

Leonardo Giordani

Rust Projects - Write a Redis Clone
1st Edition - Release 1.0.0

Contents

Contents i

Introduction ii
CodeCrafters . iii
Why this book comes for free . iv
Typographic conventions . v
Setup the development environment . viii
About the book . xi

1 Initial Steps 1
1.1 Step 1 - Bind to a port . 2
1.2 Step 2 - Respond to PING . 5
1.3 Step 3 - Respond to multiple PING . 8
1.4 Step 4 - Handle concurrent clients . 11

2 The RESP Protocol 16
2.1 Step 1 - Define a custom result type . 18
2.2 Step 2 - Extract binary values from RESP . 19
2.3 Step 3 - Convert binary values to string . 25
2.4 Step 4 - Parse the RESP type . 27
2.5 Step 5 - Parse a RESP simple string . 29
2.6 Step 6 - Use simple string for PING . 31
2.7 Step 7 - Parse generic RESP . 33
2.8 Step 8 - Parse a RESP bulk string . 36
2.9 Step 9 - Parse a RESP array . 43
2.10 Step 10 - Process PING the right way . 47
2.11 Step 11 - Process ECHO . 51

3 GET and SET 53
3.1 Step 1 - Create the storage manager . 54
3.2 Step 2 - Use the storage manager . 58

i

CONTENTS ii

3.3 Step 3 - Implement GET and SET . 65

4 Key Expiry 70
4.1 Step 1 - Creation time and expiry . 72
4.2 Step 2 - Storage support for expiry . 76
4.3 Step 3 - Run a function periodically . 80
4.4 Step 4 - SET parameters . 84
4.5 Step 5 - SET with expiry . 95

5 Concurrency with actors 100
5.1 Actors . 101
5.2 Communication channels . 102
5.3 Conversion steps . 104
5.4 Step 1 - Supporting types . 105
5.5 Step 2 - Requests and messages . 106
5.6 Step 3 - Refactor the connection handler . 108
5.7 Step 4 - Send Requests to the server . 110
5.8 Step 5 - Turn the server into an actor . 114
5.9 Step 6 - Use messages in the connection handler 120
5.10 Step 7 - Tidy up the code . 124

Next steps 132
Final words (for now) . 133

Introduction

Our star runner tonight needs no introduction.
The Running Man (1987)

This book was born out of my desire to understand Rust better, and to learn it while creating
something useful.

Being interested in many different things, such as coding, guitar playing, and painting, I find
myself constantly in the enviable position of a beginner, eager to sail on an ocean of new concepts.

When I approach something new, whether it’s a new programming language or a painting tech-
nique, I always realise how true it is that learning happens through experience. It is definitely
useful to watch YouTube videos where great coders explain advanced concepts, but it’s when I’m
in front of an empty editor page that I’m forced to apply what I saw, to make it happen with my
own hands.

A key principle is that our brains retain information better when it was challenging to acquire.
And while it perfectly fine to copy and paste commands form StackOverflow (or LLM models) to
solve one-off situations, I personally want to learn to use tools and languages properly and to be
effective without having to look up solutions every other minute.

So, why a book on coding, if I just stated that we learn by doing and not by reading?

As the author, writing this book was an excellent opportunity to organise my notes, review deci-
sions, and deepen my understanding of certain topics.

For anyone else, the bookmight be a jump start to get used to the language before you start coding
on your own. Or it might be used as a comparison, to see an alternative solution to the same steps
you already went through. Finally, if you want you can use it to just code along copying my
solution, and taking your time to dig deep into the frequent references to the Rust documentation
to better understand specific topics.

iii

INTRODUCTION iv

Or you can do all these things together. Having written, edited, corrected, written again, tested,
and read every paragraph at least 3 times I can assure you that it was an amazing journey, full
of discoveries and satisfaction. It will also be full of typos and mistakes, though. Forewarned is
forearmed.

I hope you will enjoy it as much as I did!

Work in progress
This book is not 100% complete. I’m planning to add more sections while I complete
some of the advanced challenges like replication, transactions, and persistence.

CodeCrafters
The idea of writing a Redis clone is all but original. It originates from one of the most interesting
projects I encountered in the past decade, CodeCrafters. This company, founded in 2022 by Sarup
Banskota and Paul Kuruvilla, provides a very simple service: a set of well-paced challenges that
guide you to implement an important piece of software from scratch.

Are you into databases? Here is the Build your own Redis challenge. Do you want to create
your own language? No problem, head to Build your own Interpreter. Want to dig into network
protocols? Build your own HTTP server and Build your own DNS server to the rescue. And
the nice thing is that you can solve it with your favourite programming language, and see the
solutions of other coders.

It’s TDD applied to integration tests, where CodeCrafters provides the code that tests features of
your software, and you provide the code that implements such features.

You don’t need CodeCrafters to enjoy the book, but I will follow the challenge "Build your own
Redis" strictly, so youmight benefit from having an account. You can get a discounted access using
the following link https://app.codecrafters.io/join?via=lgiordaniwhich gives you a free
week of access to the platform and a discount of 40% if you decide to subscribe the paid tier.

https://codecrafters.io/
https://app.codecrafters.io/courses/redis/overview
https://app.codecrafters.io/courses/interpreter/overview
https://app.codecrafters.io/courses/http-server/overview
https://app.codecrafters.io/courses/dns-server/overview
https://app.codecrafters.io/join?via=lgiordani

INTRODUCTION v

Why this book comes for free
The first reason I started writing a technical blog was to share with others my discoveries, and to
save them the hassle of going through processes I had already cracked. Moreover, I always enjoy
the fact that explaining something forces me to better understand that topic, and writing requires
even more study to get things clear in my mind, before attempting to introduce other people to
the subject.

Much of what I know comes from personal investigations, but without the work of people who
shared their knowledge for free I would not have been able to make much progress. The Free
Software Movement didn’t start with Internet, and I got a taste of it during the 80s and 90s, but the
World WideWeb undeniably gave an impressive boost to the speed and quality of this knowledge
sharing.

So this book is a way to say thanks to everybody gave their time to write blog posts, free books,
software, and to organise conferences, groups, meetups. This is why I teach people at conferences,
this is why I write a technical blog, this is the reason behind this book.

That said, if you want to acknowledge my effort with money, thanks! However, the best thing
you can do is to become part of this process of shared knowledge; experiment, learn and share
what you learn.

INTRODUCTION vi

Typographic conventions
Here are some typographic conventions used throughout the book.

Regular text appears like this, while code inline code is displayed like this. When code refers
to a library a link to the documentation is provided in this form [docs].

When the text mentions concepts that are not directly connected with the project at hand but are
worth further investigation an aside will contain details or links.

Aside
This is an aside with more information and links on specific topics.

The code of the project is presented in a box like this

src/main.rs

fn main() {
println!("Hello, world!");

}

This means that the given code is added to the file specified in the title.

https://doc.rust-lang.org/book/

INTRODUCTION vii

If the change affects only specific lines those will be highlighted. Please note that this is not a
diff, so the previous version of the code is not shown.

src/main.rs

fn main() {
println!("Good night, world!");

}

In certain cases, it’s useful to reason about code structure or to highlight specific details. The
following box with a magnifying glass icon shows parts of the code that are described in the text.

üsrc/main.rs

fn main() {
println!("Hello, world!");

}

If the code shown is not correct, either because it doesn’t compile or for other reason, it will be
shown like this.

src/main.rs [NOT WORKING]

fn main() {
println!("Hello, world!");

}

INTRODUCTION viii

The output of commands run in the terminal, such as the compiler, the test suite, or other
shell commands is shown in a box like this.

$ run -a --command

This is the output of the command in a terminal

The code shown in the book can be used to complete the CodeCrafters challenge "Build your
own Redis". Whenever the code passes a specific stage a box like this will provide details.

CodeCrafters

Stage 0: Take over the world!

This is a pointer to the CodeCrafters stage that is covered by the code.

Finally, the code of the project is available in a repository and the current step will be high-
lighted with a box like this

�
Source code
https://github.com/lgiordani/sider/

https://github.com/lgiordani/sider/

INTRODUCTION ix

Setup the development environment
As the project consists in a sort of reverse engineering of Redis, I decided to call it "Sider", which
is Redis written backwards. To follow the project you need an editor (pick your favourite one
and make sure you have support for Rust) and the Rust compiler. You can install Rust in your
system following the official guide. To be able to use CodeCrafters you also need to configure a
Git repository, but you can follow the instructions in the challenge page.

Create the Rust project (CodeCrafters)
If you are using Codecrafters, follow the instructions they provide. You will clone a repository
provided by them that contains the Rust project and a script to run the server.

Create the Rust project (manual)
To create the project, I recommend using Cargo

$ cargo new sider
$ cd sider

This will create a directory called sider that contains the standard files and directories of a basic
Rust project. You can test that everything works correctly with

$ cargo run

Now open the file src/main.c with your favourite editor and remove the demo code.

Also, create the file spawn_redis_server.sh that contains the following code

spawn_redis_server.sh

exec cargo run \
--quiet \
--release \
--manifest-path $(dirname $0)/Cargo.toml \
-- "$@"

As you can see, this is just a wrapper around cargo run and will be useful to run tests.

https://www.rust-lang.org/tools/install

INTRODUCTION x

How to test code (CodeCrafters)
If you are using CodeCrafters, tests will be run every time you commit and push. Make sure you
read the official documentation, in particular if you want to use the CodeCrafters CLI.

How to test code (manual)

Warning
The instructions in this section are not official, and CodeCrafters pointed out that the
structure of the repository might change in the future. Keep that in mind!

You can also run the CodeCrafters tests manually on your machine. Clone the tests repository and
change the file internal/test_helpers/pass_all/spawn_redis_server.sh replacing redis-
server with the full path of the script in your project

internal/test_helpers/pass_all/spawn_redis_server.sh

#!/bin/sh
find "." -type f -name "*.rdb" -exec rm {} +
exec /My/PROJECT/PATH/spawn_redis_server.sh --loglevel nothing $@

You can then run the tests locally using the provided Makefile. There are several tests that
correspond to the base challenge and to the extensions. For the base challenge run

$ make test_base_with_redis

This will however run all the tests in the base challenge, so if you want to check only the steps
you completed so far you can copy that rule into a custom one and add steps while you progress,
e.g.

Makefile

test_base_with_redis_prog: build
CODECRAFTERS_SUBMISSION_DIR=./internal/test_helpers/pass_all \
CODECRAFTERS_TEST_CASES_JSON="[\

{\"slug\":\"jm1\",\"tester_log_prefix\":\

https://docs.codecrafters.io/introduction
https://docs.codecrafters.io/cli/installation
https://github.com/codecrafters-io/redis-tester

INTRODUCTION xi

\"stage-1\",\"title\":\"Stage #1: Bind to a port\"},\
{\"slug\"
\"stage-2\",\"title\":\"Stage #2: Respond to PING\"},\

]" \
dist/main.out

INTRODUCTION xii

About the book
The book has been written using Mau and rendered with TeX.

The cover photo is by Tengyart and can be found on Unsplash. It represents "rich metal texture
with rust, green paint and scratches" and I found it to be both artistically attractive and aptly
matching the language we are going to use.

https://project-mau.github.io/
https://unsplash.com/@tengyart?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/photos/blue-and-brown-abstract-painting-SYtyoEuhPuk?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Chapter 1

Initial Steps

We’II go step by step and cut off every bulkhead and every vent untiI we
have it cornered.
Alien (1979)

The initial steps are pretty standard in an application like this. We will create a server that first
listens on a specific TCP port. Then wewill change the code to respond to a single incoming
request and terminate. As a third step, the server will respond tomultiple incoming requests
from the same client, and finally it will serve multiple clients.

At the end of the chapter we will have a running application that can be used with the official
Redis CLI tool to serve the command PING.

1

CHAPTER 1. INITIAL STEPS 2

Step 1 - Bind to a port
The first thing we need to do is to create a server that binds to TCP port 6379.

The Rust standard library provides TcpListener [docs] that can be bound to a socket.

src/main.rs

use std::net::TcpListener;

fn main() {
let listener = TcpListener::bind("127.0.0.1:6379").unwrap();

for stream in listener.incoming() {
match stream {

Ok(_stream) => {
println!("accepted new connection");

}
Err(e) => {

println!("error: {}", e);
}

}
}

}

This is the classic initial step for a server. We hard coded the address of the server (127.0.0.1)
and the port (6379) but in the future we might want to make both value configurable through a
specific command line option.

Some comments on the code itself:

• unwrap [docs] is a crudeway to extract the Ok value from a Result. It’s a convenientmethod
for tests, as it panics if the result is an error, but in production code it might not be the best
solution.

• println! [docs] is how we print text on the standard output. While there are more sophis-
ticated ways to debug programs, printing is still a good way to understand what is going
on in a system, and to log events.

• A concept somehow hidden in the code above is that of Iterator [docs] which in this case
is implemented by Incoming, that is the return type of TcpListener::incoming.

https://doc.rust-lang.org/std/net/struct.TcpListener.html
https://doc.rust-lang.org/std/result/enum.Result.html#method.unwrap
https://doc.rust-lang.org/std/macro.println.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html

CHAPTER 1. INITIAL STEPS 3

TCP protocol
You don’t need to know the (rather complicated) details of the TCP protocol, but as a
software developer you should be familiar with IP addresses and TCP ports.

Testing with the Redis CLI
Other than using the CodeCrafters tests you can interact with your server using the Redis CLI.
Once you installed it in your system you can first run your server with

$ cargo run

or, if you are using the CodeCrafters setup, running

$ spawn_redis_server.sh

and then open a new terminal and run redis-cli

$ redis-cli
127.0.0.1:6379>

The server should react printing the message accepted new connection. You cannot issue com-
mands at the moment, as the server ignores data coming through the stream.

CodeCrafters

Stage 1: Bind to a port

The application doesn’t do much at the moment, and running cargo run won’t show any-
thing interesting. However, this passes Stage 1 of the CodeCrafters challenge.

https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_ports
https://redis.io/docs/latest/develop/connect/cli/
https://app.codecrafters.io/courses/redis/stages/jm1

CHAPTER 1. INITIAL STEPS 4

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step1.1

https://github.com/lgiordani/sider/tree/ed1/step1.1

CHAPTER 1. INITIAL STEPS 5

Step 2 - Respond to PING
The server has to respond to incoming requests, so the next step is to start listening on the TCP
connection and parse the incoming data. Redis uses a binary protocol called Redis Serialization
Protocol (RESP), so to understand the request we will eventually have to implement a parser for
this protocol.

As a first step, however, we can just discard the incoming data and send back the same response
regardless of the request. The simplest Redis command is PING, which receives the response
+PONG\r\n. This is the string PONG encoded as a RESP simple string, as we will see later.

src/main.rs

use std::io::{Read, Write};
use std::net::{TcpListener, TcpStream};

fn main() {
let listener = TcpListener::bind("127.0.0.1:6379").unwrap();

for stream in listener.incoming() {
match stream {

Ok(mut stream) => {
handle_connection(&mut stream);

}
Err(e) => {

println!("error: {}", e);
}

}
}

}

fn handle_connection(stream: &mut TcpStream) {
let mut buffer = [0; 512];
stream.read(&mut buffer).unwrap();

let response = "+PONG\r\n";
stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

}

In this version we isolate the management of the incoming connections. Each new connection,
represented by a TcpStream [docs], is passed to the function handle_connection. There, we
read [docs] from the stream into a binary buffer, then we prepare the response and write [docs]
it to the stream. At the moment, the code still uses unwrap to manage the error cases, but in the
future it will be worth dealing properly with errors.

https://doc.rust-lang.org/std/net/struct.Incoming.html
https://doc.rust-lang.org/std/io/trait.Read.html#tymethod.read
https://doc.rust-lang.org/std/io/trait.Write.html#tymethod.write

CHAPTER 1. INITIAL STEPS 6

Iterator and Item

How do we know the type of stream? Have a look at TcpListener::incoming [docs]
and you will see that the return type is the struct Incoming [docs]. This in turn
implements Iterator [docs] and specifies type Item = Result<TcpStream, Error>,
which leads us to TcpStream [docs].

Testing and TDD
Testing is arguably more complicated in strongly typed compiled languages like Rust than it is
in languages like Python. In particular, while it is possible to create mocks, it is in general hard
to replace functions at run time. So, a strict TDD approach is, in my opinion, impossible. This
forces us to apply inversion of control more often, but it’s important to understand that we cannot
achieve the same level of inspection that we have in languages with a higher level of abstraction.

For example, in the current case the classic strategy in a high-level OOP language would be:

• create a mock of a TcpStream that has only the method read

• run the function handle_connection

• check that the mock method has been called with the right value

But in Rust this is more complicated. We have to pass the function a value of type TcpStream and
while we can redefine TcpStream just for tests with some clever use of conditional checks like
#[cfg(...)], this would clutter the production code and cannot be done for a single test only.

So, we will add tests to the code following the TDD approach, but not all cases will be covered.
For now, it’s perfectly fine to print messages and data on the standard output to understand what
the code is doing. Here, you can add a println! to see what the server receives from the client

src/main.rs

fn handle_connection(stream: &mut TcpStream) {
let mut buffer = [0; 512];
stream.read(&mut buffer).unwrap();

println!("Received: {:?}", buffer);

let response = "+PONG\r\n";
stream.write(response.as_bytes()).unwrap();

https://doc.rust-lang.org/std/net/struct.TcpListener.html#method.incoming
https://doc.rust-lang.org/std/net/struct.Incoming.html
https://doc.rust-lang.org/std/net/struct.Incoming.html#impl-Iterator-for-Incoming<'a>
https://doc.rust-lang.org/std/net/struct.TcpStream.html

CHAPTER 1. INITIAL STEPS 7

stream.flush().unwrap();
}

The code of the project doesn’t contain any prints to avoid cluttering the tests output, but feel
free to add them to better understand what happens behind the scenes.

