructure

and global presence, OCI can support NLP solutions at scale.

•	 Integration Advantages: For organizations already using Oracle

products, OCI offers seamless integration, potentially reducing

complexity and costs.

•	 Enterprise Focus: OCI’s emphasis on security, compliance, and

enterprise-grade reliability makes it particularly suitable for large-

scale, mission-critical NLP applications.

•	 Continuous Innovation: Oracle’s ongoing investments in AI and

NLP suggest that the platform will continue to evolve and improve,

offering adopters access to cutting-edge technologies.

While OCI entered the cloud AI market later than some competitors, it has

rapidly developed into a powerful and comprehensive platform for NLP solutions. Its

combination of robust infrastructure, specialized AI services, and integration capabilities

positions it as a strong contender for organizations looking to develop and deploy

sophisticated NLP applications, particularly in enterprise contexts.

Having discussed the fundamentals of NLP and the features of OCI, Chapter 3 will

provide an in-depth introduction to our case study. In this chapter, we will outline the

motivation, challenges, and preliminary stages of creating and deploying an NLP-based

solution for healthcare on OCI. This chapter lays the groundwork, setting the context

for subsequent chapters where theory will be transformed into a practical NLP-based

application.

�References
Oracle. (2018, 10 22). Introducing the Generation 2 Cloud at Oracle OpenWorld 2018.

Retrieved from Oracle Cloud Infrastructure Blog: https://blogs.oracle.com/

cloud-infrastructure/post/introducing-the-generation-2-cloud-at-oracle-

openworld-2018

Chapter 2 Oracle Cloud for NLP

https://doi.org/10.1007/979-8-8688-1073-2_3
https://blogs.oracle.com/cloud-infrastructure/post/introducing-the-generation-2-cloud-at-oracle-openworld-2018
https://blogs.oracle.com/cloud-infrastructure/post/introducing-the-generation-2-cloud-at-oracle-openworld-2018
https://blogs.oracle.com/cloud-infrastructure/post/introducing-the-generation-2-cloud-at-oracle-openworld-2018

71

Oracle. (2019, 06 05). Microsoft and Oracle to Interconnect Microsoft Azure and Oracle

Cloud. Retrieved from Oracle Press Release: https://www.oracle.com/corporate/

pressrelease/microsoft-and-oracle-to-interconnect-microsoft-azure-and-

oracle-cloud-060519.html

Oracle. (2020, 02). Oracle Cloud Infrastructure Storage Services. Retrieved

from Oracle: https://www.oracle.com/a/ocom/docs/cloud-training-storage-

services.pdf

Oracle. (2022, 10 22). Oracle and NVIDIA Partner to Speed AI Adoption for

Enterprises. Retrieved from Oracle Press Release: https://www.oracle.com/news/

announcement/ocw-oracle-and-nvidia-partner-to-speed-ai-adoption-2022-10-18/

Oracle. (2023, 06 02). Account and Access Concepts. Retrieved from Oracle Cloud

Infrastructure Documentation: https://docs.oracle.com/en-us/iaas/Content/GSG/

Concepts/concepts-account.htm

Oracle. (2023, 06 13). Oracle to Deliver Powerful and Secure Generative AI Services

for Business. Retrieved from Oracle Press Release: Oracle to Deliver Powerful and Secure

Generative AI Services for Business

Oracle. (2023, June 02). Physical Architecture Concepts. Retrieved from Oracle Cloud

Infrastructure Documentation: https://docs.oracle.com/en-us/iaas/Content/GSG/

Concepts/concepts-physical.htm

Oracle. (2024, May 6). Announcing the general availability of OCI Language 4.0.

Retrieved from Oracle AI & Data Science Blog: https://blogs.oracle.com/ai-and-

datascience/post/oci-ai-language-4-0

Oracle. (2024, 5 6). Announcing the general availability of OCI Language 4.0.

Retrieved from Oracle AI & Data Science Blog: Announcing the general availability of

OCI Language 4.0

Oracle. (2024, 06 04). Overview of Block Volume. Retrieved from Oracle Cloud

Infrastructure Documentation: https://docs.oracle.com/en-us/iaas/Content/

Block/Concepts/overview.htm

Oracle. (2024, 06 14). Overview of File Storage. Retrieved from Oracle Cloud

Infrastructure Documentation: https://docs.oracle.com/en-us/iaas/Content/File/

Concepts/filestorageoverview.htm

Oracle. (2024, 04 13). Overview of Object Storage. Retrieved from Oracle Cloud

Infrastructure Documentation: https://docs.oracle.com/en-us/iaas/Content/

Object/Concepts/objectstorageoverview.htm

Chapter 2 Oracle Cloud for NLP

https://www.oracle.com/corporate/pressrelease/microsoft-and-oracle-to-interconnect-microsoft-azure-and-oracle-cloud-060519.html
https://www.oracle.com/corporate/pressrelease/microsoft-and-oracle-to-interconnect-microsoft-azure-and-oracle-cloud-060519.html
https://www.oracle.com/corporate/pressrelease/microsoft-and-oracle-to-interconnect-microsoft-azure-and-oracle-cloud-060519.html
https://www.oracle.com/a/ocom/docs/cloud-training-storage-services.pdf
https://www.oracle.com/a/ocom/docs/cloud-training-storage-services.pdf
https://www.oracle.com/news/announcement/ocw-oracle-and-nvidia-partner-to-speed-ai-adoption-2022-10-18/
https://www.oracle.com/news/announcement/ocw-oracle-and-nvidia-partner-to-speed-ai-adoption-2022-10-18/
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/concepts-account.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/concepts-account.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/concepts-physical.htm
https://docs.oracle.com/en-us/iaas/Content/GSG/Concepts/concepts-physical.htm
https://blogs.oracle.com/ai-and-datascience/post/oci-ai-language-4-0
https://blogs.oracle.com/ai-and-datascience/post/oci-ai-language-4-0
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/overview.htm
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/overview.htm
https://docs.oracle.com/en-us/iaas/Content/File/Concepts/filestorageoverview.htm
https://docs.oracle.com/en-us/iaas/Content/File/Concepts/filestorageoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm

72

Oracle. (2024, May 30). Press Release. Retrieved from Oracle: https://www.oracle.

com/my/news/announcement/oracle-plans-to-open-two-public-cloud-regions-in-

morocco-2024-05-30/

Oracle. (n.d.). AI Services. Retrieved from OCI Artificial Intelligence: https://www.

oracle.com/ca-en/artificial-intelligence/ai-services/

Oracle. (n.d.). Data Science Service. Retrieved from OCI: https://www.oracle.com/

ca-en/artificial-intelligence/data-science

Oracle. (n.d.). Machine Learning Services. Retrieved from Oracle Cloud Infrastructure

(OCI): https://www.oracle.com/ca-en/artificial-intelligence/machine-

learning/

Oracle. (n.d.). OCI Data Labeling. Retrieved from OCI: https://www.oracle.com/

ca-en/artificial-intelligence/data-labeling

Oracle. (n.d.). oci-data-science-ai-samples. Retrieved from GitHub: https://github.

com/oracle-samples/oci-data-science-ai-samples

Chapter 2 Oracle Cloud for NLP

https://www.oracle.com/my/news/announcement/oracle-plans-to-open-two-public-cloud-regions-in-morocco-2024-05-30/
https://www.oracle.com/my/news/announcement/oracle-plans-to-open-two-public-cloud-regions-in-morocco-2024-05-30/
https://www.oracle.com/my/news/announcement/oracle-plans-to-open-two-public-cloud-regions-in-morocco-2024-05-30/
https://www.oracle.com/ca-en/artificial-intelligence/ai-services/
https://www.oracle.com/ca-en/artificial-intelligence/ai-services/
https://www.oracle.com/ca-en/artificial-intelligence/data-science
https://www.oracle.com/ca-en/artificial-intelligence/data-science
https://www.oracle.com/ca-en/artificial-intelligence/machine-learning/
https://www.oracle.com/ca-en/artificial-intelligence/machine-learning/
https://www.oracle.com/ca-en/artificial-intelligence/data-labeling
https://www.oracle.com/ca-en/artificial-intelligence/data-labeling
https://github.com/oracle-samples/oci-data-science-ai-samples
https://github.com/oracle-samples/oci-data-science-ai-samples

73
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_3

CHAPTER 3

Healthcare NLP Case
Study
Starting from this chapter to the end of the book, the case study of MedTALN Inc. will

guide readers through various stages of constructing an NLP project on OCI. The project

example will give readers valuable insights into the practical aspects of NLP model

development, training, and deployment on OCI.

This chapter lays the groundwork for implementing our case study solution.

From understanding the business drivers that led to this project to grasping our

implementation blueprint, we provide a comprehensive view that equips you with the

understanding needed to tackle upcoming chapters.

�MedTALN Inc. Case Study
In this section, we are laying the groundwork for our case study by outlining the context

and the problem we are addressing: creating an NLP-based solution for healthcare

on OCI. We delve into the fundamental concept of Healthcare NLP models (such as

Healthcare NER models), explaining their importance in addressing the initiative of

MedTALN Inc., which seeks to expand its service offerings and venture into the growing

market for unstructured data analytics in healthcare.

�Company Background
MedTALN Inc. is based in Montreal, Canada, and is a leading advanced healthcare

analytics solutions provider. MedTALN Inc. is committed to improving its analytics

services to meet the needs of its diverse client base, which includes researchers,

https://doi.org/10.1007/979-8-8688-1073-2_3#DOI

74

universities, and private companies. The company aims to empower them with analytics

and insights for various applications to enhance research and drive innovation in the

healthcare sector.

Note  MedTALN Inc. is a fictional company created for the purposes of this
case study.

MedTALN Inc. specializes in analyzing structured healthcare data using advanced

statistical algorithms. Their expertise lies in transforming this data into actionable

intelligence, which nonhealthcare providers utilize for various purposes, such as

medical research, academic studies, and medical and pharmaceutical market analysis.

MedTALN Inc. recognizes the increasing importance of unstructured data in

healthcare and is expanding its capabilities to include Natural Language Processing

(NLP) for the French language. This strategic move aims to meet the growing demand for

NLP-based analytics that can extract insights from French unstructured text data, such

as clinical notes, patient records, and medical research publications. By integrating NLP

into its service offerings, MedTALN Inc. is positioning itself at the forefront of healthcare

data analytics for French, particularly for its clients in Quebec, where French is the

primary business language.

MedTALN Inc. leverages Oracle Cloud Infrastructure (OCI) for its solutions, ensuring

scalability, security, and performance. The company’s reliance on OCI, as depicted in

Figure 3-1, allows it to offer robust, cloud-based analytics solutions that are capable of

handling large volumes of data efficiently. This technological backbone is crucial for

supporting the advanced analytics and NLP capabilities that MedTALN Inc. plans to

develop.

Chapter 3 Healthcare NLP Case Study

75

Figure 3-1.  MedTALN Inc.’s Healthcare Analytics Solution current state

Figure 3-1 depicts the current state of MedTALN Inc.’s Healthcare Analytics Solution,

which transforms large volumes of healthcare data into actionable insights. The main

components of this system are as follows:

•	 Data Ingestion and Storage (ETL, Data Lakes, Databases): This

component handles the intake and storage of deidentified health

data from multiple healthcare institutions across Canada. The ETL

(Extract, Transform, Load) processes clean, structure, and store the

data in centralized data stores (e.g., data lakes).

•	 Data Processing and Analytics (Statistical Analysis, Visualization,

etc.): This component involves statistical analysis and data

visualization. It utilizes various data mining and statistical algorithms

to transform raw data into actionable insights. Visualization tools like

dashboards and reports make the data accessible and interpretable

for the solution’s customer.

Chapter 3 Healthcare NLP Case Study

76

Robust security and compliance measures are implicit in the design. These ensure

that all data handling adheres to regulatory standards such as Quebec’s Law 251 and

Canada’s federal privacy law PIPEDA,2 incorporating data encryption, access control,

and continuous compliance monitoring.

The system also provides user interfaces, including web applications, mobile

applications, and reporting tools, designed to be user-friendly and accessible. These

interfaces enable healthcare professionals to make informed decisions based on the

results of the analytics.

Having already established a robust healthcare data analytics solution, MedTALN

Inc. has a clear vision for the future: harnessing unstructured textual health data through

NLP. By expanding into unstructured text analytics, the company can provide clients

with even more comprehensive and valuable insights.

�Healthcare NLP
Healthcare NLP is a broad field that involves the application of NLP techniques to

process and analyze vast amounts of unstructured text data in the healthcare domain.

The healthcare industry generates enormous amounts of unstructured data daily.

Traditional structured data analytics methods are insufficient to capture the rich,

nuanced information contained in free-text medical documents (such as clinical notes,

medical reports, research publications, and patient correspondence). Healthcare NLP

addresses this gap by enabling the extraction of valuable insights from unstructured text,

thereby transforming raw data into actionable intelligence.

1 For an overview of Quebec’s Law 25 and its significant changes to personal information
protection laws, visit the Commission d’accès à l’information du Québec’s website
at https://www.cai.gouv.qc.ca/protection-renseignements-personnels/sujets-et-
domaines-dinteret/principaux-changements-loi-25
2 Canada’s federal privacy law is the Personal Information Protection and Electronic Documents
Act (PIPEDA). For more information, visit https://www.priv.gc.ca/en/privacy-topics/
privacy-laws-in-canada/the-personal-information-protection-and-electronic-
documents-act-pipeda/

Chapter 3 Healthcare NLP Case Study

https://www.cai.gouv.qc.ca/protection-renseignements-personnels/sujets-et-domaines-dinteret/principaux-changements-loi-25
https://www.cai.gouv.qc.ca/protection-renseignements-personnels/sujets-et-domaines-dinteret/principaux-changements-loi-25
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/

77

Figure 3-2.  MedTALN Inc.’s Healthcare Analytics Solution future state with NLP
capabilities

MedTALN Inc. is planning to broaden its services by adding Healthcare

NLP. Figure 3-2 illustrates the projected state of MedTALN Inc.’s Healthcare Analytics

Solution once Healthcare NLP capabilities like Named Entity Recognition (NER),

sentiment analysis, topic modeling, and Relationship Extraction are incorporated to

extract insights that are usually difficult to process using statistical analytics.

�Business Drivers

An increasing number of technology companies, ranging from startups to industry

leaders, aim to introduce new NLP-based services for the healthcare sector. MedTALN

Inc. is one of these companies. The primary factors driving MedTALN Inc. in this

direction are market expansion, customer demand, and regulatory compliance.

MedTALN Inc. seeks to diversify its service offerings and tap into the expanding

market for unstructured data analytics in healthcare. By offering advanced NLP

capabilities, MedTALN Inc. can attract new clients in the healthcare industry, including

researchers, pharmaceutical companies, and insurers, thus increasing its market share

and establishing itself as a comprehensive healthcare analytics provider.

Importantly, there is a significant and growing demand from both existing and

potential clients of MedTALN Inc. for more advanced analytics and insights derived from

unstructured text data. By meeting this demand, MedTALN Inc. enhances customer

satisfaction and retention, providing clients with the tools to gain deeper insights from

their data, such as precise entity extraction for research and market analysis.

Moreover, Quebec’s Law 25, enacted in 2021, has set stringent standards for

safeguarding personal information. Compliance with this law is not just a choice but an

obligation for organizations operating within Quebec, with penalties for noncompliance.

Chapter 3 Healthcare NLP Case Study

78

This law is particularly significant for MedTALN Inc. as it processes a vast amount of

health or biometric data that could include Personally Identifiable Information (PII) and

sensitive personal information.

Table 3-1 provides an overview of the business drivers for MedTALN Inc.

Table 3-1.  Business drivers summary

 Business Driver Description Benefit

Market

Expansion

Diversifying service offerings to

tap into the growing market for

unstructured data analytics in

healthcare

Attract new clients and increase market

share.

Revenue Growth Creating new revenue streams with

premium NLP services and solutions

Increase revenue and profitability through

value-added services.

Customer

Demand

Meeting the growing demand for

sophisticated analytics and insights

from unstructured text data

Enhance customer satisfaction and

retention.

Enhanced Client

Relationships

Strengthening relationships by

providing solutions that address

client pain points

Build long-term partnerships and increase

client loyalty and satisfaction.

Competitive

Advantage

Differentiating MedTALN Inc. by

offering state-of-the-art NLP

solutions

Establish a competitive edge and

leadership in innovation.

Operational

Efficiency

Automating data extraction and

structuring to streamline processes

Increase efficiency and reduce manual

effort and errors, leading to cost savings.

Regulatory

Compliance

Ensuring compliance with

healthcare regulations and

standards

Minimize legal and compliance risks and

build trust and credibility (Quebec’s Law

25 and Canada’s federal privacy law

PIPEDA).

Innovation and

R&D

Fostering a culture of innovation and

continuous improvement

Stay ahead of industry trends and

technological advancements, enhancing

NLP capabilities.

Chapter 3 Healthcare NLP Case Study

79

These business drivers reflect the strategic importance of implementing Healthcare

NLP capabilities for MedTALN Inc., aligning with the company’s goals for growth,

innovation, and client satisfaction in the healthcare analytics market.

�Healthcare NER Initiative
MedTALN Inc.’s decision to initiate its Healthcare NLP vision with a Healthcare Named

Entity Recognition (NER) initiative is strategically sound and aligns with its broader

goals. This choice serves as a fundamental building block for more complex NLP tasks,

laying the groundwork for advanced analytics such as Relationship Extraction, sentiment

analysis, and predictive modeling.

Furthermore, starting with Healthcare NER, a well-defined and widely applicable

NLP task, allows MedTALN Inc. to manage risks associated with expanding into new

technological territories such NLP. It provides a clear, manageable scope for the initial

project while paving the way for more advanced AI-driven initiatives in the future.

Before diving into Healthcare NER, let’s first overview Named Entity Recognition

(NER) and how it is done at a high level. NER is a critical task in Natural Language

Processing (NLP). By conducting a detailed text analysis, NER can accurately identify

and classify various named entities, such as persons, locations, or organizations. Its

capability to understand and interpret the context and nuances of human language is

essential for achieving this accuracy.

�What Is Named Entity Recognition (NER)

NER specifically involves identifying entities within a sentence, as exemplified in

Figure 3-3, and is a specialized application of the broader NLP task known as token

classification or sequence labeling. Token classification refers to any problem where

the goal is to assign a label to each token in a sentence. Besides NER, this category also

includes tasks such as Part-of-Speech (POS) tagging—where each word in a sentence is

labeled according to its part of speech (e.g., noun, verb, adjective)—and chunking, which

involves grouping tokens that form a single entity.

Chapter 3 Healthcare NLP Case Study

80

Figure 3-3.  Transformer-based fine-tuned NER model prediction example

Developing NLP models, including NER, is an iterative process that begins with

quality labeled data. Initial models are refined through repeated training cycles, often

adding or adjusting labeled data to enhance accuracy. For example, an initial dataset

with insufficient representations of certain entities might produce a model with lower

precision, requiring additional labeling to improve entity detection. After deployment,

continuous monitoring for data drift is crucial and may necessitate further retraining

and labeling to maintain the model’s performance.

Given its ability to identify and categorize key information from text, Named Entity

Recognition (NER) plays a vital role in various industries, including healthcare. In this

context, Healthcare NER focuses on extracting entities specific to medical and clinical

text, such as diseases, medications, and procedures. The domain-specific nature of

Chapter 3 Healthcare NLP Case Study

81

Healthcare NER, which involves comprehending medical literature and terminology,

makes it a challenging task within Natural Language Processing (NLP).

�Healthcare NER Benefits

Healthcare Named Entity Recognition (NER) identifies and classifies entities within

unstructured medical text, such as conditions, medications, symptoms, and procedures.

Implementing a Healthcare NER solution offers several benefits for MedTALN Inc.’s

NLP vision.

Firstly, it addresses immediate client needs. MedTALN Inc.’s clients, including

researchers, pharmaceutical companies, and insurers, require precise and structured

data extracted from unstructured text to support their activities. Implementing NER

addresses this immediate need and adds significant value to their operations. By

providing clients with accurate and structured data, MedTALN Inc. can help them

improve research accuracy, streamline operations, and make data-driven decisions.

This approach allows MedTALN Inc. to provide immediate value to clients by accurately

extracting critical entities from unstructured text.

Secondly, developing a robust NER solution lays the foundation for more advanced NLP

tasks. It enables MedTALN Inc. to offer a comprehensive suite of NLP services in the future,

such as Relationship Extraction, which identifies relationships between different medical

entities (e.g., extracting the relationship between medication and dosage). Additionally,

it opens the way for Medical Entity Linking, addressing specific, high-demand needs

from clients, such as improved clinical documentation, automated medical coding, and

enhanced research capabilities. Starting with NER allows MedTALN Inc. to establish a strong

technical foundation and gradually expand its capabilities in the Healthcare NLP domain.

�Use Cases

Here is a list of ten specific use cases that MedTALN Inc.’s customers could implement

using MedTALN Inc.’s Healthcare NER solution. These use cases will focus on practical

applications that leverage the capabilities of a Healthcare NER model.

•	 Clinical Documentation Improvement: MedTALN’s NER solution can

analyze clinical notes to identify and extract key medical entities such

as diagnoses, procedures, and medications. This assists healthcare

providers in improving the accuracy and completeness of medical

records.

Chapter 3 Healthcare NLP Case Study

82

•	 Pharmacovigilance and Adverse Event Detection: Pharmaceutical

companies can use the NER system to scan medical literature,

clinical trial reports, and social media for mentions of drugs and

associated adverse events. This enables early detection of potential

safety issues and supports regulatory compliance.

•	 Clinical Trial Patient Matching: Research organizations can employ the

NER solution to analyze patient records and identify suitable candidates

for clinical trials based on specific inclusion/exclusion criteria,

streamlining the recruitment process and improving study efficiency.

•	 Automated Medical Coding: Healthcare providers and billing

departments can utilize the NER system to automatically

extract relevant medical information from clinical narratives,

facilitating faster and more accurate medical coding for billing and

administrative purposes.

•	 Population Health Management: Healthcare systems can apply

the NER solution to large sets of patient data to identify trends in

diseases, treatments, and outcomes across populations, supporting

targeted interventions and public health initiatives.

•	 Drug–Drug Interaction Screening: Pharmacies and healthcare

providers can use the NER system to analyze prescription data and

medical records, flagging potential drug interactions and improving

patient safety.

•	 Systematic Literature Review: Researchers can leverage the NER

solution to quickly process large volumes of medical literature,

extracting relevant entities and relationships to support systematic

reviews and meta-analyses.

•	 Real-World Evidence Generation: Pharmaceutical companies and

researchers can apply the NER system to analyze real-world data

sources like electronic health records and claims data, generating

insights on drug effectiveness and safety in actual clinical practice.

•	 Clinical Decision Support: Healthcare providers can integrate

the NER solution into their electronic health record systems to

automatically highlight key clinical information, supporting more

informed decision-making at the point of care.

Chapter 3 Healthcare NLP Case Study

83

•	 Regulatory Compliance Monitoring: Healthcare organizations can

use the NER system to scan internal documents and communications

for potential compliance issues related to Protected Health

Information, ensuring adherence to regulations like HIPAA.

Table 3-2 provides a broader view of Healthcare NER use cases, including use case

applications, their benefits, and associated challenges.

Table 3-2.  Summary table of broader Healthcare NER use cases

Use Case Input Data Extracted
Entities

Primary
Application

Key Benefits Challenges

Medical

Research

Analysis

Clinical

trials,

publications,

patient

records

Medical

conditions,

treatments,

outcomes,

demographics,

biomarkers

Meta-analyses,

research gap

identification

Enhanced

research

efficiency and

depth

Data privacy

concerns,

handling

of diverse

medical

terminologies

Pharmaceutical

Market

Intelligence

Clinical

trials,

adverse

event

reports,

literature

Drug names,

dosages, side

effects, patient

responses

Market trend

analysis, drug

repurposing,

regulatory

compliance

Data-driven

product

development

and

marketing,

improved

compliance

Keeping up

with rapidly

evolving

medical

knowledge,

data

integration

Health

Economics

and Outcomes

Research

Health

records,

insurance

claims,

patient

surveys

Treatment

costs, hospital

stay duration,

quality of life

measures,

comparative

effectiveness

Cost–benefit

analyses,

comparative

effectiveness

research

Informed

healthcare

policy and

resource

allocation

Standardizing

diverse data

sources,

handling

complex

economic

models

(continued)

Chapter 3 Healthcare NLP Case Study

84

The examples of use cases presented above unequivocally underscore the critical

importance and relevance of developing Healthcare NER for MedTALN Inc.

�Healthcare NER Inception
In this section, we explore the inception phase of the Healthcare Named Entity

Recognition (NER) project at MedTALN Inc., a fictional company created to exemplify

how such a project might unfold in the real world. This phase is crucial because it

sets the foundation for everything that follows, from defining the project’s scope to

assembling the right team to drive the initiative forward.

To start, we need to define the Healthcare NER project’s scope clearly. For MedTALN

Inc., this means pinpointing exactly what aspects of healthcare data the NER solution

will address—such as identifying medical conditions, medications, and procedures—

Table 3-2.  (continued)

Use Case Input Data Extracted
Entities

Primary
Application

Key Benefits Challenges

Insurance

Claims

Processing

Claims

documents

Medical

conditions,

treatments,

patient

demographics,

procedure

codes

Automated

processing, fraud

detection

Reduced

costs,

improved risk

assessment

Ensuring

accuracy in

automated

systems,

adapting to

changing

healthcare

policies

Patient

Feedback

Analysis

Surveys,

social media,

online

reviews

Symptoms,

treatment

satisfaction,

service quality,

adverse events

Service

improvement

identification,

pharmacovigilance

Enhanced

patient

experience

and service

quality,

improved

safety

monitoring

Managing

unstructured

data, ensuring

patient

privacy in

social media

analysis

Chapter 3 Healthcare NLP Case Study

85

and ensuring that it supports both French and English, reflecting the linguistic needs of

the company’s clients. By defining the scope early on, we can prevent scope creep and

keep the project focused on its strategic objectives.

Next, gathering the detailed requirements is essential. This involves understanding

the needs of MedTALN Inc.’s diverse client base—researchers, universities, and private

companies—to ensure that the NER solution meets their specific challenges, whether

ensuring high accuracy, complying with healthcare regulations, or integrating smoothly

with existing systems.

Finally, though fictional, MedTALN Inc. serves as an example of how a company

would recruit and organize a multidisciplinary team of NLP experts and IT specialists.

This team is responsible for driving the project forward and ensuring that all technical

and domain-specific expertise is available to tackle the complexities of Healthcare

NER. By the end of the inception phase, MedTALN Inc. will have a well-defined scope,

a clear set of requirements, and a dedicated team ready to move into the next phase of

development.

�Scope and Requirements
The scope of the Healthcare Named Entity Recognition (NER) project at MedTALN Inc.

is defined by the following key objectives:

•	 Accurate Medical Entity Extraction: The project’s primary focus is

on developing a Health NER model capable of accurately identifying

key medical entities from unstructured text. These entities include

medical conditions, medications, dosages, symptoms, test results,

treatments, and procedures. Ensuring consistent model performance

and reliability across diverse scenarios is essential.

•	 French Language Support: The first version of the Health NER

solution will prioritize support for the French language, reflecting the

linguistic needs of many healthcare providers in Quebec province

(Canada). While supporting English is important, the initial focus will

be ensuring that the model performs exceptionally well in French.

Subsequent versions will expand to include bilingual support.

Chapter 3 Healthcare NLP Case Study

86

•	 Customization Flexibility: The project scope includes offering

customization options to tailor the Healthcare NER model to the

specific needs of different use cases. The model will also be designed

to remain up-to-date with advancements in the Healthcare NLP field,

ensuring its continued relevance and effectiveness.

•	 Data Sovereignty: The Healthcare NER model should be deployed

within an OCI region in Canada. This is crucial for complying with

local regulations and protecting sensitive healthcare data.

•	 Cost-Effectiveness: The project aims to deliver a cost-effective

solution by leveraging Oracle Cloud Infrastructure (OCI) capabilities.

This will involve optimizing resource usage to reduce operational

costs and ensure the solution is both financially sustainable and

scalable.

�Requirements

Here’s a structured breakdown of high-level requirements for our Health Named Entity

Recognition (NER) solution (see Table 3-3).

Table 3-3.  Pilot project requirement summary

Requirement Description Benefit

Medical Entity

Extraction

Utilizing state-of-the-art NLP

models to extract key medical

entities from healthcare

unstructured text.

Increased precision and recall, providing

reliable and actionable insights.

Multilingual

Support

Supporting multiple languages,

particularly English and French, for

accurate entity extraction.

Broadened applicability across Canada’s

diverse linguistic landscape (the solution

must fully support the French language).

Quebec where French is the primary

language.

High Accuracy

and Precision

Developing robust validation and

testing frameworks to ensure

model accuracy and precision.

Consistent model performance and

increased trust in system outputs.

(continued)

Chapter 3 Healthcare NLP Case Study

87

These requirements ensure that MedTALN Inc.’s Health NER solution is

comprehensive, reliable, and user-friendly, meeting the diverse needs of its non–

healthcare provider clients while maintaining high standards of accuracy, security, and

compliance.

In the next section, we will discuss the various options that MedTALN Inc.’s IT Team

evaluated to implement a Healthcare NER solution quickly and efficiently.

Requirement Description Benefit

Real-Time

Processing

Implementing APIs for real-time

insights processing.

Real-time integration with customers’

systems.

Batch Processing Implementing batch data

processing for large datasets.

Efficiently processing large datasets in

batch mode for comprehensive insights.

Security and

Privacy

Implementing robust security

measures such as encryption and

secure access controls. Legal

compliance and enhanced data

privacy.

Enhanced data security and compliance

with international regulations. Implementing

advanced anonymization techniques to

comply with Quebec’s Law 25 and Canada’s

federal privacy law PIPEDA and ensure data

privacy and security.

Customization

and Flexibility for

NLP Models

NLP models should be

customizable and flexible to

handle diverse healthcare data,

specific medical terminology, and

different languages and integrate

with various systems.

Increased relevance through better

understanding of specific medical

terminology. Enhanced adaptation to

specific user needs, and versatile support

for various languages.

Continuous

Improvement and

Updates

Establishing continuous monitoring

and automated model retraining.

Keeping the system up-to-date with

advancements in medical knowledge and

technology.

Cost Efficiency Leveraging OCI capabilities to

optimize resource usage and

reduce operational costs.

Financial sustainability and high value at

lower cost.

Table 3-3.  (continued)

Chapter 3 Healthcare NLP Case Study

88

�Assembling the Team
In this case study, MedTALN Inc., a fictional company, is preparing to launch its

Healthcare Named Entity Recognition (NER) project on Oracle Cloud Infrastructure

(OCI). Assembling the right team is a crucial first step to ensure the project’s success.

The following roles are key to achieving the project’s goals:

•	 Project Manager: The project manager will coordinate all aspects

of the project, ensuring timelines are met, resources are allocated

efficiently, and all stakeholders are aligned with their roles and

expectations.

•	 Business Users: Business users will bridge the gap between the

company’s strategic goals and the technical implementation. They

will translate business requirements into technical specifications,

ensuring the NER system aligns with MedTALN Inc.’s objectives.

•	 OCI Specialists: Given that the project will be deployed on Oracle

Cloud Infrastructure, OCI specialists will optimize resource usage,

resolve technical challenges, and guide the team through the

specifics of OCI.

•	 Data Annotators Team: The data annotators, under the guidance of

the NLP consultant, will label the data accurately. This team includes

annotators, who mark the data, and reviewers, who ensure the

annotations are consistent and accurate, which is crucial for training

the NER models.

•	 NLP Consultant: The NLP consultant will lead the efforts to develop

and deploy a Healthcare Named Entity Recognition (NER) model. He

will also transfer knowledge to MedTALN Inc.’s in-house team on the

implementation of this first Healthcare NLP model, equipping the in-

house team with the necessary NLP knowledge for future Healthcare

NLP initiatives.

As MedTALN Inc. prepares to launch this project, the focus is on building a strong,

cohesive team with the necessary skills to ensure the NER system’s success.

Chapter 3 Healthcare NLP Case Study

89

�Engaging the NLP Consultant

MedTALN Inc. made a critical decision to bring in an external NLP consultant, John Doe,

who has a deep and broad knowledge in NLP on OCI. The consultant will help navigate

through the complex process of developing a highly efficient deep learning–based NER

model on OCI for the first time. John will join MedTALN Inc. as both an NLP engineer

and an architect who will shape not only the direction of this project but also lay the

foundation for future NLP projects.

Note  John Doe is a fictional character created for this case study to represent an
NLP consultant who assists MedTALN Inc. with implementing the Healthcare NER
project.

The primary responsibility of the NLP consultant is to ensure that the Healthcare

NER model meets MedTALN Inc.’s specific needs. In addition to implementing the

Healthcare NER model, the consultant is responsible for creating guidelines for building

future Healthcare NLP models, focusing on dataset preparation, model training, and

deployment. He also plays a key role in transferring knowledge to MedTALN Inc.’s in-

house teams, helping them build the skills needed for future NLP projects.

The key responsibilities of the NLP consultant include

•	 Implementing the Healthcare NER model for MedTALN Inc. using

OCI’s AI capabilities

•	 Facilitating comprehensive knowledge transfer to in-house teams,

including data scientists and annotators

MedTALN Inc. expects that this collaboration with the NLP consultant will achieve

the project’s immediate goals and prepare the company for future NLP initiatives.

�Healthcare NER Elaboration
The elaboration phase will detail the planning and design of the Healthcare NER

solution. This section will include selecting the right approach for building Healthcare

NER models, developing the architectural baseline, and addressing any critical risks

identified during inception. The focus is on ensuring the solution’s feasibility and laying

the groundwork for successful implementation.

Chapter 3 Healthcare NLP Case Study

90

�Architectural Design
Given the scope of the Healthcare NER project and its specific requirements, the

NLP consultant began the elaboration phase by carefully selecting the most suitable

approach for building the Healthcare NER models for MedTALN Inc. The consultant

employed a systematic methodology to ensure that each potential approach was

thoroughly evaluated. This rigorous process was crucial in determining the best solution

to meet MedTALN Inc.’s needs, ensuring that every option was thoughtfully considered

before making a final decision.

�Methodology

To ensure that MedTALN Inc. chose the most effective solution for their Healthcare

Named Entity Recognition (NER) needs, our NLP consultant developed a methodology.

It is critical to remember that selecting the right approach should comply with our

three high-level architectural decisions. Thus, we should select the potential solution

options in light of those architectural decisions:

•	 Healthcare NER that extracts medical entities in French.

•	 Use SOTA NLP models, like transformer-based models and transfer

learning.

•	 Leverage OCI and its AI capabilities for development and

deployment.

•	 Deploy within an OCI region in Canada for data sovereignty.

•	 Support customization.

•	 Cost-effective solution.

�Preselection of Candidate Solution Options

This preselection phase evaluates potential approaches for MedTALN Inc.’s Healthcare

Named Entity Recognition (NER) project. This process aims to identify a list of potential

solution options aligning with project requirements and architectural decisions.

Chapter 3 Healthcare NLP Case Study

91

Two primary approaches were identified to implement a Healthcare NER solution:

•	 OCI Language-based models

•	 LLMs and OCI Data Science AI Quick Actions

•	 Fully custom model

�OCI Language-Based Models Option

MedTALN Inc.’s NLP consultant selected OCI Language Service’s NER functionalities

as candidate options for implementing Healthcare NER, particularly after Oracle

announced the general availability of OCI Language 4.0. This new version includes

a Health Natural Language Processing (NLP) feature. Specifically, OCI Language 4.0

offers the Health Named Entity Recognition (Health NER) model, which is capable of

identifying key entities such as medical conditions, medications, dosages, symptoms,

test results, treatments, and procedures (Oracle, 2024).

The pretrained Named Entity Recognition (NER) model in OCI Language supports

French but does not include built-in support for medical entities or the ability to be

trained with custom NER datasets for domain-specific entities. As a result of these

limitations, it was not chosen for the Healthcare NER project.

The OCI Language-based models3 that were selected and assessed are as follows:

•	 OCI Language Custom Named Entity Recognition (NER) Model: This is

a generic NER model that allows for custom training. It can be trained

to extract medical entities using a labeled dataset specifically prepared

for this purpose. However, as of now, it only supports English and

Spanish and does not have native support for the French language.

•	 OCI Language Healthcare Named Entity Recognition (Healthcare

NER) Model: This specialized model is designed to handle

healthcare-specific text and focuses on identifying medical entities.

Even though it provides support for the French language, this model

does not allow for custom entities because training data cannot

be provided. As demonstrated in Figure 3-4, the identification of

medical entities resulted in many false positives, and the spot-check

3 Learn more about the OCI Language Service pretrained models at [Oracle Docs](https://docs.
oracle.com/en-us/iaas/language/using/pretrain-models.htm).

Chapter 3 Healthcare NLP Case Study

https://docs.oracle.com/en-us/iaas/language/using/pretrain-models.htm
https://docs.oracle.com/en-us/iaas/language/using/pretrain-models.htm

92

test results were unsatisfactory for MedTALN Inc.’s NLP consultant. In

terms of cost-effectiveness, this model is not efficient. It comes with a

high recurring monthly cost, exceeding approximately 600 CAD per

day, as shown in Figure 3-5.			

Figure 3-4.  Pretrained Healthcare NLP model test

Figure 3-5.  OCI Language Healthcare NER cost per day

Chapter 3 Healthcare NLP Case Study

93

As shown in Figure 3-6, the OCI Language Healthcare NER option has a very high

operational cost, approximately $26 CAD per inference unit hour, leading to significant

monthly expenses (approximate $18,720.00 CAD4).

Figure 3-6.  OCI Language Healthcare model monthly cost estimate

The preliminary assessment revealed that both models were inadequate for

MedTALN Inc.’s needs.

�LLMs and OCI Data Science AI Quick Actions

The option to use AI Quick Actions in OCI to fine-tune large language models (LLMs5)

for Healthcare NER was evaluated as part of our exploration of potential solutions. AI

Quick Actions enable the fine-tuning of LLMs, which could be tailored to extract medical

entities effectively. However, several challenges make this approach less suitable for

MedTALN Inc.’s needs.

In evaluating the feasibility of LLMs for our Healthcare Named Entity Recognition

(NER) task, two major drawbacks emerged that led to their exclusion from our candidate

options list: risks associated with LLMs and cost implications.

4 The estimated monthly cost is $18,720.00 CAD, calculated based on 24 hours per day and 30
days per month. This is because the OCI Language Healthcare models are priced per hour and
metering can only be stopped if the model is removed.
5 LLMs are effective in performing NER task with minimal additional training, thanks to their
extensive pretraining on diverse datasets. They excel in understanding context, which empowers
them to perform NER in a zero-shot setting, but their performance can improve when provided
with a small amount of training data, known as few-shot settings.

Chapter 3 Healthcare NLP Case Study

94

The first drawback for our case study is the inherent risks associated with using

LLMs, even when fine-tuned with tools like OCI Data Science AI Quick Actions:

•	 Biases: LLMs are often trained on large, diverse datasets, which can

introduce biases. These biases may manifest in the form of skewed

outputs, which is particularly problematic in healthcare, where

decisions need to be fair and unbiased.

•	 Hallucinations: LLMs can generate outputs that do not accurately

reflect the input data, known as “hallucinations.” In a healthcare

context, this can lead to the incorrect identification of medical

entities, which could have serious consequences for patient care and

data integrity.

•	 Detection Errors: Even with fine-tuning, LLMs might misinterpret

complex medical terminology or context, resulting in detection

errors. This lack of precision is unacceptable in healthcare

applications where accuracy is critical.

Given these risks, LLMs pose significant challenges for healthcare NER tasks, where

the need for precise, reliable outputs outweighs the benefits of rapid deployment or

advanced capabilities.

The second major inconvenience for our case study is the substantial cost associated

with deploying and operating LLMs:

•	 High Resource Demands: LLMs with billions of parameters, such

as a 7-billion-parameter model, require substantial GPU memory.

The relationship between model parameter size and GPU memory

is roughly 2× the parameter count in GB. For example, a model with

7 billion parameters will need a minimum of 14 GB of GPU memory

for inference. This translates into a need for high-end GPU compute

shapes, such as those offered by OCI (e.g., VM.GPU.A10.1 with 24GB

GPU memory), which significantly increases operational costs.

•	 Increased Operational Costs: Utilizing these GPU-based resources

is expensive, and maintaining such infrastructure is contrary to our

cost-saving objectives, particularly since we aim to target CPU-based

inference with acceptable performance and latency. This contradicts

our cost-saving goals and strategies and significantly increases

operational costs.

Chapter 3 Healthcare NLP Case Study

95

These cost implications, combined with the risks, make LLMs an impractical choice

for our healthcare NER solution, particularly when more specialized, cost-effective

alternatives are available.

To ensure these concerns were grounded in practical evidence, we deployed an

LLM using OCI AI Quick Actions, utilizing a prompt designed for French Healthcare

NER tasks. The results confirmed our concerns: the LLM produced outputs with

hallucinations and inaccuracies, reaffirming that it is not a reliable option for our

use case.

Considering the significant risks associated with LLMs and the high costs of their

deployment, this approach is not suitable for our Healthcare NER case study. These

drawbacks outweigh the potential benefits, leading us to exclude LLMs from our

decision matrix in favor of more specialized, efficient, and cost-effective models that

better align with our overall strategy. Consequently, the decision to discard the LLM

approach in favor of fine-tuning a pretrained model is well justified based on the

evaluation criteria.

�Fully Custom Healthcare NER Model

The NLP consultant explored a final option: building a fully custom healthcare-

specific Entity Recognition (NER) model. This means fine-tuning a model specifically

for healthcare NER tasks. This approach offers the highest level of customization and

control over the model architecture, potentially making it the most flexible option for

evolving and taking advantage of continuous advances in the Healthcare NLP domain.

Choosing the fully custom model would allow using state-of-the-art (SOTA) NLP

models that can be fine-tuned for the French medical domain. This model could be built

using OCI’s AI capabilities and seamlessly integrated with OCI’s Compute, Storage, and

AI Services, taking full advantage of the cloud infrastructure. The fully custom model

can also be hosted in an OCI region within Canada, ensuring compliance with data

sovereignty requirements.

However, there is a downside to creating a completely custom Healthcare NER

model (fine-tuned Healthcare NER model), which is the high initial cost. Nevertheless,

it’s worth noting that in the long term, it can be cost-effective because there are no

recurring fees, and the NLP consultant may implement cost-saving strategies during the

project.

Chapter 3 Healthcare NLP Case Study

96

�Selection of the Optimal Approach

In the preselection phase of MedTALN Inc.’s Healthcare Named Entity Recognition

(NER) project, three primary approaches were evaluated: OCI Language-based models,

LLMs with OCI Data Science AI Quick Actions, and a fully custom Healthcare NER

model. The goal was to identify the most suitable solution that aligns with the project’s

requirements and architectural decisions.

Here are the detailed selection criteria we use in the evaluation process

(outlined in Table 3-4):

Table 3-4.  Detailed selection criteria

Criteria OCI Language
Custom Models
(for Healthcare
NER)

OCI Language
Healthcare
Models (for
Healthcare NER)

OCI AI Quick
Actions (LLMs
for Healthcare
NER)

Fine-Tuned
Healthcare
NER Model

Supports Training with

Custom NER Dataset

(Custom Domain-

Specific Entities)

Yes ✔ No ❌ Fine-tuning Yes ✔

Supports Model Architecture

Selection (e.g., Transformers)

No ❌ No ❌ No ❌ Yes ✔

Supports Transfer Learning

from Pretrained Language

Models (BERT, RoBERTa,

etc.)

No ❌ No ❌ No ❌ Yes ✔

Supports Model Training

Hyper-Parameter

Fine-Tuning

No ❌ No ❌ No ❌ Yes ✔

Supports Healthcare Domain No ❌ Yes ✔ Fine-tuning Yes ✔

Support French Language No ❌ Blackbox Yes ✔ Yes ✔

Accuracy for Healthcare

Entities

Moderate High ✔ Low to

moderate

High ✔

Chapter 3 Healthcare NLP Case Study

97

Note  In this analysis, we have treated all criteria equally, given the importance
of each in the healthcare domain. Introducing weights could refine the decision by
emphasizing certain criteria over others.

The assessment revealed significant limitations in the OCI Language-based models.

While these models offered some potential, such as the Health NER model, they lacked

critical features like French language support and customization capabilities for medical

entities. Additionally, the high recurring costs and unsatisfactory accuracy made them

unsuitable for MedTALN Inc.’s needs. Similarly, the option to fine-tune LLMs using

OCI AI Quick Actions was found to be impractical due to inherent risks like biases and

hallucinations, coupled with substantial resource demands and high operational costs.

As a result, the fully custom Healthcare NER model emerged as the most viable

option. This approach offers the highest level of customization and control, allowing the

use of state-of-the-art NLP models fine-tuned for the French medical domain. Although

it involves a higher initial investment, the long-term benefits, including compliance

with data sovereignty requirements and potential cost savings, make it the best fit for

MedTALN Inc.’s project objectives.

�Solution Blueprint
In this chapter, we present the high-level architecture developed by MedTALN Inc.’s

NLP consultant for the Healthcare Named Entity Recognition (NER) solution. This

architecture is specifically designed to extract medical entities from French language

text, addressing both the technical requirements and budgetary constraints of

MedTALN Inc.

�High-Level Architecture
The NLP consultant has crafted the high-level architecture for the solution, leveraging

Oracle Cloud Infrastructure (OCI) AI capabilities. The focus is on building and deploying

a custom Healthcare NER model tailored to MedTALN Inc.’s needs. Below are the core

architectural decisions that form the foundation of this solution:

Chapter 3 Healthcare NLP Case Study

98

•	 OCI ML Services (OCI Data Science and Data Labeling Services): The

NLP consultant chose OCI’s Data Science and Data Labeling Services

to support the entire NLP model development life cycle, from data

preparation to deployment.

•	 Open Source NLP Resources (Hugging Face Models, Datasets,

and Libraries): The consultant incorporated the Hugging Face

platform to leverage preannotated datasets and pretrained models.

This approach reduces the time and resources required for model

development while maintaining high quality.

The diagram in Figure 3-7 illustrates the high-level architecture, emphasizing the

key components involved in different stages of the Healthcare NER model development

process. These components include OCI Data Science, OCI Data Labeling, and Hugging

Face. They are crucial for data collection, NLP model training, and deployment preparation.

Figure 3-7.  High-level architecture for building MedTALN Inc.’s Healthcare
NER model

Chapter 3 Healthcare NLP Case Study

99

The following outlines how OCI Data Science, OCI Data Labeling, and Hugging Face

will be used to construct a highly performant yet cost-effective Healthcare NER model:

•	 Dataset Preparation: The training dataset for Healthcare NER will

be based on open source, ready-to-use Hugging Face datasets. This

dataset will be processed and prepared using OCI Data Science

and labeled using OCI Data Labeling. Throughout its life cycle, this

dataset will be securely stored in OCI Object Storage.

•	 Model Training: GPU-based OCI Data Science Notebook Sessions

are utilized for efficient model training, focusing on fine-tuning

pretrained models from Hugging Face using state-of-the-art NLP

models such as BERT or healthcare-specific custom models like Dr-

BERT, SciBERT, or BioBERT. To further control costs, the consultant

recommended deactivating notebook sessions when model training

is complete. This strategy stops charges for compute resources while

retaining block storage, which is particularly beneficial for GPU

instances.

