
M A N N I N G

Brenden Matthews

Code like a Rustacean

Landscape of Rust's patterns, idioms, and conventions

High-level

Low-level

Design patterns

Builder

Iterator
Fluent interface

Newtype

Observer

State machine

Reference object

Patterns Global

state

Struct

tagging

Marker

trait

RAII

Blanket

traits

Passing by

value vs. ref

Constructors
Extension

trait

Error handling

Antipatterns

unsafe

unwrap()

Deref

polymorphism

Too many

clones

Singletons

Language building blocks

Traits
Generics

Closures

Macros

Idioms and conventions

UPPERCASE

for constants and

globals

Preludes

CamelCase

for typessnake_case

for variables

and functions
Pattern

matching

Idiomatic Rust
CODE LIKE A RUSTACEAN

BRENDEN MATTHEWS

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The authors and publisher have made every effort to ensure that the information in this book
was correct at press time. The authors and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical editor: Alain Couniot
PO Box 761 Review editor: Kishor Rit
Shelter Island, NY 11964 Production editor: Kathy Rossland

Copy editor: Keir Simpson
Proofreader: Melody Dolab

Technical proofreader: Jerry Kuch
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633437463
Printed in the United States of America

www.manning.com

 To my best friends, Doge and Walter,
without whom this book would not have been possible.

Thanks to them for their unrelenting optimism and support.

v

brief contents
PART 1 BUILDING BLOCKS...1

1 ■ Rust-y patterns 3

2 ■ Rust’s basic building blocks 10

3 ■ Code flow 34

PART 2 CORE PATTERNS..63

4 ■ Introductory patterns 65

5 ■ Design patterns: Beyond the basics 91

6 ■ Designing a library 128

PART 3 ADVANCED PATTERNS ..149

7 ■ Using traits, generics, and structs for specialized
tasks 151

8 ■ State machines, coroutines, macros, and preludes 169

PART 4 PROBLEM AVOIDANCE..187

9 ■ Immutability 189

10 ■ Antipatterns 205

contents
preface xi
acknowledgments xii
about this book xiv
about the author xviii
about the cover illustration xix

PART 1 BUILDING BLOCKS...1

1 Rust-y patterns 3
1.1 What this book covers 4
1.2 What design patterns are 5
1.3 Why this book is different 8
1.4 Tools you’ll need 9

2 Rust’s basic building blocks 10
2.1 Generics 11

A Turing-complete type system 11 ■ Why generics? 12
Basics of generics 12 ■ Exploring Rust’s Option 15
Marker structs and phantom types 15 ■ Generic parameter
trait bounds 18
vi

CONTENTS vii
2.2 Traits 18
Why traits are not object-oriented programming 19 ■ What’s in a
trait? 19 ■ Understanding traits by examining object-oriented
code 21 ■ Combining generics and traits 24 ■ Deriving traits
automatically 28 ■ Trait objects 29

3 Code flow 34
3.1 A tour of pattern matching 35

Basics of pattern matching 35 ■ Clean matches with the ? operator 40

3.2 Functional Rust 43
Basics of functional programming in Rust 43 ■ Closure variable
capture 45 ■ Examining iterators 46 ■ Obtaining an iterator
with iter(), into_iter(), and iter_mut() 50 ■ Iterator features 58

PART 2 CORE PATTERNS..63

4 Introductory patterns 65
4.1 Resource acquisition is initialization 66

Understanding RAII in C and C++ 66 ■ A tour of RAII in
Rust 70 ■ Summarizing RAII in Rust 72

4.2 Passing arguments by value vs. reference 74
Passing by value 74 ■ Passing by reference 75 ■ When to do
what: Passing by value vs. reference 77

4.3 Constructors 78
4.4 Object-member visibility and access 80
4.5 Error handling 82
4.6 Global state 85

lazy-static.rs 87 ■ once_cell 88 ■ static_init 89
std::cell::OnceCell 89

5 Design patterns: Beyond the basics 91
5.1 Metaprogramming with macros 92

A basic declarative macro in Rust 93 ■ When to use macros 94
Using macros to write mini-DSLs 99 ■ Using macros for DRY 100

5.2 Optional function arguments 103
Examining optional arguments in Python 103 ■ Examining
optional arguments in C++ 104 ■ Optional arguments in Rust
or the lack thereof 104 ■ Emulating optional arguments
with traits 104

CONTENTSviii
5.3 Builder pattern 107
Implementing the builder pattern 107 ■ Enhancing our builder
with traits 109 ■ Enhancing our builder with macros 110

5.4 Fluent interface pattern 113
A fluent builder 114 ■ Test-driving our fluent builder 117

5.5 Observer pattern 117
Why not callbacks? 117 ■ Implementing an observer 118

5.6 Command pattern 121
Defining the command pattern 121 ■ Implementing the command
pattern 121

5.7 Newtype pattern 124

6 Designing a library 128
6.1 Meditate on good library design 129
6.2 Do one thing, do it well, and do it correctly 129
6.3 Avoid excessive abstraction 130
6.4 Stick to basic types 130
6.5 Use the tools 131
6.6 Good artists copy; great artists steal (from the standard

library) 132
6.7 Document everything, and provide examples 132
6.8 Don’t break the user’s code 132
6.9 Think of the state 133

6.10 Consider the aesthetics 134
6.11 Examining Rust library ergonomics 134

Revisiting linked lists 134 ■ Using rustdoc to improve our API
design 135 ■ Improving our linked list with more tests 143
Making our library easier for others to debug 145

PART 3 ADVANCED PATTERNS149

7 Using traits, generics, and structs for specialized tasks 151
7.1 Const generics 152
7.2 Implementing traits for external crate types 154

Wrapper structs 154 ■ Using Deref to unwrap a wrapped
struct 154

CONTENTS ix
7.3 Extension traits 155
7.4 Blanket traits 157
7.5 Marker traits 159
7.6 Struct tagging 161
7.7 Reference objects 163

8 State machines, coroutines, macros, and preludes 169
8.1 Trait state machine 170
8.2 Coroutines 173
8.3 Procedural macros 178
8.4 Preludes 182

PART 4 PROBLEM AVOIDANCE......................................187

9 Immutability 189
9.1 The benefits of immutability 190
9.2 Why immutability is not a magic bullet 192
9.3 How to think about immutable data 192
9.4 Understanding immutability in Rust 193
9.5 Reviewing the basics of immutability in Rust 194
9.6 Using traits to make (almost) anything immutable 197
9.7 Using Cow for immutability 198
9.8 Using crates for immutable data structures 201

Using im 201 ■ Using rpds 202

10 Antipatterns 205
10.1 What is an antipattern? 206
10.2 Using unsafe 207

What does unsafe do? 208 ■ Where can you use unsafe? 209
When should you use unsafe? 211 ■ Should you worry about
unsafe? 211

10.3 Using unwrap() 212
10.4 Not using Vec 212
10.5 Too many clones 216
10.6 Using Deref to emulate polymorphism 217

CONTENTSx
10.7 Global data and singletons 221
10.8 Too many smart pointers 221
10.9 Where to go from here 223

appendix Installing Rust 225

index 229

preface
When I started learning programming in the 1990s, I didn’t have access to the sort of
resources that are easy to find today. I didn’t have proper internet access, and the
World Wide Web was still in its infancy, so I relied primarily on trial and error. The
library at my junior high school was (sadly) not stocked with computer science books.

 It wasn’t until many years later that I had access to learning resources such as
books. At that point, I had already learned quite a bit merely by reading source code,
experimenting, and asking questions on Internet Relay Chat (IRC) and forums. My
teachers were mostly kind strangers on the internet, and I am grateful for their help.

 Luckily, learning programming has never been easier, as innumerable high-quality
resources are available today. In writing this book, I wanted to create something that I
would have found helpful while I was learning programming. I hope that this book
will benefit you and help you become a better programmer or achieve your goals,
much as those kind strangers on the internet did for me so many years ago.
xi

acknowledgments
I want to thank my good friends Javeed Shaikh and Ben Lin for their feedback on the
early drafts of this book and for helping me work through various ideas. I’d also like to
thank Eleanor Seay for her inspiration and support. Ava and Tobias, thank you for
your patience and understanding.

 I thank Manning Publications and its staff for all the support and help they gave
me. Many thanks to development editor Karen Miller, technical proofreader Jerry
Kuch, and all the members of the production team.

 Special thanks to technical editor Alain Couniot. Alain is a long-time IT profes-
sional with a keen interest in innovation and programming languages—in particular,
functional ones. His interests range from embedded systems to distributed enterprise
applications, cloud and high-performance computing to quantum computing. Rust is
currently his favorite language.

 Thanks to all the reviewers—Alessandro Campeis, Andy Stainer, Charles Chan,
David Paccoud, David White, Eder Andrés Ávila Niño, Filip Mechant, Florian Braun,
Geert Van Laethem, George Reilly, Giuseppe Catalano, Guillaume Schmid, John
Guthrie, Jon Christiansen, Lev Veyde, Martin Nowack, Scott Ling, Sergio Britos,
Seung-jin Kim, Stefaan Verscheure, Stephen Wakely, Thomas Lockney, Volker Roth,
Walter Alexander Mata López, William Wheeler, and Yves Dorfsman. Your suggestions
helped make this a better book.

 The patterns presented in this book are derived mainly from other people’s great
work, which I credit where due. In writing this book, I stood on the shoulders of
xii

ACKNOWLEDGMENTS xiii
giants, predominantly random people on the internet who have a passion for writing
great software. I’m grateful and humbled that so many bright people are building
beautiful things and sharing them with the world.

about this book
This book is a collection of design patterns and best practices for the Rust program-
ming language, written to appeal to a broad audience of Rust programmers, from
beginners to advanced developers. Some parts of this book take a theoretical
approach, but most of them focus on practical use. My aim is to help you become a
better Rust programmer by teaching you how to write idiomatic Rust code and use
Rust’s features effectively.

 This book grew out of my other book, Code Like a Pro in Rust (Manning Publica-
tions, 2024), which is a more general guide to practical Rust and may be an excellent
place for beginners to start before reading this book.

 The original working title of this book was Rust Design Patterns, and the inspiration
for it came from the classic Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley Professional, 1994). Although this book doesn’t translate the origi-
nal book’s patterns directly into Rust, it’s a collection of Rust-specific patterns and
practices inspired by the original Design Patterns. It also became clear that the book
was about more than design patterns, so the title was changed to Idiomatic Rust: Code
like a Rustacean to better reflect the book’s content.

How is this book different?
This book isn’t intended to be a comprehensive guide to Rust or a reference manual
for syntax or standard library functions. The patterns and practices presented in this
book are designed to help you write better Rust and give you a deeper understanding
of Rust and how to use it effectively.
xiv

ABOUT THIS BOOK xv
 Much of the discussion in this book focuses on patterns and practices that are not
necessarily described or documented in the official Rust documentation and
resources. However, you’ll still find these patterns in use in many Rust codebases.
Although these patterns are not always unique to Rust, they are presented here in the
context of Rust programming.

Who should read this book?
This book is for Rust programmers at all skill levels, but beginning Rust programmers
may find some of the content challenging. The book is not a beginner’s guide to Rust,
and it assumes that you have some familiarity with the Rust programming language.

 Readers will benefit greatly from being familiar with the classic Design Patterns: Ele-
ments of Reusable Object-Oriented Software, as this book references the original design pat-
terns and practices described in that book.

How this book is organized
This book is organized into four parts, each consisting of chapters that cover a specific
aspect of Rust programming.

 Part 1 is a review of Rust’s core features and building blocks:

 Chapter 1 discusses the content of the book and introduces design patterns.
 Chapter 2 presents the basic building blocks of Rust.
 Chapter 3 reviews pattern matching and functional programming.

Part 2 goes into detail on Rust’s core patterns and library design:

 Chapter 4 introduces core patterns in Rust.
 Chapter 5 presents Rust design patterns.
 Chapter 6 discusses library design.

Part 3 covers more advanced patterns in Rust:

 Chapter 7 discusses advanced techniques and patterns in Rust.
 Chapter 8 builds on the topics in chapter 7.

Part 4 discusses how to avoid problems and build robust software:

 Chapter 9 discusses immutability and how it’s used in Rust.
 Chapter 10 presents several antipatterns and shows how to avoid them.

How to read this book
You can read this book from start to finish or jump around to the chapters that inter-
est you most. Each chapter is designed to be self-contained so that you can read in any
order, but some chapters reference concepts or patterns from earlier chapters. For
less-experienced Rust programmers, reading the book in order may be helpful, as the
patterns build on one another.

ABOUT THIS BOOKxvi
 I recommend reading the book with a computer nearby so you can try the code
samples and experiment with the patterns and practices described in the book. The
best way to learn programming is to do it, so I encourage you to experiment with the
code samples and apply the patterns and practices to your projects. The code samples
are liberally licensed, so you can reuse them in your projects.

 As described in Mortimer J. Adler’s How to Read a Book, (Touchstone, 1974), you
may get the most out of this book by reading it multiple times. The first time, you
might focus on understanding the patterns and practices it presents. In subsequent
readings, focus on applying the patterns and practices to your projects and experi-
menting with the code samples.

About the code
This book contains numerous original code samples. To obtain a copy of the source
code, you can clone the book’s Git repository on your local machine, hosted on
GitHub at https://github.com/brndnmtthws/idiomatic-rust-book. The code samples
presented are often partial, so you’ll need to refer to the source code for the complete
code listings.

 The source code in the book’s text may differ slightly from the code in the book’s
repository due to formatting and other presentation-related considerations, including
line wrapping, indentation, and compilation (intentional errors shown in the book).

 Examples of source code are in both numbered listings and inline with normal
text. In both cases, source code is formatted in a fixed-width font like this to sep-
arate it from ordinary text. Sometimes, code is also in bold to highlight code that has
changed from previous steps in the chapter, such as when a new feature adds to an
existing line of code.

 In many cases, the original source code has been reformatted; line breaks and
reworked indentation have been added to accommodate the available page space in
the book. In rare cases, even this change was not enough, and listings include line-
continuation markers (➥). Additionally, comments in the source code may be
removed from the listings when the code is described in the text. Code annotations
accompany many of the listings, highlighting important concepts.

 Over time, the code samples in the book may become outdated as the Rust lan-
guage and ecosystem evolve. The code in the book’s repository, however, will be
updated to reflect the latest changes. I recommend referring to the book’s repository
for the most up-to-date code samples.

 You can clone a copy of the book’s code locally on your computer by running the
following command in Git:

$ git clone https://github.com/brndnmtthws/idiomatic-rust-book

The book’s code is organized in directories by chapter and section within the reposi-
tory, which is itself organized within each section by topic. The code is licensed under
the Massachusetts Institute of Technology (MIT) license, a permissive license that

https://github.com/brndnmtthws/rust-advanced-techniques-book

ABOUT THIS BOOK xvii
allows you to copy the code samples and use them as you see fit, even as the basis for
your own work.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/idiomatic-rust. The complete code for
the examples in the book is available for download from the Manning website at
https://www.manning.com/books/idiomatic-rust and from GitHub at https://github
.com/brndnmtthws/idiomatic-rust-book.

liveBook discussion forum
Purchase of Idiomatic Rust: Code like a Rustacean includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/idiomatic-rust/discussion. You can also learn more about Manning’s
forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest that you try asking the author some challenging questions lest his interest stray!
The forum and the archives of previous discussions will be accessible on the pub-
lisher’s website as long as the book is in print.

https://livebook.manning.com/book/idiomatic-rust
https://www.manning.com/books/idiomatic-rust
https://github.com/brndnmtthws/idiomatic-rust-book
https://livebook.manning.com/book/idiomatic-rust/discussion
https://livebook.manning.com/book/rust-advanced-techniques/discussion
https://livebook.manning.com/book/idiomatic-rust/discussion
https://livebook.manning.com/discussion
https://github.com/brndnmtthws/idiomatic-rust-book

about the author
BRENDEN MATTHEWS is a software engineer, entrepreneur, and
prolific open source contributor. He has used Rust since the
early days of the language and has contributed to several Rust
tools and open source projects in addition to using Rust profes-
sionally. He’s the author of Conky, a popular system monitor,
and a member of the Apache Software Foundation with more
than 25 years of industry experience. Brenden is also a YouTube
contributor and instructor, as well as a writer of many articles on
Rust and other programming languages. He has given talks at
a number of technology conferences, including Qcon, Linux-

Con, ContainerCon, MesosCon, and All Things Open, as well as at Rust meetups. He
has been a GitHub contributor for more than 13 years, with multiple published Rust
crates. He has contributed to several open source Rust projects and built production-
grade Rust applications professionally.
xviii

about the cover illustration
The figure on the cover of Idiomatic Rust: Code like a Rustacean, titled “L’agent de
change” (“The stockbroker”), is taken from a book by Louis Curmer published in
1841. The illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was by their dress alone. Manning celebrates the inventiveness and initia-
tive of the computer business with book covers based on the rich diversity of regional
culture centuries ago, brought back to life by pictures from collections such as this
one.
xix

Part 1

Building blocks

We’ll begin this book by examining some of the basic building blocks of
Rust design patterns. These building blocks are essential to understanding the
complex patterns we’ll cover later in the book, and they’ll help you write more
idiomatic Rust code. Some of these building blocks are specific to Rust; others
are more general programming concepts that are particularly important in Rust.

 These building blocks are effectively the vocabulary of Idiomatic Rust: Code like
a Rustacean and constitute the core features of the Rust language. We can think
of them as the atoms of a molecule, which we’ll combine in various ways to cre-
ate complex substances (or patterns). Those patterns can be combined and
architected to create an endless variety of software systems.

 Building on a solid foundation allows us to achieve great heights, provided
that we build a solid and sound structure with care and attention. Rust provides
an excellent foundation, but ultimately, we developers are responsible for decid-
ing how to use the tools and components at our disposal effectively.

Rust-y patterns
Reading this book is a great way to advance your Rust skills, whether you’re a begin-
ner, intermediate, or advanced Rust programmer. If you’re a beginner, studying
design patterns is an excellent path to elevate your skills above the basics of the
Rust language, but you may find some parts of this book challenging, so you may
need to study other resources as you go. This book presents a variety of techniques
for writing high-quality Rust code, but we’ll focus on patterns, idioms, and conven-
tions that are widely used and understood by the Rust community.

 Design patterns are powerful abstractions that every programmer can use to
produce high-quality code. Humans are excellent at pattern recognition, and fol-
lowing well-understood and easily recognized patterns helps us solve two tricky
problems: reasoning about whether a design is good or bad (following well-known
patterns helps us avoid creating bad code, for example) and helping other people
understand our code.

This chapter covers
 What this book covers

 What design patterns are

 Why this book is different

 Tools you’ll need
3

4 CHAPTER 1 Rust-y patterns
 Reading code is often more challenging than writing code. When we read some-
one else’s code that follows well-understood patterns, it’s easier to reason about what
the code is doing if we recognize the patterns. If you’ve trained your brain to recog-
nize the most common patterns, judging code quality becomes much more manage-
able, resulting in fewer mistakes. We can take advantage of millions of years of
evolution by teaching our brains which patterns to recognize, short-circuiting the
challenge of judging code quality.

 When it comes to writing code, knowing which patterns to apply in which situa-
tions helps us produce good code in less time. This knowledge is no different from
learning which data structures or algorithms to use in other circumstances and the
trade-offs that come with them.

 You won’t find much dogma in this book. I’ll do my best to present the patterns
along with detailed explanations of why we’re doing what we do. You, as a program-
mer, are free to experiment, diverging from the patterns presented in this book to cre-
ate your own designs. I’ll offer opinionated conventions, however, generally preferring
convention to configuration.

 To use an analogy, I prefer going to a restaurant where the chef offers one or two
items on the menu, preselected as the best items for the season, to scanning a menu
of tens or even hundreds of dishes and trying to figure out which are best. The best
restaurants generally provide a curated experience (you trust the chef’s good taste),
and I hope to do the same with this book.

 Many of the code samples in this book are partial listings, but you can find the full
working code samples on GitHub at https://github.com/brndnmtthws/rust-advanced
-techniques-book. The code is available under the Massachusetts Institute of Technol-
ogy (MIT) license, which permits use, copying, and modifications without restriction.
If you can, I recommend that you follow along with the full code listings to get the
most out of this book. The code samples are organized by chapter within the reposi-
tory; some examples, however, span multiple sections or chapters and are named
based on their subject matter. The code samples in the book may differ slightly from
those in the repository, as the book’s code samples are edited for clarity, brevity, and
suitability for print.

1.1 What this book covers
In this book, I’ll present various idioms, patterns, and design patterns. Some of these
patterns are specific to Rust; others are old ideas presented in a new format within the
framework of Rust’s unique features, grammar, and syntax.

 This book aims to help you understand and apply these patterns to improve your
software design and architecture. Learning and using these patterns allows you to
write more efficient, maintainable, scalable code. Throughout the book, I’ll explain
each pattern, including why it is important and how it can be applied in real-world
scenarios. I’ll also discuss the tradeoffs and considerations involved in using each
pattern.

https://github.com/brndnmtthws/rust-advanced-techniques-book
https://github.com/brndnmtthws/rust-advanced-techniques-book
https://github.com/brndnmtthws/rust-advanced-techniques-book

51.2 What design patterns are
 It’s worth noting that you should not follow design patterns blindly. Patterns are
tools that you can adapt and modify to suit your specific needs. As a programmer, you
have the freedom to experiment and diverge from the patterns presented in this book
to create your own unique designs. By the end of this book, you’ll have a solid under-
standing of various idioms, patterns, and design patterns in Rust, and you’ll be
equipped with the knowledge and skills to apply them effectively in your own projects.

 Many of the design patterns discussed in the Gang of Four’s classic Design Patterns
book relate strictly to object-oriented programming (OOP) in C++. Rust has done an
excellent job of making some of those patterns obsolete by providing better alterna-
tives or including them in its standard library (such as iterators). Although the death
of OOP has been greatly exaggerated, Rust’s abstractions make more intuitive sense
when you grok them.

 OOP often leads to excessive boilerplate code and overly complex patterns. Some-
times, we justify complexity for the sake of complexity in OOP, engaging in mental
gymnastics. Complex systems, however, tend to fail faster and more dramatically than
simple systems and are also more challenging to understand.

 I find Rust’s approach to software design and architecture refreshing, and I hope
you do too. Rust’s language designers threw away much legacy OOP cruft, focusing
instead on what’s needed to build quality software. Rust doesn’t suffer from the cult of
complexity that languages like C++ and Java have fostered.

1.2 What design patterns are
Defining design patterns is a little tricky—often, a case of knowing it when you see it.
The more patterns you learn, the easier it becomes to recognize patterns when you
come upon and reimplement them. Learning the most common design patterns will
allow you to recognize them immediately and implement them quickly. They are
patterns because we often see them repeated in many contexts, and they are design
patterns because they are high-level abstractions that help us design and architect
software sensibly.

 Some properties of design patterns are common to all patterns and not specific to
any particular programming language. These properties are as follows (though this
list may not be exhaustive):

 Design patterns are reusable.
 Design patterns can be applied widely and broadly.
 Design patterns solve problems in a way that makes it easy to reason about how

someone else’s code works.
 Design patterns are well understood by other experienced developers.
 Code that doesn’t follow well-established patterns may fall under the category

of antipatterns.

In terms of that last item, you may think, “But hey—I just invented this great new pat-
tern!” Perhaps you did, but until your pattern becomes widely used and understood,

6 CHAPTER 1 Rust-y patterns
it’s probably not a good idea to expect others to understand or use it. Great design pat-
terns become widely adopted over time and are easy to understand and reason about.

 Design patterns should not be adhered to religiously; they provide a familiar tem-
plate for new software designs while allowing a lot of freedom in terms of implementa-
tion details. A good design pattern applies to a wide range of applications while
imposing minimal constraints on the author. Design patterns evolve as new language
features and paradigms emerge, and the essence of many core patterns has changed
little in the past few decades.

 In this book, I use broad definitions of patterns and design patterns. I refer to tech-
niques, idioms, and conventions that are widely used and understood by the Rust
community as patterns. These patterns can range from big and complex, involving
multiple structures and components, to small and simple, consisting of a single func-
tion or method. On the other hand, I use the term design pattern to encompass widely
applicable patterns that serve as templates for code design and solve common pro-
gramming problems. I use patterns and design patterns interchangeably throughout this
book, but I generally refer to patterns as a subset of design patterns.

I should also take a moment to distinguish patterns from idioms as I define them in this
book. A few definitions of the differences have emerged, but I’ll focus on two key
points: idioms generally relate to the code itself, and patterns generally relate to the
design and architecture of your software. Another way to say the same thing: patterns
are composed of idioms. Some patterns may also be idioms (they prefer iterators to
for loops, for example), but an idiom is not a pattern, as using snake case for variable
names, for example, is not a pattern. Idioms generally relate to syntax and code for-
matting, such as naming conventions, code style, and other low-level details.

 In a hierarchical sense, we can think of idioms as the lowest level of abstraction,
design patterns as the middle level, and the overall architecture as the highest level of
abstraction, as shown in figure 1.1. The architecture of any system is composed of
many smaller units of design patterns, which are in turn composed of many idioms.

What are antipatterns?
Antipatterns are the evil cousins of design patterns. We usually talk about design pat-
terns as being the right way to solve a certain class of problems; therefore, antipat-
terns are the wrong way to solve a certain class of problems. This book doesn’t
discuss antipatterns exhaustively because, for the most part, Rust is designed to
make it relatively hard to construct antipatterns in the first place.

Antipatterns are (in most cases) the wrong tool for the wrong job. You wouldn’t use
a hammer to drive a screw, and you wouldn’t use a screwdriver to hammer a nail.

I’ll discuss antipatterns in chapter 10. But I’ll provide reminders throughout the book
to show when you shouldn’t use specific patterns.

71.2 What design patterns are
We can also think about design patterns and programming languages in the same way
that we think about spoken and written languages. Languages evolve, new words are
created, and old words and phrases go out of style.

 If you try to invent your own words or phrases, however, they may seem like non-
sense to others. The entire point of languages is to communicate ideas easily, be
understood by others, and feel connection to other human beings. In the context of
programming, if you decide to reject the software social norms and march to the beat
of your own drum, that may be fine, but there’s a good chance that other people will
struggle to understand your code and won’t necessarily want to contribute or work
with it. In some cases, that tradeoff is acceptable, but software is often used in social
contexts involving customers, users, managers, peers, and so on. No one is an island.

 You can’t go far in writing about design patterns without mentioning the Gang of
Four’s Design Patterns, well known among programmers as being the original or canon-
ical textbook on design patterns. That book—the full title of which is Design Patterns:
Elements of Reusable Object-Oriented Software—was written by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides and published by Addison-Wesley Profes-
sional in 1994; it includes examples written in C++ and Smalltalk.

 Some patterns presented in that book have since been added to many program-
ming languages as core features. Perhaps the best examples are iterators, which are
part of nearly every programming language and core library because of how useful
the iterator pattern is, how well it solves the problem of iterating over elements in a
data structure, and how well-understood it is. Implementing iterators from scratch
to learn how they work is still fun, but you can use the built-in equivalents in most
languages.

 Design patterns fit into what I call the three pillars of good software design: algo-
rithms, data structures, and design patterns (figure 1.2). You, as an author of software,
need to understand each of these pillars and apply them effectively. Learning design
patterns alone is not enough; you also need a good knowledge of algorithms and data
structures to build good software.

 To summarize, design patterns are high-level abstractions above the core grammar
and syntax of a programming language that allow us to communicate ideas effectively
and produce high-quality code. Good communication is the responsibility of the person

Architecture

Design patterns

Idioms

Figure 1.1 Hierarchy of idioms,
patterns, and architecture

8 CHAPTER 1 Rust-y patterns
who delivers the message, not the person who receives it, but it certainly helps if the
receiver speaks the same language.

1.3 Why this book is different
Since the Gang of Four’s Design Patterns was published, many more books on design
patterns have appeared, and in that sense, this book is no different from those later
books. In this book, however, I present some ideas that are specific to Rust. As Rust
continues to grow in popularity and proliferation, it’s essential to catalog, document,
and describe the patterns we use with Rust.

 Unlike the Gang of Four’s book, this book is not a catalog of design patterns but a
discussion and exploration of patterns, examples, and implementations of specific
patterns. I don’t want to catalog and classify patterns for two reasons: patterns aren’t
merely templates or boilerplate, and copying and pasting a pattern will get you only
about 10% (or less) of the way toward complete code. This book is for readers who
have an appetite for knowledge and personal growth.

 To use another food analogy, a particular dish (such as lasagna) could be a design
pattern; it’s part of a considerable dining experience involving multiple courses,
drinks, and impeccable service. The real challenge for the chef is deciding how to
make their version of a dish, where to source the ingredients, and how to bring every-
thing all together and present the food in an appetizing way. (As anyone who’s worked
in restaurants knows, presentation is everything.) Programming is both a science and
an art; it’s a highly creative endeavor that’s more than the lines of code. Mimicry gets
you only so far.

 Rust’s unique language features require a little more thought when it comes to API
design and the act of building high-quality code. In particular, we have to think
harder about how we manage memory and object lifetimes, pass values between con-
texts, avoid race conditions, and ensure that our APIs are ergonomic. Additionally,
Rust is full of greenfield opportunities to create or discover new patterns, which will
certainly evolve after this book is published. Before we can go to Mars, we must build a
rocket that can take us to Mars and also solve the myriad problems that will arise
during the seven-month journey.

A
lg

o
rith

m
s

D
a

ta
 s

tru
c
tu

re
s

D
e

s
ig

n
 p

a
tte

rn
s

Software design

Figure 1.2 The three pillars of
good software design

9Summary
 Rust is a delightful, wonderful language that is unique partly because of how it
evolved—entirely as a community effort. Its abstractions simultaneously unlock new
patterns and make old patterns obsolete. Learning the language’s syntax is one thing,
but to write great Rust code, we need to use the correct patterns in the right places
and use them correctly.

1.4 Tools you’ll need
This book includes a collection of code samples that are freely available under the
MIT license. To obtain a copy of the code, you need an internet-connected computer
with a supported operating system (https://mng.bz/JZpa) and the tools shown in
table 1.1 installed. For details on installing the tools, see the appendix.

Summary
 Good design patterns are reusable, broadly applicable, and capable of solving

common programming problems.
 The hallmarks of a good design pattern are that it becomes widely adopted over

time and is easy to understand and reason about.
 An antipattern is a design pattern that’s poorly understood, underspecified, or

considered harmful.
 This book presents Rust-specific design patterns that take advantage of the

unique features provided by the Rust language and its tooling.
 You need an up-to-date installation of Rust, Git, and a modern compiler such as

GNU’s GCC or LLVM’s Clang.
 To get the most out of this book, follow along with the code samples at https://

github.com/brndnmtthws/idiomatic-rust-book.

Table 1.1 Required tools

Name Description

git The source code for this book is stored in a public repository hosted on GitHub at
https://github.com/brndnmtthws/idiomatic-rust-book.

rustup Rust’s tool for managing Rust components. rustup will manage your installation of
rustc and other Rust components.

gcc or clang You must have a copy of GCC or Clang installed to build certain code samples. Clang
is likely the best choice for most people; thus, it’s referred to by default. When the
clang command is specified, you may freely substitute gcc if you prefer.

https://github.com/brndnmtthws/rust-advanced-techniques-book
https://github.com/brndnmtthws/rust-advanced-techniques-book
https://github.com/brndnmtthws/rust-advanced-techniques-book
https://github.com/brndnmtthws/idiomatic-rust-book
https://mng.bz/JZpa

Rust’s basic
building blocks
In this chapter, I’ll introduce and discuss some of Rust’s most important abstrac-
tions and features, which I call building blocks and which serve as the foundation of
nearly all design patterns in Rust. Reviewing and understanding these building
blocks before diving deeper into other patterns is crucial. For some readers, this
chapter may appear to be a review of language basics; it sets the stage for more
advanced topics, however, so I recommend that you don’t skip it.

 We’ll begin by discussing generics and traits in Rust. They are the core building
blocks of nearly every design pattern in Rust, along with Rust’s pattern matching
and functional features (discussed in chapter 3). These elements constitute the
meat and potatoes of the language.

This chapter covers
 Exploring the core Rust patterns

 Diving into Rust generics

 Exploring traits

 Combining generics and traits

 Deriving traits automatically
10

112.1 Generics
2.1 Generics
After you’ve moved beyond basic syntax, generics are likely the first big topic you’ll
need to learn. Rust’s generics are compile-time, type-safe abstractions that also enhance
metaprogramming; they allow you to use placeholders instead of concrete types in
function and structure definitions. Generics (combined with traits, which we’ll discuss
in section 2.2) permit type-safe programming in a way that doesn’t require explicit
definitions of every possible type.

 Most commonly, we use generics to define structures, functions, and traits that
work with any type. You might have a function that works with integers, floats, or
strings, and you don’t want to write the same function multiple times for each type.
Generics let you write the function once and use it with any type.

 Generics let you build types that are composed of other types without necessarily
needing to know about all possible type combinations or downstream uses. Because
generics are compile-time abstractions, you incur no cost or runtime overhead by
using them. Generics increase complexity at compile time, however.

 Rust’s generics are similar to C++’s templates and Java’s generics, so if you’re com-
ing from those languages, you’ll probably feel at home from the start. In C, macros
are sometimes used as a way to do generic metaprogramming, but C’s macros are not
type-safe like generics in Rust, C++, and Java.

 Some languages bolted on generics as late features, but Rust was (mostly) designed
from the start with generics in mind. As a result, generics fit well within the language,
are used nearly everywhere, and don’t feel kludgy or out of place.

2.1.1 A Turing-complete type system

Rust’s type system is Turing-complete, and with generics, you can write programs that
execute at compile time, which is a neat trick akin to using the compiler as a CPU.
When I say Turing-complete, I mean that Rust’s type system is capable of expressing any
computation that can be computed by a Turing machine—that is, you can compute any-
thing that’s computable. Turing completeness in a type system is important because it
enables you to compute anything at compile time, as opposed to run time, which
unlocks some interesting capabilities.

 One example of using types for computation is a Minsky machine implemented
with Rust’s type system, which you can find at https://github.com/paholg/minsky. A
Minsky machine is a simple register-based counter machine that is computationally
equivalent to a Turing machine, and we can think of a Minsky machine as analogous
to a simple CPU. Thus, if we can build a Minsky machine using Rust’s type system, we
can effectively use Rust’s type system to compute anything that’s computable.

 To get value out of Rust, you don’t need to worry much about the Turing com-
pleteness of its type system, and in practice, you probably won’t need to use the type
system for computation. For most people, the main benefits of a Turing-complete
type system are the safety and performance features it enables.

https://github.com/paholg/minsky

12 CHAPTER 2 Rust’s basic building blocks
2.1.2 Why generics?

In statically typed languages like Rust, the compiler needs to know the type of every-
thing at compile time. Requiring type information at compile time, before execution,
contrasts with dynamically typed languages such as Python and Ruby, which deter-
mine the types at run time. Generics allow you to write code that works with any type
without the developer’s needing to know the type at compile time. Instead, we let the
compiler figure out the types.

 We employ generics to follow the DRY (Don’t Repeat Yourself) principle through-
out our codebase. Writing the same code in many places where the only difference is
the type signature is a recipe for headaches.

 The downside to generics is that they can make code harder to read and write, so
it’s essential to strike a balance between using generics and writing clear, readable
code. The difficulty in using generics stems from the fact that we’re adding layers of
abstraction to our code, particularly abstractions that require additional cognitive
load on behalf of the programmer. Also, the compiler can’t always figure out the
types you want, so you may need to provide hints to tell it what you’re trying to do,
which may make generics seem troublesome and verbose. Most of the time, how-
ever, the additional mental effort required to use generics is worth any perceived
short-term suffering, as generics allow you to build more flexible, reusable, and
robust software.

2.1.3 Basics of generics

Let’s explore the syntax of generics. A basic struct with a single generic field looks
like this:

struct Container<T> {
 value: T,
}

Here, we have a basic container that holds a value of type T, which is defined as a
generic parameter in angle brackets. Generics can be used in structs, enums, func-
tions, impl blocks, and more. You’ll encounter this syntax everywhere in Rust. When
you see the angle brackets (< … >), you know you’re working with generics.

 Creating an instance of a generic struct is relatively easy. Often, the compiler can
infer the type parameter automatically:

let str_container = Container { value: "Thought is free." };
println!("{}", str_container.value);

This code snippet creates a Container<&str> instance called str_container. Run-
ning the code prints Thought is free., as expected.

This container is of type Container<&str>, but we don’t need to
specify the generic type explicitly because the compiler can infer it.

132.1 Generics
 Sometimes, the compiler needs hints to determine the generic type. Suppose we
want to store an Option<String> in our container but initialize it with None. If we try
the code

let ambiguous_container = Container { value: None };

the compiler will fail with the following error:

error[E0282]: type annotations needed for `Container<Option<T>>`
 --> src/main.rs:8:50
 |
8 | let ambiguous_container = Container { value: None };
 | ------------------- ^^ cannot infer type for type parameter
 | `T` declared on the enum `Option`
 | |
 | consider giving `ambiguous_container` the explicit type
 | `Container<Option<T>>`, where the type parameter `T`
 | is specified

Luckily, the compiler tells us exactly what we need to do. We can update our code like
this to let the compiler know that we want to use Option<String>:

let ambiguous_container: Container<Option<String>> =
 Container { value: None };

The only difference is that we’re specifying the target type on the left side of the assign-
ment. The types need to match so that the compiler can infer what we’re looking for.

 Another way to do the same thing is to use the fn new() constructor pattern
(which we’ll revisit in chapter 4), which is often used but not required in Rust:

impl<T> Container<T> {
 fn new(value: T) -> Self {
 Self { value }
 }
}

Then we can call new(). This time, however, we tell the compiler what our desired tar-
get type is on the right side of the assignment by calling the function explicitly with
our target type:

let short_alt_ambiguous_container =
 Container::<Option<String>>::new(None);

I find this form to be a little cleaner and easier to read in many cases. In some
instances, you must use this form of assignment because the assignment is still too

The generic parameter T appears twice—for the impl block and
Container. You can have more complex constructions (such as

placeholders, concrete implementations, and default types), but
this construction is the simplest generic construction.

We’re moving value into the
struct. In other words, no
references, copies, or cloning
are used.

We can use the short form of assignment here because
our local variable value matches the name of value in
the struct. The longer equivalent would be value: value.

14 CHAPTER 2 Rust’s basic building blocks
ambiguous for the compiler to infer the target type. In those cases, the compiler lets
you know you need to disambiguate.

 As mentioned earlier, generic parameters can be added to all structure and func-
tion types in Rust. We can do some neat things with generics, such as constructing
recursive structures with generics. As an example, we can create a structure that holds
an instance of itself, such as a linked list that includes a generic parameter:

#[derive(Clone)]
struct ListItem<T>
where
 T: Clone,
{
 data: Box<T>,
 next: Option<Box<ListItem<T>>>,
}

We can also use this pattern with enums. Consider this enum, which could be used to
construct linked lists (albeit a useless form of them):

enum Recursive<T> {
 Next(Box<Recursive<T>>),
 Boxed(Box<T>),
 Optional(Option<T>),
}

Here, an enum called Recursive can hold a pointer to another Recursive, a boxed T,
or an optional T. This example is fairly useless, but it shows what you can do with
generics.

NOTE I use the linked-list example throughout the book to demonstrate vari-
ous Rust features, and I’ll build up this example along the way. If you aren’t
familiar with linked lists, a singly linked list is a data structure consisting of a
sequence of elements, each containing a reference to the next element, such
as A → B → C → … → Z.

We could apply this pattern to our linked list by using a structure that looks something
like this instead of Option:

enum NextNode<T> {
 Next(Box<ListNode<T>>),
 End,
}

struct ListNode<T> {
 data: Box<T>,
 next: NextNode<T>,
}

Our list node holds a Box of T and an optional next that points to the next node in the
list. This code is nice and succinct. For the sake of clarity, however, it’s probably better
to use Option rather than create an equivalent.

We can implement the Clone
trait automatically by using
the #[derive] attribute.

152.1 Generics
NOTE Implementing linked lists in Rust properly is more complicated than I
show in this chapter. I’ll revisit linked lists later in this book and demonstrate
using Rc and RefCell, which is a better way to construct linked lists. The pre-
ceding example wouldn’t be useful for most practical applications.

2.1.4 Exploring Rust’s Option

Let’s take a look at Rust’s Option, the definition of which is as follows:

pub enum Option<T> {
 None,
 Some(T),
}

Rust’s Option is one of the most delightful examples of generics in practice. Its defini-
tion is simple and elegant, yet it provides an incredibly powerful abstraction.

2.1.5 Marker structs and phantom types

Sometimes, you want to make structures with generic parameters, but you don’t neces-
sarily want to use the generic parameters in the structure itself. This situation calls for
phantom types, which enable you to use generic parameters that aren’t members of
your structure. Phantom types allow the use of patterns such as struct tagging, which
we’ll discuss in chapter 7.

 The following code snippet has a structure that includes a type parameter, but that
type is not used within the structure itself (we have only the type information at com-
pile time):

struct Dog<Breed> {
 name: String,
}

The Dog structure holds a dog’s name. We want to keep track of the breed of the dog,
but we care about those details only at compile time (not run time), so we can effec-
tively store that information as a type parameter and not bother including a breed:
Breed field within the struct. We’ll need to create some types to identify our breeds,
which we’ll do as follows:

struct Labrador {}
struct Retriever {}
struct Poodle {}
struct Dachshund {}

We’re using an empty struct to label each breed. We could use any type, but we’ll use
an empty struct for this example. Trying to compile the code as is, however, yields the
following error:

error[E0392]: parameter `Breed` is never used
 --> src/main.rs:27:12

16 CHAPTER 2 Rust’s basic building blocks
 |
27 | struct Dog<Breed> {
 | ^^^^^ unused parameter
 |
 = help: consider removing `Breed`, referring to it in a field,
 or using a marker such as `PhantomData`
 = help: if you intended `Breed` to be a const parameter,
 use `const Breed: usize` instead

The compiler is unhappy because we added an unused generic parameter to the
struct, which the compiler (rightfully) notes is an error. We can add a phantom field
to let the compiler know that we want the parameter, but we only care about the value
at compile time and thus don’t need to store it in the struct:

use std::marker::PhantomData;

struct Dog<Breed> {
 name: String,
 breed: PhantomData<Breed>,
}

When we construct a Dog, we still need to provide the phantom data, although it will
be optimized out at compile time:

use std::marker::PhantomData;

let my_poodle: Dog<Poodle> = Dog {
 name: "Jeffrey".into(),
 breed: PhantomData,
};

PhantomData is a special kind of marker that you’ll encounter when working with
Rust. Markers are typically used as marker traits, but in this case, PhantomData is a
marker struct. The Rust standard library includes several marker traits; we’ll discuss
marker traits in detail in chapter 7.

 One critical use case for marker structs is to specialize distinct types at compile
time, which can be useful. We can add specialized implementations of Dog for each
distinct breed if we choose to do so. We can return the name of the breed without
storing that value as state or as a separate field within the structure:

impl Dog<Labrador> {
 fn breed_name(&self) -> &str {
 "labrador"
 }
}
impl Dog<Retriever> {
 fn breed_name(&self) -> &str {
 "retriever"
 }
}

impl Dog<Labrador> is a concrete specialization
for Dog with the Labrador breed type. impl
doesn’t require the Breed generic parameter
because it’s a concrete specialization.

We can return the breed name without
storing it as a field in the struct. The
name will be part of the compiled
program’s data segment.

172.1 Generics
impl Dog<Poodle> {
 fn breed_name(&self) -> &str {
 "poodle"
 }
}
impl Dog<Dachshund> {
 fn breed_name(&self) -> &str {
 "dachshund"
 }
}

For each impl block, we’re creating a concrete specialization for Dog with the given
type. We can add as many concrete specializations as we want, and if we’re missing
one, the compiler will let us know. Note that we don’t use impl<T> because it’s not a
generic instantiation; we specialize in a concrete type.

 Now we can call breed_name() on our Dog instance to return the breed name.
Note that in the breed_name() methods, we don’t need to use the 'static lifetime
with our &str reference because the methods take &self. Thus, the compiler can rea-
sonably conclude that the lifetime of the returned string will match &self.

Lifetimes and 'static
Rust’s lifetimes are powerful features that allow you to specify how long a reference
(or a borrow) is valid. References are equivalent to pointers, but unlike pointers as
you may know them from C or C++, you cannot perform arithmetic on references. Life-
times ensure that references are valid for as long as they are used.

The basic idea behind a lifetime parameter (which begins with the single-quote char-
acter) is that it lets you tag a reference with a name that the compiler can use to trace
the reference’s lifetime through its use. Lifetimes look similar to generic parameters,
as they’re also specified in angle brackets, but they’re not the same. The following
structure has a lifetime parameter <'a>:

struct Dog<'a> {
 name: &'a str,
}

In this code, we’re specifying that the name field of the Dog structure contains a ref-
erence to a string with a lifetime of 'a. Specifying the lifetime tells the compiler that
the reference must be valid for at least as long as the Dog structure is valid.

In Rust, 'static is a special lifetime that lasts for the duration of the program. All
string literals have a 'static lifetime, so we don’t necessarily need to specify a life-
time for them. If you’re returning a string literal from a function, you can return it as
a &'static str if you want to specify the lifetime explicitly.

Including the 'static lifetime for a string literal is optional, but including it can be
advantageous if you’re returning a string literal from a function because the lifetime
makes it clear that the string literal will be valid for the duration of the program.

18 CHAPTER 2 Rust’s basic building blocks
Finally, we can test our code as follows:

let my_poodle: Dog<Poodle> = Dog {
 name: "Jeffrey".into(),
 breed: PhantomData,
};
println!(
 "My dog is a {}, named {}",
 my_poodle.breed_name(),
 my_poodle.name,
);

Running this code produces the following output:

My dog is a poodle, named Jeffrey

My poodle Jeffrey is correctly identified as a poodle, and we’ve successfully used a
phantom type to specialize our Dog structure, so it’s unlikely that Jeffrey will have an
identity crisis.

2.1.6 Generic parameter trait bounds

Before we move on to traits in section 2.2, we have to talk briefly about trait bounds.
Trait bounds are a feature of generics that allows you to control which types can be
used with a particular structure or function by specifying which traits must be imple-
mented. Specifically, trait bounds enable us to specify which features must be available
for a given generic type parameter. We can specify multiple trait bounds that apply on a
per-parameter basis. Reexamining the linked-list example introduced in section 2.1.3,
you’ll notice two things about the ListItem struct:

 We’ve derived the Clone trait, which allows us to call clone() on the struct to
copy it.

 We’ve specified that the generic type T must also implement the Clone trait,
with the where T: Clone trait bound.

If we want to require that Clone and Debug be implemented, we use the following code
to specify that both traits are required:

#[derive(Clone)]
struct ListItem<T>
where
 T: Clone + Debug,
{
 data: Box<T>,
 next: Option<Box<ListItem<T>>>,
}

2.2 Traits
After spending some time writing Rust and familiarizing yourself with syntax, borrow-
ing, and lifetimes, you soon realize that traits, together with generics, are the bread

192.2 Traits
and butter of Rust programming. Traits are incredibly powerful abstractions that form
the foundation of much of Rust’s libraries. With that power comes responsibility.
Traits come with two significant downsides: trait pollution and trait duplication. We’ll
discuss how to avoid these problems.

 Traits allow you to define shared functionality for Rust types. Instances of types
(objects) contain state (such as a struct), and traits define functionality on top of that
state in a generic way not tied to any particular type.

 Traits aren’t unique to Rust. They first appeared in a somewhat obscure program-
ming language called Self. Several other languages offer traits, including Scala, Julia,
TypeScript, Kotlin (as interfaces), Haskell (as type classes), and Swift (as protocol
extensions).

 Although traits are often used to manipulate state, they are distinct from their
implementation, which is tied to a particular type. That is, traits themselves are
generic, but their implementations are concrete, although they can be derived auto-
matically with the #[derive] attribute. Libraries can export traits, trait implementa-
tions, or both.

2.2.1 Why traits are not object-oriented programming

Rust is not an object-oriented (OO) programming language, but looking at Rust
code, you may think it looks similar in terms of ergonomics. Rust has objects, and
objects can have methods. An object is an instance of a type, such as a struct or enum,
that represents state. Calling methods on an object uses syntax similar to that of OO
languages (object.method()). Rust, however, is missing one important feature of OO
languages: inheritance.

 Rust’s answer to inheritance is traits. Traits aren’t the same as classes (or class inheri-
tance), but they solve a similar set of problems. In object-oriented programming
(OOP), you extend objects through inheritance. In trait-based programming, you can
add traits on top of any structure or data type, and those traits provide specific features.
Object inheritance defines an is-a relationship, whereas traits define functionality.

 To put it another way, when comparing traits with OOP, traits extend or add
shared features on top of different kinds of state. Traits are different from classes in
that their functionality isn’t coupled to particular types (or state). Although it’s true
that classes in C++ can be made generic with templates, C++’s classes don’t make this
decoupling easy.

2.2.2 What’s in a trait?

Traits comprise a definition and any number of optional implementations. A trait
definition typically includes these components:

 A trait name
 An optional set of methods (with optional default implementations)
 Optional placeholder generic types
 Optional set of required traits

20 CHAPTER 2 Rust’s basic building blocks
At a bare minimum, a trait requires only a name, so the following code snippet consti-
tutes a valid trait definition:

trait MinimalTrait {}

Trait implementations apply the definition of the trait to a specific type. We generally
write concrete trait implementations for distinct types, but Rust’s trait system is flexi-
ble enough that we don’t have to implement a trait for every possible type. Traits may
also use generic data types (discussed in section 2.2.4), which provide another way to
specify complex relationships. Although trait implementations are concrete, you can
also provide blanket implementations of traits that apply to all types that satisfy the
blanket conditions. (We’ll discuss blanket implementations in chapter 7.) Following is
a basic example of a trait with an implementation in Rust:

trait DoesItBark {
 fn it_barks(&self) -> bool;
}

struct Dog;

impl DoesItBark for Dog {
 fn it_barks(&self) -> bool {
 true
 }
}

Trait definitions can be empty, which allows them to be used for metaprogramming,
such as with marker traits. We’ll explore advanced use of traits in chapters 7, 8, and 9.

 With OOP, features are added through inheritance in a hierarchy (class C <- class
B <- class A). With traits, no inheritance structure is imposed; traits can be applied to
any type within your crate. Traits may have dependencies specified as trait bounds
(i.e., trait B requires that trait A be implemented), but traits with bounds can still be
applied to any type that satisfies those bounds.

 In OOP, relationships are defined in terms of the objects themselves. In trait pro-
gramming, relationships are defined in terms of which traits an object implements
rather than which object the behavior is implemented for—a subtle but crucial dis-
tinction.

NOTE I implore you to avoid thinking about traits in terms of OO concepts
such as classes and inheritance, but I have drawn comparisons in this book to
help bridge the gap of understanding for those who come from OO back-
grounds. Trying to map these concepts 1:1 doesn’t make sense in practice;
traits require a different approach. It’s best to free your mind and discard the
gospel of OOP.

The trait definition block

The trait method
signature

The trait implementation
(or impl) block

We can hardcode returning true
because dogs do indeed bark.

212.2 Traits
2.2.3 Understanding traits by examining object-oriented code

Traits provide a lot more flexibility than inheritance, which requires a bottom-up rela-
tionship. (That is, with inheritance, you define shared behavior at lower levels of the
hierarchy.) First, consider a sample in C++ that uses an is-a relationship; then we’ll
examine how to do the same thing in Rust. We’ll start by implementing the relation-
ship shown in figure 2.1.