Memory and safety
A prominent part of the Rust language deals with safe memory usage, so it’s paramount
to understand how to use references and mutability, in particular when it comes to
passing values to functions. I highly recommend Patterns Are Not Expressions by Árpád
Goretity and There are no mutable parameters in Rust by Michael Snoyman.

Ownership, which stems directly from safe memory usage, is everywhere in Rust, and
can arguably be a pain to deal with, sometimes. Understanding the rationale of
ownership is paramount and should be done upfront, otherwise you’ll spend a lot of
time being frustrated by the compiler’s complains. I recommend to read at least chapter
4 of the Rust book.

CodeCrafters

Stage 2: Respond to PING

The application passes the Stage 2 of the CodeCrafters challenge. We can’t use the Redis
CLI to interact with it yet, though. The server terminates the connection immediately after
sending the response, which is something the CLI tool doesn’t like.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step1.2

https://h2co3.github.io/pattern/
https://www.snoyman.com/blog/2020/05/no-mutable-parameters-in-rust/
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://app.codecrafters.io/courses/redis/stages/rg2
https://github.com/lgiordani/sider/tree/ed1/step1.2

CHAPTER 1. INITIAL STEPS 8

Step 3 - Respond to multiple PING
The problem at this point is that the function handle_connection terminates once it processes
one response, while it should keep it open, receiving bytes from the client and sending responses.

This is fixed quickly enough by moving the code of the function into a loop. As we do that,
however, it is worth taking the time to properly manage the output of TcpStream::read [docs].
The function returns a Result<usize> that contains the amount of bytes received. This is a
blocking function, so if the amount of bytes is 0 the connection has been closed, and if the result
is Err something went wrong with the stream.

src/main.rs

fn handle_connection(stream: &mut TcpStream) {
let mut buffer = [0; 512];

loop {
match stream.read(&mut buffer) {

Ok(size) if size != 0 => {
let response = "+PONG\r\n";
stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

}
Ok(_) => {

println!("Connection closed");
break;

}
Err(e) => {

println!("Error: {}", e);
break;

}
}

}
}

It is important to understand the blocking nature of TcpStream::read. When the code executes
the function the whole program sits waiting for something to happen on the TCP connection,
without doing anything until data appears or an error happens.

This is clearly unacceptable for a server that has to interact with multiple clients, so in the next
step we will see a solution to this problem.

https://doc.rust-lang.org/std/net/struct.TcpStream.html#impl-Read-for-TcpStream

CHAPTER 1. INITIAL STEPS 9

Loops and pattern matching
loop [docs] is an interesting construct. In other languages infinite loops with breaks are
often frowned upon, while in Rust their are not only accepted but considered an
idiomatic solution.

Pattern matching [docs] is a powerful concept that is predominant in functional
programming languages. It’s important to learn how to deconstruct types and how to
use guards. Rust is very strict about covering all possible patterns, which greatly helps to
avoid bugs.

Testing with the Redis CLI
Now that the server is actually listening you can open a new terminal, run redis-cli, and have
a brief interaction with your server sending a PING command.

$ redis-cli
127.0.0.1:6379> ping
PONG

At the moment your server will respond with PONG whatever the request is, but we will soon
implement other commands

127.0.0.1:6379> echo 42
PONG
127.0.0.1:6379>

CodeCrafters

Stage 3: Respond to multiple PINGs

The code we have at the moment passes Stage 3 of the CodeCrafters challenge. The appli-
cation is not truly processing the incoming request yet, but the backbone is in place.

https://doc.rust-lang.org/book/ch03-05-control-flow.html#repetition-with-loops
https://doc.rust-lang.org/book/ch06-02-match.html
https://app.codecrafters.io/courses/redis/stages/wy1

CHAPTER 1. INITIAL STEPS 10

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step1.3

https://github.com/lgiordani/sider/tree/ed1/step1.3

CHAPTER 1. INITIAL STEPS 11

Step 4 - Handle concurrent clients
Now the game starts to become a bit more serious, both in terms of requirements and in terms
of the technical implementation. A server needs to interact with multiple clients, so we have to
introduce concurrency.

There are mainly three ways to implement concurrency: multiprocessing, multithreading, and
asynchronous programming. They have different pros and cons and depending on the language
you might find one of them easier to implement than others.

In this case we will use asynchronous programming. The application we are implementing is
mostly running I/O bound tasks and it’s worth exploring how Rust and its strict memory model
work with async/await.

Asynchronous programming
There is an huge amount of resources available on asynchronous programming both in
general and specifically to Rust. I highly recommend reading first one or more generic
introductions about multiprocessing and multithreading at the operating system level.

As for Rust, threads are explained in chapter 16 of the Rust book [docs] while async has
its own book [docs]. Among many others, Jon Gjengset is doing an incredible work of
digging deep into Rust topics on his YouTube channel. The video Crust of Rust:
async/await, in particular, can answer many questions.

To run the asynchronous loop we will use Tokio. Let’s add the crate to the project

$ cargo add tokio --features full

which will add a dependency to Cargo.toml

Cargo.toml

[dependencies]
tokio = { version = "1.38.0", features = ["full"] }

We can then import the relevant components, replacing the previous imports

https://doc.rust-lang.org/book/ch16-01-threads.html
https://doc.rust-lang.org/async-book/
https://www.youtube.com/@jonhoo/videos
https://www.youtube.com/watch?v=ThjvMReOXYM
https://www.youtube.com/watch?v=ThjvMReOXYM
https://tokio.rs/

CHAPTER 1. INITIAL STEPS 12

src/main.rs

use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
net::{TcpListener, TcpStream},

};

The changes to the code are minimal, reflecting the fact that the syntax of asynchronous programs
tries to follow the synchronous paradigm, hiding the complexity of concurrency.

There are four main changes in the function handle_connection:

• the word async in front of its definition

• the function takes ownership of the stream

• the need to await the result of stream.read(&mut buffer)

• write and flush are merged into write_all, which needs an await as well

We can also add some error management around stream.write_all that wasn’t there previously.
This is completely unrelated to async, as we could still use unwrap and let the server panic, but
that doesn’t sound like a good idea now that the code starts to evolve.

src/main.rs

async fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

loop {
match stream.read(&mut buffer).await {

Ok(size) if size != 0 => {
let response = "+PONG\r\n";

if let Err(e) = stream.write_all(response.as_bytes()).await {
eprintln!("Error writing to socket: {}", e);

}
}
Ok(_) => {

println!("Connection closed");
return;

}
Err(e) => {

eprintln!("Error: {}", e);
return;

}

CHAPTER 1. INITIAL STEPS 13

}
}

}

The main changes are in the function main. Here, we need to instantiate the asynchronous loop
and create an independent handler for each connection

src/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

loop {
match listener.accept().await {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream));

}
Err(e) => {

println!("Error: {}", e);
continue;

}
}

}
}

For the function main to be async we need to decorate it with #[tokio::main] which, behind
the scenes, transforms it into a normal entry point that creates the main loop and runs the rest of
the code.

src/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

...

TcpListener::bind returns std::io::Result<()>, and adding the same return type to main
makes sense as that is the only point where the function should be able to crash. This allows us
to use the operator ? to unwrap the result of bind or return the error.

CHAPTER 1. INITIAL STEPS 14

Error checking and propagation
Error handling [docs] is an important topic in every programming language, but it
requires even more planning in a strongly typed one.

Rust has a very elegant way to manage error conditions that can arise in complicated
chains of functions or in loops: the operator ? [docs]. To use it, you need to ensure
compatibility between the error and the return type of the current function, so you
might want to look into automatic type conversion with From [docs]

The new connection monitoring function TcpListener::accept [docs] is not an iterator any
more. It’s an asynchronous function, so the pattern is to wrap it in a loop and to await it. Each
time a new connection is created the function returns a tuple (TcpStream, SocketAddr), of
which we keep only the stream.

src/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

loop {
match listener.accept().await {

...
}

}
}

The core of the architecture is clearly tokio::spawn, that creates a new task. This means that
the provided function will be run in isolation in the asynchronous loop, and that the system will
pause it every time an await is invoked in its code.

src/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

...

match listener.accept().await {
Ok((stream, _)) => {

https://doc.rust-lang.org/book/ch09-00-error-handling.html
https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
https://doc.rust-lang.org/std/convert/trait.From.html
https://docs.rs/tokio/latest/tokio/net/struct.TcpListener.html#method.accept

CHAPTER 1. INITIAL STEPS 15

tokio::spawn(handle_connection(stream));
}

...
}

async fn handle_connection(mut stream: TcpStream) {
...

A common pattern for spawn is to run it in combination with async move [docs], passing some
closure defined on the spot. This is done to make sure that ownership of the closure context is
transferred to the task. In this case, there is no need here to use async move as the function
handle_connection already takes ownership of stream.

CodeCrafters

Stage 4: Handle concurrent clients

This version of the code passes Stage 4 of the CodeCrafters challenge. We can actually
connect to the server using multiple Redis CLI instances in different terminals.

Since in the next chapter we will go through some refactoring, I recommend not to mark
the stage as completed and wait before you move to the next step. This way, you can keep
checking that what we are doing still passes the tests.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step1.4

https://doc.rust-lang.org/async-book/03_async_await/01_chapter.html#async-move
https://app.codecrafters.io/courses/redis/stages/zu2
https://github.com/lgiordani/sider/tree/ed1/step1.4

Chapter 2

The RESP Protocol

This conversation can serve no purpose any more.
2001: A Space Odyssey (1968)

Now that we have a basic generic server we need to focus on an important feature that is more
closely related to Redis: the RESP protocol.

Redis clients and servers communicate with a custom binary protocol called RESP (REdis Serial-
ization Protocol). On the redis website you can find the full specification, but we won’t implement
the whole beast.

To complete the basic stages of the challenge we need to implement the following elements:

• Simple string

• Bulk string

• Array

This might sound trivial, but when it comes to binary protocols there are a lot of low-level func-
tions to implement. So, while it won’t be complicated, it will take the whole chapter to reach a
working implementation.

Once these elements and the underlying machinery are in place it will be a breeze to implement
other types (like Integer) for later stages.

16

CHAPTER 2. THE RESP PROTOCOL 17

The RESP binary format
RESP is roughly made of a binary representation of certain data types and of a format for
requests and responses (both successful and unsuccessful).

The official documentation explains the difference between RESP types, even though
some corner cases might have been clarified with more examples. For the time being,
you should familiarise yourself with the way simple strings, bulk strings, and arrays are
implemented.

Please also note that Redis commands shall be sent by the client as RESP arrays of bulk
strings and that responses will be sent according to the requested command. For
example, the command GET [docs] will reply with either a bulk string with the value of
the key or with a null.

The steps we will follow in this chapter are:

1. Define a custom result type to have a nice way to manage successful results and errors.

2. Extract binary values from RESP will give us the raw binary data.

3. Convert binary values to string will give us the corresponding Rust string..

4. Parse the RESP type to be able to identify the RESP data type.

5. Parse a RESP simple string to put together what has been done so far.

6. Use simple string for PING to see what we have done in action.

7. Parse generic RESP to process a generic binary buffer containing RESP data.

8. Parse a RESP bulk string.

9. Parse a RESP array.

10. Process PING the right way to use generic RESP functions to process PING.

11. Process ECHO - to use generic RESP functions to process ECHO.

Unfortunately, the development of this part of the system has little to show in terms of Redis
features. Having RESP in place will allow us to implement ECHO, GET and SET, but we need to
climb this hill before we see those cities.
The positive side is that we will be able to use and learn TDD in Rust, as the functions that we
will develop can be tested very easily.

https://redis.io/docs/latest/develop/reference/protocol-spec/
https://redis.io/docs/latest/develop/reference/protocol-spec/#simple-strings
https://redis.io/docs/latest/develop/reference/protocol-spec/#bulk-strings
https://redis.io/docs/latest/develop/reference/protocol-spec/#arrays
https://redis.io/docs/latest/commands/get/
https://redis.io/docs/latest/develop/reference/protocol-spec/#nulls

CHAPTER 2. THE RESP PROTOCOL 18

Step 1 - Define a custom result type
It’s always worth to have a proper description of errors, and this is even more true when it comes
to parsing, which is notoriously error-prone. Let’s start implementing an enum for errors and a
type for results

src/resp_result.rs

#[derive(Debug)]
pub enum RESPError {}

pub type RESPResult<T> = Result<T, RESPError>;

We will add enum values to RESPError later when we need to encapsulate specific errors in the
parsing stage.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.1

https://github.com/lgiordani/sider/tree/ed1/step2.1

CHAPTER 2. THE RESP PROTOCOL 19

Step 2 - Extract binary values from RESP
The binary values 13 and 10 (ASCII for \r\n) are the main separator between RESP parts, so it
makes sense to be able to read binary data until those characters are met.

The first function we will implement is binary_extract_line that extracts bytes from a buffer
until a \r\n is reached. Here, index represents the position where we start parsing the buffer,
and it will be updated by the function.

src/resp.rs

use crate::resp_result::{RESPError, RESPResult};

// Extracts bytes from the buffer until a `\r` is reached
fn binary_extract_line(buffer: &[u8], index: &mut usize) -> RESPResult<Vec<u8>> {

let mut output = Vec::new();

// We try to read after the end of the buffer
if *index >= buffer.len() {

return Err(RESPError::OutOfBounds(*index));
}

// If there is not enough space for \r\n
// the buffer is definitely invalid
if buffer.len() - *index - 1 < 2 {

*index = buffer.len();
return Err(RESPError::OutOfBounds(*index));

}

let mut previous_elem: u8 = buffer[*index].clone();
let mut separator_found: bool = false;
let mut final_index: usize = *index;

// Scan the whole buffer looking for \r\n
for &elem in buffer[*index..].iter() {

final_index += 1;

if elem == b'\n' && previous_elem == b'\r' {
separator_found = true;
break;

}
previous_elem = elem.clone();

}

// If the previous element is not \n
// we are out of bounds
if !separator_found {

*index = final_index;
return Err(RESPError::OutOfBounds(*index));

}

// Copy the bytes from the buffer to the output vector
output.extend_from_slice(&buffer[*index..final_index - 2]);

CHAPTER 2. THE RESP PROTOCOL 20

// Make sure the index is updated with the latest position
*index = final_index;

Ok(output)
}

As you can see, this is a pretty low-level interaction with the binary buffer. There are tests that
cover several corner cases

src/resp.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_binary_extract_line_empty_buffer() {

let buffer = "".as_bytes();
let mut index: usize = 0;

match binary_extract_line(buffer, &mut index) {
Err(RESPError::OutOfBounds(index)) => {

assert_eq!(index, 0);
}
_ => panic!(),

}
}

#[test]
fn test_binary_extract_line_single_character() {

let buffer = "O".as_bytes();
let mut index: usize = 0;

match binary_extract_line(buffer, &mut index) {
Err(RESPError::OutOfBounds(index)) => {

assert_eq!(index, 1);
}
_ => panic!(),

}
}

#[test]
fn test_binary_extract_line_index_too_advanced() {

let buffer = "OK".as_bytes();
let mut index: usize = 1;

match binary_extract_line(buffer, &mut index) {
Err(RESPError::OutOfBounds(index)) => {

assert_eq!(index, 2);
}
_ => panic!(),

CHAPTER 2. THE RESP PROTOCOL 21

}
}

#[test]
fn test_binary_extract_line_no_separator() {

let buffer = "OK".as_bytes();
let mut index: usize = 0;

match binary_extract_line(buffer, &mut index) {
Err(RESPError::OutOfBounds(index)) => {

assert_eq!(index, 2);
}
_ => panic!(),

}
}

#[test]
fn test_binary_extract_line_half_separator() {

let buffer = "OK\r".as_bytes();
let mut index: usize = 0;

match binary_extract_line(buffer, &mut index) {
Err(RESPError::OutOfBounds(index)) => {

assert_eq!(index, 3);
}
_ => panic!(),

}
}

#[test]
fn test_binary_extract_line_incorrect_separator() {

let buffer = "OK\n".as_bytes();
let mut index: usize = 0;

match binary_extract_line(buffer, &mut index) {
Err(RESPError::OutOfBounds(index)) => {

assert_eq!(index, 3);
}
_ => panic!(),

}
}

#[test]
fn test_binary_extract_line() {

let buffer = "OK\r\n".as_bytes();
let mut index: usize = 0;

let output = binary_extract_line(buffer, &mut index).unwrap();

assert_eq!(output, "OK".as_bytes());
assert_eq!(index, 4);

}
}

The code relies on a specific error variant, RESPError::OutOfBounds, that has to be added to the
enum. The error can be made printable implementing fmt::Display for the type

CHAPTER 2. THE RESP PROTOCOL 22

src/resp_result.rs

use std::fmt;

#[derive(Debug)]
pub enum RESPError {

OutOfBounds(usize),
}

impl fmt::Display for RESPError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
RESPError::OutOfBounds(index) => write!(f, "Out of bounds at index {}", index),

}
}

}

Traits
Rust is not an object-oriented programming language, but some constructs can definitely
be compared to equivalent OOP ones. Rust structs and enums, for example, cannot
inherit from a parent structure, but we can write an implementation that adds methods
to the data type, in a way that reminds of classes.

One of the most powerful concepts in Rust is that of a trait [docs]. For those coming
from object-oriented languages, traits are halfway between interfaces and mixins.

As interfaces, they can be used in function prototypes to represent types, with the rich
trait bound syntax impl SomeTrait (or its longer form <T: SomeTrait> after the
function name). As mixins, they can behave like "classes without data", providing a
default method implementation that can be attached to an existing type with an empty
impl block or with #[derive].

A lot of language features like automatic type conversion depend on traits, so it’s highly
recommended to become familiar with the concept and its syntax.