•	 Model Deployment: To streamline the deployment process, the

NLP consultant recommended using OCI Data Science’s model

deployment capabilities. The trained model can be easily deployed

from the OCI Data Science Model Catalog, with OCI handling all

necessary infrastructure operations, including compute provisioning

and load balancing.

This high-level architecture, developed by MedTALN Inc.’s NLP consultant, provides

a robust and cost-effective solution for French language Healthcare NER. By carefully

balancing OCI’s AI Services with open source tools and strategic resource optimization,

this solution blueprint meets both the technical and financial needs of the project.

�High-Level Approach
Figure 3-8 outlines the high-level structured approach to building Healthcare NER

model that the NLP consultant put in place.

Chapter 3 Healthcare NLP Case Study

100

The process begins with selecting a suitable open source dataset for Healthcare

NER task, followed by data acquisition and preparation, which involves transforming

the dataset to the format expected by the OCI Data Labeling Service (e.g., JSONL). The

dataset is enriched with new annotations to meet our case study requirements during

the data labeling.

Next, a French pretrained model for healthcare is selected and fine-tuned with the

labeled dataset.

The final stage involves a comprehensive model evaluation, where the dataset

or training hyperparameters are adjusted as necessary to ensure optimal model

performance.

Figure 3-8.  Steps for building a Healthcare NER model for our case study

Figure 3-9 illustrates the process of fine-tuning a BERT-based model specifically for

Named Entity Recognition (NER) in the healthcare domain. It is divided into two phases:

the training phase and the inference phase.

Chapter 3 Healthcare NLP Case Study

101

Figure 3-9.  Building and using a fine-tuned BERT-based NER model for the
healthcare domain

In the training phase, a pretrained BERT-based Masked Language Model (MLM)

focused on healthcare is fine-tuned using a specially labeled NER dataset. The fine-

tuning process adapts the model to recognize and classify medical entities accurately

within healthcare-related texts, specializing it from a Healthcare MLM model to a

Healthcare NER model.

During the inference phase, the fine-tuned Healthcare NER model is applied to new

text inputs. Sentences are tokenized, and the model processes these tokens, classifying

each one according to the categories learned during training. The output is a list of

tokens, each tagged with an entity label, allowing the model to identify and categorize

key information such as patient name, medical conditions, medications, dosages, and

symptoms within the text.

�Project Preparation
With the solution blueprint defined, the next steps in the elaboration phase are provisioning

the Oracle Cloud Infrastructure (OCI) account and defining the roles and responsibilities

within the project team. Provisioning the OCI account sets up the cloud environment where

the Healthcare Named Entity Recognition (NER) solution will be developed and deployed.

Chapter 3 Healthcare NLP Case Study

102

Simultaneously, clearly defining the roles and responsibilities ensures that each team

member understands their specific tasks, allowing the project to proceed efficiently into the

construction phase, where the solution will be fully implemented.

�OCI Account

While MedTALN Inc. already has an OCI account, to follow along with this book and

implement the case study step by step as detailed in the subsequent chapters, you will

need your own Oracle Cloud account. You can subscribe to a new trial account, which

allows you to work with Oracle Cloud for 30 days at no cost. Alternatively, you can use a

paid account, but be aware that some services will incur costs.

To get started, sign up for an account. OCI offers three options:

•	 Paid Tier: This offers access to the full range of metered services, with

multiple payment options, including pay-as-you-go and leveraging

existing licenses.

•	 Trial: At the time of writing, the trial provides a 30-day window with a

$300 credit to your account.

•	 Always-Free Tier: This option limits the resources you can use, but

these resources are available without charges for an unlimited time.

After activating your account, you can log in at cloud.oracle.com to access your cloud

service dashboard (Figure 3-10).

Figure 3-10.  OCI dashboard

Chapter 3 Healthcare NLP Case Study

http://cloud.oracle.com

103

Before diving into the case study, readers must have an OCI account (tenancy) ready.

We will not cover the initial steps of creating a tenancy, focusing instead on the specifics

of the case study tasks and implementations.

Note  Although MedTALN Inc., the fictional company in this book, supposedly has
an OCI account, I implemented the case study steps using my personal, paid cloud
account.

�Defining Roles and Responsibilities

In our case study, we have two main personas responsible for carrying out different tasks

in developing the Healthcare NER solution: the NLP consultant, John Doe, overseeing

the entire NLP project life cycle, and the tenancy administrator responsible for OCI

tenancy administration for our project.

By outlining their roles and responsibilities, we can better understand how our case

study will be carried out and how each user contributes to the overall development of

our NLP solution on OCI. Let’s take a closer look at each persona and their respective

responsibilities.

Figure 3-11 illustrates the collaborative roles and responsibilities, as well as the high-

level OCI components and services involved in the NLP solution. The OCI admin, as the

manager of the overall OCI environment, works hand in hand with the NLP consultant,

who focuses on leveraging the Data Science service and other resources to develop the

NLP solution for MedTALN Inc.’s case study. This collaborative effort is key to the success

of our project.

Chapter 3 Healthcare NLP Case Study

104

Figure 3-11.  NLP consultant vs. OCI admin roles and responsibilities for the
case study

As shown in the diagram, the OCI admin creates the project compartments.

Additionally, they manage the Identity service, which handles Users and Groups, and the

Policies that govern access and permissions.

On the other hand, the NLP consultant, who will use OCI ML Services, such as the

OCI Data Science Service and OCI Data Labeling Service, is responsible for tasks such

as building a training dataset, training the NLP model, and deploying the NLP model.

These tasks are crucial in the development of the NLP solution.

�Summary
This chapter introduced the case study of MedTALN Inc., a fictional healthcare analytics

company. The case study is intended to be a practical example demonstrating the step-

by-step implementation of a Healthcare Named Entity Recognition (NER) solution using

Oracle Cloud Infrastructure (OCI). By following MedTALN Inc.’s journey, readers can

gain a deeper understanding of how to design, build, and deploy custom NLP models on

OCI tailored to specific needs.

Chapter 3 Healthcare NLP Case Study

105

This case study was imagined to provide a hands-on learning experience, illustrating

real-world challenges and solutions in a controlled, fictional environment. This case

study aims to provide a clear transition from theoretical concepts to building an actual

NLP solution on OCI through John Doe, a fictitious persona created to represent an NLP

consultant who helps MedTALN Inc.

Key Takeaways 

	1.	 This case study is intended to address the fragmented and
intimidating nature of existing resources on Natural Language
Processing (NLP) implementation on OCI across various sources
such as books, technical documentation, and blogs.

	2.	 The strategies, challenges, and solutions presented in the case
study are based on practical experience. Although the persona of
John Doe is fictional, the guidance provided is informed by genuine
professional experience with NLP on OCI.

Although John Doe is not a real person, his knowledge is based on my experience in

leveraging OCI to develop SOTA NLP solutions at typica.ai.6 Through John Doe’s journey,

readers will discover the strategic benefits of OCI for NLP applications, showcasing how

OCI enables efficiency and cost-effective NLP solution development.

In the following chapters, the second part of this book will delve into technical

details, guiding you through the entire process of building an NLP model on OCI.

�Reference
Oracle. (2024, May 6). Announcing the general availability of OCI Language 4.0.

Retrieved from Oracle AI & Data Science Blog: https://blogs.oracle.com/ai-and-

datascience/post/oci-ai-language-4-0

6 Typica.ai is an NLP startup that I founded after my PhD. For more information, please visit the
website: https://typica.ai

Chapter 3 Healthcare NLP Case Study

https://blogs.oracle.com/ai-and-datascience/post/oci-ai-language-4-0
https://blogs.oracle.com/ai-and-datascience/post/oci-ai-language-4-0
https://typica.ai

109
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_4

CHAPTER 4

Tenancy Preparation
Chapter 3 offered a clear direction for implementing our case study on Healthcare

NER. This chapter aims to transition from the case study blueprint to tangible

preparatory steps for OCI tenancy. These steps include the creation of compartments,

networking, storage, and the implementation of critical security configurations.

This chapter provides valuable insights into cost-effective strategies for

implementing NLP solutions using OCI ML Services and a transfer learning approach.

It also discusses the responsibilities and roles of the OCI admin and data scientist teams

and how they can efficiently manage and segregate the OCI tenancy preparation work

for an OCI Data Science Project.

Finally, this chapter will guide readers through setting up our OCI Data Science

Project, including CPU- and GPU-based notebook sessions.

�Getting Started
In this chapter, we are implementing a Healthcare Named Entity Recognition (NER)

solution for MedTALN Inc. for the French unstructured text. The goal is to identify

medical entities, such as medical conditions, medications, dosages, symptoms, test

results, treatments, and procedures. Importantly, this chapter will also tackle cost-saving

strategies as a key constraint, exploring efficient approaches to develop an NLP solution

within MedTALN Inc.’s budgetary constraints.

�Cost-Saving Strategies
One of the biggest challenges in deploying NLP solutions is balancing cost-effectiveness

with functionality and performance. However, OCI offers services for data labeling and

model training that can help reduce the traditionally high costs associated with these

areas. By taking advantage of OCI capabilities and adopting the transfer learning training

https://doi.org/10.1007/979-8-8688-1073-2_4#DOI
https://doi.org/10.1007/979-8-8688-1073-2_3

110

approach, along with utilizing the open source resources available on the Hugging Face

Hub, it’s possible to achieve significant cost savings.

Below is an overview of the cost-saving strategies we will adopt in this case study.

These strategies will be explained in more detail in the upcoming sections.

•	 Labeling data for NLP projects can be both time-consuming and

costly due to its manual nature and the extensive human effort

required. By reusing a high-quality dataset for the Healthcare NER

task from the Hugging Face Hub, we can significantly reduce these

costs. Additionally, OCI’s Data Labeling Service, with its competitive

pricing model that offers the first 1000 records for free,1 further

reduces expenses, making the task of dataset labeling more cost-

effective.

•	 Training deep learning models, due to their need for GPU resources,

can significantly raise costs, especially with intermittent training.

Adopting a transfer learning approach, utilizing healthcare

pretrained models for the French language from the Hugging Face

Hub, and leveraging OCI Data Science Notebooks can minimize

these expenses. OCI notebooks’ feature to deactivate during idle

times stops billing, enhancing cost efficiency. This method ensures

efficient, cost-effective model fine-tuning, highlighting the potential

for savings.

Through this case study, you will understand how strategic choices in using OCI’s

features and external resources like Hugging Face Hub can significantly reduce the

financial barriers to implementing advanced NLP projects.

�OCI Tenancy Preparation
The OCI administrator needs to set up the tenancy for the data labeler and data scientist

teams so they can start using the Machine Learning Services, including Data Labeling

and Data Science Services, within the MedTALN Inc.’s tenancy.

1 As of the time of writing this book, OCI Data Labeling offers 1,000 annotated data records every
month free of charge. For more information on DLS pricing, please visit the following web page:
https://www.oracle.com/ca-en/artificial-intelligence/data-labeling/pricing/

Chapter 4 Tenancy Preparation

https://www.oracle.com/ca-en/artificial-intelligence/data-labeling/pricing/

111

First, the tenancy administrator will set up the OCI tenancy. Once this initial setup is

complete, the NLP consultant, John Doe, will take over and manage all subsequent tasks

and activities related to OCI ML Services.

Below are the initial setup activities for MedTALN Inc.’s tenancy:

	 1.	 Compartment Creation: Establishing a compartment to organize

and isolate our case study OCI resources

	 2.	 Virtual Cloud Network (VCN) Setup: Creating and configuring

a VCN with the needed elements (such as an Internet gateway,

a NAT gateway, and a service gateway for the VCN) for the

case study

	 3.	 Object Storage Bucket Creation: Provisioning buckets to store and

manage data and models for our NLP solution

	 4.	 IAM Setup: Configuring the groups, dynamic groups, and policies

for both Data Labeling and Data Science Services

By the end of this section, you’ll have a comprehensive understanding of how to

configure your tenancy for a successful NLP project.

�Compartment Creation
For the MedTALN Inc.’s Case Study, as depicted in the diagram in Figure 4-1, we envision

a hierarchy within the tenancy that could include additional compartments, such as

Development, Quality Assurance, and Production, to manage resources aligned with

different project life cycle stages. However, we simplify our approach for this case study

by utilizing a top-level compartment—case-study-cmpt—instead of creating further

subcompartments for streamlined focus and management simplicity.

Chapter 4 Tenancy Preparation

112

Figure 4-1.  Root compartment and subcompartments for the case study

Steps to create this dedicated compartment to our case study as follows

(as shown in Figure 4-2):

	 1.	 From the navigation menu, click Identity & Security. Under

Identity, click Compartments.

	 2.	 Click the Create Compartment button.

	 3.	 Name the new compartment: case-study-cmpt.

	 4.	 Enter a description: Compartment for the Case Study.

	 5.	 Click Create Compartment.

	 6.	 Confirm that the compartment appears in the compartments list.

Chapter 4 Tenancy Preparation

113

Figure 4-2.  Creating compartment

Note I n OCI, tags are essential for efficiently managing project resources. They
enable organization, identification, search, and filtering based on criteria such as
purpose, owner, and environment, among others.

Chapter 4 Tenancy Preparation

114

Figure 4-3.  Case study’s compartment details

For our NLP project, after completing the creation of compartments (see Figure 4-3),

we will proceed with the VCN configuration.

�Network Configuration
Setting up the virtual cloud network (VCN) can be an engaging task. You have two

options: a detailed, manual setup where you configure each component individually

or a more straightforward approach using a setup wizard. For ease and simplicity, I

recommend using the wizard, and I’ll guide you through that process.

Note T he VCN you are currently creating can be utilized for custom networking
in notebook sessions, which you will set up later in this chapter. While the default
networking of notebook sessions is simpler, it results in a closed network that can
only be used by the notebook session itself. On the other hand, custom networking,
which makes use of the VCN you are presently setting up, provides greater
flexibility. It enables you to access, modify, and utilize the network for multiple
purposes beyond the notebook session, especially for your future Data Science
Projects. This enhanced flexibility is a key benefit of custom networking.

Chapter 4 Tenancy Preparation

115

This section shows users who require access to their VCNs, how to create a VCN, and

later, how to choose the recommended subnet for notebook sessions:

	 1.	 Open the navigation menu and click Networking, and then click

Virtual Cloud Networks.

	 2.	 Select the compartment case-study-cmp (illustrated in

Figure 4-4).

Figure 4-4.  VCNs list page

	 3.	 Click Start VCN Wizard (see Figure 4-5).

Chapter 4 Tenancy Preparation

116

Figure 4-5.  VCN wizard

	 4.	 Select Create VCN with Internet Connectivity, and then click

Start VCN Wizard (Figure 4-6).

	 5.	 Enter the VCN name: cs-vcn.

	 6.	 If it is not already selected, select the case study compartment

(i.e., case-study-cmpt).

	 7.	 For Configure VCN and Subnets, keep the default values.

Chapter 4 Tenancy Preparation

117

Figure 4-6.  VCN creation step 1

	 8.	 Click Next.

	 9.	 Review the VCN configuration (Figure 4-7).

	 10.	 Click the Create button to create the VCN and the related

resources such as a public and a private subnet, an

Internet gateway, a NAT gateway, and a service gateway

(illustrated in Figure 4-8).

Figure 4-7.  VCN creation step 2

Chapter 4 Tenancy Preparation

118

	 11.	 You use this VCN and its private subnet when you create your

notebook session.

Figure 4-8.  VCN creation page

	 12.	 Click the View VCN button to review your VCN and subnets

(refer to Figure 4-9).

Figure 4-9.  VCN detail page

Chapter 4 Tenancy Preparation

119

�Storage
For our case study, we’ve established the need for four buckets within our compartment,

each crafted to fulfill a distinct role throughout the model development life cycle (as

outlined in Figure 4-10). Below is a detailed description of each bucket’s purpose:

•	 Labeling Datasets Bucket: Reserved for datasets destined for labeling

via the OCI Data Labeling Service. These datasets might originate

from open source datasets, such as those found on the Hugging

Face Hub, and are then preprocessed and converted into the JSONL

Consolidated format, one of the supported dataset formats for the

OCI Data Labeling import process.

•	 Training Datasets Bucket: This bucket is specifically for holding

training datasets in the Hugging Face format, derived from datasets

exported from the OCI Data Labeling Service in the CoNLL format.

It will contain all versions of these training datasets, providing clear

traceability and lineage of the data utilized during the training phase.

•	 Model Checkpoint Bucket: The role of the third bucket is to

store checkpoints created at each training epoch with Hugging

Face Transformers. These checkpoints are essential for tracking

progress, enabling the resumption of training from specific points,

and preventing data loss in extensive training sessions, a critical

consideration due to the costs associated with GPU-based training.

•	 Conda Environment Bucket: The fourth bucket is reserved for storing

our published custom conda environments, which contain the latest

versions of all the libraries needed for our deep learning–based NLP

projects, such as Hugging Face Transformers, PyTorch, and Oracle

Accelerated Data Science (ADS library). Our conda environments will

be used by our NLP team members for model training by OCI Data

Science Service for model deployment and inference, promoting

consistency and enabling reproducibility for all our NLP model

life cycles.

Chapter 4 Tenancy Preparation

120

Figure 4-10.  Object Storage buckets for our case study

Although creating buckets is a prerequisite for using Data Labeling, OCI Data

Science doesn’t require Object Storage buckets. Yet, we chose to implement distinct

Object Storage buckets, recognizing their value extends well beyond mere data

storage. Our proposed bucket architecture, depicted in the diagram above, is crucial

for facilitating team collaboration, enhancing security and separation of concerns, and

avoiding unnecessary costs during the model development process.

•	 Collaboration: Our buckets act as central, secure repositories,

enabling direct and efficient collaboration among team members. By

providing NLP engineers with access to various data versions, model

checkpoints, and environments, we ensure smooth progress across

different stages of model development, irrespective of the notebook

sessions used (CPU- or GPU-based notebook sessions).

Chapter 4 Tenancy Preparation

121

•	 Backup and Archiving: The financial and operational importance

of securing model artifacts cannot be understated. Our buckets

provide a robust solution for backing up and archiving valuable

data, protecting against potential losses. This is especially crucial

considering the high costs associated with data labeling and training

sophisticated NLP models.

•	 Access Control and Separation of Concerns: Our architecture

emphasizes strict access controls and security measures to protect

sensitive data and maintain project integrity. By implementing

separation of concerns between data labelers and data scientists,

we assign specific access rights—such as granting exclusive access

to Data Labeling buckets to the labeling teams. This approach

effectively prevents unauthorized modifications, ensuring the safety

and confidentiality of data throughout the project life cycle.

Furthermore, leveraging the “Mount Storage” feature simplifies our code

significantly by integrating Object Storage buckets as local file systems within OCI Data

Science Notebook Sessions. This integration means that when we need to read datasets

or model files; it’s as straightforward as dealing with local files. No longer do we have

to navigate the complexities of Object Storage APIs or SDKs for basic operations. For

instance, accessing our custom dataset or loading our trained model becomes a matter

of using simple file paths. This dramatically reduces the amount of code needed for

such tasks, allowing data scientists to concentrate on their core activities. Ultimately,

this leads to cleaner, more manageable code, streamlining the development process and

enhancing productivity.

The OCI administrator is responsible for creating those buckets as part of the OCI

setup process.

To initiate the creation of the first bucket, perform the following:

	 1.	 From the navigation menu, go to Storage ➤ Object Storage &

Archive Storage ➤ Buckets.

	 2.	 Select the compartment for our case study: case-study-cmpt.

This is the compartment where the case study buckets will be

located (Figure 4-11).

Chapter 4 Tenancy Preparation

122

Figure 4-11.  Buckets list page

	 3.	 Click Create Bucket button.

	 4.	 In the Create Bucket dialog box, complete the following (see Figure 4-12):

	 a.	 Enter a value for the Bucket Name: labelling-datasets-bkt.

	 b.	 Select the default tier in which you want to store your data. Default Storage
Tier: Standard.

We use Standard tier to store data that requires fast and immediate

access. However, we use the Archive tier for storing data that

requires long retention periods but not immediate access.

	 c.	 Keep all the following check boxes unchecked:

–– Enable Auto-Tiering: Select this option if you want Object

Storage to monitor and automatically move infrequently

accessed objects from the Standard tier to the less expensive

Infrequent Access storage tier.

–– Enable Object Versioning: Select this option if you want Object

Storage to create an object version each time the content

changes or the object is deleted.

–– Emit Object Events: Select this option if you want to enable

the bucket to emit events for object state changes.

–– Uncommitted Multipart Uploads Cleanup: Select this option

to create a life cycle rule that automatically deletes all uncom-

mitted multipart uploads after seven days.

Chapter 4 Tenancy Preparation

123

	 d.	 For the Encryption option, select the option Encrypt using Oracle

managed keys.

Buckets are encrypted with keys managed by Oracle by default,

but you can optionally encrypt the data in this bucket by using

your own Vault encryption key.

Figure 4-12.  Bucket creation page

	 5.	 Click Create.

Repeat the same steps to create the three remaining buckets

as shown in the screenshot in Figure 4-13. Use the following

bucket names:

–– The Training Datasets Bucket Name: training-datasets-bkt

–– The Models Checkpoints Bucket Name: models-ckpt-bkt

–– The Conda Environments Bucket Name: conda-envs-bkt

Chapter 4 Tenancy Preparation

124

Figure 4-13.  Case study’s buckets

Note I t is worth mentioning that the buckets are private by default, ensuring the
security and privacy of your data. The option Edit Visibility allows you to toggle the
bucket's status between private and public.

With all the necessary buckets created, we’re ready to continue with the Identity and

Access Management setup (i.e., IAM). This step involves creating groups and policies

that will provide permission to users such as data labelers and data scientists to access

the required OCI resources and perform their assigned tasks.

�Identity and Security
After successfully configuring the compartments, network, and storage for our case

study, we will proceed to the security setup, specifically the IAM setup. However, before

embarking on the actual setup, it would be beneficial to clarify some essential concepts

related to IAM in OCI, such as user groups and dynamic groups.

User groups in OCI are groups of individual users that are granted access to data

science resources within compartments. Admins can create user groups in three simple

steps: creating users, creating groups, and adding users to groups. When setting up

groups, admins must first decide how users will access resources in the compartments.

Dynamic groups, a unique type of group, offer a high degree of flexibility and

adaptability. They contain resources that match specific rules defined by the admin.

Resources such as data science notebook sessions, models, and model deployments can

be included in a dynamic group. The dynamic nature of group membership, which can

Chapter 4 Tenancy Preparation

125

change as resources that match those rules are created or deleted, puts the admin in

full control. These resources, considered principal actors, can make API calls to services

based on the policies defined for the dynamic group, further enhancing the admin’s

control over resource access.

Let’s take a practical example to understand the role of resources in making API calls.

Consider calling the Object Storage API to read data from a bucket. This call uses the

resource principle of a data science notebook session. The dynamic group associated

with this session has a policy that enables Object Storage access. In other words,

resources match rules, and rules are applied to dynamic groups.

OCI policies grant access to users and resources at the group and compartment

levels using simple syntax with variables such as group name, verb, action, resource

type, and compartment name. The syntax specifies the type of access a group has in

a compartment. The group name is the user or dynamic group, the verb defines the

access level, and the resource type specifies the resource or resource family. Finally, the

compartment name is where access is granted.

Verbs determine the level of access to a resource or resource family. They range

from least to most permissive: inspect (ability to list resources without access to user

metadata), read (ability to get user metadata and the resource itself), use (ability to work

with the resource, excluding creating or deleting permissions), and manage (includes all

permissions, including creating and deleting).

When creating a policy, it is essential to identify the resource type for which it is

intended. You can either formulate a policy for a specific resource type or for a collection

of related resources. Nonetheless, it is crucial to find a balance between being too

detailed and keeping things simple. This will ensure that the policies are effective in

maintaining the required level of security while still being easy to manage.

�IAM Setup for Data Scientists

The IAM configuration required for the data scientists’ team is illustrated in this

architectural diagram (Figure 4-14).

Chapter 4 Tenancy Preparation

126

Figure 4-14.  IAM setup for data science team

Next, we will discuss the implementation details of this data labeling-related setup.

The security setup steps include creating an NLP expert user, creating a user group for

data labelers, and finally, creating a dynamic group for data labeling resources (based on

matching rules).

�Users and Groups

We will start by creating our data science group and then create our NLP expert user.

Chapter 4 Tenancy Preparation

127

The following steps outline the user group creation for our data science team.

	 1.	 Go to Identity & Security ➤ Identity ➤ Domains (see Figure 4-15).

Figure 4-15.  IAM Domains list

	 2.	 Select the identity domain named Default.

	 3.	 Under Identity Domain, on the left, click Groups, and then click

the Create group button.

	 4.	 In the Create group dialog, as shown in Figure 4-16, enter the

group details:

	a.	 Enter a unique name for our new group Name, i.e., data-scientists-

users-grp.

	b.	 Enter the Description for the group (required), i.e., Data Scientists

User Group.

	c.	 Click Create.

Chapter 4 Tenancy Preparation

128

Figure 4-16.  Data scientist group creation

Now that we have our data scientist user group created, we can proceed with creating

our first data science team user (i.e., John Doe the NLP consultant). The steps to create

this user are as follows:

	 5.	 Go to Identity & Security ➤ Identity ➤ Domains, and select the

identity domain named Default.

	 6.	 Under Identity Domain, on the left, click Users, and then click the

Create User button.

	 7.	 As shown in Figure 4-17, in the Create user dialog:

	a.	 Enter the user’s First name, Last name, and Email, e.g., John,

Doe, john.doe@typica.ai.

	b.	 Make sure that the check box Use the email address as the
username is selected.

	c.	 Assign this user to the data scientist group by selecting the check

box of the group.

	d.	 Click Create.

Chapter 4 Tenancy Preparation

129

Figure 4-17.  Data scientist user creation

�Dynamic Groups

We will create a dynamic group for our Data Science resources. These are the steps

to follow:

The following steps outline the Dynamic groups creation for our data science team.

	 1.	 Go to Identity & Security ➤ Identity ➤ Domains, and select the

identity domain named Default.

	 2.	 Under Identity Domain, on the left, click Dynamic groups, and

then click the Create dynamic group button.

	 3.	 In the Create dynamic group dialog, as shown in Figure 4-18,

enter the group details:

	 a.	 Enter a unique name for our new group Name, i.e., data-science-dyn-grp.

	 b.	 Enter the Description for the group (required), i.e., Data Scientists

Dynamic Group.

Chapter 4 Tenancy Preparation

130

	 c.	 Add the following matching rules.

	 d.	 Under the Matching rules section, select the option Match any rules
defined below.

–– Enter the following two matching rules:

Rule 1:

ALL { resource.type = 'datasciencenotebooksession' }

This matching rule means that all notebook sessions created

are members of the dynamic group.

–– Click Additional Rule, and add the following rule:

Rule 2:

ALL { resource.type = 'datasciencemodeldeployment' }

The preceding matching rule means that all model deploy-

ments are members of the dynamic group.

e.	 Click Create.

Figure 4-18.  Data science dynamic group creation

Chapter 4 Tenancy Preparation

131

�Policies

We opted for a simplified approach in creating policies for the data science team. Our

policies will focus on granting access to aggregate resource types, such as object-family,

which encompasses various individual resource types including buckets and objects,

within our designated compartment.

We believe this approach provides, for our case study, an optimal balance between

security, ease of maintenance, and simplicity, making it easier for readers to understand

the concepts.

The following steps outline the Policies creation for our data science team:

	 1.	 From the navigation menu, go to Identity & Security ➤ Identity

➤ Policies (Figure 4-19).

Figure 4-19.  Policies list page

	 2.	 Then, click the Create policy button.

	 3.	 Enter the following:

	 a.	 Name: data-science-policies.

	 b.	 Description: Policies for the Data Science team.

	 c.	 Select the root compartment (not our case study compartment).

	 d.	 Click Show manual editor.

	 e.	 Enter the policy statements in Listing 4-1 into the Policy Builder field, and

then click Create to create the policy (Figure 4-20).

Chapter 4 Tenancy Preparation

132

Listing 4-1.  Policy statements for data science

allow group data-scientists-users-grp to manage data-science-family

in tenancy

allow dynamic-group data-science-dyn-grp to manage data-science-family

in tenancy

allow service datascience to use virtual-network-family in tenancy

allow group data-scientists-users-grp to use virtual-network-family

in tenancy

allow group data-scientists-users-grp to manage object-family in

compartment case-study-cmpt

allow dynamic-group data-science-dyn-grp to manage object-family in

compartment case-study-cmpt

allow group data-scientists-users-grp to use logging-family in compartment

case-study-cmpt

allow dynamic-group data-science-dyn-grp to use logging-family in

compartment case-study-cmpt

Figure 4-20.  Policies for the data science team

Chapter 4 Tenancy Preparation

133

Let me quickly explain the policy statements mentioned above.

With the first two policies, data scientists and data science resources (such as a

notebook session) can manage all data science resources in our compartment

allow group data-scientists-users-grp to manage data-science-family

in tenancy

allow dynamic-group data-science-dyn-grp to manage data-science-family

in tenancy

We require the following policies to allow the Data Science service to utilize the

virtual network family within our compartment and grant permission for our data

scientist group to use it as well.

allow service datascience to use virtual-network-family in tenancy

allow group data-scientists-users-grp to use virtual-network-family

in tenancy

The following statements allow data scientists or data science resources to access

Object Storage resources, such as buckets and objects, in our case study compartment.

Note that the “Manage” permission is necessary to enable the creation of new objects.

This access is necessary for tasks like accessing data files during model training and

published conda environments during model deployment.

allow group data-scientists-users-grp to manage object-family in

compartment case-study-cmpt

allow dynamic-group data-science-dyn-grp to manage object-family in

compartment case-study-cmpt

And finally, the two following policy statements shall give model deployment access

to emit logs to the Logging service.

allow group data-scientists-users-grp to use logging-family in compartment

case-study-cmpt

allow dynamic-group data-science-dyn-grp to use logging-family in

compartment case-study-cmpt

Chapter 4 Tenancy Preparation

134

Note  While our policies restrict access to the aggregate resource types within
our compartment only, their permissions could be considered permissive for real-
world scenarios. If necessary, refine the scope of permissions by specifying policy
statements for individual resource types, for more granular control.

�IAM Setup for Data Labelers

For our case study, our NLP expert (external consultant) will act as both data labeler and

data scientist. In real-world scenarios, data scientists are less likely to undertake dataset

annotation tasks themselves. In fact, dataset annotation is a time-consuming task that

is generally delegated to more specialized teams. This approach allows data scientists

to focus on their areas of expertise, such as model development and analysis, while

ensuring high-quality annotations from teams trained specifically for this purpose.

Figure 4-21.  IAM setup for data labeling team

Chapter 4 Tenancy Preparation

135

The architectural diagram above (Figure 4-21) illustrates the IAM configuration

necessary for the data labelers’ team.

Next, we will show the implementation details of this data labeling-related setup.

The security setup steps include creating the labeler group, assigning the NLP consultant

user to this group, and creating a dynamic group and policies for data labeling resources.

We will start by creating our data labeler group:

	 1.	 Go to Identity & Security ➤ Identity ➤ Domains ➤ Default
Domain ➤ Groups, and then click the Create group button.

	 2.	 In the Create group dialog, as shown in Figure 4-22, enter the

group details:

	 a.	 Enter a unique name for our new group Name, i.e., data-labelers-users-grp.

	 b.	 Enter the Description for the group (required), i.e., Data Labelers

User Group.

	 c.	 Under Users section, select the NLP consultant, i.e., John Doe user we

created earlier.

	 d.	 Click Create.

Figure 4-22.  Data labeler group creation

Chapter 4 Tenancy Preparation

136

We will now continue with the creation of dynamic group for our data labeling

resources:

	 3.	 Go to Identity & Security ➤ Identity ➤ Domains ➤ Default
Domain ➤ Dynamic Groups, and then click the Create dynamic
group button.

	 4.	 In the Create dynamic group dialog, as shown in Figure 4-23,

enter the group details:

	 a.	 Enter a unique name for our new group Name, i.e.,

data-labeling-dyn-grp.

	 b.	 Enter the Description for the group (required), i.e., Data Labeling

Dynamic Group.

	 c.	 Add the following matching rules.

	 d.	 Under the Matching rules section, select the option Match any
rules defined below.

Enter the following matching rules:

Rule 1:

ALL { resource.type = 'datalabelingdataset' }

This matching rule means that all data labelling datasets

created are members of the dynamic group.

	 e.	 Click Create.

Chapter 4 Tenancy Preparation

137

Figure 4-23.  Data labeling dynamic group creation

As the final step in this IAM setup section, we will now proceed with creating policies

for our data labeling principals:

	 5.	 From the navigation menu, go to Identity & Security ➤ Identity

➤ Policies, and then click the Create policy button.

	 6.	 Enter the following:

	 a.	 Name: data-labeling-policies.

	 b.	 Description: Policies for the Data Labeling team.

	 c.	 Select the root compartment (not our case study compartment).

	 d.	 Click Show manual editor.

	 e.	 Enter the policy statements below (Listing 4-2) into the Policy Builder field,

and then click Create to create the policy (Figure 4-24).

Chapter 4 Tenancy Preparation

138

Listing 4-2.  Policy statements for data labeling

allow group data-labelers-users-grp to manage data-labeling-family in

compartment case-study-cmpt

allow group data-labelers-users-grp to use object-family in compartment

case-study-cmpt

allow dynamic-group data-labeling-dyn-grp to use object-family in

compartment case-study-cmpt

Figure 4-24.  Policies for the data labeling team

Let’s review and briefly explain the policy statements mentioned. With the first

policy, data labelers can manage all data labeling resources in our compartment.

allow group data-labelers-users-grp to manage data-labeling-family in

compartment case-study-cmpt

The following statements are needed to allow data labelers or data labeling resources

to access Object Storage buckets in our case study compartment.

allow group data-labelers-users-grp to use object-family in compartment

case-study-cmpt

allow dynamic-group data-labeling-dyn-grp to use object-family in

compartment case-study-cmpt

Chapter 4 Tenancy Preparation

139

In this section, we discussed IAM configurations such as user groups, dynamic

groups, and policies needed as prerequisites to start creating using Data Science and

Data Labeling Services.

�Data Science Environment Setup
This section focuses on preparing the Data Science Project and notebook sessions for

our case study. After you successfully sign in to MedTALN Inc.’s OCI tenancy, the NLP

consultant, i.e., John Doe, shall create a Data Science Project intended for the data

scientist to collaborate, organize, and document our case study NLP project’s work.

To create a project, you can create notebook sessions and models and associate them

with the project. You and collaborators can then organize and document data science

work within the projects.

�Project
we delve into the core element of any data science workspace: the project. A project in

data science serves as a collaborative workspace where teams can organize and align

their efforts around specific business questions or use cases. It’s the central hub where

all resources, including notebook sessions and models, are managed and documented.

Creating a project can be done through the console user interface (UI). Open

the Navigation menu. Click Analytics and AI. Under Machine Learning, click Data
Science. Then, click Create project, and select the compartment you want to add the

project to. Here, you’ll provide a unique name and description for the project and

optionally add tags for easy identification and tracking.

Steps that our NLP consultant John Doe should follow after signing in to our tenancy

to create a Data Science Project intended to organize our case study NLP project

resources are as follows:

	 1.	 From the navigation menu, go to Analytics & AI ➤ Machine

Learning ➤ Data Science.

	 2.	 If it is not already selected, select the case study’s compartment

(i.e., case-study-cmpt).

	 3.	 Then, click the Create project button (Figure 4-25).

Chapter 4 Tenancy Preparation

140

Figure 4-25.  Data Science Projects list page

	 4.	 In the Create project panel (Figure 4-26):

	 a.	 Select a compartment for the project (i.e., case-study-cmpt).

	 b.	 Enter a unique name for the project: cs-nlp-prj.

	 c.	 Enter a description for the project: Data Science Project for the

Case Study (NLP).

	 d.	 To view the details for the project immediately after creation,

select the check box View detail page on clicking create.

	 5.	 Click Create.

Figure 4-26.  Data Science Project creation

Chapter 4 Tenancy Preparation

141

The Project details page indicates that John Doe, our NLP consultant, has

successfully created our case study’s Data Science Project (as shown in the Created By

field in the Project information section; see Figure 4-27).

Figure 4-27.  Data Science Project detail page

Note A lternatively, Data Science Projects can also be created programmatically
using the ADS SDK, using the (ProjectCatalog object).

Managing projects is straightforward and includes viewing, editing, and deleting

them. To delete a project, ensure it’s empty of any data science resources.

The following sections will explore setting up Data Science notebook sessions. These

sessions provide interactive coding environments that our NLP team, specifically our

NLP consultant, will use for the entire life cycle of our Healthcare NER model, from the

initial dataset preparation to the final steps of training and deploying the NLP model.

�Notebook Sessions
In configuring our OCI Data Science environment, the NLP consultant intends to create

two notebook sessions, each adapted for the distinct computing demands of our NLP

project’s different stages. The first, a CPU-based session, will be dedicated to every

aspect of model development—spanning dataset acquisition, preprocessing, to model

deployment—except for the model training activity. The second, a GPU-based session, is

Chapter 4 Tenancy Preparation

142

specifically set aside for training our deep learning model. This approach is strategically

designed to minimize the costs related to GPU utilization, a key consideration we’ll

explore in more detail.

OCI Data Science Notebook Sessions are interactive coding environments that

enable you to develop and train your AI models. These JupyterLab-based notebook

sessions are fully managed, which means that the OCI Data Science Service takes care

of provisioning compute, managing software updates, and patching. Additionally, the

notebook sessions support both CPU and GPU shapes and offer persistent storage for

saving your code, data, and files.

Figure 4-28.  Notebook session’s local directories from attached block volume,
mounted buckets, and cloned Git repository

Chapter 4 Tenancy Preparation

143

Figure 4-28 shows how a data science notebook session storage-related out-of-the-

box features simplify data and code access. The automatic attachment of block volumes

ensures that any code, data, or files saved to the block volume will be preserved, even

if the compute instance is shut down. The direct mounting of Object Storage buckets

as local file system directories streamlines data access. At the same time, the cloning

capabilities for public Git repositories enable easy access and version control of code

repositories. These features, when combined, provide a seamless and powerful platform

for data science teams to work together effectively.

•	 Automatic attachment of block volumes for persistent storage,

accessible via JupyterLab, maintaining data between active sessions

When you create a notebook session, a block volume is automatically

attached and mounted in the directory /home/datascience. This

directory is displayed as the root directory in the JupyterLab file

explorer. If you deactivate the notebook session, the compute

instance will be shut down, but the block volume will be retained.

This ensures that any data, notebooks, and conda environments

you save to the block volume will be saved, thus preserving your

progress. However, please note that any data on the boot volume of

the notebook session will be deleted upon deactivation.

•	 Direct mounting of Object Storage buckets as local file system

directories within the notebook environment, streamlining

data access

The service allows for the mounting of up to two buckets that

are configured during the “Mount Storage” step when activating

a notebook session. This feature greatly simplifies our code by

integrating Object Storage buckets as local file systems within OCI

Data Science Notebook Sessions. We have chosen to mount the two

buckets under the directory /home/datascience/buckets to ensure

that they are easily accessible and visible from the JupyterLab file

explorer.

•	 Cloning capabilities for public Git repositories, integrating code

repositories into the notebook for easy access and version control

Chapter 4 Tenancy Preparation

144

When a notebook session is activated, a public Git repository is

cloned (if configured in the runtime configuration section). This

process clones the remote repository under the local directory /

home/datascience/repos. It eases access, collaboration, and version

control among the data science team, thanks to the Git extension and

JupyterLab interface integration.

Overall, these three features significantly enhance the functionality of OCI Data

Science Notebook Sessions, making it easier for data scientists to work efficiently and

collaboratively.

Caution P lease be aware that any files saved on the notebook session block
volume that have not been backed up will be permanently lost when the notebook
session is deleted. This is because the compute instance will be terminated and
the block volume will be destroyed. So, it's important to make sure that you have
backed up all the necessary files before deleting the notebook session.

�CPU-Based Notebook Session Setup

Regarding the setup of our Data Science environment, our NLP consultant, who was

responsible for creating the Data Science Project, will also handle the creation of the

project’s notebook sessions. Here are the steps to create our first notebook session with a

CPU-based compute shape:

	 1.	 Open the navigation menu, and go to Analytics & AI ➤ Machine

Learning ➤ Data Science.

	 2.	 Select our case study compartment (i.e., case-study-cmpt). All

projects in the compartment are listed.

	 3.	 Click the project we created earlier (i.e., cs-nlp-prj).

	 4.	 On the Project details page, click the Create notebook
session button.

Chapter 4 Tenancy Preparation

145

	 5.	 In the Create notebook session dialog box, complete the following

(Figure 4-29):

	 a.	 Enter a unique name for the notebook session: cs-nlp-nbs-cpu.

	 b.	 Keep the default Compute shape.

	 c.	 Enter 50 for the block storage size or leave it empty to use the

default value which is 100 GB.

Figure 4-29.  Creating a CPU notebook session: part 1

	 d.	 To configure the network type, select Custom networking, and

then select our case study VCN and its private subnet.

VCN: cs-vcn

Subnet: private subnet-cs-vcn

	 e.	 Configure the endpoint type by selecting the option Public

endpoint (Figure 4-30).

Chapter 4 Tenancy Preparation

146

Figure 4-30.  Creating a CPU notebook session: networking part

	 f.	 To use storage mounts, click the button +Add storage mount

(Figure 4-31).

	 g.	 Select a storage mount type: OCI Object Storage.

	 h.	 Select our case study compartment: case-study-cmpt.

Select the first bucket we need to mount: training-

datasets-bkt.

	 i.	 Leave Object Name Prefix blank.

	 j.	 For Destination path and directory, enter:

/home/datascience/buckets/training-datasets-bkt.

	 k.	 Click Submit.

Chapter 4 Tenancy Preparation

147

Figure 4-31.  Add storage mount dialog box

	 l.	 Repeat these steps to add our second storage mount for our notebook

session (Figure 4-32):

Bucket: models-ckpt-bkt

Destination path and directory:

/home/datascience/buckets/models-ckpt-bkt

Chapter 4 Tenancy Preparation

148

Figure 4-32.  Our two Object Storage mounts

	 m.	 Expand the Runtime configuration section to define our Git settings.

	 n.	 Select the tab Git settings, and enter our case study public Git

repository URL (Figure 4-33).

Git repository URL: https://github.com/john-doe-typica-

ai/nlp-on-oci.git

Note  The source code for this book is available on GitHub via the book’s product
page, located at www.apress.com/979-8-8688-1073-2. Go to the repository
GitHub and copy the repository URL.

Chapter 4 Tenancy Preparation

https://github.com/john-doe-typica-ai/nlp-on-oci.git
https://github.com/john-doe-typica-ai/nlp-on-oci.git
http://www.apress.com/979-8-8688-1073-2

149

Figure 4-33.  Notebook session Git settings

	 o.	 To view the details for the notebook session immediately after

creation, select View detail page on clicking create.

	 p.	 Click Create.

	 6.	 The Notebook sessions page opens. When the notebook session

is successfully created, as shown in Figure 4-34, the status turns to

Active, and you can open the notebook session.

Figure 4-34.  CPU Notebook session details page

Chapter 4 Tenancy Preparation

150

So far, we’ve discussed the steps required to create our first notebook session in

OCI. Once the notebook session is created and active, you can access it by clicking Open

and signing in with our NLP consultant credentials. This will bring you to the JupyterLab

UI, as illustrated in Figure 4-35.

Figure 4-35.  Notebook session JupyterLab UI

After launching the JupyterLab interface, we can see that the file browser tab displays

two local folders: /buckets for our mounted buckets and /repos for our cloned GitHub

repository (see Figure 4-36).

Figure 4-36.  JupyterLab file browser

Chapter 4 Tenancy Preparation

151

�Conda Installation

Once the notebook session is created, the first step is to install the appropriate conda

environment for our NLP project (explained in Figure 4-37). Conda environments are

used to bundle Python dependencies in the notebook sessions. To develop our NLP

project, we need to install a prebuilt PyTorch2 for Python conda environment.

However, before we dive into the process of installing the conda environment on

our CPU-based notebook session, let’s take a moment to understand what PyTorch

is. PyTorch is an open source deep learning library for Python, primarily developed

by Facebook’s AI research team. It is widely used for deep learning projects, including

Transformer-based NLP projects. Moreover, PyTorch provides excellent support for

GPUs, which is crucial for training our Healthcare NER model.

Figure 4-37.  Install and publish conda env

2 For more information on PyTorch, visit https://pytorch.org

Chapter 4 Tenancy Preparation

https://pytorch.org

152

Steps to install and publish the appropriate conda env. for our case study are as

follows:

	 1.	 In the Launcher tab, click Environment Explorer.

	 2.	 In the Environment Explorer search box, enter PyTorch. Multiple

PyTorch conda envs. are found (Figure 4-38).

Figure 4-38.  PyTorch available conda envs.

	 3.	 Select the most recent one with the latest library version, i.e.,

PyTorch 2.1 for GPU on Python 3.9. This conda env. contains

the latest Transformer libraries (v4.37.2) and oracle-ads version

v2.10.0 (see Figure 4-39).

Chapter 4 Tenancy Preparation

153

Figure 4-39.  Selected PyTorch conda env. for our case study

	 4.	 To install the conda env.

	 a.	 Copy the command line:

odsc conda install -s pytorch21_p39_gpu_v1

	 b.	 Open a new terminal (from the menu, select File ➤ New ➤ Terminal).

Then, paste the copied install command in the terminal and hit enter

(Figure 4-40):

odsc conda install -s pytorch21_p39_gpu_v1

Figure 4-40.  Conda env. installation from terminal

	 5.	 The new conda env. is installed in a block volume under the folder

/home/datascience/conda (see Figure 4-41).

Chapter 4 Tenancy Preparation

154

Note  Since all the installed conda envs. are stored on the block volume under
/home/datascience, we don’t need to reinstall them after deactivating the notebook
session.

Figure 4-41.  Conda env. installation dir

After installing our PyTorch conda env., we can notice as shown in Figure 4-42 that a

new kernel for this particular conda env. is available in the JupyterLab Launcher tab in

the Notebook category. You can start working in that conda environment by clicking the

Environment kernel icon to open a new tab to open a new notebook file.

Chapter 4 Tenancy Preparation

155

Figure 4-42.  New kernel for PyTorch conda

We have successfully set up our PyTorch conda environment. This means we can

now use it to run our Python scripts and notebooks. However, before we start using it,

we need to publish it to a dedicated bucket for storing conda environments. Publishing a

conda environment is useful when we need to include third-party dependencies that are

not included in the prebuilt conda environment by default. It also helps when we want

to share the conda environment with colleagues or across different notebook sessions or

assign it as a runtime environment for model deployment.

To publish our newly installed conda env., the steps are as follows

(refer to Figure 4-43):

	 1.	 Configure odsc conda to use an Object Storage bucket

conda-envs-bkt using this command (replace yz2wwgkgt8eh with

your Object storage namespace):

odsc conda init -b conda-envs-bkt -n yz2wwgkgt8eh

	 2.	 Publish the conda env. to our bucket by running the following

command line:

odsc conda publish -s pytorch21_p39_gpu_v1

Chapter 4 Tenancy Preparation

156

Figure 4-43.  Publishing conda env.