The corresponding C++ code for the UML in figure 2.1 is shown in the following listing.

class Rectangle {
 protected:
 int width;
 int height;

 public:
 Rectangle(int width, int height) : width(width), height(height) {}
 int get_area() { return width * height; }
 int get_width() { return width; }
 int get_height() { return height; }
};

class Square : public Rectangle {
 public:
 Square(int length) : Rectangle(length, length) {}
 int get_length() { return width; }
};

Writing equivalent code in Rust isn’t entirely straightforward; a direct translation to
Rust would be awkward. Instead, we’ll structure things differently in the Rust version.
First, let’s examine a listing that models a rectangle.

struct Rectangle {
 width: i32,
 height: i32,
}

Listing 2.1 Modeling geometric shapes in C++

Listing 2.2 Implementing a rectangle in Rust

Rectangle

-Integer width

-Integer height

+get_area()

+get_width()

+get_height()

Square

+get_length()

Figure 2.1 Unified Modeling Language
(UML) diagram for C++ geometric shapes

Models a simple
rectangle with a
width and height

Models a square, which is merely a rectangle
whose width and height are equal. Thus,
we can inherit from Rectangle.

Models a simple
rectangle, which is
merely width and height

22 CHAPTER 2 Rust’s basic building blocks
impl Rectangle {
 pub fn new(width: i32, height: i32) -> Self {
 Self { width, height }
 }
}

Next, we’ll model a square.

struct Square {
 length: i32,
}

impl Square {
 pub fn new(length: i32) -> Self {
 Self { length }
 }
 pub fn get_length(&self) -> i32 {
 self.length
 }
}

Now we can create a Rectangular trait.

pub trait Rectangular {
 fn get_width(&self) -> i32;
 fn get_height(&self) -> i32;
 fn get_area(&self) -> i32;
}

impl Rectangular for Rectangle {
 fn get_width(&self) -> i32 {
 self.width
 }
 fn get_height(&self) -> i32 {
 self.height
 }
 fn get_area(&self) -> i32 {
 self.width * self.height
 }
}

impl Rectangular for Square {
 fn get_width(&self) -> i32 {
 self.length
 }
 fn get_height(&self) -> i32 {
 self.length
 }

Listing 2.3 Implementing a square in Rust

Listing 2.4 Implementing the Rectangular trait

Here, we provide a constructor-like new()
method, which returns a new Rectangle. Creating
new() constructors is a common pattern in Rust.

Modeling a square is
even simpler; we use
only one attribute.

Provides a constructor
following the new() pattern

Adds an accessor to fetch the
square’s length if we know
that we have a square

Here, we define a Rectangular, which
provides accessors to properties
common to rectangles and squares.

Implements the
Rectangular trait
for Rectangle

Implements the
Rectangular trait
for Square

232.2 Traits
 fn get_area(&self) -> i32 {
 self.length * self.length
 }
}

Figure 2.2 shows the result rendered in UML.

Last, let’s test our code.

fn main() {
 let rect = Rectangle::new(2, 3);
 let square = Square::new(5);

 println!(
 "rect has width {}, height {}, and area {}",
 rect.get_width(),
 rect.get_height(),
 rect.get_area()
);
 println!(
 "square has length {} and area {}",
 square.get_length(),
 square.get_area()
);
}

The Rust version seems a bit lengthy at first. We have to implement the Rectangular
trait twice in a way that appears to violate DRY. But we’ve done something fundamental:

Listing 2.5 Testing our Rectangular trait

«trait»

Rectangular

+get_area()

+get_width()

+get_height()

Rectangle

+get_area()

+get_width()

+get_height()

Square

+get_length()

+get_area()

+get_width()

+get_height() Figure 2.2 UML for Rust
geometric shapes

24 CHAPTER 2 Rust’s basic building blocks
separated the state (in this case, the dimensions) from the functionality of providing
width, height, area, and so on. As complexity grows, this separation of concerns
scales much better. Running the code in listing 2.5 produces the following output,
as expected:

$ cargo run
rect has width 2, height 3, and area 6
square has length 5 and area 25

The utility of traits becomes apparent when you consider the complexity of modifying
existing code. In section 2.2.4, we’ll explore another example, but we’ll approach the
problem in a Rustaceous way.

2.2.4 Combining generics and traits

Suppose that we want to create a function that accepts any type and returns a descrip-
tion of the type. We can write a function that accepts a generic parameter T and
returns a description for that type. We can assume that these types are defined else-
where, such as Dog and Cat. We must write the descriptions ourselves because the
compiler can’t figure them out. To accomplish this task, we’d use a function definition
something like this:

fn describe_type<T>(t: &T) -> String { ... }

Next, we have to ask ourselves how we get the description of T. The answer is simple:
we need a trait that provides the description. The result looks something like

pub trait SelfDescribing {
 fn describe(&self) -> String;
}

Great. Now we have a trait that gives us the description of a type. How do we make our
function use that trait? If we try this code, it won’t work:

fn describe_type<T>(t: &T) -> String {
 t.describe()
}

The compiler gives us the following error:

error[E0599]: no method named `describe` found for reference `&T` in
the current scope
 --> src/main.rs:6:7
 |
6 | t.describe()
 | ^^^^^^^^ method not found in `&T`
 |
 = help: items from traits can only be used if the type parameter is
 bounded by the trait
help: the following trait defines an item `describe`, perhaps you need to

252.2 Traits
restrict type parameter `T` with it:
 |
5 | fn describe_type<T: SelfDescribing>(t: &T) -> String {
 | ~~~~~~~~~~~~~~~~~

For more information about this error, try `rustc --explain E0599`.

That’s neat! The compiler tells us exactly what to do. We need to instruct the compiler
that we want to use the describe() method from the SelfDescribing trait, which we
do by creating a trait bound. Trait bounds let the compiler know that a given type
must provide an implementation of a particular trait. You’ll see trait bounds fre-
quently in Rust; they’re often used with generics.

 Note that we have two ways to specify the trait bound: inline (as in the compiler
error output) or in the explicit where clause, which follows the function definition.
Here’s what the inline form looks like:

fn describe_type<T: SelfDescribing>(t: &T) -> String {
 t.describe()
}

Although the inline form is short and sweet, I prefer the where form when the bounds
are complex, as it’s a bit easier to read as a developer:

fn describe_type<T>(t: &T) -> String
where
 T: SelfDescribing,
{
 t.describe()
}

Now our code compiles. Let’s create some code to test it:

struct Dog;
struct Cat;

fn main() {
 let dog = Dog;
 let cat = Cat;
 println!("I am a {}", describe_type(&dog));
 println!("I am a {}", describe_type(&cat));
}

Trying to compile this code produces an error because it’s missing an implementa-
tion:

error[E0277]: the trait bound `Dog: SelfDescribing` is not satisfied
 --> src/main.rs:15:41
 |
15 | println!("I am a {}", describe_type(&dog));
 | ------------- ^^^^ the trait `SelfDescribing`

26 CHAPTER 2 Rust’s basic building blocks
 is not implemented for `Dog`
 | |
 | required by a bound introduced by this call
 |
note: required by a bound in `describe_type`
 --> src/main.rs:5:21
 |
5 | fn describe_type<T: SelfDescribing>(t: &T) -> String {
 | ^^^^^^^^^^^^^^ required by this bound in
 `describe_type`

error[E0277]: the trait bound `Cat: SelfDescribing` is not satisfied
 --> src/main.rs:16:41
 |
16 | println!("I am a {}", describe_type(&cat));
 | ------------- ^^^^ the trait `SelfDescribing`
 is not implemented for `Cat`
 | |
 | required by a bound introduced by this call
 |
note: required by a bound in `describe_type`
 --> src/main.rs:5:21
 |
5 | fn describe_type<T: SelfDescribing>(t: &T) -> String {
 | ^^^^^^^^^^^^^^ required by this bound in
 `describe_type`

For more information about this error, try `rustc --explain E0277`.

Again, the compiler tells us precisely what we’re missing. (We have to implement
SelfDescribing for Dog and Cat.) Let’s add the implementations:

impl SelfDescribing for Dog {
 fn describe(&self) -> String {
 "happy little dog".into()
 }
}

impl SelfDescribing for Cat {
 fn describe(&self) -> String {
 "curious cat".into()
 }
}

Now running our code prints the following:

$ cargo run
I am a happy little dog
I am a curious cat

One thing to note about the code is that it requires an instance of a type in our trait
with the &self parameter on fn describe(&self). Can we do this without requiring
an instance of a type? Let’s try. We’ll modify our trait like so:

272.2 Traits
pub trait SelfDescribing {
 fn describe() -> String;
}

Here, we’ve dropped &self from the describe() method. Now we’ll have to update
our describe_type() function

fn describe_type<T: SelfDescribing>() -> String {
 T::describe()
}

and the implementations (by dropping the &self parameter):

impl SelfDescribing for Dog {
 fn describe() -> String {
 "happy little dog".into()
 }
}

impl SelfDescribing for Cat {
 fn describe() -> String {
 "curious cat".into()
 }
}

Last, we change the call to describe_type():

fn main() {
 println!("I am a {}", describe_type::<Dog>());
 println!("I am a {}", describe_type::<Cat>());
}

Both forms are valid but serve different use cases. If we require &self in the method
call, we must have an instance of a type to describe it, whereas if we omit the &self
parameter, we can describe a type without having an object instance.

 When you have a basic handle on traits, you can start to apply them to a variety
of problems. The most common use of traits is to allow generic functionality—shared
behavior across types. This use case, however, is the tip of the iceberg, as you can build
on traits to create fairly elaborate compile-time patterns, discussed in chapters 7, 8,
and 9.

 Traits are fun, but they need to be used appropriately. My two biggest problems
with traits are trait pollution and trait duplication. Trait pollution occurs when you have
too many traits. Trait duplication occurs when multiple traits provide the same (or sim-
ilar) functionality. Common programming patterns probably have an existing trait,
and whenever possible, it’s best to reuse or build atop existing traits. Third-party
libraries often define their own traits and sometimes even competing traits, and you
can spend a lot of time writing glue code to bridge your code, one library’s traits, and
another library’s traits.

28 CHAPTER 2 Rust’s basic building blocks
2.2.5 Deriving traits automatically

If you’re new to Rust, you should familiarize yourself with the commonly used traits in
the standard library, including Clone, Debug, Default, iterator traits, and equality
traits. Rust also has special traits such as Drop, which provides a destructor, and traits
that the compiler derives automatically, such as Send and Sync. You can find a full list
of special traits in the Rust language reference at https://mng.bz/wxKa.

 For some of the most common traits, you’ll use the #[derive] attribute to provide
implementations automatically. It’s common to see struct definitions that use #[derive]
to derive traits and boilerplate automatically. The following example shows Clone,
Debug, and Default with our Pumpkin struct:

use std::fmt::Debug;

#[derive(Clone, Debug, Default)]
struct Pumpkin {
 mass: f64,
 diameter: f64,
}

In this example, we have a Pumpkin that can be formatted as a string with Debug and
cloned with Clone and can create a default zeroed instance with Default:

fn main() {
 let big_pumpkin = Pumpkin {
 mass: 50.,
 diameter: 75.,
 };
 println!("Big pumpkin: {:?}", big_pumpkin);
 println!("Cloned big pumpkin: {:?}", big_pumpkin.clone());
 println!("Default pumpkin: {:?}", Pumpkin::default());
}

Running this code prints the following:

$ cargo run
Big pumpkin: Pumpkin { mass: 50.0, diameter: 75.0 }
Cloned big pumpkin: Pumpkin { mass: 50.0, diameter: 75.0 }
Default pumpkin: Pumpkin { mass: 0.0, diameter: 0.0 }

In practice, you’ll need to provide these traits often, as they’re widely used throughout
the Rust standard library and third-party libraries. Fortunately, this task is easy with
#[derive]. In the Option definition in the Rust standard library, we see the following:

#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
pub enum Option<T> {
 None,
 Some(T),
}

https://mng.bz/wxKa

292.2 Traits
Option provides trait implementations for Copy, PartialEq, PartialOrd, Eq, Ord,
Debug, and Hash. You may notice that Clone is missing; it’s implemented without
#[derive].

 You don’t have to derive your trait implementations, which happens to be the easi-
est way much of the time; you can always write your own implementations. Suppose
you want your default Pumpkin to have a diameter of 5 and mass of 2. You would drop
the Default from #[derive] and add the following implementation:

impl Default for Pumpkin {
 fn default() -> Self {
 Self {
 mass: 2.0,
 diameter: 5.0,
 }
 }
}

Rerunning the code produces the following:

$ cargo run
Big pumpkin: Pumpkin { mass: 50.0, diameter: 75.0 }
Cloned big pumpkin: Pumpkin { mass: 50.0, diameter: 75.0 }
Default pumpkin: Pumpkin { mass: 2.0, diameter: 5.0 }

2.2.6 Trait objects

Rust has a neat feature called trait objects, which lets us manage objects as traits instead
of as types. You can think of trait objects as behaving similarly to virtual methods in
C++ or Java, but they’re not the same as inheritance. In terms of implementation
details, Rust uses a vtable to implement trait objects under the hood, which is a lookup
table generated by the compiler to enable dynamic dispatch at run time.

 Some people in the Rust community consider trait objects, dynamic dispatch,
and vtables to be a form of run-time polymorphism. In some cases, using dynamic
dispatch could be viewed as an antipattern, which we’ll discuss in chapter 10. I view
trait objects as tools, and like all tools, they can be used for good or evil at the behest
of the programmer.

 We can identify trait objects by using the dyn keyword, and rather than using a
type name, we supply a trait. Suppose that we want to store any type within a con-
tainer. We can do so as long as all the types implement some trait that you specify, as
in this example:

trait MyTrait {
 fn trait_hello(&self);
}

struct MyStruct1;

impl MyStruct1 {
 fn struct_hello(&self) {

30 CHAPTER 2 Rust’s basic building blocks
 println!("Hello, world! from MyStruct1");
 }
}

struct MyStruct2;

impl MyStruct2 {
 fn struct_hello(&self) {
 println!("Hello, world! from MyStruct2");
 }
}

impl MyTrait for MyStruct1 {
 fn trait_hello(&self) {
 self.struct_hello();
 }
}

impl MyTrait for MyStruct2 {
 fn trait_hello(&self) {
 self.struct_hello();
 }
}

In this code, we declare MyTrait, which provides the trait_hello() method. That
method is implemented for both MyStruct1 and MyStruct2, which in turn call their
own separate struct_hello() methods, which print Hello, world! Now we can test
the code as follows:

let mut v = Vec::<Box<dyn MyTrait>>::new();

v.push(Box::new(MyStruct1 {}));
v.push(Box::new(MyStruct2 {}));

v.iter().for_each(|i| i.trait_hello());
// v.iter().for_each(|i| i.struct_hello()); error!

Running the test code produces the following output:

Hello, world! from MyStruct1
Hello, world! from MyStruct2

We can’t store a trait as an object directly because trait objects are unsized (they don’t
implement the Sized trait). In other words, we need to store our objects in some con-
tainer type that can hold objects that don’t implement Sized. That list includes the
smart pointers Box, Rc, Arc, RefCell, and Mutex. We cannot, however, store an unsized
object directly within a Vec. Box (and the other smart pointers) have where T: ?Sized
in their trait bounds, which means that Sized is optional (thus, it can hold trait

Adds an instance of
MyStruct1 to our vector

Adds an instance of
MyStruct2 to our vector

Calls the trait_hello()
method for each trait
object element in our
vectorTrying to call the struct_hello() method

from our structs doesn’t work.

312.2 Traits
objects). In Rust, by default, for any generic type T, the Sized trait is required (equiva-
lent to where T: Sized).

 We could not have Vec<dyn MyTrait>, for example, because Vec does not know
how to create unsized objects. A Box, on the other hand, decouples allocation from
the containment of the element. That is, when we create an object with Box, we pro-
vide the concrete type at the time of construction; then the compiler can automati-
cally cast the object to the trait object type (that is, from Box<MyStruct1> to Box<dyn
MyTrait>) when we pass or assign the object.

TIP For more details on trait objects, see the Rust language reference at
https://mng.bz/qOp6.

Downcasting trait objects
Aside from the overhead of vtables, one limitation of trait objects is that we can call
methods only on the trait, not the concrete type. If we want to coerce a trait object
into a concrete type, we can do so by using a downcast. We can use Box, Rc, and
Arc to perform a downcast, and the Any trait provides a method to downcast. If we
want to obtain a reference, however, we need to use Any; the downcast() method
on Box, Rc, and Arc will consume the object, but Any provides downcast_ref(),
which returns a reference.

The Any trait is derived automatically for any types that have a 'static bound, which
means that they are free of nonstatic references, so this trick works only for objects
that are dyn Any + 'static.

To get an Any object on our trait object, we must first provide a way to get the Any
object out from inside the Box. We can’t simply call downcast_ref() on Box<dyn
MyTrait> because Box itself implements Any, and we’ll get the wrong object.
Instead, we have to add an as_any() method to our trait to give us the inner object.
We can update our code like so:

trait MyTrait {
 fn trait_hello(&self);
 fn as_any(&self) -> &dyn Any;
}

impl MyTrait for MyStruct1 {
 fn trait_hello(&self) {
 self.struct_hello();
 }
 fn as_any(&self) -> &dyn Any {
 self
 }
}

impl MyTrait for MyStruct2 {
 fn trait_hello(&self) {
 self.struct_hello();
 }

This trait method
provides a way to
get &dyn Any.

Returns an instance
of Any for self

https://mng.bz/qOp6

32 CHAPTER 2 Rust’s basic building blocks
One final note on dynamic dispatch: you should think carefully about whether you
want to use traits this way. You probably shouldn’t abuse this feature to implement
OO-style polymorphism, for example; we discuss it as an antipattern in chapter 10.

 No definitive guide to Rust’s core traits exists, but an excellent place to start is the
prelude documentation at https://doc.rust-lang.org/std/prelude/index.html, which
lists the traits and types available in the default Rust namespace.

 Last, you can’t implement external traits for types outside your crate, but you can
work around this situation with wrapper structs or extension traits, which we’ll
explore in chapters 5 and 7. You can still implement local traits (traits defined within
your crate) for any type, even those from external crates. You can implement external
traits with multiple type parameters for external types so long as one of the covered
type parameters is a local type. For details, see the Rust language reference on orphan
rules at https://mng.bz/7dA7.

Summary
 Generics are key abstractions in Rust that enable type-safe code reuse.
 Generics let us include type parameters when defining structs, enums, and

functions to create objects and functions that can handle many types of values
rather than one specific concrete type.

 Commonly, generics are used to create container types (those that contain
other kinds of arbitrary data).

 Traits allow us to add shared functionality on top of different types in Rust.

(continued)
 fn as_any(&self) -> &dyn Any {
 self
 }
}

Now we can obtain a reference to the original object type:

println!("With a downcast:");
v.iter().for_each(|i| {
 if let Some(obj) = i.as_any().downcast_ref::<MyStruct1>() {
 obj.struct_hello();
 }
 if let Some(obj) = i.as_any().downcast_ref::<MyStruct2>() {
 obj.struct_hello();
 }
});

Last, several crates provide more advanced downcasting features, such as downcast,
downcast-rs, and Anyhow. I discuss crates in detail in chapter 4.

Returns an instance
of Any for self

We could also use into_iter() here rather than
iter(). In the full code sample, this is the last
time we use the v object; thus, we can consume
it rather than use a reference via iter().

https://doc.rust-lang.org/std/prelude/index.html
https://mng.bz/7dA7

33Summary
 We can combine generics and traits to build small libraries that perform their
functions well rather than large applications or libraries.

 When we define generic parameters, we can specify which traits they must
implement with trait bounds so we can build generic code that depends on
shared behavior without specifying concrete types.

 We can derive traits automatically by using #[derive(…)], which saves a lot of
typing and boilerplate.

Code flow
We need to continue to review more of Rust’s core language features—its building
blocks—before diving into design patterns. In this chapter, we’ll start by discussing
pattern matching and functional programming. Pattern matching allows us to con-
trol the code flow, unwrap or destructure values, and handle optional cases. Func-
tional programming lets us build software around the unit of a function, which is one
of the most basic and easiest-to-understand abstractions.

 These building blocks are distinct but can be combined in many ways to create
new abstractions. We’ll tie these building blocks together to create more elaborate
design patterns by combining them in various ways. In cooking (to use an analogy),
we employ four essential elements in different combinations from multiple sources
to create delicious foods: salt, fat, acid, and heat. Before making patterns based on
these elements, we must understand them in depth.

This chapter covers
 Discussing pattern matching

 Handling errors with pattern matching

 Reviewing Rust’s functional programming
patterns
34

353.1 A tour of pattern matching
3.1 A tour of pattern matching
Up to now, we’ve discussed generics and traits that make up Rust’s core compile-time
features. Pattern matching is a run-time feature that enables a variety of lovely code flow
patterns. We can match types, values, enum variants, and more. Rust’s pattern match-
ing is powerful because it supports several kinds of matching (on both values and
types); most important, it enables clean, functional programming patterns.

NOTE Pattern matching is not to be confused with design patterns. Pattern match-
ing is a core language feature of Rust (and other languages), and although we
can use it to build design patterns, it isn’t strictly a design pattern.

If you’ve used a switch/case statement, Rust’s pattern matching will look familiar. But
Rust’s pattern matching is much more potent than a switch/case statement. Some lan-
guages provide an equivalent feature, but pattern matching is still somewhat niche,
and many mainstream languages do not have it. Pattern matching likely saw its first
widespread use in Prolog and is an essential feature of functional languages such as
Haskell, Scala, Erlang (itself influenced by and initially implemented in Prolog),
Elixir, and OCaml.

 A basic pattern match starts with the match keyword, which makes it easy to rec-
ognize. As with a switch/case statement, we list all the patterns we want to match
with an optional catch-all at the end. In Rust, however, we have to match all possible
patterns or provide the catch-all case. The Rust compiler tells us if we’re missing a
case with an error.

3.1.1 Basics of pattern matching

A simple example of pattern matching is unwrapping an Option and printing whether
it contains a value.

fn some_or_none<T>(option: &Option<T>) {
 match option {
 Some(_v) => println!("is some!"),
 None => println!("is none :("),
 }
}

Unwrapping Option, Result, or other structures that contain optional data is a com-
mon use of pattern matching. Using pattern matching to unwrap data is arguably the
killer feature of pattern matching because the compiler requires us to handle all
cases. It takes the guesswork out of knowing whether you’ve handled all possible cases.
Pattern matching cannot guarantee that your code is free of logic errors; instead, it
makes code easier to reason about.

 An astute reader may notice that in listing 3.1, we discarded the value of Some(_v),
but it would be nice to print its value instead. To do so, we need to use a binding in

Listing 3.1 Pattern matching an Option

We unwrap the option’s value into
_v. Prefixing a variable with an
underscore tells the compiler
that the value is unneeded.

36 CHAPTER 3 Code flow
our pattern match and update the generic parameter T to include a trait bound for
std::fmt::Display.

fn some_or_none_display<T: std::fmt::Display>(option: &Option<T>) {
 match option {
 Some(v) => println!("is some! where v={v}"),
 None => println!("is none :("),
 }
}

Now we can call some_or_none_display() with an Option that contains any value that
implements std::fmt::Display and print the value if it’s Some.

Pattern matching isn’t limited to unwrapping Option types, although that use case is
common. We can also match specific integral values, including ranges:

fn what_type_of_integer_is_this(value: i32) {
 match value {
 1 => println!("The number one number"),
 2 | 3 => println!("This is a two or a three"),

Listing 3.2 Pattern matching an Option with a display trait bound

Sourcing security vulnerabilities
The vast majority of critical security vulnerabilities in software tend to involve the
same class of problems: memory safety. An analysis by Microsoft (http://mng.bz/
yZKy) found that 70% of security vulnerabilities in Microsoft products involved mem-
ory safety bugs in C and C++ code. Examples of memory safety problems include

 Reading/writing outside the bounds of an array
 Dereferencing invalid pointers, such as null pointers
 Using memory after it’s been freed
 Attempting to free memory that was previously freed (such as double-free)
 Failing to handle error cases

Rust’s safety features seek to eliminate these cases, and pattern matching is a key
feature that helps programmers avoid common pitfalls by requiring that all cases be
handled. Pattern matching on an Option into Some and None is a good example of
how Rust forces us to handle all possible cases.

Choosing Rust for critical software is akin to buying an insurance policy or a put con-
tract (a financial instrument that protects against catastrophic loss). Rust is a way to
hedge against the risk of security vulnerabilities and protect your users and your rep-
utation. The premiums you pay are the time and effort involved in learning Rust’s
safety features, the discipline required to use them, and any additional cognitive load
on your part. The payout is peace of mind from knowing that your software is less
likely to be the next headline in a security breach. The simple tradeoff is a little extra
work upfront for a lot less work later should things go wrong.

http://mng.bz/yZKy
http://mng.bz/yZKy
http://mng.bz/yZKy

373.1 A tour of pattern matching
 4..=10 => println!("This is a number between 4 and 10 (inclusive)"),
 _ => println!("Some other kind of number"),
 }
}

Pattern matching is often used to destructure structs, tuples, and enums. You can
destructure tuples partially or pull out each element, which can be a convenient way
to access inner elements in some cases:

fn destructure_tuple(tuple: &(i32, i32, i32)) {
 match tuple {
 (first, ..) => {
 println!("First tuple element is {first}")
 }
 }
 match tuple {
 (.., last) => {
 println!("Last tuple element is {last}")
 }
 }
 match tuple {
 (_, middle, _) => {
 println!(
 "The middle tuple element is {middle}"
)
 }
 }
 match tuple {
 (first, middle, last) => {
 println!("The whole tuple is ({first}, {middle}, {last})")
 }
 }
}

You can have multiple equivalent match expressions, but the block always returns the
expression from the first matching pattern. In the preceding example, we use a sepa-
rate match block for each case because all matches are valid. If you have multiple
equivalent patterns in a match block, your code will compile but produce a warning,
like the following code snippet:

fn unreachable_pattern_match(value: i32) {
 match value {
 1 => println!("This value is equal to 1"),
 1 => println!("This value is equal to 1"),
 _ => println!("This value is not equal to 1"),
 }
}

Compiling this code will produce the following warning for the second match case:

warning: unreachable pattern
 --> src/main.rs:56:9

Matches only on the
first element in a
tuple of any length

Matches only on the
last element in a tuple
of any length

Matches the middle
element on a tuple
with three elements

Matches every
element of a tuple

with three elements

38 CHAPTER 3 Code flow
 |
56 | 1 => println!("Second match: This value is equal to 1"),
 | ^
 |
 = note: `#[warn(unreachable_patterns)]` on by default

A guard allows you to match conditionally by using an if statement after the pattern,
which can use the matched value or a separate value passed to the guard. The follow-
ing code uses a guard to match on a value and a Boolean:

fn match_with_guard(value: i32, choose_first: bool) {
 match value {
 v if v == 1 && choose_first => {
 println!("First match: This value is equal to 1")
 }
 v if v == 1 && !choose_first => {
 println!("Second match: This value is equal to 1")
 }
 v if choose_first => {
 println!("First match: This value is equal to {v}")
 }
 v if !choose_first => {
 println!("Second match: This value is equal to {v}")
 }
 _ => println!("Fell through to the default case"),
 }
}

You can’t match values of different types within a match statement. All match cases or
branches within the same match {} block should apply to the same type. The match
block is an expression, so each branch (and each expression therein) needs to return
the same type. You can unwrap structures that contain different types (such as an
enum), but you can’t match generically. The following code, for example, is not valid:

fn invalid_matching<T>(value: &T) {
 match value {
 "is a string" => println!("This is a string"),
 1 => println!("This is an integral value"),
 }
}

Attempting to compile this code will produce the following compiler output:

error[E0308]: mismatched types
 --> src/lib.rs:3:9
 |
1 | fn invalid_matching<T>(value: &T) {
 | - this type parameter
2 | match value {
 | ----- this expression has type `&T`
3 | "is a string" => println!("This is a string"),
 | ^^^^^^^^^^^^^ expected `&T`, found `&str`

393.1 A tour of pattern matching
 |
 = note: expected reference `&T`
 found reference `&'static str`

error[E0308]: mismatched types
 --> src/lib.rs:4:9
 |
1 | fn invalid_matching<T>(value: &T) {
 | - this type parameter
2 | match value {
 | ----- this expression has type `&T`
3 | "is a string" => println!("This is a string"),
4 | 1 => println!("This is an integral value"),
 | ^ expected type parameter `T`, found integer
 |
 = note: expected type parameter `T`
 found type `{integer}`

For more information about this error, try `rustc --explain E0308`.

We can destructure different inner types if we use an enum. DistinctTypes allows us
to match distinct named types in match_enum_types(), just as you would an Option:

enum DistinctTypes {
 Name(String),
 Count(i32),
}

fn match_enum_types(enum_types: &DistinctTypes) {
 match enum_types {
 DistinctTypes::Name(name) => println!("name={name}"),
 DistinctTypes::Count(count) => println!("count={count}"),
 }
}

We can destructure structs to extract specific values and even match on particular val-
ues within a struct, as I’ll demonstrate in the following example. This code snippet
creates an enum for cat colors, a struct that contains the cat’s name and its color, and
a function match_on_black_cats() that prints the cat’s name and tells us whether it’s
a black cat:

enum CatColor {
 Black,
 Red,
 Chocolate,
 Cinnamon,
 Blue,
 Cream,
 Cheshire,
}

struct Cat {
 name: String,

40 CHAPTER 3 Code flow
 color: CatColor,
}

fn match_on_black_cats(cat: &Cat) {
 match cat {
 Cat {
 name,
 color: CatColor::Black,
 } => println!("This is a black cat named {name}"),
 Cat { name, color: _ } => println!("{name} is not a black cat"),
 }
}

We can quickly test the code as follows:

let black_cat = Cat {
 name: String::from("Henry"),
 color: CatColor::Black,
};
let cheshire_cat = Cat {
 name: String::from("Penelope"),
 color: CatColor::Cheshire,
};
match_on_black_cats(&black_cat);
match_on_black_cats(&cheshire_cat);

Running the preceding test prints the following output:

This is a black cat named Henry
Penelope is not a black cat

3.1.2 Clean matches with the ? operator

Pattern matching is an excellent way to handle errors, but code can get messy when
we have too many matches or matches that are too deeply nested. We can combine
pattern matching with the ? operator to handle functions that return Result or
Option cleanly by returning immediately when Result or Option returns an error or
None, respectively. To use the ? operator, we need to be inside a function that returns
Result or Option. The ? operator allows us to flatten our code considerably, which
improves readability:

fn write_to_file() -> std::io::Result<()> {
 use std::fs::File;
 use std::io::prelude::*;

 let mut file = File::create("filename")?;
 file.write_all(b"File contents")?;
 Ok(())
}

Our function returns a std::io::Result, which is a type alias
for Result with the std::io::Error error type provided for

convenience. The return payload is a unit ().

All calls to functions returning a
Result use the ? operator to denote
that in case of an error, the function
should return that error.

We return the unit type
with Ok to show success.

413.1 A tour of pattern matching
fn try_to_write_to_file() {
 match write_to_file() {
 Ok(()) => println!("Write succeeded"),
 Err(err) => println!("Write failed: {}", err.to_string()),
 }
}

In the preceding code, we wrap the call to write_to_file() within a pattern-matching
expression. If the function returns Ok(()), we print Write succeeded. In the case of
an error, we print Write failed: … with the error message.

 Using the ? operator is a super-handy way to keep your code clean by using Result.
Notice that I used the unit type (), a special type in Rust that is essentially a place-
holder that carries no value and is optimized out by the compiler. The unit type () is
often referred to simply as unit. The equivalent code without ? looks something like
this example, which includes duplicate code for printing the error case:

fn write_to_file_without_result() {
 use std::fs::File;
 use std::io::prelude::*;

 let create_result = File::create("filename");
 match create_result {
 Ok(mut file) => match file.write_all(b"File contents") {
 Err(err) => {
 println!("There was an error writing: {}", err)
 }
 _ => println!("Write succeeded"),
 },
 Err(err) => println!(
 "There was an error opening the file: {}",
 err
),
 }
}

If we want to chain lots of calls by using the ? operator, we need to pay attention to
their return types. The ? operator works only with functions that return either a
Result<T, E> or Option<T> that matches the type of the statement with the ? applied.
For Result<T, E>, the error types of all the functions using ? must match the parent
function or provide an implementation of the From trait so that they can be converted
to the target error type. For this reason, you’ll often have to write impl From for … {}
for conversion between error types.

TIP When you’re chaining the ? operator, you can use a few handy methods
for converting between Result and Option, in addition to implementing the
From trait. For Result<T, E>, you can use the ok() method to map to
Option<T>, err() to map to Option<E>, and map_err() to map an error to a
different type. For Option<T>, use ok_or() to map to Result<T,E>.

Calls our function and
matches on the result

42 CHAPTER 3 Code flow
In the preceding example, if we want to use our own error type instead of
std::io::Error, perhaps because we want to add more information to the original
error, we need to do something like this:

enum ErrorTypes {
 IoError(std::io::Error),
 FormatError(std::fmt::Error),
}

struct ErrorWrapper {
 source: ErrorTypes,
 message: String,
}

Next, we need to implement From<std::io::Error> for our error wrapper:

impl From<std::io::Error> for ErrorWrapper {
 fn from(source: std::io::Error) -> Self {
 Self {
 source: ErrorTypes::IoError(source),
 message: "there was an IO error!".into(),
 }
 }
}

Now we can update our file-writing code to use our error type by returning Error-
Wrapper in our write_to_file() function:

fn write_to_file() -> Result<(), ErrorWrapper> {
 use std::fs::File;
 use std::io::prelude::*;

 let mut file = File::create("filename")?;
 file.write_all(b"File contents")?;
 Ok(())
}

fn try_to_write_to_file() {
 match write_to_file() {
 Ok(()) => println!("Write succeeded"),
 Err(err) => {
 println!("Write failed: {}", err.message)
 }
 }
}

If we call our try_to_write_to_file() function, it should (under normal circum-
stances) print Write succeeded. But in the case of an error (such as not having per-
mission to write a file), the function will print Write failed: … with the error message
provided by File.

 Handling errors this way is fairly common in Rust and can save a great deal of
typing. This approach is a relatively simple way to integrate errors from third-party

Returns a plain Result
instead of std::io::Result
using our error type

Prints our error
message instead of
the one provided
by std::io::Error

433.2 Functional Rust
crates into your error-handling code. Chapter 4 revisits the ? operator and error han-
dling in Rust.

3.2 Functional Rust
So far, this book has covered the basics: generics, traits, and pattern matching. Now
we’ll move on to Rust’s functional features, including one of my favorite subjects: func-
tional programming. The two core features of functional programming in Rust are clo-
sures and iterators.

 Many people have probably used closures and iterators at some point, as they’ve
become trendy. The JavaScript and TypeScript languages and their libraries, for
example, make heavy use of closures. Iterators are so common that most people
don’t think of them as abstractions but as a core feature of all modern program-
ming languages.

 Functional programming is a paradigm wherein programs are composed of declar-
ative functions, and mutation of state is discouraged (though not necessarily disal-
lowed, depending on the strictness of the language). Some languages are strictly
functional, which means that you’re not allowed to change state; the only way to affect
state is to use a function that maps one value to another. Also, functional languages
discourage side effects, which are actions within a function that might have nondeter-
ministic results, such as I/O or mutating local state.

 To support functional programming, some languages have features explicitly
designed around functions and handling immutable state. Although Rust is not
strictly functional, it encourages functional patterns by making mutability opt-in (with
the mut keyword) rather than opt-out and by providing core functional features such
as closures and iterators.

 Functional programming is a wide subject, so I’ll stick to reviewing the high-level
features in Rust. For a deep dive into functional programming, Grokking Functional Pro-
gramming by Michał Płachta (https://www.manning.com/books/grokking-functional
-programming) provides an excellent overview.

3.2.1 Basics of functional programming in Rust

Let’s jump in by looking at a simple (but not pure) closure:

let bark = || println!("Bark!");
bark();

Here, we have a function that barks like a dog with "Bark!" It doesn’t look like a func-
tion because it has no arguments, and the braces have been removed, as they’re not nec-
essary. In Rust, closures begin with a list of arguments between two pipes, ||, followed by
a code block. In the case of a single-line function, you can omit the braces ({}) for the
block. Let’s add a parameter to make the function look more function-like:

let increment = |value| value + 1;
increment(1);

Calling println!() introduces side effects because it’s
an I/O operation, meaning this closure is not pure.

https://www.manning.com/books/grokking-functional-programming
https://www.manning.com/books/grokking-functional-programming
https://www.manning.com/books/grokking-functional-programming

44 CHAPTER 3 Code flow
Here, the function takes an integer value and returns that value plus 1. We don’t
need to specify the type of the value parameter because the compiler can infer it.
Let’s make a closure that looks even more function-like by using a code block:

let print_and_increment = |value| {
 println!("{value} will be incremented and returned");
 value + 1
};
print_and_increment(5);

These examples aren’t too interesting. Closures start to get interesting when we talk
about higher-order functions, which take other functions as parameters. In Rust, you may
have encountered higher-order functions when working with iterators, specifically
when using map(), for_each(), find(), fold(), and similar methods. Higher-order
functions are a convenient way to delegate operations to the caller of the function by
allowing the caller to supply inner logic to the callee. Closures make the syntax more
convenient, delightful, and flexible. The following simple example of using a higher-
order function creates an adder that gets its values from other functions:

let left_value = || 1;
let right_value = || 2;
let adder = |left: fn() -> i32,
 right: fn() -> i32| {
 left() + right()
};
println!(
 "{} + {} = {}",
 left_value(),
 right_value(),
 adder(left_value, right_value)
);

The preceding example has two closures, assigned to left_value and right_value,
respectively, that return a hardcoded integer. Then we create this adder, which takes
two parameters of type fn() → i32, a special function type. We can pass any function
that matches the signature to the adder. In this case, we add the left and right values
together, which is 1 + 2, so our function returns 3. Running this code produces the fol-
lowing output:

1 + 2 = 3

You can experiment by changing the values returned by left_value and right_
value; you’ll see the output change accordingly. You can also try changing the adder
to multiply the values instead of adding them.

A closure that returns 1 and
provides impl Fn() -> i32

A closure that returns 2 and
provides impl Fn() -> i32

A closure that takes two functions
and adds their results together,
providing impl Fn(fn() -> i32,
fn() -> i32) -> i32

453.2 Functional Rust
3.2.2 Closure variable capture

If we want to call our adder with a function that doesn’t have the proper signature, we
could wrap it with another closure to get the correct signature. Let’s discuss variable
capture in closures to understand why we might need to do this.

 Rust provides three traits that aid in functional programming: Fn, FnMut, and
FnOnce. These traits are implemented automatically when possible and summarized
as follows:

 Fn is for functions in the form of Fn(&self), which can be called repeatedly, as
they don’t consume the variables they capture. All arguments are immutable.

 FnMut is for mutable functions, such as those of the form FnMut(&mut self).
They can be called repeatedly, as they don’t consume the variables they capture,
but they do contain mutable references.

 FnOnce is for functions that consume themselves, such as FnOnce(self). They
can be called only once because they consume the variables they capture.

In the case of closures, FnOnce is always implemented if the closure consumes any of
the variables it captures, denoted by the move keyword before the definition of a clo-
sure. Consider the closure in the following listing.

let consumable = String::from("cookie");
let consumer = move || consumable;
consumer();
// consumer(); error!

In this example, the fourth line would produce an error because our consumable
can be moved only once, so calling consumer() a second time is invalid. If we try
compiling with the second call to consumer() uncommented, we’ll get the follow-
ing output from the compiler:

error[E0382]: use of moved value: `consumer`
 --> src/main.rs:22:5
 |
21 | consumer();
 | ---------- `consumer` moved due to this call
22 | consumer();
 | ^^^^^^^^ value used here after move
 |
note: closure cannot be invoked more than once because it moves the
➥ variable `consumable` out of its environment
 --> src/main.rs:20:28
 |
20 | let consumer = move || consumable;
 | ^^^^^^^^^^
note: this value implements `FnOnce`, which causes it to be moved when
➥ called
 --> src/main.rs:21:5

Listing 3.3 Closure with move

46 CHAPTER 3 Code flow
 |
21 | consumer();
 | ^^^^^^^^

For more information about this error, try `rustc --explain E0382`.
error: could not compile `closures` (bin "closures") due to 1 previous
➥ error

The primary use of move |…| (as in listing 3.3) is when you want to transfer or assign
ownership of an object somewhere inside the closure but avoid copying or cloning it.
The move keyword is optional; if you don’t use it, Rust infers whether to move the vari-
ables you capture. Still, being explicit about your intentions is a good idea because it
prevents ambiguity. The compiler will alert you if an error occurs, of course. In the
example with consumable, we could have omitted the move keyword safely; the result
would have been the same. We can combine the use of closures, generics, and the Fn,
FnMut, and FnOnce traits to enable a variety of generic functional patterns.

3.2.3 Examining iterators

Let’s take a look at Rust’s iterators, which complement closures. Rust’s iterators are pro-
vided by the Iterator trait, which includes a lot of functionality built on top of iterators:
map(), for_each(), take(), fold(), filter() find(), zip(), and more. If you imple-
ment the Iterator trait for your type, you receive all these iterators (and more!).

 Iterators are one of the original Gang of Four design patterns and arguably the
most prolific. They provide a great case study not only for design patterns but also for
the Rust language. The core of Rust’s Iterator trait is as follows:

trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

The Iterator trait contains a lot more than what you see here, but if you want to
implement Iterator for your type, you need to provide only next() and Item. Let’s
examine an example of a linked list in Rust by implementing the Iterator trait. We’ll
start by writing a new linked list implementation.

use std::cell::RefCell;
use std::rc::Rc;

type ItemData<T> = Rc<RefCell<T>>;
type ListItemPtr<T> = Rc<RefCell<ListItem<T>>>;

struct ListItem<T> {
 data: ItemData<T>,
 next: Option<ListItemPtr<T>>,
}

Listing 3.4 Implementing LinkedList

A pointer to
our data

A pointer to the next
item in the linked list

473.2 Functional Rust
impl<T> ListItem<T> {
 fn new(t: T) -> Self {
 Self {
 data: Rc::new(RefCell::new(t)),
 next: None,
 }
 }
}

struct LinkedList<T> {
 head: ListItemPtr<T>,
}

impl<T> LinkedList<T> {
 fn new(t: T) -> Self {
 Self {
 head: Rc::new(RefCell::new(ListItem::new(t))),
 }
 }
}

We have an incomplete linked list that has the structure we need but doesn’t give us a
way to iterate over the list or append new items. I intentionally left out the append
functionality because I want to use an iterator to implement it. If I implement Iterator
first, the rest of the linked list features become easy to add. Let’s give it a shot.

Rc and RefCell
If you haven’t encountered Rc or RefCell (introduced in listing 3.4), don’t panic; I’ll
provide a brief explanation for readers who aren’t familiar with them. In short, Rc and
RefCell are smart pointers that provide important (but distinct) features.

Rc provides a reference-counted pointer, similar to C++’s std::shared_ptr. RefCell
is a special type of pointer that enables interior mutability.

Rc allows you to hold multiple references (or pointers) to the same location in mem-
ory, and RefCell provides a way to perform borrow checking at run time. Rust’s bor-
row checker normally works at compile time, but sometimes you want to perform the
borrow checking at run time instead, such as when you want to hold multiple refer-
ences to the same object and still enable mutability (not possible at compile time).

In our linked list example, we need to hold multiple references to the same object
(which Rc provides), and we also want to be able to mutate the inner object (which
RefCell allows us to do safely).

In chapter 5 of Code Like a Pro in Rust (https://www.manning.com/books/code-like
-a-pro-in-rust), I discuss Rust’s smart pointers at great length. For details on Rc, con-
sult the Rust standard library documentation at https://doc.rust-lang.org/std/rc/
index.html, and for RefCell, refer to https://doc.rust-lang.org/std/cell/index.html.

Creates a new item
(or node) for the list

A pointer to the first item
(or node) in the list

Creates a new list, with the
head pointing to the first item

https://www.manning.com/books/code-like-a-pro-in-rust
https://www.manning.com/books/code-like-a-pro-in-rust
https://www.manning.com/books/code-like-a-pro-in-rust
https://doc.rust-lang.org/std/rc/index.html
https://doc.rust-lang.org/std/rc/index.html
https://doc.rust-lang.org/std/rc/index.html
https://doc.rust-lang.org/std/cell/index.html

48 CHAPTER 3 Code flow

is

I’ll note here that iterators are stateful. That is, an iterator knows where it is in the
sequence of items so that it can go from the previous to the next item with each
subsequent call to next().

NOTE Even in the purest functional programming languages, you can always
find state under the hood if you look hard enough, as all software eventually
breaks down to strictly imperative machine code.

For now, we’ll store that state in our linked list itself. We can update the structure this
way, along with the fn new() method:

struct LinkedList<T> {
 head: ListItemPtr<T>,
 cur_iter: Option<ListItemPtr<T>>,
}

impl<T> LinkedList<T> {
 fn new(t: T) -> Self {
 Self {
 head: Rc::new(RefCell::new(ListItem::new(t))),
 cur_iter: None,
 }
 }
}

Great! Now we have a pointer to the current position of our iterator in cur_iter,
which can be initialized to None. Let’s take a first shot at implementing the Iterator
trait for our linked list (not the refined approach, which we’ll arrive at later in this
chapter):

impl<T> Iterator for LinkedList<T> {
 type Item = ListItemPtr<T>;
 fn next(&mut self) -> Option<Self::Item> {
 match &self.cur_iter.clone() {
 None => {
 self.cur_iter = Some(self.head.clone());
 }
 Some(ptr) => {
 self.cur_iter = ptr.borrow().next.clone();
 }
 }
 self.cur_iter.clone()
 }
}

Now finding the last item in the list with an iterator is a trivial operation:

let dinosaurs = LinkedList::new("Tyrannosaurus Rex");
let last_item = dinosaurs.last()

For this Iterator implementation,
we’ll return a pointer to the list
item rather than the data itself.

We have to clone cur_iter
here because we try to
modify the pointer while
it’s borrowed later.

If cur_iter is
None, the iterator
uninitialized, so we
start at the head.

cur_iter must be updated
to point to the next item

in the sequence.
Last, we clone and return the

current position in our sequence.

493.2 Functional Rust
 .expect("couldn't get the last item");
println!("last_item='{}'", last_item.borrow().data.borrow());

By implementing Iterator, we can call last() to retrieve the last item in our list, which
we get for free from the Iterator trait. Running the preceding code prints last_item=
'Tyrannosaurus Rex', as we’d expect. Now let’s add our append() method to the origi-
nal LinkedList:

impl<T> LinkedList<T> {
 fn new(t: T) -> Self {
 Self {
 head: Rc::new(RefCell::new(ListItem::new(t))),
 cur_iter: None,
 }
 }
 fn append(&mut self, t: T) {
 self.last()
 .expect("List was empty, but it should never be")
 .as_ref()
 .borrow_mut()
 .next = Some(Rc::new(RefCell::new(ListItem::new(t))));
 }
}

Now we can append and then iterate over our list by using for_each with a closure:

let mut dinosaurs = LinkedList::new("Tyrannosaurus Rex");
dinosaurs.append("Triceratops");
dinosaurs.append("Velociraptor");
dinosaurs.append("Stegosaurus");
dinosaurs.append("Spinosaurus");
dinosaurs
 .iter()
 .for_each(|ptr| {
 println!("data={}", ptr.borrow().data.borrow())
);

Running this code prints the following:

data=Tyrannosaurus Rex
data=Triceratops
data=Velociraptor
data=Stegosaurus
data=Spinosaurus

NOTE The code in this example doesn’t match the final implementation and,
therefore, doesn’t match the code in the repository, but we’ll get there soon.

Neat, huh? This example is fun, but our iterator is less than ideal because we still have
to unwrap the internal pointer to access our payload data within each node of the

We must borrow
the inner RefCell
to access the inner
ListItem.

We have to borrow mutably to
modify the inner next pointer.

We still have to
unwrap the inner
pointer here, and our
call to for_each() will
consume dinosaurs.

50 CHAPTER 3 Code flow
linked list. In my opinion, this interface is pretty awkward for a collection type. We
probably wouldn’t want to expose our internal types if we were writing a library.

3.2.4 Obtaining an iterator with iter(), into_iter(), and iter_mut()

To make our linked list more idiomatic, we need to iterate over items in the list with-
out exposing the internal structure of the list. We also need to iterate over mutable
references to the items in the list and to consume the list and iterate over the items. In
other words, we may want to iterate over our linked list in three ways:

 iter()—Iterate over immutable references to the items in the list.
 iter_mut()—Iterate over mutable references to the items in the list.
 into_iter()—Consume the list and iterate over the items.

In section 3.2.3, I implemented the Iterator trait directly on LinkedList, but this is
not idiomatic Rust, and it’s bad practice. Instead, we’ll create a separate structure to
handle iteration, which is a common pattern in Rust and better design. If we look at
Rust’s built-in collection types, they typically provide three iterators:

 An iterator that iterates over T, provided by into_iter(self), which consumes
self

 An iterator that iterates over &T, provided by iter(&self)
 An iterator that iterates over &mut T, provided by iter_mut(&mut self)

You’ll notice that Vec does not implement the Iterator trait directly; instead, it
implements the IntoIterator trait for T, &T, and &mut T. Vec uses its own internal
(https://doc.rust-lang.org/std/vec/struct.IntoIter.html) Iter, IterMut, and IntoIter
objects to implement the Iterator trait instead of doing it directly on Vec. We can
do the same with our linked list by creating separate structures to handle iteration
rather than implementing Iterator for LinkedList.

 Let’s copy this pattern and apply it to our linked list. First, we’ll create our new
stateful iterator structs, which look like this:

struct Iter<T> {
 next: Option<ListItemPtr<T>>,
}
struct IterMut<T> {
 next: Option<ListItemPtr<T>>,
}
struct IntoIter<T> {
 next: Option<ListItemPtr<T>>,
}

Each iterator struct maintains a pointer to the next item in the list. Because we’re
using Rc and RefCell to implement the linked list, managing the pointers is fairly
easy, and we don’t have to worry much about lifetimes.

https://doc.rust-lang.org/std/vec/struct.IntoIter.html

513.2 Functional Rust
 We’ll initialize these iterators by adding iter(), iter_mut(), and into_iter()
methods to LinkedList, which returns a new instance. We’ll also update our append()
so that it works again:

impl<T> LinkedList<T> {
 fn new(t: T) -> Self {
 Self {
 head: Rc::new(RefCell::new(ListItem::new(t))),
 }
 }
 fn append(&mut self, t: T) {
 let mut next = self.head.clone();
 while next.as_ref().borrow().next.is_some() {
 let n = next
 .as_ref()
 .borrow()
 .next
 .as_ref()
 .unwrap()
 .clone();
 next = n;
 }
 next.as_ref().borrow_mut().next =
 Some(Rc::new(RefCell::new(ListItem::new(t))));
 }
 fn iter(&self) -> Iter<T> {
 Iter {
 next: Some(self.head.clone()),
 }
 }
 fn iter_mut(&mut self) -> IterMut<T> {
 IterMut {
 next: Some(self.head.clone()),
 }
 }
 fn into_iter(self) -> IntoIter<T> {
 IntoIter {
 next: Some(self.head.clone()),
 }
 }
}

Cool! We’ve updated append() so that it no longer uses the old Iterator implementa-
tion, which we’ve already decided is flawed. Now all we have to do is implement the
Iterator trait for Iter, IterMut, and IntoIter:

impl<T> Iterator for Iter<T> {
 type Item = ItemData<T>;
 fn next(&mut self) -> Option<Self::Item> {
 match self.next.clone() {
 Some(ptr) => {
 self.next.clone_from(&ptr.as_ref().borrow().next);
 Some(ptr.as_ref().borrow().data.clone())

We have to unwrap the
inner Option within the
RefCell and Rc, which is
why we need to obtain a
reference with as_ref()
and borrow with
borrow() to access the
inner next pointer.