Last, the new files have to be added as mods to main.rs

https://doc.rust-lang.org/book/ch10-02-traits.html

CHAPTER 2. THE RESP PROTOCOL 23

src/main.rs

use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
net::{TcpListener, TcpStream},

};

mod resp;
mod resp_result;

At this point we can run tests with cargo test

$ cargo test

...

running 7 tests
test resp::tests::test_binary_extract_line_empty_buffer ... ok
test resp::tests::test_binary_extract_line ... ok
test resp::tests::test_binary_extract_line_half_separator ... ok
test resp::tests::test_binary_extract_line_index_too_advanced ... ok
test resp::tests::test_binary_extract_line_incorrect_separator ... ok
test resp::tests::test_binary_extract_line_no_separator ... ok
test resp::tests::test_binary_extract_line_single_character ... ok

test result: ok. 7 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in
0.00s↪→

Binary values and strings
Strings are a surprisingly complicated topic in computer science. While binary values
are relatively simple once we agree on the definition of byte, strings can be implemented
in several different ways. In particular, programming languages differ in the way they
represent strings in memory, and in how they deal with encoding.

When it comes to Rust, it’s important to understand the two types of strings String
[docs] and &str [docs]. As for the encoding, all modern languages embraced Unicode
and UTF-8, so once again these are concepts one should be at least superficially familiar
with.

You can learn more about Rust Strings and UTF-8 in the the Rust book.

https://doc.rust-lang.org/std/string/struct.String.html
https://doc.rust-lang.org/https://doc.rust-lang.org/std/primitive.str.html
https://home.unicode.org/
https://en.wikipedia.org/wiki/UTF-8
book/ch08-02-strings.html

CHAPTER 2. THE RESP PROTOCOL 24

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.2

https://github.com/lgiordani/sider/tree/ed1/step2.2

CHAPTER 2. THE RESP PROTOCOL 25

Step 3 - Convert binary values to string
In certain cases we know for sure that the RESP content is meant to represent UTF-8 data, which
means that it will be useful to have a function that extracts binary data and converts it into a Rust
String.

src/resp.rs

// Extracts bytes from the buffer until a `\r` is reached and converts them into a string
pub fn binary_extract_line_as_string(buffer: &[u8], index: &mut usize) -> RESPResult<String

> {↪→
let line = binary_extract_line(buffer, index)?;

Ok(String::from_utf8(line)?)
}

And the associated test

src/resp.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_binary_extract_line_as_string() {

let buffer = "OK\r\n".as_bytes();
let mut index: usize = 0;

let output = binary_extract_line_as_string(buffer, &mut index).unwrap();

assert_eq!(output, String::from("OK"));
assert_eq!(index, 4);

}

...

}

The function String::from_utf8() [docs] returns Result<String, FromUtf8Error>, so we
need to manage that error. The code String::from_utf8(line)? is at the moment incompatible
with the return type RESPResult<String> that contains a RESPError.

We can implement the trait From that implicitly converts FromUtf8Error into RESPError

https://doc.rust-lang.org/std/string/struct.String.html#method.from_utf8

CHAPTER 2. THE RESP PROTOCOL 26

src/resp_result.rs

use std::fmt;
use std::string::FromUtf8Error;

#[derive(Debug)]
pub enum RESPError {

FromUtf8,
OutOfBounds(usize),

}

impl fmt::Display for RESPError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
RESPError::FromUtf8 => write!(f, "Cannot convert from UTF-8"),
RESPError::OutOfBounds(index) => write!(f, "Out of bounds at index {}", index),

}
}

}

impl From<FromUtf8Error> for RESPError {
fn from(_err: FromUtf8Error) -> Self {

Self::FromUtf8
}

}

pub type RESPResult<T> = Result<T, RESPError>;

Automatic type conversion
Whenever data is passed to a function, Rust checks that the data type corresponds to the
function signature. If it doesn’t, Rust tries to perform a conversion between the two data
types using the method from, which is provided by a specific trait From<T>. As we see in
the code above, this is extremely useful when it comes to deal with discrepancies
between return types.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.3

https://github.com/lgiordani/sider/tree/ed1/step2.3

CHAPTER 2. THE RESP PROTOCOL 27

Step 4 - Parse the RESP type
RESP types are always prefixed with a specific character, so we need something that removes the
prefix before we can parse the rest. We could just skip the first byte, but it’s better to double check
that the buffer contains exactly what we expect.

src/resp.rs

// Checks that the first character of a RESP buffer is the given one and removes it.
pub fn resp_remove_type(value: char, buffer: &[u8], index: &mut usize) -> RESPResult<()> {

if buffer[*index] != value as u8 {
return Err(RESPError::WrongType);

}

*index += 1;

Ok(())
}

The tests for this function are

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_binary_remove_type() {

let buffer = "+OK\r\n".as_bytes();
let mut index: usize = 0;

resp_remove_type('+', buffer, &mut index).unwrap();

assert_eq!(index, 1);
}

#[test]
fn test_binary_remove_type_error() {

let buffer = "*OK\r\n".as_bytes();
let mut index: usize = 0;

let error = resp_remove_type('+', buffer, &mut index).unwrap_err();

assert_eq!(index, 0);
assert_eq!(error, RESPError::WrongType);

}

CHAPTER 2. THE RESP PROTOCOL 28

...

}

The code relies on the error RESPError::WrongType. We also have to add PartialEq to RESPEr-
ror to be able to compare values during the tests.

src/resp_result.rs

#[derive(Debug, PartialEq)]
pub enum RESPError {

FromUtf8,
OutOfBounds(usize),
WrongType,

}

impl fmt::Display for RESPError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
RESPError::FromUtf8 => write!(f, "Cannot convert from UTF-8"),
RESPError::OutOfBounds(index) => write!(f, "Out of bounds at index {}", index),
RESPError::WrongType => write!(f, "Wrong prefix for RESP type"),

}
}

}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.4

https://github.com/lgiordani/sider/tree/ed1/step2.4

CHAPTER 2. THE RESP PROTOCOL 29

Step 5 - Parse a RESP simple string
With this last function in place, we can define a RESP simple string as a variant of an enum and
parse a binary buffer into it.

First let’s define the enum and the variant

src/resp.rs

use crate::resp_result::{RESPError, RESPResult};

#[derive(Debug, PartialEq)]
pub enum RESP {

SimpleString(String),
}

Then let’s create a specific function that parses a binary buffer into that variant

src/resp.rs

// Parse a simple string in the form `+VALUE\r\n`
fn parse_simple_string(buffer: &[u8], index: &mut usize) -> RESPResult<RESP> {

resp_remove_type('+', buffer, index)?;

let line: String = binary_extract_line_as_string(buffer, index)?;

Ok(RESP::SimpleString(line))
}

The associated test is

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_parse_simple_string() {

let buffer = "+OK\r\n".as_bytes();
let mut index: usize = 0;

CHAPTER 2. THE RESP PROTOCOL 30

let output = parse_simple_string(buffer, &mut index).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("OK")));
assert_eq!(index, 5);

}

...

}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.5

https://github.com/lgiordani/sider/tree/ed1/step2.5

CHAPTER 2. THE RESP PROTOCOL 31

Step 6 - Use simple string for PING
Let’s take a quick break from the implementation of RESP types and use RESP::SimpleString to
send the response to PING. It’s a small change, but it will give us a sense of the link between what
we are doing with RESP and the overall system.

src/main.rs

use crate::resp::RESP;

...

async fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

loop {
match stream.read(&mut buffer).await {

Ok(size) if size != 0 => {
let response = RESP::SimpleString(String::from("PONG"));

if let Err(e) = stream.write_all(response.to_string().as_bytes()).await {
eprintln!("Error writing to socket: {}", e);

}
}

...

}

However, the type RESP cannot be converted to a String with to_string() because it doesn’t
implement the right trait yet. Let’s do it

src/resp.rs

use crate::resp_result::{RESPError, RESPResult};
use std::fmt;

#[derive(Debug, PartialEq)]
pub enum RESP {

SimpleString(String),
}

impl fmt::Display for RESP {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

let data = match self {
Self::SimpleString(data) => format!("+{}\r\n", data),

};

CHAPTER 2. THE RESP PROTOCOL 32

write!(f, "{}", data)
}

}

Which trait for string conversion?
To provide the code that converts a type into a string we implement two different traits:

• Into<String>, when implemented, is called automatically by Rust to convert a
type into a String, and is considered a general-purpose conversion trait.

• fmt:Display, automatically implements the trait ToString as well. This trait is
usually considered more suitable for strings that have to be printed on screen.

Ultimately, they both provide the same service but with a slightly different flavour.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.6

https://github.com/lgiordani/sider/tree/ed1/step2.6

CHAPTER 2. THE RESP PROTOCOL 33

Step 7 - Parse generic RESP
Now that the basic functions have been created we can move to a higher level. We eventually
need to parse a generic RESP buffer, so we should implement a function that accepts a binary
slice and returns the right variant of RESP

src/resp.rs

fn parser_router(
buffer: &[u8],
index: &mut usize,

) -> Option<fn(&[u8], &mut usize) -> RESPResult<RESP>> {
match buffer[*index] {

b'+' => Some(parse_simple_string),
_ => None,

}
}

pub fn bytes_to_resp(buffer: &[u8], index: &mut usize) -> RESPResult<RESP> {
match parser_router(buffer, index) {

Some(parse_func) => {
let result: RESP = parse_func(buffer, index)?;
Ok(result)

}
None => Err(RESPError::Unknown),

}
}

The function parser_router returns one of the parsing functions according to the initial char-
acter in the buffer. The function bytes_to_resp uses the returned function to parse the buffer
and return the result. This is done mainly to simplify the code by separating responsibilities and
having shorter, more essential functions.

When the content of the RESP buffer cannot be parsed we return a specific error that has to be
added to the RESPError enum.

src/resp_result.rs

#[derive(Debug)]
pub enum RESPError {

FromUtf8,
OutOfBounds(usize),
Unknown,
WrongType,

}

CHAPTER 2. THE RESP PROTOCOL 34

impl fmt::Display for RESPError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
RESPError::FromUtf8 => write!(f, "Cannot convert from UTF-8"),
RESPError::OutOfBounds(index) => write!(f, "Out of bounds at index {}", index),
RESPError::Unknown => write!(f, "Unknown format for RESP string"),
RESPError::WrongType => write!(f, "Wrong parsing route for RESP type"),

}
}

}

The tests for this code are

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_bytes_to_resp_simple_string() {

let buffer = "+OK\r\n".as_bytes();
let mut index: usize = 0;

let output = bytes_to_resp(buffer, &mut index).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("OK")));
assert_eq!(index, 5);

}

#[test]
fn test_bytes_to_resp_unknown() {

let buffer = "?OK\r\n".as_bytes();
let mut index: usize = 0;

let error = bytes_to_resp(buffer, &mut index).unwrap_err();

assert_eq!(error, RESPError::Unknown);
assert_eq!(index, 0);

}

...

}

CHAPTER 2. THE RESP PROTOCOL 35

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.7

https://github.com/lgiordani/sider/tree/ed1/step2.7

CHAPTER 2. THE RESP PROTOCOL 36

Step 8 - Parse a RESP bulk string
The second RESP typewe need is a bulk string. We can start adding the variant RESP::BulkString,
together with RESP::Null that will represent the empty string.

src/resp.rs

#[derive(Debug, PartialEq)]
pub enum RESP {

BulkString(String),
Null,
SimpleString(String),

}

impl fmt::Display for RESP {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

let data = match self {
Self::BulkString(data) => format!("${}\r\n{}\r\n", data.len(), data),
Self::Null => String::from("$-1\r\n"),
Self::SimpleString(data) => format!("+{}\r\n", data),

};

write!(f, "{}", data)
}

}

Bulk Strings provide the length of the contained data as a prefix, so it makes sense to use that to
speed up the extraction of bytes from the buffer. The function binary_extract_bytes is very
similar to binary_extract_line, but relies on a provided length

src/resp.rs

// Extracts a given amount of bytes from the buffer
fn binary_extract_bytes(buffer: &[u8], index: &mut usize, length: usize) -> RESPResult<Vec<

u8>> {↪→
let mut output = Vec::new();

// Check if we are allowed to read length bytes
if *index + length > buffer.len() {

return Err(RESPError::OutOfBounds(*index + buffer.len()));
}

// Copy the bytes into the output vector
output.extend_from_slice(&buffer[*index..*index + length]);

// Update the index
*index += length;

CHAPTER 2. THE RESP PROTOCOL 37

Ok(output)
}

The tests for this function are

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_binary_extract_bytes() {

let buffer = "SOMEBYTES".as_bytes();
let mut index: usize = 0;

let output = binary_extract_bytes(buffer, &mut index, 6).unwrap();

assert_eq!(output, "SOMEBY".as_bytes().to_vec());
assert_eq!(index, 6);

}

#[test]
fn test_binary_extract_bytes_out_of_bounds() {

let buffer = "SOMEBYTES".as_bytes();
let mut index: usize = 0;

let error = binary_extract_bytes(buffer, &mut index, 10).unwrap_err();

assert_eq!(error, RESPError::OutOfBounds(9));
assert_eq!(index, 0);

}

...

}

To get the length of the data contained in a RESP bulk string we need to parse the part of the buffer
that contains it. As the length ends with \r\n we can reuse binary_extract_line_as_string
for this purpose and convert the string into a numeric value

CHAPTER 2. THE RESP PROTOCOL 38

src/resp.rs

// Extracts a single line from a RESP buffer and interprets it as length.
// The type used for the number is RESPLength.
pub fn resp_extract_length(buffer: &[u8], index: &mut usize) -> RESPResult<RESPLength> {

let line: String = binary_extract_line_as_string(buffer, index)?;
let length: RESPLength = line.parse()?;

Ok(length)
}

This relies on the type RESPLength that we can define in src/resp_result.rs and import into
src/resp.rs

src/resp_result.rs

type RESPLength = i32;

src/resp.rs

use crate::resp_result::{RESPError, RESPLength, RESPResult};

We cannot use usize here as the length of a string might be -1 (null string). The conversion into
RESPLength requires the trait From<ParseIntError> [docs] to be implemented for RESPError,
since we are returning the error directly through the operator ?. We also need an error variant
for incorrect length values (negative values that are not -1).

src/resp_result.rs

use std::fmt;
use std::num;
use std::string::FromUtf8Error;

#[derive(Debug)]
pub enum RESPError {

FromUtf8,
IncorrectLength(RESPLength),
OutOfBounds(usize),
ParseInt,

https://doc.rust-lang.org/std/num/struct.ParseIntError.html

CHAPTER 2. THE RESP PROTOCOL 39

Unknown,
WrongType,

}

impl fmt::Display for RESPError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
RESPError::FromUtf8 => write!(f, "Cannot convert from UTF-8"),
RESPError::IncorrectLength(length) => write!(f, "Incorrect legth {}", length),
RESPError::OutOfBounds(index) => write!(f, "Out of bounds at index {}", index),
RESPError::ParseInt => write!(f, "Cannot parse string into integer"),
RESPError::Unknown => write!(f, "Unknown format for RESP string"),
RESPError::WrongType => write!(f, "Wrong parsing route for RESP type"),

}
}

}

...

impl From<num::ParseIntError> for RESPError {
fn from(_err: num::ParseIntError) -> Self {

Self::ParseInt
}

}

With those functions in place, parsing a bulk string can be done with

src/resp.rs

fn parse_bulk_string(buffer: &[u8], index: &mut usize) -> RESPResult<RESP> {
resp_remove_type('$', buffer, index)?;

let length = resp_extract_length(buffer, index)?;

if length == -1 {
return Ok(RESP::Null);

}

if length < -1 {
return Err(RESPError::IncorrectLength(length));

}

let bytes = binary_extract_bytes(buffer, index, length as usize)?;

let data: String = String::from_utf8(bytes)?;

// Increment the index to skip the \r\n
*index += 2;

Ok(RESP::BulkString(data))
}

CHAPTER 2. THE RESP PROTOCOL 40

with the relative tests

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_parse_bulk_string() {

let buffer = "$2\r\nOK\r\n".as_bytes();
let mut index: usize = 0;

let output = parse_bulk_string(buffer, &mut index).unwrap();

assert_eq!(output, RESP::BulkString(String::from("OK")));
assert_eq!(index, 8);

}

#[test]
fn test_parse_bulk_string_empty() {

let buffer = "$-1\r\n".as_bytes();
let mut index: usize = 0;

let output = parse_bulk_string(buffer, &mut index).unwrap();

assert_eq!(output, RESP::Null);
assert_eq!(index, 5);

}

#[test]
fn test_parse_bulk_string_wrong_type() {

let buffer = "?2\r\nOK\r\n".as_bytes();
let mut index: usize = 0;

let error = parse_bulk_string(buffer, &mut index).unwrap_err();

assert_eq!(error, RESPError::WrongType);
assert_eq!(index, 0);

}

#[test]
fn test_parse_bulk_string_unparsable_length() {

let buffer = "$wrong\r\nOK\r\n".as_bytes();
let mut index: usize = 0;

let error = parse_bulk_string(buffer, &mut index).unwrap_err();

assert_eq!(error, RESPError::ParseInt);
assert_eq!(index, 8);

}

#[test]
fn test_parse_bulk_string_negative_length() {

let buffer = "$-7\r\nOK\r\n".as_bytes();

CHAPTER 2. THE RESP PROTOCOL 41

let mut index: usize = 0;

let error = parse_bulk_string(buffer, &mut index).unwrap_err();

assert_eq!(error, RESPError::IncorrectLength(-7));
assert_eq!(index, 5);

}

#[test]
fn test_parse_bulk_string_data_too_short() {

let buffer = "$7\r\nOK\r\n".as_bytes();
let mut index: usize = 0;

let error = parse_bulk_string(buffer, &mut index).unwrap_err();

assert_eq!(error, RESPError::OutOfBounds(8));
assert_eq!(index, 4);

}
}

As always, when it comes to low-level protocols, there are manymore tests that wemight add, but
these should be enough for now. At this point parse_bulk_string can be added to parser_router

src/resp.rs

fn parser_router(
buffer: &[u8],
index: &mut usize,

) -> Option<fn(&[u8], &mut usize) -> RESPResult<RESP>> {
match buffer[*index] {

b'+' => Some(parse_simple_string),
b'$' => Some(parse_bulk_string),
_ => None,

}
}

with a test to check that bytes_to_resp can parse the new type

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]

CHAPTER 2. THE RESP PROTOCOL 42

fn test_bytes_to_resp_bulk_string() {
let buffer = "$2\r\nOK\r\n".as_bytes();
let mut index: usize = 0;

let output = bytes_to_resp(buffer, &mut index).unwrap();

assert_eq!(output, RESP::BulkString(String::from("OK")));
assert_eq!(index, 8);

}
}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.8

https://github.com/lgiordani/sider/tree/ed1/step2.8

CHAPTER 2. THE RESP PROTOCOL 43

Step 9 - Parse a RESP array
The final piece of code that we need before we can put everything together is a function to parse
a RESP array. Arrays are a tiny bit more complicated than bulk strings because they are recursive,
being containers of other RESP types (including other arrays).