Once the publishing process is done, we can go to our Object Storage bucket in

the OCI console and confirm that our published conda pack is stored in the bucket as

illustrated in Figure 4-44.

Figure 4-44.  Published conda stored in the bucket

Chapter 4 Tenancy Preparation

157

In the Environment Explorer extension of the notebook session, we can also list

and inspect all the condas that we have installed and published to a shared Object

Storage bucket.

As illustrated in Figure 4-45, clicking the Published Conda Environments tab in the

Environment Explorer lists all the conda environments that have been published. This

feature is particularly helpful when team members are using the same bucket to publish

their conda environments, as it allows us to view and access the conda environments

that our colleagues have installed, created, and shared. It is also a great way to archive

and share environments across multiple notebook sessions.

Figure 4-45.  Published conda envs.

You can notice that the conda env. source (i.e., Object Storage path) changed from

the default location to our bucket (replace yz2wwgkgt8eh with your Object storage

namespace):

oci://conda-envs-bkt@yz2wwgkgt8eh/conda_environments/gpu/PyTorch 2.1 for

GPU on Python 3.9/1.0/pytorch21_p39_gpu_v1

We are now ready to perform the setup check to ensure successful completion of the

notebook session setup.

Chapter 4 Tenancy Preparation

158

�Setup Check

We are now prepared to perform a setup check to ensure that the OCI tenancy

preparation for our project has been completed successfully. We will use Python code

to determine the readiness of our notebook session by performing a series of essential

checks, including

•	 GPU Verification: Confirms whether or not this notebook session has

a GPU attached

•	 Object Storage Authentication: Validates authentication using the

notebook session’s Resource Principal, which is the recommended

approach

•	 Object Creation in Bucket: Tests the ability to create a dummy text

file object in our Labeling Datasets Bucket, verifying both access and

functionality.

From the JupyterLab file browser, open the notebook check_setup.ipynb under the

folder (refer to Figure 4-46):

/repos/john-doe-typica-ai/nlp-on-oci.git/chapt-4/check_

setup.ipynb

Figure 4-46.  Notebook for setup check

Chapter 4 Tenancy Preparation

159

First, we check whether the current notebook session has a GPU attached by running

the code in Listing 4-3. The current conda environment supports GPU (CUDA) but is

only using the CPU. This is useful for checking the setup for the upcoming GPU-based

notebook session.

This code checks if a GPU is available using torch.cuda.is_available(). If available,

it sets the “device” variable to “cuda,” otherwise to “cpu.” A message indicates whether

PyTorch will be using “cuda” or “cpu.”

Listing 4-3.  GPU verification

import torch

setting device on GPU if available, else CPU

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print('Using device:', device)

#Additional Info when using cuda

if device.type == 'cuda':

 print(torch.cuda.get_device_name(0))

 print('Memory:')

 �print('Total:', round(torch.cuda.get_device_properties(0).total_

memory/1024**3,1), 'GB')

 �print('Allocated:', round(torch.cuda.memory_

allocated(0)/1024**3,1), 'GB')

 �print('Reserved: ', round(torch.cuda.memory_

reserved(0)/1024**3,1), 'GB')

Output

Using device: cpu

As expected, the output confirms that this notebook session uses a CPU-based

shape only.

Next, execute the code in Listing 4-4, to initialize Object Storage service client and

validate authentication using the notebook session’s Resource Principal.

Chapter 4 Tenancy Preparation

160

Listing 4-4.  Object Storage authentication

import oci

Initialize OCI Object Storage Client with notebook session's resource

principal

signer = oci.auth.signers.get_resource_principals_signer()

object_storage_client = oci.object_storage.ObjectStorageClient(config={},

signer=signer)

object_storage_client

Output

<oci.object_storage.object_storage_client.ObjectStorageClient at

0x7fb8554f9b20>

Authentication, distinct from authorization, verifies the identity of a user recognized

by OCI, enabling them to perform specific actions. The IAM Resource Principals feature

allows OCI resources, such as notebook sessions or jobs, to act as authorized entities,

interacting with other OCI services securely. Resource principals authenticate using

internally managed certificates, eliminating the need for external credential storage and

manual rotation.

The Data Science Service leverages resource principals, offering a secure and

convenient method for your data science environments to authenticate and interact with

other OCI resources. This method is particularly advantageous over the traditional OCI

configuration and API key approach, especially in noninteractive environments like job

runs where managing configuration files is impractical.

Note I t’s important to note that resource principal tokens are cached for a
duration of 15 minutes. Any changes to policies or dynamic groups will only take
effect after this cache period expires.

Code, in Listing 4-5, tests the authorization policies by creating a dummy text file

object in the Labeling Datasets Bucket.

Chapter 4 Tenancy Preparation

161

Listing 4-5.  Dummy file creation in bucket

Initialize Object Storage bucket infos

namespace = object_storage_client.get_namespace().data

bucket_name = "labelling-datasets-bkt"

Initialize Object Storage object's name and body

object_name = "dummy.txt"

object_data = b"Dummy text file for setup check - to be deleted."

#create the dummy file object in the bucket

obj = object_storage_client.put_object(

 namespace,

 bucket_name,

 object_name,

 object_data)

Check the creation of the dummy file in the bucket

list_objects_response = object_storage_client.list_objects(

 namespace_name=namespace,

 bucket_name=bucket_name,

 fields="timeCreated"

)

Get the data from response

print(f"File named {list_objects_response.data.objects[0].name} created on

{list_objects_response.data.objects[0].time_created}")

Output

File named dummy.txt created on 2024-08-15 20:07:17.629000+00:00

Successful execution of the cell confirms the creation of our test file in the Object

Storage bucket. To double-check, we can navigate to the bucket to confirm its existence

(Figure 4-47).

Chapter 4 Tenancy Preparation

162

Figure 4-47.  Dummy file in the bucket

We have finished setting up a notebook session that runs on CPU. The next section

will explain the steps to create a notebook session with a GPU attached. Although the

process is quite similar to setting up a CPU-based configuration, we will highlight some

key differences to ensure a successful setup process for a GPU-based notebook session.

�GPU-Based Notebook Session

As we transition into the model training phase of our NLP case study, the computational

demands escalate significantly. To accommodate the intensive processing requirements

of deep learning algorithms, we embark on creating a GPU-based notebook session.

This section is dedicated to guiding you through the process of setting up a notebook

session optimized for training our bespoke Healthcare NER model. Utilizing a

GPU configuration is not merely a choice but a necessity for handling the complex

computations and large datasets characteristic of NLP tasks efficiently. This introduction

sets the stage for the detailed steps that follow, ensuring you have a robust environment

ready to tackle the challenges of model training within our project’s framework.

Chapter 4 Tenancy Preparation

163

For our GPU-based notebook session, we’ve chosen the VM.GPU.A10 shape (also

known as VM.GPU.GU1). This decision reflects a strategic consideration, offering an

excellent balance between performance and cost. The VM.GPU.A10 shape is particularly

well suited for our needs—training models as required without incurring unnecessary

expenses. This is because once model training completes, we can deactivate the

notebook session, effectively stopping the VM instance behind it. A key advantage of

the VM.GPU.A10 series is that billing pauses when the instance is stopped, though the

instance still counts toward our service limits. This functionality is critical for managing

costs efficiently, especially for workloads like ours, where model training is intermittent.

Dense I/O, GPU, and HPC Shapes: For most shapes, billing continues for
stopped instances because the attached GPU and NVMe local storage
resources are preserved. To halt billing, you must terminate the instance.
For shapes in the VM.GPU.GU1 series (also named the VM.GPU.A10 series),
billing is paused for stopped instances.

—Section “How am I billed for instances?”3

When preparing to use a Data Science notebook session with GPU shapes, such as

VM.GPU.A10.1, it’s crucial to understand and manage your resource limits within your

OCI tenancy. If the default limit for GPUs is set to 0, attempting to create a notebook

session with a GPU shape would lead to an error message indicating a temporary

reduction in resource creation capacity. The error message advises filing a service limit

increase request with OCI support to restore your resource creation capabilities.

Your resource creation has been temporarily reduced. To unblock resource
creation, please file a service limit increase request so that our support team
can assist with restoring your resource creation capability.

—Create notebook session dialog box

To successfully create a Data Science notebook session with a GPU shape, you must

open a service request (SR) to request an increase for the specific resources required.

In the case of the VM.GPU.A10.1 shape, you should specify an increase for the Resource

and Limit Name: VM.GPU.GU1 and ds-gpu-a10-count (Figure 4-48).

3 Oracle official FAQ: https://www.oracle.com/ca-en/cloud/compute/faq/

Chapter 4 Tenancy Preparation

https://www.oracle.com/ca-en/cloud/compute/faq/

164

Figure 4-48.  Limits for GPU.A10 resources in the case study tenancy

You can check your current resource limits through the OCI console. For example, in

our case study tenancy, the console reveals that the service limit for GPUs, particularly

for GPU.A10-based VM and BM instances, is set to 8. This demonstrates that, unlike

the default limit of 0, our tenancy already has a specified capacity of GPU resources

allocated.

Launching a GPU-enabled notebook session (or reactivating a deactivated notebook

session) within our case study tenancy will dynamically update the limits for the GPU.

A10 resource in real time. As the screenshot below shows, the Usage has increased

by one, which, in turn, has reduced the Available count from the total service limit,

demonstrating the current allocation and remaining GPU resources (Figure 4-49).

Figure 4-49.  Real-time update for our case study GPU.A10 limits

Chapter 4 Tenancy Preparation

165

Now, let’s create our second notebook session with GPU support. Here are the steps:

	 1.	 From the project cs-nlp-prj details page, click the Create notebook
session button.

	 2.	 Create a new notebook session the same as the CPU-based one,

with a few changes (Figure 4-50):

	 a.	 Use the following name for this new GPU notebook session: cs-nlp-nbs-gpu.

Figure 4-50.  GPU notebook session creation dialog box

	 b.	 In the Compute shape section, click the button Change Shape to select a

GPU shape: VM.GPU.A10.1 (Figure 4-51).

Chapter 4 Tenancy Preparation

166

Figure 4-51.  GPU compute shape selection

After selecting the Compute shape, select a GPU shape:

VM.GPU.A10.1 (Figure 4-52).

Figure 4-52.  GPU notebook session creation dialog box with GPU shape

Chapter 4 Tenancy Preparation

167

	 c.	 Continue with Networking, Storage Mounts, and Git settings the same way

as we did for our previous notebook session (Figure 4-53).

Figure 4-53.  Storage mount and runtime configuration for the GPU-based
notebook session

	 d.	 Click Create.

	 3.	 On the Notebook session details page, shown in Figure 4-54, you

can confirm that the notebook session is active and the compute

instance shape is VM.GPU.A10.1.

Chapter 4 Tenancy Preparation

168

Figure 4-54.  GPU Notebook session details page

Note I t is important to note that OCI Data Science only supports certain compute
shapes for notebook sessions. Additionally, it’s worth mentioning that the compute
shapes supported are not available in all regions. For instance, as of the time
of writing this book, in Canada, the GPU-based shape “VM.GPU.A10.1” is only
available in the OCI region “Canada Southeast (Toronto)” and not in the OCI region
“Canada Southeast (Montreal).”

We have completed the necessary steps to create our GPU notebook session. Next,

we will log in as John Doe (NLP consultant) and proceed with the following postcreation

setup steps for the notebook session:

	 1.	 Install a Conda Environment: Repeat the same steps done for the

CPU-based notebook session to install the conda env. PyTorch 2.1

for GPU on Python 3.9.

	 2.	 Perform the Setup Check: Repeat the same steps done for the

CPU-based notebook session.

Based on Figure 4-55 we confirmed our current GPU notebook session has a

GPU attached, and the PyTorch library installed via the conda environment can use

the GPU (CUDA). As anticipated, the output confirms the presence of a GPU in this

notebook session. Using torch.cuda.get_device_name(0), we were able to retrieve the

Chapter 4 Tenancy Preparation

169

name of the GPU, which is NVIDIA A10. Additionally, we found out that the total GPU

memory available for use is 22 GB by using the command torch.cuda.get_device_

properties(0).total_memory.

Figure 4-55.  GPU verification

There is an easy way to check if the notebook session has an attached GPU. You

can use the following command from the notebook session terminal, as illustrated in

Figure 4-56:

nvidia-smi

This command line utility is designed to monitor and manage NVIDIA GPU devices,

making it one of the simplest methods for identifying the presence of a GPU.

Figure 4-56.  nvidia-smi on GPU notebook session

Chapter 4 Tenancy Preparation

170

�Summary
In this chapter, we progressed from initial configuration to programmatically assessing

notebook readiness. We examined OCI tenancy preparation, including identity, security,

network, and storage configurations. We also meticulously configured the data science

environment, covering CPU- and GPU-based notebook sessions.

Key Takeaway O CI Data Science Notebooks provide significant cost savings
through intelligent resource management. By allowing deactivation during idle
periods, these notebooks pause billing when not in use. This feature is especially
beneficial for GPU-intensive tasks like model training, where workloads are often
intermittent. You can activate resources for training and then deactivate them
upon completion, effectively stopping all associated costs. This approach ensures
you only pay for actual compute time used, maximizing cost efficiency without
compromising on performance for your Data Science Projects.

In Chapter 5, we will learn how to build a training dataset. The process will be

explained in a step-by-step manner, starting with data collection, followed by data

preparation and creating a data labeling dataset. Next, we will label the dataset using

data labeling tools and export it as a CoNLL dataset, which is ready for model training.

Chapter 4 Tenancy Preparation

https://doi.org/10.1007/979-8-8688-1073-2_5

171
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_5

CHAPTER 5

Dataset Preparation
This chapter highlights the importance of creating high-quality yet cost-effective training

datasets.1 It also elucidates the curating of a dataset for NLP downstream tasks and

explains the influence of high-quality annotations on the model’s training effectiveness.

This chapter provides a comprehensive guide on preparing a training dataset for

NLP tasks, such as Healthcare Named Entity Recognition (NER), utilizing publicly

available and open-for-use community-curated datasets from Hugging Face. These

preexisting datasets can be tailored using OCI ML Services, i.e., OCI Data Science and

OCI Data Labeling. The chapter covers all aspects of the process, from defining the

problem to selecting prelabeled datasets, managing and annotating the data, and finally

creating the training-ready dataset.

The dataset preparation techniques outlined in this chapter are not limited to the

practical example; they can be confidently applied to other NLP downstream tasks.

Utilizing and enhancing a community-curated dataset from Hugging Face is an effective

strategy that aligns with modern data science practices for assembling cost-efficient NLP

datasets.

�Preliminaries
In the “Preliminaries” section, we’ll give an overview emphasizing the importance

of labeled datasets in NLP-supervised learning tasks, e.g., Healthcare Named Entity

Recognition (NER). We’ll then discuss practical and effective cost-saving strategies,

providing insights and methods that you can readily implement to reduce the expenses

associated with dataset creation by utilizing community-curated datasets.

1 Please note that the terms “training dataset” and “training data” are used interchangeably
throughout the book and both refer to training, validation, and evaluation data.

https://doi.org/10.1007/979-8-8688-1073-2_5#DOI

172

In the “Dataset Life Cycle” section, we’ll describe activities, from defining the

problem to selecting suitable prelabeled datasets from trusted sources such as Hugging

Face. This involves evaluating the quality and relevance of the dataset to the task at

hand and ensuring it aligns with the project’s requirements. Once a suitable dataset is

identified, we’ll discuss the process of preparing it for use, which may involve cleaning,

balancing, and enriching the data. This will enable us to clarify all the important

concepts before starting the actual work of dataset preparation using OCI ML Services.

�Labeled Datasets
Hand-labeled data is crucial for supervised learning, much like teaching a child. The

accuracy and quality of what they learn directly affect their subsequent actions and

knowledge. Similarly, NLP models rely on the data they’re trained on.

When building an NLP model for a downstream task such as Named Entity

Recognition (NER), it is important to understand that the training phase significantly

determines the model’s effectiveness. However, it is equally important to note that the

dataset’s quality is essential for the model’s success. Large, diverse, and well-labeled

datasets are necessary for transfer learning to achieve optimal model performance.

Figure 5-1.  Toy example of an annotated NER dataset

Chapter 5 Dataset Preparation

173

To train models for NLP tasks, we need a labeled dataset, as illustrated in Figure 5-1

for the NER task. The size of the dataset is a key factor that determines the model’s

accuracy. Generally, larger datasets result in better performance, as they allow the model

to learn from diverse examples and make more precise predictions. With more labeled

data, a supervised learning model can learn better and generalize more effectively. A

larger dataset provides a more comprehensive representation of real-world scenarios,

which helps reduce overfitting and makes the model more robust.

Dataset quality for an NLP task can be improved by ensuring diversity. A diverse

dataset could include examples from different contexts, such as various domains,

sources, and writing styles. This makes it possible for the model to make accurate

predictions on unseen data and generalize better. A diverse dataset includes variance

in domains such as medical, legal, and journalistic sources such as social media,

formal publications, spoken transcripts, and writing styles such as informal, technical,

and literary. This diversity challenges the model to adapt to its learned patterns

across different contexts, which is essential for its ability to perform well in practical

applications.

One crucial aspect of an NLP downstream task dataset is the accuracy of its

labelling/annotations.2 Low-quality annotations can lead to incorrect predictions

by models, resulting in decreased performance. Ensuring that the annotations are

consistent and accurate throughout the dataset is vital. Reliable annotations in the

training data are critical. Incorrect or inconsistent labeling can mislead the model during

the training phase, leading to poor performance and unreliable outputs in real-world

scenarios. It is also essential to ensure that the different annotators follow consistent

guidelines to avoid introducing noise into the data, which can confuse the model and

harm its performance.

To sum up, for an NLP model to be effective, it needs to have a high-quality dataset

that is large, diverse, and accurately annotated. Building such a dataset requires

adhering to best practices in dataset preparation. By doing so, organizations can

significantly enhance their NLP models’ predictive accuracy and generalizability. While

a robust training phase is essential, the foundation of any successful model lies in its

dataset. Therefore, it is crucial to prioritize the quality of the dataset.

2 In this book, “labeling” and “annotation” are used interchangeably. “Labeling” is typically
applied to tasks such as sentiment analysis, where individual examples, instances, or records are
categorized, while “annotation” is used for more detailed tasks such as Named Entity Recognition
(NER), which involves fine-grained tagging within these instances.

Chapter 5 Dataset Preparation

174

�Cost Saving
Data preparation is widely known to be one of the most time-consuming and resource-

intensive parts of machine learning projects, including those involving Natural Language

Processing (NLP). An article published by O’Reilly Radar raises an interesting point: the

commonly held belief that data scientists spend 80% of their time on data preparation is

closer to the truth (Bowne-Anderson, 2020).

It’s important to keep in mind that the actual costs can vary depending on factors

such as the availability of prelabeled datasets, the complexity of the data, the quality

requirements for labeling, and the use of automated or crowdsourced labeling techniques.

Before embarking on the dataset creation process for our Healthcare NER model, we

must address a pressing question: How do we create a high-quality labeled dataset while

being cost-effective?

Our NLP consultant will guide us through different strategies, as shown in Figure 5-2,

to solve this challenge, ensuring we can obtain the labeled data without sacrificing

quality or incurring excessive costs.

Figure 5-2.  Cost saving strategies for the dataset preparation

�Off-the-Shelf Datasets

This section discusses how leveraging ready-to-use datasets can help balance quality

and cost-effectiveness while building our training dataset.

Leveraging openly available, prelabeled, and community-curated datasets can

provide substantial cost advantages, particularly for languages like French, where

manual annotation can be prohibitively expensive.

Chapter 5 Dataset Preparation

175

Open public datasets can significantly reduce data acquisition costs when

developing NLP solutions. Those community-curated datasets, freely accessible through

platforms such as Hugging Face, can eliminate the financial barrier associated with

purchasing proprietary datasets or collecting and annotating new data from scratch. This

makes developing and deploying NLP solutions more economically feasible for small

teams and organizations with limited budgets.

Using prelabeled datasets can significantly lower the costs of data annotation. These

datasets already have tagged entities, so the main expense is adapting and enhancing

the labels to meet specific project needs. This customization process usually involves

making minor adjustments or creating new custom labels and annotations to match the

requirements of the target model.

For example, while a general NER model can recognize broad entity categories,

customizing it for medical or legal texts may require more detailed entity types.

Prelabeled datasets can save much money, as most labeling work is already done. This

allows teams to focus on refining and customizing the dataset rather than building one

from scratch.

Community-curated datasets, maintained by a collective of academic and

professional contributors, do not need ongoing investments in maintenance and

enhancement to remain up-to-date and reliable. As these updates are community-

driven, they also benefit from a diverse range of insights, which helps to improve the

quality and diversity of the annotations.

Using preexisting datasets is an efficient and cost-effective way for preparing a

training dataset. Here’s why:

•	 Openly Available: Many datasets are available at no cost, especially

those hosted on platforms like the Hugging Face and Kaggle. These

platforms offer a variety of datasets under open source licenses,

including general-purpose datasets, domain-specific datasets, and

datasets for specific languages like French.

•	 Prelabeled: These datasets come preannotated, relieving you from

the substantial costs and time commitments associated with the

manual annotation process. For specific languages like French,

hiring native speakers for annotation tasks can be particularly costly,

especially when offshoring is not an option due to quality concerns

or legal restrictions.

Chapter 5 Dataset Preparation

176

•	 Large and Diverse: Open datasets often encompass a wide range of

text types and styles, which is crucial for training robust NLP models.

This diversity instils confidence in the effectiveness of the models

you develop, as they are not only accurate but also effective across

different contexts and domains.

•	 Maintenance: Open datasets are frequently curated and maintained

by academic or professional communities. These communities follow

rigorous annotation guidelines and often employ a peer-review

process to ensure the quality and reliability of the annotations.

We’ve decided to use and customize an open, prelabeled French dataset for the

Healthcare NER task in our case study to reduce the high manual data gathering and

annotation costs. This approach will help us acquire the necessary data within our

proof-of-concept budget constraints.

�Cost Comparative Analysis

Before deciding whether to use a prelabeled dataset to create a training dataset for

our Healthcare NER project or to create a new one from scratch, the NLP consultant

compared the costs of both options and determined which one was more cost-effective.

Now, let’s discuss this analysis and choose the best way to build a training dataset for our

case study.

Tip T he purpose of this comparative analysis is not only to draw a comparison
between two scenarios but also to provide suggestions on how we can
approximate the expenses required for creating and annotating a dataset from
scratch.

Let’s assume that we need to create a training dataset for the generic NER task (not

a domain-specific like Healthcare NER) that can effectively identify and classify entities

in textual documents. The entities of interest include persons, organizations, locations,

money, etc., with a total of ten classes of generic entities. We will need a dataset of

approximately 10,000 examples to train this model, each of which may contain multiple

entities. Furthermore, annotations for the dataset examples shall be manually reviewed

to ensure dataset annotation quality.

Chapter 5 Dataset Preparation

177

We will be making some assumptions for estimating the preparation of an annotated

dataset. These assumptions are as follows:

•	 Annotation Speed: On average, a skilled annotator can label about

100 examples per hour, depending on the complexity of the text. This

includes reading the text and selecting the appropriate labels.

•	 Text Simplicity: The text in each record is extremely simple, i.e.,

single sentence or a fragment with clear, straightforward entities.

•	 Number of Annotations Per Record: Each record requires

annotations for approximately three entities.

•	 Number of Labels: The annotator has to choose from ten possible

labels, which adds a layer of decision-making but is manageable

with familiarity.

•	 Training and Familiarization: Initial training and periodic quality

checks are necessary, which will reduce the effective annotation rate.

•	 Tool Efficiency: Using an efficient annotation tool like OCI Data

Labeling Service (DLS) could potentially enhance labeling

collaboration, thus speeding up the annotation process.

Here is a comparison (presented in Table 5-1) that presents the costs and efforts

involved in two different approaches to dataset creation: building and annotating a

dataset from scratch, versus enhancing a prelabeled dataset. This should provide a clear

and concise view of the two scenarios.

Chapter 5 Dataset Preparation

178

This table clearly shows that using a prelabeled dataset (Scenario 2) offers significant cost

and time savings compared to building and annotating a dataset from scratch (Scenario 1).

Figure 5-3.  Dataset preparation cost comparison

Table 5-1.  Costs and effort comparison for building a dataset from scratch vs.

enhancing a prelabeled dataset

 Activity Description Scenario 1:
From Scratch

Scenario 2: Prelabeled

Data Collection Sourcing and acquiring data $1,000 Included in dataset

Data Wrangling

and Preprocessing

Cleaning, normalizing, and

preparing data

$1,500 (50 hrs

@ $30/hr)

$300 (10 hrs @

$30/hr for adjustments)

Annotation Manual annotation of entities $1,500 (100 hrs

@ $15/hr)

$450 (30 hrs @ $15/hr)

Total Costs Sum of all costs $4,000 $750

Time Investment Estimated time to complete all tasks Extensive Reduced

Flexibility and

Customization

Ability to tailor data to specific

needs

High Moderate

Ease of

Deployment

Time and effort to get the NLP

model to deployment stage

Longer Shorter

Overall Efficiency Cost and time efficiency Lower Higher

Chapter 5 Dataset Preparation

179

Building a dataset can be costly, especially for domain-specific and language-

specific datasets (as outlined in Figure 5-3). For instance, building a labeled dataset

for our Healthcare NER from scratch would involve hiring annotators with medical

knowledge in French, which is not easily accessible and, therefore, costly.3 Although

building a dataset from scratch can be expensive, it does provide greater control over the

labeled data.

After conducting a comparative analysis, it became clear that adapting an existing

dataset could save up to 75% in costs. Based on this insight, our NLP consultant, John

Doe, has decided to utilize existing datasets to save time and achieve high-quality

labeled data.

In the upcoming sections, the NLP consultant will go through the process of

searching and selecting a suitable dataset for French Healthcare NER from the

community-curated datasets publicly available on the Hugging Face platform.

�Dataset Life Cycle
The data engineering life cycle comprises stages that turn raw data ingredients into a

useful end product, ready for consumption by analysts, data scientists, ML engineers,

and others (Joe Reis, 2022).

Constructing a robust training dataset for Natural Language Processing (NLP)

projects involves a series of methodical steps to ensure that the data is comprehensive,

relevant, and high quality, which is necessary to train effective models. In our case study,

we will focus on Healthcare Named Entity Recognition (NER) as the targeted NLP task

and cover how to build a labeled dataset for it.

As illustrated in Figure 5-4, our flow is designed to be iterative, meaning we can use

insights from model performance to refine data wrangling and labeling steps, leading to

continuous improvement.

3 More than the estimated cost for manual annotation of $15/hr in the comparative analysis
scenarios.

Chapter 5 Dataset Preparation

180

Figure 5-4.  Training dataset preparation life cycle activity flow

Here is a list of steps for constructing a robust our training dataset:

	 1.	 Problem Definition: We need to train a Healthcare NER model

using a transfer learning approach, which involves leveraging

knowledge from a pretrained model on a different but related task,

to identify medical entities.

	 2.	 Dataset Selection: We will leverage a ready-to-use prelabeled

publicly available dataset that aligns with our objectives.

	 3.	 Dataset Collection: Storing our selected dataset to Labeling

Datasets Buckets from where OCI Data Labeling will access it after

the data processing step.

	 4.	 Dataset Wrangling: This step encompasses the following two main

substeps:

	 a.	 Clean: We will remove all examples from the dataset that are irrelevant to

our case study, such as those that do not contain any entity of interest. We

will also ensure that the labeled entities are balanced within the dataset.

	 b.	 Transform: we will transform it to the format JSONL Consolidated (one of

the formats expected by OCI Data Labeling).

Chapter 5 Dataset Preparation

181

	 5.	 Dataset Labeling: The labeling team, a key part of our process,

will adapt the prelabeled dataset to our case study specification

by manually labeling missing medical entities, i.e., dataset

enrichment. We will review the labeling to ensure data labeling

quality and consistency.

	 6.	 Dataset Creation: We will export the final labelled dataset from

OCI Data Labeling to our Training Datasets Bucket. Then, we will

save the final training dataset in the Hugging Face library format, a

popular format for storing NLP datasets.

Our training dataset creation flow is sufficient for our case study, but it could be

improved by implementing some data best practices for real-life projects. This includes

automating the flow through data pipelines that automate the process from data

collection to training dataset creation. Additionally, we should use data versioning tools

to manage changes and experiment with different dataset versions. Documenting and

keeping detailed records of data sources, collection methods, preprocessing decisions,

and version histories is also important. Following these steps can ensure a more efficient

and effective data flow.

Before we delve into the various stages of our data life cycle that we need to follow to

create a training dataset from an existing one, it’s essential that we have a well-

defined set of requirements. These requirements will help us customize the preexisting

Healthcare NER dataset to meet all our business needs. Therefore, our first focus should

be outlining the requirements before proceeding with the rest of the process.

�Framing the Problem (Step 1)
For our MedTALN Inc.’s running example, we need to create a training dataset with a

comprehensive set of annotated textual examples from the medical domain in French.

The examples should contain medical entities such as conditions, medications,

symptoms, and procedures.

To simplify the process of creating the training dataset, the NLP consultant chose

to use, as a starting point, an existing dataset that has already been curated for a similar

purpose: Named Entity Recognition (NER) task for the French language, ideally in the

healthcare domain.

Chapter 5 Dataset Preparation

182

The following are some assumptions for the labeling stage of our dataset life cycle:

•	 OCI Data Labeling Service (DLS) will be used as the annotation tool.

•	 Python notebooks shall be used to format the dataset in a format

compatible with the DLS’s import process.

•	 The labeling team is proficient with DLS tool.

•	 Detailed and clear annotation standards and guidelines and a

thorough annotation review process shall be defined.

In summary, adhering to these requirements throughout the data preparation phase

will ensure the development of a high-quality Healthcare NER training dataset.

�Dataset Selection (Step 2)
Leveraging prelabeled datasets is not a straightforward task. NLP practitioners need

to efficiently and cost-effectively search, evaluate, enrich, and adapt these datasets to

prepare high-quality training datasets for downstream NLP tasks.

To identify the appropriate prelabeled dataset that meets our case study

requirements, the NLP consultant has established the following selection criteria:

•	 Task specificity: The dataset must be specifically curated for the NLP

task of Named Entity Recognition (NER).

•	 Domain Specificity: Ideally, the dataset should consist of examples

from the medical domain, including annotations for medical entities

such as conditions, medications, symptoms, and procedures.

•	 Language Specificity: The dataset must contain a significant number

of French examples.

•	 Open Source and Accessibility: Preferred datasets should have an

open source license and be publicly available from trusted sources

such as Hugging Face4 or Kaggle.5

•	 Data Quality, Relevance, and Cleanliness: Dataset’s examples

and annotations must exhibit an acceptable level of cleanliness,

relevancy, and accuracy upon spot-checking.

4 For more on Hugging Face, visit the website https://huggingface.co/
5 For more details on Kaggle, visit the website https://www.kaggle.com/

Chapter 5 Dataset Preparation

https://huggingface.co/
https://www.kaggle.com/

183

By adhering to these criteria, the NLP consultant ensures the selection process of a

prelabeled dataset is well documented and objective, resulting in a dataset that is both

highly relevant and suitable for the specific NLP task at hand.

�Selecting Datasets on Hugging Face

The dataset selection process begins with an in-depth search on the Hugging Face Hub,

where we iteratively identify potential candidate datasets. Once these candidates are

identified, we leverage Python code to thoroughly explore and evaluate them, ultimately

determining the optimal dataset that will serve as the foundation for efficient and

effective training dataset preparation.

When searching for datasets for Natural Language Processing (NLP), the Hugging

Face Hub is a valuable repository. This platform hosts diverse community-curated

datasets for NLP tasks in over 100 languages, including translation, Named Entity

Recognition, and sentiment analysis. Furthermore, some datasets offer a Dataset
Viewer, as illustrated in Figure 5-5, a user-friendly interface for data exploration. To

search or explore the publicly available datasets, we can use the search box on the

primary datasets page or within the top navigation to locate datasets. The search results

may be filtered by language, task, and license for optimal results.

Figure 5-5.  Hugging Face Dataset Viewer

Chapter 5 Dataset Preparation

184

When embarking on the journey of finding a dataset (as illustrated in Figure 5-6),

the multitude of results can be daunting, even after applying filters such as the NLP task,

language, or size. However, by exploring the data with the Dataset Viewer, if available,

and looking for several other key features, you can gain a deeper understanding of the

dataset and make an informed decision about which dataset can be a good candidate for

your needs.

At the outset, it’s crucial to examine carefully the dataset summary. This concise

overview usually provides valuable insights into the dataset’s purpose, creation process,

intended use, supported tasks and languages, and size. It can help us easily distinguish

irrelevant datasets and determine if they align with our selection criteria.

Equally important is comprehending the dataset’s curation process. Understanding

what motivated its creation and the major choices made in its assembly, as well as

knowing the dataset curators, their affiliations, and any funding information, can instill

confidence in the dataset’s reliability and credibility.

The source of the data and the collection process are also important factors to

consider. We should know where the data came from, such as news text, social media

posts, or translated sentences, and the data selection or filtering criteria. It is also

important to know whether the data was produced by humans or machine-generated

and the people or systems who originally created it. If data was collected from other

Hugging Face preexisting datasets, knowing the details of the original Hugging Face

dataset can be helpful.

If the dataset contains annotations, it’s important to understand the annotation

process and any tools used. Knowing the amount of data annotated and the annotation

guidelines provided to the annotators can help us assess the quality of the annotations.

If available, knowing interannotator statistics, which measure the level of agreement

between different annotators, can also be useful. We can also look for information on

any validation processes used to ensure the quality of the annotations.

Finally, it’s important to check the dataset’s licensing information and ensure we

understand and agree with its terms of use. This is crucial as it determines how we can

use the dataset, whether it’s for commercial or noncommercial purposes, and if we can

modify or redistribute the dataset.

Data scientists use exploratory data analysis (EDA) to understand the dataset’s

characteristics. EDA is an iterative process that helps answer questions about the

dataset, such as whether any data wrangling or transformation is needed to solve the

NLP problem. By analyzing the dataset, NLP experts can assess its quality and usability.

For example, suppose the NLP problem is token classification. In that case, the expert

Chapter 5 Dataset Preparation

185

can use EDA to analyze the dataset’s text length, the label count for each class, and

the distribution of labels across the dataset classes. This information can help decide

whether to truncate or delete short or lengthy examples from the dataset or balance the

dataset by writing some code.

Figure 5-6.  Dataset selection workflow using Hugging Face platform

Chapter 5 Dataset Preparation

186

Even if the Dataset Viewer is unavailable on the Hugging Face Hub, the NLP expert

can use Python notebooks to explore and analyze a potential candidate dataset using

the Hugging Face datasets.6 This allows the expert to delve into the dataset’s features and

structure, like its text examples and labels, as well as its splits for training, validation, and

testing.

The Hugging Face Datasets library offers a programmatic way to interact with

datasets from the Hub, making integrating datasets into NLP projects easy. The library’s

streaming functionality ensures efficient data access, even when dealing with large

datasets. We can effortlessly access and experiment with publicly available datasets with

just a single line of code. This simplified approach to dataset integration can significantly

enhance your workflow and boost productivity.

When working with datasets, it can take a long time to download them before you

can even inspect them. To save time, it’s helpful to get some general information about

the dataset before downloading it. This information is stored in DatasetInfo and includes

details such as the dataset description, features, and size. To inspect a dataset’s attributes

without committing to downloading it, as shown in the Listing 5-1, use the load_dataset_

builder() function to load a dataset builder.

Listing 5-1.  Inspect dataset

from datasets import load_dataset_builder

ds_builder = load_dataset_builder("conll2003")

Inspect dataset

print(ds_builder.info.splits["train"].num_examples)

ds_builder.info.features

out

14041

{'id': Value(dtype='string', id=None),

 �'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1,

id=None),

6 For more information about Hugging Face Datasets library, please visit the website at https://
huggingface.co/docs/datasets/index

Chapter 5 Dataset Preparation

https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/datasets/index

187

 �'pos_tags': Sequence(feature=ClassLabel(names=['"', "''", '#', '$', '(',

')', ',', '.', ':', '``', 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ',

'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', 'NNS', 'NN|SYM', 'PDT',
'POS', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB',

'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP$', 'WRB'], id=None),

length=-1, id=None),

 �'chunk_tags': Sequence(feature=ClassLabel(names=['O', 'B-ADJP', 'I-ADJP',

'B-ADVP', 'I-ADVP', 'B-CONJP', 'I-CONJP', 'B-INTJ', 'I-INTJ', 'B-LST',

'I-LST', 'B-NP', 'I-NP', 'B-PP', 'I-PP', 'B-PRT', 'I-PRT', 'B-SBAR',

'I-SBAR', 'B-UCP', 'I-UCP', 'B-VP', 'I-VP'], id=None), length=-1,

id=None),

 �'ner_tags': Sequence(feature=ClassLabel(names=['O', 'B-PER', 'I-PER',

'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC'], id=None),

length=-1, id=None)}

This is a dataset of contains a train split with 14041 examples.

�Candidate Healthcare NER Dataset

The CoNLL-2003 dataset,7 a pivotal resource in the field of Named Entity Recognition

(NER), serves as a benchmark for evaluating NER models. Initially crafted for English

and German languages, its structure and annotation scheme have set a standard,

inspiring the creation of datasets for additional languages. This dataset, introduced by

Erik F. Tjong Kim Sang and Fien De Meulder in 2003, is notable for its comprehensive

annotation of entities into four categories: locations (LOC), organizations (ORG),

persons (PER), and miscellaneous (MISC).

As NER continues to evolve, the principles embodied in the CoNLL-2003 dataset

remain a cornerstone for advancing the field, guiding researchers and practitioners in

the creation and refinement of models capable of accurately recognizing and classifying

named entities across a spectrum of languages and contexts. To illustrate the structure of

the CoNLL-2003 dataset, Figure 5-7 provides a representative example.

7 The Hugging Face CoNLL-2003 dataset is available at https://huggingface.co/datasets/
eriktks/conll2003

Chapter 5 Dataset Preparation

https://huggingface.co/datasets/eriktks/conll2003
https://huggingface.co/datasets/eriktks/conll2003

188

Figure 5-7.  CoNLL-2003 dataset page on Hugging Face

Building on the foundation laid by the CoNLL-2003 dataset, several datasets have

been developed for French language NER, adhering to its structure and annotation

guidelines. These datasets are crucial for training and evaluating NER models tailored to

French, reflecting the linguistic nuances and entity categories specific to the language.

•	 WikiNER8: Developed by Nothman et al. in 2013, WikiNER provides a

substantial dataset for French, comprising 120,682 training instances

and 13,410 test instances. It categorizes entities into locations (LOC),

organizations (ORG), persons (PER), and miscellaneous (MISC),

serving as a versatile resource for model training.

•	 Wikiann9: Initiated by Rahimi et al. in 2019, based on work by Pan,

Xiaoman, et al., Wikiann further enriches the French NER dataset

landscape. It offers 20,000 training instances, 10,000 validation

instances, and 10,000 test instances, maintaining the same entity

categories as WikiNER and promoting detailed model evaluation.

8 WikiNER homepage: https://metatext.io/datasets/wikiner and Hugging Face Hub page:
https://huggingface.co/datasets/Jean-Baptiste/wikiner_fr
9 Wikiann Hugging Face Hub page: https://huggingface.co/datasets/wikiann

Chapter 5 Dataset Preparation

https://metatext.io/datasets/wikiner
https://huggingface.co/datasets/Jean-Baptiste/wikiner_fr
https://huggingface.co/datasets/wikiann

189

•	 MultiNERD10: Introduced by Tedeschi and Navigli in 2022,

MultiNERD expands the scope of French NER datasets with 140,880

training instances, 17,610 validation instances, and 17,695 test

instances. It broadens the spectrum of entity categories, including

not only the standard ones but also animals (ANIM), biological

terms (BIO), celestial entities (CEL), diseases (DIS), events (EVE),

and more, thus offering a richer and more diverse dataset for

comprehensive model training.

•	 MultiCoNER v211: Proposed by Fetahu et al. in 2023, MultiCoNER v2

aligns with the French part of the dataset, presenting 120,682 training

instances and 13,410 test instances. It classifies entities into detailed

categories such as location, creative work, group, person, product,

and medical, each with subcategories, thereby providing a nuanced

and extensive dataset for French NER tasks.

•	 Pii-masking-200k12: This dataset, introduced by ai4Privacy in 2023,

focuses specifically on Personally Identifiable Information (PII).

This dataset is designed to address the pressing need for models that

can accurately identify and handle sensitive personal information,

ensuring privacy and compliance with data protection regulations.

•	 MedicalNER_Fr13: This open source dataset was published on

Hugging Face by typica.ai in 2024 for educational purposes only.

It has been specifically designed to assist in training Named

Entity Recognition (NER) models for the French language within

the medical and healthcare domain. The dataset is derived from

MultiCoNER11 Dataset (listed above).

10 MultiNERD dataset Hugging Face Hub page: https://huggingface.co/datasets/tner/
multinerd
11 Multilingual Complex Named Entity Recognition Version 2 (MultiCoNER v2) dataset can be
found at Hugging Face Hub: https://huggingface.co/datasets/MultiCoNER/multiconer_v2
12 Pii-masking-200k dataset Hugging Face Hub page: https://huggingface.co/datasets/
ai4privacy/pii-masking-200k
13 TypicaAI/MedicalNER_Fr dataset can be found at Hugging Face: https://huggingface.co/
datasets/TypicaAI/MedicalNER_Fr

Chapter 5 Dataset Preparation

https://huggingface.co/datasets/tner/multinerd
https://huggingface.co/datasets/tner/multinerd
https://huggingface.co/datasets/MultiCoNER/multiconer_v2
https://huggingface.co/datasets/ai4privacy/pii-masking-200k
https://huggingface.co/datasets/ai4privacy/pii-masking-200k
https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr
https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr

190

While the datasets listed above represent a significant portion of resources available

for French NER tasks, it’s important to note that this list is not exhaustive. There exist

other datasets tailored to the French language that might not have been mentioned here.

Amid the vast array of available datasets, each with its unique advantages and

limitations, establishing clear selection criteria becomes paramount to align with

the specific goals of our Healthcare NER project. The presence of datasets varying in

quality necessitates a discerning approach; lower-quality datasets could complicate the

training with unnecessary noise, demanding significant cleaning and preprocessing.

Conversely, datasets overly concentrated on a particular domain, despite their value for

specific applications, might not offer the comprehensive coverage required for broader

NER tasks.

Upon careful evaluation by the NLP Consultant, typica.ai’s “MedicalNER_Fr” dataset

(typica.ai, 2024) was chosen as the dataset to begin creating the case study dataset

(Figure 5-8). The following points outline the critical reasons and the underlying logic

that, in adherence to the predefined selection criteria, led our consultant to prefer this

specific dataset for our initiative:

•	 The Dataset’s Focus on Healthcare: The dataset is explicitly focused

on the healthcare domain, eliminating the need for additional costly

healthcare domain-specific annotation and labeling.

•	 French Language Support: This dataset focuses on the French

language, eliminating the need for additional filtering or

preprocessing to isolate French data from a multilingual corpus.

•	 Open Source License and Availability: The dataset is open source and

publicly available via the Hugging Face Hub, facilitating easy access

and integration into our training pipeline. The open source license

further underscores its suitability for academic and commercial

projects alike.

•	 Comprehensive Entity Annotations: The dataset stands out for its

rich annotation, including generic entities (e.g., person, location,

organization) as well as medical entities, surpassing many alternative

datasets.

Chapter 5 Dataset Preparation

191

•	 Overall Good Quality: Preliminary quality assessments of the dataset

revealed a good degree of cleanliness and correctness. The dataset

exhibited strong performance across key metrics of relevance,

consistency, uniformity, and comprehensiveness.

Figure 5-8.  The selected “TypicaAI/MedicalNER_Fr” dataset, on the Hugging
Face Hub

The combination of these factors makes the TypicaAI/MedicalNER_Fr dataset the

optimal choice for our Healthcare NER project. It provides a solid foundation for the

creation of a cost-effective training dataset, aligning well with the objectives of our

case study.

�Training Dataset Preparation
We have found a prelabeled dataset called “MedicalNER_Fr” (typica.ai, 2024). This

dataset will be our starting point for creating our training dataset.

Our NLP consultant will assist us in acquiring, processing, annotating, and finalizing

the training dataset.

Chapter 5 Dataset Preparation

192

We can review the key steps in preparing our Healthcare NER training dataset with

the help of Figure 5-9’s workflow diagram. Let’s go through these steps together.

Figure 5-9.  High-level architecture for dataset creation

	 1.	 Data Collection: The workflow begins by accessing the Hugging

Face TypicaAI/MedicalNER_Fr dataset. This dataset is fetched

using Python code within an OCI Data Science Jupyter notebook.

	 2.	 Data Wrangling: The retrieved Hugging Face dataset is processed

and then transformed into the JSONL Consolidated format. This

is a json-based format suitable for the subsequent data labeling

process. Once transformed, the new dataset is saved to a Labeling

Datasets Bucket.

	 3.	 Data Labeling: The transformed dataset, now in JSONL

Consolidated format, is subsequently imported into the OCI Data

Labeling Service (DLS) for annotation. Our labeling team enriches

this dataset by identifying and labeling the missing medical

annotations relevant to our case study.

Chapter 5 Dataset Preparation

193

	 4.	 Export Annotated Data: After the data labeling is completed,

the annotated dataset is exported back to Training Datasets

Bucket. This dataset now contains the original data along with the

annotations provided by the labeling team.

Note  During dataset enrichment, it is possible to add new medical entities that
might be relevant to the Healthcare NER task. However, for simplicity, in this case
study, we will focus only on adding missing annotations for existing entities rather
than introducing new medical entities.

To create our Healthcare NER model training dataset, we need to retrieve, transform,

label, and export the annotated data to CoNLL format. The OCI Data Labeling Service

(DLS) can help improve the data quality by providing new labels or entities tailored to

specific project requirements. This process results in a high-quality dataset that can train

our Healthcare NER model.

John Doe, our NLP consultant, will play a dual role as a member of the data labeling

and data science teams.14 He will use OCI Data Science Notebooks and OCI Data

Labeling Datasets to prepare the Data Labeling Service (DLS) Dataset and annotate

its records. He will provide step-by-step guidance through Python notebooks and DLS

procedures throughout the process. As a result, he will share his expertise in preparing

datasets to train NLP models for downstream tasks.

�Dataset Collection and Wrangling (Steps 3 and 4)
Data wrangling is the process of taking “raw” or “found” data and transforming it into

something that can be used to generate insight and meaning (McGregor, 2021). Data

wrangling is a crucial step in preparing datasets for Natural Language Processing (NLP).

It involves converting unstructured data into a structured format that is essential for

building successful NLP models. By performing effective data wrangling, practitioners

ensure that the data is clean, consistent, and easy to understand, which improves the

predictive capabilities of machine learning algorithms. Practitioners use techniques like

14 Please note that, for the purpose of this case study, the terms “data labelers” and “data
scientists” refer to our fictional NLP consultant, John Doe, who is the only member of
these teams.

Chapter 5 Dataset Preparation

194

data munging and cleaning to develop robust NLP datasets. By meticulously preparing

the data, they lay a solid foundation for maximizing the accuracy and efficiency of

their models.

As part of our case study, we need to process the Hugging Face dataset by cleaning,

balancing, and transforming it.

•	 Cleaning involves removing examples that are irrelevant to our case

study, such as those that don’t feature the entity of interest.