We have to borrow three
times: twice from the
current next and once from
the next next, after which
we can clone the pointer.

52 CHAPTER 3 Code flow
 }
 None => None,
 }
 }
}
impl<T> Iterator for IterMut<T> {
 type Item = ItemData<T>;
 fn next(&mut self) -> Option<Self::Item> {
 match self.next.clone() {
 Some(ptr) => {
 self.next.clone_from(&ptr.as_ref().borrow().next);
 Some(ptr.as_ref().borrow().data.clone())
 }
 None => None,
 }
 }
}
impl<T> Iterator for IntoIter<T> {
 type Item = ItemData<T>;
 fn next(&mut self) -> Option<Self::Item> {
 match self.next.clone() {
 Some(ptr) => {
 self.next.clone_from(&ptr.as_ref().borrow().next);
 Some(ptr.as_ref().borrow().data.clone())
 }
 None => None,
 }
 }
}

Our next() implementation is straightforward: we return the pointer to the data
within our ListItem struct, update self.next to the next item in the list, and return
None when there are no more entries. You may notice that all three implementations
are identical. The situation is even worse: all of them return Rc<RefCell<T>> rather
than the T, &T, and &mut T we’re looking for. Returning Rc<RefCell<T>> is fine, but it
doesn’t match the pattern, and we still have to unwrap the data to access it.

 The solution to this problem isn’t straightforward, but let’s try to fix it by looking
at IntoIter from Vec. The into_iter() method on Vec has the following signature:

fn into_iter(self) -> slice::IterMut<'a, T>;

If you look carefully, you’ll see that the method takes self by value. In other words,
calling into_iter() consumes the Vec. We can use this knowledge to change our
IntoIter so that it consumes each list item:

impl<T> Iterator for IntoIter<T> {
 type Item = T;
 fn next(&mut self) -> Option<Self::Item> {
 match self.next.clone() {
 Some(ptr) => {
 self.next = ptr.as_ref().borrow().next.clone();

533.2 Functional Rust
 let listitem =
 Rc::try_unwrap(ptr).map(|refcell| refcell.into_inner());
 match listitem {
 Ok(listitem) => Rc::try_unwrap(listitem.data)
 .map(|refcell| refcell.into_inner())
 .ok(),
 Err(_) => None,
 }
 }
 None => None,
 }
 }
}

The code is starting to look a lot more complicated. Let’s break it down:

 Both our pointers to each list item (or node) in the linked list, as well as the
data, are stored in a RefCell inside Rc (i.e., Rc<RefCell<T>>).

 We need to use try_unwrap() on the Rc to move the inner RefCell out of the
Rc because we want to consume it. try_unwrap() works on Rc only when there
are no other references. Because we’re not going to expose these references
outside our linked list, we can be reasonably sure that there aren’t any other
references.

 When we get the RefCell out of the Rc using try_unwrap(), we need to move
the T out of RefCell<T>. To do so, we call into_inner(), which consumes the
RefCell that returns an owned T.

 The return type is defined by type Item = T, which is an associated type, and we
reference it with Self::Item, which is required by the Iterator trait.

We can test our code this way:

let mut dinosaurs = LinkedList::new("Tyrannosaurus Rex");
dinosaurs.append("Triceratops");
dinosaurs.append("Velociraptor");
dinosaurs.append("Stegosaurus");
dinosaurs.append("Spinosaurus");
dinosaurs
 .into_iter()
 .for_each(|data| println!("data={}", data));

The test works as expected, producing the following output:

data=Tyrannosaurus Rex
data=Triceratops
data=Velociraptor
data=Stegosaurus
data=Spinosaurus

Neat! Let’s look at our Iter and IterMut implementations again because they still don’t
return &T or &mut T the way we want. Unlike into_iter(), the iter() and iter_mut()

54 CHAPTER 3 Code flow
methods on LinkedList don’t consume self; they take references to self (&self and
&mut self, respectively), which makes things quite tricky.

 In stable Rust, RefCell doesn’t provide a way to get a plain reference to the object
it holds. The Ref and RefMut wrappers provide a leak() method in Rust nightly, but
let’s try to do it without using that feature.

 Unfortunately, the only way to do what we want is to use unsafe. If you look at
Rust’s collection library implementations, you’ll see that they use unsafe in various
places, such as the internal implementation of next() from the Iterator trait.

 We need to update the Iter and IterMut structs to include a lifetime 'a for the
reference we’re returning. We’ll also store a copy of the pointer to the data we’re
returning so that it exists as long as the iterator is in scope. We use a PhantomData field
to capture the lifetime 'a in the struct:

struct Iter<'a, T> {
 next: Option<ListItemPtr<T>>,
 data: Option<ItemData<T>>,
 phantom: PhantomData<&'a T>,
}
struct IterMut<'a, T> {
 next: Option<ListItemPtr<T>>,
 data: Option<ItemData<T>>,
 phantom: PhantomData<&'a T>,
}

Lifetimes
Lifetimes ensure that references are valid for a certain period to prevent dangling ref-
erences (akin to dangling pointers in C or C++). Rust introduced the concept of life-
times to allow the compiler’s borrow checker to verify that references are valid at
compile time and give programmers a way to communicate this information to the
compiler. Lifetimes are denoted by an apostrophe (') followed by a name, such as
'a, 'b, and 'c.

Rust’s lifetimes are a bit tricky to grok at first, but with practice, you’ll see that they’re
quite simple. Here are a few important points to consider regarding lifetimes:

 A variable’s lifetime is the period for which it’s valid, beginning when the vari-
able is created and ending when it is destroyed.

 A reference is valid for the lifetime 'a, where 'a is an arbitrary name that car-
ries no meaning other than to identify the lifetime.

 A reference is valid for the lifetime of the object it references or the lifetime of
the scope in which it was created, whichever is shorter.

 Sometimes, we have to define lifetimes explicitly to help the compiler under-
stand the relationship between references. At other times, the compiler can
infer the lifetimes for us (generally the default).

 If the compiler can’t infer the lifetimes, it produces an error message, and
you’ll need to provide the lifetimes explicitly.

553.2 Functional Rust
 Lifetimes always exist in the context of a reference and are always associated
with a reference. You don’t need a lifetime if you don’t have a reference, and
the compiler will infer a lifetime for you if you don’t define one explicitly.

Lifetimes are generally introduced at the function, struct, or trait level. Where the life-
time is introduced determines the scope of the lifetime. If you introduce a lifetime at
the function level, the lifetime is valid for the duration of the function (or struct, trait,
or so on). Consider the following small program, which introduces the functions
print_without_lifetime() and print_with_lifetime():

fn print_without_lifetime(s: &str) {
 println!("{}", s);
}

fn print_with_lifetime<'a>(s: &'a str) {
 println!("{}", s);
}

fn main() {
 print_without_lifetime("calling print_without_lifetime()");
 print_with_lifetime("calling print_with_lifetime()");
}

The two functions are identical except that print_with_lifetime() has an explicit
lifetime 'a defined for the reference to the string s. The compiler will infer the lifetime
for print_without_lifetime(), but we explicitly define the lifetime for print_
with_lifetime().

Adding the lifetime 'a to the function signature tells the compiler that the reference
is valid for the duration of the function, which in this case is simply the duration of
the function call.

If you were to add a lifetime to the definition of a struct instead, the lifetime would
be valid for the duration of the struct object. Consider the following example:

struct RefStruct<'a> {
 s_ref: &'a str,
}

fn main() {
 let dog = "dog";
 let dog_struct = RefStruct { s_ref: dog };
 println!("I am a {}", dog_struct.s_ref)
}

In this code, the lifetime 'a is introduced at the struct level, which means that the
reference s_ref is valid for the duration of the struct RefStruct. Now we can put a
reference to dog in the struct RefStruct and print it as long as dog outlives dog_
struct.

If this concept doesn’t make complete sense just yet, don’t worry; it will become
more apparent as you spend more time with Rust. For more information on lifetimes,
see the section on lifetimes at https://mng.bz/QZ91.

dog_struct must
not outlive dog.

https://mng.bz/QZ91

56 CHAPTER 3 Code flow
We also need to initialize the new data and phantom fields in iter() and iter_mut():

impl<T> LinkedList<T> {
 fn iter(&self) -> Iter<T> {
 Iter {
 next: Some(self.head.clone()),
 data: None,
 phantom: PhantomData,
 }
 }
 fn iter_mut(&mut self) -> IterMut<T> {
 IterMut {
 next: Some(self.head.clone()),
 data: None,
 phantom: PhantomData,
 }
 }
}

Now we can implement the next() method for both:

impl<'a, T> Iterator for Iter<'a, T> {
 type Item = &'a T;
 fn next(&mut self) -> Option<Self::Item> {
 match self.next.clone() {
 Some(ptr) => {
 self.next = ptr.as_ref().borrow().next.clone();
 self.data = Some(ptr.as_ref().borrow().data.clone());
 unsafe { Some(&*self.data.as_ref().unwrap().as_ptr()) }
 }
 None => None,
 }
 }
}
impl<'a, T> Iterator for IterMut<'a, T> {
 type Item = &'a mut T;
 fn next(&mut self) -> Option<Self::Item> {
 match self.next.clone() {
 Some(ptr) => {
 self.next = ptr.as_ref().borrow().next.clone();
 self.data = Some(ptr.as_ref().borrow().data.clone());
 unsafe { Some(&mut *self.data.as_ref().unwrap().as_ptr()) }
 }
 None => None,
 }
 }
}

As you can see, we’ve got to do some pointer coercion to get what we want. We use
the as_ptr() method on RefCell to get *mut T; next, we dereference that pointer;
then we take another reference. This approach isn’t pretty, but it works. Keep in
mind that this structure isn’t thread-safe. Finally, we can test it, and the code prints
what we expect:

573.2 Functional Rust
let mut dinosaurs = LinkedList::new("Tyrannosaurus Rex");
dinosaurs.append("Triceratops");
dinosaurs.append("Velociraptor");
dinosaurs.append("Stegosaurus");
dinosaurs.append("Spinosaurus");
dinosaurs
 .iter()
 .for_each(|data| println!("data={}", data));

dinosaurs
 .iter_mut()
 .for_each(|data| println!("data={}", data));

One more thing: we need to add the IntoIterator trait and remove the previous
impl<T> Iterator for LinkedList<T> {} block. By doing so, we can iterate over
our list by using a for loop:

impl<'a, T> IntoIterator for &'a LinkedList<T> {
 type IntoIter = Iter<'a, T>;
 type Item = &'a T;
 fn into_iter(self) -> Self::IntoIter {
 self.iter()
 }
}
impl<'a, T> IntoIterator for &'a mut LinkedList<T> {
 type IntoIter = IterMut<'a, T>;
 type Item = &'a mut T;
 fn into_iter(self) -> Self::IntoIter {
 self.iter_mut()
 }
}
impl<T> IntoIterator for LinkedList<T> {
 type IntoIter = IntoIter<T>;
 type Item = T;
 fn into_iter(self) -> Self::IntoIter {
 self.into_iter()
 }
}

We can test the code as follows, using a plain old for loop:

for data in &linked_list {
 println!("with for loop: data={}", data);
}

The compiler knows which implementation of IntoIterator to use based on the type
passed to the for loop. In this case, we’re passing &linked_list, so the compiler uses
the form that returns &T, calling the iter() method on LinkedList.

 When you have iterators implemented, they unlock a lot of built-in functionality,
including for_each(), map(), reduce(), filter(), zip(), and fold(). You can also
use for … {} with structures that implement IntoIterator or Iterator.

Wraps iter()
on LinkedList

Wraps iter_mut()
on LinkedList

We don’t need the 'a
lifetime parameter here
because it’s not used later.

Wraps into_iter()
on LinkedList

58 CHAPTER 3 Code flow
NOTE I generally prefer using the for_each() method as opposed to the for
… {} loop syntax, although these approaches are functionally equivalent.
for_each() accepts a function as its argument, which means that you can pass
a closure or another function to it directly. In special cases, such as when
you’re using async/await, you must use a for loop rather than for_each().

3.2.5 Iterator features

Let’s take a quick tour of the features that iterators unlock. Here’s an example of
map():

let arr = [1, 2, 3, 4];
println!("{:?}", arr);
let vec: Vec<_> = arr.iter().map(|v| v.to_string()).collect();
println!("{:?}", vec);

First, we initialize an array with some integers. Next, we convert our integers to strings
of integers (that is, print them to a string). To do that, we map each value to a string
by using map(). map() takes a function as its argument; it’s a higher-order function.
Let’s take a quick look at the signature of map():

fn map<B, F>(self, f: F) -> Map<Self, F>
where
 F: FnMut(Self::Item) -> B,
{ ... }

The map() method takes a function with one parameter, Self::Item, as noted by the
trait bounds. If you recall from the Iterator trait, Self::Item is defined by the iterator
itself. In the case of a slice, array, or Vec, Self::Item is &T. That function can return any
type, denoted by the B generic parameter. What’s most interesting about map() is that it
merely returns another iterator, this time a special one called Map that Rust provides.
We pass a closure to map(), but we could also supply the i32::to_string() function
directly as an argument.

TIP Rust’s iterators use lazy evaluation when possible, such as with map().
The results are not computed until you force evaluation (such as by calling
collect()).

The last step is calling collect(), which converts an iterator to a collection—usually,
a Vec. You’ll notice that we have to tell the compiler what the target type is because it
can’t figure out the type automatically. Running the preceding code produces the fol-
lowing output:

[1, 2, 3, 4]
["1", "2", "3", "4"]

Suppose that we want to do something slightly more elaborate. Perhaps we want to
convert a Vec to a LinkedList from the Rust standard library while also applying a

593.2 Functional Rust
transformation. Let’s reuse the second vec from the preceding example and parse our
strings back into integers:

let linkedlist: LinkedList<i32> =
 vec.iter().flat_map(|v| v.parse::<i32>()).collect();
println!("{:?}", linkedlist);

We did something new by using flat_map() instead of map(). Why are we using
flat_map()? Because String::parse() returns a Result, so we need to flatten the
result of that parsing operation. We could call unwrap() after parsing, but flat_map()
is a little cleaner, and it handles errors somewhat gracefully (by tossing them aside).

 To elaborate, flat_map() flattens the Result by calling the Result::into_iter()
method, which returns an iterator over the Ok value if it’s present or an empty iterator
if it’s not. The Err value is ignored when the Result is flattened.

 The problem is that if our parsing contains an error, we might not catch it. Not to
worry. partition() has our back:

let arr = ["duck", "1", "2", "goose", "3", "4"];
let (successes, failures): (Vec<_>, Vec<_>) = arr
 .iter()
 .map(|v| v.parse::<i32>())
 .partition(Result::is_ok);
println!("successses={:?}", successes);
println!("failures={:?}", failures);

Here, we’re taking a list of strings and trying to parse each string into an integer.
Because we managed to get a duck and a goose in there (they aren’t integers), parsing
them will fail. We want to split, or partition, the result of the parsing job, so we’re going
to partition on Result::is_ok(), which returns true if the result is Ok. Running the
preceding code prints the following:

successses=[Ok(1), Ok(2), Ok(3), Ok(4)]
failures=[Err(ParseIntError { kind: InvalidDigit }),
Err(ParseIntError { kind: InvalidDigit })]

That’s odd—our successes and failures are still wrapped in a Result, which makes
sense because we didn’t unwrap them. We can unwrap them with another step:

let successes: Vec<_> =
 successes.into_iter().map(Result::unwrap).collect();
let failures: Vec<_> =
 failures.into_iter().map(Result::unwrap_err).collect();
println!("successses={:?}", successes);
println!("failures={:?}", failures);

Notice that we’re calling into_iter() on our Vec because when we unwrap the
Result, we also want to consume it. into_iter(), if you recall, consumes the Vec and
its contents. Running the preceding code produces the following:

60 CHAPTER 3 Code flow
successses=[1, 2, 3, 4]
failures=[ParseIntError { kind: InvalidDigit },
ParseIntError { kind: InvalidDigit }]

Sweet! Everything is as it should be.

TIP Try to avoid using constructs such as for and while loops; instead, use
collections with iterators. Instead of a for loop, you can use for_each(), and
instead of a while loop, you can use map_while().

We can get quite elaborate in chaining operations with iterators. Rust also provides a
few special-purpose iterators to handle more complex tasks, such as counting with
Enumerate. Here’s an example that shows how we might use Enumerate with a list of
dog breeds:

let popular_dog_breeds = vec![
 "Labrador",
 "French Bulldog",
 "Golden Retriever",
 "German Shepherd",
 "Poodle",
 "Bulldog",
 "Beagle",
 "Rottweiler",
 "Pointer",
 "Dachshund",
];

let ranked_breeds: Vec<_> =
 popular_dog_breeds.into_iter().enumerate().collect();

println!("{:?}", ranked_breeds);

Running this code yields the following output:

[(0, "Labrador"), (1, "French Bulldog"), (2, "Golden Retriever"),
(3, "German Shepherd"), (4, "Poodle"), (5, "Bulldog"), (6, "Beagle"),
(7, "Rottweiler"), (8, "Pointer"), (9, "Dachshund")]

That’s close but probably not quite what we want. It would make sense to start the count
at 1 instead of 0. With a small change, we can improve the code to get the result we’re
looking for:

let ranked_breeds: Vec<_> = popular_dog_breeds
 .into_iter()
 .enumerate()
 .map(|(idx, breed)| (idx + 1, breed))
 .collect();

We added a map() after enumerate() to unpack the tuple produced by enumerate()
and return it with 1 added to the index. Now we get the result we want:

61Summary
[(1, "Labrador"), (2, "French Bulldog"), (3, "Golden Retriever"),
(4, "German Shepherd"), (5, "Poodle"), (6, "Bulldog"), (7, "Beagle"),
(8, "Rottweiler"), (9, "Pointer"), (10, "Dachshund")]

What if we want to count down instead of up? We can reverse the list with rev():

let ranked_breeds: Vec<_> = popular_dog_breeds
 .into_iter()
 .enumerate()
 .map(|(idx, breed)| (idx + 1, breed))
 .rev()
 .collect();

Iterators are among my favorite abstractions in Rust. It’s remarkable how quickly you
can go from a quick-and-dirty data structure to a full-featured collection simply by
implementing a few iterator traits.

TIP For a complete list of all features provided by Rust’s iterators, consult the
standard library reference at https://doc.rust-lang.org/std/iter/index.html.

Between iterators and closures, Rust provides what you need to write purely functional
code easily. Rust’s memory model does make it trickier to perform specific tasks in
Rust that may be trivial in other languages, but almost no other language can compete
with Rust in terms of features, safety, and performance.

Summary
 Pattern matching allows us to unpack data structures and handle a variety of sce-

narios in a much cleaner way than using combinations of if/else statements.
 We can use pattern matching with the ? operator to handle errors gracefully

and unwrap or destructure values.
 We can destructure nested structs and enums when pattern matching, and we

can also match on values.
 Rust encourages functional programming patterns, particularly with closures

and iterators. Learning these patterns will help you use Rust effectively.
 Iterators use a fluent interface, and along with closures, we can easily express

operations and mutations on data structures.
 Iterators typically hold a reference to the data (such as borrowed data) or use a

move to move the items out of the underlying sequence.
 Usually, the iter() method returns an iterator with references, and into_iter()

gives us an iterator that takes ownership with a move.

https://doc.rust-lang.org/std/iter/index.html

Part 2

Core patterns

Core patterns are those that we use over and over, almost to the point at
which they become clichés. So it’s vital for our success to master these core pat-
terns and understand them well. Also, we need to make sure that we speak the
language of patterns in a way that enables us to communicate our systems and
designs to other people.

 Occasionally, it’s good to remember that patterns are not the goal. We may
need to step back from our work and view it from a higher level to ensure that
we’re not applying patterns mindlessly without understanding the problem
we’re trying to solve.

 The goal of software design is rarely to use all the features of a language or
maximize the number of lines of code. Rather, the goal is to solve problems and
create enduring value. Patterns are tools that help us reach that goal, but they’re
not the only ones we have at our disposal. Sometimes, the best solution is the
simplest one or the one that is best understood. We also write software for fun
sometimes, and that’s fine too.

Introductory patterns
Now we’re ready to dive into some more concrete patterns. We begin by reviewing
some elementary topics: RAII, passing values, constructors, and visibility. Then we’ll
move on to slightly more complex subjects: error handling and global variables.
Although the chapter discusses many topics, it focuses on bite-size patterns, which
we’ll use a lot.

 This chapter also introduces crates, which are Rust libraries built by the com-
munity. The Rust language is built on crates, which are crucial parts of Rust pro-
gramming; you won’t get far without using them. Although it’s possible to go full

This chapter covers
 Understanding resource acquisition is

initialization

 Passing arguments by value versus reference

 Using constructors

 Understanding object member visibility and
access

 Handling errors

 Global state handling with lazy-static.rs,
OnceCell, and static_init
65

66 CHAPTER 4 Introductory patterns
not-invented-here syndrome and eschew crates, I don’t recommend this approach.
Even the largest, best-funded organizations rely heavily on open source software to
build their stacks to varying degrees.

 You’ll quickly find when working with Rust that the standard library is somewhat
bare and doesn’t include many of the features you might expect from a modern lan-
guage. These limits are by design; the Rust team chose to keep the standard library
minimal and instead rely on crates to provide additional functionality. This approach
has several benefits:

 The standard library is smaller and easier to maintain.
 The standard library is more stable and less likely to change.
 The standard library is more focused on core functionality.
 The community can build and maintain separate competing crates for special-

ized functionality, allowing developers to choose the most suitable crate for
their needs.

If you want to work exclusively with proprietary software, you should pay attention to
the licenses provided by each crate. Because this book is intended to be educational, I
will assume that you’re fine with relying on open source software with licenses that
may not be compatible with commercial or proprietary use. The bulk of Rust crates
use permissive licenses, which permit nearly any use.

4.1 Resource acquisition is initialization
Resource acquisition is initialization (typically referred to as RAII) originated with C++
and is arguably one of the most important modern programming idioms. RAII is a key
feature in Rust: it allows us to confidently implement a variety of other patterns and
plays a critical role in Rust’s safety features.

 There’s some question about whether RAII is an idiom or a pattern, but I’ll
describe it as a pattern rather than an idiom because it’s a formalized way of han-
dling resources in a program, as opposed to a more informal way of formatting
code. Additionally, RAII affects the overall program structure and architecture,
which is more in line with a pattern than an idiom.

4.1.1 Understanding RAII in C and C++

In this section, I’ll quickly explain RAII and how it works in case you’ve never encoun-
tered the concept. For any seasoned programmer, this section is likely to be a review
of a well-understood concept. We’ll examine some C and C++ code because C++ gave
birth to RAII as an improvement to C. If you’re unfamiliar with either language, don’t
worry; the examples are simple, and you don’t need to understand them in depth.

 RAII uses the stack within a particular scope to determine when resources (such
as variables) can be released. The name may be confusing because RAII is usually
thought of as a way to handle the release of resources instead of the acquisition and
initialization of resources, as the name implies. These functions are related, however,

674.1 Resource acquisition is initialization
so let me explain further. To begin, let’s examine what happens if we declare a sim-
ple variable within a function in C:

void func() {
 int a;
 // Some code goes here that does something with a.
}

In this C function, we declare a variable a. Although we’ve declared the variable in our
function, we haven’t initialized it, which we do by assigning a value to the variable. Thus,
the value of a in the example is undefined because it hasn’t been initialized. Commonly,
you’ll see code like the following snippet in C, which handles both the declaration and
initialization:

void func() {
 int a = 0;
}

This code declares and initializes a to the value of 0. We know now that a is 0 at the
time of declaration. When the function returns, a goes out of scope and is popped
off the stack, which means the variable is released. The C language doesn’t do any-
thing special when a variable is released.

 Now, what happens when a is a pointer? In other words, if a points to memory
somewhere else, what happens when a is released? In C, we might have some code
like this:

void func() {
 int *a = malloc(sizeof(int));
}

This code creates a memory leak because we’re allocating memory from the heap with
malloc() and assigning the address to a, which is returned by the malloc() function.
Note that sizeof(int) contains the size in bytes of an int or integer, which is often 4
bytes, but this setting is platform-dependent.

 When we return from this function, the pointer a is released, but the memory
blocks that our pointer addresses are not released, so we’ve created a memory leak.
The solution in this case is to call free(a) to release the address at a before returning
from the function.

 But here’s the problem: What if we can return from multiple places within our
function? Suppose that we write the following code:

void leaky_func() {
 FILE *fp;
 int *a = malloc(sizeof(int));
 *a = 0;

Initializes the
value of a to 0

68 CHAPTER 4 Introductory patterns
 // try to open a file for reading
 fp = fopen("file.txt", "r");
 if (fp == NULL) {
 // there was an error!
 return;
 }

 // Now we can read from the file at fp.
 // ...

 fclose(fp);
 free(a);
}

The function leaky_func opens a file for reading, but if a failure occurs when opening
the file (such as when the file doesn’t exist), we return from our function early. We’ve
also introduced a memory leak because we won’t release the memory from a when a fail-
ure occurs. This situation is a classic memory leak and one of the downsides of working
with languages like C.

 One of C++’s ambitions was to make it harder to introduce memory leaks, and one
way it did so was by using constructors and destructors. When you create a class or struct
in C++, it always calls the constructor at the time of creation. When you destroy an
object in C++, it always calls the destructor. If you create an object on the stack in C++,
it automatically calls the constructor and destructor for you. But if you create an
object on the heap, you need to use the new and delete keywords to release the mem-
ory and call the constructors and destructors, respectively. new and delete in C++ are
equivalent to malloc() and free() in C. These keywords don’t solve the memory leak
problem, but RAII helps you avoid memory leaks by using smart pointers.

 A smart pointer is a special kind of pointer that provides a constructor that wraps
new and a destructor that wraps delete. Because the compiler guarantees that any
variable going out of scope will have its destructor called, we can build on top of this
behavior to effectively eliminate one class of memory leaks, but only if we always use
smart pointers.

 To make matters more complicated, C++ is backward-compatible with C, so C code
is perfectly valid C++. For this reason, C++ provides as much opportunity to shoot
yourself in the foot as C does despite the introduction of constructors, destructors,
and smart pointers.

 As you can probably guess, although C++ gave people the tools to solve one class of
memory leaks, they didn’t always use the tools correctly (or at all), so C++ made only
small strides in fixing this problem. The C++ equivalent to the preceding C code, this
time using std::shared_ptr instead of a plain C pointer, looks something like this:

#include <fstream>
#include <memory>

void func() {
 std::shared_ptr<int> a(new int(0));

Closes the
file pointer

Releases the memory
pointed to by a

694.1 Resource acquisition is initialization
 std::ifstream stream("file.txt");
 if (!stream.is_open()) {
 // error!
 return;
 }

 // Now we can read from our file.
 // ...
}

Notice that we use std::shared_ptr for our pointer a, which eliminates the memory
leak. It no longer matters where we return from the function because the compiler
guarantees that when we do return, our code will always run the destructor for a,
which releases the memory. Even if an exception is thrown, the destructor is guaran-
teed to run.

Scoping in C
In old versions of C, you could declare variables only at the top of a function or at the
file level. You couldn’t declare a variable within a for loop, for example:

void old_C_func() {
 int a;

 for (a = 0; a < 10; a++) {
 // OK
 }

 for (int b = 0; b < 10; b++) {
 // Not allowed! b is in block scope.
 }
}

Block scoping, as in this example, wasn’t officially added to C until 1989 with the
introduction of ANSI C, although some compilers may have supported it earlier. C has
three main kinds of scope:

 Function scope—Variables declared at the function level
 Block scope—Variables declared within a code block
 File scope—Variables declared in a file

Variables within blocks can be nested and may be shadowed. The following code is
valid:

void shadowing() {
 int a = 0;
 {
 int a = 1;
 printf("inner a=%d\n", a);
 }
 printf("outer a=%d\n", a);
}

70 CHAPTER 4 Introductory patterns
How does the compiler implement RAII? It does so through the use of the stack,
which is scoped within a function or block, often denoted by curly braces ({ … }). Each
new variable is pushed onto the stack when you enter a particular scope (such as a
function). When you leave the scope, each variable is popped off the stack. The com-
piler has to store a little extra data alongside each variable so that it knows how to
destroy each value safely. Still, the overhead is minimal and generally amounts to an
additional pointer for anything that requires cleanup.

4.1.2 A tour of RAII in Rust

Object management in Rust follows the rules of RAII with two exceptions: unsafe code
and Copy values. Variables must be initialized with a value at the time of declaration,
and when a variable goes out of scope, it’s destroyed with a destructor call (which we’ll
discuss later in this section).

 Although the process of initializing variables and calling the destructor may be
obscured by abstractions or layers of indirection, a variable must always be initial-
ized with a value (unlike in C or C++, where you can have uninitialized variables),
and an object’s destructor is always called when it goes out of scope. For simple
variables (such as those that aren’t pointers, including Rc and Arc), Rust’s borrow
checker and move semantics make it relatively easy to reason about when variables
or objects go out of scope and, thus, when they’re destroyed.

 Objects that are Copy—including primitive types such as integers, floats, and
Booleans, and simple structures composed only of primitives—cannot have their
destructors called because they’re copied by value rather than being moved. The
lack of destructors for Copy objects is a special case, and you’ll need to be aware of
it when you’re working with Copy objects. You cannot define a destructor for a Copy
object or rely on the destructor’s being called for Copy objects. The trivial piece of
code in the following listing illustrates the way RAII works.

fn main() {
 let status = String::from("Active");

(continued)

In this example, we shadow a by declaring it twice: once at the function level and
again within a code block. If you were to run the code, it would print the following:

inner a=1
outer a=0

Rust has block scoping, and you can shadow variables as well. Rust follows rules on
scoping similar to those of modern C and C++, and it has some additional rules on
handling moves, lifetimes, and borrowing. Notably, in Rust, a variable can outlive its
declared scope if it’s moved, which is a crucial difference from C and C++.

Listing 4.1 Resource acquisition

String constructor acquires and
allocates memory to hold a string

714.1 Resource acquisition is initialization
 let statuses = vec![status];
 println!("{:?}", statuses);
}

We can picture the construction part of this code, as shown in figure 4.1. Our new
objects, which allocate memory on the heap behind the scenes (once for String
and once for Vec), are created. The objects are initialized with the values we pro-
vide and then pushed onto the stack for the local scope. Because we transfer the
ownership of the original status variable to statuses, the status on the stack
effectively becomes an invalid reference. The Rust compiler handles this situation
transparently, however, so we don’t need to worry about it.

We can picture the destruction part of this code, as shown in figure 4.2. Our new
objects are destroyed one at a time as they’re popped off the stack. For containers
such as Vec, the destructor automatically calls the destructor for all children as well.
So our original status string is destroyed along with statuses, although the original
status reference is no longer valid because it has been moved.

 In Rust, destruction is handled by an automatically generated destructor, which
also recursively calls the destructor of every object member. The destructor first calls
the drop() method for a given type, which is defined by the Drop trait as follows:

pub trait Drop {
 fn drop(&mut self);
}

Ownership of the string is passed into a
Vec<String> upon initialization, and now
the status string is held by statuses.statuses goes out of scope

and releases both the Vec
and String.

let status = String::from("Active");

let statuses = vec![status];

Stack

Stack

status: String

Stack

status: String

statuses: Vec<String>

The first object is pushed
onto the stack.

The second object is added
to the stack, and the
reference to status is
invalidated because its
ownership was transferred.

Construction

Figure 4.1 RAII entry and construction

72 CHAPTER 4 Introductory patterns
If you implement Drop for any type, its corresponding drop() method is guaranteed
to be called whenever a variable of that type goes out of scope. Then the automatic
destructor recursively calls the destructors of every member variable.

 Rust always calls the destructors for all objects whenever they go out of scope, so
you don’t need to call drop() manually. Also, you can’t override this behavior without
using unsafe. (That is, you can’t stop Rust from calling destructors.)

4.1.3 Summarizing RAII in Rust

There are a few key points to remember about RAII in Rust, much of which will be
intuitive to anyone who’s familiar with RAII (as in C++ and other languages):

 RAII is used extensively in Rust.
– Rust does not feature garbage collection; memory management is explicit.

Allocating memory on the heap is normally accomplished with Box or Vec.
– Object lifetimes are deterministic and known at compile time (except when

you’re using smart pointers).
– Stack-allocated objects follow the same RAII rules as heap-allocated ones.

 Memory management objects use RAII.
– Box and Vec use RAII to acquire, initialize, and release memory resources.
– Smart pointers such as Rc and Arc use RAII to implement reference count-

ing each time a pointer is cloned and destroyed.
– RefCell returns the borrow references Ref and RefMut, which use RAII to

guard against multiple simultaneous references.

Destruction

statuses.drop();

// status was dropped

The are popped off thestatuses

stack, and each child is released
along with the parent .Vec

The remaining status was
previously moved into
statuses and already dropped.

Stack

Stack

status: String

Stack

status: String

statuses: Vec<String>

Figure 4.2 RAII exit and destruction

734.1 Resource acquisition is initialization
 Several synchronization primitives use RAII.
– Mutex::lock() returns a MutexGuard on success. MutexGuard is an RAII-

based lock guard that automatically unlocks the mutex when it’s destroyed.
– RwLock returns RwLockReadGuard or RwLockWriteGuard when you acquire

shared read or exclusive write access, respectively, for a read-write lock.
– Condvar requires a MutexGuard to wait on a condition variable, as shown in

listing 4.2.

To demonstrate RAII in Rust, we’ll use Mutex and Condvar to create a simple threaded
example, which involves creating one thread that increments a value and notifies the
main thread when it’s done.

use std::sync::{Arc, Condvar, Mutex};
use std::thread;

fn main() {
 let outer = Arc::new(
 (Mutex::new(0), Condvar::new())
);
 let inner = outer.clone();

 thread::spawn(move || {
 let (mutex, cond_var) = &*inner;
 let mut guard = mutex.lock().unwrap();
 *guard += 1;
 println!("inner guard={guard}");
 cond_var.notify_one();
 });

 let (mutex, cond_var) = &*outer;
 let mut guard = mutex.lock().unwrap();
 println!("outer before wait guard={guard}");
 while *guard == 0 {
 guard = cond_var.wait(guard).unwrap();
 }
 println!("outer after wait guard={guard}");
}

This example demonstrates multiple simultaneous uses of RAII—enough to make
anyone’s head spin. To summarize:

 Mutex wraps an arbitrary value (in this case, an integer, but we could wrap any
object in a mutex) that is released when it goes out of scope

Listing 4.2 RAII in Rust with Mutex and Condvar

We declare a mutex and condition
variable within a tuple, with the
mutex wrapping an integer, and clone
it on the next line.

Here, we move and unpack the
inner Arc and its tuple to a separate
mutex and condition variable.

We acquire a mutex guard
by locking the mutex.

We’ll increment the
integer wrapped by the
mutex so we can see
when it changes.

Last, within the inner thread, we notify the
condition variable that the data is ready.

At this point, the spawned thread exits, and the
inner Arc and mutex guard go out of scope, releasing
the lock on the mutex and the inner pointer.

We must acquire a lock on the
mutex in the main (outer) thread
before we can read the value.

We’ll loop forever in the
outer thread until the
mutex value changes.

To wait on the condition variable,
we pass ownership of our guard to
the condition variable, and the
condition variable returns the
guard to us when notified.

74 CHAPTER 4 Introductory patterns
 Mutex and Condvar use the MutexGuard’s RAII to hand off a locked mutex.
 Arc provides a thread-safe reference-counted pointer to our mutex and condition

variable.

When the inner thread exits, the MutexGuard is released, which unlocks the mutex,
and the Arc is dropped, which releases the pointer to the mutex and condition vari-
able. The outer thread simultaneously acquires the lock on the mutex, waits for the
condition variable to be notified, and releases the lock when the guard goes out of
scope. Note that we don’t know which thread will run first, so we must wait for the
condition variable to be notified before we can proceed, and we can’t guarantee the
order of execution.

 RAII is a powerful pattern that allows us to manage resources safely and handle
cleanup automatically. Rust’s strict rules on ownership and borrowing make it easy to
reason about when objects go out of scope and when their destructors will be called.

4.2 Passing arguments by value vs. reference
At first glance, this topic may appear to be basic or entry-level. After spending some
time writing Rust code, however, you’ll realize that it’s imperative to think carefully
about whether you want to pass arguments by value or reference. A lot of nuance is
involved, but I’ll provide some guidance on how to use the common patterns and
when to do what.

4.2.1 Passing by value

In Rust, passing arguments by value typically constitutes a move. In simple terms, a
move occurs when you transfer the ownership of an object from one scope to another.
A move could occur when a function is called, a closure is created, an object is
assigned, or a value is returned from a function. Another interesting property of pass-
ing by value is the fact that it respects RAII. The simple code sample in the following
listing illustrates passing by value.

fn reverse(s: String) -> String {
 let mut v = Vec::from_iter(s.chars());
 v.reverse();
 String::from_iter(v.iter())
}

This code is an example of a function that reverses the characters in a string. The
function takes a string by value and returns a new string. We can test our function as
follows, ensuring that the returned value is the reverse of the one provided:

assert_eq!("abcdefg", reverse(String::from("gfedcba")));

Listing 4.3 Reversing a string, passing by value

Constructs a Vec from an iterator
over the characters in s

Reverses the newly
constructed vector in place

Returns a new string from an iterator over
the reversed characters in our vector v

754.2 Passing arguments by value vs. reference
Sometimes, it’s handy to move values into a function and immediately move them
back out, as in the preceding example. We might do this to avoid borrowing or clon-
ing a value. If we have multiple values to return, we can return a tuple instead:

fn reverse_and_uppercase(s: String) -> (String, String) {
 let mut v = Vec::from_iter(s.chars());
 v.reverse();
 let reversed = String::from_iter(v.iter());
 let uppercased = reversed.to_uppercase();
 (reversed, uppercased)
}

Although this example has only one argument passed into the function, we could eas-
ily pass in multiple arguments by value and return multiple values. We can test the
code as follows:

assert_eq!(
 reverse_and_uppercase("abcdefg".to_string()),
 ("gfedcba".to_string(), "GFEDCBA".to_string())
);

Don’t be afraid to pass by value, but be aware that it performs a move for any type that
doesn’t implement Copy, although this can be advantageous sometimes.

4.2.2 Passing by reference

You obtain a reference to an object or variable by borrowing it. You can think of it as
behaving similarly to a pointer except that you can’t perform bitwise or arithmetic oper-
ations on a reference, and you can pass a reference or assign it only once without
manipulating the reference after assignment. References are denoted by a & prefixing
the type specifier and may include lifetimes, represented by a single quote (') following
the & and an optional lifetime identifier such as &'a String. References can be immutable
(&str, the default) or mutable (&mut String). Let’s rewrite our reverse function, but
this time, we’ll pass the input by reference, as shown the following listing.

fn reverse(s: &str) -> String {
 let mut v = Vec::from_iter(s.chars());
 v.reverse();
 String::from_iter(v.iter())
}

You may notice immediately that these two functions have only one difference: the
argument s: String has been swapped for s: &str. When we test our code, however,
we can do things slightly differently:

assert_eq!("abcdefg", reverse("gfedcba"));

Listing 4.4 Reversing a string, passing by reference

76 CHAPTER 4 Introductory patterns

Notice that instead of creating a string with String::from(), we can pass a static
string (such as &'static str). This approach is nice and a little more ergonomic. If
we wanted to do so, we could call our reverse function as follows:

assert_eq!(
 "race car", reverse(&String::from("rac ecar"))
);

What if we want to update our string in place? This process is a little trickier because
we can’t easily perform a proper (zero-copy) in-place reversal. We can emulate the
behavior as shown in the following listing. This code provides suitable performance at
the expense of some temporary memory overhead.

fn reverse_inplace(s: &mut String) {
 let mut v = Vec::from_iter(s.chars());
 v.reverse();
 s.clear();
 v.into_iter().for_each(|c| s.push(c));
}

We can test our in-place reversal like this:

let mut abcdefg = String::from("gfedcba");
reverse_inplace(&mut abcdefg);
assert_eq!("abcdefg", abcdefg);

Listing 4.5 Reversing a string in place (sort of)

Why is it impossible to mutate Rust strings in place?
You may have noticed that in-place string manipulation in Rust isn’t easy. The reason
is simple: strings in Rust are always valid UTF-8, which means that characters could
span multiple bytes or be composed of grapheme clusters in the Unicode standard.

A grapheme is the smallest unit of a writing system, which could be an ordinary char-
acter (such as the letter a), or a character that includes an accent such as é or an
emoji character. When we think about strings and characters, we tend to believe that
one displayed character equals 1 byte, which is true only of strict ASCII characters.

Because grapheme clusters can span multiple Unicode characters and multiple
bytes, it’s quite complicated to handle them correctly, so the Rust standard library
does not support handling them directly. Instead, you need to use a crate such as
unicode-segmentation (https://crates.io/crates/unicode-segmentation).

If you need to update a string in place by manipulating its bytes, you have two
options:

 You can use the std::mem::take function to gain access to the underlying
bytes of a string and manipulate a buffer directly.

Borrowing a String gives us &str
because String implements the
Borrow and BorrowMut traits
to return &str and &mut str,
respectively.

https://crates.io/crates/unicode-segmentation

774.2 Passing arguments by value vs. reference
4.2.3 When to do what: Passing by value vs. reference

It may not be clear at first when to pass a value by reference or by value by using a move,
so I’ll provide some general guidelines to help you develop some intuition. As with any-
thing, practice will help you get a sense of which pattern is correct in which situations. If
you consider yourself to be intermediate or advanced in Rust (or a language with similar
semantics), this fact may be obvious. Still, it may be beneficial to formalize these ideas
and perhaps make some new neural connections, which could be valuable in light of the
current trendiness of neural networks.

 To add one more layer of complexity, keep in mind that object methods typically
take self as an argument, still following the same rules: self can be passed by value
(performing a move) or by reference (no move), which, as we’ll discuss throughout
this book, can create some interesting patterns that are somewhat unique to Rust. To
begin, let’s look at different ways to handle arguments (table 4.1).

Most of the time, you want to pass arguments by reference. Generally, you wouldn’t
want to pass by reference in only two cases: when you use primitive types (such as i32
and usize) and when you need to move the ownership of a value into the callee and
possibly return the same value as part of a new object or on its own. But you need to
think carefully about why you’re transferring ownership. Do you want to mutate the
value? If so, is there a reason why you can’t use a reference (such as to avoid copies or
method chaining)?

 You can use an unsafe method, such as String::as_mut_vec() or
str::as_bytes_mut(), which returns references to the underlying bytes.

The first method is preferred, as it doesn’t require unsafe code, but in either case,
you need to consider how to handle UTF-8 characters safely. If you try to manipulate
the bytes of a string directly, you may get some peculiar results.

Table 4.1 Summary of argument passing

Argument passed by Prefix Moved? Ownership Default use case

Reference & No Retained by caller The callee requires temporary
access to a value.

Mutable reference &mut No Retained by caller The callee needs to mutate a
value without ownership.

Value N/A Yes Transferred to callee The callee needs to obtain
ownership of the value.

Mutable value mut Yes Transferred to callee The callee needs to obtain own-
ership and mutate the value.

78 CHAPTER 4 Introductory patterns
 To help you evaluate what to do, I created the simple flowchart shown in figure 4.3.
You can refer to this flowchart for guidance on handling argument passing in most
cases, at least until the process becomes second nature.

4.3 Constructors
Strictly speaking, Rust does not have a formal notion of a constructor in the same way
that languages such as C++, C#, and Java do. In Rust, a constructor is merely a design pat-
tern in which you create a method, typically called new(), that accepts any number of
initialization arguments and returns a new object immediately after creation. Although
Rust has no new keyword, it can help you to think about it as being equivalent to new in
other languages. But understand that (as already mentioned) Rust has no formal concept

Figure 4.3 Deciding how to handle arguments

No

Yes

No

Yes

Is the argument

a primitive type

such as i32

or ?usize

Would you

like to return

the value, such as to

support method

chaining or object

initialization?

Should the function

consume the

argument?

Pass by value,

such as

s: String.

Pass by mutable

value, such as

mut s: String.

Pass by

reference, such

as .s: &str

Pass by mutable

reference, such as

s: &mut str.

No

No

Yes

Yes
Yes

No

Do you want to

modify

the value in place?

Do you want to

modify

the value in place?

Handling

arguments

794.3 Constructors
of a constructor; therefore, any constructors you find in Rust are strictly conventional
patterns, not special methods, as they are in C++, Java, and C#.

 The following listing illustrates a simple constructor by creating a container to
model a pizza with toppings. Note that the constructor doesn’t provide a way to add
toppings (yet).

#[derive(Debug, Clone)]
pub struct Pizza {
 toppings: Vec<String>,
}

impl Pizza {
 pub fn new() -> Self {
 Self { toppings: vec![] }
 }
}

We can make an empty Pizza:

let pizza = Pizza::new();
println!("pizza={:?}", pizza);

Running the preceding code produces the following output:

pizza=Pizza { toppings: [] }

For simple cases, you’ll likely want to initialize objects with some values, perhaps derived
from constructor arguments. In Rust, new() typically takes no arguments and returns an
empty object, as is the case with Vec::new(), which returns an empty vector.

 There’s no rule against including initialization arguments with new(), but it’s com-
mon to implement the From trait instead when you want to create a new object from
another object. This approach makes sense only when a 1:1 mapping exists (when
String::from(…) constructs a new string, for example). Let’s rewrite our constructor
from listing 4.6 so that we can initialize our pizza’s toppings.

impl Pizza {
 pub fn new(toppings: Vec<String>) -> Self {
 Self { toppings }
 }
}

Let’s test our new constructor:

let pizza = Pizza::new(vec![
 String::from("tomato sauce"),

Listing 4.6 Modeling a pizza pie

Listing 4.7 A better pizza constructor

This constructor
takes no arguments
and returns Self
(an empty Pizza).

Our constructor takes a
Vec with our toppings
and moves those
toppings into our newly
constructed pizza.

Because the name of the constructor
argument and the Pizza member are the same,
we can shorten toppings: toppings to toppings.

80 CHAPTER 4 Introductory patterns
 String::from("mushrooms"),
 String::from("mozzarella"),
 String::from("pepperoni"),
]);
println!("pizza={:#?}", pizza);

When we test our pizza, which is likely to taste a lot better, the code prints the following:

pizza=Pizza {
 toppings: [
 "tomato sauce",
 "mushrooms",
 "mozzarella",
 "pepperoni",
],
}

Because Rust doesn’t permit function overloading, you can create only one method
called new(), so think carefully about what you want this function to do. In most cases,
the function should provide the minimally necessary behavior, such as returning a new
empty object (as with Vec::new()) with the minimum required arguments. Also, some
people create additional constructors that begin with new_ and take additional argu-
ments. Vec::new_in(alloc: A) (available in nightly Rust only), for example, accepts an
optional memory allocator and returns an empty Vec that uses the specified allocator.

NOTE If your set of initialization arguments grows in complexity, you proba-
bly want to use the builder pattern, which we’ll discuss in chapter 5.

4.4 Object-member visibility and access
Rust generally defaults to private visibility. Optionally, you can make entities public with
the pub keyword. Public visibility has slightly different meanings depending on the con-
text. Here, we’ll discuss object members, in which case adding the pub keyword means
that they can be accessed or modified directly. Let’s revisit the pizza example from sec-
tion 4.3.1, this time making the toppings public outside the current module.

#[derive(Debug, Clone)]
pub struct Pizza {
 pub toppings: Vec<String>,
}

In effect, this code allows us to treat the toppings member as a plain variable and do
things like this:

let mut pub_pizza = Pizza {
 toppings: vec![String::from("sauce"), String::from("cheese")],
};

Listing 4.8 A pizza with pub toppings

Note the pub
visibility specifier.

814.4 Object-member visibility and access

// Remove the last topping.
pub_pizza.toppings.remove(1);
println!("pub_pizza={:?}", pub_pizza);

If we run this code, we’ll get the following output:

pub_pizza=Pizza { toppings: ["sauce"] }

When would you want to do this? Generally, you wouldn’t want to do this except
when you have data containers with no methods and their only purpose is to contain
data. Most of the time, you want to control access to members with accessors (meth-
ods that fetch private members) and modify members with mutators (methods that
allow you to mutate private members). Accessors and mutators are often called get-
ters and setters, though in Rust, it’s important to distinguish between setting a value
(such as a move) and mutating a value in place.

TIP A bit of boilerplate is involved in these methods, but tools like rust-
analyzer make generating getters and setters for each member easy. My book
Code Like a Pro in Rust (Manning, 2024; https://www.manning.com/books/
code-like-a-pro-in-rust) has a section on rust-analyzer, but you can refer to
the generators documentation at https://mng.bz/5lV8 for details.

Let’s update our pizza by changing the toppings back to private (we don’t want them
to be public) and adding an accessor, a mutator, and a setter.

impl Pizza {
 pub fn toppings(&self) -> &[String] {
 self.toppings.as_ref()
 }

 pub fn toppings_mut(&mut self) -> &mut Vec<String> {
 &mut self.toppings
 }

 pub fn set_toppings(&mut self, toppings: Vec<String>) {
 self.toppings = toppings;
 }
}

In this example, each method takes a reference to self, and the mutable methods
take a mutable reference. Note that I’m returning a slice from the underlying Vec
instead of a direct reference. Returning the data as a Vec and returning it as a slice are
equivalent, but merely returning a slice is slightly more idiomatic because a slice is
generally used to represent immutable contiguous sequences (such as the lowest com-
mon denominator).

Listing 4.9 Providing access to our pizza toppings

Our accessor or getter returns
a slice of the toppings vector.

Our mutator returns
a mutable reference
to the underlying
toppings vector.

Our setter takes a new vector by
value and replaces the existing

one with the new one.

https://mng.bz/5lV8
https://www.manning.com/books/code-like-a-pro-in-rust
https://www.manning.com/books/code-like-a-pro-in-rust
https://www.manning.com/books/code-like-a-pro-in-rust

82 CHAPTER 4 Introductory patterns
 We could also modify set_toppings() slightly so that it returns (or moves) the
existing toppings while replacing the current ones. We may want to call that modifica-
tion something like replace_toppings().

impl Pizza {
 pub fn replace_toppings(
 &mut self,
 toppings: Vec<String>,
) -> Vec<String> {
 std::mem::replace(&mut self.toppings, toppings)
 }
}

This code uses std::mem::replace(), allowing us to swap by replacing the existing
toppings with a move and returning the old toppings with another move. This
approach prevents cloning and duplication, which is an excellent little optimization.

4.5 Error handling
Handling errors in Rust is surprisingly uncomplicated. Common practice is to lean
heavily on Rust’s Result, which has special support in the language for the ? operator,
as demonstrated later in this section.

 Before I get into code samples, I should discuss the two sides of error handling:
producing errors (such as a function that might return an error) and handling results
(what to do when a function returns an error).

 When it comes to producing errors, we typically use plain structs or enums that
contain the necessary error metadata (error type, messages, and so on). The stan-
dard library provides a few error types (such as std::io::Error) that you can use,
but often, you merely include them within your own error types (as enum variants,
for example) or return them directly unchanged. Creating your own error type is
as simple as defining any struct or enum; then you can return that error within a
Result. The standard library also has an error trait, std::error::Error, that you
can implement for your own error types, but its use is optional. In practice, imple-
menting std::error::Error for custom error types is uncommon.