As before, we first add the relevant variant to the RESP enum

src/resp.rs

#[derive(Debug, PartialEq)]
pub enum RESP {

Array(Vec<RESP>),
BulkString(String),
Null,
SimpleString(String),

}

impl fmt::Display for RESP {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

let data = match self {
Self::Array(data) => {

let mut output = String::from("*");
output.push_str(format!("{}\r\n", data.len()).as_str());

for elem in data.iter() {
output.push_str(elem.to_string().as_str());

}

output
}
Self::BulkString(data) => format!("${}\r\n{}\r\n", data.len(), data),
Self::Null => String::from("$-1\r\n"),
Self::SimpleString(data) => format!("+{}\r\n", data),

};

write!(f, "{}", data)
}

}

Then, as we did for bulk strings, we need to create a function parse_array. As an array contains
other types the function will use parser_router to process them

CHAPTER 2. THE RESP PROTOCOL 44

src/resp.rs

fn parse_array(buffer: &[u8], index: &mut usize) -> RESPResult<RESP> {
resp_remove_type('*', buffer, index)?;

let length = resp_extract_length(buffer, index)?;

if length < 0 {
return Err(RESPError::IncorrectLength(length));

}

let mut data = Vec::new();

for _ in 0..length {
match parser_router(buffer, index) {

Some(parse_func) => {
let array_element: RESP = parse_func(buffer, index)?;
data.push(array_element);

}
None => return Err(RESPError::Unknown),

}
}

Ok(RESP::Array(data))
}

The tests are

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_parse_array() {

let buffer = "*2\r\n+OK\r\n$5\r\nVALUE\r\n".as_bytes();
let mut index: usize = 0;

let output = parse_array(buffer, &mut index).unwrap();

assert_eq!(
output,
RESP::Array(vec![

RESP::SimpleString(String::from("OK")),
RESP::BulkString(String::from("VALUE"))

])
);
assert_eq!(index, 20);

}

CHAPTER 2. THE RESP PROTOCOL 45

#[test]
fn test_parse_array_invalid_length() {

let buffer = "*-1\r\n+OK\r\n$5\r\nVALUE\r\n".as_bytes();
let mut index: usize = 0;

let error = parse_array(buffer, &mut index).unwrap_err();

assert_eq!(error, RESPError::IncorrectLength(-1));
assert_eq!(index, 5);

}
}

Finally, let’s add parse_array itself to parser_router

src/resp.rs

fn parser_router(
buffer: &[u8],
index: &mut usize,

) -> Option<fn(&[u8], &mut usize) -> RESPResult<RESP>> {
match buffer[*index] {

b'+' => Some(parse_simple_string),
b'$' => Some(parse_bulk_string),
b'*' => Some(parse_array),
_ => None,

}
}

With a test to check the behaviour of bytes_to_resp

src/resp.rs

#[cfg(test)]
mod tests {

...

#[test]
fn test_bytes_to_resp_array() {

let buffer = "*2\r\n+OK\r\n$5\r\nVALUE\r\n".as_bytes();
let mut index: usize = 0;

let output = bytes_to_resp(buffer, &mut index).unwrap();

assert_eq!(
output,

CHAPTER 2. THE RESP PROTOCOL 46

RESP::Array(vec![
RESP::SimpleString(String::from("OK")),
RESP::BulkString(String::from("VALUE"))

])
);
assert_eq!(index, 20);

}
}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.9

https://github.com/lgiordani/sider/tree/ed1/step2.9

CHAPTER 2. THE RESP PROTOCOL 47

Step 10 - Process PING the right way
We can at this point refactor the part of the server that processes an incoming request, parses it,
and executes the command. Redis commands are sent as arrays of bulk strings, so it’s a good idea
to have a generic processor of requests to simplify the addition of new commands in the future.

Let’s start creating a result type for our server in a new file, src/server.rs

src/server.rs

use std::fmt;

#[derive(Debug, PartialEq)]
pub enum ServerError {

CommandError,
}

impl fmt::Display for ServerError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
ServerError::CommandError => write!(f, "Error while processing!"),

}
}

}

pub type ServerResult<T> = Result<T, ServerError>;

For now, a single variant will be sufficient. Later, when different error cases emerge, we will add
more.

We need to add the module to main.rs to make it visible.

src/main.rs

mod resp;
mod resp_result;
mod server;

We can then create a function to process an incoming RESP request. This function needs to parse
the incoming RESP data, figure out which command it contains, and call the right function to
process it.

CHAPTER 2. THE RESP PROTOCOL 48

src/server.rs

use crate::RESP;

...

pub fn process_request(request: RESP) -> ServerResult<RESP> {
let elements = match request {

RESP::Array(v) => v,
_ => {

return Err(ServerError::CommandError);
}

};

let mut command = Vec::new();
for elem in elements.iter() {

match elem {
RESP::BulkString(v) => command.push(v),
_ => {

return Err(ServerError::CommandError);
}

}
}

match command[0].to_lowercase().as_str() {
"ping" => Ok(RESP::SimpleString(String::from("PONG"))),
_ => {

return Err(ServerError::CommandError);
}

}
}

We accept only a RESP::Array, and from it we can extract the inner Vec<RESP> and verify that
each element is a RESP::BulkString. At that point the vector command contains each element of
the command that was sent (e.g. "PING" or "ECHO 42", where each element is a Rust String).
We can then route the processing according to the first element of the vector.

The relative tests are

src/server.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_process_request_ping() {

let request = RESP::Array(vec![RESP::BulkString(String::from("PING"))]);

let output = process_request(request).unwrap();

CHAPTER 2. THE RESP PROTOCOL 49

assert_eq!(output, RESP::SimpleString(String::from("PONG")));
}

#[test]
fn test_process_request_not_array() {

let request = RESP::BulkString(String::from("PING"));

let error = process_request(request).unwrap_err();

assert_eq!(error, ServerError::CommandError);
}

#[test]
fn test_process_request_not_bulkstrings() {

let request = RESP::Array(vec![RESP::SimpleString(String::from("PING"))]);

let error = process_request(request).unwrap_err();

assert_eq!(error, ServerError::CommandError);
}

}

The last step is to call process_request from handle_connection

src/main.rs

use crate::resp::{bytes_to_resp, RESP};
use crate::server::process_request;

...

async fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

loop {
match stream.read(&mut buffer).await {

Ok(size) if size != 0 => {
let mut index: usize = 0;

let request = match bytes_to_resp(&buffer[..size].to_vec(), &mut index) {
Ok(v) => v,
Err(e) => {

eprintln!("Error: {}", e);
return;

}
};

let response = match process_request(request) {
Ok(v) => v,
Err(e) => {

eprintln!("Error parsing command: {}", e);

CHAPTER 2. THE RESP PROTOCOL 50

return;
}

};

if let Err(e) = stream.write_all(response.to_string().as_bytes()).await {
eprintln!("Error writing to socket: {}", e);

}
}
Ok(_) => {

println!("Connection closed");
break;

}
Err(e) => {

println!("Error: {}", e);
break;

}
}

}
}

CodeCrafters

Stage 4: Handle concurrent clients

Everything we did in this chapter was in preparation for future changes, but the last refac-
toring altered code that was actually used by the server. However, as we haven’t changed
the behaviour, this version of the code still passes Stage 4 of the CodeCrafters challenge.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.10

https://app.codecrafters.io/courses/redis/stages/zu2
https://github.com/lgiordani/sider/tree/ed1/step2.10

CHAPTER 2. THE RESP PROTOCOL 51

Step 11 - Process ECHO
All the work we have done in this chapter was meant to simplify our job when it comes to adding
new commands. We will see that in action now.

Let’s add the command ECHO, that will return its argument to the client as a bulk string. As the
logic behind ECHO is trivial, the only thingwe need to do is to add a new arm to the match construct
in process_request

src/server.rs

pub fn process_request(request: RESP) -> ServerResult<RESP> {
let elements = match request {

RESP::Array(v) => v,
_ => {

return Err(ServerError::CommandError);
}

};

let mut command = Vec::new();
for elem in elements.iter() {

match elem {
RESP::BulkString(v) => command.push(v),
_ => {

return Err(ServerError::CommandError);
}

}
}

match command[0].to_lowercase().as_str() {
"ping" => Ok(RESP::SimpleString(String::from("PONG"))),
"echo" => Ok(RESP::BulkString(command[1].clone())),
_ => {

return Err(ServerError::CommandError);
}

}
}

with this test

src/server.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_process_request_ping() {

CHAPTER 2. THE RESP PROTOCOL 52

let request = RESP::Array(vec![RESP::BulkString(String::from("PING"))]);

let output = process_request(request).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("PONG")));
}

#[test]
fn test_process_request_echo() {

let request = RESP::Array(vec![
RESP::BulkString(String::from("ECHO")),
RESP::BulkString(String::from("42")),

]);

let output = process_request(request).unwrap();

assert_eq!(output, RESP::BulkString(String::from("42")));
}

CodeCrafters

Stage 5: Implement the ECHO command

At this point your code should pass Stage 5 of the CodeCrafters challenge.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step2.11

https://app.codecrafters.io/courses/redis/stages/qq0
https://github.com/lgiordani/sider/tree/ed1/step2.11

Chapter 3

GET and SET

We will never find the command that Nedry used. He’s covered his tracks far
too well.
Jurassic Park (1993)

The goal of this chapter is to implement the two commands GET and SET, arguably the core of a
key/value store like Redis. Wewill go through the basic implementation of the storage in memory,
and we won’t implement persistence yet (writing data on the file system). However, in the next
chapter we will implement key expiry, both passive and active.

The features we will add in this chapter are going to increase the complexity of the system, and it
will become increasingly clear that we need to change our approach. In the next chapter we will
therefore refactor the whole system into a set of independent asynchronous tasks. This change is
paramount to make it possible to tackle replication and transactions in an elegant way.

53

CHAPTER 3. GET AND SET 54

Step 1 - Create the storage manager
In order to properly manage storage1, it’s important to have a data type that allows us to manip-
ulate data in a simple way. We will then introduce a struct Storage that captures the stored data
and the low-level commands that the system exposes.

Let’s start as usual creating a new file with a nicely defined result type

src/storage_result.rs

use std::fmt;

#[derive(Debug)]
pub enum StorageError {

IncorrectRequest,
CommandNotAvailable(String),

}

impl fmt::Display for StorageError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
StorageError::IncorrectRequest => {

write!(f, "The client sent an incorrect request!")
}
StorageError::CommandNotAvailable(c) => {

write!(f, "The requested command {} is not available!", c)
}

}
}

}

pub type StorageResult<T> = Result<T, StorageError>;

We can replace ServerError::CommandErrorwith StorageError variants. This will keep things
coherent from the point of view of result types. We can keep ServerError, as it will be useful in
the future to manage other types of errors in the server.

The type Storage is at the moment just a wrapper around a std::collections::HashMap that
contains instances of the enum StorageValue. This allows us to decouple the storage from the
nature of the data itself.

1The term storage heremeans the part of the system that manages the actual data. For now, it will be implemented
in memory, so there is no persistence.

CHAPTER 3. GET AND SET 55

src/storage.rs

use std::collections::HashMap;

#[derive(Debug, PartialEq)]
pub enum StorageValue {

String(String),
}

pub struct Storage {
store: HashMap<String, StorageValue>,

}

impl Storage {
pub fn new() -> Self {

let store: HashMap<String, StorageValue> = HashMap::new();

Self { store: store }
}

}

As usual, we need to add the new modules to main.rs

src/main.rs

mod resp;
mod resp_result;
mod server;
mod storage;
mod storage_result;

We will move the two commands PING and ECHO into the storage, and define GET and SET there
as well. In later chapters we will move the code of those commands again, but for the time being
the storage looks like a good place to host them.

src/storage.rs

use crate::resp::RESP;
use crate::storage_result::{StorageError, StorageResult};
use std::collections::HashMap;

...

impl Storage {

CHAPTER 3. GET AND SET 56

...

pub fn process_command(&mut self, command: &Vec<String>) -> StorageResult<RESP> {
match command[0].to_lowercase().as_str() {

"ping" => self.command_ping(&command),
"echo" => self.command_echo(&command),
_ => Err(StorageError::CommandNotAvailable(command[0].clone())),

}
}

fn command_ping(&self, _command: &Vec<String>) -> StorageResult<RESP> {
Ok(RESP::SimpleString("PONG".to_string()))

}

fn command_echo(&self, command: &Vec<String>) -> StorageResult<RESP> {
Ok(RESP::BulkString(command[1].clone()))

}

...

}

There are three tests for this module. Two of them, test_command_ping and test_command_echo
have been moved here from src/server.rs

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_create_new() {

let storage: Storage = Storage::new();

assert_eq!(storage.store.len(), 0);
}

#[test]
fn test_command_ping() {

let command = vec![String::from("ping")];
let storage: Storage = Storage::new();

let output = storage.command_ping(&command).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("PONG")));
}

#[test]
fn test_command_ping_uppercase() {

let command = vec![String::from("PING")];
let storage: Storage = Storage::new();

CHAPTER 3. GET AND SET 57

let output = storage.command_ping(&command).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("PONG")));
}

#[test]
fn test_command_echo() {

let command = vec![String::from("echo"), String::from("42")];
let storage: Storage = Storage::new();

let output = storage.command_echo(&command).unwrap();

assert_eq!(output, RESP::BulkString(String::from("42")));
}

}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step3.1

https://github.com/lgiordani/sider/tree/ed1/step3.1

CHAPTER 3. GET AND SET 58

Step 2 - Use the storage manager
We need now to actually instantiate and use the storage manager. This introduces a new problem,
that of passing values to asynchronous tasks. It is a problem that has many ramifications, and in
this chapter we will see only some of them.

In Rust, a variable that is passed to a function is owned by that function. This, practically speaking,
means that we cannot instantiate a variable of type Storage and then pass it to each connection
that we create. When we pass it to the first connection the ownership is gone.

For example

src/main.rs [NOT WORKING]

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

let mut storage = Storage::new();

loop {
match listener.accept().await {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, storage));

}
Err(e) => {

println!("Error: {}", e);
continue;

}
}

}
}

async fn handle_connection(mut stream: TcpStream, mut storage: Storage) {
...

This code is an attempt to create the storage and then pass it to the connection handlers. The
compiler however will not accept it

CHAPTER 3. GET AND SET 59

19 | let mut storage = Storage::new();
| ----------- move occurs because `storage` has type `storage::Storage`,
| which does not implement the `Copy` trait

20 |
21 | loop {

| ---- inside of this loop
...
24 | tokio::spawn(handle_connection(stream, storage));

| ^^^^^^^ value moved here,
| in previous iteration
| of loop

This behaviour comes directly from the language rules: there cannot be more than one owner.

We might consider passing a reference, which works as long as we don’t need to mutate the
referenced value, because there can be only one mutable reference alive at a time. For example

src/main.rs [NOT WORKING]

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

let mut storage = Storage::new();

loop {
match listener.accept().await {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, &mut storage));

}
Err(e) => {

println!("Error: {}", e);
continue;

}
}

}
}

async fn handle_connection(mut stream: TcpStream, storage: &mut Storage) {
...

The compiler is indeed still not happy with this solution

CHAPTER 3. GET AND SET 60

error[E0499]: cannot borrow `storage` as mutable more than once at a time
--> src/main.rs:24:56
|

24 | tokio::spawn(handle_connection(stream, &mut storage));
| --------------------------^^^^^^^^^^^^-
| | |
| | `storage` was mutably borrowed
| | here in the previous iteration
| | of the loop
| argument requires that `storage` is borrowed
| for `'static`

Having references that allow multiple concurrent reads is perfectly acceptable, but there should
be only one reference that allows to write (mutate).

We actually have two problems to solve here:

1. grant multiple tasks access to the same resource, allowing them to both read and write.

2. make sure that the resource is always valid, forbidding one of the tasks to drop it.

The first problem can be solved using a classic locking mechanism. A perfect structure for such
a job is std::sync::Mutex [docs], as it allows multiple tasks to work on the same resources
creating and releasing exclusive access locks.

A way to address the second problem is to use a reference counter. Such a structure keeps count of
howmany references exist for a resource, and drops it only when the number of references is zero.
An implementation of this concept can be found in std::sync::Arc [docs], which increments
reference counts atomically. This last requirements is important because asynchronous tasks are
eventually run using threads, so it is important for operations to be thread-safe. Incrementing a
value like a reference count in a non-atomic way is the classic example of an unsafe concurrent
operation.

Reference counting and race conditions
Reference counting is one of the most important techniques used to manage memory
allocation, and you might want to learn a bit about its pros and cons and the relationship
between it and garbage collection algorithms.

If you plan to write concurrent code, you need to be familiar with the concept of race
condition, which is one of many issues that poorly written multithreaded code can run
into.