•	 Balancing ensures that the labeled entities are distributed evenly

across all selected dataset examples.

•	 In the Transform step, we will convert the dataset to the JSONL

Consolidated format, which is one of the formats supported by

OCI Data Labeling. This format is suitable for the subsequent data

labeling process.

Once the transformation is complete, the new dataset will be saved to a Labeling

Datasets Bucket.

Before proceeding with the data wrangling process, it’s important to understand the

significance of a well-balanced dataset for training a classification model (e.g., token

classification15). A balanced dataset refers to a dataset where the number of samples for

each class is roughly equal. This is important because imbalanced datasets can lead to

biased models that perform poorly on minority classes.

Balancing the dataset is a crucial step in our data wrangling process. As our

Healthcare NER model resolves a classification problem, it performs token classification.

However, the dataset may be imbalanced, meaning that some classes (e.g., first

name, last name) have a large portion of the training dataset, while others are

underrepresented (e.g., address, city). This creates a problem as the model may learn

to predict the majority classes to achieve high accuracy, ignoring the underrepresented

classes, which are equally or more important in real-world scenarios.

We need to balance the dataset to prevent bias toward one class, making it easier

to train the model. Balancing ensures that the model does not favor the majority class

simply because it contains more data. By ensuring that the dataset is balanced, we

can improve the performance of our classification model and ensure that it is able to

accurately classify all classes.

15 Token classification is also known as Named Entity Recognition (NER).

Chapter 5 Dataset Preparation

195

There are several ways to deal with imbalanced data (Lewis Tunstall, 2022),

including

•	 Randomly oversample the minority class.

•	 Randomly undersample the majority class.

•	 Gather more labeled data from the underrepresented classes.

Now, it is time to open the Python notebook prepared by our NLP consultant, John

Doe, and execute the code for the dataset preparation.

�Dataset Preparation Notebook

This notebook aims to assist you in preparing the dataset for the labeling phase using

the OCI Data Labeling Service (DLS). This notebook includes steps for downloading the

dataset, cleaning it, balancing it, and transforming it to JSONL Consolidated format.

Go to your CPU-based notebook session; from JupyterLab file browser, open the

notebook prepare_dataset.ipynb under the folder (see Figure 5-10):

/repos/john-doe-typica-ai/nlp-on-oci.git

Figure 5-10.  Notebook for dataset preparation

Chapter 5 Dataset Preparation

196

�Loading

It starts by importing necessary libraries: load_dataset from the Hugging Face’s Datasets

library for data loading. Since the Datasets library is missing from our installed PyTorch

conda env., we need to ensure that it is installed it using pip:

%%capture

pip install datasets

Note  We use the cell magic %%capture to suppress the install output (irrelevant
for understanding the notebook).

Filter all the warnings occurring during the execution of this notebook to be ignored

(irrelevant for understanding the notebook):

import warnings

warnings.filterwarnings('ignore')

Use the load_dataset() function to load the dataset from its Hugging Face hub

repository (by providing the repository namespace and dataset name, i.e., TypicaAI/

MedicalNER_Fr; see Listing 5-2).

Listing 5-2.  Prepare dataset notebook: data access

from datasets import load_dataset

orig_dataset = load_dataset("TypicaAI/MedicalNER_Fr")

orig_dataset

Output

Downloading readme: 100%

10.6k/10.6k [00:00<00:00, 1.06MB/s]

Downloading data: 100%

2.94M/2.94M [00:00<00:00, 4.17MB/s]

Generating train split:

16176/0 [00:00<00:00, 214652.91 examples/s]

DatasetDict({

Chapter 5 Dataset Preparation

197

 train: Dataset({

 �features: ['sample_id', 'tokens', 'ner_tags', 'text',

'ner_tags_span'],

 num_rows: 16176

 })

})

Strip all the columns from the downloaded dataset except columns text

ner_tags_span (Listing 5-3 and Listing 5-4).

Listing 5-3.  Prepare dataset notebook: data access

from datasets import Dataset, DatasetDict

Assuming cleaned_dataset['train'] is a dataset object

Select only the desired columns

streamlined_dataset = orig_dataset['train'].remove_columns([col for col

in orig_dataset['train'].column_names if col not in ['text', 'ner_tags_

span']])

Create a new dataset with only these columns

streamlined_dataset = DatasetDict({

 'train': streamlined_dataset

})

Print the columns to verify

streamlined_dataset

Output

DatasetDict({

 train: Dataset({

 features: ['text', 'ner_tags_span'],

 num_rows: 16176

 })

})

Chapter 5 Dataset Preparation

198

Listing 5-4.  Displaying the First Example of the Dataset

streamlined_dataset['train'][0]

Output

{'text': 'atteint de poliomyélite dans son enfance il devient fan de blues

en écoutant big joe turner .', 'ner_tags_span': "[['Disease', 11, 23],

['PER', 77, 91]]"}

�Wrangling Steps

This phase ensures the dataset is ready for labeling, involving two main tasks: cleaning

and balancing the dataset (see Listings 5-5, 5-6, and 5-7).

–– Cleaning: This function is useful for standardizing NER labels in a

dataset by consolidating certain nonmedical entities types under a

single label, “MISC.”

Listing 5-5.  Prepare dataset notebook: wrangling data cell

import ast # Import abstract syntax trees module to safely parse strings

into lists

Define the labels that need to be renamed to 'MISC'

labels_to_map = {'LOC', 'PER', 'PROD', 'CW', 'ORG', 'GRP'}

def rename_labels_to_misc(example):

 # Convert the string representation of list into an actual list

 ner_tags_span = ast.literal_eval(example['ner_tags_span'])

 # Rename labels to 'MISC'

 renamed_ner_tags_span = [

 �['MISC', start, end] if label in labels_to_map else [label,

start, end]

 for label, start, end in ner_tags_span

]

Chapter 5 Dataset Preparation

199

 # Update the example with the renamed labels

 example['ner_tags_span'] = str(renamed_ner_tags_span)

 return example

The Hugging Face “datasets” library “map” function applies “rename_labels_to_

misc” across the dataset.

Listing 5-6.  Clean dataset

Apply the function across the dataset using map

cleaned_dataset = streamlined_dataset.map(rename_labels_to_misc,

batched=False)

cleaned_dataset

Output

Map: 100%

16176/16176 [00:00<00:00, 18957.06 examples/s]

DatasetDict({

 train: Dataset({

 features: ['text', 'ner_tags_span'],

 num_rows: 16176

 })

})

The Hugging Face “datasets” library “filter” is used to remove example with text

length inf. to 50 characters.

Listing 5-7.  Filter dataset

Define the minimum text length (e.g., 10 characters)

min_text_length = 50

remove examples with text lenght < min_text_length

filtered_dataset = cleaned_dataset.filter(lambda example:

len(example['text']) >= min_text_length)

Chapter 5 Dataset Preparation

200

orig_ds_count = len(orig_dataset['train'])

filtered_ds_count = len(filtered_dataset['train'])

print(f"Original number of examples: {orig_ds_count}")

print(f"Number of examples (after filtering): {filtered_ds_count}")

Output

Filter: 100%

16176/16176 [00:00<00:00, 163731.51 examples/s]

Original number of examples: 16176

Number of examples (after filtering): 14722

Plot the dataset size before and after the cleaning (Listing 5-8).

Listing 5-8.  Plotting the Dataset Size After Cleaning

import matplotlib.pyplot as plt

Data setup

categories = ['Original', 'After Cleaning']

values = [orig_ds_count, filtered_ds_count]

Create bar plot

plt.figure(figsize=(8, 5))

plt.bar(categories, values, color=['blue', 'green'])

plt.title('Comparison of Dataset Sizes')

plt.ylabel('Number of Examples')

plt.show()

Chapter 5 Dataset Preparation

201

Output (Figure 5-11)

Figure 5-11.  Dataset size before and after cleaning

–– Balancing: Adjust the dataset to ensure all entities are equally

represented, using undersampling techniques as necessary (detailed

in Listings 5-9 to 5-15).

Listing 5-9.  Defining Functions

from collections import Counter

import ast

def extract_labels(ner_tags_span):

 """Helper function to parse and filter labels from ner_tags_span."""

 return [label[0] for label in ast.literal_eval(ner_tags_span)]

def count_labels(dataset):

 �"""Counts occurrences of each label in the dataset's ner_tags_span

field, excluding 'O'."""

Chapter 5 Dataset Preparation

202

 # �Use a list comprehension to gather all labels across the dataset and

count them

 label_counts = Counter(

 label for example in dataset['train']

 for label in extract_labels(example['ner_tags_span'])

)

 return label_counts

Output

Define “plot_distributions” function. This function is designed to visually compare

the distributions of a dataset’s labels before and after the balancing step. It uses the

matplotlib library to create a bar chart, which displays the counts of each label side by

side for easy comparison.

Listing 5-10.  Defining plot distributions function

def plot_distributions(before_counts, after_counts, process="Balancing"):

 # Sort labels to ensure they match up in the plot

 labels = sorted(before_counts.keys())

 before_values = [before_counts[label] for label in labels]

 after_values = None

 if after_counts:

 after_values = [after_counts[label] for label in labels]

 x = range(len(labels)) # Label location on x-axis

 # Create the bar plot

 plt.figure(figsize=(10, 5))

 �plt.bar(x, before_values, width=0.4, label=f'Before {process}',

color='b', align='center')

 if after_values:

 �plt.bar(x, after_values, width=0.4, label=f'After {process}',

color='r', align='edge')

Chapter 5 Dataset Preparation

203

 # Add some text for labels, title and custom x-axis tick labels, etc.

 plt.xlabel('Labels')

 plt.ylabel('Counts')

 plt.title(f'Label Distribution Before and After {process}')

 plt.xticks(x, labels, rotation='vertical')

 plt.legend()

 # Show the plot

 plt.tight_layout()

 plt.show()

Output

Calculates and prints the label distribution to assess the dataset initial balance.

Listing 5-11.  Calculating Label Distribution

count labels for the cleaned dataset

label_counts = count_labels(filtered_dataset)

print("Label Counts:", label_counts)

Output

Label Counts: Counter({'Disease': 4291, 'AnatomicalStructure': 4246,

'Medication/Vaccine': 3952, 'MedicalProcedure': 2930, 'Symptom': 1577,

'MISC': 1550})

Plot the label distribution before balancing.

Chapter 5 Dataset Preparation

204

Listing 5-12.  Cell 14

plot_distributions(label_counts, None) # Plot the label counts

Output (Figure 5-12)

Figure 5-12.  Dataset before balancing

We notice that the dataset’s classes are imbalanced.

The “undersample_label” function applies the “random undersampling” approach to

adjust the frequency of a specified label within a dataset to prevent overrepresentation.

Listing 5-13.  Undersample function

import random

from datasets import Dataset, DatasetDict

def extract_labels(ner_tags_span):

 """

 Extracts the labels from the ner_tags_span field.

 �Assumes ner_tags_span is a string representation of a list of [label,

start, end] triplets.

 """

 tags = ast.literal_eval(ner_tags_span)

 labels = [tag[0] for tag in tags if tag[0] != 'O']

 return labels

Chapter 5 Dataset Preparation

205

def undersample_label(dataset, label_to_undersample, target_count, seed):

 """Reduces the occurrences of a specified label to a target count."""

 �examples_with_label = [ex for ex in dataset if label_to_undersample in

extract_labels(ex['ner_tags_span'])]

 �examples_without_label = [ex for ex in dataset if label_to_undersample

not in extract_labels(ex['ner_tags_span'])]

 random.seed(seed) # Set the random seed for reproducibility

 if len(examples_with_label) > target_count:

 �examples_with_label = random.sample(examples_with_label,

target_count)

 new_dataset = examples_with_label + examples_without_label

 return new_dataset

The target count based on the 'Symptom' label

target_count = 2000

Start with the filtered dataset

balanced_ds_list = filtered_dataset['train']

Loop over labels with count > 2000 and apply undersampling

for label, count in label_counts.items():

 if count > target_count:

 �print(f"Undersampling label '{label}' from {count} to

{target_count}")

 �balanced_ds_list = undersample_label(balanced_ds_list, label,

target_count, seed=42)

Convert the balanced dataset to a Hugging Face dataset

balanced_dataset = DatasetDict({

 'train': Dataset.from_dict({

 'text': [ex['text'] for ex in balanced_ds_list],

 'ner_tags_span': [ex['ner_tags_span'] for ex in balanced_ds_list]

 })

})

print("Balancing complete. Dataset ready for training.")

Chapter 5 Dataset Preparation

206

Output

Undersampling label 'Disease' from 4291 to 2000

Undersampling label 'AnatomicalStructure' from 4246 to 2000

Undersampling label 'Medication/Vaccine' from 3952 to 2000

Undersampling label 'MedicalProcedure' from 2930 to 2000

Balancing complete. Dataset ready for training.

After undersampling is applied to labels with count > 2000, a new balanced dataset is

created.

Note I n this step, to balance the dataset, we applied the “random
undersampling” approach to the majority class. This method reduces the number
of examples in the overrepresented classes to match a chosen threshold. This
strategy effectively balances class distribution, minimizing bias toward more
frequently occurring labels. However, it does mean discarding a significant portion
of the data from the overrepresented classes, which could potentially remove
valuable information.

Recount and plot the label distribution after balancing.

Listing 5-14.  Recalculate the new label counts after balancing dataset

Recalculate the new label counts

new_label_counts = count_labels(balanced_dataset)

print("Label Counts:", new_label_counts)

Output

Label Counts: Counter({'Medication/Vaccine': 2312, 'AnatomicalStructure':

2236, 'MedicalProcedure': 2135, 'Disease': 2079, 'Symptom': 1465,

'MISC': 975})

Listing 5-15.  Plot the new label counts after balancing dataset

plot the new label distribution

plot_distributions(label_counts, new_label_counts)

Plot the label new counts

Chapter 5 Dataset Preparation

207

Output (Figure 5-13)

Figure 5-13.  Dataset before and after balancing

Now we are ready to move to the dataset transformation step (provided in

Listings 5-16 to 5-21).

–– Transforming: Converts the balanced dataset to an OCI Data

Labeling Dataset (JSONL Consolidated format).

Now that we have balanced our dataset, let’s transform it into a suitable format for

OCI Data Labeling JSONL Consolidated and save it to our Labeling Datasets Bucket.

The code snippet, based on our balanced dataset, creates in our Labeling Datasets

Bucket the files for our future DLS Dataset to be imported:

•	 Metadata file (JSONL Consolidated format), which includes the new

dataset details and annotations for each example

•	 Record files, which are text files where each one represents one

example from the balanced dataset

Tip T he default service limit for DLS record count is 10,000. If we want to avoid
the record count limit issue, we need to reduce the size of our balanced dataset.
In a real-world situation, if the number of records we need to create exceeds
the number of available records, you must file a regular Customer Account
Management (CAM) ticket to request an increase in the limit.

Chapter 5 Dataset Preparation

208

Listing 5-16.  Calculate the new dataset size after balancing

len(balanced_dataset["train"])

Output

9052

Downsize the dataset to 9,000 examples by randomly selecting a subset of 9,000

examples.

Listing 5-17.  Downsizing dataset

from datasets import DatasetDict

Set the seed for reproducibility

seed = 42

new_size= 9000

Shuffle the train dataset using the specified seed

shuffled_train_dataset = balanced_dataset["train"].shuffle(seed=seed)

Select the first 3000 examples from the shuffled train dataset

healthcare_ner_dataset_v1 = shuffled_train_dataset.select(range(new_size))

Convert the sampled dataset back to a DatasetDict if needed

healthcare_ner_dataset_v1 = DatasetDict({

 "train": healthcare_ner_dataset_v1

})

healthcare_ner_dataset_v1

Output

DatasetDict({

 train: Dataset({

 features: ['text', 'ner_tags_span'],

 num_rows: 9000

 })

})

Revalidate the label distribution after the downsizing of the balanced dataset.

Chapter 5 Dataset Preparation

209

Listing 5-18.  Plot label distribution for balanced and downsized datasets

Recalculate the new label counts

healthcare_ner_dataset_v1_label_counts = count_labels(healthcare_ner_

dataset_v1)

print("Label Counts:", healthcare_ner_dataset_v1_label_counts)

Output

Label Counts: Counter({'Medication/Vaccine': 2298, 'AnatomicalStructure':

2219, 'MedicalProcedure': 2122, 'Disease': 2069, 'Symptom': 1459,

'MISC': 969})

Listing 5-19.  Plot label distribution for balanced and downsized datasets

Plot the balanced label count vs. downsized label counts

plot_distributions(new_label_counts, healthcare_ner_dataset_v1_label_

counts, "Down-sizing")

Output (Figure 5-14)

Figure 5-14.  Plot label distribution for balanced and downsized datasets

The downsized dataset is balanced enough for our case study.

At this stage, we can save the downsized dataset to the training-datasets-bkt as a

restore point for this dataset or for later use (if needed; see Figure 5-15).

Chapter 5 Dataset Preparation

210

Listing 5-20.  Save dataset

healthcare_ner_dataset_v1.save_to_disk('/home/datascience/buckets/training-

datasets-bkt/healthcare_ner_dataset_v1.0.0')

Output

Saving the dataset (1/1 shards): 100%

9000/9000 [00:00<00:00, 151055.97 examples/s]

Note S aving the dataset to the bucket is now as easy as saving it to the local file
system, thanks to the notebook session storage mount feature.

Figure 5-15.  Prelabeled dataset restore point in bucket training-datasets-bkt after
cleaning, balancing, and downsizing

Let’s create the DLS Dataset in JSONL Consolidated format.

Chapter 5 Dataset Preparation

211

Listing 5-21.  prepare_dataset notebook: transforming

import oci

from datasets import load_dataset

import json

import io

import os

import tempfile

from tqdm import tqdm

Initialize OCI Object Storage Client with notebook session's resource

principal

signer = oci.auth.signers.get_resource_principals_signer()

object_storage_client = oci.object_storage.ObjectStorageClient(config={},

signer=signer)

#set dataset display name

dataset_display_name = "healthcare_ner_dataset_v1.0.0"

dataset_description = "Healthcare NER Dataset for the Case Study",

Initialize Object Storage bucket infos

namespace = object_storage_client.get_namespace().data

bucket_name = "labelling-datasets-bkt"

Base folder in the bucket

base_folder = f"{dataset_display_name}/"

labels_set = set()

annotations_list = []

for idx, item in enumerate(tqdm(healthcare_ner_dataset_v1["train"],

 desc="processing dataset records",

 total=len(healthcare_ner_dataset_v1["train"])

)

):

 text = item['text']

 ner_tags_span = eval(item['ner_tags_span'])

�Convert string to list if necessary

Chapter 5 Dataset Preparation

212

 # Prepare annotations for this row

 entities = []

 for label,start, end in ner_tags_span:

 label = label.replace("/","")

 labels_set.add(label) # Add to the set of unique labels

 entities.append({

 "entityType": "TEXTSELECTION",

 "labels": [{"label_name": label}],

 "textSpan": {"offset": start, "length": end - start}

 })

 if len(entities) > 0:

 file_name = f"rec-{idx}.txt"

 annotations_list.append({

 "sourceDetails": {"path": file_name},

 "annotations": [{"entities": entities}]

 })

 # Upload the text to OCI bucket

 record_filename = f"{base_folder}{file_name}"

 record_body = io.BytesIO(text.encode('utf-8'))

 #with open(temp_file_path, 'rb') as f:

 object_storage_client.put_object(namespace,

 bucket_name,

 record_filename,

 record_body, #f, #

 content_type='text/plain'

)

Prepare the dataset metadata, i.e., JSONL Metadata

dataset_details = {

 "displayName": dataset_display_name, # "Healthcare NER Dataset v1.0.0",

 �"description": "Healthcare NER Case Study - Dataset ready for adding

annotations using OCI Data Labeling Service.",

 "labelsSet": [{"name": label} for label in labels_set],

Chapter 5 Dataset Preparation

213

 "annotationFormat": "ENTITY_EXTRACTION",

 "datasetFormatDetails": {"formatType": "TEXT"}

}

Metadata and annotations as JSONL string

jsonl_data = json.dumps(dataset_details) + '\n' + '\n'.join(json.

dumps(annotation) for annotation in annotations_list)

Write the metadata and annotations to a JSONL file

jsonl_data = io.BytesIO(jsonl_data.encode('utf-8'))

#with open(temp_file_path, 'rb') as f:

object_storage_client.put_object(namespace,

 bucket_name,

 f"{base_folder}dataset_metadata.jsonl",

 jsonl_data, #f, #

 content_type='application/json')

print(f'The Dataset {dataset_details["displayName"]} was created

successfully in the bucket {bucket_name}')

Output

processing dataset records: 100%|██████████| 9000/9000
[05:34<00:00, 26.91it/s]

The Dataset healthcare_ner_dataset_v1.0.0 was created successfully in the

bucket labelling-datasets-bkt

Tip I faced issues while importing a dataset due to misleading “quota limit
errors” while using put_object to save a JSONL metadata object in the bucket. To
resolve this, I used a temporary file handler as the object body parameter in put_
object to create the metadata file in the labeling bucket.

Chapter 5 Dataset Preparation

214

We can confirm, as illustrated in Figure 5-16, that the number of objects

(Approximate Object Count) in our labeling bucket matches the count in the JSONL

Consolidated format: 10,000 record files, plus 1 metadata file.

Figure 5-16.  Object count in Labeling Datasets Bucket

Here, we can see the dataset’s files (the dataset metadata as JSONL and records as txt

files; see Figure 5-17).

Chapter 5 Dataset Preparation

215

Figure 5-17.  Healthcare NER dataset v1.0.0 files in JSONL Consolidated format
saved to Labeling Datasets Bucket

Tip T he NLP consultant did not mount the Labeling Datasets Bucket in the
notebook sessions to prevent accidental changes or loss of the data labelers' work,
ensuring data security and avoiding unnecessary costs.

�Dataset Labeling (Step 5)
Now that the dataset has been collected and transformed into a DLS-compatible

format, we are ready to begin the labeling process, specifically adapting and enriching

the preexisting dataset. The first step is to import the dataset into a OCI Data Labeling

Service (DLS) as a DLS Dataset.

�OCI Data Labeling Service (DLS)

The OCI Data Labeling service (DLS) is a tool that enables AI professionals to hand label

or annotate datasets. DLS Datasets consist of two primary components: data records and

metadata. The metadata contains details about annotations and basic information about

Chapter 5 Dataset Preparation

216

the dataset. Data records are representations of data, such as a piece of text in the context

of NLP projects. Labels, which are strings of text, become annotations when associated

with a data record. (“About Data Labeling—Oracle”).

Note T o avoid any confusion about the term “datasets,” we have decided to
provide more context and clarify its usage throughout the book chapters. Initially,
we used the term “dataset” as a generic term to describe the input data required
for training an NLP model. Later, we discussed Hugging Face Hub Datasets and
the Hugging Face Datasets library. Currently, in the context of the Data Labeling
service (DLS), when we refer to “datasets,” we are specifically talking about the
core resource within DLS which is DLS Datasets.16

OCI Data Labeling provides public APIs for data labeling. These APIs can expedite

the data labeling by enabling automated data annotation at scale. By utilizing DLS APIs

and Python SDK, dataset creation, record creation, and annotation can be automated.

From a cost standpoint, DLS can significantly reduce the expenses incurred in data

annotation. As we discussed previously, DLS has a competitive pricing policy that offers

the first 1000 records free of cost, making the data labeling process even more cost-

effective.

In the upcoming sections, our NLP consultant, John Doe, will guide us through the

process of annotating our training dataset using OCI Data Labeling Datasets.

�Dataset Import

This section is designed to guide you through the straightforward process of importing a

preannotated dataset already created in the Data Labeling JSONL Consolidated format.

At the time of writing, OCI does not offer an API for importing datasets. To overcome

this limitation, our NLP consultant developed a notebook that automates the dataset

import process.

16 To learn more about DLS Datasets, please visit https://docs.oracle.com/en-us/iaas/
Content/data-labeling/using/datasets.htm

Chapter 5 Dataset Preparation

https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/datasets.htm
https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/datasets.htm

217

Note  Developing a Jupyter notebook to import datasets through Python
code instead of using the DLS UI is a deliberate choice made for this book to
demonstrate to readers how to effectively use DLS APIs.

�Dataset Import Notebook

This notebook aims to assist you in importing the dataset into a DLS Dataset.

Before starting the import process, we need to add a new policy to our data science

policies as shown in Figure 5-18. This new policy allows us to create and manage DLS

Datasets from notebook sessions.

Figure 5-18.  New policy for data science policies

Listing 5-22.  New data science policy

allow dynamic-group data-science-dyn-grp to manage data-labeling-family in

compartment case-study-cmpt

Chapter 5 Dataset Preparation

218

After adding the new policy, open the CPU-based notebook session. Then, from

JupyterLab file browser, open the notebook import_dataset.ipynb under the folder

(Figure 5-19):

/repos/john-doe-typica-ai/nlp-on-oci.git/chapt-5/

Figure 5-19.  Notebook for dataset import

�Initialization

Initialize the necessary OCI clients for interacting with Object Storage and Data Labeling

Services (Listing 5-23). These clients are authenticated using the resource principal of

the notebook session.

Listing 5-23.  Initialization

import oci

from oci.data_labeling_service_dataplane.data_labeling_client import

DataLabelingClient

from oci.data_labeling_service.data_labeling_management_client import

DataLabelingManagementClient

Chapter 5 Dataset Preparation

219

Initialize OCI Object Storage Client with notebook session's resource

principal

signer = oci.auth.signers.get_resource_principals_signer()

object_storage_client = oci.object_storage.ObjectStorageClient(config={},

signer=signer)

dls_client = DataLabelingManagementClient(config={}, signer=signer)

dls_dp_client = DataLabelingClient(config={}, signer=signer)

Output

Function to Create a Dataset in OCI Data Labeling Service: This function automates

the creation of a dataset in OCI’s Data Labeling Service. It takes in various parameters,

including compartment details, object storage information (where the data is stored),

and labels, and combines them to define and create a dataset (Listing 5-24).

Listing 5-24.  Function to create a dataset in OCI Data Labeling Service

from oci.data_labeling_service.models import ObjectStorageSourceDetails

from oci.data_labeling_service.models import DatasetFormatDetails

from oci.data_labeling_service.models import LabelSet

from oci.data_labeling_service.models import Label

from oci.data_labeling_service.models import CreateDatasetDetails

from oci.data_labeling_service.data_labeling_management_client import

DataLabelingManagementClient

def create_dataset(compartment_id,

 namespace,

 bucket,

 prefix,

 ds_display_name,

 ds_description,

 ds_format_type,

 ds_annotation_format,

 ds_labels):

 # Create the Dataset Source Details object

 �dataset_source_details_obj = ObjectStorageSourceDetails(namespace=names

pace, bucket=bucket, prefix=prefix)

Chapter 5 Dataset Preparation

220

 # Create the Dataset Format Details object

 �dataset_format_details_obj = DatasetFormatDetails(format_type=ds_

format_type)

 # Create the LabelSet object from the list of labels

 label_set_obj = LabelSet(

 �items=[oci.data_labeling_service.models.Label(name=label) for label

in ds_labels]

)

 # Create the Dataset Details object

 create_dataset_obj = CreateDatasetDetails(display_name=ds_display_name,

 description=ds_description,

 �compartment_id=compartment_id, annotation_

format=ds_annotation_format,

 �dataset_source_details=dataset_source_details_obj,

 �dataset_format_details=dataset_format_details_obj,

 label_set=label_set_obj)

 # Create the dataset and handle exceptions

 try:

 response = �dls_client.create_dataset(create_dataset_details=create_

dataset_obj)

 #print(response)

 except Exception as error:

 response = error

 return response

Output

Function to Create a Record in OCI Data Labeling Service: This function facilitates

the creation of a record within a dataset in OCI’s Data Labeling Service. It constructs the

necessary details from the provided parameters and interacts with the Data Labeling

Service to register the record (Listing 5-25).

Chapter 5 Dataset Preparation

221

Listing 5-25.  Function to create a record in OCI Data Labeling Service

from oci.data_labeling_service_dataplane.models import

CreateObjectStorageSourceDetails

from oci.data_labeling_service_dataplane.models import CreateRecordDetails

def create_ds_rec(compartment_id, dataset_id, prefix, rec_name):

 relative_path = rec_name

 name = rec_name

 source_details_obj = �CreateObjectStorageSourceDetails(relative_

path=relative_path)

 create_record_obj = CreateRecordDetails(name=name,

 dataset_id=dataset_id,

 compartment_id=compartment_id,

 source_details=source_details_obj)

 try:

 response = �dls_dp_client.create_record(create_record_details=create_

record_obj)

 #print(response.data)

 response = response

 except Exception as error:

 response = error

 return response

Output

Function to Add Annotations to a Record in OCI Data Labeling Service: This function

adds text selection annotations to an existing record in OCI’s Data Labeling Service. It

processes a list of annotations, creating entities that specify the label, text offset, and

length for each annotated segment (Listing 5-26).

Chapter 5 Dataset Preparation

222

Listing 5-26.  Function to add annotations to a record in OCI Data

Labeling Service

from oci.data_labeling_service_dataplane.models import Label

from oci.data_labeling_service_dataplane.models import TextSelectionEntity

from oci.data_labeling_service_dataplane.models import CreateAnnotationDetails

def add_rec_annotation(record_id, annotations_list):

 entity_type = "TEXTSELECTION"

 # Initialize an empty list to store the entities

 entities_obj = []

 for ent_obj in annotations_list:

 # Extract label, offset, and length

 label = ent_obj["labels"][0]["label_name"]

 offset = ent_obj["textSpan"]["offset"]

 length = ent_obj["textSpan"]["length"]

 # Create the labels_obj with the label

 labels_obj = �[oci.data_labeling_service_dataplane.models.

Label(label=label)]

 # Create the text_span_obj with offset and length

 span_obj = �oci.data_labeling_service_dataplane.models.

TextSpan(length=length, offset=offset)

 # �Create the TextSelectionEntity and add it to the

entities_obj list

 entity = �TextSelectionEntity(entity_type=entity_type,

labels=labels_obj, text_span=span_obj)

 entities_obj.append(entity)

 # entities_obj now contains the desired list of TextSelectionEntity objects

 #print(entities_obj)

 create_annotation_details_obj = �CreateAnnotationDetails(record_

id=record_id, compartment_

id=compartment_id,

 entities=entities_obj)

Chapter 5 Dataset Preparation

223

 try:

 response = �dls_dp_client.create_annotation(create_annotation_

details=create_annotation_details_obj)

 #print(response.data)

 except Exception as error:

 response = error

Output

�Dataset Import

Creation of the Dataset with its annotated records.

Load Dataset Metadata from OCI Object Storage: This code block retrieves and

processes the metadata for a dataset stored in OCI Object Storage. The metadata is then

used to create and label our dataset in the Data Labeling Service (Listing 5-27).

Listing 5-27.  Function to add annotations to a record in OCI Data

Labeling Service

import json

import os

#compartment where to create the dataset

compartment_id = os.environ['NB_SESSION_COMPARTMENT_OCID']

Object Storage namespace

namespace = object_storage_client.get_namespace().data

Dataset Object Storage bucket

bucket_name = "labelling-datasets-bkt"

Dataset name

ds_name = "healthcare_ner_dataset_v1.0.0"

Dataset metadata file name (Jsonl Consolidated created in prepare_dataset

notebook)

ds_metadata_jsonl_fname = "dataset_metadata.jsonl"

prefix = f"{ds_name}/" # Dataset folder in Object Storage bucket

object_name = f"{prefix}{ds_metadata_jsonl_fname}"

Chapter 5 Dataset Preparation

224

metadata_jsonl = object_storage_client.get_object(

 namespace,

 bucket_name,

 object_name)

print(f"Dataset metadata file {object_name} loaded")

#load jsonl

metadata_jsonl_obj = �[json.loads(jline) for jline in metadata_jsonl.data.

content.decode('utf-8').splitlines()]

Output

Dataset metadata file healthcare_ner_dataset_v1.0.0/dataset_metadata.

jsonl loaded

Extract Metadata and Create Dataset in OCI Data Labeling Service: This code

block extracts the dataset metadata from a JSONL file and then initiates the creation

of a dataset in OCI’s Data Labeling Service using the metadata extracted. This process

ensures that the dataset is correctly created and ready for further operations, such as

record creation (Listing 5-28).

Tip T he dataset creation process is asynchronous, so the code waits until
the newly created dataset reaches the “ACTIVE” state. This is done using
oci.wait_until, which periodically checks the dataset's status.

Listing 5-28.  Function to add annotations to a record in OCI Data

Labeling Service

ds_display_name = metadata_jsonl_obj[0]['displayName']

ds_description = metadata_jsonl_obj[0]['description']

ds_annotation_format = metadata_jsonl_obj[0]['annotationFormat']

ds_format_type = metadata_jsonl_obj[0]["datasetFormatDetails"]

['formatType']

ds_labels = [label['name'] for label in metadata_jsonl_obj[0]['labelsSet']]

#print(metadata_jsonl_obj)

Chapter 5 Dataset Preparation

225

print(f"Start the creation of the dataset {ds_display_name} ...")

#print(ds_annotation_format)

#print(ds_format_type)

#print(ds_labels)

ds_resp = create_dataset(compartment_id,

 namespace,

 bucket_name,

 prefix,

 ds_display_name,

 ds_description,

 ds_format_type,

 ds_annotation_format,

 ds_labels)

if ds_resp.status == 201: #status created

 # Extract the dataset's OCID (unique identifier)

 dataset_id = ds_resp.data.id

 �print(f"Dataset named {ds_display_name} created successfully.\nDataset

OCID: {dataset_id}")

 # �Retrieve opc-request-id from the response headers (optional for

logging)

 opc_request_id = ds_resp.headers.get("opc-request-id")

 print(f"OPC Request ID: {opc_request_id}")

 # Wait until the dataset reaches the 'ACTIVE' lifecycle state

 �print(f"Wait for the dataset {ds_display_name} to be in ACTIVE

status...")

 get_dataset_response = dls_client.get_dataset(dataset_id)

 oci.wait_until(

 dls_client,

 get_dataset_response,

Chapter 5 Dataset Preparation

226

 evaluate_response=lambda r: r.data.lifecycle_state == 'ACTIVE',

 max_wait_seconds=60, # Maximum wait time in seconds

 max_interval_seconds=3 # Check every 30 seconds

)

 �print(f"Dataset {ds_display_name} is now ACTIVE. You can start creating

records.")

Output

Start the creation of the dataset healthcare_ner_dataset_v1.0.0 ...

Dataset named healthcare_ner_dataset_v1.0.0 created successfully.

Dataset OCID: ocid1.datalabelingdataset.oc1.ca-toronto-1.

amaaaaaa3hvgr2qan3yenas7wktkowma6gsjyvfe72ac2xr2pe76iwvkljaq

OPC Request ID: 64B04E4F37A447BDA6C6FB89E0C244BE/19B00E41E5115CDA21C0D

00805AFE1E2/999AB8CB07D840AFC03CA3A1B7375B1E

Wait for the dataset healthcare_ner_dataset_v1.0.0 to be in ACTIVE

status...

Dataset healthcare_ner_dataset_v1.0.0 is now ACTIVE. You can start creating

records.

Create Records and Annotations for Dataset in OCI Data Labeling Service: This code

block handles the creation of records and their corresponding annotations for the newly

created dataset in OCI’s Data Labeling Service. After the dataset is successfully created,

the code iterates through each record in the metadata, creating records in the dataset.

For each created record, associated annotations are added by looping through the

entities defined in the metadata (Listing 5-29).

Listing 5-29.  Create records and annotations for dataset in OCI Data

Labeling Service

import json

from tqdm import tqdm

#loop on records in metadata and create annotated records in the dataset

for idx, json_obj in enumerate(tqdm(metadata_jsonl_obj[1:],

 desc="Importing dataset records",

Chapter 5 Dataset Preparation

227

 total=len(metadata_jsonl_obj[1:])

)

):

 rec_name = json_obj["sourceDetails"]["path"]

 #print(f'create record {idx} record name : {rec_name}')

 rec_resp = create_ds_rec(compartment_id, dataset_id, prefix, rec_name)

 if rec_resp.status==200:

 record_id = rec_resp.data.id

 for annot_obj in json_obj["annotations"]:

 annotations_list = annot_obj["entities"]

 annot_resp = add_rec_annotation(record_id, annotations_list)

 #print(annot_resp)

Output

Importing dataset records: 100%|██████████| 9000/9000
[1:15:05<00:00, 2.00it/s]

Now that the dataset import process is complete, the labeling team can begin

exploring and correcting the dataset annotations using the DLS Dataset UI.

�Dataset Labeling

The annotators should check the Dataset Details page to confirm the successful import

process. On this page, they will find sections such as Dataset Information, Labeling

Instructions, Labels, and Tags. The Dataset Information section is particularly important

as it provides crucial details about the dataset, including its name, description, and

source. Most importantly, it also shows the count of labeled records for the dataset.

As shown in Figure 5-21, for our dataset, we can see that all 9000 records are labeled,

indicating that there were no errors during the import.

Here are the steps for the labeling team to review and correct the dataset’s

annotations using the DLS Dataset UI.

	 1.	 Open the navigation menu, and click Analytics and AI. Under

Machine Learning, click Data Labeling.

	 2.	 Click Datasets (Figure 5-20).

Chapter 5 Dataset Preparation

228

Figure 5-20.  Dataset list

	 3.	 Then, click the case study dataset, i.e., healthcare_ner_

dataset_v1.0.0.

Figure 5-21.  Dataset Details page

The annotators can explore and edit data records through the Details section, using

Data records or Gallery view.

In this step, leveraging OCI Data Labeling features, we enrich our imported dataset

with the missing medical-related annotations.

Below are the steps to annotate the dataset for medical-related labels (Oracle, 2023):

	 1.	 In the Dataset Details page:

•	 If Data records is selected, there are two ways to get to the Add
labels page:

Chapter 5 Dataset Preparation

229

•	 Click the name of the text you want to label.

•	 Click the Action icon for the text you want to label, and click

Edit Label.

	 2.	 In the Add labels page (Figure 5-22):

	 a.	 Under Label, select the label for the part of the text you want to label. If

there is only one label in the dataset, the label is automatically selected.

Figure 5-22.  Record before manual annotation

	 b.	 Highlight the part of text to be labeled (Figure 5-23).

	 c.	 Repeat Steps 2.a and 2.b until you have added all the labels you wanted to

add to the text.

Figure 5-23.  Record after manual annotation

Caution  For our case study, we do not use nested NER.

Chapter 5 Dataset Preparation

230

	 3.	 Click Save & next to save the changes and label the next item of

text, or click Save to save the changes. If you don’t want to label

an item of text, click Skip to move to the next item of text. If you’re

at the last item of text, click Save & done to save the changes and

return to the Dataset Details page.

	 4.	 (Optional) Click Cancel to return to the Dataset Details page.

	 5.	 If you have added a label to a record, but not saved it, you’re

prompted to confirm that you want to cancel.

When labeling medical entities, annotators can refer to the annotation guidelines

provided by the labeling team lead if they need help with how to annotate a particular

entity. They can access the labeling instructions by clicking the Labeling instructions

icon, as shown in Figure 5-24.

Figure 5-24.  Labeling instructions window

Chapter 5 Dataset Preparation

231

Tip T he dataset field Labeling instructions (optional) should include clear
instructions and guidelines for the labeling team.

At this stage, we will assume that the labeling team has completed the annotation

process for our dataset, and it is now ready for the training phase. However, before

proceeding, it is crucial to validate the annotations to ensure they meet the project’s

requirements.

�Quality Assurance (QA)

There are different methods for performing dataset quality assurance (QA), and for

our small dataset, we will be using the human-in-the-loop validation approach. While

human subjectivity can introduce labeling errors, it is important to understand that

when guided by clear guidelines, human judgment plays a crucial role in the validation

process.

The human-in-the-loop17 (HITL) validation method (Munro, 2021), which integrates

human judgment into the validation process, is particularly valuable for verifying the

accuracy of annotations provided by automated systems or less experienced annotators.

Humans review and rectify annotations as needed, typically using a user interface for

validation tasks. This method is highly recommended for final quality assurance to

address subtleties that machines may overlook. This approach is extensively discussed in

Robert Munro’s work, Human-in-the-Loop Machine Learning.

Another popular method is spot-checking, which involves randomly selecting a

sample of annotations for expert annotators to review in detail. This method can be used

as an initial quality check or on an ongoing basis to monitor the quality of annotations

throughout the data collection process. Automated scripts can be used to check for

common annotation errors or inconsistencies, such as overlapping, missing, or labels

that do not conform to predefined rules or schemas.

17 Human-in-the-loop (HITL) is a term used in various contexts. One such context is machine
learning, which refers to humans assisting computers in making correct decisions, such as when
validating training datasets.

Chapter 5 Dataset Preparation

232

Figure 5-25.  HITL spot-check annotation validation

As outlined in Figure 5-25, for our dataset QA, we will combine HITL validation with

spot-checking. Our NLP expert, who deeply understands the data labeling process, will

perform some spot-checking of our dataset records particularly for medical-related

annotations, using the OCI Data Labeling features. This can be done by following

these steps:

	 1.	 Open the navigation menu and navigate to Analytics and AI ➤

Machine Learning ➤ Data Labeling.

	 2.	 Click Datasets, and then click the name of the dataset you want to

edit, i.e., healthcare_ner_dataset_v1.0.0.

	 3.	 On the Dataset Details page, enter the Add labels page, to start

spot-checking of the dataset records (Figure 5-26).

	 a.	 Click the Action icon for the record you want to validate, and click

Edit Label.

	 b.	 Navigate between records by clicking the Skip button (Ctrl+K).

Chapter 5 Dataset Preparation

233

Figure 5-26.  Dataset record in edition mode in the Add labels page

A robust dataset annotation review process involves several best practices to ensure

data quality and relevance. Here’s a concise outline:

•	 Annotation Guidelines: Create detailed guidelines with clear

definitions and examples of each label or category used. These

should be accessible to all annotators for reference.

•	 Using the Labeling instructions tab of DLS Datasets in the Dataset
Details page, annotators can view any instructions entered by the

labeling team lead (e.g., John Doe, our NLP consultant).

•	 Train annotators using a subset of the data, followed by calibration

sessions to align their understanding and application of the

guidelines.

•	 Iterative Review: Implement an iterative review system where

another reviews annotations by one annotator to catch and correct

errors or inconsistencies.

•	 Regularly conduct quality checks using metrics such as

interannotator agreement (IAA) (Sowmya Vajjala, 2020) to assess

annotation consistency and accuracy across the team.

•	 Establish feedback loops that allow annotators to discuss challenging

cases or suggest changes to the annotation guidelines.

•	 Final Validation: Once the annotation is complete, perform a final

spot-check review to randomly review a small sample of annotated

data to ensure that it has been correctly labeled.

Chapter 5 Dataset Preparation

234

Data labeling validation is an ongoing process that necessitates collaboration, clear

guidelines, and a balance between human judgment and automation. By adhering

to these best practices, we can bolster the accuracy of our labeled datasets and thus

enhance the performance of our NLP models.

Manually validating and correcting annotations is time-consuming, so for simplicity,

we will assume the prelabeled dataset imported into DLS is good enough for our case

study. We will proceed directly to the dataset creation step (export).

�Dataset Creation (Step 6)
Our labeling team has completed the enrichment and validation of our Healthcare NER

dataset.

They will now deliver it to the data scientists’ team by exporting the labeled dataset

in CoNLL format to the Training Datasets Bucket.

In Data Labeling, we can export datasets to any Object Storage location in our

tenancy. This enables us to maintain different versions of the same dataset or use it

elsewhere, such as in the input phase for our NLP model training.

We can export our dataset to different file formats such as JSONL, JSONL Compact

Plus Content, spaCy, and CoNLL V2003. We selected CoNLL V2003 as the output format

for this case study.

Caution I t is important to keep in mind that when exporting text in the CoNLL
format, recursive and overlapping entities can be ignored. While this may be
acceptable in some cases, it is important to carefully consider whether this is
appropriate for your specific use case.

Below are the steps to export our dataset:

	 1.	 Open the navigation menu and navigate to Analytics and AI ➤

Machine Learning ➤ Data Labeling.

	 2.	 Click Datasets, and then click the name of the dataset you want to

export, i.e., healthcare_ner_dataset_v1.0.0.

Chapter 5 Dataset Preparation

235

	 3.	 In the Dataset Details page, click Export to display the Export
Dataset panel (Figure 5-27).

Namespace is read-only and shows where the JSON files

are stored.

	 4.	 For Bucket, select the Training Datasets Bucket, i.e., training-

datasets-bkt.

(Optional) To change the compartment where the Object Storage

bucket resides, click Change Compartment. Select the bucket

from the list.

	 5.	 For the export file format, choose CoNLL V2003.

	 6.	 Change the default prefix value to change the version of the

dataset from 1.0.0 to 1.10, i.e., healthcare_ner_dataset_v1.1.0/.

The exported dataset files are stored starting with this path prefix.

	 7.	 Leave the checkbox Include unlabeled records to export

unchecked.

Caution  When working on a supervised learning task such as Named Entity
Recognition (NER), it is important to remember that exporting all records, including
those that are yet to be labeled, may not be a useful approach. It is recommended
to export only the labeled records, as they are the ones that the model will learn
from during the training phase. Exporting the unlabeled records can lead to a
model that yields erroneous predictions.

Chapter 5 Dataset Preparation

236

	 8.	 Click Export dataset.

Figure 5-27.  Dataset export dialog box

When the exporting process starts, the dataset status is changed to “Updating,” and thus,

the only action permitted becomes “View work requests.” This action allows us to track the

progress of the dataset export operation, i.e., Snapshot Dataset. Figure 5-28 illustrates this.

Figure 5-28.  Dataset work requests

Chapter 5 Dataset Preparation

237

Additionally, you can view the full path of the CoNLL export in the Snapshot path

field of the associated work request while it’s being exported. As shown in Figure 5-29,

the Snapshot path of our CoNLL file (replace yz2wwgkgt8eh with your Object storage

namespace):

https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/

training-datasets-bkt/o/healthcare_ner_dataset_v1.1.0/healthcare_ner_

dataset_v1.0.0_1724175778995.conll

Figure 5-29.  Dataset export Work request details page

Once the export is completed, the full path of the CoNLL export can be found on the

Dataset Details page under the Snapshot path field, as shown in Figure 5-30.

Chapter 5 Dataset Preparation

https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/training-datasets-bkt/o/healthcare_ner_dataset_v1.1.0/healthcare_ner_dataset_v1.0.0_1724175778995.conll
https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/training-datasets-bkt/o/healthcare_ner_dataset_v1.1.0/healthcare_ner_dataset_v1.0.0_1724175778995.conll
https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/training-datasets-bkt/o/healthcare_ner_dataset_v1.1.0/healthcare_ner_dataset_v1.0.0_1724175778995.conll

238

Figure 5-30.  Dataset Details page with Snapshot path

To check if the exported dataset healthcare_ner_dataset_v1.1.0, including the CoNLL

file exists, go to the Training Datasets Bucket, as shown in Figure 5-31.

Figure 5-31.  Exported dataset with CoNLL file in Object Storage Bucket

Chapter 5 Dataset Preparation

239

During the training phase, the data scientists will use the exported CoNLL file to

train a Healthcare NER model using the Hugging Face Datasets library.18

�Additional Notes
This section provides additional details about DLS that are helpful but optional to the

main discussion of our case study’s dataset preparation steps.