 Handling errors typically involves using a combination of two strategies: explicitly
handling each case with pattern matching (or some other control flow) or letting the
errors bubble up to the caller. For the latter option, we can sometimes get away with
using the ? operator. Using the ? operator is simple: postfix any function call that
returns Result or Option, and the ? operator unwraps the result for you while return-
ing from your function early if there’s an error or None (in the case of Option). This
approach can be convenient because it lets us chain function calls that may return
errors (or None in the case of Option). The downside to using ? is that it can be lazy.
Sometimes, you should handle errors and take action explicitly. When you use ?,

Listing 4.10 Providing a method to swap the toppings

834.5 Error handling
you’ll likely need to implement the From trait for your error types, creating another
place where you can mix in your error-handling logic.

 Let’s write a function that reads the nth line from a file and returns that line as a
string. As we’ll see, this function can fail in several ways, so we’ll need to handle each
case. The following listing shows our first attempt.

use std::path::Path;

#[derive(Debug)]
pub enum Error {
 Io(std::io::Error),
 BadLineArgument(usize),
}

impl From<std::io::Error> for Error {
 fn from(error: std::io::Error) -> Self {
 Self::Io(error)
 }
}

fn read_nth_line(path: &Path, n: usize) -> Result<String, Error> {
 use std::fs::File;
 use std::io::{BufRead, BufReader};
 let file = File::open(path)?;

 let mut reader_lines = BufReader::new(file).lines();
 reader_lines
 .nth(n - 1)

 .map(|result| result.map_err(|err| err.into()))
 .unwrap_or_else(|| Err(Error::BadLineArgument(n)))
}

Our function read_nth_line() uses the std::io::BufRead trait, which gives us sev-
eral handy features, including the lines() method, which returns an iterator over
each line in the file. Let’s test our function with the following code:

let path = Path::new("Cargo.toml");
println!(
 "The 4th line from Cargo.toml reads: {}",
 read_nth_line(path, 4)?
);

Listing 4.11 Reading the nth line from a file

Our error type is an enum
with two possible values. Error::Io contains

std::io::Error, which we
bubble up to the caller.

Error::BadLineArgument is the
error we’ll return when the line
number is invalid.

We implement From to allow
conversion of std::io::Error
to our error type Error.

Here, we use the ?
operator to obtain
a file handle.

BufReader gives us a buffered reader for our file
handle, and the BufRead trait provides lines(),
which gives us an iterator over each line in the file.

Note that we must subtract one
from n here because the first line
is the 0th line read from the file.

The nth() method returns
Option<Result<String,

std::io::Error>>, so we need to convert
the contained error to our error type.

Last, if the value returned is None, we
read past the end of the file before
hitting the target number of lines.

84 CHAPTER 4 Introductory patterns
Running this code produces the following output:

The 4th line from Cargo.toml reads: edition = "2021"

A subtle bug is introduced on the line where we subtract one from n when calling
nth(). An overflow will occur if n is 0, so we need to handle that bug. Note that if
the program is compiled in release mode, the overflow will be suppressed, as Rust
checks for integer overflows only when code is compiled in debug mode; other-
wise, it mimics the behavior of C.

 We have a few options for handling this case, but we’ll do a check on n and return
early with an error if the value is less than 1.

fn read_nth_line(path: &Path, n: usize) -> Result<String, Error> {
 if n < 1 {
 return Err(Error::BadLineArgument(0));
 }
 use std::fs::File;
 use std::io::{BufRead, BufReader};
 let file = File::open(path)?;

 let mut reader_lines = BufReader::new(file).lines();
 reader_lines
 .nth(n - 1)
 .map(|result| result.map_err(|err| err.into()))
 .unwrap_or_else(|| Err(Error::BadLineArgument(n)))
}

Next, we should write some unit tests for our function to verify that it behaves as
expected. We’ll write the tests as shown in the following listing.

#[cfg(test)]
mod tests {
 use super::*;
 #[test]
 fn test_can_read_cargotoml() {
 let third_line = read_nth_line(Path::new("Cargo.toml"), 3)
 .expect("unable to read third line from Cargo.toml");
 assert_eq!("version = \"0.1.0\"", third_line);
 }
 #[test]
 fn test_not_a_file() {
 let err = read_nth_line(Path::new("not-a-file"), 1)
 .expect_err("file should not exist");
 assert!(matches!(err, Error::Io(_)));
 }

Listing 4.12 Reading the nth line from a file

Listing 4.13 Unit tests for reading the nth line from a file

Tries to read from the file not-a-file,
which doesn’t exist and returns

an I/O error

We check the error returned using matches!, which
allows us to provide a pattern to match against and

returns a Boolean we can assert on.

854.6 Global state
 #[test]
 fn test_bad_arg_0() {
 let err = read_nth_line(Path::new("Cargo.toml"), 0)
 .expect_err("0th line is invalid");
 assert!(matches!(err, Error::BadLineArgument(0)));
 }
 #[test]
 fn test_bad_arg_too_large() {
 let err = read_nth_line(Path::new("Cargo.toml"), 500)
 .expect_err("500th line is invalid");
 assert!(matches!(err, Error::BadLineArgument(500)));
 }
}

As we’ve seen, dealing with errors is not complicated in Rust. In most cases, you’ll want
to create an error type for your library or application to encapsulate all the errors it may
return, and in many cases, you simply want to return the underlying error unaltered.

4.6 Global state
There comes a time in every developer’s life when they need to deal with global state.
We tend to avoid global state for good reason; it can introduce race conditions, cor-
ruption risk, poor separation of concerns, and a host of other problems. As hard as
you try to avoid doing so, however, you’ll eventually need to deal with a situation in
which you require global state. In this section, I discuss some strategies for handling
global state in Rust, which involves challenges and advantages owing to Rust’s memory
and ownership models.

 Global state is sometimes implemented via the singleton pattern, which some
developers consider to be an antipattern. We’ll discuss this topic again in chapter 10,
but I’ll say here that you should use global state (and singletons) sparingly.

 Now let’s talk about global variables in Rust. Rust allows only two kinds of global vari-
ables: static and const. In both cases, the variable’s value must be determined at com-
pile time. In other words, you can’t perform run-time initialization with any global
variables. You can define mutable static variables, which allow us to modify their values
at run time, but this approach is considered to be unsafe and requires the use of the
unsafe keyword. Static variables must also be Sync—in other words, to allow thread-safe
access (to prevent race conditions). Additionally, allocations are not permitted in stat-
ics (you can’t use anything that allocates memory on the heap), and the drop() method
from Drop is never called at shutdown when you use static variables.

 Because of these limitations, it’s common to use some form of lazy just-in-time ini-
tialization for global state. Several crates make this task easy, but before we examine
those crates, let’s discuss how we could perform it manually.

Here, we check whether passing a
zero-value for n produces an error.

Here, we check the error returned using
a pattern match with a specific value (0). This project’s Cargo.toml has only 8 lines, so

500 is well beyond the end of the file and
should result in an error.

Again, we check that the error
returned matches the expected value.

86 CHAPTER 4 Introductory patterns
 We can’t create a static vector of strings because both Vec and String are heap-
allocated. The following code won’t compile:

static POPULAR_BABY_NAMES_2021: Vec<String> = vec![
 String::from("Olivia"),
 String::from("Liam"),
 String::from("Emma"),
 String::from("Noah"),
];

Trying to compile this code will produce a long list of errors:

error[E0010]: allocations are not allowed in statics
 --> src/main.rs:1:47
 |
1 | static POPULAR_BABY_NAMES_2021: Vec<String> = vec![
 | ___^
2 | | String::from("Olivia"),
3 | | String::from("Liam"),
4 | | String::from("Emma"),
5 | | String::from("Noah"),
6 | |];
 | |_^ allocation not allowed in statics
 |
 = note: this error originates in the macro `vec` (in Nightly builds,
 run with -Z macro-backtrace for more info)

error[E0015]: cannot call non-const fn `<String as From<&str>>::from`
 in statics
 --> src/main.rs:2:5
 |
2 | String::from("Olivia"),
 | ^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: calls in statics are limited to constant functions, tuple
 structs and tuple variants
 = note: consider wrapping this expression in `Lazy::new(|| ...)`
 from the `once_cell` crate: https://crates.io/crates/once_cell

You may have noticed the suggestion that we use once_cell from the compiler
error, which we’ll do in a moment. First, let’s see whether we can make this
approach work without using crates.

 To create a static global variable, we need to use the std::thread_local! macro,
which provides thread-local storage that’s Sync (thread-safe). Thread-local storage
enables us to store data that is local to the current thread but also makes memory
globally accessible.

 We need to use a reference counted pointer, Arc, and Mutex to share the inner
data safely. Last, our Vec<String> must be wrapped in an Option because we can’t ini-
tialize a Vec or String at compile time. In this case, the pointer we use to access the
data is local to the current thread, but the data itself is global, so we’re left with the
code in the following listing.

874.6 Global state
thread_local! {
 static POPULAR_BABY_NAMES_2021: Arc<Mutex<Option<Vec<String>>>> =
 Arc::new(Mutex::new(None));
}

We need to initialize our Vec with some data. Somewhere in our code, such as main(),
we have to do the following to initialize the data.

let arc = POPULAR_BABY_NAMES_2021.with(|arc| arc.clone());
let mut inner = arc.lock().expect("unable to lock mutex");
*inner = Some(vec![
 String::from("Olivia"),
 String::from("Liam"),
 String::from("Emma"),
 String::from("Noah"),
]);

This approach is a rather unpleasant way to handle this situation. Also, we have to be
extra careful to initialize our global data correctly, in the proper order, before any-
thing else might try accessing values.

 In practice, you shouldn’t handle global state this way. Instead, I suggest using one
of several crates that provide this behavior in a nice API (table 4.2).

In the following sections, we’ll implement the example shown in listings 4.14 and
4.15, using the crates from table 4.2.

4.6.1 lazy-static.rs

The lazy-static.rs crate is the most popular way to solve the global state problem in
Rust (as of this writing). Its API is based on a simple macro that uses the static ref

Listing 4.14 Declaring a thread-local, global-static variable

Listing 4.15 Initializing a thread-local, global-static variable

Table 4.2 Summary of global state crates

Crate Repository
Downloads as of
March 3, 2024

Description

lazy-static.rs https://mng.bz/oegy 215,759,981 Macro for declaring lazily
evaluated statics

once_cell https://github.com/matklad/
once_cell

213,996,727 Provides two new cell-like
types that can be used to
initialize global state

static_init https://gitlab.com/okannen/
static_init

3,391,550 Provides global statics with
higher performance and
several features including
dropping data

https://github.com/matklad/once_cell
https://github.com/matklad/once_cell
https://mng.bz/oegy
https://gitlab.com/okannen/static_init
https://gitlab.com/okannen/static_init

88 CHAPTER 4 Introductory patterns
syntax to define global variables, with an option to use a closure to perform initializa-
tion. Using this crate, we can initialize some global state.

use lazy_static::lazy_static;

lazy_static! {
 static ref POPULAR_BABY_NAMES_2020: Vec<String> = {
 vec![
 String::from("Olivia"),
 String::from("Liam"),
 String::from("Emma"),
 String::from("Noah"),
]
 };
}

If you want the data to be mutable, you could use Mutex<Vec<String>> or
RwLock<Vec<String>>, but for this example, we’ll treat this data as immutable. We can
test our code with the following:

println!("popular baby names of 2020: {:?}", *POPULAR_BABY_NAMES_2020);

Note that we only have to dereference the variable using the * operator to access its
value because lazy-static.rs provides the Deref trait. Running the preceding code
results in the following output:

popular baby names of 2020: ["Olivia", "Liam", "Emma", "Noah"]

4.6.2 once_cell

The once_cell crate is rapidly gaining in popularity; it provides a more generic API
for handling global state than lazy-static.rs. For this reason, I recommend using
once_cell instead of lazy-static.rs for new projects. But if you’re already using
lazy-static.rs or are more familiar with it, it’s an excellent solution.

 Let’s implement the same thing with once_cell. The following listing has a
nice, concise API.

use once_cell::sync::Lazy;

static POPULAR_BABY_NAMES_2019: Lazy<Vec<String>> = Lazy::new(|| {
 vec![
 String::from("Olivia"),
 String::from("Liam"),
 String::from("Emma"),
 String::from("Noah"),
]
});

Listing 4.16 Popular baby names with lazy-static.rs

Listing 4.17 Popular baby names with once_cell

894.6 Global state
The once_cell::sync::Lazy API provides the Deref trait so that we can access the
values with the * operator:

println!("popular baby names of 2019: {:?}", *POPULAR_BABY_NAMES_2019);

As with lazy-static.rs, we can wrap the data with Mutex or RwLock to enable mutability.

4.6.3 static_init

Last, we’ll look at static_init, which has a few nice features and excellent perfor-
mance.

use static_init::dynamic;

#[dynamic]
static POPULAR_BABY_NAMES_2018: Vec<String> = vec![
 String::from("Emma"),
 String::from("Liam"),
 String::from("Olivia"),
 String::from("Noah"),
];

To enable mutability, we can add the mut keyword (such as static mut POPULAR_
BABY_NAMES_2018 …). static_init also provides Deref, like lazy-static.rs and
once_cell, so we can access the value like so:

println!("popular baby names of 2018: {:?}", *POPULAR_BABY_NAMES_2018);

4.6.4 std::cell::OnceCell

I should note that the Rust standard library (as of Rust 1.70) includes std::cell
::OnceCell and std::sync::OnceLock, which partially solve the static initialization
problem but without convenient lazy initialization at the global level. An experimental
API called std::cell::LazyCell is available for this feature, but it’s not yet available
in stable Rust. Using std::cell::OnceCell is roughly equivalent to using the thread_
local! macro, as discussed earlier in this chapter.

 You can create a global instance of std::cell::OnceCell, but you can’t initialize its
value at the global scope within a single expression. If you prefer to avoid using crates for
this task, this may be an acceptable tradeoff. The main downside to separating the decla-
ration and initialization is that this approach decreases clarity and could result in dupli-
cate initialization code or a potential race condition if multiple paths to competing
initialization code exist.

 For the sake of completeness, we can implement the equivalent behavior by using
std::cell::OnceCell, but our initialization must occur within a function as opposed
to the global context. The following listing simply places the code within main().

Listing 4.18 Popular baby names with static_init

90 CHAPTER 4 Introductory patterns
let popular_baby_names_2017: OnceCell<Vec<String>> = OnceCell::new();
popular_baby_names_2017.get_or_init(|| {
 vec![
 String::from("Emma"),
 String::from("Liam"),
 String::from("Olivia"),
 String::from("Noah"),
]
});

Summary
 RAII is used extensively in Rust, and it works well in conjunction with Rust’s move

semantics to safely handle ownership, resource release, and synchronization.
 You can use RAII to build data structures and containers that manage resources

safely and perform cleanup by implementing the Drop trait.
 Function-call arguments can be passed by value or reference. Passing by value

in particular enables some unique patterns in Rust.
 Arguments passed by value are moved from the caller’s context into the callee’s

context and can be returned from the callee to the caller.
 Object members are private by default. We commonly write methods to access

or mutate member values as opposed to using public members, except when
structures are used strictly as data containers and direct access is preferred.

 Functions that might produce errors should return Result, and we generally
create error types to contain the details on any errors we might return.

 We can use the ? operator to keep code tidy without handling every error case
explicitly.

 By implementing the From trait for our error types, we can handle a variety of
error cases gracefully.

 Handling global state in Rust is tricky, but several crates make the task easy. The
once_cell crate, for example, provides a concise API for lazy initialization and
global state.

Listing 4.19 Using std::cell::OnceCell

Design patterns:
Beyond the basics
Chapters 2 and 3 introduced the core Rust building blocks: generics, traits, pattern
matching, and functional programming features. In this chapter, we’re going to
build on what we learned in those chapters by exploring those themes further and
examining design patterns in Rust.

 Using what we’ve learned, we can start to build more concrete patterns in a way
that is consistent with Rust idioms. Although we won’t explore all the possible pat-
terns, I’ll present carefully chosen examples that demonstrate the fundamentals
needed to build nearly any design pattern in Rust.

 If generics, traits, pattern matching, and closures are the raw ingredients of any
design pattern, the patterns in this chapter represent archetypes of nearly any
other pattern that combines those features. Before diving right into the patterns

This chapter covers
 Metaprogramming with macros

 Implementing the builder pattern in Rust

 Building fluent interfaces

 Observing the observer pattern

 Understanding the command pattern

 Exploring the newtype pattern
91

92 CHAPTER 5 Design patterns: Beyond the basics
themselves, we’ll discuss macros, which aren’t patterns themselves but are often used
in advanced design patterns.

 Although it may seem odd to introduce macros at this point, it’s critical to under-
stand macros in Rust before proceeding; they’re widely used, and you won’t get too far
without having some basic understanding of them. Also, we’ll use macros in chapter 8
to see how these features interact, compound, and provide code support.

 Four of the five patterns discussed in this chapter are commonly found across lan-
guages, libraries, and SDKs: builders, fluent interfaces, observers, and the command
pattern. The last pattern we’ll look at is newtype, which is Rust-specific. These patterns
are popular for good reason: they provide well-understood, useful, widely applicable
abstractions for common programming challenges. Even if you never implement
these patterns, after you recognize them, you’ll see them everywhere.

5.1 Metaprogramming with macros
Macros are tools for metaprogramming, typically using a preprocessor. Macros let you
extend or augment the features of a programming language. Metaprogramming is the
process of using code to generate code, and preprocessing is the process of executing
code (or macros) before the code is compiled.

 Macros are often provided as a domain-specific language (DSL) for generating
code before the compiler runs. Macros can also be bolted onto a language by means
of a custom preprocessing step, which we sometimes see in languages that don’t sup-
port macros.

 Many languages feature macros, including C and C++, which have a basic but use-
ful macro system. Lisp is well known for its advanced macro system. Elixir, Erlang,
Scala, and OCaml also have macro systems.

 Compared with those in C and C++, Rust’s macros are quite a bit more advanced
(and more complex, for that matter). The macros in C and C++ rely on textual substitu-
tion and provide little in terms of type checking, parameter matching, or even proper
scoping.

 Rust’s macros are special in that they’re type-safe, which makes them easier to work
with and safer to use than those in other systems. Rust’s compiler also does a good job
of providing helpful error messages with macros, although things can get hairy if the
macros become too complex. In addition to checking types, Rust’s macros check for
hygiene to ensure that the variables and identifiers used in the macro don’t conflict
with the variables and identifiers in the calling code.

 Macros can be great complements to any codebase, especially for code that is ver-
bose and repetitive. Like any other tools, macros can be misused, and they may also be
used to mask code smells.

 One more thing before we move on—Rust currently offers two macro systems: the
regular macro system, declarative macros, available in Rust by default, and procedural
macros, which require a flag to enable. Procedural macros are much more complex

935.1 Metaprogramming with macros
but offer a great deal more in terms of features and flexibility. We’ll revisit procedural
macros in chapter 8. This section discusses declarative macros.

5.1.1 A basic declarative macro in Rust

Let’s take a look at a basic macro. In Rust, you can recognize a macro by the ! symbol
after a keyword. Calling a macro looks a bit like a function call with an extra ! before
its arguments. You’ve probably seen vec![], which is indeed a macro. Other macros
that are often used are println! and dbg!. When you’re calling a macro, the ! at the
end of the macro name is mandatory because it tells the compiler (and anyone read-
ing the code) that you’re trying to use a macro, not a regular function. A macro defi-
nition starts with macro_rules! followed by the name of the macro:

macro_rules! noop_macro {
 () => {};
}

The preceding macro does nothing. We can call it with noop_macro!(). You may
notice that the body of the macro definition looks a bit like a match statement—
because it is a match statement. You can match everything after the !, including differ-
ent kinds of parentheses. You can use (), {}, or [], but the parentheses are required.

 Macros execute at compile time, so the code within them doesn’t match the
result of code execution, but rather the code itself. In other words, we can match
the different kinds of code constructs in Rust, also known as code fragments. Here’s
another macro:

macro_rules! print_what_it_is {
 () => {
 println!("A macro with no arguments")
 };
 ($e:expr) => {
 println!("A macro with an expression")
 };
 ($s:stmt) => {
 println!("A macro with a statement")
 };
}

The preceding macro has three matching rules: one that matches on no arguments,
one that matches expressions, and one that matches statements. For the latter two
rules, the arguments are available in the variables $e and $s, respectively. We can call
our macro like so:

print_what_it_is!();
print_what_it_is!({});
print_what_it_is!(;);

Matches no arguments,
such as print_what_it_is!()

Matches one argument,
provided that the argument
is an expression such as
print_what_it_is!({…})

Matches one argument, provided
that the argument is a statement,

such as print_what_it_is!(…;)

94 CHAPTER 5 Design patterns: Beyond the basics
Running this code produces the following output:

A macro with no arguments
A macro with an expression
A macro with a statement

Fragments can be any type of code construct in Rust so long as it’s valid syntactically.
You can also match multiple arguments:

macro_rules! print_what_it_is {
 // ... snip ...
 ($e:expr, $s:stmt) => {
 println!("An expression followed by a statement")
 };
}

If we call this macro with print_what_it_is!({}, ;), it prints "An expression followed
by a statement" when we run it. If we call the macro with an invalid argument (one
that doesn’t match any rules), we get a compiler error. Calling print_what_it_is!
with two statements (print_what_it_is!(;, ;)) produces the following error:

error: no rules expected the token `,`
 --> src/main.rs:27:24
 |
5 | macro_rules! print_what_it_is {
 | ----------------------------- when calling this macro
...
27 | print_what_it_is!(;, ;); // error!
 | ^ no rules expected this token in macro call

We could write a match for this pattern, which would look like this:

macro_rules! print_what_it_is {
 // ... snip ...
 ($e:stmt, $s:stmt) => {
 println!("Two back-to-back statements")
 };
}

Although you could use any combination of statements and patterns as macro argu-
ments, I implore you to think carefully about writing macros with too many argument
combinations, as they can become quite confusing for the caller, particularly in com-
plex cases. At the very least, it’s important to understand the various scenarios so that
you’ll know what to do should you encounter them in the wild.

5.1.2 When to use macros

Macros look a lot like functions in Rust, so you might ask, “Why am I using a macro
instead of a function?” Well, a couple of compelling use cases exist for using macros
over functions. One reason why we might use macros is that macros allow us to overload

955.1 Metaprogramming with macros

arguments. Another reason is that macros support variadic arguments, which allow us to
specify an arbitrary number of arguments with an optional separator. Other use cases
for macros are custom logging (such as the log crate; https://crates.io/crates/log) and
creating mini DSLs (as with the lazy_static crate; https://crates.io/crates/lazy_static).

 Suppose that you want to write your own version of println!. The println!
macro, as you may have noticed, takes N + 1 arguments (it is variadic). The first argu-
ment to println! is a string format specification, which may also contain interpolated
variables, and the N arguments that follow are the values to be formatted. We can
write our own macro that wraps println!:

macro_rules! special_println {
 ($($arg:tt)*) => {
 println!($($arg)*)
 };
}

We can call special_println! exactly as we would call println!. I simply copied the
println! definition for the preceding example. Let’s break down the argument spec-
ification, which looks like $($arg:tt)*:

 The identifier $arg is our named identifier for arguments that match this rule.
 We’ll match on tt, which is short for token trees. A token tree can contain a sin-

gle identifier, a sequence of identifiers, or a sequence of token trees (which in
turn can contain identifiers because token trees are recursive). The recursive
structure of token trees is why they’re called trees.

 The match rule is within parentheses, as in $(…), to denote the fact that the
inner rule can be matched repeatedly. But we need to specify how many repeti-
tions (as explained in the next item).

 The last character, an asterisk (*), tells the compiler that these arguments can
repeat any number of times. Rust uses the same specs as regular expressions: +
for one or more matches, * for any number of matches, and ? for one or no
matches.

 Because a token tree can be a sequence, we don’t need to add punctuation
because we’re passing the entire token tree through.

The expansion or transcription of the arguments happens with $($arg)*, which we
merely pass on to println!. Note that macros can call other macros, which also
means that you can perform recursion within macros.

 Let’s make our macro slightly more useful. Suppose that we want to prefix all calls to
our special_println! as we might do in a logging framework. Let’s give that a shot:

macro_rules! special_println {
 ($($arg:tt)*) => {
 println!("Printed specially: {}", $($arg)*)
 };
}

Matches any number
of token trees

Passes the arguments
directly through to println!

We’re passing all the
arguments as the second
argument to println! In
the preceding example, we
passed all the arguments
as the first argument.

https://crates.io/crates/log
https://crates.io/crates/lazy_static

96 CHAPTER 5 Design patterns: Beyond the basics
Neat! Now if we call this code with special_println!("hello world!"), it prints
"Printed specially: hello world!"

 Our macro has a problem, however: it accepts only one argument in its current
form, which isn’t very useful. The reason is that we hardcoded the {} format specifier
as the first argument to our println! call, so println! expects and accepts only one
parameter when it’s evaluated.

 To make our macro accept any number of arguments (like println!), we can wrap
the arguments with format!, a special macro that correctly handles the string interpo-
lation and variadic arguments. The definition of the format! macro in the Rust stan-
dard library (https://doc.rust-lang.org/std/macro.format.html) looks a lot like our
code except that it calls the special format_args! macro and the std::fmt::format()
function from the Rust standard library.

macro_rules! format {
 ($($arg:tt)*) => {{
 let res = $crate::fmt::format(
 $crate::__export::format_args!($($arg)*));
 res
 }}
}

If we dig a little deeper, we see that format_args! is a special built-in macro (https://
mng.bz/ngaV) implemented by the compiler, so the buck stops there. (Rather, you’d
need to look into the Rust compiler source code to go deeper.) The following listing
shows the definition from the Rust standard library.

macro_rules! format_args {
 ($fmt:expr) => {{ /* compiler built-in */ }};
 ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
}

Moving on, let’s update our special_println! to use format! to evaluate the argu-
ments before the call to println!:

macro_rules! special_println {
 ($($arg:tt)*) => {
 println!("Printed specially: {}", format!($($arg)*))
 };
}

Now we can call the macro with special_println!("with an argument of {}", 5),
and it will print "Printed specially: with an argument of 5". To debug our macros,

Listing 5.1 format! macro definition from the Rust standard library

Listing 5.2 format_args! macro definition from the Rust standard library

Our arguments are passed to format! before being
passed through to println! so that we also evaluate

the arguments as a formattable string.

https://doc.rust-lang.org/std/macro.format.html
https://mng.bz/ngaV
https://mng.bz/ngaV
https://mng.bz/ngaV

975.1 Metaprogramming with macros
we can enable the macro tracing feature (nightly only) by adding the following
attribute:

#![feature(trace_macros)]

TIP You can switch to nightly Rust by running rustup default nightly or
overriding the tool chain for the current project with rustup override set
nightly. You can also use the +nightly argument with cargo to run a specific
crate with nightly Rust, like so: cargo +nightly build. Last, you can create a
rust-toolchain.toml file in the root of your project with the following con-
tents: toolchain.channel = "nightly".

This code produces compiler messages that show the results of macro expansion. To
use macro tracing, we need to enable it for specific invocations with trace_macros!:

trace_macros!(true);
special_println!("hello world!");
trace_macros!(false);

Now if we compile our code, it produces the following compiler output:

note: trace_macro
 --> src/main.rs:84:5
 |
84 | special_println!("hello world!");
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 |
 = note: expanding `special_println! { "hello world!" }`
 = note: to `println! ("Printed specially: {}", format! ("hello world!"))`
 = note: expanding `println! { "Printed specially: {}", format!
 ("hello world!") }`
 = note: to `{
 $crate :: io ::
 _print($crate :: format_args_nl!
 ("Printed specially: {}", format! ("hello world!"))) ;
 }`
 = note: expanding `format! { "hello world!" }`
 = note: to `{
 let res = $crate :: fmt ::
 format($crate :: __export :: format_args! ("hello world!")) ; res
 }`

Alternatively, we can use cargo expand to display the expanded macro, which is conve-
nient when we want to stick with stable Rust. We can always run cargo with the
+nightly argument to test our crate with nightly Rust and use nightly features.

TIP You can install cargo-expand with cargo install cargo-expand if you’ve
never used it before.

Let’s write a new macro to demonstrate some more features. We’ll write a macro that
takes any number of identifiers and prints their values in the form name=value. This

98 CHAPTER 5 Design patterns: Beyond the basics
approach might be useful for debugging, for example. Keep in mind that dbg!
already exists for this purpose, but we’ll write our own macro as a learning exercise.
The definition looks like this:

macro_rules! var_print {
 ($($v:ident),*) => {
 println!(
 concat!($(stringify!($v),"={:?} "),*), $($v),*
)
 };
}

This macro is more complicated, so let’s break it down:

 Our macro matches on a comma-separated list of identifiers denoted by
$($v:ident),*.

 The macro has two separate inner expansions of $v, one to produce the first argu-
ment for our call to println! and the other to pass the remaining arguments.

 The first argument for println! is a formatting string, which should contain
each variable passed to the macro in the form name=value.

 The stringify! macro will convert the token to a string.
 The concat! macro will concatenate strings.
 The first expansion denoted by $(stringify!($v),"={:?} "),*: for each argu-

ment to the macro concatenates the stringified token with "={:?}".
 The separate expansion is $($v),*, passed as the second argument to println!.
 Note that we’re unwrapping the punctuation (,) in our match, so we have to

add the punctuation back with ,* in our expansion.

We can test our new macro as follows:

let counter = 7;
let gauge = core::f64::consts::PI;
let name = "Peter";
var_print!(counter, gauge, name);

Running this code produces the following output:

counter=7 gauge=3.141592653589793 name="Peter"

We can examine the expansion of this macro with cargo expand:

let counter = 7;
let gauge = 3.14;
let name = "Peter";
{
 ::std::io::_print(::core::fmt::Arguments::new_v1(
 &["counter=", " gauge=", " name=", " \n"],
 &[
 ::core::fmt::ArgumentV1::new_debug(&counter),

Matches a comma-
separated list of identifiers

Stringifies and concatenates each argument as the first
argument to println!, although including the full list of

arguments as the remaining arguments to println!

995.1 Metaprogramming with macros
 ::core::fmt::ArgumentV1::new_debug(&gauge),
 ::core::fmt::ArgumentV1::new_debug(&name),
],
));
};

NOTE You may notice that our var_print! macro is quite similar to the dbg!
macro from the Rust standard library, although dbg! includes additional fea-
tures. You may want to explore the dbg! macro definition to learn more.

Note that our code is further expanded by println!, which splits the format argu-
ment from one string into one for each argument. This process is handled internally
by the compiler.

5.1.3 Using macros to write mini-DSLs

As I hinted in section 5.1.2, we can use macros to create miniature DSLs in Rust. The
DSLs don’t need to be miniature; they could be quite complex. But with macro-based
DSLs, it’s best to err on the side of simplicity.

 The lazy_static crate (demonstrated in chapter 4) is a good example of using
macros to make a DSL. Examine the macro definition in the following listing.

macro_rules! lazy_static {
 ($(#[$attr:meta])* static ref $N:ident : $T:ty = $e:expr; $($t:tt)*) => {
 // use `()` to explicitly forward the information about private items
 __lazy_static_internal!($(#[$attr])* () static ref $N : $T =
 $e; $($t)*);
 };
 ($(#[$attr:meta])* pub static ref $N:ident : $T:ty = $e:expr;
 $($t:tt)*) => {
 __lazy_static_internal!($(#[$attr])* (pub) static ref $N : $T
 = $e; $($t)*);
 };
 ($(#[$attr:meta])* pub ($($vis:tt)+) static ref $N:ident : $T:ty =
 $e:expr; $($t:tt)*) => {
 __lazy_static_internal!($(#[$attr])* (pub ($($vis)+)) static ref
 $N : $T = $e; $($t)*);
 };
 () ()
}

The macro looks complicated at first, but it’s fairly simple. It matches only two possi-
ble patterns, which take the following forms:

 static ref NAME: TYPE = EXPR;
 pub static ref NAME: TYPE = EXPR;

The $(#[$attr:meta])* match at the start of each pattern allows you to include attri-
butes (optional), and the $($t:tt)* at the end of each pattern makes the macro
recursive by including everything after the first match in the $t variable.

Listing 5.3 Macro definition from lazy_static crate

100 CHAPTER 5 Design patterns: Beyond the basics
 The implementation details, such as code generation, are handled by the __lazy_
static_internal macro, which uses recursion to expand the tail of the pattern,
which is in the $t variable after the ; that triggers the next recursion.

 The last match, () => (), provides a way to terminate the recursion when no more
matches are found. Otherwise, an error would occur because on the next recursive
match, the final expression would fail.

5.1.4 Using macros for DRY

Another common use case for declarative macros is for defining structures or code
blocks that contain lots of repetition with minor variation. Sometimes, we want con-
crete implementations for many things that are identical except in terms of name or
other properties. Typically, you’d use those macros privately; you likely wouldn’t want
to export them.

 Suppose that we want to make a struct for each of the hundreds of dog breeds.
Rather than define each struct separately, we can use a macro:

macro_rules! dog_struct {
 ($breed:ident) => {
 struct $breed {
 name: String,
 age: i32,
 breed: String,
 }
 impl $breed {
 fn new(name: &str, age: i32) -> Self {
 Self {
 name: name.into(),
 age,
 breed: stringify!($breed).into(),
 }
 }
 }
 };
}

dog_struct!(Labrador);
dog_struct!(Golden);
dog_struct!(Poodle);

Running cargo expand, we see the result of our dog_struct! macro:

struct Labrador {
 name: String,
 age: i32,
 breed: String,
}
impl Labrador {
 fn new(name: &str, age: i32) -> Self {
 Self {
 name: name.into(),

We can store the
name of the breed
within our structs.

We stringify the
name and store
it as a string.

1015.1 Metaprogramming with macros
 age,
 breed: "Labrador".into(),
 }
 }
}
struct Golden {
 name: String,
 age: i32,
 breed: String,
}
impl Golden {
 fn new(name: &str, age: i32) -> Self {
 Self {
 name: name.into(),
 age,
 breed: "Golden".into(),
 }
 }
}
struct Poodle {
 name: String,
 age: i32,
 breed: String,
}
impl Poodle {
 fn new(name: &str, age: i32) -> Self {
 Self {
 name: name.into(),
 age,
 breed: "Poodle".into(),
 }
 }
}

If we want to implement features of reflection in Rust, macros are one way to do so.
We can’t modify Rust code at run time, but we can emulate code creation at compile
time with macros. We can add a trait to our dog structs to identify them:

trait Dog {
 fn name(&self) -> &String;
 fn age(&self) -> i32;
 fn breed(&self) -> &String;
}

Our Dog trait provides accessors for members of our breed structs and also allows us to
identify dogs by using trait bounds as needed. Let’s update our macro definition to
use the trait:

macro_rules! dog_struct {
 ($breed:ident) => {
 struct $breed {
 name: String,
 age: i32,

102 CHAPTER 5 Design patterns: Beyond the basics
 breed: String,
 }
 impl $breed {
 fn new(name: &str, age: i32) -> Self {
 Self {
 name: name.into(),
 age,
 breed: stringify!($breed).into(),
 }
 }
 }
 impl Dog for $breed {
 fn name(&self) -> &String {
 &self.name
 }
 fn age(&self) -> i32 {
 self.age
 }
 fn breed(&self) -> &String {
 &self.breed
 }
 }
 };
}

We can test the reflection like this:

let peter = Poodle::new("Peter", 7);
println!(
 "{} is a {} of age {}",
 peter.name(),
 peter.breed(),
 peter.age()
);

The macro prints "Peter is a Poodle of age 7".
 Rust’s declarative macros are quite powerful when used effectively. For problems

of arbitrary complexity, you may need to use procedural macros (discussed in chapter
6). We can accomplish a lot with declarative macros, but they are somewhat limited in
terms of what they can do.

 Deciding whether to use macros is a matter of personal preference and coding
style. In general, macros should be used sparingly and only when they offer clear
advantages over alternative solutions. If you have code that is repetitive, verbose, or
error-prone, it may be a good candidate for a macro. But macros should be used
only when a significant portion of the code is repeated with only a few values,
blocks, statements, or variables that need to be substituted. On the other hand, if
your code is simple, clear, and easy to understand, it’s probably better to leave it as is
without using macros.

1035.2 Optional function arguments
TIP For a deeper discussion of Rust’s macros and various ways to use them,
see Sam Van Overmeire’s book Write Powerful Rust Macros (Manning, 2024;
https://www.manning.com/books/write-powerful-rust-macros). For reference
documentation on Rust’s declarative macro features, consult the Rust lan-
guage reference on macros at https://mng.bz/v80m.

5.2 Optional function arguments
Many languages allow optional function arguments, but we can’t use them in Rust.
Optional function arguments allow you to specify default argument values in the func-
tion’s definition or (in the case of languages such as C++ and Java) permit function
overloading. Overloading is another way to express optional arguments, letting the
compiler create distinct functions with the same name differentiated by the number
or type of arguments. Both optional arguments and function overloading are forms of
syntactic sugar.

 Optional arguments are handy, allowing programmers to provide more flexibility
to function callers. They’re especially useful when you want to add new arguments to a
function but retain backward compatibility.

 Optional arguments aren’t problem-free; they can lead to poor design when
they’re used excessively. Also, they encourage developers to reuse existing functions
instead of creating new ones, which can make APIs more confusing. Finally, overuse of
function overloading can make it hard to reason about what happens when you call a
certain function, especially if the API changes over time.

5.2.1 Examining optional arguments in Python

So we can understand optional arguments better, let’s see what they look like in
another popular language: Python. An optional argument in Python would look
something like this example—a function called func that accepts two arguments, each
with a default value:

def func(optional_bool=True, optional_int=11):
 # ... function body goes here ...

Python’s version of optional arguments is simple and succinct. We can specify default
values right in the function definition for everyone to see, with little ambiguity. Python
even allows us to specify each argument by name, not just position. We can call the
function to specify only the second argument, as follows:

func(optional_int=1024)

Python’s optional arguments are nice, but Rust takes a different approach, largely
eschewing this style to preserve compatibility with C libraries.

https://www.manning.com/books/write-powerful-rust-macros
https://mng.bz/v80m

104 CHAPTER 5 Design patterns: Beyond the basics
5.2.2 Examining optional arguments in C++

C++ allows the use of optional function arguments through function overloading.
That is, in C++ you can have multiple function definitions with different arguments,
and the functions can supply a default for any missing arguments. This pattern in C++
with three overloaded functions might look something like this:

void func() {
 func(true, 11);
}
void func(optional_bool: bool) {
 func(optional_bool, 11);
}
void func(optional_bool: bool, optional_int: int) {
 // ... function body goes here ...
}

C++ accomplishes this task by mangling function names, which makes C++ functions
incompatible with C-based libraries. It’s easy to call C code from C++, but calling C++
from C is best left unpursued.

5.2.3 Optional arguments in Rust or the lack thereof

Rust’s explicit lack of optional arguments or overloading is a design choice, partly for
C compatibility and partly to avert the criticisms mentioned in the preceding sections.
We can emulate these features to varying degrees, however. We have three options:

 Extending with traits
 Using macros to match arguments at compile time
 Wrapping arguments with Option

We’ll focus on the first pattern: extending with traits.

5.2.4 Emulating optional arguments with traits

First, we’ll demonstrate that it’s possible to have two traits with conflicted method names:

struct Container {
 name: String,
}
trait First {
 fn name(&self) {}
}
trait Second {
 fn name(&self) {}
}
impl First for Container {
 fn name(&self) {}
}
impl Second for Container {
 fn name(&self) {}
}

Calls func() with
default values

Calls func() with
first default value

1055.2 Optional function arguments
Here, we have two traits that differ only in name. Both traits are implemented for our
Container struct. Everything looks good so far, but what would happen if we call
name()? Let’s try:

let container = Container {
 name: "Henry".into(),
};
container.name();

Compiling this code produces the following compiler error:

error[E0034]: multiple applicable items in scope
 --> src/main.rs:25:15
 |
25 | container.name();
 | ^^^^ multiple `name` found
 |
note: candidate #1 is defined in an impl of the trait `First` for the type
`Container`
 --> src/main.rs:14:5
 |
14 | fn name(&self) {}
 | ^^^^^^^^^^^^^^
note: candidate #2 is defined in an impl of the trait `Second` for the type
`Container`
 --> src/main.rs:18:5
 |
18 | fn name(&self) {}
 | ^^^^^^^^^^^^^^
help: disambiguate the associated function for candidate #1
 |
25 | First::name(&container);
 | ~~~~~~~~~~~~~~~~~~~~~~~
help: disambiguate the associated function for candidate #2
 |
25 | Second::name(&container);
 | ~~~~~~~~~~~~~~~~~~~~~~~~

This code makes complete sense. There’s no way to disambiguate the function call.
The compiler can provide helpful suggestions.

 Next, what happens if the trait methods have different signatures? Let’s add an
argument to the Second trait (a bool parameter):

trait First {
 fn name(&self) {}
}
trait Second {
 fn name(&self, _: bool) {}
}
impl First for Container {
 fn name(&self) {}
}

106 CHAPTER 5 Design patterns: Beyond the basics
impl Second for Container {
 fn name(&self, _: bool) {}
}

This code seems likely to work, but when you compile it, you get the same error. Let’s
try another way. We can use trait bounds by defining two functions like so:

fn get_name_from_first<T: First>(t: &T) {
 t.name()
}
fn get_name_from_second<T: Second>(t: &T) {
 t.name(true)
}

We can test it as follows:

let container = Container {
 name: "Henry".into(),
};
get_name_from_first(&container);
get_name_from_second(&container);

The compiler is happy. We’ve learned that we can use trait bounds to tell the compiler
which method we want to use, depending on the context. Even when we have multiple
conflicting traits, the compiler ignores traits that aren’t specified in the trait bounds.
If we have a generic function and try to call any method on a generic parameter, the
compiler will complain:

fn get_name<T>(t: &T) {
 t.name()
}

This code errors out:

error[E0599]: no method named `name` found for reference `&T` in the
current scope
 --> src/main.rs:29:7
 |
29 | t.name()
 | ^^^^ method not found in `&T`
 |
 = help: items from traits can only be used if the type parameter is
 bounded by the trait
help: the following traits define an item `name`, perhaps you need to
restrict type parameter `T` with one of them:
 |
28 | fn get_name<T: First>(t: &T) {
 | ~~~~~~~~

Calls the name() from First,
which takes only &self

Calls the name() from Second,
which takes &self and a bool

1075.3 Builder pattern
28 | fn get_name<T: Second>(t: &T) {
 | ~~~~~~~~~

What’s neat about this example is that the compiler makes a good guess about what
we’re trying to do. With this knowledge, we can start thinking about optional argu-
ments a bit differently. We know the following things:

 Function and method names cannot overlap even if their arguments are different.
 Traits may be implemented with conflicting methods for a type.
 If we use generics, we can specify trait bounds to disambiguate conflicting

methods.

Thus, we can design our software to expect functionality delivered via traits. It’s easy to
use traits for this purpose in Rust because we can add trait bounds to any function.
Except for base types such as String and numerics, it’s often better to accept generic
function parameters in Rust.

5.3 Builder pattern
The builder pattern is one of the original patterns described in the Gang of Four’s
Design Patterns. This pattern has become extremely popular in software design and
(aside from iterators) is arguably one of the most enduring patterns from that book.
The builder pattern can also be viewed as a form of currying, which is a way of convert-
ing a function that takes multiple arguments into a set of functions that take one argu-
ment each.

 I’m a big fan of the builder pattern, and I consider it to be so useful that I included
a whole section in this chapter for it. Implementing the builder pattern in Rust isn’t
particularly difficult, but we’re going to work through an example in this chapter to
tie together a lot of what we’ve learned in this book so far.

 You might choose the builder pattern for multiple reasons, including encapsula-
tion, convenience, separation of concerns, ergonomics, and safety. In Rust specifically,
we normally don’t want to expose structures directly, and as noted in section 5.2.4,
Rust doesn’t support optional arguments. So rather than rely on constructors with lots
of arguments, we can use builders to handle more complex cases.

 Builders aren’t without problems; they add another layer of complexity. Knowing
when to use them is more an art than a science.

5.3.1 Implementing the builder pattern

Let’s write a basic builder for a bicycle we want to model. We’re going to model the
relationship shown in figure 5.1.

 Now we’ll implement the builder pattern.

108 CHAPTER 5 Design patterns: Beyond the basics
#[derive(Debug)]
struct Bicycle {
 make: String,
 model: String,
 size: i32,
 color: String,
}

impl Bicycle {
 fn make(&self) -> &String {
 &self.make
 }
 fn model(&self) -> &String {
 &self.model
 }
 fn size(&self) -> i32 {
 self.size
 }
 fn color(&self) -> &String {
 &self.color
 }
}

struct BicycleBuilder {
 bicycle: Bicycle,
}

impl BicycleBuilder {
 fn new() -> Self {
 Self {
 bicycle: Bicycle {
 make: String::new(),
 model: String::new(),
 size: 0,

Listing 5.4 Code for builder pattern

BicycleBuilder

-Bicycle bicycle

+with_make(String)

+with_model(String)

+with_size(Integer)

+with_color(String)

Bicycle

-String make

-String model

-Integer size

-String color

+make() : String

+model() : String

+size() : Integer

+color() : String Figure 5.1 UML diagram
for builder pattern

We’re providing some
accessors for the
Bicycle struct.

Our BicycleBuilder
struct holds a bicycle.

Constructing a BicycleBuilder
will initialize our Bicycle with
default values.

1095.3 Builder pattern
 color: String::new(),
 },
 }
 }
 fn with_make(&mut self, make: &str) {
 self.bicycle.make = make.into()
 }
 fn with_model(&mut self, model: &str) {
 self.bicycle.model = model.into()
 }
 fn with_size(&mut self, size: i32) {
 self.bicycle.size = size
 }
 fn with_color(&mut self, color: &str) {
 self.bicycle.color = color.into()
 }
 fn build(self) -> Bicycle {
 self.bicycle
 }
}

Our implementation satisfies the basic definition of a builder. Let’s test it:

let mut bicycle_builder = BicycleBuilder::new();
bicycle_builder.with_make("Huffy");
bicycle_builder.with_model("Radio");
bicycle_builder.with_size(46);
bicycle_builder.with_color("red");
let bicycle = bicycle_builder.build();
println!("My new bike: {:#?}", bicycle);

Running the preceding code produces the following output:

My new bike: Bicycle {
 make: "Huffy",
 model: "Radio",
 size: 46,
 color: "red",
}

5.3.2 Enhancing our builder with traits

We can do some things to improve our implementation. We can start by creating a
Builder trait:

trait Builder<T> {
 fn new() -> Self;
 fn build(self) -> T;
}

We can rearrange our code for BicycleBuilder to implement the new trait:

impl Builder<Bicycle> for BicycleBuilder {
 fn new() -> Self {

For each property of our Bicycle,
we’ll create a function to assign a
value (such as a setter).

Calling build() will consume the
builder and return the Bicycle by
moving it out of the builder.

110 CHAPTER 5 Design patterns: Beyond the basics
 Self {
 bicycle: Bicycle {
 make: String::new(),
 model: String::new(),
 size: 0,
 color: String::new(),
 },
 }
 }
 fn build(self) -> Bicycle {
 self.bicycle
 }
}

While we’re at it, we should add a trait to Bicycle that gives us an instance of the
builder:

trait Buildable<Target, B: Builder<Target>> {
 fn builder() -> B;
}

Then we’ll implement the Buildable trait for Bicycle:

impl Buildable<Bicycle, BicycleBuilder> for Bicycle {
 fn builder() -> BicycleBuilder {
 BicycleBuilder::new()
 }
}

Now we can get a new instance of our builder directly from a Bicycle:

let mut bicycle_builder = Bicycle::builder();
bicycle_builder.with_make("Huffy");
bicycle_builder.with_model("Radio");
bicycle_builder.with_size(46);
bicycle_builder.with_color("red");
let bicycle = bicycle_builder.build();
println!("My new bike: {:?}", bicycle);

Our code is starting to look more Rustaceous.

5.3.3 Enhancing our builder with macros

If we look at the with_…() methods in our builder, they look relatively redundant.
Sometimes we want to specialize these functions, but generally, it’s better to write a
simple macro. Using a macro for lots of repetitive code is good because it helps us
avoid typos. Let’s give that approach a shot by replacing these methods with macros.

macro_rules! with_str {
 ($name:ident, $func:ident) => {

Listing 5.5 Adding with_str! and with! macros to BicycleBuilder

with_str! accepts two idents:
the member and function name.

1115.3 Builder pattern
 fn $func(&mut self, $name: &str) {
 self.bicycle.$name = $name.into()
 }
 };
}

macro_rules! with {
 ($name:ident, $func:ident, $type:ty) => {
 fn $func(&mut self, $name: $type) {
 self.bicycle.$name = $name
 }
 };
}

impl BicycleBuilder {
 with_str!(make, with_make);
 with_str!(model, with_model);
 with!(size, with_size, i32);
 with_str!(color, with_color);
}

Listing 5.5 has two macros: with_str! and with!. The with_str! macro is for string
fields, as we want to accept a &str for convenience, but we want to store the field as
String. The with! macro accepts a type parameter, and we assume that the value is
passed with a move. We could use a single macro to make the type optional, but the
code is easier to understand this way.

TIP Small one-off macros like those in this example are common. You can
save yourself a lot of typing and errors by factoring out common parts into
small reusable macros.

At this point, we can’t do a lot more to improve our builder. We could make it a little
more generic, but the returns are starting to diminish.

 One thing we haven’t discussed yet is visibility. We probably want to expose our
types, traits, accessors, and builder methods, which we can do by adding the pub key-
word as needed to trait Buildable, Bicycle, and BicycleBuilder. First, let’s update
the Buildable trait and Bicycle struct.

pub trait Buildable<Target, B: Builder<Target>> {
 fn builder() -> B;
}

#[derive(Debug)]
pub struct Bicycle {
 make: String,
 model: String,
 size: i32,
 color: String,
}

Listing 5.6 Public visibility for Bicycle and Buildable

The rendered function assigns
the argument directly to the
member, with a call to into()
(from the Into trait).

The with! macro is nearly
the same, except that it
also accepts a type
argument.

Now the
Buildable trait
is public.

Now the
Bicycle struct
is public.

112 CHAPTER 5 Design patterns: Beyond the basics
impl Buildable<Bicycle, BicycleBuilder> for Bicycle {
 fn builder() -> BicycleBuilder {
 BicycleBuilder::new()
 }
}

Next, let’s add public visibility to the Builder trait and BicycleBuilder.

pub trait Builder<T> {
 fn new() -> Self;
 fn build(self) -> T;
}

pub struct BicycleBuilder {
 bicycle: Bicycle,
}

impl Builder<Bicycle> for BicycleBuilder {
 fn new() -> Self {
 Self {
 bicycle: Bicycle {
 make: String::new(),
 model: String::new(),
 size: 0,
 color: String::new(),
 },
 }
 }
 fn build(self) -> Bicycle {
 self.bicycle
 }
}

We’ll make one more tweak to our code by adding macros for the accessors. The final
form of our builder macros looks like the following listing.

macro_rules! accessor {
 ($name:ident, &$ret:ty) => {
 pub fn $name(&self) -> &$ret {
 &self.$name
 }
 };
 ($name:ident, $ret:ty) => {
 pub fn $name(&self) -> $ret {
 self.$name
 }
 };
}

Listing 5.7 Public visibility for Builder and BicycleBuilder

Listing 5.8 Final Bicycle and BicycleBuilder with macros

Now the
Builder trait
is public.

Now the
BicycleBuilder
struct is public.