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.Arc.html
https://en.wikipedia.org/wiki/Reference_counting
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Race_condition

CHAPTER 3. GET AND SET 61

Practically speaking, this means that we can use Arc<Mutex<T>> to share access to a single value
of type T. Variables of type Arc can be cloned to increment the reference count and whoever has
a reference can try to lock the resource using Mutex::lock [docs], eventually receiving exclusive
access.

src/main.rs

use crate::resp::{bytes_to_resp, RESP};
use crate::server::process_request;
use crate::storage::Storage;
use std::sync::{Arc, Mutex};
use tokio::{

io::{AsyncReadExt, AsyncWriteExt},
net::{TcpListener, TcpStream},

};

...

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

let storage = Arc::new(Mutex::new(Storage::new()));

loop {
match listener.accept().await {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, storage.clone()));

}
Err(e) => {

println!("Error: {}", e);
continue;

}
}

}
}

async fn handle_connection(mut stream: TcpStream, storage: Arc<Mutex<Storage>>) {
let mut buffer = [0; 512];

loop {
match stream.read(&mut buffer).await {

Ok(size) if size != 0 => {
let mut index: usize = 0;

let request = match bytes_to_resp(&buffer[..size].to_vec(), &mut index) {
Ok(v) => v,
Err(e) => {

eprintln!("Error: {}", e);
return;

}
};

let response = match process_request(request, storage.clone()) {
Ok(v) => v,

https://doc.rust-lang.org/std/sync/struct.Mutex.html?search=sync%3A%3AArc#method.lock

CHAPTER 3. GET AND SET 62

Err(e) => {
eprintln!("Error parsing command: {}", e);
return;

}
};

if let Err(e) = stream.write_all(response.to_string().as_bytes()).await {
eprintln!("Error writing to socket: {}", e);

}
}
Ok(_) => {

println!("Connection closed");
return;

}
Err(e) => {

eprintln!("Error: {}", e);
return;

}
}

}
}

As you can see, we are just passing an additional parameter to handle_connection and to pro-
cess_request. The Arc is cloned in the main loop, and this increments the reference count that
keeps the resource alive until every task is completed.

In the function process_request we need to move from ServerError::CommandError to the
newly defined StorageError::IncorrectRequest. At the end of the function we also lock and
use the storage.

src/server.rs

use crate::storage::Storage;
use crate::storage_result::{StorageError, StorageResult};
use crate::RESP;
use std::fmt;
use std::sync::{Arc, Mutex};

...

pub fn process_request(request: RESP, storage: Arc<Mutex<Storage>>) -> StorageResult<RESP>
{↪→
let elements = match request {

RESP::Array(v) => v,
_ => {

return Err(StorageError::IncorrectRequest);
}

};

let mut command = Vec::new();

CHAPTER 3. GET AND SET 63

for elem in elements.iter() {
match elem {

RESP::BulkString(v) => command.push(v.clone()),
_ => {

return Err(StorageError::IncorrectRequest);
}

}
}

let mut guard = storage.lock().unwrap();
let response = guard.process_command(&command);
response

}

Please note that the vector command nowneeds a clone of the bulk string becausewe are eventually
transferring its ownership to storage.process_command.

We also need to change the tests accordingly

src/server.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_process_request_ping() {

let request = RESP::Array(vec![RESP::BulkString(String::from("PING"))]);
let storage = Arc::new(Mutex::new(Storage::new()));

let output = process_request(request, storage).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("PONG")));
}

#[test]
fn test_process_request_echo() {

let request = RESP::Array(vec![
RESP::BulkString(String::from("ECHO")),
RESP::BulkString(String::from("42")),

]);
let storage = Arc::new(Mutex::new(Storage::new()));

let output = process_request(request, storage).unwrap();

assert_eq!(output, RESP::BulkString(String::from("42")));
}

#[test]
fn test_process_request_not_array() {

let request = RESP::BulkString(String::from("PING"));
let storage = Arc::new(Mutex::new(Storage::new()));

CHAPTER 3. GET AND SET 64

let error = process_request(request, storage).unwrap_err();

assert_eq!(error, StorageError::IncorrectRequest);
}

#[test]
fn test_process_request_not_bulkstrings() {

let request = RESP::Array(vec![RESP::SimpleString(String::from("PING"))]);
let storage = Arc::new(Mutex::new(Storage::new()));

let error = process_request(request, storage).unwrap_err();

assert_eq!(error, StorageError::IncorrectRequest);
}

}

and to run those we need to add PartialEq to StorageError

src/storage_result.rs

#[derive(Debug, PartialEq)]
pub enum StorageError {

IncorrectRequest,
CommandNotAvailable(String),

}

CodeCrafters

Stage 5: Implement the ECHO command

Once again the code we wrote was in preparation for a future change, so the previous
behaviour should be unchanged. This version of the code still passes Stage 5 of the Code-
Crafters challenge.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step3.2

https://app.codecrafters.io/courses/redis/stages/qq0
https://github.com/lgiordani/sider/tree/ed1/step3.2

CHAPTER 3. GET AND SET 65

Step 3 - Implement GET and SET
The basic implementation of GET and SET is extremely simple. After all we are basically building
a wrapper around a dictionary, so we can directly add two methods get and set to the struct
Storage

src/storage.rs

impl Storage {

...

fn set(&mut self, key: String, value: String) -> StorageResult<String> {
self.store.insert(key, StorageValue::String(value));

Ok(String::from("OK"))
}

fn get(&self, key: String) -> StorageResult<Option<String>> {
match self.store.get(&key) {

Some(StorageValue::String(v)) => return Ok(Some(v.clone())),
None => return Ok(None),

}
}

}

Here, we are simply using the underlying methods HashMap::insert [docs] and HashMap::get
[docs]. The tests for the functions we wrote are

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_set_value() {

let mut storage: Storage = Storage::new();
let avalue = StorageValue::String(String::from("avalue"));

let output = storage
.set(String::from("akey"), String::from("avalue"))
.unwrap();

assert_eq!(output, String::from("OK"));

https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.insert
https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.get

CHAPTER 3. GET AND SET 66

assert_eq!(storage.store.len(), 1);
match storage.store.get(&String::from("akey")) {

Some(value) => assert_eq!(value, &avalue),
None => panic!(),

}
}

#[test]
fn test_get_value() {

let mut storage: Storage = Storage::new();
storage.store.insert(

String::from("akey"),
StorageValue::String(String::from("avalue")),

);

let result = storage.get(String::from("akey")).unwrap();

assert_eq!(storage.store.len(), 1);
assert_eq!(result, Some(String::from("avalue")));

}

#[test]
fn test_get_value_key_does_not_exist() {

let storage: Storage = Storage::new();

let result = storage.get(String::from("akey")).unwrap();

assert_eq!(storage.store.len(), 0);
assert_eq!(result, None);

}

...

}

We need to wrap those methods in order to expose them as commands. Wrappers are important
mostly for error management. For example, it’s in the wrappers that we need to consider syntax
errors in the commands passed by users.

src/storage.rs

impl Storage {

...

fn command_set(&mut self, command: &Vec<String>) -> StorageResult<RESP> {
if command.len() != 3 {

return Err(StorageError::CommandSyntaxError(command.join(" ")));
}

let _ = self.set(command[1].clone(), command[2].clone());

CHAPTER 3. GET AND SET 67

Ok(RESP::SimpleString(String::from("OK")))
}

fn command_get(&mut self, command: &Vec<String>) -> StorageResult<RESP> {
if command.len() != 2 {

return Err(StorageError::CommandSyntaxError(command.join(" ")));
}

let output = self.get(command[1].clone());

match output {
Ok(Some(v)) => Ok(RESP::BulkString(v)),
Ok(None) => Ok(RESP::Null),
Err(_) => Err(StorageError::CommandInternalError(command.join(" "))),

}
}

...

}

The tests for the wrappers are

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_process_command_set() {

let mut storage: Storage = Storage::new();
let command = vec![

String::from("set"),
String::from("key"),
String::from("value"),

];

let output = storage.process_command(&command).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("OK")));
assert_eq!(storage.store.len(), 1);

}

#[test]
fn test_process_command_get() {

let mut storage: Storage = Storage::new();
storage.store.insert(

String::from("akey"),

CHAPTER 3. GET AND SET 68

StorageValue::String(String::from("avalue")),
);
let command = vec![String::from("get"), String::from("akey")];

let output = storage.process_command(&command).unwrap();

assert_eq!(output, RESP::BulkString(String::from("avalue")));
assert_eq!(storage.store.len(), 1);

}

...

}

The code relies on two new errors

src/storage_result.rs

#[derive(Debug)]
pub enum StorageError {

IncorrectRequest,
CommandNotAvailable(String),
CommandSyntaxError(String),
CommandInternalError(String),

}

impl fmt::Display for StorageError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
StorageError::IncorrectRequest => {

write!(f, "The client sent an incorrect request!")
}
StorageError::CommandNotAvailable(c) => {

write!(f, "The requested command {} is not available!", c)
}
StorageError::CommandSyntaxError(string) => {

write!(f, "Syntax error while processing {}!", string)
}
StorageError::CommandInternalError(string) => {

write!(f, "Internal error while processing {}!", string)
}

}
}

}

and the tests use process_command, so we need to add the two new commands to that function

CHAPTER 3. GET AND SET 69

src/storage.rs

impl Storage {

...

pub fn process_command(&mut self, command: &Vec<String>) -> StorageResult<RESP> {
match command[0].to_lowercase().as_str() {

"ping" => self.command_ping(&command),
"echo" => self.command_echo(&command),
"get" => self.command_get(&command),
"set" => self.command_set(&command),
_ => Err(StorageError::CommandNotAvailable(command[0].clone())),

}
}

...

}

CodeCrafters

Stage 6: Implement the SET & GET commands

It’s time to update the testing suite and to check that this version of the code passes Stage
6 of the CodeCrafters challenge.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step3.3

https://app.codecrafters.io/courses/redis/stages/la7
https://app.codecrafters.io/courses/redis/stages/la7
https://github.com/lgiordani/sider/tree/ed1/step3.3

Chapter 4

Key Expiry

No code, no riddle, no fancy little countdown.
Die Hard: With a Vengeance (1995)

Things starts to become interesting, and a little bit convoluted, with expiry.

Redis supports two types of key expiry, passive and active. With passive expiry, a key is is checked
upon retrieval. A GET operation might thus find a key but discover that it’s expired and remove it
before returning it. With active expiry, the server periodically scans keys and removes the expired
ones.

From the end user’s point of view the twomechanisms produce the same result: keys created with
an explicit expiry time will eventually be removed. At the end of the chapter we will be able to
send commands like SET answer 42 EX 5 and see the key answer disappear after 5 seconds.

The reason why things start to become interesting is that in this chapter we will add a component
to the system that goes beyond the simple request/response model we implemented so far. The
active expiry mechanism requires an independent process that is a reaction to an internal timeout
rather than to a client request.

We will come up with a working solution, but we will also discuss the limits of the current ar-
chitecture. In the next chapter we will go through a major refactoring that will introduce a much
more powerful structure based on actors.

For now, we will implement the following requirements:

• Add creation time and expiry to stored data.

70

CHAPTER 4. KEY EXPIRY 71

• Keep a list of keys whose expiry time has been set.

• Check the expiry time of retrieved keys.

• Periodically scan the list of expiring keys and remove the ones whose time is up.

CHAPTER 4. KEY EXPIRY 72

Step 1 - Creation time and expiry
We can start adding the creation time and expiry to the data contained inside the storage. To do
this we need to define a struct that represents stored data

src/storage.rs

use std::time::{Duration, SystemTime};

...

#[derive(Debug)]
pub struct StorageData {

pub value: StorageValue,
pub creation_time: SystemTime,
pub expiry: Option<Duration>,

}

Here, we are using the two types SystemTime [docs] (creation time, absolute) and Duration [docs]
(expiry, relative).

We can then create a method add_expiry and a function to create StorageData from a String

src/storage.rs

impl StorageData {
pub fn add_expiry(&mut self, expiry: Duration) {

self.expiry = Some(expiry);
}

}

impl From<String> for StorageData {
fn from(s: String) -> StorageData {

StorageData {
value: StorageValue::String(s),
creation_time: SystemTime::now(),
expiry: None,

}
}

}

To make sure that we can check the equality between two pieces of data we need to implement
PartialEq [docs]

https://doc.rust-lang.org/std/time/struct.SystemTime.html
https://doc.rust-lang.org/std/time/struct.Duration.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

CHAPTER 4. KEY EXPIRY 73

src/storage.rs

impl PartialEq for StorageData {
fn eq(&self, other: &Self) -> bool {

self.value == other.value && self.expiry == other.expiry
}

}

Last, we need to use the new data structure in the storage

src/storage.rs

pub struct Storage {
store: HashMap<String, StorageData>,

}

Which requires a straightforward set of changes in the rest of the code

src/storage.rs

impl Storage {
pub fn new() -> Self {

let store: HashMap<String, StorageData> = HashMap::new();

Self { store: store }
}

...

fn set(&mut self, key: String, value: String) -> StorageResult<String> {
self.store.insert(key, StorageData::from(value));

Ok(String::from("OK"))
}

fn get(&self, key: String) -> StorageResult<Option<String>> {
match self.store.get(&key) {

Some(StorageData {
value: StorageValue::String(v),
creation_time: _,
expiry: _,

}) => return Ok(Some(v.clone())),
None => return Ok(None),

}
}

CHAPTER 4. KEY EXPIRY 74

...
}

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_set_value() {

let mut storage: Storage = Storage::new();
let avalue = StorageData::from(String::from("avalue"));

let output = storage
.set(String::from("akey"), String::from("avalue"))
.unwrap();

assert_eq!(output, String::from("OK"));
assert_eq!(storage.store.len(), 1);
match storage.store.get(&String::from("akey")) {

Some(value) => assert_eq!(value, &avalue),
None => panic!(),

}
}

#[test]
fn test_get_value() {

let mut storage: Storage = Storage::new();
storage.store.insert(

String::from("akey"),
StorageData::from(String::from("avalue")),

);

let result = storage.get(String::from("akey")).unwrap();

assert_eq!(storage.store.len(), 1);
assert_eq!(result, Some(String::from("avalue")));

}

#[test]
fn test_process_command_get() {

let mut storage: Storage = Storage::new();
storage.store.insert(

String::from("akey"),
StorageData::from(String::from("avalue")),

);
let command = vec![String::from("get"), String::from("akey")];

let output = storage.process_command(&command).unwrap();

assert_eq!(output, RESP::BulkString(String::from("avalue")));
assert_eq!(storage.store.len(), 1);

}

...

CHAPTER 4. KEY EXPIRY 75

}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step4.1

https://github.com/lgiordani/sider/tree/ed1/step4.1

CHAPTER 4. KEY EXPIRY 76

Step 2 - Storage support for expiry
At this point we need to add support for expiry into the Storage struct. We need to create a
function expire_keys that is triggered periodically and whose task is to decide if expiring keys
are still valid or not.

A simple way to speed up the execution of such an operation is to keep a separate account of
keys with an expiry, so that we don’t need to scan all the keys stored in the system every time we
trigger expire_keys. This structure has to be a HashMap as it needs to contain both the key and
the expiry time.

src/storage.rs

pub struct Storage {
store: HashMap<String, StorageData>,
expiry: HashMap<String, SystemTime>,
active_expiry: bool,

}

The idea behind the flag active_expiry is to allow the process to be halted. Keep in mind that
this is not a perfect implementation of what happens in Redis, but a parallel implementation of
similar concepts, so this might or might not be what a Redis cluster actually allows you to do.

The new fields have to be initialised when a value is created

src/storage.rs

impl Storage {

...

pub fn new() -> Self {
let store: HashMap<String, StorageData> = HashMap::new();

Self {
store: store,
expiry: HashMap::<String, SystemTime>::new(),
active_expiry: true,

}
}

...

}

CHAPTER 4. KEY EXPIRY 77

and the creation test changes accordingly

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_create_new() {

let storage: Storage = Storage::new();

assert_eq!(storage.store.len(), 0);
assert_eq!(storage.expiry.len(), 0);
assert_eq!(storage.expiry, HashMap::<String, SystemTime>::new());
assert!(storage.active_expiry);

}

...

}

Finally we can create two methods set_active_expiry and expire_keys, where the latter is the
function that we want to run periodically to clean up expired keys.

src/storage.rs

impl Storage {

...

pub fn set_active_expiry(&mut self, value: bool) {
self.active_expiry = value;

}

pub fn expire_keys(&mut self) {
if !self.active_expiry {

return;
}

let now = SystemTime::now();

let expired_keys: Vec<String> = self
.expiry
.iter()
.filter_map(|(key, &value)| if value < now { Some(key.clone()) } else { None })
.collect();

CHAPTER 4. KEY EXPIRY 78

for k in expired_keys {
self.store.remove(&k);
self.expiry.remove(&k);

}
}

}

The tests for these two functions are

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_expire_keys() {

let mut storage: Storage = Storage::new();

storage
.set(String::from("akey"), String::from("avalue"))
.unwrap();

storage.expiry.insert(
String::from("akey"),
SystemTime::now() - Duration::from_secs(5),

);

storage.expire_keys();
assert_eq!(storage.store.len(), 0);

}

#[test]
fn test_expire_keys_deactivated() {

let mut storage: Storage = Storage::new();
storage.set_active_expiry(false);

storage
.set(String::from("akey"), String::from("avalue"))
.unwrap();

storage.expiry.insert(
String::from("akey"),
SystemTime::now() - Duration::from_secs(5),

);

storage.expire_keys();
assert_eq!(storage.store.len(), 1);

}

CHAPTER 4. KEY EXPIRY 79

...

}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step4.2

https://github.com/lgiordani/sider/tree/ed1/step4.2

CHAPTER 4. KEY EXPIRY 80

Step 3 - Run a function periodically
So far the structure of the code is pretty linear, despite the fact that we are using asynchronous
code. Every time a new client connection is established, the server spawns a new connection
handler task that receives a reference to the storage.

When the task needs to interact with the storage it can create a lock and access the resource in an
exclusive fashion. Creating a lock on the whole storage regardless of the nature of the operation
is clearly suboptimal, but we won’t dig into performance optimisation in this project.