�Dataset Import Using DLS UI

Another option for importing the dataset is to use the DLS UI’s Import Dataset feature.

This is possible because we have created DLS-compatible files in a consolidated

JSONL format.

To proceed, you first need to locate the URL of the dataset’s metadata file (JSONL).

Here are the steps to copy this URL:

	 1.	 Go to the Labeling Datasets Bucket, i.e., labelling-datasets-bkt

containing our dataset files.

	 2.	 Under Objects, click the folder that contains the dataset metadata

file, i.e., healthcare_ner_dataset_v1.0.0.

	 3.	 Find the metadata file, i.e., healthcare_ner_dataset_v1.0.0/

dataset_metadata.jsonl.

	 4.	 From the Action menu for the metadata file, select View Object
Details (Figure 5-32).

	 5.	 Copy the value for URL path (URI) (replace yz2wwgkgt8eh with

your Object storage namespace):

https://objectstorage.ca-toronto-1.oraclecloud.com/n/

yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_

dataset_v1.0.0%2Fdataset_metadata.jsonl

18 Hugging Face Transformers library and Hugging Face Datasets library.

Chapter 5 Dataset Preparation

https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_dataset_v1.0.0/dataset_metadata.jsonl
https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_dataset_v1.0.0/dataset_metadata.jsonl
https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_dataset_v1.0.0/dataset_metadata.jsonl

240

Figure 5-32.  Metadata JSONL file: Object Details dialog box from the
Bucket page

Follow these steps to import19 a dataset into Data Labeling.

	 6.	 Open the navigation menu and click Analytics and AI. Under

Machine Learning, click Data Labeling.

	 7.	 Click Datasets.

	 8.	 Click the Import dataset button (as shown in Figure 5-33).

19 For more details about importing dataset-supported formats, refer to the documentation at
https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/datasets-import-
about.htm

Chapter 5 Dataset Preparation

https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/datasets-import-about.htm
https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/datasets-import-about.htm

241

Figure 5-33.  Dataset list page

	 9.	 To retrieve metadata and records that are already in Object

Storage, click Select from Object Storage, and follow these steps:

In Object Storage location, paste the metadata file URL (copied

earlier) in the field: Enter the Object Storage URL for your
metadata file.

For example (replace yz2wwgkgt8eh with your Object storage

namespace):

https://objectstorage.ca-toronto-1.oraclecloud.com/n/

yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_

dataset_v1.0.0%2Fdataset_metadata.jsonl

When you have specified it, Namespace, Bucket, Prefix, and

Object fields are all populated from the URL.

	 10.	 Under File location, make sure that the check box A
record is present in the same metadata path is selected

(as shown in Figure 5-34).

Chapter 5 Dataset Preparation

https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_dataset_v1.0.0/dataset_metadata.jsonl
https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_dataset_v1.0.0/dataset_metadata.jsonl
https://objectstorage.ca-toronto-1.oraclecloud.com/n/yz2wwgkgt8eh/b/labelling-datasets-bkt/o/healthcare_ner_dataset_v1.0.0/dataset_metadata.jsonl

242

Figure 5-34.  Dataset import process: Import folder step

	 11.	 Click Next.

	 12.	 On the Add dataset details page (Figure 5-35), the fields

are populated from the metadata file, except for the field

Import format.

	 a.	 Make sure JSONL Consolidated is the option selected for the field

Import format.

Chapter 5 Dataset Preparation

243

Figure 5-35.  Dataset import process: Add dataset details step

	 13.	 Click Next.

Figure 5-36.  Modifying metadata format

Chapter 5 Dataset Preparation

244

	 14.	 Click Yes, proceed (Figure 5-36).

	 15.	 Click Next.

	 16.	 On the Review page, as shown in Figure 5-37, verify the

information that you entered. If the dataset details need editing,

click Edit. If you need to go back and change any values,

click Edit.

	 17.	 Click Import.

Figure 5-37.  Dataset import process: Review step

When a dataset is imported, records are generated automatically. During this

process, the dataset state changes to “Updating.” Once the records are generated,

the files used to create them will appear on the Dataset Details page. However, it’s

important to keep in mind that generating records can take a considerable amount of

time, especially for larger datasets.

The dataset is marked as “ACTIVE” only when the import process is complete, and

all the records are created successfully.

Chapter 5 Dataset Preparation

245

�Record Count Limit

The OCI Data Labeling Service (DLS) has a limit on the number of records that can be

created, as illustrated in Figure 5-38. By default, the service limit for record count is set

to 10,000.

When creating or importing records for a dataset, it’s crucial to ensure that the total

number of records across all DLS Datasets does not exceed the available record count to

avoid issues related to the record count limit. If the number of records requiring labeling

surpasses the available limit, you will need to file a Customer Account Management

(CAM) ticket to request an increase in the record count limit.

Figure 5-38.  Default DLS record count service limit

Our tenancy administrator and the NLP consultant discussed increasing the

DLS record count limit, leading to a request that was approved by Oracle, raising the

limit to 30,000. Fortunately, due to this proactive action, we still have ample capacity

for additional datasets, even after importing our 9,000-record dataset, as shown in

Figure 5-39.

Chapter 5 Dataset Preparation

246

Figure 5-39.  DLS record count service limit after increasing the limit and
importing the training dataset

�Summary
This chapter, while based on the fictional narrative of MedTALN Inc., accurately reflects

the real-world challenges and solutions encountered in NLP projects at typica.ai. The

strategies and best practices demonstrated by John Doe, the fictional consultant, are

grounded in practical experience from actual NLP projects on OCI.

A key focus of the chapter is on building robust yet cost-effective training datasets.

This is achieved by leveraging community-curated datasets from reputable sources like

Hugging Face and utilizing efficient annotation tools like the OCI Data Labeling Service.

The chapter emphasizes the importance of these approaches, particularly for non-

English languages, where finding and securing specialized annotators can be both costly

and time-consuming, with variable annotation quality. Domain-specific data, especially

in medical fields and languages such as French, German, Arabic, or Hindi, requires

specialized expertise that is not always readily available.

The chapter also demonstrates how to use Python code within OCI Data Science

Notebook Sessions to collect, clean, and import datasets using OCI Data Labeling APIs.

This hands-on approach provides readers with practical steps to streamline the dataset

building process.

Overall, this chapter serves as a practical guide for preparing training datasets

across various NLP tasks, domains, and languages. It offers a detailed methodology

and actionable insights to help NLP practitioners and professionals efficiently navigate

the dataset building process, empowering them to address the complexities of the NLP

landscape with greater confidence.

Chapter 5 Dataset Preparation

247

�References
Bowne-Anderson, H. (2020). The unreasonable importance of data preparation. Your

models are only as good as your data. Retrieved from O’Reilly’s Radar: https://www.

oreilly.com/radar/the-unreasonable-importance-of-data-preparation/

Joe Reis, M. H. (2022). Fundamentals of Data Engineering. O’Reilly Media, Inc.

Lewis Tunstall, L. v. (2022). Natural Language Processing with Transformers, Revised

Edition. O’Reilly Media, Inc.

McGregor, S. E. (2021). Practical Python Data Wrangling and Data Quality. O’Reilly

Media, Inc.

Munro, R. (2021). Human-in-the-Loop Machine Learning. Manning Publications

Oracle. (2023). Data Labeling. Retrieved from docs.oracle.com: https://docs.

oracle.com/en-us/iaas/Content/data-labeling/using/home.htm

Sowmya Vajjala, B. M. (2020). Practical Natural Language Processing. O’Reilly

Media, Inc.

typica.ai. (2024). MedicalNER_Fr: Named Entity Recognition Dataset for the French

language in the medical and healthcare domain. https://huggingface.co/datasets/

TypicaAI/MedicalNER_Fr

Chapter 5 Dataset Preparation

https://www.oreilly.com/radar/the-unreasonable-importance-of-data-preparation/
https://www.oreilly.com/radar/the-unreasonable-importance-of-data-preparation/
http://docs.oracle.com
https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/home.htm
https://docs.oracle.com/en-us/iaas/Content/data-labeling/using/home.htm
https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr
https://huggingface.co/datasets/TypicaAI/MedicalNER_Fr

249
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_6

CHAPTER 6

Model Fine-Tuning
This chapter focuses on the process of fine-tuning a pretrained model for healthcare

Named Entity Recognition (NER). This chapter provides an in-depth exploration of

training the healthcare NER model using OCI’s Data Science platform and Hugging Face

tools. It covers the fine-tuning process, performance evaluation, and best practices that

contribute to creating robust and cost-effective NLP models.

�Preliminaries
This section delves into the fundamentals of language models (LMs) and their evolution,

with a focus on their pivotal role in transfer learning—a key approach in building our

Healthcare Named Entity Recognition (NER) model.

Transfer learning allows us to fine-tune pretrained models that have already

absorbed vast amounts of linguistic and healthcare-specific knowledge. This approach

streamlines the process of creating an effective and cost-efficient Healthcare NER model.

By the end of this section, you will have a solid understanding of the core concepts

behind fine-tuning, preparing you for the practical steps of building our Healthcare NER

model using OCI Data Science Notebooks and Hugging Face libraries.

�Language Models (LMs)
As we discussed in Chapter 1, language models (LMs) are a foundational concept in

NLP. Their importance becomes even more pronounced when we consider fine-

tuning pretrained language models (PLMs) for task-specific applications, such as our

case study.

https://doi.org/10.1007/979-8-8688-1073-2_6#DOI
https://doi.org/10.1007/979-8-8688-1073-2_1

250

�Evolution of LMs

The concept of “language models” has long been central to Natural Language Processing

(NLP), representing the tools and algorithms used to understand, predict, and generate

human language. Initially, language models were relatively simple, based on statistical

methods that could only capture basic patterns in text. However, the term “language

models” as we understand it today—referring to sophisticated systems capable of

understanding and generating natural language in a manner similar to how humans

do—began to take shape in the early 2000s.

As illustrated in Figure 6-1, the evolution of language models (LMs) in NLP has

been marked by a series of pivotal milestones, each building on the innovations of its

predecessors. Below is an outline of this progression.

Figure 6-1.  Significant milestones in the evolution of language models

�Neural Language Models (2003)

The first crucial milestone came in 2003 with the introduction of neural language
models by Yoshua Bengio (Bengio, Ducharme, Vincent, & Jauvin, 2003) and his

colleagues. This was the first time neural networks were applied to language modeling,

moving beyond the limitations of statistical N-gram models. Bengio’s model introduced

the concept of representing words in a continuous vector space, allowing for the capture

of more complex relationships between words. This approach laid the foundation for the

use of deep learning in NLP, setting the stage for the future of language models.

This milestone is crucial because it introduced key ideas that underpin today’s

language models: the use of neural networks for processing language and the

representation of words as dense vectors in a semantic space. These concepts have

Chapter 6 Model Fine-Tuning

251

since been expanded and refined, leading to the creation of even more powerful

models that can handle a broader range of language tasks with greater accuracy and

versatility.

The evolution from these early neural language models to the sophisticated

Transformer-based models of today represents a rapid advancement in our ability to

create systems that can process and generate human language. The work of Bengio and

his team not only changed the trajectory of NLP research but also set the stage for the

development of the powerful language models we rely on today, such as BERT, GPT, and

other Transformer-based architectures.

�Word Embeddings: Word2Vec and GloVe (2013–2014)

A decade later, the development of word embeddings through models like Word2Vec

(Tomas Mikolov, 2013) and GloVe (Jeffrey Pennington, 2014) represented a significant

leap forward. These models transformed the way words were represented by embedding

them in a dense vector space, where words with similar meanings were positioned closer

together. This breakthrough allowed language models to understand and capture the

semantic relationships between words more effectively, improving performance across

a wide range of NLP tasks and providing the foundational representations that would be

crucial for subsequent advances.

This development was crucial for several reasons:

•	 Semantic Understanding: Word embeddings allowed language

models to understand the meaning of words in a much deeper

way than previous methods. This was a significant leap from the

earlier bag-of-words or N-gram models, which struggled to capture

semantic relationships between words.

•	 Improved Generalization: These embeddings enabled language

models to generalize better across tasks by using the learned word

representations, which improved performance in tasks like sentiment

analysis, Named Entity Recognition, and machine translation.

•	 Foundation for Advanced Models: Word embeddings laid the

foundation for subsequent developments in NLP. They became a

fundamental building block for more advanced models, including

those that used deep learning and Transformers.

Chapter 6 Model Fine-Tuning

252

Word embeddings paved the way for the even more powerful and versatile

Transformer-based models.

�Transformers (2017)

While Transformers (Ashish Vaswani, 2017) were the next major milestone and

arguably the most transformative, Word2Vec and GloVe were essential stepping

stones. They introduced the idea of learning word representations in a way that could

be effectively utilized by deep learning models, including Transformers. Without the

groundwork laid by word embeddings, the leap to Transformers might not have been as

impactful or feasible.

Transformers replaced the sequential processing of RNNs and LSTMs with a self-

attention mechanism that allowed for parallel processing of text, leading to significantly

better performance on a wide range of tasks. This architecture enabled models to

capture complex dependencies in text more efficiently and laid the groundwork for

the development of pretrained language models. Transformers quickly became the

standard architecture for modern NLP, underpinning almost all of today’s advanced

language models.

�Pretrained Language Models (2018–2019)

Building on the Transformer architecture, pretrained language models (PLMs) like

BERT (Jacob Devlin, 2018) and GPT (Radford, 2018) represented a new paradigm in

NLP. These models were pretrained on massive corpora of text in an unsupervised

manner and then fine-tuned on specific tasks, allowing for remarkable performance

with minimal task-specific data. BERT introduced bidirectional training, enabling a deep

understanding of context, while GPT focused on text generation. PLMs revolutionized

how NLP tasks were approached, making it possible to achieve state-of-the-art results

across a variety of applications with much less training data.

�Large Language Models (LLMs) (2020s)

The 2020s have been characterized by the rise of large language models (LLMs), with

models like GPT-3 pushing the boundaries of what is possible in NLP. With billions of

parameters, LLMs demonstrated the ability to generate highly coherent, contextually

relevant text and perform complex tasks with little to no fine-tuning. These models have

become the pinnacle of NLP, enabling sophisticated applications such as conversational

Chapter 6 Model Fine-Tuning

253

AI, content generation, and more. LLMs continue to redefine the capabilities of language

models, driving innovation and setting new benchmarks for performance and versatility

in the field.

�Acronyms

In the rapidly evolving field of Natural Language Processing (NLP), several acronyms

are frequently used to describe the different types of Transformer-based pretrained

language models. Understanding these acronyms is essential for grasping the nuances of

the various models and their applications.

•	 PLM (Pretrained Language Model): This term broadly refers to

models that are pretrained on large corpora of text before being

fine-tuned for specific downstream tasks. PLMs have become the

cornerstone of modern NLP applications, enabling tasks like text

classification, sentiment analysis, and more.

•	 LLM (Large Language Model): LLMs are a subset of PLMs

distinguished by their large scale, typically involving billions of

parameters. These models, such as GPT-4, are known for their

ability to generate coherent and contextually relevant text, making

them highly versatile and effective across a wide range of NLP tasks,

including text generation, translation, and conversation.

•	 MLM (Masked Language Model): MLM refers to a type of PLM where

the model is trained to predict masked words within a sentence,

used in models like BERT. These models learn deep contextual

representations of language, which are useful for tasks like Named

Entity Recognition (NER) and text classification.

•	 GLM (Generative Language Model): GLM is a term occasionally

used to describe models focused on text generation, such as GPT

(Generative Pretrained Transformer). However, these models are

more commonly referred to by their specific architectures, like GPT,

rather than the generic GLM term. These models excel at generating

humanlike text and are widely used in applications like chatbots and

content creation.

Chapter 6 Model Fine-Tuning

254

•	 SLM (Small Language Model): Though not a widely standardized

acronym, SLM is used descriptively to refer to smaller-scale language

models. These models have fewer parameters and are optimized

for efficiency, making them suitable for applications where

computational resources are limited or where quick, cost-effective

processing is needed.

These acronyms represent key concepts in the realm of Transformer-based

pretrained language models. It is increasingly important to be familiar with these terms

to understand and take advantage of the latest developments in NLP.

�Taxonomy of Pretrained Language Models

Understanding this taxonomy helps in selecting the right model for specific NLP tasks,

as well as grasping the underlying principles that differentiate various models such as

BERT, GPT, and T5.

Below are the main categories in the taxonomy of pretrained language models,

focusing on aspects such as language coverage, model size, and training data:

•	 Language Coverage: Pretrained language models vary widely in

the languages they support. Monolingual models, such as BERT

for English, CamemBERT for French, and AraBERT for Arabic,

are tailored to capture the nuances and specificities of a single

language, making them highly effective for language-specific tasks.

These models are trained on large corpora of text in their respective

languages, allowing them to understand and generate text with high

accuracy. On the other hand, multilingual models like mBERT and

XLM-R are trained on multiple languages, making them versatile

for cross-lingual applications. Although they may not capture the

subtleties of each language as well as monolingual models, they are

invaluable for applications that need to support multiple languages

simultaneously, especially in diverse linguistic regions like the

Maghreb, where multilingual capabilities are essential.

•	 Domain Specialization: Domain-specific language models are

tailored to understand and process text within a particular field.

BioBERT is a prime example, focusing on biomedical literature

to aid in tasks like entity recognition and relation extraction in the

Chapter 6 Model Fine-Tuning

255

medical domain. Similarly, SciBERT is designed for processing

scientific texts, making it useful for researchers who need to analyze

academic papers and scholarly articles. FinBERT, on the other hand,

is specialized for the financial sector, enabling tasks like sentiment

analysis and trend prediction in financial documents. These

models are pretrained on large datasets relevant to their respective

domains, which allows them to outperform general-purpose models

in specialized tasks. For startups and enterprises in the Maghreb

focusing on specific industries, such as healthcare or finance, these

domain-specific models can provide a significant advantage.

•	 Openness (Open vs. Proprietary): The openness of a language model

refers to whether it is freely available for use and modification or is

restricted by proprietary access. Open models like BERT, RoBERTa,

and GPT-2 are widely accessible, with both their code and pretrained

weights available for public use. These models have spurred

innovation by allowing researchers and developers to build upon

them, customize them, and apply them to a wide range of tasks. On

the other hand, proprietary models like GPT-3, Claude, and Cohere

are controlled by their developers, typically accessed via APIs. While

these models often offer cutting-edge performance, their restricted

access can limit how they are used, particularly for small businesses

and startups that may not afford the costs associated with proprietary

APIs. In regions like the Maghreb, where resources can be limited,

open models often provide the best balance between cost and

performance.

•	 Model Size: The size of a Transformer model, typically measured in

the number of parameters, significantly impacts its capabilities and

resource requirements. Small models like DistilBERT and ALBERT

are designed to be lightweight and efficient, offering faster inference

times and lower computational costs while sacrificing some accuracy

compared to larger models. These models are particularly useful for

applications with resource constraints, such as mobile applications

or real-time systems. In contrast, large models like BERT-large

and GPT-3 contain hundreds of millions to billions of parameters,

allowing them to perform complex tasks with high accuracy but at

Chapter 6 Model Fine-Tuning

256

the cost of requiring substantial computational resources. These

large models are typically used for cutting-edge applications where

performance is critical, such as advanced AI research or large-scale

industrial applications. For startups in the Maghreb, the choice

between small and large models will depend on the specific needs of

their applications and the resources available to them.

•	 Architecture Variants: Transformer models can be categorized

based on their architecture into encoder-only, decoder-only, and

encoder–decoder models, each serving different purposes. Encoder-

only models like BERT are primarily used for understanding tasks

such as text classification, Named Entity Recognition, and sentiment

analysis. These models are powerful at generating meaningful

embeddings of input text, making them ideal for tasks requiring

deep comprehension of the text. Decoder-only models, such as GPT,

are focused on text generation, excelling in tasks where producing

coherent and contextually relevant text is essential, like in dialogue

systems and creative writing. Encoder–decoder models like T5 and

BART combine the strengths of both architectures, making them

versatile for tasks that require both understanding and generation,

such as summarization, translation, and question answering.

•	 Use Case Focus: Different pretrained models are optimized for

specific use cases, which makes them particularly suited for certain

tasks. For instance, conversational agents, models like DialoGPT are

specifically optimized for dialogue, enabling them to generate more

natural and contextually appropriate responses in conversations.

�Healthcare-Specific Pretrained Language Models
In the rapidly evolving field of Natural Language Processing (NLP), the need for

specialized models tailored to specific domains, such as healthcare, has become

increasingly apparent. For tasks like Named Entity Recognition (NER) in the healthcare

domain, especially when dealing with non-English languages such as French, leveraging

domain-specific small pretrained language models offers a promising approach to

achieving high-quality results while maintaining cost-effectiveness.

Chapter 6 Model Fine-Tuning

257

This section explores the benefits and strategies of utilizing such models, particularly

in the context of building a Healthcare NER model for the French language.

�Why Domain-Specific Models for Healthcare

Healthcare is a highly specialized field with unique terminologies, abbreviations,

and contextual nuances that are not commonly found in general language corpora.

Therefore, general-purpose language models, even those pretrained on large datasets,

often fall short when applied to healthcare-related tasks. Domain-specific pretrained

models, particularly those trained on healthcare-related text, are better equipped to

handle the intricacies of medical language, leading to more accurate and reliable NER

results.

In the French language, this challenge is compounded by the relative scarcity of

large-scale annotated healthcare datasets compared to English. As a result, the use of

small, domain-specific pretrained models becomes even more crucial for tasks like

Healthcare NER. These models can provide a more precise understanding of medical

entities and relationships, ultimately leading to better performance in downstream tasks.

The advantages of small Healthcare-specific pretrained language models are as

follows:

•	 Cost-Effectiveness: Large pretrained models, while powerful, are

often expensive to train and deploy due to their size and complexity.

They require significant computational resources, which can drive up

costs, particularly in environments where budgets are constrained.

Small pretrained language models, on the other hand, are more

efficient in terms of resource usage. They can be fine-tuned more

quickly, reducing the time and computational power needed for

training, which directly translates to cost savings.

•	 Specialization: Small models that are pretrained on domain-specific

corpora, such as healthcare texts in French, offer the advantage

of being more specialized. While they may not have the broad

coverage of larger models, their training on domain-specific data

allows them to excel in specific tasks. For instance, a small model

trained on French medical texts would be more adept at recognizing

and classifying entities like drug names, medical conditions, and

procedures compared to a general-purpose model.

Chapter 6 Model Fine-Tuning

258

•	 Adaptability and Fine-Tuning: Another significant advantage of

small pretrained models is their adaptability. These models can be

fine-tuned on smaller, task-specific datasets, such as a curated NER

dataset for the French healthcare domain, with greater ease than

larger models. The fine-tuning process is less resource-intensive,

which allows for quicker iterations and more experimentation,

enabling developers to optimize the model’s performance for the

specific task at hand.

•	 Balancing Model Quality and Cost-Effectiveness: In the context of

building a Healthcare NER model for the French language, leveraging

domain-specific small pretrained language models strikes an

effective balance between model quality and cost-effectiveness.

Despite their smaller size, domain-specific models often outperform larger general-

purpose models when applied to specialized tasks. For instance, a small French

healthcare model pretrained on medical journals, clinical notes, and healthcare-related

articles will likely achieve higher accuracy in NER tasks than a larger model trained on a

general corpus. This targeted performance is crucial in healthcare, where accuracy and

reliability are paramount.

Furthermore, the reduced complexity of small models also facilitates their

deployment in various environments, including cloud-based services and edge devices.

This flexibility is particularly beneficial in healthcare settings, where data privacy and

real-time processing are often critical. Small models can be deployed closer to where the

data is generated, enabling quicker and more secure processing of sensitive healthcare

information.

Leveraging domain-specific, small pretrained language models for the French

healthcare domain appears to offer a compelling strategy for building a high-quality,

cost-effective Healthcare NER model for our case study.

�Why Open Pretrained Models

With free access to state-of-the-art models, platforms like Hugging Face help accelerate

NLP adoption. Models published on Hugging Face are mostly open source, meaning

they are freely available to anyone, eliminating the need to invest in proprietary software

or licenses. This makes advanced NLP technology accessible without upfront costs.

Chapter 6 Model Fine-Tuning

259

In addition to the inherent advantages of pretrained models, open source models

from Hugging Face provide additional benefits.

•	 Access to State-of-the-Art Models: Hugging Face provides access

to a wide range of state-of-the-art models trained on large, diverse

datasets. Leveraging these models allows us to benefit from

cutting-edge research without the associated development and

training costs.

•	 Community and Support: Hugging Face has a large community and

extensive documentation, which reduces the cost associated with

troubleshooting, experimenting, and developing custom models.

This community-driven support accelerates development and

reduces the need for in-house expertise.

Basically, using pretrained models from Hugging Face is a smart choice because it

saves on computational resources, time, and data collection while giving us access to

top-notch models that can be adjusted for specific tasks with minimal extra effort.

�Cost-Saving Strategies for the Training Phase
One of the biggest challenges in deploying NLP solutions is finding the right balance

between cost-effectiveness, functionality, and performance. Training NLP models can

be particularly expensive due to the high demand for GPU resources, especially when

training is only needed intermittently.

Figure 6-2.  Cost-savings strategies for the training phase

Chapter 6 Model Fine-Tuning

260

As depicted in Figure 6-2, the following cost-saving strategies will be applied during

the model training phase and will be explained in more detail in the upcoming sections:

•	 Adopting a Transfer Learning Approach: We utilized healthcare-

specific pretrained models for the French language available on

the Hugging Face Hub. This approach allows us to leverage existing

models, reducing the need for extensive, costly training from scratch.

•	 Leveraging OCI Data Science Notebooks: By using OCI’s GPU-

based Data Science Notebooks only during the training phase and

deactivating them during idle times, we minimized costs. OCI’s

billing stops when notebooks are deactivated, which enhances cost

efficiency.

To keep expenses low, we decided to use open pretrained models available on

Hugging Face for our case study. This strategy provides access to high-quality models

without direct costs and fosters innovation and customization through the open source

community.

Through this case study, you will see how strategic decisions, such as leveraging

OCI’s features and external resources like the Hugging Face Hub, can significantly reduce

the financial barriers to implementing advanced NLP projects. By capitalizing on OCI’s

capabilities and embracing transfer learning, it’s possible to achieve substantial cost

savings in traditionally expensive areas.

�Transfer Learning–Based Fine-Tuning Workflow
The following text provides a high-level overview of our workflow for fine-tuning

pretrained models for Healthcare NER. This workflow outlines the sequential steps from

the initial problem definition to the final evaluation and ranking of fine-tuned models.

By following this structured process, we ensure that each step of the training phase is

methodically approached, resulting in high-performance Healthcare NER models.

Chapter 6 Model Fine-Tuning

261

Figure 6-3.  High-level flow for fine-tuning a pretrained language model
MLM of NER

Figure 6-3 illustrates the key steps of the workflow, which include defining selection

criteria for pretrained models, choosing appropriate pretrained models, fine-tuning

them for NER, and evaluating and ranking the models based on their performance. Each

phase of the workflow builds upon the previous one, ensuring a logical progression from

identifying the problem to deploying the model, with a strong emphasis on cost-

effectiveness.

Key steps in the training process are as follows:

	 1.	 Problem Definition: The initial phase of the workflow involves

problem definition. During this phase, we define the criteria for

selecting Masked Language Models (MLM) that are suitable for

our case study, such as those that support the French language for

the healthcare domain.

	 2.	 MLM Model Selection: In this phase, our main focus is to choose

the best Masked Language Modeling (MLM) models from the

Hugging Face Hub that can be fine-tuned for our healthcare NER

task. This phase consists of two important steps:

	 a.	 Search: We start by searching the Hugging Face Hub for candidate MLM

models that support the French language and have been pretrained on

healthcare data.

Chapter 6 Model Fine-Tuning

262

	 b.	 Exploration and Evaluation: Once potential models are identified, they

are further explored and evaluated to determine their suitability for fine-

tuning. This involves assessing how well these models can predict masked

tokens related to the healthcare domain. Models that perform well in this

step are selected for the next phase.

	 3.	 NER Model Fine-Tuning: After selecting the most promising MLM

models, the third phase involves fine-tuning these models to

adapt them specifically for the NER task. This phase is divided into

two substeps:

	 a.	 Train: The selected models are fine-tuned on a healthcare-specific dataset

where they learn to recognize and classify medical entities.

	 b.	 Evaluate: After training, the models are evaluated on a validation set to

assess their effectiveness. Key metrics such as precision, recall, and F1 score

determine how well the models perform on the NER task.

	 4.	 NER Model Evaluation and Ranking: The last step of the workflow

includes evaluating and ranking the fine-tuned NER models.

During this phase, each model’s performance is compared using

the F1 measure. The evaluation results are then used to rank

the models, which helps in selecting the best performing NER

model. The winning healthcare NER task is tested against a small

manually created dataset to visually and manually assess its

predictions by a human expert.

To fine-tune our Healthcare NER models, John Doe, our NLP consultant, will use

OCI Data Science Notebooks. He will provide step-by-step guidance through Python

notebooks and Hugging Face libraries (Transformers and Datasets libraries) throughout

the process.

�Pretrained Model Selection
In this section, we outline the process of selecting pretrained Masked Language

Modeling (MLM) models for fine-tuning, leveraging Hugging Face (HF).

Chapter 6 Model Fine-Tuning

263

�Framing the Problem (Step 1)
In this phase, our NLP consultant has worked on establishing objective criteria for

choosing Masked Language Modeling (MLM) models to fine-tune for our healthcare

Named Entity Recognition (NER) task.

The criteria for selecting the MLM models are based on key factors such as the

model’s relevance to the healthcare domain, its support for the French language, and its

architecture and size.

Table 6-1 summarizes the selection criteria for the pretrained MLM models.

Table 6-1.  Pretrained MLM selection criteria

 Criteria Description Example Value

Language The model must support French. fr

NLP Task The model must be designed for the Masked Language

Modeling task.

fill-mask

Library The model must be implemented in the PyTorch library. pytorch

Transformer

Framework

The model must use the Hugging Face Transformers

library.

transformers

Domain-

Specific Tags

The model must be tagged with one or more relevant

domain-specific tags.

healthcare, medical,

clinical, biomedical,

biology, life science

Single

Language

Support

The model must support only one language, specifically

French. Ensuring it is specialized for the target language

without other language influences.

Additionally, as shown in Listing 6-1, the NLP consultant prepared a small dataset

to evaluate the predictions of the selected MLM models. This evaluation shall provide

insights into the models’ effectiveness in predicting masked medical terms, allowing us

to shortlist the top five models for the fine-tuning phase.

Listing 6-1.  Tiny handmade dataset for MLM model selection

examples = [

 {

 �"text": "Le medecin donne des {} en cas d'infections des voies

respiratoires.",

Chapter 6 Model Fine-Tuning

264

 "expected_entities": [{'antibiotiques': 1}]

 },

 {

 �"text": "Le médecin recommande des {} pour réduire l'inflammation

dans les poumons.",

 �"expected_entities": [{'corticoïdes': 1}, {'anti-inflammatoires':

 0.9}]

 },

 {

 �"text": "Pour soulager les symptômes d'allergie, le médecin

prescrit des {}.",

 "expected_entities": [{'antihistaminiques': 1}]

 },

 {

 "text": "Pour gérer le diabète, le médecin prescrit une {}.",

 "expected_entities": [{'insulinothérapie': 1}]

 },

 {

 �"text": "Après une blessure musculaire, le patient doit suivre

une {}.",

 "expected_entities": [{'physiothérapie': 1}, {'rééducation': 0.8}]

 },

 {

 �"text": "En cas d'infection bactérienne, le médecin recommande

une {}.",

 "expected_entities": [{'antibiothérapie': 1}]

 }

]

Tip T hough tiny, this domain-specific test set has been carefully crafted to
contain healthcare-related sentences with well-known medical terms masked
(e.g., antibiotics). Pretrained MLM models that fail to accurately predict these
masked medical terms are considered to perform poorly in the healthcare domain
in French and, thus, discarded from our top five selection.

Chapter 6 Model Fine-Tuning

265

�MLM Model Selection from Hugging Face (Step 2)
As depicted in Figure 6-4, the workflow of selecting pretrained Masked Language

Modeling (MLM) involves searching and filtering models based on the defined selection

criteria using HF APIs and evaluating programmatically their performance against a

handcrafted tiny evaluation dataset. This systematic approach ensures that we identify

the top five MLM models best suited for our healthcare NER task.

Figure 6-4.  Pretrained MLM model selection workflow using Hugging Face

Chapter 6 Model Fine-Tuning

266

�Pretrained Model Selection Notebook

This notebook guides you through the process of selecting a list of pretrained models

that suitable for our case study, i.e., MLM supporting healthcare domain and the French

language that can be fine-tuned into a Healthcare NER model.

This notebook will help us identify top-performing MLM models based on specific

objective criteria. The notebook is structured into the following key steps:

	 1.	 Search for MLM Models: We begin by searching for candidate

MLM models on the Hugging Face Hub that are suitable for

our needs.

	 2.	 Evaluate and Rank Models: We evaluate the selected MLM models

on a small, handcrafted dataset to determine which models best

predict medical entities in the fill-mask task. The models are then

ranked based on their performance.

For the training, we will need to open the GPU-based OCI Data Science Notebook

Session.

	 1.	 Open the GPU-based notebook session:

	 a.	 Go to Analytics & AI ➤ Machine Learning ➤ Data Science ➤ Projects.

	 b.	 Open the our OCI DS project, i.e., cs-nlp-prj.

	 c.	 If it is deactivated, activate the CPU-based OCI Data Science Notebook

Session, i.e., cs-nlp-nbs-cpu.

	 d.	 Open the CPU-based OCI Data Science Notebook Session, i.e., cs-

nlp-nbs-cpu.

	 2.	 From the JupyterLab file browser, open the notebook select_mlm_
models.ipynb under the folder (Figure 6-5):

/repos/john-doe-typica-ai/nlp-on-oci.git/chapt-6

Chapter 6 Model Fine-Tuning

267

Figure 6-5.  Notebook for MLM model selection

�Identify a List of Candidate MLM Models from Hugging Face Hub

We will use the Hugging Face Transformers library to search and filter models

programmatically (see Listings 6-2 through 6-5).

	 1.	 Search Models: Search for the MLM models supporting the

French language.

	 2.	 Filter Found Models: Filter out the returned models to retain only

models supporting only French (monolingual) and have at least

one of the healthcare domain–related tags.

The Hugging Face “Transformers” library is already included in our installed conda

environment (i.e., pytorch21_p39_gpu_v1). We will upgrade it to version “4.44.2.” This

only needs to be done once, the first time.

Listing 6-2.  Installing Dependencies

%%capture

!pip install transformers==4.44.2

Chapter 6 Model Fine-Tuning

268

�Search MLM Models

Listing 6-3.  Searching Models

from huggingface_hub import list_models

Fetch the list of models with the specified criteria

models = list_models(

 language ="fr", task="fill-mask", library = "pytorch", cardData = True

)

List of tags to filter by

filter_tags = ["healthcare", "medical", "clinical", "biomedical",

"biology", "life science"]

Print the model IDs and some basic information

included_models = []

for model in models:

 if len(model.card_data.language) == 1 and \

 model.card_data.library_name == 'transformers' and \

 any(tag in model.tags for tag in filter_tags):

 included_models.append(model.modelId)

included_models

Output

['Dr-BERT/DrBERT-4GB',

 'Dr-BERT/DrBERT-7GB',

 'Dr-BERT/DrBERT-4GB-CP-PubMedBERT',

 'almanach/camembert-bio-base',

 'Dr-BERT/DrBERT-7GB-Large',

 'abazoge/DrLongformer',

 'abazoge/DrBERT-4096',

 'PantagrueLLM/jargon-general-base',

 'PantagrueLLM/jargon-general-biomed',

 'PantagrueLLM/jargon-biomed-4096',

 'PantagrueLLM/jargon-multidomain-base',

 'PantagrueLLM/jargon-biomed',

 'PantagrueLLM/jargon-NACHOS',

 'PantagrueLLM/jargon-NACHOS-4096']

Chapter 6 Model Fine-Tuning

269

�Check the Model Configuration

In this step, we validate that the selected models adhere to the architecture of the BERT

base model, specifically with 12 hidden layers and 12 attention heads. This ensures

consistency in terms of model size for our fine-tuned models.

Listing 6-4.  Checking the Model’s Configuration

from transformers import AutoConfig

List of models to check

model_ids = included_models

Initialize an empty dictionary to store model ID and their details

models_with_right_config = []

Function to fetch the number of layers and attention heads

def get_model_details(model_id):

 try:

 # Load the model configuration

 config = �AutoConfig.from_pretrained(model_id, trust_remote_

code=False)

 # Get the number of layers and attention heads

 num_layers = config.num_hidden_layers

 num_heads = config.num_attention_heads

 return num_layers, num_heads

 except Exception as e:

 return f"Error retrieving config for {model_id}: {e}", None

Iterate through the models and populate the dictionary with their details

for model_id in model_ids:

 details = get_model_details(model_id)

 if details[0] == 12 and details[1] == 12:

 models_with_right_config.append(model_id)

models_with_right_config

Chapter 6 Model Fine-Tuning

270

Output

['Dr-BERT/DrBERT-4GB',

 'Dr-BERT/DrBERT-7GB',

 'Dr-BERT/DrBERT-4GB-CP-PubMedBERT',

 'almanach/camembert-bio-base',

 'abazoge/DrLongformer',

 'abazoge/DrBERT-4096']

�Retrieve Mask Tokens

In this step, we retrieve the mask tokens for each of the models that retained models so

far. Using the “AutoTokenizer” from the Hugging Face Transformers library, we load the

tokenizer associated with each model and extract its mask token.

We then validate that the mask token matches the expected tokens, specifically

“[MASK]” or “<mask>”, which are commonly used in models like BERT and its variants.

Models that meet this criterion are stored in the “models_with_mask_tokens” dictionary

for further processing.

Listing 6-5.  Identifying Mask Tokens

from transformers import AutoTokenizer

Initialize an empty dictionary to store model ID and mask token

models_with_mask_tokens = {}

Function to fetch the mask token using the tokenizer

def get_mask_token_via_tokenizer(model_id):

 try:

 # Load the tokenizer

 tokenizer = AutoTokenizer.from_pretrained(model_id)

 # Get the mask token

 return tokenizer.mask_token

 except Exception as e:

 return f"Error retrieving tokenizer for {model_id}: {e}"

Chapter 6 Model Fine-Tuning

271

Iterate through the models and populate the dictionary with mask tokens

for model_id in models_with_right_config:

 mask_token = get_mask_token_via_tokenizer(model_id)

 if mask_token in ["[MASK]", "<mask>"]:

 models_with_mask_tokens[model_id] = mask_token

Print the constructed dictionary

models_with_mask_tokens

Output

{'Dr-BERT/DrBERT-4GB': '<mask>',

 'Dr-BERT/DrBERT-7GB': '<mask>',

 'Dr-BERT/DrBERT-4GB-CP-PubMedBERT': '[MASK]',

 'almanach/camembert-bio-base': '<mask>',

 'abazoge/DrLongformer': '<mask>',

 'abazoge/DrBERT-4096': '<mask>'}

�Evaluate and Rank Models Based on Entity Prediction

In this step, we evaluate a set of models to determine their effectiveness in predicting

specific medical entities within masked sentences. Using the “fill-mask” pipeline from

the Hugging Face Transformers library, each model is tested on a series of examples

where key medical terms are masked (as detailed in Listing 6-6).

The models are scored based on how well their predictions match a combination

of generic and specific expected entities. These scores are then aggregated to produce

a cumulative score for each model. Finally, the models are ranked based on their

cumulative scores, helping us identify the most effective model for our healthcare

NER task.

Listing 6-6.  Ranking Models

from transformers import pipeline

Define the generic expected entities with their weights

generic_expected_entities = [

 {'médicaments': 0.3},

 {'traitements': 0.3},

 {'soins': 0.3},

Chapter 6 Model Fine-Tuning

272

 {'remèdes': 0.3},

 {'conseils': 0.1},

 {'indications': 0.1},

 {'instructions': 0.05},

 {'interventions': 0.05},

 {'compléments': 0.05}

]

Define the examples and their specific expected entities

examples = [

 {

 �"text": "Le medecin donne des {} en cas d'infections des voies

respiratoires.",

 "expected_entities": [{'antibiotiques': 1}]

 },

 {

 �"text": "Le médecin recommande des {} pour réduire l'inflammation

dans les poumons.",

 �"expected_entities": [{'corticoïdes': 1}, {'anti-

inflammatoires': 0.9}]

 },

 {

 �"text": "Pour soulager les symptômes d'allergie, le médecin

prescrit des {}.",

 "expected_entities": [{'antihistaminiques': 1}]

 },

 {

 "text": "Pour gérer le diabète, le médecin prescrit une {}.",

 "expected_entities": [{'insulinothérapie': 1}]

 },

 {

 �"text": "Après une blessure musculaire, le patient doit suivre

une {}.",

 "expected_entities": [{'physiothérapie': 1}, {'rééducation': 0.8}]

 },

Chapter 6 Model Fine-Tuning

273

 {

 �"text": "En cas d'infection bactérienne, le médecin recommande

une {}.",

 "expected_entities": [{'antibiothérapie': 1}]

 }

]

models = models_with_mask_tokens

Initialize a dictionary to store the cumulative scores for each model

model_scores = {model_name: 0 for model_name in models}

Iterate over each model

for model_name, mask_token in models.items():

 print(f"Testing {model_name} ...")

 try:

 # Load the fill-mask pipeline for the current model

 fill_mask = �pipeline("fill-mask", model=model_name, tokenizer=model_

name, trust_remote_code=False)

 # Iterate over each example

 for example in examples:

 # Prepare the example sentence with the correct mask token

 masked_example = example["text"].format(mask_token)

 specific_expected_entities = example["expected_entities"]

 �# Combine generic and specific entities, giving priority to

specific ones

 combined_expected_entities = �{**{k: v for d in generic_expected_

entities for k, v in d.items()},

**{k: v for d in specific_expected_

entities for k, v in d.items()}}

 # Get predictions

 results = fill_mask(masked_example)

 # Extract the top predicted tokens

 predicted_tokens = [result['token_str'] for result in results]

Chapter 6 Model Fine-Tuning

274

 # Calculate a score based on matching expected entities

 score = 0

 for entity, weight in combined_expected_entities.items():

 if entity in predicted_tokens:

 score += weight

 # Add the score to the cumulative score for the model

 model_scores[model_name] += score

 except:

 print(f"Error in {model_name}")

Rank models based on their cumulative scores

ranked_models = �sorted(model_scores.items(), key=lambda item: item[1],

reverse=True)

Print the final ranking

print("\nModel Ranking based on Weighted Entity Match Scores (top-5): ")

for rank, (model_name, score) in enumerate(ranked_models, 1):

 #print only the top-5 models

 if rank <= 5:

 print(f"{rank}. {model_name}: Cumulative Score = {score}")

Output

Testing Dr-BERT/DrBERT-4GB ...

Testing Dr-BERT/DrBERT-7GB ...

Testing Dr-BERT/DrBERT-4GB-CP-PubMedBERT ...

Testing almanach/camembert-bio-base ...

Testing abazoge/DrLongformer ...

Testing abazoge/DrBERT-4096 ...

Model Ranking based on Weighted Entity Match Scores (top-5):

1. Dr-BERT/DrBERT-4GB: Cumulative Score = 3.65

2. abazoge/DrBERT-4096: Cumulative Score = 2.85

3. Dr-BERT/DrBERT-7GB: Cumulative Score = 2.75

4. almanach/camembert-bio-base: Cumulative Score = 2.5

5. Dr-BERT/DrBERT-4GB-CP-PubMedBERT: Cumulative Score = 0.2

Chapter 6 Model Fine-Tuning

275

Our NLP consultant, John Doe, has developed a systematic and methodical

approach to selecting suitable pretrained language models. This approach has saved

much time for MedTALN Inc.’s project by expediting the model selection process while

being based on objective criteria. John’s approach emphasizes the importance of a

thoughtful, criteria-driven process in selecting NLP models for transfer learning.

Caution O ur MLM model selection notebook interacts with Hugging Face's API
in real time. Since pretrained models on the Hugging Face Hub are frequently
updated or removed, the output of our selection notebook may change based on
the current availability of models.

�Healthcare NER Model Fine-Tuning
This section will walk you through the high-level workflow for fine-tuning a pretrained

language model to build our case study healthcare Named Entity Recognition (NER)

model (as shown in Figure 6-6). By fine-tuning a domain-specific pretrained language

model, we can leverage transfer learning to build an accurate healthcare NER model

without starting from scratch.

Chapter 6 Model Fine-Tuning

276

Figure 6-6.  Workflow for training and evaluating the Healthcare NER model

�Training Dataset Creation Notebook

	 1.	 Open the GPU-based notebook session:

	 a.	 Go to Analytics & AI ➤ Machine Learning ➤ Data Science ➤ Projects.

	 b.	 Open the our OCI DS project, i.e., cs-nlp-prj.

	 c.	 If it is deactivated, activate the CPU-based OCI Data Science Notebook

Session, i.e., cs-nlp-nbs-cpu.

	 d.	 Open the CPU-based OCI Data Science Notebook Session, i.e., cs-

nlp-nbs-cpu.

	 2.	 From the JupyterLab file browser, open the notebook

create_healthcare_ner_dataset.ipynb under the folder

(Figure 6-7; explained in Listings 6-7 to 6-11):

/repos/john-doe-typica-ai/nlp-on-oci.git/chapt-6

Chapter 6 Model Fine-Tuning

277

Figure 6-7.  Dataset creation notebook

�Declare Helper Functions

Listing 6-7.  Declaring Functions

import re

def split_token(token, tag):

 """

 �Splits tokens if they end with specific punctuation characters (.,;!?)

and assigns

 'O' to the punctuation, leaving other tokens intact.

 """

 # Define the punctuations to split

 punctuations = ".,;!?"

 # Check if the token ends with a punctuation that should be split

 if token[-1] in punctuations:

 �# Return the token without the last character and the punctuation

as separate tokens

 return [(token[:-1], tag), (token[-1], 'O')]

 else:

 �# Return the token as is if it doesn't end with specified punctuation

 return [(token, tag)]

Chapter 6 Model Fine-Tuning

278

This function reads your .conll file and extracts sentences and their

NER tags.

def parse_conll_file(file_path):

 sentences = []

 current_sentence = []

 with open(file_path, 'r', encoding='utf-8') as file:

 for line in file:

 if line.startswith("-DOCSTART-") or line.strip() == "":

 if current_sentence:

 sentences.append(current_sentence)

 current_sentence = []

 else:

 parts = line.strip().split()

 token = parts[0]

 tag = �parts[-1] if len(parts) > 1 else 'O' # Default to

'O' if no tag is present

 # Split token if it contains punctuation

 current_sentence.extend(split_token(token, tag))

 if current_sentence: # Add the last sentence if it exists

 sentences.append(current_sentence)

 return sentences

This function extracts unique NER tags ensuring 'O' is first, and

prepares the data for the dataset creation.

def prepare_dataset(sentences):

 unique_tags = set()

 for sentence in sentences:

 for _, tag in sentence:

 #if tag not in excluded_tags:

 unique_tags.add(tag)

 # Ensure 'O' is first, then sort the rest of the tags

 unique_tags.discard('O') # Remove 'O' to avoid duplication

 unique_tags = �['O'] + sorted(unique_tags) # Prepend 'O' and sort

the rest

Chapter 6 Model Fine-Tuning

279

 tag_to_id = {tag: id for id, tag in enumerate(unique_tags)}

 # Prepare data for Hugging Face Dataset

 data = {'id': [], 'tokens': [], 'ner_tags': []}

 for i, sentence in enumerate(sentences):

 tokens, tags = zip(*sentence)

 data['id'].append(str(i))

 data['tokens'].append(list(tokens))

 �data['ner_tags'].append([tag_to_id.get(tag, tag_to_id['O']) for tag

in tags]) #if tag not in excluded_tags

 return data, unique_tags

from datasets import Dataset, DatasetDict, Features, ClassLabel,

Sequence, Value

This function creates the dataset using the prepared data and unique

NER tags.

def create_hf_dataset(data, unique_tags):

 features= Features({

 'id': Value(dtype='string', id=None),

 �'tokens': Sequence(feature=Value(dtype='string', id=None),

length=-1, id=None),

 �'ner_tags': Sequence(feature=ClassLabel(num_

classes=len(unique_tags), names=unique_tags))

 })

 dataset = Dataset.from_dict(data, features=features)

 dataset_dict = DatasetDict({'train': dataset})

 return dataset_dict

Output

�Create HF Dataset from CoNLL File

Parse the .conll file, prepare the data, and create the dataset.