We’ll create one
accessor! macro with
two possible matches.

Matches on types where we
want to return a reference

Matches on types where we
want to return a copy (such
as basic numeric types)

1135.4 Fluent interface pattern
impl Bicycle {
 accessor!(make, &String);
 accessor!(model, &String);
 accessor!(size, i32);
 accessor!(color, &String);
}

macro_rules! with_str {
 ($name:ident, $func:ident) => {
 pub fn $func(&mut self, $name: &str) {
 self.bicycle.$name = $name.into()
 }
 };
}

macro_rules! with {
 ($name:ident, $func:ident, $type:ty) => {
 pub fn $func(&mut self, $name: $type) {
 self.bicycle.$name = $name
 }
 };
}

impl BicycleBuilder {
 with_str!(make, with_make);
 with_str!(model, with_model);
 with!(size, with_size, i32);
 with_str!(color, with_color);
}

NOTE Although creating these patterns can be a fun way to learn about the
language and its features, much of this functionality is well covered by various
crates. The derive_builder crate (https://crates.io/crates/derive_builder),
for example, provides a way to create builders by using the #[derive] attribute.
Although it’s good to understand how to implement these patterns yourself, it’s
also good to know when to use existing solutions (such as derive_builder) to
save time and benefit from the wisdom of crowds. The derive_builder crate in
particular is full-featured, widely used, and battle-tested.

5.4 Fluent interface pattern
The fluent interface pattern builds on the builder pattern. The main characteristic that
defines a fluent interface is the use of method chaining. Method chaining is the practice
of chaining function calls together to perform an operation until the operation is ter-
minated (usually by a method call that ends the operation).

 We’ve already seen a good example of the fluent interface pattern in Rust: the
Iterator trait. Method chaining can be accomplished by returning a type from each
method call in the chain, which leads to the next step in the chain. The signature for
the map() method on the Iterator trait looks like this:

fn map<B, F>(self, f: F) -> Map<Self, F> where
 F: FnMut(Self::Item) -> B { ... }

https://crates.io/crates/derive_builder

114 CHAPTER 5 Design patterns: Beyond the basics
The return type here is Map, which is another iterator. We can call map() again, which
will return another Map, and so on. Theoretically, we can chain functions infinitely
this way.

5.4.1 A fluent builder

To demonstrate, let’s revisit the builder example from the previous section. We’ll
update our assignment methods so that they return a builder. The updated Unified
Modeling Language (UML) equivalent is shown in figure 5.2, in which each assign-
ment method returns a new builder.

Because we used macros, all we need to do is update the macros to implement this
change:

macro_rules! with_str {
 ($name:ident, $func:ident) => {
 pub fn $func(self, $name: &str) -> Self {
 Self {
 bicycle: Bicycle {
 $name: $name.into(),
 ..self.bicycle
 },
 }
 }
 };
}

macro_rules! with {
 ($name:ident, $func:ident, $type:ty) => {
 pub fn $func(self, $name: $type) -> Self {
 Self {

BicycleBuilder

-Bicycle bicycle

+with_make(String) : BicycleBuilder

+with_model(String) : BicycleBuilder

+with_size(Integer) : BicycleBuilder

+with_color(String) : BicycleBuilder

Bicycle

-String make

-String model

-Integer size

-String color

+make() : String

+model() : String

+size() : Integer

+color() : String

Figure 5.2 UML diagram for fluent builder pattern

1155.4 Fluent interface pattern
 bicycle: Bicycle {
 $name,
 ..self.bicycle
 },
 }
 }
 };
}

Expanded, the code for our builder looks like this:

impl BicycleBuilder {
 pub fn with_make(self, make: &str) -> Self {
 Self {
 bicycle: Bicycle {
 make: make.into(),
 ..self.bicycle
 },
 }
 }
 pub fn with_model(self, model: &str) -> Self {
 Self {
 bicycle: Bicycle {
 model: model.into(),
 ..self.bicycle
 },
 }
 }
 pub fn with_size(self, size: i32) -> Self {
 Self {
 bicycle: Bicycle {
 size,
 ..self.bicycle
 },
 }
 }
 pub fn with_color(self, color: &str) -> Self {
 Self {
 bicycle: Bicycle {
 color: color.into(),
 ..self.bicycle
 },
 }
 }
}

Cool! Notice a couple of things in the preceding code:

 Our assignment methods take self, not &mut self. In other words, each call to
an assignment method consumes the previous builder.

 Rather than copy or return the old builder and inner struct, we’ll create a new
builder with a new inner struct.

116 CHAPTER 5 Design patterns: Beyond the basics
 We’re using the spread syntax (..) to initialize the Bicycle struct with our
updated field.

Initializing structs with the spread syntax
If you’ve never seen the spread syntax on struct initialization, don’t be alarmed. This
notation is handy for initializing a struct with the values of an existing struct while
updating specific fields. The operation uses a move, so it consumes the existing
struct upon assignment. The spread syntax is syntactic sugar to make handling
structs with many fields easier.

One handy side effect of the spread syntax is that it allows us to change fields in a
struct even when it’s not mutable, but only if it’s owned. Our Bicycle struct demon-
strates this concept:

let bicycle1 = Bicycle {
 make: "Rivendell".into(),
 model: "A. Homer Hilsen".into(),
 size: 51,
 color: "red".into(),
};
println!("{:?}", bicycle1);
let bicycle2 = Bicycle {
 size: 58,
 ..bicycle1
};
println!("{:?}", bicycle2);
// println!("{:?}", bicycle1);

Running the preceding code produces the following output:

Bicycle { make: "Rivendell", model: "A. Homer Hilsen", size: 51,
color: "red" }
Bicycle { make: "Rivendell", model: "A. Homer Hilsen", size: 58,
color: "red" }

Because the assignment uses a move, you can’t use the spread syntax with refer-
ences. Trying to compile the following code will produce an error:

 let bicycle = Bicycle {
 make: "Rivendell".into(),
 model: "A. Homer Hilsen".into(),
 size: 51,
 color: "red".into(),
 };
 let bicycle = Bicycle {
 size: 58,
 ..&bicycle
 };

We create a new instance of
our Bicycle struct with all
fields specified.

We create a new instance of the
same struct, but we’ve changed the
size field to a different value.

We can’t use bicycle1 after using
the spread syntax because it gets
moved into the new struct.

Compiler produces an error with
"mismatched types expected struct
Bicycle, found &Bicycle ".

1175.5 Observer pattern
5.4.2 Test-driving our fluent builder

Let’s update our test code to use the new fluent interface. Our updated code looks
like this:

let bicycle = Bicycle::builder()
 .with_make("Trek")
 .with_model("Madone")
 .with_size(52)
 .with_color("purple")
 .build();
println!("{:?}", bicycle);

Neat! That looks much better than the old form.

5.5 Observer pattern
The observer pattern (along with its variations) is widely used to enable objects to
observe changes in other objects. Observer is one of the patterns from Design Patterns
and is often necessary in systems that perform any kind of event processing or event
handling, such as networked services.

5.5.1 Why not callbacks?

Before we dive deeper into the observer pattern, let’s discuss callbacks. Some languages
(notably JavaScript) make heavy use of callbacks, which can lead to a situation known as
callback hell, with deeply nested callbacks within callbacks creating difficult-to-understand
code. Someone went so far as to create the website http://callbackhell.com to describe
this problem and propose some solutions.

 Callbacks are often used in functional languages within higher-order functions. A
higher-order function is a function that takes another function as a parameter or returns
another function. Iterators use callbacks with functions like map(), for example. The
basic form of a callback in Rust looks something like this:

fn callback_fn<F>(f: F)
where
 F: Fn() -> (),
{
 f();
}

fn main() {
 let my_callback = || println!("I have been called back");
 callback_fn(my_callback);
}

In the preceding example, I’m using a closure for the callback (which is what you typ-
ically see in JavaScript), but I could just as easily pass an ordinary function. Simple
cases like this example are fine, but following the logical flow can get messy and con-
fusing when you have callbacks within callbacks within callbacks.

Nothing happens here.
Our function hasn’t been

called—only declared.

Our callback is called
within callback_fn().

http://callbackhell.com

118 CHAPTER 5 Design patterns: Beyond the basics
 Although callbacks are not necessarily bad on their own,
the observer pattern provides looser coupling, makes it eas-
ier to attach and detach observers (equivalent callbacks),
and enables us to have a many-to-one relationship instead of
one-to-one. More generally, we can use the observer pattern
when we have code that needs to notify other code about
events (the subject) without needing a dependency on the
observers. The subject can notify the observers without need-
ing to know the observers.

 One more problem with callbacks is that they don’t allow
us to decouple state from the function we pass to the call-
back. We have to bind the state to a callback by using a clo-
sure or global variables.

5.5.2 Implementing an observer

There are multiple ways to implement the observer pattern,
and each way has tradeoffs. The example in this section is flex-
ible enough that we can change the implementation details as
needed to suit a variety of cases. We’re going to implement the
observer pattern in Rust as shown in figure 5.3.

 We’ll start by implementing two traits: Observer and Observable. We’ll use
Observer for objects that want to observe others. Observable will be implemented by
objects that want to allow other objects to observe them. The following listing shows
the Observer trait.

pub trait Observer {
 type Subject;
 fn observe(&self, subject: &Self::Subject);
}

For the observer, I’m using the term observe instead of notify (per the original design
pattern). Next, consider the following listing, which shows the Observable trait.

pub trait Observable {
 type Observer;
 fn update(&self);
 fn attach(&mut self, observer: Self::Observer);
 fn detach(&mut self, observer: Self::Observer);
}

The Observable trait provides the methods for our subject and matches the original
design pattern. We don’t make any assumptions about the type of the observer or the

Listing 5.9 Observer trait

Listing 5.10 Observable trait

observers

«trait»

Subject

+attach(Observer)

+detach(Observer)

+update()

«trait»

Observer

+observe(Subject)

Figure 5.3 UML diagram
of the observer pattern

We use an associated
type for the subject.

The observe() method is
called by the subject when
an update occurs.

An associated type is
used for the observer.

1195.5 Observer pattern
subject, which gives us a bit more flexibility with this pattern. Next, we need to create
a subject and implement Observable on it.

pub struct Subject {
 observers: Vec<Weak<dyn Observer<Subject = Self>>>,
}

impl Observable for Subject {
 type Observer = Arc<dyn Observer<Subject = Self>>;
 fn update(&self) {
 self.observers
 .iter()
 .flat_map(|o| o.upgrade())
 .for_each(|o| o.observe(self));
 }
 fn attach(&mut self, observer: Self::Observer) {
 self.observers.push(Arc::downgrade(&observer));
 }
 fn detach(&mut self, observer: Self::Observer) {
 self.observers
 .retain(|f| {
 !f.ptr_eq(&Arc::downgrade(&observer))
 });
 }
}

I chose to require that observers be passed as Arc<dyn Observer>, which provides a bit
of additional flexibility. For one thing, we can store the pointers as weak pointers,
which means that when they go out of scope, we can ignore them instead of keeping
the object alive. Using Arc also allows shared ownership (that is, we don’t want our
subject to take ownership of the observers). Because the observer is defined as an asso-
ciated type in the trait, we could easily change the type from Arc to something else
while reusing the same traits.

 Next, let’s add some state to our subject so that we can test it, provide an accessor,
and add a new() method. We’ll update the code so that it looks like the following listing.

pub struct Subject {
 observers: Vec<Weak<dyn Observer<Subject = Self>>>,
 state: String,
}

impl Subject {
 pub fn new(state: &str) -> Self {

Listing 5.11 Implementing Observable for Subject

Listing 5.12 Adding state and new() to Subject

We’re storing weak pointers
to our Observer objects,
where the subject is Self.

The observer should be provided as an Arc, which
provides additional flexibility and shared ownership.

self.observers holds
weak references, which
need to be upgraded here.
Because upgrade() on
Weak returns an option,
flat_map() unwraps and
removes the None cases.

Last, we call
observe() on
each observer
that’s still valid.

When a new
observer is added,
we downgrade it
from an Arc to a
Weak pointer.

We have to use ptr_eq() to find the matching
object. Vec::retain() filters out all the objects that

match the pointer passed to this method.

120 CHAPTER 5 Design patterns: Beyond the basics
 Self {
 observers: vec![],
 state: state.into(),
 }
 }

 pub fn state(&self) -> &str {
 self.state.as_ref()
 }
}

Next, let’s create an observer and implement the Observer trait for it.

struct MyObserver {
 name: String,
}

impl MyObserver {
 fn new(name: &str) -> Arc<Self> {
 Arc::new(Self { name: name.into() })
 }
}

impl Observer for MyObserver {
 type Subject = Subject;
 fn observe(&self, subject: &Self::Subject) {
 println!(
 "observed subject with state={:?} in {}",
 subject.state(),
 self.name
);
 }
}

Finally, we can test our observer.

let mut subject = Subject::new("some subject state");

let observer1 = MyObserver::new("observer1");
let observer2 = MyObserver::new("observer2");

subject.attach(observer1.clone());
subject.attach(observer2.clone());

// ... do something here ...

subject.update();

Listing 5.13 Creating an observer

Listing 5.14 Testing the observer pattern

We add a name to our observer
so we can identify it.

Our new() method will return
an Arc<Self> instead of Self.

Our subject type is
Subject, which we
defined in listing 5.12.

Our observe()
implementation prints
the state from our
subject and the name of
this observer instance
when called.

We have to clone our pointer; otherwise, it
will go out of scope when passed by value.

Normally, we’d call update() from within the subject
whenever its state changes to trigger our observers,
but for example purposes, we call it here.

1215.6 Command pattern
Running this code produces the following output:

observed subject with state="some subject state" in observer1
observed subject with state="some subject state" in observer2

5.6 Command pattern
The command pattern stores state or instructions in one structure and
then applies changes later. This pattern is widely used but not well
specified and arguably a bit dated. For the sake of completeness,
however, I’ll document a simple example of implementing the com-
mand pattern in Rust.

5.6.1 Defining the command pattern

Before we implement this pattern in Rust, let’s define the essence of
the command pattern. We need to concern ourselves mainly with a
single trait called Command that executes against a Receiver. The
Receiver should be a concrete object of some kind, though it doesn’t
necessarily need to be called Receiver or have a method called
action(). This pattern resembles the object-oriented version
described in the Gang of Four’s book Design Patterns. Figure 5.4 illus-
trates the relationship between these traits.

 We’ll define our Command trait as shown in the following listing.

trait Command {
 fn execute(&self) -> Result<(), Error>;
}

Note that I’ve made the Command trait return a result, which provides some basic error
handling (as we’ll see in section 5.6.2). The Command trait is the essence of the com-
mand pattern, but we need to put all the pieces together for this pattern to make
sense. We have to supply a receiver, which is any object on which the command can
execute, as defined by the concrete implementation of the Command trait.

5.6.2 Implementing the command pattern

For this example, we’re going to create two command objects that operate on file han-
dles: a command to read a file and a command to write a file. The receiver will be a
file handle. First, let’s define our ReadFile command.

struct ReadFile {
 receiver: File,
}

Listing 5.15 Command trait definition

Listing 5.16 ReadFile command implementation

«trait»

Command

+execute()

Receiver

+action()

Figure 5.4
UML diagram for
the command
pattern

receiver is the receiver (or
target) of our command.

122 CHAPTER 5 Design patterns: Beyond the basics
impl ReadFile {
 fn new(receiver: File) -> Box<Self> {
 Box::new(Self { receiver })
 }
}

impl Command for ReadFile {
 fn execute(&self) -> Result<(), Error> {
 println!("Reading from start of file");
 let mut reader = BufReader::new(&self.receiver);
 reader.seek(std::io::SeekFrom::Start(0))?;

 for (count, line) in reader.lines().enumerate() {
 println!("{:2}: {}", count + 1, line?);
 }

 Ok(())
 }
}

Note that we implement a new() method for ReadFile, which takes in a file handle
and returns a boxed ReadFile object. This process is important, as we’ll see in listing
5.18. Next, let’s define the WriteFile command.

struct WriteFile {
 content: String,
 receiver: File,
}

impl WriteFile {
 fn new(content: String, receiver: File) -> Box<Self> {
 Box::new(Self { content, receiver })
 }
}

impl Command for WriteFile {
 fn execute(&self) -> Result<(), Error> {
 println!("Writing new content to file");
 let mut writer = self.receiver.try_clone()?;

Listing 5.17 WriteFile command implementation

We’re returning a boxed object so we
can use trait objects later . We don’t
have to return a Box at this point, but
it makes the code a bit cleaner and
tells the caller how we expect the
code to be used.

We’ll use a buffered reader,
which gives us a few nice
features such as an iterator
over lines in file. We always seek to the start of the file before

reading it back. We use the ? operator to
handle I/O errors gracefully.

We enumerate the lines so that we can print
the line number along with its content.

Each line is printed, and if an error occurs
while reading the file, we’ll return it via

the ? operator.

The command includes a content field, which
is the content we want to write to the file.

receiver is the file handle to which the
command applies, as with ReadFile.

As with ReadFile,
we return a boxed
object.

We need a mutable object to write to the
file, and the easiest way to obtain one is

to clone our file handle.

1235.6 Command pattern
 writer.write_all(self.content.as_bytes())?;
 writer.flush()?;

 Ok(())
 }
}

The WriteFile command looks quite similar to ReadFile except that we also include
the contents we want to append to the file as an argument. Note that in our imple-
mentation, we assume that WriteFile can happily write to the current file-handle
position, but a slightly more robust implementation might always seek to the end of
the file before writing (and we might call it AppendFile instead). I’ll leave this change
as an exercise for you.

 Next, we need to implement the client of the pattern. We’ll stick the client in our
main() method.

use std::fs::File;
use std::io::{BufRead, BufReader, Error, Seek, Write};

fn main() -> Result<(), Error> {
 let file = File::options()
 .read(true)
 .write(true)
 .create(true)
 .append(true)
 .open("file.txt")?;

 let commands: Vec<Box<dyn Command>> = vec![
 ReadFile::new(file.try_clone()?),
 WriteFile::new(
 "file content\n".into(), file.try_clone()?
),
 ReadFile::new(file.try_clone()?),
];

 for command in commands {
 command.execute()?;
 }

 Ok(())
}

NOTE We introduced trait objects (such as the use of dyn Trait) in chapter 2
when discussing traits.

Now we can test our code with cargo run, which (provided that file.txt doesn’t
exist) will produce the following output:

Listing 5.18 Client implementation for command pattern

We convert the
UTF-8 string to raw
bytes and write all
the bytes to the
current location of
the file cursor.

We flush the file handle to make
sure that the bytes are written out,
handling errors via the ? operator.

We use std::fs::File from the standard
library to open a file in read/write mode
and create the file if it doesn't exist or
open it in append mode if it does.

We use trait objects with
Box<dyn Command>, which
allows us to put any commands
that implement the Command
trait in our list of commands.

When we create
each command, we
clone the file handle
and pass it along to
the command.

Note that we need to
include the newline \n
character at the end of
the file contents to
give us separate lines
in the text file.

We loop over each
command object
and call its execute()
method, using the ?
operator to handle
errors.

124 CHAPTER 5 Design patterns: Beyond the basics
Reading from start of file
Writing new content to file
Reading from start of file
 1: file content

Because this example is stateful, we’ll see a different result when we run the code a
second time because the file was modified in a previous run. Running the code a sec-
ond time produces the following output:

Reading from start of file
 1: file content
Writing new content to file
Reading from start of file
 1: file content
 2: file content

The command pattern can be much more complicated because it is sometimes used
for stateful operations, such as those that can be applied in forward and reverse. An
example might be an undo/redo framework, which permits us to apply and reverse
changes. For this approach to work, our commands need to be idempotent and track
the necessary state for both forward and reverse execution. In the preceding example,
the WriteFile command is not idempotent because it performs an append operation
and doesn’t seek to the end of the file each time. One way to make the command
idempotent would be to seek to the beginning of the file each time and overwrite the
entire contents of the file.

5.7 Newtype pattern
The newtype pattern is an extension of tuple structs (special structs in Rust that behave like
tuples) that uses Rust’s type system to provide additional type information or handling
of data. Newtype is useful when the data itself is sufficiently contained by a core or prim-
itive type, such as a String or i32. But you want to avoid adding too much encapsula-
tion or indirection on top of the base type by allowing direct access with a tuple.

 We can think of newtype as being a lightweight pattern for providing additional
context or information atop tuples while keeping the convenience and simplicity of
tuples. Another common use of newtype is enabling type-safe conversion between
data types. Newtype can be deceptively simple, but it’s also deceptively handy for using
Rust’s type system.

NOTE In the introduction to this chapter, I noted that newtype is a Rust-
specific pattern, though strictly speaking, nothing stops you from applying the
same concept in another programming language. By Rust-specific, I mean
merely that this pattern (to the best of my knowledge) originated within the
Rust community.

To demonstrate the use of newtype, let’s create BitCount and ByteCount types, which
we’ll use to hold counts of bits and bytes. We know that 1 byte contains 8 bits, so we

1255.7 Newtype pattern
can define methods to trivially (but safely) convert between these types. First, we’ll
define our tuple structs, each with a u32:

#[derive(Debug)]
struct BitCount(u32);
#[derive(Debug)]
struct ByteCount(u32);

This code represents the most basic example of the newtype pattern. We can test it
like so:

let bits = BitCount(8);
let bytes = ByteCount(12);
dbg!(&bits);
dbg!(&bytes);

Running this code produces output like this:

[src/main.rs:9] &bits = BitCount(
 8,
)
[src/main.rs:10] &bytes = ByteCount(
 12,
)

Next, we want to convert between counts of bits and bytes. Let’s define two methods to
perform this conversion:

impl BitCount {
 fn to_bytes(&self) -> ByteCount {
 ByteCount(self.0 / 8)
 }
}

impl ByteCount {
 fn to_bits(&self) -> BitCount {
 BitCount(self.0 * 8)
 }
}

Conversion method naming idioms: as_…(), to_…(), and into()
You may have noticed that three common idioms are used for method names when
converting between types: prefixing methods with as_ or to_ and into(). Although
developers don’t strictly follow these conventions, you’ll find that most libraries
(especially the Rust standard library) adhere to the following conventions:

 as_…()—For lower-cost conversions such as as_ref() from the AsRef trait.
Obtaining a reference is a relatively cheap operation—one that in some
cases can be optimized out by the compiler.

May return an
unexpected result if the
number of bits is not
evenly divisible by 8

126 CHAPTER 5 Design patterns: Beyond the basics
We can check whether our conversions behave as expected with the following code:

dbg!(bits.to_bytes());
dbg!(bytes.to_bits());

When we execute this code, we get the following output, which shows the new object
produced:

[src/main.rs:24] bits.to_bytes() = ByteCount(
 1,
)
[src/main.rs:25] bytes.to_bits() = BitCount(
 96,
)

We can convert from bits to bytes and back again, and vice versa, if we’re so inclined:

dbg!(bits.to_bytes().to_bits());
dbg!(bytes.to_bits().to_bytes());

Running this code produces the following output:

[src/main.rs:27:5] bits.to_bytes().to_bits() = BitCount(
 8,
)
[src/main.rs:28:5] bytes.to_bits().to_bytes() = ByteCount(
 12,
)

Accessing the inner value of a newtype is as simple as using the tuple syntax, as new-
types are in effect tuples:

dbg!(bits.0);
dbg!(bytes.0);

(continued)

 to_…()—For higher-cost conversions such as to_string() from ToString.
The imperative to implies that work needs to be done, such as allocating,
creating new objects, performing conversions, or copying data.

 into()—Conversions using into() (via the From trait). These conversions
are generally higher cost and often include allocations, copying, or cloning.

One notable exception is the use of borrow() from the Borrow trait, which behaves
similarly to as_ref() from AsRef except that it returns a reference object (a pattern
we’ll discuss in chapter 7) rather than a plain reference (Ref<', T> versus &T).
std::cell::RefCell, for example, provides borrow() but not as_ref() because
of the additional overhead introduced by run-time borrow checking.

127Summary
The preceding code produces the following output:

src/main.rs:30:5] bits.0 = 8
[src/main.rs:31:5] bytes.0 = 12

Converting between units—such as bits and bytes, Celsius and Fahrenheit, and meters
and feet—is a common use case for newtype, as this pattern allows you to encode the
conversion logic in a single place and ensures that the conversion is always correct.
Note that if your conversion involves a lossy operation such as floating-point math,
you could lose precision with each conversion, so you may want to consider keeping
the source value around for future conversions.

 Newtype is convenient, doesn’t require much boilerplate, and is fairly easy for
other people to grok. The pattern is essentially named tuples with one or more meth-
ods defined, such as for converting between related types.

Summary
 Macros provide one method of metaprogramming in Rust. We can generate

code with macros, saving ourselves a lot of typing and reducing the number of
errors that can appear when we need to generate or create repetitive code.

 The core language patterns of Rust (generics and traits) can be used to create
advanced patterns such as builder and fluent interface.

 The builder pattern demonstrates how to use encapsulated data effectively and
separate concerns.

 The fluent interface pattern is a pleasant way to deal with chaining operations
and converting between types.

 The observer pattern is an alternative to callbacks, providing a cleaner abstrac-
tion at the expense of some boilerplate. For simple cases, callbacks may be suffi-
cient.

 The command pattern gives us a method to abstract the execution of a com-
mand from the target (or receiver) of the action, as well as the order and timing
of execution.

 The newtype pattern wraps other types within a tuple struct to encode addi-
tional information about a type or enable safe data conversions. Core types
such as String or primitives such as i32 are candidates for newtype. Newtype
allows us to convert easily between similar but distinct types.

Designing a library
This chapter marks the approximate halfway point in this book, so we’ll take a
slight departure from the other content to discuss a subjective and somewhat con-
troversial subject: what constitutes good library design. There’s no controversy
about good design being better than bad design, but few people agree on what con-
stitutes good. The zeitgeist of opinion surrounding good versus bad tends to shift
and swing over time, which is important to consider for your designs.

 The truth about good software design is that few universal rules exist. Much of
what constitutes good is a matter of fashion, context, availability, and quality of tool-
ing, as well as how the human–computer interface functions across these dimen-
sions. That interface is the API of your library, and it’s the most important part of
your library design.

 In this chapter, we’ll explore some of the ideas, processes, and methods to
consider when designing a library, with the goal of producing a library that’s easy

This chapter covers
 Thinking about how to design a great library

 Making beautiful interfaces

 Being correct and avoiding unexpected behavior

 Exploring Rust library ergonomics and patterns
128

1296.1 Do one thing, do it well, and do it correctly
to use, delightful to work with, difficult to use incorrectly, and flexible enough to
solve a wide variety of problems. We’ll use an example from earlier in the book to
build our library.

 This chapter is written for people who are interested in publishing their own
libraries as open source projects, SDKs, or APIs for internal use. It’s also for those who
want to learn more about the process of designing libraries and the considerations
that go into making a library that’s easy to use, maintain, and extend.

 Before diving into a specific example, we’ll take a moment to contemplate some of
the problems we face as custodians of software libraries. This meditation will set the
stage for a more practical example.

6.1 Meditate on good library design
Designing a library—or anything, for that matter—always involves tradeoffs. We can think
of tradeoffs as being a sliding scale; every choice we make as software developers is
about striking the right balance among tradeoffs, which can be binary, scalar, 3D, 4D,
or N-dimensional. Somewhere along the continuum of these tradeoffs is a point that rep-
resents a good balance.

 An example binary choice might be whether to add a dependency to implement a
feature or write a solution yourself. Scalar decisions involve striking a balance between
at least two options, such as configuration versus convention (making everything con-
figurable, some things configurable, or nothing configurable).

 For most practical programming tasks, the main constraint is delivering the neces-
sary features in minimum time without sacrificing quality. Across the three dimen-
sions of speed, completeness, and quality, you’ll likely need to compromise on one or
more dimensions to optimize for the others (sacrificing speed for quality, for exam-
ple, or dropping some features to allow shipping sooner).

 When it comes to designing library APIs, we can look to Marie Kondo for inspiration.
We want our library to spark joy in those who use it, and we need to get inside the heads
of our library’s audience to understand what’s joyful and what is not. In many cases, this
process is as easy as using your library, comparing its interface with that of similar or related
libraries, and ensuring that the interface and patterns your library exposes are congruent
with what people expect to find in a library. We should trim the interfaces exposed by our
library that don’t spark joy.

6.2 Do one thing, do it well, and do it correctly
As good stewards of the Rust ecosystem, we want to produce libraries that are Rusta-
ceous and that follow the Rust ethos. Many crates focus on doing a small set of things
and doing those things well. We want our crates to be interoperable with other crates.
We don’t want to pull in too many dependencies, and when we do impose dependen-
cies on downstream consumers, we want to make sure that we don’t break things.
Sometimes, we make dependencies or features optional by using feature flags, but too
many feature flags can be confusing and make a library harder to use. Trying to achieve

130 CHAPTER 6 Designing a library
all these aims simultaneously is a tricky balancing act that becomes much harder as
the complexity of the library increases.

 Being good at one thing is a good way to ensure that your library is easy to test, easy
to maintain, and easy to use. It’s also a good way to ensure that your library is correct.

 Correctness is more important than performance or completeness. Achieving
correctness is a matter of ensuring that your library does what it says (that is, matches
the specifications or documentation) and does it predictably and reliably. It’s harder
to be correct when you’re trying to do too many things or when you’re doing things
in a way that is not idiomatic to the language you’re using and the context in which
it’s used.

 Proving correctness is a complex topic that can’t be summarized in a single chap-
ter, but we can use tools such as property-based testing, fuzzing, and formal verifica-
tion to ensure that our libraries are correct. Formal verification, in particular, is the
hardcore end of the spectrum; it’s not something that most of us will ever need to do,
but it’s good to know that it’s possible. Property-based testing and fuzzing are more
accessible and can be used to great effect to ensure that our libraries are correct.

6.3 Avoid excessive abstraction
As library designers, we need to decide what to expose on public interfaces. In most
cases, we start by exposing the minimum set of types, methods, traits, and functions
that provide minimally necessary feature completeness. We don’t want to use excessive
abstractions or encapsulation, particularly for raw data; instead, we want to empower
the downstream consumers of our library to handle data as they see fit. We’ll imple-
ment common traits (Debug, Clone, and so on) to make life easy, but we don’t need to
follow the kitchen-sink approach and implement every trait simply because we can.

 The downside of too much abstraction is that it can make your library harder to
use, raising the barrier to entry and discouraging people from using it, especially
when the abstractions your library introduces are not idiomatic to the language or the
problem domain and differ from what people expect to find in a library. If the abstrac-
tions are too complex, they can make your library incompatible with other libraries,
which is a problem if you want the library to be used in various contexts.

 As the old joke says, when Michelangelo was asked how he created the statue of
David, he replied, “All I did was chip away everything that didn’t look like David.” The
same is true of library design. We should chip away at the abstractions that aren’t nec-
essary until we’re left with the simplest, most elegant solution to the problem we need
to solve.

6.4 Stick to basic types
One way to ensure that your library is accessible to a wide range of applications is to stick
to basic types when possible. Introducing new types and custom data structures means that
anyone else who uses your library needs to take an extra step to convert between their data
structures and yours.

1316.5 Use the tools
 Ideally, you can rely entirely on the standard library types, and if you need to introduce
new types, you should make sure that they are easy to convert to and from standard library
types, providing the necessary conversions (such as implementing From). Also, requiring
users to convert between types introduces some performance overhead, which may be
undesirable.

 Rust’s standard library and collections (including Vec, HashMap, and HashSet) are quite
suitable for most tasks, and you should consider using them whenever possible. But you
can go further by accepting slices or iterators as input to your functions, making your
library even more flexible.

 Consider a library that accepts a Vec as input. This interface is less flexible because
we can pass only a Vec:

fn do_something_with_vec<T>(v: &Vec<T>) {
 // ...
}

This interface is more flexible because we can pass a Vec, an array, or any other type to a
slice:

fn do_something_with_slice<T>(v: &[T]) {
 // ...
}

A slice may be slightly less flexible than an iterator, but it’s quite a bit more flexible than
a Vec.

6.5 Use the tools
Tools such as Clippy and rustfmt can enforce compliance with Rust’s idioms and conven-
tions. It’s Rustaceous, for example, to use camel case for types, snake case for variables or
member functions, upper case for constants, and so on; Clippy provides lints for all these
conventions. Clippy is one of the most helpful tools for ensuring that your code is idiom-
atic Rust.

 Clippy and rustfmt relate mainly to idioms, so they can’t do much to help with
design, architecture, or correctness. But they can help you avoid common pitfalls and
ensure that your code is relatively easy to read and understand.

 Integrating Clippy and rustfmt into your editor and continuous integration/
continuous delivery (CI/CD) pipeline is an easy way to ensure that code stays compli-
ant over time. The cost of changing code after it’s written is much higher than the cost
of writing code correctly in the first place, so these tools are worth using, especially
because they’re free, easy to use, and trivial to integrate.

132 CHAPTER 6 Designing a library
6.6 Good artists copy; great artists steal
(from the standard library)
When you are unsure which conventions to follow, popular Rust crates can serve as
data points you can analyze to understand what works and what doesn’t. Following the
lead of popular crates usually helps you avoid bad designs. This statement isn’t neces-
sarily an endorsement of any crate that’s managed to achieve popularity, however.

 When you’re seeking inspiration, the Rust standard library is the gold standard for
idiomatic Rust. The standard library is well documented, well tested, and well designed.
You can examine the source code and historical discussions in the Rust repository to
understand why the language’s developers made specific decisions.

 The official documentation for the standard library links directly to the source
code, which is a good resource for understanding how things work. The Rust lan-
guage and its standard library are dual-licensed under Apache 2.0 and Massachusetts
Institute of Technology (MIT), so in most cases, you can use examples from Rust’s
source code in your projects as a starting point.

6.7 Document everything, and provide examples
Documenting your library is a critical step in the process; you shouldn’t think of it as
being a stage at the end of writing your code. Instead, you should create the documen-
tation, including example code, throughout the process of writing your library.

 Examples are sometimes overlooked but are some of the most important parts of doc-
umentation. Typically, someone who uses your library begins by copying and pasting an
example from the documentation and modifying it to suit their needs. I imagine that
anyone who has used a library has done the same thing at least once and is nodding in
agreement as they read.

6.8 Don’t break the user’s code
We should make an effort to maintain backward compatibility whenever possible. For
crates that we publish, we should use semantic versioning to signal compatibility
between versions to our downstream consumers. If we want to publish our crate, main-
taining our library is an ongoing process that requires fluidity in terms of adopting
new features and patterns and eschewing those that have gone out of style.

 Backward compatibility is such a precious trait in a library that you should go out
of your way to maintain it. It’s better to have a slightly less optimal API than to break
your users’ code. If you must break compatibility, you should provide a migration
path for your users and communicate the changes clearly in your documentation
and release notes.

 Bear in mind that when developers make backward-incompatible changes, many
folks don’t bother reading the release notes or the change logs or checking documen-
tation. They’ll simply update their dependencies and expect everything to work. As
library maintainers, maintaining backward compatibility will spare us and our library’s
users a lot of headaches.

1336.9 Think of the state

6.9 Think of the state
One of the most critical aspects of designing a library is thinking about the way we
want users of our libraries to handle state. A few things we probably shouldn’t do are
create global variables and use mutable statics and singletons.

 Most good library designs provide a way for users to create instances of the context in
which their library operates. That context in turn is passed around as needed by library
users and serves as an entry point to the library’s functionality. This pattern is a good one
to follow because it allows users to create multiple instances of your library and makes
your library easier to test.

 A perfect library may have no state, but in the real world, we often need ways to
manage the library’s internal state. In these cases, we should provide a way for users to
manage that state. Also, we should make it clear how the state is managed and what
the implications are for the user. If the state needs to be persisted or stored, we should
provide a method for serializing and deserializing that state.

 Examples of state we may need to handle include configuration, connection pools,
caches, counters, and accumulators. Our library would likely have an entry point that
accepts a context object, which would be passed around to the various functions in the
library. Creating the context object would be handled by a factory function or a builder
pattern, and the context object would be responsible for managing the state of the
library. Consider the following example:

let ctx = MyLibrary::new()
 .with_option(true)
 .with_param(3.14)
 .with_setting(249295)
 .build();
ctx.do_operation();

let inner_module = MyLibrary::InnerModule::new(ctx);

inner_module.do_an_inner_operation();

This example is a simple pattern for managing state in a library. The user creates the
context object with a builder interface and is responsible for handling the context
object and passing it around to the various functions in the library. The library doesn’t
need to leak the details of the context object, and the user can create multiple instances
of the library with different configurations if necessary. If another module in the library
requires access to the context object, the user can pass the context object to that mod-
ule, such as an inner module in the preceding example.

Creates a new instance of
a hypothetical library

Builds the context object
with various options

Uses the context object to
perform an operation

Creates an instance
of an inner module
that requires the
context object

Uses the inner module to
perform an operation

134 CHAPTER 6 Designing a library
6.10 Consider the aesthetics
First impressions matter, and the aesthetics of your library have a big effect on how
people perceive it. Aesthetics aren’t just about how the library looks but also about
how it feels to use. A library that is easy to use, easy to understand, and debug will be
perceived as more aesthetically pleasing than one that is difficult to use, understand,
and debug.

 The aesthetics of your library are influenced by many factors, including the naming of
types, functions, and variables; the structure of the code; the documentation; the exam-
ples; and the overall design of the library. A library that is well organized, well documented,
and easy to use is more aesthetically pleasing than one that is disorganized, poorly docu-
mented, and difficult to use.

 When you’re designing your library, consider the aesthetics of the code, the docu-
mentation, and the examples. Use consistent naming conventions; organize your code
logically; and provide clear, concise, grammatically correct, error-free documentation.
Documentation tools that produce good-looking documentation make this task a lot
easier. Write examples that demonstrate how to use the library simply and straightfor-
wardly. Consider the user experience of using your library, and strive to make it as
pleasant as possible.

6.11 Examining Rust library ergonomics
Let’s tie together some of what you’ve learned in the book so far by creating a
library based on a previous code sample. This exercise is great for writing libraries.
You can learn a lot simply by documenting and testing your code from the perspec-
tive of end users of your library. Also, I believe that forcing yourself to pay attention
to the details from the perspective of other users enables you to produce better
code. Writing libraries forces you to encapsulate, separate concerns, and create good
interfaces.

 You may be disappointed if you arrived here hoping to find a comprehensive list of
all the dos and don’ts of creating libraries. I can’t provide that list, but I can give you
the skills you need to produce high-quality code.

6.11.1 Revisiting linked lists

We’ll use the linked-list example from chapter 3 to form the basis of a library. We’ll
start by creating a library with cargo new --lib linkedlist. We’ll copy the code
from chapter 3 into src/lib.rs. Next, we’ll create an integration test in our library.
We’ll create tests/integration_test.rs and populate it with the code from our
previous test:

#[test]
fn test_linkedlist() {
 use linkedlist::LinkedList;

1356.11 Examining Rust library ergonomics
 let mut linked_list = LinkedList::new("first item");

 // ... snip ...
}

We’re using an integration test as opposed to a unit test because we want to test our
library from outside the scope of the crate. The test code (which we copied directly
from the old code) doesn’t compile in its current state because we never considered
visibility. The compiler reports the following error:

error[E0603]: struct `LinkedList` is private
 --> tests/integration_test.rs:3:21
 |
3 | use linkedlist::LinkedList;
 | ^^^^^^^^^^ private struct
 |
note: the struct `LinkedList` is defined here
 --> /Users/brenden/dev/idiomatic-rust-book/c06/
 linkedlist/src/lib.rs:22:1
 |
22 | struct LinkedList<T> {
 | ^^^^^^^^^^^^^^^^^^^^

This error message makes sense. Let’s fix the visibility by adding pub to each method
from the impl<T> LinkedList<T> { … } block and to the LinkedList struct itself. Keep
in mind that the individual fields within the struct are still private, as everything is pri-
vate by default in Rust. If we try to compile again, we get more errors. The first error
looks like this:

error[E0446]: private type `Iter<'_, T>` in public interface
 --> src/lib.rs:41:5
 |
41 | pub fn iter(&self) -> Iter<T> {
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ can't leak private type
...
62 | struct Iter<'a, T> {
 | ------------------ `Iter<'_, T>` declared as private

Ah, yes—we forgot to make the iterators public. Let’s make the iterators public by
adding pub to the three iterator structs: Iter, IterMut, and IntoIter.

 After we make these changes, we’ve compiled our code successfully, and the test
code will work. We had to fix the visibility to make our code into a proper library.

6.11.2 Using rustdoc to improve our API design

Next, we’ll examine the API of our library. The best way is to generate documentation
using rustdoc. Anyone who uses our library is likely to spend a lot of time looking at our
docs, so it’s essential to have good-quality documentation if we want anyone to be success-
ful using our library.

Error here:
LinkedList is
private.

136 CHAPTER 6 Designing a library
 We’ll generate docs by running the cargo doc command, which places the gener-
ated HTML files in target/doc within the crate. We can open the file at linkedlist/
index.html, which is the main landing page for our crate’s documentation. We
haven’t written any documentation yet, so all we see is a blank page that lists the
structs we marked with pub (figure 6.1).

If we click the link for the LinkedList struct, we see the page shown in figure 6.2.
 It’s worth noting that even without doing anything to document our code, we have a

fairly useful set of documentation. Simply because we listed our structures and methods
(provided that we named them appropriately), a user can infer a lot about what our
library does and how it works. This is especially true if we chose good names for our
objects, methods, and traits. But we should write additional documentation anyway, no
matter how self-explanatory we think our library is.

 The first thing we should do is document the crate itself to tell anyone who looks
at the documentation where to begin. We can document our crate by adding outer
documentation to lib.rs. In Rust, outer documentation is provided by comments
beginning with //!, and inner documentation is provided by comments beginning
with ///. Outer documentation applies to the outer scope of the file being docu-
mented, and inner documentation applies to the next item following the documen-
tation comments.

Figure 6.1 Empty documentation for our linkedlist crate

1376.11 Examining Rust library ergonomics
First, we’ll add a top-level description of the crate and a high-level example of how to
use the code. Let’s update our code with the following at the top of src/lib.rs:

//! # linkedlist crate
//!
//! This crate provides a simple linked list implementation.
//!
//! The crate serves as a teaching example for the book [_Rust Advanced
//! Techniques_](https://www.manning.com/books/idiomatic-rust).

Figure 6.2 Empty LinkedList struct documentation

138 CHAPTER 6 Designing a library
//!
//! ## Example usage
//!
//! ```rust
//! use linkedlist::LinkedList;
//!
//! let mut animals = LinkedList::new();
//! animals.append("chicken");
//! animals.append("ostrich");
//! animals.append("antelope");
//! animals.append("axolotl");
//! animals.append("okapi");
//! ```

After we regenerate the docs, our crate-level documentation looks like figure 6.3.

Sweet! The documentation is starting to look like a real crate.

Figure 6.3 linkedlist crate with top-level documentation

1396.11 Examining Rust library ergonomics
TIP When you’re working on documentation, use cargo watch -x doc to
regenerate the docs automatically as you make changes. You can install cargo-
watch with cargo install cargo-watch if you have not already.

Now that we have some documentation with a working example, we can test our docs.
Every code sample in our docs is also an integration test. If we run cargo test, we see
that our doc example automatically became a test (denoted by Doc-tests linkedlist):

$ cargo test
 Finished test [unoptimized + debuginfo] target(s) in 0.00s
 Running unittests src/lib.rs
 (target/debug/deps/linkedlist-2e0286b0918288ae)

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Running tests/integration_test.rs
 (target/debug/deps/integration_test-c95f81c9911957c8)

running 1 test
test test_linkedlist ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.00s

 Doc-tests linkedlist

running 1 test
test src/lib.rs - (line 10) ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 0.26s

Note that in our doc examples, we don’t need to write a main() function. A small
amount of preprocessing is applied by rustdoc, which wraps the code in fn main() { … }
and creates the test code on the fly for execution with cargo test.

 Let’s talk about our API. When we wrote this code, we didn’t think too much about
how people might use it. One thing already stands out: our new() method on Linked-
List looks a bit out of place. Why does new() take any parameters? I think we should
emulate the behavior of other collections, like Vec in Rust. If we look at the documen-
tation for Vec::new(), it states the following:

Constructs a new, empty Vec<T>.

The vector will not allocate until elements are pushed onto it.

For consistency, we should use the same pattern as Vec. Let’s update our code by
changing new() so that it returns an empty LinkedList. While we’re at it, we should
document our LinkedList as shown in the following listing.

140 CHAPTER 6 Designing a library
/// Provides a singly linked list implementation with iterator access.
pub struct LinkedList<T> {
 head: Option<ListItemPtr<T>>,
}

impl<T> LinkedList<T> {
 /// Constructs a new, empty [`LinkedList<T>`].
 pub fn new() -> Self {
 Self { head: None }
 }
 /// Appends an element to the end of the list. If the list is empty,
 /// the element becomes the first element of the list.
 pub fn append(&mut self, t: T) {
 match &self.head {
 Some(head) => {
 let mut next = head.clone();
 while next.as_ref().borrow().next.is_some() {
 let n = next.as_ref().borrow()
 .next.as_ref().unwrap().clone();
 next = n;
 }
 next.as_ref().borrow_mut().next =
 Some(Rc::new(RefCell::new(ListItem::new(t))));
 }
 None => {
 self.head = Some(Rc::new(RefCell::new(ListItem::new(t))));
 }
 }
 }
 /// Returns an iterator over the list.
 pub fn iter(&self) -> Iter<T> {
 Iter {
 next: self.head.clone(),
 data: None,
 phantom: PhantomData,
 }
 }
 /// Returns an iterator over the list that allows mutation.
 pub fn iter_mut(&mut self) -> IterMut<T> {
 IterMut {
 next: self.head.clone(),
 data: None,
 phantom: PhantomData,
 }
 }
 /// Consumes this list returning an iterator over its values.
 pub fn into_iter(self) -> IntoIter<T> {
 IntoIter {
 next: self.head.clone(),
 }
 }
}

Listing 6.1 LinkedList with documentation

1416.11 Examining Rust library ergonomics
Notice that we also updated the LinkedList struct so that head is optional. We needed to
make this change so that we’d have an empty instance because the preceding version
assumed that we always had a head element. Figure 6.4 shows the updated documenta-
tion for LinkedList.

That documentation looks good. We might want to consider adding many more fea-
tures to our collection type, but let’s focus on the most critical things. Two missing

Figure 6.4 Documented LinkedList

142 CHAPTER 6 Designing a library
features come to mind: printing the contents of our list and cloning the list. Neither
feature is as simple as it appears on the surface. We could use #[derive(Clone,
Debug)], which would do an okay job of solving these problems, but it’s not ideal.
Let’s talk about the problems separately.

 If we want to implement Clone for our linked list, we have to consider what cloning
a linked list means. Most likely, when someone calls clone() on the list, they intend to
clone the structure and contents of the list, not the structure alone. In other words, we
don’t want to copy only the pointers to a new structure because they would still point
to the same data.

 To fix Clone, we have a couple of options: rewrite LinkedList so that it doesn’t use
Rc<RefCell<T>> or provide our own implementation for Clone instead of using
#[derive(Clone)]. We want to continue using Rc<RefCell<T>> because it will make
life easier if we decide to add more features to our list, so let’s implement Clone our-
selves. The definition for the Clone trait is as follows:

pub trait Clone {
 fn clone(&self) -> Self;
 fn clone_from(&mut self, source: &Self) { ... }
}

Neat. If we look at the Clone documentation a little more closely, we find the follow-
ing statement about the clone_from() method:

a.clone_from(&b) is equivalent to a = b.clone() in functionality, but can be
overridden to reuse the resources of a to avoid unnecessary allocations.

This statement is good to know because I think it’s easier to implement clone_from()
than clone(). We can call clone_from() from our clone() implementation:

impl<T: Clone> Clone for LinkedList<T> {
 fn clone(&self) -> Self {
 let mut cloned = Self::new();
 cloned.clone_from(self);
 cloned
 }
 fn clone_from(&mut self, source: &Self) {
 self.head = None;
 source.iter().for_each(|item| {
 self.append(item.clone())
 });
 }
}

Note the trait bound on T. We provide
Clone only for types that also
implement Clone.

Creates
the new

list

We clone the elements from the old
list, self, into the new list by calling
clone_from(), which we define below.

The final expression
returns the new list.

Setting the head of the list to
None effectively resets the list.

We use our iterator to clone each value
in the list and append the values to the
target list, which is self.

1436.11 Examining Rust library ergonomics
That code makes things simple, and as a bonus, it follows the DRY (Don’t Repeat
Yourself) principle, so any changes to clone_from() are reflected by clone().

6.11.3 Improving our linked list with more tests

We’ve added a bunch of new features, so we should test our code. Let’s update our
integration tests to test each feature separately. We’ll start with the following listing,
which tests the iter() method of our LinkedList.

#[test]
fn test_linkedlist_iter() {
 use linkedlist::LinkedList;
 let test_data =
 vec!["first", "second", "third", "fourth", "fifth and last"];

 let mut linked_list = LinkedList::new();
 test_data
 .iter()
 .for_each(|s| linked_list.append(s.to_string()));

 assert_eq!(
 test_data,
 linked_list
 .iter()
 .map(|s| s.as_str())
 .collect::<Vec<&str>>()
);
}

Next, the following listing tests the mutable iterator method, iter_mut(), from our
LinkedList.

#[test]
fn test_linkedlist_iter_mut() {
 use linkedlist::LinkedList;
 let test_data =
 vec!["first", "second", "third", "fourth", "fifth and last"];

 let mut linked_list = LinkedList::new();
 test_data
 .iter()
 .for_each(|s| linked_list.append(s.to_string()));

 assert_eq!(
 test_data,

Listing 6.2 Testing iter() for our LinkedList

Listing 6.3 Testing iter_mut() for our LinkedList

We append a String
to our test list even
though we have
Vec<&str>.

We’re using assert_eq!(), so the types we’re
comparing must match. Rather than convert
our Vec<&str> to Vec<String>, we get a
temporary Vec<&str> out of our linked list
using collect().

144 CHAPTER 6 Designing a library
 linked_list
 .iter_mut()
 .map(|s| s.as_str())
 .collect::<Vec<&str>>()
);
}

The following listing tests the into_iter() method of our LinkedList.

#[test]
fn test_linkedlist_into_iter() {
 use linkedlist::LinkedList;
 let test_data =
 vec!["first", "second", "third", "fourth", "fifth and last"];

 let mut linked_list = LinkedList::new();
 test_data
 .iter()
 .for_each(|s| linked_list.append(s.to_string()));

 assert_eq!(
 test_data
 .iter()
 .map(|s| s.to_string())
 .collect::<Vec<String>>(),
 linked_list.into_iter().collect::<Vec<String>>()
);
}

The following listing tests our implementation of the Clone trait.

#[test]
fn test_linkedlist_cloned() {
 use linkedlist::LinkedList;
 let test_data =
 vec!["first", "second", "third", "fourth", "fifth and last"];

 let mut linked_list = LinkedList::new();
 test_data
 .iter()
 .for_each(|s| linked_list.append(s.to_string()));

 let cloned_list = linked_list.clone();

 linked_list
 .into_iter()
 .zip(cloned_list.into_iter())

Listing 6.4 Testing into_iter() for our LinkedList

Listing 6.5 Testing Clone for our LinkedList

For the into_iter()
test, we’ll convert
the test data to
Vec<String>
instead of the other
way around.

To test whether our clone worked as
intended, we use into_iter() because it
returns the underlying owned value,
which is what we want to check.

1456.11 Examining Rust library ergonomics
 .for_each(|(left, right)| {
 assert_eq!(left, right);
 assert!(!std::ptr::eq(&left, &right));
 });
}

Our tests are passing, so we can move on.