Now we need to periodically run the method expire_keys of the storage. The best way to do it
is to set up a timer that will run the function every given amount of time.

To do this we first create an asynchronous function that locks the storage and runs the method.

src/main.rs

async fn expire_keys(storage: Arc<Mutex<Storage>>) {
let mut guard = storage.lock().unwrap();

guard.expire_keys();
}

Now we can add an asynchronous timer to the main loop and have this function called every 10
milliseconds. In a production system this value would be fetched from a configuration file, but in
this case we will just hard code it.

The current loop in main relies on the fact that there is only one asynchronous source of events,
that is listener.accept()

üsrc/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

...

loop {
match listener.accept().await {

...

}
}

CHAPTER 4. KEY EXPIRY 81

...

}

but this is not the case any more, as we have both the listener and the timer to await. This is the
perfect job for select! [docs], so we’ll first introduce it in the current version of main

src/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

let storage = Arc::new(Mutex::new(Storage::new()));

loop {
tokio::select! {

connection = listener.accept() => {
match connection {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, storage.clone()));

}
Err(e) => {

println!("Error: {}", e);
continue;

}
}

}
}

}
}

and at this point we can easily add the new task

src/main.rs

use std::time::Duration;

...

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

let storage = Arc::new(Mutex::new(Storage::new()));

https://docs.rs/tokio/latest/tokio/macro.select.html

CHAPTER 4. KEY EXPIRY 82

let mut interval_timer = tokio::time::interval(Duration::from_millis(10));

loop {
tokio::select! {

connection = listener.accept() => {
match connection {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, storage.clone()));

}
Err(e) => {

println!("Error: {}", e);
continue;

}
}

}

_ = interval_timer.tick() => {
tokio::spawn(expire_keys(storage.clone()));

}
}

}
}

Blocking functions
Please note that expire_keys is an asynchronous function but its true nature is that of a
blocking one. The method expire_keys might in theory run for a very long time, thus
making the whole asynchronous assumption false. In this project we will not address
this problem, but keep in mind that a production system should.

Should you want to try, a simple improvement is to make the function remove only a
certain amount of keys to keep execution time short.

Let’s pause for a moment to consider what we have done here, as it will be crucial in the next
chapter. Since the function expire_keys is triggered by an internal timer, the assumption that
the server waits for incoming connections only is not valid any more. There might be several
events that we need to process in select!, and each one of them needs to receive a protected
copy of the shared resources it affects (clone of Arc<Mutex<T>>).

CHAPTER 4. KEY EXPIRY 83

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step4.3

https://github.com/lgiordani/sider/tree/ed1/step4.3

CHAPTER 4. KEY EXPIRY 84

Step 4 - SET parameters
To be able to add an expiry time to keys we need to change the way the command SET works. As
there aremany parameters supported by this command it’s clear that we need a separated function
to parse them. This is the first symptom that commands should be more than just methods of the
struct Storage, but for now we won’t refactor anything on that side.

Command line parsing is a complicated and messy process, and generally it’s better to rely on
specific libraries. In this case, however, it might make sense to implement something custom
since the SET command is not a traditional shell command with long and short options preceded
by hyphens.

We will add support for the options EX, PX, NX, XX, and GET. There are some requirements:

• NX and XX are mutually exclusive

• EX and PX are mutually exclusive

• EX and PX have to be followed by an integer (respectively seconds and milliseconds)

• options can be listed in any order

We can start creating a new file called src/set.rs, and defining some enums and a struct that
represent the possible settings

src/set.rs

#[derive(Debug, PartialEq)]
pub enum KeyExistence {

NX,
XX,

}

#[derive(Debug, PartialEq)]
pub enum KeyExpiry {

EX(u64),
PX(u64),

}

#[derive(Debug, PartialEq)]
pub struct SetArgs {

pub expiry: Option<KeyExpiry>,
pub existence: Option<KeyExistence>,
pub get: bool,

}

impl SetArgs {
pub fn new() -> Self {

CHAPTER 4. KEY EXPIRY 85

SetArgs {
expiry: None,
existence: None,
get: false,

}
}

}

Enums are a good way to represent mutually exclusive options like NX and XX (similar to a boolean
OR), while a struct is great to group values (similar to a boolean AND).

We also need to add the new file as a module

src/main.rs

mod resp;
mod resp_result;
mod server;
mod set;
mod storage;
mod storage_result;

Then we can create a function parse_set_arguments that receives a Vec<String> and creates a
SetArgs. It makes sense to reuse StorageResult as a result type, since the parsing happens in
the storage.

src/set.rs

use crate::storage_result::{StorageError, StorageResult};

...

pub fn parse_set_arguments(arguments: &Vec<String>) -> StorageResult<SetArgs> {
let mut args = SetArgs::new();

...

Ok(args)
}

Inside that function we need to loop on the input vector and check if strings correspond to com-
mands. We cannot strictly iterate on them because EX and PX are followed by an argument, so
loop is the best solution.

CHAPTER 4. KEY EXPIRY 86

Basic structure and the argument NX
This is the implementation that matches NX

src/set.rs

pub fn parse_set_arguments(arguments: &Vec<String>) -> StorageResult<SetArgs> {
let mut args = SetArgs::new();

let mut idx: usize = 0;

loop {
if idx >= arguments.len() {

break;
}

match arguments[idx].to_lowercase().as_str() {
"nx" => {

if args.existence == Some(KeyExistence::XX) {
return Err(StorageError::CommandSyntaxError(arguments.join(" ")));

}

args.existence = Some(KeyExistence::NX);

idx += 1;
}
_ => {

return Err(StorageError::CommandSyntaxError(arguments.join(" ")));
}

}
}

Ok(args)
}

with the following tests

src/set.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_parse_nx() {

let commands: Vec<String> = vec![String::from("NX")];

let args = parse_set_arguments(&commands).unwrap();

assert_eq!(args.existence, Some(KeyExistence::NX));

CHAPTER 4. KEY EXPIRY 87

}

#[test]
fn test_parse_nx_lowercase() {

let commands: Vec<String> = vec![String::from("nx")];

let args = parse_set_arguments(&commands).unwrap();

assert_eq!(args.existence, Some(KeyExistence::NX));
}

}

Let’s have a look at this initial implementation, as the rest of the options will follow the same
logic.

Two arguments are followed by a number so we need to be free to look at the next element, which
means that we need to loop and to keep an eye on the current index.

üsrc/set.rs

let mut idx: usize = 0;

loop {
if idx >= arguments.len() {

break;
}

...

}

In each loop we match the current element of the input vector against the name of a command
and perform the relative actions. If the command is not among the supported ones we stop with
an error.

üsrc/set.rs

match arguments[idx].to_lowercase().as_str() {
"nx" => {

...
}
_ => {

return Err(StorageError::CommandSyntaxError(arguments.join(" ")));
}

CHAPTER 4. KEY EXPIRY 88

}

The only argument we support at the moment is NX. As NX and XX are mutually exclusive, we need
to check if args.existence is already set to SetArgs::XX and in that case we need to stop with
an error. Otherwise, we can set args.existence to SetArgs::NX and increment the index.

üsrc/set.rs

"nx" => {
if args.existence == Some(KeyExistence::XX) {

return Err(StorageError::CommandSyntaxError(arguments.join(" ")));
}

args.existence = Some(KeyExistence::NX);

idx += 1;
}

The argument XX
The argument XX is clearly a clone of the above with minor changes to mirror the behaviour

src/set.rs

pub fn parse_set_arguments(arguments: &Vec<String>) -> StorageResult<Vec<SetArgs>> {
let mut args: Vec<SetArgs> = vec![];

let mut idx: usize = 0;

loop {
if idx >= arguments.len() {

break;
}

match arguments[idx].to_lowercase().as_str() {

...

"xx" => {
if args.existence == Some(KeyExistence::NX) {

return Err(StorageError::CommandSyntaxError(arguments.join(" ")));
}

args.existence = Some(KeyExistence::XX);

CHAPTER 4. KEY EXPIRY 89

idx += 1;
}

...

}
}

Ok(args)
}

The tests for this argument are

src/set.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_parse_xx() {

let commands: Vec<String> = vec![String::from("XX")];

let args = parse_set_arguments(&commands).unwrap();

assert_eq!(args.existence, Some(KeyExistence::XX));
}

#[test]
fn test_parse_xx_and_nx() {

let commands: Vec<String> = vec![String::from("XX"), String::from("NX")];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

#[test]
fn test_parse_nx_and_xx() {

let commands: Vec<String> = vec![String::from("NX"), String::from("XX")];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

...

CHAPTER 4. KEY EXPIRY 90

}

The argument GET
The command GET has no specific requirements, as it is not clashing with anything

src/set.rs

match arguments[idx].to_lowercase().as_str() {

...

"get" => {
args.get = true;
idx += 1;

}

...

}

The tests for this argument are

src/set.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_parse_get() {

let commands: Vec<String> = vec![String::from("GET")];

let args = parse_set_arguments(&commands).unwrap();

assert!(args.get);
}

#[test]
fn test_parse_nx_and_get() {

let commands: Vec<String> = vec![String::from("NX"), String::from("GET")];

let args = parse_set_arguments(&commands).unwrap();

CHAPTER 4. KEY EXPIRY 91

assert_eq!(
args,
SetArgs {

existence: Some(KeyExistence::NX),
expiry: None,
get: true

}
);

}

#[test]
fn test_parse_xx_and_get() {

let commands: Vec<String> = vec![String::from("XX"), String::from("GET")];

let args = parse_set_arguments(&commands).unwrap();

assert_eq!(
args,
SetArgs {

existence: Some(KeyExistence::XX),
expiry: None,
get: true

}
);

}

...

}

The arguments EX and PX

The two final commands EX and PX have the same structure as NX and XX, beingmutually exclusive,
but with the additional complexity of requiring a numeric value. We need to check that there is a
following value and that it is a number. The implementation of EX is

src/set.rs

match arguments[idx].to_lowercase().as_str() {

...

"ex" => {
if let Some(KeyExpiry::PX(_)) = args.expiry {

return Err(StorageError::CommandSyntaxError(arguments.join(" ")));
}

if idx + 1 == arguments.len() {
return Err(StorageError::CommandSyntaxError(arguments.join(" ")));

}

CHAPTER 4. KEY EXPIRY 92

let value: u64 = arguments[idx + 1]
.parse()
.map_err(|_| StorageError::CommandSyntaxError(arguments.join(" ")))?;

args.expiry = Some(KeyExpiry::EX(value));

idx += 2;
}

...

}

and that of PX mirrors it

src/set.rs

match arguments[idx].to_lowercase().as_str() {

...

"px" => {
if let Some(KeyExpiry::EX(_)) = args.expiry {

return Err(StorageError::CommandSyntaxError(arguments.join(" ")));
}

if idx + 1 == arguments.len() {
return Err(StorageError::CommandSyntaxError(arguments.join(" ")));

}

let value: u64 = arguments[idx + 1]
.parse()
.map_err(|_| StorageError::CommandSyntaxError(arguments.join(" ")))?;

args.expiry = Some(KeyExpiry::PX(value));

idx += 2;
}

...

}

The tests for these arguments are

CHAPTER 4. KEY EXPIRY 93

src/set.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_parse_ex() {

let commands: Vec<String> = vec![String::from("EX"), String::from("100")];

let args = parse_set_arguments(&commands).unwrap();

assert_eq!(args.expiry, Some(KeyExpiry::EX(100)));
}

#[test]
fn test_parse_ex_wrong_value() {

let commands: Vec<String> = vec![String::from("EX"), String::from("value")];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

#[test]
fn test_parse_ex_end_of_vector() {

let commands: Vec<String> = vec![String::from("EX")];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

#[test]
fn test_parse_px() {

let commands: Vec<String> = vec![String::from("PX"), String::from("100")];

let args = parse_set_arguments(&commands).unwrap();

assert_eq!(args.expiry, Some(KeyExpiry::PX(100)));
}

#[test]
fn test_parse_px_wrong_value() {

let commands: Vec<String> = vec![String::from("PX"), String::from("value")];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

#[test]
fn test_parse_px_end_of_vector() {

CHAPTER 4. KEY EXPIRY 94

let commands: Vec<String> = vec![String::from("PX")];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

#[test]
fn test_parse_ex_and_px() {

let commands: Vec<String> = vec![
String::from("EX"),
String::from("100"),
String::from("PX"),
String::from("100"),

];

assert!(matches!(
parse_set_arguments(&commands),
Err(StorageError::CommandSyntaxError(_))

));
}

...

}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step4.4

https://github.com/lgiordani/sider/tree/ed1/step4.4

CHAPTER 4. KEY EXPIRY 95

Step 5 - SET with expiry
It’s time to update Storage to include the work we have done on SET. We can start importing the
relevant components

src/storage.rs

use crate::set::{parse_set_arguments, SetArgs, KeyExpiry};

The internal command (implemented by Storage::set) should receive a argument of type Se-
tArgs and act accordingly

src/storage.rs

impl Storage {

...

fn set(&mut self, key: String, value: String, args: SetArgs) -> StorageResult<String> {
let mut data = StorageData::from(value);

if let Some(value) = args.expiry {
let expiry = match value {

KeyExpiry::EX(v) => Duration::from_secs(v),
KeyExpiry::PX(v) => Duration::from_millis(v),

};

data.add_expiry(expiry);
self.expiry

.insert(key.clone(), SystemTime::now().add(expiry));
}

self.store.insert(key.clone(), data);

Ok(String::from("OK"))
}

...

}

Here, EX or PX are transformed into a std::time::Duration and added to the data that is about to
be stored. The expiring key is also added to self.expiry for faster retrieval by self.expire_keys.
To be able to run SystemTime::now().add(expiry) we also need to import a trait

CHAPTER 4. KEY EXPIRY 96

src/storage.rs

use crate::resp::RESP;
use crate::set::{parse_set_arguments, KeyExpiry, SetArgs};
use crate::storage_result::{StorageError, StorageResult};
use std::collections::HashMap;
use std::ops::Add;
use std::time::{Duration, SystemTime};

...

As we want to implement also passive expiration, we need to change the method get as well.

src/storage.rs

impl Storage {

...

fn get(&mut self, key: String) -> StorageResult<Option<String>> {
if let Some(&expiry) = self.expiry.get(&key) {

if SystemTime::now() >= expiry {
self.expiry.remove(&key);
self.store.remove(&key);
return Ok(None);

}
}

match self.store.get(&key) {
Some(StorageData {

value: StorageValue::String(v),
creation_time: _,
expiry: _,

}) => return Ok(Some(v.clone())),
None => return Ok(None),

}
}

...

}

The parameter self becomes mutable, as we are removing the key in case it’s expired. Then we
perform a simple check of the expiry time against SystemTime::now() to decide if the key is still
valid. The last change to the methods is in Storage::command_set, where we need to parse the
arguments and give them to Storage::set.

CHAPTER 4. KEY EXPIRY 97

src/storage.rs

impl Storage {

...

fn command_set(&mut self, command: &Vec<String>) -> StorageResult<RESP> {
if command.len() < 3 {

return Err(StorageError::CommandSyntaxError(command.join(" ")));
}

let key = command[1].clone();
let value = command[2].clone();
let args = parse_set_arguments(&command[3..].to_vec())?;

let _ = self.set(key, value, args);

Ok(RESP::SimpleString(String::from("OK")))
}

...

}

Existing tests require some changes to match the new function prototypes

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_set_value() {

let mut storage: Storage = Storage::new();
let avalue = StorageData::from(String::from("avalue"));

let output = storage
.set(String::from("akey"), String::from("avalue"), SetArgs::new())
.unwrap();

assert_eq!(output, String::from("OK"));
assert_eq!(storage.store.len(), 1);
match storage.store.get(&String::from("akey")) {

Some(value) => assert_eq!(value, &avalue),
None => panic!(),

}
}

CHAPTER 4. KEY EXPIRY 98

...

#[test]
fn test_get_value_key_does_not_exist() {

let mut storage: Storage = Storage::new();

let result = storage.get(String::from("akey")).unwrap();

assert_eq!(storage.store.len(), 0);
assert_eq!(result, None);

}

...

#[test]
fn test_expire_keys() {

let mut storage: Storage = Storage::new();

storage
.set(String::from("akey"), String::from("avalue"), SetArgs::new())
.unwrap();

storage.expiry.insert(
String::from("akey"),
SystemTime::now() - Duration::from_secs(5),

);

storage.expire_keys();
assert_eq!(storage.store.len(), 0);

}

#[test]
fn test_expire_keys_deactivated() {

let mut storage: Storage = Storage::new();
storage.set_active_expiry(false);

storage
.set(String::from("akey"), String::from("avalue"), SetArgs::new())
.unwrap();

storage.expiry.insert(
String::from("akey"),
SystemTime::now() - Duration::from_secs(5),

);

storage.expire_keys();
assert_eq!(storage.store.len(), 1);

}

...

}

We can also add a new test to check that PX works

CHAPTER 4. KEY EXPIRY 99

src/storage.rs

#[cfg(test)]
mod tests {

use super::*;

...