Chapter 6 Model Fine-Tuning

280

Listing 6-8.  Creating the dataset

Set the CoNLL file path

file_path = "/home/datascience/buckets/training-datasets-bkt/healthcare_

ner_dataset_v1.1.0/healthcare_ner_dataset_v1.0.0_1724175778995.conll"

Parse the .conll file

sentences = parse_conll_file(file_path)

Prepare the dataset and extract unique NER tags

data, unique_tags = prepare_dataset(sentences)

Create the Hugging Face dataset

dataset_dict = create_hf_dataset(data, unique_tags)

print("Dataset created successfully!")

dataset_dict

Output

Dataset created successfully!

[9]:

DatasetDict({

 train: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 9000

 })

})

Inspect a row randomly.

Listing 6-9.  Displaying a Random Row

dataset_dict["train"].shuffle(seed=42)[0]

Output

{'id': '2015',

 'tokens': ['un',

 'vaccin',

 'vivant',

 'atténué',

Chapter 6 Model Fine-Tuning

281

 'est',

 'maintenant',

 'disponible',

 '',

 '.'],

 'ner_tags': [0, 5, 0, 0, 0, 0, 0, 0, 0]}

�Create Splits for the HF Dataset

At this step, we create train, validation, and test splits.

Listing 6-10.  Splitting the Dataset

from datasets import DatasetDict

ds_train_devtest = dataset_dict['train'].train_test_split(test_size=0.25,

seed=42)

ds_devtest = ds_train_devtest['test'].train_test_split(test_size=0.25,

seed=42)

healthcare_ner_dataset = DatasetDict({

 'train': ds_train_devtest['train'],

 'validation': ds_devtest['train'],

 'test': ds_devtest['test']

})

healthcare_ner_dataset

Output

DatasetDict({

 train: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 6750

 })

 validation: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 1687

 })

Chapter 6 Model Fine-Tuning

282

 test: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 563

 })

})

�Save Dataset

We will save the Hugging Face dataset to the “training-datasets-bkt/healthcare_ner_

dataset_v1.2.0” directory. The dataset is ready for Named Entity Recognition (NER)

training.

The “v1.2” part of the version denotes that the dataset has been fully processed and

is in a format suitable for NER tasks, making it easy to reference this specific state of the

dataset in future training runs or evaluation tasks.

Listing 6-11.  Saving the Dataset

healthcare_ner_dataset.save_to_disk("/home/datascience/buckets/training-

datasets-bkt/healthcare_ner_dataset_v1.2.0")

Output

Saving the dataset (1/1 shards): 100%

6750/6750 [00:00<00:00, 95833.62 examples/s]

Saving the dataset (1/1 shards): 100%

1687/1687 [00:00<00:00, 21889.73 examples/s]

Saving the dataset (1/1 shards): 100%

563/563 [00:00<00:00, 3193.01 examples/s]

�Training Notebook
With our top five pretrained MLM models identified and the training dataset saved in

the Hugging Face format, we can now proceed with fine-tuning these models to develop

a set of Healthcare NER models. Our NLP consultant will guide us through each stage of

the fine-tuning process.

To better understand the key steps involved, we can refer to the workflow diagram in

Figure 6-8. Let’s go through these steps together.

Chapter 6 Model Fine-Tuning

283

Figure 6-8.  High-level data flow interactions for model training

	 1.	 Executing the Training Notebook: The workflow begins by

executing the Python code of Model Training Jupyter notebook.

This notebook is executed within the OCI Data Science GPU-

based Notebook Session.

	 2.	 Labeled Dataset Access: The training process starts by retrieving

the labeled dataset CoNLL file created during training dataset

preparation process (refer to Chapter 5). This CoNLL file is

retrieved from the Training Datasets Bucket which is the holding

place of the training datasets once labeled and exported from OCI

Data Labeling Service (DLS) in the CoNLL format.

Chapter 6 Model Fine-Tuning

https://doi.org/10.1007/979-8-8688-1073-2_5

284

	 3.	 Pretrained MLM Model Fine-Tuning: During the training phase,

each of the top five MLM models (selected earlier) is loaded from

Hugging Face and fine-tuned to produce distinct Healthcare NER

models. Each resulting model is unique, based on the specific

MLM used for fine-tuning.

	 4.	 Saving the Fine-Tuned Model Checkpoint: During the model

training, checkpoints are saved at each training epoch to the

Model Checkpoints Bucket (mount directory).

Caution A s a temporary workaround for an obscure I/O error that occurs when
the trainer writes directly to a bucket mount, we use a staging folder in the Data
Science GPU-based Notebook Session's file system (“local_training_dir”). Once
the trainer completes the training, we move the model artifacts to the Model
Checkpoints Bucket (i.e., “/home/datascience/buckets/models-ckpt-bkt”).

For the training, we will need to open the GPU-based OCI Data Science Notebook

Session.

	 1.	 Open the GPU-based notebook session:

	 i.	 Go to Analytics & AI ➤ Machine Learning ➤ Data Science ➤ Projects.

	 ii.	 Open the our OCI DS project, i.e., cs-nlp-prj.

	 iii.	 If it is deactivated, activate the GPU-based OCI Data Science Notebook

Session, i.e., cs-nlp-nbs-gpu.

	 iv.	 Open the GPU-based OCI Data Science Notebook Session,

i.e., cs-nlp-nbs-gpu.

	 2.	 From the JupyterLab file browser, open the notebook

train_healthcare_ner_model.ipynb under the folder

(Figure 6-9; explained in Listings 6-12 to 6-23):

/repos/john-doe-typica-ai/nlp-on-oci.git/chapt-6

Chapter 6 Model Fine-Tuning

285

Figure 6-9.  Training notebook open in GPU-based OCI DS Notebook Session

The Hugging Face “Transformers” library is already included in our installed conda

environment (i.e., “pytorch21_p39_gpu_v1”). We will upgrade it to version “4.44.2.” This

only needs to be done once, the first time.

Listing 6-12.  Installing Dependencies

%%capture

!pip install transformers==4.44.2

!pip install accelerate==0.33.0

!pip install seqeval==1.2.2

�Loading Training Dataset

First, we need to load the Hugging Face dataset that was saved earlier to the “training-

datasets-bkt/healthcare_ner_dataset_v1.2.0” directory (refer to notebook “create_hf_

dataset.ipynb”). This dataset “v1.2” is ready for Named Entity Recognition (NER) training.

Listing 6-13.  Loading Dataset

from datasets import load_from_disk

healthcare_ner_dataset = load_from_disk("/home/datascience/buckets/

training-datasets-bkt/healthcare_ner_dataset_v1.2.0")

healthcare_ner_dataset

Chapter 6 Model Fine-Tuning

286

Output

DatasetDict({

 train: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 6750

 })

 validation: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 1687

 })

 test: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 563

 })

})

Listing 6-14.  Setting NER Feature Variable

ner_feature = healthcare_ner_dataset["train"].features["ner_tags"]

ner_feature

Output

Sequence(feature=ClassLabel(names=['O', 'B-AnatomicalStructure',

'B-Disease', 'B-MISC', 'B-MedicalProcedure', 'B-MedicationVaccine',

'B-Symptom', 'I-AnatomicalStructure', 'I-Disease', 'I-MISC',

'I-MedicalProcedure', 'I-MedicationVaccine', 'I-Symptom'], id=None),

length=-1, id=None)

Listing 6-15.  Setting NER labels Variable

label_names = ner_feature.feature.names

label_names

Chapter 6 Model Fine-Tuning

287

Output

['O',

 'B-AnatomicalStructure',

 'B-Disease',

 'B-MISC',

 'B-MedicalProcedure',

 'B-MedicationVaccine',

 'B-Symptom',

 'I-AnatomicalStructure',

 'I-Disease',

 'I-MISC',

 'I-MedicalProcedure',

 'I-MedicationVaccine',

 'I-Symptom']

�Training Initialization

�Set Pretrained Models for Fine-Tuning

In the following cell, we initialize the pretrained MLM model that that will be fine-tuned

using our Healthcare NER dataset. The top five models, chosen based on their Weighted

Entity Match Scores, are as follows:

Top five MLM models:

–– Dr-BERT/DrBERT-4GB

–– abazoge/DrBERT-4096

–– Dr-BERT/DrBERT-7GB

–– almanach/camembert-bio-base

–– Dr-BERT/DrBERT-4GB-CP-PubMedBERT

Chapter 6 Model Fine-Tuning

288

Listing 6-16.  Initializing Pretrained Model

from transformers import AutoTokenizer

model_checkpoint = "Dr-BERT/DrBERT-4GB"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

Output

�Declare Helper Functions

Listing 6-17.  Defining Helper Functions

import evaluate

import numpy as np

def align_labels_with_tokens(labels, word_ids):

 new_labels = []

 current_word = None

 for word_id in word_ids:

 if word_id != current_word:

 # Start of a new word!

 current_word = word_id

 label = -100 if word_id is None else labels[word_id]

 new_labels.append(label)

 elif word_id is None:

 # Special token

 new_labels.append(-100)

 else:

 # Same word as previous token

 label = labels[word_id]

 # If the label is B-XXX we change it to I-XXX

 if label % 2 == 1:

 label += 1

 new_labels.append(label)

 return new_labels

Chapter 6 Model Fine-Tuning

289

This function tokenize the dataset and align labels with tokens

def tokenize_and_align_labels(examples):

 tokenized_inputs = tokenizer(

 examples["tokens"], truncation=True, is_split_into_words=True

)

 all_labels = examples["ner_tags"]

 new_labels = []

 for i, labels in enumerate(all_labels):

 word_ids = tokenized_inputs.word_ids(i)

 new_labels.append(align_labels_with_tokens(labels, word_ids))

 tokenized_inputs["labels"] = new_labels

 return tokenized_inputs

#This function compute eveluation metrics

metric = evaluate.load("seqeval")

def compute_metrics(eval_preds):

 logits, labels = eval_preds

 predictions = np.argmax(logits, axis=-1)

 # Remove ignored index (special tokens) and convert to labels

 true_labels = �[[label_names[l] for l in label if l != -100] for label

in labels]

 true_predictions = [

 [label_names[p] for (p, l) in zip(prediction, label) if l != -100]

 for prediction, label in zip(predictions, labels)

]

 all_metrics = �metric.compute(predictions=true_predictions,

references=true_labels)

 return {

 "precision": all_metrics["overall_precision"],

 "recall": all_metrics["overall_recall"],

 "f1": all_metrics["overall_f1"],

 "accuracy": all_metrics["overall_accuracy"],

 }

Output

Chapter 6 Model Fine-Tuning

290

�Initialize the Training Objects

Here, we will initialize the training objects and, more specifically, define the training

hyperparameters using TrainingArguments. It is important to note that choosing

the values for key hyperparameters can significantly impact model performance.

Hyperparameters like the learning rate, number of epochs, and batch size must

be carefully selected to strike a balance between effective learning and avoiding

overfitting. Below are the key hyperparameters we explicitly set, along with their

corresponding values:

•	 learning_rate=2e-5: A relatively small learning rate is used to ensure

the model updates weights gradually during training, helping avoid

overshooting minima and ensuring stable convergence.

•	 num_train_epochs=5: The model will train for five epochs, allowing

multiple passes over the training data to ensure sufficient learning

without overfitting.

•	 weight_decay=0.01: Weight decay is applied to prevent overfitting by

adding a penalty to large weights, encouraging the model to prefer

smaller, more generalized weights.

•	 evaluation_strategy="epoch": The model will be evaluated at the end

of each epoch to track performance on the validation set and monitor

improvements.

•	 save_strategy="epoch": A checkpoint of the model is saved at the end

of each epoch, ensuring that progress can be stored and resumed, if

necessary.

•	 load_best_model_at_end=True: This ensures that the best-performing

model on the evaluation set is retained, rather than the model at the

final epoch.

•	 per_device_train_batch_size=8 (default): The batch size per device

during training is set to eight by default, balancing memory usage

and training speed.

Chapter 6 Model Fine-Tuning

291

Listing 6-18.  Preparing the Model for Training

from transformers import DataCollatorForTokenClassification

from transformers import TrainingArguments

Tokenize dataset

tokenized_datasets = healthcare_ner_dataset.map(

 tokenize_and_align_labels,

 batched=True,

 remove_columns=healthcare_ner_dataset["train"].column_names,

)

init data collator

data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)

init the model

id2label = {i: label for i, label in enumerate(label_names)}

label2id = {v: k for k, v in id2label.items()}

from transformers import AutoModelForTokenClassification

model = AutoModelForTokenClassification.from_pretrained(

 model_checkpoint,

 id2label=id2label,

 label2id=label2id,

)

init the training arguments

models_base_folder = "/home/datascience/training_local_dir/models/

healthcare_ner"

args = TrainingArguments(

 f"{models_base_folder}-{model_checkpoint}",

 evaluation_strategy="epoch",

 save_strategy="epoch",

 learning_rate=2e-5,

 num_train_epochs=5,

 weight_decay=0.01,

Chapter 6 Model Fine-Tuning

292

 load_best_model_at_end=True,

 push_to_hub=False,

)

Output

�Starting the Training

Fine-tune the pretrained model into our Healthcare NER model.

Listing 6-19.  Launching the Training

from transformers import Trainer

trainer = Trainer(

 model=model,

 args=args,

 train_dataset=tokenized_datasets["train"],

 eval_dataset=tokenized_datasets["validation"],

 data_collator=data_collator,

 compute_metrics=compute_metrics,

 tokenizer=tokenizer,

)

trainer.train()

Output

[2024-08-26 15:52:27,611] [INFO] [real_accelerator.py:158:get_accelerator]

Setting ds_accelerator to cuda (auto detect)

 [4220/4220 06:03, Epoch 5/5]

Epoch Training Loss Validation Loss Precision Recall F1 Accuracy

1 0.394700 0.221041 0.661832 0.724099 0.691567 0.918677

2 0.179100 0.201834 0.715773 0.747903 0.731486 0.932372

3 0.098300 0.212497 0.743618 0.752891 0.748226 0.936063

4 0.056400 0.252355 0.728846 0.783042 0.754973 0.936119

5 0.029800 0.275240 0.736583 0.781002 0.758143 0.937359

Chapter 6 Model Fine-Tuning

293

[9]:

TrainOutput(global_step=4220, training_loss=0.14149999550733522,

metrics={'train_runtime': 363.2984, 'train_samples_per_second': 92.899,

'train_steps_per_second': 11.616, 'total_flos': 557445304412724.0,

'train_loss': 0.14149999550733522, 'epoch': 5.0})

Below, a temporary fix for I/O error when trainer writes directly to the bucket mount.

Listing 6-20.  Moving the Fine-Tuned Model to the Mounted Folder

import shutil

set the model local and mount directories

local_dir = f"/home/datascience/training_local_dir/models/

healthcare_ner-{model_checkpoint}"

mount_dir = f"/home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-{model_checkpoint}"

Move the model local folder to models-ckpt-bkt mount

shutil.move(local_dir, mount_dir)

print(f"Model folder moved to {mount_dir}")

Output

Model folder moved to /home/datascience/buckets/models-ckpt-bkt/models/

healthcare_ner-Dr-BERT/DrBERT-4GB

�Analyzing Training and Evaluation Losses

After training a model, it is crucial to understand how well the model is learning

over time.

�Visual Analysis

By plotting losses over epochs, we can visually inspect the learning process and make

informed decisions about which model checkpoint (i.e., which epoch) provides the best

balance between learning and generalization.

Chapter 6 Model Fine-Tuning

294

In the plot, we can observe the following trends:

–– The “training loss” decreases steadily across epochs, which suggests

that the model is effectively learning and improving its performance

on the training data.

–– The “evaluation loss” initially decreases but then starts to stabilize

and slightly increase in the later epochs. This is a common sign of

“overfitting,” where the model becomes too specialized in the training

data and performs less well on the evaluation data.

The best checkpoint is typically the epoch where the evaluation loss is at its lowest,

indicating the best generalization to unseen data. In this plot

–– The evaluation loss is lowest around “epoch 2.”

–– However, starting from “epoch 3,” the evaluation loss begins to

increase slightly, suggesting that further training may not improve

model generalization and might even harm it by overfitting.

Based on this analysis, “epoch 2” is likely the best checkpoint. It has the lowest

evaluation loss, which means the model was best at generalizing to new data at this

point. Continuing the training beyond this point appears to result in diminishing returns

and increased risk of overfitting.

Listing 6-21.  Plotting losses over epochs

import matplotlib.pyplot as plt

Initialize lists to store the losses and epochs

train_loss = []

eval_loss = []

epochs = []

Extract the losses and epochs from the log history

for log in trainer.state.log_history:

 if 'loss' in log and 'epoch' in log: # Training loss

 train_loss.append(log['loss'])

Chapter 6 Model Fine-Tuning

295

 epochs.append(log['epoch'])

 if 'eval_loss' in log and 'epoch' in log: # Evaluation loss

 eval_loss.append(log['eval_loss'])

Ensure the epochs list is aligned with eval_loss if needed

eval_epochs = epochs[:len(eval_loss)] if len(eval_loss) == len(epochs) else

list(range(1, len(eval_loss) + 1))

plt.figure(figsize=(10, 6))

Plot training loss

plt.plot(epochs, train_loss, label='Training Loss', marker='o',

linestyle='-')

Plot evaluation loss

plt.plot(eval_epochs, eval_loss, label='Evaluation Loss', marker='o',

linestyle='-')

Add labels and title

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.title('Training and Evaluation Loss Over Epochs')

plt.legend()

plt.grid(True)

Show the plot

plt.show()

Chapter 6 Model Fine-Tuning

296

Output (Figure 6-10)

Figure 6-10.  Training loss over epoch plot

�Automated Checkpoint Selection

While effective, this manual approach has some limitations:

•	 Subjectivity: Visual inspection is subjective and may not be

consistent across different viewers or datasets.

•	 Time-Consuming: Manually inspecting plots is feasible for a few

experiments, but it becomes cumbersome when training multiple

models or fine-tuning hyperparameters.

To streamline this process and make it more objective, we can leverage the “trainer.

state.best_model_checkpoint” feature provided by the Hugging Face Trainer API. This

feature automatically tracks the checkpoint with the best performance on the validation

set during training, based on a specified metric (e.g., evaluation loss, F1 score, accuracy).

Chapter 6 Model Fine-Tuning

297

Listing 6-22.  Tracking the best checkpoint

import re

Get the best model checkpoint from the trainer state object

best_model_checkpoint = trainer.state.best_model_checkpoint

#temp fix

best_model_checkpoint = best_model_checkpoint.replace('training_local_dir',

'buckets/models-ckpt-bkt')

Extract the step number from the best model checkpoint name

Assuming the format is like 'checkpoint-1688' at the end of the path

step_match = re.search(r'checkpoint-(\d+)', best_model_checkpoint)

best_checkpoint_step = int(step_match.group(1)) if step_match else None

Initialize variables to store metrics

eval_f1, eval_recall, eval_accuracy = None, None, None

Search for the relevant evaluation metrics in log_history

for log in trainer.state.log_history:

 if 'eval_f1' in log and log.get('step') == best_checkpoint_step:

 eval_f1 = log['eval_f1']

 eval_recall = log.get('eval_recall', None)

 eval_accuracy = log.get('eval_accuracy', None)

 break # Once the metrics are found, exit the loop

Print the metrics for the best model

if eval_f1 is not None:

 �print(f"The best for checkpoint model {trainer.model.config.name_or_

path} is:")

 �print(f"Checkpoint: {best_model_checkpoint} (Step: {best_checkpoint_

step}) :")

 print(f"F1 Score: {eval_f1:.4f}")

 print(f"Recall: {eval_recall:.4f}")

 print(f"Accuracy: {eval_accuracy:.4f}")

Chapter 6 Model Fine-Tuning

298

Output

The best for checkpoint model Dr-BERT/DrBERT-4GB is:

Checkpoint: /home/datascience/buckets/models-ckpt-bkt/models/healthcare_

ner-Dr-BERT/DrBERT-4GB/checkpoint-1688 (Step: 1688) :

F1 Score: 0.7315

Recall: 0.7479

Accuracy: 0.9324

Let’s now test the best checkpoint for this Healthcare NER model.

Listing 6-23.  Testing the best checkpoint

from transformers import pipeline

test the healthcare NER model

token_classifier = pipeline("token-classification", model=best_model_

checkpoint, aggregation_strategy="first")

token_classifier("Le medecin donne des antibiotiques pour les infections

bactériennes.")

Output

[{'entity_group': 'MedicationVaccine',

 'score': 0.85936165,

 'word': 'antibiotiques',

 'start': 20,

 'end': 34}]

The newly fine-tuned Healthcare NER model successfully identified “antibiotiques”

as a “MedicationVaccine” entity. This suggests that the model is effectively identifying

medical entities within medical text.

Repeat the fine-tuning process for each of the top five MLM models:

	 1.	 Dr-BERT/DrBERT-4GB

	 2.	 abazoge/DrBERT-4096

	 3.	 Dr-BERT/DrBERT-7GB

	 4.	 almanach/camembert-bio-base

	 5.	 Dr-BERT/DrBERT-4GB-CP-PubMedBERT

Chapter 6 Model Fine-Tuning

299

To do this, restart this notebook and change the model_checkpoint at the cell: Set

pretrained models for fine-tuning.

Caution  When repeating the fine-tuning for the remaining MLM models,
you can comment out the pip install commands for transformers==4.44.2,
accelerate==0.33.0, and seqeval==1.2.2, as they are already installed.
Commenting them out will save time.

Tip I t is very important to deactivate your GPU-based OCI Data Science Notebook
Session (e.g., cs-nlp-nbs-gpu) when you finish the fine-tuning process to stop
billing and save on costs.

�Healthcare NER Model Evaluation
This section will guide you through the high-level workflow for evaluating the fine-tuned

Healthcare NER models (illustrated in Figure 6-11). Following the evaluation, the best-

performing Healthcare NER model will be identified. As a final step, the selected model

will be tested on our tiny handmade test set to validate its effectiveness.

Figure 6-11.  Evaluation high-level steps and data flow

Chapter 6 Model Fine-Tuning

300

�Evaluation Notebook
This notebook guides you through the process of evaluating the fine-tuned Healthcare

NER models.

For this evaluation step, we will need to open the GPU-based OCI Data Science

Notebook Session.

	 1.	 Open the GPU-based notebook session:

	 i.	 Go to Analytics & AI ➤ Machine Learning ➤ Data Science ➤ Projects.

	 ii.	 Open the our OCI DS project, i.e., cs-nlp-prj.

	 iii.	 If it is deactivated, activate the GPU-based OCI Data Science Notebook

Session, i.e., cs-nlp-nbs-gpu.

	 iv.	 Open the GPU-based OCI Data Science Notebook Session,

i.e., cs-nlp-nbs-gpu.

	 2.	 From the JupyterLab file browser, open the notebook

evaluate_healthcare_ner_models.ipynb under the folder

(Figure 6-12; explained in Listings 6-24 to 6-34):

/repos/john-doe-typica-ai/nlp-on-oci.git/chapt-6

Figure 6-12.  Healthcare NER model evaluation notebook

Chapter 6 Model Fine-Tuning

301

In this notebook, we will evaluate the best checkpoint of the fine-tuned models

that were trained using the “train_ner_models” notebook. This process will result in

identifying the best-performing model based on evaluation metrics and the test dataset.

The notebook is structured into several key steps to ensure a smooth and effective

training process:

	 1.	 Load Dataset: We begin by loading the dataset, specifically

formatted for our token classification tasks (i.e., NER).

	 2.	 Evaluate the Models: We will evaluate the NER models using a

HF trainer.evaluate() API. The evaluation process will result in

selecting the best-performing model based on F1 score.

	 3.	 Test the Best Model: After the evaluation , the best model

will be tested on the examples that were used to select the

pretrained models.

�Initialization

�Load the Training Dataset

Listing 6-24.  Loading Dataset

from datasets import load_from_disk

healthcare_ner_dataset = load_from_disk('/home/datascience/buckets/

training-datasets-bkt/healthcare_ner_dataset_v1.2.0')

healthcare_ner_dataset

Output

DatasetDict({

 train: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 6750

 })

 validation: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 1687

 })

Chapter 6 Model Fine-Tuning

302

 test: Dataset({

 features: ['id', 'tokens', 'ner_tags'],

 num_rows: 563

 })

})

�Define Helper Functions

Listing 6-25.  Defining Helper Functions

def align_labels_with_tokens(labels, word_ids):

 new_labels = []

 current_word = None

 for word_id in word_ids:

 if word_id != current_word:

 # Start of a new word!

 current_word = word_id

 label = -100 if word_id is None else labels[word_id]

 new_labels.append(label)

 elif word_id is None:

 # Special token

 new_labels.append(-100)

 else:

 # Same word as previous token

 label = labels[word_id]

 # If the label is B-XXX we change it to I-XXX

 if label % 2 == 1:

 label += 1

 new_labels.append(label)

 return new_labels

def tokenize_and_align_labels(examples):

 tokenized_inputs = tokenizer(

 examples["tokens"], truncation=True, is_split_into_words=True

)

Chapter 6 Model Fine-Tuning

303

 all_labels = examples["ner_tags"]

 new_labels = []

 for i, labels in enumerate(all_labels):

 word_ids = tokenized_inputs.word_ids(i)

 new_labels.append(align_labels_with_tokens(labels, word_ids))

 tokenized_inputs["labels"] = new_labels

 return tokenized_inputs

def compute_metrics(eval_preds):

 logits, labels = eval_preds

 predictions = np.argmax(logits, axis=-1)

 # Remove ignored index (special tokens) and convert to labels

 true_labels = �[[label_names[l] for l in label if l != -100] for label

in labels]

 true_predictions = [

 [label_names[p] for (p, l) in zip(prediction, label) if l != -100]

 for prediction, label in zip(predictions, labels)

]

 all_metrics = �metric.compute(predictions=true_predictions,

references=true_labels)

 return {

 "precision": all_metrics["overall_precision"],

 "recall": all_metrics["overall_recall"],

 "f1": all_metrics["overall_f1"],

 "accuracy": all_metrics["overall_accuracy"],

 }

Output

�Evaluate

Evaluate test split using the HF API trainer.evaluate().

Chapter 6 Model Fine-Tuning

304

�Load Best Checkpoints

Listing 6-26.  Retrieving the Best Checkpoints

import os

from transformers.trainer_callback import TrainerState

def get_best_checkpoint(root_dir):

 best_checkpoints = {}

 # Walk through all directories and subdirectories

 for root, dirs, files in os.walk(root_dir):

 # Filter directories that start with "healthcare_ner"

 relevant_dirs = [d for d in dirs if d.startswith("healthcare_ner")]

 for dir_name in relevant_dirs:

 model_dir = os.path.join(root, dir_name)

 for sub_root, sub_dirs, sub_files in os.walk(model_dir):

 ckpt_dirs = �[d for d in sub_dirs if

d.startswith('checkpoint')]

 if ckpt_dirs:

 ckpt_dirs = �sorted(ckpt_dirs, key=lambda x: int(x.

split('-')[1]))

 last_ckpt = ckpt_dirs[-1]

 state = �TrainerState.load_from_json(f"{sub_root}/{last_

ckpt}/trainer_state.json")

 best_model_checkpoint = state.best_model_checkpoint

 #temp fix

 best_model_checkpoint = �best_model_checkpoint.

replace('training_local_dir',

'buckets/models-ckpt-bkt')

 best_checkpoints[sub_root] = best_model_checkpoint

 return best_checkpoints

root_dir = "/home/datascience/buckets/models-ckpt-bkt/models"

Chapter 6 Model Fine-Tuning

305

best_models_checkpoints = get_best_checkpoint(root_dir)

for model_dir, best_ckpt in best_models_checkpoints.items():

 print(f"Best checkpoint for model in {model_dir}: {best_ckpt}")

Output

Best checkpoint for model in /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-Dr-BERT/DrBERT-4GB: /home/datascience/buckets/models-

ckpt-bkt/models/healthcare_ner-Dr-BERT/DrBERT-4GB/checkpoint-1688

Best checkpoint for model in /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-Dr-BERT/DrBERT-4GB-CP-PubMedBERT: /home/datascience/

buckets/models-ckpt-bkt/models/healthcare_ner-Dr-BERT/DrBERT-4GB-CP-

PubMedBERT/checkpoint-2532

Best checkpoint for model in /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-Dr-BERT/DrBERT-7GB: /home/datascience/buckets/models-

ckpt-bkt/models/healthcare_ner-Dr-BERT/DrBERT-7GB/checkpoint-1688

Best checkpoint for model in /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-abazoge/DrBERT-4096: /home/datascience/buckets/

models-ckpt-bkt/models/healthcare_ner-abazoge/DrBERT-4096/checkpoint-1688

Best checkpoint for model in /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-almanach/camembert-bio-base: /home/datascience/

buckets/models-ckpt-bkt/models/healthcare_ner-almanach/camembert-bio-base/

checkpoint-3376

�Evaluate All the Models’ Best Checkpoints

Loop on the fine-tuned model best checkpoints and evaluate.

Listing 6-27.  Evaluating the Best Checkpoints

from transformers import AutoModelForTokenClassification, AutoTokenizer,

Trainer, TrainingArguments

from transformers import DataCollatorForTokenClassification

import evaluate

from datasets import load_metric

from torch.utils.data import DataLoader

import numpy as np

Chapter 6 Model Fine-Tuning

306

metric = evaluate.load("seqeval")

eval_dir = "/home/datascience/buckets/models-ckpt-bkt/models/healthcare_

ner/evaluation"

Initialize TrainingArguments (to configure the evaluation)

evaluation_args = TrainingArguments(

 output_dir=f"{eval_dir}/eval_results",

 per_device_eval_batch_size=8,

 logging_dir="{eval_dir}/eval_logs",

 do_train=False, # We are only evaluating

 do_eval=True,

)

label_names = healthcare_ner_dataset["test"].features["ner_tags"].

feature.names

Evaluate each model and collect the results

model_results = {}

for model_dir, model_checkpoint in best_models_checkpoints.items():

 if model_checkpoint is not None:

 print(f"Evaluating model checkpoint : {model_checkpoint}")

 # Load the model and tokenizer

 model = �AutoModelForTokenClassification.from_pretrained(model_

checkpoint)

 tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

 data_collator = �DataCollatorForTokenClassification(tokenizer=

tokenizer)

 test_tokenized_datasets = healthcare_ner_dataset["test"].map(

 tokenize_and_align_labels,

 batched=True,

 remove_columns=healthcare_ner_dataset["test"].column_names,

)

Chapter 6 Model Fine-Tuning

307

 eval_dataloader = DataLoader(

 test_tokenized_datasets, collate_fn=data_collator, batch_size=8

)

 # Initialize the Trainer

 trainer = Trainer(

 model=model,

 args=evaluation_args,

 eval_dataset=test_tokenized_datasets,#eval_dataset=test_dataset,

 data_collator=data_collator, # Include the data collator here

 compute_metrics=compute_metrics,

 tokenizer=tokenizer,

)

 # Evaluate the model

 results = trainer.evaluate()

 model_results[model_checkpoint] = results

Output

Evaluating model checkpoint : /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-Dr-BERT/DrBERT-4GB/checkpoint-1688

Detected kernel version 5.4.17, which is below the recommended minimum of

5.5.0; this can cause the process to hang. It is recommended to upgrade the

kernel to the minimum version or higher.

[2024-08-26 16:16:55,437] [INFO] [real_accelerator.py:158:get_accelerator]

Setting ds_accelerator to cuda (auto detect)

 [71/71 00:00]

Evaluating model checkpoint : /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-Dr-BERT/DrBERT-4GB-CP-PubMedBERT/checkpoint-2532

Detected kernel version 5.4.17, which is below the recommended minimum of

5.5.0; this can cause the process to hang. It is recommended to upgrade the

kernel to the minimum version or higher.

 [71/71 00:00]

Evaluating model checkpoint : /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-Dr-BERT/DrBERT-7GB/checkpoint-1688

Chapter 6 Model Fine-Tuning

308

Detected kernel version 5.4.17, which is below the recommended minimum of

5.5.0; this can cause the process to hang. It is recommended to upgrade the

kernel to the minimum version or higher.

 [71/71 00:00]

Evaluating model checkpoint : /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-abazoge/DrBERT-4096/checkpoint-1688

Map: 100%

563/563 [00:00<00:00, 10483.43 examples/s]

Detected kernel version 5.4.17, which is below the recommended minimum of

5.5.0; this can cause the process to hang. It is recommended to upgrade the

kernel to the minimum version or higher.

Input ids are automatically padded to be a multiple of 'config.attention_

window': 512

 [71/71 00:10]

Evaluating model checkpoint : /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner-almanach/camembert-bio-base/checkpoint-3376

Detected kernel version 5.4.17, which is below the recommended minimum of

5.5.0; this can cause the process to hang. It is recommended to upgrade the

kernel to the minimum version or higher.

 [71/71 00:00]

Listing 6-28.  Creating a DataFrame with Evaluation Metrics

import pandas as pd

import matplotlib.pyplot as plt

from math import pi

The data you provided

data = model_results

Extract models and their metrics

Extract models and their metrics

models = list(data.keys())

metrics_data = [list(metrics.values()) for metrics in data.values()]

metrics_names = list(data[models[0]].keys()) # Extract metric names

Chapter 6 Model Fine-Tuning

309

Filter out samples and steps per second metrics

metrics_names = [metric for metric in metrics_names if metric not in

['eval_model_preparation_time','eval_runtime','eval_samples_per_second',

'eval_steps_per_second']]

df = pd.DataFrame(metrics_data, index=models, columns=list(data[models[0]].

keys()))[metrics_names]

df

Output

eval_loss eval_

precision

eval_

recall

eval_f1 eval_

accuracy

/home/datascience/buckets/

models-ckpt-bkt/models/

healthcare_ner-Dr-BERT/

DrBERT-4GB/checkpoint-1688

0.237051 0.732680 0.721364 0.726978 0.927640

/home/datascience/buckets/

models-ckpt-bkt/models/

healthcare_ner-Dr-BERT/

DrBERT-4GB-CP-PubMedBERT/

checkpoint-2532

0.211613 0.789223 0.763413 0.776104 0.941356

/home/datascience/buckets/

models-ckpt-bkt/models/

healthcare_ner-Dr-BERT/

DrBERT-7GB/checkpoint-1688

0.240774 0.731629 0.729299 0.730463 0.924297

/home/datascience/

buckets/models-ckpt-bkt/

models/healthcare_ner-

abazoge/DrBERT-4096/

checkpoint-1688

0.236985 0.728912 0.721019 0.724944 0.924297

/home/datascience/buckets/

models-ckpt-bkt/models/

healthcare_ner-almanach/

camembert-bio-base/

checkpoint-3376

0.283445 0.782905 0.775584 0.779228 0.927894

Chapter 6 Model Fine-Tuning

310

Visualizing Results: You can feed in the results list above into the plot_radar()

function to visualize different aspects of their performance and choose the model that is

the best fit, depending on the metric(s) that are relevant to your use case:

Listing 6-29.  Plotting Evaluation Metrics

Radar plot

def radar_plot(data, model_names, metrics):

 categories = metrics

 N = len(categories)

 # Calculate angle of each axis

 angles = [n / float(N) * 2 * pi for n in range(N)]

 angles += angles[:1]

 fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))

 # Loop through each model's results

 for i, model_name in enumerate(model_names):

 values = data.iloc[i].tolist()

 values += values[:1] # to close the plot

 �ax.plot(angles, values, linewidth=2, linestyle='solid',

label=model_name)

 ax.fill(angles, values, alpha=0.25)

 # Add labels to axes

 ax.set_xticks(angles[:-1])

 ax.set_xticklabels(categories, fontsize=12)

 # Draw one axe per variable and add labels

 ax.set_rlabel_position(0)

 # Show legend

 plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))

 plt.show()

Filter out samples and steps per second metrics

metrics_names = [metric for metric in metrics_names if metric not in

['eval_loss','eval_model_preparation_time','eval_runtime','eval_samples_

per_second', 'eval_steps_per_second']]

Chapter 6 Model Fine-Tuning

311

#metrics_names = [metric for metric in metrics_names if metric not in ['eval_

model_preparation_time','eval_runtime','eval_samples_per_second', 'eval_steps_

per_second']]

df = pd.DataFrame(metrics_data, index=models, columns=list(data[models[0]].

keys()))[metrics_names]

Plot all metrics on the radar chart

radar_plot(data=df, model_names=models, metrics=metrics_names)

Output (Figure 6-13)

Figure 6-13.  Radar plot for NER model evaluation

�Select the Best Model

We can choose the best model based on the evaluation metrics. Let’s say you choose the

model with the highest F1 score:

Now that we have a DataFrame df with the evaluation metrics, we can select the best

model based on one of these metrics, such as F1 score.

Listing 6-30.  Initializing the Model and Tokenizer from the Best Performing

Checkpoint

from transformers import AutoTokenizer, AutoModelForTokenClassification

best_model_row = df.loc[df['eval_f1'].idxmax()]

best_model_path = best_model_row.name # This gets the index, which is the

model path

Chapter 6 Model Fine-Tuning

312

from transformers import AutoTokenizer, AutoModelForTokenClassification,

pipeline

Load the best model and tokenizer

tokenizer = AutoTokenizer.from_pretrained(best_model_path)

model = AutoModelForTokenClassification.from_pretrained(best_model_path)

print(f"Model and Tokenizer initialized from the best performing model

checkpoint:\n{best_model_path}")

Output

Model and Tokenizer initialized from the best performing model checkpoint:

/home/datascience/buckets/models-ckpt-bkt/models/healthcare_ner-almanach/

camembert-bio-base/checkpoint-3376

�Save the Best Model

Save the trained healthcare NER model (version 1.0.0) and its tokenizer to the models-

ckpt-bkt bucket under the name: /home/datascience/buckets/models-ckpt-bkt/models/

healthcare_ner_model_v1.0.0.

Using the save_pretrained method, both the model’s weights and configuration files,

as well as the tokenizer, are saved to this specified directory. This ensures that the model

and tokenizer can be easily reloaded or shared later.

Listing 6-31.  Saving Healthcare NER Model

Define the directory where you want to save the model

Modify the _name_or_path attribute

model.config._name_or_path = "healthcare_ner_model_v1.0.0"

model_save_dir = f'/home/datascience/buckets/models-ckpt-bkt/models/{model.

config._name_or_path}'

Save the model

model.save_pretrained(model_save_dir)

Save the tokenizer

tokenizer.save_pretrained(model_save_dir)

print(f"Model and tokenizer saved to {model_save_dir}")

Chapter 6 Model Fine-Tuning

313

Output

Model and tokenizer saved to /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner_model_v1.0.0

�Test the Best Model

Given the evaluation metrics in the DataFrame, the model with the best performance

across precision, recall, F1, and accuracy is healthcare_ner-almanach/camembert-

bio-base.

�Prepare the Test Examples

We will reuse the test sentences that we already used in the select_pretrained_model.

Listing 6-32.  Preparing Test Examples

test_examples = [

 �"Le medecin donne des antibiotiques en cas d'infections des voies

respiratoires."

 �,"Le médecin recommande des corticoïdes pour réduire l'inflammation

dans les poumons."

 �,"Pour soulager les symptômes d'allergie, le médecin prescrit des

antihistaminiques."

 ,"Pour gérer le diabète, le médecin prescrit une insulinothérapie."

 �,"Après une blessure musculaire, le patient doit suivre une

physiothérapie."

 �,"En cas d'infection bactérienne, le médecin recommande une

antibiothérapie."

]

test_examples

Output

["Le medecin donne des antibiotiques en cas d'infections des voies

respiratoires.", "Le médecin recommande des corticoïdes pour réduire

l'inflammation dans les poumons.", "Pour soulager les symptômes d'allergie,

Chapter 6 Model Fine-Tuning

314

le médecin prescrit des antihistaminiques.", 'Pour gérer le diabète, le

médecin prescrit une insulinothérapie.', 'Après une blessure musculaire, le

patient doit suivre une physiothérapie.', "En cas d'infection bactérienne,

le médecin recommande une antibiothérapie."]

�Load and Use the Best Model

We can now generate predictions using this dynamically selected model.

Listing 6-33.  Loading Healthcare NER Model

from transformers import AutoTokenizer, AutoModelForTokenClassification,

pipeline

Load the best model and tokenizer from the model_save_dir

tokenizer = AutoTokenizer.from_pretrained(model_save_dir)

model = AutoModelForTokenClassification.from_pretrained(model_save_dir)

Define the pipeline, for named entity recognition (NER) pipeline

Set the device parameter to use GPU (0 for the first GPU, or -1 for CPU)

ner_pipeline = pipeline('token-classification',

 model=model,

 tokenizer=tokenizer,

 aggregation_strategy="first",

 device=0 # Use the first GPU

)

print(f"pipeline initialized with model {model.config._name_or_path}

from {model_save_dir}")

Output

pipeline initialized with model /home/datascience/buckets/models-ckpt-bkt/

models/healthcare_ner_model_v1.0.0 from /home/datascience/buckets/models-

ckpt-bkt/models/healthcare_ner_model_v1.0.0

Chapter 6 Model Fine-Tuning

315

�Generate Predictions

Generate predictions for each test example using the best-performing model.

Running this code will print the predictions from the best-performing model in

a human-readable format, allowing you to see how it labels each token in your test

sentences.

Listing 6-34.  Performing Inference with the Healthcare NER Model

def format_predictions(predictions):

 formatted_output = []

 for entity in predictions:

 �formatted_output.append(f"Entity: {entity['word']}, Label:

{entity['entity_group']}, Score: {entity['score']:.2f}")

 return "\n".join(formatted_output)

for example in test_examples:

 print(f"Input: {example}")

 predictions = ner_pipeline(example)

 formatted_output = format_predictions(predictions)

 print(formatted_output)

 print("\n")

Output

Input: Le medecin donne des antibiotiques en cas d'infections des voies

respiratoires.

Entity: antibiotiques, Label: MedicationVaccine, Score: 0.74

Input: Le médecin recommande des corticoïdes pour réduire l'inflammation

dans les poumons.

Entity: corticoïdes, Label: MedicationVaccine, Score: 0.75

Input: Pour soulager les symptômes d'allergie, le médecin prescrit des

antihistaminiques.

Entity: antihistaminiques., Label: MedicationVaccine, Score: 0.75

Input: Pour gérer le diabète, le médecin prescrit une insulinothérapie.

Entity: insulinothérapie., Label: MedicalProcedure, Score: 0.83

Chapter 6 Model Fine-Tuning

316

Input: Après une blessure musculaire, le patient doit suivre une

physiothérapie.

Entity: physiothérapie., Label: MedicalProcedure, Score: 0.83

Input: En cas d'infection bactérienne, le médecin recommande une

antibiothérapie.

Entity: antibiothérapie., Label: MedicalProcedure, Score: 0.83

Tip I t is very important to deactivate your GPU-based OCI Data Science Notebook
session (e.g., cs-nlp-nbs-gpu) when you finish the evaluation process to stop
billing and save on costs.

Our evaluation process has identified the highest-performing model based on F1

score: /healthcare_ner-almanach/camembert-bio-base/checkpoint-3376. This model is

built upon CamemBERT-bio-base (Rian & Eric, 2024), a pretrained model specifically

developed for French biomedical applications. CamemBERT-bio-base is an enhanced

version of CamemBERT-base, having undergone additional pretraining on a diverse

corpus of biomedical texts to better understand scientific and medical language. As

shown in Figure 6-14 and described in the Hugging Face Model Card,1 Camem

BERT-bio-base was trained on an extensive range of French biomedical literature,

including scientific publications, clinical cases, and drug leaflets.

1 The model can be found at https://huggingface.co/almanach/camembert-bio-base

Chapter 6 Model Fine-Tuning

https://huggingface.co/almanach/camembert-bio-base

317

Figure 6-14.  The pretrained MLM model almanach/camembert-bio-base on
which our best fine-tuned NER model is based

Our systematic approach to developing a Named Entity Recognition (NER)

model involved selecting the top five Masked Language Models (MLMs), fine-tuning

each of these models, and evaluating their performance. We conducted this process

without manual intervention or prior knowledge of specific pretrained models. This

methodology led us to an unexpected discovery: our best-performing NER model was

fine-tuned on CamemBERT-bio-base, a recent and robust pretrained model that we

were not previously aware of. This added to our confidence that our best fine-tuned

Healthcare NER Model will achieve optimal performance in accurately and reliably

identifying medical terms and entities in French language healthcare texts.

�Summary
This chapter focused on the critical training and evaluation stages in the Natural

Language Processing (NLP) life cycle, essential for developing a robust model tailored to

specific needs. In our MedTALN Inc. case study, we aimed to build a Healthcare Named

Entity Recognition (NER) model for the French language.

Chapter 6 Model Fine-Tuning

318

The process began with the efficient selection of the top five pretrained language

models for the healthcare domain, supporting the French language, from the Hugging

Face Hub. These selected models were then fine-tuned using the OCI Data Science GPU-

based Notebook Session.

After fine-tuning, we moved to the evaluation phase, a crucial step in assessing the

model’s performance on unseen data. This involved using our training dataset’s test split

to benchmark the fine-tuned Healthcare NER models based on the F1 measure.

We didn’t cover hyperparameter optimization in this chapter, but our fine-tuned

model performed well enough to meet the objectives of this case study. For those

seeking to improve model performance further, the Hugging Face Transformers

Trainer class provides a built-in API for hyperparameter search. This allows users

to experiment with different configurations, such as learning rates and batch sizes,

with the API handling the search for optimal hyperparameters, making the process of

hyperparameters optimization more efficient and straightforward.

By adopting a transfer learning approach, leveraging open source pretrained models,

and taking advantage of OCI Data Science’s GPU-based Notebook Sessions, which can

be deactivated after training is complete, we successfully built a robust and cost-effective

Healthcare NER model. The next chapter will focus on steps involved in deploying our

fine-tuned Healthcare NER model.