6.11.4 Making our library easier for others to debug

Now let’s talk about the Debug trait. Just for fun, let’s see what happens if we try to use
#[derive(Debug)] and print our list with test data using dbg!(linked_list). The
output would look something like this:

[tests/integration_test.rs:20] linked_list = LinkedList {
 head: Some(
 RefCell {
 value: ListItem {
 data: RefCell {
 value: "first",
 },
 next: Some(
 RefCell {
 value: ListItem {
 data: RefCell {
 value: "second",
 },
 next: Some(
 .. snip ..
),
 },
 },
),
 },
 },
),
}

Oh, my! That result isn’t helpful at all. If someone is trying to use our linked list, this
output will make a big mess, especially if it’s got deeply nested structures. We can’t use
this code the way it is. Let’s take a look at the Debug trait so we can go about imple-
menting it:

pub trait Debug {
 fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}

Checks the values of
our original and cloned
lists to make sure they
matchChecks whether the original and cloned values are

different memory locations. This check is somewhat
redundant because it’s not possible to have two

variables pointing to the same owned objects
in scope, but we’ll make it anyway.

146 CHAPTER 6 Designing a library
The interesting part of the Debug trait is Formatter. Rust gives us the Formatter tool,
which takes care of the messy business of handling most of the formatting of our
output. Formatter provides an easy way to format the debug output of lists with
debug_list().

NOTE You can find the complete reference for Formatter at https://mng.bz/
67VG.

Let’s implement the Debug trait by using Formatter::debug_list():

impl<T: Debug> Debug for LinkedList<T> {
 fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
 fmt.debug_list().entries(self.iter()).finish()
 }
}

With our new Debug implementation, the output from our tests using dbg!() looks
like the following, which is a remarkable improvement:

[tests/integration_test.rs:20] linked_list = [
 "first",
 "second",
 "third",
 "fourth",
 "fifth and last",
]

Last, let’s look at our documentation for the iterators we created. We didn’t write any
documentation for Iter, IterMut, or IntoIter. But if we look at the documentation
that was generated, we see that the Iterator trait has provided a lot of functions for
us, and those functions are already documented. Let’s write a short description of
each iterator for the sake of completeness (figure 6.5).

 Now we’ve now got a decent-looking crate! Our library is quite Rustaceous, which
we know because we’ve created good-quality documentation, provided implementa-
tions of key traits, and mirrored the API of Vec. Someone who’s already familiar with
Vec should be able to use our collection without much pain because we followed the
existing patterns in the language.

https://mng.bz/67VG
https://mng.bz/67VG
https://mng.bz/67VG

147Summary
Summary
 Good library design is difficult, requires careful thought, and may require many

iterations.
 Libraries should be designed with users in mind. We should strive to make our

libraries easy to use and understand.
 Do one thing, and do it well. A library should have few responsibilities and

should focus on solving a specific problem.

Figure 6.5 Documentation for our iterators

148 CHAPTER 6 Designing a library
 Focusing on correctness is essential. We should use tools such as property-based
testing and fuzzing to ensure that our libraries are correct.

 We should avoid excessive abstraction and stick to basic types whenever possible.
 Tools like Clippy and rustfmt can help us ensure that our code is idiomatic and easy

to read.
 Examining popular crates is an excellent way to find inspiration for designing

a library.
 Maintaining a library is an ongoing process, particularly if we want to publish

a crate. We may need to make bug fixes, add features, or update our crate as
new Rust features become available. Maintaining backward compatibility is
essential, and we should follow semantic versioning to signal compatibility
between versions.

 When designing libraries, we should pay special attention to how our APIs work
from the perspective of our users. By providing good documentation with
examples and comparing our own APIs with existing well-known APIs, we can
create great libraries with surprisingly minimal work.

Part 3

Advanced patterns

At this point, I hope that you have taken time to experiment with the pat-
terns in the preceding chapters and digest their concepts. The patterns in this
part are more advanced and may require more practice and time to learn solidly.
If I did my job right, you may have breezed through the book up to now. If not,
don’t worry; practice makes perfect.

 You may also find that some of these patterns are more specialized and may
not be as widely applicable. But it’s still good to know and understand them, as
you’ll most likely encounter them in the wild. I think that the more time you
spend working with Rust, the more value you’ll get from these patterns.

Using traits,
generics, and structs
for specialized tasks
The previous chapters introduced several Rust advanced techniques. This chapter
expands on some of those themes and explores more advanced design patterns.
These patterns are useful in many circumstances, but you’ll likely use them less fre-
quently because they are more complex to implement and often apply to scenarios
that you may not encounter often.

 To use an analogy, the patterns discussed in the previous chapters describe stan-
dard tools you might find in every toolbox that can be used for a wide variety of
jobs: hammer, pliers, screwdriver, power drill, and so on. The patterns discussed in
this chapter are for more specialized jobs, such as the woodworking tools you

This chapter covers
 Using const generics

 Applying traits to external crate types

 Extending types with extension traits

 Implementing blanket traits

 Using marker traits to mark types with attributes

 Tagging with structs

 Providing access to internal data with reference
objects
151

152 CHAPTER 7 Using traits, generics, and structs for specialized tasks
would find in a wood shop: table saw, planer, lathe, band saw, and so on. Although
these patterns are less useful for everyday Rust programming, it’s good to explore
them so that you’ll know how to use them when you need them.

7.1 Const generics
Rust’s const generics are a neat twist on generics that allow you to use constant values
generically. Const generics solve a long-standing problem in languages with generics
that occurs when you want to include a field in a structure that depends on a con-
stant value (such as the length of an array). The constant value is known only at the
time of instantiation, so without const generics, the only way to enable it would be to
create a version of your struct for every desired size—which is exactly what many
libraries do.

 We can use const generics anywhere we have both a primitive constant and a
generic parameter, such as to define the size of an array. We can use any size of integer-
based primitive, such as i32, u32, and usize. We can also use char and bool types
(which at the compiler level are equivalent to u8 on most platforms), but floating-
point values aren’t permitted.

 To understand const generics, let’s explore the problem they solve. Suppose that
we have a generic structure with an array of bytes, which we’ll call a buffer:

struct Buffer {
 buf: [u8; 256],
}

Our buffer holds 256 bytes. What if we want to make it generic so that it can hold any
type, not just bytes? Let’s do that:

struct Buffer<T> {
 buf: [T; 256],
}

Presto! Easy enough. Now our buffer can hold 256 elements of anything. But wait a
minute—what if we want the length of the array to be arbitrary? In other words, we
should make the length of the array variable at the time of instantiation. One way
would be to use a Vec, which can be resized at run time. The problems with using a
Vec are that it requires heap allocation (whereas we can allocate a plain array on the
stack) and it introduces a certain amount of overhead that we may not need, such as
copying values instead of moving them.

 If we know that the length of the array will never change throughout the life of our
buffer (as is often the case), we can use a const generic parameter. Let’s introduce a
LENGTH parameter using const generics:

#[derive(Debug)]
struct Buffer<T, const LENGTH: usize> {
 buf: [T; LENGTH],
}

1537.1 Const generics
Now our struct has two generic parameters: the type of the array elements and the
length. The LENGTH parameter can be treated like other generic parameters except that
it’s a constant value instead of a type, which results in some neat side effects. It creates a
new distinct type when it’s instantiated, for example, which is useful when we want to
use Rust’s type system with arbitrary-length arrays. We can provide concrete trait imple-
mentations for particular constant values, for example, which helps us avoid a whole
class of programming errors, such as when a mismatch occurs in the provided and
expected lengths of an array. We can specialize on particular constructions of this struct,
such as with the From trait for an array of [u8; 256]:

impl From<[u8; 256]> for Buffer<u8, 256> {
 fn from(buf: [u8; 256]) -> Self {
 Buffer { buf }
 }
}

This implementation allows us to create a Buffer from an array of type [u8; 256] (but
not any other type) by moving the array into the struct. Practically speaking, that
approach isn’t very useful. Instead, we probably want to implement a generic From and
use specializations as needed:

impl<T, const LENGTH: usize> From<[T; LENGTH]> for Buffer<T, LENGTH> {
 fn from(buf: [T; LENGTH]) -> Self {
 Buffer { buf }
 }
}

This code lets us move an array of arbitrary type and length into our Buffer. This
approach is quite useful, especially if we’ve built our code to work with Buffer, rather
than raw arrays. We can test our buffer quickly with the following code:

let buf = Buffer::from([0, 1, 2, 3]);
dbg!(&buf);

Executing this code produces the following output:

[src/main.rs:14] &buf = Buffer {
 buf: [
 0,
 1,
 2,
 3,
],
}

Const generics make it easy to build custom array-based types with fixed lengths,
which can save a lot of boilerplate.

Note that we don’t need to specify the
length parameter of 4; the compiler
automatically infers it.

154 CHAPTER 7 Using traits, generics, and structs for specialized tasks

"

7.2 Implementing traits for external crate types
When you start working with traits, you may get excited about them and start writing
traits for all kinds of things. This experimentation can be fun until you run into a
well-known design limitation of traits: you cannot implement a trait for types outside
your crate.

 This limitation exists for a good reason: if you could implement traits for any type,
you could quickly wind up with multiple conflicting trait implementations for the
same type. This situation could get worse as different crates evolve at different times,
slowly diverging due to their conflicting implementations. The compiler could apply a
heuristic to choose an implementation, but that approach would always be somewhat
confusing and difficult to reason about; thus, the Rust language doesn’t allow this as a
matter of principle.

 Worry not, however. Rust has a few features that let you implement equivalent
behavior without creating conflicts, should you need to do so.

7.2.1 Wrapper structs

To unlock external type traits and continue to use the features of those types, we need to
combine two different patterns: wrapper structs and the Deref trait. A wrapper struct is a
struct that wraps another type. In its simplest form, it contains only one field of the thing
being wrapped. After we create a wrapper struct, we can implement any trait we want for
the wrapper.

 We can use wrapper structs with Deref to implement traits for types from external
crates to get around the limitation on external type traits and make an object behave
like its subject. To demonstrate, let’s wrap a Vec:

struct WrappedVec<T>(Vec<T>);

NOTE A tuple struct, such as WrappedVec, is effectively equivalent to an ordi-
nary tuple except that we’ve defined a new type with a name and can write
impl blocks like any other struct.

That’s easy enough. But if we try to use our WrappedVec like a Vec, it won’t work:

let wrapped_vec = WrappedVec(vec![1, 2, 3]);
wrapped_vec.iter().for_each(|v| println!("{}", v));

It makes sense that this code doesn’t work: we haven’t implemented iter(). We don’t
want to reimplement all the methods that Vec provides; we want to pass through to
them from our wrapper struct.

7.2.2 Using Deref to unwrap a wrapped struct

The trick to making wrapper structs work nicely is implementing the Deref trait for
our WrappedVec. When we implement Deref, the compiler automatically dereferences
our wrapper when we call methods that don’t exist. This approach is called Deref

This construction of a struct is
equivalent to a tuple.

Errors out on call to iter()
with "method not found in
`WrappedVec<{integer}>`

1557.3 Extension traits

s,

coercion, but you should take care to avoid overusing it. Implementing Deref is a
piece of cake:

impl<T> Deref for WrappedVec<T> {
 type Target = Vec<T>;
 fn deref(&self) -> &Self::Target {
 &self.0
 }
}

Now we can call all the methods from Vec, such as iter(). Some limitations exist,
however. For one, we can’t use methods that take self by value, such as into_iter().
For that purpose, you’ll need to implement the into_iter() method:

impl<T> WrappedVec<T> {
 fn into_iter(self) -> IntoIter<T> {
 self.0.into_iter()
 }
}

To call Vec methods that take &mut self, you need to implement the DerefMut trait,
which is nearly the same as Deref. We can write a quick test for our wrapped vector:

let wrapped_vec = WrappedVec(vec![1, 2, 3]);
wrapped_vec.iter().for_each(|v| println!("{}", v));
wrapped_vec.into_iter().for_each(|v| println!("{}", v));

Running the preceding code produces the following output:

1
2
3
1
2
3

7.3 Extension traits
Extension traits are traits that add functionality to types and traits outside the crate in
which they’re defined. An example use of extension traits is adding features to standard
library types, such as adding a method to the core type Vec. Extension traits typically fol-
low a naming convention that uses the Ext postfix. You may encounter extension traits
in crates that provide features for upstream crates or the standard library.

 To illustrate an extension trait, we’ll extend Vec by adding a new trait, ReverseExt,
to which we’ll add a reversed() method that returns a reversed copy of the vector.
Our trait definition is as follows:

pub trait ReverseExt<T> {
 fn reversed(&self) -> Vec<T>;
}

The target type is what we want
to dereference to automatically.

The .0 on self denotes the first
element in the tuple struct. Each
element in a tuple is unnamed.

Our WrappedVec doesn’t
have any iterator method
but we can call them from
Vec just like an ordinary
vector.

Our reversed() method
returns a Vec<T>.

156 CHAPTER 7 Using traits, generics, and structs for specialized tasks
For simplicity, we return Vec<T> in this example. To improve this interface, you may
want to add a second generic parameter for the returned container type, similar to how
the collect() and collect_into() methods from Rust’s std::iter::Iterator are
implemented.

 In practice, we might write a library that exports this trait with one or more imple-
mentations, which can be imported and used elsewhere. We don’t necessarily need to
write a library to use extension traits; we can also use them within our crate or applica-
tion without exporting them. Let’s implement ReverseExt for Vec:

impl<T> ReverseExt<T> for Vec<T>
where
 T: Clone,
{
 fn reversed(&self) -> Vec<T> {
 self.iter().rev().cloned().collect()
 }
}

We can test this code as follows:

let forward = vec![1, 2, 3];
let reversed = forward.reversed();
dbg!(&forward);
dbg!(&reversed);

When we execute the code, we get the following output, as expected:

[src/main.rs:17] &forward = [
 1,
 2,
 3,
]
[src/main.rs:18] &reversed = [
 3,
 2,
 1,
]

Another way to use extension traits is to apply them to another trait rather than a
type. Following the preceding example, we can add a to_reversed() method to
std::iter::DoubleEndedIterator:

pub trait DoubleEndedIteratorExt: DoubleEndedIterator {
 fn to_reversed<'a, T>(self) -> Vec<T>
 where
 T: 'a + Clone,
 Self: Sized + Iterator<Item = &'a T>;
}

We place a Clone trait bound
on T so we can clone each
item in the Vec.

To reverse the vector, we
simply obtain an iterator,
reverse it with rev(), clone
each item, and collect the
result in a new Vec.

We use a supertrait
(which we’ll discuss
later) to limit the
scope of our trait
to apply only to
DoubleEndedIterator.

We need to require the
Clone trait bound for T,
the target type.

The iterator item type and lifetime need to
match T, and the iterator needs the Sized bound.

1577.4 Blanket traits
impl<I: DoubleEndedIterator> DoubleEndedIteratorExt for I {
 fn to_reversed<'a, T>(self) -> Vec<T>
 where
 T: 'a + Clone,
 Self: Sized + Iterator<Item = &'a T>,
 {
 self.rev().cloned().collect()
 }
}

We can test this extension trait as follows:

let other_reversed = forward.iter().to_reversed();
dbg!(&other_reversed);

This code, when executed, produces the same expected output:

[src/main.rs:38] &other_reversed = [
 3,
 2,
 1,
]

One nice result of applying an extension trait to another trait (as opposed to a type) is
that we can use this trait on any type that implements the DoubleEndedIterator trait,
which includes Vec, slices, and std::collections::LinkedList, among others.

7.4 Blanket traits
Sometimes, we have especially generic traits in the sense that they apply to nearly any
type, and for those traits, we may want to provide blanket implementations. A blanket
trait implementation, unlike a concrete implementation, uses generic parameters. You
can also have partial blanket implementations that specialize for some parameters but
are generic for others.

 We can use blanket traits to quickly and easily implement a trait for all types that sat-
isfy our criteria. The criteria are specified in terms of trait bounds; our blanket trait
implementation will apply to any type that implements the traits in our trait bound.

 Some traits in the Rust standard library, for example, provide blanket implementa-
tions. Blanket trait implementations often depend on other traits or types, such as the
ToString trait, which provides a blanket implementation as follows:

impl<T: Display> ToString for T {
 // ...
}

This implementation, lifted from the Rust standard library, depends on Display’s
being implemented for T. For any type that provides Display, ToString is provided
automatically (that is, you can call the to_string() method).

Nearly identical to the
previous version except
without the call to iter()

158 CHAPTER 7 Using traits, generics, and structs for specialized tasks
 Creating a blanket implementation is relatively simple. We simply need to use
generic parameters for all or part of the target type. We can create a blanket trait for
all types in our crate, if we want:

trait Blanket {}
impl<T> Blanket for T {}

This example isn’t too useful in its current form, but the code is quite correct. Blanket
implementations are useful when we apply them to specific types or bind them to
another trait by using trait bounds. Sometimes, we want to use blanket traits as mark-
ers, as described in section 7.5. Another use of blanket traits is to combine several
other traits into one.

 Blanket traits can be useful for library authors who want to give users features with-
out implementing every possible combination of types. Using the Buffer example
from section 7.1, we may want to provide a blanket trait to convert from Vec<T> to
a Buffer.

impl<T: Default + Copy, const LENGTH: usize> From<Vec<T>>
 for Buffer<T, LENGTH>
{
 fn from(v: Vec<T>) -> Self {
 assert_eq!(LENGTH, v.len());
 let mut ret = Self {
 buf: [T::default(); LENGTH],
 };
 ret.buf.copy_from_slice(&v);
 ret
 }
}

This code provides blanket implementation for the From trait for a Buffer of any type
or length, provided that we have a Vec. It allows us to convert a Vec to a Buffer by
using into() or from(). The code also combines Default and Copy, two other traits
that are frequently provided, so we can be reasonably confident that they will be avail-
able for most types. We can test our blanket trait quickly as follows:

let group_of_seven = vec![
 "Canada",
 "France",
 "Germany",
 "Italy",
 "Japan",
 "United Kingdom",
 "United States",
 "European Union",
];
let g7_buf: Buffer<&str, 8> = Buffer::from(group_of_seven);
dbg!(&g7_buf);

Listing 7.1 Blanket trait implementation with const generics

Implements Blanket for
all types in the crate

The size of the Vec must match
the declared LENGTH parameter.

copy_from_slice() uses memcpy() under
the hood, and requires the source and
target to have the same length.

We need to specify the target buffer length
of 8 because the compiler doesn’t know the

length of the vector at compile time; the
vector is variable-length.

1597.5 Marker traits
NOTE If you astutely noticed eight items in the Group of Seven list, that num-
ber isn’t a mistake. For reasons that go beyond the scope of this book, the
European Union is not enumerated.

Running the preceding code will produce the following output:

[src/main.rs:34] &g7_buf = Buffer {
 buf: [
 "Canada",
 "France",
 "Germany",
 "Italy",
 "Japan",
 "United Kingdom",
 "United States",
 "European Union",
],
}

For library authors, blanket trait implementations improve the usability of a library.
But we don’t need to stress about providing the most generic implementation or every
imaginable concrete implementation. Rather, we should focus on handling the most
common cases, as we did by providing From for Vec.

7.5 Marker traits
When you get comfortable with traits, you might start noticing the use of marker traits
in other Rust projects. Marker traits are abstract traits that mark or indicate features or
attributes about a type in Rust without necessarily providing any behaviors. (Marker
traits are often denoted by their absence of methods.) Marker traits don’t have a spe-
cific use case; they can be useful in many contexts.

 The difference between marker traits and regular traits is that marker traits don’t
necessarily provide behavior. The Sync and Send traits, for example, are marker traits,
but neither Sync nor Send provides methods or functionality itself. Sync and Send are
special cases because you can’t even implement them without using unsafe; only the
compiler can do so safely.

 One form of a marker trait provides a blanket implementation that combines
other traits. If we want a shorthand way to indicate that a particular type implements a
given set of traits, for example, we can mark it accordingly. Consider the trait shown in
the following listing.

#[derive(
 Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd,
)]
struct KitchenSink;

trait FullFeatured {}

Listing 7.2 Full-featured marker trait

An empty struct, for which we
derive all the derivable traits
from the standard libraryAn empty

marker trait

160 CHAPTER 7 Using traits, generics, and structs for specialized tasks
impl<T> FullFeatured for T where
 T: Clone
 + Copy
 + std::fmt::Debug
 + Default
 + Eq
 + std::hash::Hash
 + Ord
 + PartialEq
 + PartialOrd
{
}

This listing creates an empty marker trait called FullFeatured. Then we can create a
blanket implementation for any time it meets the trait bounds, which is a list of all the
derivable traits. Our KitchenSink unit struct is intentionally empty for this example, but
we have derived every derivable trait (of the traits provided by the standard library) with
the #[derive(…) attribute for it. Now we can use our marker trait whenever we want to
make sure that all those features are implemented without listing all of them every time:

#[derive(Debug)]
struct Container<T: FullFeatured> {
 t: T,
}

This code creates a container type, which holds a single element. We’ve restricted the
type of that element to types that provide the FullFeatured trait. We haven’t explicitly
implemented this trait; we’re relying on our blanket implementation. We can test it
as follows:

let container = Container { t: KitchenSink {} };
println!("{:?}", container);

Running the preceding code produces the following output:

Container { t: KitchenSink }

Marker traits don’t have to be empty, though they often are. You can certainly treat traits
that do have methods as marker traits, but conflating them may confuse other people.
As a general rule, marker traits should be empty (contain no methods or types).

Supertraits
At this point it’s worth discussing supertraits, which specify traits composed of other
traits, as we did in the example with the FullFeatured trait.

We can use supertraits when we want to combine other traits into one supertrait. This
approach can simplify code elsewhere, such as allowing us to reduce the number of
distinct traits required for specifying trait bounds. Trait bounds can become quite
complex, and we can use supertraits to consolidate a list of required traits.

A blanket implementation of
our marker trait for any type
that implements all the
bounded traits

Specifies the FullFeatured
trait bound for T

1617.6 Struct tagging
7.6 Struct tagging
Sometimes, we use structs to tag or mark generic types (those with generic parame-
ters). This approach is called struct tagging. With struct tagging, we can use empty
structs (also called unit structs) to tag a generic type by including the tag as an unused
type parameter; the tag itself contains no state and may never be instantiated.

 Like marker traits, the structs we use for tagging are typically empty; they’re used
to define state within the type system itself. The trick is that although we’re using an
abstraction intended to hold state (in this case, a struct), we’re not holding any run-
time state within the struct; instead, we’re enabling the struct to be used as a generic
type parameter.

 As with marker traits, we’re using one of Rust’s core abstractions in a way that is some-
what perpendicular to its main purpose. By doing so, however, we can unlock some
interesting programming patterns at compile time and in a type-safe manner. In C++ par-
lance, this approach is a form of template metaprogramming, such as that used by Boost’s
MPL (https://mng.bz/oevN).

 We can use struct tagging when we want to perform compile-time computation
without using macros. Struct tagging introduces a bit more complexity but has the

To create a supertrait, we create a trait and specify a list of dependent traits, similar
to trait bounds. A marker supertrait that combines Clone and Debug looks like this:

trait CloneAndDebug: Clone + Debug {}

The difference between using supertraits and providing blanket implementations with
trait bounds (as we did with FullFeatured) is that supertraits give us slightly less
flexibility (due to compiler strictness) and a little more convenience. With supertraits,
we can’t derive the CloneAndDebug trait unless our type implements both Clone and
Debug. Using a blanket implementation instead allows us to make special exceptions
for specific types. We can still derive our FullFeatured trait for any type, but the
compiler won’t enforce anything as it will with supertraits.

When choosing between supertraits and explicit implementations using trait bounds,
as with FullFeatured, you should prefer supertraits if all you need is an alias for a
set of existing traits. Also, supertraits allow us to provide default implementations for
trait methods that use dependent traits.

We can update our CloneAndDebug trait to print a cloned copy of itself and return it:

trait CloneAndDebug: Clone + Debug {
 fn clone_and_dbg(&self) -> Self {
 let r = self.clone();
 dbg!(&r);
 r
 }
}

https://mng.bz/oevN

162 CHAPTER 7 Using traits, generics, and structs for specialized tasks
advantage of being type-safe and checked by the compiler. If you’re writing a library,
you can build interfaces that are checked for correctness at compile time rather than
run time, which can lead to more robust software. To illustrate the use of struct tag-
ging, let’s model a light bulb that has two states: on and off.

struct LightBulb<T> {
 phantom: PhantomData<T>,
}

struct On;
struct Off;

We can construct an instance of our bulb with let bulb = LightBulb<Off> { … }, which
represents a light bulb in the off state. This kind of abstraction can be useful when we
need to keep software state in sync with external state, such as when we’re managing
an external device (such as a light bulb) with software. Modeling with types rather
than variables allows us to use the compiler to check that all our states and transitions
are valid, as I’ll explain in detail throughout the rest of this chapter.

 Our code so far is okay, but we probably want to create a marker trait for the bulb
state and add a trait bound. We should also give T a name that’s more descriptive.

trait BulbState {}

struct LightBulb<State: BulbState> {
 phantom: PhantomData<State>,
}

struct On {}
struct Off {}

impl BulbState for On {}
impl BulbState for Off {}

This pattern will be extra useful if we start using the type state to create methods. Sup-
pose that we want to transition the light bulb between on and off states. We can imple-
ment a state transition from on to off and vice versa.

impl LightBulb<On> {
 fn turn_off(self) -> LightBulb<Off> {
 LightBulb::<Off>::default()
 }

Listing 7.3 Modeling a light bulb with struct tagging

Listing 7.4 Adding a trait to our light-bulb model

Listing 7.5 Adding state transitions

A struct to model a light bulb, with
a type parameter for the bulb state

A unit tag struct to
represent an on light bulb

A unit tag struct to
represent an off light bulb

We’ve added a marker
trait for the bulb state.

We’ve set a trait bound for State
on our LightBulb to be a type
that provides the BulbState trait.

We’ll implement the
BulbState marker trait for
our on and off states.

We create a concrete
implementation for a
lightbulb in an on state.

We define a turn_off() method that consumes
this bulb and returns a new one in the off state.

1637.7 Reference objects
 fn state(&self) -> &str {
 "on"
 }
}

impl LightBulb<Off> {
 fn turn_on(self) -> LightBulb<On> {
 LightBulb::<On>::default()
 }
 fn state(&self) -> &str {
 "off"
 }
}

Note that in this example, both the turn_off() and turn_on() methods take an
owned self, which consumes the LightBulb and returns a new one. We cannot
change a type parameter on generic structures, so we need to create and destroy them
instead. Last, we can test our new creation:

let lightbulb = LightBulb::<Off>::default();
println!("Bulb is {}", lightbulb.state());
let lightbulb = lightbulb.turn_on();
println!("Bulb is {}", lightbulb.state());
let lightbulb = lightbulb.turn_off();
println!("Bulb is {}", lightbulb.state());

Running this code produces the following output:

Bulb is off
Bulb is on
Bulb is off

Neat! The big advantage of using this pattern is that we gain the advantage of having
the type system check our states for us. We can use this pattern to build a type-safe
state machine, as discussed in chapter 8.

7.7 Reference objects
Reference objects provide a reference to interior data. We may want to use a reference
object to permit partial borrowing of interior data without providing public access. In
other words, we can wrap the private interior data in a public reference object to avoid
introducing a leaky abstraction or making the internal data public. Reference objects
typically use the Ref postfix in their name, which identifies them as holding references.

 Figure 7.1 illustrates how reference objects maintain public and private data access
boundaries while providing a way to reference data (partially or entirely) within
an object.

 We use reference objects to allow consumers of our API to share data via refer-
ences without exposing the internal data structures or implementation details. Typi-
cally, these reference objects are accepted by our API in interfaces that operate on

We’ve added a method to
return the name of this
state for convenience.

We define the same
methods for the inverse
state to switch from on
to off.

164 CHAPTER 7 Using traits, generics, and structs for specialized tasks
that data, so we can avoid making copies of data unnecessarily in certain circumstances.
These reference objects are intended to be used only with the API from which they
originate.

 Suppose that we have two structs: Student and StudentList. Our StudentList is
public and contains a Vec, but Student is private because we don’t want to leak its
data. The basic object definitions look like this:

#[derive(Debug)]
struct Student {
 name: String,
 id: u32,
}

#[derive(Debug)]
pub struct StudentList {
 students: Vec<Student>,
}

Now suppose that we want to design our code to obtain references to individual stu-
dents within the list of students, but we don’t want to provide direct access to internal
data. We might have methods that operate on the reference objects and can perform
operations, but the data can’t be accessed directly. Let’s create a public reference
object as follows:

#[derive(Debug)]
pub struct StudentRef<'a> {
 student: &'a Student,
}

At this point, we have our basic reference object, StudentRef. We can test it as follows:

let student = Student {
 name: "Walter".into(),
 id: 582,
};
let student_ref = StudentRef { student: &student };
dbg!(&student);
dbg!(student_ref);

Source object

Private

internal data

Reference object

Private

reference

Public boundary

Private boundary

Public boundary

Private boundary

Figure 7.1 Reference objects

The lifetime parameter 'a
lets us hold this reference
for the lifetime of the
Student object.

1657.7 Reference objects
When we execute the code, we’ll get the following output:

[src/main.rs:59] &student = Student {
 name: "Walter",
 id: 582,
}
[src/main.rs:60] student_ref = StudentRef {
 student: Student {
 name: "Walter",
 id: 582,
 },
}

This example works as expected, but we should make it a little more realistic. First,
we’ll add a constructor and accessors to the Student object.

#[derive(Debug)]
struct Student {
 name: String,
 id: u32,
}

impl Student {
 fn new(name: String, id: u32) -> Self {
 Self { name, id }
 }

 fn name(&self) -> &str {
 self.name.as_ref()
 }

 fn id(&self) -> u32 {
 self.id
 }
}

Next, we need a way to obtain a reference from a Student. We’ll create a to_ref()
method.

impl<'a> Student {
 fn to_ref(&'a self) -> StudentRef<'a> {
 StudentRef::new(self)
 }
}

Next, we’ll add a constructor that accepts a list of tuples, and we want to provide
access to individual students from our StudentList. It would be convenient to look
up students by ID or name, so let’s add those methods.

Listing 7.6 Student with constructor and accessors

Listing 7.7 Implementing Student::to_ref() to obtain a reference

Note the lifetime parameter 'a.

The same 'a lifetime
parameter is used for the
method receiver self and
the returned StudentRef.We haven’t created the

StudentRef::new() method yet.

166 CHAPTER 7 Using traits, generics, and structs for specialized tasks
#[derive(Debug)]
pub struct StudentList {
 students: Vec<Student>,
}

impl StudentList {
 pub fn new(students: &[(&str, u32)]) -> Self {
 Self {
 students: students
 .iter()
 .map(|(name, id)| {
 Student::new((*name).into(), *id)
 })
 .collect(),
 }
 }
}

impl<'a> StudentList {
 fn find<F: Fn(&&Student) -> bool>(
 &'a self,
 pred: F,
) -> Option<StudentRef<'a>> {
 self.students.iter()
 .find(pred)
 .map(Student::to_ref)
 }
 pub fn find_student_by_id(&'a self, id: u32) -> Option<StudentRef<'a>> {
 self.find(|s| s.id() == id)
 }
 pub fn find_student_by_name(
 &'a self,
 name: &str,
) -> Option<StudentRef<'a>> {
 self.find(|s| s.name() == name)
 }
}

Note that StudentList::find_student_by_id() and StudentList::find_student_
by_name() are nearly identical except for the id and name parameters, which we refac-
tored into a private method, find(), that accepts a predicate closure. Let’s test what
we have so far with the following code:

let student_list =
 StudentList::new(&[("Lyle", 621), ("Anna", 286)]);

dbg!(&student_list);
dbg!(student_list.find_student_by_id(621));
dbg!(student_list.find_student_by_name("Anna"));

When we execute the code, we get the following output:

Listing 7.8 StudentList with constructor and find methods

We’ll accept a slice
of tuples to initialize
the list.

Each tuple gets
mapped to a new
student.

Note the lifetime
parameter 'a.

The lifetime parameter 'a
needs to match for self
and StudentRef.

Iterator::find() stops when
the predicate returns true.

We map Some(student) to
StudentRef using the
Student::to_ref() method.

Both methods call the private
find() method passing a closure,
with nearly identical
implementations differing only
in the search parameter.

1677.7 Reference objects
[src/main.rs:84] &student_list = StudentList {
 students: [
 Student {
 name: "Lyle",
 id: 621,
 },
 Student {
 name: "Anna",
 id: 286,
 },
],
}
[src/main.rs:85] student_list.find_student_by_id(621) = Some(
 StudentRef {
 student: Student {
 name: "Lyle",
 id: 621,
 },
 },
)
[src/main.rs:86] student_list.find_student_by_name("Anna") = Some(
 StudentRef {
 student: Student {
 name: "Anna",
 id: 286,
 },
 },
)

Everything looks good so far. Let’s finish our StudentRef by adding a constructor.

#[derive(Debug)]
pub struct StudentRef<'a> {
 student: &'a Student,
}

impl<'a> StudentRef<'a> {
 fn new(student: &'a Student) -> Self {
 Self { student }
 }
}

Last, we can create a public function that operates on private data by using Student-
Ref, without leaking the interior Student object to the caller. We could implement the
PartialEq trait to check equality by student ID numbers, as follows:

impl<'a> PartialEq for StudentRef<'a> {
 fn eq(&self, other: &Self) -> bool {
 self.student.id() == other.student.id()
 }
}

Listing 7.9 StudentRef with constructor

168 CHAPTER 7 Using traits, generics, and structs for specialized tasks
We can test our PartialEq as follows:

let student_ref_621 = student_list.find_student_by_id(621).unwrap();
let student_ref_286 = student_list.find_student_by_id(286).unwrap();
dbg!(student_ref_286 == student_ref_621);
dbg!(student_ref_286 != student_ref_621);

Running this code produces the following output:

[src/main.rs:99] student_ref_286 == student_ref_621 = false
[src/main.rs:100] student_ref_286 != student_ref_621 = true

On a final note, it’s possible to create mutable reference objects, but I’ll leave that task
to you as an exercise. Mutable reference objects are nearly the same except that they
typically use the MutRef name postfix; you’ll need to add the mut keyword to all refer-
ences to satisfy the borrow checker (&mut and &'a mut as needed).

Summary
 Const generics allow us to use constant values as type parameters, unlocking

features such as fixed-length arrays of arbitrary size.
 It’s not possible to implement a trait for types outside our crate, but we can work

around this limitation using wrapper structs and the Deref and DerefMut traits.
 Extension traits extend or alter the behavior of external types or traits, such

as the standard library.
 We can implement a trait automatically for any combination of types by using

generic implementations, known as blanket traits.
 Marker traits let us mark or denote types that have certain features or attributes,

such as combining several other traits.
 We can use empty (or unit) structs to tag generic types by using the structs

themselves as tags.
 Reference objects provide access to private interior data without transferring

ownership or exposing internal private objects.

State machines,
coroutines, macros,

and preludes
This chapter continues some of the themes from chapter 7 and builds on much of
what we’ve learned in the book. We’ll start by discussing state machines and corou-
tines. Then we’ll introduce procedural macros, an advanced Rust feature that
allows us to generate code at compile time. Last, we’ll discuss preludes, which are a
commonly used Rust library pattern to improve usability.

 Rust’s traits are powerful, and combined with generics, they let us build type-safe
abstractions that allow us to guarantee correctness at compile time. This has some
fairly significant implications, as we can avoid a host of problems that often plague
software. State machines are robust ways to model stateful systems, and as we’ll see in
this chapter, it’s surprisingly easy to build type-safe state machines in Rust.

 State machines have always interested me, and I’ve used them many times, but I
particularly like how easy it is to build a basic state machine in Rust without using

This chapter covers
 Using traits to construct state machines

 Writing pausable functions with coroutines

 Implementing procedural macros

 Providing preludes to improve the usability
of your crates
169

170 CHAPTER 8 State machines, coroutines, macros, and preludes
additional crates or libraries. When building stateful systems in Rust, I create many
small state machines as needed.

 This chapter introduces Rust’s coroutines, an upcoming experimental feature
that’s worth discussing because of its important future uses. Rust’s coroutines may
look familiar if you have previously encountered Python’s generators.

8.1 Trait state machine
Now that we’ve explored traits and generics, we can start building some interesting
abstractions on top of Rust’s type system. One such abstraction, and arguably an
incredibly useful one, involves building state machines. A state machine usually consists
of a list of states and a set of transitions between states. We can define as many states or
transitions as we want, but we can perform only valid transitions. Rust’s type system
enforces those rules.

 Chapter 7 briefly demonstrated these rules with the light-bulb example; let’s
explore it further by modeling a user account session with a state machine, as shown
in figure 8.1. We’ll assume that we can have an anonymous or authenticated user.

Anonymous Authenticated

New session

Log out

Authenticate

successfully

Failed

authentication

Change

properties

Resume anonymous

session

Resume authenticated

session

Initial

Figure 8.1 Modeling a user session with a state machine

1718.1 Trait state machine
Depending on which state the user is in, they may be able to perform various actions,
such as changing account settings. Our session will include a session ID, which could
map to user-side state (such as a cookie), and a session ID in a database, in addition to
some arbitrary properties. Similar code could be used on either the client or server
side. We’ll create the structures shown in the following listing.

pub trait SessionState {}

#[derive(Debug, Default)]
pub struct Session<State: SessionState = Initial> {
 session_id: Uuid,
 props: HashMap<String, String>,
 phantom: PhantomData<State>,
}

#[derive(Debug, Default)]
pub struct Initial;
#[derive(Debug, Default)]
pub struct Anonymous;
#[derive(Debug, Default)]
pub struct Authenticated;
#[derive(Debug, Default)]
pub struct LoggedOut;

impl SessionState for Initial {}
impl SessionState for Anonymous {}
impl SessionState for Authenticated {}
impl SessionState for LoggedOut {}

This listing defines four session states: Initial, Anonymous, Authenticated, and
LoggedOut. Figure 8.1 shows the relationships between these states. We’ve added a
session_id field to our Session struct, which will hold a universally unique identifier
(UUID), provided by the uuid crate. Let’s add some methods, beginning with the fol-
lowing listing.

#[derive(Debug)]
pub enum ResumeResult {
 Invalid,
 Anonymous(Session<Anonymous>),
 Authenticated(Session<Authenticated>),
}

impl Session<Initial> {
 /// Returns a new session, defaulting to the anonymous state
 pub fn new() -> Session<Anonymous> {
 Session::<Anonymous> {
 session_id: Uuid::new_v4(),
 props: HashMap::new(),

Listing 8.1 Modeling session state with traits and struct tagging

Listing 8.2 Handling the initial state for Session

We set the
default session
state to Initial.

We’ll keep a HashMap of
arbitrary properties, which
might be stored in a database.

An enum representing
the result of the initial
state transition

These methods are limited to
Session<Initial>, such as a
session in the initial state.

We provide a new()
method for a new
anonymous session.

172 CHAPTER 8 State machines, coroutines, macros, and preludes
 phantom: PhantomData,
 }
 }
 /// Returns the result of resuming this session from an existing ID.
 pub fn resume_from(session_id: Uuid)
 -> ResumeResult {
 ResumeResult::Authenticated(
 Session::<Authenticated> {
 session_id,
 props: HashMap::new(),
 phantom: PhantomData,
 })
 }
}

With this code, we can create a new anonymous session or resume from an existing
authenticated one. In practice, the resume operation would involve a database lookup
and validation for the session ID, but we’ll omit those steps. Take a look at the code in
the following listing.

impl Session<Anonymous> {
 pub fn authenticate(
 self,
 username: &str,
 password: &str,
) -> Result<Session<Authenticated>,
 Session<Anonymous>> {
 // ...
 if !username.is_empty()
 && !password.is_empty() {
 Ok(Session::<Authenticated> {
 session_id: self.session_id,
 props: HashMap::new(),
 phantom: PhantomData,
 })
 } else {
 Err(self)
 }
 }
}

Last, examine the following listing.

impl Session<Authenticated> {
 pub fn update_property(&mut self,
 key: &str,
 value: &str) {

Listing 8.3 Adding transitions for anonymous session

Listing 8.4 Adding transitions for authenticated session

Returns a
ResumeResult
to resume from
an existing
session

Here, we’d have to check the session_id
against a database and return the result
accordingly. For this example, we’ll return
a new authenticated session for testing
purposes.

These methods are
limited to instances of
Session<Anonymous>.

We return a Result with either success
or failure, and it consumes self.

Here, we would perform the
authentication process, but
we’re simulating that process
in this example. We use
Session<Anonymous> as the
error type, which allows us to
indicate that authentication
failed and the session is still
in the anonymous state.We simulate checking

credentials by testing
whether they’re empty.

These methods are limited to
instances of Session<Authenticated>.

We can update properties
for authenticated users,
which might contain
settings or preferences.

1738.2 Coroutines
 if let Some(prop) = self.props.get_mut(key) {
 *prop = value.to_string();
 } else {
 self.props.insert(key.to_string(), value.to_string());
 }
 // ...
 }
 pub fn logout(self) -> Session<LoggedOut> {
 // ...
 Session {
 session_id: Uuid::nil(),
 props: HashMap::new(),
 phantom: PhantomData,
 }
 }
}

Now we have an excellent little state machine for handling sessions. We can run a
quick test of our code as follows:

let session = Session::new();
println!("{:?}", session);
if let Ok(mut session) =
 session.authenticate("username", "password")
{
 session.update_property("key", "value");
 println!("{:?}", session);
 let session = session.logout();
 println!("{:?}", session);
}

If we run our test code, it prints something like the following:

Session { session_id: f0981fc3-3761-407f-b037-8759535acf87, props:
{}, phantom: PhantomData }
Session { session_id: f0981fc3-3761-407f-b037-8759535acf87, props:
{"some.preference.bool": "true"}, phantom: PhantomData }
Session { session_id: 00000000-0000-0000-0000-000000000000, props:
{}, phantom: PhantomData }

Sweet! This abstraction is fairly powerful, and we can build robust systems by model-
ing with state machines. State machines aren’t panaceas, but they can make it much
easier to reason about complex stateful systems. We can build a state machine com-
bined with Rust’s type system quickly and easily, with no need for additional libraries.

8.2 Coroutines
The upcoming coroutines feature in Rust provides pausable functions. With Rust’s
coroutines, we can create a closure that returns data to the caller through two sepa-
rate paths: yielding and the function return path. We can also pause or terminate the
coroutine immediately after yielding, which allows us to exit the coroutine early if

We would perform the
actual property update
here (such as writing to
a database) and handle
error/edge cases, but we’re
simulating the update in
this example.

Calling logout() out will
consume the session and
return a logged-out session.

We would perform the logout
process here, but we’re simulating

it in this example.

174 CHAPTER 8 State machines, coroutines, macros, and preludes
necessary. Rust’s coroutines will be familiar if you’ve used Python’s generators. Corou-
tines are nightly-only and experimental, but they merit discussion due to their impor-
tance and potential utility.

Internally, coroutines are implemented by the Rust compiler, using a simple state
machine. The overhead introduced by the compiler’s implementation is minimal,
consisting of a single enum for tracking the current coroutine’s state.

NOTE For details on the current status of coroutines in Rust, refer to the Rust
Unstable Book at https://mng.bz/ngnv.

There are many ways to use coroutines, but one application for them is to create itera-
tors over data streams. Rust’s coroutines are intended to enhance Rust’s async/await
features. They can also be used as building blocks for creating systems that use context
switching or multiplexing, such as network programming and green threads. Rust’s
coroutine implementation is defined in the std::ops::Coroutine trait.

pub trait Coroutine<R = ()> {
 type Yield;
 type Return;

 // Required method
 fn resume(
 self: Pin<&mut Self>,
 arg: R
) -> CoroutineState<Self::Yield, Self::Return>;
}

On the origins of coroutines
Coroutines are loosely defined as functions that can pause and resume their execution.
Coroutines are having a modern-day revival, but their origin can be traced back to Mel-
vin Conway (of Conway’s Law). Conway developed and coined the term coroutine in
1958. J. Erdwinn and J. Merner studied a similar idea at around the same time, but
their paper “Bilateral Linkage,” which described their work, was never published. In
1963, Conway more fully explained the concept of coroutines in his article “Design of
a Separable Transition-Diagram Compiler,” published in Communications of the ACM.

The recent popularity of coroutines can likely be attributed to their use in Python’s gen-
erator implementation (introduced in Python 2.5 in 2006) and Go’s goroutines (2009),
among others. Many other popular programming languages recently added similar
coroutine implementations, including C++20, C# 2.0, Ruby Fibers, and PHP 5.5.

Coroutines allow the introduction of concurrency without the need for threads, call-
backs, or interprocess communication. They can be used to create complex control
flows, such as cooperative multitasking and event loops.

Listing 8.5 std::ops::Coroutine trait definition from Rust standard library

R is the closure’s arguments, defaulting to unit (). Self::Yield is the yield type, which
will be unit () if unspecified.

Self::Return defines the
closure return type.

The coroutine
must be pinned.

https://mng.bz/ngnv

1758.2 Coroutines
You don’t need to implement the coroutine trait explicitly; the Rust compiler does
that job for you when you create a closure containing a yield statement. For more
complex scenarios, which we’ll explore in listings 8.6 and 8.7, it’s useful to understand
how coroutines are implemented with the Coroutine trait.

 Figure 8.2 illustrates the state machine for a coroutine, showing that when it’s started
by the first call to resume(), a coroutine can continue to yield values indefinitely until it
returns, in which case it transitions to a completed state and no longer yields.

A coroutine begins in the Started state and transitions to Yielded or Completed after
the first call to resume(). If the coroutine yields a value, it transitions to the Yielded
state and can continue to yield values indefinitely, as shown in figure 8.3. When the
coroutine returns, it transitions to the Completed state and no longer yields. The
coroutine can be resumed any number of times (such as in a loop), but when it has
completed, it can’t be resumed.

Let’s look at the basic syntax for creating a coroutine, which is as simple as creating a
closure with a yield statement and applying the #[coroutine] attribute to the clo-
sure. The following listing demonstrates a basic coroutine.

Started Completed

Yielded

Figure 8.2 Coroutine
internal state machine

CompletedYieldedresume()

CompletedYieldedresume()

loop

yield

resume

complete

Figure 8.3 Coroutine sequence diagram

176 CHAPTER 8 State machines, coroutines, macros, and preludes

#![feature(coroutines,
 coroutine_trait,
 stmt_expr_attributes)]

use core::f64::consts::PI;
use std::ops::{Coroutine, CoroutineState};
use std::pin::Pin;

fn main() {
 let mut yield_pi = #[coroutine]
 || {
 yield PI;
 "Coroutine complete!"
 };

 loop {
 match Pin::new(&mut yield_pi).resume(()) {
 CoroutineState::Yielded(val) => {
 dbg!(&val);
 }
 CoroutineState::Complete(val) => {
 dbg!(&val);
 break;
 }
 }
 }
}

Our basic coroutine yields the number pi and then returns a string. It yields once on
the first call to resume(), and on the second call, it returns and enters a completed
state. Yielding a value is optional; we could also use the yield statement with no argu-
ment, which is equivalent to yielding unit (). When we run the preceding code, we’ll
get the following output:

[src/main.rs:15:17] &val = 3.141592653589793
[src/main.rs:18:17] &val = "Coroutine complete!"

NOTE At the time of this writing, you need to implement an iterator on a
coroutine yourself, but future versions of Rust may provide a blanket imple-
mentation of Iterator for the Coroutine trait.

To create a more interesting example of using coroutines, let’s implement the Iterator
trait on top of a coroutine, which allows us to use the for loop syntax in addition to all
the other iterator features. To demonstrate, let’s read the Cargo.toml file from the
project we’re working on. We’ll define our CargoTomlReader object as shown in the
following listing.

Listing 8.6 A basic coroutine in Rust

Coroutines are a nightly-only unstable feature
that require a feature gate to enable them.
We also need to enable expression attributes.

The #[coroutine] attribute
must be applied to the closure.

A coroutine is defined
by creating a closure.

The closure must have a yield
statement. You can have multiple
yields, but the types must match.

A coroutine also has a return type, which is distinct from the
yield type. We can omit the explicit return, as the coroutine
itself is a statement (returns the final expression).

Coroutines don’t execute
until they’re resumed,
and they must be pinned.
Pinning prevents the
coroutine from being
moved in memory during
execution.

A value can be yielded
any number of times.

When the coroutine
returns from its closure,

it has been completed.

1778.2 Coroutines

struct CargoTomlReader {
 coroutine:
 Pin<Box<dyn Coroutine<
 Yield = (usize, String),
 Return = ()
 >>>,
}

impl CargoTomlReader {
 fn new() -> io::Result<Self> {
 let file = File::open("Cargo.toml")?;
 let mut reader = BufReader::new(file);
 let mut line_number: usize = 0;

 let coroutine = Box::pin(
 #[coroutine]
 move || loop {
 let mut line = String::new();
 line_number += 1;
 match reader.read_line(&mut line) {
 Ok(0) => return,
 Ok(_) => yield (line_number, line),
 _ => return,
 }
 }
);
 let coroutine = Box::pin(
 #[coroutine]
 move || loop {
 let mut line = String::new();
 line_number += 1;
 match reader.read_line(&mut line) {
 Ok(0) => return,
 Ok(_) => yield (line_number, line),
 _ => return,
 }
 },
);
 Ok(Self { coroutine })
 }
}

impl Iterator for CargoTomlReader {
 type Item = (usize, String);
 fn next(&mut self) -> Option<Self::Item> {
 match self.coroutine.as_mut().resume(()) {
 CoroutineState::Yielded(val) => Some(val),
 CoroutineState::Complete(()) => None,
 }
 }
}

Listing 8.7 Implementing Iterator atop a coroutine

We use a trait object within a
pinned box, specifying the
yield and return type.

We’ll keep track of
the line numbers.

The closure must have the
#[coroutine] attribute.

Our coroutine closure consists
of a loop that will yield each
line, and we move captured
values into the closure.

Each pass through
the loop increments
the line number.

If BufReader::read_line
returns 0, we’ve
reached EOF, so we
terminate with return.

If we get any value
other than 0 from
BufReader::read_line,
we return the line
and its number.

All other error cases
result in the coroutine’s
completing.

We pass unit ()
to the coroutine
as the starting
argument.

178 CHAPTER 8 State machines, coroutines, macros, and preludes
We can test our CargoTomlReader with the following code to print each numbered line:

let cargo_reader = CargoTomlReader::new()?;
for (line_number, line) in cargo_reader {
 print!("{line_number}: {line}");
}

When we execute the code, we’ll get the following output:

1: [package]
2: name = "coroutines"
3: version = "0.1.0"
4: edition = "2021"
5:
6: # See more keys and their definitions at https://doc.rust-lang.org/
cargo/reference/manifest.html
7:
8: [dependencies]

This example demonstrates a few key points about using coroutines with an iterator.
Notably, because you need to pin the coroutine closure, using Pin<Box<T>> is a rela-
tively easy way to handle this task. For any state we need inside the coroutine, we can
initialize it at the beginning of the closure or use move to move captured variables into
the closure, as I did in listing 8.7.

 Coroutines are exciting and new but subject to change. Be careful when depend-
ing on this API, as it has not yet been stabilized. I can’t speculate on when coroutines
will be stabilized, but feel free to experiment with them and provide feedback to the
Rust team, provided that you’re willing to work with an unstable feature.

8.3 Procedural macros
Procedural macros are an advanced macro system in Rust that enables metaprogram-
ming of arbitrary complexity, allowing all kinds of language extensions. We’ve used
procedural macros quite a bit throughout the book, but we haven’t discussed how
they’re implemented.