#[test]
fn test_set_value_with_px() {

let mut storage: Storage = Storage::new();
let mut avalue = StorageData::from(String::from("avalue"));
avalue.add_expiry(Duration::from_millis(100));

let output = storage
.set(

String::from("akey"),
String::from("avalue"),
SetArgs {

expiry: Some(KeyExpiry::PX(100)),
existence: None,
get: false,

},
)
.unwrap();

assert_eq!(output, String::from("OK"));
assert_eq!(storage.store.len(), 1);
match storage.store.get(&String::from("akey")) {

Some(value) => assert_eq!(value, &avalue),
None => panic!(),

}

storage.expiry.get(&String::from("akey")).unwrap();
}

...
}

CodeCrafters

Stage 7: Expiry

This version of the code passes Stage 7 of the CodeCrafters challenge.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step4.5

https://app.codecrafters.io/courses/redis/stages/yz1
https://github.com/lgiordani/sider/tree/ed1/step4.5

Chapter 5

Concurrency with actors

You work like a slave for that idiot actor who won’t give you a penny.
Amadeus (1984)

The code we developed so far is a basic (but working!) implementation of a remote key/value
store like Redis. We developed an internal core that manages data and a request processor that
can route commands, and with such devices we can implement many other services.
However, the component that manages the key expiry mechanism showed us that not everything
in the systemworks according to the traditional request/response logic. For example, we can have
components that react to timers and, more generally, parts of the system that respond to different
events than the mere incoming client request.
The current architecture of the system is not ideal for such a task. For starters, the core of the
system is the loop that runs select! in the function main, and adding more components would
quickly lead to a version of the function that contains too many arms. While this is not a problem
in terms of performance, it makes the system increasingly difficult to maintain and understand.
A second and more significant problem is connected with the Rust ownership model. Remember
that in Rust, every time we call a function passing a variable, the function takes ownership of it.
Because of that, in a concurrent scenariowe need towrap shared resourceswith an Arc<Mutex<T>>
and clone the reference before passing the value to a function, which will try to lock the under-
lying resource before accessing it.
Which resources are we discussing? In general, we need to pass relevant parts of the state of the
system to every function we run in an asynchronous task. So far, the only shared resource we are
managing is the storage, but in the future the complexity will increase. For example, to implement

100

CHAPTER 5. CONCURRENCY WITH ACTORS 101

replication we will have to pass the list of connected replicas, and to implement transactions we
will need to know if a client is currently in a transaction.

Overall, the Arc<Mutex<T>> pattern works very well for small systems, where the state passed
to each function is compact. For more complex cases, we need a different approach. This is,
specifically, the actor model.

Actors
The idea of actors is extremely simple: they are independent components of an application that
communicate with each other through messages. Introducing a message-based communication
layer is one of the best strategies to promote decoupling between parts of a system, which is
exactly what we need here.

Ultimately, actors and messaging systems inside a single application are yet another implemen-
tation of the concept of service and API, which you can find at different scales in any computer
system (e.g. cloud computing, microservices, REST APIs).

When the system is run by actors, there is no need to use the Arc<Mutex<T>> model. A specific
actor will be the unique owner of a certain resource, and other tasks can access the latter through
messages. As you can see, this seems to perfectly fit the Rust ownership model.

In this chapter, we will refactor the existing system into a concurrent server based on actors, and
we will learn to use some components of the Tokio runtime that simplify our job. In the next
chapter we will use the new structure to implement replication.

The overall architecture we are going to implement is shown in the following picture.

CHAPTER 5. CONCURRENCY WITH ACTORS 102

The storage is owned by the server, and the interaction between the two consists of internal
method calls. There is no need to lock the storage as the server is a single entity and won’t
therefore access the storage concurrently.

The server receives messages from other components, wrapped in a convenient structure Re-
quest. These messages will travel between Rust actors through Tokio channels, and are repre-
sented by specific Rust types.

At the moment, the only components that will send such messages are the Connection Handlers
(one per client), but the picture shows that in the future there might be other components that
implement different functionalities.

Connection Handlers receive RESP commands in binary form through a network connection, and
their task is to convert them into Requestmessages. It’s a good idea to decouple the interface we
show to the client (RESP commands) from the interface the server uses internally.

The flexibility of the systems will be evident once we tackle replication and transactions, adding
new components that will interact with the server to extend its functionalities.

Communication channels
To implement the new architecture we need two main components: a way to run actors and a
way to exchange messages between them.

CHAPTER 5. CONCURRENCY WITH ACTORS 103

In this scenario, actors are just asynchronous tasks, so the way to run them is the asynchronous
runtime, that in our case is Tokio. In particular, tokio::spawn [docs] will be the way to create
actors. Rust is not an object-oriented programming language, so actors will always be functions.
As for messages, Tokio allows us to create channels that can be used to send and receive data
to and from an actor (or any other part of a system). There are two main types of channels
that can be created in Tokio. One-shot channels with tokio::sync::oneshot [docs] and multi-
producer/single-consumer channels (MPSC) with tokio::sync::mpsc[docs]. We can consider
channels like queues shared among asynchronous tasks (and thus among threads).
Tokio channels are always one way. A sender can push messages to the receiver, but the channel
doesn’t offer the latter a way to reply.

One-shot vs MPSC
One-shot channels are a way to send a single message between a producer and a
consumer. In a scenario where an actor doesn’t keep track of the components that
connect to it, it’s useful to use one-shot messages. Each message sent to the server will
contain the one-shot channel that can be used to deliver responses. This mechanism is
similar to that of pre-printed envelopes used in postal ballots, where you receive
documents and the envelope that you have to use to send them back.

MPSC channels, on the other hand, are useful to establish a more permanent
communication route. They allow us to create a single sender and multiple receivers, but
they are perfect also for a scenario with a single receiver.

For reasons that will be clear in the next sections, in this book we will mostly use MPSC
channels. We will however retain the idea of sending messages that contain the response
channel.

MPSC channels
An MPSC channel is made of a Sender [docs] and a Receiver [docs].
Since MPSC channels have multiple producers the sender can be cloned [docs], while the receiver
cannot.
In the rest of the book, we will stick to the following naming schema for channels:

• COMPONENT_sender is the cloneable mpsc::Sender used to send a message to COMPONENT

• COMPONENT_receiver is the mpsc::Receiver used by COMPONENT to receive messages.

https://docs.rs/tokio/latest/tokio/task/fn.spawn.html
https://docs.rs/tokio/latest/tokio/sync/oneshot/index.html
https://docs.rs/tokio/latest/tokio/sync/mpsc/index.html
https://docs.rs/tokio/latest/tokio/sync/mpsc/struct.Sender.html
https://docs.rs/tokio/latest/tokio/sync/mpsc/struct.Receiver.html
https://docs.rs/tokio/latest/tokio/sync/mpsc/struct.Sender.html#impl-Clone-for-Sender<T>

CHAPTER 5. CONCURRENCY WITH ACTORS 104

Conversion steps
To convert the server into an actor we will go through the following steps:

1. Isolate types to represent server results and errors.

2. Create types to represents requests and messages sent to the server.

3. Refactor the connection handler into a select! loop.

4. Use the request type (without messages) in the connection handler.

5. Turn the server into an actor that listens for messages. At this stage the code will compile
but not work properly.

6. Make the connection handler use messages.

7. Tidy up the code.

The steps are (hopefully) small enough to be understandable. The code will be in a working
state that can be compiled and used until we turn the server into an actor (step 5). That and the
following step have been split for clarity’s sake, at the cost of having a stage where the system
doesn’t work properly.

CHAPTER 5. CONCURRENCY WITH ACTORS 105

Step 1 - Supporting types
Let’s start, as usual, taking care of result types and errors. In a previous chapter, we put Server-
Error aside when we isolated the storage. Now, we can resurrect the code, moving both Server-
Error and ServerResult into src/server_result.rs

src/server_result.rs

use std::fmt;

#[derive(Debug, PartialEq)]
pub enum ServerError {

CommandError,
}

impl fmt::Display for ServerError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
ServerError::CommandError => write!(f, "Error while processing!"),

}
}

}

pub type ServerResult<T> = Result<T, ServerError>;

We also need to add the file as a module

src/main.rs

mod resp;
mod resp_result;
mod server;
mod server_result;
mod set;
mod storage;
mod storage_result;

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.1

https://github.com/lgiordani/sider/tree/ed1/step5.1

CHAPTER 5. CONCURRENCY WITH ACTORS 106

Step 2 - Requests and messages
The connection handler receives the client’s requests in RESP binary format and needs to send
them to the server. It makes sense to wrap this piece of information in a struct Request to capture
all the data that we want to exchange. At the moment we want to send the RESP request and a
sender for the response, but in the future we will need to add more fields like for example the
binary representation of the RESP request.

First of all, the connection handler will send messages to the server, and we need a type to repre-
sent them.

src/connection.rs

use crate::request::Request;

#[derive(Debug)]
pub enum ConnectionMessage {

Request(Request),
}

The reason for the abstraction is that in the future we might want to send other types of data,
such as internal commands.

As explained before, the Request should contain the client’s RESP request, but also the channel
used to send a response. There is no such entity as "the channel", though, and the only way to
access it is through a Sender. Remember the metaphor of the postal ballot envelope.

src/request.rs

use crate::{resp::RESP, server_result::ServerMessage};
use tokio::sync::mpsc;

#[derive(Debug)]
pub struct Request {

pub value: RESP,
pub sender: mpsc::Sender<ServerMessage>,

}

The sender will carry a response, that is a message that comes from the server, so let’s define
ServerMessage. Currently, any request sent to the server produces either a response in RESP
binary format or an error.

CHAPTER 5. CONCURRENCY WITH ACTORS 107

src/server_result.rs

use crate::resp::RESP;

...

#[derive(Debug)]
pub enum ServerMessage {

Data(RESP),
Error(ServerError),

}

Finally, we need to define a structure that carries a message from the connection handler. At the
moment, the only possible message to the server is a request.

It’s in general a good idea to abstract messages with enums. They are a powerful way to express
data types that can evolve in the future without affecting the function prototypes that have been
already developed.

Finally, let’s add the new files to the list of modules

src/main.rs

mod connection;
mod request;
mod resp;
mod resp_result;
mod server;
mod server_result;
mod set;
mod storage;
mod storage_result;

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.2

https://github.com/lgiordani/sider/tree/ed1/step5.2

CHAPTER 5. CONCURRENCY WITH ACTORS 108

Step 3 - Refactor the connection handler
In this section we will refactor the connection handler to use the macro select! instead of
awaiting directly stream.read. Being a refactor, we are not going to change the behaviour, but
we are preparing the handler to host multiple asynchronous actions. This will be useful later
when we receive messages sent by the server.

The refactoring is straightforward. Instead of

match stream.read(&mut buffer).await {

we will have

select! {
result = stream.read(&mut buffer) => {

match result {

but the rest of the function will be left untouched

src/main.rs

async fn handle_connection(mut stream: TcpStream, storage: Arc<Mutex<Storage>>) {
let mut buffer = [0; 512];

loop {
select! {

result = stream.read(&mut buffer) => {
match result {

Ok(size) if size != 0 => {
let mut index: usize = 0;

let request = match bytes_to_resp(&buffer[..size].to_vec(), &mut
index) {↪→
Ok(v) => v,
Err(e) => {

eprintln!("Error: {}", e);
return;

}
};

let response = match process_request(request, storage.clone()) {
Ok(v) => v,
Err(e) => {

eprintln!("Error parsing command: {}", e);
return;

}
};

CHAPTER 5. CONCURRENCY WITH ACTORS 109

if let Err(e) = stream.write_all(response.to_string().as_bytes()).
await {↪→
eprintln!("Error writing to socket: {}", e);

}
}
Ok(_) => {

println!("Connection closed");
break;

}
Err(e) => {

println!("Error: {}", e);
break;

}
}

}
}

}
}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.3

https://github.com/lgiordani/sider/tree/ed1/step5.3

CHAPTER 5. CONCURRENCY WITH ACTORS 110

Step 4 - Send Requests to the server
This step involves more changes than the previous ones, but there is no additional complexity.
At the moment the connection handler calls process_request passing the RESP request directly,
but we will change it in order to use a Request.

This change prepares the system for a later step, where we won’t call process_request directly
any more, but will instead send a message to the server.

Let’s start with the connection handler. Since we need to create a Request, we also need to create
a channel that will send and receive messages of type ServerMessage

src/main.rs

use crate::request::Request;
use crate::resp::{bytes_to_resp, RESP};
use crate::server::process_request;
use crate::storage::Storage;
use server_result::ServerMessage;
use std::sync::{Arc, Mutex};
use std::time::Duration;
use tokio::{

io::{AsyncReadExt, AsyncWriteExt},
net::{TcpListener, TcpStream},
select,
sync::mpsc,

};

...

async fn handle_connection(mut stream: TcpStream, storage: Arc<Mutex<Storage>>) {
let mut buffer = [0; 512];

let (connection_sender, _) = mpsc::channel::<ServerMessage>(32);

loop {
select! {

result = stream.read(&mut buffer) => {
match result {

Ok(size) if size != 0 => {
let mut index: usize = 0;

let resp = match bytes_to_resp(&buffer[..size].to_vec(), &mut index
) {↪→
Ok(v) => v,
Err(e) => {

eprintln!("Error: {}", e);
return;

}
};

let request = Request {
value: resp,

CHAPTER 5. CONCURRENCY WITH ACTORS 111

sender: connection_sender.clone(),
};

let response = match process_request(request, storage.clone()) {
Ok(v) => v,
Err(e) => {

eprintln!("Error parsing command: {}", e);
return;

}
};

if let Err(e) = stream.write_all(response.to_string().as_bytes()).
await {↪→
eprintln!("Error writing to socket: {}", e);

}
}
Ok(_) => {

println!("Connection closed");
break;

}
Err(e) => {

println!("Error: {}", e);
break;

}
}

}
}

}
}

Now we need to change process_request accordingly and adjust the tests. The function can be
fixed very quickly

src/server.rs

use crate::request::Request;
use crate::storage::Storage;
use crate::storage_result::{StorageError, StorageResult};
use crate::RESP;
use std::sync::{Arc, Mutex};

pub fn process_request(request: Request, storage: Arc<Mutex<Storage>>) -> StorageResult<
RESP> {↪→
let elements = match request.value {

RESP::Array(v) => v,
_ => {

return Err(StorageError::IncorrectRequest);
}

};

...

CHAPTER 5. CONCURRENCY WITH ACTORS 112

Testing this function now requires a Request, which means that we also need to create the MPSC
channels in the tests

src/server.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_process_request_ping() {

let (connection_sender, _) = mpsc::channel::<ServerMessage>(32);

let request = Request {
value: RESP::Array(vec![RESP::BulkString(String::from("PING"))]),
sender: connection_sender,

};

let storage = Arc::new(Mutex::new(Storage::new()));

let output = process_request(request, storage).unwrap();

assert_eq!(output, RESP::SimpleString(String::from("PONG")));
}

#[test]
fn test_process_request_echo() {

let (connection_sender, _) = mpsc::channel::<ServerMessage>(32);

let request = Request {
value: RESP::Array(vec![

RESP::BulkString(String::from("ECHO")),
RESP::BulkString(String::from("42")),

]),
sender: connection_sender,

};

let storage = Arc::new(Mutex::new(Storage::new()));

let output = process_request(request, storage).unwrap();

assert_eq!(output, RESP::BulkString(String::from("42")));
}

#[test]
fn test_process_request_not_array() {

let (connection_sender, _) = mpsc::channel::<ServerMessage>(32);

let request = Request {
value: RESP::BulkString(String::from("PING")),
sender: connection_sender,

};

let storage = Arc::new(Mutex::new(Storage::new()));

let error = process_request(request, storage).unwrap_err();

CHAPTER 5. CONCURRENCY WITH ACTORS 113

assert_eq!(error, StorageError::IncorrectRequest);
}

#[test]
fn test_process_request_not_bulkstrings() {

let (connection_sender, _) = mpsc::channel::<ServerMessage>(32);

let request = Request {
value: RESP::Array(vec![RESP::SimpleString(String::from("PING"))]),
sender: connection_sender,

};

let storage = Arc::new(Mutex::new(Storage::new()));

let error = process_request(request, storage).unwrap_err();

assert_eq!(error, StorageError::IncorrectRequest);
}

}

We also need to import the two types where they were previously defined

src/server.rs

use crate::server_result::{ServerError, ServerResult};
use crate::storage::Storage;
use crate::storage_result::{StorageError, StorageResult};
use crate::RESP;
use std::sync::{Arc, Mutex};

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.4

https://github.com/lgiordani/sider/tree/ed1/step5.4

CHAPTER 5. CONCURRENCY WITH ACTORS 114

Step 5 - Turn the server into an actor
At this point we can convert the server into a full-fledged actor. This clearly involves the connec-
tion handler as well, but in this step we will focus solely on the server. In the next step we will fix
the connection handler and make sure both ends of the communication work properly. For this
reason, at the end of this section the code won’t work.

The server
Let’s create a structure to capture the information the server needs to manage

src/server.rs

pub struct Server {
pub storage: Option<Storage>,

}

As you can see, this is the core of the idea behind actors: the server owns the storage.

src/server.rs

impl Server {
pub fn new() -> Self {

Self { storage: None }
}

pub fn set_storage(mut self, storage: Storage) -> Self {
self.storage = Some(storage);
self

}
}

In this implementation the server can be initialised without the storage, but this is just a stylistic
choice that doesn’t affect the way the actor works.

The next change introduces the actor itself, which is a function called run_server

CHAPTER 5. CONCURRENCY WITH ACTORS 115

src/server.rs

use crate::connection::ConnectionMessage;
use tokio::sync::mpsc;

...

pub async fn run_server(mut server: Server, mut crx: mpsc::Receiver<ConnectionMessage>) {
loop {

tokio::select! {
Some(message) = crx.recv() => {

match message {
ConnectionMessage::Request(request) => {

process_request(request, &mut server).await;
}

}
}

}
}

}

As you can see this is initialised with a Server and a channel that receives messages from the
connection handler. The body is an infinite loop that fetches a message, extracts the Request, and
runs process_request on it.

Speaking of which, the function process_request needs to be changed as well, since we are now
passing directly a reference to Server instead of an Arc<Mutex<Storage>>.

src/server.rs

pub async fn process_request(request: Request, server: &mut Server) {
let elements = match &request.value {

RESP::Array(v) => v,
_ => {

panic!()
}

};

let mut command = Vec::new();
for elem in elements.iter() {

match elem {
RESP::BulkString(v) => command.push(v.clone()),
_ => {

panic!()
}

}
}

let storage = match server.storage.as_mut() {
Some(storage) => storage,

CHAPTER 5. CONCURRENCY WITH ACTORS 116

None => panic!(),
};

let response = storage.process_command(&command);
}

There are other important changes in the function. The first one is that the code to return an error
containing StorageError::IncorrectRequest has been removed and replaced with panic!().
The reason is that we haven’t set up the other half of the system that receives messages yet, so
we don’t have any other way to signal an error. panic!() is a good placeholder for now.