�References
Ashish Vaswani, N. S. (2017). Attention Is All You Need. Advances in Neural Information

Processing Systems 30 (NeurIPS 2017). https://arxiv.org/abs/1706.03762

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research

Jacob Devlin, M.-W. C. (2018). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. https://arxiv.org/abs/1810.04805

Jeffrey Pennington, R. S. (2014). {G}lo{V}e: Global Vectors for Word Representation.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

({EMNLP}). https://aclanthology.org/D14-1162

Radford, A. N. (2018). Improving Language Understanding by Generative

Pre-Training

Chapter 6 Model Fine-Tuning

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://aclanthology.org/D14-1162

319

Rian, T., & Eric, d. l. (2024). CamemBERT-bio: Leveraging Continual Pre-training

for Cost-Effective Models on {F}rench Biomedical Data. Proceedings of the 2024 Joint

International Conference on Computational Linguistics, Language Resources and

Evaluation (LREC-COLING 2024)

Tomas Mikolov, K. C. (2013). Efficient Estimation of Word Representations in Vector

Space. https://arxiv.org/abs/1301.3781

Chapter 6 Model Fine-Tuning

https://arxiv.org/abs/1301.3781

323
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_7

CHAPTER 7

Model Deployment
and Monitoring
In this chapter, we transition from model development to real-world application as we

explore the crucial steps of deploying and invoking our Healthcare NER model on Oracle

Cloud Infrastructure (OCI). This marks the final stage of our technical implementation,

bringing our case study to completion.

We’ll guide you through the practical process of deploying the model using OCI Data

Science and leveraging the powerful Oracle Accelerated Data Science (ADS) library.

You’ll learn how to set up the necessary environment, configure the deployment, and

ensure your model is ready for production use.

Furthermore, we’ll delve into the intricacies of model invocation, demonstrating how

to utilize OCI’s model deployment inference endpoint. This will enable you to seamlessly

integrate the deployed model into client applications, allowing for real-time Named

Entity Recognition in medical texts.

By the end of this chapter, you’ll have a comprehensive understanding of

•	 The deployment process on OCI Data Science

•	 Utilizing the ADS library for Hugging Face pipeline deployment

•	 Invoking OCI’s model deployment inference endpoint

Let’s begin the final technical phase of our journey, turning our Healthcare NER

model into a fully operational API-based service bringing NLP capabilities to healthcare

applications.

https://doi.org/10.1007/979-8-8688-1073-2_7#DOI

324

�Model Inference Preliminaries
In this MedTALN Inc.’ journey to infuse NLP into its healthcare analytics, the NLP consultant

and the IT team have successfully navigated through the crucial stages of dataset preparation

and model fine-tuning for the Named Entity Recognition (NER) model. Now, they stand at

the threshold of bringing the healthcare NER model to life in a real-world setting.

In MedTALN Inc.’s journey to infuse NLP into its healthcare analytics, the NLP

consultant and IT team have successfully navigated through the crucial stages of dataset

preparation and model fine-tuning for the Named Entity Recognition (NER) model.

Now, they stand at the threshold of bringing the healthcare NER model to life in a real-

world setting. This section provides preliminaries for model inference, a critical phase

that bridges the gap between a well-trained model and its practical application in

healthcare environments.

Model inference preliminaries focus on the essential considerations and

preparations required to deploy and operate the NER model effectively in production.

�Understanding Inference vs. Training
In the context of our healthcare Named Entity Recognition (NER) model, understanding

the distinction between inference and training is crucial for effective deployment and

operation.

Training, which we’ve completed in the previous chapter, involved exposing our

model to large volumes of annotated healthcare data to learn patterns and relationships.

This process was computationally intensive and time-consuming, requiring significant

resources to fine-tune our model for accurate entity recognition in medical texts.

Inference, on the other hand, is the operational phase where our trained NER

model applies its learned knowledge to new, unseen healthcare data. This process is

typically faster and less resource-intensive than training, but it comes with its own set of

challenges that require careful consideration.

One of the primary concerns is resource allocation and optimization. While training

the model demands significant computational resources, typically utilizing GPUs or

TPUs to process large datasets and complex model’s neural networks architectures,

the inference phase necessitates a shift toward lower-latency environments. This often

means deploying the model on CPUs, which may require optimization techniques such

as model compression—quantization or pruning—to ensure that the model remains

efficient without sacrificing performance.

Chapter 7 Model Deployment and Monitoring

325

Another critical aspect is monitoring model drift. NLP models are susceptible

to performance degradation over time, particularly as domain-specific terminology

changes. To mitigate this risk, it is essential to implement continuous monitoring

systems that track key performance metrics, such as F1 score, precision, and recall, on

a validation dataset. Setting up alerts for significant drops in these metrics can help

identify instances of model drift, allowing for timely intervention through retraining or

fine-tuning.

Accuracy and reliability are paramount in the healthcare context, where incorrect

entity recognition can have significant implications. Implementing confidence

thresholds for entity predictions can help ensure that only high-confidence outputs are

accepted.

As the usage of our Healthcare NER model grows, scalability and throughput become

increasingly important. Management of the model deployment’s number of instances

or their compute shapes can provide greater flexibility and better cost control while

handling the increased workload. This approach allows for dynamic scaling of resources

based on demand, ensuring optimal performance during peak times and cost-efficiency

during periods of lower activity.

Finally, interpretability and debugging play a crucial role in maintaining and

improving the model’s performance. Implementing attention visualization techniques

can help elucidate which parts of the input text contribute most to the model’s

predictions. Additionally, developing tools for error analysis can identify patterns in

misclassifications, guiding targeted improvements to the model.

Finally, interpretability and debugging are crucial for maintaining our BERT-based

Healthcare NER model’s performance. Given BERT’s complexity, understanding its

decision-making process is essential. We employ error analysis using a confusion matrix

to identify misclassification patterns, such as consistently mislabeling certain medical

entities. This method reveals the model’s weaknesses, like struggles with rare diseases

or ambiguous abbreviations. By focusing on these insights, we can guide targeted

improvements by fine-tuning specific data subsets or adjusting preprocessing steps to

address common errors.

By addressing these NLP-specific challenges during the transition from training to

inference, we can ensure that our healthcare NER model not only performs well initially

but also continues to deliver accurate and reliable results over time.

Chapter 7 Model Deployment and Monitoring

326

�Cost-Saving Strategies for the Inference Phase

In alignment with MedTALN Inc.’s strategic requirement of building a performant yet

cost-effective NLP solution, our NLP consultant, John Doe, has provided comprehensive

cost-saving strategies throughout the model development life cycle. Having addressed

cost optimization during the data preparation and model training phases, we now focus

on the critical inference stage.

As MedTALN Inc. prepares to deploy its Healthcare NER model, optimizing costs

during inference becomes critical. This phase is particularly important as it represents

the ongoing operational expenses of the NLP initiative. By implementing effective

strategies at this stage, we can ensure that the model performs well and remains

financially viable in the long term.

John Doe emphasizes that while maintaining high performance is crucial, there are

several approaches we can take to significantly reduce the infrastructure costs associated

with model inference as depicted in in Figure 7-1. These strategies are designed to

balance the need for quick and accurate Named Entity Recognition in healthcare texts

with the imperative of managing operational expenses.

Figure 7-1.  Cost-saving strategies for inference

Chapter 7 Model Deployment and Monitoring

327

Let’s explore the key cost-saving strategies for the inference phase of our Healthcare

NER model:

•	 Leveraging CPU-Based OCI Compute Shapes for Model Deployment:

For many NLP tasks, modern CPUs can provide sufficient

performance at a lower cost. Our Healthcare NER model can achieve

acceptable performance on CPU instances, which are often more

cost-effective than GPUs. Additionally, OCI allows us to choose the

appropriate CPU compute shape based on our model’s requirements

and expected workload.

•	 Managing OCI Data Science Model Deployment Life Cycle:

Deactivate the OCI Data Science Model Deployments when not in

use to pause billing. OCI allows you to stop model deployments to

avoid incurring charges when they’re not in use.

•	 Optimizing Resource Usage: Regularly review and adjust the size of

your compute instances. Ensure you’re using the most cost-effective

instance types that meet your performance requirements.

•	 Monitoring and Analyzing Usage Patterns and Costs: Continuously

monitor key performance metrics such as latency, throughput,

and resource utilization. Use this data to identify bottlenecks and

optimization opportunities by adjusting resources based on actual

usage to avoid overprovisioning. Also, regularly analyze spending

patterns and look for opportunities to reduce costs.

•	 Leveraging Batch Inference: For non–real-time applications, batch

processing can be more cost-effective. By aggregating requests and

processing them in batches, you can optimize resource utilization

and reduce overall compute costs.

While not implemented in our current case study, another potential cost-saving

strategy worth considering is model optimization for inference through techniques such

as quantization, which could potentially reduce model size and computational needs

without significantly impacting accuracy.

Chapter 7 Model Deployment and Monitoring

328

Tip  Using flexible shapes for you model deployment allows you to customize
the number of OCPUs and the amount of memory when launching or resizing the
model deployment virtual machine (VM).

By implementing these strategies, MedTALN Inc. can significantly reduce the

infrastructure costs associated with inference for its Healthcare NER model.

�Preparing the Environment
Before initiating the deployment of our Healthcare MER model, we need to carry

out some preparatory steps for our data science. This will involve creating a custom

log for the model deployment to integrate with the logging service. Additionally, it is

necessary to republish our custom conda environment that was used during the model

training phase.

�Setting Up Policies

After deploying our model, data scientists will need to monitor its performance. To

enable this, we need to add a new policy to our data science policies, as illustrated in

Figure 7-2.

Listing 7-1.  New data science policy

allow group data-scientists-users-grp to read metrics in compartment

case-study-cmpt

Chapter 7 Model Deployment and Monitoring

329

Figure 7-2.  data-science-policies

�Setting Up Logging

The OCI administrator is responsible for creating the logs for the model deployment.

To creation the logs, perform the following:

	 1.	 Open the navigation menu, and click Observability &
Management. Under Logging, click Log Groups (Figure 7-3).

Chapter 7 Model Deployment and Monitoring

330

Figure 7-3.  Log Groups list page

	 2.	 Select the compartment for our case study: case-study-cmpt.

	 3.	 Click Create Log Group.

	 4.	 The Create Log Group panel is displayed (Figure 7-4). Enter the

following:

	 a.	 Compartment: The compartment field is prefilled based on our

compartment, i.e., case-study-cmpt.

	 b.	 Name: cs-log-group.

	 c.	 Description: Log Group for Case Study.

	 d.	 Click Create.

Chapter 7 Model Deployment and Monitoring

331

Figure 7-4.  Log group creation

	 5.	 On the Log Group detail page, select the option Logs (Figure 7-5).

Figure 7-5.  Log Group detail page

Chapter 7 Model Deployment and Monitoring

332

Click Logs.

	 6.	 Click the button Create custom log.

	 7.	 The Log Creation dialog is displayed (Figure 7-6).

	 8.	 In the Create custom log step, enter

	 a.	 Custom log name : Cs-custom-log.

	 b.	 Log group: cs-log-group (which is already prefilled).

	 c.	 Click the Create custom log button.

Figure 7-6.  Log creation

	 d.	 On the Create agent configuration step, select the option Add
configuration later (this is because jobs and model deployments aren’t

integrated into the Logging service agent configuration).

	 e.	 Click the button Create agent config (Figure 7-7).

Chapter 7 Model Deployment and Monitoring

333

Figure 7-7.  Log creation (agent configuration step)

Figure 7-8.  Log Group detail page

�Publish Custom Conda Env.

During the training, the NLP consultant upgraded the Transformers library from the

original version 4.37.2 shipped with the pytorch21_p39_gpu_v1 conda env. to the latest

Transformers version 4.44.2.1 As a result, we need to refresh our published custom

1 At the time of writing, the latest version of the Transformers library is 4.44.2.

Chapter 7 Model Deployment and Monitoring

334

conda environment to include the new Transformers version. We’ll do this by publishing

the conda environment from the training notebook session, using the --force flag to

overwrite the environment we previously published in Chapter 4.

To publish our modified custom conda env., the steps are as follows:

	 1.	 Configure odsc conda to use an Object Storage bucket

conda-envs-bkt using this command (replace yz2wwgkgt8eh

with your Object storage namespace):

odsc conda init -b conda-envs-bkt -n yz2wwgkgt8eh

	 2.	 Publish the conda env. to our bucket by running the following

command line:

odsc conda publish -s pytorch21_p39_gpu_v1 --force

Once the publishing process is done, we can go to our Object Storage bucket conda-

envs-bkt in the OCI console and confirm that our published conda pack was properly

updated.

Once it’s done, from the Environment Explorer, copy the source value (Listing 7-2)

from the published conda env. “PyTorch 2.1 for GPU on Python 3.9” (replace

yz2wwgkgt8eh with your Object storage namespace).

Listing 7-2.  Conda env. “PyTorch 2.1 for GPU on Python 3.9”

oci://conda-envs-bkt@yz2wwgkgt8eh/conda_environments/gpu/PyTorch 2.1 for

GPU on Python 3.9/1.0/pytorch21_p39_gpu_v1

�Deployment Process
In Chapter 6, we successfully fine-tuned our Healthcare NER model using OCI Data

Science Notebooks, leveraging both CPU- and GPU-based notebook sessions. We

utilized the Hugging Face ecosystem, including the Hugging Face Hub, models, and

datasets, along with key libraries such as Transformers and datasets. The resulting

model was saved in the “Model Checkpoint Bucket” under the path <buckets mount>/

models-ckpt-bkt/models/healthcare_ner_model_v1.0.0.

Now, we’ll leverage the OCI Data Science Deployment (Oracle, 2024) features

and capabilities to efficiently transition this fine-tuned model from a trained solution

to a fully operational web service ready for integration into MedTALN’s healthcare

Chapter 7 Model Deployment and Monitoring

https://doi.org/10.1007/979-8-8688-1073-2_4
https://doi.org/10.1007/979-8-8688-1073-2_6

335

applications. The OCI Data Science Service provides a managed resource for deploying

our machine learning model as an HTTP endpoint in OCI, making it easily accessible for

real-time predictions.

Figure 7-9.  High-level deployment process

As illustrated by Figure 7-9, our deployment process will cover the following

key steps:

	 1.	 Save our best fine-tuned Healthcare NER model (i.e., healthcare_

ner_model_v1.0.0) to the OCI Data Science Model Catalog.

	 2.	 Create the OCI Data Science Model Deployment (with specified

compute shape).

	 3.	 Invoke the OCI Data Science Model Deployment endpoint to get

model predictions.

Through the upcoming sections, we’ll demonstrate how to properly and easily

handle the deployment of Transformer-based models built with Hugging Face libraries

within the OCI environment.

�Oracle Data Science Model Catalog
The Oracle Data Science Model Catalog serves as a centralized repository within the

OCI Data Science Service, allowing for efficient storage, management, and versioning

of machine learning models. It acts as a central hub for all models developed within an

organization, enabling easy access, sharing, and deployment of these models.

Chapter 7 Model Deployment and Monitoring

336

One of its key features is the immutable storage of model artifacts, ensuring the

integrity and reliability of stored models. This immutability is complemented by

provenance tracking, which allows users to monitor models throughout their life cycle,

enhancing reproducibility and transparency.

A model artifact within the catalog includes not only the model itself but also

essential metadata, input and output schemas, and scripts for loading the model and

making predictions. This comprehensive structure facilitates easy sharing among team

members and ensures that models can be effectively reproduced and deployed across

different environments.

The Model Catalog can be accessed directly in a notebook session using Oracle’s

Accelerated Data Science (ADS) or through the OCI console. It supports extensive

documentation capabilities, allowing users to detail the model’s use case, algorithm,

custom metadata, provenance, and input/output schemas. This is particularly useful

for documenting the specific entities recognized by the NER model and the healthcare

standards it adheres to.

Furthermore, the Model Catalog supports taxonomy metadata, enabling the

specification of critical information such as use case type, framework, algorithm,

and hyperparameters. This feature is valuable for maintaining clear records of model

versions and their specific configurations.

It’s important to note that model artifacts have size limitations, with a maximum of

100 MB when accessed from the console and up to 400 GB for larger models. This should

be sufficient for our NER models which has a size of around 400 MB.

By leveraging the Model Catalog in the deployment process, organizations can

ensure a more organized, efficient, and reliable workflow from model development to

production deployment.

�Oracle Data Science Model Deployment
Let’s discuss the model deployment flow and the related architecture in OCI Data

Science. We’ll examine the various components of the model deployment.

After the model training and evaluation process is complete, the best model is saved

to the Model Catalog. Model deployments in OCI Data Science are managed resources

that deploy machine learning models as HTTP endpoints.

Figure 7-10 depicts the OCI Data Science Model Deployment Architecture for

MedTALN Inc.’s Healthcare NER model, illustrating the deployment process which

consists of several key stages.

Chapter 7 Model Deployment and Monitoring

337

Figure 7-10.  OCI Data Science Model Deployment Architecture

The key components of the model deployment architecture are

•	 Load Balancer: Provides an automated way to distribute traffic from

one entry point to multiple model servers running in a pool of virtual

machines

•	 VM Instances Pool: A pool of VM instances hosting the model server,

the conda environment, and the model itself

•	 Model Artifact: The actual model file to load and its predict code for

inferencing

•	 Conda Environment: Encapsulates all the third-party Python

dependencies, like Hugging Face Transformers, that our model

requires

•	 Logs: Emit logs from the inference code to OCI logging, helpful for

monitoring and debugging

Chapter 7 Model Deployment and Monitoring

338

The high-level key steps to creating and invoking our model deployment using OCI

Data Science are

	 1.	 Loading the Model and Environment: Initialize the

HuggingFacePipelineModel class (Hugging Face) from the Oracle

Accelerated Data Science (ADS) library with our Healthcare NER

model and its artifacts. Call the prepare method with our conda

environment.

	 2.	 Saving the Model: Use the save method to store the model in

the OCI Data Science Model Catalog, making it accessible for

deployment.

	 3.	 Model Deployment: Create the model deployment by calling the

deploy method. This deploys the model artifact from the Model

Catalog with the necessary conda environment onto multiple

OCI instances, sets up each instance, and connects them to a load

balancer for scalability.

Once deployment is complete and in an active state, it can be invoked to generate

predictions on new data via HTTP requests to the endpoints. The model deployment

returns an HTTP response with the predictions.

To invoke the model deployment, you can pass healthcare text samples to the predict

endpoint, and the model will return predictions for the extracted medical entities.

You can use the sample code from the model deployment details to invoke the model

endpoint using OCI CLI or, alternatively, use the OCI Python SDK or Java SDK.

Caution  When invoking the model, be aware of the following limitations: the
payload size is limited to 10 MB, the invocation timeout is 60 seconds, and the
payload must be encoded in base64 format. Keeping these constraints in mind will
help avoid errors when interacting with the deployed model.

�Oracle ADS HuggingFacePipelineModel
Before diving into the step-by-step notebook for deploying our Healthcare

NER model on OCI, we need to understand the crucial role of the Oracle ADS

HuggingFacePipelineModel (Oracle, 2022) from Oracle’s Accelerated Data Science

Chapter 7 Model Deployment and Monitoring

339

(ADS) library. This class is the cornerstone of our automated deployment process and

is specifically designed to simplify the deployment of Hugging Face models, such as our

fine-tuned Healthcare NER model, on Oracle Cloud Infrastructure (OCI).

Using Oracle ADS HuggingFacePipelineModel offers several key benefits:

•	 Automated Artifact Generation: The .prepare() method automatically

creates necessary model artifacts for deployment without manual

configuration.

•	 Customization Flexibility: While artifacts are auto-generated, you can

still customize the score.py file if needed.

•	 Easy Debugging: The .verify() method allows you to test and debug

your model without actual deployment, saving time and resources.

•	 Streamlined Deployment: The .save() method simplifies model

artifact deployment to the catalog, while .deploy() easily creates a

REST endpoint for the model.

In the upcoming sections, we’ll walk through the process of using

HuggingFacePipelineModel to deploy our Healthcare NER model. We’ll explore

key methods such as “prepare()”for creating deployment artifacts, “verify()” for

predeployment testing, “save()” for storing the model in the OCI Model Catalog, and

“deploy()” for creating a REST endpoint to serve our model.

Figure 7-11.  High-level deployment process

Chapter 7 Model Deployment and Monitoring

340

As illustrated by Figure 7-11, our deployment process will cover the following

key steps:

	 1.	 Initializing the ADS Class HuggingFacePipelineModel:

	 a.	 Load the Hugging Face pipeline with our best fine-tuned Healthcare NER

model (i.e., healthcare_ner_model_v1.0.0).

	 b.	 Initialize the HuggingFacePipelineModel Class with our model.

	 c.	 Generate model’s artifacts.

	 2.	 Saving the model’s artifact to the OCI Data Science Model Catalog.

	 3.	 Creating a the OCI Data Science Model Deployment (with

specified compute shape).

Tip O ur case study shows how the OCI Data Science Service supports the
Hugging Face ecosystem, effectively accommodating state-of-the-art NLP
technologies. This integration enables us to leverage advanced models like BERT
for our Healthcare NER application, enabling us to train, deploy, and manage NLP
models efficiently.

By leveraging the HuggingFacePipelineModel, we’re poised to efficiently transform

MedTALN’s Healthcare NER model from a trained solution into a robust, production-

ready tool. This deployment will enhance MedTALN’s healthcare applications with

advanced Named Entity Recognition capabilities, improving data processing and insight

extraction from medical texts.

As we proceed, we’ll provide a detailed notebook demonstrating each step of the

deployment process, ensuring that MedTALN’s team can replicate and adapt this process

for future model iterations or additional NLP tasks in their healthcare ecosystem.

�Deployment Process Notebook
This notebook guides you through the process of deploying our Healthcare NER model.

The development of this notebook was based on the following resources:

Chapter 7 Model Deployment and Monitoring

341

•	 ADS v2.10.0 documentation for the class HuggingFacePipelineModel

•	 Train, Register, and Deploy Hugging Face Pipeline Example

Notebook from Notebook Explorer (train-register-deploy-

huggingface-pipeline.ipynb)

The deployment process is composed of the following key steps (detailed in

Listings 7-3 to 7-15):

	 1.	 Initializing the ADS Class HuggingFacePipelineModel:

	 a.	 Load the Hugging Face pipeline with our best fine-tuned Healthcare NER

model (i.e., healthcare_ner_model_v1.0.0).

	 b.	 Initialize the HuggingFacePipelineModel class with our model.

	 c.	 Generate the model’s artifacts.

	 2.	 Saving the model’s artifacts to the OCI Data Science

Model Catalog

	 3.	 Creating the OCI Data Science Model Deployment:

	 a.	 Provision the necessary OCI resources for the model deployment and

create model prediction endpoint.

	 b.	 Invoke the model’s endpoint to test its inference capability.

�Initializing the ADS Class “HuggingFacePipelineModel”
We start our model deployment process by initializing the ADS Class

HuggingFacePipelineModel.

�Authenticate
Authentication to the OCI Data Science Service is required. Here, we default to resource

principals.

Listing 7-3.  Authentication

import ads

ads.set_auth(auth="resource_principal")

Output

Chapter 7 Model Deployment and Monitoring

342

�Initialize Hugging Face Pipeline

Initialize “transformers.pipeline” with our best fine-tuned Healthcare NER model (i.e.,

“healthcare_ner_model_v1.0.0”).

Listing 7-4.  Initializing Hugging Face Pipeline

from transformers import pipeline

import warnings

model_checkpoint = "/home/datascience/buckets/models-ckpt-bkt/models/

healthcare_ner_model_v1.0.0"

print(f"model checkpoint: {model_checkpoint}")

data = "Le medecin donne des antibiotiques en cas d'infections des voies

respiratoires."

pipeline = pipeline(

 "token-classification", model=model_checkpoint, aggregation_

strategy="first"

)

preds = pipeline(data)

preds

Output

model checkpoint: /home/datascience/buckets/models-ckpt-bkt/models/

healthcare_ner_model_v1.0.0

[6]:

[{'entity_group': 'MedicationVaccine',

 'score': 0.7428154,

 'word': 'antibiotiques',

 'start': 21,

 'end': 34}]

�Prepare Model Artifact

Instantiate a HuggingFacePipelineModel() object with Hugging Face pipelines. All the

pipelines related files are saved under the artifact_dir (replace yz2wwgkgt8eh with your

Object storage namespace).

Chapter 7 Model Deployment and Monitoring

343

Listing 7-5.  Preparing Model Artifact

from ads.model import HuggingFacePipelineModel

from ads.model.model_metadata import UseCaseType

import tempfile

Create a temporary directory for the model artifacts

artifacts_temp_dir = tempfile.mkdtemp()

print(f"Model path {pipeline.model.config._name_or_path} and the Model

artifacts temp dir {artifacts_temp_dir}")

Initialize the model

huggingface_pipeline_model = HuggingFacePipelineModel(pipeline, artifact_

dir=artifacts_temp_dir)

#Prepare the model

conda_env_source = "oci://conda-envs-bkt@yz2wwgkgt8eh/conda_environments/

gpu/PyTorch 2.1 for GPU on Python 3.9/1.0/pytorch21_p39_gpu_v1"

huggingface_pipeline_model.prepare(

 inference_conda_env=conda_env_source,

 inference_python_version="3.9",

 training_conda_env=conda_env_source,

 use_case_type=UseCaseType.OTHER,

 force_overwrite=True,

)

Output

Model path /home/datascience/buckets/models-ckpt-bkt/models/healthcare_ner_

model_v1.0.0 and the Model artifacts temp dir /tmp/tmp9ph1hgv0

[2024-08-30 01:12:44,108] [INFO] [real_accelerator.py:158:get_accelerator]

Setting ds_accelerator to cuda (auto detect) ?, ?it/s]

algorithm: TokenClassificationPipeline

artifact_dir:

 /tmp/tmp9ph1hgv0:

 - - .model-ignore

 - special_tokens_map.json

Chapter 7 Model Deployment and Monitoring

344

 - tokenizer.json

 - config.json

 - runtime.yaml

 - score.py

 - model.safetensors

 - sentencepiece.bpe.model

 - tokenizer_config.json

framework: transformers

model_deployment_id: null

model_id: null

�Manually Correct score.py

The generated score.py contains some bad code that needs to be fixed. Our consultant,

John, fixed the issues and provided a corrected version, score_fixed.py, which contains

the necessary code adjustments to make it work.

Listing 7-6.  Fixing the file score.py

import shutil

Specify the path to the source file (score_fixed.py) and the target

location (/tmp/score.py)

source_file = './score_fixed.py' # Update with the actual path to score_

fixed.py

target_file = f'{artifacts_temp_dir}/score.py'

Copy the source file to the target location, effectively replacing it

shutil.copyfile(source_file, target_file)

Output

'/tmp/tmp9ph1hgv0/score.py'

�Run Introspection

Run an introspection test to perform a sanity check on the model’s artifacts, including

tests on the score.py and runtime.yaml files, with the goal of capturing common errors

and issues in the model artifacts. When the model is saved, introspection tests are

included in the model metadata.

Chapter 7 Model Deployment and Monitoring

345

Listing 7-7.  Running Introspection Test

huggingface_pipeline_model.introspect()

Output

['.model-ignore', 'special_tokens_map.json', 'tokenizer.json', 'config.

json', 'runtime.yaml', 'score.py', 'model.safetensors', 'sentencepiece.bpe.

model', 'tokenizer_config.json']

[6]:

Test key Test name Result Message

0 runtime_env_

path

Check that field MODEL_DEPLOYMENT.

INFERENCE_ENV_PATH is set

Passed

1 runtime_env_

python

Check that field MODEL_DEPLOYMENT.

INFERENCE_PYTHON_VERSION is set to a

value of 3.6 or higher

Passed

2 runtime_path_

exist

Check that the file path in MODEL_

DEPLOYMENT.INFERENCE_ENV_PATH is

correct.

Passed

3 runtime_version Check that field MODEL_ARTIFACT_

VERSION is set to 3.0

Passed

4 runtime_yaml Check that the file "runtime.yaml"

exists and is in the top level

directory of the artifact directory

Passed

5 score_load_

model

Check that load_model() is defined Passed

6 score_predict Check that predict() is defined Passed

7 score_predict_

arg

Check that all other arguments in

predict() are optional and have

default values

Passed

8 score_predict_

data

Check that the only required argument

for predict() is named "data"

Passed

(continued)

Chapter 7 Model Deployment and Monitoring

346

Test key Test name Result Message

9 score_py Check that the file "score.py" exists

and is in the top level directory of

the artifact directory

Passed

10 score_syntax Check for Python syntax errors Passed

�Call Model Summary

The .summary_status() method returns a Pandas DataFrame that guides you through

the entire workflow. It shows which methods are available to call and which ones aren’t.

Plus, it outlines what each method does. If extra actions are required, it also shows those

actions.

Listing 7-8.  Running Model Summary

huggingface_pipeline_model.summary_status()

Output

Step Status Details

initiate Done Initiated the model

prepare() Done Generated runtime.yaml

Generated score.py

Serialized model

Populated metadata(Custom, Taxonomy and Provenance)

verify() Available Local tested .predict from score.py

save() Available Conducted Introspect Test

Uploaded artifact to model catalog

deploy() UNKNOWN Deployed the model

predict() Not

Available

Called deployment predict endpoint

Chapter 7 Model Deployment and Monitoring

347

�Verify the Generated Model Artifacts

Verify the generated model artifacts before deploying the model to model catalog.

Listing 7-9.  Verifying the Model Artifacts

print(data)

huggingface_pipeline_model.verify(data)

Output

Le medecin donne des antibiotiques en cas d'infections des voies

respiratoires.

Model is successfully loaded.

[12]:

{'prediction': [{'entity_group': 'MedicationVaccine',

 'score': 0.742815375328064,

 'word': 'antibiotiques',

 'start': 21,

 'end': 34}]}

�Save the Model to the Model Catalog
At this step, we create Model Version Set and save our model to the Model Catalog.

�Create a Model Version Set

The Model Version Set, which acts as a container by assigning sequential version

numbers to models, makes it easier to track their evolution and relationships.

Listing 7-10.  Creating Version Set for the Model

from ads.model import ModelVersionSet

Create a model version set

mvs = ModelVersionSet(

 name = "healthcare-ner-model-ver-set",

 description = �"A model version set for the Healthcare NER Model")

mvs.create()

Chapter 7 Model Deployment and Monitoring

348

Output

kind: modelVersionSet

spec:

 compartmentId: ocid1.compartment.oc1..

aaaaaaaaceavj5r6agl5e2mysyxg6twnvwh6cw7s2pi6nobiv6nynjcwmhxa

 definedTags:

 Oracle-Tags:

 �CreatedBy: ocid1.datasciencenotebooksession.oc1.ca-toronto-1.

amaaaaaa3hvgr2qaresmmqmzbu3i3mo6npudc3nf6ltgu43in4su7ogons4a

 �CreatedOn: '2024-08-30T01:39:55.445Z'

 description: A model version set for the Healthcare NER Model

 �id: ocid1.datasciencemodelversionset.oc1.ca-toronto-1.

amaaaaaa3hvgr2qa4gck2mvzy6r5nbaumfmdbv7rsilu6x5dnggvg5kxrhxa

 name: healthcare-ner-model-ver-set

 �projectId: ocid1.datascienceproject.oc1.ca-toronto-1.

amaaaaaa3hvgr2qaqd5gstwgcmxycii3q7zi4jemjwhb7wienmlapx2ni6ja

type: modelVersionSet

�Save the Model

Save the model to the Model Catalog.

Listing 7-11.  Saving the Model

Register the model

model_id = huggingface_pipeline_model.save(display_name="Healthcare NER

Model", model_version_set=mvs, version_label="Version 1")

model_id

Chapter 7 Model Deployment and Monitoring

349

Output

Model is successfully loaded.

['.model-ignore', 'special_tokens_map.json', 'tokenizer.json', 'config.

json', 'runtime.yaml', 'score.py', 'test_json_output.json', 'model.

safetensors', 'sentencepiece.bpe.model', 'tokenizer_config.json']

[27]:

'ocid1.datasciencemodel.oc1.ca-toronto-1.

amaaaaaa3hvgr2qaxmjd5sf3kv3vri4rsgdo3hzw66bq6e4in65taft2y3yq'

At this step, go to our Data Science Project, and click Models to verify if our model

was properly created, as shown in Figure 7-12. You will see that model versioning

is activated through the Model Version Set, which acts as a container by assigning

sequential version numbers to models, making it easier to track their evolution and

relationships.

Figure 7-12.  Model created

Chapter 7 Model Deployment and Monitoring

350

Click the model name to open the model’s detail page.

Figure 7-13.  Model detail page

The model’s detail page, as shown in Figure 7-13, displays the metadata for the

Healthcare NER model in the OCI Data Science Model Catalog. This page showcases

the comprehensive information automatically captured when saving a model using

ADS. The metadata includes crucial details about the model’s provenance, taxonomy,

and custom attributes, providing a clear picture of the model’s characteristics and

history.The page displays the model metadata in different sections.

The Model introspection section, as shown in Figure 7-13, documents the tests

performed on the model artifacts, particularly the score.py and runtime.yaml files. These

tests help identify potential issues before the model deployment.

The Provenance metadata section, as shown in Figure 7-14, documents the Git

information including the repository URL, branch, and commit hash. This information

enhances the reproducibility and auditability of the model development process.

Chapter 7 Model Deployment and Monitoring

351

Figure 7-14.  Model Provenance metadata

The provenance resource section, as shown in Figure 7-15, documents the model’s

origin, including details about the training environment. Specifically, it indicates that

our Healthcare NER model was trained in the notebook session named cs-nlp-nbs-cpu.

This section also records who trained the model and when, providing a clear trail of the

model’s creation and updates. Together, these provenance details offer a comprehensive

history of the model’s development, crucial for version control and collaborative work in

the MLOps pipeline.

Figure 7-15.  Model provenance resource

Chapter 7 Model Deployment and Monitoring

352

The taxonomy section, as shown in Figure 7-16, shows key attributes for our

Healthcare NER model, this includes the framework used, which is Hugging Face

Transformers, its version (4.44.2), and the model task (TokenClassificationPipeline).

Additionally, it displays the model’s prediction labels along with some of the model

internal parameters (e.g., few hyperparameters).These model specifications are

particularly valuable when troubleshooting the model’s predictions or optimizing its

training hyperparameters.

Figure 7-16.  Model taxonomy

The Custom model attributes section of the Model Catalog, as illustrated in

Figure 7-17, documents additional, model-specific information beyond the standard

taxonomy fields, such as the conda environment used for training our Healthcare

NER model.

Having this detailed information readily available in the taxonomy section allows for

quick reference and facilitates efficient model management and fine-tuning processes.

This level of detail is crucial for maintaining and improving the performance of the

Healthcare NER model throughout its life cycle.

Chapter 7 Model Deployment and Monitoring

353

Figure 7-17.  Model taxonomy: Custom model attributes

�Deploy and Invoke
Now that our model is saved to the Model Catalog, we can start the creation of the model

deployment which will provision the necessary OCI resources to deploy our Healthcare

NER models as an HTTP endpoint (REST-based API).

�Deploy and Generate Endpoint

Listing 7-12.  Deploying the Model

huggingface_pipeline_model.deploy(

 display_name="Healthcare NER Mode Deployment",

 description="Healthcare NER Mode Deployment",

 �deployment_log_group_id="ocid1.loggroup.oc1.ca-toronto-1.

amaaaaaa3hvgr2qafnnj4nyxd3bxxxmfx35bbmsmftedosa3fxin7ag46jia",

 �deployment_access_log_id="ocid1.log.oc1.ca-toronto-1.

amaaaaaa3hvgr2qah2mx7uxr5nl7rtqtaygsui3liy3uqyor5wp6zs7xsdua",

Chapter 7 Model Deployment and Monitoring

354

 �deployment_predict_log_id="ocid1.log.oc1.ca-toronto-1.

amaaaaaa3hvgr2qah2mx7uxr5nl7rtqtaygsui3liy3uqyor5wp6zs7xsdua"

)

print(f"Endpoint: {huggingface_pipeline_model.model_deployment.url}")

Output

Model Deployment OCID: ocid1.datasciencemodeldeployment.oc1.ca-toronto-1.

amaaaaaa3hvgr2qauukxaeb3pel6d575orfdxngmkhy4fsmbz3bezlvqvalq

Endpoint: https://modeldeployment.ca-toronto-1.oci.customer-

oci.com/ocid1.datasciencemodeldeployment.oc1.ca-toronto-1.

amaaaaaa3hvgr2qauukxaeb3pel6d575orfdxngmkhy4fsmbz3bezlvqvalq

Listing 7-13.  Retrieving Model Deployment Details

print(huggingface_pipeline_model.model_deployment.display_name)

print(huggingface_pipeline_model.model_deployment.description)

print(huggingface_pipeline_model.model_deployment.time_created)

Output

Healthcare NER Mode Deployment

Healthcare NER Mode Deployment

2024-08-30 01:49:54.888000+00:00

At this step, go to our Data Science Project, and click Model deployments to verify

if our model deployment was properly created, as shown in Figure 7-18. You will

notice that the default compute shape is VM.Standard.E4.Flex and the initial instance

count is 1.

Chapter 7 Model Deployment and Monitoring

355

Figure 7-18.  Model deployment created

As shown in Figure 7-19, a work request is generated to track the progress of

deploying our Healthcare NER model. The work request, accessible from the Model
deployments detail page, details the deployment process steps, such as provisioning

compute instances, configuring the load balancer, and deploying the model artifacts.

The work request’s log and error messages (if any) allow us to identify and troubleshoot

any issues arising during the process quickly.

Figure 7-19.  Model deployment work request

Chapter 7 Model Deployment and Monitoring

356

�Run Prediction Against Endpoint

Let’s now continue in our notebook by invoking our model ADS pipeline class’s predict

method to generate predictions.

Listing 7-14.  Generating predictions

preds = huggingface_pipeline_model.predict(data)

#print predictions

for pred in preds['prediction']:

 �print(pred['word'],pred['entity_group'], pred['score'], pred['start'],

pred['end'])

Output

antibiotiques MedicationVaccine 0.742815375328064 21 34

Now, we invoke our model and generate predictions by calling the model’s HTTP

endpoint (REST-based API).

Listing 7-15.  Invoking the Model Endpoint for Predictions

import requests

import oci

from oci.signer import Signer

Get notebook session's resource principal

signer = oci.auth.signers.get_resource_principals_signer()

prediction_endpoint = �f'{huggingface_pipeline_model.model_deployment.url}/

predict'

print(f"Invoking Model Endpoint: {prediction_endpoint}")

print(f"Medical sample text : {data}")

body = {"inputs":data} # payload

headers = {} # headers

preds = requests.post(prediction_endpoint, json=body, auth=signer,

headers=headers).json()

print(f"Extracted medical entities : {preds}")

Chapter 7 Model Deployment and Monitoring

357

Output

Invoking Model Endpoint: https://modeldeployment.ca-toronto-1.oci.

customer-oci.com/ocid1.datasciencemodeldeployment.oc1.ca-toronto-1.

amaaaaaa3hvgr2qauukxaeb3pel6d575orfdxngmkhy4fsmbz3bezlvqvalq/predict

Medical sample text : Le medecin donne des antibiotiques en cas

d'infections des voies respiratoires.

Extracted medical entities : {'prediction': [{'entity_group':

'MedicationVaccine', 'score': 0.742815375328064, 'word': 'antibiotiques',

'start': 21, 'end': 34}]}

Tip T o avoid being billed for model deployment resources, such as instances
and the load balancer, you can deactivate your model deployment. Deactivating a
model deployment shuts down the associated instances, stops metering and billing
for those instances and the load balancer, and makes the deployment’s HTTP
endpoint unavailable. However, the model deployment's metadata is preserved. If
needed, you can reactivate the deactivated model deployment, restoring the same
HTTP endpoint and enabling requests to be made to it again.

The model’s prediction endpoint can be found in the console. Navigate to the Model
deployments detail page, as shown in Figure 7-20, and click the model deployment

endpoint link (Invoking your model).

Figure 7-20.  Model deployments detail page

Chapter 7 Model Deployment and Monitoring

358

�Monitoring and Maintenance
After deploying our Healthcare NER model, we can start monitoring it through logs and

metrics. To showcase briefly those monitoring capabilities, let’s say we used our testing

notebook, as show in Figure 7-21, to send inference calls to our NLP model.

Figure 7-21.  Testing notebook

Listing 7-16.  Testing the Model Endpoint

import requests

import oci

from oci.signer import Signer

auth = oci.auth.signers.get_resource_principals_signer()

endpoint = 'https://modeldeployment.ca-toronto-1.oci.customer-

oci.com/ocid1.datasciencemodeldeployment.oc1.ca-toronto-1.

amaaaaaa3hvgr2qauukxaeb3pel6d575orfdxngmkhy4fsmbz3bezlvqvalq/predict'

meds = ["analgésiques", "anti-inflammatoires", "antibiotiques",

"antibactériens", "antituberculeux", "antimycosiques","antiviraux"]

Chapter 7 Model Deployment and Monitoring

359

for med in meds:

 body = �{"inputs":f"Selon les cas, des médicaments tels que {med}, ou

encore une bactériothérapie, peuvent être prescrits par les

médecins."} # payload goes here

 headers = {} # header goes here

 print(body)

 result = �requests.post(endpoint, json=body, auth=auth,

headers=headers).json()

 for pred in result["prediction"]:

 print(f"{pred['word']} --> {pred['entity_group']}")

 print()

Output

{'inputs': 'Selon les cas, des médicaments tels que analgésiques, ou encore

une bactériothérapie, peuvent être prescrits par les médecins.'}

analgésiques, --> MedicationVaccine

bactériothérapie, --> MedicalProcedure

{'inputs': 'Selon les cas, des médicaments tels que anti-inflammatoires, ou

encore une bactériothérapie, peuvent être prescrits par les médecins.'}

anti-inflammatoires, --> MedicationVaccine

bactériothérapie, --> MedicalProcedure

...

�Logs
As shown in Figure 7-22, OCI Logging service is used to capture important information.

Chapter 7 Model Deployment and Monitoring

360

Figure 7-22.  Model deployment logs

The access log details information about requests sent to the model endpoint, while

the predict log captures the score.py logging calls (Figure 7-23).

Figure 7-23.  Predict log

Chapter 7 Model Deployment and Monitoring

361

�Metrics
We can also monitor the health, capacity, and performance of model deployments with

the built-in metrics using OCI Monitoring. Model deployments has metrics for CPU

utilization, memory utilization, and network utilization, which includes parameters

such as request count, latency, and bandwidth. As show in Figure 7-24, from the console,

we can open the metric space (under the model deployment resources) to view all the

built-in metrics.

Figure 7-24.  Model deployment metrics

We can also monitor our model from OCI Monitoring feature.

To do that, navigate to the menu option Observability & Management ➤

Monitoring.

You can then use Service Metrics, as shown in Figure 7-25, to monitor metrics for the

service oci_datascience_modeldeploy.
Additionally, you can explore each metric in more detail by opening the metrics

query in the Metrics Explorer or create an alarm based on the metric when it crosses a

specified threshold.

Chapter 7 Model Deployment and Monitoring

362

Figure 7-25.  OCI Monitoring

By effectively monitoring our Healthcare NER model on OCI, data scientists or OCI

administrators can ensure optimal performance and compliance.

�Summary
This chapter marks the end of our journey in building our Healthcare NER model

on Oracle Cloud Infrastructure (OCI). This chapter focused on the practical aspects

of deploying and operationalizing our model using OCI Data Science and its Oracle

Accelerated Data Science (ADS) library.

Key points covered in this chapter include

•	 Detailed steps for deploying the Healthcare NER model on OCI

Data Science

•	 Utilization of the ADS library to streamline the deployment process

•	 Instructions on how to invoke the deployed model using OCI’s model

deployment inference endpoint

Chapter 7 Model Deployment and Monitoring

363

While there are advanced postdeployment topics relevant to our case study, we’ve

kept the focus on the fundamentals. For those interested in exploring further, strategies

such as rolling updates, blue-green deployments, and A/B testing in OCI can help

minimize downtime and enhance reliability. These techniques, although not covered

in depth in this book, are valuable for ensuring smooth and reliable model updates in

production environments.

Batch inference is another powerful technique, especially for processing large

datasets. While this book emphasizes real-time inference, the OCI Data Science Jobs

service offers robust tools for batch processing. This can be particularly beneficial for

tasks like analyzing large sets of medical records in batch mode, which is highly relevant

to our healthcare-focused case study. These advanced areas provide opportunities for

future exploration.

�References
Hugging Face. (n.d.). Pipelines. Retrieved from Transformers: https://huggingface.co/

docs/transformers/en/main_classes/pipelines

Oracle. (2022). HuggingFacePipelineModel. Retrieved from Oracle Accelerated Data

Science (ADS): https://accelerated-data-science.readthedocs.io/en/v2.10.0/

user_guide/model_registration/frameworks/huggingfacemodel.html

Oracle. (2024, 04 17). Model Deployments. Retrieved from Oracle Cloud

Infrastructure Documentation: https://docs.oracle.com/en-us/iaas/data-science/

using/model-dep-about.htm

Chapter 7 Model Deployment and Monitoring

https://huggingface.co/docs/transformers/en/main_classes/pipelines
https://huggingface.co/docs/transformers/en/main_classes/pipelines
https://accelerated-data-science.readthedocs.io/en/v2.10.0/user_guide/model_registration/frameworks/huggingfacemodel.html
https://accelerated-data-science.readthedocs.io/en/v2.10.0/user_guide/model_registration/frameworks/huggingfacemodel.html
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-about.htm

365
© Hicham Assoudi 2024
H. Assoudi, Natural Language Processing on Oracle Cloud Infrastructure,
https://doi.org/10.1007/979-8-8688-1073-2_8

CHAPTER 8

MLOps and Conclusion
In this chapter, we conclude the case study by first exploring how MLOps can be

implemented using Data Science Pipelines, focusing on its significance in enhancing the

efficiency and effectiveness of NLP workflows.

We will then revisit the development of our Healthcare Named Entity Recognition

(NER) model, reflecting on each key step—from dataset preparation to fine-tuning

pretrained models and, finally, the deployment and monitoring of the fine-tuned model.

By synthesizing these experiences, we will highlight the overarching themes and

lessons learned throughout the journey. Lastly, we will provide key takeaways and

discuss the broader implications of building NLP solutions, including important

considerations like carbon emissions in Transformer-based models.

�MLOps with OCI Data Science
Before concluding our case study, it’s essential to explore MLOps, as it plays a crucial

role in streamlining and automating the life cycle of NLP models. By integrating MLOps

using Data Science Pipelines, we can enhance the efficiency and reliability of deploying,

monitoring, and maintaining NLP models, ensuring smoother workflows and better

scalability. This makes it a vital topic to address before wrapping up our case study.

�OCI Data Science Pipelines
Our NLP consultant, John Doe, will focus on implementing MLOps as the final step in

MedTALN Inc.’s NLP initiative. MLOps integrates DevOps principles into the machine

learning life cycle to automate workflows, improve team collaboration, and ensure

reproducibility. This streamlines the entire process from development to production and

ensures that models perform well over time, not just during deployment.

https://doi.org/10.1007/979-8-8688-1073-2_8#DOI

366

The power of Data Science Pipelines lies in their ability to automate the main steps

in the training and deployment processes. By leveraging the MLOps principles and the

notebooks provided, you can streamline the process of taking NLP models from the

experimentation phase to production, ensuring that they remain reliable and effective in

the long run.

Note  Automating the NLP workflow using MLOps principles allows for a
repeatable process, facilitating rapid experimentation, model retraining, and
efficient deployment.