 Many crates use procedural macros, and the most common use case (which we’ve
seen many times in this book) is the #[derive(…)] attribute. Procedural macros are a
big topic, warranting an entire book, so I’ll simply touch on the basics here.

 Creating a procedural macro involves writing a library that exports one or more mac-
ros and uses the proc_macro crate to implement the macro. The proc_macro crate is part
of Rust, widely used throughout Rust and its ecosystem. You can’t define a procedural
macro in a binary crate; it must be in a separate library crate, though you may include it
in your project as a workspace member. Procedural macros come in three forms:

 Function-like syntax, similar to declarative macros, such as my_functionlike_
macro!()

 Derive macros, such as #[derive(MyDerivableMacro)]
 Attributes, such as #[MyAttribute]

1798.3 Procedural macros
Although there are no hard-and-fast rules about which form to use when, I’ll break
down the forms as follows:

 Function-like procedural macros—in the form macro!(), macro!{}, or
macro![]—can be used anywhere in the code and are typically treated as func-
tions or code blocks.

 Derive macros—in the form #[derive(…)]—can be used only with struct or
enum declaration, but they allow the injection of arbitrary code following them.

 Attribute macros—in the form #[MyAttribute]—can be used to inject code just
about anywhere, but they must be attached to an existing item. Attribute macros
have one special feature: they allow you to supply arguments to the attribute.

Defining procedural macros requires providing Rust code that returns Rust syntax.
That is to say, your macro definition is Rust code that writes Rust code. You must use
the proc_macro crate to implement procedural macros, and your macros will be evalu-
ated at compile time, as macros typically are.

 Let’s look at a simple procedural macro. We’ll create a library with the following
code:

use proc_macro::TokenStream;

#[proc_macro]
pub fn say_hello_world(_item: TokenStream)
 -> TokenStream {
 "println!(\"hello world\")".parse().unwrap()
}

This code operates on raw token streams. In practice, you wouldn’t write a procedural
macro this way; you’d use higher-level libraries, which we’ll talk about in a moment.
We also need to update Cargo.toml to indicate that this crate is a proc_macro crate. A
proc_macro crate can export only a procedural macro, but you can include other
crates as dependencies:

[lib]
proc-macro = true

Now we can test our code with

use hello_world::say_hello_world;
say_hello_world!();

When we run this code, it prints "hello world". As I mentioned earlier, you probably
wouldn’t operate directly on TokenStream. Instead, two libraries are essential should
you want to write procedural macros: syn and quote. The syn crate provides a parsing
library to make it easier to work with source code, and the quote crate make generat-
ing Rust code a lot easier.

This attribute indicates that
the following function is a
procedural macro.

Procedural macro
implementations are
functions that take a
TokenStream and return a
TokenStream in its place.parse() (which comes from FromStr) will

parse this string into a TokenStream.

180 CHAPTER 8 State machines, coroutines, macros, and preludes
 Let’s examine a more realistic example of a procedural macro to demonstrate how
all these pieces work together. In this example, we’ll create our own derive macro,
which will provide the name of the structure it’s attached to. This macro is a form of
reflection, and we’re using a derive macro because it conveniently attaches to the dec-
laration of a struct or enum.

 First, we’ll define a trait, which needs to be in a separate crate because a proce-
dural macro library can’t export anything other than procedural macros. The trait is
shown in the following listing.

pub trait PrintName {
 fn name() -> &'static str;
 fn print_name() {
 println!("{}", Self::name());
 }
}

To implement our PrintName trait, we need to define the name() method, after which
we can call print_name() to print the name of whatever it’s implemented for. Next,
let’s write our macro.

#[proc_macro_derive(PrintName)]
pub fn print_name(input: TokenStream) -> TokenStream {
 let input = parse_macro_input!(input as DeriveInput);

 let generics = add_trait_bounds(input.generics);
 let (impl_generics, type_generics, where_clause) =
 generics.split_for_impl();

 let name = input.ident;

 let expanded = quote! {
 impl #impl_generics print_name::PrintName for #name #type_generics
 #where_clause {
 fn name() -> &'static str {
 stringify!(#name)
 }
 }
 };

 TokenStream::from(expanded)
}

Listing 8.8 Trait to print the name of a struct

Listing 8.9 Implementing the PrintName derive macro

Converts the input token
stream to a syntax tree using

parse_macro_input!() which is
provided by the syn crate

Adds the necessary trait bounds only
if there are generic parameters

Splits the generic clauses into their parts: impl
generics, type generics, and the where clause

We quote the actual trait implementation with all
the necessary parameters, including trait bounds.
quote!() is provided by the quote crate, and it
converts inline Rust syntax to a TokenTree.

We stringify the name of the type to
which we’re applying the derive macro.
#name captures the name variable
value within the quoted block.

We convert the output of quote to a token
stream, which is provided by the quote crate.

1818.3 Procedural macros
fn add_trait_bounds(mut generics: Generics) -> Generics {
 for param in &mut generics.params {
 if let GenericParam::Type(ref mut type_param) = *param {
 type_param.bounds.push(
 parse_quote!(print_name::PrintName)
);
 }
 }
 generics
}

In this listing, we include trait bounds for example purposes, but they’re not required
for the derive macro to work. Putting everything together, we can use a small integra-
tion test to verify that the code works:

use print_name::PrintName;
use print_name_derive::PrintName;

#[test]
fn test_derive() {
 #[derive(PrintName)]
 struct MyStruct;

 assert_eq!(MyStruct::name(), "MyStruct");
 MyStruct::print_name();
}

If we run cargo expand --test test_derive from the print_name_derive directory,
we can examine the output of our macro:

fn test_derive() {
 struct MyStruct;
 impl print_name::PrintName for MyStruct {
 fn name() -> &'static str {
 "MyStruct"
 }
 }
 // ... snip ...
}

Nice! You can get much more elaborate with procedural macros, especially after you
start handling attribute parameters or individual field attributes.

TIP In addition to checking the sample included with this book, consult the
syn documentation at https://docs.rs/syn/latest/syn and the official Rust
documentation at https://mng.bz/v8gx to learn more about implementing
procedural macros. Also, Manning Publications has an excellent book called
Write Powerful Rust Macros, by Sam Van Overmeire (https://www.manning.com/
books/write-powerful-rust-macros). For a real-life example of procedural mac-
ros in action, check out the rocket crate, which makes extensive use of proce-
dural macros for its Rust web framework (https://crates.io/crates/rocket).

The PrintName trait
bound is added to all
generic parameters for
the target type.

https://docs.rs/syn/latest/syn
https://mng.bz/v8gx
https://www.manning.com/books/write-powerful-rust-macros
https://www.manning.com/books/write-powerful-rust-macros
https://www.manning.com/books/write-powerful-rust-macros
https://crates.io/crates/rocket

182 CHAPTER 8 State machines, coroutines, macros, and preludes
On a final note, procedural macros bring a lot of complexity. They are incredibly pow-
erful, but that power is a double-edged sword. These macros can be tricky to debug
when things go wrong, and they are unhygienic, which means that they can pollute or
conflict with the namespace in which they’re used. Because a procedural macro sim-
ply outputs code, which is injected before compilation, you must take care not to cre-
ate conflicts or pollute the namespace.

8.4 Preludes
The last topic in this chapter is preludes—collections of useful types, functions, and
macros provided for import into your code. When we’re writing libraries, we can pro-
vide preludes to make it easy for people to get the most out of our library.

 Some preludes, provided by the Rust language itself, are imported automatically,
such as the standard library preludes. But I’m going to talk specifically about adding
preludes to our crates rather than those from Rust.

TIP For details on the Rust language preludes, consult the language refer-
ence at https://mng.bz/4JdB.

One reason we might use preludes when writing libraries is that it can be tricky to
know which symbols to import. If we forget to import a trait, for example, we might
find that our code doesn’t compile or that functionality is missing, and figuring out
what we missed can be frustrating. Preludes are implemented by means of re-exports,
which is a way of exporting symbols from another module or crate.

 Let’s talk about use before we go deeper into implementing preludes. By now,
we’ve already seen imports like this one:

use std::cell::RefCell;
use std::marker::PhantomData;
use std::rc::Rc;

It turns out that we can re-export anything imported with the use statement by adding
the pub keyword, as we’d do with any other type or function:

pub use std::cell::RefCell;
pub use std::marker::PhantomData;
pub use std::rc::Rc;

When we re-export with a pub use …; statement, the symbols imported by that use
can be imported from outside that module, although we probably wouldn’t want to
re-export types from the standard library. It’s also important to remember that if we
want to import all the symbols exported by any module, we can use the wildcard (*)
syntax with our imports:

use mylib::*;

https://mng.bz/4JdB

1838.4 Preludes
This syntax imports everything exported from the top-level module of the mylib crate.
Many libraries provide an explicit prelude module (usually named prelude) within
their crates, and you would import from it as follows:

use mylib::prelude::*;

Using a separate prelude module is one way to avoid polluting the namespace. Let’s
walk through an example that implements the prelude trait in case you want to do
that for your library. Suppose that you have a crate structured as follows:

$ tree
.
├── Cargo.lock
├── Cargo.toml
└── src
 ├── a.rs
 ├── b.rs
 └── lib.rs

1 directory, 5 files

This small library contains modules a and b. First, look at the following listing.

pub mod a;
pub mod b;

pub struct TopLevelStruct {}

Inside a.rs and b.rs, you created some empty public structs: InnerA and InnerB,
respectively. From outside your crate, you can import the two structs from a and b with

use mylib::a::InnerA;
use mylib::b::InnerB;

// `InnerA` and `InnerB` are now within scope.

You haven’t created your prelude yet. The prelude will be one module for the whole
crate that exports all your most useful structs (in this case, TopLevelStruct, InnerA,
and InnerB). You can make a module called prelude. The new crate structure looks
like this:

$ tree
.
├── Cargo.lock
├── Cargo.toml
└── src

Listing 8.10 Listing for lib.rs without prelude

pub mod denotes that these
modules are available publicly
(outside of the crate).

184 CHAPTER 8 State machines, coroutines, macros, and preludes
 ├── a.rs
 ├── b.rs
 ├── lib.rs
 └── prelude.rs

1 directory, 6 files

Populate the prelude module with the code from the following listing.

pub use crate::a::InnerA;
pub use crate::b::InnerB;
pub use crate::TopLevelStruct;

This code re-exports all the structs from your crate in one place. You also have to add
pub mod prelude; to lib.rs to include prelude.rs in the crate. A user of this crate
can import these three structs by using the wildcard use syntax:

use mylib::prelude::*;

// `InnerA`, `InnerB`, and `TopLevelStruct` are now in scope.

It’s also possible to use aliases with use statements, as well as re-exports. You can re-export
TopLevelStruct with a different name from your prelude if you want:

pub use crate::TopLevelStruct as AltStruct;

WARNING I would use this feature with caution. It’s useful mostly if you want
to use a different internal name versus an external name as a symbol.

You don’t need to provide a separate prelude module to re-export symbols in this fash-
ion; the pattern is simply used commonly in Rust. You can re-export symbols from any
public module, including those outside your crate. Authors frequently export depen-
dencies from third-party crates to make their crates easier to use.

 Make no mistake—preludes are handy but can cause confusion because they hide
some complexity at the expense of namespace pollution. Try not to abuse them.

 If you’re new to Rust and want to start publishing libraries, don’t go crazy with pre-
ludes. With practice, you’ll learn where they make the most sense. As a general rule of
thumb, you shouldn’t need them unless your crate provides lots of traits as part of its
core functionality.

Listing 8.11 Listing for prelude.rs

185Summary
Summary
 Combining what we’ve learned about generics and traits, we can build abstrac-

tions such as state machines on top of Rust’s type system.
 Coroutines are an experimental Rust feature, similar to Python’s generators,

that provides an alternative way to express pausable functions that can yield
data.

 Procedural macros enable language extensions and metaprogramming well
beyond what declarative macros can do.

 We can provide preludes for our libraries to make them a little more user-
friendly by exporting the most useful parts of our library under one module.

Part 4

Problem avoidance

In the last part of the book, we focus less on which patterns to use and more
on which patterns to avoid. Sometimes, it’s worth sacrificing a little performance
or memory use to build software that optimizes correctness, maintainability, and
readability.

 Fortunately, with Rust we don’t have to sacrifice performance in most cases.
Some people may argue that Rust has no real competitors in terms of safety and
performance, so we’re rarely sacrificing much when we dial down the speed a lit-
tle in favor of correctness.

 You may have found that the most challenging code to debug (and often the
source of bugs) is code that is too clever for its own good. For this reason, this
part focuses on avoiding patterns that are too clever, complex, or difficult to
understand.

Immutability
Immutability is a powerful concept that can help everyone build better software.
Immutability as it relates to writing software is the idea that after a value has been
declared and assigned, it cannot be modified (or mutated). Contrast this concept
with mutability, in which a value can be altered after it has been declared. In other
words, values that can be changed are mutable, and values that are never changed
are immutable.

 Immutability is an important design pattern—and one of the most underloved
and underappreciated ones at that. I feel that this pattern is so valuable, however,
that I’m dedicating a chapter of this book to the subject, although it deserves an
entire book. I won’t be able to go into as much depth in this chapter as I’d like, but
I’ll leave you with a great starting point to explore the topic further.

This chapter covers
 Understanding the benefits of immutability

 Thinking in terms of immutable data and how it
works in Rust

 Using traits to make nearly anything immutable

 Exploring crates that provide immutable data
structures
189

190 CHAPTER 9 Immutability
 In Rust, all declared variables are immutable by default, and you must explicitly
opt in to mutability. For more complex data structures, however, you need to think a
little harder about how you want to handle mutability and immutability. Some lan-
guages take immutability to the extreme by not allowing any mutations, but Rust (for
better or worse) tends to leave the decision up to developers. Many programming lan-
guages and libraries have adopted immutability as a first-class feature, but Rust takes a
more pragmatic approach, letting developers choose when and where to use it.

 In this chapter, I’ll discuss the benefits you derive from avoiding mutable data,
look at some of the gotchas of trying to use data structures immutably, review Rust’s
approach to mutability and immutability, and show how to use Rust’s features to make
just about any ordinary data immutable. Finally, I’ll describe some crates that provide
immutable data structures, including some optimizations.

9.1 The benefits of immutability
If you haven’t worked with languages or libraries that encourage immutability, the
concept may seem a bit foreign. It’s not uncommon for developers to be skeptical
about immutability at first, but taking the time to understand the benefits is worth-
while. To help you make sense of immutability, I’ll discuss the classes of problems that
immutability can solve and how it solves them. Most software bugs fit into one or more
of the following (nonexhaustive) classes:

 Logic errors—Mistakes, misunderstandings, or oversights in the code that lead to
incorrect behavior. An example is the business logic in a program that calcu-
lates taxes on a purchase and mistakenly applies the wrong tax rate.

 Race conditions—Bugs that occur when shared data is not synchronized prop-
erly. This situation can lead to data corruption, deadlocks, and other problems,
Race conditions are most often caused by concurrent access to shared mutable
data, such as when multiple threads try to modify the same data at the same
time or in the wrong order.

 Unexpected side effects—Unintended changes in the state of a program that occur
when a function or method executes, leading to unexpected behavior and bugs
that are difficult to track down. Side effects are often caused by functions that
modify their arguments or global state or by functions that rely on global state.
Any operations that involve I/O, such as reading from or writing to a file, are
also side effects.

 Memory safety problems—Bugs that occur when a program tries to access memory
that it shouldn’t. Examples include programs that try to access memory that has
already been freed, memory that they don’t have permission to access, or mem-
ory outside the bounds of a data structure. These bugs can lead to crashes, data
corruption, and (most concerning) security vulnerabilities.

Immutability can help solve all these problems in many cases. When it comes to
logic errors, immutability helps by making it easier to reason about how the data in

1919.1 The benefits of immutability
a program changes over time. When data is immutable, you can be sure that it won’t
change unexpectedly, which makes it easier to understand and predict the behavior
of a program.

 Race conditions occur only in programs that have shared mutable state. Immuta-
bility is an easy win here because if data is immutable, it can’t be mutated while it’s
being shared. We may still need to have shared state, but if that state is never mutated,
we don’t have to worry so much about race conditions.

 Side effects exist only when data is mutable. When we write a function that has no
side effects, we call it a pure function. Pure functions are easier to reason about, easier
to test, and easier to reuse. When we write code without side effects, we usually refer to
it as being purely functional.

NOTE If you’re unfamiliar with functional programming, this concept can be
tricky to grasp at first, but like most things, it gets easier with practice. When
you begin writing purely functional code, you’ll wonder how you ever man-
aged to write code without it.

Pure functions have a nice property: they’re referentially transparent, which means that
you can replace a call to a function with the result of that function, and the program will
behave the same way. Another way of thinking about this concept is that for any given
set of inputs to a pure function, the output is always the same. Referential transparency
allows us to introduce optimizations and refactorings that would be impossible with
impure functions, and of course, it’s much easier to reason about (and test) code when
you know that a function will always return the same result for the same inputs. For soft-
ware that’s devoid of any side effects, an entire program can become deterministic—a
powerful property that provides many benefits in testing and debugging.

 Finally, immutability can help prevent memory safety problems. Quite often, mem-
ory safety problems arise when unexpected mutations occur, such as edge cases. Even
when we write tests to cover the cases we know about, it’s difficult to write tests for
cases we don’t know about. Strategies such as property testing and fuzz testing can
help, but they can’t cover every possible edge case.

 When you take all these problems together, you can easily see why immutability is
especially useful in parallel or concurrent systems, which often have to deal with
them simultaneously. Several programming languages, libraries, and frameworks
have adopted immutability as a core principle; the most notable examples include
Erlang, Elixir, Haskell, Clojure, and Elm. These languages have a reputation for
being reliable and for producing code that is easy to reason about. They also tend to
be popular in domains in which reliability is paramount, such as telecom, finance,
health care, and aerospace.

 Some popular libraries and frameworks encourage immutability, including Redux,
a popular state-management library for JavaScript and TypeScript applications. Redux,
which is based on the principles of functional programming and immutability, is
known for being reliable and easy to reason about. React, a wildly popular library for

192 CHAPTER 9 Immutability
building interfaces, also encourages immutability, with an emphasis on writing purely
functional components in recent versions of the library. The popular Immutable.js
and Lodash libraries for JavaScript and TypeScript also provide utilities for working
with immutable data.

 These examples have influenced the design of the Rust programming language as
well as some popular Rust libraries. If you’ve encountered these languages before, you
may begin to see some similarities between them and Rust.

9.2 Why immutability is not a magic bullet
Immutability isn’t free; it comes at a cost. The most obvious cost is that we often need
to duplicate data when we want to change it, which can be expensive in terms of mem-
ory and CPU time and can make our code more complex. Immutability also has a
higher cost in the sense that we need to spend more time up front thinking about how
to structure our data and programs.

 Rust generally attempts to minimize the cost of immutability by giving developers
the option to opt in to mutability when they need it. Rust, however, does not enforce
any patterns of immutability as part of its standard library. Rust’s core data structures
(such as Vec) are similar to vectors in C++ or C arrays, where mutability is in some ways
encouraged and expected while using the data structure. This approach is different
from that of languages that don’t allow mutability, such as Erlang, Elixir, Haskell, Clo-
jure, and Elm.

 Some languages, such as Scala, provide a middle ground by allowing you to choose
either immutable or mutable data structures, though Rust provides mutable struc-
tures only by default. Rust made this tradeoff (intentionally or not) within its standard
library to provide a more familiar experience for developers coming from languages
such as C and C++ and to provide a more efficient experience for developers who
need to write high-performance code.

9.3 How to think about immutable data
Immutability as a high-level concept is somewhat incompatible with the way most of us
think about data and, specifically, how computers handle data. Nearly all computers,
big and small, from your desktop or laptop to your pocket computer (smartphone) to
the largest supercomputers, are designed to handle mutable data and are based on
the von Neumann architecture, shown in figure 9.1.

von Neumann architecture

CPU I/O busMemory

Storage

Network Figure 9.1 The von Neumann
architecture

1939.4 Understanding immutability in Rust
The von Neumann architecture is the basis of nearly all modern computers. It consists
of a CPU that stores data and program instructions in the same memory. One implica-
tion is that the memory in which data is stored for fast access is finite and fundamen-
tally mutable, which may differ from other storage systems, such as disk or tape.
Because of the inherent constraints on memory, we have little choice but to reuse the
same memory for different purposes, which is why we have mutable data.

 If we had a hypothetical system that was append-only and could grow infinitely (such
as an infinite tape, similar to a Turing machine), we could build an entirely immutable
system. We could imagine a theoretical computer that uses an infinite tape as its mem-
ory, to which we can write only once. In this model, the tape is read from and written to
but never modified—which, of course, is not how computers work in the real world.

 Thus, immutability in the context of programming is merely an abstraction that
exists only at a relatively high level. It’s not built into the hardware architecture or the
operating system. It’s a concept that’s enforced by the programming language and the
libraries and frameworks that we use.

 In the case of Rust, the borrow checker helps us keep track of which parts of our
program are mutable and which parts are immutable, but for large or complex pro-
grams, it’s still up to us to decide how we want to handle our data. This is true even of
languages that are immutable by design because for any program to be useful, it must
interact with the outside world, and the outside world is mutable, finite, and stateful.

 The key to thinking about immutable data is to think about it in terms of owner-
ship, borrowing, and the lengths you want to go to to enforce immutability. I think
that most people will find the right balance by spending time working with the lan-
guage and experimenting with different patterns and approaches.

 It’s also important to remember that immutability is not an all-or-nothing proposi-
tion. Some parts of your program can be immutable, and some can be mutable; some
parts can be purely functional, and some parts are not. You may want to be strict for
more critical components and less strict when you care more about performance than
correctness.

 It’s up to you to decide what’s best for your program, and having good judgment is
a matter of having experience. This statement may be unsatisfying, but it’s the reality
of developing any skill, such as playing a musical instrument or working with comput-
ers and software; we all have to come to terms with it.

9.4 Understanding immutability in Rust
In Rust, all declared variables are immutable by default. The only exception occurs
when the unsafe keyword is used to bypass the language guarantees. If you want to
make a variable mutable, you must use the mut keyword to declare it as such. This fea-
ture cascades in such a way that data stored within an immutable structure is also
immutable—a feature known as inherited mutability.

 An exception to Rust’s mutability rule applies when we use Rust’s shareable mutable
containers Cell, RefCell, and OnceCell. These containers enable interior mutability,

194 CHAPTER 9 Immutability
which allows you to mutate the data inside an immutable container. This feature has
some important implications and enables some powerful patterns, but understanding
the tradeoffs is important. The problem with shareable mutable containers is that they
allow hidden mutability in some circumstances, which may not always be desirable but
isn’t a problem in most situations.

 The only practical difference between inherited and interior mutability is that the
former is enforced by the compiler, and the latter is enforced at run time. As a general
rule, you can consider values inside a Cell, RefCell, or OnceCell to be optionally
mutable, even if the container itself is immutable. In other words, these containers pro-
vide the option to mutate the data inside them but don’t require mutation.

 Cell is slightly less devious than RefCell and OnceCell because it allows mutability
only by way of replacement. You can’t mutate the value inside a Cell directly, but you
can replace the value with a new one. This distinction is subtle but important, and it’s
one of the reasons why Cell is considered to be a somewhat safer way to achieve inte-
rior mutability. RefCell and OnceCell allow you to obtain a mutable reference to the
data they hold.

 Rust’s standard library doesn’t provide data structures that are designed for immu-
tability. Instead, Rust’s data structures are generally what you’d expect of traditional
mutable data structures. Both Vec and HashMap provide a variety of methods for
mutable access, and they don’t offer much in terms of features for working with data
immutably aside from implementing the Clone trait. This situation may change in the
future, but for now we have to work with what we have. Given Rust’s focus on perfor-
mance, it’s often more efficient to work with mutable data structures. The basic pat-
tern for implementing immutability in a language such as Rust that doesn’t offer
immutability as a core feature involves two steps:

 After a value is declared and assigned, it should not be modified in place.
 If you want to modify a value, you copy it and then modify the copy (which,

confusingly, is still a mutation, but it’s a mutation of a new value, not the orig-
inal value).

For languages that provide immutability as a core feature, the language itself abstracts
this process of copying and modifying, but fundamentally, the operation is still the
same. We can use abstractions to hide the details of this process, and we’ll explore
some of these abstractions in sections 9.6, 9.7, and 9.8.

9.5 Reviewing the basics of immutability in Rust
Let’s take a moment to review the basics of immutability in Rust, using some code
samples. Although this process may seem trivial, it’s good to review the basics now
and then to understand why we do what we do (which some people call “first princi-
ples” thinking).

 An immutable operation typically involves assigning the result of a computation to
a new value. Suppose that we want to increment the value of the variable x immutably,

1959.5 Reviewing the basics of immutability in Rust
which we could do by declaring a new variable y with let y = x + 1. A mutable oper-
ation would change the value of x directly with x += 1. In this example, it appears
that x += 1 is a shorter, more efficient way to increment x, but it’s also more error-
prone and can be more difficult to reason about in larger codebases or more com-
plex scenarios.

 Rust also allows you to shadow a variable, which is a way to declare a new variable and
assign a value using the same name as an existing variable. This pattern is common in
Rust, and it’s often used to convert a mutable variable to an immutable one. You can
shadow a mutable variable with an immutable, as the following listing demonstrates.

let x = 1;
dbg!(x);
let y = x + 1; // y = 2
dbg!(y);

// x += 1;
// error: cannot assign twice to immutable variable `x`

let mut x = x; // x = 1
x += 1; // x = 2
dbg!(x);

Running this code produces the following output:

[src/main.rs:14] x = 1
[src/main.rs:16] y = 2
[src/main.rs:22] x = 2

Digging deeper, it’s important to note that Rust’s mutability semantics also apply
across function calls, with one minor difference. Owned values can be switched from
immutable to mutable when they are moved, but the caller of a function has no say in
this process.

fn mutability(
 a: i32, // immutable
 mut b: i32, // mutable
) {
 // a += 1; // error: cannot assign twice to immutable variable `a`
 b += 1;

 dbg!(a);
 dbg!(b);
}

We can call the function mutability() with the following code:

Listing 9.1 Basics of immutability in Rust

Listing 9.2 Mutability across function calls

Uncommenting this
line will result in a
compilation error.

Shadows x with a
mutable variable

Variable a is moved into the
function and is immutable.

Variable b is moved into the
function and is mutable.

196 CHAPTER 9 Immutability
let a = 1;
let b = 2;
mutability(a, b);

Running this code produces the following output:

[src/main.rs:8] a = 1
[src/main.rs:9] b = 3

Note that in this example, we’re switching the mutability of b from immutable to
mutable when we pass it to the function mutability() simply by applying the mut key-
word to the argument. In some cases, doing so can confuse the function caller, but
because the ownership is transferred (moved) to the function, the function can do
whatever it wants with the value. Although we’re altering the mutability of b, the
change doesn’t affect the original variable b in the caller’s scope, so the pattern isn’t
likely to be dangerous.

 It’s impossible to change the mutability of a reference in the same way we can with
owned values across a function call. References have been borrowed, and you cannot
change the mutability of borrowed data (the entire raison d’être of Rust’s borrow
checker).

NOTE Remember one more important thing about passing arguments by
value in Rust: the compiler will invoke the Copy trait when it’s available. Copy
differs from Clone in that Copy is a marker trait that tells the compiler that
the type can be copied by copying the bits in memory, whereas Clone is a trait
that provides a method to clone a value explicitly. The implication is that any
value that implements Copy will be copied rather than moved when passed to
a function or assigned to a new variable. In most cases, this applies only to
primitive types such as integers, floats, and Booleans, but it can also apply to
types such as tuples, arrays, and structs that contain only Copy types.

We can also use RefCell to achieve interior mutability.

let immutable_string =
 String::from("This string cannot be changed");
// immutable_string.push_str("... or can it?"); // error: cannot borrow
`immutable_string` as mutable, as it is not declared as mutable
dbg!(&immutable_string);

let not_so_immutable_string = RefCell::from(immutable_string);
not_so_immutable_string
 .borrow_mut()
 .push_str("... or can it?");
dbg!(¬_so_immutable_string);

Listing 9.3 Using RefCell for interior mutability

The variable b is immutable, but it’s moved
into the function as a mutable variable.

Declares an immutable string

Uncommenting this line will
result in a compilation error.

Creates a RefCell from the immutable
string, which moves the string into the

RefCell. Note that the RefCell is not
declared as mutable.

Now we can mutate the
string inside the RefCell.

1979.6 Using traits to make (almost) anything immutable
Running this code produces the following output:

[src/main.rs:32] &immutable_string = "This string cannot be changed"
[src/main.rs:38] ¬_so_immutable_string = RefCell {
 value: "This string cannot be changed... or can it?",
}

As you can see, Rust’s shared mutable containers provide a bypass for the mutability
rules. It’s important to remember that the RefCell owns its data. In the preceding
example, we moved the string into the RefCell, which involves a plain old function
call that allows us to alter the mutability of any owned value.

9.6 Using traits to make (almost) anything immutable
We’ve discussed some of the benefits and downsides of immutability, but we need to
explore how to put it into practice. Rust’s standard library provides a few tools to help
us. In this section, we’ll discuss the std::borrow::ToOwned trait, which gives us the
basis for a pattern that we can use to make just about anything immutable.

 When we’re working with immutable data, we want to avoid making copies of data
when we don’t need to. To do so, we use references to borrowed data. You may have
seen code in Rust that looks like this example:

let s = "A static string".to_owned();

This code uses the ToOwned trait to convert a &str to a String. Rust provides a blanket
implementation for any type T, where T provides Clone. In other words, we can think
about ToOwned as being a generalization of Clone for references or slices. The imple-
mentation of ToOwned::to_owned() simply calls Clone::clone(), and for [T], it
returns a Vec with each item cloned. The following listing shows the definition of the
ToOwned trait.

pub trait ToOwned {
 type Owned: Borrow<Self>;

 // Required method
 fn to_owned(&self) -> Self::Owned;

 // Provided method
 fn clone_into(&self, target: &mut Self::Owned) { ... }
}

Knowing this definition, we don’t have to do much to use immutable data everywhere.
All we have to do is provide a Clone implementation; then we can use ToOwned to con-
vert our data to an owned value when we need to mutate it. This process may seem a
bit clunky, but we can use the Cow type to make it more ergonomic.

Listing 9.4 Definition of ToOwned from Rust’s standard library

198 CHAPTER 9 Immutability
9.7 Using Cow for immutability
The Cow type is a smart pointer that implements a clone-on-write pattern. Cow itself is
implemented as an enum, which requires the ToOwned trait to be implemented for its
contents. You’ve likely heard of copy-on-write, and Cow follows the same pattern by
deferring the cost of cloning until it’s necessary. We can use Cow as a container for
data that we want to treat as immutable by mutating only cloned data, never the
source data. If we’re being nitpicky, this approach doesn’t strictly prevent mutability,
but it prevents us from having to mutate the source data or use any mutable refer-
ences. The following listing shows the definition of Cow.

pub enum Cow<'a, B>
where
 B: 'a + ToOwned + ?Sized,
{
 Borrowed(&'a B),
 Owned(<B as ToOwned>::Owned),
}

Notice a couple of things about Cow:

 The Cow type is generic over a lifetime 'a and a type B, which must implement
the ToOwned trait.

 The Cow type is an enum with two variants: Borrowed and Owned. It’s similar to
an Option but more specialized.

 We can use Cow to wrap any reference for a type that implements Clone (and
thereby ToOwned) and then obtain an owned value when we need to mutate it.

 Cow implements the Deref trait, which allows us to treat it as a reference to the
data it contains.

The following listing shows the basic use of Cow.

use std::borrow::Cow;

let cow_say_what = Cow::from("The cow goes moo");
dbg!(&cow_say_what);

let cows_dont_say_what =
 cow_say_what
 .clone()
 .to_mut()
 .replace("moo", "toot");
dbg!(&cow_say_what);
dbg!(&cows_dont_say_what);

Listing 9.5 Definition of Cow from Rust’s standard library

Listing 9.6 Basic use of Cow

We can mutate the cloned data without
affecting the source data. Note, however,
that we need to clone the Cow and then call
to_mut() to obtain a mutable reference.

The source data is
still immutable.

The cloned data
was mutated.

1999.7 Using Cow for immutability
Notice that we still need to call clone() to obtain a new Cow, which is for the smart
pointer itself, not the data it contains. Then we call to_mut() to obtain a mutable ref-
erence to the internal data after it’s cloned. Running the preceding code produces
the following output:

[src/main.rs:5:5] &cow_say_what = "The cow goes moo"
[src/main.rs:9:5] &cow_say_what = "The cow goes moo"
[src/main.rs:10:5] &cows_dont_say_what = "The cow goes toot"

Let’s try to improve on that example to clarify how you’d use it in practice. Let’s write
a function that does something similar: returns a new object.

fn loud_moo<'a>(mut cow: Cow<'a, str>)
 -> Cow<'a, str> {
 if cow.contains("moo") {
 Cow::from(cow.to_mut().replace("moo", "MOO"))
 } else {
 cow
 }
}

We can call the function loud_moo() with the following code:

let cow_say_what = Cow::from("The cow goes moo");
let yelling_cows = loud_moo(cow_say_what.clone());
dbg!(&cow_say_what);
dbg!(&yelling_cows);

When we run the code, we get the following output:

[src/main.rs:21:5] &cow_say_what = "The cow goes moo"
[src/main.rs:22:5] &yelling_cows = "The cow goes MOO"

If we’re using Cow, we don’t necessarily want to leak that implementation detail in a pub-
lic API, so we’d likely want to wrap our data with a struct. We can put a Cow inside a struct
and provide a method to mutate the internal data without exposing the Cow itself.

#[derive(Debug, Clone)]
struct CowList<'a> {
 cows: Cow<'a, [String]>,
}

impl<'a> CowList<'a> {
 fn add_cow(&self, cow: &str) -> Self {
 let mut new_cows = self.clone();

Listing 9.7 Improving the use of Cow

Listing 9.8 Wrapping Cow in a struct

The function takes an owned
Cow and returns a Cow.

If the Cow contains
"moo", we mutate
it and replace it
with "MOO".

If the Cow doesn’t contain
"moo", we return the
original Cow.

We derive Clone so that we can
clone the CowList, including the
internal cow list.

We use Cow to wrap a vector of
strings, including the 'a lifetime.

We provide a method to add a
cow to the list, returning a new
CowList.We clone the CowList first

so that we can mutate it.

200 CHAPTER 9 Immutability
 new_cows.cows.to_mut().push(
 cow.to_string()
);
 new_cows
 }
}

impl Default for CowList<'_> {
 fn default() -> Self {
 CowList {
 cows: Cow::from(vec![]),
 }
 }
}

Now let’s test our code:

let list_of_cows = CowList::default()
 .add_cow("Bessie")
 .add_cow("Daisy")
 .add_cow("Moo");
dbg!(&list_of_cows);
let list_of_cows_plus_one = list_of_cows.add_cow("Penelope");
dbg!(&list_of_cows);
dbg!(&list_of_cows_plus_one);

Running this code produces the following output:

[src/main.rs:49:5] &list_of_cows = CowList {
 cows: [
 "Bessie",
 "Daisy",
 "Moo",
],
}
[src/main.rs:52:5] &list_of_cows = CowList {
 cows: [
 "Bessie",
 "Daisy",
 "Moo",
],
}
[src/main.rs:53:5] &list_of_cows_plus_one = CowList {
 cows: [
 "Bessie",
 "Daisy",
 "Moo",
 "Penelope",
],
}

As an alternative implementation, we can place each Cow inside a Vec:

We mutate the internal Cow by
calling to_mut() and then push().

We return the
new CowList.

The original CowList is still
immutable, as we can see by
printing it twice.

2019.8 Using crates for immutable data structures
#[derive(Debug, Clone)]
struct CowVec<'a> {
 cows: Vec<Cow<'a, str>>,
}

One advantage of using this method (as opposed to using a Vec within a Cow) is that
each item in the vector can be cloned lazily, which is known as structural sharing. This
approach can be more efficient when you have many copies of the same elements,
especially if the individual elements are large.

 As you can see, Cow isn’t complicated, but we can hide it from a public API to make
our API a little easier to use. Note that in the preceding example, we never alter the
original or source CowList and always return a new CowList when we mutate it.

 We can apply the use of Cow nearly anywhere we want to encourage the use of
immutable data, but we still need to understand Cow and its behavior. If you haven’t
encountered Cow yet, it may seem to be an odd abstraction, especially when you can
call clone() directly or mutate the data. If you think that this approach is an awkward
way to work with data, you’re not alone, which is why the next section discusses some
data structures that make applying immutability a bit easier.

9.8 Using crates for immutable data structures
In this section, we’ll explore some crates that provide immutable data structures,
which can be a relatively easy way to reap the benefits of immutability without building
custom solutions. The crates we’ll discuss are

 im, which provides lists, sets, and maps (https://crates.io/crates/im)
 Rust Persistent Data Structures (rpds), which provides lists, sets, queues, and

maps (https://crates.io/crates/rpds)

Both crates provide structures optimized for use in programs and libraries that follow
the principles of immutability, but neither strictly enforces immutability through their
APIs. You can use the data structures in these crates in a mutable way, but they are
optimized for immutability.

9.8.1 Using im

The im crate is the most popular library that provides immutable data structures. im
has well over 7.4 million downloads from https://crates.io and is used in many other
crates and projects.

 im provides a Vector analogous to Rust’s Vec, which is optimized for immutability.
It also has o ordered and unordered sets and hash maps, each tuned for immutability.
We can use im to create a Vector with the vector! macro and add elements to it.

use im::vector;

let shopping_list =
 vector!["milk", "bread", "butter", "cheese", "eggs"];

Listing 9.9 Using im to create a Vector

https://crates.io/crates/im
https://crates.io/crates/rpds
https://crates.io

202 CHAPTER 9 Immutability
let mut updated_shopping_list = shopping_list.clone();
updated_shopping_list.push_back("grapes");

dbg!(&shopping_list);
dbg!(&updated_shopping_list);

Something to note about the Vector from im is that using it mutably is possible; it
doesn’t force us to make a copy of the vector each time. im is intended to be used as the
underlying immutable data structure without enforcing immutability. Remember that
the Clone implementation provided is optimized for the immutability use case, so we
can clone the Vector liberally without worrying about performance. Running this
code produces the following output:

[src/main.rs:10:5] &shopping_list = [
 "milk",
 "bread",
 "butter",
 "cheese",
 "eggs",
]
[src/main.rs:11:5] &updated_shopping_list = [
 "milk",
 "bread",
 "butter",
 "cheese",
 "eggs",
 "grapes",
]

In addition to data structures such as sets and maps, im provides features such as
rayon-based iterators (for parallel iterating), Serde support, and proptest and quick-
check support for property-based testing. For complete details, consult the im docu-
mentation at https://docs.rs/im/latest/im.

9.8.2 Using rpds

The rpds crate is similar to im but provides a few additional data structures, such as
queues and stacks. Although rpds is less popular than im, at around 1.2 million down-
loads from https://crates.io, it’s still a well-maintained and useful library.

 Unlike im, rpds provides an immutable API directly (methods that return a new
structure), although it also provides a mutable API if you want to avoid cloning. You
can use rpds to create a Vector and add elements to it.

use rpds::Vector;

let streets = Vector::new()
 .push_back("Elm Street")

Listing 9.10 Using rpds to create a Vector

We need to clone
the original vector.

Note that we mutate the vector
like a normal vector and append an
element mutably with push_back().

https://docs.rs/im/latest/im
https://crates.io

203Summary
 .push_back("Maple Street")
 .push_back("Oak Street");

let updated_streets = streets.push_back("Pine Street");

dbg!(&streets);
dbg!(&updated_streets);

Note that with rpds, each call to push_back() returns a new Vector, so you don’t have
to clone explicitly. It also provides a push_back_mut() if you need to modify the vector
in place. If you run the code, you get the following output:

[src/main.rs:11:5] &streets = Vector {
 root: Leaf(
 [
 "Elm Street",
 "Maple Street",
 "Oak Street",
],
),
 bits: 5,
 length: 3,
}
[src/main.rs:12:5] &updated_streets = Vector {
 root: Leaf(
 [
 "Elm Street",
 "Maple Street",
 "Oak Street",
 "Pine Street",
],
),
 bits: 5,
 length: 4,
}

rpds also provides Serde support and macros for initialization data structures. For com-
plete details, consult the rpds documentation at https://docs.rs/rpds/latest/rpds.

Summary
 Immutability is a powerful abstraction for writing reliable software.
 Immutability can help prevent logic errors, race conditions, unwanted side

effects, and memory safety problems.
 We can combine immutability with functional programming patterns, such as

pure functions and referential transparency, to make our code more reliable,
easy to test, and easier to reason about.

 Rust always distinguishes between mutable and immutable values, enforced by
the borrow checker, which makes it easy to determine whether a value is
mutable thanks to inherited mutability.

https://docs.rs/rpds/latest/rpds

204 CHAPTER 9 Immutability
 Rust provides a few tools to help us work with immutable data, such as the
ToOwned trait and the Cow type.

 The im and rpds crates provide data structures optimized for immutability,
which can be used as a building block for programs and libraries that use
immutable data.

Antipatterns
Antipatterns are programming practices that are considered harmful in specific con-
texts or all circumstances. Antipatterns are often the result of a misunderstanding
of languages or a lack of experience with a particular technology stack. In this
chapter, we’ll discuss some common antipatterns in Rust and how to avoid them.

 First, we must discuss what constitutes an antipattern and then explore Rust’s
most common examples. We’ll also discuss when to use—and when to avoid—
specific patterns and when to make exceptions.

 The rules presented in this chapter aren’t hard-and-fast rules; exceptions always
exist. But it’s important to understand the reasoning behind these rules and know
when to break them. As Rust evolves, these rules may change, so staying up to date
with the latest best practices is essential for writing Rust effectively.

This chapter covers
 Discussing programming antipatterns

 Reviewing common antipatterns in Rust

 Recognizing when to use and when to avoid
contentious patterns
205

206 CHAPTER 10 Antipatterns
10.1 What is an antipattern?
Antipattern is a bit of a weasel word. That is, it’s often used pejoratively to refer to any
practice that the speaker doesn’t like. Ultimately, the definition of antipattern is a mat-
ter of opinion and preference. In some cases, however, a practice is objectively bad,
such as when it’s unsafe, inefficient, or difficult to maintain. These cases likely arise
from a combination of bad design, a desire to maintain backward compatibility, and a
continuously changing landscape of acceptable software design.

 The C language offers a great case study of how language-design practices evolve.
The C language is arguably the single most influential programming language in his-
tory. Despite its ubiquity, C is also arguably one of the worst languages in terms of
safety and ease of use, particularly in systems programming. Even highly skilled
experts can easily make mistakes in C that are difficult to detect and correct.

 Some people might argue that the C language is objectively bad by modern stan-
dards, and I have to agree. I’ve spent many hours dealing with bugs in C that are easy
to make but hard to catch due to the language’s design. Writing C can be nostalgic in
that it’s like driving a Ford Model T—fun for a while but not something you’d want to
do every day. Nevertheless, the C language remains the best choice for many applica-
tions today, particularly in systems and embedded programming or when the next-
best alternative is assembly.

 The Rust language was designed carefully and thoughtfully to avoid the footguns
you find in a language like C. Rust also attempts to preempt one compelling argu-
ment in favor of C by being just as fast, if not faster, than C. In many benchmarks, Rust
outperforms C in terms of raw speed and does so without unsafe code.

 Even Rust, however, has become a victim of its own success in that its popularity
has made it difficult to make significant changes. Changes that would break backward
compatibility are challenging to argue for and make because the cost of rewriting
existing code is high enough that people will avoid upgrading (a problem that C and
other languages have had for decades).

 Comparing Rust with C is a bit unfair because Rust is possible only thanks to signifi-
cant improvements in compiler infrastructure (namely, the LLVM project; https://
llvm.org) and a better understanding of programming-language design than we had
in the 1970s. What we may consider an antipattern in C today may have been a best
practice in the 1970s. The cool thing about Rust is that the compiler does much of the
work for you, provided that you avoid using unsafe code blocks. The same cannot
necessarily be said of languages like C, in which the compiler is somewhat of a blunt
instrument and leaves much of the optimization to the programmer. (Strictly speak-
ing, though, both Clang and GCC do an excellent job of optimizing C code.)

 Nevertheless, the topic of antipatterns in Rust is worth exploring, and I hope that
you walk away from this chapter with a better understanding of Rust and its limita-
tions. Finally, to answer the question “What’s an antipattern?”, I simply define an anti-
pattern as any pattern you don’t like.

https://llvm.org
https://llvm.org
https://llvm.org

20710.2 Using unsafe
10.2 Using unsafe
The mother of all antipatterns in Rust is the inappropriate use of the dangerous
unsafe keyword. You have to use the unsafe keyword to accomplish many things in
Rust, but it’s also the best way to shoot yourself in the foot. You can think of unsafe as
an escape hatch that allows you to perform operations that violate Rust’s language
rules, such as working with raw pointers, calling C functions, and accessing or modify-
ing resources outside a program’s allocated memory space. In the vast majority of use
cases in Rust, you shouldn’t need the unsafe keyword, and you should scrutinize any
use of it.

 That said, it’s nearly impossible to use Rust without using unsafe code, at least
indirectly, because the standard library uses unsafe code throughout. You needn’t
look hard through the standard library’s code to find uses of unsafe, such as in the
implementations of Box, Vec, and String. Memory allocation and deallocation, OS
system calls, and other low-level operations are also unsafe operations. Many exam-
ples of unsafe code in the standard library are either optimizations or necessary oper-
ations that can’t be performed safely otherwise (C-style foreign function interface
[FFI], system calls, and so on). The implementation of the Vec::insert() method,
for example, includes the block of unsafe code shown in the following listing, which
provides an optimized implementation of insertion within a vector.

pub fn insert(&mut self, index: usize, element: T) {
 #[cold]
 #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
 #[track_caller]
 fn assert_failed(index: usize, len: usize) -> ! {
 panic!("insertion index (is {index}) should be <= len (is {len})");
 }

 let len = self.len();

 // space for the new element
 if len == self.buf.capacity() {
 self.reserve(1);
 }

 unsafe {
 // infallible
 // The spot to put the new value
 {
 let p = self.as_mut_ptr().add(index);
 if index < len {
 // Shift everything over to make space. (Duplicating the
 // `index`th element into two consecutive places.)
 ptr::copy(p, p.add(1), len - index);
 } else if index == len {
 // No elements need shifting.
 } else {

Listing 10.1 Vec::insert() from the Rust standard library

The start of the
unsafe block

Gets a mutable pointer
to the Vec’s buffer, using
as_mut_ptr() and pointer
arithmetic. The call to
as_mut_ptr() is safe, but
the call to add() on the
returned pointer is unsafe.

Shifts elements to
make space for the
new element, using
pointer arithmetic

with ptr::copy()

208 CHAPTER 10 Antipatterns
 assert_failed(index, len);
 }
 // Write it in, overwriting the first copy of the `index`th
 // element.
 ptr::write(p, element);
 }
 self.set_len(len + 1);
 }
}

You may wonder why the insert() method is implemented with an unsafe code
block. The short answer is that the unsafe version of insertion is much faster than the
safe version, so the authors of the standard library chose to make this tradeoff for per-
formance reasons. Notably, ptr::copy() is equivalent to C’s memmove(), which can be
optimized with SIMD (single instruction, multiple data) and other low-level instruc-
tions as long as the memory regions being copied don’t overlap. The code is written to
be infallible, meaning that the code can’t panic or cause undefined behavior even
though it’s technically unsafe. In listing 10.1, the author of the standard library did a
good job of documenting the use of unsafe by providing comments about its use
(which is good practice).

10.2.1 What does unsafe do?

Let’s take a moment to understand why unsafe is necessary in Rust and when you
might need to use it. The unsafe keyword in Rust has the following effects:

 It allows you to dereference raw pointers.
 It permits you to call unsafe functions or methods.
 It allows you to access or modify mutable static variables.
 It allows you to implement unsafe traits.
 It allows you to access fields of union types, which are provided for C compatibility.

In practice, you’ll need to use unsafe most frequently when you’re working with C
libraries or other FFI-based code. If you want to integrate with a Python library, for
example, you must use unsafe to call the Python C API. But you’d likely be better off
using a framework such as PyO3 (https://github.com/PyO3/pyo3) that provides the
necessary bindings.

 C libraries in particular are known for their use of raw pointers, manual memory
allocation and deallocation, and other no-nos in Rust. You need to use C libraries
when you’re working with system calls, which you must do to interact with the OS
(reading and writing files, creating and managing processes, accessing peripherals,
and so on).

 The Rust standard library provides many safe abstractions, so you don’t need to
write unsafe code yourself, but you should be aware that you’re using unsafe code
when you use these abstractions. The std::ffi module, for example, provides safe
abstractions over FFI, such as CString, CStr, OsStr, and OsString. The std::fs

Writes the new
element into the Vec
using ptr::write()

https://github.com/PyO3/pyo3

20910.2 Using unsafe
module provides safe abstractions over file I/O, such as File, DirEntry, and Metadata.
The std::process module provides safe abstractions over process management, such
as Command, ExitStatus, and Stdio.

 For pointer arithmetic, the std::ptr module provides abstractions that allow you
to work with pointers. Most of the key methods are unsafe, however, thus requiring
the use of unsafe blocks.

 Memory allocation and deallocation are also unsafe operations, and the standard
library provides safe abstractions over these operations, such as Box, Vec, and String.
Under the hood, Box, Vec, and String use Rust’s Allocator trait, which wraps malloc()
and free() in UNIX-like systems and HeapAlloc() and HeapFree() in Windows. The
allocator API is a set of unsafe functions that are part of the unsafe Allocator trait,
which allows you to allocate and deallocate memory, and the standard library uses it to
provide safe abstractions over memory allocation and deallocation. The allocator API
is still experimental and available only in nightly Rust.

10.2.2 Where can you use unsafe?

You can use unsafe in the following ways:

 You can define a code block as unsafe by using the unsafe keyword, wrapped
by braces, such as unsafe { … }. The block is evaluated as an expression, and the
value of the block is the value of the last expression in the block.

 You can define a function as unsafe by using the unsafe keyword, such as
unsafe fn foo() { … }. You can call an unsafe function only from within an
unsafe block or another unsafe function.

 You can define a trait as unsafe by using the unsafe keyword, such as unsafe
trait Foo { … }. An unsafe trait can contain safe and unsafe methods, but you
can call an unsafe method only from within an unsafe block or function. Any
trait with one or more unsafe methods is considered unsafe.

The following listing demonstrates an unsafe function by calling printf() from the C
standard library.

unsafe fn unsafe_function() {
 libc::printf(
 "calling C's printf() within unsafe_function()\n\0".as_ptr()
 as *const i8,
);
}

You can test this code by calling the unsafe_function() from within an unsafe block.

unsafe {
 unsafe_function();
}

Listing 10.2 Defining an unsafe function to call printf()

Listing 10.3 Calling unsafe_function() from within an unsafe block

210 CHAPTER 10 Antipatterns
Running this code will produce the following output:

calling C's printf() within unsafe_function()

You can also define an unsafe trait.

unsafe trait UnsafeTrait {
 fn safe_method(&self);
 unsafe fn unsafe_method(&self);
}

struct MyStruct;

unsafe impl UnsafeTrait for MyStruct {
 fn safe_method(&self) {
 println!("calling println!() within UnsafeTrait::safe_method()");
 }
 unsafe fn unsafe_method(&self) {
 libc::printf(
 "calling C's printf() within UnsafeTrait::unsafe_method()\n\0"
 .as_ptr() as *const i8,
);
 }
}

This example also has a safe method, safe_method(), which you can call without
using an unsafe block. You can call the unsafe_method() from within an unsafe
block.

let my_struct = MyStruct;
my_struct.safe_method();
unsafe {
 my_struct.unsafe_method();
}

Running this code will produce the following output:

calling println!() within UnsafeTrait::safe_method()
calling C's printf() within UnsafeTrait::unsafe_method()

You may notice that it’s possible to hide unsafe code behind safe abstractions; whether
that capability is a feature or a bug is a matter of opinion. In practice, it’s impossible to
create a programming language like Rust that’s 100% free of unsafe code, so Rust’s
choice to allow safe code to hide unsafe code is a pragmatic one.