The second change is in the logic at the bottom of the function. We don’t need to lock the storage
any more as the server is the sole owner of that resource. The response is not returned by the
function as it was previously. Once again, we need a system to send it back to the connection
handler, and that will be implemented in the next step.

As we created a new type, it’s a good idea to have tests, so we’ll create test_create_new and
test_set_storage. As process_request at the moment doesn’t output the response in any
meaningful way, we should also comment out the remaining tests

src/server.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn test_create_new() {

let server: Server = Server::new();

match server.storage {
Some(_) => panic!(),
None => (),

};
}

#[test]
fn test_set_storage() {

let storage = Storage::new();

let server: Server = Server::new().set_storage(storage);

match server.storage {
Some(_) => (),
None => panic!(),

};
}

CHAPTER 5. CONCURRENCY WITH ACTORS 117

// #[test]
// fn test_process_request_ping() {

...
// }

// #[test]
// fn test_process_request_echo() {

...
// }

// #[test]
// fn test_process_request_not_array() {

...
// }

// #[test]
// fn test_process_request_not_bulkstrings() {

...
// }

}

The connection handler
Now that the server has been converted, we need to change the connection handler so that it uses
a message channel to send requests.

The function handle_connection doesn’t need to receive an Arc<Mutex<Storage>> any more,
but will receive a sender for ConnectionMessage entities.

src/main.rs

async fn handle_connection(mut stream: TcpStream, server_sender: mpsc::Sender<
ConnectionMessage>) {↪→

...

The call to process_request is replaced by a call to server_sender.send, and since the latter
doesn’t directly return a response, the code that managed the error has been removed. Once again,
this will be completed in the next step.

CHAPTER 5. CONCURRENCY WITH ACTORS 118

src/main.rs

async fn handle_connection(mut stream: TcpStream, server_sender: mpsc::Sender<
ConnectionMessage>) {↪→

...

let request = Request {
value: resp,
sender: connection_sender.clone(),

};

match server_sender.send(ConnectionMessage::Request(request)).await
{↪→
Ok(()) => {},
Err(e) => {

eprintln!("Error sending request: {}", e);
return;

}
}

}
Ok(_) => {

println!("Connection closed");
break;

}
Err(e) => {

println!("Error: {}", e);
break;

}
}

}
}

}
}

As handle_connection changed its prototype, we need to change the code of main accordingly.
As you can see, we also create the channel that will be used to send messages to the server.

src/main.rs

use connection::ConnectionMessage;

...

#[tokio::main]
async fn main() -> std::io::Result<()> {

...

let (server_sender, _) = mpsc::channel::<ConnectionMessage>(32);

CHAPTER 5. CONCURRENCY WITH ACTORS 119

loop {
tokio::select! {

connection = listener.accept() => {
match connection {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, server_sender.clone()));

}

Err(e) => {
println!("Error: {}", e);
continue;

}
}

}

...

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.5

https://github.com/lgiordani/sider/tree/ed1/step5.5

CHAPTER 5. CONCURRENCY WITH ACTORS 120

Step 6 - Use messages in the connection handler
In the current state, the code cannotwork properly because the function process_request doesn’t
have any way to send its response back to the connection handler. Previously, the function was
called directly, so it was just a matter of awaiting its completion and reading the output value.

In this new configuration, however, the function is called through a message, so there is no imme-
diate return value. The most natural way to send back the response is through a message from the
server, which means that we need to modify the connection handler adding some code to receive
messages and process their content. We also need to run the actor itself, which in this case is the
function run_server.

Connection results
Let’s start as usual defining a type to represent errors in the connection.

src/connection.rs

use crate::{request::Request, server_result::ServerError};
use std::fmt;

#[derive(Debug)]
pub enum ConnectionError {

ServerError(ServerError),
}

impl fmt::Display for ConnectionError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
ConnectionError::ServerError(e) => {

write!(f, "{}", format!("Server error: {}", e))
}

}
}

}

At themoment there is only one possible error in the connection handler, which is an unsuccessful
response from the server, represented here by the variant ConnectionError::ServerError.

Listening for server responses
The function handle_connection that represents the core of the connection handler has been
already converted into a select! loop, so we just need to add a new arm that uses the connec-
tion_receiver

CHAPTER 5. CONCURRENCY WITH ACTORS 121

src/main.rs

async fn handle_connection(mut stream: TcpStream, server_sender: mpsc::Sender<
ConnectionMessage>) {↪→
let mut buffer = [0; 512];

let (connection_sender, mut connection_receiver) = mpsc::channel::<ServerMessage>(32);

loop {
select! {

result = stream.read(&mut buffer) => {
...

}

Some(response) = connection_receiver.recv() => {
let _ = match response {

ServerMessage::Data(v) => stream.write_all(v.to_string().as_bytes()).
await,↪→

ServerMessage::Error(e) => {
eprintln!("Error: {}", ConnectionError::ServerError(e));
return;

}
};

}

}
}

}

Here, connection_receiver.recv() is awaited by select! and when a response is detected it is
written to the stream if successful and to the standard error otherwise. Where does this response
come from? As you remember, in handle_connection we clone connection_sender and we
store it into the request, so that the server can use it

src/server.rs

use crate::server_result::ServerMessage;

...

pub async fn process_request(request: Request, server: &mut Server) {

...

let response = storage.process_command(&command);

match response {
Ok(v) => {

request.sender.send(ServerMessage::Data(v)).await.unwrap();
}

CHAPTER 5. CONCURRENCY WITH ACTORS 122

Err(e) => (),
}

}

Please note that process_request is still heavily under construction, as we are not properly
dealing with the error in the code above and still haven’t replaced the panic!() calls.

Running the server
The last change of this step is to run the server as an actor, so that the connection handler has
something to exchange messages with. To do this we have to change the function main to spawn
the actor

src/main.rs

use crate::connection::ConnectionError;
use server::{run_server, Server};
use tokio::io::{AsyncReadExt, AsyncWriteExt}

...

#[tokio::main]
async fn main() -> std::io::Result<()> {

let listener = TcpListener::bind("127.0.0.1:6379").await?;

let storage = Storage::new();
let mut server = Server::new();
server = server.set_storage(storage);

let (server_sender, server_receiver) = mpsc::channel::<ConnectionMessage>(32);

tokio::spawn(run_server(server, server_receiver));

loop {

...

As you can see, the storage becomes part of the server and the server is run as an actor through
tokio::spawn. The server receiver is nowneeded by run_server, sowe store it in server_receiver.
Please note thatwe also got rid of the second arm of the select! that awaited interval_timer.tick()
and of the initialisation of interval_timer. As the storage is now owned by the server it is not
possible to work on it directly, and in the next step we will move the management of key expiry
somewhere else.

With the latest changes, the system comes back to life, and we can once again pass the end to end

CHAPTER 5. CONCURRENCY WITH ACTORS 123

tests. Active expiry is not working any more, but passive expiry does, and that’s enough to make
the test pass.

The code is clearly in a terrible state. Imports should be tidied up, unit tests have been commented,
and error management has been replaced by panic! calls. So, the plan for the next steps is to tidy
it up.

CodeCrafters

Stage 7: Expiry

This version of the code passes Stage 7 of the CodeCrafters challenge, just like the version
we had at the end of the previous chapter. This shows that our refactoring worked.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.6

https://app.codecrafters.io/courses/redis/stages/yz1
https://github.com/lgiordani/sider/tree/ed1/step5.6

CHAPTER 5. CONCURRENCY WITH ACTORS 124

Step 7 - Tidy up the code
When we go through a major refactoring, it’s always important to keep the system in a working
state as much as possible. The byproduct of this succession of intermediate states, where the
system is transitioning from the old architecture to the new one, is a lot of temporary code and
unused imports, and more generally an untidiness of the code base.

In this step we need to fill in the gaps and to make sure the code is well written.

Step 7.1 - Active expiry
The first move is to restore active expiry, that was removed in the previous step as storage was
no more accessible from main. The strategy here is very simple.

First of all let’s remove expire_keys from main.rs and recreate it as a method of the struct
Server.

src/server.rs

impl Server {
pub fn new() -> Self {

Self { storage: None }
}

pub fn set_storage(mut self, storage: Storage) -> Self {
self.storage = Some(storage);
self

}

pub fn expire_keys(&mut self) {
let storage = match self.storage.as_mut() {

Some(storage) => storage,
None => return,

};

storage.expire_keys();
}

}

The fact that expire_keys is now a method instead of a simple function is just a matter of pref-
erence.

Now, since the server actor run_server is a select! loop we can once again create inter-
val_timer and await interval_timer.tick().

CHAPTER 5. CONCURRENCY WITH ACTORS 125

src/server.rs

use std::time::Duration;

...

pub async fn run_server(mut server: Server, mut crx: mpsc::Receiver<ConnectionMessage>) {
let mut interval_timer = tokio::time::interval(Duration::from_millis(10));

loop {
tokio::select! {

...

_ = interval_timer.tick() => {
server.expire_keys();

}
}

}
}

Once again, as the server owns the storage there is no need to lock the resource here.

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.7.1

Step 7.2 - Wrapping server values
So far we assumed that the server could return any type of result, but it makes sense to identify
the actual types and to group them into an enum. The only one we need so far, at any rate, is
RESP

src/server_result.rs

#[derive(Debug)]
pub enum ServerValue {

RESP(RESP),
}

pub type ServerResult = Result<ServerValue, ServerError>;

#[derive(Debug)]

https://github.com/lgiordani/sider/tree/ed1/step5.7.1

CHAPTER 5. CONCURRENCY WITH ACTORS 126

pub enum ServerMessage {
Data(ServerValue),
Error(ServerError),

}

This causes a couple of changes in other functions. In handle_connection

src/main.rs

use crate::server_result::ServerValue;

...

async fn handle_connection(mut stream: TcpStream, server_sender: mpsc::Sender<
ConnectionMessage>) {↪→

...

loop {
select! {

...

Some(response) = connection_receiver.recv() => {
let _ = match response {

ServerMessage::Data(ServerValue::RESP(v)) => stream.write_all(v.
to_string().as_bytes()).await,↪→

ServerMessage::Error(e) => {
eprintln!("Error: {}", ConnectionError::ServerError(e));
return;

}
};

}

}
}

}

and in process_request

src/server.rs

use crate::server_result::{ServerMessage, ServerValue};

...

pub async fn process_request(request: Request, server: &mut Server) {

CHAPTER 5. CONCURRENCY WITH ACTORS 127

...

match response {
Ok(v) => {

request
.sender
.send(ServerMessage::Data(ServerValue::RESP(v)))
.await
.unwrap();

}
Err(e) => (),

}
}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.7.2

Step 7.3 - A better Request
The struct Request is pretty important for the new architecture, as a lot of the functionalities of
the system are connected with it. It makes sense to add a couple of helper methods to simplify its
usage

src/request.rs

use crate::{
resp::RESP,
server_result::{ServerError, ServerMessage, ServerValue},

};

...

impl Request {
pub async fn error(&self, e: ServerError) {

self.sender.send(ServerMessage::Error(e)).await.unwrap();
}

pub async fn data(&self, d: ServerValue) {
self.sender.send(ServerMessage::Data(d)).await.unwrap();

}
}

https://github.com/lgiordani/sider/tree/ed1/step5.7.2

CHAPTER 5. CONCURRENCY WITH ACTORS 128

andwe can use themdirectly in process_request. First to simplify the last call to request.sender.send

src/server.rs

pub async fn process_request(request: Request, server: &mut Server) {
...

match response {
Ok(v) => {

request.data(ServerValue::RESP(v)).await;
}
Err(e) => (),

}
}

and then to replace the panic! calls. To do that we first need to define a couple of new variants
of ServerError

src/server_result.rs

#[derive(Debug, PartialEq)]
pub enum ServerError {

CommandError,
IncorrectData,
StorageNotInitialised,

}

impl fmt::Display for ServerError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {

match self {
ServerError::CommandError => write!(f, "Error while processing!"),
ServerError::IncorrectData => {

write!(f, "Data received from stream is incorrect.")
}
ServerError::StorageNotInitialised => {

write!(f, "Storage has not been initialised.")
}

}
}

}

and then we can work on process_request

CHAPTER 5. CONCURRENCY WITH ACTORS 129

src/server.rs

pub async fn process_request(request: Request, server: &mut Server) {
let elements = match &request.value {

RESP::Array(v) => v,
_ => {

request.error(ServerError::IncorrectData).await;
return;

}
};

let mut command = Vec::new();
for elem in elements.iter() {

match elem {
RESP::BulkString(v) => command.push(v.clone()),
_ => {

request.error(ServerError::IncorrectData).await;
return;

}
}

}

let storage = match server.storage.as_mut() {
Some(storage) => storage,
None => {

request.error(ServerError::StorageNotInitialised).await;
return;

}
};

let response = storage.process_command(&command);

match response {
Ok(v) => {

request.data(ServerValue::RESP(v)).await;
}
Err(e) => (),

}
}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.7.3

Step 7.4 - Isolate the connection handler
Connection handlers are arguably the central part of the system, which after all is a server whose
main task is to accept incoming requests and send appropriate responses. When we converted

https://github.com/lgiordani/sider/tree/ed1/step5.7.3

CHAPTER 5. CONCURRENCY WITH ACTORS 130

the server into an actor we did the same to connection handlers, which now react to "messages"
from clients (requests) and to messages from the server. For each incoming connection, the main
loop spawns a dedicated connection handler to monitor it.

The specific actor for the connection handler is the function handle_connection, so it is worth
isolating it in a separate space. Tomake the code tidier, it’s also useful to capture themain select!
loop in a separate space.

Let’s start moving handle_connection to src/connection.rs

src/connection.rs

use crate::request::Request;
use crate::resp::bytes_to_resp;
use crate::server_result::{ServerError, ServerMessage, ServerValue};
use tokio::{

io::{AsyncReadExt, AsyncWriteExt},
net::TcpStream,
select,
sync::mpsc,

};

...

async fn handle_connection(
mut stream: TcpStream,
server_sender: mpsc::Sender<ConnectionMessage>,

) {

...

}

The function is moved as it is. To isolate the listener loop, instead, we need to create a new
function

src/connection.rs

use tokio::{
io::{AsyncReadExt, AsyncWriteExt},
net::{TcpListener, TcpStream},
select,
sync::mpsc,

};

...

CHAPTER 5. CONCURRENCY WITH ACTORS 131

pub async fn run_listener(host: String, port: u16, server_sender: mpsc::Sender<
ConnectionMessage>) {↪→
let listener = TcpListener::bind(format!("{}:{}", host, port))

.await

.unwrap();

loop {
tokio::select! {

connection = listener.accept() => {
match connection {

Ok((stream, _)) => {
tokio::spawn(handle_connection(stream, server_sender.clone()));

}
Err(e) => {

eprintln!("Error: {}", e);
continue;

}
}

}
}

}
}

and this needs to be called in main

src/main.rs

#[tokio::main]
async fn main() -> std::io::Result<()> {

let storage = Storage::new();
let mut server = Server::new();
server = server.set_storage(storage);

let (server_sender, server_receiver) = mpsc::channel::<ConnectionMessage>(32);

tokio::spawn(run_server(server, server_receiver));

run_listener("127.0.0.1".to_string(), 6379, server_sender).await;

Ok(())
}

�
Source code
https://github.com/lgiordani/sider/tree/ed1/step5.7.4

https://github.com/lgiordani/sider/tree/ed1/step5.7.4

Next steps

Now, the next step’s a little tricky.
The Great Escape (1963)

The work done so far brought us from a simple server that can bind to a TCP port to a rich system
that implements a basic remote dictionary with a clever architecture that can be easily extended.

The CodeCrafters challenge targets some of these extensions, allowing us to explore the following
topics:

• Replication

• Transactions

• RDB persistence

• Streams

As I mentioned in the introduction, the book is not 100% complete, as I plan to tackle each one
of those. The code for the first two is already working, but I still have to split it into steps and to
write the relative explanation.

132

NEXT STEPS 133

Final words (for now)
I hope you enjoyed the book so far!

As I said, I’m just a beginner with Rust, so I hope the book might help others to continue their
journey with this amazing language.

Any type of feedback, correction, or suggestion is more than welcome.

Thanks for reading my book!

	Contents
	Introduction
	CodeCrafters
	Why this book comes for free
	Typographic conventions
	Setup the development environment
	About the book

	Initial Steps
	Step 1 - Bind to a port
	Step 2 - Respond to PING
	Step 3 - Respond to multiple PING
	Step 4 - Handle concurrent clients

	The RESP Protocol
	Step 1 - Define a custom result type
	Step 2 - Extract binary values from RESP
	Step 3 - Convert binary values to string
	Step 4 - Parse the RESP type
	Step 5 - Parse a RESP simple string
	Step 6 - Use simple string for PING
	Step 7 - Parse generic RESP
	Step 8 - Parse a RESP bulk string
	Step 9 - Parse a RESP array
	Step 10 - Process PING the right way
	Step 11 - Process ECHO

	GET and SET
	Step 1 - Create the storage manager
	Step 2 - Use the storage manager
	Step 3 - Implement GET and SET

	Key Expiry
	Step 1 - Creation time and expiry
	Step 2 - Storage support for expiry
	Step 3 - Run a function periodically
	Step 4 - SET parameters
	Step 5 - SET with expiry

	Concurrency with actors
	Actors
	Communication channels
	Conversion steps
	Step 1 - Supporting types
	Step 2 - Requests and messages
	Step 3 - Refactor the connection handler
	Step 4 - Send Requests to the server
	Step 5 - Turn the server into an actor
	Step 6 - Use messages in the connection handler
	Step 7 - Tidy up the code

	Next steps
	Final words (for now)