This section will guide you through implementing MLOps using Data Science

Pipelines. We will provide a straightforward yet practical example to equip you with the

knowledge to build more advanced pipelines for real-world projects.

�Pipeline Example
Throughout this book, we’ve provided Jupyter notebooks with Python code to automate

key tasks in the NLP life cycle. These tasks range from building datasets using prelabeled

Hugging Face datasets, to fine-tuning pretrained models, and deploying models on

Oracle Cloud Infrastructure (OCI). By integrating these notebooks with OCI’s Data

Science Pipelines, data scientists can adopt a structured approach to training and

deploying machine learning models, allowing for faster experimentation and iteration.

For the sake of simplicity, we will implement a straightforward yet practical pipeline

to demonstrate techniques that can be used to build more sophisticated pipelines.

We’ve chosen to create a simple, two-step pipeline to showcase how OCI Data Science

Pipelines can effectively automate processes, ensuring the explanation remains clear

and conducive to effective learning.

This pipeline builds on the pretrained model selection notebook from Chapter 6,

where we focused on fine-tuning our Healthcare NER model. In that chapter, we

manually explored various pretrained models to find the best fit for our task. Now,

we take that process a step further by automating model selection through a two-step

pipeline.

Chapter 8 MLOps and Conclusion

367

Figure 8-1.  Pipeline example for our case study

As show in Figure 8-1, the first step of the pipeline will identify a list of candidate

Masked Language Models (MLM) from the Hugging Face Hub. We’ll programmatically

search for models that support the French language and filter the results to include only

monolingual models with at least one healthcare-related tag. In the second step, the

pipeline will evaluate and rank these models based on their ability to predict medical

entities using the “fill-mask” pipeline.

This simple yet powerful pipeline serves as a foundation to show how OCI Data

Science Pipelines can automate these tasks, offering a clear and practical learning

experience.

�Pipeline Creation Step-by-Step
Figure 8-2 illustrates how MLOps and Data Science Pipelines can be used to automate

and streamline the pretrained model selection task.

Chapter 8 MLOps and Conclusion

368

Figure 8-2.  Pipeline flow for the case study

This two-step pipeline shows how data can be shared and processed sequentially

in OCI Data Science Pipelines. It provides a simple template for creating more complex

pipelines, serving as a foundation for building efficient and reproducible NLP workflows.

�Pipeline Creation Prerequisites

Before we begin implementing our Model Selection Pipeline using a Data Science

pipeline, we need to complete the following preparatory tasks:

•	 Set Up Tenancy: The OCI admin should add a new rule for OCI Data

Science Pipelines to the Data Science Dynamic Group.

•	 Create Pipeline Step Artifacts: The NLP consultant will write and

code the Python scripts and then package each step as a ZIP file.

Chapter 8 MLOps and Conclusion

369

�Create Pipeline Step Artifacts

To implement our simple pipeline with data sharing between steps, we will repurpose

and reorganize code from the JupyterLab notebook “select_mlm_models.ipynb” located

in the “chapt-6” folder. This code will be divided into two separate Python files, each

representing a distinct step in the pipeline:

	 1.	 Step 1: Model Search and Identification: In this step, we will

extract and organize code from the Jupyter notebook into a Python

script named pipeline_step1_mlm_search.py. This script will

handle the task of searching for pretrained models that support

the French language, using the Hugging Face Transformers

library. The results will be filtered to retain only monolingual

models with healthcare-related tags. The list of candidate models

will then be passed to the next step for evaluation. We will use

helper functions from the mlpipeline_data_helpers.py1 module

to facilitate data transfer between steps. The script, along with

mlpipeline_data_helpers.py, will be packaged into a ZIP file for

execution as part of the pipeline.

	 2.	 Step 2: Model Evaluation and Ranking: In the second step, the

Python script pipeline_step2_mlm_ranking.py will be created to

evaluate and rank the models identified in Step 1. This script will

use the “fill-mask” pipeline from Hugging Face to assess each

model’s ability to predict masked medical terms. Each model’s

performance will be scored based on its accuracy, and the top five

models will be logged in the pipeline for further analysis. To ensure

smooth data handoff from Step 1, this script will also use helper

functions from mlpipeline_data_helpers.py. Like the first step, this

script and the helper file will be packaged into a ZIP file, making it

ready for execution within the OCI Data Science Pipeline.

1 The helper functions used to transfer data between steps, mlpipeline_data_helpers.py, is adapted
from the code available at Oracle’s OCI Data Science AI samples repository (https://github.
com/oracle-samples/oci-data-science-ai-samples/blob/main/pipelines/samples/simple/
mlpipeline_data_helpers.py).

Chapter 8 MLOps and Conclusion

https://github.com/oracle-samples/oci-data-science-ai-samples/blob/main/pipelines/samples/simple/mlpipeline_data_helpers.py
https://github.com/oracle-samples/oci-data-science-ai-samples/blob/main/pipelines/samples/simple/mlpipeline_data_helpers.py
https://github.com/oracle-samples/oci-data-science-ai-samples/blob/main/pipelines/samples/simple/mlpipeline_data_helpers.py

370

Below the ZIP file creation for each step (Listing 8-1 and Listing 8-2):

For the pipeline Step 1, first, create a folder named pipeline_step1_mlm_search.

Then, copy the following Python files into this folder:

•	 mlpipeline_data_helpers.py

•	 pipline_step1_mlm_search.py

Listing 8-1.  Creating Pipeline Artifacts ZIP

(/home/datascience/conda/pytorch21_p39_gpu_v1) bash-4.2$ cd

./pipline_step1_mlm_search

(/home/datascience/conda/pytorch21_p39_gpu_v1) bash-4.2$ zip -r

../pipline_step1_mlm_search.zip *.py

Then, create the artifacts for the pipeline Step 2. To do that, create

another folder named pipline_step2_mlm_ranking. Then, copy the

following python files into this folder:

•	 mlpipeline_data_helpers.py

•	 adding: pipline_step2_mlm_ranking.py

Listing 8-2.  Creating Pipeline Artifacts ZIP (for step 2)

(/home/datascience/conda/pytorch21_p39_gpu_v1) bash-4.2$ cd

../pipline_step2_mlm_ranking

(/home/datascience/conda/pytorch21_p39_gpu_v1) bash-4.2$ zip -r

../pipline_step2_mlm_ranking.zip *.py

Note R eady-to-use ZIP files are provided in the GitHub repository under /nlp-on-
oci/chapt-8.

�Data Science Dynamic Group Rule

Make sure you have added the following rule to the data science dynamic group rules

(Figure 8-3; Listing 8-3).

Chapter 8 MLOps and Conclusion

371

Listing 8-3.  Adding a Dynamic Group Rule

ALL {resource.type='datasciencepipelinerun'}

Figure 8-3.  Data scientist dynamic group rule for pipeline

�Create Pipeline

Below are the steps for creating our pipeline:

	 1.	 Open the navigation menu, and click Analytics & AI. Under

Machine Learning, click Data Science.

	 2.	 Select our case study compartment, i.e., case-study-cmpt.

	 3.	 From the Projects list page, click the name of our case study

project, i.e., cs-nlp-prj.

	 4.	 From the Project details page, under Resources, click Pipelines.

	 5.	 Click Create pipeline (Figure 8-4).

Chapter 8 MLOps and Conclusion

372

Figure 8-4.  DS project page with pipelines

	 6.	 In the pipeline creation dialog, enter

	 a.	 The compartment for the pipeline is already prefilled.

	 b.	 Enter a name and description for the pipeline (limit of 255 characters): cs-

nlp-pipeline.

	 c.	 Description: Example of a pipeline for the case study.

Note T he name and description are optional. If you don’t provide a name, a name
is automatically generated.

	 7.	 Click Add pipeline step to start defining the workflow for

the pipeline (see Figure 8-5). In the Add pipeline step panel,

do the following:

	 a.	 Select the option From script.

	 b.	 Enter a unique name for the step: pipline_step1_mlm_search.

You can’t repeat a step name in a pipeline.

	 c.	 Enter a step description: Healthcare NER Model pipeline - pretrained MLM

models search step.

	 d.	 This is the first step; there is no other step that should run before this step.

Chapter 8 MLOps and Conclusion

373

	 e.	 Drag a job step file into the box, or click Select a file to navigate to it for

selection, i.e., pipline_step1_mlm_search.zip.

	 f.	 In Entry point, select one file to be the entry run point of the step, i.e.,

pipline_step1_mlm_search.py.

Figure 8-5.  Add pipeline step

	 8.	 Click Save to add the step, and return to the Create pipeline page.

	 9.	 Use +Add pipeline step to add more steps to complete your

workflow by repeating the preceding steps (refer to Figure 8-6):

	 a.	 Select the option From script.

	 b.	 Enter a unique name for the step: pipline_step2_mlm_ranking.

You can’t repeat a step name in a pipeline.

	 c.	 Enter a step description: Healthcare NER Model pipeline - pretrained MLM

models ranking step (Step 2).

	 d.	 Depends on: pipline_step1_mlm_search.

Select the step that should run before this step.

	 e.	 Drag a job step file into the box, or click Select a file to navigate to it for

selection, i.e., pipline_step2_mlm_ranking.zip.

	 f.	 In Entry point, select one file to be the entry run point of the step, i.e.,

pipline_step2_mlm_ranking.py.

Chapter 8 MLOps and Conclusion

374

Figure 8-6.  Pipeline Step 2

	 g.	 Click Save to add the step, and return to the Create pipeline page

(Figure 8-7).

Figure 8-7.  Create pipeline

	 10.	 Create a default pipeline configuration that’s used when the

pipeline is run:

	 a.	 Under the configuration section (refer to Figure 8-8), add

the following custom environment variable keys and values

(replace yz2wwgkgt8eh with your Object storage namespace):

Chapter 8 MLOps and Conclusion

375

DATA_LOCATION = oci:// models-ckpt-bkt@yz2wwgkgt8eh/

CONDA_ENV_TYPE = published

CONDA_ENV_OBJECT_NAME = conda_environments/gpu/

PyTorch 2.1 for GPU on Python 3.9/1.0/pytorch21_p39_gpu_v1

CONDA_ENV_NAMESPACE = yz2wwgkgt8eh

CONDA_ENV_BUCKET = conda-envs-bkt

	 b.	 Leave Command line arguments empty.

	 c.	 Leave the default Maximum runtime (in minutes).

The maximum number of minutes that the pipeline step is

allowed to run. The service cancels the pipeline run if its runtime

exceeds the specified value. The maximum runtime is 30 days

(43,200 minutes). We recommend that you configure a maximum

runtime on all pipeline runs to prevent runaway pipeline runs.

	 d.	 Leave default value for block storage

The amount of storage can be between 50 GB and 10, 240 GB

(10 TB). You can change the value by 1 GB increments. The default

value is 100 GB.

Figure 8-8.  Pipeline configuration section

Chapter 8 MLOps and Conclusion

376

	 11.	 Click Save to add the step, and return to the Create pipeline page.

	 12.	 To configure the network type (Figure 8-9), select Custom
networking—Select the VCN and Subnet:

VCN: cs-vcn

Subnet: private subnet-cs-vcn

	 13.	 For logging, click Select, and then ensure that Enable logging is

selected.

	 a.	 Select a log group from the list: cs-log-group.

	 b.	 Log name: cs-custom-log.

Select one of the following to store all stdout and stderr messages:

	 c.	 Click Select to return to the job run creation page.

Figure 8-9.  Pipeline networking

	 14.	 Click Create pipeline.

	 15.	 After the pipeline is in an active state (as shown in Figure 8-10),

you can use pipeline runs to repeatedly run the pipeline.

Chapter 8 MLOps and Conclusion

377

Figure 8-10.  Pipeline details page

	 16.	 From the Pipeline details page, under Resources, click

Pipeline runs.

In the Start a pipeline run panel (Figure 8-11), enter the name of

the run, leave everything else, and click the Start button.

Figure 8-11.  Start a pipeline run

Chapter 8 MLOps and Conclusion

378

The pipeline run is in the “Accepted” state until the run begins, and then, it changes

to “In Progress.” When the run finishes, it’s either “Succeeded” or “Failed.”

Our pipeline run, as show in Figure 8-12, has succeeded.

Figure 8-12.  Pipeline runs: first test (run 1)

As illustrated in Figure 8-13, the Pipeline runs detail page offers detailed,

fine-grained information about each step of the pipeline execution.

The status of each pipeline step is listed. Pipeline steps are in the “Waiting” state

until they run, and then they change to “In Progress.” When a step finishes, it’s either

“Succeeded” or “Failed.”

Chapter 8 MLOps and Conclusion

379

Figure 8-13.  Pipeline runs detail page

As illustrated in Figure 8-14, by opening the cs-custom-log, we can see that the list of

the top five MLM models is output to stdout using Python’s print function. Additionally,

the log shows that the data helper is used to pass these results to the next step, which

would logically be the fine-tuning phase (though this step is not implemented in this

particular pipeline example).

Figure 8-14.  Pipeline run logs

Chapter 8 MLOps and Conclusion

380

This concludes the implementation of our example pipeline. We used a simple two-

step pipeline to showcase how Oracle Data Science Pipelines can be utilized effectively.

However, it’s important to note that MLOps goes beyond this basic example. It’s not just

about getting models into production; it’s about ensuring they remain performant and

reliable over time.

By leveraging OCI Data Science Pipelines, you can automate and streamline much

more complex workflows—from data preparation to model deployment, as well as

ongoing maintenance and monitoring. While our example was simple, it serves as a

foundation for building more sophisticated pipelines that can handle the full end-to-end

machine learning life cycle, making it easier to experiment, deploy, and maintain models

in a scalable and efficient manner.

�Journey Through NLP: From Theory to Practice
As we conclude our exploration of NLP on Oracle Cloud Infrastructure, let’s reflect

on the path we’ve traveled. This journey, guided by the fictional yet expertly crafted

narrative of John Doe and MedTALN Inc., has taken us from the foundational concepts

of NLP to the intricacies of implementing advanced solutions on OCI. In this section,

we’ll revisit the key learnings from each chapter, examine the power of our case study

approach, and distill the essential takeaways that will serve as pillars for your future NLP

endeavors.

�Healthcare NER Model Life Cycle Summary
This section provides an overview of the key stages involved in building our Named

Entity Recognition (NER) model.

�Data Preparation

In our journey to build the Healthcare NER model, preparing the right dataset was a

critical step. This wasn’t just about finding any dataset but about carefully curating,

refining, and enhancing data that aligned perfectly with the goals of our case study.

From defining the problem to finalizing the training data, each stage played a key role in

ensuring the success of the model.

Chapter 8 MLOps and Conclusion

381

We began with a clear problem definition. The task was to train a Healthcare NER

model that could identify medical entities like conditions, medications, and symptoms.

To achieve this, we adopted a transfer learning approach, leveraging a pretrained model

and adapting it to our specific task. Defining the problem in this way ensured that all

subsequent decisions, particularly around dataset selection, aligned with the overall

objective.

Next came the challenge of dataset selection. While there are many prelabeled

datasets available, choosing the right one for our project required careful consideration.

We needed a dataset that was not only labeled for Named Entity Recognition (NER)

but also focused on the medical domain and contained a significant number of French

examples. After evaluating several options, we selected the TypicaAI/MedicalNER_Fr

dataset from Hugging Face, which met all our criteria. This choice gave us a solid

foundation, allowing us to focus on adapting and refining the data rather than starting

from scratch.

With the dataset selected, we moved on to dataset collection. We stored the

chosen dataset in our Labeling Datasets Buckets, a step that ensured easy access for

further processing. This organization made it simple for the next stages of preparation,

particularly as we moved toward enriching and refining the data for our specific

use case.

Dataset wrangling was where the real transformation began. This step involved

cleaning and refining the dataset to make it more relevant to our case study. First, we

removed irrelevant examples—entries that did not contain any medical entities of

interest. It was important to ensure that the dataset was focused on the right kinds of

data for training. We also took care to balance the labeled entities, ensuring that no

particular type of entity was over- or underrepresented. Following the cleaning, we

transformed the dataset into a format compatible with OCI Data Labeling. This step was

crucial to ensure that the data was ready for the labeling phase.

The dataset labeling phase was a manual yet essential part of the process. Even

though the dataset we selected was prelabeled, it needed further refinement. Our

labeling team worked to enrich the dataset by manually identifying and labeling any

missing medical entities. This step ensured that the dataset was not only complete but

also tailored specifically to the needs of our Healthcare NER model. The labeling process

was carefully reviewed to ensure consistency and accuracy, as these qualities directly

impact the performance of the final model.

Chapter 8 MLOps and Conclusion

382

Finally, we arrived at dataset creation. Once labeling was complete, the final dataset

was exported from OCI Data Labeling and stored in the Training Datasets Bucket.

Here’s a more concise version of the takeaways, with related points grouped

together:

Takeaways:

•	 Clear Problem Definition and Dataset Selection: A well-defined

problem and clear selection criteria are essential to guide the dataset

preparation process. Establishing task-, domain-, and language-

specific requirements ensures that the dataset is aligned with the

project’s goals. In our case, selecting the TypicaAI/MedicalNER_Fr

dataset was key to creating a relevant, cost-effective training dataset.

•	 Leveraging Community Resources and Specialized Data: Using

community-curated datasets, such as those from Hugging Face,

accelerates the process while minimizing costs. This is particularly

valuable in niche domains or non-English languages where data is

scarce, helping to overcome the challenges of finding specialized

annotators.

•	 Data Enrichment and Labeling Quality: Even with prelabeled

datasets, manual data enrichment is often necessary to meet project-

specific needs. Ensuring consistency and quality in labeling is critical

for building a robust training dataset that will drive high model

performance.

Lessons Learned:

•	 Data Quality Directly Impacts Model Performance: Poor-quality or

irrelevant data leads to suboptimal model performance. Cleaning

the dataset to remove irrelevant examples and ensuring a balance of

labeled entities is essential for successful training.

•	 The Need for Automation and Tools: Automating the dataset

preparation steps—especially collection, cleaning, and

transformation—using tools like OCI Data Labeling APIs and Python

code reduces manual work and increases efficiency. Automation also

allows for easier scaling in larger projects.

Chapter 8 MLOps and Conclusion

383

•	 Specialized Data for Domain-Specific Projects: In domain-specific

projects like healthcare, finding the right data can be challenging,

particularly for non-English languages. Specialized annotators may

be necessary, and securing them can be time-consuming and costly.

By using community-curated datasets, we can offset some of these

challenges.

�Model Training and Evaluation

The training and evaluation phases are the heart of our journey in developing a robust

Healthcare Named Entity Recognition (NER) model tailored for the French language.

These steps are crucial, as they ultimately determine how well our model performs in

recognizing and understanding medical entities within French texts. Throughout this

phase, we leveraged the powerful tools available within OCI Data Science, ensuring a

methodical and efficient process from start to finish.

Our journey began with a clear understanding of the problem we were aiming to

solve. In this case study, the challenge was to create an effective NER model that could

handle the complexities of medical terminology in French. This clarity was essential

because it guided us in selecting the right pretrained language models to build upon. We

knew that starting with a solid foundation was critical, so we turned to the Hugging Face

Hub, which offers a wide array of pretrained Masked Language Models (MLMs). Our

goal was to find models that not only supported the French language but also had the

potential to perform well in the healthcare context.

To make our selection process systematic, we utilized a dedicated notebook

designed to guide us through evaluating potential models. This notebook served as a

central hub where we conducted experiments, recorded results, and ultimately made

informed decisions. We compiled a list of candidate models, considering factors like

language support, relevance to the healthcare domain, and model architecture. These

models were then evaluated and ranked based on their ability to accurately identify

medical entities in French text. This evaluation was critical, as it allowed us to narrow

down our choices to the model most likely to succeed in our specific task.

With our pretrained model selected, we moved on to preparing our training

data. This step involved converting CoNLL files into a format optimized for training

Transformer models, specifically tailored for our NER task. We created splits for the

dataset, dividing it into training, validation, and test sets. This preparation was crucial

Chapter 8 MLOps and Conclusion

384

to ensure that our model could learn effectively and generalize well to new, unseen

data. Once the dataset was ready, we saved it for future use, ensuring that our work was

preserved and could be easily accessed during the training and evaluation processes.

Loading the training dataset into the environment was the next step, followed by

initializing the various components necessary for training. This included setting up the

model, optimizer, and learning rate scheduler, all of which play a vital role in ensuring

the training process runs smoothly. With everything in place, we began the actual

training. This phase involved iteratively updating the model’s weights based on the

training data, gradually improving its ability to recognize entities in French healthcare

texts. Throughout this process, we closely monitored the training and evaluation losses.

Keeping an eye on these metrics was essential for gauging the model’s progress and

identifying any potential issues, such as overfitting or underfitting, which could hinder

the model’s performance.

After the training phase, our attention turned to evaluation. We needed to ensure

that our model wasn’t just performing well on the training data but could also handle

new, unseen examples with the same level of accuracy. To achieve this, we used an

evaluation notebook to assess the model’s performance on both validation and test

datasets. This step provided us with key insights into the model’s capabilities, allowing

us to fine-tune hyperparameters and make any necessary adjustments.

Once we identified the best-performing model, we saved it for deployment. However,

before moving forward, we conducted additional testing on a separate test set to

confirm the model’s reliability. This final step was crucial, as it ensured that the model

was not only accurate but also robust enough to be deployed in real-world healthcare

applications.

Looking back, the training and evaluation phases were integral to shaping the

effectiveness of our Healthcare NER model. By carefully selecting a pretrained model,

fine-tuning it with relevant data, and rigorously evaluating its performance, we laid

a strong foundation for the model’s success. The key takeaway from this phase is the

importance of a thoughtful, methodical approach to training. Each decision, from

model selection to hyperparameter tuning, plays a significant role in the model’s final

performance. As we move forward to deploy this model, we do so with confidence,

knowing that we have built something precise, reliable, and ready to make a meaningful

impact in the field of healthcare.

Chapter 8 MLOps and Conclusion

385

Here are the takeaways and lessons learned from the training and evaluation phase:

•	 Importance of Clear Problem Definition: Starting with a well-defined

problem was essential in guiding the selection of appropriate pretrained

models. Understanding the specific challenges of recognizing medical

entities in French set the direction for the entire process.

•	 Systematic Model Selection: Using a structured approach to evaluate

and rank pretrained models ensured that the chosen model was

well-suited for our task. This systematic evaluation saved time and

increased the likelihood of success.

•	 Preparation of High-Quality Data: Converting and splitting the

dataset into training, validation, and test sets was crucial for effective

model training. Proper data preparation is foundational to achieving

good model performance.

•	 Continuous Monitoring of Training Progress: Regularly tracking

training and evaluation losses helped in identifying and addressing

potential issues early, such as overfitting or underfitting.

•	 Rigorous Evaluation: The thorough evaluation process, including

testing on unseen data, ensured that the model was not only accurate

but also generalizable and robust enough for real-world applications.

•	 Model Fine-Tuning and Hyperparameter Optimization: Fine-tuning

the model and optimizing hyperparameters were key to improving

the model’s performance, particularly in handling the nuances of the

French language in a healthcare context.

•	 Final Validation and Testing: Conducting final tests on a separate test

set provided confidence in the model’s reliability, confirming that it

was ready for deployment.

Lessons Learned:

•	 Thoughtful Selection of Pretrained Models is Critical: Not all

pretrained models are created equal, especially when dealing with

specialized domains like healthcare. Choosing the right model

requires careful consideration of domain relevance and language

support.

Chapter 8 MLOps and Conclusion

386

•	 Data Quality Directly Impacts Model Success: The quality and

preparation of the dataset are just as important as the model itself.

Poor data can lead to poor model performance, regardless of the

sophistication of the model.

•	 The Value of a Methodical Approach: Following a systematic,

step-by-step process in training and evaluation leads to better

outcomes. Skipping steps or rushing through the process can result in

suboptimal models that don’t perform well in real-world scenarios.

•	 Adaptability Is Key: Each project has its unique challenges, and

being able to adapt the training and evaluation process to meet those

challenges is vital. Flexibility in approach allows for the fine-tuning of

methods to achieve the best possible results.

•	 Thorough Evaluation Cannot Be Overlooked: It’s easy to focus on

training, but rigorous evaluation is what ultimately determines the

model’s readiness for deployment. Skipping or underestimating this

phase can lead to unexpected failures in production.

These takeaways and lessons underscore the importance of a careful, deliberate

approach to training and evaluating NLP models, especially in specialized fields like

healthcare.

�Model Deployment and Monitoring

Transitioning from a well-trained model to a fully integrated solution within a cloud

environment is a critical step in bringing the benefits of our work to life. For MedTALN

Inc., the challenge was not just to deploy our finely tuned Healthcare NER model but to

ensure it seamlessly fits within the Oracle Cloud Infrastructure (OCI) ecosystem. The

focus here is to deploy the model in a way that maximizes both performance and utility,

making it ready for real-world application.

�Deploy

After rigorous training and evaluation, we arrived at a set of candidate models. The best-

performing model was selected for deployment. Before we could deploy it, the first step

was to save this model in the OCI Model Catalog. The Model Catalog acts as a central

Chapter 8 MLOps and Conclusion

387

repository where the model is safely stored. This not only ensures that the model is easily

shareable among team members for collaboration but also allows us to reload the model

into various working environments whenever needed.

With the model stored securely in the Model Catalog, the next step was to deploy it

as an HTTP endpoint using OCI’s Data Science service. This service handles the complex

operations of deploying the model, transforming it into a responsive and scalable

HTTP endpoint. OCI takes care of all the underlying infrastructure, including compute

provisioning and load balancing, which ensures that the model is always ready to handle

incoming requests efficiently. Although deploying models as serverless functions is an

alternative within OCI, for our case study, we focused on the traditional HTTP endpoint

deployment method.

Deployment involves provisioning several key OCI resources. Given MedTALN Inc.’s

expertise with OCI, we had an advantage in managing and fine-tuning these resources

to ensure that the solution could handle the expected real-world data volumes. The

essential resources provisioned included

•	 Load Balancer: This component distributes incoming traffic across

multiple model servers hosted on virtual machines, ensuring that no

single server becomes a bottleneck.

•	 Virtual Machine Pool: Each virtual machine in the pool hosts an

identical copy of the model server, along with a dedicated conda

environment. For our project, we used the “Natural Language

Processing for CPU on Python” conda environment, which includes

key deep learning libraries like Hugging Face and PyTorch.

Once the model was deployed and the endpoint was set up, it was ready to handle

incoming requests. Using this model involves sending text data to its “predict” endpoint,

which then returns predictions. In our case study, these predictions are focused on

identifying healthcare entities within French texts, and our primary goal was to ensure

the model could perform this task with high accuracy.

For the deployment phase, we followed a series of concrete steps:

	 1.	 Model Storage: We deposited the trained NER model into the OCI

Model Catalog.

	 2.	 Deployment via OCI Data Science Service: We deployed the model

as an HTTP endpoint, making necessary adjustments to the load

balancer and VM pool to meet our deployment requirements.

Chapter 8 MLOps and Conclusion

388

	 3.	 Model Invocation: We tested the deployed model by sending

sample French texts to its predict endpoint and assessed its ability

to accurately recognize named entities.

Deploying and invoking an NLP model is about more than just making it

operational; it’s about ensuring that the model consistently delivers reliable results in

real-world applications. OCI’s robust infrastructure provided the perfect platform for our

Healthcare NER model, enabling real-time entity recognition for French texts. Even with

MedTALN Inc.’s existing OCI expertise, the insights from our external NLP consultant

were invaluable during this phase, helping us fine-tune and optimize the deployment for

the best possible performance.

As we move forward, monitoring and maintaining the deployed model will be

crucial to ensure it continues to operate at peak performance. This next phase will focus

on setting up logging, tracking metrics, and implementing strategies to maintain the

model’s accuracy and efficiency over time.

Here are the takeaways and lessons learned from the model deployment phase:

•	 Importance of Choosing the Right Compute Shape: For many NLP

tasks, modern CPUs can provide sufficient performance at a lower

cost. Using flexible shapes for model deployment allows you to

customize the number of OCPUs and the amount of memory when

launching or resizing the model deployment virtual machine (VM).

•	 Optimizing Resource Usage: Regularly review and adjust the size of your

compute instances. Ensure you’re using the most cost-effective instance

types that meet your performance requirements. Deactivate the OCI

Data Science Model Deployments when not in use to pause billing.

Lessons Learned:

•	 Oracle ADS HuggingFacePipelineModel Class: Leveraging this class

was key to accelerate the development of our automated deployment

process. This class is specifically designed to simplify the deployment

of Hugging Face models, such as our fine-tuned Healthcare NER

model, on Oracle Cloud Infrastructure (OCI).

•	 Fine-Tuning Deployment Settings: Adjusting settings for load

balancers and virtual machine pools maybe necessary to tailor the

deployment to a specific needs.

Chapter 8 MLOps and Conclusion

389

�Monitor

After deploying our Healthcare NER model, the next crucial step is to ensure it continues

to perform at its best through effective monitoring and maintenance. This phase is all

about keeping a close eye on how the model operates in real-world conditions, ensuring

that it remains reliable and responsive, and making any necessary adjustments to

maintain its accuracy and efficiency.

Monitoring is a cornerstone of the MLOps approach, which emphasizes a

disciplined, standardized, and automated method for managing the entire machine

learning life cycle. In this context, monitoring goes beyond just keeping the model

running; it involves actively overseeing various job performance metrics, setting up

alarms, and maintaining a comprehensive log repository. These practices help us

understand how the system behaves under different conditions and allow us to react

promptly to any changes that could affect performance.

For MedTALN Inc., monitoring infrastructure utilization is key. By observing metrics

like CPU usage during peak NLP activities, the team can scale resources up or down

as needed, ensuring the model can handle varying data loads without any hitches.

Logging plays a crucial role in this process, providing detailed records of events that

can be analyzed later to optimize processes and troubleshoot issues. For instance, by

channeling logs from both training and inference activities into the OCI Logging service,

debugging becomes much more straightforward, and tracking the model’s performance

over time is simplified.

Continuously monitoring an NLP model helps ensure that any deviations in

model predictions—such as those caused by changes in the input data—are detected

early. When these drifts occur, the model can be retrained and redeployed promptly,

minimizing any negative impact on performance. This ongoing management and

optimization are crucial for maintaining the relevance and accuracy of the NER model as

it adapts to evolving data patterns and demands.

To showcase the monitoring capabilities in action, consider a scenario where we

use our testing notebook to send inference calls to the deployed Healthcare NER model.

By doing so, we can observe how the model processes these requests and make sure

it’s performing as expected. For instance, we could send various French medical texts

to the model and analyze its predictions. Monitoring these interactions helps us verify

that the model correctly identifies healthcare entities, such as medications or medical

procedures, ensuring its predictions align with our expectations.

Chapter 8 MLOps and Conclusion

390

The OCI Logging service is indispensable here, capturing all the essential

information about requests sent to the model endpoint. The access log, for example,

records the details of each request, while the predict log captures the output from the

model, such as the results of the “score.py” script. This detailed logging not only helps in

verifying the model’s performance but also aids in identifying any anomalies or issues

that may need attention.

In addition to logging, we can monitor the model’s health, capacity, and

performance using OCI’s built-in metrics. These metrics include CPU utilization,

memory usage, and network throughput, which give us a clear picture of how the model

is performing under different conditions. From the OCI console, we can access the

metric space under the model deployment resources to view these metrics in real time.

This allows us to track request counts, latency, and bandwidth, all of which are critical

for ensuring the model’s responsiveness and efficiency.

If any metric crosses a specified threshold, alarms can be set up to alert the

team, prompting immediate action to prevent potential issues from escalating. This

proactive monitoring ensures that the model remains stable and continues to meet the

performance standards required for real-world healthcare applications.

By effectively monitoring our Healthcare NER model on OCI, we can ensure that it

operates optimally and continues to deliver accurate and reliable predictions. This not

only supports MedTALN Inc.’s objectives in maintaining data protection and compliance

but also ensures that the model remains a valuable tool in the organization’s broader

healthcare analytics efforts.

Takeaways:

•	 Proactive Monitoring: Regular monitoring of the model’s

performance and infrastructure utilization is essential to maintaining

optimal operation and preventing potential issues before they impact

performance.

•	 Comprehensive Logging: Detailed logging is crucial for

troubleshooting, optimizing processes, and ensuring the model

continues to perform as expected in real-world scenarios.

•	 Advanced Metric Tracking: Monitoring key metrics like CPU usage,

memory, and network throughput helps in understanding the

model’s behavior and adjusting resources accordingly.

Chapter 8 MLOps and Conclusion

391

Lessons Learned:

•	 The Importance of MLOps: Implementing MLOps practices, such as

continuous monitoring and maintenance, is critical for sustaining the

long-term success of NLP models in production environments.

•	 The Need for Continuous Optimization: Regular updates and

systematic refinements are necessary to ensure the model remains

accurate and relevant as data evolves.

•	 Continuous Monitoring Is Essential: Postdeployment, continuous

monitoring and maintenance are vital to keep the model performing

at its best, ensuring it adapts to any changes in real-world data.

�Responsible AI
We couldn’t finish this book without addressing an important subject that, while referred

to throughout the chapters from the perspective of cost-saving opportunities and

strategies, has not yet been discussed explicitly. Some may overlook it, but it is a critical

topic that deserves attention: the environmental impact of training and deploying NLP

models, particularly Transformer-based models.

Carbon emissions and their relation to AI in general is an integral part of building

“responsible AI.” While the terms “responsible AI” and “AI ethics” are sometimes used

interchangeably, they address different aspects of ensuring AI’s impact on society is

positive. Responsible AI focuses on the practical implementation of ethical principles,

such as creating transparent, fair, and accountable systems. AI ethics, however, delves

into the moral and philosophical implications of AI’s development and use.

The environmental cost of AI, particularly with models like Transformers, has

garnered significant attention in recent years. Headlines have highlighted that training

a single AI model can produce as much CO2 as five cars do over their lifetime. However,

this is only sometimes true and depends on several key factors. The primary determinant

of a model’s carbon footprint is the type of energy used during training. If renewable

energy sources such as solar, wind, or hydroelectric power are utilized, the carbon

emissions are negligible. In contrast, training on nonrenewable energy sources like coal

significantly increases the carbon footprint due to high greenhouse gas emissions.

Chapter 8 MLOps and Conclusion

392

Another critical factor is the duration of the training process. The longer a model is

trained, the more energy it consumes, directly correlating to higher carbon emissions.

This cumulative effect becomes particularly concerning when training large models

over extended periods—days, weeks, or even months. Furthermore, the hardware used

during training plays an important role. Some GPUs are more energy-efficient than

others, meaning that using high-efficiency GPUs and maximizing their utilization can

substantially reduce energy consumption and, by extension, the carbon footprint.

In addition to energy sources, training time, and hardware efficiency, other aspects

such as I/O operations and data management also contribute to the overall carbon

emissions. However, the three factors mentioned—energy type, training duration, and

hardware efficiency—are the most significant and should be the primary focus when

aiming to minimize the environmental impact of AI development.

Understanding the implications of energy sources and carbon intensity is vital. For

example, the carbon footprint of a cloud computing instance can vary dramatically

depending on its geographic location. For instance in Mumbai, India, may emit 920

grams of CO2 per kilowatt-hour, while in Montreal, Canada, the emissions could be as

low as 20 grams of CO2 per kilowatt-hour. This vast disparity—nearly 40 times more

carbon emissions in Mumbai than in Montreal—can accumulate quickly, especially

during prolonged training sessions. Thus, selecting a computing instance in a low-

carbon region is one of the most impactful decisions you can make to reduce emissions.

Additionally, leveraging pretrained models is akin to recycling in the realm of

machine learning. When you use pretrained models, you avoid the carbon emissions

associated with training from scratch, as no additional training is required. This

approach, combined with fine-tuning existing models rather than training entirely new

ones, can significantly cut down on energy use and emissions. For instance, if you find a

model that nearly meets your needs, fine-tuning its final layers to align with your specific

goals is much more energy-efficient than training a large Transformer model from the

ground up.

Several tools are available to help estimate and track the carbon emissions generated

during AI model development. The “Machine Learning Submissions Calculator” is

one such tool, allowing users to manually input details like hardware specifications,

usage hours, and geographic location to estimate the resulting CO2 emissions. Another

tool, CodeCarbon, offers a programmatic solution. Once installed via pip, CodeCarbon

runs alongside your code, tracking energy usage throughout the training process

and providing a detailed CSV report of the emissions generated. This allows for easy

Chapter 8 MLOps and Conclusion

393

comparisons and a better understanding of the environmental impact. CodeCarbon also

features a visual interface that compares emissions to everyday activities, such as driving

a car or watching television, providing further context to the results.

For our case study, building a performant yet cost-effective NLP model was a priority

due to budget constraints imposed by MedTALN Inc. on this particular NLP initiative.

However, beyond the financial considerations, the strategies we outlined in this book

are economically beneficial and critical for reducing carbon emissions associated with

developing Transformer-based models. As the global demand for AI-powered solutions

continues to rise, so does the environmental impact of training these large-scale models.

Therefore, it is essential to consider the carbon footprint of AI development alongside

cost and performance.

Figure 8-15.  Estimate for our case study CO2 emission2

2 The tool Machine Learning CO2 Impact Calculator can be found at https://mlco2.github.io/
impact/. Since OCI is not included in the list of providers, we chose Azure to be able to select the
Canada East region, which is important in the calculation due to its reliance on clean energy.

Chapter 8 MLOps and Conclusion

https://mlco2.github.io/impact/
https://mlco2.github.io/impact/

394

Throughout the book, we’ve explored approaches like using prelabeled datasets,

using transfer learning where we fine-tune pretrained models rather than training from

scratch, leveraging GPU only for training time, etc. These strategies not only help reduce

costs in terms of computational resources but also have a broader environmental impact

by cutting down on energy consumption and carbon emissions. While cost saving has

been a focus, these same methods contribute to more sustainable NLP practices.

Additionally, Oracle Cloud Infrastructure offers several features that support

responsible AI development and reduced carbon emissions. Notably, 100% of OCI data

centers in Europe run on renewable energy, with a goal to achieve this globally by 2025

(Oracle, n.d.). Additionally, OCI utilizes energy-efficient processors specifically designed

for machine learning tasks and employs optimized cloud infrastructure that allows for

better energy management and location optimization to minimize the carbon footprint.

As show in Figure 8-15, by implementing the cost-saving strategies discussed in this

book, it was possible to build high-performance NLP models that is not only cost-

effective but also environmentally responsible, aligning with both budgetary constraints

and sustainability goals.

�Summary
As we conclude our journey through NLP on Oracle Cloud Infrastructure, let’s take a

moment to reflect on the path we’ve traveled together. Through the fictional yet expertly

crafted narrative of John Doe and MedTALN Inc., we’ve explored the foundations of NLP,

tackled the complexities of real-world implementations, and uncovered the powerful

potential of OCI for advanced NLP solutions. This book has been more than just a guide;

it’s been a practical roadmap, illustrating how the concepts we’ve covered can be applied

in real-world scenarios.

Although centered around the healthcare sector, the lessons learned throughout this

book extend far beyond any single domain. From preparing high-quality datasets to fine-

tuning models and deploying them efficiently, the strategies and best practices we’ve

discussed can be adapted to various industries and languages. The challenges faced in

healthcare NLP—such as data scarcity, language specificity, and domain relevance—are

universal hurdles that NLP practitioners in any field will encounter.

Chapter 8 MLOps and Conclusion

395

The methods we employed are grounded in real-world experiences from actual

projects at typica.ai, and though the MedTALN Inc. narrative is fictional, the solutions

we provided are practical and tested. This book serves as a toolkit for NLP professionals,

offering actionable insights to navigate the intricate processes of dataset preparation,

model training, and deployment with confidence.

Our case study approach has shown how to tackle these challenges effectively,

but we also understand that the journey continues beyond technical implementation.

Critical considerations like cost-effectiveness, environmental impact, and the ethical

dimensions of NLP have come to the forefront of modern machine learning practices. As

we look toward the future, we’ve touched upon emerging trends in NLP and the evolving

landscape of cloud computing, preparing you to stay ahead in this rapidly changing field.

Ultimately, knowledge is only as powerful as its application. Now, as this book comes

to a close, the real challenge begins: how you will apply these insights in your own work.

This final chapter is your launchpad—designed to empower you to take the lessons

learned and bring them into your projects, balancing technical expertise with strategic

business decisions. While our journey together may be ending, your own adventure in

NLP on OCI is just beginning. We hope this book has equipped you with the tools, the

confidence, and the curiosity to continue exploring, innovating, and making a lasting

impact in the world of NLP.

�Reference
Oracle. (n.d.). Oracle Cloud sustainability. Retrieved from Oracle: https://www.oracle.

com/ca-en/sustainability/green-cloud/

Chapter 8 MLOps and Conclusion

https://www.oracle.com/ca-en/sustainability/green-cloud/
https://www.oracle.com/ca-en/sustainability/green-cloud/

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: NLP Essentials
	Introduction to Natural Language Processing
	NLP Tasks
	NLP Key Concepts
	Common Challenges

	Transformers for NLP
	Transformer Architecture
	Transformer Taxonomy
	Transfer Learning
	Hugging Face Ecosystem

	Strategic Considerations for NLP Adoption
	Models
	Data
	Team

	Summary
	References

	Chapter 2: Oracle Cloud for NLP
	Introduction to Oracle Cloud Infrastructure (OCI)
	History
	Core Concepts and Terminology
	Regions and Realms
	Tenancy/Compartment
	Core OCI Resources
	OCI Networking
	OCI Compute
	OCI Storage
	Identity and Access Management (IAM)

	Oracle’s AI Overview
	AI Strategy
	AI Stack
	OCI AI Services
	OCI ML Services
	AI Infrastructure

	OCI for NLP
	OCI Language
	Use Cases

	OCI Data Science
	AI Quick Actions

	OCI Data Labeling
	AI Samples
	High-Level Flow for Building NLP Models Using OCI

	Summary
	References

	Chapter 3: Healthcare NLP Case Study
	MedTALN Inc. Case Study
	Company Background
	Healthcare NLP
	Business Drivers

	Healthcare NER Initiative
	What Is Named Entity Recognition (NER)
	Healthcare NER Benefits
	Use Cases

	Healthcare NER Inception
	Scope and Requirements
	Requirements

	Assembling the Team
	Engaging the NLP Consultant

	Healthcare NER Elaboration
	Architectural Design
	Methodology
	Preselection of Candidate Solution Options
	OCI Language-Based Models Option
	LLMs and OCI Data Science AI Quick Actions
	Fully Custom Healthcare NER Model

	Selection of the Optimal Approach

	Solution Blueprint
	High-Level Architecture
	High-Level Approach
	Project Preparation
	OCI Account
	Defining Roles and Responsibilities

	Summary
	Reference

	Chapter 4: Tenancy Preparation
	Getting Started
	Cost-Saving Strategies

	OCI Tenancy Preparation
	Compartment Creation
	Network Configuration
	Storage
	Identity and Security
	IAM Setup for Data Scientists
	Users and Groups
	Dynamic Groups
	Policies

	IAM Setup for Data Labelers

	Data Science Environment Setup
	Project
	Notebook Sessions
	CPU-Based Notebook Session Setup
	Conda Installation
	Setup Check

	GPU-Based Notebook Session

	Summary

	Chapter 5: Dataset Preparation
	Preliminaries
	Labeled Datasets
	Cost Saving
	Off-the-Shelf Datasets
	Cost Comparative Analysis

	Dataset Life Cycle
	Framing the Problem (Step 1)
	Dataset Selection (Step 2)
	Selecting Datasets on Hugging Face
	Candidate Healthcare NER Dataset

	Training Dataset Preparation
	Dataset Collection and Wrangling (Steps 3 and 4)
	Dataset Preparation Notebook
	Loading
	Wrangling Steps

	Dataset Labeling (Step 5)
	OCI Data Labeling Service (DLS)
	Dataset Import
	Dataset Import Notebook
	Initialization
	Dataset Import

	Dataset Labeling
	Quality Assurance (QA)

	Dataset Creation (Step 6)
	Additional Notes
	Dataset Import Using DLS UI
	Record Count Limit

	Summary
	References

	Chapter 6: Model Fine-Tuning
	Preliminaries
	Language Models (LMs)
	Evolution of LMs
	Neural Language Models (2003)
	Word Embeddings: Word2Vec and GloVe (2013–2014)
	Transformers (2017)
	Pretrained Language Models (2018–2019)
	Large Language Models (LLMs) (2020s)

	Acronyms
	Taxonomy of Pretrained Language Models

	Healthcare-Specific Pretrained Language Models
	Why Domain-Specific Models for Healthcare
	Why Open Pretrained Models

	Cost-Saving Strategies for the Training Phase
	Transfer Learning–Based Fine-Tuning Workflow

	Pretrained Model Selection
	Framing the Problem (Step 1)
	MLM Model Selection from Hugging Face (Step 2)
	Pretrained Model Selection Notebook
	Identify a List of Candidate MLM Models from Hugging Face Hub
	Search MLM Models
	Check the Model Configuration
	Retrieve Mask Tokens

	Evaluate and Rank Models Based on Entity Prediction

	Healthcare NER Model Fine-Tuning
	Training Dataset Creation Notebook
	Declare Helper Functions
	Create HF Dataset from CoNLL File
	Create Splits for the HF Dataset
	Save Dataset

	Training Notebook
	Loading Training Dataset
	Training Initialization
	Set Pretrained Models for Fine-Tuning
	Declare Helper Functions
	Initialize the Training Objects

	Starting the Training
	Analyzing Training and Evaluation Losses
	Visual Analysis
	Automated Checkpoint Selection

	Healthcare NER Model Evaluation
	Evaluation Notebook
	Initialization
	Load the Training Dataset
	Define Helper Functions

	Evaluate
	Load Best Checkpoints
	Evaluate All the Models’ Best Checkpoints
	Select the Best Model

	Save the Best Model
	Test the Best Model
	Prepare the Test Examples
	Load and Use the Best Model
	Generate Predictions

	Summary
	References

	Chapter 7: Model Deployment and Monitoring
	Model Inference Preliminaries
	Understanding Inference vs. Training
	Cost-Saving Strategies for the Inference Phase

	Preparing the Environment
	Setting Up Policies
	Setting Up Logging
	Publish Custom Conda Env.

	Deployment Process
	Oracle Data Science Model Catalog
	Oracle Data Science Model Deployment
	Oracle ADS HuggingFacePipelineModel

	Deployment Process Notebook
	Initializing the ADS Class “HuggingFacePipelineModel”
	Authenticate
	Initialize Hugging Face Pipeline
	Prepare Model Artifact
	Manually Correct score.py
	Run Introspection
	Call Model Summary
	Verify the Generated Model Artifacts

	Save the Model to the Model Catalog
	Create a Model Version Set
	Save the Model

	Deploy and Invoke
	Deploy and Generate Endpoint
	Run Prediction Against Endpoint

	Monitoring and Maintenance
	Logs
	Metrics

	Summary
	References

	Chapter 8: MLOps and Conclusion
	MLOps with OCI Data Science
	OCI Data Science Pipelines
	Pipeline Example
	Pipeline Creation Step-by-Step
	Pipeline Creation Prerequisites
	Create Pipeline Step Artifacts
	Data Science Dynamic Group Rule

	Create Pipeline

	Journey Through NLP: From Theory to Practice
	Healthcare NER Model Life Cycle Summary
	Data Preparation
	Model Training and Evaluation
	Model Deployment and Monitoring
	Deploy
	Monitor

	Responsible AI
	Summary
	Reference