 You can use the #![forbid(unsafe_code)] attribute to ensure that your crate
doesn’t contain unsafe code, but the attribute doesn’t apply to crates you include as
dependencies or to the Rust standard library. In other words, even when you use the

Listing 10.4 Defining an unsafe trait

Listing 10.5 Testing an unsafe trait

21110.2 Using unsafe
#![forbid(unsafe_code)] attribute, you’re very likely to be using unsafe code, even
if you don’t write it yourself.

#![forbid(unsafe_code)]

fn main() {
 // unsafe {
 // libc::printf("Hello, world!\n".as_ptr() as *const _);
 // }
 let mut fruits = vec!["apple", "banana", "cherry"];
 fruits.insert(0, "orange");
}

NOTE At the time of this writing, Rust doesn’t provide a way to ensure that
dependencies are free of unsafe code, but the cargo-geiger crate (https://
crates.io/crates/cargo-geiger) can be used to analyze the amount of unsafe
code in a crate and its dependencies.

10.2.3 When should you use unsafe?

The main use cases for unsafe code are as follows:

 Working with C libraries or other FFI-based code
 Making system calls that don’t have safe abstractions in the standard library
 Implementing safe abstractions over unsafe code
 Writing low-level optimizations that can’t be expressed safely

Some Rustaceans are dogmatic about avoiding unsafe code, but a more pragmatic
view (which I share) is that we should avoid unsafe when possible but not be afraid
to use it when necessary. When you do need to use unsafe, you need to take extra
care to ensure that your code is correct and doesn’t cause undefined behavior. This
is easier said than done, and it’s one of the reasons why unsafe code is considered an
antipattern.

 When using unsafe code is unavoidable, you can reduce the likelihood of intro-
ducing critical bugs by using robust tools such as property testing, fuzz testing, and
static analysis tools. The Rust community has developed a set of guidelines for unsafe
use, which you can find at https://rust-lang.github.io/unsafe-code-guidelines.

10.2.4 Should you worry about unsafe?

For the most part, you don’t need to worry about unsafe code, particularly in the Rust
standard library. The standard library is well tested and well maintained, and the Rust
core team is vigilant about ensuring that the standard library is free of undefined
behavior. The standard library is also designed to provide safe abstractions over unsafe
code, so you don’t need to write unsafe code in most cases.

Listing 10.6 Using #![forbid(unsafe_code

Uncommenting this
line will cause a
compilation error.

This line will not cause a compilation error
even though it calls Vec::insert(), which
contains unsafe code.

https://crates.io/crates/cargo-geiger
https://crates.io/crates/cargo-geiger
https://crates.io/crates/cargo-geiger
https://rust-lang.github.io/unsafe-code-guidelines

212 CHAPTER 10 Antipatterns
 I’ve encountered cases in which the use of unsafe code was necessary, such as working
with OS-level abstractions that are not fully covered by the standard library. One down-
side to the standard library’s abstractions is that they’re designed to be cross-platform,
and they generally represent the lowest common denominator of what’s possible on all
platforms. As a result, you may need to use unsafe code to access platform-specific fea-
tures such as the Windows API or to take advantage of platform-specific optimizations.
I’ve found that unsafe code isn’t as scary as it’s made out to be if you have a good grasp
of Rust, the borrow checker, and best practices for managing resources in Rust, such as
using resource acquisition is initialization (RAII) and smart pointers.

10.3 Using unwrap()
Improper use of the unwrap() method is a common antipattern in Rust that’s often
used when we get lazy about handling Option or Result values. But you can avoid using
unwrap() relatively easily by replacing it with one or more of the following methods:

 expect()—This method is similar to unwrap() but allows you to provide a cus-
tom error message when the value is None or Err (for Option and Result,
respectively). expect() can be useful for debugging, but using it to handle
errors in production code is a good idea only when the expected behavior is
that the program should exit. Using expect() is functionally equivalent to
using an assertion, such as assert!(value.is_some()).

 map()—This method allows you to transform the value of an Option or Result
by using a closure. If the value is None or Err, the closure is not called, and the
method returns None or Err.

 and_then()—This method allows you to chain Option or Result values, avoid-
ing deeply nested match or if let statements.

 unwrap_or()—This method allows you to provide a default value when the
value is None or Err and prevents panic.

 ?—This operator allows you to propagate errors up the call stack and is particu-
larly useful when you’re working with Result values.

unwrap() isn’t always an antipattern, but it’s often a code smell, as it can indicate
that you’re not thinking about error handling or the possibility of None values. It’s
also a sign that you’re not thinking about the control flow of your program or the
possibility of failure.

 There are exceptions, such as when you’re reasonably certain that a value will
never be None or Err. In these cases, it’s much better to use expect() with a custom
error message, as it will provide more information when the value is None or Err.

10.4 Not using Vec
The Vec type, a dynamic array that’s one of the most commonly used types in Rust, is a
good choice for most use cases. Many people make the mistake of not using Vec,
instead attempting to optimize their code by writing custom data structures or reach-
ing for maps, sets, trees, or linked lists.

21310.4 Not using Vec
 As it turns out, Vec is remarkably fast for many workloads. In many cases, it pro-
vides the best performance when you account for a variety of benchmarks. A HashSet
or HashMap, for example, has exceptionally quick lookups, but if you need to append
new elements to the collection, Vec is often faster. The same is true of BTreeSet and
BTreeMap, which are great for ordered collections but not as fast as Vec for many work-
loads. LinkedList is often slower than Vec for many workloads and also less memory-
efficient. To demonstrate, I’ve written a simple set of benchmarks for Vec, HashSet,
and LinkedList that perform the following operations:

 Appending 1,000,000 elements to an empty collection
 Finding 1,000 random values within a collection of 1,000,000 unique elements
 Removing 1,000 elements from a collection of 1,000,000

The following listing shows the append benchmark. (Refer to the book’s source code
for the full benchmark.)

#[bench]
fn vec_append(b: &mut Bencher) {
 b.iter(|| {
 let mut nums: Vec<i32> = Vec::new();
 for n in 0..1_000_000 {
 nums.push(n);
 }
 });
}

#[bench]
fn list_append(b: &mut Bencher) {
 b.iter(|| {
 let mut nums: LinkedList<i32> = LinkedList::new();
 for n in 0..1_000_000 {
 nums.push_back(n);
 }
 });
}

#[bench]
fn set_append(b: &mut Bencher) {
 b.iter(|| {
 let mut nums: HashSet<i32> = HashSet::new();
 for n in 0..1_000_000 {
 nums.insert(n);
 }
 });
}

When we run all the benchmarks, we find that although Vec is not always fastest, it
performs surprisingly well for all three tests. The following listing shows the results.

Listing 10.7 Benchmarking Vec, HashSet, and LinkedList for appending

214 CHAPTER 10 Antipatterns
running 9 tests
test tests::list_append ... bench: 53,860,800 ns/iter (+/- 2,306,429)
test tests::list_find ... bench: 527,207 ns/iter (+/- 26,305)
test tests::list_remove ... bench: 61,830,454 ns/iter (+/- 1,462,953)
test tests::set_append ... bench: 23,774,245 ns/iter (+/- 549,095)
test tests::set_find ... bench: 11 ns/iter (+/- 0)
test tests::set_remove ... bench: 839,977 ns/iter (+/- 4,571)
test tests::vec_append ... bench: 2,095,262 ns/iter (+/- 146,611)
test tests::vec_find ... bench: 133,359 ns/iter (+/- 11,424)
test tests::vec_remove ... bench: 3,319,558 ns/iter (+/- 57,979)

test result: ok. 0 passed; 0 failed; 0 ignored; 9 measured; 0 filtered out;
finished in 136.97s

NOTE Running these benchmarks on your machine may produce different
results. The benchmarks use a nightly-only benchmarking feature, and to run
these benchmarks, you must use the cargo bench command (as opposed to
cargo test).

Vec beats LinkedList on every benchmark, and HashSet is faster for removing and
finding elements but significantly slower for appending new elements. The Vec type is
more memory-efficient than HashSet and LinkedList, and it’s easier to work with in
many cases.

 In terms of complexity, these results aren’t far from what we expect. Table 10.1
shows the big O and big theta complexity for common operations with Vec, HashSet,
and LinkedList.

NOTE My analysis differs from what you’ll find in the Rust documentation
because the documentation doesn’t discern between average and worst-case
complexity.

Vec doesn’t appear to perform remarkably well in any operation other than indexed
lookups, which are Ο(1) (not in the table or benchmarks). But the average performance
in practice is surprisingly good under various workloads. Confusingly, LinkedList is

Listing 10.8 Benchmark results for Vec, HashSet, and LinkedList

Table 10.1 Summary of big O and big theta complexity for common operations with Vec, HashSet,
and LinkedList

Structure Append Search Remove

Average Worst Average Worst Average Worst

Vec Θ(1) Ο(n) Θ(n) Ο(n) Θ(n) Ο(n)

HashSet Θ(1) Ο(n) Θ(1) Ο(n) Θ(1) Ο(n)

LinkedList Θ(1) Ο(1) Θ(n) Ο(n) Θ(n) Ο(n)

21510.4 Not using Vec
significantly worse than Vec for inserting 1 million elements one at a time, but this
poor performance likely occurs because LinkedList has to allocate memory for each
element, whereas Vec allocates memory in chunks. HashSet’s performance in append
or insert operations is also poor due to allocations and the cost of rebalancing the
hash table as it grows.

Rust’s benchmarking tools
Rust provides a built-in benchmarking tool that allows you to write benchmarks quickly
the way you’d write a unit test. Currently, this feature is available only in nightly Rust.

Using the #[bench] attribute, you can define a unit test that benchmarks any opera-
tion, like any regular unit test. The benchmarking tool runs the benchmark multiple
times and provides the median time to run the benchmark and the standard deviation.

Rust’s test library includes the Bencher object, which provides a method for measuring
the time it takes to run a block of code. The Bencher struct provides an iter() method
that accepts a closure, in which you can place the code you want to benchmark. Any
setup or teardown should occur before and after the call to Bencher::iter(). A min-
imal benchmarking test looks like the following code:

#![feature(test)]

#[cfg(test)]
mod test {
 extern crate test;
 use test::Bencher;
 #[bench]
 fn hello_world_10_times(b: &mut Bencher) {
 b.iter(|| {
 for _ in 0..10 {
 println!("Hello, world!");
 }
 });
 }
}

Running the cargo bench command compiles the code in release mode and exe-
cutes the benchmarks. cargo bench takes arguments similar to the cargo test com-
mand, allowing you to filter benchmarks by name or run only specific benchmarks.
When you run cargo bench, Rust’s test library runs the code within Bencher::iter()
per the following rules to obtain a stable result:

1 The benchmark is run 50 times, and a summary of the results is calculated.
2 The outliers are removed from the results (the fastest and slowest 5% of the

results).
3 The benchmark is run again 50 times, and the results are calculated.

The #[bench] attribute
marks the function as a
benchmark.

The iter() method of the
Bencher object runs the
benchmark multiple times.

The code to be benchmarked is
placed inside the closure passed to
iter(). Note that we are running the
test 10 times in this example within

the closure, which will also be
called multiple times.

216 CHAPTER 10 Antipatterns
Vec benefits from being a contiguous block of memory, which makes it cache-friendly
in most modern CPUs and gives the compiler opportunities to optimize operations at
the instruction level. Data locality is a key performance factor, especially when access-
ing the main memory (RAM) on computers is orders of magnitude slower than access-
ing the CPU’s caches. Vec also benefits from the relative simplicity of managing a
contiguous block of memory. Shifting elements around is relatively straightforward
and doesn’t require complex algorithms; in most cases, it’s merely a matter of copying
memory, which can be extremely fast on modern computers.

 Indeed, in some cases, a set, map, tree, or linked list will handily outperform a vec-
tor, but you may find it harder to justify using these types than you think. Vec is a good
choice for most workloads and often an excellent choice for many workloads. When
in doubt, use Vec, or at least take time to benchmark your code before reaching for a
more complex data structure.

10.5 Too many clones
Some Rustaceans cringe at the sight of the clone() method, and in many cases, they
have good reason to do so. Although I’m not an anticlone zealot, I do think that the
clone() method is often overused and used when it’s not necessary.

 The clone() method creates a deep copy of a value, and from what I’ve seen, some
Rust programmers use it as a crutch to avoid thinking about ownership and borrow-
ing. This approach is a mistake: it can lead to performance problems and memory
bloat, and it can also cause bugs.

 Calling clone() isn’t always bad, however. In chapter 9, I advocate for the use of
clone() as a simple way to implement immutable data structures. If you find yourself
using clone() to bypass or get around the borrow checker, you should take a step back
and think about your design. As with everything, though, if you’re making choices that
are informed and deliberate, you shouldn’t feel bad about using clone()—especially if
your decisions are based on benchmarks and data.

(continued)

4 If either of the following conditions is met, the results are returned:
– The standard deviation of the results is less than 100 milliseconds.
– The benchmark has been running for more than 3 seconds.

5 If neither condition is met, the benchmark runs again from step 1.

If you want to run benchmarks in stable Rust, you can use the Criterion.rs crate
(documented at https://bheisler.github.io/criterion.rs/book), which provides a feature-
rich benchmarking tool. Criterion.rs is a Rust port of Haskell’s Criterion library.

https://bheisler.github.io/criterion.rs/book

21710.6 Using Deref to emulate polymorphism
10.6 Using Deref to emulate polymorphism
Polymorphism is a technique that allows you to treat objects of different types as though
they’re the same type. Object-oriented languages encourage the use of polymorphism
through subtyping or inheritance, which are notably absent from Rust.

 Sometimes, we use the Deref trait to make it easier to work with objects by letting
the compiler infer the methods we want to call by using Deref coercion. In a way,
we’re effectively emulating the kind of polymorphism you may have seen in other lan-
guages, such as C++ and Java. This approach isn’t necessarily bad, but it can be a sign
that we’re not thinking about our design in a way that’s idiomatic to Rust.

 The Deref trait (and its mutable counterpart DerefMut) allows us to dereference a
value by using the * operator, as in *value. Also, the compiler implicitly uses the Deref
trait to allow method calls on a value that’s wrapped in a smart pointer, such as Box, Rc,
or Arc. In other words, if we have let value: Box<T> = Box::new(T);, we can call meth-
ods on value as though it were a T without dereferencing it, as in value.method().

 Chapter 7 discusses wrapper structs and shows how using the Deref trait allows us to
treat a wrapper struct as though it were the type it wraps. This situation is a common use
case for Deref, similar to Rust’s smart pointers, which also use Deref this way, but it’s not
polymorphism. In many cases, you can avoid using Deref to emulate polymorphism by
using traits and generics or by simply providing a method that returns the inner value as
required. The following listing illustrates the use of Deref in a simple example that uses
Deref coercion to return the first member of the tuple struct Person.

use std::ops::Deref;

struct Person(String, String, u32);

impl Deref for Person {
 type Target = String;

 fn deref(&self) -> &Self::Target {
 &self.0
 }
}

fn main() {
 let ferris = Person("Ferris".to_string(), "Bueller".to_string(), 17);
 println!("Hello, {}!", *ferris);
 println!("The length of a person is {}", ferris.len());
}

In this example, we have a tuple struct, Person, that wraps two strings (first and last
name) and an age. We can call the len() method on ferris as though it were a

Listing 10.9 Demonstrating Deref coercion

A tuple struct with a first
name, last name, and age

Implements the Deref trait for
Person to allow dereferencing
into a String

Implements the deref() method
to return a reference to the
wrapped String

Dereferences name to
get the inner String

Calls the len() method on name
as though it were a String via

Deref coercion

218 CHAPTER 10 Antipatterns
String thanks to Deref coercion. In this example, we’re returning the person’s first
name, but it’s not immediately apparent to the reader why we do this. Why not return
the first name directly from a method? Someone who’s looking at this code would be
confused because it’s not idiomatic Rust. We’re making Person behave like a String
for a particular use case, but why we would want to do so is unclear. When we run the
preceding code, it produces the following output:

Hello, Ferris!
The length of a person is 6

We could just as easily have implemented a first_name() method that returns the
inner String or even provided a first_name_len() method, which would be much
clearer (though if we return the string, that would be sufficient for getting the length
with ferris.first_name().len()). The small convenience of accessing the first name
isn’t worth the ambiguity introduced by Deref. If we want to provide a first_name_
len() method, we could implement it as follows:

impl Person {
 fn first_name_len(&self) -> usize {
 self.0.len()
 }
}

To see what using Deref to emulate polymorphism looks like, see the following listing,
which provides one way to emulate polymorphism in Rust. The example shows a Dog
that implements the Animal trait and a Cat that also implements the Animal trait.

trait Animal {
 fn speak(&self) -> &str;
 fn name(&self) -> &str;
}

struct Dog {
 name: String,
}
impl Dog {
 fn new(name: &str) -> Self {
 Self {
 name: name.to_string(),
 }
 }
}
impl Animal for Dog {
 fn speak(&self) -> &str {
 "Woof!"
 }
 fn name(&self) -> &str {
 &self.name

Listing 10.10 Emulating polymorphism with trait objects (good practice)

21910.6 Using Deref to emulate polymorphism
 }
}

struct Cat {
 name: String,
}
impl Cat {
 fn new(name: &str) -> Self {
 Self {
 name: name.to_string(),
 }
 }
}
impl Animal for Cat {
 fn speak(&self) -> &str {
 "Meow!"
 }
 fn name(&self) -> &str {
 &self.name
 }
}

We can test the code in listing 10.10 by running the code in the following listing.
Let’s create a vector of Box<dyn Animal> and call the speak() method on each Animal
in the vector.

fn main() {
 let dog = Box::new(Dog::new("Rusty"));
 let cat = Box::new(Cat::new("Misty"));

 let animals: Vec<Box<dyn Animal>> = vec![dog, cat];

 for animal in animals {
 println!("{} says {}", animal.name(), animal.speak());
 }
}

Running this code produces the following output:

Rusty says Woof!
Misty says Meow!

The example is idiomatic Rust. We’ve used a trait object to create a vector of speaking
animals.

 Let’s create something similar but use Deref to emulate polymorphism this time.
We’ll create an Animal struct with a name property and treat it as a superclass of the
Dog and Cat structs by returning the inner Animal with a Deref.

Listing 10.11 Testing the polymorphism with trait objects

220 CHAPTER 10 Antipatterns
use std::ops::Deref;

struct Animal {
 name: String,
}
impl Animal {
 fn new(name: &str) -> Animal {
 Animal { name: name.to_string() }
 }
 fn name(&self) -> &str {
 &self.name
 }
}

struct Dog(Animal);
impl Dog {
 fn new(name: &str) -> Self {
 Self(Animal::new(name))
 }
 fn speak(&self) -> &str {
 "Woof!"
 }
}
impl Deref for Dog {
 type Target = Animal;
 fn deref(&self) -> &Self::Target {
 &self.0
 }
}

struct Cat(Animal);
impl Cat {
 fn new(name: &str) -> Self {
 Self(Animal::new(name))
 }
 fn speak(&self) -> &str {
 "Meow!"
 }
}
impl Deref for Cat {
 type Target = Animal;
 fn deref(&self) -> &Self::Target {
 &self.0
 }
}

We can test the code in listing 10.12 by running the code in the following listing.

fn main() {
 let dog = Dog::new("Rusty");
 let cat = Cat::new("Misty");

Listing 10.12 Emulating polymorphism with Deref (bad practice)

Listing 10.13 Testing the polymorphism with Deref

22110.8 Too many smart pointers
 println!("{} says: {}", dog.name(), dog.speak());
 println!("{} says: {}", cat.name(), cat.speak());
}

Running this code produces the following output:

Rusty says: Woof!
Misty says: Meow!

This example isn’t idiomatic Rust. We’ve used Deref to emulate polymorphism in a
way that’s confusing to anyone who reads the code. The Animal struct isn’t a super-
class of Dog and Cat, and it’s unclear why we would want to treat Dog and Cat as
Animal.

 You shouldn’t avoid Deref entirely, but you should avoid overusing or misusing it,
especially in contexts that may be confusing or misleading. If you find yourself using
Deref because you want to emulate the polymorphism of Java or C++, it’s probably a
good idea to take a step back and think about your design.

10.7 Global data and singletons
Rust doesn’t have a built-in concept of global data or singletons, and implementing
these concepts requires some work. This is by design, as global data and singletons are
often considered antipatterns in programming and can lead to a variety of problems,
such as tight coupling, poor testability, and difficulty in reasoning about code.

 In Rust, you can use crates like lazy_static to create global data or singletons,
but you should always think twice before doing so. In many cases, you can avoid global
data or singletons by using dependency injection or passing data around as arguments
to functions.

 For libraries in particular, global data and singletons can be problematic: they
make it difficult to reason about the behavior of the library, and they can lead to unex-
pected behavior when the library is used in different contexts. Global data can
become a bottleneck or a source of deadlocks in multithreaded programs, and it can
lead to memory leaks and other resource management problems.

 Rust provides std::cell::OnceCell and its thread-safe counterpart std::sync::
OnceLock, which give you a safe way to create singletons. As an alternative, your library
can provide a function that initializes the singleton, and you can decide how to man-
age the singleton. This approach is a good way to provide flexibility and avoid the
problems associated with global data and singletons.

10.8 Too many smart pointers
Smart pointers are incredibly useful, and in Rust specifically, they’re necessary for
doing many things that are trivial to do in other languages. It’s possible to overuse
smart pointers, however, and it’s also possible to use the wrong smart pointer for the
job. Rust provides the following core smart-pointer types:

222 CHAPTER 10 Antipatterns
 Box—A smart pointer that provides heap allocation and deallocation and allows
you to move values between scopes. Box also enables you to hold values whose
size isn’t known at compile time within objects that have a fixed size (such as
Sized).

 Rc—A reference-counted smart pointer that allows multiple owners or shared
ownership of a value. It also provides the features of Box.

 Arc—An atomic reference-counted smart pointer that allows multiple owners
of a value across threads, providing the features of Rc and Box in a thread-safe
manner. Arc doesn’t synchronize the value itself; its synchronization is only for
the reference count.

Generally, you use Box when you need heap-allocated memory but don’t need to share
ownership of the value. You use Rc when you need to share ownership of a value but
don’t need to share ownership across threads. You use Arc when you need to share
ownership of a value across threads.

 Additionally, RefCell and Cell provide interior mutability and are often used in
conjunction with Rc and Arc. Rc and Arc allow you to share ownership of a value but
don’t allow you to mutate the value. RefCell and Cell allow you to mutate the value
but don’t allow you to share ownership of the value.

 Sometimes, however, we reach for smart pointers when we don’t need them or
overuse them simply because they’re convenient or allow us to get around the borrow
checker. It can be easier to stick something into Rc and clone the pointer than it is to
think about the ownership and borrowing of the value.

 Another example of overusing smart pointers is using Box within a Vec. Both Box
and Vec allocate memory on the heap for their contents, so this approach can be
redundant and requires two allocations: one for Vec and another for the contained
Box. The following listing shows an example of triple allocation: String within Box
within Vec.

let mut string_box_vec: Vec<Box<String>> =
 vec![Box::new(
 String::from("unecessarily boxed string")
)];
let mut string_vec: Vec<String> =
 vec![String::from("this is okay")];

let boxed_string = string_box_vec.remove(0);
let normal_string = string_vec.remove(0);

A String is equivalent to a pointer with length to the heap, and a Box is a pointer to
some heap-allocated value. We sometimes reach for Box because it allows us to move
values between scopes, but in this case, doing so is redundant because Vec already

Listing 10.14 Overusing smart pointers

Redundantly boxes a
String within a Box
within a Vec

Stores a String
directly within a Vec

Removes the boxed String from
the Vec, which is equivalent to
removing a pointer to a pointer
in the VecRemoves the String from the Vec, which is

equivalent to removing a single pointer

223Summary
provides this functionality. It’s okay to put a String inside a Vec because strings are
variable-length, and each entity within a Vec requires a fixed (and equal) size.

 If you use smart pointers as an escape hatch to avoid the borrow checker, you
should reconsider your design. A good rule of thumb is to try to write code without
smart pointers and add them as required.

10.9 Where to go from here
When you finish reading this book, the most critical steps for leveling up your skills
are writing code and applying what you’ve learned. Practice is the best way to learn,
and you’ll learn a lot by writing code, getting feedback on your code, and reading
other people’s code. You may want to refer to this book as you progress in your learn-
ing, and you may discover that you learn even more after some practice. If you want to
read more books on Rust, you may be interested in my book Code Like a Pro in Rust
(https://www.manning.com/books/code-like-a-pro-in-rust), which inspired this book.

 The official Rust documentation is an excellent resource, and familiarizing your-
self with it is a good idea. Also, the Rust community is very active and offers many
resources, including the Rust subreddit at https://reddit.com/r/rust, the Rust Dis-
cord server at https://discord.gg/rust-lang, and the Rust user forums at https://users
.rust-lang.org.

 Finally, many Rust meetups and conferences enable you to get involved in the
community and meet other Rustaceans in person. Sometimes, you can find me at
the New York City Rust meetup; I’m always happy to chat about Rust and program-
ming in general.

TIP At the NYC meetup, we have a tradition of answering questions from
David Tolnay’s Rust Quiz, which is a fun way to hone skills and learn about
some of Rust’s more esoteric syntax and features. You can find the quiz at
https://dtolnay.github.io/rust-quiz.

Summary
 Antipatterns are programming practices that are considered harmful, either in

specific contexts or all circumstances. Although the use of antipatterns is often
a matter of opinion, in some cases, it’s objectively bad, such as when it’s unsafe,
inefficient, or difficult to maintain.

 The unsafe keyword is a necessary part of Rust that is sometimes misused or
overused. It’s nearly impossible to use Rust without using unsafe code (at least
indirectly), but you should scrutinize its use when you come across it. You
should never use unsafe to bypass the borrow checker.

 The unwrap() method is a common antipattern in Rust, often used when we get
lazy about handling Option or Result values. It’s relatively easy to avoid
unwrap() by replacing it with one or more of the following methods: expect(),
map(), and_then(), unwrap_or(), and the ? operator.

https://www.manning.com/books/code-like-a-pro-in-rust
https://reddit.com/r/rust
https://discord.gg/rust-lang
https://users.rust-lang.org
https://users.rust-lang.org
https://users.rust-lang.org
https://dtolnay.github.io/rust-quiz

224 CHAPTER 10 Antipatterns
 Vec is fast for many workloads and is often the best choice. It’s often faster
across a variety of benchmarks than HashSet, HashMap, BTreeSet, BTreeMap,
and LinkedList, and it’s also more memory-efficient.

 The clone() method is overused sometimes and often used when it’s not neces-
sary. It’s not always bad but can be a code smell, leading to performance prob-
lems and memory bloat.

 The Deref trait is sometimes used to emulate polymorphism, which can be con-
fusing in Rust. Instead, you should rely on traits or generics or simply provide a
method that returns the inner value as required.

 Global data and singletons are often considered antipatterns in programming.
They can lead to a variety of problems, such as tight coupling, poor testability,
and difficulty in reasoning about code. In Rust, you can use crates such as
lazy_static to create global data or singletons, but always think twice before
doing so.

 Smart pointers are incredibly useful, but it’s possible to overuse them or use the
wrong smart pointer for the job. If you use smart pointers as an escape hatch to
avoid the borrow checker, think about your design.

appendix
Installing Rust

To get the most out of this book, you’ll need to have a functioning Rust toolchain
installed. If you’ve never used Rust before, you’ll need to install a recent release of
the Rust toolchain that includes the compiler and the standard library. You may
also need to install some development tools, depending on your OS, to compile
and run all the code samples included with this book.

A.1 Installing tools for this book
To compile and run the code samples provided in this book, you must install the
necessary prerequisite dependencies.

A.1.1 Installing tools for macOS using Homebrew

$ brew install git

In macOS, you’ll need to install the Xcode command-line tools:

$ sudo xcode-select --install

A.1.2 Installing tools for Linux systems

To install tools for Debian-based systems, use this command:

$ apt-get install git build-essential

To install tools for Red Hat-based systems, use this command:

$ yum install git make automake gcc gcc-c++

TIP You may want to install Clang rather than GCC, which tends to have
better compile times.
225

226 APPENDIX Installing Rust
To install rustup in Linux and UNIX-based operating systems, including macOS, use
this command:

$ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

When you’ve installed rustup, make sure that both the stable and nightly toolchains
are installed:

$ rustup toolchain install stable nightly
...

A.1.3 Installing tools for Windows

If you’re using a Windows-based OS, you’ll need to download the latest copy of rustup
at https://rustup.rs. You can download prebuilt Windows binaries for Clang at https://
releases.llvm.org/download.html.

 Alternatively, you can use Windows Subsystem for Linux (WSL; https://docs.microsoft
.com/en-us/windows/wsl) and follow the instructions in the preceding section for
installation in Linux. For many users, this approach may be the easiest way to work with
the code samples.

A.2 Managing rustc and other Rust components
with rustup
When you have rustup installed, you’ll need to install the Rust compiler and related
tools. At a minimum, I recommend that you install the stable and nightly channels
of Rust.

A.2.1 Installing rustc and other components

By default, you should install both the stable and nightly toolchains, but generally,
you should prefer working with stable when possible. To install both toolchains, use
this code:

Install stable Rust and make it the default toolchain
$ rustup default stable
...
Install nightly Rust
$ rustup toolchain install nightly

Examples throughout this book use clippy and rustfmt, both of which you install by
using rustup:

$ rustup component add clippy rustfmt

A.2.2 Switching default toolchains with rustup

When working with Rust, you may switch between the stable and nightly toolchains
frequently. rustup makes this switch relatively easy:

https://rustup.rs/
https://releases.llvm.org/download.html
https://releases.llvm.org/download.html
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/

227A.2 Managing rustc and other Rust components with rustup
Switch to stable toolchain
$ rustup default stable
Switch to nightly toolchain
$ rustup default nightly

A.2.3 Updating Rust components

rustup makes it easy to keep components up to date. To update all the installed tool-
chains and components, simply run

$ rustup update

Under normal circumstances, you need to run update only when major new releases
are available. Occasionally, problems in nightly require an update, but they tend to be
infrequent. If your installation is working, it’s recommended you avoid upgrading too
frequently (i.e., daily) because you’re more likely to run into problems.

NOTE Updating all Rust components causes all toolchains and components
to be downloaded and updated, which may take some time on bandwidth lim-
ited systems.

index
Symbols

? operator 82–83, 212
clean matches with 40

* (asterisk) character 95
'static bound 31
'static lifetime 17
#[bench] attribute 215
#[coroutine] attribute 175–177
#[derive] attribute 28
+nightly argument 97

A

abstraction, avoiding
excessive 130

advanced techniques 151, 169
const generics 152–153
coroutines 174–178
extension traits 155–157
marker traits 159–161
procedural macros 178–182
reference objects 163
struct tagging 161–163

algorithms 7
allocating storage, thread-safe

access 85
Allocator trait 209
and_then() method 212
antipatterns 5–6, 205

clones 216
defined 206
emulating polymorphism with

Deref 217–221

global data 221
singleton pattern 85
unsafe keyword 207–212
Vec type 212–216

API design, rustdoc 135
append() method 49, 51, 53
AppendFile command 123
Arc type 119
arguments, passing by value vs.

reference 74–78
as_() method 125
as_any() method 31
as_ptr() method 56
automatic trait derivation 28

B

backward compatibility 132
Bencher object 215
B generic parameter 58
BicycleBuilder 111–112
Bicycle struct 111, 116
blanket traits 157–159
block scoping 70
bool parameter 105
bool type 152
borrow() method 126
Box<dyn Command> 123
Box of T 14
breed: Breed field 15
breed_name() method 17
Buffer example 158
BufRead trait 83
Buildable trait 111

builder pattern 107
enhancing with traits 109
implementing 107

Builder trait 109, 112

C

C++
optional arguments in 104
RAII in 66–70

callback hell 117
cargo bench command 214–215
cargo doc command 136
cargo install cargo-expand 97
cargo test command 215
Cargo.toml file 176
CargoTomlReader object 176
Cell container 194
char type 152
CI/CD (continuous integra-

tion/continuous
delivery) 131

clean matches with ?
operator 40

clone() method 142, 216
CloneAndDebug trait 161
Clone::clone() method 197
clone_from() method 142
clones 216
Clone trait 18, 142, 144, 194
cloning, using Cow for

immutability 198–201
closures 43

variable capture 45
229

INDEX230
code, object-oriented 21
code flow 34

clean matches with ?
operator 40

closures, variable capture 45
functional programming in

Rust 43
iterators 46
pattern matching 35

code fragments 93
Code Like a Pro in Rust

(Matthews) 223
collect() function 58
collect_into() method 156
combining traits and

generics 24
command pattern 121–124

defined 121
implementing 121–124

Command trait 121, 123
concat! macro 98
Condvar 73
const generic parameter

152
constructors 68, 79
Container struct 105
content field 122
Copy objects 70
Copy trait 196
coroutines 174–178
Coroutine trait 175–176
correctness 130
Cow type, immutability

and 198–201
C (programming language),

RAII in 66–70
crates 66

for immutable data
structures 201–203

Criterion.rs crate 216
cur_iter 48
currying 107

D

data structures 7
dbg! macro 99
debugging library design

145
Debug trait 145
declarative macros 93
delete keyword 68

Deref coercion 155
DerefMut

counterpart 217
trait 155

Deref trait 154–155, 198
emulating polymorphism

with 217–221
using to unwrap wrapped

struct 155
[derive] attribute 113, 160
derive_builder crate 113
deriving traits automatically

28
describe() method 25, 27
describe_type() function 27
designing libraries

correctness 130
sticking to basic types 130

design patterns 91
builder pattern 107, 109
defined 5–8
enhancing builders with

macros 110
error handling 82–85
fluent interface pattern

113–117
global state 85
heap-allocated strings 86
macros 92
metaprogramming with

macros 92
newtype pattern 124–127
observer pattern 117–121
singleton pattern 85

Design Patterns (Gamma,
Helm, Johnson, and
Vlissides) 7

destructors 68
documentation, library design,

examples 132
Dog structure 15
DoubleEndedIterator trait 157
downcast() method 31
downcast_ref() method 31
drop() method 71–72
Drop trait 71
DRY (Don’t Repeat Yourself)

principle 12
using macros for 100

DSL (domain-specific
language) 92

dyn Trait 123

E

emulating polymorphism with
Deref 217–221

Enumerate iterator 60
ergonomics 134
err() method 41
error handling 82–85
Err value 59
execute() method 123
expect() method 212
extension traits 155–157
external crate types, implement-

ing traits
for 154–155

F

FFI (foreign function
interface) 207

filter() function 46
find() method 166
first_name() method 218
first_name_len() method

218
flat_map() function 59
fluent interface pattern

113–117
fluent builder 114–116
test-driving fluent builder

117
FnMut trait 45–46
fn new()

constructor pattern 13
method 48

FnOnce trait 45–46
Fn trait 45–46
fold() function 46
for_each() function 46, 49, 60
foreign function interface

(FFI) 207
for loops 60

syntax 176
format_args! macro 96
format! macro 96
Formatter::debug_list()

function 146
Formatter tool 146
From trait 41, 83, 153, 158
FullFeatured marker trait 160
functional programming 34, 43

in Rust 43

INDEX 231
function arguments,
optional 103–107

emulating with traits 104–107
in C++ 104
in Python 103
in Rust 104

G

Gamma, Erich 7
generics 11–18

advantages of 12
basics of 12–15
combining traits and 24
marker structs 15–18
Option 15
phantom types 15–18
trait bounds 18
Turing-complete type

system 11
global data 221
global state

destructuring commands
88

heap-allocated strings 86
immutable data 88–89
lazy static traits 89
overview 85
promoting mutability 88
singleton pattern 85
Sync 85
thread-local storage 86, 89
thread-safe storage 86, 89
variables 85

grapheme 76

H

HashMap container 194
heap-allocated strings,

overview 86
Helm, Richard 7
higher-order functions 44,

117
Homebrew 225

I

i32:to_string() function 58
i32 type 127
idioms 6
im crate 204

immutability 189
benefits of 190–192
cost of 192
in Rust, reviewing basics

of 193–197
thinking about immutable

data 192
traits to make (almost) any-

thing immutable 197
using Cow for 198–201

immutable data structures,
using crates for
201–203

Immutable.js library 192
inheritance 19
inherited mutability 193
initialization, static vs. lazy 89
insert() method 208
installing, tools 225–226
installing Rust 226–227
interior mutability 47, 194
into() method 125–126
IntoIter

object 50
trait 146

into_iter() method 50–52, 144,
155

IntoIterator trait 50, 57
Iter

object 50
trait 146

iter() method 50–51, 57, 143,
215

iterators 43, 46
features of 58
obtaining with into_iter() 50
obtaining with iter() 50
obtaining with iter_mut() 50

Iterator trait 46, 50, 53, 146,
176

IterMut
object 50
trait 146

iter_mut() method 50–51, 143

J

Johnson, Ralph 7

K

KitchenSink unit struct 160

L

last() function 49
lazy_static crate 95, 99, 221
__lazy_static_internal

macro 100
lazy-static.rs 65
LENGTH parameter 152
library design 128

aesthetics 134
avoiding excessive

abstraction 130
backward compatibility 132
debugging 145
documenting 132
ergonomics 134
linked list, improving with

more tests 143
rustdoc 135
standard library 132
state 133
tools 131
tradeoffs 129

lifetimes 17
lines() method 83
linked list

improving with more
tests 143

visibility 134
LinkedList struct 141
Linux, installing tools for

225
ListItem struct 18
Lodash library 192
log crate 95
logic errors 190

M

macOS, installing tools using
Homebrew 225

macros
declarative 93
DRY (don’t repeat yourself)

principle and 100
enhancing builders with

110
metaprogramming with 92
mini-DSLs 99
when to use 95

main() method 123
malloc() function 67

INDEX232
map() function 58
map() method 57, 113, 212
map_err() method 41
Map iterator 58
map_while() function 60
marker structs 15–18
marker traits 159–161
match_enum_types()

function 39
match keyword 35
match_on_black_cats()

function 39
memory safety 36

problems 190
metaprogramming, with

macros 92
method chaining 113
mini-DSLs 99
Minsky machine 11
move keyword 45–46
mutability 189
MutexGuard 73
Mutex::lock() function 73
mut keyword 168, 193
MutRef name postfix 168

N

name property 219
new() method 22, 119, 122, 139,

171
new keyword 68
newtype pattern 124–127
next() method 52, 56
next pointer 51
noop_macro 93

O

object-member visibility and
access 80–82

object-oriented code, examin-
ing traits 21

objects, trait 29
downcasting 31

Observable trait 118–119
observe() method 118
observer pattern 117–121

callbacks vs. 117
implementing 118–121

Observer trait 118, 120
ok() method 41

ok_or() method 41
Ok value 59
OnceCell 65
OnceCell container 194
OOP (object-oriented

programming) 5
vs. traits 19

Option 15, 29
optional function

arguments 103–107
emulating with traits

104–107
in C++ 104
in Python 103
in Rust 104

optionally mutable 194
Option<String> 13
Orendorff, Josh 81

P

PartialEq trait 167
partitioning 59
pattern matching 34–35
patterns 65

Rust 8
PhantomData 16
phantom types 15–18
Pin<Box<T>> 178
polymorphism, emulating with

Deref 217–221
preludes 182–184
println! macro 93, 95
procedural macros 93,

178–182
proc_macro crate 178
pub keyword 80, 111
pure functions 191
Python, optional arguments

in 103

Q

quote crate 179

R

race conditions 190
RAII (resource acquisition is

initialization) 66–74, 212
in C and C++ 66–70
in Rust 70–74

Rc 47
React library 192
ReadFile command 121, 123
read_nth_line() function 83
Receiver 121
Recursive enum 14
reduce() method 57
Redux library 192
RefCell 47
RefCell container 194
reference, passing arguments by,

overview 74–78
reference objects 163
referentially transparent 191
Ref postfix 163
Result::into_iter() method 59
return type 176
rev() function 61
reversed() method 155
rocket crate 181
rpds crate 202, 204
Rust

immutability in, reviewing
basics of 194–197

optional arguments in 104
patterns 8
RAII in 70–74
traits 19

rust-analyzer 81
rustc

installing 226
managing with rustup 226
switching default toolchains

with rustup 226
updating Rust components

227
Rust conferences 223
Rust Discord server 223
rustdoc 135
Rust meetups 223
Rust Quiz (Tolnay) 223
Rust-specific pattern 124
Rust subreddit 223
rustup

managing rustc and other
Rust components
with 226

switching default toolchains
with 226

updating Rust components
227

Rust user forums 223

INDEX 233
RwLockReadGuard 73
RwLockWriteGuard 73

S

Second trait 105
SelfDescribing trait 25
Self::Item parameter 58
self method receiver 165
Send trait 159
session_id field 171
Session struct 171
singleton pattern, overview

85
singletons 221
Sized trait 31
smart pointers 47, 68

overusing 221–223
spread syntax 116
standard library 132
state, libraries and 133
stateful iterators 48
state machines, trait state

machine 170–173
static_init 65
static initialization vs. lazy

initialization 89
std::borrow::ToOwned trait

197
std::cell::OnceCell 221
std::error::Error error trait

82
std::ffi module 209
std::fmt::Display 36
std:fmt:format() function 96
std::fs module 209
std::io::BufRead trait 83
std::io::Error error type 82
std::io::Result 40
std::mem::replace() method

82
std::ops::Coroutine trait

174
std::process module 209
std::ptr module 209
std::shared_ptr 47, 68
std::sync::OnceLock 221
str_container instance 12
stringify! macro 98
String::parse() function 59
strings, heap-allocated 86
String type 127

struct_hello() method 30
struct tagging 161–163
structural sharing 201
StudentList struct 164
StudentRef::new() method

165
Student struct 164
Student::to_ref() method

166
supertraits 160
syn crate 179
Sync trait 159

T

take() function 46
template

metaprogramming 161
thread-local storage,

overview 86, 89
threads, safe vs. lazy

initialization 89
to_() method 125–126
token trees 95
Tolnay, David 223
toolchains, switching default

with rustup 226
tools 9
ToOwned::to_owned()

method 197
ToOwned trait 197–198
to_ref() method 165
to_reversed() method 156
to_string() method 157
ToString trait 157
trait bounds 18
trait duplication 27
trait_hello() method 30
trait objects 29

downcasting 31
trait pollution 27
traits 19

blanket traits 157–159
combining generics

and 24
deriving automatically 28
emulating optional arguments

with 104–107
examining object-oriented

code 21
implementing for external

crate types 154–155

making (almost) anything
immutable 197

marker traits 159–161
overview of 19
vs. object-oriented program-

ming 19
trait state machine 170–173
try_unwrap() method 53
Turing-complete type system

11

U

UML (Unified Modeling
Language) 114

unexpected side effects 190
unicode-segmentation crate

76
unsafe keyword 159, 193,

207–212
overview 208
should you worry about

211
when to use 211
where to use 209

unwrap() function 59
unwrap() method 212
unwrap_or() method 212
updating, Rust components

227
UUID (universally unique

identifier) 171

V

value, passing arguments by,
overview 74–78

variadic arguments 95
var_print! macro 99
Vec 152

container 194
macro 93

Vec type, antipatterns
212–216

Rust’s benchmarking
tools 215

visibility
and access, object-

member 80–82
linked lists 134

Vlissides, John 7
vtable 29

INDEX234
W

where T: Clone trait bound
18

while loops 60
Windows, installing tools

for 226

with_() methods 110
with! macro 111
with_str! macro 111
wrapped structs, using Deref to

unwrap 155
wrapper structs 154
WriteFile command 122–124

Y

yield statement 175–176

Z

zip() function 46

Brenden Matthews

A
fter you’re comfortable with Rust’s syntax and its
uniquely-powerful compiler, there’s a whole new
dimension to explore as you put it to use in real proj-

ects. How do you apply standard design patterns in Rust
applications? Where and why should you use IntoIterator?
Why do Rustaceans love the PhantomData type? Th is book
answers these questions and many, many more!

Idiomatic Rust introduces the coding and design patterns
you’ll need to take advantage of Rust’s unique language
design. Th is book’s clear explanations and reusable code
examples help you explore metaprogramming, build your
own libraries, create fl uent interfaces, and more. Along the
way, you’ll learn how to write effi cient, idiomatic Rust code
that’s easy to maintain and evolve as you learn how the
language works under the hood.

What’s Inside
● Creating delightful APIs
● Applying Builder and other classic design patterns
● Functional programming patterns
● Rust anti-patterns

For intermediate Rust programmers.

Brenden Matthews is a member of the Apache Software Foun-
dation, creator of the system monitor Conky, and author of
Code Like a Pro in Rust.

Th e technical editor on this book was Alain M Couniot.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

Idiomatic Rust
SOFTWARE DEVELOPMENT

M A N N I N G

“It’s a no-brainer to have
 this one on your shelf!”

—Bastian Gruber, Mozilla

“Th ink like a Rustacean!
Th is book is for anyone

who wants to fully
internalize what idiomatic

 Rust looks like.”
—David MacLeod, SurrealDB

“Rust in depth. Th e real
 nitty-gritty of Rust!”—Yves Dorfsman, SollerS Inc.

“An indispensable guide
for mastering idiomatic
Rust, off ering practical

patterns and best
practices to elevate your

code quality.”—Giuseppe Catalano
Engineering Ingegneria

Informatica S.p.A.

ISBN-13: 978-1-63343-746-3

See first page

	Rust Advanced Techniques
	brief contents
	contents
	preface
	acknowledgments
	about this book
	How is this book different?
	Who should read this book?
	How this book is organized
	How to read this book
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Building blocks
	1 Rust-y patterns
	1.1 What this book covers
	1.2 What design patterns are
	1.3 Why this book is different
	1.4 Tools you’ll need
	Summary

	2 Rust’s basic building blocks
	2.1 Generics
	2.1.1 A Turing-complete type system
	2.1.2 Why generics?
	2.1.3 Basics of generics
	2.1.4 Exploring Rust’s Option
	2.1.5 Marker structs and phantom types
	2.1.6 Generic parameter trait bounds

	2.2 Traits
	2.2.1 Why traits are not object-oriented programming
	2.2.2 What’s in a trait?
	2.2.3 Understanding traits by examining object-oriented code
	2.2.4 Combining generics and traits
	2.2.5 Deriving traits automatically
	2.2.6 Trait objects

	Summary

	3 Code flow
	3.1 A tour of pattern matching
	3.1.1 Basics of pattern matching
	3.1.2 Clean matches with the ? operator

	3.2 Functional Rust
	3.2.1 Basics of functional programming in Rust
	3.2.2 Closure variable capture
	3.2.3 Examining iterators
	3.2.4 Obtaining an iterator with iter(), into_iter(), and iter_mut()
	3.2.5 Iterator features

	Summary

	Part 2—Core patterns
	4 Introductory patterns
	4.1 Resource acquisition is initialization
	4.1.1 Understanding RAII in C and C++
	4.1.2 A tour of RAII in Rust
	4.1.3 Summarizing RAII in Rust

	4.2 Passing arguments by value vs. reference
	4.2.1 Passing by value
	4.2.2 Passing by reference
	4.2.3 When to do what: Passing by value vs. reference

	4.3 Constructors
	4.4 Object-member visibility and access
	4.5 Error handling
	4.6 Global state
	4.6.1 lazy-static.rs
	4.6.2 once_cell
	4.6.3 static_init
	4.6.4 std::cell::OnceCell

	Summary

	5 Design patterns: Beyond the basics
	5.1 Metaprogramming with macros
	5.1.1 A basic declarative macro in Rust
	5.1.2 When to use macros
	5.1.3 Using macros to write mini-DSLs
	5.1.4 Using macros for DRY

	5.2 Optional function arguments
	5.2.1 Examining optional arguments in Python
	5.2.2 Examining optional arguments in C++
	5.2.3 Optional arguments in Rust or the lack thereof
	5.2.4 Emulating optional arguments with traits

	5.3 Builder pattern
	5.3.1 Implementing the builder pattern
	5.3.2 Enhancing our builder with traits
	5.3.3 Enhancing our builder with macros

	5.4 Fluent interface pattern
	5.4.1 A fluent builder
	5.4.2 Test-driving our fluent builder

	5.5 Observer pattern
	5.5.1 Why not callbacks?
	5.5.2 Implementing an observer

	5.6 Command pattern
	5.6.1 Defining the command pattern
	5.6.2 Implementing the command pattern

	5.7 Newtype pattern
	Summary

	6 Designing a library
	6.1 Meditate on good library design
	6.2 Do one thing, do it well, and do it correctly
	6.3 Avoid excessive abstraction
	6.4 Stick to basic types
	6.5 Use the tools
	6.6 Good artists copy; great artists steal (from the standard library)
	6.7 Document everything, and provide examples
	6.8 Don’t break the user’s code
	6.9 Think of the state
	6.10 Consider the aesthetics
	6.11 Examining Rust library ergonomics
	6.11.1 Revisiting linked lists
	6.11.2 Using rustdoc to improve our API design
	6.11.3 Improving our linked list with more tests
	6.11.4 Making our library easier for others to debug

	Summary

	Part 3—Advanced patterns
	7 Using traits, generics, and structs for specialized tasks
	7.1 Const generics
	7.2 Implementing traits for external crate types
	7.2.1 Wrapper structs
	7.2.2 Using Deref to unwrap a wrapped struct

	7.3 Extension traits
	7.4 Blanket traits
	7.5 Marker traits
	7.6 Struct tagging
	7.7 Reference objects
	Summary

	8 State machines, coroutines, macros, and preludes
	8.1 Trait state machine
	8.2 Coroutines
	8.3 Procedural macros
	8.4 Preludes
	Summary

	Part 4—Problem avoidance
	9 Immutability
	9.1 The benefits of immutability
	9.2 Why immutability is not a magic bullet
	9.3 How to think about immutable data
	9.4 Understanding immutability in Rust
	9.5 Reviewing the basics of immutability in Rust
	9.6 Using traits to make (almost) anything immutable
	9.7 Using Cow for immutability
	9.8 Using crates for immutable data structures
	9.8.1 Using im
	9.8.2 Using rpds

	Summary

	10 Antipatterns
	10.1 What is an antipattern?
	10.2 Using unsafe
	10.2.1 What does unsafe do?
	10.2.2 Where can you use unsafe?
	10.2.3 When should you use unsafe?
	10.2.4 Should you worry about unsafe?

	10.3 Using unwrap()
	10.4 Not using Vec
	10.5 Too many clones
	10.6 Using Deref to emulate polymorphism
	10.7 Global data and singletons
	10.8 Too many smart pointers
	10.9 Where to go from here
	Summary

	appendix—Installing Rust
	A.1 Installing tools for this book
	A.1.1 Installing tools for macOS using Homebrew
	A.1.2 Installing tools for Linux systems
	A.1.3 Installing tools for Windows

	A.2 Managing rustc and other Rust components with rustup
	A.2.1 Installing rustc and other components
	A.2.2 Switching default toolchains with rustup
	A.2.3 Updating Rust components

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

